

The Developer’s Guide to Debugging

Thorsten Grötker · Ulrich Holtmann
Holger Keding · Markus Wloka

The Developer’s Guide
to Debugging

123

Thorsten Grötker
Holger Keding

Ulrich Holtmann
Markus Wloka

Internet: http://www.debugging-guide.com
Email: authors@debugging-guide.com

ISBN: 978-1-4020-5539-3 e-ISBN: 978-1-4020-5540-9

Library of Congress Control Number: 2008929566

c© 2008 Springer Science+Business Media B.V.
No part of this work may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, microfilming, recording
or otherwise, without written permission from the Publisher, with the exception
of any material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Foreword

Of all activities in software development, debugging is probably the one that is
hated most. It is guilt-ridden because a technical failure suggests personal fail-
ure; because it points the finger at us showing us that we have been wrong. It is
time-consuming because we have to rethink every single assumption, every single
step from requirements to implementation. Its worst feature though may be that it
is unpredictable: You never know how much time it will take you to fix a bug - and
whether you’ll be able to fix it at all.

Ask a developer for the worst moments in life, and many of them will be related
to debugging. It may be 11pm, you’re still working on it, you are just stepping
through the program, and that’s when your spouse calls you and asks you when
you’ll finally, finally get home, and you try to end the call as soon as possible as
you’re losing grip on the carefully memorized observations and deductions. In such
moments, you may eventually be choosing between restarting your debugging task
or restarting your relationship. My personal estimate is that debugging is the number
one cause for programmer’s divorces.

And yet, debugging can be a joy, as much thrill as solving puzzles, riddles, or
murder mysteries – if you proceed in a systematic way and if you are equipped with
the right tools for the job. This is where The Developer’s Guide to Debugging comes
into play. Thorsten Grötker, Ulrich Holtmann, Holger Keding, and Markus Wloka
speak directly to the entrenched developer, give straight-forward advice on solving
debugging problems and come up with solutions real fast. Whether it is solving
memory problems, debugging parallel programs, or dealing with problems induced
by your very tool chain - this book offers first aid that is tried and proven.

I would have loved to have such a book at the beginning of my debugging career
– I would have gazed at it in amazement of what these debugging tools can do
for me, and by following its advice, I could have saved countless hours of manual
debugging – time I could have spent on other activities. For instance, I could have
made my code more reliable such that in the end, I would not have had to do any
debugging at all.

v

vi Foreword

This, of course, is the long-term goal of professional programming: To come
up with code that is right from the start, where all errors are prevented (or at least
detected) by some verification or validation method. Today already, assertions and
unit tests help a lot in increasing confidence into our programs. In the future, we may
even have full-fledged verification of industrial-size systems. We’re not there yet; it
may take years to get there; and even if we get there, whatever method we come up
with certainly will not be applicable to programming languages as we know them.
When dealing with today’s programs, especially those written in C and C++, we’ll
still spend some time on debugging – and that’s where The Developer’s Guide to
Debugging provides truly priceless advice.

Saarland University, Spring 2008 Andreas Zeller

Preface

At the time of writing this book, we – the authors – are all working for a technology
company that produces software, and more. Not on the same project or product,
though. Yet we have all been called to support customers and colleagues when it
came to debugging C and C++ programs – as part of our software engineering work,
because we produce tools that let users write optimized simulation programs, or
simply because we happen to develop debugging tools. And we kept repeating the
same fundamental techniques, time and again, as there was no good textbook on
debugging we could refer to.

Until now.

The Book’s Website

We have created the website http://www.debugging-guide.com to aug-
ment the book, by listing up-to-date references on the topic of software debugging:
access to tools, books, journals, research papers, conferences, tutorials, and web
links. The examples used in this book, and further material, can be downloaded
from this website.

vii

Acknowledgments

This book would not have come to exist without the help of numerous people.

To begin with, we owe Mark de Jongh from Springer for encouraging us to write
this book, for his support, and for his endless patience, which we stress-tested so
many times.

We are also grateful to a large number of people, among them our colleagues at
Synopsys, for coming up with a steady stream of challenges in the area of software
debugging, and for teaching us tricks how to crack tough nuts. This has been the
seedbed for this book. Any attempt at presenting a complete list of names here is
bound to fail.

We would like to mention Andrea Kroll, as she was the first person asking us to
write down a structured approach to debugging a simulation program, and Roland
Verreet, for his encouragement and insights on marketing. We also thank Joachim
Kunkel and Debashis Chowdhury for their support.

Software has bugs, and so have books, especially early drafts. The help of brave
people led to considerable improvements of this book’s quality and readability. We
would like to thank, in alphabetical order, the following people for their contribu-
tions to this process: Ralf Beckers, Joe Buck, Ric Hilderink, Gernot Koch, Rainer
Leupers, Olaf Scheufen, Matthias Wloka, and Christian Zunker.

We are grateful to Scott Meyers for his input on how to organize chapters and for
his suggestions on how to present key material.

We also want to express thanks to Andrea Hölter for her insightful comments written
up during repeated front-to-back reviews.

Mike Appleby, Simon North, and Ian Stephens deserve credit for helping us turn
disjoint bursts of information into something – hopefully – much more intelligible,

ix

x Acknowledgments

and also for covering up the many crimes against the English language we had
committed. Any remaining errors and shortcomings are our own.

Finally, it must be mentioned that this book would not have been possible without
the enduring support from our families.

Thank you!

About the Authors

Thorsten Grötker was born in 1965 in Mönchengladbach, Germany. He received a
diploma and doctorate degree in Electrical Engineering from Aachen University of
Technology. Thorsten joined Synopsys in 1997, working in various functions in the
areas of system level design and hardware verification. He is also an active member
of the Open SystemC Initiative. Thorsten enjoys travel and photography.

Ulli Holtmann was born in 1964 in Hildesheim, Germany. He studied Computer
Science at the Technical University of Braunschweig and received his doctorate
in 1995. He joined Synopsys in 1995 as an R&D engineer. From 1995–2000, he
worked at the U.S. headquarters in Mountain View, and since then in Herzogenrath,
Germany. He is married and has two children.

Holger Keding was born in 1970 in Kempen, Germany. He studied Electrical Engi-
neering and Information Technology at Aachen University of Technology, where
he received his doctorate in 2002. He joined Synopsys in 2001 as Corporate
Application Engineer, focusing on system level design and simulation methodol-
ogy. He is an active member of the Open SystemC Initiative (OSCI). In his spare
time he enjoys sailing, music, skiing, and spending time with his family and friends.
Holger is married and has two children.

Markus Wloka was born in Heidelberg in 1962, and grew up in Kiel, Germany.
He received his Ph.D. in Computer Science from Brown University, USA, in 1991.
From 1991–1996 he worked for Motorola SPS (now Freescale) in Tempe, USA, on
projects that applied parallel processing to low power optimization of ASIC chips.
In 1996 he joined Synopsys in Germany, where he currently holds the position of
Director R&D. He is married to Anke Brenner, and has 3 children: Sarah, Thomas,
and Kristin. His hobbies include reading, sailing, traveling, and buying the latest-
and-greatest technological gadgets.

Aachen, Thorsten Grötker
April 2008 Ulrich Holtmann

Holger Keding
Markus Wloka

xi

Contents

1 You Write Software; You have Bugs . 1

2 A Systematic Approach to Debugging . 5
2.1 Why Follow a Structured Process? . 5
2.2 Making the Most of Your Opportunities . 5
2.3 13 Golden Rules . 7

2.3.1 Understand the Requirements . 8
2.3.2 Make it Fail . 8
2.3.3 Simplify the Test Case . 9
2.3.4 Read the Right Error Message . 9
2.3.5 Check the Plug . 9
2.3.6 Separate Facts from Interpretation . 10
2.3.7 Divide and Conquer . 10
2.3.8 Match the Tool to the Bug . 12
2.3.9 One Change at a Time . 12
2.3.10 Keep an Audit Trail . 12
2.3.11 Get a Fresh View . 13
2.3.12 If You Didn’t Fix it, it Ain’t Fixed . 13
2.3.13 Cover your Bugfix with a Regression Test 13

2.4 Build a Good Toolkit . 14
2.4.1 Your Workshop . 15
2.4.2 Running Tests Every Day Keeps the Bugs at Bay 15

2.5 Know Your Enemy – Meet the Bug Family . 17
2.5.1 The Common Bug . 17
2.5.2 Sporadic Bugs . 18
2.5.3 Heisenbugs . 18
2.5.4 Bugs Hiding Behind Bugs . 19
2.5.5 Secret Bugs – Debugging and Confidentiality 20
2.5.6 Further Reading . 21

xiii

xiv Contents

3 Getting to the Root – Source Code Debuggers . 23
3.1 Visualizing Program Behavior . 23
3.2 Prepare a Simple Predictable Example . 24
3.3 Get the Debugger to Run with Your Program 24
3.4 Learn to do a Stack Trace on a Program Crash 27
3.5 Learn to Use Breakpoints . 28
3.6 Learn to Navigate Through the Program. 28
3.7 Learn to Inspect Data: Variables and Expressions 29
3.8 A Debug Session on a Simple Example . 30

4 Fixing Memory Problems . 33
4.1 Memory Management in C/C++ – Powerful but Dangerous 33

4.1.1 Memory Leaks . 34
4.1.2 Incorrect Use of Memory Management 34
4.1.3 Buffer Overruns . 34
4.1.4 Uninitialized Memory Bugs . 34

4.2 Memory Debuggers to the Rescue . 35
4.3 Example 1: Detecting Memory Access Errors 36

4.3.1 Detecting an Invalid Write Access . 36
4.3.2 Detecting Uninitialized Memory Reads 37
4.3.3 Detecting Memory Leaks . 38

4.4 Example 2: Broken Calls to Memory Allocation/Deallocation 38
4.5 Combining Memory and Source Code Debuggers 40
4.6 Cutting Down the Noise – Suppressing Errors 40
4.7 When to Use a Memory Debugger . 41
4.8 Restrictions . 42

4.8.1 Prepare Test Cases with Good Code Coverage 42
4.8.2 Provide Additional Computer Resources 42
4.8.3 Multi-Threading May Not be Supported 42
4.8.4 Support for Non-standard Memory Handlers 42

5 Profiling Memory Use . 45
5.1 Basic Strategy – The First Steps . 45
5.2 Example 1: Allocating Arrays . 46
5.3 Step 1: Look for Leaks . 46
5.4 Step 2: Set Your Expectations . 47
5.5 Step 3: Measure Memory Consumption . 47

5.5.1 Use Multiple Inputs . 48
5.5.2 Stopping the Program at Regular Intervals 48
5.5.3 Measuring Memory Consumption with Simple Tools 49
5.5.4 Use top . 49
5.5.5 Use the Windows Task Manager . 50
5.5.6 Select Relevant Input Values for testmalloc 51
5.5.7 Determine how Memory is Deallocated on Your Machine . 51
5.5.8 Use a Memory Profiler . 53

Contents xv

5.6 Step 4: Identifying Greedy Data Structures . 54
5.6.1 Instrumenting Data Structures . 55

5.7 Putting it Together – The genindex Example 55
5.7.1 Check that There are No Major Leaks 56
5.7.2 Estimate the Expected Memory Use 56
5.7.3 Measure Memory Consumption . 57
5.7.4 Find the Data Structures that Consume Memory 57

6 Solving Performance Problems . 63
6.1 Finding Performance Bugs – A Step-by-Step Approach 63

6.1.1 Do an Upfront Analysis . 64
6.1.2 Use a Simple Method of Measuring Time 64
6.1.3 Create a Test Case . 65
6.1.4 Make the Test Case Reproducible . 65
6.1.5 Check the Program for Correctness 66
6.1.6 Make the Test Case Scalable . 66
6.1.7 Isolate the Test Case from Side Effects 67
6.1.8 Measurement with time can have Errors and Variations . 68
6.1.9 Select a Test Case that Exposes the Runtime Bottleneck . . 68
6.1.10 The Difference Between Algorithm and Implementation . . 70

6.2 Using Profiling Tools . 72
6.2.1 Do Not Write Your Own Profiler . 72
6.2.2 How Profilers Work . 73
6.2.3 Familiarize Yourself with gprof . 74
6.2.4 Familiarize Yourself with Quantify . 79
6.2.5 Familiarize Yourself with Callgrind 81
6.2.6 Familiarize Yourself with VTune . 82

6.3 Analyzing I/O Performance . 84
6.3.1 Do a Sanity Check of Your Measurements 85

7 Debugging Parallel Programs . 87
7.1 Writing Parallel Programs in C/C++ . 87
7.2 Debugging Race Conditions . 88

7.2.1 Using Basic Debugger Capabilities to Find Race
Conditions . 89

7.2.2 Using Log Files to Localize Race Conditions 91
7.3 Debugging Deadlocks . 93

7.3.1 How to Determine What the Current Thread is Executing . 94
7.3.2 Analyzing the Threads of the Program 95

7.4 Familiarize Yourself with Threading Analysis Tools 96
7.5 Asynchronous Events and Interrupt Handlers 98

xvi Contents

8 Finding Environment and Compiler Problems . 101
8.1 Environment Changes – Where Problems Begin 101

8.1.1 Environment Variables . 101
8.1.2 Local Installation Dependencies . 102
8.1.3 Current Working Directory Dependency 102
8.1.4 Process ID Dependency . 102

8.2 How else to See what a Program is Doing . 103
8.2.1 Viewing Processes with top . 103
8.2.2 Finding Multiple Processes of an Application with ps . . . 103
8.2.3 Using /proc/<pid> to Access a Process 104
8.2.4 Use strace to Trace Calls to the OS 104

8.3 Compilers and Debuggers have Bugs too . 106
8.3.1 Compiler Bugs . 106
8.3.2 Debugger and Compiler Compatibility Problems 107

9 Dealing with Linking Problems . 109
9.1 How a Linker Works . 109
9.2 Building and Linking Objects . 110
9.3 Resolving Undefined Symbols . 111

9.3.1 Missing Linker Arguments . 111
9.3.2 Searching for Missing Symbols . 112
9.3.3 Linking Order Issues . 113
9.3.4 C++ Symbols and Name Mangling . 114
9.3.5 Demangling of Symbols . 115
9.3.6 Linking C and C++ Code . 115

9.4 Symbols with Multiple Definitions . 116
9.5 Symbol Clashes . 117
9.6 Identifying Compiler and Linker Version Mismatches 118

9.6.1 Mismatching System Libraries . 119
9.6.2 Mismatching Object Files . 119
9.6.3 Runtime Crashes . 120
9.6.4 Determining the Compiler Version . 120

9.7 Solving Dynamic Linking Issues . 122
9.7.1 Linking or Loading DLLs . 122
9.7.2 DLL Not Found . 124
9.7.3 Analyzing Loader Issues . 125
9.7.4 Setting Breakpoints in DLLs . 126
9.7.5 Provide Error Messages for DLL Issues 127

10 Advanced Debugging . 129
10.1 Setting Breakpoints in C++ Functions, Methods, and Operators 129
10.2 Setting Breakpoints in Templatized Functions and C++ Classes 131
10.3 Stepping in C++ Methods . 133

10.3.1 Stepping into Implicit Functions . 134
10.3.2 Skipping Implicit Functions with the Step-out Command . 135

Contents xvii

10.3.3 Skipping Implicit Functions with a Temporary Breakpoint 136
10.3.4 Returning from Implicit Function Calls 136

10.4 Conditional Breakpoints and Breakpoint Commands 137
10.5 Debugging Static Constructor/Destructor Problems 140

10.5.1 Bugs Due to Order-Dependence of Static Initializers 140
10.5.2 Recognizing the Stack Trace of Static Initializers 141
10.5.3 Attaching the Debugger Before Static Initialization 142

10.6 Using Watchpoints . 143
10.7 Catching Signals . 144
10.8 Catching Exceptions . 147
10.9 Reading Stack Traces . 148

10.9.1 Stack Trace of Source Code Compiled
with Debug Information . 148

10.9.2 Stack Trace of Source Code Compiled
Without Debug Information . 149

10.9.3 Frames Without Any Debug Information 149
10.9.4 Real-Life Stack Traces . 150
10.9.5 Mangled Function Names . 151
10.9.6 Broken Stack Traces . 151
10.9.7 Core Dumps . 152

10.10Manipulating a Running Program . 153
10.10.1 Changing a Variable . 156
10.10.2 Calling Functions . 156
10.10.3 Changing the Return Value of a Function 157
10.10.4 Aborting Function Calls . 157
10.10.5 Skipping or Repeating Individual Statements 158
10.10.6 Printing and Modifying Memory Content 159

10.11Debugging Without Debug Information . 161
10.11.1 Reading Function Arguments From the Stack 163
10.11.2 Reading Local/Global Variables, User-Defined Data Types 165
10.11.3 Finding the Approximate Statement in the Source Code . . 165
10.11.4 Stepping Through Assembly Code . 166

11 Writing Debuggable Code . 169
11.1 Why Comments Count . 169

11.1.1 Comments on Function Signatures . 170
11.1.2 Comments on Workarounds . 171
11.1.3 Comments in Case of Doubt . 171

11.2 Adopting a Consistent Programming Style . 171
11.2.1 Choose Names Carefully . 171
11.2.2 Avoid Insanely Clever Constructs . 172
11.2.3 Spread Out Your Code . 172
11.2.4 Use Temporary Variables for Complex Expressions 172

11.3 Avoiding Preprocessor Macros . 173
11.3.1 Use Constants or Enums Instead of Macros 173

xviii Contents

11.3.2 Use Functions Instead of Preprocessor Macros 175
11.3.3 Debug the Preprocessor Output . 176
11.3.4 Consider Using More Powerful Preprocessors 177

11.4 Providing Additional Debugging Functions . 179
11.4.1 Displaying User-Defined Data Types 179
11.4.2 Self-Checking Code . 180
11.4.3 Debug Helpers for Operators . 181

11.5 Prepare for Post-Processing . 181
11.5.1 Generate Log Files . 181

12 How Static Checking Can Help . 183
12.1 Using Compilers as Debugging Tools . 183

12.1.1 Do not Assume Warnings to be Harmless 184
12.1.2 Use Multiple Compilers to Check the Code 186

12.2 Using lint . 186
12.3 Using Static Analysis Tools . 187

12.3.1 Familiarize Yourself with a Static Checker 187
12.3.2 Reduce Static Checker Errors to (Almost) Zero 189
12.3.3 Rerun All Test Cases After a Code Cleanup 190

12.4 Beyond Static Analysis . 190

13 Summary . 191

A Debugger Commands . 193

B Access to Tools . 195
B.1 IDEs, Compilers, Build Tools . 195

B.1.1 Microsoft Visual Studio . 195
B.1.2 Eclipse . 196
B.1.3 GCC . 196
B.1.4 GNU Make . 196

B.2 Debuggers . 196
B.2.1 dbx . 196
B.2.2 DDD . 197
B.2.3 GDB . 197
B.2.4 ARM RealView . 197
B.2.5 TotalView Debugger . 197
B.2.6 Lauterbach TRACE32 . 197

B.3 Environments . 198
B.3.1 Cygwin . 198
B.3.2 VMware . 198

B.4 Memory Debuggers . 198
B.4.1 Purify . 198
B.4.2 Valgrind . 199
B.4.3 KCachegrind . 199
B.4.4 Insure++ . 199

Contents xix

B.4.5 BoundsChecker . 200
B.5 Profilers . 200

B.5.1 gprof . 200
B.5.2 Quantify . 200
B.5.3 Intel VTune . 200
B.5.4 AQtime . 201
B.5.5 mpatrol . 201

B.6 Static Checkers . 201
B.6.1 Coverity . 201
B.6.2 Lint . 201
B.6.3 Splint . 202
B.6.4 /analyze option in Visual Studio Enterprise Versions . . 202
B.6.5 Klocwork . 202
B.6.6 Fortify . 202
B.6.7 PC-lint/FlexeLint . 203
B.6.8 QA C++ . 203
B.6.9 Codecheck . 203
B.6.10 Axivion Bauhaus Suite . 203
B.6.11 C++ SoftBench CodeAdvisor . 203
B.6.12 Parasoft C++test . 204
B.6.13 LDRA tool suite . 204
B.6.14 Understand C++ . 204

B.7 Tools for Parallel Programming . 204
B.7.1 Posix Threads . 204
B.7.2 OpenMP . 204
B.7.3 Intel TBB . 205
B.7.4 MPI . 205
B.7.5 MapReduce . 205
B.7.6 Intel Threading Analysis Tools . 205

B.8 Miscellaneous Tools . 206
B.8.1 GNU Binutils . 206
B.8.2 m4 . 206
B.8.3 ps . 206
B.8.4 strace / truss . 207
B.8.5 top . 207
B.8.6 VNC . 207
B.8.7 WebEx . 207

C Source Code . 209
C.1 testmalloc.c . 209
C.2 genindex.c . 210
C.3 isort.c . 214
C.4 filebug.c . 216
References . 217

Index . 219

Chapter 1
You Write Software; You have Bugs
(Why You Need This Book)

This is a book about analyzing and improving C and C++ programs, written by
software developers for software developers.

In the course of our software development work we have often been called upon
to support customers and coach colleagues on how to find bugs. They were aware
of the topics they had been taught in school: object-orientation, code reviews, and
black-box vs. white-box testing, but most had only superficial knowledge of debug-
ging tools, and rather fuzzy ideas about when to use a particular approach and what
to do if the debugging tools gave confusing or even wrong results.

So, time and time again we found ourselves having to teach people how to track
down bugs. It surprised us that it simply had not occurrred to a lot of program-
mers that debugging could be turned into a systematic approach. While a lot of
steps in software development can be captured in a process, when it came to debug-
ging, the accepted belief was that you not only needed deep insight into the code –
you also needed a sudden burst of brilliance when it came to tracking down a bug.
Unfortunately, Richard Feynman’s method of “write down the problem; think very
hard; write down the answer” is not the most efficient and successful approach to
fixing software problems.

Once we realized that we were continually writing down the same step-by-step
rules, and explaining the operation and limitations of the same tools for every bug
report, the idea was born to gather all of our practical experience, collect all of this
advice, and turn it into the book you are now holding. We can now point to the book
when someone is faced with yet another bug-finding task. We also believe that a
book such as this on systematic debugging patterns will be an interesting addition
to a programming class, or a class on problem solving in software. In the end, the
reason is simple . . .

Software has bugs. Period.

Unfortunately, it is true. Even the good old "hello, world" program, known
to virtually every C and C++ programmer in the world, can be considered to be

1

2 1 You Write Software; You have Bugs

buggy.1 Developing software means having to deal with defects; old ones, new ones,
the ones you created yourself, and those that others have put in the code.

Software developers debug programs for a living.

Hence, good debugging skills are a must-have. That said, it is regrettable that
debugging is hardly taught in engineering schools.

The Developer’s Guide to Debugging is a book for both professional software
developers seeking to broaden their skills and students that want to learn the tricks
of the trade from the ground up. With small examples and exercises it is well suited
to accompany a computer science course or lecture. At the same time it can be used
as a reference guide to address problems as the need arises.

This book goes beyond the level of simple source code debugging scenarios. In
addition, it covers the most frequent real-world problems from the areas of program
linking, memory access, parallel processing, and performance analysis. The picture
is completed by chapters covering static checkers and techniques to write code that
leans well towards debugging.

This book is not a replacement for a debugger manual, though. Nor is it a book
focused on Microsoft’s Visual Studio or GNU’s GDB either, although we mention
these debugging tools quite frequently. In fact, we describe basic and advanced
debugging independent of operating system and compiler/debugger combinations
where possible. Of course, we point out any such dependencies where required.

We use the GCC compiler and the GDB debugger in most of our examples.
The reason is simple: These tools are free and widely available on many systems,
including UNIX, Linux, Windows, and a number of embedded platforms. Most
examples can be “translated” using Table A in the appendix on page 193, which
presents equivalent Visual Studio commands. We try to give more details whenever
this straightforward conversion is not feasible.

OK, so how to best read this book? Well, it depends . . .

You can read the book cover-to-cover, which isn’t a bad approach if you want to
learn debugging from the ground up. Chapter 2 (A Systematic Approach to Debug-
ging) presents an overview of various opportunities to gather information and ana-
lyze problems. Then in Chapter 3 (Getting to the Root – Source Code Debuggers)
you’ll take a closer look at key techniques such as running a program in a debug-
ger, analyzing data, and controlling the flow of execution. Next, you will learn in
Chapter 4 (Fixing Memory Problems) how to deal with programs that fail for myste-
rious reasons, due to memory bugs. The following two chapters focus on optimiza-
tions in their broadest sense: Chapter 5 (Profiling Memory Use) addresses memory
consumption and Chapter 6 (Solving Performance Problems) explains how to ana-
lyze execution speed. Chapter 7 (Debugging Parallel Programs) covers difficulties
related to multi-threaded programs and asynchronous events. Chapter 8 (Finding

1 Incomplete output may be generated if the program receives an asynchronous signal during the
printf() call, if there is no code to check its return value.

1 You Write Software; You have Bugs 3

Environment and Compiler Problems) comes next. This is then followed by Chap-
ter 9 (Dealing with Linking Problems) that tells you what to do if your program
won’t even link to begin with. It also helps you cope with other issues you may en-
counter when linking programs. Now you are ready for challenges such as analyzing
initialization time problems or debugging code compiled without debug informa-
tion, which are described in Chapter 10 (Advanced Debugging). This chapter also
covers techniques such as conditional breakpoints, watchpoints and capturing asyn-
chronous events. Finally, Chapter 11 (Writing Debuggable Code) and Chapter 12
(How Static Checking Can Help) will put you in a good position when it comes to
writing your own source code.

Alternatively, if you are sweating over some actual debugging problem, you can
easily find the section of this book that addresses your needs. Taking a look at
Chapter 4 (Fixing Memory Problems) is almost always a good idea, especially if
the problem you are facing appears to defeat the rules of logic.

Chapter 2
A Systematic Approach to Debugging

2.1 Why Follow a Structured Process?

Richard Feynman was a fascinating figure. Reading about his adventures can be
quite interesting at times. His well-known approach was appropriate for a number
of problems he solved.

“Write down the problem; think very hard; write down the answer.”
According to Murray Gell-Mann, NY Times

This scheme is not without appeal. It is universal, simple, and does not require much
more than paper and pencil, and a well-oiled brain.

When you apply it to debugging software, you need to know next to nothing
about systematic debugging processes or tools. You have to know a whole lot about
your problem, though.

This is not practical if your problem – your software – is too big, or was written
by other people. It is not economical either: you can’t carry your knowledge over to
the next project – unfortunately, it is “back to square one” then.

If you want to make a living as a software developer, then an investment into a
systematic approach to debugging will pay off. In fact, you will experience that the
return on investment is quite substantial.

2.2 Making the Most of Your Opportunities

This chapter brings structure to the process of bug finding at a more general level.
The specifics of addressing different kinds of challenges are dealt with in subsequent
chapters.

5

6 2 A Systematic Approach to Debugging

Fig. 2.1 Simplified build and test flow

First, let us identify opportunities for debugging in the simplified flow depicted in
Figure 2.1.

The source code – and this includes header files – can be written in a more or
less debuggable way (1). One can also write additional code – often referred to as
“instrumentation” – to increase the observability and controllability of the software
(2). Typically, this is enabled by macro definitions (3) given to the preprocessor
that processes the source code and includes the header files. Compiler flags (4) can
be used to generate code and information needed for source code debugging and
profiling tools.

In addition to paying attention to compiler warnings, one can alternatively run
static checker tools (5). At link time one can select libraries with more or less de-
bugging information (6). Linker options can be used, for instance, to force linking
additional test routines into the resulting executable (7). One can also use tools that
automatically instrument the executable by adding or modifying object code for the
purpose of analyzing performance or memory accesses (8).

Once we have an executable we can choose how we stimulate it (9). Selecting a
good test case can have a big impact on the time it takes to analyze a problem. Var-
ious debugging tools can be used at runtime (10), including source code debuggers,
profilers, memory checkers, and programs that produce a trace of OS calls. Some
can even be applied “post mortem”, that is, after the executable has run (or crashed).

Now, please take a bit of time to put the following three aspects into perspective.
This will assist you in making best use of this book.

1. The build and test flow with its debugging opportunities, as depicted in
Figure 2.1. The specific flow you are using to build and test your software may
vary a little, but the basic elements should be present.

2.3 13 Golden Rules 7

2. There are 13 golden rules that are generally applicable at any stage of this flow.
These are described in Section 2.3.

3. The subsequent chapters deal with specific challenges you may encounter along
the way. For instance, Chapter 3 addresses source code debugging while
Chapter 9 deals with linker problems.

Please note that the book is organized in a solution-oriented way, ranging from basic
skills to more advanced topics. The sequence of chapters does not follow the flow
as shown in Figure 2.1. The following will help you establish a correspondence.

Opportunities how to find Bugs

1. Debuggable source code: Chapter 11
2. Instrumentation: Chapters 5, 6, 7, and 11
3. Macro definitions: Chapter 11
4. Compiler flags: Chapters 3, 6, 8, 9, and 12
5. Static checkers: Chapter 12
6. Selected libraries: Chapters 4, 5, 6, and 11
7. Linker options: Chapters 9 and 11
8. Code instrumentation tools: Chapters 4, 5, and 6
9. Test case / input data: Chapter 2

10. Debuggers
a. Source code: Chapters 3 and 10
b. Profiling: Chapters 5 and 6
c. Memory access: Chapters 4 and 5
d. OS call tracers such as truss or strace: Chapter 8

Of course which opportunities one can take advantage of depends on the problem at
hand. To that end there are natural limits to defining a one-size-fits-all, step-by-step
debugging process.

Now that you know where to go bug hunting we need to address the how. We will
do this in two steps, as described above. First, we present a set of “golden rules” in
the next section. These are guidelines that – if taken with a grain of salt – you should
find helpful in all types of debugging situations. The later chapters of this book then
deal with specific challenges in a solution-oriented way.

2.3 13 Golden Rules

Experience tells us that there are a number of generally applicable hints which
should not be neglected. The “13 Golden Rules of Debugging” can be seen as an

8 2 A Systematic Approach to Debugging

extension of “The Nine Indispensable Rules for Finding Even the Most Elusive Soft-
ware and Hardware Problems” formulated by D.J. Agans in [Agans02].

The 13 Golden Rules of Debugging

1. Understand the requirements
2. Make it fail
3. Simplify the test case
4. Read the right error message
5. Check the plug
6. Separate facts from interpretation
7. Divide and conquer
8. Match the tool to the bug
9. One change at a time

10. Keep an audit trail
11. Get a fresh view
12. If you didn’t fix it, it ain’t fixed
13. Cover your bugfix with a regression test

2.3.1 Understand the Requirements

Make sure you understand the requirements before you begin to debug and fix
anything. Is there a standards document or a specification to look at? Or other
documentation? Maybe the software is not malfunctioning after all. It could be a
misinterpretation instead of a bug.

2.3.2 Make it Fail

You need a test case. Make your program fail. See it with your own eyes. A test case
is a must-have for three reasons:

1. How else would you know that you have eventually fixed the problem if not by
seeing that it finally works?

2. You will need a test case to obey rule 13 (“Cover Your Bugfix with a Regression
Test”).

3. You have to understand all factors that contribute to making your software fail.
You need to separate facts from assumptions. An environment variable may be a
factor, or the operating system, or the window manager being used.

Bug reports share a similarity with eyewitness reports of a car accident or crime:
more often than not, facts and interpretation are blended, and key pieces of infor-

2.3 13 Golden Rules 9

mation may be missing although the witnesses have the best intentions and are con-
vinced that they describe the complete and unabridged truth.

2.3.3 Simplify the Test Case

The next step is to simplify the test case. You do this in order to

• rule out factors that do not play a role,
• reduce the runtime of the test case and, most importantly,
• make the test case easier to debug. Who wants to deal with data containers filled

with hundreds or thousands of items?

2.3.4 Read the Right Error Message

Something went wrong and you face a screen full of error messages.

Which ones do you focus on?

It is surprising how many people don’t give the correct answer.

The ones that come out first!1

And that is not necessarily the first one you see; scroll back if need be. Everything
that happened after the first thing went wrong should be eyed with suspicion. The
first problem may have left the program in a corrupt state.

So, first things first – fix the problems in the order of appearance, or have a very
good reason for breaking this rule.

2.3.5 Check the Plug

Next, check the seemingly obvious. Were all parts of the software up and running
when the problem occurred? Permissions OK? Enough disk quota? Is there enough
space on all relevant file systems (including the likes of C:\WINDOWS, /tmp, and
/var)? Does the system have enough memory?

Think of ten common mistakes, and ensure nobody made them.

1 Of course, there’s no rule without exception. But more often than not this simple rule holds.

10 2 A Systematic Approach to Debugging

2.3.6 Separate Facts from Interpretation

Don’t jump to conclusions. Maintain a list of things you know for a fact, and why.
Ask yourself: “Can you prove it?” Is the behavior reproducible?

Is what you consider a fact really a fact? “It fails when I select a blue item but
it always works for red items” a bug report may state. So misbehavior depends on
the color? Maybe not. It could be that the user selected the blue item with a mouse
click and everything else via the keyboard, by specifying its name.

2.3.7 Divide and Conquer

The National Institute of Standards and Technology defines divide and conquer as
an algorithmic technique to “solve a problem, either directly because solving that
instance is easy [. . .] or by dividing it into two or more smaller instances.” And
further “the solutions are combined to produce a solution for the original instance.”

This strategy can be successfully applied to debugging in order to deal with com-
plex situations when multiple factors can play a role. In larger software projects
problems often arise from interference of concurrent development activities, espe-
cially when many developers work on the same source code base. The program still
runs fine, by and large, but a particular feature is dead. For example, it used to work
last Wednesday but now it flatlines. And it is far from obvious which change has
caused the failure. What do you do? In the following text we describe one possible
divide-and-conquer approach.

Divide and Conquer Debugging 101

• Assemble a list of potential problems and how to debug them
• Separate changes of the environment and source code changes

– Track down changes of the environment
– Isolate source code changes via back-out builds

• Zoom in and conquer

– Memory debugger
– Conventional source code debugging
– Side-by-side debugging

2.3.7.1 Assemble a List of Potential Problems and How to Debug Them

Obviously, the first step is to understand how to slice and dice the problem. Begin
by assembling a list of possible problems and how to debug them. Changes to the

2.3 13 Golden Rules 11

source-code base are one, but not the only possible reason for a bug that suddenly
appears. Was the compiler modified? Were third-party libraries changed? Perhaps
the program invokes other programs outside of the source-code control system and
one of them changed? When the feature worked last Wednesday, was it run on the
same host as today? Were operating system libraries modified? Did environment
variables change? And so on. There is almost no end to this list of environment-
related questions. In the end debugging boils down to trial-and-error. Try to under-
stand the likelihood of certain changes causing the failure and the cost of undoing
them for testing purposes.

2.3.7.2 Separate Changes of the Environment vs. Source Code Changes

There is a practical way to find out if one of the source code changes is related to
the bug. Get access to a revision of the program that reflects the source-code base as
of last Wednesday. We will refer to it as the “good” revision. Now, from within the
exact same environment (same host, set setting of environment variables, same shell
if possible) run both the “good” and the current version with the same test case. If
both fail, then a difference in the environment is the likely cause of the bug. Here is
what you need to check next:

• Do you know which factors are likely to cause the failure? Look at Chapter 8 for
some examples of environment-related bugs.

• Can you determine what has changed? Often changes of the environment are not
reflected in changing the contents of a revision control system. Did you change
your computer account settings? Did your IT team perform any upgrade?

• Can you restore the original environment? Build a virtual copy of your machine
and environment in VMware, (see Appendix B.3.2), and store a checkpoint be-
fore each change to the OS, tools, and installed software. You can then easily
return to previous states of your machine.

If, however, the old source code revision works but the current breaks, then a dif-
ference in the source code base is the likely cause. If source code changes are the
problem, then you can try to narrow down the search space and isolate the prob-
lematic changes using back-out builds. The basic idea is simple: use your revision
control system to determine the last version of the source code that did not misbe-
have, by checking out complete configurations with different time tags and building
them. Similarly, determine the first version that exhibits the problem. Then analyze
the source code changes between these two versions – your bug is hiding there.

2.3.7.3 Zoom in and Conquer

It may still not be obvious what is causing the problem. Running a memory debugger
(see Chapter 4) and normal source code debugging (see Chapter 3) may not solve

12 2 A Systematic Approach to Debugging

the puzzle for you. You may have to bite the bullet and face the tedious task of side-
by-side debugging comparing data, log files and the flow of control in both versions,
concurrently, side-by-side.

2.3.8 Match the Tool to the Bug

Leave your comfort zone. Debug where the problem is and not where you find it
convenient to debug.

Some debugging tools are easier to use than others in a given situation. But not
all are equally helpful. It is natural to focus on the tools and processes you feel most
comfortable with. Show discipline. Focus on those aspects that are most promising
– even though this may entail tedious work or a trip into uncharted territory.

For instance, it is not uncommon for software developers to try to work around
the use of memory debuggers. “They produce lots of strange, cryptic output” is
one of the frequently heard excuses, even in situations that clearly suggest memory
problems, such as intermittent failures and inexplicable random behavior.

2.3.9 One Change at a Time

Do not change more than one thing at a time if possible. Then check if it makes sense
and, if not, revert back before trying out the next idea. (No rule without exception:
when discussing “Bugs Hiding Behind Bugs” in Section 2.5.4 we will suggest you
break this rule – at the price of even more bookkeeping.)

It is good practice to add comments to source code changed during debugging
sessions, indicating type and reason of change. Mind that any code change may
introduce new problems. Restrict yourself to solving one problem at a time while
debugging.

2.3.10 Keep an Audit Trail

Often you will have to deal with a problem involving multiple parameters. You need
to try out a number of combinations. It is all too easy to loose track of your changes.

Keep an audit trail!

This is especially important in the case of spurious failures. For manual testing,
write down what you did, in what order, and what happened. Instruct the program to
create log files and print status messages. Once the bug hits, your notes and the logs
may be the only information left to correlate the bug to the environment. Spurious

2.3 13 Golden Rules 13

failures usually do not hit randomly per se. They are triggered by well-defined but
perhaps obscure events, which are not yet known to you.

2.3.11 Get a Fresh View

When you are stuck, go and find somebody to talk to. Make sure to draw a clear line
between the facts – and why they are facts – and your theories. Chances are good
that your theories may be less than perfect.

The process of explaining the situation to somebody else may help you to sep-
arate truth from myths. And you may get a fresh view. Needless to mention: it is
advisable to talk to an expert. However, non-experts can be quite helpful too, be-
cause you have to explain more.

2.3.12 If You Didn’t Fix it, it Ain’t Fixed

Occasionally, a bug will just disappear after you modified some statements. Unless
you have a good explanation why your fix is effective, you are better off to assume
that the bug still exists and will hit again in the future. Your source code change
may merely change the environment and thus change the probability for the bug to
re-occur.

Even if you have a good explanation, verify that the fix is effective: take your fix
out again and check that the bug comes back. Building your program from scratch
after putting the change back in may be a good idea too. The dependencies in your
build process may not be perfect and, as a result, the object code may not entirely
correspond to the sources.

2.3.13 Cover your Bugfix with a Regression Test

So the problem is fixed . . . today. What about tomorrow?
To make the bug fix last, you should turn your simplified test case (rule number

3) into a regression test. Think of it as a safety bolt. It prevents others with access to
the source code base from accidentally breaking a feature you have put quite some
work into. Your customers will like it too – few things are as annoying as bugs that
keep coming back.

Check out Section 2.4.2.1 if you have never heard about regression tests before.
There is no excuse for ignoring automated testing. Granted, effort has to be spent
making software testable and maintaining a regression test system. But this is an
integral part of professional software development.

14 2 A Systematic Approach to Debugging

Developing software: more than writing code

Developing software takes more than the ability to write source code. Soft-
ware architecture, profiling, debugging, . . . ; the list is long. One thing that
is easily overlooked is planning for the future, including going that extra
mile to develop testable software and regression tests.

In some ways software is like wine. It takes time to age and becomes valu-
able. Software that is tied to millions of dollars in revenue does not get
created over night – it takes several years.

Got regression tests?

That’s it! These were the 13 golden rules. Allow us to present one last set of gen-
eral recommendations before we begin presenting solutions to specific debugging
and optimization problems.

2.4 Build a Good Toolkit

You won’t be surprised to read that you should install and test drive the complete
range of debugging tools before the big crash. It is so much easier without your
customer on the phone and without your boss standing next to you asking all sorts
of not-so-helpful questions.

Good software developers have some traits of master craftsmen and artists. You
need a workshop, stocked with usable and easy to find tools, and you need to be
practiced at using these tools.

Keep your workshop in order

• Have the following installed and tested with the software you are devel-
oping (a 10-line test program does not count):

– A source code debugger (see Chapter 3)
– A memory debugger (see Chapter 4)
– A profiler (see Chapters 5 and 6)

• Ensure that your debuggers are compatible with your compiler
• Run and maintain unit and system tests
• Automate frequent tasks

2.4 Build a Good Toolkit 15

2.4.1 Your Workshop

You may think “I don’t need a memory debugger.” Think again! Chapter 4 will shed
some light on why software developers need it. Bear in mind that it is typically too
late to think of buying life-saving equipment by the time you really need it.

You don’t need a profiler either? Same story. There are usable freeware solutions
available on most platforms. Consider these if nothing else works for you.

It is part of your due diligence to check that your entire suite of debugging tools
still works when you change compiler versions. Ensure that they work with the
software you are developing. Getting them to run on a 10-line test program does not
count. It’s got to be your software, in all its “glory.”

It may not be required that every individual software developer in a large orga-
nization tests the full range of debugging tools time and time again. But before you
declare this task to be “somebody else’s problem,” consider that “somebody else”
does not fix your bugs, and does not get the phone calls when they are not fixed. In
fact, “somebody” may not even be around when the going gets tough. Check your
tools from time to time, especially whenever the environment changes.

2.4.2 Running Tests Every Day Keeps the Bugs at Bay

This is not a book about software testing. It is an important topic though. In this
section we can only scratch its surface and point out a few aspects related to de-
bugging in the broadest sense. More in-depth information can be found for instance
in [Meyers04].

2.4.2.1 Regression Tests

If you did’t test it, then it does not work (anymore).

There’s a lot of truth to this. Granted, it sounds a bit strange at first. Why do I have
to test something in order to keep it working?

Well, think about it. How do you convince yourself that a new piece of code does
what it is supposed to do? You test it.

And how do you ensure it still runs throughout the year? You keep testing it, fre-
quently. The term regression test means something along the lines of “check whether
yesterday’s functionality is still working well today.”

These tests should be automated in order to allow for frequent and efficient exe-
cution. And the tests should be self-checking. That is, there should be a regression
test system – typically a collection of scripts – that executes a steadily growing set of

16 2 A Systematic Approach to Debugging

tests. The outcome is one list of tests that passed and one that shows a set of failing
tests. Tests are added for each new feature and whenever a bug is fixed.

2.4.2.2 Unit Tests and System Tests

It makes sense to distinguish two types of regression tests: unit tests and system
tests. A system test uses your software as a whole. These tests are necessary; they
emulate normal operation and ensure end-user functionality.

Fig. 2.2 Simple test system

Figure 2.2 shows a simplified example where we assume that your program consists
of only three software modules: something that reads input data, something that
processes data and something that generates output files. A simple regression test
will run the software with a given set of input files and then compare the output with
a set of “golden reference files.”

Unit tests on the other hand focus on individual building blocks of your soft-
ware in isolation. Typically, they require extra effort in the form of additional test
executables or test interfaces. But it pays off:

• Unit tests can be developed before the complete system is operational.
• Unit test interfaces can increase the observability and controllability of the soft-

ware.
• And, last but not least, they ease the task of debugging.

Imagine if the system test depicted in Figure 2.2 failed. Wouldn’t it be nice to be able
to narrow down the search space right from the start? Unit tests for the components
of your program can help you. With the right infrastructure in place you can figure
out quickly whether data input, data processing, or data output caused the failure.

Figure 2.3 depicts one possible approach. Here, unit test support has been built
into the program so that the output of each unit can be stored. Additionally, one can
bypass the regular flow of data by directly feeding into units that would otherwise be

2.5 Know Your Enemy – Meet the Bug Family 17

Fig. 2.3 Simple test system with unit test support

hard to reach or control. Alternatively, one could create separate unit test executables
for the three functional units shown in Figure 2.3.

One can distinguish between white box and black box unit tests. Black box tests
are focusing on verifying the intended functionality of a component, ignoring its
actual implementation. The advantage of black box tests is their portability – even if
the implementation changes, these tests will still work correctly. White box tests on
the other hand are focused at testing corner cases of the implementation and your
“insanely clever hacks.” They make really good watchdogs.

2.5 Know Your Enemy – Meet the Bug Family

“Forgive your enemies, but never forget their names.”
John F. Kennedy

One can distinguish between different types of bugs requiring specific measures to
be taken. The following sections attempt to classify; a classification that is best taken
with a grain of salt.

2.5.1 The Common Bug

The common bug dwells in source code. It is a nuisance but behaves rather pre-
dictably. Ambiguous specifications and holes in your test plan often lead to its pro-
liferation. The common bug has a couple of nasty cousins, which we will describe
in the following sections.

18 2 A Systematic Approach to Debugging

2.5.2 Sporadic Bugs

While the common bug strikes predictably, given the right test case, this is not the
case for the sporadic bug. It cannot be lured out of its cover easily. It hits when you
are not prepared. The key to success is:

• Leave a trap in place: add watchdog code to your executable, which will alert you
when it is around. It goes without saying that you need to preserve and check log
files, or else your watchdog may howl in vain.

• Find the right bait. Show stamina. Keep notes. Mind that subtle changes can
make or break it.

If your regression tests are affected by this type of pest, then consider keeping2 core
files and analyzing them post-mortem using a source code debugger.

2.5.3 Heisenbugs

A Heisenbug can drive you mad. Its name stems from Werner Heisenberg’s uncer-
tainty principle on quantum physics.

“The more precise the position is determined, the less precisely the momentum
(mass times velocity) is known in this instant and vice versa.”

There is an analogy in software debugging: the harder you try to debug the better
certain bugs are hiding.3

• “The bug was gone when I turned on debugging information in the compiler.”
• “I added a printf() statement and it worked. I removed the printf() and it failed.

But I can’t ship a program generating debug output to my customer.”
• “After I linked my test code into the executable I could not spot the bug anymore.

I didn’t even call one of the routines. It’s a mystery.”

You need to understand the Heisenbug traits in order to successfully hunt this elusive
creature. Typically, it is either a race-ist, a memory outlaw, or an idealist.

2.5.3.1 The Race-ist

So-called race conditions are often the reason for Heisenbugs. This refers to sit-
uations where the program behavior depends on the order of execution of certain

2 You can also force the generation of a core dump if necessary.
3 Mind the subtle but important difference between sporadic bugs and Heisenbugs. Sporadic bugs
may be difficult to spot. Yet, once a test case is found they are reproducible. This is not the case
for Heisenbugs though.

2.5 Know Your Enemy – Meet the Bug Family 19

pieces of code, and this order is not well defined. Parallel, multi-threaded programs
with inappropriate inter-task communication mechanisms or missing means of syn-
chronization often show such problems (see Chapter 7). But even single-threaded
programs can be affected; order-of-initialization problems are just one example (see
Chapter 10).

All cases have in common that the execution order is – at least to some degree –
undefined. Hence, any small change such as adding a printf() statement or gen-
erating “slower” code with debug information can change the behavior and result in
the Heisenbug-style behavior.

2.5.3.2 The Memory Outlaw

Memory access violations such as reading uninitialized variables, dangling point-
ers, or array bound violations can also result in Heisenbugs. Seemingly unrelated
changes such as adding a local variable or moving code around can result in slightly
different memory layout of heap or stack. The good news is that memory debuggers
are very helpful when it comes to solving these type of problems (see Chapter 4).

2.5.3.3 The Idealist

This type of bug dwells in optimizations of abstract data types and algorithms, and
strikes when the corresponding code takes some sort of illegal shortcut.

Of course you are thinking of compiler optimizations right now. Granted, at times
compiler optimizations are buggy. But it is not unlikely that it is an optimization
sitting in your program that is the culprit. Either way, small changes may either
change the effect or disable the optimization altogether.

A first-level analysis is not too difficult in these situations. If you suspect an
optimization is part of the problem, then switch it off.

2.5.4 Bugs Hiding Behind Bugs

Always consider the possibility of multiple bugs. In some cases, more than one
problem needs to be fixed before you notice a change in your program’s behavior.

If you suspect that you are dealing with multiple bugs that play such games with
you, then consider violating rule 9 (“One Change at a Time”) at the price of dou-
bling your bookkeeping efforts (rule 10).

20 2 A Systematic Approach to Debugging

2.5.5 Secret Bugs – Debugging and Confidentiality

Another nasty cousin of the common bug is the “secret bug”. It strikes when your
customer is using your software. The next thing you know is that your customer
tells you that you can’t have the test case, either because it is confidential or because
the customer is simply not in the position to extract, package, and ship all relevant
pieces of information. Neither can you ship a debuggable version of your software
including source code. Result . . . Catch 22.

You should consider the following three alternatives: try to reproduce the prob-
lem in-house, debug on-site at the customer, or use a secure connection for remote
debugging.

2.5.5.1 Reproduce Bugs In-house

Always ask for the test case or a stripped-down test case. If that is not possible due
to confidentiality or time constraints, then try to reproduce the same bug in house.

First, try to get a good, clear error description from the customer. Ask for log
files. Make use of memory checkers (see Chapter 4) and tracers like truss or
strace (see Chapter 8.2.4) to get more details. Analyze the error description and
log files and form a theory what might have gone wrong. Then build a test case that
results in an error matching the customer’s description and log files. The next steps
are obvious: debug the failure, fix it, ship a new release to the customer, and cross
your fingers that the problem is gone.

2.5.5.2 On-site Debugging

A different approach is to debug on-site. Compile your software with debug infor-
mation. Send it to your customer but leave out all source-code files.4 The symbolic
debug information has some value in an attempt to reverse-engineer a program, but
certainly less than the source code. Now visit your customer and bring your laptop
containing relevant portions of the source code, preferably encrypted. Because your
program has symbolic information, the debugger running the program on your cus-
tomer’s computer will work fine: you can set breakpoints in functions, step through
lines, get stack traces, get or set variables. It can’t display source code, though. In-
stead it will tell you about file name and line number, and you will have to look at
the source code using your laptop.

Bring your cell phone – being able to call a colleague can save the day.

4 On Solaris you also need to send the object code files as they, not the executable, contain most of
the debugging information.

2.5 Know Your Enemy – Meet the Bug Family 21

This style of debugging is expensive and time consuming (travel), and stressful
too, due to time pressure and customers looking over your shoulder. But it may be
your last and only option.

2.5.5.3 Using Secure Connections

You can optimize this approach by using a reasonably secure remote desktop access
mechanism such as WebEx (see Appendix B.8.7) or VNC (Appendix B.8.6) over
SSH. The situation is mostly the same: your customer’s computer is running a de-
buggable version of your software, and the source code is still on your computer.
You can still see what’s going on with your software, and maybe even interact with
software and debugger yourself. But no travel is involved, and you have retained
full access to your company’s computer network.

2.5.6 Further Reading

For a highly entertaining introduction to debugging, not just of software, you should
read David J. Agans book Debugging: The Nine Indispensable Rules for Finding
Even the Most Elusive Software and Hardware Problems [Agans02].

We used Andreas Zeller’s book Why Programs Fail: A Guide to Systematic
Debugging [Zeller05] as the reference for bug-finding technology and scientific
progress in the field of automatic debugging. You can find examples and course
material on the associated website http://www.whyprogramsfail.com.

If you are working on embedded systems, our favorite introduction is Program-
ming Embedded Systems, by M. Barr, and A. Massa [Barr06]. There is a section
on debugging, covering downloading the binary image, remote debuggers, and em-
ulation. Also recommended is Debugging Embedded Microprocessor Systems by
S. Ball [Ball98].

Further reading material on various debugging topics can be found in [Brown88],
[Ford02], [Kaspersky05], [Lencevicius00], [Metzger03], [Pappas00], [Stitt92],
[Telles01], and [Rosenberg96]. For current research topics, refer to [Zeller05] and
[Fritzson93].

We recommend that you become familiar with the documentation of your debug-
ging tools. The GDB debugger manual is available as a book [Stallmann02]. See
Appendix B.2.3 for finding GDB documentation on the web. For Visual Studio, the
documentation is called the MSDN Library for Visual Studio, and is available as part
of the software installation. More information can be found in Appendix B.1.1.

Chapter 3
Getting to the Root – Source Code Debuggers

3.1 Visualizing Program Behavior

The quickest and most efficient tool to visualize a program’s behavior is a debugger,
a program to test and debug other programs. A debugger is called a source code
debugger or symbolic debugger if it can show the current point of execution, or the
location of a program error, inside the program’s source code.

With a source code debugger, (from here on simply referred to as “debugger”),
you can step through your code line by line, see what path is taken through the
program’s conditional and loop statements, show what functions are called, and
where in the function call stack you are. You can inspect the values of variables. You
can set breakpoints on individual lines of code, and then let the program run until it
reaches this line; this is convenient for navigating through complicated programs.

A debugger will show you what the program does, which is a prerequisite to
fixing any bug. In case you wrote the code, the debugger will let you match expected
behavior, i.e. what you thought the code would be doing, to real behavior. In case
somebody else wrote the code, the debugger will present to you a dynamic view into
the code’s execution, to augment a static code inspection.

In this chapter, we describe the basic source code debugger features and show
how to apply them to find bugs in C and C++ programs. We will keep the description
of the debugger features independent of a particular computer platform or tool. We
will use two very common debuggers in the examples: GDB and Visual Studio. We
will list the commands of GDB and Visual Studio to access each discussed feature.
To save valuable space in the book, we will only show the abridged output of GDB.
We will give short descriptions of how Visual Studio will output results, but we will
not show screen shots.

The GNU debugger GDB represents debuggers run from a command shell with
a command line interface. GDB is used together with the GCC compiler, and has
been ported to many operating systems, including Windows, Solaris, UNIX, Linux,
and operating systems for embedded systems. See Appendix B.2.3 for download
information and documentation of GDB.

23

24 3 Getting to the Root – Source Code Debuggers

Microsoft Visual Studio is a debugger for Microsoft Windows systems, and
works together with the Visual C++ compiler. Visual Studio is a GUI (graphical user
interface) program, and is part of an IDE Integrated Development Environment. See
Appendix B.1.1 for more information on Visual Studio.

Most source code debuggers share a common feature set, with similar commands.
Table A in the appendix on page 193 gives a translation table of debugger commands
for the two common debuggers GDB and Visual Studio. dbx is a command-line
debugger for Sun Solaris. TotalView (see Appendix B.2.5) is a GUI-based debug-
ger for Linux and MacOS, with support for debugging parallel programs based on
threads, OpenMP, and MPI. The ARM RealView Development Suite and Lauter-
bach TRACE32 are debuggers for systems that have an ARM CPU.

We recommend getting familiar with any new debugger, and its basic features,
by using the debugger on a simple predictable example. We will show how to build
a small test program, and run the program together with the debugger. The essential
features of doing a stack trace on a program crash, breakpoints, stepping through
the code, and inspecting variables will be demonstrated on the example.

In Chapter 10 will we show advanced features, for example modifying the state
of a running program, and calling functions from the debugger.

3.2 Prepare a Simple Predictable Example

As an example in this chapter, we will compute the factorial function n! for any
non-negative integer n, where 0! = 1 and n! = n∗ (n−1)! for n > 0.

Figure 3.1 shows the source code of the program factorial to compute the
factorial function. We chose to implement the function factorial(int n) as
a recursive call to itself. Note that the code is quite unsafe, since there is no guard
against negative values of n, and no guard against incorrect results due to 32-bit
integer overflow for n > 12. The example intends to highlight the basic debugger
features for finding these bugs.

3.3 Get the Debugger to Run with Your Program

In order to get started, you need to get your program running with the debugger.
The compiler has to be instructed to put debug information into the object code of
the program. This debug information, also called debug symbols or symbolic infor-
mation, contains the names of functions and variables, and the relationship between
CPU instructions, source files, and line numbers. Note that most compilers do not
have debug enabled in their default or optimized modes, since the debug informa-
tion in the object code makes the program larger. Also, most compiler optimizations
are disabled in debug mode, so the program runs slower.

3.3 Get the Debugger to Run with Your Program 25

1 /* factorial.c */
2 #include <stdio.h>
3 #include <stdlib.h>
4
5 int factorial(int n) {
6 int result = 1;
7 if(n == 0)
8 return result;
9 result = factorial(n-1) * n;

10 return result;
11 }
12
13 int main(int argc, char **argv) {
14 int n, result;
15 if(argc != 2) {
16 fprintf(stderr, "usage: factorial n, n >=0\n");
17 return 1;
18 }
19 n = atoi(argv[1]);
20 result = factorial(n);
21 printf("factorial %d = %d\n", n, result);
22 return 0;
23 }

Fig. 3.1 factorial.c: recursive function calculating n!

For the GNU compiler GCC, and most other compilers, the compiler flag for
debugging is -g. Here is how we compile the factorial program with GCC.

> gcc -g -o factorial factorial.c

For the Visual Studio debugger, the most convenient way to build and debug the
program is to create a project. Please refer to How to build and run a program in
Visual Studio 2008 on page 26 for instructions for creating a project, building the
program, entering the command arguments for a console program, and running the
program.

The next step is to load the program in the debugger and run it. A debugger will
always have a mode to run the program until you interrupt it, the program crashes,
or the program exits by itself.

For the GDB debugger, you type the command gdb and enter the program name
as the first argument. GDB will start up with a command shell, where you can type
in commands to control the debugger. The command to run the program is run,
followed by the command line arguments that you want to pass to your program.
Here is how to run GDB with our example:

> gdb factorial
<lots of copyright stuff..>
(gdb) run 1
<messages about Loaded symbols..>
factorial 1 = 1
Program exited normally

26 3 Getting to the Root – Source Code Debuggers

How to build and run a program in Visual Studio 2008

Create a project:

• Put the file factorial.c into a new directory.
• Start Microsoft Visual Studio
• Create a new Project by clicking on the menu item File/New/Project From Existing

Code...
• Select Visual C++ as project type, and click on Next. Enter the path to the source

code file factorial.c under Project file location, and enter factorial under
Project name.

• The next dialog in project creation is Specify Project Settings. Under the item Use
Visual Studio, Project type, select Console application project. Do not select Add
support for ATL or any other package.

• Click on Finish to let the Wizard create the factorial project.
• Check that you see a project factorial in the Solution Explorer tree view.

Build the program:

• Compile the program by hitting F7 or clicking on the menu item Build/Build Solu-
tion. You will get a debug build by default. The configuration for the debug build will
contain all the correct debug flags and libraries.

• Check that the program compiles without errors.

Add command line arguments:

• Select the project factorial by right-clicking on it, and go to the menu item
Project/Properties. The Property Page for the factorial project will appear.
Go to Configuration Properties/Debugging, and look for the item Command Ar-
guments in the table of properties. Enter the desired value for the factorial com-
mand line arguments, and close the dialog with OK.

Run the program:

• Hit the F5 function key, or select the menu item Debug/Start Debugging to run the
program.

Attaching to an already running program:

• Click on menu item Debug/Attach to Process..., and then click on the program pro-
cess that you want to debug.

One annoying aspect of debugging console applications in Visual Studio is the han-
dling of the command line console. For our example, a console window is created,
pops up, the program runs and prints to stdout, and then the console vanishes
without a trace. A good workaround is to right-click on the last line of the program,
line 22, and select Breakpoint/Insert Breakpoint.

We will have more information on breakpoints later, but for now, this workaround
is good enough to let us look at the program’s output:

factorial 1 = 1

3.4 Learn to do a Stack Trace on a Program Crash 27

At this point, we can already do some useful testing with the debugger. We run our
program with the argument n =−1, which will cause the recursion to not end:

(gdb) run -1
Program received signal SIGSEGV, Segmentation fault.
factorial (n=-103583) at factorial.c:6
6 int result = 1;

This GDB output tells us that the program hit a memory error in line 6 of the function
factorial, as it was trying to make yet another call to itself. GDB shows the actual
source tode line where the error occurred.

In Visual Studio, change the program argument to−1, and run the program again
by hitting F5. You will get a new window with the Message:

Unhandled exception at <..> in factorial.exe: Stack overflow

To find the location of the crash in Visual Studio, click on Break in this win-
dow. The debugger will show you the source code window containing the file
factorial.c, and a yellow arrow representing the location of the current po-
sition of the program pointing at line 5, the beginning of the factorial function.

3.4 Learn to do a Stack Trace on a Program Crash

Visual Studio already told us what caused the crash: a stack overflow. The stack of a
C/C++ program is a segment of memory assigned to storing one stack frame for each
active functions call. A stack frame consists of the return address, and the function’s
arguments and local variables. A stack trace is the actual chain of stack frames from
the topmost function where the debugger is currently stopped or paused, down to
the function main(). A stack overflow occurs when the chain of nested function
calls gets so long that the stack does not have enough memory to store the current
stack frame.

In addition to showing the location of a program crash in the source code, a
debugger will also show the stack frame and stack trace of the crash. A stack trace
is useful information for debugging a crash, since it tells you the chain of functions
calls that led to the crash.

The GDB debugger refers to the stack frames by numbers, where the current
frame has stack frame number 0, and the frame of the main() function has the
highest number. This number is also the size of the call stack. The GDB command
for a stack trace is bt, backtrace, or where. For the crash in the example above,
the stack trace confirms that we created an overflow of the program stack, by making
many recursive calls to the factorial() function:

(gdb) backtrace
#0 <..> in factorial (n=-105582) at factorial.c:9
<lots of frames..>
#103581 <..> in factorial (n=-2) at factorial.c:9
#103582 <..> in factorial (n=-1) at factorial.c:9

28 3 Getting to the Root – Source Code Debuggers

#103583 <..> in main (argc=2, argv=0x761ce8) at factorial.c:20

You can navigate up and down the call stack, and inspect the values of function
arguments and local variables. In GDB, you can use the commands up or down to
move through the stack.

In Visual Studio, you will see a window named Call Stack. This window only
shows the first 1000 frames. Click on the line items in the Call Stack Window to
navigate in the call stack.

3.5 Learn to Use Breakpoints

Interactive debugging requires the ability to suspend the execution of a program be-
fore it terminates, and to navigate through the program code in a controlled manner.
This is done with breakpoints. A debugger provides a range of breakpoint com-
mands, as described in the following list:

• Line breakpoint – will pause the program when it reaches a specific line in the
source code.

• Function breakpoint – will pause the program when it reaches the first line of a
specific function.

• Conditional breakpoint – will pause the program if a certain condition holds true.
• Event breakpoint – puts the program in pause mode if a certain event occurs.

Supported events include signals from the operating system, and C++ excep-
tions.

A complete list of debugger commands can be found in the appendix on page 193.
Chapter 10 discusses event breakpoints in more detail: Section 10.4 on conditional
breakpoints, Section 10.6 on watchpoints, Section 10.7 on catching signals and
Section 10.8 on catching exceptions.

3.6 Learn to Navigate Through the Program

We have seen above that a debugger has commands to run and pause the program.

• run – The run command will start the program. There is a way to control and
alter the environment that the program runs in, such as command line arguments
and environment variables.

• start – The start command will run the program until the first line of main(),
and stop execution of the program. This saves the work of searching for the file
containing the main() function, and putting an explicit breakpoint in the first
line.

• pause – The pause command will interrupt a running program. In some debug-
gers, typing Ctrl-C or clicking the Pause key will have the same effect.

3.7 Learn to Inspect Data: Variables and Expressions 29

• continue – The debugger command continue will cause the paused program to
resume execution.

To understand the behavior of a complicated piece of code, we need to go through
the source code line by line. A debugger provides the feature of line-by-line step-
ping. There are three separate stepping modes, step-into, step-over, and step-out that
differ by how they deal with functions calls. We will describe in the following how
these modes work. We recommend that you try out these modes on the factorial
example, to become familiar with navigating through the program by stepping.

• Step-into – The debugger command step-into, or step in GDB, will go to the
next executable line of code. In case the current line is a function call, the de-
bugger will step into the function, and stop at the first line of the function’s body.
A step-into can lead you to initially puzzling code locations. For example, the
function call and the function itself may be in separate files. See Chapter 10,
Section 10.3 for details on step-into in C++ implicit function calls.

• Step-over – The debugger command step-over, or next in GDB, will go to the
next executable line of code in the same call-stack level. If the current line is a
function call, the debugger will stop at the next statement after the function call.
The debugger will not go into the function’s body. If the current line was the last
line in a function, step-over will go down one level in the stack, and stop in the
next line of the calling function.

• Step-out – The debugger command step-out, or finish in GDB, will go down
one level in the stack, and stop in the next line of the calling function.

Again, please refer to Table A on page 193 for the most common commands in GDB
and Visual Studio.

3.7 Learn to Inspect Data: Variables and Expressions

Here is how you show the value of a variable: Put a breakpoint in line 7 of the
factorial example in Figure 3.1, and start the program. When the program
pauses in line 7, type print n in GDB.

• print – The print command will print the current value of a variable, or an ex-
pression.

• display expression – continuous display of an expression value. The value gets
updated whenever the program execution is paused.

In Visual Studio, you can put the cursor on the function argument n, to have a small
DataTip window pop up and display the variable name and value. You can also use
the menu item Debug/Windows/Locals to create a window that displays the local
variables of the current function or method. To display global variables in Visual
Studio, go to the menu item Debug/Windows/Watch, open a Watch window, and
enter in the Name column the names of the global variables you want to watch.

30 3 Getting to the Root – Source Code Debuggers

In many cases, it is convenient to print the value of an expression. A debugger
will evaluate an expression using variable values from the current stack frame, and
will show the result in an output area or as console output. The expressions can
consist of variable names, or can be composed from operators, variables, type casts,
and function calls. The format for printing the result of an evaluated expression will
depend on the data type of the expression: an expression of type float is printed
with a decimal point, whereas, an expression of type int is printed as an integer.
You can chose different output formats for the print command. For example, a
variable containing status bits can be displayed in binary or hexadecimal format.

If the same expression has to be analyzed and printed repeatedly, you can use the
display feature to evaluate and print the result of an expression automatically every
time that the debugger is paused. The display feature will let you efficiently monitor
variables of interest, while navigating through the program in the debugger. In GDB,
this command is display. In Visual Studio, you can open a Watch window for
displaying variables and expressions.

The debugger maintains a list of display expressions, similar to the list of break-
points. You can disable, enable, add, or remove expressions in the display list. Please
refer to your debugger’s documentation on how to do this. You should not overuse
displays, because too many data expressions shown by the debugger will hide the
relevant information. The most common print and display commands in GDB and
Visual Studio are listed in the appendix on page 193.

3.8 A Debug Session on a Simple Example

Let us recapitulate the debugger commands and features described in the previ-
ous sections. We take the factorial example from Figure 3.1, and apply the
debugger to find out why the program returns an incorrect value for n >= 13.
Our program returns the value 1932053504 for 13!, whereas the correct value is
13! = 6227020800.

The first task is to start the program with the argument 13, pause in the first
line of main(), and then step over each line until we reach line 20, where the
factorial() function is called. The purpose is to check that the command
line argument is parsed correctly, and that an integer value of 13 is passed to the
factorial() function. We then step into the function factorial(). We use
GDB for this example.

> gdb factorial
...
(gdb) start 13
(gdb next
...
(gdb) next
20 result = factorial(n);
(gdb) print n
$1 = 13

3.8 A Debug Session on a Simple Example 31

(gdb) step
factorial (n=13) at factorial.c:6
6 int result = 1;

We need to check that the recursion works, so we place a breakpoint in line 8,
to check that for n = 0, the function does not call itself again. We also place a
breakpoint in line 10, so we can look at the return value of each call to factorial.
Rather than stepping, we then let the program continue to the first breakpoint.

(gdb break 8
Breakpoint 2 at <..>: file factorial.c, line 8
(gdb) break 10
Breakpoint 3 at <..>: file factorial.c, line 10
(gdb) continue
Continuing.
Breakpoint 2, factorial (n=0) at factorial.c:8

We print the variables n and result, to check that the function works properly.
We can also use the display command on the variable result, so we do not have
to repeat typing the print command.

(gdb) print n
$1 = 0
(gdb) print result
$2 = 1
(gdb) display result
1: result = 1

As we keep repeating the continue command, we get a printout of the variable
result at line 10 in the program, for n = 0,1, ..,13. We pause when n is 13.

(gdb) continue
Breakpoint 3, factorial (n=1) at factorial.c:10
1: result = 1
(gdb) continue
...
Breakpoint 3, factorial (n=12) at factorial.c:10
1: result = 479001600
(gdb) continue
Breakpoint 3, factorial (n=13) at factorial.c:10
1: result = 193053504
(gdb) print 13 * 479001600
$5 = 193053504

Note that the result for n = 12 is still correct, but that the multiplication with the
value 13 calculates an incorrect result. We repeat the calculation done in line 9, by
printing the expression 13 ∗ 479001600, and note that it reproduces the calculation
error. The reason for this is that the value for 13! is too large to be stored in a 32-
bit variable of type int, so the multiplication causes an incorrect result due to an
integer overflow.

32 3 Getting to the Root – Source Code Debuggers

Lessons learned:
• Use a source code debugger to visualize a program’s behavior.
• Prepare a simple example to familiarize yourself with the features of the

debugger.
• Get the debugger to run with your program.
• Learn to analyze the stack trace of a program crash.
• Learn to use breakpoints.
• Learn to navigate through the program.
• Learn to inspect variables and expressions.
• Do a debug session on a simple example.

Chapter 4
Fixing Memory Problems

This chapter is about finding bugs in C/C++ programs with the help of a memory
debugger. A memory debugger is a runtime tool designed to trace and detect bugs
in C/C++ memory management and access. It does not replace a general debugger.
In the following sections, we will describe the memory access bugs that typically
occur in C/C++ programs, introduce memory debuggers, and show with two exam-
ples how these tools find bugs. We will then show how to run memory and source
code debuggers together, how to deal with unwanted error messages by writing a
suppression file, and what restrictions need to be considered.

4.1 Memory Management in C/C++ – Powerful but Dangerous

The C/C++ language is able to manage memory resources, and can access memory
directly through pointers. Efficient memory handling and “programming close to the
hardware” are reasons why C/C++ replaced assembly language in the implementa-
tion of large software projects such as operating systems, where performance and
low overhead play a major role. The allocation of dynamic memory (also known as
heap memory) in C/C++ is under the control of the programmer. New memory is
allocated with functions such as malloc() and various forms of the operator new.
Unused memory is returned with free() or delete.

The memory handling in C/C++ gives a large degree of freedom, control, and
performance, but comes at a high price: the memory access is a frequent source of
bugs. The most frequent sources of memory access bugs are memory leaks, incorrect
use of memory management, buffer overruns, and reading uninitialized memory.

33

34 4 Fixing Memory Problems

4.1.1 Memory Leaks

Memory leaks are data structures that are allocated at runtime, but not deallocated
once they are no longer needed in the program. If the leaks are frequent or large,
eventually all available main memory in your computer will be consumed. The pro-
gram will first slow down, as the computer starts swapping pages to virtual memory,
and then fail with an out-of-memory error. Finding leaks with a general debugger is
difficult because there is no obvious faulty statement. The bug is that a statement is
missing or not called.

4.1.2 Incorrect Use of Memory Management

A whole class of bugs is associated with incorrect calls to memory management:
freeing a block of memory more than once, accessing memory after freeing it,
or freeing a block that was never allocated. Also belonging to this class is us-
ing delete instead of delete[] for C++ array deallocation, as well as using
malloc() together with delete, and using new together with free().

4.1.3 Buffer Overruns

Buffer overruns are bugs where memory outside of the allocated boundaries is over-
written, or corrupted. Buffer overruns can occur for global variables, local variables
on the stack, and dynamic variables that were allocated on the heap with memory
management.

One nasty artifact of memory corruption is that the bug may not become visible
at the statement where the memory is overwritten. Only later, another statement in
the program will access this memory location. Because the memory location has an
illegal value, the program can behave incorrectly in a number of ways: the program
may compute a wrong result, or, if the illegal value is in a pointer, the program will
try to access protected memory and crash. If a function pointer variable is over-
written, the program will do a jump and try to execute data as program code. The
key point is that there may be no strict relation between the statement causing the
memory corruption and the statement triggering the visible bug.

4.1.4 Uninitialized Memory Bugs

Reading uninitialized memory can occur because C/C++ allows creation of vari-
ables without an initial value. The programmer is fully responsible to initialize
all global and local variables, either through assignment statements or through the

4.2 Memory Debuggers to the Rescue 35

various C++ constructors. The memory allocation function malloc() and opera-
tor new also do not initialize or zero out the allocated memory blocks. Uninitialized
variables will contain unpredictable values.

4.2 Memory Debuggers to the Rescue

The above categories of memory access bugs created a need for adequate debug-
ging tools. Finding bugs related to leaked, corrupted, or uninitialized memory with
a conventional debugger such as GDB turned out to be unproductive. To deal with
memory leaks in large software projects, many programmers came up with the same
idea. They created memory management functions/operators with special instru-
mentation to track where a memory block was allocated, and if each block was
properly deallocated at the end of the program.

Since everybody had the same memory bugs in their C/C++ programs, and since
everybody improvised with custom instrumentation to track down at least some of
these bugs, a market for a tool called memory debugger was created. The most well-
known tool is Purify, released in 1991 by Pure Software. Purify’s name has since
become synonymous with memory debugging. There is also Insure++, Valgrind, and
BoundsChecker, among others. See the tools Appendix B.4 starting on page 198 for
references and the survey in [Luecke06] for a comparison of features.

Memory debuggers do detailed bookkeeping of all allocated/deallocated dy-
namic memory. They also intercept and check access to dynamic memory. Some
memory debuggers can check access to local variables on the stack and statically al-
located memory. Purify and BoundsChecker do this by object code instrumentation
at program link time, Insure++ uses source code instrumentation, and Valgrind ex-
ecutes the program on a virtual machine and monitors all memory transactions. The
code instrumentation allows the tools to pinpoint the source code statement where a
memory bug occurred.

The following bugs are detectable by a memory debugger:

• Memory leaks
• Accessing memory that was already freed
• Freeing the same memory location more than once
• Freeing memory that was never allocated
• Mixing C malloc()/free()with C++ new/delete
• Using delete instead of delete[] for arrays
• Array out-of-bound errors
• Accessing memory that was never allocated
• Uninitialized memory read
• Null pointer read or write

We will show in the next section how to attach a memory debugger to your program,
and how the tool finds and reports bugs.

36 4 Fixing Memory Problems

4.3 Example 1: Detecting Memory Access Errors

Our first example is a program that allocates an array in dynamic memory, accesses
an element outside the final array element, reads an uninitialized array element, and
finally forgets to deallocate the array. We use the public domain tool Valgrind on
Linux as the memory debugger, and demonstrate how the tool automatically detects
these bugs. This is the code of our program main1.c:

1 /* main1.c */
2 #include <stdio.h>
3 int main(int argc, char* argv[]) {
4 const int size=100;
5 int n, sum=0;
6 int* A = (int*)malloc(sizeof(int)*size);
7
8 for (n=size; n>0; n--) /* walk through A[100]...A[1] */
9 A[n] = n; /* error: A[100] invalid write*/

10 for (n=0;n<size; n++) /* walk through A[0]...A[99] */
11 sum += A[n]; /* error: A[0] not initialized*/
12 printf ("sum=%d\n", sum);
13 return 0; /* mem leak: A[] */
14 }

We compile the program with debug information and then run under Valgrind:

> gcc -g main1.c
> valgrind --tool=memcheck --leak-check=yes ./a.out

In the following sections we go through the error list reported by Valgrind.

4.3.1 Detecting an Invalid Write Access

The first – and perhaps most severe – error is a buffer overrun: the accidental write
access to array element A[100]. Because the array has only 100 elements, the
highest valid index is 99. A[100] points to unallocated memory that is located
just after the memory allocated for array A. Valgrind thus reports an “invalid write”
error:

==11323== Invalid write of size 4
==11323== at 0x8048518: main (main1.c:9)
==11323== Address 0x1BB261B8 is 0 bytes after a block
==11323== of size 400 alloc’d
==11323== at 0x1B903F40: malloc
==11323== (in /usr/lib/valgrind/vgpreload_memcheck.so)
==11323== by 0x80484F2: main (main1.c:6)

The string "==11323==" refers to the process ID and is useful when Valgrind is
checking multiple processes 1. The important piece of information is that an invalid

1 Valgrind will, per default, check only the first (parent) process that has been invoked. Use option
--trace-children=yes to check all child processes as well.

4.3 Example 1: Detecting Memory Access Errors 37

write occurs in line 9 of main1.c. There is also additional information revealing
the address of the closest allocated memory block and how it was allocated. The
memory debugger guesses that the invalid write in line 9 is related to this memory
block. The guess is correct because both belong to the same array A.

Note that Valgrind is able to catch an out-of-array-bounds errors only when the
array is allocated as dynamic memory with malloc() or new. This is the case in
the example with the statement in line 6:

6 int* A = (int*)malloc(sizeof(int)*size);

If the example were instead written as int A[size] in line 6, then A would be
a local variable located on the stack and not on the heap. It turns out that Valgrind
does not detect such an error but Purify is able to catch it. This shows that not all
memory debuggers will report exactly the same errors.

4.3.2 Detecting Uninitialized Memory Reads

The next error in main1.c is an uninitialized memory read. Due to the incorrect
index computation in line 8, element A[0] was never written with an initial value.
This element is later read by statement sum += A[n] in line 11, which means that
variable sum gets “infected” as well.

It is important to point out when Valgrind reports this uninitialized memory error.
The infection of sum happens in line 11. However, the error is not reported at that
point, but later, when the variable sum is observed by printing its value in line 12:

==11323== Use of uninitialised value of size 4
==11323== at 0x1BA429B7: (within /lib/tls/libc.so.6)
==11323== by 0x1BA46A35: _IO_vfprintf (in .../libc.so.6)
==11323== by 0x1BA4BDAF: _IO_printf (in .../libc.so.6)
==11323== by 0x804855C: main (main1.c:12)
==11323==
==11323== Conditional jump or move depends on
==11323== uninitialised value(s)
==11323== at 0x1BA429BF: (within .../libc.so.6)
==11323== by 0x1BA46A35: _IO_vfprintf (in .../libc.so.6)
==11323== by 0x1BA4BDAF: _IO_printf (in .../libc.so.6)
==11323== by 0x804855C: main (main1.c:12)

Valgrind, unfortunately, does not give a detailed explanation where the variable sum
was infected, so you have to find out yourself. Analyzing the source code is one way.
A temporary workaround is to add a dummy statement after line 11, inside the for-
loop: if (sum>0) do nothing(). This makes Valgrind observe the value of
sum earlier.

38 4 Fixing Memory Problems

4.3.3 Detecting Memory Leaks

The final bug is a memory leak. Memory for array A has been allocated with the
statement malloc(sizeof(int)*size) in line 6 but it has never been deleted
with a corresponding free(A) statement. The memory debugger reports this leak
when the program ends:

==11323== 400 bytes in 1 blocks are definitely lost
==11323== in loss record 1 of 1
==11323== at 0x1B903F40: malloc
==11323== (in /usr/lib/valgrind/vgpreload_memcheck.so)
==11323== by 0x80484F2: main (main1.c:6)

4.4 Example 2: Broken Calls to Memory Allocation/Deallocation

The second example, main2.c, demonstrates how to find memory allocation bugs
in a program that uses C strings of type char*:

1 /* main2.c */
2 #include <stdio.h>
3 #include <stdlib.h>
4 #include <string.h>
5 int main(int argc, char* argv[]) {
6 char* mystr1=strdup("test");
7 char* mystr2=strdup("TEST");
8 mystr1=mystr2;
9

10 printf ("mystr1=%s\n", mystr1);
11 free(mystr1);
12
13 printf ("mystr2=%s\n", mystr2);
14 free(mystr2);
15 return 0;
16 }

Function strdup() returns a copy of its string argument. It allocates the necessary
memory on the heap. It is the responsibility of the calling function to deallocate the
memory later. We compile the program and run it:

> gcc -g main2.c
> valgrind --tool=memcheck --leak-check=yes ./a.out

The actual error happens at the statement mystr1=mystr2 in line 8. The cod-
ing style suggests that mystr1 and mystr2 both have their individually allocated
memory. This is true until line 8 is reached. Afterwards both variables point to the
same memory location. However, the programmer did not consider that and so sev-
eral errors occur subsequently.

4.4 Example 2: Broken Calls to Memory Allocation/Deallocation 39

The first problem occurs in line 13 when mystr2 is printed. Since the memory
was already deallocated in line 11, mystr2 is now a pointer to freed memory.
Accessing it in the printf() statement constitutes an invalid read access:

==11787== Invalid read of size 4
==11787== at 0x1BA71903: strlen (in .../libc.so.6)
==11787== by 0x1BA4BDAF: _IO_printf (in .../libc.so.6)
==11787== by 0x8048554: main (main2.c:13)
==11787== Address 0x1BB26060 is 0 bytes inside a block
==11787== of size 5 free’d
==11787== at 0x1B9040B1: free (in ...memcheck.so)
==11787== by 0x8048541: main (main2.c:11)

Note that the memory debugger provides the location of the faulty statement
(line 13) as well as the statement where the invalid memory location was previously
deallocated (line 11).

The next bug in line 14 deallocates the memory to which mystr2 points. This
is illegal because this memory was already deallocated in line 11:

==11787== Invalid free() / delete / delete[]
==11787== at 0x1B9040B1: free (in ...memcheck.so)
==11787== by 0x8048562: main (main2.c:14)
==11787== Address 0x1BB26060 is 0 bytes inside a block
==11787== of size 5 free’d
==11787== at 0x1B9040B1: free (in ...memcheck.so)
==11787== by 0x8048541: main (main2.c:11)

Finally, there is a memory leak. Before the variable mystr1 was altered in line
8, it used to point to its own memory allocated in line 6. This memory is never
deallocated. Since there is no longer any pointer referring to the memory allocated
in line 6, it becomes a leak:

==11787== 5 bytes in 1 blocks are definitely lost in
==11787== loss record 1 of 1
==11787== at 0x1B903B7C: malloc (in ...memcheck.so)
==11787== by 0x1BA7163F: strdup (in .../libc.so.6)
==11787== by 0x8048504: main (main2.c:6)

Lessons learned:
• Memory debuggers take little effort to use.
• A memory debugger is the most efficient tool to detect memory leaks.
• A memory debugger can detect memory access errors: buffer overruns,

incorrect array indexing, null pointer access.
• Memory debuggers can find uninitialized memory read errors before

they cause unpredictable program behaviour.
• Use a memory debugger to detect incorrect use of memory management

routines.
• Use a memory debugger if you use C-style strings and functions from
<string.h>: strdup(), strcpy().

40 4 Fixing Memory Problems

4.5 Combining Memory and Source Code Debuggers

When the memory debugger reports an error, it gives context information, such as
the call-chain (up to a certain length). This information may not be sufficient to un-
derstand why the bug occurs. Memory debuggers therefore provide hooks to source
code debuggers such as GDB for a more in-depth analysis.

Let us try this in our example. The first error reported by Valgrind was an invalid
write in line 9 of main1.c, A[n] = n. This statement is embedded into a for-
loop, so the value of variable n is not immediately obvious and it would be helpful
to query the value of n with a source code debugger.

In case of Valgrind, we can use option --db-attach=yes to attach a source
code debugger. The option makes Valgrind stop the program execution at each re-
ported error and each time asks the user whether to attach the source code debugger:

> valgrind --tool=memcheck --leak-check=yes \
--db-attach=yes ./a.out

Once Valgrind stops and asks whether to attach the debugger, we confirm this and
the debugger comes up. We then query the value of n, which turns out to be 100.
The default debugger is GDB. The option --db-command=<command> lets you
specify another debugger.

Purify has a similar concept by calling function purify stop here() im-
mediately after an error has been reported. Start the source code debugger, set a
breakpoint in purify stop here(), and run the program. The source code de-
bugger will stop directly in the function that causes the memory error.
Insure++ has the same concept by calling the function Insure trap error().

Combining memory and source code debuggers

• If source code location and stack trace alone do not give enough hints,
combine using a source code debugger along with a memory debugger.

• All good memory debuggers have APIs to attach a source code debugger
when needed. Read the user guide to find out how.

• Use the source code debugger to inspect variable values and call debug
functions.

4.6 Cutting Down the Noise – Suppressing Errors

Your memory debugger will have a mechanism to suppress error messages, by filter-
ing them out of the generated report. This mechanism lets you write precise suppres-
sion rules. The rules follow a grammar, and can be generated either in an interactive
tool, or entered as text in a suppression file. In most tools, you can filter by:

4.7 When to Use a Memory Debugger 41

• Error type – Example: suppress all uninitialized-memory accesses
• Function call chain – Example: suppress all array-bound-write errors only if they

occur in the call chain ...->A()->B()->C()
• Object or source file name

For example, in Purify, the suppression rules are stored in a .purify file in your
home directory, or in the program’s directory. The rules look as follows:

suppress UMR # uninitialized memory reads, all
suppress ABW ...;A;B;C # array bounds write, on call chain
suppress MLK "myleak.c" # memory leaks, in file

Now, in theory it is a good idea to demand that your application and all its com-
ponents are “Purify clean,” or whatever equivalent term is used for your memory
debugger. The best approach is to analyze each memory error, fix it, and repeat the
process until there are no more errors.

In practice, this is often infeasible. Your application will contain operating system
libraries, third-party libraries where no source code is available, or libraries where
the developer is unwilling or unable to fix the reported memory errors. Such a library
can generate an avalanche of thousands of error messages when run in a memory
debugger. Sorting through a large number of error messages, to find the messages
relevant to your code, is impractical. Also, if your error report always contains a
few thousand messages, you will not be able to quickly detect if a new memory
bug is introduced: the message will get lost in the noise. Therefore, most software
projects create a suppression file for those error messages that are accepted as either
harmless or unfixable.

However, do not automatically suppress all errors related to a third party library.
There are good reasons to be alert. You may be using a library function in the wrong
way. For example, you may be giving the wrong function arguments, or not adhering
to the proper calling sequence. For some functions, you may have to allocate a buffer
before the functions calls, for others, the function will allocate memory, but you may
be responsible to deallocate the return argument, or to call a cleanup function. So,
double-check each group of error messages before you filter them out.

Also, when using a suppression file, there is always the risk that you are filtering
out legitimate error messages. At regular intervals, when you update libraries in
your program, or when you switch to a new compiler or memory debugger version,
rebuild your suppression file from scratch.

4.7 When to Use a Memory Debugger

Using memory debuggers throughout the software development process improves
the software quality; many bugs will be caught before the software reaches the cus-
tomer. At the same time, using memory debuggers takes little effort, as we have
demonstrated. We recommend using memory debuggers on following occasions:

42 4 Fixing Memory Problems

• When porting your software to a new operating system.
• When your program crashes.
• When beginning to debug a “strange” bug: When things have even a slight

tendency to look like “this is just not possible,” “what a weird stack trace,”
or “we never had problems with this function.”

• As an integral part of your regression tests.

4.8 Restrictions

4.8.1 Prepare Test Cases with Good Code Coverage

A memory debugger is a tool for finding runtime bugs. You need to have very good
code coverage in your test cases, since the tool can only detect a bug when the
program executes the statement containing the bug.

4.8.2 Provide Additional Computer Resources

The use of a memory debugger is resource-intensive. The amount of dynamic mem-
ory used by the program increases significantly, due to book-keeping information
added to each data structure. An increase by a factor of 2–4 is typical here. The
book-keeping to check all memory access also increases the run time of the pro-
gram, often by an order of magnitude. And finally, if the memory debugger is based
on object code instrumentation, a large amount of disk space will be needed to cache
system and program runtime libraries.

4.8.3 Multi-Threading May Not be Supported

Multi-threaded programs may confuse the memory debugger. A popular thread
packages such as POSIX Threads will probably be supported, but less frequently
used packages may cause problems.

4.8.4 Support for Non-standard Memory Handlers

Your program may contain its own low-level memory handler that defines functions
such as malloc() and free(). Internally, this memory handler will probably

4.8 Restrictions 43

make system calls to sbrk() or mmap() to receive blocks of memory from the
OS.

There is three common reasons for a custom memory handler: better perfor-
mance, and less space required, for a particular application domain. The third reason
is that a module of the program is so broken or un-maintainable that memory can-
not be safely deallocated with free or delete. Instead, once the module is done,
the complete internal contents of the memory manager are deallocated in one step,
without regard to any data structure that was allocated with the memory manager.

A memory debugger cannot detect that a non-standard memory handler is used,
and will not reliably report memory leaks or access violations for data structures
allocated with the new memory handler. However, the memory debugger usually
has an API to register calls to the custom memory handler, to enable detection of
memory leaks, buffer overruns, and uninitialized memory reads. Please refer to the
documentation of Purify, Insure++, and Valgrind for more details.

Lessons learned:
• Use a suppression file to reduce the number of error messages from

harmless or unfixable memory bugs.
• Memory debuggers are runtime tools: A bug can only be detected if the

statement containing the bug is executed. You need test cases with good
code coverage.

• Memory debuggers will significantly slow down program execution and
increase memory usage.

• Some thread packages are incompatible to memory debuggers.
• Non-standard memory handlers can be integrated by using an API.

Chapter 5
Profiling Memory Use

This chapter is about memory profiling, i.e. debugging programs that consume too
much memory. Excessive memory consumption can be due to either inefficient data
structures, missing memory deallocation, or simply because of an incorrect estimate
on how much memory the program will need. Excessive memory use can also in-
crease the runtime of a program, by forcing the program to access main memory
instead of the faster cache, and by overflowing the available main memory (paging),
so this chapter augments Chapter 6 on how to find performance bugs.

5.1 Basic Strategy – The First Steps

We present a 4-step approach to memory profiling.

Step-by-step approach to memory profiling

• Step 1. Check that there are no major leaks.
• Step 2. Estimate the expected memory use.
• Step 3. Measure memory consumption over time, with multiple inputs.
• Step 4. Find the data structures that consume memory.

The first step is to check that there are no memory leaks as well as no memory
corruption. It is unwise to do a systematic search of when and where in your program
memory is consumed, if you can do a straightforward search with a memory leak
checker instead. Use a tool such as Purify or Valgrind, as described in Chapter 4,
and deallocate unneeded data structures at the earliest possible point in the program.

The second step, after checking for leaks, is to prepare a rough “back-of-the-
envelope” estimate for the memory use of a program. The estimates will serve as a
sanity check for later measurements.

45

46 5 Profiling Memory Use

In step three, find out when the memory is consumed and roughly where in
the program flow this does happen. Measure how the overall memory consump-
tion grows over time and how it correlates with the input data. Make sure to use
meaningful input data for these measurements.

Finally, in step four, identify the statements and data structures that use the mem-
ory.

As part of this step-by-step approach to memory profiling, we discuss available
tools, how to prepare the program with instrumentation code, and how to interpret
the results. The chapter finishes with an example demonstrating the step-by-step
approach.

5.2 Example 1: Allocating Arrays

As a first, and very simple example, we will use the program testmalloc.c.
This program executes a loop, allocates a large array in dynamic memory, and
then deallocates the array. The full source code is shown in Appendix C.1 and
contains #ifdef USE NEW statements to utilize either C++ new/delete or
C malloc()/free() statements. We will use C++ new/delete statements
throughout the chapter, by compiling the code with the flag -DUSE NEW. These
are the important statements after removing the #ifdef statements:

42 for(i=0; i<iterations; i++) {
43 wait_for_input("before malloc: ",...);
45 myarray = new int*[n];
49 for(j=0; j<n; j++)
51 myarray[j] = new int[blocksize];
56 wait_for_input("after malloc: ",...);
57 for(j=0; j<n; j++)
59 delete [] myarray[j];
66 delete [] myarray;
70 }

The program has three arguments: when the first argument is set to i, then the pro-
gram will wait before each memory allocation and deallocation step. The second
argument, n, tells the program how many integer blocks of blocksize=1024
should be allocated, and the third argument tells the program how many loop iter-
ations should be done. All arrays are deallocated at the end of the iteration and are
allocated again when the next iteration begins.

5.3 Step 1: Look for Leaks

The first step in the analysis of a program that is suspected using too much memory
is to run a memory checker such as Purify, or Valgrind, as described in Chapter 4.
If you find one or more memory leaks this way, you should fix the problem, or at

5.5 Step 3: Measure Memory Consumption 47

least make an estimate to determine the amount of memory that is leaked. For most
cases where a fix is not possible, such as a leak in a system library, the memory leak
may be just a few bytes, and can safely be ignored. We ran program testmalloc
through Valgrind and verified that there are no memory leaks.

5.4 Step 2: Set Your Expectations

We recommend preparing a rough “back-of-the-envelope” estimate for the memory
use of a program as the next step. This should be done before instrumenting the
software or using debugging tools to do actual measurements. Doing an estimate
is a reality check, in case the later measurements show any surprise: it is possible
that the measurement tools are working incorrectly, the instrumentation code is in
the wrong place, or the program is consuming memory in an unexpected place. If
the measured memory usage is significantly above the estimate, then there may be
a bug in the way how the data is stored, or some redundant data is stored.

We realize that estimating memory usage may be hard to do in many cases: the
program may be large, old, non-modular, or confusing. You can only estimate well
if you have some knowledge what the program is doing, how it works internally,
and which data structures are used. However, this knowledge is needed to do decent
memory profiling. Usually, the estimate is obtained through an iterative process:
an initial guess is made, by reviewing the problem specification, implementation
specification, and the source code. This is followed by a set of measurements, to
find the data structures that use up most of the memory.

What is the estimate for the testmalloc example? The memory usage de-
pends almost completely on the second argument, n, that tells the program how
many integer blocks of size 1024 to allocate. Each block allocates 1024∗4 bytes, so
a value of n = 100000, for example, will allocate 100000∗1024∗4 = 409,600,000
bytes or approximately 390.6 M bytes, where 1 M byte = 1024∗1024 bytes.

There are other data structures in the example that need memory as well, namely
the stack and the array myarray holding the pointers of the allocated blocks. How-
ever, they are small compared to the blocks themselves so we can ignore them.

5.5 Step 3: Measure Memory Consumption

In this section we will show how to measure the actual memory consumption of a
program using the testmalloc program as an example. We will also show how
memory consumption varies with the input values.

We are not only interested in the maximum amount of memory used by the pro-
gram. During its execution, the program will go through multiple time intervals or
phases. We are looking to correlate the program phases to memory allocation and
deallocation, by making measurements at the phase boundaries. The measurements

48 5 Profiling Memory Use

can be refined with a classical divide-and-conquer strategy, by looking for the phases
with the most relevant increases or decreases in memory. Insert more measurement
points in these phases to get close to the program location where the interesting
memory allocation/deallocation behavior is.

5.5.1 Use Multiple Inputs

Before you can measure the memory use of a program, make sure that the program
runs with relevant input data. There must have been some reason why it was deemed
necessary to perform memory profiling in the first place, for example because the
program “runs OK for small input files but really bad for large files.” Make sure
to use input data that stimulates the “really bad” behavior, otherwise all further
activities will measure irrelevant data and you will focus on irrelevant parts of the
program.

There will be some correlation between input data and memory consumption. We
will explain the differences between logarithmic, linear, quadratic, or exponential
growth in more detail on page 69 of Chapter 6. At the very least, make sure to use
no less than three data samples. If you take just two samples, then you will not be
able to distinguish linear from, for example, quadratic growth.

Once you have a reasonable understanding what the correlation between input
data and memory consumption is, compare it to the estimates from step two. If there
are major differences – for example quadratic or exponential growth rather than
linear growth – then this knowledge will help to find the guilty program locations.

Further, you should keep notes about the memory measurements and check these
against the initial estimates. The notes are important for multiple reasons: checking
for measurement errors, having some evidence during a problem review, and, very
important, to check later if a bug fix or software re-architecture actually improves
memory use.

5.5.2 Stopping the Program at Regular Intervals

Finding the relevant (most memory consuming) location in the program flow is done
by inserting stop points and measuring memory usage. How can one insert stop
points?

The two easiest ways to observe the program at predetermined intervals are ei-
ther to use breakpoints in the source level debugger, or to insert the following code
fragment:

if(getenv("MEM_DEBUG")) {
char c;
printf("stage xxx\n");
printf("hit return to continue\n");

5.5 Step 3: Measure Memory Consumption 49

fflush(stdout);
c = getchar();

}

If the environment variable MEM DEBUG is set, then the program will stop and wait
until you press the RETURN key. If the environment variable is not set, then the pro-
gram runs as usual without the stop. To set the environment variable on UNIX, use
the command setenv MEM DEBUG 1 for csh, or MEM DEBUG=1; export
MEM DEBUG for sh, bash. In Windows use Control Panel / System / Advanced /
Environment Variables to set the environment variable.

It is of course up to you to select the program locations where the stop points can
be inserted. Putting stop points at the begin of each major module is a good starting
point. Next, use a divide-and-conquer strategy to locate the program sections that
show the largest increase in memory use and add more stop points in those sections.

5.5.3 Measuring Memory Consumption with Simple Tools

We recommend initially measuring the overall memory usage with simple tools such
as the UNIX utility top or the Windows Task Manager. There are more sophisti-
cated tools such as memory profilers, as explained in Section 5.5.8 below, but they
should not be used right away. The amount of data that they produce might be over-
whelming at first and the data might also be misinterpreted. With a simple tool, you
get one number, the overall amount of memory allocated by your program.

5.5.4 Use top

The simplest mechanism to display memory usage on a Linux or UNIX machines
is to use the utility top. On a Windows machine either use the Task Manager (see
below) or use the top command that is part of the Cygwin environment, well-
hidden as a command in the package system/procps. To keep program outputs
separate, you should run top in a shell that is separate from the program being
observed. The relevant column is RSS, the size of the physical memory of a task,
composed of code and data.

For the testmalloc example, we set the second argument to 100000. We al-
ready estimated that this results in the allocation of 100000∗1024∗4 = 409,600,000
bytes or approx. 390.6 M bytes. Here is the output of the top command on our pro-
gram testmalloc i 100000 8, before memory is being allocated:

> top
...
PID USER PRI SIZE RSS SHARE STAT %CPU %MEM TIME CPU COMMAND
475 wloka 21 312 312 268 S 0.0 0.0 0:00 0 testmalloc

50 5 Profiling Memory Use

Here is the output after malloc() allocated 100000∗1024∗4 bytes. The value in
column RSS increases as estimated from 312 bytes to 391 M bytes:

PID USER PRI SIZE RSS SHARE STAT %CPU %MEM TIME CPU COMMAND
475 wloka 16 391M 391M 300 S 4.0 15.6 0:00 1 testmalloc

Here is the output after free() released the dynamic memory:

PID USER PRI SIZE RSS SHARE STAT %CPU %MEM TIME CPU COMMAND
475 wloka 16 488 488 300 S 0.0 0.0 0:00 1 testmalloc

Fig. 5.1 Windows Task Manager output for ./testmalloc i 100000 8

5.5.5 Use the Windows Task Manager

On Windows, an even simpler way than using top is to start the Task Manager
program with Ctrl-Alt-Delete, click on the Processes tab, sort the processes alpha-
betically by clicking on Image Name, and then look at the column named Mem
Usage. The memory usage will be given in K (kilobytes). To visualize the mem-
ory use over time, click on the Performance tab in Task Manager, and look at the

5.5 Step 3: Measure Memory Consumption 51

Page File Usage History graph. Figure 5.1 shows the output of running
./testmalloc i 100000 8 and hitting the return key every 5 seconds to ad-
vance the program. Note that the graph shows the memory consumed by all tasks on
the computer, not only for testmalloc alone. The effect of testmalloc can
only be seen clearly if the memory usage of all other tasks remains stable.

5.5.6 Select Relevant Input Values for testmalloc

The measurement is repeated with different input values. By reducing the number of
blocks by factor of 10 to n = 10000 the memory consumption shrinks as expected to
just 39 M bytes. On the other hand, increasing or decreasing the number of iterations
has no effect on the peak memory usage. This is in line with the estimation.

We will from now on use input value n = 100000 and 8 iterations and can now
be sure to trigger a “normal” behavior of the program. Virtually all of the allocated
391 M bytes have been allocated because of this value of n.

5.5.7 Determine how Memory is Deallocated on Your Machine

Before proceeding to discuss tools for measuring memory use, we need to point
out that on some machines the deallocation of dynamic memory inside a program
will not cause the program’s process actually giving back the memory to the OS.
This is dependent on the OS, compiler, and C/C++ runtime libraries that are in-
stalled on your machine. Table 5.5.7 lists how deallocation behaves on some typical
development systems. The previous example was measured on machines that do
release memory to the OS.

Table 5.1 Behavior of free() and delete on different OS platforms

Platform Effect of free() / delete()
SunOS 5.8, GCC 3.3.2 memory not released to OS
Linux Red Hat Enterprise 3.0, GCC 3.3.2 memory released to OS
Linux Red Hat 7.2, GCC 3.3.2 memory released to OS
Suse 10.0, GCC 4.0 memory released to OS
Windows XP, VC++ 8.0 SP1 (.Net 2005) memory released to OS
Windows XP, Cygwin 1.5.25, GCC 3.4.4 memory not released to OS

On some platforms you will observe that the memory used by the program stays
constant at about 391 M after the first allocation of memory. The call to free(),
and all subsequent calls to malloc and free() have no observable effect in top,
you will continue to see the same result:

52 5 Profiling Memory Use

PID USER PRI SIZE RSS SHARE STAT %CPU %MEM TIME CPU COMMAND
475 wloka 16 391M 391M 300 S 4.0 15.6 0:00 1 testmalloc

This behavior is not a bug, but a difference in how dynamic memory is implemented
on each combination of operating system and compiler. When malloc() is called
to allocate a memory element, the C or C++ runtime library will request a large
block of memory from the operating system, the memory element is placed some-
where inside the memory block, and some book keeping is done to keep track of
how much memory is allocated, and where the memory elements are. All subsequent
calls to malloc/free() happen inside this large pre-allocated block of memory.
If no more space inside this block is available, another system call to the OS is made
to either extend the memory block, or to allocate another memory block.

The observed difference in the behavior of dynamic memory is due to the fol-
lowing choice of how to implement memory deallocation. Let us look at what
happens after a call to free() creates a completely empty memory block, as the
testmalloc.c example does:

One possibility is to give the memory block back to the operating system, so that
it is available to other programs and users. This makes more efficient use of memory,
but the system call to give back the memory block costs time. In the worst case
scenario, repeated calls to malloc/free() right at the boundary of a memory
block could cause a lot of system calls. Therefore, the alternative choice for handling
the large memory blocks is to not give them back to the OS. This has the effect
that the observed memory consumption of a program can only increase over the
runtime of the program. For most programs, there is little practical difference on
how dynamic memory deallocation is handled by the C runtime library. However,
for a program that needs a lot of memory during startup, and then runs for a long
time with very little memory, the overhead caused by the missing deallocation can
be significant.

We recommend compiling and running the testmalloc.c program as a quick
test on how memory deallocation is handled on your OS and compiler platform, so
you will not draw false conclusions from the results of top and Task Manager.

Lessons learned:
• On some operating system/compiler combinations, releasing memory

with free()/delete may not have an immediately visible effect.
The memory reported by top does not shrink.

• If in doubt, use the program testmalloc.c to find out how memory
is released on your operating system/compiler combination.

5.5 Step 3: Measure Memory Consumption 53

5.5.8 Use a Memory Profiler

The approach of using top for measuring memory consumption has the advantage
of being simple to implement, and works if other tools are unavailable. However,
adding the instrumentation code (for example code to make the program wait for a
key stroke) and keeping manual notes is work intensive, especially if many different
modules in the program use dynamic memory. It is convenient to reduce this manual
work by using a tool for memory profiling.

Memory profilers are tools that do detailed book keeping of memory usage. Be-
cause most of these tool only watch dynamic memory allocated on the heap with
malloc()/new, they are also called heap profilers. A memory profiler keeps
records when a piece of dynamic memory is allocated, by whom (call stack) it was
allocated, its size and when and by whom it was deallocated. After the program
ends, the memory profiler outputs graphs and log files which reveal details about
the memory usage and make it easy to locate the largest memory users.

A variety of tools is available and briefly described in Appendix B. On Win-
dows, one can use the AQtime (Appendix B.5.4) performance and memory debug-
ger. AQtime can be used standalone, or integrated into Visual Studio. On Linux, we
recommend Massif (Appendix B.4.2), which is part of the Valgrind debugging and
profiling tool suite. mpatrol (Appendix B.5.5) is available on both Windows and
UNIX/Linux, is Open Source but has fewer capabilities.

We will use Massif for the rest of this chapter because its capabilities are repre-
sentative of other memory profilers, it is Open Source, and has a simple use model.
Usage of Massif is straightforward. No special compiler flags, recompiling, or re-
linking of the program is required. The command is simply added on the command
shell in front of the program to be executed. If you compile the program with the
debug information flag -g, Massif will enable line references in the statistics output.

> valgrind --tool=massif ./testmalloc n 100000 8

The graph in Figure 5.2 shows the memory allocation and deallocation behavior of
testmalloc. The graph is directly generated by Massif as a Postscript file. The
program executes 8 loop iterations. In each iteration, a large number (100000) of
integer arrays are allocated and then deallocated again, so the iterations are visible
as 8 sharp spikes on the graph. Since the memory allocation is not done as one call
to malloc, but rather as a sequence of 100000 calls, the spike has a distinctive
slope. If the memory allocation were to be done in one call, the graph would look
more like a square wave.

The text output of Massif provides you with information on how much memory
was allocated. For each allocation Massif lists the call chain in form of function
name and, if compiled with debug information, source file name and line number.
We will discuss later in Section 5.7 how to use this Massif feature to measure mem-
ory consumption over data structures.

Here is the text output of Massif for the testmalloc program:

Command: testmalloc n 100000 8

54 5 Profiling Memory Use

Fig. 5.2 Massif output for valgrind --tool=massif ./testmalloc n 100000 8

Heap allocation functions accounted for 88.8% of measured
spacetime

Called from:
84.9% : 0x8048773: main (testmalloc.c:53)
3.9% : 0x8048746: main (testmalloc.c:47)

...

The output of Massif shows that most memory (around 85%) is allocated from line
53, where the call to malloc() for the integer block of size 1024 is made. A
smaller fraction of the memory is consumed in line 47, where the array of pointers
to the memory blocks is allocated.

5.6 Step 4: Identifying Greedy Data Structures

The goal of step four is to find those data structures and code locations in the pro-
gram that are most relevant to the overall memory consumption. There are at least
two methods how to do a detailed analysis: instrumenting data structures, or using
the memory profiler’s output.

A memory profiler is convenient to use because no source code modifications
are needed and it gives precise detailed feedback. However, it may give too much
detailed data, by doing a dump of all memory allocation statements.

5.7 Putting it Together – The genindex Example 55

5.6.1 Instrumenting Data Structures

The other method to measure which statements allocate how much memory is to in-
strument the source code, specifically data structures. Add helper functions that keep
track how often a data structure is used, how much memory it approximately needs,
and, if possible, which statements are allocating the data structures. For example,
you can add a method to a C++ class that gives an approximate value for the memory
usage (including memory usage of members) of the class object. Another example is
to count the number of active class objects, which can be accomplished by defining
all new and delete operators of the class and incrementing/decrementing a static
counter.

The testmalloc program is too simple to show any meaningful instrumenta-
tion code, so we will now explain the concept of data structure instrumentation on a
more complex example, the genindex program.

5.7 Putting it Together – The genindex Example

The source code of the program can be found in the C++ file genindex.cc listed
in Appendix C.2. The initial requirement of genindex was to read a text file, and
to print out an index of words in the file. The index is a sorted list of unique words,
where each word is followed by a comma-separated list of line numbers where the
word occurs.

Just as in real life, genindex had a requirements specification that had features
added during the development process. genindex started out as a simple UNIX
filter program, which would open a text file, use a suspiciously simple state machine
tokenizer to break the text into words, and store each word along with the current
line number in the index data structure.

Over time, several requirements were added: first, to process multiple files at
any one time, and second, after some problems debugging the tokenizer, a func-
tion was added to cross-check the generated index for correctness. Also, after some
concerns about problems with dynamic memory leaks, plus well-founded distrust
of do-it-yourself list and hash table data structures, the program was rewritten to
use containers from the C++ Standard Library in order to implement the index data
structure.

The program was then tested on a regression test database of sample input files,
was checked for leaks and memory corruption with Purify as described in Chapter 4,
and run through both gcc -Wall and the static analysis program Coverity, as de-
scribed in Chapter 12. The program passed all tests. Still, something was wrong:
the program ran quite slow, especially on large files, and also when many files were
given as input. Initially, the problems were blamed on user impatience and old com-
puter hardware, but then it was decided to do a quick analysis of the program.

We first iterate through the first 3 steps of our analysis strategy: making sure it
is not a (big) leak, calculate expected usage, measure over time, and with multiple

56 5 Profiling Memory Use

inputs. Then we focus in step 4 on the actual reason why we introduced this example,
by instrumenting the code, and measuring which data structures and code locations
are consuming the memory.

In the next 4 sections we will go through each step.

5.7.1 Check that There are No Major Leaks

The first step is to run the Purify tests again, which pass. This is not surprising,
since the program uses data structures from the C++ Standard Library, has not a
single malloc() or new inside, and thus does not show any obvious opportunity
to create a memory leak.

5.7.2 Estimate the Expected Memory Use

The second step is to estimate memory usage. This is now not as easy as with the first
example. The program needs to store an item in the index table for each unique word
in the file. An item consists of the string for the word itself and a list of integers (the
references to the location in the input file). Assuming a doubly-linked list, it needs
2∗ size(pointer)+ size(int) = 12 bytes per list entry1. When the next word from the
input file is processed, then there are two choices: if the word is already known, then
just a new list entry is added to an existing item in the index table. That will cost
12 bytes. If the word is not yet known, then we need a new item to store the word
itself and also a first list entry. That will cost also 12 bytes plus the string size of the
word. The second choice needs more memory, so the worst case is when all words
are unique.

Assuming that all words were to be 4 characters long and also unique, how much
data is needed for an input file with n bytes? We need to store the text itself (n char-
acters) plus the n/4 list entries (12 bytes each), altogether n + 12 ∗ (n/4) = 4 ∗ n
bytes. In addition to that, there is memory needed to store the words in a searchable
way but the overhead for this single search table should be far less than the items
themselves. Altogether, we estimate the amount of memory needed to a few times
that of the input file.

The second important estimation is that the memory should not grow with the
number of input files. The reason is that no data needs to be stored between pro-
cessing of two files. The index is printed at the end of each file and all memory
allocated so far should be released at that point. Only the names of the files will be
stored throughout the entire runtime, however, that should be very small overhead
compared to the memory needed to process a file.

1 Our example assumes 32-bit pointers. 20 bytes are needed for 64-bit pointers.

5.7 Putting it Together – The genindex Example 57

5.7.3 Measure Memory Consumption

The next step is to measure the memory consumption over time and with different
input files. We insert and call the wait for input() code to pause the pro-
gram after each file was processed. The code is enabled by compiling with the
PAUSE INDEX option.

> g++ -g -DPAUSE_INDEX -o genindex genindex.cc
> ./genindex input1.txt input1.txt input1.txt input1.txt

The output of top (not shown) is 4.6 M bytes after reading the first file, followed
by an increase of 2.3 M bytes for each additional file input1.txt of size 20 K
bytes read, for a final total of 11.4 M bytes. The measured memory usage per file,
2.3 M bytes, is above the estimated value of 80 K for an input file of 20 K bytes.
Furthermore, the measured memory usage grows with the number of files while the
estimation says that it should stay flat. Both discrepancies indicate that something
is wrong.

5.7.4 Find the Data Structures that Consume Memory

Next, we take a detailed look which data structures are using how much mem-
ory, first with Massif, then with instrumentation code. First, invoke Massif running
genindex with four input files:

> g++ -g -o genindex genindex.cc
> valgrind --tool=massif \

./genindex input1.txt input1.txt input1.txt input1.txt >log

The graphical output is shown in Figure 5.3. Massif confirms that the program’s
memory use increases very quickly, and total memory use is more than 11 M bytes.
The text output of Massif shows that most memory is used by the string data
type:

Called from:
93.0% : 0x3AA1F460: std::string::_Rep::_S_create(unsigned,

unsigned, std::allocator<char> const&)
(in /usr/lib/libstdc++.so.6.0.6)

In order to analyze which data structure is using the memory, we add instrumen-
tation code to the program to estimate memory usage. To keep things simple, a
method print memory stats() traverses the main data structure wordindex
after each file is read. We use some very rough approximations to get a lower bound
on memory usage: the size of an additional element to the index map is assumed to
be just the payload, a pair consisting of a string, and a list of integers. The approxi-
mation ignores that inside the map usually a red-black tree data structure is created
to enable fast searches for the key element. For the doubly-linked list container, we
assume as before that each list element has an integer as payload plus two pointers.

58 5 Profiling Memory Use

Fig. 5.3 Massif output for genindex: memory use increases very quickly, 2.3 M bytes per 20 K
byte input file

The program produces the following debugging output:

-- memory size for index of ’input1.txt’ file size=20016:
-- filename=14 wordindex=47211 lines=2340979 total=2388204
...
-- memory size for all data structures: 9552816 bytes

Most memory is consumed by the lines member variable that stores the lines of
text in a file. This variable was added during development of the verification code
to allow cross-checking of the index by the member function verify index().
For a file of 20016 characters, 2.3 million bytes are needed for storage, which is
unreasonable.

A code inspection reveals the following problem: The only code that actually
writes to the lines data structure is in line 126, in scan file():

126 lines.push_back(buffer);

Variable buffer is used to store the current input line, so it grows with each char-
acter that is read from the input file:

105 int FileIndexType::scan_file(char *fname) {
...

112 string buffer;
...

119 while(1) {
120 c = getc(fp);

5.7 Putting it Together – The genindex Example 59

121
122 if(c == EOF || c == ’\n’) {
123 add_to_index(newword, current_line);
124 newword = "";
125 current_line++;
126 lines.push_back(buffer);

...
133 else if(c == ’ ’ || c == ’\t’ || c == ’\r’) {

...
137 buffer = buffer + (char) c;
138 }
139 else {

...
141 buffer = buffer + (char) c;
142 }
143 filesize++;
144 }

The reset of the buffer variable at the end of an input text line was forgotten, so it
contains not only the current line but all previous lines as well. Worse, the memory
size of the lines array will grow quadratically because each new element will
contain all previous lines

Note how the error checking in verify index() is not affected by the bug:
for each word in the index, and each line number where the word is supposed to
occur, the verification function still determines that the word is present in the line of
text. The string search just may take a very long time to run.

The next step in debugging the memory consumption of genindex is to fix the
bug, by resetting the buffer at the end of the line:

119 while(1) {
120 c = getc(fp);
121
122 if(c == EOF || c == ’\n’) {
123 add_to_index(newword, current_line);
124 newword = "";
125 current_line++;
126 lines.push_back(buffer);

...
128 buffer = ""; // <---- this is the bug fix

The bug fix is already prepared in the code listed in Appendix C.2 and we activate it
by compiling with the -DFIX LINES flag. Next, we re-analyze the instrumentation
code with Massif. The output of Massif after the bug fix is shown in Figure 5.4.

> g++ -g -o genindex -DFIX_LINES genindex.cc
> ./genindex input1.txt input1.txt input1.txt input1.txt >log
-- memory size for index of ’input1.txt’ file size=20016:
-- filename=14 wordindex=47211 lines=19318 total=66543
...
-- memory size for all data structures: 266172 bytes

We can see that memory use per file is now reasonable, about 200 K per file ac-
cording to Massif, and about 68 K bytes according to our instrumentation function.

60 5 Profiling Memory Use

Fig. 5.4 Massif output for genindex compiled with -DFIX LINES: memory use per file re-
duced to 200 K, but total memory use is still increasing

Note that we probably underestimated the overhead of the map data structure by a
factor of three. Still, looking at the Massif graph in Figure 5.4, it is obvious that the
program does not scale well: the memory increases for each file that is processed.
A further code inspection shows the reason: the C++ object that is created for each
file is kept around for the duration of the program’s run time.

As a further modification, we rearrange the program’s flow so that for each
file, the index is created, verified, and output immediately. Then, the containers are
cleared to free up the memory. The rearranged code is enabled by compiling with
the -DCLEAR INDEX flag.

> g++ -g -o genindex -DFIX_LINES -DCLEAR_INDEX genindex.cc
> ./genindex input1.txt input1.txt input1.txt input1.txt >log
-- memory size for index of ’’ file size=0:
-- filename=4 wordindex=0 lines=0 total=4
...
-- memory size for all data structures: 16 bytes

The output of Massif is shown in Figure 5.5. Note that we still keep adding ele-
ments to the index container, so we see a slight increase of memory usage over time
in Massif. Since our instrumentation code measures just the payload, which got
cleared, it is not accurate enough to measure this small increase. A further revision
of the code would remove the array of FileIndexType, and keep reusing one
variable of type FileIndexType as a storage unit.

5.7 Putting it Together – The genindex Example 61

Fig. 5.5 Massif output for genindex... compiled with -DFIX LINES -DCLEAR INDEX:
total memory use and memory use per file have been reduced.

Lessons learned:
• We used a 4-step approach to locate the memory bug:

1. We first confirmed that there were no memory leaks (step 1).
2. We estimated that we need roughly 80 K bytes memory for a sequence

of input files with 20 K bytes each (step 2).
3. The real memory usage (step 3) was way above the estimate, and also

grew with the number of input files.
4. The Massif memory profiler (step 4) pinpointed that variable lines

used most memory. Code instrumentation confirmed this. A code re-
view then revealed the real bug, which was a missing statement to
reset a line buffer. After fixing the bug, real and estimated memory
usage were close enough to be acceptable.

• A second round of measurements and code changes yielded further im-
provements.

Chapter 6
Solving Performance Problems

In this chapter, we discuss how to find bugs related to the runtime performance
of a program. The most common case is that there is a program that simply runs
too long, and we want to find out how to make the program run faster. In other
cases, a program runs unexpectedly fast because there is a bug. For example, certain
functions of a program may not be called, so the program runs really fast, but does
not do what it is supposed to do.

We start by showing how to analyze a performance problem. We will discuss
some general techniques that are independent of any debugging tool other than a
simple clock on the wall, and the time command. Next, we describe tools for per-
formance analysis, also called profilers, and apply them to an example. The chap-
ter concludes with a section dealing with debugging I/O performance problems.
Throughout the chapter, important lessons that can be applied to many other perfor-
mance problems will be highlighted and discussed in detail.

6.1 Finding Performance Bugs – A Step-by-Step Approach

Some very sophisticated tools are available to a software developer for visualizing
and analyzing the runtime behavior of a program. We will discuss some of these
tools in the next sections. However, we have learned from experience that it is im-
portant to do some basic analysis up front, rather than solely rely on a particular
tool.

63

64 6 Solving Performance Problems

Before starting a profiling tool, do an upfront analysis

• Step 1. Create a set of meaningful test cases of varying size. Make sure
the program runs correctly: no crashes, correct output values are pro-
duced.

• Step 2. Measure with a simple tool such as /usr/bin/time how run-
time correlates to test case size. Make sure the program uses the correct
algorithm.

• Step 3. Select a test case that exposes the major runtime bottleneck. Pro-
ceed with a profiling tool to identify the cause of the bottleneck.

6.1.1 Do an Upfront Analysis

Doing an upfront analysis answers the following questions:

1. Do you have a test case to reproduce the performance problem?
2. Does the program compute the correct result?
3. Can you modify the test case to observe the effect of problem size, input data and

environment?
4. Is the performance problem really caused by the program itself and not a side

effect of something else, for example slow network, slow license server, or low
memory (paging/swapping)?

5. Is the correct algorithm being used, appropriate to problem size and input data?

The advantages of doing an upfront analysis and having answers to questions 1–
5 is that you will be reasonably certain that a bug exists and can be reproduced
reliably with a test case. One possible reason for the bug is usage of the wrong
algorithm. This may be revealed by analyzing how the run time increases with the
input size. Another reason for the performance bug are implementation issues which
are best found by using one of the performance measurement tools described in the
following sections.

In order to complete the upfront analysis, the necessary tools are a piece of paper
or a file to note down results, a simple method to measure time, and an environment
to run the program, many times if necessary.

6.1.2 Use a Simple Method of Measuring Time

The most basic time measurement tool is a clock capable of displaying seconds.
There are situations where some of the sophisticated tools described later either will
not work, or need to be crosschecked in case of inaccuracies.

6.1 Finding Performance Bugs – A Step-by-Step Approach 65

Convenient for use on a UNIX, Linux, or Windows computer with the Cygwin
package installed is the time command. The command is usually located in /bin
or /usr/bin, or built into the command shell. The time command is used by
placing it in front of the program name:

> time <program> [<program_args...>]

The time command will run the program, and produces the following output:

9.179u 1.363s 0:10.89 96.6%

The first value u is the program’s user CPU time, the second value s is the time
spent in system calls, and the third value is the elapsed real time between program
start and end. Please note that the exact output depends on the operating system and
also which variant of the time command is used: the built-in time shell command
of sh, csh and /usr/bin/time all use different formatting and ordering of the
results. The option -p forces most but not all variants to use the same format.

For the measurement tables in this chapter, we will use the CPU time, since it
measures the quantity of most interest: the time spend by the program in calcula-
tions. The effect of system calls does not play a role for this example. The real time
value contains time spent on interruptions by other programs or when the program
was waiting for something, for example user input, completion of a network trans-
action, memory to be paged back in, etc.

The example for the lessons discussed in this chapter is the isort.c program
shown in Appendix C.3. The program contains two algorithms for sorting floating-
point numbers, insertion sort and Quicksort.

6.1.3 Create a Test Case

Finding a problem is much easier if a test case is available that can be run repeatedly,
on which experiments can be performed and which can be demonstrated to another
person on a different machine and environment. If a test case is not available, then
you risk spending a lot of effort on improving a code section that has no significant
influence on the overall runtime. It may also happen that a reasonable-looking code
change actually makes the program run slower.

In the isort.c example, there is a command line argument for selecting one of
the two algorithms, an argument for defining how many numbers are to be sorted,
and another argument to run the sorting algorithm for many iterations. There is also
code for generating an array of random numbers that are to be sorted.

6.1.4 Make the Test Case Reproducible

In order to make the time measurements reproducible over all runs of the example,
the random numbers always start from the same seed value, and the isort.c pro-

66 6 Solving Performance Problems

gram thus always has the same input values. Without that, different runs will have
different starting conditions (input values) and need different run times because sort-
ing would be randomly more or less difficult. This would introduce some “noise”
in the measurements. Measuring the effect of optimizations that cause a runtime
improvement below this noise level requires averaging over a large number of test
runs.

6.1.5 Check the Program for Correctness

A very common occurrence during development is that the program has a bug, and
is computing the wrong data. For example, in the isort.c program assume that
the condition at the top of the isort() function is written incorrectly:

if(n >= 1) return;

so that the program will run in constant time for all array sizes. The symptom in
this case would obviously be that the numbers in the result array are not sorted. For
this example, the solution is to invest the extra development time to write a separate
function to verify that the numbers in the array result are sorted. You should proceed
with performance analysis and optimization only when there is reasonable certainty
that the program is running correctly.

6.1.6 Make the Test Case Scalable

A common mistake is to do a performance problem analysis, followed by code
changes to speed up the program, all based on a single test case. The test setup
should allow for multiple measurements. It is often possible to vary the parameters
of a program, by changing the problem size, the input data, or the environment. Your
test setup should support making these changes in a repeatable and reproducible
way.

Having a scalable test case allows you to test at the correct operating point. In
practice, you may have to choose completely different algorithms depending on
problem size. For the example given, you should vary the size of the input array,
to observe the effect of problem size on the sorting algorithm. We know from the
literature on sorting algorithms that for small problem size n ≈ 10, insertion sort
is actually more efficient than Quicksort. Furthermore, Quicksort’s performance, as
implemented in our example, deteriorates when given partially sorted input arrays,
so a mechanism to randomize the selection of the pivot element is usually added.

At the other end of the scale, it could be that n is so large that the array will
not fit in the cache or main memory of the computer. In this case, you will see a
massive decrease in runtime performance as parts of the array are swapped from
main memory to virtual memory on a hard disk. One solution would be to change

6.1 Finding Performance Bugs – A Step-by-Step Approach 67

algorithms, so that the array is partitioned into pieces that do fit into main memory,
sorting the pieces, and then merging the sorted pieces back into one sorted array.

6.1.7 Isolate the Test Case from Side Effects

Once you have created a set of reproducible test cases, we recommend to try out
small, controlled changes, and to observe the influence on program runtime. It is
important that you are able to reproduce experiments reliably so that you can be
sure that the results depend only on the program itself and are not the side effect of
something else. Here are examples how runtime measurements may be affected:

• Runtime is too short: make sure that the program runs for at least 5 seconds of
user+system time, preferably a few minutes. If the program runs too short, then
the inaccuracy of time command may dominate the measurement. We recom-
mend to keep the runtime below 10 minutes. Run times longer than an hour make
it very difficult to work with the test case.

• File I/O: In many cases, the program does some file I/O, for example printing
some debug message to stdout or to a log file. Make sure to turn off as many
print statements as possible. In the worst case, executing the print statements
takes more time than the core functionality of the program. If so, then you will
measure the speed of your disk or the drawing performance of your graphical
user interface, and not the CPU time of your algorithm.

• System calls: if possible, avoid calling routines of the operating system during
runtime measurements. This can be anything from calls to getenv() up to
spawning other processes with system(), exec(), fork(), and so on. How
long such an OS call will take is hard to predict and thus adds some uncertainty
into the measurement.

• Not enough main memory: make sure that the machine where the program is
run has plenty of free memory. If memory is low, then the operating system may
temporarily move parts of the program’s memory onto disk and later back (pag-
ing, swapping). This can indirectly affect the measured CPU time and certainly
increases real runtime.

• Varying CPU clock speed: one example for a large effect that can completely
confuse performance measurements is the ability of modern CPUs to automati-
cally run at a lower clock speed, to reduce their heat output. You need to disable
this feature, or at least run some monitor software, to ensure that the CPU speed
was constant during the experiments. There may be other factors influencing per-
formance that were not foreseen during program development.

• Other processes: Make sure that there are as few other users as possible (prefer-
ably none) on your computer when you measure runtime. As the load on the
computer goes up, the reported real time will certainly increase. To make matters
worse, the user and system runtime may also increase due to cache misses and
memory swaps.

68 6 Solving Performance Problems

6.1.8 Measurement with time can have Errors and Variations

The time measurement on a computer can also have errors and variations. On mod-
ern operating systems, many programs are running at the same time on the same
CPU, in a time-sliced way. Other user’s programs, device drivers, services and (our
favorite!) screen savers are all competing for time on the same CPU.

The time command will remove most of the effects of other programs by re-
porting time spent on the CPU, but it is important to note that this is not accurate:
As the load on the computer goes up, cache misses and memory swaps will increase
the runtime reported by time.

As a minimum safeguard, repeat each measurement at least 3 times, note the re-
sults, and check for variation. You can rule out system load as the cause for large
measurement variations by removing users or tasks from the computer, or by run-
ning the measurements on a different system. In case you suspect network load to
influence the measurements, you can remove the computer from the network or run
experiments when there is less network traffic.

Lessons learned:
• Measuring runtime with /usr/bin/time or similar tools may have

errors.
• The environment may have a significant effect on the program and can

make measuring real runtime (wall-clock time) useless. Watch out for
file I/O, system calls, low memory (swapping/paging), varying CPU
clock speed or other processes that interfere.

• Do each measurement at least 3 times and check for variations.
• Select the test case such that the program runs for at least 5 seconds but

less than 10 minutes.

6.1.9 Select a Test Case that Exposes the Runtime Bottleneck

Once you have good, scalable test cases and reliable data, measure how runtime
and input/problem size correlate. Figure 6.1 shows a few typical cases. For many
simple programs, the runtime is a linear function O(n) of the size of the input data
or problem size n, shown by curve A. Curve B shows a rapid increase of runtime,
for example quadratic O(n2) or exponential growth O(2n), which is typical for some
optimization problems. Curve C shows logarithmic growth, O(log(n)), typical for
search algorithms. We expect each curve to have some constant offset, since the
runtime will never completely go down to 0 even for the smallest test cases.

In the real world with real-life programs, the relation of runtime to input size can
be more complicated. Measuring the correlation between input size and runtime may
be difficult, and collecting each data point may require serious work. Even so, it is

6.1 Finding Performance Bugs – A Step-by-Step Approach 69

Fig. 6.1 Select a test case that exposes the runtime bottleneck well

worth the effort. If the program has even a slight tendency to look like the quadratic-
growth curve B in Figure 6.1, then collecting more measurements with increasingly
larger input sizes will reveal this. The point where the runtime starts increasing
significantly is also the point where the program becomes being impractical. This is
where the performance bug hits and is worth analyzing. A good test case (input data
sample) for curve B is a test case where the runtime starts getting out of control but
is still small enough to be handled by a profiling tool.

A tendency for the program’s performance to behave like logarithmic curve C
will also become evident with increasingly larger input sizes. If so, then a good test
case (data sample) for profiling is where the curve starts looking more or less flat.

In case of linear growth (curve A), choose the test case for profiling such that the
overall runtime is at least one order of magnitude above the constant amount of time
that is needed to run the smallest test case.

If you do not know what kind of curve you are facing, then make sure always
using at least three or more data samples. For the isort.c example, and for many
other problems related to performance measurement, the following polemic gener-
alizations hold:

• All programs run in constant time, if only one measurement is made.
• All programs show linear increase in runtime as a function of problem size (curve

A), if one or two measurements are made.

Just imagine two arbitrary samples on curve B and then draw a straight line like
curve A through them. If you have just these two samples, then there is no way to
distinguish A, B, and C. The difference between both will become evident only if
you have at least one more sample.

70 6 Solving Performance Problems

6.1.10 The Difference Between Algorithm and Implementation

Any reader familiar with the introductory chapters of a basic algorithm book, such
as [Cormen01] and [Sedgewick01], will of course have detected why insertion sort
was selected as an example to demonstrate the need for an up-front analysis of a
performance problem: it is the wrong algorithm for reasonable problem sizes, that
is, for sorting more than 10 numbers. However, a performance measurement tool
will not tell you this. Rather, such a tool, plus step-by-step refinement, will suggest
the following:

• Optimizing the insert() function to leave the for-loop early will give a 50%
improvement.

• Inlining the less() and swap() functions will give an improvement.
• Inlining the insert() function and removing the recursion from isort(),

by writing the algorithm as one function with two for-loops will show an im-
provement.

• Coding the insert sort() function in assembly code or micro code will
show an improvement.

The trick is that none of the improvements listed above will you give a satisfactory
result. In order to see what is wrong with the insertion sort algorithm, you need to
run some experiments with varying problem sizes.

Table 6.1 Runtime samples for insertion sort, runtime chosen too small

Program command line arguments user runtime
algorithm array size #iterations [s]

isort i 100 1 0
isort i 800 1 0

First, the program is run so that the input array of size 100 is sorted once. Ta-
ble 6.1.10 shows the results. We can make two observations: the program com-
pletes too quickly for any reasonable time measurement, and it is possible that the
test code loading random numbers into the input array influences the measurement.
Therefore, the iterations argument, which is the number of times that the sorting
will be repeated, is set to a “reasonable” size. In our example, a value of 10000 is
selected, so that much more sorting than generating input numbers is done, and so
that the program runs for at least some seconds on the PC. The value of 10000 is
not a function of the example alone, but an outcome of the combination of example
and computer used.

The results in Table 6.1.10 tell us that something is terribly wrong with the in-
sertion sort algorithm: whenever the problem size increases by a factor of two, the
runtime increases by a factor of four. By doing a calculation of the runtime com-
plexity of insertion sort, or by referring to one of the above algorithm books, this is

6.1 Finding Performance Bugs – A Step-by-Step Approach 71

Table 6.2 Runtime samples for insertion sort, runtime chosen correct

Program command line arguments user runtime
algorithm array size #iterations [s]

isort i 100 10000 1.9
isort i 200 10000 6.8
isort i 400 10000 25.7
isort i 800 10000 102

actually no surprise: the algorithmic complexity is O(n2), where n is the size of the
array to be sorted.

No amount of tuning of this algorithm will help with the problem. The runtime
will become prohibitively long for large arrays. The same algorithm books will show
that the Quicksort algorithm has a much better complexity: O(n log(n)), meaning
that as the input array grows in size, sort times growing slightly worse than linear
can be expected.

Using the q argument switches the isort.c program to use Quicksort. We
increase the number of iterations by a factor of 10, to make the program run for at
least a few seconds. The results are shown in Table 6.1.10.

Table 6.3 Runtime samples for Quicksort

Program command line arguments user runtime
algorithm array size #iterations [s]

isort q 100 100000 3
isort q 200 100000 6.2
isort q 400 100000 15
isort q 800 100000 33

Please note that the quicksort() implementation given in the example is by no
means optimal. For the sake of simplicity and readability the following improve-
ments were not done:

• Inlining the partition() function
• Inlining the swap() function
• Choosing the pivot element in partition() at random, to make sure the ar-

ray to be sorted is partitioned into two parts of about equal size. In the given
implementation, we use the last element of the array. This works fine for sorting
random numbers, but results in O(n2) runtime performance for partially sorted
arrays.

72 6 Solving Performance Problems

6.2 Using Profiling Tools

A profiler is a tool that will show you where a program spends its time during
execution. Other common features of a profiler include listing the number of calls
to each function in the program, and generating the distribution of calls and time
to called functions and callers of each function. The resolution of measurement in
a profiler ranges from functions (supported by all tools), to program blocks, lines,
expressions down to individual machine instructions.

As we will show in the following sections, the feature set as well as the resolution
and accuracy of a profiler varies, due to implementation decisions done by the devel-
oper of the profiling tool. We will give short introductions to gprof, Callgrind, and
Quantify to let you “get up and running” on a small example. Furthermore, we give
references to documentation in case you need more detail. We will focus on how to
use a profiling tool in a systematic approach to finding performance bugs. We pay
special attention to describing where each tool is accurate, and, more interestingly,
where it is not accurate.

6.2.1 Do Not Write Your Own Profiler

One temptation for programmers is to ignore the sophisticated profiling tools de-
scribed in the following sections, and to create their own profiler by manually in-
serting time measurement code in their application. Our general advice is “don’t
do this” unless there is commercial incentive to replicate most of the technology
present in a typical profiler.

Homegrown approaches often use the system calls time() or ctime() to
measure time. The problem with these system calls is that the cost of calling them is
very high, and that their accuracy is low. As a good rule of thumb, do not use these
system calls when you measure functions, program blocks, or time between events
that take less than 0.1s to run.

The next problem with homegrown approaches is that a large amount of data is
collected during profiling. Unless some effort goes into the design of the
data structures that store the profiling data, the computational effort of storing the
data and the memory traffic during storage, could be much larger than the computa-
tion and memory traffic of the program being profiled. The potential overhead and
measurement inaccuracy rule out most practical uses for a homegrown profiler.

Get familiar with runtime profiling tools

• Do not write your own runtime profiler.
• Use a commercial or public domain profiler; there are plenty of them

available. It takes some effort to understand their output formats, but this
effort is well spent.

6.2 Using Profiling Tools 73

6.2.2 How Profilers Work

The goal of a profiling tool is to give a concise overview where the program spent
its runtime and at the same time provide accurate and detailed data about specific
functions or even individual statements. There are two core areas for the profiler:
collecting data and presenting it.

6.2.2.1 Collecting Data

Profilers use different techniques to figure out where the runtime is spent. The main
techniques are sampling and instrumentation.

Sampling has a straightforward approach: interrupt the program at regular time
intervals (the sampling interval), look at the call stack and keep track of how often
each function shows up at the top of the call stack. The more runtime a specific
function needs, the more frequently will it show up at the top of the call stack. The
benefits of sampling are a relatively small program slow-down and that it can work
without the need to modify the program. The main penalty is an inherent inaccuracy.
Because the samples are taken at certain wall-clock times, small variations in the
program speed, for example due to cache misses, mean that the samples are taken at
different program locations each time that you run the program again. The reported
results may thus have a variance, especially for functions that need only a small
fraction of the overall runtime and therefore show up in only few samples. If you
want to profile a certain part of the program by sampling, then make sure that the
total runtime of that part is at least two orders of magnitude above the sampling
interval of the profiler.

The second technique used by profilers is instrumentation. Extra statements are
inserted into the program that keep track how often a function is called and by
whom. Instrumentation can be added during compilation (gprof, gcc flag -pg),
during linking (Purify, VTune), or during emulation of the executable (Callgrind).
The inside of the function may also be instrumented, for example to account for
each basic block. A basic block is a sequence of statements without any conditional
or jump statement in them. The execution time for a basic block never varies and
can be computed statically (if we disregard cache effects). The overall execution
time of the program can be found by multiplying the number of clock cycles for
each basic block with the corresponding number of executions. The main benefit of
instrumentation is accuracy up to the level of CPU cycles. The main penalty is a
higher slow-down compared to sampling.

6.2.2.2 Presenting Data

A profiler will collect a large amount of data and finally needs to present it in a form
that is both suitable to get an overview as well as to get detailed feedback about

74 6 Solving Performance Problems

specific functions. Different profilers are more or less successful to present the data
in an intuitive form.

One aspect that is always presented is the flat profile, which shows how much run-
time each function used for itself. Another aspect is the call graph, which shows how
functions call each other and how often did this happen. The key is to combine both.
For example, the flat profile may reveal that 75% of the runtime is spend in function
strcmp() and the call graph that 95,000 out of 100,000 calls to strcmp() come
from func1(). That makes it clear that it will be worth looking into func1().
We will explain the flat profile and call graph in more detail based on gprof in the
next section.

6.2.3 Familiarize Yourself with gprof

The GNU profiler gprof is a tool that measures how much time is spent in each
function of a program and how many times a function is called from other functions.
In addition, it is possible to see the time spent in each basic block of a program, if
the program is compiled with the debug information (gcc option -g). The use of
gprof requires three separate steps:

1. Compile and link the program with the -pg flag
2. Run the program; the profile data will be written into a file called gmon.out
3. Generate a profile report, by running the command

gprof <program> gmon.out

As a first step, we compile the source files of a program with the -pg compiler flag.
This will insert special instructions into the generated object code of each function.
Whenever the function is called, a record is generated with a pair of data items: the
function and its caller.

In the second step (running the program), a mechanism inserted at program
startup will record at regular time intervals in which function the program counter
currently is.

During the third step, the collected profiling data is ordered, and statistics are
computed, as we will show in the following paragraphs. Further details on options
to the gprof program are available in the gprof documentation. There are options
to change the format and type of the data that is reported.

Some details of gprof’s implementation are helpful in order to understand the
advantages as well as the shortcomings and inaccuracies of the tool. A description
of the implementation of gprof can be found in the gprof documentation, under
the Details of Profiling/Implementation section. Please check Appendix B.5.1 on
where to find gprof-related information on the web.

Among the advantages of gprof are that it is easy to implement on new ma-
chine architectures and therefore is available on most platforms that you are likely
to encounter. It is easy to restrict the scope of the profiling, by only using the -pg
compile flag on those files you are interested in.

6.2 Using Profiling Tools 75

A drawback is that gprof does not profile time spend inside calls to the oper-
ating system and may be unable to handle shared libraries (lib*.so). Yet another
drawback, shared by all profiling tools, is that the inserted profiling code introduces
a significant slowdown. For the isort.c example running on a 2 GHz CPU under
Linux and GCC 3.X, we observed a slowdown by a factor of four. While significant,
other tools such as Quantify or Valgrind may cause even more slowdown.

In addition, the sampling approach is not fully accurate: gprof does not mea-
sure the exact time spent in a function, but rather records in which function the
program counter is at regular intervals. These time intervals are much larger than
the duration of a single CPU instruction in order to reduce the time spent on mea-
suring and to reduce the amount of collected data. Furthermore, gprof has to guess
the distribution of a function’s time to its callers. This is a significant limitation.

6.2.3.1 Be Aware of gprof’s Measurement Errors

As general advice, we recommend that you make sure that the profiling data is
generated during a representative and meaningful test run. This includes preparing a
proper set of input data, and giving the program correct arguments. Since gprof is
using a sampling-based approach, the measurement error depends on the total time
spent in a particular function, not on the time it takes to execute a function once.
This is very important, since functions with a small runtime can be analyzed with
a high precision if they are executed sufficiently often. Conversely, functions with
larger run times can have a large error if they are executed infrequently. In practice,
you should set up the test case so that the minimum runtime is at least 5 seconds.

In some cases, it is necessary to increase the runtime of the gprof-instrumented
program, so that the runtime of each relevant part of the software is at least two
orders of magnitude above the sampling interval of the profiler. In the isort.c
example, the sorting algorithm is repeated for many thousands of times on the same
input data.

6.2.3.2 Flat Profile

As an example, here is how gprof is used to profile the isort.c program:

> gcc -o isort -pg isort.c
> ./isort i 100 100000
> gprof isort gmon.out >report.txt

The first important data in the gprof report is the flat profile at the top of the
report file, shown in Figure 6.2. Keep in mind that the main program will run the
insertion sort function 100000 times, on an array containing 100 samples. Also note
that gprof does not count the recursive calls of the isort() functions to itself.

The total runtime of 33.64 seconds is four orders of magnitude above the sam-
pling interval of 0.00195312 seconds, so our recommendation to have at least two
orders of magnitude is well fulfilled.

76 6 Solving Performance Problems

Each sample counts as 0.00195312 seconds.
% cumulative self self total
time seconds seconds calls ns/call ns/call name
66.79 22.47 22.47 495000000 45.40 45.40 less
25.56 31.07 8.60 9900000 868.45 3356.02 insert_value
6.41 33.22 2.16 219300000 9.83 9.83 swap
1.03 33.57 0.35 100000 3476.56 335722.66 isort
0.21 33.64 0.07 main

Fig. 6.2 gprof flat profile of isort.c

The functions in Figure 6.2 are sorted by the third column (self seconds),
the time spent in the function itself. The fourth column (calls) gives the number
of calls to the function. The sixth column (total ns/call) gives the average
time spent per call in this function and all of its descendants; it is the only field in
this table where the call graph data is used. All other columns are less useful, and
contain no new information, just different ways of presenting the same data.

Note the first line of Figure 6.2 where the time between samples is given. It
is important to remember that all reported measurements in column 3 that are of
similar magnitude or smaller than the sampling time are inherently unreliable.

Figure 6.3 shows the flat profile table after modifying the insert value()
function to take advantage of the fact that the elements from 1 to n−1 are already
sorted. The function exits after finding the first pair of elements i, i− 1 that does
not have to be swapped. As the report shows, the runtime is reduced since there are
fewer calls to the less() function in the for-loop of insert value().

Each sample counts as 0.00195312 seconds.
% cumulative self self total
time seconds seconds calls ns/call ns/call name
62.07 10.27 10.27 229000000 44.86 44.86 less
22.96 14.07 3.80 9900000 383.92 1626.03 insert_value
12.23 16.10 2.02 219300000 9.23 9.23 swap
1.94 16.42 0.32 100000 3203.12 164179.69 isort
0.80 16.55 0.13 main

Fig. 6.3 gprof flat profile of isort.c, after speeding up insert value()

6.2.3.3 Call Graph

The second table of interest in the report generated by gprof is the call graph.
Figure 6.4 shows the call graph for the unmodified function insert value().
The output format may at first feel a bit cryptic to read and needs some practice
getting used to. Alternative tools with a graphical front-end such as Quantify tend
to present that data in a form that is easier to read, however they all present the same

6.2 Using Profiling Tools 77

granularity:
each sample hit covers 4 byte(s) for 0.01% of 33.64 seconds

index %time self children called name
<spontaneous>

[1] 100.0 0.07 33.57 main [1]
0.35 33.22 100000/100000 isort [2]

--
9900000 isort [2]

0.35 33.22 100000/100000 main [1]
[2] 99.8 0.35 33.22 100000+9900000 isort [2]

8.60 24.63 9900000/9900000 insert_value [3]
9900000 isort [2]

--
8.60 24.63 9900000/9900000 isort [2]

[3] 98.8 8.60 24.63 9900000 insert_value [3]
22.47 0.00 495000000/495000000 less [4]
2.16 0.00 219300000/219300000 swap [5]

--
22.47 0.00 495000000/495000000 insert_value [3]

[4] 66.8 22.47 0.00 495000000 less [4]
--

2.16 0.00 219300000/219300000 insert_value [3]
[5] 6.4 2.16 0.00 219300000 swap [5]

Fig. 6.4 gprof call graph of isort.c

data: which function called which other function, how often did that happen, and
how much time was spent for the calls.

The gprof call graph is organized in blocks separated by dashed lines. Each
block deals with one function and reveals who called the function and how often
the function was called. The block will also reveal the amount of time spent in the
function itself (self time), which sub-functions were called and how much time was
spent within these sub-function calls (descendant time). Blocks are sorted by accu-
mulated (self+descendant) time. Functions that need most runtime for themselves
or their descendants show up first. Function main is usually at the top.

Let us explain the format by looking at the second block dealing with function
isort. The line starting with a square bracket and index number on the far left
([2]...isort [2]) is the function itself. Lines above the square bracket are
functions that made a call to isort, which in this example are main and isort.
The call graph also contains information how often function calls occurred. We
can see that the main function called isort 100000 times and that isort called
itself recursively for another 9900000 times. Lines below [2]...isort [2] are
descendants called by isort. We can see that isort calls itself recursively and
also calls insert value.

The function call counts are given as a pair of numbers in the format <num
of calls from this function/total number of calls>. In the
example, 9900000/9900000 for isort calling insert value means that there

78 6 Solving Performance Problems

were 9900000 calls altogether. From those, 9900000, or all of them, came from
isort.

The graph data contains the number of function calls and how much time was
needed for all calls together. Looking into the forth block dealing with less,
we can see that the function needed 22.47 seconds or 66.8% of the overall run-
time. It was exclusively called by insert value and (at average) each call to
insert value resulted in approximately 50 calls to less.

Keep in mind that gprof guesses the distribution of a function’s total time to its
callers. The distribution of calls is accurate but the distribution of runtime is just a
guess by assuming that all calls need the same amount of runtime. If this assumption
is not true, then the data presented in total ns/call will be incorrect and,
worse, the call graph may be misleading as to where runtime is spend.

Lessons learned:
• The flat profile shows for each function how often it was called and how

much CPU time it used altogether.
• The call graph explains how functions call each other and how often it

happened.
• The key is to combine both: look into the flat profile to find where all

the time was spend and analyze the call graph to understand why that
happened.

6.2.3.4 What if Some Libraries are Not Compiled with -pg?

If possible, compile all source files with compiler flag -pg. However, this is not
always possible, for example, when third-party libraries are available only as object
files. gprof is able to handle this situation to some extend. The good news is that
the flat profile remains available, with two caveats:

• The fields calls, self ns/call, and total ns/call remain empty for
all functions that were compiled without -pg flag. The total number of calls is
not known. The self seconds field will contain useful information.

• Functions compiled without -pg do not incur any runtime overhead caused by
gprof. Because gprof is not able to remove that overhead when reporting
results, functions compiled without -pg appear to run faster than functions com-
piled with -pg even if they really have identical run times.

The bad news is that the call graph is becoming more incomplete and less trust-
worthy with each function that is compiled without -pg. Book keeping about
which-function-called-whom is no longer fully possible. Callers of functions com-
piled without -pg are reported as <spontaneous>. Child functions compiled
without -pg disappear in the list of children altogether with no hint that they even

6.2 Using Profiling Tools 79

exist. As a result, it is very difficult if not impossible to get a conclusive insight
where the run time is really being spent.

Lessons learned:
• When using gprof, make sure to compile all source files with compiler

flag -pg.
• Check the flat profile if significant fractions of runtime was spent in func-

tions compiled without compiler flag -pg. If so, be cautious when inter-
preting the call graph because it can be misleading.

6.2.4 Familiarize Yourself with Quantify

Quantify is a very powerful commercial profiling tool sold by IBM as part of their
IBM Rational family of software quality tools. Please check Appendix B.5.2 for
more information on documentation and how to obtain the software.

Quantify’s biggest advantages over gprof are an easy-to-use graphical user in-
terface that gives you multiple ways of looking at the measured profiling data, and
a time measurement and recording method that offers higher accuracy. Quantify
works by inserting measurement instructions into the object code, to count instruc-
tions and the number of cycles each instruction takes. This gives us more precise
and reproducible data than the gprof method of sampling the program counter
at regular intervals. Another advantage is that Quantify records for each function
call the time spent in the function together with what the calling function actually
was. In practice, this is perhaps the most significant difference to gprof: the ability
to show accurately the distribution of time in a function to both callers and called
functions.

One drawback of Quantify is that the real execution time is considerably in-
creased due to the inserted code. In the example that we will use below, the runtime
was increased by a factor of 50. Because no sampling at random time is involved,
the results of Quantify do not depend on long measurement periods. We can reduce
the overall program runtime to achieve the same accuracy, and thus compensate for
some of the runtime overhead of Quantify.

To use Quantify, you need to do the following steps:

1. Add quantify to the link command of the program.
2. Run the program. A graphical user interface will pop up and reveal collected data

once the program has ended.

The isort.c example is used again:

> quantify cc -o isort isort.c
> ./isort i 100 10000

80 6 Solving Performance Problems

Quantify will insert profiling code into all object files and libraries that make up
the program, including all OS and C++ runtime libraries. It is not necessary to have
source code files available. Thus, Quantify is convenient when it is necessary to do
a performance analysis on programs where source code is not readily available for
all libraries. We recommend the following settings when using the Quantify GUI:

• Ignore the Call Graph display.
• In the Function List window, set the Display data option to

Function+descendants. Also, set the View/Scale Factors to seconds.

The Function List will show how much time is spent in each function. Here is the
Quantify Function List data for the example program:

0.59 main
0.59 isort
0.58 insert_value
0.20 less
0.13 swap

Click on the insert value() item in function list, the Function Detail window
will pop up. The contents of the Function Detail window are shown in Figure 6.5.
Data will be displayed to show how many times insert value() was called,
and how much time was spent in the function. Furthermore, very conveniently, it
is shown how many times insert value() calls each of the descendant func-
tions swap() and less(), and the callers of insert value() and the fre-
quency of calls to this function are shown. In this example there is only one caller
to insert value(), the isort() function.

Function name: insert_value
Called: 990000 times
Function time: 0.25 secs (41.84% of .root.)
Function+descendants time: 0.58 secs (98.60% of .root.)

Distribution to callers:
990000 times isort

Contributions from descendants:
49500000 times (35.09%) less
22870000 times (22.48%) swap

Fig. 6.5 Quantify Function Detail of isort.c

Quantify will save the profiling data in a file with .qv extension. You can display
the profiling data at a later time without having to rerun the program, by running

> quantify -view <file>.qv

6.2 Using Profiling Tools 81

6.2.5 Familiarize Yourself with Callgrind

Callgrind (see Appendix B.4.2) is part of the Valgrind debugging and profiling tool
suite and can collect precise runtime data and callgraph information. To use Call-
grind, you need to do the following steps:

1. Run the program with Callgrind. The profile data will be written into a file called
callgrind.out.<id>.

2. Generate a profile report, by running the command
callgrind annotate callgrind.out.<id> or view the results with
the graphical front-end KCachegrind (see Appendix B.4.3).

Note that it is not necessary to compile the program with specific flags or tools.
Callgrind works with the existing executable, which is a very convenient use model.

The isort.c program is used again as an example. Note that the output from
callgrind annotate has been slightly modified, all lines and strings with little rele-
vance have been removed. The results are reported in clock cycles:

> gcc -o isort -O isort.c
> valgrind --tool=callgrind ./isort i 100 10000
> callgrind_annotate callgrind.out.31612

919,788,380 PROGRAM TOTALS
545,100,000 insert_value
198,000,000 less
153,510,000 swap
16,770,000 isort’2

Measurement results are reproducible because they are computed based on the Val-
grind engine emulating the processor. No sampling at random time is involved. Just
like Quantify, this allows us to reduce the measurement period to achieve the same
accuracy and compensate the runtime overhead. The slowdown introduced by Call-
grind is a factor of 40 for this example, a considerable drawback, and much higher
than the slowdown introduced by gprof, which was only four.

Option --tree=both will also show the callgraph by listing for each function
the callers and callees. Option --auto=yes prints annotated source files for files
that were compiled with debug information.
Callgrind has some useful APIs, to get basic data, and to enable the profiling only in
areas of special interest. This reduces the slowdown in areas that are of no interest.
While one can read the callgraph in its textual form, it is usually much easier to view
it with the graphical front-end, KCachegrind:

> kcachegrind callgrind.out.31612

Figure 6.6 shows the snapshot of KCachegrind. The two windows on the right-hand
side can be configured to show the list of callers, list of callees, the call graph or a
graphical distribution of CPU time across functions.

82 6 Solving Performance Problems

Fig. 6.6 Callgrind profile data of isort, displayed with KCachegrind front-end

6.2.6 Familiarize Yourself with VTune

Intel VTune (see Appendix B.5.3) is a commercial profiler for x86 and x64 CPUs,
and is available on Windows and Linux. VTune has two modes: sampling, which is
similar to gprof, and call graph, which is similar to Quantify. To use VTune on
Windows, you need to do the following:

1. Start VTune.
2. In the Easy Start wizard, select New Project. then select Sampling Wizard or

Call Graph Wizard.
3. Select Windows. . . profiling.
4. Enter the name of the application in Application to Launch:, and enter the com-

mand line arguments in the Command Line Arguments field.
5. Keep all other profiling options at default. Check the documentation, there are a

large number of measurement options.
6. Vtune will automatically run your program after the wizard completes.

We pick the Sampling Wizard first. The isort.c program is used again as an
example. We will run with command line options i 100 100000. Build isort
in debug mode, and run it with VTune as described above. Once the program is
done, VTune will show you a window with all processes active at runtime. Select
Process isort.exe, and then click on the button Drill Down to new Window.
The button is hard to find, and there is unfortunately no menu item. Keep on select-
ing isort.exe process, and click the Drill down. . . button until you see the functions

6.2 Using Profiling Tools 83

inside isort.exe displayed. Vtune in sampling mode give us statistics for CPU
samples and percentage spent in each function:

Name CPU%
less 52.29%
swap 31.57%
insert_value 11.99%
isort 1.09%
main 0.35%

Note that VTune in sampling mode does not record the number of function calls, or
the time that one function spends in calling another function. To measure this, we
need to use the call graph mode.

Repeat the exercise, this time with the Call Graph Wizard. Note that to use
the call graph feature, isort.exe needs to be build with debugging enabled, and
the linker needs an option to generate relocatable code. Here are the command line
options; they can also be entered into the Visual Studio project configuration.

> export LINK=/fixed:no
> cl -o isort isort.c /Zi

Figure 6.7 shows VTune after the program is done. The top window on the right
shows the runtime statistics for each function The lower window on the right shows
the call graph. Both windows were adjusted to show just the functions inside main
and descendants. VTune in call graph mode gives us statistics for number of calls,
self time in function, and total time in function.

Fig. 6.7 VTune profile data of isort.c, Call Graph mode

84 6 Solving Performance Problems

Lessons learned:
• There are different approaches how a profiler can collect data. They vary

in terms of setup, accuracy, reproducibility and runtime overhead.
• Sampling: interrupt the program at regular intervals and analyze the call

stack. Simple setup, low overhead, but not very accurate and not well re-
producible (reported numbers vary from one run to the next). This tech-
nique is used by gprof and VTune in sampling mode.

• Instrumenting object files: more complicated setup, high runtime over-
head (multiple 10x slowdown), high accuracy, reproducible numbers.
This technique is used by Quantify and VTune in call graph mode.

• Instrumentation during emulation of the CPU: simple setup, high run-
time overhead (multiple 10x slowdown), high accuracy, reproducible
numbers. This technique is used by Callgrind.

6.3 Analyzing I/O Performance

In this section, we show how to analyze performance problems caused by incorrect
or inefficient I/O (read/write) operations to external memory systems. These mem-
ory systems can be hard disk drives, USB memory sticks, flash memory, CD ROM
drives, and network file servers. The properties shared by these devices is that they
provide permanent storage of large amounts of data, at several orders of magnitude
lower data access speeds than the registers, cache and main memory of a computer.

We will use a simple example for a step-by-step approach. Please refer to the
filebug.c program given in Appendix C.4. When called as follows:

./filebug s xxx.log 2000000

the program will write 2000000 characters to the file xxx.log, using the buffered
I/O functions fopen(), fclose(), and fputc(). The s argument circum-
vents the built-in buffering, by calling the fflush() function after each character,
thus causing separate system calls and I/O operations to disk for each individual
character.

The example obviously is simple enough that the unnecessary call to fflush()
will be caught by a code review. However, keep in mind that in practice such code
will be well hidden in a large software program, so a systematic approach is needed
to locate and isolate the problem.

The first step to do is a measurement with the time command:

> time ./filebug s xxx.log 200000000
73.724u 444.128s 8:40.78 99.4%

We make two observations from this measurement: First, only 14% (73.7s) of the
total runtime (73.7 + 444.1 = 517.8s) is spent inside the user process, the rest is

6.3 Analyzing I/O Performance 85

system call time. This is a marked difference to the time results measured for the
isort.c example, which only did computations, but no I/O.

6.3.1 Do a Sanity Check of Your Measurements

Second, a rough sanity-check calculation shows that the test program wrote 200
million characters in 520 seconds, or 0.38 MB/s. The computers available at the
time of writing this book were capable of 10-100X faster disk I/O, so something is
suspicious with this data rate. Further investigation shows that the location of the
file xxx.log is on a remote file server, connected to the computer by a network.

To rule out the effect of either low network bandwidth or low file server perfor-
mance, we rerun the experiment on a different computer with a local disk, where
a separate disk benchmark tool claimed a maximum transfer rate of 40MB/s. The
result is 451s real time. This is a slight improvement but at 0.46 MB/s still below
expectations.

Function+descendants time (secs)
4.77 main
4.70 fflush
0.05 fputc
0.00 fopen
0.00 fclose

Fig. 6.8 Quantify Function List of I/O performance example

The next step is to rerun the experiment and look inside the program with a profiler.
As was stated above, the gprof profiler does not instrument system calls, and is
therefore not a good tool to investigate I/O problems. Therefore, we use Quantify
next. Since Quantify is known to slow down the program, the size of the output file is
reduced by a factor of 100, to 2 million, to make the test case more manageable, and
to get a result quickly. The Function List view of the data is shown in Figure 6.8.
We can already see that most of the program execution time is spent in fflush().

To get additional data about the number of function calls, the Function Detail
display is shown in Figure 6.9. This confirms that the program contains code to call
fflush() with the same frequency as fputc(), so the program does a buffer
flush for every character, and that the cost for doing this is very high.

We change the code so that fflush() is no longer called. This is conveniently
done in the example program simply by passing f instead of s as the first command
line argument. Then, and this is important, the experiments are rerun to verify that
the code change does have the intended effect of speeding up the program. For the
filebug.c example, rerunning the first experiment, using the network disk, gives:

> time filebug f xxx.log 200000000
9.179u 1.363s 0:10.89 96.6%

86 6 Solving Performance Problems

Function name: main
Distribution to callers:
1 time __libc_start_main
Contributions from descendants:
2000000 times (98.64%) fflush
2000000 times (1.07%) fputc

1 time (0.06%) fopen
1 time (0.01%) fclose

Fig. 6.9 Quantify Function Detail of I/O performance example

This is a 47x speedup for the measured real time, and translates to a disk transfer
rate of 18.2MB/s. The experiment is also rerun on the computer with the local disk,
where the experiment runs in 24s real time, which translates to a speedup of 19x.
The experiment is then rerun inside the Quantify profiler, where it can be seen that
the total time spent by the program is much smaller, and most of it is spent inside
fputc(), as can be seen in Figure 6.10.

Function+descendants time (secs)
0.08 main
0.07 fputc
0.00 fopen
0.00 fclose

Fig. 6.10 Quantify Function List of I/O performance example, after removing fflush()

For our small example, there are no further changes needed, but in a large appli-
cation program, there are usually multiple performance bottlenecks that have to be
removed one by one.

Lessons learned:
• Profiling I/O performance is quite similar to profiling run time: select

a good, scalable test case, do an upfront analysis/sanity check before
finally using a profiling tool.

• Check that the profiling tool of your choice works well for profiling time
that is spent inside calls of the operating system.

Chapter 7
Debugging Parallel Programs

In this chapter we give an introduction to debugging parallel programs written in C
or C++. We will first look at the two most prominent classes of parallel programming
errors: race conditions and deadlocks. We then take a look at thread analysis tools
and conclude this chapter by discussing asynchronous events and interrupt handlers.

7.1 Writing Parallel Programs in C/C++

Concurrency in software can take a number of different forms. There are low-level
variants such as bit-level and instruction-level parallelism. Then there are programs
written for specialized systems such as vector or array processors. This chapter,
however, focuses on more coarse-grain parallelism. In particular, we consider mul-
tiple communicating executables written in C or C++, possibly running on differ-
ent hosts, multi-threaded executables including applications running on embedded
(real-time) operating systems, and code such as signal or interrupt handlers that is
inherently asynchronous in nature.

There is a number of libraries and language extensions available to write parallel
programs. Please see Appendix B.7 for more information, references, and links to
documentation. Posix Threads and Windows threads are libraries that offer low-level
access to the thread capabilities of a modern OS. Threading Building Blocks (TBB)
is a C++ template library to write OS-independent multi-threaded code. OpenMP is
a C/C++ and Fortran language extension based on preprocessor directives, usually
implemented on top of threads. The thread libraries and OpenMP are based on the
concept of shared memory: each parallel thread has access to all global variables
and all dynamic memory on the heap. Each thread has stack with local variables.

Going beyond shared memory, the MPI (Message Passing Interface) standard is
based on the model of cooperating processes, each with its own memory, running
on a cluster of machines. Google’s MapReduce is a framework for parallel compu-
tations spread over widely separated clusters with unreliable nodes.

87

88 7 Debugging Parallel Programs

Debugging these parallel applications adds further complexity. Unexpected be-
havior can be due to bugs that would affect sequential programs as well. In addition,
there are new challenges. The two most prominent categories of bugs are race con-
ditions and deadlocks.

A race condition is a bug in a system where the result critically depends on a
proper sequential ordering of computation steps. The outcome of breaking this or-
dering can be incorrect data or behavior, or just an annoyance such as log files that
keep changing their contents with every run. Race conditions are caused by incor-
rect or missing synchronization on shared variables and program code. Mechanisms
such as mutexes, semaphores, critical regions or barriers, and atomic operations are
available to prevent race conditions. For a general introduction to these mechanisms,
proofs of equivalence, and implementation details, please refer to the standard books
by [Tanenbaum01] and [Silberschatz04]. We will discuss in Section 7.2 how to de-
bug a race condition.

Deadlocks are representative of problems related to thread or process activations.
The most common case is a set of processes waiting for each other. Other cases
include premature process termination – often the result of accidentally returning
from the top-level routine of a thread – and processes that get triggered far too
often. We will cover these cases in Section 7.3.

7.2 Debugging Race Conditions

A race condition can occur when two or more threads share one variable, and there
is no synchronization mechanism to block one thread while the other one executes
a atomic transaction on the shared variable. An atomic transaction is a sequence of
operations that should not be interrupted.

A simple example for a data race condition is shown in Figure 7.1: two parallel
threads t beancounter0, t beancounter1 access the variable beans allo-
cated in line 19. The access occurs in the increment statement (*beans)++ in line
11.

When you run the program, you will observe occasionally that the result is less
than the expected 200000. The reason is that the statement in line 11 is not an
atomic operation: it is translated into a sequence of machine operations: a read of
the variable, an addition in a CPU register, followed by a write to the variable. The
C/C++ language does not guarantee that statements or even variable increments are
executed as atomic operations. Now, the following can happen in line 11:

• t beancounter1 executes the read operation.
• t beancounter2 gains access to the shared variable and does one or more

increments.
• t beancounter1 completes the increment and writes back the result.
• The increments made by t beancounter2 are lost.

7.2 Debugging Race Conditions 89

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <pthread.h>
4
5 void* beancounter(void* beans_arg)
6 {
7 int counter;
8 int* beans = (int*)beans_arg;
9
10 for (counter=0; counter<100000; counter++) {
11 (*beans)++;
12 }
13 return beans_arg;
14 }
15
16 int main(void)
17 {
18 pthread_t t_beancounter0, t_beancounter1;
19 int beans = 0;
20
21 pthread_create(&t_beancounter0,0,beancounter,

(void*)(&beans));
22 pthread_create(&t_beancounter1,0,beancounter,

(void*)(&beans));
23 pthread_join(t_beancounter0,0);
24 pthread_join(t_beancounter1,0);
25
26 printf("The sum of all beans is %d\n",beans);
27 return 0;
28 }

Fig. 7.1 Calling the function beancounter() from two different threads

Please note that the frequency of failure will depend on your environment such as the
operating system, compiler, CPU load, etc. You may want to run the test repeatedly
either from a script or using the UNIX csh command repeat:

repeat <nr_or_repetitions> <path_to_exe_file>

The symptom – non-predictable behavior, occuring infrequently – is typical for data
races. If you see this kind of failure in a program containing parallel processes, then
identify the shared memory variables, and look for potential flaws in the code that
accesses them.

7.2.1 Using Basic Debugger Capabilities to Find Race Conditions

Stepping through or setting breakpoints in parallel programs is intrusive; it changes
timing. The application might behave differently if running under control of a

90 7 Debugging Parallel Programs

debugger. Similarly, adding trace code or I/O code such as a printf() statement
will alter the timing of the program.

Do not expect too much from stepping through the code with a source code de-
bugger and displaying the content of the shared variables. Attaching the debugger
changes the scheduling behavior of the threads so much that the error may be not
observable any more. Still, it is a first step to try. Attaching the debugger to the
program may influence the execution in such a way that the error occurs more fre-
quently, so that you are able to identify the bug.

Most debuggers will permit you to analyze the threads of the program. This in-
cludes analysis of the current thread ID, the stack of the thread, and other useful
information.

You can also mimic the scheduling, that is you can arbitrarily switch from one
thread to the other. If you are able to localize a few small spots in your program
where the common variables are read from and written to, then this capability can be
used to identify potential issues. You should step through the code with the debugger
and ask yourself the following question at each step:

“What happens if the scheduler switches right here?”

In case you cannot answer the question, you can just switch to another thread and
see what happens.

However, if you step through the above example line by line, you will realize
that you can switch threads at any place or time without breaking the correct func-
tionality of the program. You are doing line-by-line steps in the C/C++ code, while
the scheduler can switch threads anywhere in the machine code, which can be in the
middle of a C/C++ statement.

You can tell your debugger to display and step through the machine code instead
of the C/C++ code. For GDB, the command disassemble shows the disassem-
bled content of the memory around the current position of the program counter,
and the command for stepping to the next machine instruction is stepi. In Visual
Studio, use the Dissassembly window, as described in Section 10.11.4.

Here is the sequence of machine operations for the (*beans)++ operation on
an Intel x86 CPU:

0x08048452 <beancounter+30>: mov 0xfffffff8(%ebp),%eax
0x08048455 <beancounter+33>: incl (%eax)
0x08048457 <beancounter+35>: lea 0xfffffffc(%ebp),%eax

If you let the debugger switch threads between step 2 and step 3, you can reproduce
the incorrect result. The next time the suspended thread gets scheduled it will con-
tinue its execution right where it was suspended. It will write back the content of the
local register, which overwrites any changes the other thread made.

7.2 Debugging Race Conditions 91

7.2.2 Using Log Files to Localize Race Conditions

As we mentioned in Section 7.2.1 using a debugger as if you were debugging a
sequential program often does not work as expected, since attaching a debugger,
pausing the execution of the program and stepping through the code is heavily in-
fluencing the timing of the application. A typical case of a Heisenbug: the harder
you try to debug the better the bug is hiding.

In addition, the debugger’s view is in many cases too narrow and detailed, es-
pecially if you do not know what you are looking for. It may make more sense to
let the program run without interrupting it, collect all required data during runtime,
and then post-process the gathered data. This can be done via log files or trace files,
or by displaying the debug information in a console window. For this approach you
have to instrument the code with logging instructions as shown in Figure 7.2. You
may still have the Heisenbug situation, that after instrumentation the failure is less
frequent or not observable any more.

1 void* beancounter(void* beans_arg)
2 {
3 int counter;
4 int* beans = (int*)beans_arg;
5
6 for(counter=0; counter<100000; counter++) {
7 printf("%x| before next bean: %d - ",clock(),(*beans));
8 fflush(stdout);
9 (*beans)++;

10 printf("%x| after next bean: %d\n",clock(),(*beans));
11 fflush(stdout);
12 }
13 }

Fig. 7.2 Using logging instructions to collect debug information on the fly

The printf() commands display the relevant data to observe the flow and in-
termediate results of the program, which allows you to spot places of unexpected
behavior from the log files or terminal output after the simulation run. Here are
some rules you should obey when instrumenting your code:

• Make sure you are using thread safe and atomic functions and commands to
instrument parallel code – otherwise you will end up debugging your instrumen-
tation instead of your actual program.

• printf() and fprintf() work reliably on most operating systems. Call
fflush() after every I/O statement to write the stream buffers to terminal or
file immediately. The error stream stderr is unbuffered and hence preferable
for logging. The C++ streams are the least preferable, since they may produce
completely interleaved text output from the different threads.

• Use time-stamps when dumping information from threads in large programs.
This helps you later on to review and post-process the collected information.

92 7 Debugging Parallel Programs

You can use either wall clock timing information, using the function time()
or the CPU time – using the function clock(). Both functions time() and
clock() are in the standard C library, and their function prototypes are de-
clared in the header file time.h. The wall clock time you get from the function
time() has a maximum granularity of one second, which might not be suffi-
cient for some programs, but the wall clock time is a good common reference
if you are debugging a program running on more than one processor. The CPU
ticks you get back from the function clock() have more fine grain resolution,
but might not be suited as common time ordering reference on multi-processor
systems.

• The wall clock time on 2 separate machines is never in sync, so you can’t use
it to reconstruct an ordering of events when merging log files from the 2 ma-
chines. Check the documentation of your parallel processing library if a clock
synchronization mechanism is provided.

• If you are frequently debugging parallel programs, it is a good approach to create
helper trace functions or trace buffer variables that automatically capture useful
information such as time-stamps or thread IDs.

• In some cases, assertions – code that immediately checks the correctness of the
data of the program – make sense, especially if the amount of logged data would
become huge otherwise. Be aware though that the more code you add for de-
bugging purposes, the more you deviate from the original timing behavior of the
program that has shown the defect you are actually searching. Sometimes this
makes the root cause of the problem untraceable. The alternative, especially if
the collected data is extensive, is to use scripts or utilities to post-process and
filter the data.

In many cases, the logged data can point you exactly to the source of the problem,
in other cases it may just give you a better idea where exactly the program behaves
unexpectedly. This is the place where you have to dig deeper, either using further
code instrumentation, using a debugger, or in rare cases even by restructuring the
code.

The log produced by the example in Figure 7.2 contains the following patterns
for those cases where the race condition occurs:

...
1 7530 | before next bean: 791 - 7530 | after next bean: 792
2 7530 | before next bean: 792 - 7530 | after next bean: 793
3 7530 | before next bean: 793 - 7530 | after next bean: 794
4 7530 | after next bean: 790
5 7530 | before next bean: 790 - 7530 | after next bean: 791
6 7530 | before next bean: 791 - 7530 | after next bean: 792
7 7530 | before next bean: 792 - 7530 | after next bean: 793

...

You can see from the log that in rows 3 and 4 you have two consecutive executions
of code line 10 of Figure 7.2, implying that the program switched threads. We also
see in line 4 of the log file that the beans variable is reset to 790. This should be in-
dication enough to cast doubts on the thread-safety of the (*beans)++ operation

7.3 Debugging Deadlocks 93

in line 9. The next step would be to either use a debugger to analyze the machine
code and play with the scheduling as described in Section 7.2.1 to understand the
nature of the failure so you can fix it.

The methodology of collecting data during the execution of the program has
built-in support in some debuggers. You can set tracepoints with the GDB trace
and collect commands. Along with a tracepoint, you can specify the data that
shall be logged each time the tracepoint is hit; you can count the number of hits, and
collect other information useful for the post-processing.

You can do something similar with breakpoints as well, if you assign commands
to the breakpoints to dump the required data, and then continue the execution. How-
ever, be aware that these debugging methods are intrusive and influence the timing
of the program being debugged. It might lead to different behavior in the presence
of race conditions. In practice, most experienced developers use both methods: de-
bugger tracepoints as well as the printf()-logging.

7.3 Debugging Deadlocks

Deadlocks in a program can occur if a resource required by one thread or process is
not released and hence causes the thread or process to wait on the resource forever. A
condition like this occurs when a mutex or semaphore is applied but never unlocked
appropriately. The root causes for the deadlock situation in most cases are:

• Circular mutex locking, where two or more threads start reserving resources,
but can not continue because they are mutually waiting on resources currently
locked by the other threads. The most famous example for this is probably the
dining philosophers’ problem.
The dining philosophers’ problem consists of five philosophers sitting at a table
and trying to eat. The five philosophers sit at a circular common table with a large
bowl of spaghetti in the center. A fork is placed in between each philosopher, so
that each philosopher has one fork to his left and one fork to his right. As Edsger
Dijkstra considered it difficult to eat spaghetti with a single fork, in order for a
philosopher to eat, he must have possesion of two forks, and can only use the fork
on his left or right. If all five philosophers try to eat at the same time by taking
the fork on their right hand side and then wait for the left hand fork to become
available, they will all die of starvation.

• Protocol mismatches, where two or more processes or threads are synchronized
via mutexes or semaphores that are not unlocked as required. This is commonly
encountered in producer-consumer scenarios. If you have a fixed-size communi-
cation buffer, you need to make sure the producer stops writing if the buffer is
full, and the consumer stops reading if the buffer is empty. This is can be done
for example via semaphores. If there is a protocol error or race condition leading
to a missing increase or decrease of the semaphore, it might lead to one of the
threads going to sleep forever.

94 7 Debugging Parallel Programs

The first analysis you can do when your program is stuck is to use a debugger to see
at what state the program and the single threads are, as described in Section 7.3.2.
If the information you can get from using the debugger interactively is not sufficient
– for example because attaching the debugger makes it impossible to reproduce the
error – you can apply logging methods as described in Section 7.2.2.

As an example how a debugger can help you to find the reason for a deadlock we
can take almost the same code as in Figure 7.1, with the only difference that we tried
to use a mutex to eliminate the race condition described in Section 7.2. The modified
beancounter() function is shown in Figure 7.3. Unfortunately we “forgot” to
unlock the mutex in line 16 after locking it before in line 12 – to make it a good
example for deadlock debugging.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <pthread.h>
4
5 pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
6
7 void* beancounter(void* beans_arg)
8 {
9 int counter;

10 int* beans = (int*)beans_arg;
11
12 pthread_mutex_lock(&mutex);
13 for (counter=0; counter<100000; counter++) {
14 (*beans)++;
15 }
16 /* oops, forgot to unlock the mutex here... */
17 return beans_arg;
16 }

Fig. 7.3 Defining and using a global mutex

If you run the example with this modified beancounter() function it will run
into a deadlock situation and will never exit. Starting the program in a debugger
will gets you into the same deadlock situation. Instead of starting the program in the
debugger right away, you can also attach a debugger to the running program.

7.3.1 How to Determine What the Current Thread is Executing

The debugger can tell you which thread was last executed by the CPU and what the
stack of this thread looks like. The probability is high that you immediately get the
root cause for the deadlock this way. If you interrupt our example program in GDB
(e.g. by typing Ctrl-C) and issue an info stack command you will see that the
current thread is waiting for mutex to be unlocked:

7.3 Debugging Deadlocks 95

ˆC
Program received signal SIGINT, Interrupt.
[Switching to Thread -172106832 (LWP 18839)]
0x.. in __lll_mutex_lock_wait() from /lib/tls/libpthread.so.0

(gdb) info stack
#0 0x.. in __lll_mutex_lock_wait () from ...
#1 0x.. in _L_mutex_lock_28 () from ...
#2 0x.. in __JCR_LIST__ () from ...
#3 0x.. in ?? ()
#4 0x.. in ?? ()
#5 0x.. in beancounter at beancounter_deadlock.c:12

(gdb) frame 5
#5 0x.. in beancounter at beancounter_deadlock.c:12

(gdb) list 12,15
12 pthread_mutex_lock(&mutex);
13 for (counter=0; counter<1000; counter++) {
14 (*beans)++;
15 }

The debugger information above reveals that the current thread is waiting for a
mutex, and that the user code line containing this command is line 12 of the file
beancounter deadlock.c.

7.3.2 Analyzing the Threads of the Program

The debugger can tell you the state of each thread, and which code each thread
was executing when the program was suspended. This is quite helpful to get an
overview of the program’s state and often reveals which of the threads is – in terms
of program flow – running behind the others and therefore a good candidate for
further investigation.

In GDB you can use the command info threads. It lists all threads with their
unique ID and marks the currently active thread with a *. In our example the current
thread has the ID 3 and is at line 12 of the file beancounter deadlock.c – as
we could also see from the stack trace of the previous section – and that the second
thread is in the function pthread join. This thread is obviously waiting for the
other thread to finish its execution. You can also switch from one thread to the other
using the GDB command thread along with the ID of the thread to that you want
to switch. This allows you to analyze the stacks of all other threads as well.

(gdb) info threads

* 3 Thread in __lll_mutex_lock_wait () from ...
1 Thread in pthread_join () from ...

(gdb) thread 1
[Switching to thread 1] #0 in pthread_join () from ...

96 7 Debugging Parallel Programs

(gdb) info stack
#0 0x.. in pthread_join () from /lib/tls/libpthread.so.0
#1 0x.. in main () at beancounter_deadlock.c:45

With the information displayed here it is rather straightforward to analyze that
Thread 3 was waiting for mutex to be unlocked, and that Thread 1 has al-
ready passed the locking of mutex at line 12. The next logical step would be to
analyze why Thread 1 never unlocked mutex. With this question you arrived
at the solution of the issue, that is, the function beancounter() as shown in
Figure 7.3 is completely missing a statement to unlock mutex. Inserting a
pthread mutex unlock(&mutex) statement after line 15 will fix this issue.

7.4 Familiarize Yourself with Threading Analysis Tools

There are a number of sophisticated tools on the market to analyze parallel programs
and find potential sources of misbehavior. Threading analysis tools can help you
find hidden potential errors, such as deadlocks and data races, mapping them to the
memory reference and to the source-code line.

Examples for useful tools are the commercial Intel Threading Analysis Tools –
especially the Thread Checker tool (see Appendix B.7.6), and the Open Source tool
Helgrind (see Appendix B.4.2).

Helgrind is part of the Valgrind instrumentation framework, and at the time of
writing this book still in a experimental, but nevertheless quite useful stage. Running
Helgrind with the beancounter.c example shown in Figure 7.1 we will get a
valuable hint that there is a potential data race:

> gcc -g beancounter.c -lpthread -o beancounter
> valgrind --tool=helgrind beancounter

== Helgrind, a thread error detector.
== Using valgrind-3.3.0
==
== Thread #2 was created
== at 0x48CDD0C: clone (in /lib/tls/libc-2.3.2.so)
== by 0x80484BB: main (beancounter.c:40)
==
== Thread #3 was created
== at 0x48CDD0C: clone (in /lib/tls/libc-2.3.2.so)
== by 0x80484DD: main (beancounter.c:41)
==
== Possible data race during write of size 4 at 0xFEFF6D4C
== at 0x8048475: beancounter (beancounter.c:11)
== by 0x48CDD19: clone (in /lib/tls/libc-2.3.2.so)
== Old state: shared-readonly by threads #2, #3
== New state: shared-modified by threads #2, #3
== Reason: this thread, #3, holds no consistent locks
== Location 0xFEFF6D4C has never been protected by any lock

7.4 Familiarize Yourself with Threading Analysis Tools 97

The sum of all beans is 200000
==
== ERROR SUMMARY: 1 errors from 1 contexts

In this case Helgrind correctly points out that the increment operation in line 11 of
beancounter.c represents a shared access to the same memory location, and
that this access is not protected by any locks.

Using the deadlocking example beancounter deadlock.c shown in Fig-
ure 7.3 we can also get some valuable information from Helgrind:

> valgrind --tool=helgrind beancounter_deadlock

== Helgrind, a thread error detector.
== Using valgrind-3.3.0
==
== Thread #2 was created
== at 0x48CDD0C: clone (in /lib/tls/libc-2.3.2.so)
== by 0x8048507: main (beancounter_deadlock.c:25)
==
== Thread #2: Exiting thread still holds 1 lock
== at 0x47E5E24: start_thread (/lib/tls/libpthread-0.60.so)
== by 0x48CDD19: clone (in /lib/tls/libc-2.3.2.so)
==
...

The one hint of vital importance is that Thread #2 exits, but still holds a lock.
Situations like this are usually not intended and very likely the source of a deadlock.

Helgrind’s basic mechanism is to do bookkeeping of all memory accesses. Hel-
grind identifies memory locations which are accessed by more than one thread. For
each such location, Helgrind records which of the program’s locks were held by the
accessing thread at the time of each access.

One small difficulty is that even the action of locking a mutex represents a poten-
tial data race. Locking a mutex is always accessing a memory location from more
than one thread – otherwise the mutex wouldn’t be required in the first place. Since
typically the access to such a locking mechanism is not secured by another lock,
Helgrind reports this pattern as possible data race. (At least there must be one outer-
most locking mechanism that cannot be secured by a surrounding lock). This means
that even for a perfectly bug-free program containing locks you will get a lot of error
reports. Luckily those don’t care potential data races are easy to spot in the Helgrind
report, since they refer to the method to set the lock (pthread mutex lock) as
well as to the location in the program code where this locking function is called. In
the example below, this is line 12 of the file beancounter fixed.c:

> valgrind --tool=helgrind beancounter_fixed

== Helgrind, a thread error detector.
== Using valgrind-3.3.0
==
== Thread #2 was created
== at 0x48CDD0C: clone (in /lib/tls/libc-2.3.2.so)
== by 0x8048553: main (beancounter_fixed.c:25)

98 7 Debugging Parallel Programs

==
== Thread #3 was created
== at 0x48CDD0C: clone (in /lib/tls/libc-2.3.2.so)
== by 0x8048575: main (beancounter_fixed.c:26)
==
== Possible data race during write of size 4 at 0x80497F0
== at 0x47E78D1: pthread_mutex_lock
== by 0x80484EB: beancounter (beancounter_fixed.c:12)
== by 0x48CDD19: clone (in /lib/tls/libc-2.3.2.so)
== Old state: shared-readonly by threads #2, #3
== New state: shared-modified by threads #2, #3
== Reason: this thread, #3, holds no consistent locks
== Location 0x80497F0 has never been protected by any lock
==
== Possible data race during write of size 4 at 0x80497E8
== at 0x47E78D4: pthread_mutex_lock
== by 0x80484EB: beancounter (beancounter_fixed.c:12)
== by 0x48CDD19: clone (in /lib/tls/libc-2.3.2.so)
== Old state: owned exclusively by thread #2
== New state: shared-modified by threads #2, #3
== Reason: this thread, #3, holds no locks at all
==
...

In general there are a large number of don’t care potential data races reported by
Helgrind: during thread creation and exiting, lock acquisition and release, or inter-
thread communication.

7.5 Asynchronous Events and Interrupt Handlers

How parallel is parallel, actually? Well, it depends. One could argue that, on a simple
single-core processor system, even a multi-threaded program is not truly “parallel.”
After all, there’s only a single thread active at any given point in time. What makes it
challenging is the fact that task switches are mostly asynchronous – unless you don’t
take special precautions you cannot be sure to reach the next line of your program’s
source code without interruptions.

This brings us to other types of asynchronous events, and the context switches
they can trigger. Two key examples are signal handlers and low-level interrupt ser-
vice routines. A signal handler is a function that is invoked by the operating system
as a result of delivering a signal to a process (see section 10.7). Signals are inher-
ently asynchronous; they can, for instance, be generated as a result of a user or an
executable trying to communicate with your program (SIGINT, SIGIO, SIGTERM,
. . .). As a result, the corresponding signal handler can interrupt your program at any
point in time unless you (temporarily) blocked the respective signal.

Now things get tricky. On one hand, we are dealing with asynchronous execution,
which demands properly guarded access to shared resources. On the other hand,
interrupt and signal handlers are supposed to run extremely swiftly in order to reduce

7.5 Asynchronous Events and Interrupt Handlers 99

the time when delivery of further events is masked. This means that any “slow”
operation such as making OS calls to access semaphores or I/O operations can not
be used. Now you are stuck between a rock and hard place: you have to deal with
asynchronous accesses but cannot rely on standard synchronization schemes, and
good old printf() debugging has been declared questionable too.

This book will not tell you how to write a good signal handler. Please refer to a
good textbook on OS level software development instead. We can give hints when
it comes to debugging though:

First, you may want to look at Section 10.7, which explains what type of support
you can expect from a source code debugger. Of course, you can always place a
breakpoint in a routine handling interrupts or OS signals. Using breakpoint com-
mands can be a powerful tool in this context. Next, consider using watchpoints (see
Section 10.6 to determine if and when other parts of the program access the same
variables. The set of variables should be very small, or else your handler is of debat-
able “greatness.” Hardware-assisted watchpoints are preferable in order to reduce
the likelihood of Heisenbugs.

Lessons learned:
• Use trace files to debug race conditions.
• Make sure that your tracing mechanism is thread safe.
• Check if your parallel processing library has a clock synchronization

mechanism before using time stamps to order events.
• Use a simple example to learn how to switch threads and inspect syn-

chronization code in your debugger.
• Familiarize yourself with threading analysis tools: Helgrind, Intel

Thread Checker.

Chapter 8
Finding Environment and Compiler Problems

The behavior of a program is dependent not only on its code and input data files and
user input, but also on the environment in which it runs. For example, a program may
run fine in the controlled environment where it was developed, but it can fail on some
user systems. Maintenance work such as an OS update, a new software installation,
or a service pack update to the development system will cause seemingly unrelated
program failures. In this chapter we discuss the effect of environment changes, and
list some tools that visualize what the processes of a program are doing. We also
address compiler bugs, and incompatibilities between the debugger and compiler.

8.1 Environment Changes – Where Problems Begin

An environment dependency can manifest itself in many unpredictable ways. The
following sections list typical environment dependencies, including environment
variables and installation dependencies. We show how to diagnose such a depen-
dency, and how to either anticipate or avoid them in a program.

8.1.1 Environment Variables

User-defined environment variables are a frequent reason why a program behaves
differently on different systems and for different users. The variables that have the
most influence are PATH and LD LIBRARY PATH on UNIX, and PATH, LIB,
and INCLUDE on Windows. PATH is used to locate other programs. On UNIX,
LD LIBRARY PATH variable is used to locate the shared libraries that are dynam-
ically loaded into the program. On Windows, the operating system uses the PATH
variable to find programs and dynamic link libraries (DLLs). Picking up the wrong
version of a DLL can have fatal consequences.

101

102 8 Finding Environment and Compiler Problems

If you observe that a program behaves correctly in one environment, and changes
behavior in another, the program may switch internal behavior depending on one or
more environment variables. Make sure the difference is consistent and can be repro-
duced, by running the program multiple times. Print out all environment variables,
and compare the settings in both environments. On UNIX, use the env command.
On Windows, open a DOS box by going to Start/Run and entering cmd. In the
DOS box, use the command set. Compare the two sets of variables, change the
variables that differ one by one, and check at each step if the program behavior
changes. If you find the variable that caused the change in program behavior, make
sure to document the dependency, or modify the program to remove or anticipate
the dependency.

8.1.2 Local Installation Dependencies

A program bug may be triggered by differences in the local installation of a ma-
chine: operating system, patches, tools, C/C++ runtime libraries, etc. If so, try to
capture the significant differences of the installation, and build a similar system for
inhouse testing. Make sure you can reproduce the failure. Then, either put code in
your software that supports the new installation, or put in a guard that prevents the
program’s execution in new installation, and document the incompatibility. A good
example for this is the Windows Vista SP1 operating system, which warns the user
that the Visual C++ 7.0 compiler is not supported.

8.1.3 Current Working Directory Dependency

The behavior of the program may depend on the current working directory. On
UNIX, this is the directory from which the program is started. The directory is reg-
istered in the environment variable CWD. For example, a program may expect to read
or write files located relative to a certain working directory. To make the program
work from another directory, either use absolute path names, or make the program
change the current working directory.

8.1.4 Process ID Dependency

The process ID (PID) of the current process may also have an effect. The PID is
an integer number and automatically assigned to a program’s process when the pro-
gram is started. UNIX programs occasionally create temporary files with names
such as /tmp/myprog.<pid>. The program may not always delete these tem-
porary files, and it may incorrectly assume that no previous file with the same name

8.2 How else to See what a Program is Doing 103

existed before opening the file for writing. When you run the program and are un-
lucky enough to get the very same PID, your program cannot create the file, and
fails.

PID-related problems are fixed by adding good error messages to your software,
so that a clear trace of the occasional collision is created. Also, the software should
be modified to use a better unique identifier.

8.2 How else to See what a Program is Doing

An application may not be just a single program. It may consist of multiple programs
and scripts that work together. To debug the application, you need to determine
which program is running, what the program arguments are, and to what process to
attach the debugger.

8.2.1 Viewing Processes with top

On UNIX and Linux, you can use the utility top (see also Appendix B.8.5) to see
a list of which processes are running on your computer. The process list is updated
every few seconds. The utility shows you which programs need the most CPU time
or memory. On Windows, use the Task Manager to display processes.

Tasks: 78 total, 4 running, 74 sleeping, 0 stopped, 0 zombie
Cpu(s): 60.5%us, 38.1%sy, 0.0%ni, 0.0%id, 0.0%wa, 1.3%hi, 0.0%s
Mem: 276616k total, 271224k used, 5392k free, 48328k buffers
Swap:321260k total, 0k used, 321260k free, 111272k cached

PID USER PR VIRT RES SHR S %CPU %MEM TIME+ COMMAND
7606 zaphod 23 26704 22m 2256 R 54.7 8.2 0:22.44 havoc
7491 arthur 25 2252 680 592 R 14.0 0.2 0:16.40 survive
5597 root 15 34096 13m 2716 S 1.7 5.0 0:09.85 X
5959 mice0 15 31772 15m 12m S 0.3 5.7 56:06.00 find_pol
7604 mice9 19 5120 2352 1588 S 0.3 0.9 0:00.01 test.human

1 root 16 680 248 216 S 0.0 0.1 0:00.62 init
...

The output of top is shown above.

8.2.2 Finding Multiple Processes of an Application with ps

The UNIX utility ps (see Appendix B.8.3) shows a snapshot of the processes run-
ning on a computer. ps has command line arguments to provide different types of

104 8 Finding Environment and Compiler Problems

information. Note that the actual command line arguments vary on different operat-
ing systems. A particularly useful feature of ps is to check the parent/child relation-
ship of processes for a specific user, and to show the command line arguments of the
processes. On Linux, this is done with ps -u <username> -H -opid,cmd
where <username> refers to the user name.

In the following example, the program myprogA takes a long time before it
returns, and we want to understand why.

> ps -u someone -H -opid,cmd
...
8804 ./myprogA MyFile 123
8805 /bin/csh -f ./myshellB MyFile 123
8806 ./myprogC MyFile abc 123
8807 sleep 100
...

The indentation shows that myprogrA calls myshellB, which calls myprogrC,
which executes a sleep command.

8.2.3 Using /proc/<pid> to Access a Process

Some Linux and UNIX operating systems allow you to access processes through
file system /proc/.... Each process has its own directory in this file system.
Note that the kind of information available under /proc/..., and how to access
it, varies greatly with the operating system. The proc functionality is not available
on Windows.

On Linux Red Hat and Suse, it is possible to access command line arguments
(/proc/8806/cmdline), environment variables (/proc/8806/environ), a
symbolic link to the executable (/proc/8806/exe), and other information.

8.2.4 Use strace to Trace Calls to the OS

The Linux utility strace (truss on Solaris) logs all accesses to the operating sys-
tem, such as memory allocation, file I/O, system calls, and launching sub-processes.
The option -fwill also log information about any sub-process. On Windows, install
Cygwin to get an strace command.
strace is a debugging tool that still works when you need to debug a program

or a linked-in library that has no available source code. It is simple to use, and does
not require drastic changes to your source code, such as putting a code wrapper
plus tracing code around every system call. Plus, it really captures all calls to the
OS. With a hand-written wrapper around each OS call, you have to worry about
completeness and correctness of your tracing code.

8.2 How else to See what a Program is Doing 105

Among the drawbacks of strace are that it produces a lot of output, and the
output is hard to read. strace will show you the raw error codes of the system
calls, so you need to refer to the man pages or do an Internet search to understand
what went wrong.

We recommend the use of strace for the following debugging scenarios.

• File I/O: Use strace to find out which files were opened. Programs often use
setup files during initialization, and will open them silently.

• Uncaught errors or interrupts in OS routines. stracewill show the return status
of the OS call. A common bug is to ignore the return status of OS calls, so look
for error values being returned, and cross-check your source code for correct
handling of these values.

• Frequency of OS calls: when you debug performance problems, strace can
indicate whether the bottleneck was caused by too many expensive (in terms of
CPU time) OS calls. Re-factoring of the code to move the OS call(s) out of an
inner loop may help.

• Memory allocation/deallocation/mapping: strace will show calls to dynamic
memory management. Useful when a memory debugger such as Purify or Val-
grind is not available.

In the following example we will use strace to get more information about
myprogA and its sub-processes. Note that we have condensed the output to show
only the most interesting activities:

> strace -f -o strace.log ./myprogA MyFile 123

File trace.log:
8804 execve("./myprogA", ["./myprogA", "MyFile", "123"],

[/* 82 vars */]) = 0
8804 uname({sys="Linux", node="linux", ...}) = 0
8804 brk(0) = 0x804a000
8804...
8804 open("MyFile", O_RDONLY) = -1 ENOENT

(No such file or directory)
8804 fstat64(1, {st_mode=S_IFCHR|0600, ...}) = 0
8804...
8804 write(1, "About to call ./myshellB MyFile "...) = 36
8804...
8804 clone(child_stack=0, flags=CLONE_PARENT_SETTID|SIGCHLD,

parent_tidptr=0xbfffed68) = 8805
8804...

The line open("MyFile", O RDONLY) reveals that myprogA was trying to
open a file, but it was not found. Next the program prints About to call
./myshellB MyFile to stdout and then clones itself. Process 8805 becomes
active and spawns more sub-processes:

8805 execve("/bin/sh", ["sh", "-c", "./myshellB
MyFile 123\n"], [/* 82 vars */]) = 0

...

106 8 Finding Environment and Compiler Problems

8805 read(16, "#!/bin/csh -f\n./myprogC $1 abc $"...,
4096) = 34
8805...
8805 clone(child_stack=0, flags=...) = 8806

8806 execve("./myprogC", ["./myprogC","MyFile","abc","123"],
[/* 82 vars */]) = 0

8806...
8806 write(1, "C called with \’MyFile\’, \’abc\’, \’"...) = 37
8806...
8806 clone(child_stack=0,flags=...) = 8807

8807 execve("/bin/sh", ["sh", "-c", "sleep 100"],
[/* 82 vars */]) = 0

8807...
8807 nanosleep({100, 0}, NULL) = 0

8.3 Compilers and Debuggers have Bugs too

One part of the environment of a program is the development system. In this section
we discuss the two major sources of time-consuming bugs due to the development
system: compiler bugs and incompatibilites between debugger and compiler. The
third source of bugs in the development chain, the linker, is discussed in Chapter 9.

8.3.1 Compiler Bugs

When you hit a bug while using a new or advanced language feature in C++, you
need to consider the possibility that the compiler itself has bugs. This was quite
common in the past, when C++ underwent a lot of new development and stan-
dardization, but it still occasionally happens today. We recommend the following
approach in case a compiler bug is suspected:

• Use divide and conquer to reduce the size of the test case. Try to isolate the
compiler feature that is broken, ideally down to just a few lines of code.

• Experiment with the compiler options to see if the problem goes away: turn off
optimization or switch to a less aggressive optimization level. Turn debug support
on/off, this will also alter memory layout and initialization for variables.

• Use a previously published example of the language feature, to cross-check that
you are not using the feature incorrectly.

• Search the Internet to see if other developers have run into the same problem.
• Try a different compiler and see whether the problem persists.
• Report the compiler bug.

Once you have determined that a problem is due to a compiler bug, you have to
recode. Typically compiler bugs take a while to get fixed, so you can not put your

8.3 Compilers and Debuggers have Bugs too 107

project on hold to wait for the bug fix. Find a work-around for your own software,
by not using certain language features, or by adapting a restricted coding style.
Also, document the problem, and save the test case. Once a new compiler version
becomes available, you can quickly test if the bug has been fixed. This way your
work-arounds and coding style restrictions won’t have to become permanent.

8.3.2 Debugger and Compiler Compatibility Problems

There are many different C/C++ compilers and debuggers. Each of the compilers
and debuggers have many different major and minor versions. Not all compiler-
debugger combinations work together. It is impossible to test all combinations, and
backward and forward compatibility can not always be ensured. Further complica-
tions can arise from debugger incompatibilities with the OS, system libraries such
as pthreads, and specific language features. If a debugger incompatibility occurs,
you may see one of these symptoms:

• The debugger dumps core while loading the program, or in the middle of a debug
session.

• The debugger is unable to set a breakpoint in a C++ class member specified by
function name.

• The debugger sets a breakpoint in a specific source file/line location but never
stops there although the location is executed.

There are a number of things you can do if a compiler-debugger incompatibility
occurs:

• Check the documentation: what is the recommended debugger version? Are there
known incompatibilities?

• Experiment by installing several debugger versions, and keep track of what in-
compatibilities you encounter. This is a common approach for users of GDB and
GCC. In Visual Studio, debugger and compiler are integrated, so you are limited
to using a different major version.

• Document what combination worked. Incompatibilites are often forced by major
updates to the development system: compiler, OS, debugger. You may have to
roll back a software update to ensure a working debugging environment.

• Do not assume that the default debugger and compiler that came with your OS
distribution is the right one for your project.

108 8 Finding Environment and Compiler Problems

Lessons learned:
• A program bug can be due to the environment: environment variables,

OS installation dependencies, interrupt handlers, etc. Consider these bug
sources when deploying new software on computers different from the
development system.

• There are tools to let you debug the environment of a program: top, ps,
env, /proc/<pid>, strace.

• An incorrect search path for dynamic libraries can be the source of
environment-dependent crashes. Look for wrong or missing variable val-
ues of PATH and LD LIBRARY PATH.

• Compilers have bugs too. Use divide-and-conquer to isolate the problem,
and look for work-arounds to continue your project.

• Debuggers can be incompatible with particular compilers, language fea-
tures, OS, and system library versions. Keep track of what worked, be-
fore doing a major change to your development system.

Chapter 9
Dealing with Linking Problems

This chapter describes how to find bugs introduced at the link stage of a program.
Linking problems are numerous, occur frequently, are time-consuming to fix, and
not well supported by debugging tools. We will give examples of link problems that
can not be detected at link time, but will result in program crashes or wrong pro-
gram behavior. Also, in practice, linker error message can be cryptic: they indicate a
mismatch of the pieces that should form a program, often without any further expla-
nation where this mismatch comes from. These aspects led to the decision to make
the debugging of linking problems an integral part of this book.

We start by shortly describing some principles of linking. Then, we go step-by-
step through the most common link problems, and show how to detect and fix them.

9.1 How a Linker Works

Linking is the process of building an executable file from object files and object
file libraries. A compiler or assembler translates source code into machine code,
and produces object files as output. An object file contains symbols which represent
functions or variables defined in the source code. If a symbol is associated with an
address and a segment containing its definition in the same object file, it is called a
defined or resolved symbol. A symbol not yet associated with an address is called
an undefined or unresolved symbol. The basic idea of linking is to associate each
unresolved symbol with its corresponding definition. This process is also referred
to as resolving symbols. Please refer to [Levine00] for more details on how a linker
works.

The linker keeps resolved and unresolved symbols in two different lists. Its main
job is to turn unresolved symbols into resolved symbols when assembling the object
files and libraries into a program. In the final executable every symbol has to have
one valid definition – if this is not the case then you have a problem.

109

110 9 Dealing with Linking Problems

9.2 Building and Linking Objects

During the following sections we will use a modified factorial.c code exam-
ple, similar to the one used in Chapter 3. The difference here is that we placed the
main() functions and the factorial() function into different source files.

1 /* factorial.c */
2
3 int factorial(int n) {
4 int result = 1;
5 if(n == 0)
6 return result;
7 result = factorial(n-1) * n;
8 return result;
9 }

1 /* main.c */
2 #include <stdlib.h>
3 #include <stdio.h>
4 #include "factorial.h"
5
6 int main(int argc, char **argv) {
7 int n, result;
8 if(argc != 2) {
9 fprintf(stderr, "usage: factorial n, n >=0\n");
10 return 1;
11 }
12 n = atoi(argv[1]);
13 result = factorial(n);
14 printf("factorial %d!=%d\n", n, result);
15 return 0;
16 }

We can do the compilation of these source code files into object files and the subse-
quent linking in one step:

> gcc -g -o calc_factorial factorial.c main.c

The two steps of compilation and linking can be separated – and for large projects it
is a good idea to build an executable file in a modular way, that is, to cleanly separate
the phases of building each object file and subsequently building the executable file
or library from the object files. Code changes in one of the source code files would
otherwise require all source code to be re-compiled, while the modular approach
permits to only re-compile those parts affected by the code changes.

A command such as gcc is actually not a plain compiler – it manages multiple
phases around the build process of a program – preprocessing, compilation, assem-
bling, and linking. It is often called a compiler driver. The linker program ld is
called by the compiler driver, and the compiler driver provides the linker with the
relevant arguments derived from the arguments to the compiler driver plus a number
of platform specific object files and system libraries.

9.3 Resolving Undefined Symbols 111

Separating the object file creation and link steps for the above example means to
first compile the source files into object files and subsequently linking these object
files to an executable. In the command lines below we are using the GCC compiler
with flag -c to build the object files. Then, we link the object files to an executable
calc factorial:

> gcc -g -c factorial.c (builds object file factorial.o)
> gcc -g -c main.c (builds object file main.o)
> gcc -o calc_factorial factorial.o main.o

9.3 Resolving Undefined Symbols

The most frequent link problems are caused by unresolved symbols. We will take a
look at the most common cases in the following sections.

9.3.1 Missing Linker Arguments

If an object file containing a required symbol definition is missing from the linker
command line arguments, the linker will complain about the missing symbol(s). For
example, here is what happens if we leave out the argument factorial.o:

> gcc -o calc_factorial main.o
main.o: In function ‘main’:
[...]/linking_issues/example1/main.c:13:

undefined reference to ‘factorial’

We see that the linker does provide enough information on what is missing:

• the link error is caused by an unresolved symbol named factorial
• the symbol is unresolved in the object file main.o
• the object file main.o belongs to the source file main.c
• the factorial() function was used in line 13 of this source file

In the following example we compile the source file main.c without the debug
information, to show that the linker error messages still contain enough informa-
tion to search for the object file or library containing the definition of the missing
symbol. We can see that the level of details provided in the linker error message is
reduced: the location of the source file is missing, and the line number is replaced
by a location inside the object file.

> gcc -c main.c
> gcc -o calc_factorial main.o

main.o: In function ‘main’:
main.c:(.text+0x4): undefined reference to ‘factorial’

112 9 Dealing with Linking Problems

9.3.2 Searching for Missing Symbols

Depending on the size of the project, it can be quite difficult to find the missing
definition of a symbol. In the best case the programmer knows what the symbol
refers to and where it is defined – either in an object file or library, or in a source file
that still needs to be compiled.

In case one does not know the symbol or where it is defined, the first approach
is to search for it. If the symbol is a function or method, you should try to look it
up in the documentation. Good candidates are the documentation belonging to your
computer system, project, or third-party contributed software. As an alternative, you
can have your computer search for it. On UNIX you can use the utilities grep and
find to locate files. On Windows you can use the Explorer Search dialog.

There are utilities to analyze the symbols of object files, libraries, and programs.
On UNIX the utility nm provides a list of symbols. On Windows you can use for
example the utility DUMPBIN . A symbol that needs to be resolved is marked as such
with the token U or UNDEF, and defined symbols are preceded by tokens indicating
the object file section that contain the symbol definition. For example, the letter T
corresponds to the text section of an object file that contains the instructions of the
compiled code. Symbols representing functions are contained in a text section of an
object file.

Our factorial example is small enough that one could use the utility nm on
the object files unfiltered and read the entire symbol table. In real-life projects this
is almost impossible, so one needs to use search or filter utilities such as grep on
top of that:

> nm -o *.o | grep factorial
factorial.o:00000000 T factorial
main.o: U factorial

In this example the nm utility shows a list of all symbols in all object files in the
current directory, and the grep utility filters out the function name that we are in-
terested in. We use the -o option of the nm command to precede each line with the
file name – otherwise the result of the grep command would not be very help-
ful. The result shows that the symbol factorial is defined in the object file
factorial.o. Adding this file to the list of linker arguments will enable the linker
to build the program correctly.

If none of the object files or libraries in the project contains the missing symbol,
one can use the same strategy to search in different places for the definition:

• In the source code for the program: if the code was not compiled into an object
file, the build system needs to be fixed.

• In the system libraries: Since there are usually a large number of system libraries
on a computer, it is often easier to consult the online documentation. For ex-
ample, if one gets an undefined symbol sqrtf on UNIX, the command man
sqrtfwill show this function is part of the math library and that -lm is needed
as linker argument.

9.3 Resolving Undefined Symbols 113

• In third-party software libraries: when the program is planned to include software
from other companies or developers, the missing symbols might be found here
as well.

• Outside of your computer or network: in case the object file with the system
definition is not on your system at all, you may need to use an Internet search
engine to locate the missing library or symbols. It is amazing to discover how
many other programmers have encountered and solved the same issues that you
have.

9.3.3 Linking Order Issues

One important aspect of providing an object file directly as argument to the linker
is that all its symbols will be linked into the executable. Especially when linking
in object files containing various service functions that are typically used for mul-
tiple projects it can have the undesired effect of producing an unnecessarily large
executable file. You can use libraries or archive files instead of object files to avoid
this. From a library the linker picks only those object files containing symbols that
are currently undefined in its current list of defined and undefined symbols. It is im-
portant to note that most linkers process the provided object files and libraries only
once, according to the following algorithm:

• First the linker loads the object file(s) that contain the initialization code for the
executable. The initialization code also calls the main routine of a C program,
that is, the linker starts at least with the undefined symbol main. The object
file(s) containing the initialization routines are provided to the linker by the com-
piler driver automatically.

• Then the linker sequentially walks through the object files and libraries specified,
in the order of the link line arguments. From each library the linker picks only
those object files that satisfy at least one symbol that is currently still unresolved.
From an object file it picks all symbols, regardless whether it resolves symbols
that are currently marked as undefined in the linkers list. Including a new object
file can create new undefined symbols for the linker.

• The link process is successful if at the end of the link line all symbols are
resolved.

In our example we generate a library libfactorial.a from the object file
factorial.o using the UNIX utility ar. ar is a program that creates or mod-
ifies libraries, or extracts objects from libraries. In the following link step we now
ignore the importance of ordering the linker arguments correctly. Even though every
piece of information the linker needs is present, the linker complains about missing
symbols:

> ar -r -o libfactorial.a factorial.o
ar: creating libfactorial.a

114 9 Dealing with Linking Problems

> gcc -o calc_factorial libfactorial.a main.o
main.o:main.c:(..): undefined reference to ‘factorial’

With the knowledge how a linker works, this behavior is easily explained: when
the linker arrives at the library libfactorial.a it has only the undefined sym-
bol main in its list. There is no object file in the library libfactorial.a
that provides a definition for this symbol, and the symbol factorial that is
defined in the library is not picked up, since the linker does not have an unre-
solved symbol for it. In the next step the linker loads the object file main.o –
here the symbol main is defined, but the main() routine also calls the function
factorial(). Hence it creates a new unresolved item in the list of undefined
symbols. Since the linker has reached the end of the argument list now, it terminates
with an error message and a list of missing symbols.

If the order of the object file main.o and the library libfactorial.a is
changed, the linking process succeeds:

> gcc -o calc_factorial main.o libfactorial.a

9.3.4 C++ Symbols and Name Mangling

The C++ features such as namespaces, classes, templates, or overloading of func-
tions have made compilation and linking far more complex. The potential for linking
issues due to symbol mismatches is increased. Even compiling the same C source
code with a C compiler and then with a C++ compiler results in different symbols:

> gcc -c main.c
> nm main.o | grep factorial

U factorial

> g++ -c main.c
> nm main.o | grep factorial

U __Z9factoriali

While for C it is sufficient to compile the function factorial() into a symbol
with the name factorial, it is not sufficient for C++. In C++ one can overload
functions, i.e. there can be more than one function with name factorial that dif-
fer in their number and types of arguments and the type of the return value. To pro-
duce a unique symbol for C++ code elements, the compiler uses a technique called
name mangling where the exact specification of an object or function (e.g. names-
paces, and type and number of function arguments) are encoded into the symbol.
Unfortunately almost every compiler has its own rule-set for name mangling, and
even different versions of the same compiler can produce incompatible object code.

9.3 Resolving Undefined Symbols 115

9.3.5 Demangling of Symbols

To track down these incompatibilities it is necessary to observe the name-mangled
symbols carefully. Reading the name-mangled symbols is often very tedious and
error prone, so it is better to demangle these symbols. One can do this either by
using analysis utilities that can switch between mangled and demangled output, or
using filters such as c++filt. The nm utility can be called with the option -C or
--demangle to obtain the actual user level names of the symbols. These filters
translate the cryptic argument and type encoding back into the source code, so it is
easier to see the original form of a symbol.

Note that name mangling is compiler dependent, so one needs to make sure that
the matching utilities and tools are used:

> nm main.o | grep factorial
U __Z9factoriali

> nm main.o | grep factorial | c++filt
U factorial(int)

9.3.6 Linking C and C++ Code

As we have seen, compiling a piece of code with a C++ compiler produces different
symbols as compiling the same code with a C compiler. This often leads to link
errors as well:

> gcc -c factorial.c
> g++ -c main.c
> gcc -o calc_factorial main.o factorial.o

main.o:main.c:(..): undefined reference to ‘factorial(int)’

It is noteworthy that only using the C compiler driver does by no means ensure that
the source is really compiled as C code – the compiler drivers may decide by the
file extension whether C or C++ style symbols will be produced. If, for example,
the compiler driver gcc is called for a file with extension .c, then it is compiled
as C code, while the same code in a file with extension .cc compiles as C++ code.
Other examples for commonly used file extensions for C++ files are .C, .cpp, or
.cxx.

> gcc -c main.c
> nm main.o | grep factorial

U factorial
> cp main.c main.cc
> gcc -c main.cc
> nm main.o | grep factorial

U __Z9factoriali

116 9 Dealing with Linking Problems

To avoid linking issues such as those described here it is a good idea to be very strict
about the file extensions or to provide explicit compiler directives to pick the target
format.

Nevertheless, it is not always possible to have all source code compiled by the
same compiler. It is common to have a C++ program that needs to link in sym-
bols defined in a C object file – which would normally cause the linking issue
we have seen earlier in this section. The solution here is to tell the C++ com-
piler explicitly not to name-mangle the undefined symbols that need to be resolved
by the symbols in the C object file. One can do so by using the extern "C"
compiler directive in the declaration of the appropriate elements. In the example in
Figure 9.1 we have only enclosed the declaration of the function factorial() in
an extern "C" block, which enables us to compile main.cc with a C++ com-
piler and the resulting object file can still be linked to the C library defining the
required symbol factorial. Linking the program then no longer results in unde-
fined
symbols.

> g++ -c main.cc
> nm main.o | grep factorial

U factorial

1 extern "C" {
2 unsigned factorial(unsigned n);
3 }

Fig. 9.1 Header file factorial.h with extern "C" declaration

9.4 Symbols with Multiple Definitions

The opposite of missing symbols during the linking phase is that the linker discovers
multiple definitions of the same symbol. In the best case the linker complains about
this, so there is a chance of locating the source of the bug when linking the program.
In many other cases the linker just picks the first definition it finds in the object and
library files specified in the command line. If we are lucky the first definition is the
intended one and the program works as expected. Often enough we are not lucky.

As an example let us assume that besides the definition of factorial in the
library libfactorial.a there is also a stub function factorial() defined
in the file sfactorial.c.

1 #include <stdio.h>
2
3 int factorial(int n)
4 {

9.5 Symbol Clashes 117

5 fprintf(stderr,"Stub for factorial is called\n");
6 return 0;
7 }

If one specifies the linker arguments in an order that forces the linker to pick both
symbols it will issue an error message indicating that two symbols of the same name
are conflicting, along with the information where these symbols have been defined:

> gcc -o calc_factorial main.o libfactorial.a sfactorial.o
sfactorial.o:sfactorial.c: multiple definition of ‘factorial’
libfactorial.a(factorial.o):factorial.c:4: first defined here

9.5 Symbol Clashes

Let us change the order of command line arguments, so the linker is free to pick
the first symbol definition and ignore all following ones. The linking process will
succeed, but we end up with unintended program behavior:

> gcc -o calc_factorial main.o sfactorial.o libfactorial.a
> ./calc_factorial 5

Stub for factorial is called
factorial 5!=0

The calc factorial program in this case always displays the result 0, no matter
which number is specified as input.

The code snippet above is also a good example to show that it is a wise idea to
clearly mark stub functions that are not intended to be called with safety bolts, such
as assertions, debug output, or invalid return values. Otherwise it may take rather
lengthy debug sessions to find that the wrong functions are executed.

The problem we observe is called a symbol clash; multiple definitions of the same
symbol exist yet this ambiguity has not been detected at link time.

How can we analyze a symbol clash?

Calling the wrong function is likely to result in memory corruption. The symptoms
are strange core dumps which do not seem to make any sense; the program sud-
denly crashes at a location which looks fine, data members of class objects suddenly
have corrupt values, yet memory checkers cannot find a statement that corrupted the
memory.

If the function is a C function then the number and type of arguments may be
different in caller and callee. If the symbol is a class method then accessing any
class members will be wrong because the memory layout of both classes is almost
certainly different. This may lead to an immediate error such as a segmentation fault
or a memory corruption detected much later.

Once you have identified symbol clashes in your application, there are different
ways out:

118 9 Dealing with Linking Problems

• The obvious solution – especially if you have access to the source code – is to
rename the variables and functions causing the symbol clashes in your code.

• You may also want to consider introducing C++ namespaces.
• It may be possible to suppress exporting certain symbols using static qual-

ifiers in the source code or, later in the flow, linker flags. This process is also
referred to as localizing symbols.

• As a last resort you may want to look at tools such as objcopy (part of the
GNU binutils), and, on Windows, EDITBIN or LIB . In addition to lo-
calizing symbols these tools can be used to rename both symbol references and
definitions.

9.6 Identifying Compiler and Linker Version Mismatches

When we talk about mismatching compiler or linker versions, we are actually refer-
ring to the fact that different C++ compilers generate code for different application
binary interfaces or ABIs. An ABI is the set of runtime conventions followed by
all of the tools that deal with binary representations of a program, including com-
pilers, assemblers, and linkers. One obvious difference is the different C++ name
mangling conventions by the C++ compilers. Another difference can be the system
library symbols that are defined in the libraries that come with the C++ compiler and
linker installation, such as libstdc++.a. During linking the defined and used
symbols will no longer match. The linker will complain about undefined symbols,
although all the linker arguments, and their order appear to be correct. To illustrate
this, we have used different compiler/linker versions, contemporary and outdated,
in this section. Of course “contemporary” refers to the time of writing this book –
but the principles (and problems) when using different compilers and versions are
likely to stay around for coming compiler generations as well.

It is noteworthy that these incompatibilities in name mangling are often
introduced intentionally by compiler developers to prevent the compiler users from
running into more subtle problems of mismatching ABIs. This way incompatible
libraries are detected at link time rather than at run time when the program crashes
for no obvious reason.1

Symbol mismatches are mainly a C++ issue: C compilers and linkers do not have
to support concepts such as function overloading, templates, and all those other
features that were the reason for introducing name mangling for C++ compilers in
the first place. Still, you can run into issues with inconsistent ABI even for pure C
compilation and linking.

1 Cited from GNU On-line docs, http://gcc.gnu.org/onlinedocs/gcc-4.0.3/gcc/Interoperation.html

9.6 Identifying Compiler and Linker Version Mismatches 119

9.6.1 Mismatching System Libraries

The problem of mismatching system libraries occurs when compiling all object files
with the same compiler, but use a different compiler (version) for linking.

C++ compilers implement some of the C++ specific features, for example dy-
namic cast, by including system libraries. The GCC 3.x compiler links a library
libstdc++ into the executable. Object files and library must match to make the
feature of dynamic cast work.

When you generate object files with GCC 2.95.3 but use GCC 3.3.5 for linking,
then you will get a large number of undefined symbols similar to the following:

undefined reference to ‘__throw’
undefined reference to ‘__builtin_delete’
undefined reference to ‘__builtin_new’
undefined reference to ‘__rtti_user’
undefined reference to ‘cout’
undefined reference to ‘endl(ostream &)’
undefined reference to ‘ostream::operator<<(char const *)’

If the linker complains about missing symbols for internally used functions and
methods such as cout or throw it is very likely that the reason is a mis-
match between the object files and the system libraries. Functions used inter-
nally by the C++ compiler usually start with two leading underscores, for example
dynamic cast.

9.6.2 Mismatching Object Files

This problem occurs when trying to link object files that were generated with dif-
ferent compilers – or compiler versions. The most frequent situation for this issue
is that one has to include object files or libraries, where no corresponding source
code is available – such as third party libraries. In this case the easy fix of building
everything from scratch using the same compiler and linker is not applicable.

The symptom for a compiler mismatch is that the linker complains about missing
symbols, but the symbols are present in the object files or libraries, and link order
appears to be correct.

Using tools such as nm on UNIX or DUMPBIN on Windows to analyze the sym-
bol tables of the object files with the unresolved symbols and those with the corre-
sponding defined symbols will reveal that the demangled user level symbols are the
same while the name-mangled symbols differ. The next step toward fixing this issue
is to find out the compiler versions that have been used to generate the different
object files – see Section 9.6.4 on page 120 – and decide which compiler to use to
compile and link all object files and libraries.

Note that even small differences in the compilers, such as a different release
version, can cause the above link problems.

120 9 Dealing with Linking Problems

9.6.3 Runtime Crashes

Even if the executable links without error messages, there’s still a chance that some-
thing went wrong during the linking process – usually this something surfaces later
at runtime and produces a core dump. How can you distinguish these core dumps
from other issues that are likely to lead to core dumps, for example memory prob-
lems described in Chapter 4? The core dump happens usually when some C++ spe-
cific function is used. These functions start with a leading double underscore. That
is, you should check for this in the stack trace of the core or when running the pro-
gram in the debugger. Of course it is no guarantee that C++ specific functions in
the stack trace always indicate a compiler or linker mismatch. You will still need to
check your source code with the memory debugging tools described in Chapter 4.

For example, when you compile a source code with GCC 2.96 but use GCC
2.95.3 for linking, this may trigger a core dump when a dynamic cast is used.

Fixing the problem is rather simple: re-compile all source files with the same
compiler, and use this compiler also for linking.

9.6.4 Determining the Compiler Version

One of the questions raised above is how to find out which compiler version has been
used to generate existing object files. This is of special interest if the sources are not
available for these object files or libraries, and the solution to rebuild everything just
from scratch with the same compiler is not possible.

One approach that works well on almost all UNIX-like platforms is to search in
the object files for certain strings that provide a hint regarding the compiler version.
Possible ways are to use UNIX tools such as strings and egrep or an editor
such as emacs.

What strings do we look for? This depends on the compiler that has been used –
we cannot supply a complete list for all past, current, and future compilers. But we
can provide some hints for the most frequently used ones. This also gives an idea of
what type of information to look for when other compilers come into play:

• GNU compilers contain a string “(GCC)” followed by the version number.
• Sun compilers contain a string “Forte Developer” or “Sun” followed by

the compiler version number and the patch level.
• HP compilers do not include version strings directly, but typically supply com-

plete path names to system files that have been included. These paths contain the
compiler version of the compiler as well.

Here is one example of searching for the compiler version string on UNIX/Linux:

> strings -a factorial.o | egrep "(GCC|GNU|Sun|Forte|HP)"
GCC: (GNU) 3.3.2

9.6 Identifying Compiler and Linker Version Mismatches 121

Another approach to guessing the compiler that produced an object file is to observe
the generated symbols in the object files, for example using the UNIX utility nm.
Different compilers use different symbols for certain C++ language constructs or
standard C++ classes. In case of doubt, create a small test file like the following,
compile it with the compiler that should be used throughout the entire program and
check the generated object files with nm. If the same sort of symbols shows up in
the object file and test file, then chances are good that this compiler was also used
to create the object file.

1 #include <iostream>
2
3 struct B { virtual int foo(); };
4 struct D: public B { virtual int foo(); };
5 void test() {
6 std::string S("abc"); // std::string::string(...)
7 std::string S2(S); // ditto
8 int* a = new int[4]; // operator new[]
9 delete a[]; // operator delete[]

10 D* d1 = new D;
11 B* b = d1;
12 D* d2 = dynamic_cast<D*>(b); // dynamic_cast
13 }

Fig. 9.2 Example file test file.cc

Compile the file and check symbol name with nm:

> g++ -c test_file.cc
> nm test_file.o | grep " T " # output in mangled form

000000c4 T _Z4testv
> nm -C test_file.o | grep " T " # output in C++ notation

000000c4 T test()

Different compiler families such as GCC and Sun Forte compiler CC have dif-
ferent mangling schemes. Each one has its own version of c++filt which works
differently. This can already give a clue about the compiler. If one tries to translate
a mangled symbol from an object file with the c++filt tool of the currently used
C++ environment and the result does not resemble a C++ signature then it is quite
likely that the object file was compiled with a different compiler.

In the following example the file test file.cc has been compiled with a Sun
Forte compiler, and we are using the c++filt utility of the GCC installation.

> /opt/SUNWspro/bin/CC test_file.cc
> nm test_file.o | grep " T "

00000010 T __1cEtest6F_v_
> nm test_file.o | grep " T " | c++filt

00000010 T __1cEtest6F_v_
> nm test_file.o | grep " T " | /opt/SUNWspro/bin/c++filt

00000010 T void test()

122 9 Dealing with Linking Problems

The example shows that using a non-matching version of c++filt has no effect
at all. In other cases error messages are issued by c++filt saying there is no
information available how to treat the current format.

Using c++filt to test for link-incompatible compiler versions only works reli-
ably when testing for different compiler families. For different versions of the same
compiler family, such as GCC, we have to be extra careful: some c++filt ver-
sions are trying to be smart and detect the format of the input automatically. So you
even get correct looking C++ names as c++filt output even though there is a
version mismatch.

9.7 Solving Dynamic Linking Issues

Libraries with object code can be linked dynamically instead of statically into the
executable. Such dynamic link libraries (DLLs) or shared object files typically have
the extension .so on UNIX and Linux, and the extension .dll on Windows. Ex-
plaining the creation of DLLs for various compilers is not in the scope of this book –
please refer to your compiler documentation.

DLLs have several advantages, such as shorter link times and smaller executable
sizes. In addition to slightly slower program execution, DLLs also have DLL-
specific link and runtime problems. These problems are the focus of this section.

9.7.1 Linking or Loading DLLs

There are two different ways how a DLL can be tied to an executable: it can be
linked to an executable, or it can be loaded with an explicit call at runtime.

Here is an example with GCC how you can specify a DLL as an argument to the
linker:

> gcc -o myprog main.o libA.so

The linker will not link the real content of libA.so into the executable myprog
but it will create a reference to it. Whenever the executable is started, then libA.so
will automatically be loaded.

In Visual Studio you don’t use the actual DLL (file extension .dll) for linking,
but, instead, a special import library, which has the same file extension as a static
library (.lib).

You can access a DLL at runtime via dlopen() on Linux or LoadLibrary()
on Windows. This puts the decision if and when to load the DLL under user control.
It can be loaded early during program startup, in the middle of the program, or not
at all.

After loading a DLL one gains access to its symbols via system calls: dlsym()
on UNIX or Linux, and GetProcAddress() on Windows. These return pointers

9.7 Solving Dynamic Linking Issues 123

to the respective variables and routines, or null pointers if no symbol with the given
name is exported by the DLL.

The example in Figure 9.3 shows both techniques for GCC: function show1() is
located in libutil1.so which is linked into the program. Function show2() is
located in libutil2.so which is loaded in line 13 of main.c. The commands
in Figure 9.4 show the compilation and linking command lines for the DLLs and
the executable myprog. If you want to build shared object files with GCC you
have to use the -fPIC flag to create position-independent code suited for dynamic
linking. To generate shared objects with GCC you have to use the -shared flag.
Note that at link time only libutil1.so is supplied as linker argument, but not
libutil2.so, which is loaded instead.

1 /* dll_issue_example.c */
2 #include <dlfcn.h>
3 #include <stdio.h>
4 void show1(char* msg, int value);
5
6 int main(int argc, char* argv[])
7 {
8 void *dll;
9 void (*fn)(char*,int);

10
11 show1("pol", 42);
12
13 if((dll=dlopen("./libutil2.so",RTLD_NOW|RTLD_GLOBAL))==0){
14 fprintf(stderr,"%s\n",dlerror());
15 return 1;
16 }
17 if((fn = dlsym(dll,"show2")) == 0) {
18 fprintf(stderr,"%s\n",dlerror());
19 return 2;
20 }
21 (fn)("pol", 42);
22 return 0;
23 }

Fig. 9.3 Using DLLs through linking and loading

> gcc -g -c -fPIC util1.c
> gcc -shared -o libutil1.so util1.o
> gcc -g -c -fPIC util2.c
> gcc -shared -o libutil2.so util2.o
> gcc -o myprog -g main.c libutil1.so -ldl

Fig. 9.4 Building and linking shared objects

124 9 Dealing with Linking Problems

9.7.2 DLL Not Found

A very common problem with using DLLs is that the program issues an error mes-
sage about not being able to load or find a DLL or shared object during startup. This
applies to DLLs that are linked into the executable. For example, this can happen
when trying to run the code example of Figure 9.3:

> ./myprog
./myprog: error while loading shared libraries:

libutil1.so: cannot open shared object file:
No such file or directory

When the program is started, a startup routine automatically tries to load all DLLs
that are linked into the executable. How does the program know which DLLs have
to be loaded and where to find them? Most development environments have default
library directories that are searched for DLLs. In addition, you can specify additional
search paths to the linker when building the program. Last but not least, you can
also set environment variables such as LD LIBRARY PATH on UNIX or PATH on
Windows to add directories to the search path of the loader.

The exact rules governing the search order for DLLs are more complex but for
user-defined DLLs the environment variables LD LIBRARY PATH on UNIX and
PATH on Windows are most important.

Utility programs help finding out which DLLs are used in an executable. For
example, on UNIX the command ldd prints a list of dynamic libraries required by
a program and where they are taken from.

> ldd myprog
linux-gate.so.1 => (0xffffe000)
libutil1.so => not found
libdl.so.2 => /lib/libdl.so.2 (0x4002d00)
libc.so.6 =>/lib/tls/libc.so.6 (0x4003100)
/lib/ld-linux.so.2 (0x4000000)

Note that libutil1.so is not found while all other required libraries could be
located on the system.

If a specific library is not found then one should check whether the library
is really not in the library search path of the executable. The DLL search path
consists of

• a list of directories specified by the environment variables LD LIBRARY PATH
or PATH

• a list of OS and machine dependent system library directories such as /lib or
/usr/lib

It should be noted that incorrect search order can result in problems too; specifically
if different versions of the same DLL are stored on your system. Please refer to the
documentation of your linker for details.

9.7 Solving Dynamic Linking Issues 125

9.7.3 Analyzing Loader Issues

Problems with missing or wrong library search paths as described in Section 9.7.2
are often hard to debug without appropriate tools. Most UNIX-like systems offer
runtime analysis support for the loader, which logs or traces each step of the loader
during the runtime of the program. From such traces or log files you can, for exam-
ple, see which directories are searched, and where a DLL was finally found. You can
enable this loader debug feature by setting the environment variable LD DEBUG. If
you set the variable to libs and then call a program using a loader, it will report
every step related to finding the required DLLs.

Setting the environment variable LD DEBUG to libs and running the executable
myprog described in Section 9.7.1 will produce a trace similar to the one shown
below. The first number represents the ID of the process using the loader. Then, for
each DLL that is needed by this process, you see first the name of the DLL followed
by the search path. Next you see the loader looking into all of the directories until it
finds the required DLL or reports a failure.

> setenv LD_DEBUG libs
> ./myprog

2420: find library=libutil1.so [0]; searching
2420: search path=./tls/i686/sse2:./tls/i686:

./tls/sse2:./tls:./i686/sse2:

./i686:./sse2:. (LD_LIBRARY_PATH)
2420: trying file=./tls/i686/sse2/libutil1.so
...
2420: trying file=./i686/libutil1.so
2420: trying file=./sse2/libutil1.so
2420: trying file=./libutil1.so
2420:
2420: find library=libdl.so.2 [0]; searching
2420: search path=./tls/i686/sse2:./tls/i686:

./tls/sse2:./tls:./i686/sse2:

./i686:./sse2:. (LD_LIBRARY_PATH)
2420: trying file=./tls/i686/sse2/libdl.so.2
...
2420: trying file=./i686/libdl.so.2
2420: trying file=./sse2/libdl.so.2
2420: trying file=./libdl.so.2
2420: search cache=/etc/ld.so.cache
2420: trying file=/lib/libdl.so.2
2420:
...

Most loaders offer even more analysis capabilities that you can enable by setting the
environment variable LD DEBUG to different values. If you set LD DEBUG to help
you will also get a short list of the supported features:

> setenv LD_DEBUG help
> ./myprog
Valid options for the LD_DEBUG environment variable are:

126 9 Dealing with Linking Problems

libs display library search paths
reloc display relocation processing
files display progress for input file
symbols display symbol table processing
bindings display information about symbol binding
versions display version dependencies
all all previous options combined
statistics display relocation statistics
unused determined unused DSOs
help display this help message and exit

To direct the debugging output into a file instead of standard output a file name can
be specified using the LD DEBUG OUTPUT environment variable.

9.7.4 Setting Breakpoints in DLLs

As explained before, DLLs can either be linked into the program or they can be
loaded during runtime with an explicit dlopen() call. Most debuggers have dif-
ferent modes and commands related to DLLs.

The default setting is to load debug information for a DLL as soon as possi-
ble. Debug information for linked DLLs is read during startup, debug information
for DLLs that are loaded is read when the DLL is opened with a dlopen() or
LoadLibrary() call. When a debugger is attached to a program, the debug infor-
mation is read for all DLLs that are opened at this point in time. The GDB command
shared library displays which DLLs are already loaded and loads debug in-
formation for them if not already done. In Visual Studio, pause execution, and go to
the menu item Debug/Windows/Modules, to open a window that shows all loaded
DLLs.

The dynamic nature of loading DLLs has the effect that the source code contained
in a DLL can only be debugged after the DLL is loaded. No debug information is
available before that point in time, so it is not possible to set breakpoints directly.
This is especially confusing when starting to debug a completely new and hence
not well known program. In particular it is not always easy to identify which parts
of the source code are compiled into the static part of the program and which parts
are compiled into DLLs. A frequent symptom for the latter is that one tries to set a
breakpoint in a specific function and this fails for no obvious reason.

Most of the newer debuggers have features to cope with this situation: the break-
point is set as pending . Whenever a new DLL is loaded the debugger tries to resolve
pending breakpoints.

We can try this out with the code example shown in Figure 9.3: setting a break-
point in show1 is possible right away but a breakpoint in show2 is pending until
the DLL is loaded in line 13:

> gdb myprog
...
(gdb) break show2

9.7 Solving Dynamic Linking Issues 127

Function "show2" not defined.
Make breakpoint pending on future shared library load?
(y or [n]) y

Breakpoint 1 (show2) pending.
(gdb) run
Starting program: [...]/linking_problems/example4/myprog
Breakpoint 2 at 0xa7a882: file util2.c, line 5.
Pending breakpoint "show2" resolved
util1, pol:value=42

Breakpoint 2, show2 (msg=0x.. "pol", value=42) at util2.c:5
5 printf("util2, %s:value=%d\n", msg, value);
(gdb)

9.7.5 Provide Error Messages for DLL Issues

If loading a dynamic library or accessing its symbols fails then one can make use of
error reporting functions to produce a human-readable explanation of what actually
went wrong. On UNIX this error handling function is called dlerror(). On Win-
dows you can use the functions GetLastError() and FormatMessage()
to provide meaningful error messages. These error reporting functions can also be
called from the debugger.

We make use of dlerror() in lines 14 and 18 of the example in Figure 9.3. If
we remove the DLL that needs to be loaded in line 13 before starting the program
myprog then we observe the following:

> rm libutil2.so
> ./myprog

util1, pol:value=42
./myprog: error while loading shared libraries: libutil2.so:

cannot open shared object file: No such file or directory

Without the error message issued by the dlerror() call in line 14, the program
would silently return from the main() routine without any error message.

128 9 Dealing with Linking Problems

Lessons learned:
• If a linker reports undefined symbols, identify where those symbols are

defined and make sure the appropriate compilation units (object files or
libraries) are supplied as linker arguments.

• The order of the linker arguments is important. This holds both for the
compilation units – such as object files and libraries – and for the search
paths.

• C and C++ compilers produce different symbols for the same functions.
• If a linker reports undefined symbols even though you can not find any

obvious flaws in the linking process, the error might be caused by the
use of different ABIs (application binary interfaces) in the compilation
units. This can occur if the compilation units were created with different
compilers, or with different environment settings.

• Do an Internet search on the missing symbols; chances are good that
other developers have encountered the same link issues.

• Multiply-defined symbols can cause problems too, with runtime sym-
bol clashes being particularly hard to analyze. Renaming symbols in
the source code, introducing namespaces, or mangling the symbols after
compilation can be part of the solution.

• DLLs pose specific challenges. Be aware of search pathes and debugging
aids provided by your linker and runtime loader. Often, breakpoints can
only be set after the corresponding DLLs are loaded.

Chapter 10
Advanced Debugging

In this chapter you will find a collection of advanced debugging topics. We will
address each topic in a stand-alone section. Some of the topics are general, whereas
some are specific to a particular debugger.

In Sections 10.1 – 10.5 we show how to navigate with the debugger in C++ code.
We will concentrate on function overloading, implicit functions, templates, and
static constructors/destructors. We will look at data-dependent breakpoints called
watchpoints in Section 10.6, followed by sections on how to debug signals and ex-
ceptions, how to read stack traces, how to modify a running program, and how to
debug a program that was compiled without debug information.

10.1 Setting Breakpoints in C++ Functions, Methods,
and Operators

An important debugging skill is to force a program stop at a location that is of
interest to you. We do this by setting a breakpoint in a specific function or line,
as explained in Chapter 3. However, when setting breakpoints in C++ methods,
functions and operators, the debugger may refuse to set a breakpoint, reporting that
there is no such function, or there are too many functions to select.

C++ supports function overloading, so there may be multiple C++ functions with
the same name, but with differences in the type and number of arguments. The
debugger needs to know the exact signature of the C++ function in order to find it.
In C++, the signature of a function contains the name, class name, the types of all
arguments, and namespace. For a template function specialization, the signature also
includes the template arguments. The purpose of the signature is to let the debugger
distinguish between multiple versions of functions. The signature of a function is
also used when a program is linked (see Chapter 9).

Since typing the correct signature of a C++ function into the debugger can be
time-consuming, you should let the debugger assist you in selecting the desired

129

130 10 Advanced Debugging

C++ function names. GDB and Visual Studio provide several useful features, which
we will explain with the help of the following example:

1 class C {
2 public:
3 C(int a) : n(a) {}
4 int foo(int a) {return n=a;}
5 int foo() const {return n;}
6 int foo(char c, bool b) {return n+=b+c;}
7 C& operator=(const C& r) {n=r.foo(); return *this; }
8 private:
9 int n;

10 };
11
12 int main(int argc, char* argv[]) {
13 C ca(0);
14 C cb(1);
15 ca.foo(-23);
16 cb=ca;
17 return cb.foo(’A’,false);
18 }

For GDB, we start the program and then set a breakpoint in member function foo
on line 4. We first try to set a breakpoint with the break C::foo command:

(gdb) break C::foo
[0] cancel
[1] all
[2] C::foo(char, bool) at main.cpp:6
[3] C::foo() const at main.cpp:5
[4] C::foo(int) at main.cpp:4

The method name foo does not specify the arguments, so the name is ambiguous
and GDB prints a list of all matching methods. One solution is to enter one of the
candidate signatures proposed by GDB. Example: break C::foo(int) will
break in line 4.

You can also type in a partial signature, and then let GDB do the rest. GDB has a
convenient completion feature that is similar to file completion in a command shell.
Use a single quote ’ as a prefix for a function and the TAB key or the sequence
ESC ? to trigger the automatic completion. For example, type break ’C::foo
followed by TAB.

A different way to find out more about class methods is to use the ptype com-
mand of GDB. This command lists all elements of the class including the methods:

(gdb) ptype C
type = class C {

private:
int n;

public:
C(int);

10.2 Setting Breakpoints in Templatized Functions and C++ Classes 131

int foo(int);
int foo() const;
int foo(char, bool);
C & operator=(C const&);

}

The GDB command info functions <expr>will find all global and member
functions that match <expr>:

(gdb) info functions C::foo
All functions matching regular expression "C::foo":

File main.cpp:
int C::foo() const;
int C::foo(char, bool);
int C::foo(int);

In the Visual Studio debugger, go to the Debug menu, click on item
Breakpoint/Break at Function.... Enter C::foo. This will create 3 breakpoints,
one for each function named C::foo. For overloaded functions, you can enter the
function name followed by the argument types. For example, C::foo(int) will
create a breakpoint in line 4.

Lessons learned:
• Setting breakpoints in C++ code is complicated by function overload-

ing. Use a simple C++ example to familiarize yourself with debugger
commands and features to list the complete signature of functions, and
to cope with incomplete signatures.

10.2 Setting Breakpoints in Templatized Functions
and C++ Classes

A problem particular to GDB is handling breakpoints in templates. When you set a
breakpoint in a specific line of a templatized function or C++ class, the program
may not stop there. We will explain why this happens, and how to circumvent
the problem. Consider the following example containing a templatized function
myFunction:

1 #include <iostream>
2
3 template <class T>
4 void myFunction(T value)
5 {
6 std::cout << "got " << value << std::endl;
7 }

132 10 Advanced Debugging

8
9 int main(int argc, char* argv[]) {

10 myFunction(100);
11 myFunction(’A’);
12 myFunction(true);
13 return 0;
14 }

We want to stop on each call of myFunction, so we put a breakpoint at line 6.
GDB accepts the breakpoint command, but when we run the program, we find that
the debugger stops only once and not three times:

(gdb) break main.cpp:6
Breakpoint 1 at 0x8048882: file main.cpp, line 6.
(gdb) run
got 100

Breakpoint 1, myFunction<char> (value=65 ’A’) at main.cpp:6
6 std::cout << "got " << value << std::endl;
(gdb) cont
got A
got 1

Why did GDB fail to stop on the first call? The C++ compiler creates different
object code when a template is instantiated with a new argument. The debug-
ging information in every template instance will refer back to the same source
line in the template code. Setting a breakpoint in a specific line in a template
causes GDB to set the breakpoint in just one instance. In the example, break
main.cpp:6 sets the breakpoint in myFunction<char>. No other instances,
such as myFunction<int>, get a breakpoint, so GDB will not stop there.

You should use the info breakpoints command to find out which template
instance GDB really did select:

(gdb) info breakpoints
Num Type Disp Enb Address What
1 breakpoint keep y 0x.. in void myFunction<char>(char)

at main.cpp:6
breakpoint already hit 1 time

In order to stop in a different template instance, you must set breakpoints at function
signatures and not at source code lines. See the previous Section 10.1 on how set
breakpoints in C++ functions.

(gdb) info functions myFunction
All functions matching regular expression "myFunction":

File main.cpp:
void void myFunction<bool>(bool);
void void myFunction<char>(char);
void void myFunction<int>(int);

Following this approach, we can set breakpoints in all three template instances of
myFunction and we will now see that GDB stops in all three function calls:

10.3 Stepping in C++ Methods 133

(gdb) break void myFunction<bool>(bool)
Breakpoint 2 at 0x80488b6: file main.cpp, line 6.
(gdb) break void myFunction<int>(int)
Breakpoint 3 at 0x80488e8: file main.cpp, line 6.

Note that we have discussed a GDB issue that exists in GDB 6.5 and previous ver-
sions; newer versions of GDB may have fixed this problem. However, independent
of the debugger used, it is important to be aware of the subtle rules that apply to
template instantiations and breakpoints. Different instantiations will result in mul-
tiple functions at different memory addresses. A specific breakpoint always applies
to just one instance.

If you use Visual Studio and set the breakpoint in line 6, then it will create three
breakpoints, one for each template instance, which is more intuitive than GDB.

Lessons learned:
• Setting a breakpoint at a specific line in a template can be ambiguous.

Specifying breakpoints by function signature removes the ambiguity.
• Be careful with templatized functions or members. A GDB breakpoint

applies to only one instantiation of the template, not to all.

10.3 Stepping in C++ Methods

In C++, a simple statement of C++ code may contain many implicit or “hidden”
function calls. For example, the statement A=B; could contain calls to an assign-
ment operator or a type conversion operator. Class constructors, operators, implicit
conversions, and so on, allow us to express complex operations with a very com-
pact piece of source code. This gives us good abstraction, high code density, and
the ability to extend the language with class libraries. The drawback of the compact
C++ source code is in debugging: all those implicit functions have to be made vis-
ible if they do not work as intended. In this section, we will show how to find out
which implicit functions are called, and how to navigate the debugger into a specific
function.

Consider the following example, an intentionally less-than-well-written string
class STR.

1 /* class STR example */
2 #include <string>
3 #include <iostream>
4
5 class STR {
6 public:
7 STR(const char* a) {
8 s=a;
9 num++;

134 10 Advanced Debugging

10 }
11 STR(const STR& a) {
12 s=a.s;
13 num++;
14 }
15 ˜STR() {
16 num--;
17 }
18 const char* c_str() const {
19 return s.c_str();
20 }
21 const STR& operator+ (const STR& a) {
22 s += a.s; return *this;
23 }
24 int num_objs() const {
25 return num;
26 }
27 STR operator* (int num_copies) const {
28 std::string tmp("");
29 for (int n=0; n<num_copies;n++)
30 tmp += s;
31 return STR(tmp.c_str());
32 }
33 private:
34 static int num; // total #objects of this class
35 std::string s;
36 };
37 int STR::num=0;
38
39 void show(STR z)
40 {
41 std::cout <<z.num_objs() <<": " <<z.c_str() <<std::endl;
42 }
43
44 int main(int argc, char* argv[]) {
45 STR x="abc";
46 show(x);
47 show((x+"def") * 3);
48 return 0;
49 }

10.3.1 Stepping into Implicit Functions

Take a look at the show(x) statement in line 46. Function main() seems to di-
rectly call function show() but there is a hidden call to a constructor of class STR.
The reason for this constructor call is that the function show() uses STR argu-
ments, instead of references to STR objects, so the compiler must create a copy of
the argument before calling the function. By advancing the debugger to line 46 and

10.3 Stepping in C++ Methods 135

stepping into the function call, the constructor of STR is called. We then continue to
use step-into commands to proceed until we are in function show():

...
46 show(x);
(gdb) step
STR (this=0xbfffee00, a=@0xbfffee10) at main.cpp:11
11 STR(const STR& a) {
...
(gdb) step
show (z= ... 0x804b014 "abc" ...) at main.cpp:41
41 cout <<z.num_objs() <<": " <<z.c_str() <<endl;

The step-into command will go down into any implicit function call, so it is a good
way to locate implicit functions. It is important to understand that a step-into will
usually only stop in code that is compiled with debug information. That means im-
plicit functions compiled without debug information are not easy to find.

Note that a step-into command may occasionally go into functions or meth-
ods provided by the C++ compiler or the various included libraries. This can
happen in the above example when a step-into goes into the constructor of class
std::basic string<...>.

10.3.2 Skipping Implicit Functions with the Step-out Command

Let us now debug the function call to show(x + "def") in line 47 of exam-
ple 10.3. Line 47 is really a sequence of implicit function calls equivalent to (but not
necessarily identical to) the pseudo code statements that we labeled 47-1 . . . 47-6 in
Figure 10.1

47 show((x+"def") * 3);
47.1 tmp1=STR::STR("def");
47.2 tmp2=STR::operator+(x,tmp1);
47.3 operator*(tmp2,3);
47.4 show(tmp2);
47.5 STR::˜STR(tmp2);
47.6 STR::˜STR(tmp1);

48 return 0;

Fig. 10.1 Implicit functions calls

We can reach the body of function show() with repeated step-into commands,
but this will walk through the function bodies of statements 47-1 to 47-3, including
any function calls performed in those lines. It takes a large number of step-into
commands to do it this way, and it is easy to get lost in low-level implementation
details. Is there a faster way to step from line 47 into function show() in line 41?

136 10 Advanced Debugging

One way to speed things up is to step-out of the current function. In GDB, this is
the finish command. In Visual Studio, use the Step-Out button.

Let us see how that works. We start at line 47, which translates to line 47-1 of our
imaginary pseudo-code. The step-into command brings us into the body of the STR
constructor in line 7. The step-out command brings us out of the constructor and will
stop at statement 47-2. Note that GDB will report the location as 0x<address>
... at main.cpp:47. All pseudo-code lines 47-1 ... 47-4 belong to the same
source line 47 but all have different program addresses, so there is a way to distin-
guish them. The next step-into then goes into the function call of 47-2.

It is difficult to keep track of which implicit function is called, but a sequence
of commands step-into, step-out, step-into, ... will eventually lead into function
show(). A look at the call stack is helpful if you lost track. In this example, it takes
4 step-into commands, plus 3 step-out commands, which is considerably faster than
a large number of consecutive step-into commands.

10.3.3 Skipping Implicit Functions with a Temporary Breakpoint

In some cases, you may want want to go from line 47 directly into the function
show(), without stepping through all the implicit functions that compute the func-
tion arguments. This can be done by setting a temporary breakpoint with the GDB
command tbreak:

(gdb) tbreak show
Breakpoint 2 at 0x8048a06: file main.cpp, line 41.
(gdb) cont
show (z=..."abcdefabcdefabcdef"...) at main.cpp:41
41 cout <<z.num_objs() <<": " <<z.c_str() <<endl;

Note that GDB removes temporary breakpoints automatically the first time they are
hit. The GDB debugger also does not report the breakpoint number when it is hit.

In Visual Studio, set a breakpoint by left-clicking on line 41, and hit the F5
function key to continue. Once the debugger stops in line 41, remove the breakpoint
by left-clicking on line 41 again.

10.3.4 Returning from Implicit Function Calls

Temporary breakpoints are also useful if you get lost in nested implicit function
calls. Let us start again in line 47 and use repeated step-into commands until we
reach the second constructor call in line 7. Assume that by now, you have lost track
of what is going on, and you just want to get back to line 47 to start stepping into
implicit functions again. You can combine the stack navigation command up and
tbreak in the following way to get to the next pseudo statement in line 47:

10.4 Conditional Breakpoints and Breakpoint Commands 137

47 show((x+"def") * 3);
(gdb) step (repeatedly until you reach line 7 again)
...
(gdb) step
7 STR(const char* a) {
(gdb) where
#0 STR (..."abcdefabcdefabcdef"...) at main.cpp:7
#1 in STR::operator* (...) at main.cpp:31
#2 in main (...) at main.cpp:47
(gdb) up
(gdb) up
(gdb) tbreak
Breakpoint 4 at 0x8048b1d: file main.cpp, line 47.
(gdb) cont
47 show((x+"def") * 3);
(gdb) step
show (z=..."abcdefabcdefabcdef"...) at main.cpp:41
41 cout <<z.num_objs() <<": " <<z.c_str() <<endl;

When used without an argument, the command tbreak instructs the debugger to
stop on the next address in the selected stack frame, which happens to be line 47-4
of our imaginary pseudo-code.

Lessons learned:
• To locate hidden function calls, compile all code with debug information,

and use the step-into command repeatedly.
• To bypass stepping through all source code lines of implicit functions,

do step-out, step-into repeatedly.
• To bypass stepping through hidden functions, set a temporary breakpoint

in the target function, and then continue.
• If you get lost stepping through implicit functions, navigate up in the

stack until you are back to the calling statement, and set a temporary
breakpoint.

10.4 Conditional Breakpoints and Breakpoint Commands

You will frequently encounter the situation where the program stops at too many
breakpoints before it reaches the place that you want to debug. The question is how
to make the program stop when it is most interesting, and automatically continue in
all other cases. The answer is to use conditional breakpoints and breakpoint com-
mands, which we discuss in this section.

We will explain the use of conditional breakpoints first using GDB in the STR
class example from Section 10.3 on page 134 above. The class has a STR constructor
for string literals. String literals are constants of type const char* in the source

138 10 Advanced Debugging

code, for example "abc" in line 45. We will use a breakpoint command to find
out the time and location of the constructor call. We want to print one line per
constructor call, and thereafter the program should continue automatically. We will
then add a conditional breakpoint that will pause the program when the constructor
is called with the argument "def".

Let us first do this with the GDB debugger. We use commands to specify a se-
quence of commands that will be executed whenever a particular breakpoint is hit.
The sequence starts with silent, which prohibits printing the subsequent com-
mands, so the screen is not cluttered with too much output. We want to print only
one line to the screen and use the GDB command printf to create a nicely for-
matted output. The continue command resumes the execution of the program.
The command sequence is terminated with end:

(gdb) break main.cpp:7
Breakpoint 1 at 0x8048c3a: file main.cpp, line 7.
(gdb) commands 1
Type commands for when breakpoint 1 is hit, one per line.
End with a line saying just "end".
> silent
> printf "STR CTOR with a=0x%x \"%s\"\n", a, a
> continue
> end
(gdb)

The argument in commands 1 refers to breakpoint number 1. Each breakpoint can
have only one sequence of commands attached. If we specify commands 1 again,
it will override the previous command sequence.

Running the program will now print the memory addresses and string literals of
all STR constructors, and we see that there are three constructor calls.

(gdb) run
...
STR CTOR with a=0x8048f3b "abc"
2: abc
STR CTOR with a=0x8048f3f "def"
STR CTOR with a=0x804b51c "abcdefabcdefabcdef"
3: abcdefabcdefabcdef

In Visual Studio, create the breakpoint by right-clicking on line 7 of the ex-
ample, and select Breakpoint/Insert Breakpoint. Then, go to the Breakpoints
window, right-click on the breakpoint, and select the When Hit... dialog. Select
Print a message. Make sure the continue execution check mark is set.

Next in our GDB example, we will create a conditional breakpoint to stop at the
call with string literal "def", by using the condition command of GDB:

(gdb) break main.cpp:7
...
Breakpoint 2 at 0x8048c3a: file main.cpp, line 7.
(gdb) condition 2 a[0]==’d’ && a[1]==’e’ && a[2]==’f’ &&a[3]==0
(gdb) run
...

10.4 Conditional Breakpoints and Breakpoint Commands 139

Breakpoint 2, in STR (... a=0x8048f3f "def") at main.cpp:7
7 STR(const char* a) {

Choosing the right condition here is tricky because we have a string literal. The
conditional expression a=="def" is never true, since the debugger compares the
value of pointer a with the address of another string literal "def". Both string
literals have the same content ("def") but are stored at different addresses. We
also cannot call function strcmp() inside the condition. As a compromise, we
compare individual characters of the string.

In Visual Studio, right-click on the breakpoint in line 7, and select
Breakpoint/Condition. Enter a[0]==’d’ && a[1]==’e’ && a[2]==’f’
&& a[3]==0 in the dialog.

An alternative method to create a conditional breakpoint in GDB is to use a
regular breakpoint, but then attach a command containing a conditional statement.

(gdb) break 7
Breakpoint 2 at 0x8048c3a: file main.cpp, line 7.
(gdb) commands 2
Type the commands for when breakpoint 2 is hit, one per line.
End with a line saying "end".
> silent
> print strcmp(a,"def")
> if $$0==0
> print "FOUND the right BP!"
> else
> printf "STR CTOR with a=0x%x \"%s\"\n", a, a
> continue
> end
> end
(gdb)

Expression $$0 refers to the result returned by the previous line, in this case the
command print strcmp(a,"def").

Note that conditional breakpoints or breakpoint commands can slow down pro-
gram execution. CPU time is needed for GDB whenever the breakpoint is reached,
regardless of whether the condition is met or not.

Lessons learned:
• You can add print statements without recompiling the program, by using

breakpoint commands.
• A conditional breakpoint can catch a specific function call and ignore all

others.
• Breakpoints can significantly slow down program execution.

140 10 Advanced Debugging

10.5 Debugging Static Constructor/Destructor Problems

In this section, we show how to debug problems with static constructors and de-
structors. In C++, a class object instantiated in global scope or a static class member
will cause a call to the object’s constructor at program startup. In addition, C++
allows you to initialize global and static objects with a function or method called
static initializer. Here is an example:

MyClass otherGlobal;
int MyClass::veryImportantStatic = somefunction();

An unusual aspect is when these function and constructor calls take place. They hap-
pen during the static initialization phase which takes place before function main()
is called. Similarly, destructors are called for static or global class objects during the
shut-down phase of the program, after main() has returned.

If the static constructors are part of a shared library, then they take place when the
library is dynamically loaded at runtime. This happens either during startup time, or
later, if the shared library is explicitly loaded from the program’s code. Destructors
are executed when the program exits, or when the shared library is explicitly closed.

Static initializers can cause some particularly ugly bugs, and create special de-
bugging challenges. The most common source for bugs is program code that relies
on a certain order of static initialization. Stack traces will look different because
these calls are not invoked from main(). Finally, there is an additional complica-
tion if you have to attach the debugger to a running program; the initialization may
have already taken place by the time the debugger is connected.

10.5.1 Bugs Due to Order-Dependence of Static Initializers

The following example has two variables with static initializers, the global variable
otherGlobal and the static variable veryImportantStatic.

1 /* MyClass.h */
2 class MyClass {
3 public:
4 MyClass::MyClass() {
5 int i;
6 for(i=0;i<10;i++)
7 a[i]= veryImportantStatic+i; }
8 int a[10];
9 static int veryImportantStatic;

10 };

1 /* MyClass.cc */
2 #include "MyClass.h"
3
4 int somefunction()

10.5 Debugging Static Constructor/Destructor Problems 141

5 { return 42; }
6
7 int MyClass::veryImportantStatic = somefunction();

1 /* static_conflict.cc */
2 #include <stdio.h>
3 #include "MyClass.h"
4
5 MyClass otherGlobal;
6
7 int main() {
8 printf("otherGlobal.a[3]=%d\n", otherGlobal.a[3]);
9 return 0;

10 }

Both variables are initialized by functions that are called during the startup of the
program. There is a hidden requirement that veryImportantStatic must be
initialized before otherGlobal. However, the programmer failed to take care of
the necessary precautions, so the program relies on mere luck that the initialization
order is correct.

In addition to the compiler, the initialization order also depends on the linker
and link order. The sequence how linkers arrange static initializer code is not stan-
dardized, and subject to change. For the above example, GCC 3.4.4 will compute the
intended result by initializing veryImportantStatic first. The result in Visual
Studio 2008 will depend on the order in which you list the source files in the project.
Keep in mind that it is also possible to create examples with cyclic dependencies that
will never work.

10.5.2 Recognizing the Stack Trace of Static Initializers

Bugs related to order-of-construction or order-of-destruction problems tend to be
very obscure, so they are not easily recognized. The first useful indication when
searching for these bugs is the stack trace:

> g++ -g -o static_conflict static_conflict.cc MyClass.cc
> ./static_conflict
otherGlobal.a[3]=45
> gdb ./static_conflict
...
(gdb) break MyClass.cc:5
Breakpoint 1 at 0x4010e0: file MyClass.cc, line 5.
(gdb) run
(gdb) where
#0 somefunction () at MyClass.cc:5
#1 0x.. in __static_initialization_and_destruction_0 (

__initialize_p=1, __priority=65535) at MyClass.cc:7
#2 0x.. in global constructors keyed to _Z12somefunctionv ()

at MyClass.cc:8
#3 0x.. in do_global_ctors () from /usr/bin/cygwin1.dll
#4 0x.. in _check_for_executable () from /usr/bin/cygwin1.dll

142 10 Advanced Debugging

Note that function main() is not part of the stack trace because it has not yet been
called. The call of somefunction()was initiated from functions provided by the
compiler and operating system. The exact names of such functions may vary with
the compiler and OS but their names will be similar to those above. From here on,
you can set breakpoints in the constructors and initialization routines, and proceed
debugging as usual.

10.5.3 Attaching the Debugger Before Static Initialization

In some situations, you may have to attach the debugger to a running process, and
then debug the initialization routines. Because static initialization routines are called
during the startup phase, they are already executed by the time you are ready to
attach the debugger. It is therefore necessary to slow-down program execution at the
init phase. We add another static initializer call that introduces enough delay to the
program to allow you to attach the debugger. The following piece of code gives an
example of how to do this:

File initial_delay.cpp
1 #include <unistd.h>
2
3 static int delay_done=0;
4 static int ask_mice() {
5 while(!delay_done)
6 sleep(10);
7 return 42;
8 }
9 static int pol = ask_mice();

We attach to the running process, and then set up all the breakpoint in the debug-
ger that we need. Then we change the delay done variable to let the program
continue.

> g++ -o test -g main.cpp inital_delay.cpp
> ./test &
[1] 20189

> gdb test 20189
(gdb) ...
(gdb) set var delay_done=1
(gdb) continue

Note that this approach also relies on the particular execution order of static ini-
tialization code, namely that ask mice() is called first. The linker influences the
order, so it may require some experimentation to place this code into the file that the
linker initializes first.

10.6 Using Watchpoints 143

Lessons learned:
• C++ uses functions to initialize global objects. These functions are called

before main(), and have no predefined order of execution. Use the pro-
vided example to learn how to debug these initialization functions.

• Use the provided code fragment to attach to a running process, and then
debug the static initialization functions.

10.6 Using Watchpoints

Watchpoints or data breakpoints stop the program if the value of an expression
changes. In GDB, the expression for the watch command can be a variable, a mem-
ory address, or an arbitrary complex expression. The debugger will now constantly
monitor the expression and stop the program at the statement where the expression
changes.

In Visual Studio, use the dialog Debug/New Breakpoint/New Data Breakpoint
to set a watchpoint. Here, it is not possible to attach a watchpoint to a variable of
local scope: only addresses can be watched.

In the example below, we will again use the STR class program from
Section 10.3, page 134. We want to find all occasions when the variable x.num
changes. The debugger should stop whenever x.num changes, and print which
statement modified it. We will use GDB here.

(gdb) start
(gdb) watch x.num
Hardware watchpoint 2: x.num
(gdb) cont
...
9 num++
(gdb) where
#0 0x08048c62 in STR::STR (...) at break_str.cc:9
#1 0x08048a92 in main (...) at break_str.cc:45

As we can see, the program is paused when the value of the watchpoint expression
changes.

If possible, the GDB debugger will implement the watchpoint with hardware
assistance. If a watchpoint is not hardware assisted, it can seriously slow down
the program, whereas hardware breakpoints impose almost no slow-down of the
execution.

Note that GDB deletes watchpoints that contain variables of local scope, when
the program leaves that scope. For example, if you stop in one of the constructors
and set a watchpoint on num, the watchpoint is lost as soon as you leave the con-
structor.

144 10 Advanced Debugging

For both GDB and Visual Studio, you can set the watchpoint on the address of
the variable that you want to watch. This expression will remain valid in all scopes,
so the watchpoint is not deleted:

(gdb) start
... run program till line 13
13 num++;
(gdb) p &num
$1 = (int *) 0x804a360
(gdb) watch *0x804a360
Hardware watchpoint 2: *134521696

Do not forget the * in front of the address. If you accidentally type watch
0x804a360 instead of watch *0x804a360, the watchpoint will check a con-
stant hex address value that never changes.

Watching addresses is not recommended for objects on the program stack, such
as a local variable. Once the current function is exited, the stack will be used to store
other variables. There is also no guarantee that the local variable that you want to
watch will be assigned the same stack address on the next call to the function.

Lessons learned:
• Watchpoints offer an effective way to find all statements that modify a

specific variable.
• Watchpoints that are not hardware assisted have a significant impact on

performance.
• The use of watchpoints is not recommended for local variables.

10.7 Catching Signals

This section deals with debugging signals. Signals allow communication between
processes. A signal is sent from one process to another, or within the same pro-
cess. Signals are asynchronous. The set of available signals varies with the oper-
ating system. Fewer signals are available on Windows. On UNIX or Linux, use the
command kill -l to list all available signals. A widely known application is the
Ctrl-C keystroke that interrupts a running program. Typing Ctrl-C in a shell sends a
SIGINT signal to the program running in the foreground.

The process that receives a signal must react to it. The process may have a C
function called a signal handler registered for a specific signal type. Whenever a
signal of this type comes in, and is not temporarily blocked, the handler is called,
irrespective of what the process is currently doing. In the absence of a user-defined
handler, the operating system takes a predefined action, which, depending on the
signal, either aborts the program, ignores the signal, or suspends the process.

10.7 Catching Signals 145

Problems arising from signal handling are hard to debug, since we cannot predict
when the event occurs. System calls may be interrupted, and can return with an
unanticipated error code. Also, we could be in the middle of constructing a data
structure, so reading or writing values to that structure from the signal handler can
produce unpredictable results.

Most debuggers allow the user to specify how to handle each individual incoming
signal. In GDB, this is done with the handle command. It is possible to print a
message to the screen, and/or to stop execution of the program. We can also instruct
the debugger to ignore the signal, so it will be handled by the registered interrupt
handle. There is also a command that tells the debugger to produce and deliver a
signal to the program. For GDB, this is the signal command.

We can use the following strategies to debug signal related problems:

• Improve visibility: instruct the debugger to print a message when it receives a
signal (for example, SIGUSR1), and then propagate it to the program. The signal
will leave a visible trace on the screen, which makes it easier to understand what
is going on:
handle SIGUSR1 print nostop pass.

• Disable disturbing signals: a signal handler may interfere with some other aspect
of the program that you want to debug. Use the debugger to ignore all incoming
signals so that there are no more calls to the signal handler:
handle SIGUSR1 noprint nostop nopass.

• Provoke a bug: produce a signal and send it to the program to test whether or not
it triggers the bug: signal SIGUSR1.

The following example has a simple signal handler that counts how often the signal
SIGUSR1 is received while the program is busy in some inner delay loop. Note that
this program will not compile on Windows, as signal SIGUSR1 is not supported on
this platform.

1 #include <signal.h>
2 #include <stdio.h>
3
4 static int num_sigusr1=0;
5
6 void handler(int sig) {
7 num_sigusr1++;
8 signal(SIGUSR1,&handler);
9 }

10
11 int main(int argc, char** argv) {
12 int n,m, pol=0;
13 signal(SIGUSR1,&handler);
14 printf("- program starts\n"); fflush(stdout);
15 for (n=0; n<10; n++) {
16 raise(SIGUSR1);
17 for (m=0; m<1000000000; m++)
18 pol++;
19 }
20 printf("- program ends: received SIGUSR1 %d time(s)\n",

146 10 Advanced Debugging

21 num_sigusr1);
22 fflush(stdout);
23 return 0;
24 }

The program will send itself 10 signals of type SIGUSR1. While it is running, send
more signals from another shell with the help of UNIX command kill -USR1
<pid>. Run the program under GDB and use the GDB command handle to
configure how GDB should react to an incoming signal. First, we make the signal
visible:

(gdb) handle SIGUSR1 print nostop pass
Signal Stop Print Pass to program Description
SIGUSR1 No Yes Yes User defined signal 1
(gdb) run

As soon as the handler receives the signal, GDB prints a message:

Program received signal SIGUSR1, User defined signal 1.
Program received signal SIGUSR1, User defined signal 1.
Program received signal SIGUSR1, User defined signal 1.
...
program ends: received SIGUSR1 10 time(s)

Next, we disable SIGUSR1 so that it will no longer reach the program:

(gdb) handle SIGUSR1 noprint nostop nopass
Signal Stop Print Pass to program Description
SIGUSR1 No No No User defined signal 1
(gdb) run
program ends: received SIGUSR1 0 time(s)

Finally, use the GDB signal command to produce a signal to test how the program
reacts:

(gdb) break handler
Breakpoint 1 at 0x894842f: file main.c, line 7.
(gdb) run
... Interrupt program with Ctrl-C
(gdb) signal SIGUSR1
Continuing with signal SIGUSR1

Breakpoint 1, handler (sig=10) at main.c:7
7 num_sigusr1++;

...
program ends: received SIGUSR1 11 time(s)

We see that the handler receives the signal in line 7, and is accounted for.

Lessons learned:
• Debuggers are able to deal with signals such as SIGUSR1, SIGALRM,

SIGSEGV, SIGINT.
• You can make signals visible, filter them out, or create them with the

help of the debugger.

10.8 Catching Exceptions 147

10.8 Catching Exceptions

C++ has a feature called exceptions. It is used for error handling, as well as for
handling exceptional situations, as the term suggests. An exception is thrown (gen-
erated) and caught (consumed) within the same process. The GDB catch throw
command makes the debugger stop when any exception is thrown. The catch
catch command makes the debugger stop when any exception is caught. Consider
the following example:

1 #include <iostream>
2
3 void f1() {
4 throw 42;
5 }
6 void f2() {
7 throw "pol";
8 }
9

10 int main(int,char**) {
11 try {
12 f1();
13 } catch (int E) {
14 std::cout << "caught E=" << E << std::endl;
15 }
16 f2();
17 return 0;
18 }

(gdb) start
...
(gdb) catch throw
Catchpoint 2 (throw)
(gdb) catch catch
Catchpoint 3 (catch)
(gdb) cont

Catchpoint 2 (exception thrown)
0x400c1ea5 in __cxa_throw () from /usr/lib/libstdc++.so.5
(gdb) where
#0 0x400c1ea5 in __cxa_throw () from /usr/lib/libstdc++.so.5
#1 0x08048955 in f1 () at main.cpp:4
#2 0x800489a2 in main () at main.cpp:12

Note that the GDB catch and throw commands may only work after the C++
runtime library (DLL) has been loaded. Therefore, make sure the program is running
before entering these commands. One convenient way to achieve this is to stop the
program at the first line of main() with the start command.

If a debugger cannot be applied, then an alternative debugging strategy would
be to modify the program, and insert a catch statement. When an exception is
thrown, the program will continue at the next surrounding catch statement that
has a matching type. Note that catch(...) will catch any exception regardless

148 10 Advanced Debugging

of the type. This tells you that an exception has occurred and, if the type is known,
what value the exception has. However, this strategy does not reveal the location
of where the exception was thrown, so using a debugger should always be the first
choice.

In Visual Studio, go to the Debug menu, and select Exceptions.... A dialog win-
dow will pop up, giving you the choice to break the program when certain excep-
tions are thrown. Select C++ Exceptions to enable a program breakpoint for the
C++ throw statements in your code.

Lessons learned:
• Use the GDB catch command to debug C++ exceptions.
• In Visual Studio, go to menu Debug and use the Exceptions... window

to enable a program breakpoint when an exception is thrown.

10.9 Reading Stack Traces

This section focuses on the skill of reading stack traces. Chapter 3.4 has already
introduced these and has shown you how to navigate stack frames with a debugger.
A stack trace is a list of frames, where each frame corresponds to a called function.
The function name may be readable, and the frame may have additional information
about function arguments.

10.9.1 Stack Trace of Source Code Compiled
with Debug Information

Let us start with the STR class example from Section 10.3, page 134. We modify
the code for operator+ in line 22 such that it references a null pointer and thus
causes a segmentation fault:

file main.cpp
21 const STR& operator+ (const STR& a) {
22 int* dummy=0;
23 (*dummy)++; // <== BUG
24 s += a.s; return *this;
25 }

We compile the program with debug information, and then run it up to the crash:

...
Program received signal SIGSEGV, Segmentation fault.
0x08048d24 in STR::operator+ (...) at break_str.cc:23
23 (*dummy)++;

10.9 Reading Stack Traces 149

...
(gdb) where
#0 0x.. in STR::operator+ (...) at break_str.cc:23
#1 0x.. in main (argc=1, argv=0xbfffee44) at break_str.cc:51

The signal SIGSEGV is a segmentation fault and happens when the program tries to
access a memory address for which it does not have permission. In this example, we
access address 0x0, a common reason for a segmentation fault. Other fatal signals
are SIGBUS (illegal bus address), SIGILL (illegal instruction) and SIGFPE (floating
point exception).

The stack trace has two frames, each with source and line information and
the list of actual arguments. We see that function main() was calling function
STR::operator+ in line 23. This example is as good as a stack trace ever gets.

10.9.2 Stack Trace of Source Code Compiled
Without Debug Information

Quite often, stack traces will not contain as much information. If we compile the
same source file without debug information, then the stack trace will look like this:

> g++ -o break_str break_str.cc
> gdb ./break_str
...
(gdb) where
#0 0x08048d24 in STR::operator+ ()
#1 0x08048b11 in main ()

Note that the source and line information are missing, which makes it harder to find
the faulty source code line. The good news is that it is clear that function main()
was still calling function STR::operator+. Next, you should search sources for
class definition STR and then inside that for operator+, which will bring you
close to line 23. For further information on how to debug programs that were com-
piled without debug information, see Section 10.11.

10.9.3 Frames Without Any Debug Information

It is possible that the debugger will not find any information whatsoever for a partic-
ular frame. We will construct this situation by stripping the executable, which will
remove all debug information:

> g++ -o break_str -g break_str.cc
> strip break_str
> gdb break_str
...
Program received signal SIGSEGV, Segmentation fault.

150 10 Advanced Debugging

0x08048d24 in ?? ()
(gdb) where
#0 0x08048d24 in ?? ()
#1 0x08048b11 in ?? ()
#2 0x4012ae80 in __libc_start_main () from /lib/tls/libc.so.6
#3 0x08048961 in ?? ()

This stack trace is now almost useless, since there are no function names other than
libc start main. All other frames report the function name ??, which indi-

cates that the debugger does not have any debug information for the given address.

Note that the number of stack frames increased to four. This is correct, the
lower two frames are functions that belong to the C/C++ standard library, and call
main(). The debugger normally does not report any frames below main(), so
they were simply not reported before.

Frames reported as ?? will be encountered whenever the debugger has no debug
information about object code at a specific address. This problem can happen in
many situations, including the following:

• The executable was stripped, and all debug information was removed on purpose.
• Debug information is located in a shared library and the debugger has not yet

loaded it.
• The debugger was unable to understand the debug information. This frequently

happens when different compilers are mixed, for example, Sun Forte and GCC
on Solaris.

• The memory where the stack frames are stored is corrupted.

10.9.4 Real-Life Stack Traces

The example below is a stack trace of a real-life application. Try to guess which
application it is (hint: start reading from the bottom) and what it is doing at that
moment (hint: start reading from the top):

#0 0x.. in ?? ()
#1 0x.. in ?? ()
#2 0x.. in ?? ()
#3 0x.. in ?? ()
#4 0x.. in select () from /lib/tls/libc.so.6
#5 0x.. in XtAddTimeOut () from /usr/X11R6/lib/libXt.so.6
#6 0x.. in _XtWaitForSomething () from ..
#7 0x.. in XtAppProcessEvent () from /usr/X11R6/lib/libXt.so.6
#8 0x.. in emacs_Xt_handle_widget_losing_focus ()
#9 0x.. in event_stream_resignal_wakeup ()
#10 0x.. in Fnext_event ()
#11 0x.. in Fcommand_loop_1 ()
#12 0x.. in Fcommand_loop_1 ()
#13 0x.. in condition_case_1 ()
#14 0x.. in Frecursive_edit ()

10.9 Reading Stack Traces 151

#15 0x.. in internal_catch ()
#16 0x.. in initial_command_loop ()
#17 0x.. in xemacs_21_5_b18_i386_suse_linux ()
#18 0x.. in main ()

Frames 17 and 8 reveal that this is the XEmacs editor (the one used to write this
chapter). Frames 4..6 indicate that the editor was waiting for new input, for example
a key stroke. Note that frames 5..7 belong to the X library. Function select()
is part of the standard C library and is probably calling some function of the OS.
Frames 0..3 probably belong to the OS, and no debug information is available for
them.

10.9.5 Mangled Function Names

If we use different compilers to compile C++ source code, there is a chance that
the function names of some frames are reported in their mangled form. Debug-
gers usually demangle such names automatically but occasionally get confused. See
Section 9.3.4, page 114 for details of how to read mangled C++ function names.

10.9.6 Broken Stack Traces

When a program corrupts memory due to a bug, it may also overwrite the call stack.
This frequently happens with local fixed-size arrays. Writing over the boundary of
the array will corrupt the stack, and it is probable that the program will run into a
fatal bug soon afterward. Furthermore, when the debugger tries to report the stack
trace, it will also see corrupted data instead of the correct call stack information. We
can construct this scenario with the following example:

1 int n;
2 int *p;
3 int F(int a) {
4 p = &a;
5 for (n=a; n>0; n--)
6 *p-- = 0x42;
7 return a;
8 }
9 int main(int argc, char* argv[])

10 {
11 return F(10);
12 }

> g++ -o broken_stack -g broken_stack.cc
> gdb broken_stack
...
(gdb) run
...

152 10 Advanced Debugging

Program received signal SIGSEGV, Segmentation fault.
0x0000002a in ?? ()
(gdb) where
#0 0x00000042 in ?? ()
#1 0x00000042 in ?? ()
#2 0xbfffee4c in ?? ()
#3 0xbfffedb8 in ?? ()
#4 0x08048491 in __libc_csu_init ()
Previous frame inner to this frame (corrupt stack?)

The important point is that GDB reports that the stack is probably corrupt. Note
that frames 0..1 have values 42 which gives you more evidence that the program
corrupted the stack.

Lessons learned:
• Learn to read stack traces.
• Broken stack traces can be a symptom of memory corruption, such as

writing over the end of a local array. Run the program with a memory
debugger.

10.9.7 Core Dumps

If a program runs into a bug and triggers a segmentation fault, the operating system
will create a core dump file. The core dump provides data for post-mortem debug-
ging, and lets us find out why the program failed.

The following program will cause a segmentation fault:

1 /* answer.c */
2 #include <stdio.h>
3
4 void runexperiment() {
5 int *answerp;
6 answerp = (void *) 42;
7 printf("The answer is %d\n", *answerp);
8 }
9

10 void createplanet() {
11 runexperiment();
12 }
13
14 int main() {
15 printf("Hello Universe! Computing answer ...\n");
16 fflush(stdout);
17 createplanet();
18 return 0;
19 }

10.10 Manipulating a Running Program 153

Run the program. It will fail in line 7 with a segmentation fault:

> ./myprog
Hello Universe! Computing answer ...
Segmentation fault

Note that you may not get a core dump file, if, for instance, you have a limit
coredumpsize 0 command in your .cshrc shell initialization file. Check the
documentation of your command shell to see how to enable core dumps.

We use the command gdb myprog core to load the core dump along with
the executable into the debugger.

> gdb myprog core
...
#0 0x080c1368 in runexperiment ()
#1 0x080bff8f in createplanet ()
#2 0x080bfc0f in main ()
(gdb)

The core dump contains a copy of all the data allocated by the program. Part of this
data is the stack, which we can use to view the stack trace with a debugger after the
program terminates.

If you run the program on Windows, it will crash with a segmentation fault.
A window will pop up, asking you whether you want to debug using the selected
debugger. Click Yes and Visual Studio will be started. There are 2 possibilities to
work on the crashed process: you can immediately debug it, or you can generate a
core dump file and debug it later. To save a core dump file in Visual Studio, go to
menu item Debug and select Save Dump As.... A .dmp file will be written. To load
the core dump file back into Visual Studio, double-click on the .dmp file.

Lessons learned:
• The core dump files allow for post-mortem debugging. You can see

where the segmentation fault occurred, including a full stack trace list-
ing the function that caused the crash, and all functions that led to this
function.

• You can also move the stack frame up or down, and query values of
variables and memory.

10.10 Manipulating a Running Program

A debugger is useful for following the control flow of a program and for analyzing
data. However, debuggers can do much more than this. It is possible to manipulate
the behavior of the program by changing the content of variables, or by calling
functions from within the debugger. Such program manipulations are the focus of

154 10 Advanced Debugging

this section. These debugger capabilities are helpful for testing the effect of a bug fix
without going through a lengthy recompilation process, and for driving the program
into a state that is not normally covered by the testing process.

The standard approach of changing the behavior of the program is to change
the source code and then to recompile. We can use the debugger to achieve the
same result. This is an alternative if recompilation takes too long, or when it is
difficult to recreate the current state of the program. You need to keep in mind that
manipulations performed with a debugger are lost when the debugger exits, and
there are limits to manipulations, but it is always worth knowing what you can do.

Debuggers usually offer all, or at least some, of the following commands to ma-
nipulate the program behavior:

Manipulating data

• Changing variable values or actual arguments of functions: In GDB use the com-
mand set var <varname>=<expr>, for example set var MyVar=17.
In Visual Studio you can edit the value in the Variables window.

• Changing return argument values of functions: In GDB, step to the last instruc-
tion of a function, and then use command return <expr>.

• Modifying the contents of heap memory, as shown in Section 10.10.6.
• Changing environment variables: In GDB, use the command
set environment <var> <value>. In Visual Studio, click on menu
item Project and go to Properties / Configuration Properties / Debugging /
Environment to override environment variables. Altered environment variables
will only have an effect on the next start of the program.

Manipulating the flow of control

• Invoking functions: In GDB, use the commands call or print. In Visual Stu-
dio, use the Immediate window.

• Getting out of functions, skipping their remaining statements: In GDB, use the
return [<expr>] command. There is no Visual Studio equivalent com-
mand.

• Skipping or redoing statements in the current function: In GDB, use the jump
command. There is no Visual Studio equivalent command.

You can make these modifications semi-permanent, by adding the commands to
breakpoints. The modifications will remain effective throughout multiple runs of the
executable, as long as the debugger does not exit. See Section 10.4 on conditional
breakpoints on how to do this.

We will now explain the manipulations using the following example. The pro-
gram in the example searches for names in an input string, turns them into upper
case, and counts how many strings were changed:

1 /* capitalize.c */
2 #include <stdio.h>
3 #include <ctype.h>
4 #include <string.h>

10.10 Manipulating a Running Program 155

5 #include <stdlib.h>
6 #ifdef _MSC_VER
7 #define strncasecmp strnicmp
8 #endif
9

10 void change_word (char* str, int len) {
11 int i;
12 for (i=0; i<len; i++)
13 str[i]=toupper(str[i]);
14 }
15
16 int capitalize_str(char* str, const char* name) {
17 int n;
18 int hits=0;
19 int len=strlen(str);
20 int len_name=strlen(name);
21 int lastpos = len-len_name;
22 for (n=0; n<=lastpos; n++) {
23 if (strncasecmp(str+n,name,len_name)==0) {
24 change_word(str+n, len_name);
25 n += len_name;
26 hits++;
27 }
28 }
29 return hits;
30 }
31
32 int main(int argc, char* argv[]) {
33 int hits_total=0;
34 int na;
35 char *mycopy;
36 if (argc<3) return 1;
37 mycopy = strdup(argv[1]);
38 for(na=2; na<argc; na++)
39 hits_total += capitalize_str(mycopy, argv[na]);
40 printf("Total %d hits:\n", hits_total);
41 printf("original: %s\n", argv[1]);
42 printf("modified: %s\n", mycopy);
43 free(mycopy);
44 return 0;
45 }

Running the program exposes a bug:

> myprog "Foofoo, foobar and Bar!" foo bar
Total 4 hits:
original: Foofoo, foobar and Bar!
modified: FOOfoo, FOOBAR and BAR!

The program somehow fails to turn the second "foo" within "Foofoo" into up-
percase. The reason is a bug in line 25 where n is incremented by len name,
instead of len name-1, to account for the loop increment n++ in line 22.

156 10 Advanced Debugging

10.10.1 Changing a Variable

Changing the source code and recompiling the program is fast for this small program
but may take a long time for a larger project. Before starting a slow re-compilation,
it is worth testing whether the proposed bug fix has the right effect. In our example,
we can do this by decrementing the variable n with the debugger. The program then
shows the correct results, so we have identified a fix for the bug.

(gdb) run "Foofoo, foobar and Bar!" foo bar
... run program until it stops in line 23 for the 2nd time
23 if (strncasecmp(str+n,name,len_name)==0) {
(gdb) print n
$1 = 4
(gdb) print str+n
$2 = 0x804a00c "oo, foobar and Bar!"
(gdb) set var n=3
(gdb) print str+n
$3 = 0x804a00b "Foo, foobar and Bar!"
(gdb) continue
...
Total 5 hits:
original: Foofoo, foobar and Bar!
modified: FOOFOO, FOOBAR and BAR!

All debuggers provide some way to change variables because this is an important
and frequently used feature. In Visual Studio, enter n=3 in the Immediate window,
or change the value in the Variables window.

10.10.2 Calling Functions

Another important feature provided by a debugger is the ability to manipulate a
program by calling a C or C++ function. In GDB, you can use the call or print
commands. In Visual Studio, use the Immediate window. We will demonstrate this
feature by calling capitalize str one extra time to turn the string and into
upper case:

... navigate the program to line 39
39 hits_total += capitalize_str(copy,argv[na]);
(gdb) call capitalize_str(copy,"and")
$3 = 1
(gdb) cont
Continuing.
Total 4 hits:
original: Foofoo, foobar and Bar!
modified: FOOfoo, FOOBAR AND BAR!

Note that AND is now capitalized. The call or print commands allow you to
call any C/C++ function. You need to make sure that you call C functions with the

10.10 Manipulating a Running Program 157

correct number and types of arguments because GDB cannot check this, at least, not
for C functions. If a call leads to a fatal error, then GDB can react in two different
modes, depending on the setting of unwindonsignal:

• set unwindonsignal off: GDB stops where the crash happened. This is
useful when you want to test a function to understand why it crashes. The stack
frames will show you where the call starts with a frame named <function
called from gdb>. If you want to continue executing the program, then
use the return command described above to return from there.

• set unwindonsignal on: GDB will print that a signal was received, and
returns automatically.

Calling member functions of a C++ class is also possible to some extent. For exam-
ple, you can call simple members such as mystr.c str() that take no arguments,
or only arguments with ANSI C types. Calling members that take other class objects
as arguments is more difficult, and calling class constructors or operators is next to
impossible.

10.10.3 Changing the Return Value of a Function

Next, we want to override the return value of function capitalize str with the
return command, just when the function is about to return in line 30:

... run program till line 30
30 }
(gdb) return 40
Make capitalize_str(char*, char const*) return now? (y or n) y

#0 0x080486cd in main (argc=4, argv=0xbfffee44) at main.c:39
39 hits_total += capitalize_str(copy,argv[na]);
(gdb) cont
Continuing.
Total 42 hits:
original: Foofoo, foobar and Bar!
modified: FOOfoo, FOOBAR and BAR!

The normal return value is 4, however, the program now prints 42. This shows that
manipulating the return value worked.

10.10.4 Aborting Function Calls

We can use the GDB return command to manipulate the program behavior more
drastically. It will return out of the selected stack frame and thus skip all inner stack
frames. We will use this when we are in the middle of change word to return out
of change word and capitalize str and get back to main:

158 10 Advanced Debugging

... run the program until it reaches line 12 for the 2nd time
12 for (i=0; i<len; i++)

(gdb) up
#1 0x08048639 in capitalize_str (...) at main.c:24
24 change_word(str+n, len_name);

(gdb) return 0
Make capitalize_str(char*, char const*) return now? (y or n) y

#0 0x080486cd in main (...) at main.c:39
39 hits_total += capitalize_str(copy,argv[na]);

(gdb) cont
Continuing.
Total 2 hits:
original: Foofoo, foobar and Bar!
modified: FOofoo, fooBAR and BAR!

The return command will clean up the stack frame, so the chances are good that
the program can continue to run. Keep in mind that the program does not execute
any more statements of the inner frames when you bail out of them with a return
command. This can produce memory leaks or corrupted class objects because we
may have skipped implicit destructor calls.

10.10.5 Skipping or Repeating Individual Statements

The GDB jump command causes a jump from the current stack frame to an ar-
bitrary line. You can jump forwards, and therefore skip some statements, or jump
backwards, and repeat some statements. We will use the command to jump over line
24, thus avoiding the change word(...) call:

... navigate program to line 24
24 change_word(str+n, len_name);
(gdb) jump 25
Continuing at 0x804863c.
Total 4 hits:
original: Foofoo, foobar and Bar!
modified: Foofoo, FOOBAR and BAR!

Note that the modified string now begins with "Foofoo..." instead of the
usual "FOOfoo...", so the jump command effectively skipped function call
change word(...) in line 24.

10.10 Manipulating a Running Program 159

10.10.6 Printing and Modifying Memory Content

This section describes how to print and modify memory content. All debuggers
offer a feature that allows you to inspect, and sometimes to modify, the content of
memory. The relevant GDB commands are whatis, print, x and set var. In
Visual Studio, you can use the windows for displaying variables and memory, or
the Immediate window. Memory locations are addressed through addresses such as
0xbf7a5b4 or by variables that point to heap memory, for example, argv[1].

We will once again use the STR class example from Section 10.3, page 134 to
demonstrate how these debugger features manipulate the program behavior. Our
aim is to read and then modify the argc and argv variables of main(). Variable
argc is an integer and hence easy to change. But argv is an array of char* strings
that are allocated somewhere in memory, so modifying it is more challenging.

The first step is to determine the type of argv with the whatis command and
the current value of argv with the print command:

(gdb) start "foofoo, FooBar and Bar!" foo bar
...
(gdb) whatis argv
type = char **
(gdb) print argv
$1 = (char **) 0xbfffee54

Variable argv is an array of strings, so we can use expression argv[<n>] to
access an individual array element:

(gdb) whatis argv[0]
type = char *
(gdb) print argv[0]
$2 = 0xbffff05e "/home/someone/myprog"
(gdb) print argv[1]
$3 = 0xbffff08a "foofoo, FooBar and Bar!"

The @ operator plus the argument 5 can be used to tell GDB that argv is an array
and that we want to see the first 5 elements. Note that the array is terminated with a
null pointer, so there are actually argc+1 elements:

(gdb) print argc
$4 = 4
(gdb) print *argv@5
$20 = {0xbffff05e "/home/someone/myprog",

0xbffff08a "foofoo, FooBar and Bar!",
0xbffff0a2 "foo",
0xbffff0a6 "bar",
0x0}

You can also access the memory directly with the x command, which needs only an
address and an optional format:

(gdb) x/5xw 0xbfffee54
0xbfffee54: 0xbffff05e 0xbffff08a 0xbffff0a2 0xbffff0a6
0xbfffee64: 0x00000000

160 10 Advanced Debugging

See the GDB documentation or type help x to get a full description of the format.
The x/5xw command will print five 4-byte words. We can also print the string
argv[1] with x/40c, which is a command to print 40 bytes as characters:

(gdb) p argv[1]
$38 = 0xbffff08a "foofoo, FooBar and Bar!"
(gdb) x/40c 0xbffff08a

0xbffff08a: 102 ’f’ 111 ’o’ 111 ’o’ 102 ’f’ 111 ’o’ 111 ’o’ 44 ’,’ 32 ’ ’
0xbffff092: 70 ’F’ 111 ’o’ 111 ’o’ 66 ’B’ 97 ’a’ 114 ’r’ 32 ’ ’ 97 ’a’
0xbffff09a: 110 ’n’ 100 ’d’ 32 ’ ’ 66 ’B’ 97 ’a’ 114 ’r’ 33 ’!’ 0 ’\0’
0xbffff0a2: 102 ’f’ 111 ’o’ 111 ’o’ 0 ’\0’ 98 ’b’ 97 ’a’ 114 ’r’ 0 ’\0’
0xbffff0aa: 76 ’L’ 69 ’E’ 83 ’S’ 83 ’S’ 75 ’K’ 69 ’E’ 89 ’Y’ 61 ’=’

We now want to create new values for argc and argv, by changing the order
of "Foo" and "Bar", and by adding a new argument and between "Foo" and
"Bar". There is not enough allocated memory in argv for argv[5], so we have
to reallocate memory for argv by calling malloc to allocate six 4-byte words.

(gdb) set var argc=5
(gdb) print/x malloc(6*4)
$23 = 0x804a048
(gdb) set var argv=0x804a048

Next, set all pointers in argv. We copy the pointers of the original argv[0] and
argv[1] and use string literals for the other arguments. Note that GDB allocates
string literals used in expressions on the heap and does not free them, so we don’t
have to worry that the memory will suddenly be released.

(gdb) set var argv[0]=0xbffff05e
(gdb) set var argv[1]=0xbffff08a
(gdb) set var argv[2]="BAR"
(gdb) set var argv[3]="and"
(gdb) set var argv[4]="Foo"
(gdb) set var argv[5]=0
(gdb) print *argv@6
$24 = {0xbffff05e "/home/someone/myprog",

0xbffff08a "foofoo, FooBar and Bar!",
0x804a068 "BAR",
0x804a078 "and",
0x804a088 "Foo",
0x0}

The last exercise is to modify the string "foofoo, FooBar and Bar!" into
"ABCDEF, FooBar and Bar!". The first two characters are overwritten by
accessing argv[1][0] and argv[1][1] referring to single characters. This is
possible, but tedious. We will therefore modify the remaining 4 characters with a
strncpy call:

(gdb) set var argv[1][0]=’A’
(gdb) set var argv[1][1]=’B’
(gdb) call strncpy(argv[1]+2,"CDEF",4)
$25 = -1073745779
(gdb) print *argv@6

10.11 Debugging Without Debug Information 161

$27 = {0xbffff05e "/home/someone/myprog",
0xbffff08a "ABCDEF, FooBar and Bar!",
0x804a068 "BAR",
0x804a078 "and",
0x804a088 "Foo",
0x0}

The memory modifications are now complete and we can let the program run to its
end to check whether it works out:

(gdb) cont
Continuing.
Total 4 hits:
original: ABCDEF, FooBar and Bar!
modified: ABCDEF, FOOBAR AND BAR!

We have shown that you can modify more than just a few variables. With enough
effort and care, you can change the entire memory content. Of course, It is also easy
to corrupt the memory by accident.

Lessons learned:
• A debugger will let you change a running program, by changing

variables, calling functions, overriding the return value of a function,
aborting function calls, skipping or repeating statements, and by directly
modifying memory contents.

• Combining the above features with breakpoint commands leads to very
powerful debugging techniques.

10.11 Debugging Without Debug Information

This section is on how to debug a program where some or all of the source code
was compiled without debug information. When you debug a program with GDB or
some other debugger, you typically compile the program with debug information,
for example, with gcc -g. However, there are occasions when the debug version
of the program is not available but only the optimized (non-debug) version. One
example for such a situation is when you are debugging at a customer site, and your
visit will end before there is time to create a debug build.

Assume that you have to debug such a program with what you have. This is
definitely an unpleasant situation, but not hopeless. This section gives some hints
on how to make the best of it, and how to extract as much information as possible
using a debugger. We will use the following example to print the value of function
arguments, find the approximate statement in the source code, and step through the
source code.

162 10 Advanced Debugging

1 #ifndef NODEBUG_H
2 #define NODEBUG_H
3 /* nodebug.h */
4 int size(const char* S);
5 int F (int A, const char* B, char* C);
6 #endif

1 /* nodebug.c */
2 #include "nodebug.h"
3
4 int F (int A, const char* B, char* C) {
5 int R = size(B+A);
6 R *= size(C+A);
7 return R;
8 }

1 /* main.c */
2 #include "nodebug.h"
3 #include <string.h>
4
5 int size(const char* S) {
6 return strlen(S);
7 }
8
9 int main(int argc, char* argv[]) {

10 return F (2, /* A */
11 "AABBCCDD", /* B */
12 argv[1]); /* C */
13 }

We prepare the example so that main() and size() are compiled with debug in-
formation, but F() is compiled without it. The command line arguments are chosen
so that the program crashes:

gcc -O -c nodebug.c
gcc -g -c main.c
gcc -o test main.o nodebug.o
./test
Segmentation Fault

The debugger reveals that the crash occurs in function strlen():

gdb test
(gdb) run
Program received signal SIGSEGV, Segmentation fault.
0x400938db in strlen () from /lib/tls/libc.so.6
(gdb) where
#0 0x400938db in strlen ()

from /lib/tls/libc.so.6
#1 0x080483cd in size (S=0x2 <Address 0x2 out of bounds>)

at main.c:6
#2 0x0804842f in F ()
#3 0x08048405 in main (argc=1, argv=0xbfffeeb4)

at main.c:10

10.11 Debugging Without Debug Information 163

Function size() was called with an illegal argument S=0x2 from F(), which
itself was called from main(). We will first check with the debugger that main()
works correctly, because main() was compiled with debug information and is
therefore easy to debug. A bug in strlen() is unlikely, because it is a well-tested
function from the standard C library. That leaves only F() as the place where the
bug was introduced. We need to collect as much information as possible about what
happened inside F().

10.11.1 Reading Function Arguments From the Stack

We first need to check the function arguments of F(). The debugger cannot show
them directly, because F() was compiled without debug information. But the de-
bugger may still be able to give enough information, which we will combine with
our knowledge of the source code to achieve the same result. The way to connect
this information depends on the CPU type, operating system and compiler. This ex-
ample was compiled on a Pentium CPU, running under Suse9 Linux and compiled
with GCC 3.3.5. In this case, all function arguments are stored on the stack. Using
the GDB info frame command, we first locate the memory address where the
stack is located:

(gdb) frame 2
#2 0x0804842f in F ()
(gdb) info frame
Stack level 2, frame at 0xbfffee00:
eip = 0x804842f in F; saved eip 0x8048405
called by frame at 0xbfffee30, caller of frame at 0xbfffede0

Arglist at 0xbfffedf8, args: <== MOST INTERESTING PART
Locals at 0xbfffedf8, Previous frame’s sp is 0xbfffee00

Saved registers:
ebx at 0xbfffedf0, ebp at 0xbfffedf8, esi at 0xbfffedf4,
eip at 0xbfffedfc

The frame starts at address 0xbfffee00. All three arguments of F() are located
at this, and the consecutive, addresses. We can use the GDB commands print
sizeof(int) and print sizeof(char*) to find out how much space the
arguments require. Each argument needs 4 bytes, so we will find all data by access-
ing the three words starting at 0xbfffee00:

(gdb) p sizeof (int)
$1 = 4
(gdb) p sizeof (char*)
$2 = 4
(gdb) x/3x 0xbfffee00
0xbfffee00: 0x00000002 0x08048558 0x00000000

The second argument is char* B, so we check the string content as well:

164 10 Advanced Debugging

(gdb) x/s 0x08048558
0x8048558 <_IO_stdin_used+4>: "AABBCCDD"

Now we have all the required information:

0xbfffee00: int A = 2
0xbfffee04: char* B = 0x08048558 "AABBCCDD"
0xbfffee08: char* C = 0x00000000

The way of passing the function arguments from calling function to callee may vary
with the CPU architecture, operating system and compiler. It may require some
experimentation to find out where function arguments are stored. The arguments
may be stored in main memory on the stack, or in CPU registers. If the arguments
are stored on the stack, use the commands shown above to locate the values. If
they are stored in registers, use the GDB command info reg to print them out.
Unfortunately, the compiler is free to overwrite the registers during execution of a
function for the sake of optimization; that means that the initial value (passed down
from the calling function) can be safely accessed only at the begin of the function.

Here are some examples that illustrate the platform dependency: On a Sparc
V9 CPU running under Solaris 5.10 and GCC 3.3.5 compiler, the arguments are
accessible as registers i0, i1, and i2. GDB gives access to them with prefix $,
for example with print $i0. On a 64bit AMD Opteron processor under Linux
Red Hat 3.0 with GCC 3.3.5, the function arguments can be found in registers rdx,
rsi and rdi. In both cases, registers will be overwritten during execution of the
function F(), so set a breakpoint in F() and read the values immediately when the
breakpoint is hit.

This highlights that there is no simple, common way to locate the function ar-
guments. Things are likely to change, and the register names we have mentioned
may not hold for future CPU types and compilers. However, the methodology of
searching for valuable data in memory and registers should remain valid. You can
use these commands in the middle of a debugging session to find out what they are:

(gdb) break strncmp
Breakpoint 17 at 0x400451fa
(gdb) call strncmp("AAAAAA","BBBBBB",0x77777777)
Breakpoint 17, 0x400451fa, in strncmp () ...
(gdb) info frame
...
(gdb) info reg
...
(gdb) return
(gdb) delete 17

Function strncmp() is probably linked into the program. strncmp() is part of
the standard C library which most programs contain, so there is no need to modify
and recompile the program. A value such as 0x77777777 is easy to locate in mem-
ory dumps. Once you have found out how arguments are passed to strncmp()
then the same method can be used for other functions. Do not forget the return
statement, which ends the strncmp() call, and turns the stack back to its previous
state.

10.11 Debugging Without Debug Information 165

This approach to retrieving the value of function arguments is especially useful
during post-mortem debugging if the program was compiled without debug info,
and only a core dump file is available. See also Section 10.9.7 on debugging core
dumps.

10.11.2 Reading Local/Global Variables, User-Defined Data Types

There is, unfortunately, no easy way to read the value of local variables. The com-
piler is free to store variables arbitrarily on the stack, or in registers. In the example
for Pentium CPU, Suse 9, GCC 3.3.5, local variable S is stored in register eax
which can be printed with p $eax. But there is generally no guarantee that the
variable will be stored in the same register throughout the entire function.

Global variables are stored in fixed memory addresses, and the debugger might
find them from a variable name. If the address is known, then a global variable can
be accessed from that address throughout the entire program.

User-defined data types also present a difficult problem. It is possible to access
every single byte, but correlating each byte to the corresponding field is tedious and
error prone.

10.11.3 Finding the Approximate Statement in the Source Code

Next, we want to find out which statement within F() is causing the crash. A quick
review of the source code combined with the function arguments will reveal this
information, but we do it the hard way for demonstration purposes.

The where command has already revealed that the current address within F()
is 0x0804842f. Now, disassemble the entire function F() and check where this
address is:

(gdb) disassemble F
0x0804840c <F+0>: push %ebp
0x0804840d <F+1>: mov %esp,%ebp
0x0804840f <F+3>: push %esi
0x08048410 <F+4>: push %ebx
0x08048411 <F+5>: mov 0x8(%ebp),%ebx
0x08048414 <F+8>: sub $0xc,%esp
0x08048417 <F+11>: mov 0xc(%ebp),%eax
0x0804841a <F+14>: add %ebx,%eax
0x0804841c <F+16>: push %eax
0x0804841d <F+17>: call 0x80483bc <size> <== 1st size() call
0x08048422 <F+22>: mov %eax,%esi
0x08048424 <F+24>: add 0x10(%ebp),%ebx
0x08048427 <F+27>: mov %ebx,(%esp)
0x0804842a <F+30>: call 0x80483bc <size> <== 2nd size() call
0x0804842f <F+35>: imul %eax,%esi <== current adr

166 10 Advanced Debugging

0x08048432 <F+38>: mov %esi,%eax
0x08048434 <F+40>: lea 0xfffffff8(%ebp),%esp
0x08048437 <F+43>: pop %ebx
0x08048438 <F+44>: pop %esi
0x08048439 <F+45>: pop %ebp
0x0804843a <F+46>: ret
0x0804843b <F+47>: nop
0x0804843c <F+48>: nop
0x0804843d <F+49>: nop
0x0804843e <F+50>: nop
0x0804843f <F+51>: nop
End of assembler dump.

While most assembly instructions may look cryptic, some instructions usually stand
out. For example, the calls to function size() can be easily located, and correlated
back to lines 5 and 6 of file nodebug.c of F(). The current address of this frame
is located just after the second call, and the next instruction will be a multiplication.
We can conclude with reasonable certainty that the crash occurred in line 6.

As before, the assembly code will vary greatly with the host CPU type, so reading
the assembly code will always be a challenge. Other complicating factors include the
presence of inlined functions, the freedom of the compiler to arrange basic blocks,
and so on. However, there is always a good chance that you will be able to locate
the statement where the crash occurs.

10.11.4 Stepping Through Assembly Code

The final part of this process is to step through the code of function F(). We can-
not directly step through the C source code because the debug information linking
addresses to source lines is missing. However, we can step through the machine in-
structions and correlate back to the source code as shown above. All good debuggers
have features to disassemble machine instructions and step through them. For GDB,
the commands are disassemble, stepi, nexti.

A useful feature of GDB allows you to step from code compiled with debug
information into function calls compiled without debug information. This feature
is enabled with set step 1. Combining this command with disassembling and
machine code stepping, we can step through the code in F() as follows:

(gdb) start
main (argc=1, argv=0xbfffeeb4) at main.c:10
10 return F (2, /* A */
(gdb) set step 1
(gdb) step
0x0804840c in F ()
(gdb) disas $pc $pc+5
0x0804840c <F+0>: push %ebp
0x0804840d <F+1>: mov %esp,%ebp
0x0804840f <F+3>: push %esi

10.11 Debugging Without Debug Information 167

0x08048410 <F+4>: push %ebx
(gdb) nexti
0x0804840d in F ()
(gdb) nexti
0x0804840f in F ()
(gdb) nexti
0x08048410 in F ()

This approach to debugging is tedious, but you can follow the approximate flow of
the program, which may be good enough to help you locate the bug.

To debug our example above in Visual Studio, right-click on the program’s
project, and select Properties. In the Properties dialog, go to Configuration Prop-
erties/C/C++/General and set the item Debug Information Format to Disabled.
The compiled program will then have no debug information. To debug a program
without debug information in Visual Studio, start the program with a click on Step-
Into. You will get a tabbed window Call Stack, where you right-click on the entry
for the program executable, and select Go To Disassembly. You will get an-
other window with the disassembled code for the program. The entry points for
function main and F will be visible as:

_main:
...
_F:
...

You can step through the code, set breakpoints, and inspect register and memory
values by pointing the cursor at the desired item. It is also possible to change the
assembly code.

Lessons learned:
• A debugger is useful even if the program has no debug information. You

can read function arguments, examine the call stack, and step through
the code.

• If you happen to know the assembly language of your processor well
and understand calling conventions for C/C++ functions then you actu-
ally have almost everything you need. Determining addresses of local
variables can be quite challenging, but you may be able to locate them
adjacent to the function call arguments.

Chapter 11
Writing Debuggable Code

When a program starts being used then chances are high that it will eventually run
into a bug. Therefore, it needs to be debugged at which point you or someone else
will find out how well it is suited for being debugged. Not all programs score equally
high in this respect. This chapter deals with hints and techniques how to make a
program more debuggable right from the beginning.

Debugging means to a large extent reverse engineering, especially if you did not
write the program in the first place. Consequently, the first two Sections 11.1, 11.2
deal with comments and coding style. The easier the source code can be read and
understood, the more debuggable it is. How to write source code is a question of per-
sonal style and philosophy, but some general recipes stand out and we will explain
them.

Take macros such as #define INCR 20 as an example. They are a nuisance
for interactive debugging. We show in Section 11.3 how one can often replace them
with different language constructs.

Build a number of helpful debugging functions into the program, as shown in
Section 11.4. If you expect that a noteworthy amount of time will be spent later for
debugging your program, which you should, then why not spend some small effort
early on and be prepared? Chances are high that you and others will be glad to see
these helper functions some day.

The final aspect covered in Section 11.5 is preparing the program for post-
mortem debugging, by writing hints about ongoing activities into a log file, so there
will be enough information to read after the crash.

11.1 Why Comments Count

There are two extreme opinions about comments in source code and whether they
are helpful in the process of debugging or not. The first faction claims that com-
ments in the source code are an integral part of software, and that software would
not be maintainable – or intelligible – without them. The second faction claims that

169

170 11 Writing Debuggable Code

comments are extremely dangerous. Comments tend to be written initially with the
first version of the source code and they become easily stale, as code changes do
not necessarily go hand in hand with changes in the comments. This often results in
wrong comments, which is worse than no comments at all. Thus, the second faction
pleads for writing code in a self-documenting way, rendering additional comments
unnecessary. The authors believe that the truth lies somewhere in between both of
these extreme views: source code should be as self-explanatory as possible. But nev-
ertheless comments are vital to the maintainability and debug-ability of the code, as
long as they add information to the self-documenting source code. This also deter-
mines of what type these comments have to be: they describe the intention (what) of
a function or piece of code and potentially also the motivation (why) for choosing
a certain solution. Non-obvious tricks in the source code also deserve some com-
ments.

Debugging requires to a large extent the skill of reverse engineering; after all you
will frequently debug source code that someone else wrote some time ago. Good
comments that make understanding the source code easier are always welcome.

The following sections provide some examples where comments have proved
helpful for debugging.

11.1.1 Comments on Function Signatures

The description should clearly state the following:

• What a function is supposed to do: this behavioral description should be indepen-
dent from the actual implementation. For example, the comment on a function
such as data* get(content *list, const char* key) should ex-
plain that it retrieves the first address entry from a data structure that matches the
provided string key, rather than elaborating on an underlying mapping algorithm
from the C++ standard library.

• Function arguments and how they are dealt with in exceptional cases. Example:
data* get(content *list, const char* key) tolerates if list
is a NULL pointer and returns NULL itself in this case.

• Assumptions on the interface usage: are there special format requirements for the
provided string key in the search function data* get(content *list,
const char* key), such as forbidden white spaces or line brakes? Are
there programming sequences, for example “call get() only after you called
init()”?

• Memory allocation: in case the function returns a pointer to a class object, what
is the lifetime of that object and who is responsible for deleting it later on?

• Side effects: having side effects is bad enough. Not documenting them in a com-
ment makes them a nightmare.

• Document all known pitfalls and temporary workarounds.

11.2 Adopting a Consistent Programming Style 171

11.1.2 Comments on Workarounds

Defects in library functions, compilers, or even hardware bugs sometimes require a
programmer to use rather odd-looking workarounds in the code to get things work-
ing. Those constructs sometimes turn into buggy code once the root cause is fixed.
A comment describing what the workaround is doing, and why it was needed, will
be highly appreciated by anybody in charge of debugging the code.

11.1.3 Comments in Case of Doubt

It definitely helps if the programmer was honest enough to state his or her doubts
about certain pieces of code. Something that was not entirely clear to the program-
mer is always a good candidate for a debugging hypothesis. A comment such as

delete[] a; /* not sure if we can really deallocate here */

can be a good hint on the way to hunt down a segmentation fault.

11.2 Adopting a Consistent Programming Style

One can get fanatic about programming style – about capitalization, indentation,
placing of braces, and many more things. What really matters is not which particular
style is picked, but that the overall style serves the purpose of making code more
readable and thus understandable. A consistent coding style makes it easier to read
and understand source code written by other people. That is why you should strive to
maintain the coding style when doing modifications of an existing software project;
new coding styles should be introduced only with new projects or with new software
modules.

11.2.1 Choose Names Carefully

Variable and function names should be descriptive. If one follows this guideline,
the code becomes in fact considerably more self-documenting. There is no single
standard on naming conventions. Nevertheless, one de facto standard is to follow
the rules established by the C++ standard library, for example:

• Classes, structs, enums, typedefs, functions, variables, constants, and name-
spaces all use lowercase with words separated by an underscore.

• Template argument names start with an upper-case letter, with words separated
by beginning each word with an upper-case letter.

172 11 Writing Debuggable Code

• Macro names should be in all caps, with words separated by underscores.
• Avoid creating identifiers starting with underscores - they are reserved for com-

pilers, system libraries, and operating systems.

11.2.2 Avoid Insanely Clever Constructs

Brian W. Kernighan once wrote

“Debugging is twice as hard as writing the code in the first place. Therefore, if you write
the code as cleverly as possible, you are, by definition, not smart enough to debug it.”

Keep in mind that software tends to have bugs and eventually someone, quite often
not the original author, will have to debug it. His or her efforts will comprise to a
large extend reverse engineering the code in order to find out what it was supposed
to do. The cleverer the code is, the harder it will be to reverse engineer.

11.2.3 Spread Out Your Code

Do not squeeze too many statements into a single line as this may hinder debugging.
In the following code example, both the if-statement and then-clause are written into
the same line:

1 if (is_this_true() || is_that_true()) expr1 = expr2++;

When you step through the source code, then the debugger will stop only once in
line 1, whether the then-clause of the if-statement is executed or not. This makes it
unnecessarily complicated to find out if the condition was met or not. It is better to
rewrite the code and use an extra line:

1 if (is_this_true() || is_that_true())
2 expr1 = expr2++;

Debugging is now easier. If the debugger goes into line 2, then the expression was
true.

11.2.4 Use Temporary Variables for Complex Expressions

Think about a complex expression that is composed of other sub-expressions, some
of them being function calls or operator calls. How can you find out the value of
sub-expressions? One approach is to follow the program flow with the debugger
using step-into and step-out commands but that is very tedious. The other approach,

11.3 Avoiding Preprocessor Macros 173

directly printing the value of a sub-expression, may not be possible in case inlined
functions or operator calls are involved.

In the following example it is not very convenient to analyze the return values of
the two functions is this true() and is that true() - and it is completely
impossible once you have passed line 1:

1 if (is_this_true() || is_that_true())
2 expression1 = expression2++;

If the same code is rewritten with temporary variables to hold the return values of
those two functions, this analysis will become rather simple:

1 int this_is_true = is_this_true();
2 int that_is_true = is_that_true();
3
4 if (this_is_true || that_is_true)
5 expression1 = expression2++;

Note that the code is no longer exactly identical to the previous versions. Function
is that true() is now always called, instead of only when is this true()
returns false. This difference may affect the runtime speed. It may also affect the
program behavior in case the called functions have side effects.

11.3 Avoiding Preprocessor Macros

Macros make debugging harder, so try to avoid preprocessor macros as much as
possible. The preprocessor replaces the macro by its content before the code is fed
into the compiler. That is, for the compiler they do not exist any more and hence
they are invisible or unknown to the debugger. When you step through source code
and reach a place where a macro is used then you hit by all practical means a blind
spot.

Although there are cases where a macro is the most practical solution (for ex-
ample when using concatenation, “##”), there are often other ways to achieve the
same. We will describe these alternatives and the reasons why they are preferable in
the following sections.

11.3.1 Use Constants or Enums Instead of Macros

It is a rather common habit to use preprocessor #define statements to define con-
stants that are used in one or more code files. The preprocessor will replace them
before compilation – hence, the macro name does not represent a symbol to the
debugger and thus cannot be displayed. An alternative to defining constants via pre-
processor macros is to use enums or constants.

174 11 Writing Debuggable Code

The following example defines four macros, NUM REGISTERS, INCR, DECR,
and INVERT. They are used in function execute unary() which executes
unary operations as part of a CPU simulation program:

1 #include <assert.h>
2 #include <stdlib.h>
3
4
5 #define NUM_REGISTERS 8
6 #define INCR 16
7 #define DECR 20
8 #define INVERT 22
9
10 int* registers;
11
12 void execute_unary(int opcode, int reg)
13 {
14 assert(0 <= reg && reg < NUM_REGISTERS);
15
16 if (opcode == INCR)
17 ++registers[reg];
18 else if (opcode == DECR)
19 --registers[reg];
20 else if (opcode == INVERT)
21 registers[reg] = ˜registers[reg];
22 else
23 assert(0); /* illegal unary opcode */
24 }

None of the four macros is visible to the debugger:

(gdb) ... run till line 14 ...
14 assert(0 <= reg && reg < NUM_REGISTERS);
(gdb) p NUM_REGISTERS
(gdb) No symbol "NUM_REGISTERS" in current context.
(gdb) p opcode
(gdb) $1 = 20
(gdb) p INCR
(gdb) No symbol "INCR" in current context.

We rewrite the same program to make it easier to debug. Macro NUM REGISTERS
is replaced with a constant (const int num registers = 8) and macros
INCR, DECR, and INVERT are replaced with an enum:

1 #include <assert.h>
2 #include <stdlib.h>
3
4
5 const int num_registers = 8;
6 enum UnaryOpcodeEncoding {incr=16, decr=20, invert=22};
7
8 int* registers;
9
10 void execute_unary(enum UnaryOpcodeEncoding opcode,

11.3 Avoiding Preprocessor Macros 175

int reg)
11 {
12 assert(0 <= reg && reg < num_registers);
13
14 if (opcode == incr)
15 ++registers[reg];
16 else if (opcode == decr)
17 --registers[reg];
18 else if (opcode == invert)
19 registers[reg] = ˜registers[reg];
20 else
21 assert(0); /* illegal unary opcode */
22 }

All four definitions are now fully accessible with the debugger:

(gdb) ... run till line 12 ...
12 assert(0 <= reg && reg < num_registers);
(gdb) p num_registers
(gdb) $1 = 8
(gdb) p opcode
(gdb) $2 = decr
(gdb) p (int)incr
(gdb) $4 = 16

Defining the constants in form of enums not only makes debugging easier, it also im-
proved the readability of the source code because type UnaryOpcodeEncoding
gives an extra hint about the purpose of the constants.

There are, however, also a few minor penalties to using const definitions. A
const definition introduces a symbol to the symbol table, so the generated object
file gets a little bit larger. The symbol may also clash during linking with another
symbol of the same name but this can be avoided by either using a namespace in
C++ or by adding static to the constant declarations, thus making the constant
available only at file scope. A macro defined with #ifdef, on the other hand, may
also clash with another macro definition, so the chances for a clash stay more or less
the same.

11.3.2 Use Functions Instead of Preprocessor Macros

Even worse than using the preprocessor to define constants is the frequently en-
countered habit of using the preprocessor to define functions. Similar to the use of
preprocessor constants described in the previous section, the debugger is not able
to find a symbol for the macro function and cannot step through the code of the
function, making it very hard to debug. The reason for using preprocessor macro
functions might have been that the code executes faster than a normal function since
it is inlined into the code by the preprocessor. In C++ you can achieve the same
effect with better debugger support by using inline functions, which instructs the
compiler to inline the code of the function. The following example shows a macro

176 11 Writing Debuggable Code

function MAX and an inline function min that both are effectively inlined by the
compiler:

1 #define MAX(x,y) ((x)>(y))?(x):(y)
2
3 inline int min(int x, int y)
4 {
5 if (x<y) return x;
6 else return y;
7 }
8
9 int main()

10 {
11 int a1 = 0, a2 = 42, a3;
12
13 a3 = MAX(a1,a2);
14 a3 = min(a1,a2);
15
16 return 0;
17 }

Another reason for using preprocessor macro functions could be the support of func-
tions that can be applied to arguments of different data types, as long as the oper-
ations used within the function are supported for these data types. In the example
above the macro function MAX can be used for nearly all native C data types, while
the function min is only defined for the data type int. If a C++ compiler can be
used then the best solution for maintenance, debugging, and flexibility is to use tem-
plates. The min function in the example is now defined as a templatized function:

1 template<class T>
2 inline const& T min(const T& x, const T& y)
3 {
4 if (x<y) return x;
5 else return y;
6 }

This template will work for different data types as long as both arguments x and y
have the same type.

11.3.3 Debug the Preprocessor Output

If a macro cannot be avoided and needs to be debugged, then look directly at the
output of the preprocessor. The compiler usually invokes the preprocessor whose
output never becomes visible. However, most compilers support the -E flag to in-
voke the preprocessor, print the output, and then stop. Let us take the MAX macro
again as an example:

File main.c:
1 #define MAX(x,y) ((x)>(y)?(x):(y))

11.3 Avoiding Preprocessor Macros 177

2
3 int main()
4 {
5 int a1 = 0, a2 = 42, a3;
6
7 a3 = MAX(a1,a2);
8 }

Now make the preprocessor output visible:

> gcc -E main.c > main.post.c

This is the output from the preprocessor1:

File main.post.c:
1 # 1 "main.c"
2 # 1 "<built-in>"
3 # 1 "<command line>"
4 # 1 "main.c"
5
6
7 int main()
8 {
9 int a1 = 0, a2 = 42, a3;

10
11 a3 = ((a1)>(a2)?(a1):(a2));
12 }

Line 11 contains the expanded MAX macro, which is what we want to debug.
Please note the compiler directives in line 1-4 starting with # <line number>

<filename>. They instruct the compiler (and thus also the debugger) to map
the current source file (file main.post.c) back to a different source file. When
you compile file main.post.c and debug it, then the debugger will display file
main.c and not main.post.c. If you do not want this, then remove lines 1-4
and compile again.

Note that the generated preprocessor output can be very lengthy because in-
clude files are expanded at all levels. A single statement such as #include
<iostream> may expand into thousands of lines2.

11.3.4 Consider Using More Powerful Preprocessors

Though many macros can be replaced by other code constructs that are better suited
for debugging, preprocessor macros still have their advantages. For example, when
writing code that needs to run on different platforms, when optimizing code for
speed by moving tasks from run time to build time, or when guarding special debug

1 The actual output can vary with the compiler that is used.
2 Approximately 30000 lines using the GCC 3.3.5 compiler and Suse 9 as operating system.

178 11 Writing Debuggable Code

code. In some of these cases it is recommended to use a more powerful macro pre-
processor such as m4 (see also Appendix B.8.2) rather than the preprocessors of a
development environment. The first reason is that m4 is a much more powerful pre-
processor than most preprocessors that are integrated in the compiler packages. The
second reason related to debugging is that the m4 preprocessor is invoked before the
resulting source code is compiled. Therefore, you can directly debug the resulting
C/C++ source code, there is no hidden macro expansion that obscures debugging.
The following code example illustrates how the m4 preprocessor should be used in
the design flow:

File matrix.m4cpp:
1 include(forloop.m4)
2 define(‘identity_matrix’,
3 ‘int id$1[$1][$1] = {forloop(‘ii’,0,eval($1-1),‘
4 forloop(‘jj’,0,eval($1-1),‘eval(jj==ii),’)’)}’)dnl
5
6 int main (int argc, char* argv[])
7 {
8 int count = 0;
9 identity_matrix(5);

10 ...

The code is a blend of C/C++ code and m4-macros. The macro identity matrix
is defining and initializing an identity matrix of variable dimension. It is used with
an argument of 5 in this example. m4 preprocesses file matrix.m4cpp and writes
the output to a file where the macros are expanded:

> m4 matrix.m4cpp > matrix.cpp
> cat -n matrix.cpp
1
2 int main()
3 {
4 int count = 0;
5 int identity_matrix5[5][5] = {
6 1,0,0,0,0,
7 0,1,0,0,0,
8 0,0,1,0,0,
9 0,0,0,1,0,

10 0,0,0,0,1,};
11 ...

The resulting file matrix.cpp is then compiled and debugged. The key point
here is that the debugger will refer to matrix.cpp, which is plain C code. If the
program using the macro does not show the desired behaviour then debug the macro
in two steps. First, compare files matrix.m4cpp and matrix.cpp to check if
the macro created the expected C code. Next, use the debugger to check if this C
code works as expected. When you have found the bug, manually modify the C code
until it works correctly and then tweak the macro such that it creates the desired C
code.

11.4 Providing Additional Debugging Functions 179

11.4 Providing Additional Debugging Functions

When developing or debugging complex programs you will occasionally find that
there is a set of information from the program state or the data being processed that
needs to be displayed over and over again. Often enough it requires the developer to
spend some effort to collect the required pieces of information in the debugger or to
filter out the information needed. To speed up this process it is a good idea to pro-
vide special debugging functions. They can either be an integral part of the code or
they can be linked additionally into the executable. These debugging functions have
the sole purpose of extracting or filtering the information required for debugging.
Routines that check data integrity and consistency are other application examples.
This includes analysis routines, e.g. showing data distribution in a hash table.

11.4.1 Displaying User-Defined Data Types

Unlike native C/C++ data types, user-defined data types cannot be passed directly
to I/O routines in C/C++, such as printf or cout. The user has to define the
appropriate display or streaming methods. For complex data types, these methods
should be configurable. For example, to show more or less details (verbosity level)
or where to print the output (stdout, stderr or user-provided FILE pointer).
These customized I/O methods can also be called interactively in a debugger.

Example: imagine a C++ class People that stores a list of person related data
(name, address, phone number, date of birth). Debug function
People debug print(People* obj, int level) is now called from
inside the debugger. Argument level selects printing either just the bare statis-
tics (level=0), just the name for each person (level=1), or all available data
(level=2):

(gdb) call People_debug_print(my_close_friends,0)
3 persons

(gdb) call People_debug_print(my_close_friends,1)
3 persons
Meggy Meyers
Paul Smith
Martha Miller

(gdb) call People_debug_print(my_close_friends,2)
3 persons
Meggy Meyers
addr: 112 Flynn Ave / 12345 LittleTown
phone: 123-7654-321
DOB: 1967-02-24

Paul Smith
addr: 496 Thompson Lane / 12345 LittleTown

...

180 11 Writing Debuggable Code

Here are some recommendations regarding such debug functions:

• Consistency over many classes: In a complex program with many classes, it will
pay off to use a consistent naming schema and implement these debug func-
tions for all classes. For example, give all classes a method debugprint(int
verbosity) that prints information about the class object to stdout; parameter
verbosity=0 prints a brief summary, verbosity=1 prints the most useful
information, verbosity=2 prints everything.

• Inlining: if possible, do not inline debug functions because the debugger may not
able to call an inlined function.

• Trigger by environment variable: a typical debug feature is to invoke the debug
function(s) from the program if a certain environment variable is set.

• Debug versus efficiency: adding debug function will make the final executable
larger. If this overhead is not acceptable for the final production version, then
guard the body or even the entire definition of a debug function with a compiler
directive such as #ifdef ENABLE DEBUG CODE.

• Linking: debug functions are typically not used by the program code itself so the
linker may skip the debug function altogether. There are several ways to avoid
this problem; two easy ones are to write the debug function into a source file that
is already linked into the executable or to use a linker flag3 to enforce linking.

11.4.2 Self-Checking Code

Consider making your program self-checking, by adding assertions and analysis
functions. In contrast to the display functions described before, an analysis function
also checks data or control state information. This is crucial when it is difficult to
maintain the consistency of complex data. Calling the analysis function from the
debugger comes in handy when you track down if and when the internal contents of
an object get corrupted. A detailed discussion of self-checking code and assertions
can be found in [Zeller05].

Design the analysis function so that it returns 1 and creates no output if the inter-
nal state is correct. Next, add assert(analysis fn(my object)) assertion
statements at appropriate places. The program will abort on its own the first time that
the analysis function fails. This will be a valuable check when running regression
tests.

Use good judgement where and when to call the analysis function. There will be
a trade-off between better chances for debugging (call analysis function more fre-
quently) and less runtime overhead (call less frequently). You should add #ifdef
guards around the analysis functions and assertions, such that the self-checking code
can be turned off.

3 For example, flag -u <debug-function> for the GCC compiler.

11.5 Prepare for Post-Processing 181

11.4.3 Debug Helpers for Operators

C++ supports mapping certain operators to user-defined code. It is sometimes not
possible to call a specific operator from the debugger. To bypass this limitation,
create a global function that internally calls the operator. You can now call this
function from the debugger. Here an example:

class myClass
{

...
double operator() (int factor) const;
...

};

double
myClass_op_parenth (const myClass &c, int factor)
{

return c(factor);
}

You can now call myClass op parenth(my object,5) from the debugger
to verify the behavior of operator my object(5).

11.5 Prepare for Post-Processing

The most efficient way to debug is usually to interactively debug the program with
a small test case. However, this is sometimes not possible, for example because a
crash happens only sporadically or because the test case is not accessible due to
confidentiality issues.

This will force you to debug in post-processing mode, meaning you have to find
out what happened after the program has completely ended. Debugging in post-
processing mode can be virtually impossible or at least very inefficient in case there
is very little data left over from the actual bug or crash. There may be a core file
that reveals the call stack, values of certain variables and the memory content at the
time when the program crashed. However, there may be very little data about what
happened before the crash. The only thing left may be a few lines of output in the
command shell and whatever the program user remembered.

11.5.1 Generate Log Files

The airline industry is facing a similar dilemma. If an airplane crashes then there
is a very strong demand to find out exactly why it crashed and to make sure that
this problem (bug) will not occur again. Among other things, the industry tackles
this task by adding black boxes to airplanes that record the most important activity

182 11 Writing Debuggable Code

and status information of the airplane. Data recording happens all the time but only
the last 1/2 hour or so is actually stored. This data is usually very important during
analysis of the plane crash.

The pendant to a black box in a software program is a log file. It is up to the
programmer to create the log file and to define what kind of information should go
in there. There is always a tradeoff between runtime/disk space overhead on one
side and ease of debugging on the other side.

If the size of the log file is not restricted, then it may eventually fill up the entire
disk and thus create a bug on its own. This can be addressed by restricting the size,
for example saving only the last 1000 lines or 100 KBytes of data. A simple, robust
scheme is to use two log files and toggle between both whenever the current one
reaches the defined limit.

Make sure to flush output buffers frequently, otherwise the last few lines of output
(which tend to be the most important ones) may be lost when the program runs into
a fatal signal. Here an example:

...
FILE* log_file;
...
void calibrate(...)
{

...
if(log_file) {
fprintf(log_file, "Calibrating phalanx %s\n", ...);
fflush(log_file); /* important or lines may be lost */

}
...

Lessons learned:
• Use comments to document what is least obvious from the source code.

Describe the intention what a piece of code is supposed to do or why is
was written in a specific way.

• Use a consistent naming convention for constants, classes, members and
variables. Chose names carefully.

• Avoid preprocessor macros. There are good alternatives: enums, con-
stants, inlined functions, or templates.

• Add debugging functions that can be called from the debugger. These are
functions that do a decent printout of user-defined data types or check the
integrity of the database.

• Prepare for post-processing debug: create an optional log file, do not
forget to call fflush() frequently, and make the code self-checking.

Chapter 12
How Static Checking Can Help

In this chapter, we present a set of tools called static checkers. Static checkers
analyze the source code of a program without actually running the program. Ide-
ally, these tools are run as part of the regular software build process and look for the
specific bugs that can be detected with a static analysis of the source code. Typical
checks are syntax errors, incorrect use of memory, and unreachable code. Below, we
give a more detailed list of errors detected by static analysis, as part of the discussion
of the various available tools.

We typically do not apply static checkers as part of a debug session, since prac-
tical experience has shown that the probability of finding the cause of one partic-
ular bug with a static checker is rather low. However, software that contains many
static checker violations or compiler warnings is likely to contain a number of bugs.
These bugs may emerge later in the software maintenance cycle, for instance, when
the compiler is updated to a newer, stricter version, or when the software is ported
to a new CPU platform, or when the software is reused in a new way. Therefore,
some software teams have the sensible rule that the source code base must pass
one or more static checker tools with close to zero errors. Violations and warnings
should be removed at regular intervals, either by cleaning up the code, or by defen-
sive coding practices that avoid the use of advanced features or error-prone coding
styles.

The first section starts with the C/C++ compiler as the most basic static code
checker. In the following sections we introduce checkers that are more sophisticated,
and show what advantages they offer and what extra effort is necessary to use them
properly.

12.1 Using Compilers as Debugging Tools

Over the years, C and C++ compilers have become sophisticated enough to not only
report syntax errors, but also to acquire static code checking features. A modern
compiler will emit, among others, these warnings:

183

184 12 How Static Checking Can Help

• Missing case in a switch statement for enumerated types
• Unused functions, function parameters, or labels
• Taking the address of a register variable
• Integer division by zero
• Dead code (i.e. unreachable code)
• Missing function declarations and return statements
• Incorrect use of memory: unused or uninitialized variables
• Future incompatibilities with the C++ standard
• Incompatibilities with 64-bit CPUs

A widely used and very successful programming rule for a software project is to
enable all warnings in a compiler, and to fix the software during regular development
or special cleanup projects so that warnings (almost) never occur.

First, we show how to enable compiler warnings. The mechanism is usually the
same: the compile command accepts compile flags on the command line to suppress
all warnings, enable all warnings, or to treat all warnings as errors. In addition, there
are usually flags to enable/disable certain types of warnings. You should refer to the
compiler manual for a list of these warning-related flags. Table 12.1 lists the most
common flags related to displaying warnings for three widely used compilers.

Table 12.1 Compile flags for warning messages

GCC Sun CC Visual C++
enable all warnings -Wall +w -Wall
suppress all warnings -w -w -w
convert warnings to errors -Werror -xwe -WX

12.1.1 Do not Assume Warnings to be Harmless

As a first example of the type of problems reported with a compiler warning, the
following program has two problems:

1 /* testinit.c */
2 int main() {
3 int v[16];
4 int i, j, k;
5 j = i;
6 v[i] = 42;
7 return 0;
8 }

The first problem in this program is that the variable k is not used. The second, and
more serious problem, is that the variable i is not initialized to a value before being
used as an array index.

12.1 Using Compilers as Debugging Tools 185

When the testinit.c example is compiled with the GCC compiler using the
default settings, the result is no warning. But using the -Wall flag will produce
these warnings:

testinit.c:4: warning: unused variable ’k’

When the testinit.c example is compiled with the Sun compiler, the result is
the following warning, independent of whether +w is used:

testinit.c", line 5: Warning: The variable i has not yet
been assigned a value.

Microsoft Visual C++, for versions 7.0, 8.0, and 9.0, finds the problem with the
variable i, using the default settings. It finds both problems when using the flag
-Wall:

testinit.c(4): warning C4101: ’k’ : unreferenced local variable
h:\src\testinit.c(5): warning C4700: local variable ’i’ used
without having been initialized

We recommend not to ignore compiler warnings. If a warning indicates a real or
even potential bug, then you should fix the bug. If a warning is harmless, or cannot
be fixed, then put a comment in the code to explain this.

Here is another example that illustrates that the same type of warning may be
harmless or indicates a serious bug. In our example, we have two pointers, P and Q
to some class objects. The code has to check if both P and Q point to the same
object. Unfortunately, there is a typo in the source code, the intended comparison
== in line 8 was accidentally written as an assignment =:

1 /* myfile.cpp */
2 some_class* P = ...
3 some_class* Q;
4 if (Q=find_pointer(...))
5 // do something with Q
6 if (P=Q) <------ typo, should have been P==Q
7 // they are equal, do something special
8 ...
9 ... further processing of P, Q ...

The GCC compiler produces these warning with flag -Wall:

> gcc -Wall myfile.cpp
myfile.cpp:4: warning: suggest parentheses around

assignment used as truth value
myfile.cpp:6: warning: suggest parentheses around

assignment used as truth value

Note that you get no warning at all if flag -Wall is not specified – a good reason
for always having the maximum warning level enabled.

The warning in line 4 is harmless; the statement first assigns Q and then checks
whether it is a NULL pointer or not. This is what the programmer had in mind, so
there is no real bug. However, the statement in line 6 is a real bug: the statement

186 12 How Static Checking Can Help

does not do what the programmer intended. Instead of comparing both pointers, P
is first overwritten with the value of Q, and then compared with a NULL pointer, so
the if-statement matches under a completely different condition. Worse, P has been
accidentally changed; this may cause further side effects later on.

Both if-statements look equally suspect to the compiler, trigger the exact same
warning, and have to be reviewed. The recommendation is to modify the statement
in line 4 such that the intention becomes clear to the compiler. The bug in line 6
should be fixed:

4 if (0 != (Q=find_pointer(...)))
5 ...
6 if (P==Q)

We illustrated with the above example that warnings should not be classified as
harmless. We also demonstrated that a short investment of time to sweep the soft-
ware for warnings pays off, because it reduces the need for debugging sessions later
on.

12.1.2 Use Multiple Compilers to Check the Code

As we can see from the testinit.c example in Section 12.1.1, not every com-
piler warns about every possible problem. Therefore, it is good practice not to ex-
clusively develop with a single compiler, but to write the C or C++ code in such a
style that it is compatible and warning-free with several compilers, or even better,
works on multiple platforms.

12.2 Using lint

One of the first and best-known static checkers for the C language is lint. lint
appeared in 1979 as part of the UNIX operating system. lint is limited to the C
language and does not support C++. We will not discuss lint in detail here because
compilers such as GCC incorporate most of the checks built into lint. Please refer
to Appendix B.6.2 for more information.

Splint (Secure Programming Lint) is a static checker based on the original UNIX
lint, with extension for additional checks and for source code annotations. Please
refer to Appendix B.6.3 for more information.

12.3 Using Static Analysis Tools 187

12.3 Using Static Analysis Tools

Appendix B.6 lists a set of tools that utilize static code analysis techniques. The
following are the most important ones (at the time when this book was written) that
perform rule checking for C/C++ code:

• Coverity Prevent is a commercial static analysis tool doing rule checking in
C/C++ code. See Appendix B.6.1.

• PC-lint (also known as FlexeLint on non-Windows platforms) is a commercial
static analysis tool for checking C and C++ code. See Appendix B.6.7.

• QA C++ is a commercial static analysis tool checking (among other languages)
C and C++, focused on rule checking. See Appendix B.6.8.

• Codecheck is a commercial static analysis tool to check C and C++ code for rule
violations. See Appendix B.6.9.

• The Enterprise (team development) version of Visual C++ 8.0 supports an
/analyze code analysis option that is integrated into the Visual Studio. See
Appendix B.6.4.

• Parasoft C++test is a static analysis tool that offers rule checking and automatic
creation of test harnesses. See Appendix B.6.12.

All these tools have similar features and use models, so we will explain them with
a Coverity example. The type of bugs found with Coverity and the way to use this
tool is representative for other static checker tools.

12.3.1 Familiarize Yourself with a Static Checker

Static checker tools work by parsing the source code of a C or C++ program, and
then doing a static code analysis by running rule checks on the code. The program
is never executed, and no test cases or input data need to be provided.

The first class of problems detected by a static checker is memory errors: unini-
tialized variables, memory and file handle leaks, buffer overruns and corruptions,
null pointer access, use after free/delete and duplicate calls to free/delete.
There is some overlap of functionality for this type of problem with the dynamic
memory checkers such as Valgrind or Purify discussed in Chapter 4. The advan-
tage of a static checker is that it is not necessary to construct a test case so that the
problematic code is reached during execution and stimulated with input values. The
disadvantage is that for some problems such as memory leaks, a static code checker
does not have enough information to decide whether a piece of code is correct or
not.

Further software problems detected by Coverity are dead code, unnecessary code
such as duplicate null checks, and incorrect API use, such as STL usage errors and
incorrect error handling.

To run Coverity, it must be integrated into the build system of your application.
Since there is not one “true” version of the C/C++ language, Coverity needs to de-

188 12 How Static Checking Can Help

termine your particular compiler version, compile flags, system headers, etc. before
the tool can decide if your source code is correct C++ or not.

Coverity has been integrated into the Linux make build command, Visual Stu-
dio, Eclipse, and other IDEs. Please refer to Appendix B.6.1 for links to Coverity
documentation. The product documentation lists currently supported build systems,
and gives details and examples on how to run Coverity as part of your build system.

In order to demonstrate the value provided by Coverity, we give the following
example to show the detection of dead code. Dead code is source code that can
never be reached during the program’s execution. Dead code is quite common in
large software projects. Sometimes, execution it is no longer intended because it is
a leftover from an older state of the software, and no one remembers what the code
was supposed to do. In this case, you should remove the dead code, or comment it
out.

In most cases, dead code is due to incorrect conditional expressions. The program
below gives an example of two nested if() expressions, where the expressions
overlap such that the body of the second if() is never executed.

1 /* testdead.cc */
2 int main() {
3 int v[16];
4 int i;
5
6 for(i=0; i<16; i++) {
7 if(i > 8) {
8 v[i] = i;
9 if(i <= 8) {

10 v[i] = -i;
11 }
12 }
13 }
14 return 0;
15 }

In the above example, when the first if() expression i > 8 holds, then the second
if() expression i <= 8 will never be true, and thus the code inside the second
if() can never be reached. Here the report generated by Coverity:

6 for(i=0; i<16; i++) {

Event between: After this line, the value of "i" is between 9 and 15
Event new_values: Conditional "i > 8"
Also see events: [dead_error_line][dead_error_condition][new_values]

7 if(i > 8) {
8 v[i] = i;

Event dead_error_condition: On this path, the condition "i <= 8"
could not be true
Also see events: [dead_error_line][between][new_values][new_values]

9 if(i <= 8) {

Event dead_error_line: Cannot reach this line of code
Also see events: [dead_error_condition][between][new_values][new_values]

12.3 Using Static Analysis Tools 189

10 v[i] = -i;

Note how it is reported that the code inside the if statement cannot be reached, and
how the precise analysis of the conditional expressions makes it easy to understand
the cause of the dead code.

12.3.2 Reduce Static Checker Errors to (Almost) Zero

You can expect the following typical distribution of warnings and errors when using
first using a static checker on a large application:

• 40% false positive reports of correct code
• 40% multiple occurrence of same problem
• 10% minor or cosmetic problems
• 10% serious bugs, very hard to find by other methods

As you can see from the distribution of errors above, a lot of effort needs to go
into the initial analysis of reported issues. While the report generated by the static
checker differentiates between error types, it is good practice to fix or suppress all
errors. In some cases, the checker generates a false positive: code that is correct but
flagged as an error. Most static checkers have a mechanism to suppress false posi-
tives, either by an annotation in the code, or by blacklisting the function containing
the error in a file. For Coverity, refer to the documentation for the exact format of
blacklist items.

In practice, the removal of false positives and multiple reports of the same prob-
lems is time-consuming but simple work. Once you have sorted through a large
number of trivial-to-fix errors, a small number of serious bugs will surface. You
should take care that these problems are not accidentally suppressed. You should
also not change code just to make the error message go away. Instead, you may
need to do a code review to determine what the code was supposed to do, before
making any changes.

We recommend planning for a cleanup with a static checker so that the reported
errors are reduced to zero, or to at most a small number of documented cases where
it is decided to “not touch the code.” Once this baseline of almost no Coverity er-
rors is established, new errors will only occur when code changes are made. For
large software projects, the ratio of new lines of code by total lines of code is very
small. Therefore, it is not necessary to make the static checker part of the daily
edit-compile-run development cycle. It is sufficient to run Coverity during nightly
software builds, and to schedule regular Coverity cleanup sessions.

190 12 How Static Checking Can Help

12.3.3 Rerun All Test Cases After a Code Cleanup

After making a code change based on a static checker error report, two tasks are
necessary: rerunning the checker to check that the reported error has gone away, and
no new errors have been created. More importantly, it is also necessary to execute
all dynamic test cases to make sure that the program still works as desired.

12.4 Beyond Static Analysis

Other applications of static source code analysis are:

• Portability: check code for portability issues such as big versus little endian, use
of internal (non-standard) header files, 32- versus 64-bit. Example: Codecheck,
Appendix B.6.9.

• Reverse engineering: create documentation how classes are structured, which
other classes are using them, dependencies between software modules, and so
on. Example: Understand C++, Appendix B.6.14.

• Code statistics: create statistics to evaluate the overall quality of the software.
Typical applications are finding duplicated sections of code or interface analysis.
Example: Axivion Bauhaus Suite, Appendix B.6.10.

• Security: use rule checkers specific for Web applications to check buffer overruns
and SQL queries. Examples: Klocwork, Appendix B.6.5; Fortify, Appendix B.6.6.

Lessons learned:
• Do not ignore compiler warnings, even if they appear to be harmless.
• Use multiple compilers to check the code.
• Familiarize yourself with a static checker.
• Reduce static checker errors to (almost) zero.
• Rerun all test cases after a code cleanup.
• Doing regular sweeps of the source code will pay off in the long term.

Chapter 13
Summary

If you have read this book cover-to-cover, and if we, the authors, have done a good
job at explaining various problems and solutions, then you are now equipped with
an array of debugging techniques. You know when and how to use the essential
software tools in this area: static checker, linker, source code debugger, memory
debugger, and profiler. And, most importantly, you know that the most powerful
tools are not to be found in the computer; they are your common sense and your
analytical skills.

Here are some more things we would like you to take away.

• Debugging is a multi-faceted problem that, in general, neither starts nor ends
with a source code debugger.

• Debugging is an important skill for a software developer. It is a prerequisite to
mastering large-scale software engineering projects.

• Debugging won’t go away. Increasing complexity of hardware and software, in-
creasing re-use (having to deal with buggy software written by other people) and
increasing parallelism will rather intensify the problem.

• Consider coming back to this book after some time. New undertakings may
change your point of view or expose you to new challenges.

This book does not contain an exhaustive collection of all relevant debugging tech-
niques. If you feel that we missed something essential then please send an email to
authors@debugging-guide.com. The same holds true if you have spotted
one of the many “bugs” that, most likely, managed to sneak into this book. Before
doing so, please check the errata under

http://www.debugging-guide.com

Good luck with your bug hunting!

191

Appendix A
Debugger Commands

Table A.1 What every self-respecting debugger can do

command name GDB Visual Studio
run program run [args] F5 Start Debugging
start program start [args] F10 Step over
pause Ctrl-C Ctrl-Alt-Break Break All
continue running cont F5 Continue

step-over next F10 Step over
step-into step F11 Step into
step-out finish Shift + F11 Step out

breakpoint break file:lineno right-click Breakpoint/Insert Breakpoint
tracepoint watch file:lineno right-click Breakpoint/Insert Tracepoint
watchpoint watch expr Debug/New Bkpt/New Data Breakpoint

stack trace bt, where Call Stack
print expression print expr Immediate Window
display expression display expr Watch window

set variable set var var=expr Variables window
set environment variable set env var[=val] Properties/Debugging/Environment

show machine code disassemble right-click Go to Disassembly
step-over, machine code nexti F10 Step over
step-into, machine code stepi F11 Step into

193

194 A Debugger Commands

Table A.2 Additional debugger commands used in this book

command name GDB Visual Studio
conditional breakpoint condition bnum right-click Breakpoint/Condition
event breakpoint handle, signal -
exception breakpoint catch, throw Debug/Exceptions...
function breakpoint break function Debug/New Bkpt/Break at Function
temporary breakpoint tbreak F9 Debug/Toggle Breakpoint
list all breakpoints info breakpoints Breakpoints window

attach command to bkpt commands bnum right-click Breakpoint/When Hit
print in command printf right-click Breakpoint/When Hit

find functions info functions expr Debug/New Bkpt/Break at Function
call function call expr Immediate Window
change function return value return expr -

print type whatisarg right-click Go To Declaration
print type description ptype arg right-click Go To Definition
print memory contents x arg Immediate Window
select stack frame frame arg Call Stack right-click Switch to Frame
print frame description info frame Call Stack

Appendix B
Access to Tools

This appendix contains a listing on where to find tools, documentation, further read-
ing, and other material related to debugging. Since some of the information is sub-
ject to frequent updates and changes, we expect to revise this appendix in future
editions of this book. In addition, we will publish an up-to-date version of this Ac-
cess to Tools appendix in electronic form on our website:

http://www.debugging-guide.com

B.1 IDEs, Compilers, Build Tools

B.1.1 Microsoft Visual Studio

Visual Studio is the Microsoft IDE. This is a functional, well integrated environ-
ment, containing compilers for C++, Java, Visual Basic, as well as source code
viewers, and several debugging tools. At the time of writing this book a restricted
version of the compiler and IDE called Visual C++ 2008 Express Edition was avail-
able for free download. Please check the current license agreement for restrictions
of use. All examples in this book were tested with Visual C++ 2005 SP1 (VC++
8.0) and Visual C++ 2008 (VC++ 9.0). For Visual Studio, the documentation is
called the MSDN Library for Visual Studio, and is available as part of the software
installation.

You can find information about Visual C++, the Microsoft C++ compiler, by
going to the central Microsoft website and then following a path through Developer
tools and Visual C++:

http://www.microsoft.com

195

196 B Access to Tools

B.1.2 Eclipse

Eclipse is an Open Source IDE, with support for Java, C++, and other languages. It
runs on Linux and Windows, and is extensible with Plugins. CDT is the C/C++ IDE
for Eclipse.

http://www.eclipse.org
http://www.eclipse.org/cdt
http://en.wikipedia.org/wiki/Java_eclipse

B.1.3 GCC

GCC (The GNU Compiler Collection) is a high-quality compiler, with front ends for
C++, C, Java, and Fortran. GCC is available for almost any CPU, due to being Open
Source, and very modular and portable. GCC is part of most Linux installations,
and also part of Cygwin on Windows (see Appendix B.3.1) We used GCC versions
3.2.3 and 4.2 for the examples in this book. GCC software, documentation, and
source code can be found here:

http://gcc.gnu.org

B.1.4 GNU Make

GNU Make, or gmake, is an application for building software. It is part of Linux
and Cygwin. Documentation for GNU Make can be found here:

http://www.gnu.org/software/make

B.2 Debuggers

B.2.1 dbx

dbx is a source code debugger for C and C++ developed originaly as part of Berkeley
UNIX, and is available on Solaris and BSD Unix. More information is available
here:

http://developers.sun.com/sunstudio
http://docs.sun.com/app/docs/doc/819-5257
http://en.wikipedia.org/wiki/Dbx_debugger

B.2 Debuggers 197

B.2.2 DDD

DDD is a graphical debugger frontend for GDB and dbx. More information is avail-
able here:

http://www.gnu.org/software/ddd
http://en.wikipedia.org/wiki/Ddd

B.2.3 GDB

GDB is the source code debugger of the GNU project. The GDB manual is available
as a book [Stallmann02] and as a web document:

http://sourceware.org/gdb

B.2.4 ARM RealView

ARM RealView is a set of software development tools for the ARM CPUs, includ-
ing compiler, assembler, linker, and debugger. The debugger supports Multi-core
CPUs, tracing, profiling, emulation of the CPU, and attaching to an embedded sys-
tem board. More information is available here:

http://www.arm.com/products/DevTools
http://en.wikipedia.org/wiki/ARM_Ltd

B.2.5 TotalView Debugger

The TotalView Debugger is a commercial C/C++ debugger. It is STL aware, has
good data visualization capabilities and has special support for debugging parallel
programs using threads, MPI, or OpenMP. More information, documentation, demo
versions, and pricing for TotalView can be found at:

http://www.totalviewtech.com

B.2.6 Lauterbach TRACE32

Lauterbach TRACE32 is a source code debugger for embedded systems. TRACE32
supports the ARM, MIPS, PowerPC, and x86 CPUs, as well as various DSPs. More
information can be found here:

http://www.lauterbach.com

198 B Access to Tools

B.3 Environments

B.3.1 Cygwin

Cygwin is a Linux-like environment for the Windows operating system. Cygwin
provides the user with a bash shell, editors such as vi and xemacs, and most
commands familiar to users of UNIX and Linux. You can optionally install the GCC
compiler, gmake, and the debugging tools GDB, gprof, and Valgrind. Thus, with
very little effort, Cygwin provides the user with a Linux-like software development
system. You can find more information, documentation, and download instructions
at:

http://www.cygwin.com

B.3.2 VMware

VMware Workstation is a software package that provides virtual machines on a
host workstation. It allows the creation of multiple separate Windows and Linux
workstation installations, all of which can run on a single host machine. VMware
is typically used when a program needs to be tested with many compiler or OS
versions, or when a particular debugging tool is only available on one platform.

VMware contains a useful checkpointing feature, where one or more known
stable states of a virtual machine can be saved and restored. This is very useful
for obtaining a clean and reproducible debugging environment. For example, use
checkpointing if your software alters or destroys a machine installation, or when
a working debugging environment needs to be shielded from software mainte-
nance changes. More information, documentation, demo versions, and pricing for
VMware can be found at:

http://www.vmware.com

B.4 Memory Debuggers

B.4.1 Purify

Purify is a commercial memory debugging tool, available on Linux, Windows, and
Solaris. Purify works by instrumenting the object code of a program during the link
phase. No source code is required, and no special compiler flags or a recompilation
of the object files are needed. More information is available here:

http://en.wikipedia.org/wiki/IBM_Rational_Purify
http://www-306.ibm.com/software/awdtools/purifyplus

B.4 Memory Debuggers 199

B.4.2 Valgrind

Valgrind is Open Source software. It currently is available on Linux for x86 and
PowerPC processors. The use model of Valgrind is simple. Valgrind interprets the
object code, so it does not need to modify object files or executable, and therefore
does not require special compiler flags, recompiling, or relinking the program. The
valgrind command is simply added at the shell command line, in front of the
program to be executed. A further advantage of Valgrind is that no program source
code is required, so Valgrind can be used to analyze black-box software modules
from third parties where the source code is confidential and unavailable.

Valgrind comes as a collection of tools for the following purposes:

• Memcheck: a memory checker
• Callgrind: a runtime profiler
• Cachegrind: a cache profiler
• Helgrind: find race conditions
• Massif: a memory profiler

Documentation and download instructions for Valgrind are available here:

http://valgrind.org

B.4.3 KCachegrind

KCachegrind is the graphical front-end for the Valgrind/Callgrind profiling feature.
KCachegrind is Open Source software. KCachegrind visualizes traces generated by
profiling, including a tree map and a call graph visualization. Documentation and
download instructions for KCachegrind are available here:

http://sourceforge.net/projects/kcachegrind

B.4.4 Insure++

Insure++ is a commercial tool for detecting runtime memory errors. Insure++ uses
source code instrumentation: it modifies the source on the fly just before it is given
to the compiler. This use model requires recompilation of the source files. There is
some provision to support object code libraries where source code is not available.
More information is available here:

http://www.parasoft.com

200 B Access to Tools

B.4.5 BoundsChecker

BoundsChecker is a commercial memory checking tool for Visual C++ on Win-
dows. BoundChecker has two modes: ActiveCheck, which monitors calls to the op-
erating system and memory management routines, and FinalCheck, which adds ob-
ject code insertion to detect buffer overflows and uninitialized memory reads. More
information is available here:

http://en.wikipedia.org/wiki/BoundsChecker
http://www.compuware.com/products/devpartner/visualc.htm

B.5 Profilers

B.5.1 gprof

gprof is an Open Source profiling tool that is usually shipped as part of the GCC
compiler. It may be necessary to select gprof as an additional option or package
when downloading and installing the GCC compiler. The documentation for the
gprof profiler can be found at:

http://sourceware.org/binutils

B.5.2 Quantify

Quantify is a very powerful commercial profiling tool sold by IBM as part of their
IBM Rational family of software quality tools. Quantify is part of the Rational Pu-
rifyPlus tool suite. Information about Quantify can be found by going to the IBM
website and searching for Software and Quality Products.

http://www.ibm.com

B.5.3 Intel VTune

Intel VTune is a performance analysis tool for the x86 and x64 processors. It is
available on Windows and Linux. More information, documentation, demo versions,
and pricing can be found at:

http://www.intel.com

B.6 Static Checkers 201

B.5.4 AQtime

AQtime is a commercial tool sold by AutomatedQA. It is a runtime and memory
profiler that works on Windows with the Microsoft, Borland, Intel, Compaq, and
GNU compilers. AQtime is integrated into Microsoft Visual Studio and Borland
Developer Studio. More information can be found at:

http://www.automatedqa.com/products/aqtime

B.5.5 mpatrol

mpatrol is an Open Source software memory debugger which also has memory
profiling abilities. It is a library that is linked into the executable and intercepts calls
to malloc(), free(), and similar functions. The use model is similar to gprof.
Information can be found at:

http://sourceforge.net/projects/mpatrol

B.6 Static Checkers

B.6.1 Coverity

Coverity Prevent is a commercial static code checker sold by Coverity, Inc., and is
based on bug-finding technology developed at the Computer Systems Laboratory
at Stanford University, USA. More information, documentation, download instruc-
tions, and pricing are available at:

http://www.coverity.com

B.6.2 Lint

lint appeared in 1979 as part of the UNIX operating system. lint has become a
synonym for code checking of various computer languages, even though the original
tool works only on the C language. lint is part of some OS distributions such as
Solaris and Linux. The man lint command will print information on usage and
options. The man page can also be found here:

http://web.gat.com/docview/lint.html

A manual can be found at:

http://www.thinkage.ca/english/gcos/expl/lint/manu/manu.html

202 B Access to Tools

and a tutorial on lint can be found at

http://www.pdc.kth.se/training/Tutor/Basics/lint

B.6.3 Splint

Splint (Secure Programming Lint) is a static checker. It is based on the original
UNIX lint, with extension for additional checks and for source code annotations.
Splint is also available as a Cygwin package. Documentation, source code, and bi-
naries are available at:

http://www.splint.org

B.6.4 /analyze option in Visual Studio Enterprise Versions

The more expensive Enterprise (team development) version of Visual Studio sup-
ports an /analyze static code analysis option that is integrated into the Visual
Studio IDE.

B.6.5 Klocwork

Klocwork is a commercial static analysis tool addressing Web security, software ar-
chitecture, and general code defects. Information, documentation, pricing, and trial
software are available at:

http://www.klocwork.com

B.6.6 Fortify

The Fortify Source Code Analysis Suite is a commercial static analysis tool focused
on finding security holes in Web applications, such as buffer overflows. More infor-
mation is available at

http://www.fortifysoftware.com

B.6 Static Checkers 203

B.6.7 PC-lint/FlexeLint

PC-lint (also known as FlexeLint on non-Windows platforms) is a commercial static
analysis tool for checking C and C++ code. The software is sold by Gimpel Soft-
ware. For further information, see:

http://www.gimpel.com

B.6.8 QA C++

QAC++ is a commercial static analysis tool to check (among other languages) C
and C++ code for rule violations. It is sold by Programming Research. For further
information, see:

http://www.programmingresearch.com

B.6.9 Codecheck

Codecheck is a commercial static analysis tool focused on checking C and C++ code
for rule violations. It is sold by Abraxas software. For further information, see:

http://www.abraxas-software.com

B.6.10 Axivion Bauhaus Suite

The Axivion Bauhaus Suite is a commercial static analysis tool for doing architec-
tural analysis of source code. Features are clone detection (source code that got du-
plicated and slightly modified) and interface analysis (how different modules com-
municate with each other). It is sold by Axivion GmbH. For more information, see:

http://www.axivion.com

B.6.11 C++ SoftBench CodeAdvisor

CodeAdvisor is a commercial static analysis tool checking C/C++ code for rule
violations. It is part of the SoftBench tool suite from HP. For more information, go
to the HP website and search for “CodeAdvisor”:

http://www.hp.com

204 B Access to Tools

B.6.12 Parasoft C++test

C++test is a commercial tool sold by Parasoft for C/C++. It is a static analysis tool
and offers rule checking and also automatic creation of test harnesses. For more
information see:

http://www.parasoft.com

B.6.13 LDRA tool suite

The LDRA tool suite is a commercial static analysis tool doing rule checking and
other code analysis. It is sold by LDRA. See the following link for more informa-
tion:

http://www.ldra.com

B.6.14 Understand C++

Understand C++ is a code analysis tool based on static analysis. It’s focus is to
reverse engineer and document source code. It is sold by Scientific Toolworks Inc.
See the following link for more details:

http://www.scitools.com

B.7 Tools for Parallel Programming

B.7.1 Posix Threads

Posix Threads is a standard for threads on Linux and Solaris. There is also a Win-
dows implementation. For more information, see [Butenhof97] and also:

http://en.wikipedia.org/wiki/Posix_threads
https://computing.llnl.gov/tutorials/pthreads

B.7.2 OpenMP

The OpenMP Application Program Interface (API) supports shared-memory paral-
lel programming in C, C++, and Fortran, on Linux, Windows, Solaris, and MacOS

B.7 Tools for Parallel Programming 205

platforms. For more information, see [Chandra00], [Chapman07], [Eigenmann01],
and also:

http://www.openmp.org
http://en.wikipedia.org/wiki/Openmp

B.7.3 Intel TBB

Intel TBB (Threading Building Blocks) is a C++ template-based class library that
provides an abstraction layer around raw OS threads. TBB has a runtime library
with memory allocators that are thread-safe and avoid cache conflicts. Available
for x86 (Pentium 4 and later) and compatible processors on Linux, Windows, and
MacOS. There is also an Open Source version of TBB. For more information, see
[Reinders07] and also:

http://www.intel.com
http://threadingbuildingblocks.org
http://en.wikipedia.org/wiki/TBB

B.7.4 MPI

MPI (Message Passing Interface) is a message-passing interface to program large
clusters of computers. MPI is language independent, there is implementations for
C, C++, Fortran, Java, Perl, and Python. For more information, see:

http://www-unix.mcs.anl.gov/mpi
http://www.mpi-forum.org
http://en.wikipedia.org/wiki/Message_Passing_Interface

B.7.5 MapReduce

Google MapReduce is a framework for parallel computations spread over widely
separated clusters with unreliable nodes. For more information, see:

http://labs.google.com/papers/mapreduce.html
http://en.wikipedia.org/wiki/MapReduce

B.7.6 Intel Threading Analysis Tools

Intel Thread Checker is a tool to detect deadlocks and data races. The tool maps
potential errors to the memory reference and to the source-code line. Checker results

206 B Access to Tools

are grouped into different severity levels such as comments, warnings, and errors.
Intel Thread Checker is available on Linux and Windows.

Intel Thread Profiler is a tool to measure and visualize the parallel execution
of threads. It is compatible with OpenMP and TBB and currently only available
on Windows. More information, documentation, demo versions, and pricing can be
found at:

http://www.intel.com

B.8 Miscellaneous Tools

B.8.1 GNU Binutils

The GNU binutils are a collection of binary tools available on UNIX, Linux, and
Cygwin. Useful commands for debugging are: nm to list symbols from object files,
objdump to display object file information, strings to list the printable strings
in a binary file, and strip to remove symbols from an object file. More information
can be found here:

http://www.gnu.org/software/binutils

B.8.2 m4

The GNU M4 macro processor is Open Source software. For documentation and
downloading sources see:

http://www.gnu.org/software/m4

B.8.3 ps

ps is a UNIX, Linux, and Cygwin utility that shows the current status of processes
running on a host. It can be instructed by command line arguments to provide differ-
ent types of information. Note that command line args vary on different operating
systems; use man ps to get more information.

B.8 Miscellaneous Tools 207

B.8.4 strace / truss

The Linux utility strace (truss on Solaris) logs all accesses to the operating sys-
tem, such as memory allocation, file I/O, system calls, and launching sub-processes.
Use man strace on Linux or man truss on Solaris to get more information.

B.8.5 top

top is a UNIX, Linux, and Cygwin utility that shows in a simple graphical form
which processes are running on a host and gives details on memory usage, CPU time
consumed so far, priority, etc. It also gives a summary of the status of the host, e.g.
total memory usage and overall CPU time usage in terms of user/kernel/idle time.
The utility is very useful to get a first glance on what is happening on the host. Use
man top to get more information.

B.8.6 VNC

VNC is software to view and remote-control a computer’s desktop across a network.
More information, documentation, and software to download can be found here:

http://www.realvnc.com
http://www.tightvnc.com

B.8.7 WebEx

WebEx makes software for remote meetings, allowing users to view and share ap-
plications on a remote desktop. For more information, see:

http://www.webex.com
http://en.wikipedia.org/wiki/Webex

Appendix C
Source Code

C.1 testmalloc.c

This example is used in Chapter 5 to check if free()/delete return deallocated
memory to the operating system.

1 /* testmalloc.c Copyright 2007 Groetker, Holtmann, Keding, Wloka */
2 #include <stdio.h>
3 #include <stdlib.h>
4 #ifdef _MSC_VER
5 #define sleep(x) _sleep(1000*(x))
6 #endif
7
8 #define blocksize 1024
9
10 /* make the program wait, to inspect process for memory use */
11 void wait_for_input(const char *prefix, int is_interactive) {
12 char c;
13 if(is_interactive) {
14 printf("%s hit return to continue\n", prefix); fflush(stdout);
15 c = getchar();
16 }
17 else
18 { sleep(1); }
19 }
20
21 /* program entry point */
22 int main(int argc, char **argv) {
23 const char *usage = "usage: testmalloc i[interactive]|n n iter\n";
24 int n, i, j, iterations, is_interactive = 0;
25 int **myarray;
26
27 if(argc != 4) {
28 fprintf(stderr, usage);
29 return 1;
30 }
31
32 if(argv[1][0] == ’i’)
33 is_interactive = 1;
34
35 n = atoi(argv[2]);
36 iterations = atoi(argv[3]);
37 if(n <= 0 || iterations < 0) {
38 fprintf(stderr, usage);
39 return 2;

209

210 C Source Code

40 }
41
42 for(i=0; i<iterations; i++) {
43 wait_for_input("before malloc: ", is_interactive);
44 #ifdef USE_NEW
45 myarray = new int*[n];
46 #else
47 myarray = (int **) malloc(n * (sizeof(int *)));
48 #endif
49 for(j=0; j<n; j++) {
50 #ifdef USE_NEW
51 myarray[j] = new int[blocksize];
52 #else
53 myarray[j] = (int *) malloc(blocksize * sizeof(int));
54 #endif
55 }
56 wait_for_input("after malloc: ", is_interactive);
57 for(j=0; j<n; j++) {
58 #ifdef USE_NEW
59 delete [] myarray[j];
60 #else
61 free(myarray[j]);
62 #endif
63 }
64
65 #ifdef USE_NEW
66 delete [] myarray;
67 #else
68 free(myarray);
69 #endif
70 }
71 return 0;
72 }

C.2 genindex.c

This example is used in Chapter 5 to demonstrate on how to measure memory con-
sumption over data structures

1 /* genindex.cc Copyright 2007 Groetker, Holtmann, Keding, Wloka */
2 #include <stdio.h>
3 #include <string>
4 #include <list>
5 #include <vector>
6 #include <map>
7 using namespace std;
8
9 /* make the program wait, to inspect process for memory use */
10 void wait_for_input(const char *prefix) {
11 char c;
12 fprintf(stderr, "%s hit return to continue\n", prefix);
13 fflush(stderr);
14 c = getchar();
15 }
16 // word index data structure: word as key, list of integers
17 // each integer stores the line number where the word occurs
18 typedef map<string,list<int>,less<string> > WordIndexType;
19
20 // wrapper class, stores one index per text file
21 class FileIndexType
22 {
23 public:

C.2 genindex.c 211

24 FileIndexType();
25 ˜FileIndexType();
26 int scan_file(char *fname);
27 int add_to_index(string &key, int l);
28 void print_index();
29 int verify_index();
30 void clear();
31 void clear_lines();
32 int print_memory_stats();
33 protected:
34 string filename;
35 int filesize;
36 WordIndexType wordindex;
37 vector<string> lines;
38 };
39
40 // constructor
41 FileIndexType::FileIndexType()
42 {}
43
44 // destructor
45 FileIndexType::˜FileIndexType() {
46 clear();
47 }
48
49 // clear the index
50 void FileIndexType::clear() {
51 filename.clear();
52 filesize = 0;
53 wordindex.clear();
54 clear_lines();
55 }
56
57 // clear the lines buffer
58 void FileIndexType::clear_lines() {
59 lines.clear();
60 }
61
62 // generate a report of memory usage
63 int FileIndexType::print_memory_stats() {
64 unsigned i;
65 int mem_filename = sizeof(string) + filename.size();
66 int mem_wordindex = 0;
67 int mem_lines = 0;
68 int mem_total = 0;
69
70 // compute size of wordindex data structure
71 // Note: very rough approximation, measures the payload, not
72 // the internal search structure of map.
73 WordIndexType::const_iterator it;
74 list<int>::const_iterator wt;
75 for(it = wordindex.begin(); it != wordindex.end(); it++) {
76 mem_wordindex += it->first.size(); // add size of word key
77 for(wt = it->second.begin(); wt != it->second.end(); wt++)
78 // double-linked list element size is at least 2 pointers plus content
79 mem_wordindex += sizeof(int) + 2 * sizeof(void*);
80 }
81
82 // compute size of lines data structure payload
83 for (i=0; i < lines.size(); i++)
84 mem_lines += lines[i].size();
85
86 mem_total = mem_filename + mem_wordindex + mem_lines;
87
88 fprintf(stderr, "-- memory size for index of ’%s’ file size=%d\n",
89 filename.c_str(), filesize);
90 fprintf(stderr, "-- filename=%d wordindex=%d lines=%d total=%d\n",

212 C Source Code

91 mem_filename, mem_wordindex, mem_lines, mem_total);
92 fflush(stderr);
93 return mem_total;
94 }
95
96 // add a (word, line) pair to the index
97 int FileIndexType::add_to_index(string &key, int l) {
98 if(key.size() == 0)
99 return 0;
100 wordindex[key].push_back(l);
101 return 0;
102 }
103
104 // open file, break text into words, add words to index, close file
105 int FileIndexType::scan_file(char *fname) {
106 filename = fname;
107 filesize = 0;
108 FILE *fp = 0;
109 int c = 0;
110 string newword = "";
111 int current_line = 1; /* start counting lines at value 1 */
112 string buffer;
113
114 if(NULL == (fp = fopen(filename.c_str(), "r"))) {
115 fprintf(stderr, "-- error: cannot read file ’%s’\n",
116 filename.c_str());
117 return 1;
118 }
119 while(1) { // very simple tokenizer to break text into words
120 c = getc(fp);
121
122 if(c == EOF || c == ’\n’) {
123 add_to_index(newword, current_line);
124 newword = "";
125 current_line++;
126 lines.push_back(buffer);
127 #ifdef FIX_LINES
128 buffer = "";
129 #endif
130 if(c == EOF)
131 break;
132 }
133 else if(c == ’ ’ || c == ’\t’ || c == ’\r’) {
134 add_to_index(newword, current_line);
135 newword = "";
136 if(c != ’\r’)
137 buffer = buffer + (char) c;
138 }
139 else {
140 newword = newword + (char) c;
141 buffer = buffer + (char) c;
142 }
143 filesize++;
144 }
145 fclose(fp);
146 return 0;
147 }
148
149 // output of the program: a word index
150 void FileIndexType::print_index() {
151 WordIndexType::const_iterator it;
152 list<int>::const_iterator wt;
153 printf("index of file ’%s’\n", filename.c_str());
154 for(it = wordindex.begin(); it != wordindex.end(); it++) {
155 printf("’%s’", it->first.c_str());
156 for(wt = it->second.begin(); wt != it->second.end(); wt++)
157 printf(" %d", (*wt));

C.2 genindex.c 213

158 printf("\n");
159 }
160 fflush(stdout);
161 }
162
163 // verification code: cross-check generated index
164 int FileIndexType::verify_index() {
165 int result = 0;
166 WordIndexType::const_iterator it;
167 list<int>::const_iterator wt;
168 string w;
169 int i;
170 for(it = wordindex.begin(); it != wordindex.end(); it++)
171 {
172 w = it->first;
173 for(wt = it->second.begin(); wt != it->second.end(); wt++) {
174 i = (*wt);
175 if(string::npos == lines[i-1].find(w))
176 return 1;
177 }
178 }
179 return result;
180 }
181
182 /* program entry point */
183 int main(int argc, char **argv) {
184 const char *usage = "-- usage: genindex filename [filename...]\n";
185 if(argc < 2) {
186 fprintf(stderr, usage);
187 return 1;
188 }
189 vector<FileIndexType> fileindex(argc-1);
190 int result = 0;
191 int total = 0;
192 int i;
193
194 // for each file, compute an index
195 for(i = 0; i<argc-1; i++) {
196 result = fileindex[i].scan_file(argv[i+1]);
197 if(result)
198 return result; // something went wrong with file read
199 result = fileindex[i].verify_index();
200 if(result) {
201 fprintf(stderr, "-- error: index verification failed.\n");
202 return result;
203 }
204 #ifdef CLEAR_INDEX
205 fileindex[i].print_index();
206 fileindex[i].clear();
207 total += fileindex[i].print_memory_stats();
208 #endif
209 #ifdef PAUSE_INDEX
210 wait_for_input("-- done generating index: ");
211 #endif
212 }
213
214 #ifndef CLEAR_INDEX
215 // for each file, output index
216 for(i=0; i<argc-1; i++) {
217 fileindex[i].print_index();
218 total += fileindex[i].print_memory_stats();
219 }
220 #endif
221 fprintf(stderr, "-- memory size, all data structures: %d bytes\n",
222 total);
223 return result;
224 }

214 C Source Code

C.3 isort.c

This example is used in Chapter 6 for general profiling.

1 /* isort.c Copyright 2007 Groetker, Holtmann, Keding, Wloka */
2 #include <stdio.h>
3 #include <stdlib.h>
4
5 typedef double Stype;
6
7 /* Print an array of the given size on stdout. */
8 void print_array(const char* prefix, const Stype *array, int size) {
9 int i;
10 printf("%s:", prefix);
11 for(i=0; i<size; i++)
12 printf(" %f", array[i]);
13 printf("\n"); fflush(stdout);
14 }
15
16 /* swap 2 elements */
17 void swap(Stype *a, int i, int j) {
18 Stype tmp;
19 tmp = a[i];
20 a[i] = a[j];
21 a[j] = tmp;
22 }
23
24 /* check if ’a’ is less than ’b’ */
25 int less(Stype a, Stype b) {
26 return (a < b) ? 1 : 0;
27 }
28
29 /* insert a[0] into pre-sorted array a[1]...a[n-1] */
30 void insert_value(Stype *a, int n) {
31 int i;
32 for(i=1; i<n; i++)
33 if(less(a[i], a[i-1]))
34 swap(a, i, i-1);
35 #ifdef ISORT_FAST /* compile with -DISORT_FAST to speed up */
36 else return;
37 #endif
38 }
39
40 /* toplevel routine for isort */
41 void isort(Stype *a, int n) {
42 if(n <= 1)
43 return;
44 isort(a+1, n-1);
45 insert_value(a,n);
46 }
47
48 /* partition array a, so that all values smaller than pivot a[n-1]
49 are placed in a[0]..a[result-1], the pivot is in a[result],
50 and the values larger than the pivot are in a[result+1]..a[n-1]
51 */
52 int partition(Stype *a, int n) {
53 int i, result = 0;
54 for(i = 0; i<n-1; i++)
55 if(less(a[i], a[n-1])) {
56 swap(a, result, i);
57 result++;
58 }
59 swap(a, result, n-1);
60 #ifdef DEBUG
61 print_array("partition:", a, n);
62 printf("pivot at: %d\n", result);

C.3 isort.c 215

63 #endif
64 return result;
65 }
66
67 /* toplevel routine for quicksort */
68 void quicksort(Stype *a, int n) {
69 int i;
70 if(n <= 1)
71 return;
72 i = partition(a, n);
73 quicksort(a, i);
74 quicksort(a+i+1, n-(i+1));
75 }
76
77 /* program entry point */
78 int main(int argc, char **argv) {
79 const char *usage = "usage: isort i|q n iter, n>0, iter>0\n";
80 int n, i, j, iterations, use_isort = 1;
81 Stype *input, *result;
82
83 if(argc != 4) {
84 fprintf(stderr, usage);
85 return 1;
86 }
87
88 if(argv[1][0] == ’q’)
89 use_isort = 0;
90
91 n = atoi(argv[2]);
92 iterations = atoi(argv[3]);
93 if(n <= 0 || iterations <= 0) {
94 fprintf(stderr, usage);
95 return 2;
96 }
97
98 input = (Stype *) malloc(n * sizeof(Stype));
99 result = (Stype *) malloc(n * sizeof(Stype));
100 if(input == 0 || result == 0) {
101 fprintf(stderr, "out of memory\n");
102 return 3;
103 }
104
105 srand48(1); /* always generate the same random sequence */
106 for(i=0; i<n; i++)
107 input[i] = drand48();
108
109 for(j=0; j<iterations; j++) {
110 for(i=0; i<n; i++)
111 result[i] = input[i];
112 if(use_isort)
113 isort(result, n);
114 else
115 quicksort(result, n);
116 }
117 #ifdef DEBUG
118 print_array("input", input, n);
119 print_array("result", result, n);
120 #endif
121 free(input);
122 free(result);
123 return 0;
124 }

216 C Source Code

C.4 filebug.c

This example is used in Chapter 6 for profiling I/O problems.

1 /* filebug.c Copyright 2007 Groetker, Holtmann, Keding, Wloka */
2 #include <stdio.h>
3 #include <stdlib.h>
4
5 /* program entry point */
6 int main(int argc, char **argv) {
7 int i, n, use_flush = 1;
8 const char *usage = "usage: filebug f[ast]|s[low] file n\n";
9 char *filename;
10 FILE *fp;
11 char c;
12
13 if(argc != 4) {
14 fprintf(stderr, usage);
15 return 1;
16 }
17
18 if(argv[1][0] == ’f’)
19 use_flush = 0;
20
21 filename = argv[2];
22
23 n = atoi(argv[3]);
24 if(n < 0) {
25 fprintf(stderr, usage);
26 return 2;
27 }
28
29 if(!(fp = fopen(filename, "w"))) {
30 fprintf(stderr, "can not open file ’%s’ for write\n", filename);
31 return 3;
32 }
33
34 /* write n characters to file, to observe effect of fflush() */
35 for(i=0; i<n; i++) {
36 c = ’a’ + (i % 26);
37 fputc(c, fp);
38 if(use_flush)
39 fflush(fp);
40 }
41 fclose(fp);
42 return 0;
43 }

References 217

References

[Agans02] D.J. Agans, Debugging: The Nine Indispensable Rules for Finding Even the Most Elu-
sive Software and Hardware Problems. American Management Association, 2002

[Ball98] S. Ball, Debugging Embedded Microprocessor Systems. Newnes, 1998
[Barr06] M. Barr, A. Massa, Programming Embedded Systems. O’Reilly, 2nd Edition, 2006
[Brown88] M.H. Brown, Algorithm Animation. The MIT Press, 1988
[Butenhof97] D.R. Butenhof, Programming with POSIX Threads. Addison-Wesley, 1997
[Chandra00] R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan, J. McDonald, Parallel Pro-

gramming in OpenMP. Morgan Kaufmann, 2000
[Chapman07] B. Chapman, G. Jost, R. van der Pas, Using OpenMP: Portable Shared Memory

Parallel Programming. The MIT Press, 2007
[Cormen01] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms. The

MIT Press, 2nd Edition, 2001
[Eigenmann01] R. Eigenmann, M. Voss (Editors), OpenMP Shared Memory Parallel Program-

ming. International Workshop on OpenMP Applications and Tools, WOMPAT 2001. (Lecture
Notes in Computer Science). Springer, 2001

[Ford02] A.R. Ford, T.J. Teorey, Practical Debugging in C++. Prentice Hall, 2002
[Fritzson93] P.A. Fritzson (Editor), Automated and Algorithmic Debugging. First International

Workshop, Aadebug ’93 Linkoping, Sweden, May 3–5, 1993: Proceedings (Lecture Notes in
Computer Science). Springer, 1993

[Kaspersky05] K. Kaspersky, Hacker Debugging Uncovered. A-List Publishing, 2005
[Lencevicius00] R. Lencevicius, Advanced Debugging Methods. Springer, 2000
[Levine00] J. Levine, Linkers & Loaders. Morgan Kaufmann, 2000
[Luecke06] G.R. Luecke, J. Coyle, J. Hoekstra, M. Kraeva, Y. Li, O. Taborskaia, Y. Wang,

A Survey of Systems for Detecting Serial Run-Time Errors. Concurr. Comput. : Pract. Exper.
18(15): 1885–1907, Dec. 2006

[Metzger03] R.C. Metzger, Debugging by Thinking: A Multidisciplinary Approach. Digital Press,
2003

[Meyers04] G.J. Meyers, C. Sandler, T. Badgett, T.M. Thomas, The Art of Software Testing.
John Wiley & Sons, 2004

[Pappas00] C.H. Pappas, W.H. Murray, Debugging C++. Osborne Publishing, 2000
[Reinders07] J. Reinders, Intel Threading Building Blocks: Outfitting C++ for Multi-core Proces-

sor Parallelism. O’Reilly Media, 2007
[Rosenberg96] J.B. Rosenberg, How Debuggers Work: Algorithms, Data Structures, and Archi-

tecture. Wiley, 1996
[Sedgewick01] R. Sedgewick, Bundle of Algorithms in C++, Parts 1–5: Fundamentals, Data

Structures, Sorting, Searching, and Graph Algorithms. Addison-Wesley Professional, 3rd
Edition, 2001

[Silberschatz04] A. Silberschatz, G. Gagne, P.B. Galvin, Operating System Concepts. John Wiley
& Sons Inc, 2004

[Stitt92] M. Stitt, Debugging: Creative Techniques and Tools for Software Repair. John Wiley &
Sons Inc, 1992

[Stallmann02] R.M. Stallmann, R.H. Pesch, S. Shebs, Debugging With GDB: The Gnu Source-
Level Debugger. Free Software Foundation, 2002

[Tanenbaum01] Andrew S. Tanenbaum, Modern Operating Systems. Prentice Hall PTR, 2001
[Telles01] M.A. Telles, Y. Hsieh, The Science of Debugging. Coriolis Group Books, 2001
[Zeller05] A. Zeller, Why Programs Fail: A Guide to Systematic Debugging. Morgan Kaufmann,

2005

Index

/proc, 104
/usr/bin/time, 65, 68
/tmp, 9
/var, 9
13 golden rules, 6, 7

ABI, 118
absolute path, 102
application binary interface, 118
AQtime, 53, 201
archive files, 113
ARM RealView, 24, 197
array out-of-bound error, 35, 36
assertions, 92, 180
asynchronous event, 98
atomic transaction, 88
audit trail, 12
Axivion Bauhaus Suite, 203

back-out build, 11
backtrace, 27
binutils, 118, 206
black box test, 17
BoundsChecker, 35, 200
breakpoint, 23, 28

C++ exception, 28
C++ function, 129
C++ templates, 131
conditional, 28, 137
DLL, 126
event, 28
function, 28
line, 28
not hit, 107
pending, 126
problem, 107
signal, 28

temporary, 136
buffer overrun, 34
bug

common, 17
Heisenbug, 18
hiding behind bugs, 19
secret, 20
sporadic, 18

build and test flow, 6

C++
class, 114
coding style, 171
exception, 147
name mangling conventions, 118
namespace, 114
templates, 114

c++filt, 115
call graph, 74
call stack, 23
Callgrind, 81
CDT, 196
check the plug, 9
clock(), 91
code coverage, 42
code quality, 190
CodeAdvisor, 203
Codecheck, 187, 203
command line interface, 23
command shell, 23
comments, 169
common feature set, 24
communication buffer, 93
compiler, 6, 102

bug, 106
compatibility with debugger, 107
driver, 110, 115

219

220 Index

flags, 6, 7
-E(GCC, VC++), 176
-WX (VC++), 184
-Wall (GCC), 184
-Werror (GCC), 184
-Zi (VC++), 83
-c(GCC, VC++), 111
-fPIC(GCC), 123
-g(GCC), 25
-pg(GCC), 73, 74
-shared(GCC), 123
-w (GCC, VC++), 184
-xwe (VC++), 184

mismatch, 119
optimization, 19, 107
optimized mode, 24
version, 118, 120
warnings, 6, 183

harmless, 185
uninitialized variable, 185
unused variable, 185

confidentiality, 20
const definitions versus macros, 173
core dump, 120, 151, 152
Coverity, 55, 187, 201
ctime(), 72
current working directory, 102
CWD variable, 102
Cygwin, 49, 198

data
breakpoints, 143
race condition, 88

dbx, 24, 196
DDD, 197
dead code detection, 188
deadlock, 93
debug

information, 24
symbol, 24

debuggable source code, 7
debugger, 23

compatibility with compiler, 107
continue, 28
core dump, 107
Ctrl-C, 28
features, 23
memory, 7
pause, 28
print, 29
run your program, 24
source code, 7, 23
source code and memory debugger, 40
start, 28

symbolic, 23
debugging

confidentiality, 20
deadlock, 93
on-site, 20

delete, 33
dining philosophers problem, 93
display, 30
divide and conquer, 10, 106
DLL, 101, 122
dlerror(), 127
dlopen(), 122
dlsym(), 122
FormatMessage(), 127
GetLastError(), 127
GetProcAddress(), 122
import library, 122
LoadLibrary(), 122
not found error, 124
reporting errors, 127
search order, 124
setting breakpoints, 126

DUMPBIN program, 112
dynamic cast, 119
dynamic linking, 123

DLL, 101, 122
libraries, 122

dynamic memory, 33

Eclipse, 196
EDITBIN, 118
elapsed time, 65
embedded system, 23
enum versus macro, 173
env, 101
environment, 11, 101

variable, 101
errno.h, 105
error message

read it, 9
exception, 151, 152

catch, 147
throw, 147

expression
display, 30

factorial function, 24, 110
failure, spurious, 12
false positive, 189
Feynman, Richard, 1, 5
file I/O

detection, 105
example, 84, 216

FlexeLint, 203

Index 221

free, 33
function

inlined, 175
name mangling, 151
naming conventions, 171
overloading, 114, 129
signature, 129

partial, 130

GCC, 23, 196
GDB, 21, 23, 197
@ operator, 159
backtrace, 27
break, 130
bt, 27
call, 154, 156
catch, 147
command line arguments, 25
commands, 138, 139
condition, 138
continue, 138
disassemble, 90, 166
display, 30
down, 28
end, 138
finish, 29, 136
handle, 145
help, 160
info
breakpoints, 132
frame, 163
functions, 131
reg, 164
stack, 95
threads, 95

jump, 154, 158
next, 29
nexti, 166
print, 29, 154, 156, 159
printf, 138
ptype, 130
return, 154, 157
run, 25
set
environment, 154
step, 166
var, 154, 156, 160

show, 135
signal, 145
silent, 138
step, 29, 135
step-into, 29
step-out, 29
step-over, 29

stepi, 90, 166
tbreak, 136
thread, 95
throw, 147
up, 28
watch, 143
whatis, 159
where, 27, 141
x, 159

gmake, 196
gmon.out, 74
golden rules, 6, 7
gprof, 74, 200
graphical user interface, 23
GUI, 23

heap
memory, 33
profiler, 53

Heisenberg, Werner, 18
Heisenbug, 18, 91
Helgrind, 96, 199

IDE, 23, 195
inlined functions, 175
insertion sort, 65
insertion sort example, 70, 214
installation, 102
instruction, 24
instrumentation, 6, 7, 73, 79

memory usage, 55
tools, 7

Insure++, 35, 40, 199
integer overflow, 31
integrated development environment, 23
Intel

TBB, 87, 205
Thread Checker, 96, 205
Thread Profiler, 96, 205
Threading Analysis Tools, 96, 205
VTune, 82, 200

interrupt handler, 98

Kennedy, John F., 17
kill, 146
Klocwork, 202

Lauterbach TRACE32, 24, 197
ld, 110
LD DEBUG, 125
LD DEBUG OUTPUT, 126
LD LIBRARY PATH variable, 101
LDRA tool suite, 204
LIB, 118

222 Index

library, 7, 113
third party, 11

line number, 24
linker

argument order, 113
basics, 109
C linkage, 116
DLL, 122
ld, 110
missing arguments, 111
objects, 110
options, 6, 7
problems, 109
search path, 124
version, 118

lint, 186, 201
Linux, 23
loader

debug, 125
LD DEBUG, 125
loading DLL, 122

log files, 91
logging instructions, 91

M4, 178, 206
machine code stepping, 90, 166
macro, 6, 7, 173, 175

definition, 7
Make, 196
make it fail, 8
malloc(), 33, 43
MapReduce, 87, 205
Massif, 53, 199
memory, 7

access, 6
access violation, 19
allocation problems, 33
corruption, 34
dynamic, 33
heap, 33
leak, 34, 35, 38
management, 105
memory debugger, 7, 33

combining with source code debugger, 40
memory profiler, 45
paging, 45
profiler, 53
uninitialized, 19

mmap(), 43
mpatrol, 53, 201
MPI, 87, 197, 205
mutex, 93, 94

name mangling, 114, 115, 151

new, 33
nm, 112, 115, 206
null pointer read, 35
null pointer write, 35

objcopy, 118
objdump, 206
object code, 6, 24
object code instrumentation, 35
object file

mismatching, 119
text section, 112

OpenMP, 87, 197, 204
operating system, 23, 102
opportunities, 5, 7
OS call

call frequency, 105
interrupt, 105
return value, 105
tracer, 6
strace, 7, 104, 207
truss, 7, 104, 207

OS upgrade, 101

paging memory, 67
parallel

programs, 87
Parasoft C++test, 187, 204
PATH variable, 101
PC-lint, 187, 203
performance analysis, 6, 63
perror(), 105
PID, 102
porting code, 190
position-independent code, 123
Posix Threads, 42, 87, 204
post mortem, 6, 152
preprocessor, 6, 173
proc file system, 104
process

debugging, 103
ID, 102

profiler
memory profiler, 45
runtime profiler, 63

program
run under debugger control, 24

ps, 103, 206
Purify, 35, 55, 198

QA C++, 187, 203
Quantify, 79, 200
Quicksort, 65
Quicksort example, 66, 214

Index 223

race condition, 18, 88, 94
real time, 65
RealView, 24, 197
recursion, 31
regression test, 13, 15
requirements, 8
reverse engineering, 190
run, 25
runtime

crash, 120
library, 102
measurement, 65

runtime profiler, 63
accuracy, 72
call graph, 74, 76, 81
Callgrind, 81
constant overhead, 69
file I/O performance, 84
file size dependency, 68
flat profile, 74, 75, 81
gprof, 74
inlining, 70
instrumentation, 73
Quantify, 79, 200
resolution, 72
sampling, 73, 75
self-written, 72
slow-down caused by profile tool, 75, 79, 81
time, 65
Valgrind, 81, 199
VTune, 82

sampling, 73
sbrk(), 43
scheduling, 89
secure connection, 21
security, 190
segmentation fault, 27, 152
semaphore, 93
shared library, 101
shared object file, 122
shell, 23
signal, 27

debugging, 144
example, 146
SIGBUS, 149
SIGFPE, 149
SIGILL, 149
SIGINT, 94, 144
signal handler, 144
SIGSEGV, 27, 149
SIGUSR1, 145

signature, 129
Solaris, 23

source code
debuggable, 7

source code instrumentation, 35
Splint, 186, 202
SSH, 21
stack, 23, 27

corrupt, 151
frame, 27, 150
overflow, 27
trace, 27, 148, 149

static checker, 6, 7, 183, 187
static constructor, 140

order dependence, 140
shared library, 140
stack trace, 141

static initialization
attaching debugger, 142
static initializer, 140

statistics, code quality, 190
stepping, 29

assembly code, 90, 166
C++ methods, 133
implicit functions, 134
line, 29
step-into, 29
step-out, 29
step-over, 29
templates, 131

strace, 7, 104, 207
strings, 206
strip, 206
structured process, 5
stub function, 116
suppression file, 40
swapping memory pages, 67
symbol, 109

binding, 125
clash, 117
defined, 109, 114
missing, 112
multiple definitions, 116
name demangling, 115
resolved, 109
undefined, 109, 114, 118
unresolved, 109

symbol table processing, 125
symbolic information, 24
system library

mismatching, 119
searching for, 112
symbols, 118

system test, 16

TBB, 87, 205

224 Index

templates
breakpoint, 131
function specialization, 129
templatized function versus macro, 176

temporary variables, 172
test

black box, 17
regression, 13, 15
routines, 6
system, 16
unit, 16
white box, 17

test case
selecting, 6
simplify, 9

testmalloc example, 46, 209
threads

current, 95
memory debugger, 42
state, 95
switching, 90, 95
thread ID, 89
thread safe, 91

time(), 91
time, 65, 68
time stamps, 91
toolkit, 14
top, 49, 103, 207
TotalView, 24, 197
trace

buffer, 92
file, 91
function, 92

TRACE32, 24, 197
tracepoint
collect, 93
trace, 93

tracing OS calls, 7, 104, 207
translation table of debugger commands, 193
truss, 7, 104, 207

unallocated memory, 35
Understand C++, 204
unhandled exception, 27
uninitialized memory, 19
uninitialized memory read, 35, 37
unit test, 16
UNIX, 23
user CPU time, 65

Valgrind, 35, 36, 199
Cachegrind, 199
Callgrind, 81, 199
Helgrind, 96, 199

leak, 38
Massif, 53, 199
Memcheck, 36, 199

variable
naming conventions, 171
value, 23, 29

Visual C++, 21, 23, 195
Visual Studio, 21, 23, 195
/analyze option, 187
attach to running program, 26
Break, 27
breakpoint, 138

C++ function, 131
conditional, 139
templates, 133

Breakpoint/Insert Breakpoint, 26
breakpoints in DLL, 126
Call Stack window, 28
Command Arguments, 26
command line arguments, 26
compiler warnings, 185
Configuration Properties/Debugging, 26
Console application project, 26
DataTip window, 29
Debug/Attach to Process..., 26
Disassembly window, 90, 167
F5 key, Start Program, 26, 136
F7 key, Build Program, 26
Immediate window, 154
New Data Breakpoint, 143
New/Project From Existing Code..., 26
Property Page, 26
Solution Explorer tree view, 26
stack overflow, 27
Step-out, 136
unhandled exception, 27
Variables window, 154
Watch window, 29, 30
Watchpoint, 143

VMware, 11, 198
VNC, 21, 207
VTune, 82, 200

Watchpoints, 143
address, 144

WebEx, 21, 207
where, 27
white box test, 17
Windows, 23

Task Manager, 50, 103
Windows threads, 87

XEmacs, 151

	cover.jpg
	front-matter.pdf
	fulltext.pdf
	fulltext_001.pdf
	fulltext_002.pdf
	fulltext_003.pdf
	fulltext_004.pdf
	fulltext_005.pdf
	fulltext_006.pdf
	fulltext_007.pdf
	fulltext_008.pdf
	fulltext_009.pdf
	fulltext_010.pdf
	fulltext_011.pdf
	fulltext_012.pdf
	back-matter.pdf

