
Learn C The Hard WayA Clear & Direct Introduction To Modern C Programming
Zed A. Shaw
July 2011

ii

Contents

I Basic Skills 5

1 Exercise 0: The Setup 71.1 Linux . 71.2 Mac OSX . 81.3 Windows . 81.4 Text Editor . 81.4.1 WARNING: Do Not Use An IDE . 9
2 Exercise 1: Dust Off That Compiler 112.1 What You Should See . 112.2 How To Break It . 122.3 Extra Credit . 12
3 Exercise 2: Make Is Your Python Now 133.1 Using Make . 133.2 What You Should See . 143.3 How To Break It . 153.4 Extra Credit . 15
4 Exercise 3: Formatted Printing 174.1 What You Should See . 184.2 External Research . 184.3 How To Break It . 184.4 Extra Credit . 19
5 Exercise 4: Introducing Valgrind 215.1 Installing Valgrind . 215.2 Using Valgrind . 225.3 What You Should See . 235.4 Extra Credit . 24
6 Exercise 5: The Structure Of A C Program 256.1 What You Should See . 256.2 Breaking It Down . 266.3 Extra Credit . 26
7 Exercise 6: Types Of Variables 277.1 What You Should See . 277.2 How To Break It . 287.3 Extra Credit . 29
8 Exercise 7: More Variables, Some Math 318.1 What You Should See . 328.2 How To Break It . 328.3 Extra Credit . 33
9 Exercise 8: Sizes And Arrays 35iii

iv CONTENTS
9.1 What You Should See . 369.2 How To Break It . 379.3 Extra Credit . 37

10 Exercise 9: Arrays And Strings 3910.1 What You Should See . 4010.2 How To Break It . 4110.3 Extra Credit . 41
11 Exercise 10: Arrays Of Strings, Looping 4311.1 What You Should See . 4411.1.1 Understanding Arrays Of Strings . 4511.2 How To Break It . 4511.3 Extra Credit . 45
12 Exercise 11: While-Loop And Boolean Expressions 4712.1 What You Should See . 4812.2 How To Break It . 4812.3 Extra Credit . 49
13 Exercise 12: If, Else-If, Else 5113.1 What You Should See . 5213.2 How To Break It . 5213.3 Extra Credit . 52
14 Exercise 13: Switch Statement 5314.1 What You Should See . 5514.2 How To Break It . 5514.3 Extra Credit . 56
15 Exercise 14: Writing And Using Functions 5715.1 What You Should See . 5815.2 How To Break It . 5915.3 Extra Credit . 59
16 Exercise 15: Pointers Dreaded Pointers 6116.1 What You Should See . 6316.2 Explaining Pointers . 6316.3 Practical Pointer Usage . 6416.4 The Pointer Lexicon . 6516.5 Pointers Are Not Arrays . 6516.6 How To Break It . 6516.7 Extra Credit . 65
17 Exercise 16: Structs And Pointers To Them 6717.1 What You Should See . 6917.2 Explaining Structures . 7017.3 How To Break It . 7017.4 Extra Credit . 71
18 Exercise 17: Heap And Stack Memory Allocation 7318.1 What You Should See . 7718.2 Heap vs. Stack Allocation . 7818.3 How To Break It . 7918.4 Extra Credit . 79
19 Exercise 18: Pointers To Functions 8119.1 What You Should See . 8419.2 How To Break It . 8519.3 Extra Credit . 85

CONTENTS v
20 Exercise 19: A Simple Object System 8720.1 How The CPP Works . 8720.2 The Prototype Object System . 8820.2.1 The Object Header File . 8820.2.2 The Object Source File . 8920.3 The Game Implementation . 9120.4 What You Should See . 9620.5 Auditing The Game . 9820.6 Extra Credit . 98
21 Exercise 20: Zed’s Awesome Debug Macros 9921.1 The C Error Handling Problem . 9921.2 The Debug Macros . 10021.3 Using dbg.h . 10121.4 What You Should See . 10321.5 How The CPP Expands Macros . 10421.6 Extra Credit . 105
22 Exercise 21: Advanced Data Types And Flow Control 10722.1 Available Data Types . 10722.1.1 Type Modifiers . 10722.1.2 Type Qualifiers . 10822.1.3 Type Conversion . 10822.1.4 Type Sizes . 10822.2 Available Operators . 10922.2.1 Math Operators . 11022.2.2 Data Operators . 11022.2.3 Logic Operators . 11022.2.4 Bit Operators . 11122.2.5 Boolean Operators . 11122.2.6 Assignment Operators . 11122.3 Available Control Structures . 11222.3.1 Extra Credit . 112
23 Exercise 22: The Stack, Scope, And Globals 11323.0.2 ex22.h and ex22.c . 11323.0.3 ex22_main.c . 11523.1 What You Should See . 11723.2 Scope, Stack, And Bugs . 11723.3 How To Break It . 11823.4 Extra Credit . 118
24 Exercise 23: Meet Duff’s Device 11924.1 What You Should See . 12124.2 Solving The Puzzle . 12124.2.1 Why Bother? . 12224.3 Extra Credit . 122
25 Exercise 24: Input, Output, Files 12325.1 What You Should See . 12525.2 How To Break It . 12525.3 The I/O Functions . 12625.4 Extra Credit . 126
26 Exercise 25: Variable Argument Functions 12726.1 What You Should See . 13026.2 How To Break It . 13026.3 Extra Credit . 131

vi CONTENTS
27 Exercise 26: Write A First Real Program 13327.1 What Is devpkg? . 13327.1.1 What We Want To Make . 13327.1.2 The Design . 13427.1.3 The Apache Portable Runtime . 13427.2 Project Layout . 13527.2.1 Other Dependencies . 13527.3 The Makefile . 13627.4 The Source Files . 13627.4.1 The DB Functions . 13727.4.2 The Shell Functions . 14027.4.3 The Command Functions . 14427.4.4 The devpkgMain Function . 14827.5 The Mid-Term Exam . 150

II Data Structures And Algorithms 151

28 Exercise 27: Creative And Defensive Programming 15328.1 The Creative Programmer Mindset . 15328.2 The Defensive Programmer Mindset . 15428.3 The Eight Defensive Programmer Strategies . 15428.4 Applying The Eight Strategies . 15528.4.1 Never Trust Input . 15528.4.2 Prevent Errors . 15728.4.3 Fail Early And Openly . 15828.4.4 Document Assumptions . 15828.4.5 Prevention Over Documentation . 15928.4.6 Automate Everything . 15928.4.7 Simplify And Clarify . 15928.4.8 Question Authority . 16028.5 Order Is Not Important . 16028.6 Extra Credit . 160
29 Exercise 28: Intermediate Makefiles 16129.1 The Basic Project Structure . 16129.2 Makefile . 16229.2.1 The Header . 16329.2.2 The Target Build . 16429.2.3 The Unit Tests . 16529.2.4 The Cleaner . 16629.2.5 The Install . 16629.2.6 The Checker . 16629.3 What You Should See . 16629.4 Extra Credit . 167
30 Exercise 29: Libraries And Linking 16930.0.1 Dynamically Loading A Shared Library . 16930.1 What You Should See . 17230.2 How To Break It . 17230.3 Extra Credit . 173
31 Exercise 30: Automated Testing 17531.1 Wiring Up The Test Framework . 17631.2 Extra Credit . 179
32 Exercise 31: Debugging Code 18132.1 Debug Printing Vs. GDB Vs. Valgrind . 18132.2 A Debugging Strategy . 182

CONTENTS vii
32.3 Using GDB . 18232.4 Process Attaching . 18332.5 GDB Tricks . 18632.6 Extra Credit . 186

33 Exercise 32: Double Linked Lists 18733.1 What Are Data Structures . 18733.2 Making The Library . 18733.3 Double Linked Lists . 18833.3.1 Definition . 18933.3.2 Implementation . 19033.4 Tests . 19333.5 What You Should See . 19533.6 How To Improve It . 19633.7 Extra Credit . 196
34 Exercise 33: Linked List Algorithms 19734.0.1 Bubble And Merge Sort . 19734.0.2 The Unit Test . 19834.0.3 The Implementation . 19934.1 What You Should See . 20234.2 How To Improve It . 20234.3 Extra Credit . 203
35 Exercise 34: Dynamic Array 20535.1 Advantages And Disadvantages . 21135.2 How To Improve It . 21235.3 Extra Credit . 212
36 Exercise 35: Sorting And Searching 21336.1 Radix Sort And Binary Search . 21536.1.1 C Unions . 21636.1.2 The Implementation . 21836.1.3 RadixMap_find And Binary Search . 22336.1.4 RadixMap_sort And radix_sort . 22336.2 How To Improve It . 22436.3 Extra Credit . 224
37 Exercise 36: Safer Strings 22737.1 Why C Strings Were A Horrible Idea . 22737.2 Using bstrlib . 22837.3 Learning The Library . 229
38 Exercise 37: Hashmaps 23138.0.1 The Unit Test . 23738.1 How To Improve It . 23938.2 Extra Credit . 240
39 Exercise 38: Hashmap Algorithms 24139.1 What You Should See . 24539.2 How To Break It . 24639.3 Extra Credit . 247
40 Exercise 39: String Algorithms 24940.1 What You Should See . 25540.2 Analyzing The Results . 25740.3 Extra Credit . 257
41 Exercise 40: Binary Search Trees 25941.1 How To Improve It . 269

viii CONTENTS
41.2 Extra Credit . 270

42 Exercise 41: Using Cachegrind And Callgrind For Performance Tuning 27142.1 Running Callgrind . 27142.2 Callgrind Annotating Source . 27342.3 Analyzing Memory Access With Cachegrind . 27442.4 Judo Tuning . 27642.5 Using KCachegrind . 27742.6 Extra Credit . 277
43 Exercise 42: Stacks and Queues 27943.1 What You Should See . 28143.2 How To Improve It . 28243.3 Extra Credit . 282
44 Exercise 43: A Simple Statistics Engine 28344.1 Rolling Standard Deviation And Mean . 28344.2 Implemention . 28444.3 How To Use It . 28844.4 Extra Credit . 289
45 Exercise 44: Ring Buffer 29145.1 The Unit Test . 29445.2 What You Should See . 29445.3 How To Improve It . 29445.4 Extra Credit . 295
46 Exercise 45: A Simple TCP/IP Client 29746.1 Augment The Makefile . 29746.2 The netclient Code . 29746.3 What You Should See . 30046.4 How To Break It . 30146.5 Extra Credit . 301
47 Exercise 46: Ternary Search Tree 30347.1 Advantages And Disadvantages . 30947.2 How To Improve It . 31047.3 Extra Credit . 310
48 Exercise 47: A Fast URL Router 31148.1 What You Should See . 31348.2 How To Improve It . 31448.3 Extra Credit . 314
49 Exercise 48: A Tiny Virtual Machine Part 1 31749.1 What You Should See . 31749.2 How To Break It . 31749.3 Extra Credit . 317
50 Exercise 48: A Tiny Virtual Machine Part 2 31950.1 What You Should See . 31950.2 How To Break It . 31950.3 Extra Credit . 319
51 Exercise 50: A Tiny Virtual Machine Part 3 32151.1 What You Should See . 32151.2 How To Break It . 32151.3 Extra Credit . 321

CONTENTS ix
52 Exercise 51: A Tiny Virtual Machine Part 4 32352.1 What You Should See . 32352.2 How To Break It . 32352.3 Extra Credit . 323
53 Exercise 52: A Tiny Virtual Machine Part 5 32553.1 What You Should See . 32553.2 How To Break It . 32553.3 Extra Credit . 325
54 Next Steps 327

III Reviewing And Critiquing Code 329

55 Deconstructing "K&R C" 33155.1 An Overall Critique Of Correctness . 33155.1.1 A First Demonstration Defect . 33255.1.2 Why copy() Fails . 33455.1.3 But, That’s Not A C String . 33655.1.4 Just Don’t Do That . 33655.1.5 Stylistic Issues . 33755.2 Chapter 1 Examples . 337

x CONTENTS

Preface

This is a rough in-progress dump of the book. The grammar will probably be bad, there will be sections missing,but you get to watch me write the book and see how I do things.
There is a mailing list for the book at lcthw@librelist.com which you can join. I’ll be doing announcements asnew material is up, and you can ask questions if you get stuck or have comments.
This list is a discussion list, not an an announce-only list. It’s for discussing the book and asking questions.
Finally, don’t forget that I have Learn Python The Hard Way, 2nd Edition which you should read if you can’tcode yet. LCTHW will not be for beginners, but for people who have at least read LPTHW or know one otherprogramming language.

xi

mailto:lcthw@librelist.com
http://learnpythonthehardway.org

xii CONTENTS

Introduction: The Cartesian Dream Of C

Whatever I have up till now accepted asmost true and assured I have gotten either from the sensesor through the senses. But from time to time I have found that the senses deceive, and it is prudentnever to trust completely those who have deceived us even once.(Rene Descartes, Meditations On First Philosophy)
If there ever were a quote that described programming with C, it would be this. To many programmers, thismakes C scary and evil. It is the Devil, Satan, the trickster Loki come to destroy your productivity with hisseductive talk of pointers and direct access to the machine. Then, once this computational Lucifer has youhooked, he destroys your world with the evil "segfault" and laughs as he reveals the trickery in your bargainwith him.
But, C is not to blame for this state of affairs. Nomy friends, your computer and the Operating System controllingit are the real tricksters. They conspire to hide their true inner workings from you so that you can never reallyknow what is going on. The C programming language’s only failing is giving you access to what is really there,and telling you the cold hard raw truth. C gives you the red pill. C pulls the curtain back to show you the wizard.C is truth.
Why use C then if it’s so dangerous? Because C gives you power over the false reality of abstraction and liberatesyou from stupidity.

What You Will Learn

The purpose of this book is to get you strong enough in C that you’ll be able to write your own software in it, ormodify someone else’s code. At the end of the book we actually take code from a more famous book called "K&R
C" and code review it using what you’ve learned. To get to this stage you’ll have to learn a few things:
1. The basics of C syntax and idioms.
2. Compilation, make files, linkers.
3. Finding bugs and preventing them.
4. Defensive coding practices.
5. Breaking C code.
6. Writing basic Unix systems software.

By the final chapter you will have more than enough ammunition to tackle basic systems software, libraries,and other smaller projects.

How To Read This Book

This book is intended for programmers who have learned at least one other programming language. I refer youto Learn Python The Hard Way or to Learn Ruby The Hard Way if you haven’t learned a programming language1

http://learnpythonthehardway.org
http://ruby.learncodethehardway.org

2 CONTENTS
yet. Those two books are for total beginners and work very well. Once you’ve done those then you can comeback and start this book.
For those who’ve already learned to code, this book may seem strange at first. It’s not like other books whereyou read paragraph after paragraph of prose and then type in a bit of code here and there. Instead I haveyou coding right away and then I explain what you just did. This works better because it’s easier to explainsomething you’ve already experienced.
Because of this structure, there are a few rules youmust follow in this book:
1. Type in all of the code. Do not copy-paste!
2. Type the code in exactly, even the comments.
3. Get it to run and make sure it prints the same output.
4. If there are bugs fix them.
5. Do the extra credit but it’s alright to skip ones you can’t figure out.
6. Always try to figure it out first before trying to get help.

If you follow these rules, do everything in the book, and still can’t code C then you at least tried. It’s not foreveryone, but the act of trying will make you a better programmer.

The Core Competencies

I’m going to guess that you come from a language for weaklings 1. One of those "usable" languages that letsyou get away with sloppy thinking and half-assed hackery like Python or Ruby. Or, maybe you use a languagelike Lisp that pretends the computer is some purely functional fantasy land with padded walls for little babies.Maybe you’ve learned Prolog and you think the entire world should just be a database that you walk around inlooking for clues. Even worse, I’m betting you’ve been using an IDE, so your brain is riddled with memory holesand you can’t even type out an entire function’s name without hitting CTRL-SPACE every 3 characters you type.
No matter what your background, you are probably bad at four skills:
Reading And Writing This is especially true if you use an IDE, but generally I find programmers do too much"skimming" and have problems reading for comprehension. They’ll skim code they need to understand indetail and think they understand it when they really don’t. Other languages provide tools that also let themavoid actually writing any code, so when faced with a language like C they break down. Simplest thing todo is just understand everyone has this problem, and you can fix it by forcing yourself to slow down andbe meticulous about your reading and writing. At first it’ll feel painful and annoying, but take frequentbreaks, and then eventually it’ll be easy to do.
Attention To Detail Everyone is bad at this, and it’s the biggest cause of bad software. Other languages let youget away with not paying attention, but C demands your full attention because it is right in the machineand the machine is very picky. With C there is no "kind of similar" or "close enough", so you need to payattention. Double check your work. Assume everything you write is wrong until you prove it’s right.
Spotting Differences A key problem people from other languages have is their brain has been trained to spotdifferences in that language, not in C. When you compare code you’ve written to my exercise code youreyes will jump right over characters you think don’t matter or that aren’t familiar. I’ll be giving you strate-gies that force you to see your mistakes, but keep in mind that if your code is not exactly like the code inthis book it is wrong.
Planning And Debugging I love other easier languages because I can just hang out. I type the ideas I haveinto their interpreter and see results immediately. They’re great for just hacking out ideas, but have younoticed that if you keep doing "hack until it works" eventually nothing works? C is harder on you becauseit requires you to plan out what you’ll create first. Sure, you can hack for a bit, but you have to get seriousmuch earlier in C than other languages. I’ll be teaching you ways to plan out key parts of your program
1If you can’t tell, I’m just teasing you.

CONTENTS 3
before you start coding, and this will hopefully make you a better programmer at the same time. Even justa little planning can smooth things out down the road.

Learning C makes you a better programmer because you are forced to deal with these issues earlier and morefrequently. You can’t be sloppy and half-assed about what you write or nothing will work. The advantage of Cis it’s a simple language you can figure out on your own, which makes it a great language for learning about themachine and getting stronger in these core programmer skills.
C is harder than some other languages, but that’s only because C’s not hiding things from you that those otherlanguages try and fail to obfuscate.

License

This book is free for you to read, but until I’m done you can’t distribute it or modify it. I need to make sure thatunfinished copies of it do not get out and mess up a student on accident.

4 CONTENTS

Part I

Basic Skills

5

Chapter 1

Exercise 0: The Setup

In this chapter you get your system setup to do C programming. The good news for anyone using Linux orMac OSX is that you are on a system designed for programming in C. The authors of the C language were alsoinstrumental in the creation of the Unix operating system, and both Linux and OSX are based on Unix. In fact,the install will be incredibly easy.
I have some bad news for users of Windows: learning C on Windows is painful. You can write C code forWindows, that’s not a problem. The problem is all of the libraries, functions, and tools are just a little "off" fromeveryone else in the C world. C came from Unix and is much easier on a Unix platform. It’s just a fact of life thatyou’ll have to accept I’m afraid.
I wanted to get this bad news out right away so that you don’t panic. I’m not saying to avoid Windows entirely. Iam however saying that, if you want to have the easiest time learning C, then it’s time to bust out some Unix andget dirty. This could also be really good for you, since knowing a little bit of Unix will also teach you some of theidioms of C programming and expand your skills.
This also means that for everyone you’ll be using the command line. Yep, I said it. You’ve gotta get in there andtype commands at the computer. Don’t be afraid though because I’ll be telling you what to type and what itshould look like, so you’ll actually be learning quite a few mind expanding skills at the same time.

1.1 Linux

On most Linux systems you just have to install a few packages. For Debian based systems, like Ubuntu youshould just have to install a few things using these commands:
Installing Requirements On Ubuntu

1 $ sudo apt-get install build-essential

The above is an example of a command line prompt, so to get to where you can run that, find your "Terminal"program and run it first. Then you’ll get a shell prompt similar to the ’$’ above and can type that command intoit. Do not type the ’$’, just the stuff after it.
Here’s how you would install the same setup on an RPM based Linux like Fedora:

Installing Requirements On Fedora

7

8 CHAPTER 1. EXERCISE 0: THE SETUP

1 $ su -c "yum groupinstall development-tools"

Once you’ve run that, you should be able to do the first Exercise in this book and it’ll work. If not then let meknow.

1.2 Mac OSX

On Mac OSX the install is even easier. First, you’ll need to either download the latest XCode from Apple, or findyour install DVD and install it from there. The download will be massive and could take forever, so I recommendinstalling from the DVD. Also, search online for "installing xcode" for instructions on how to do it.
Once you’re done installing XCode, and probably restarting your computer if it didn’t make you do that, you cango find your Terminal program and get it put into your Dock. You’ll be using Terminal a lot in the book, so it’sgood to put it in a handy location.

1.3 Windows

For Windows users I’ll show you how to get a basic Ubuntu Linux system up and running in a virtual machineso that you can still do all of my exercises, but avoid all the painful Windows installation problems.
... have to figure this one out.

1.4 Text Editor

The choice of text editor for a programmer is a tough one. For beginners I tell them to just use Gedit since it’ssimple and works for code. However, it doesn’t work in certain internationalized situations, and chances areyou already have a favorite text editor if you’ve been programming for a while.
With this in mind, I want you to try out a few of the standard programmer text editors for your platform andthen stick with the one that you like best. If you’ve been using GEdit and like it then stick with it. If you want totry something different, then try it out real quick and pick one.
The most important thing is do not get stuck picking the perfect editor. Text editors all just kind of suck in oddways. Just pick one, stick with it, and if you find something else you like try it out. Don’t spend days on endconfiguring it and making it perfect.
Some text editors to try out are:
1. Gedit on Linux and OSX.
2. TextWrangler on OSX.
3. Nano which runs in Terminal and works nearly everywhere.
4. Emacs and Emacs for OSX. Be prepared to do some learning though.
5. Vim and MacVim

There is probably a different editor for every person out there, but these are just a few of the free ones that Iknow work. Try a few out, and maybe some commercial ones until you find one that you like.

http://projects.gnome.org/gedit/
http://projects.gnome.org/gedit/
http://www.barebones.com/products/textwrangler/
http://www.nano-editor.org/
http://www.gnu.org/software/emacs/
http://emacsformacosx.com/
http://www.vim.org/
http://code.google.com/p/macvim/

1.4. TEXT EDITOR 9
1.4.1 WARNING: Do Not Use An IDE

An IDE, or "Integrated Development Environment" will turn you stupid. They are the worst tools if you want tobe a good programmer because they hide what’s going on from you, and your job is to know what’s going on.They are useful if you’re trying to get something done and the platform is designed around a particular IDE, butfor learning to code C (and many other languages) they are pointless.
Note 1 IDEs and Guitar Tablature

If you’ve played guitar then you know what tablature is, but for everyone else let me explain. Inmusic there’s an established notation called the "staff notation". It’s a generic, very old, and universalway to write down what someone should play on an instrument. If you play piano this notation isfairly easy to use, since it was created mostly for piano and composers.
Guitar however is a weird instrument that doesn’t really work with notation, so guitarists have analternative notation called "tablature". What tablature does is, rather than tell you the note to play, ittells you the fret and string you should play at that time. You could learn whole songs without everknowing about a single thing you’re playing. Many people do it this way, but if you want to knowwhat you’re playing, then tablature is pointless.
It may be harder than tablature, but traditional notation tells you how to play themusic rather thanjust how to play the guitar. With traditional notation I can walk over to a piano and play the samesong. I can play it on a bass. I can put it into a computer and design whole scores around it. Withtablature I can just play it on a guitar.
IDEs are like tablature. Sure, you can code pretty quickly, but you can only code in that one languageon that one platform. This is why companies love selling them to you. They know you’re lazy, andsince it only works on their platform they’ve got you locked in because you are lazy.
The way you break the cycle is you suck it up and finally learn to code without an IDE. A plain editor,or a programmer’s editor like Vim or Emacs, makes you work with the code. It’s a little harder, butthe end result is you can work with any code, on any computer, in any language, and you knowwhat’sgoing on.

10 CHAPTER 1. EXERCISE 0: THE SETUP

Chapter 2

Exercise 1: Dust Off That Compiler

Here is a simple first program you can make in C:
ex1.c

1 int main(int argc, char *argv[])
2 {
3 puts("Hello world.");
4
5 return 0;
6 }

You can put this into a ex1.c then type:
Building ex1

1 $ make ex12 cc ex1.c -o ex1

Your computer may use a slightly different command, but the end result should be a file named ex1 that youcan run.

2.1 What You Should See

You can now run the program and see the output.
Running ex1

1 $./ex12 Hello world.

If you don’t then go back and fix it. 11

12 CHAPTER 2. EXERCISE 1: DUST OFF THAT COMPILER
2.2 How To Break It

In this book I’m going to have a small section for each program on how to break the program. I’ll have you doodd things to the programs, run them in weird ways, or change code so that you can see crashes and compilererrors.
For this program, rebuild it with all compiler warnings on:

Building ex1 with -Wall

1 $ rm ex12 $ CFLAGS="-Wall" make ex13 cc -Wall ex1.c -o ex14 ex1.c: In function 'main':5 ex1.c:3: warning: implicit declaration of function 'puts'6 $./ex17 Hello world.8 $

Now you are getting a warning that says the function "puts" is implicitly declared. The C compiler is smartenough to figure out what you want, but you should be getting rid of all compiler warnings when you can. Howyou do this is add the following line to the top of ex1.c and recompile:
1 #include <stdio.h>

Now do the make again like you just did and you’ll see the warning go away.

2.3 Extra Credit

1. Open the ex1 file in your text editor and change or delete random parts. Try running it and see whathappens.
2. Print out 5 more lines of text or something more complex than hello world.
3. Run man 3 puts and read about this function and many others.

Chapter 3

Exercise 2: Make Is Your Python Now

In Python you ran programs by just typing python and the code you wanted to run. The Python interpreterwould just run them, and import any other libraries and things you needed on the fly as it ran. C is a differentbeast completely where you have to compile your source files and manually stitch them together into a binarythat can run on its own. Doing this manually is a pain, and in the last exercise you just ran make to do it.
In this exercise, you’re going to get a crash course in GNU make, and you’ll be learning to use it as you learn C.Make will for the rest of this book, be your Python. It will build your code, and run your tests, and set things upand do all the stuff for you that Python normally does.
The difference is, I’mgoing to show you smarter Makefile wizardry, where you don’t have to specify every stupidlittle thing about your C program to get it to build. I won’t do that in this exercise, but after you’ve been using"baby make" for a while, I’ll show you "master make".

3.1 Using Make

The first stage of using make is to just use it to build programs it already knows how to build. Make has decadesof knowledge on building a wide variety of files from other files. In the last exercise you did this already usingcommands like this:
Building ex1 with -Wall

1 $ make ex12 # or this one too3 $ CFLAGS="-Wall" make ex1

In the first command you’re telling make, "I want a file named ex1 to be created." Make then does the following:
1. Does the file ex1 exist already?
2. No. Ok, is there another file that starts with ex1?
3. Yes, it’s called ex1.c. Do I know how to build .c files?
4. Yes, I run this command cc ex1.c -o ex1 to build them.
5. I shall make you one ex1 by using cc to build it from ex1.c.

The second command in the listing above is a way to pass "modifiers" to the make command. If you’re notfamiliar with how the Unix shell works, you can create these "environment variables" which will get picked upby programs you run. Sometimes you do this with a command like export CFLAGS="-Wall" depending on the13

http://learnpythonthehardway.org

14 CHAPTER 3. EXERCISE 2: MAKE IS YOUR PYTHON NOW
shell you use. You can however also just put them before the command you want to run, and that environmentvariable will be set only while that command runs.
In this example I did CFLAGS="-Wall" make ex1 so that it would add the command line option -Wall to the
cc command that make normally runs. That command line option tells the compiler cc to report all warnings(which in a sick twist of fate isn’t actually all the warnings possible).
You can actually get pretty far with just that way of using make, but let’s get into making a Makefile so you canunderstand make a little better. To start off, create a file with just this in it:

A simple Makefile

1 CFLAGS=-Wall -g23 clean:4 rm -f ex1

Save this file as Makefile in your current directory. Make automatically assumes there’s a file called Makefileand will just run it. Also, WARNING: Make sure you are only entering TAB characters, not mixtures of TAB andspaces.
This Makefile is showing you some new stuff with make. First we set CFLAGS in the file so we never have to setit again, as well as adding the -g flag to get debugging. Then we have a section named clean which tells makehow to clean up our little project.
Make sure it’s in the same directory as your ex1.c file, and then run these commands:

Running a simple Makefile

1 $ make clean2 $ make ex1

3.2 What You Should See

If that worked then you should see this:
Full build with Makefile

1 $ make clean2 rm -f ex13 $ make ex14 cc -Wall -g ex1.c -o ex15 ex1.c: In function 'main':6 ex1.c:3: warning: implicit declaration of function 'puts'7 $

Here you can see that I’m running make cleanwhich tells make to run our clean target. Go look at theMakefileagain and you’ll see that under this I indent and then I put the shell commands I want make to run for me. Youcould put as many commands as you wanted in there, so it’s a great automation tool.

3.3. HOW TO BREAK IT 15
Note 2 Did You Fix ex1.c?

If you fixed ex1.c to have #include <stdio.h> then your output will not have the warning (whichshould really be an error) about puts. I have the error here because I didn’t fix it.

Notice also that, even though we don’t mention ex1 in the Makefile, make still knows how to build it plus useour special settings.

3.3 How To Break It

That should be enough to get you started, but first let’s break this make file in a particular way so you can seewhat happens. Take the line rm -f ex1 and dedent it (move it all the way left) so you can see what happens.Rerun make clean and you should get something like this:
Bad make run

1 $ make clean2 Makefile:4: *** missing separator. Stop.

Always remember to indent, and if you get weird errors like this then double check you’re consistently usingtab characters since some make variants are very picky.

3.4 Extra Credit

1. Create an all: ex1 target that will build ex1 with just the command make.
2. Read man make to find out more information on how to run it.
3. Read man cc to find out more information on what the flags -Wall and -g do.
4. Research Makefiles online and see if you can improve this one even more.
5. Find a Makefile in another C project and try to understand what it’s doing.

16 CHAPTER 3. EXERCISE 2: MAKE IS YOUR PYTHON NOW

Chapter 4

Exercise 3: Formatted Printing

Keep that Makefile around since it’ll help you spot errors and we’ll be adding to it when we need to automatemore things.
Many programming languages use the C way of formatting output, so let’s try it:

ex3.c
1 #include <stdio.h>
2
3 int main()
4 {
5 int age = 10;
6 int height = 72;
7
8 printf("I am %d years old.\n", age);
9 printf("I am %d inches tall.\n", height);
10
11 return 0;
12 }

Once you have that, do the usual make ex3 to build it and run it. Make sure you fix all warnings.
This exercise has a whole lot going on in a small amount of code so let’s break it down:
1. First you’re including another "header file" called stdio.h. This tells the compiler that you’re going to usethe "standard Input/Output functions". One of those is printf.
2. Then you’re using a variable named age and setting it to 10.
3. Next you’re using a variable height and setting it to 72.
4. Then you use the printf function to print the age and height of the tallest 10 year old on the planet.
5. In the printf you’ll notice you’re passing in a string, and it’s a format string like in many other languages.
6. After this format string, you put the variables that should be "replaced" into the format string by printf.

The result of doing this is you are handing printf some variables and it is constructing a new string thenprinting that new string to the terminal.

17

18 CHAPTER 4. EXERCISE 3: FORMATTED PRINTING
4.1 What You Should See

When you do the whole build you should see something like this:
Building and running ex3.c

1 $ make ex32 cc -Wall -g ex3.c -o ex33 $./ex34 I am 10 years old.5 I am 72 inches tall.6 $

Pretty soon I’m going to stop telling you to run make and what the build looks like, so please make sure you’regetting this right and that it’s working.

4.2 External Research

In the Extra Credit section of each exercise I may have you go find information on your own and figure thingsout. This is an important part of being a self-sufficient programmer. If you constantly run to ask someone aquestion before trying to figure it out first then you never learn to solve problems independently. This leads toyou never building confidence in your skills and always needing someone else around to do your work.
The way you break this habit is to force yourself to try to answer your own questions first, and to confirm thatyour answer is right. You do this by trying to break things, experimenting with your possible answer, and doingyour own research.
For this exercise I want you to go online and find out all of the printf escape codes and format sequences.Escape codes are \n or \t that let you print a newline or tab (respectively). Format sequences are the %s or %dthat let you print a string or a integer. Find all of the ones available, how you can modify them, and what kindof "precisions" and widths you can do.
From now on, these kinds of tasks will be in the Extra Credit and you should do them.

4.3 How To Break It

Try a few of these ways to break this program, which may or may not cause it to crash on your computer:
1. Take the age variable out of the first printf call then recompile. You should get a couple of warnings.
2. Run this new program and it will either crash, or print out a really crazy age.
3. Put the printf back the way it was, and then don’t set age to an initial value by changing that line to

int age; then rebuild and run again.
Breaking ex3.c

1 # edit ex3.c to break printf2 $ make ex33 cc -Wall -g ex3.c -o ex3

4.4. EXTRA CREDIT 19

4 ex3.c: In function 'main':5 ex3.c:8: warning: too few arguments for format6 ex3.c:5: warning: unused variable 'age'7 $./ex38 I am -919092456 years old.9 I am 72 inches tall.10 # edit ex3.c again to fix printf, but don't init age11 $ make ex312 cc -Wall -g ex3.c -o ex313 ex3.c: In function 'main':14 ex3.c:8: warning: 'age' is used uninitialized in this function15 $./ex316 I am 0 years old.17 I am 72 inches tall.18 $

4.4 Extra Credit

1. Find as many other ways to break ex3.c as you can.
2. Run man 3 printf and read about the other ’%’ format characters you can use. These should look familiarif you used them in other languages (printf is where they come from).
3. Add ex3 to your Makefile’s all list. Use this to make clean all and build all your exercises so far.
4. Add ex3 to your Makefile’s clean list as well. Now use make clean will remove it when you need to.

20 CHAPTER 4. EXERCISE 3: FORMATTED PRINTING

Chapter 5

Exercise 4: Introducing Valgrind

It’s time to learn about another tool you will live and die by as you learn C called Valgrind. I’m introducing
Valgrind to you now because you’re going to use it from now on in the "How To Break It" sections of eachexercise. Valgrind is a program that runs your programs, and then reports on all of the horrible mistakes youmade. It’s a wonderful free piece of software that I use constantly while I write C code.
Remember in the last exercise that I told you to break your code by removing one of the arguments to printf?It printed out some funky results, but I didn’t tell you why it printed those results out. In this exercise we’regoing to use Valgrind to find out why.
Note 3 What’s With All The Tools

These first few exercises are mixing some essential tools the rest of the book needs with learninga little bit of code. The reason is that most of the folks who read this book are not familiar withcompiled languages, and definitely not with automation and helpful tools. By getting you to use makeand Valgrind right now I can then use them to teach you C faster and help you find all your bugsearly.
After this exercise we won’t do many more tools, it’ll be mostly code and syntax for a while. But,we’ll also have a few tools we can use to really see what’s going on and get a good understanding ofcommon mistakes and problems.

5.1 Installing Valgrind

You could install Valgrindwith the package manager for your OS, but I want you to learn to install things fromsource. This involves the following process:
1. Download a source archive file to get the source.
2. Unpack the archive to extract the files onto your computer.
3. Run ./configure to setup build configurations.
4. Run make to make it build, just like you’ve been doing.
5. Run sudo make install to install it onto your computer.

Here’s a script of me doing this very process, which I want you to try to replicate:
ex4.sh

21

22 CHAPTER 5. EXERCISE 4: INTRODUCING VALGRIND

1 # 1) Download it (use wget if you don't have curl)
2 curl -O http://valgrind.org/downloads/valgrind-3.6.1.tar.bz2
3
4 # use md5sum to make sure it matches the one on the site
5 md5sum valgrind-3.6.1.tar.bz2
6
7 # 2) Unpack it.
8 tar -xjvf valgrind-3.6.1.tar.bz2
9
10 # cd into the newly created directory
11 cd valgrind-3.6.1
12
13 # 3) configure it
14 ./configure
15
16 # 4) make it
17 make
18
19 # 5) install it (need root)
20 sudo make install

Follow this, but obviously update it for new Valgrind versions. If it doesn’t build then try digging into why aswell.

5.2 Using Valgrind

Using Valgrind is easy, you just run valgrind theprogram and it runs your program, then prints out all theerrors your program made while it was running. In this exercise we’ll break down one of the error outputs andyou can get an instant crash course in "Valgrind hell". Then we’ll fix the program.
First, here’s a purposefully broken version of the ex3.c code for you to build, now called ex4.c. For practice,type it in again:

ex4.c
1 #include <stdio.h>
2
3 /* Warning: This program is wrong on purpose. */
4
5 int main()
6 {
7 int age = 10;
8 int height;
9
10 printf("I am %d years old.\n");
11 printf("I am %d inches tall.\n", height);
12
13 return 0;
14 }

You’ll see it’s the same except I’ve made two classic mistakes:
1. I’ve failed to initialize the height variable.
2. I’ve forgot to give the first printf the age variable.

5.3. WHAT YOU SHOULD SEE 23
5.3 What You Should See

Nowwewill build this just like normal, but instead of running it directly, we’ll run it with Valgrind (see Source:"Building and running ex4.c with Valgrind"):
Building and running ex4.c with Valgrind

1 $ make ex42 cc -Wall -g ex4.c -o ex43 ex4.c: In function 'main':4 ex4.c:10: warning: too few arguments for format5 ex4.c:7: warning: unused variable 'age'6 ex4.c:11: warning: 'height' is used uninitialized in this function7 $ valgrind ./ex48 ==3082== Memcheck, a memory error detector9 ==3082== Copyright (C) 2002-2010, and GNU GPL'd, by Julian Seward et al.10 ==3082== Using Valgrind-3.6.0.SVN-Debian and LibVEX; rerun with -h for copyright info11 ==3082== Command: ./ex412 ==3082==13 I am -16775432 years old.14 ==3082== Use of uninitialised value of size 815 ==3082== at 0x4E730EB: _itoa_word (_itoa.c:195)16 ==3082== by 0x4E743D8: vfprintf (vfprintf.c:1613)17 ==3082== by 0x4E7E6F9: printf (printf.c:35)18 ==3082== by 0x40052B: main (ex4.c:11)19 ==3082==20 ==3082== Conditional jump or move depends on uninitialised value(s)21 ==3082== at 0x4E730F5: _itoa_word (_itoa.c:195)22 ==3082== by 0x4E743D8: vfprintf (vfprintf.c:1613)23 ==3082== by 0x4E7E6F9: printf (printf.c:35)24 ==3082== by 0x40052B: main (ex4.c:11)25 ==3082==26 ==3082== Conditional jump or move depends on uninitialised value(s)27 ==3082== at 0x4E7633B: vfprintf (vfprintf.c:1613)28 ==3082== by 0x4E7E6F9: printf (printf.c:35)29 ==3082== by 0x40052B: main (ex4.c:11)30 ==3082==31 ==3082== Conditional jump or move depends on uninitialised value(s)32 ==3082== at 0x4E744C6: vfprintf (vfprintf.c:1613)33 ==3082== by 0x4E7E6F9: printf (printf.c:35)34 ==3082== by 0x40052B: main (ex4.c:11)35 ==3082==36 I am 0 inches tall.37 ==3082==38 ==3082== HEAP SUMMARY:39 ==3082== in use at exit: 0 bytes in 0 blocks40 ==3082== total heap usage: 0 allocs, 0 frees, 0 bytes allocated41 ==3082==42 ==3082== All heap blocks were freed -- no leaks are possible43 ==3082==44 ==3082== For counts of detected and suppressed errors, rerun with: -v45 ==3082== Use --track-origins=yes to see where uninitialised values come from46 ==3082== ERROR SUMMARY: 4 errors from 4 contexts (suppressed: 4 from 4)47 $

24 CHAPTER 5. EXERCISE 4: INTRODUCING VALGRIND
This one is huge because Valgrind is telling you exactly where every problem in your program is. Starting atthe top here’s what you’re reading, line by line (line numbers are on the left so you can follow):
1 You do the usual make ex4 and that builds it. Make sure the cc command you see is the same and has the -goption or your Valgrind output won’t have line numbers.
2-6 Notice that the compiler is also yelling at you about this source file and it warns you that you have "too fewarguments for format". That’s where you forgot to include the age variable.
7 Then you run your program using valgrind ./ex4.
8 Then Valgrind goes crazy and yells at you for:

14-18 On line main (ex4.c:11) (read as "in the main function in file ex4.c at line 11) you have "Use ofuninitialised value of size 8". You find this by looking at the error, then you see what’s called a "stacktrace" right under that. The line to look at first (ex4.c:11) is the bottom one, and if you don’t see what’sgoing wrong then you go up, so you’d try printf.c:35. Typically it’s the bottom most line that matters(in this case, on line 18).
20-24 Next error is yet another one on line ex4.c:11 in the main function. Valgrind hates this line. Thiserror says that some kind of if-statement or while-loop happened that was based on an uninitializedvariable, in this case height.
25-35 The remaining errors are more of the same because the variable keeps getting used.

37-46 Finally the program exits and Valgrind tells you a summary of how bad your program is.
That is quite a lot of information to take in, but here’s how you deal with it:
1. Whenever you run your C code and get it working, rerun it under Valgrind to check it.
2. For each error that you get, go to the source:line indicated and fix it. You may have to search online for theerror message to figure out what it means.
3. Once your program is "Valgrind pure" then it should be good, and you have probably learned somethingabout how you write code.

In this exercise I’m not expecting you to fully grasp Valgrind right away, but instead get it installed and learnhow to use it real quick so we can apply it to all the later exercises.

5.4 Extra Credit

1. Fix this program using Valgrind and the compiler as your guide.
2. Read up on Valgrind on the internet.
3. Download other software and build it by hand. Try something you already use but never built for yourself.
4. Look at how the Valgrind source files are laid out in the source directory and read its Makefile. Don’tworry, none of that makes sense to me either.

Chapter 6

Exercise 5: The Structure Of A C Program

You know how to use printf and have a couple basic tools at your disposal, so let’s break down a simple Cprogram line-by-line so you know how one is structured. In this program you’re going to type in a few morethings that you’re unfamiliar with, and I’m going to lightly break them down. Then in the next few exerciseswe’re going to work with these concepts.
ex5.c

1 #include <stdio.h>
2
3 /* This is a comment. */
4 int main(int argc, char *argv[])
5 {
6 int distance = 100;
7
8 // this is also a comment
9 printf("You are %d miles away.\n", distance);
10
11 return 0;
12 }

Type this code in, make it run, and make sure you get no Valgrind errors. You probably won’t but get in the habitof checking it.

6.1 What You Should See

This has pretty boring output, but the point of this exercise is to analyze the code:
ex5 output

1 $ make ex52 cc -Wall -g ex5.c -o ex53 $./ex54 You are 100 miles away.5 $

25

26 CHAPTER 6. EXERCISE 5: THE STRUCTURE OF A C PROGRAM
6.2 Breaking It Down

There’s a few features of the C language in this code that youmight have only slightly figured out while you weretyping code. Let’s break this down line-by-line quickly, and then we can do exercises to understand each partbetter:
ex5.c:1 An include and it is the way to import the contents of one file into this source file. C has a conventionof using .h extensions for "header" files, which then contain lists of functions you want to use in yourprogram.
ex5.c:3 This is a multi-line comment and you could put as many lines of text between the /* and closing */characters as you want.
ex5.c:4 Amore complex version of the main function you’ve been using blindly so far. How C programs workis the operating system loads your program, and then runs the function named main. For the function tobe totally complete it needs to return an int and take two parameters, an int for the argument count, andan array of char * strings for the arguments. Did that just fly over your head? Do not worry, we’ll coverthis soon.
ex5.c:5 To start the body of any function you write a { character that indicates the beginning of a "block". InPython you just did a : and indented. In other languages you might have a begin or do word to start.
ex5.c:6 A variable declaration and assignment at the same time. This is how you create a variable, with thesyntax type name = value;. In C statements (except for logic) end in a ';' (semicolon) character.
ex5.c:8 Another kind of comment, and it works like Python or Ruby comments where it starts at the // and goesuntil the end of the line.
ex5.c:9 A call to your old friend printf. Like inmany languages function calls workwith the syntax name(arg1, arg2);and can have no arguments, or any number. The printf function is actually kind of weird and can takemultiple arguments. We’ll see that later.
ex5.c:11 A return from the main function, which gives the OS your exit value. You may not be familiar withhow Unix software uses return codes, so we’ll cover that as well.
ex5.c:12 Finally, we end the main function with a closing brace } character and that’s the end of the program.
There’s a lot of information in this break-down, so study it line-by-line and make sure you at least have a littlegrasp of what’s going on. You won’t know everything, but you can probably guess before we continue.

6.3 Extra Credit

1. For each line, write out the symbols you don’t understand and see if you can guess what they mean. Writea little chart on paper with your guess that you can use to check later and see if you get it right.
2. Go back to the source code from the previous exercises and do a similar break-down to see if you’re gettingit. Write down what you don’t know and can’t explain to yourself.

Chapter 7

Exercise 6: Types Of Variables

You should be getting a grasp of how a simple C program is structured, so let’s do the next simplest thing whichis making some variables of different types:
ex6.c

1 #include <stdio.h>
2
3 int main(int argc, char *argv[])
4 {
5 int distance = 100;
6 float power = 2.345f;
7 double super_power = 56789.4532;
8 char initial = 'A';
9 char first_name[] = "Zed";
10 char last_name[] = "Shaw";
11
12 printf("You are %d miles away.\n", distance);
13 printf("You have %f levels of power.\n", power);
14 printf("You have %f awesome super powers.\n", super_power);
15 printf("I have an initial %c.\n", initial);
16 printf("I have a first name %s.\n", first_name);
17 printf("I have a last name %s.\n", last_name);
18 printf("My whole name is %s %c. %s.\n",
19 first_name, initial, last_name);
20
21 return 0;
22 }

In this programwe’re declaring variables of different types and then printing themwith different printf formatstrings.

7.1 What You Should See

Your output should look like mine, and you can start to see how the format strings for C are similar to Pythonand other languages. They’ve been around for a long time.

27

28 CHAPTER 7. EXERCISE 6: TYPES OF VARIABLES

ex6 output

1 $ make ex62 cc -Wall -g ex6.c -o ex63 $./ex64 You are 100 miles away.5 You have 2.345000 levels of power.6 You have 56789.453200 awesome super powers.7 I have an initial A.8 I have a first name Zed.9 I have a last name Shaw.10 My whole name is Zed A. Shaw.11 $

What you can see is we have a set of "types", which are ways of telling the C compiler what each variable shouldrepresent, and then format strings to match different types. Here’s the breakdown of how they match up:
Integers You declare Integers with the int keyword, and print them with %d.
Floating Point Declared with float or double depending on how big they need to be (double is bigger), andprinted with %f.
Character Declared with char, written with a ' (single-quote) character around the char, and then printed with

%c.
String (Array of Characters) Declared with char name[], written with " characters, and printed with %s.
You’ll notice that C makes a distinction between single-quote for char and double-quote for char[] or strings.
Note 4 C Type Short-Hand For English

When talking about C types, I will typically write in English char[] instead of the whole char SOME-NAME[]. This is not valid C code, just a simpler way to talk about types when writing English.

7.2 How To Break It

You can easily break this program by passing the wrong thing to the printf statements. For example, if you takethe line that prints my name, but put the initial variable before the first_name in the arguments, you’ll geta bug. Make that change and the compiler will yell at you, then when you run it you might get a "Segmentationfault" like I did:
ex6 explosion

1 $ make ex62 cc -Wall -g ex6.c -o ex63 ex6.c: In function 'main':4 ex6.c:19: warning: format '%s' expects type 'char *', but argument 2 has type 'int'5 ex6.c:19: warning: format '%c' expects type 'int', but argument 3 has type 'char *'6 $./ex67 You are 100 miles away.8 You have 2.345000 levels of power.9 You have 56789.453125 awesome super powers.

7.3. EXTRA CREDIT 29

10 I have an initial A.11 I have a first name Zed.12 I have a last name Shaw.13 Segmentation fault14 $

Run this change under Valgrind too to see what it tells you about the error "Invalid read of size 1".

7.3 Extra Credit

1. Come up with other ways to break this C code by changing the printf, then fix them.
2. Go search for "printf formats" and try using a few of the more exotic ones.
3. Research how many different ways you can write a number. Try octal, hexadecimal, and others you canfind.
4. Try printing an empty string that’s just "".

30 CHAPTER 7. EXERCISE 6: TYPES OF VARIABLES

Chapter 8

Exercise 7: More Variables, Some Math

Let’s get familiar with more things you can do with variables by declaring various ints, floats, chars, and
doubles. We’ll then use these in various math expressions so you get introduced to C’s basic math.

ex7.c
1 #include <stdio.h>
2
3 int main(int argc, char *argv[])
4 {
5 int bugs = 100;
6 double bug_rate = 1.2;
7
8 printf("You have %d bugs at the imaginary rate of %f.\n",
9 bugs, bug_rate);
10
11 long universe_of_defects = 1L * 1024L * 1024L * 1024L;
12 printf("The entire universe has %ld bugs.\n",
13 universe_of_defects);
14
15 double expected_bugs = bugs * bug_rate;
16 printf("You are expected to have %f bugs.\n",
17 expected_bugs);
18
19 double part_of_universe = expected_bugs / universe_of_defects;
20 printf("That is only a %e portion of the universe.\n",
21 part_of_universe);
22
23 // this makes no sense, just a demo of something weird
24 char nul_byte = '\0';
25 int care_percentage = bugs * nul_byte;
26 printf("Which means you should care %d%%.\n",
27 care_percentage);
28
29 return 0;
30 }

Here’s what’s going on in this little bit of nonsense:
ex7.c:1-4 The usual start of a C program.
ex7.c:5-6 Declare an int and double for some fake bug data.

31

32 CHAPTER 8. EXERCISE 7: MORE VARIABLES, SOME MATH
ex7.c:8-9 Print out those two, so nothing new here.
ex7.c:11 Declare a huge number using a new type long for storing big numbers.
ex7.c:12-13 Print out that number using %ld which adds a modifier to the usual %d. Adding ’l’ (the letter ell)means "print this as a long decimal".
ex7.c:15-17 Just more math and printing.
ex7.c:19-21 Craft up a depiction of your bug rate compared to the bugs in the universe, which is a completelyinaccurate calculation. It’s so small though that we have to use %e to print it in scientific notation.
ex7.c:24 Make a character, with a special syntax '\0' which creates a ’nul byte’ character. This is effectivelythe number 0.
ex7.c:25 Multiply bugs by this character, which produces 0 for how much you should care. This demonstratesan ugly hack you find sometimes.
ex7.c:26-27 Print that out, and notice I’ve got a %% (two percent chars) so I can print a ’%’ (percent) character.
ex7.c:28-30 The end of the main function.
This bit of source is entirely just an exercise, and demonstrates how some math works. At the end, it alsodemonstrates something you see in C, but not in many other languages. To C, a "character" is just an integer. It’sa really small integer, but that’s all it is. This means you can do math on them, and a lot of software does justthat, for good or bad.
This last bit is your first glance at how C gives you direct access to the machine. We’ll be exploring that more inlater exercises.

8.1 What You Should See

As usual, here’s what you should see for the output:
ex7 output

1 $ make ex72 cc -Wall -g ex7.c -o ex73 $./ex74 You have 100 bugs at the imaginary rate of 1.200000.5 The entire universe has 1073741824 bugs.6 You are expected to have 120.000000 bugs.7 That is only a 1.117587e-07 portion of the universe.8 Which means you should care 0%.9 $

8.2 How To Break It

Again, go through this and try breaking the printf by passing in the wrong arguments. See what happens whenyou try to print out that nul_byte variable too with %s vs. %c. When you break it, run it under Valgrind to seewhat it says about your breaking attempts.

8.3. EXTRA CREDIT 33
8.3 Extra Credit

1. Make the number you assign to universe_of_defects various sizes until you get a warning from thecompiler.
2. What do these really huge numbers actually print out?
3. Change long to unsigned long and try to find the number that makes that one too big.
4. Go search online to find out what unsigned does.
5. Try to explain to yourself (before I do in the next exercise) why you can multiply a char and an int.

34 CHAPTER 8. EXERCISE 7: MORE VARIABLES, SOME MATH

Chapter 9

Exercise 8: Sizes And Arrays

In the last exercise you didmath, but with a '\0' (nul) character. This may be odd coming from other languages,since they try to treat "strings" and "byte arrays" as different beasts. C however treats strings as just arrays ofbytes, and it’s only the different printing functions that know there’s a difference.
Before I can really explain the significance of this, I have to introduce a few more concepts: sizeof and arrays.Here’s the code we’ll be talking about:

ex8.c
1 #include <stdio.h>
2
3 int main(int argc, char *argv[])
4 {
5 int areas[] = {10, 12, 13, 14, 20};
6 char name[] = "Zed";
7 char full_name[] = {
8 'Z', 'e', 'd',
9 ' ', 'A', '.', ' ',
10 'S', 'h', 'a', 'w', '\0'
11 };
12
13 // WARNING: On some systems you may have to change the
14 // %ld in this code to a %u since it will use unsigned ints
15 printf("The size of an int: %ld\n", sizeof(int));
16 printf("The size of areas (int[]): %ld\n",
17 sizeof(areas));
18 printf("The number of ints in areas: %ld\n",
19 sizeof(areas) / sizeof(int));
20 printf("The first area is %d, the 2nd %d.\n",
21 areas[0], areas[1]);
22
23 printf("The size of a char: %ld\n", sizeof(char));
24 printf("The size of name (char[]): %ld\n",
25 sizeof(name));
26 printf("The number of chars: %ld\n",
27 sizeof(name) / sizeof(char));
28
29 printf("The size of full_name (char[]): %ld\n",
30 sizeof(full_name));
31 printf("The number of chars: %ld\n",

35

36 CHAPTER 9. EXERCISE 8: SIZES AND ARRAYS

32 sizeof(full_name) / sizeof(char));
33
34 printf("name=\"%s\" and full_name=\"%s\"\n",
35 name, full_name);
36
37 return 0;
38 }

In this codewe create a few arrays with different data types in them. Because arrays of data are so central to howCworks, there’s a huge number ofways to create them. For now, just use the syntax type name[] = {initializer};and we’ll explore more. What this syntax means is, "I want an array of type that is initialized to ..." When C seesthis it does the following:
1. Look at the type, in this first case it’s int.
2. Look at the [] and see that there’s no length given.
3. Look at the initializer, {10, 12, 13, 14, 20} and figure out that you want those 5 ints in your array.
4. Create a piece of memory in the computer, that can hold 5 integers one after another.
5. Take the name you want, areas and assign it this location.

In the case of areas it’s creating an array of 5 ints that contain those numbers. When it gets to char name[] = "Zed";it’s doing the same thing, except it’s creating an array of 3 chars and assigning that to name. The final array wemake is full_name, but we use the annoying syntax of spelling it out, one character at a time. To C, name and
full_name are identical methods of creating a char array.
The rest of the file, we’re using a keyword called sizeof to ask C how big things are in bytes. C is all about thesize and location of pieces of memory and what you do with them. To help you keep that straight, it gives you
sizeof so you can ask how big something is before you work with it.
This is where stuff gets tricky, so first let’s run this and then explain further.

9.1 What You Should See

ex8 output

1 $ make ex82 cc -Wall -g ex8.c -o ex83 $./ex84 The size of an int: 45 The size of areas (int[]): 206 The number of ints in areas: 57 The first area is 10, the 2nd 12.8 The size of a char: 19 The size of name (char[]): 410 The number of chars: 411 The size of full_name (char[]): 1212 The number of chars: 1213 name="Zed" and full_name="Zed A. Shaw"14 $

Now you see the output of these different printf calls and start to get a glimpse of what C is doing. Your outputcould actually be totally different from mine, since your computer might have different size integers. I’ll go

9.2. HOW TO BREAK IT 37
through my output:
5 My computer thinks an int is 4 bytes in size. Your computer might use a different size if it’s a 32-bit vs. 64-bit.
6 The areas array has 5 integers in it, so it makes sense that my computer requires 20 bytes to store it.
7 If we divide the size of areas by size of an int then we get 5 elements. Looking at the code, this matches whatwe put in the initializer.
8 We then did an array access to get areas[0] and areas[1] which means C is "zero indexed" like Python andRuby.
9-11 We repeat this for the name array, but notice something odd about the size of the array? It says it’s 4 byteslong, but we only typed "Zed" for 3 characters. Where’s the 4th one coming from?
12-13 We do the same thing with full_name and notice it gets this correct.
13 Finally we just print out the name and full_name to prove that they actually are "strings" according to printf.
Make sure you can go through and see how these output lines match what was created. We’ll be building on thisand exploring more about arrays and storage next.

9.2 How To Break It

Breaking this program is fairly easy. Try some of these:
1. Get rid of the '\0' at the end of full_name and re-run it. Run it under Valgrind too. Now, move thedefinition of full_name to the top of main before areas. Try running it under Valgrind a few times andsee if you get some new errors. In some cases, you might still get lucky and not catch any errors.
2. Change it so that instead of areas[0] you try to print areas[10] and see what Valgrind thinks of that.
3. Try other versions of these, doing it to name and full_name too.

9.3 Extra Credit

1. Try assigning to elements in the areas array with areas[0] = 100; and similar.
2. Try assigning to elements of name and full_name.
3. Try setting one element of areas to a character from name.
4. Go search online for the different sizes used for integers on different CPUs.

38 CHAPTER 9. EXERCISE 8: SIZES AND ARRAYS

Chapter 10

Exercise 9: Arrays And Strings

In the last exercise you went through an introduction to creating basic arrays and how they map to strings. Inthis exercise we’ll more completely show the similarity between arrays and strings, and get into more aboutmemory layouts.
This exercise shows you that C stores its strings simply as an array of bytes, terminated with the '\0' (nul) byte.You probably clued into this in the last exercise since we did it manually. Here’s how we do it in another way tomake it even more clear by comparing it to an array of numbers:

ex9.c
1 #include <stdio.h>
2
3 int main(int argc, char *argv[])
4 {
5 int numbers[4] = {0};
6 char name[4] = {'a'};
7
8 // first, print them out raw
9 printf("numbers: %d %d %d %d\n",
10 numbers[0], numbers[1],
11 numbers[2], numbers[3]);
12
13 printf("name each: %c %c %c %c\n",
14 name[0], name[1],
15 name[2], name[3]);
16
17 printf("name: %s\n", name);
18
19 // setup the numbers
20 numbers[0] = 1;
21 numbers[1] = 2;
22 numbers[2] = 3;
23 numbers[3] = 4;
24
25 // setup the name
26 name[0] = 'Z';
27 name[1] = 'e';
28 name[2] = 'd';
29 name[3] = '\0';
30

39

40 CHAPTER 10. EXERCISE 9: ARRAYS AND STRINGS

31 // then print them out initialized
32 printf("numbers: %d %d %d %d\n",
33 numbers[0], numbers[1],
34 numbers[2], numbers[3]);
35
36 printf("name each: %c %c %c %c\n",
37 name[0], name[1],
38 name[2], name[3]);
39
40 // print the name like a string
41 printf("name: %s\n", name);
42
43 // another way to use name
44 char *another = "Zed";
45
46 printf("another: %s\n", another);
47
48 printf("another each: %c %c %c %c\n",
49 another[0], another[1],
50 another[2], another[3]);
51
52 return 0;
53 }

In this code, we setup some arrays the tedious way, by assigning a value to each element. In numbers we aresetting up numbers, but in name we’re actually building a string manually.

10.1 What You Should See

When you run this code you should see first the arrays printed with their contents initialized to zero, then in itsinitialized form:
ex9 output

1 $ make ex92 cc -Wall -g ex9.c -o ex93 $./ex94 numbers: 0 0 0 05 name each: a6 name: a7 numbers: 1 2 3 48 name each: Z e d9 name: Zed10 another: Zed11 another each: Z e d12 $

You’ll notice some interesting things about this program:
1. I didn’t have to give all 4 elements of the arrays to initialize them. This is a short-cut that C has where, ifyou set just one element, it’ll fill the rest in with 0.
2. When each element of numbers is printed they all come out as 0.

10.2. HOW TO BREAK IT 41
3. When each element of name is printed, only the first element ’a’ shows up because the '\0' character isspecial and won’t display.
4. Then the first time we print name it only prints "a" because, since the array will be filled with 0 after thefirst ’a’ in the initializer, then the string is correctly terminated by a '\0' character.
5. We then setup the arrays with a tedious manual assignment to each thing and print them out again. Lookat how they changed. Now the numbers are set, but see how the name string prints my name correctly?
6. There’s also two syntaxes for doing a string: char name[4] = {'a'} on line 6 vs. char *another = "name"on line 44. The first one is less common and the second is what you should use for string literals like this.

Notice that I’m using the same syntax and style of code to interact with both an array of integers and an array ofcharacters, but that printf thinks that the name is just a string. Again, this is because to the C language there’sno difference between a string and an array of characters.
Finally, when you make string literals you should usually use the char *another = "Literal" syntax. Thisworks out to be the same thing, but it’s more idiomatic and easier to write.

10.2 How To Break It

The source of almost all bugs in C come from forgetting to have enough space, or forgetting to put a '\0' at theend of a string. In fact it’s so common and hard to get right that the majority of good C code just doesn’t use Cstyle strings. In later exercises we’ll actually learn how to avoid C strings completely.
In this program the key to breaking it is to forget to put the '\0' character at the end of the strings. There’s afew ways to do this:
1. Get rid of the initializers that setup name.
2. Accidentally set name[3] = 'A'; so that there’s no terminator.
3. Set the initializer to {'a','a','a','a'} so there’s too many ’a’ characters and no space for the '\0'terminator.

Try to come up with some other ways to break this, and as usual run all of these under Valgrind so you cansee exactly what is going on and what the errors are called. Sometimes you’ll make these mistakes and evenValgrind can’t find them, but try moving where you declare the variables to see if you get the error. This is partof the voodoo of C, that sometimes just where the variable is located changes the bug.

10.3 Extra Credit

1. Assign the characters into numbers and then use printf to print them a character at a time. What kind ofcompiler warnings did you get?
2. Do the inverse for name, trying to treat it like an array of int and print it out one int at a time. What doesValgrind think of that?
3. How many other ways can you print this out?
4. If an array of characters is 4 bytes long, and an integer is 4 bytes long, then can you treat the whole namearray like it’s just an integer? How might you accomplish this crazy hack?
5. Take out a piece of paper and draw out each of these arrays as a row of boxes. Then do the operations youjust did on paper to see if you get them right.
6. Convert name to be in the style of another and see if the code keeps working.

42 CHAPTER 10. EXERCISE 9: ARRAYS AND STRINGS

Chapter 11

Exercise 10: Arrays Of Strings, Looping

You can make an array of various types, and have the idea down that a "string" and an "array of bytes" arethe same thing. The next thing is to take this one step further and do an array that has strings in it. We’ll alsointroduce your first looping construct, the for-loop to help print out this new data structure.
The fun part of this is that there’s been an array of strings hiding in your programs for a while now, the char
*argv[] in the main function arguments. Here’s code that will print out any command line arguments you passit:

ex10.c
1 #include <stdio.h>
2
3 int main(int argc, char *argv[])
4 {
5 int i = 0;
6
7 // go through each string in argv
8 // why am I skipping argv[0]?
9 for(i = 1; i < argc; i++) {
10 printf("arg %d: %s\n", i, argv[i]);
11 }
12
13 // let's make our own array of strings
14 char *states[] = {
15 "California", "Oregon",
16 "Washington", "Texas"
17 };
18 int num_states = 4;
19
20 for(i = 0; i < num_states; i++) {
21 printf("state %d: %s\n", i, states[i]);
22 }
23
24 return 0;
25 }

The format of a for-loop is this:
for(INITIALIZER; TEST; INCREMENTER) {

CODE;
}

43

44 CHAPTER 11. EXERCISE 10: ARRAYS OF STRINGS, LOOPING
Here’s how the for-loop works:
1. The INITIALIZER is code that is run to setup the loop, in this case i = 0.
2. Next the TEST boolean expression is checked, and if it’s false (0) then CODE is skipped, doing nothing.
3. The CODE runs, does whatever it does.
4. After the CODE runs, the INCREMENTER part is run, usually incrementing something, like in i++.
5. And it continues again with Step 2 until the TEST is false (0).

This for-loop is going through the command line arguments using argc and argv like this:
1. The OS passes each command line argument as a string in the argv array. The program’s name (./ex10) isat 0, with the rest coming after it.
2. The OS also sets argc to the number of arguments in the argv array so you can process themwithout goingpast the end. Remember that if you give one argument, the program’s name is the first, so argc is 2.
3. The for-loop sets up with i = 1 in the initializer.
4. It then tests that i is less than argc with the test i < argc. Since initially 1 < 2 it will pass.
5. It then runs the code which just prints out the i and uses i to index into argv.
6. The incrementer is then run using the i++ syntax, which is a handy way of writing i = i + 1.
7. This then repeats until i < argc is finally false (0) when the loop exits and the program continues on.

11.1 What You Should See

To play with this program you have to run it two ways. The first way is to pass in some command line argumentsso that argc and argv get set. The second is to run it with no arguments so you can see that the first for-loopdoesn’t run since i < argc will be false.
ex10 output

1 $ make ex102 cc -Wall -g ex10.c -o ex103 $./ex10 i am a bunch of arguments4 arg 1: i5 arg 2: am6 arg 3: a7 arg 4: bunch8 arg 5: of9 arg 6: arguments10 state 0: California11 state 1: Oregon12 state 2: Washington13 state 3: Texas14 $15 $./ex1016 state 0: California17 state 1: Oregon18 state 2: Washington19 state 3: Texas20 $

11.2. HOW TO BREAK IT 45
11.1.1 Understanding Arrays Of Strings

From this you should be able tofigure out that in C youmake an "array of strings" by combining the char *str = "blah"syntax with the char str[] = {'b','l','a','h'} syntax to construct a 2-dimensional array. The syntax
char *states[] = {...} on line 14 is this 2-dimension combination, with each string being one element, andeach character in the string being another.
Confusing? The concept of multiple dimensions is something most people never think about so what you shoulddo is build this array of strings on paper:
1. Make a grid with the index of each string on the left.
2. Then put the index of each character on the top.
3. Then, fill in the squares in the middle with what single character goes in that cell.
4. Once you have the grid, trace through the code manually using this grid of paper.

Another way to figure this is out is to build the same structure in a programming language you aremore familiarwith like Python or Ruby.

11.2 How To Break It

1. Take your favorite other language, and use it to run this program, but with as many command line argu-ments as possible. See if you can bust it by giving it way too many arguments.
2. Initialize i to 0 and see what that does. Do you have to adjust argc as well or does it just work? Why does0-based indexing work here?
3. Set num_states wrong so that it’s a higher value and see what it does.

11.3 Extra Credit

1. Figure out what kind of code you can put into the parts of a for-loop.
2. Look up how to use the ',' (comma) character to separatemultiple statements in the parts of the for-loop,but between the ';' (semicolon) characters.
3. Read what a NULL is and try to use it in one of the elements of the states array to see what it’ll print.
4. See if you can assign an element from the states array to the argv array before printing both. Try theinverse.

46 CHAPTER 11. EXERCISE 10: ARRAYS OF STRINGS, LOOPING

Chapter 12

Exercise 11: While-Loop And Boolean

Expressions

You’ve had your first taste of how C does loops, but the boolean expression i < argcmight have not been clearto you. Let me explain something about it before we see how a while-loop works.
In C, there’s not really a "boolean" type, and instead any integer that’s 0 is "false" and otherwise it’s "true". In thelast exercise the expression i < argc actually resulted in 1 or 0, not an explicit True or False like in Python.This is another example of C being closer to how a computer works, because to a computer truth values are justintegers.
Now you’ll take and implement the same program from the last exercise but use a while-loop instead. Thiswill let you compare the two so you can see how one is related to another.

ex11.c
1 #include <stdio.h>
2
3 int main(int argc, char *argv[])
4 {
5 // go through each string in argv
6
7 int i = 0;
8 while(i < argc) {
9 printf("arg %d: %s\n", i, argv[i]);
10 i++;
11 }
12
13 // let's make our own array of strings
14 char *states[] = {
15 "California", "Oregon",
16 "Washington", "Texas"
17 };
18
19 int num_states = 4;
20 i = 0; // watch for this
21 while(i < num_states) {
22 printf("state %d: %s\n", i, states[i]);
23 i++;
24 }
25

47

48 CHAPTER 12. EXERCISE 11: WHILE-LOOP AND BOOLEAN EXPRESSIONS

26 return 0;
27 }

You can see from this that a while-loop is simpler:
while(TEST) {

CODE;
}

It simply runs the CODE as long as TEST is true (1). This means that to replicate how the for-loop works weneed to do our own initializing and incrementing of i.

12.1 What You Should See

The output is basically the same, so I just did it a little different so you can see another way it runs.
ex11 output

1 $ make ex112 cc -Wall -g ex11.c -o ex113 $./ex114 arg 0: ./ex115 state 0: California6 state 1: Oregon7 state 2: Washington8 state 3: Texas9 $10 $./ex11 test it11 arg 0: ./ex1112 arg 1: test13 arg 2: it14 state 0: California15 state 1: Oregon16 state 2: Washington17 state 3: Texas18 $

12.2 How To Break It

In your own code you should favor for-loop constructs over while-loop because a for-loop is harder tobreak. Here’s a few common ways:
1. Forget to initialize the first int i; so have it loop wrong.
2. Forget to initialize the second loop’s i so that it retains the value from the end of the first loop. Now yoursecond loop might or might not run.
3. Forget to do a i++ increment at the end of the loop and you get a "forever loop", one of the dreaded prob-lems of the first decade or two of programming.

12.3. EXTRA CREDIT 49
12.3 Extra Credit

1. Make these loops count backward by using i-- to start at argc and count down to 0. You may have to dosome math to make the array indexes work right.
2. Use a while loop to copy the values from argv into states.
3. Make this copy loop never fail such that if there’s toomany argv elements it won’t put them all into states.
4. Research if you’ve really copied these strings. The answer may surprise and confuse you though.

50 CHAPTER 12. EXERCISE 11: WHILE-LOOP AND BOOLEAN EXPRESSIONS

Chapter 13

Exercise 12: If, Else-If, Else

Something common in every language is the if-statement, and C has one. Here’s code that uses an if-statementto make sure you enter only 1 or 2 arguments:
ex12.c

1 #include <stdio.h>
2
3 int main(int argc, char *argv[])
4 {
5 int i = 0;
6
7 if(argc == 1) {
8 printf("You only have one argument. You suck.\n");
9 } else if(argc > 1 && argc < 4) {
10 printf("Here's your arguments:\n");
11
12 for(i = 0; i < argc; i++) {
13 printf("%s ", argv[i]);
14 }
15 printf("\n");
16 } else {
17 printf("You have too many arguments. You suck.\n");
18 }
19
20 return 0;
21 }

The format for the if-statement is this:
if(TEST) {

CODE;
} else if(TEST) {

CODE;
} else {

CODE;
}

This is like most other languages except for some specific C differences:
1. As mentioned before, the TEST parts are false if they evaluate to 0, and true otherwise.
2. You have to put parenthesis around the TEST elements, while some other languages let you skip that.

51

52 CHAPTER 13. EXERCISE 12: IF, ELSE-IF, ELSE
3. You don’t need the {} braces to enclose the code, but it is very bad form to not use them. The braces makeit clear where one branch of code begins and ends. If you don’t include it then obnoxious errors come up.

Other than that, they work like others do. You don’t need to have either else if or else parts.

13.1 What You Should See

This one is pretty simple to run and try out:
ex12 output

1 $ make ex122 cc -Wall -g ex12.c -o ex123 $./ex124 You only have one argument. You suck.5 $./ex12 one6 Here's your arguments:7 ./ex12 one8 $./ex12 one two9 Here's your arguments:10 ./ex12 one two11 $./ex12 one two three12 You have too many arguments. You suck.13 $

13.2 How To Break It

This one isn’t easy to break because it’s so simple, but try messing up the tests in the if-statement.
1. Remove the else at the end and it won’t catch the edge case.
2. Change the && to a || so you get an "or" instead of "and" test and see how that works.

13.3 Extra Credit

1. You were briefly introduced to &&, which does an "and" comparison, so go research online the different"boolean operators".
2. Write a few more test cases for this program to see what you can come up with.
3. Go back to Exercises 10 and 11, and use if-statements to make the loops exit early. You’ll need the breakstatement to do that. Go read about it.
4. Is the first test really saying the right thing? To you the "first argument" isn’t the same first argument auser entered. Fix it.

Chapter 14

Exercise 13: Switch Statement

In other languages like Ruby you have a switch-statement that can take any expression. Some languageslike Python just don’t have a switch-statement since an if-statementwith boolean expressions is about thesame thing. For these languages, switch-statements are more alternatives to if-statements and work thesame internally.
The switch-statement is actually entirely different and is really a "jump table". Instead of random booleanexpressions, you can only put expressions that result in integers, and these integers are used to calculate jumpsfrom the top of the switch to the part that matches that value. Here’s some code that we’ll break down tounderstand this concept of "jump tables":

ex13.c
1 #include <stdio.h>
2
3 int main(int argc, char *argv[])
4 {
5 if(argc != 2) {
6 printf("ERROR: You need one argument.\n");
7 // this is how you abort a program
8 return 1;
9 }
10
11 int i = 0;
12 for(i = 0; argv[1][i] != '\0'; i++) {
13 char letter = argv[1][i];
14
15 switch(letter) {
16 case 'a':
17 case 'A':
18 printf("%d: 'A'\n", i);
19 break;
20
21 case 'e':
22 case 'E':
23 printf("%d: 'E'\n", i);
24 break;
25
26 case 'i':
27 case 'I':
28 printf("%d: 'I'\n", i);
29 break;

53

54 CHAPTER 14. EXERCISE 13: SWITCH STATEMENT

30
31 case 'o':
32 case 'O':
33 printf("%d: 'O'\n", i);
34 break;
35
36 case 'u':
37 case 'U':
38 printf("%d: 'U'\n", i);
39 break;
40
41 case 'y':
42 case 'Y':
43 if(i > 2) {
44 // it's only sometimes Y
45 printf("%d: 'Y'\n", i);
46 }
47 break;
48
49 default:
50 printf("%d: %c is not a vowel\n", i, letter);
51 }
52 }
53
54 return 0;
55 }

In this programwe take a single command line argument and print out all of the vowels in an incredibly tediousway to demonstrate a switch-statement. Here’s how the switch-statement works:
1. The compiler marks the place in the program where the switch-statement starts, let’s call this locationY.
2. It then evaluates the expression in switch(letter) to come up with a number. In this case the numberwill be the raw ASCII code of the letter in argv[1].
3. The compiler has also translated each of the case blocks like case 'A': into a location in the programthat is that far away. So the code under case 'A' is at Y+’A’ in the program.
4. It then does the math to figure out where Y+letter is located in the switch-statement, and if it’s too farthen it adjusts it to Y+default.
5. Once it knows the location, the program "jumps" to that spot in the code, and then continues running. Thisis why you have break on some of the case blocks, but not others.
6. If 'a' is entered, then it jumps to case 'a', there’s no break so it "falls through" to the one right under it

case 'A' which has code and a break.
7. Finally it runs this code, hits the break then exits out of the switch-statement entirely.

This is a deep dive into how the switch-statement works, but in practice you just have to remember a fewsimple rules:
1. Always include a default: branch so that you catch any missing inputs.
2. Don’t allow "fall through" unless you really want it, and it’s a good idea to add a comment //fallthroughso people know it’s on purpose.
3. Always write the case and the break before you write the code that goes in it.
4. Try to just use if-statements instead if you can.

14.1. WHAT YOU SHOULD SEE 55
14.1 What You Should See

Here’s an example of me playing with this, and also demonstrating various ways to pass the argument in:
ex13 output

1 $ make ex132 cc -Wall -g ex13.c -o ex133 $./ex134 ERROR: You need one argument.5 $6 $./ex13 Zed7 0: Z is not a vowel8 1: 'E'9 2: d is not a vowel10 $11 $./ex13 Zed Shaw12 ERROR: You need one argument.13 $14 $./ex13 "Zed Shaw"15 0: Z is not a vowel16 1: 'E'17 2: d is not a vowel18 3: is not a vowel19 4: S is not a vowel20 5: h is not a vowel21 6: 'A'22 7: w is not a vowel23 $

Remember that there’s that if-statement at the top that exits with a return 1; when you don’t give enougharguments. Doing a return that’s not 0 is how you indicate to the OS that the program had an error. Any valuethat’s greater than 0 can be tested for in scripts and other programs to figure out what happened.

14.2 How To Break It

It is incredibly easy to break a switch-statement. Here’s just a few of the ways you can mess one of these up:
1. Forget a break and it’ll run two or more blocks of code you don’t want it to run.
2. Forget a default and have it silently ignore values you forgot.
3. Accidentally put in variable into the switch that evaluates to something unexpected, like an int thatbecomes weird values.
4. Use uninitialized values in the switch.

You can also break this program in a few other ways. See if you can bust it yourself.

56 CHAPTER 14. EXERCISE 13: SWITCH STATEMENT
14.3 Extra Credit

1. Write another program that uses math on the letter to convert it to lowercase, and then remove all theextraneous uppercase letters in the switch.
2. Use the ',' (comma) to initialize letter in the for-loop.
3. Make it handle all of the arguments you pass it with yet another for-loop.
4. Convert this switch-statement to an if-statement. Which do you like better?
5. In the case for ’Y’ I have the break outside the if-statement. What’s the impact of this and what happensif you move it inside the if-statement. Prove to yourself that you’re right.

Chapter 15

Exercise 14: Writing And Using Functions

Until now you’ve just used functions that are part of the stdio.h header file. In this exercise you will writesome functions and use some other functions.
ex14.c

1 #include <stdio.h>
2 #include <ctype.h>
3
4 // forward declarations
5 int can_print_it(char ch);
6 void print_letters(char arg[]);
7
8 void print_arguments(int argc, char *argv[])
9 {
10 int i = 0;
11
12 for(i = 0; i < argc; i++) {
13 print_letters(argv[i]);
14 }
15 }
16
17 void print_letters(char arg[])
18 {
19 int i = 0;
20
21 for(i = 0; arg[i] != '\0'; i++) {
22 char ch = arg[i];
23
24 if(can_print_it(ch)) {
25 printf("'%c' == %d ", ch, ch);
26 }
27 }
28
29 printf("\n");
30 }
31
32 int can_print_it(char ch)
33 {
34 return isalpha(ch) || isblank(ch);
35 }

57

58 CHAPTER 15. EXERCISE 14: WRITING AND USING FUNCTIONS

36
37
38 int main(int argc, char *argv[])
39 {
40 print_arguments(argc, argv);
41 return 0;
42 }

In this example you’re creating functions to print out the characters and ASCII codes for any that are "alpha" or"blanks". Here’s the breakdown:
ex14.c:2 Include a new header file so we can gain access to isalpha and isblank.
ex14.c:5-6 Tell C that you will be using some functions later in your program, without having to actually definethem. This is a "forward declaration" and it solves the chicken-and-egg problem of needing to use a functionbefore you’ve defined it.
ex14.c:8-15 Define the print_arguments which knows how to print the same array of strings that main typi-cally gets.
ex14.c:17-30 Define the next function print_letters that is called by print_arguments and knows how toprint each of the characters and their codes.
ex14.c:32-35 Define can_print_itwhich simply returns the truth value (0 or 1) of isalpha(ch) || isblank(ch)back to its caller print_letters.
ex14.c:38-42 Finally main simply calls print_arguments to make the whole chain of function calls go.
I shouldn’t have to describe what’s in each function because it’s all things you’ve ran into before. What youshould be able to see though is that I’ve simply defined functions the same way you’ve been defining main. Theonly difference is you have to help C out by telling it ahead of time if you’re going to use functions it hasn’tencountered yet in the file. That’s what the "forward declarations" at the top do.

15.1 What You Should See

To play with this program you just feed it different command line arguments, which get passed through yourfunctions. Here’s me playing with it to demonstrate:
ex14 output

1 $ make ex142 cc -Wall -g ex14.c -o ex1434 $./ex145 'e' == 101 'x' == 12067 $./ex14 hi this is cool8 'e' == 101 'x' == 1209 'h' == 104 'i' == 10510 't' == 116 'h' == 104 'i' == 105 's' == 11511 'i' == 105 's' == 11512 'c' == 99 'o' == 111 'o' == 111 'l' == 1081314 $./ex14 "I go 3 spaces"15 'e' == 101 'x' == 120

15.2. HOW TO BREAK IT 59

16 'I' == 73 ' ' == 32 'g' == 103 'o' == 111 ' ' == 32 ' ' == 32 's' == 115 'p' == 112
↪→'a' == 97 'c' == 99 'e' == 101 's' == 11517 $

The isalpha and isblank do all the work of figuring out if the given character is a letter or a blank. When I dothe last run it prints everything but the ’3’ character, since that is a digit.

15.2 How To Break It

There’s two different kinds of "breaking" in this program:
1. Confuse the compiler by removing the forward declarations so it complains about can_print_it and

print_letters.
2. When you call print_arguments inside main try adding 1 to argc so that it goes past the end of the argvarray.

15.3 Extra Credit

1. Rework these functions so that you have fewer functions. For example, do you really need can_print_it?
2. Have print_arguments figure how long each argument string is using the strlen function, and then passthat length to print_letters. Then, rewrite print_letters so it only processes this fixed length anddoesn’t rely on the '\0' terminator.
3. Use man to lookup information on isalpha and isblank. Use the other similar functions to print out onlydigits or other characters.
4. Go read about how different people like to format their functions. Never use the "K&R syntax" as it’santiquated and confusing, but understand what it’s doing in case you run into someone who likes it.

60 CHAPTER 15. EXERCISE 14: WRITING AND USING FUNCTIONS

Chapter 16

Exercise 15: Pointers Dreaded Pointers

Pointers are famous mystical creatures in C that I will attempt to demystify by teaching you the vocabulary usedto deal with them. They actually aren’t that complex, it’s just they are frequently abused in weird ways thatmake them hard to use. If you avoid the stupid ways to use pointers then they’re fairly easy.
To demonstrate pointers in a way we can talk about them, I’ve written a frivolous program that prints a groupof people’s ages in three different ways:1

ex15.c
1 #include <stdio.h>
2
3 int main(int argc, char *argv[])
4 {
5 // create two arrays we care about
6 int ages[] = {23, 43, 12, 89, 2};
7 char *names[] = {
8 "Alan", "Frank",
9 "Mary", "John", "Lisa"
10 };
11 // safely get the size of ages
12 int count = sizeof(ages) / sizeof(int);
13 int i = 0;
14
15 // first way using indexing
16 for(i = 0; i < count; i++) {
17 printf("%s has %d years alive.\n",
18 names[i], ages[i]);
19 }
20
21 printf("---\n");
22
23 // setup the pointers to the start of the arrays
24 int *cur_age = ages;
25 char **cur_name = names;
26
27 // second way using pointers
28 for(i = 0; i < count; i++) {
29 printf("%s is %d years old.\n",
30 *(cur_name+i), *(cur_age+i));

1Remember, in this book you type in programs you might not understand, and then try figure them out before I explain what’s going on.61

62 CHAPTER 16. EXERCISE 15: POINTERS DREADED POINTERS

31 }
32
33 printf("---\n");
34
35 // third way, pointers are just arrays
36 for(i = 0; i < count; i++) {
37 printf("%s is %d years old again.\n",
38 cur_name[i], cur_age[i]);
39 }
40
41 printf("---\n");
42
43 // fourth way with pointers in a stupid complex way
44 for(cur_name = names, cur_age = ages;
45 (cur_age - ages) < count;
46 cur_name++, cur_age++)
47 {
48 printf("%s lived %d years so far.\n",
49 *cur_name, *cur_age);
50 }
51
52 return 0;
53 }

Before explaining how pointers work, let’s break this program down line-by-line so you get an idea of what’sgoing on. As you go through this detailed description, try to answer the questions for yourself on a piece ofpaper, then see if what you guessed was going on matches my description of pointers later.
ex15.c:6-10 Create two arrays, ages storing some int data, and names storing an array of strings.
ex15.c:12-13 Some variables for our for-loops later.
ex15.c:16-19 You know this is just looping through the two arrays and printing how old each person is. This isusing i to index into the array.
ex15.c:24 Create a pointer that points at ages. Notice the use of int * to create a "pointer to integer" type ofpointer. That’s similar to char *, which is a "pointer to char", and a string is an array of chars. Seeing thesimilarity yet?
ex15.c:25 Create a pointer that points at names. A char * is already a "pointer to char", so that’s just a string.You however need 2 levels, since names is 2-dimensional, that means you need char ** for a "pointer to(a pointer to char)" type. Study that too, explain it to yourself.
ex15.c:28-31 Loop through ages and names but instead use the pointers plus an offset of i. Writing *(cur_name+i)is the same as writing name[i], and you read it as "the value of (pointer cur_name plus i)".
ex15.c:35-39 This shows how the syntax to access an element of an array is the same for a pointer and an array.
ex15.c:44-50 Another admittedly insane loop that does the same thing as the other two, but instead it usesvarious pointer arithmetic methods:

ex15.c:44 Initialize our for-loop by setting cur_name and cur_age to the beginning of the names and
ages arrays.

ex15.c:45 The test portion of the for-loop then compares the distance of the pointer cur_age from thestart of ages. Why does that work?
ex15.c:46 The increment part of the for-loop then increments both cur_name and cur_age so that theypoint at the next element of the name and age arrays.
ex15.c:48-49 The pointers cur_name and cur_age are now pointing at one element of the arrays theywork on, and we can print them out using just *cur_name and *cur_age, which means "the value of

16.1. WHAT YOU SHOULD SEE 63
wherever cur_name is pointing".

This seemingly simple program has a large amount of information, and the goal is to get you to attempt figuringpointers out for yourself before I explain them. Don’t continue until you’ve written down what you think a pointerdoes.

16.1 What You Should See

After you run this program try to trace back each line printed out to the line in the code that produced it. If youhave to, alter the printf calls to make sure you got the right line number.
ex15 output

1 $ make ex152 cc -Wall -g ex15.c -o ex153 $./ex154 Alan has 23 years alive.5 Frank has 43 years alive.6 Mary has 12 years alive.7 John has 89 years alive.8 Lisa has 2 years alive.9 ---10 Alan is 23 years old.11 Frank is 43 years old.12 Mary is 12 years old.13 John is 89 years old.14 Lisa is 2 years old.15 ---16 Alan is 23 years old again.17 Frank is 43 years old again.18 Mary is 12 years old again.19 John is 89 years old again.20 Lisa is 2 years old again.21 ---22 Alan lived 23 years so far.23 Frank lived 43 years so far.24 Mary lived 12 years so far.25 John lived 89 years so far.26 Lisa lived 2 years so far.27 $

16.2 Explaining Pointers

When you type something like ages[i] you are "indexing" into the array ages, and you’re using the numberthat’s held in i to do it. If i is set to 0 then it’s the same as typing ages[0]. We’ve been calling this number i an"index" since it’s a location inside ages that we want. It could also be called an "address", that’s a way of saying"I want the integer in ages that is at address i".
If i is an index, then what’s ages? To C ages is a location in the computer’s memory where all of these integersstart. It is also an address, and the C compiler will replace anywhere you type ageswith the address of the veryfirst integer in ages. Another way to think of ages is it’s the "address of the first integer in ages". But, the trick

64 CHAPTER 16. EXERCISE 15: POINTERS DREADED POINTERS
is ages is an address inside the entire computer. It’s not like i which was just an address inside ages. The agesarray name is actually an address in the computer.
That leads to a certain realization: C thinks your whole computer is one massive array of bytes. Obviously thisisn’t very useful, but then C layers on top of this massive array of bytes the concept of types and sizes of thosetypes. You already saw how this worked in previous exercises, but now you can start to get an idea that C issomehow doing the following with your arrays:
1. Creating a block of memory inside your computer.
2. "Pointing" the name ages at the beginning of that block.
3. "Indexing" into the block by taking the base address of ages and getting the element that’s i away fromthere.
4. Converting that address at ages+i into a valid int of the right size, such that the index works to returnwhat you want: the int at index i.

If you can take a base address, like ages, and then "add" to it with another address like i to produce a newaddress, then can you just make something that points right at this location all the time? Yes, and that thing iscalled a "pointer". This is what the pointers cur_age and cur_name are doing. They are variables pointing at thelocation where ages and names live in your computer’s memory. The example program is then moving themaround or doing math on them to get values out of the memory. In one instance, they just add i to cur_age,which is the same as what it does with array[i]. In the last for-loop though these two pointers are beingmoved on their own, without i to help out. In that loop, the pointers are treated like a combination of array andinteger offset rolled into one.
A pointer is simply an address pointing somewhere inside the computer’s memory, with a type specifier so youget the right size of data with it. It is kind of like a combined ages and i rolled into one data type. C knowswhere pointers are pointing, knows the data type they point at, the size of those types, and how to get the datafor you. Just like i you can increment them, decrement them, subtract or add to them. But, just like ages youcan also get values out with them, put new values in, and all the array operations.
The purpose of a pointer is to let you manually index into blocks or memory when an array won’t do it right.In almost all other cases you actually want to use an array. But, there are times when you have to work with araw block of memory and that’s where a pointer comes in. A pointer gives you raw, direct access to a block ofmemory so you can work with it.
The final thing to grasp at this stage is that you can use either syntax for most array or pointer operations. Youcan take a pointer to something, but use the array syntax for accessing it. You can take an array and do pointerarithmetic with it.

16.3 Practical Pointer Usage

There are four primary useful things you do with pointers in C code:
1. Ask the OS for a chunk of memory and use a pointer to work with it. This includes strings and somethingyou haven’t seen yet, structs.
2. Passing large blocks of memory (like large structs) to functions with a pointer so you don’t have to pass thewhole thing to them.
3. Taking the address of a function so you can use it as a dynamic callback.
4. Complex scanning of chunks of memory such as converting bytes off a network socket into data structuresor parsing files.

For nearly everything else you see people use pointers, they should be using arrays. In the early days of C pro-gramming people used pointers to speed up their programs because the compilers were really bad at optimizingarray usage. These days the syntax to access an array vs. a pointer are translated into the same machine codeand optimized the same, so it’s not as necessary. Instead, you go with arrays every time you can, and then only

16.4. THE POINTER LEXICON 65
use pointers as a performance optimization if you absolutely have to.

16.4 The Pointer Lexicon

I’m now going to give you a little lexicon to use for reading and writing pointers. Whenever you run into acomplex pointer statement, just refer to this and break it down bit by bit (or just don’t use that code since it’sprobably not good code):
type *ptr "a pointer of type named ptr"
*ptr "the value of whatever ptr is pointed at"
*(ptr + i) "the value of (whatever ptr is pointed at plus i)"
&thing "the address of thing"
type *ptr = &thing "a pointer of type named ptr set to the address of thing"
ptr++ "increment where ptr points"
We’ll be using this simple lexicon to break down all of the pointers we use from now on in the book.

16.5 Pointers Are Not Arrays

Nomatterwhat, you should never think that pointers and arrays are the same thing. They are not the same thing,even though C lets you work with them in many of the same ways. For example, if you do sizeof(cur_age) inthe code above, you would get the size of the pointer, not the size of what it points at. If you want the size of thefull array, you have to use the array’s name, age as I did on line 12.
TODO: expand on this some more with what doesn’t work on both the same.

16.6 How To Break It

You can break this program by simply pointing the pointers at the wrong things:
1. Try to make cur_age point at names. You’ll need to use a C cast to force it, so go look that up and try tofigure it out.
2. In the final for-loop try getting the math wrong in weird ways.
3. Try rewriting the loops so they start at the end of the arrays and go to the beginning. This is harder than itlooks.

16.7 Extra Credit

1. Rewrite all the array usage in this program so that it’s pointers.
2. Rewrite all the pointer usage so they’re arrays.
3. Go back to some of the other programs that use arrays and try to use pointers instead.
4. Process command line arguments using just pointers similar to how you did names in this one.
5. Play with combinations of getting the value of and the address of things.

66 CHAPTER 16. EXERCISE 15: POINTERS DREADED POINTERS
6. Add another for-loop at the end that prints out the addresses these pointers are using. You’ll need the %pformat for printf.
7. Rewrite this program to use a function for each of the ways you’re printing out things. Try to pass pointersto these functions so they work on the data. Remember you can declare a function to accept a pointer, butjust use it like an array.
8. Change the for-loops to while-loops and see what works better for which kind of pointer usage.

Chapter 17

Exercise 16: Structs And Pointers To Them

In this exercise you’ll learn how to make a struct, point a pointer at them, and use them to make sense of inter-nal memory structures. I’ll also apply the knowledge of pointers from the last exercise and get you constructingthese structures from raw memory using malloc.
As usual, here’s the program we’ll talk about, so type it in and make it work:

ex16.c
1 #include <stdio.h>
2 #include <assert.h>
3 #include <stdlib.h>
4 #include <string.h>
5
6 struct Person {
7 char *name;
8 int age;
9 int height;
10 int weight;
11 };
12
13 struct Person *Person_create(char *name, int age, int height, int weight)
14 {
15 struct Person *who = malloc(sizeof(struct Person));
16 assert(who != NULL);
17
18 who->name = strdup(name);
19 who->age = age;
20 who->height = height;
21 who->weight = weight;
22
23 return who;
24 }
25
26 void Person_destroy(struct Person *who)
27 {
28 assert(who != NULL);
29
30 free(who->name);
31 free(who);
32 }
33

67

68 CHAPTER 17. EXERCISE 16: STRUCTS AND POINTERS TO THEM

34 void Person_print(struct Person *who)
35 {
36 printf("Name: %s\n", who->name);
37 printf("\tAge: %d\n", who->age);
38 printf("\tHeight: %d\n", who->height);
39 printf("\tWeight: %d\n", who->weight);
40 }
41
42 int main(int argc, char *argv[])
43 {
44 // make two people structures
45 struct Person *joe = Person_create(
46 "Joe Alex", 32, 64, 140);
47
48 struct Person *frank = Person_create(
49 "Frank Blank", 20, 72, 180);
50
51 // print them out and where they are in memory
52 printf("Joe is at memory location %p:\n", joe);
53 Person_print(joe);
54
55 printf("Frank is at memory location %p:\n", frank);
56 Person_print(frank);
57
58 // make everyone age 20 years and print them again
59 joe->age += 20;
60 joe->height -= 2;
61 joe->weight += 40;
62 Person_print(joe);
63
64 frank->age += 20;
65 frank->weight += 20;
66 Person_print(frank);
67
68 // destroy them both so we clean up
69 Person_destroy(joe);
70 Person_destroy(frank);
71
72 return 0;
73 }

To describe this program, I’m going to use a different approach than before. I’m not going to give you a line-by-line breakdown of the program, but I’m going to make you write it. I’m going to give you a guide through theprogram based on the parts it contains, and your job is to write out what each line does.
includes I include some new header files here to gain access to some new functions. What does each give you?
struct Person This is where I’m creating a structure that has 4 elements to describe a person. The final result isa new compound type that lets me reference these elements all as one, or each piece by name. It’s similarto a row of a database table or a class in an OOP language.
function Person_create I need a way to create these structures so I’ve made a function to do that. Here’s theimportant things this function is doing:

1. I use malloc for "memory allocate" to ask the OS to give me a piece of raw memory.
2. I pass to malloc the sizeof(struct Person) which calculates the total size of the struct, given allthe fields inside it.

17.1. WHAT YOU SHOULD SEE 69
3. I use assert to make sure that I have a valid piece of memory back from malloc. There’s a specialconstant called NULL that you use tomean "unset or invalid pointer". This assert is basically checkingthat malloc didn’t return a NULL invalid pointer.
4. I initialize each field of struct Person using the x->y syntax, to say what part of the struct I want toset.
5. I use the strdup function to duplicate the string for the name, just to make sure that this structureactually owns it. The strdup actually is like malloc and it also copies the original string into thememory it creates.

function Person_destroy If I have a create, then I always need a destroy function, and this is what destroys
Person structs. I again use assert to make sure I’m not getting bad input. Then I use the function free toreturn the memory I got with malloc and strdup. If you don’t do this you get a "memory leak".

function Person_print I then need a way to print out people, which is all this function does. It uses the same
x->y syntax to get the field from the struct to print it.

function main In themain function I use all the previous functions and the struct Person to do the following:
1. Create two people, joe and frank.
2. Print them out, but notice I’m using the %p format so you can see where the program has actually putyour struct in memory.
3. Age both of them by 20 years, with changes to their body too.
4. Print each one after aging them.
5. Finally destroy the structures so we can clean up correctly.

Go through this description carefully, and do the following:
1. Look up every function and headerfile you don’t know about. Remember that you can usually do man 2 functionor man 3 function and it’ll tell you about it. You can also search online for the information.
2. Write a comment above each and every single line saying what the line does in English.
3. Trace through each function call and variable so you know where it comes from in the program.
4. Look up any symbols you don’t know as well.

17.1 What You Should See

After you augment the program with your description comments, make sure it really runs and produces thisoutput:
ex16 output

1 $ make ex162 cc -Wall -g ex16.c -o ex1634 $./ex165 Joe is at memory location 0xeba010:6 Name: Joe Alex7 Age: 328 Height: 649 Weight: 14010 Frank is at memory location 0xeba050:11 Name: Frank Blank

70 CHAPTER 17. EXERCISE 16: STRUCTS AND POINTERS TO THEM

12 Age: 2013 Height: 7214 Weight: 18015 Name: Joe Alex16 Age: 5217 Height: 6218 Weight: 18019 Name: Frank Blank20 Age: 4021 Height: 7222 Weight: 200

17.2 Explaining Structures

If you’ve done the work I asked you then structures should be making sense, but let me explain them explicitlyjust to make sure you’ve understood it.
A structure in C is a collection of other data types (variables) that are stored in one block of memory but letyou access each variable independently by name. They are similar to a record in a database table, or a verysimplistic class in an object oriented language. We can break one down this way:
1. In the above code, you make a struct that has the fields you’d expect for a person: name, age, weight,height.
2. Each of those fields has a type, like int.
3. C then packs those together so they can all be contained in one single struct.
4. The struct Person is now a compound data type, which means you can now refer to struct Person inthe same kinds of expressions you would other data types.
5. This lets you pass the whole cohesive grouping to other functions, as you did with Person_print.
6. You can then access the individual parts of a struct by their names using x->y if you’re dealing with apointer.
7. There’s also a way to make a struct that doesn’t need a pointer, and you use the x.y (period) syntax to workwith it. You’ll do this in the Extra Credit.

If you didn’t have struct you’d need to figure out the size, packing, and location of pieces of memory withcontents like this. In fact, in most early assembler code (and even some now) this is what you do. With C you canlet C handle the memory structuring of these compound data types and then focus on what you do with them.

17.3 How To Break It

With this program the ways to break it involve how you use the pointers and the malloc system:
1. Try passing NULL to Person_destroy to see what it does. If it doesn’t abort then you must not have the -goption in your Makefile’s CFLAGS.
2. Forget to call Person_destroy at the end, then run it under Valgrind to see it report that you forgot tofree the memory. Figure out the options you need to pass to Valgrind to get it to print how you leaked thismemory.
3. Forget to free who->name in Person_destroy and compare the output. Again, use the right options to seehow Valgrind tells you exactly where you messed up.

17.4. EXTRA CREDIT 71
4. This time, pass NULL to Person_print and see what Valgrind thinks of that.
5. You should be figuring out that NULL is a quick way to crash your program.

17.4 Extra Credit

In this exercise I want you to attempt something difficult for the extra credit: Convert this program to not usepointers and malloc. This will be hard, so you’ll want to research the following:
1. How to create a struct on the stack, which means just like you’ve been making any other variable.
2. How to initialize it using the x.y (period) character instead of the x->y syntax.
3. How to pass a structure to other functions without using a pointer.

72 CHAPTER 17. EXERCISE 16: STRUCTS AND POINTERS TO THEM

Chapter 18

Exercise 17: Heap And Stack Memory

Allocation

In this exercise you’re going to make a big leap in difficulty and create an entire small program to manage adatabase. This database isn’t very efficient and doesn’t store very much, but it does demonstrate most of whatyou’ve learned so far. It also introduces memory allocation more formally and gets you started working withfiles. We use some file I/O functions, but I won’t be explaining them too well so you can try to figure them outfirst.
As usual, type this whole program in and get it working, then we’ll discuss:

ex17.c
1 #include <stdio.h>
2 #include <assert.h>
3 #include <stdlib.h>
4 #include <errno.h>
5 #include <string.h>
6
7 #define MAX_DATA 512
8 #define MAX_ROWS 100
9
10 struct Address {
11 int id;
12 int set;
13 char name[MAX_DATA];
14 char email[MAX_DATA];
15 };
16
17 struct Database {
18 struct Address rows[MAX_ROWS];
19 };
20
21 struct Connection {
22 FILE *file;
23 struct Database *db;
24 };
25
26 void die(const char *message)
27 {
28 if(errno) {

73

74 CHAPTER 18. EXERCISE 17: HEAP AND STACK MEMORY ALLOCATION

29 perror(message);
30 } else {
31 printf("ERROR: %s\n", message);
32 }
33
34 exit(1);
35 }
36
37 void Address_print(struct Address *addr)
38 {
39 printf("%d %s %s\n",
40 addr->id, addr->name, addr->email);
41 }
42
43 void Database_load(struct Connection *conn)
44 {
45 int rc = fread(conn->db, sizeof(struct Database), 1, conn->file);
46 if(rc != 1) die("Failed to load database.");
47 }
48
49 struct Connection* Database_open(const char *filename, char mode)
50 {
51 struct Connection *conn = malloc(sizeof(struct Connection));
52 if(!conn) die("Memory error");
53
54 conn->db = malloc(sizeof(struct Database));
55 if(!conn->db) die("Memory error");
56
57 if(mode == 'c') {
58 conn->file = fopen(filename, "w");
59 } else {
60 conn->file = fopen(filename, "r+");
61
62 if(conn->file) {
63 Database_load(conn);
64 }
65 }
66
67 if(!conn->file) die("Failed to open the file");
68
69 return conn;
70 }
71
72 void Database_close(struct Connection *conn)
73 {
74 if(conn) {
75 if(conn->file) fclose(conn->file);
76 if(conn->db) free(conn->db);
77 free(conn);
78 }
79 }
80
81 void Database_write(struct Connection *conn)
82 {
83 rewind(conn->file);
84

75

85 int rc = fwrite(conn->db, sizeof(struct Database), 1, conn->file);
86 if(rc != 1) die("Failed to write database.");
87
88 rc = fflush(conn->file);
89 if(rc == -1) die("Cannot flush database.");
90 }
91
92 void Database_create(struct Connection *conn)
93 {
94 int i = 0;
95
96 for(i = 0; i < MAX_ROWS; i++) {
97 // make a prototype to initialize it
98 struct Address addr = {.id = i, .set = 0};
99 // then just assign it
100 conn->db->rows[i] = addr;
101 }
102 }
103
104 void Database_set(struct Connection *conn, int id, const char *name, const char *email)
105 {
106 struct Address *addr = &conn->db->rows[id];
107 if(addr->set) die("Already set, delete it first");
108
109 addr->set = 1;
110 // WARNING: bug, read the "How To Break It" and fix this
111 char *res = strncpy(addr->name, name, MAX_DATA);
112 // demonstrate the strncpy bug
113 if(!res) die("Name copy failed");
114
115 res = strncpy(addr->email, email, MAX_DATA);
116 if(!res) die("Email copy failed");
117 }
118
119 void Database_get(struct Connection *conn, int id)
120 {
121 struct Address *addr = &conn->db->rows[id];
122
123 if(addr->set) {
124 Address_print(addr);
125 } else {
126 die("ID is not set");
127 }
128 }
129
130 void Database_delete(struct Connection *conn, int id)
131 {
132 struct Address addr = {.id = id, .set = 0};
133 conn->db->rows[id] = addr;
134 }
135
136 void Database_list(struct Connection *conn)
137 {
138 int i = 0;
139 struct Database *db = conn->db;
140

76 CHAPTER 18. EXERCISE 17: HEAP AND STACK MEMORY ALLOCATION

141 for(i = 0; i < MAX_ROWS; i++) {
142 struct Address *cur = &db->rows[i];
143
144 if(cur->set) {
145 Address_print(cur);
146 }
147 }
148 }
149
150 int main(int argc, char *argv[])
151 {
152 if(argc < 3) die("USAGE: ex17 <dbfile> <action> [action params]");
153
154 char *filename = argv[1];
155 char action = argv[2][0];
156 struct Connection *conn = Database_open(filename, action);
157 int id = 0;
158
159 if(argc > 3) id = atoi(argv[3]);
160 if(id >= MAX_ROWS) die("There's not that many records.");
161
162 switch(action) {
163 case 'c':
164 Database_create(conn);
165 Database_write(conn);
166 break;
167
168 case 'g':
169 if(argc != 4) die("Need an id to get");
170
171 Database_get(conn, id);
172 break;
173
174 case 's':
175 if(argc != 6) die("Need id, name, email to set");
176
177 Database_set(conn, id, argv[4], argv[5]);
178 Database_write(conn);
179 break;
180
181 case 'd':
182 if(argc != 4) die("Need id to delete");
183
184 Database_delete(conn, id);
185 Database_write(conn);
186 break;
187
188 case 'l':
189 Database_list(conn);
190 break;
191 default:
192 die("Invalid action, only: c=create, g=get, s=set, d=del, l=list");
193 }
194
195 Database_close(conn);
196

18.1. WHAT YOU SHOULD SEE 77

197 return 0;
198 }

In this program I am using a set of structures to create a simple database for an address book. In it I’m usingsome things you’ve never seen, so you should go through it line-by-line, explain what each line does, and lookup any functions you do not recognize. There are few key things I’m doing that you should pay attention to aswell:
#define for constants I use another part of the "C Pre-Processor" to create constant settings of MAX_DATA and

MAX_ROWS. I’ll covermore of what the CPP does, but this is a way to create a constant that will work reliably.There’s other ways but they don’t apply in certain situations.
Fixed Sized Structs The Address struct then uses these constants to create a piece of data that is fixed in sizemaking it less efficient, but easier to store and read. The Database struct is then also fixed size because itis a fixed length array of Address structs. That lets you write the whole thing to disk in one move later on.
die function to abort with an error In a small program like this you can make a single function that kills theprogram with an error if there’s anything wrong. I call this die, and it’s used after any failed function callsor bad inputs to exit with an error using exit.
errno and perror() for error reporting When you have an error return from a function, it will usually set an"external" variable called errno to say exactly what error happened. These are just numbers, so you canuse perror to "print the error message".
FILE functions I’m using all new functions like fopen, fread, fclose, and rewind to work with files. Each ofthese functions works on a FILE struct that’s just like your structs, but it’s defined by the C standard library.
nested struct pointers There’s use of nested structures and getting the address of array elements that youshould study. Specifically code like &conn->db->rows[i] which reads "get the i element of rows, whichis in db, which is in conn, then get the address of (&) it".
copying struct prototypes best shown in Database_delete, you can see I’musing a temporary local Address,initializing its id and set fields, and then simply copying it into the rows array by assigning it to theelement I want. This trick makes sure that all fields but set and id are initialized to 0s and is actuallyeasier to write. Incidentally, you shouldn’t be using memcpy to do these kinds of struct copying operations.Modern C allows you to simply assign one struct to another and it’ll handle the copying for you.
processing complex arguments I’m doing some more complex argument parsing, but this isn’t really the bestway to do it. We’ll get into better option parsing later in the book.
converting strings to ints I use the atoi function to take the string for the id on the command line and convertit to the int id variable. Read up on this function and similar ones.
allocating large data on the "heap" The whole point of this program is that I’m using malloc to ask the OS fora large amount of memory to work with when I create the Database. I cover this in more detail below.
NULL is 0 so boolean works In many of the checks I’m testing that a pointer is not NULL by simply doing

if(!ptr) die("fail!") this is valid because NULL will evaluate to false. You could be explicit and say
if(ptr == NULL) die("fail!") as well.1

18.1 What You Should See

You should spend as much time as you can testing that it works, and running it with Valgrind to confirm you’vegot all the memory usage right. Here’s a session of me testing it normally and then using Valgrind to check theoperations:
1On some rare systems NULL will be stored in the computer (represented) as something not 0, but the C standard says you should still beable to write code as if it has a 0 value. From now on when I say "NULL is 0" I mean its value for anyone who is overly pedantic.

78 CHAPTER 18. EXERCISE 17: HEAP AND STACK MEMORY ALLOCATION

ex17 output

1 $ make ex172 cc -Wall -g ex17.c -o ex173 $./ex17 db.dat c4 $./ex17 db.dat s 1 zed zed@zedshaw.com5 $./ex17 db.dat s 2 frank frank@zedshaw.com6 $./ex17 db.dat s 3 joe joe@zedshaw.com7 $8 $./ex17 db.dat l9 1 zed zed@zedshaw.com10 2 frank frank@zedshaw.com11 3 joe joe@zedshaw.com12 $./ex17 db.dat d 313 $./ex17 db.dat l14 1 zed zed@zedshaw.com15 2 frank frank@zedshaw.com16 $./ex17 db.dat g 217 2 frank frank@zedshaw.com18 $19 $ valgrind --leak-check=yes ./ex17 db.dat g 220 # cut valgrind output...21 $

The actual output of Valgrind is taken out since you should be able to detect it.
Note 5 OSX Valgrind "Leaks"

Valgrind will report that you’re leaking small blocks of memory, but sometimes it’s just over-reporting from OSX’s internal APIs. If you see it showing leaks that aren’t inside your code thenjust ignore them.

18.2 Heap vs. Stack Allocation

You kids these days have it great. You playwith your Ruby or Python and just make objects and variables withoutany care for where they live. You don’t care if it’s on the "stack", and the heap? Fuggedaboutit. You don’t evenknow, and you know what, chances are your language of choice doesn’t even put the variables on stack at all.It’s all heap, and you don’t even know if it is.
C is different because it’s using the real CPU’s actual machinery to do its work, and that involves a chunk of ramcalled the stack and another called the heap. What’s the difference? It all depends on where you get the storage.
The heap is easier to explain as it’s just all the remaining memory in your computer, and you access it with thefunction malloc to get more. Each time you call malloc, the OS uses internal functions to register that pieceof memory to you, and then returns a pointer to it. When you’re done with it, you use free to return it to theOS so that it can be used by other programs. Failing to do this will cause your program to "leak" memory, but
Valgrind will help you track these leaks down.
The stack is a special region of memory that stores temporary variables each function creates as locals to thatfunction. How it works is each argument to a function is "pushed" onto the stack, and then used inside thefunction. It is really a stack data structure, so the last thing in is the first thing out. This also happens with alllocal variables like char action and int id in main. The advantage of using a stack for this is simply that,when the function exits, the C compiler "pops" these variables off the stack to clean up. This is simple and

18.3. HOW TO BREAK IT 79
prevents memory leaks if the variable is on the stack.
The easiest way to keep this straight is with this mantra: If you didn’t get it from malloc or a function that got itfrom malloc, then it’s on the stack.
There’s three primary problems with stacks and heaps to watch for:
1. If you get a block of memory from malloc, and have that pointer on the stack, then when the functionexits, the pointer will get popped off and lost.
2. If you put too much data on the stack (like large structs and arrays) then you can cause a "stack overflow"and the program will abort. In this case, use the heap with malloc.
3. If you take a pointer to something on the stack, and then pass that or return it from your function, thenthe function receiving it will "segmentation fault" (segfault) because the actual data will get popped off anddisappear. You’ll be pointing at dead space.

This is why in the program I’ve created a Database_open that allocatesmemory or dies, and then a Database_closethat frees everything. If you create a "create" function, that makes the whole thing or nothing, and then a "de-stroy" function that cleans up everything safely, then it’s easier to keep it all straight.
Finally, when a program exits the OS will clean up all the resources for you, but sometimes not immediately. Acommon idiom (and one I use in this exercise) is to just abort and let the OS clean up on error.

18.3 How To Break It

This program has a lot of places you can break it, so try some of these but also come up with your own:
1. The classic way is to remove some of the safety checks such that you can pass in arbitrary data. For exam-ple, if you remove the check on line 159 that prevents you from passing in any record number.
2. You can also try corrupting the data file. Open it in any editor and change random bytes then close it.
3. You could also find ways to pass bad arguments to the program when it’s run, such as getting the file andaction backwards will make it create a file named after the action, then do an action based on the firstcharacter.
4. There is a bug in this program because of strncpy being poorly designed. Go read about strncpy then tryto find out what happens when the name or address you give is greater than 512 bytes. Fix this by simplyforcing the last character to '\0' so that it’s always set no matter what (which is what strncpy should do).
5. In the extra credit I have you augment the program to create arbitrary size databases. Try to see what thebiggest database is before you cause the program to die for lack of memory from malloc.

18.4 Extra Credit

1. The die function needs to be augmented to let you pass the conn variable so it can close it and clean up.
2. Change the code to accept parameters for MAX_DATA and MAX_ROWS, store them in the Database struct, andwrite that to the file, thus creating a database that can be arbitrarily sized.
3. Add more operations you can do on the database, like find.
4. Read about how C does it’s struct packing, and then try to see why your file is the size it is. See if you cancalculate a new size after adding more fields.
5. Add some more fields to the Address and make them searchable.
6. Write a shell script that will do your testing automatically for you by running commands in the right order.Hint: Use set -e at the top of a bash to make it abort the whole script if any command has an error.

80 CHAPTER 18. EXERCISE 17: HEAP AND STACK MEMORY ALLOCATION
7. Try reworking the program to use a single global for the database connection. How does this new versionof the program compare to the other one?
8. Go research "stack data structure" and write one in your favorite language, then try to do it in C.

Chapter 19

Exercise 18: Pointers To Functions

Functions in C are actually just pointers to a spot in the program where some code exists. Just like you’ve beencreating pointers to structs, strings, and arrays, you can point a pointer at a function too. The main use for this isto pass "callbacks" to other functions, or to simulate classes and objects. In this exercise we’ll do some callbacks,and in the next one we’ll make a simple object system.
The format of a function pointer goes like this:
int (*POINTER_NAME)(int a, int b)

A way to remember how to write one is to do this:
1. Write a normal function declaration: int callme(int a, int b)

2. Wrap function name with pointer syntax: int (*callme)(int a, int b)

3. Change the name to the pointer name: int (*compare_cb)(int a, int b)

The key thing to remember is, when you’re donewith this, the variable name for the pointer is called compare_cband then you use it just like it’s a function. This is similar to how pointers to arrays can be used just like the arraysthey point to. Pointers to functions can be used like the functions they point to but with a different name.
Using A Raw Function Pointer

1 int (*tester)(int a, int b) = sorted_order;2 printf("TEST: %d is same as %d\n", tester(2, 3), sorted_order(2, 3));

This will work even if the function pointer returns a pointer to something:
1. Write it: char *make_coolness(int awesome_levels)

2. Wrap it: char *(*make_coolness)(int awesome_levels)

3. Rename it: char *(*coolness_cb)(int awesome_levels)

The next problem to solve with using function pointers is that it’s hard to give them as parameters to a function,like when you want to pass the function callback to another function. The solution to this is to use typedefwhich is a C keyword for making new names for other more complex types. The only thing you need to do isput typedef before the same function pointer syntax, and then after that you can use the name like it’s a type.I demonstrate this in the following exercise code:
ex18.c

81

82 CHAPTER 19. EXERCISE 18: POINTERS TO FUNCTIONS

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <assert.h>
4 #include <errno.h>
5 #include <string.h>
6
7 /** Our old friend die from ex17. */
8 void die(const char *message)
9 {
10 if(errno) {
11 perror(message);
12 } else {
13 printf("ERROR: %s\n", message);
14 }
15
16 exit(1);
17 }
18
19 // a typedef creates a fake type, in this
20 // case for a function pointer
21 typedef int (*compare_cb)(int a, int b);
22
23 /**
24 * A classic bubble sort function that uses the
25 * compare_cb to do the sorting.
26 */
27 int *bubble_sort(int *numbers, int count, compare_cb cmp)
28 {
29 int temp = 0;
30 int i = 0;
31 int j = 0;
32 int *target = malloc(count * sizeof(int));
33
34 if(!target) die("Memory error.");
35
36 memcpy(target, numbers, count * sizeof(int));
37
38 for(i = 0; i < count; i++) {
39 for(j = 0; j < count - 1; j++) {
40 if(cmp(target[j], target[j+1]) > 0) {
41 temp = target[j+1];
42 target[j+1] = target[j];
43 target[j] = temp;
44 }
45 }
46 }
47
48 return target;
49 }
50
51 int sorted_order(int a, int b)
52 {
53 return a - b;
54 }
55
56 int reverse_order(int a, int b)

83

57 {
58 return b - a;
59 }
60
61 int strange_order(int a, int b)
62 {
63 if(a == 0 || b == 0) {
64 return 0;
65 } else {
66 return a % b;
67 }
68 }
69
70 /**
71 * Used to test that we are sorting things correctly
72 * by doing the sort and printing it out.
73 */
74 void test_sorting(int *numbers, int count, compare_cb cmp)
75 {
76 int i = 0;
77 int *sorted = bubble_sort(numbers, count, cmp);
78
79 if(!sorted) die("Failed to sort as requested.");
80
81 for(i = 0; i < count; i++) {
82 printf("%d ", sorted[i]);
83 }
84 printf("\n");
85
86 free(sorted);
87 }
88
89
90 int main(int argc, char *argv[])
91 {
92 if(argc < 2) die("USAGE: ex18 4 3 1 5 6");
93
94 int count = argc - 1;
95 int i = 0;
96 char **inputs = argv + 1;
97
98 int *numbers = malloc(count * sizeof(int));
99 if(!numbers) die("Memory error.");
100
101 for(i = 0; i < count; i++) {
102 numbers[i] = atoi(inputs[i]);
103 }
104
105 test_sorting(numbers, count, sorted_order);
106 test_sorting(numbers, count, reverse_order);
107 test_sorting(numbers, count, strange_order);
108
109 free(numbers);
110
111 return 0;
112 }

84 CHAPTER 19. EXERCISE 18: POINTERS TO FUNCTIONS
In this program you’re creating a dynamic sorting algorithm that can sort an array of integers using a compari-son callback. Here’s the breakdown of this program so you can clearly understand it:
ex18.c:1-6 The usual includes needed for all the functions we call.
ex18.c:7-17 This is the die function from the previous exercise which I’ll use to do error checking.
ex18.c:21 This is where the typedef is used, and later I use compare_cb like it’s a type similar to int or charin bubble_sort and test_sorting.
ex18.c:27-49 A bubble sort implementation, which is a very inefficient way to sort some integers. This functioncontains:

ex18.c:27 Here’s where I use the typedef for compare_cb as the last parameter cmp. This is now a func-tion that will return a comparison between two integers for sorting.
ex18.c:29-34 The usual creation of variables on the stack, followed by a new array of integers on the heapusing malloc. Make sure you understand what count * sizeof(int) is doing.
ex18.c:38 The outer-loop of the bubble sort.
ex18.c:39 The inner-loop of the bubble sort
ex18.c:40 Now I call the cmp callback just like it’s a normal function, but instead of being the name ofsomething we defined, it’s just a pointer to it. This lets the caller pass in anything they want as long asit matches the "signature" of the compare_cb typedef.
ex18.c:41-43 The actual swapping operation a bubble sort needs to do what it does.
ex18.c:48 Finally return the newly created and sorted result array target.

ex18.c:51-68 Three different versions of the compare_cb function type, which needs to have the same definitionas the typedef we created. The C compiler will complain to you if you get this wrong and say the typesdon’t match.
ex18.c:74-87 This is a tester for the bubble_sort function. You can see now how I’m also using compare_cb tothen pass to bubble_sort demonstrating how these can be passed around like any other pointers.
ex18.c:90-103 A simple main function that sets up an array based on integers you pass on the command line,then calls the test_sorting function.
ex18.c:105-107 Finally, you get to see how the compare_cb function pointer typedef is used. I simply call

test_sorting but give it the name of sorted_order, reverse_order, and strange_order as the func-tion to use. The C compiler thenfinds the address of those functions, andmakes it a pointer for test_sortingto use. If you look at test_sorting you’ll see it then passes each of these to bubble_sort but it actuallyhas no idea what they do, only that they match the compare_cb prototype and should work.
ex18.c:109 Last thing we do is free up the array of numbers we made.

19.1 What You Should See

Running this program is simple, but try different combinations of numbers, and try even non-numbers to seewhat it does.
ex18 output

1 $ make ex182 cc -Wall -g ex18.c -o ex183 $./ex18 4 1 7 3 2 0 84 0 1 2 3 4 7 8

19.2. HOW TO BREAK IT 85

5 8 7 4 3 2 1 06 3 4 2 7 1 0 87 $

19.2 How To Break It

I’m going to have you do something kind of weird to break this. These function pointers are pointers like everyother pointer, so they point at blocks of memory. C has this ability to take one pointer and convert it to anotherso you can process the data in different ways. It’s usually not necessary, but to show you how to hack yourcomputer, I want you to add this at the end of test_sorting:
Function Pointer Evil

1 unsigned char *data = (unsigned char *)cmp;23 for(i = 0; i < 25; i++) {4 printf("%02x:", data[i]);5 }6 printf("\n");

This loop is sort of like converting your function to a string and then printing out it’s contents. This won’t breakyour program unless the CPU and OS you’re on has a problem with you doing this. What you’ll see is a string ofhexadecimal numbers after it prints the sorted array:
55:48:89:e5:89:7d:fc:89:75:f8:8b:55:fc:8b:45:f8:29:d0:c9:c3:55:48:89:e5:89:

That should be the raw assembler byte code of the function itself, and you should see they start the same, butthen have different endings. It’s also possible that this loop isn’t getting all of the function or is getting too muchand stomping on another piece of the program. Without more analysis you wouldn’t know.

19.3 Extra Credit

1. Get a hex editor and open up ex18, then find this sequence of hex digits that start a function to see if youcan find the function in the raw program.
2. Find other random things in your hex editor and change them. Rerun your program and see what happens.Changing strings you find are the easiest things to change.
3. Pass in the wrong function for the compare_cb and see what the C compiler complains about.
4. Pass in NULL and watch your program seriously bite it. Then run Valgrind and see what that reports.
5. Write another sorting algorithm, then change test_sorting so that it takes both an arbitrary sort functionand the sort function’s callback comparison. Use it to test both of your algorithms.

86 CHAPTER 19. EXERCISE 18: POINTERS TO FUNCTIONS

Chapter 20

Exercise 19: A Simple Object System

I learned C before I learned Object Oriented Programming, so it helped me to build an OOP system in C tounderstand the basics of what OOP meant. You are probably the kind of person who learned an OOP languagebefore you learned C, so this kind of bridgemight help you as well. In this exercise, you will build a simple objectsystem, but also learn more about the C Pre-Processor or CPP.
This exercise will build a simple game where you kill a Minotaur in a small little castle. Nothing fancy, just fourrooms and a bad guy. This project will also be a multi-file project, and look more like a real C software projectthan your previous ones. This is why I’m introducing the CPP here because you need it to start using multiplefiles in your own software.

20.1 How The CPP Works

The C Pre-Processor is a template processing system. It’s a highly targeted one that helps make C easier to workwith, but it does this by having a syntax aware templating mechanism. Traditionally people just used the CPPto store constants and make "macros" to simplify repetitive coding. In modern C you’ll actually use the CPP as acode generator to create templated pieces of code.
How the CPP works is you give it one file, usually a .c file, and it processes various bits of text starting with the
(octothorpe1) character. When it encounters one of these it performs a specific replacement on the text of theinput file. It’s main advantage though is it can include other files, and then augment its list of macros based onthat file’s contents.
A quick way to see what the CPP does is take the last exercise and run this:
cpp ex18.c | less

It will be a huge amount of output, but scroll through it and you’ll see the contents of the other files you includedwith #include. Scroll down to the original code and you can see how the cpp is altering the source based onvarious #definemacros in the header files.
The C compiler is so tightly integrated with cpp that it just runs this for you and understands how it worksintimately. In modern C, the cpp system is so integral to C’s function that you might as well just consider it to bepart of the language.
In the remaining sections, we’ll be using more of the CPP syntax and explaining it as we go.

1A.K.A. pound, hash, mesh, number symbol, pick whatever makes you happy87

88 CHAPTER 20. EXERCISE 19: A SIMPLE OBJECT SYSTEM
20.2 The Prototype Object System

The OOP system we’ll create is a simple "prototype" style object system more like JavaScript. Instead of classes,you start with prototypes that have fields set, and then use those as the basis of creating other object instances.This "classless" design is much easier to implement and work with than a traditional class based one.

20.2.1 The Object Header File

I want to put the data types and function declarations into a separate header file named object.h. This isstandard C practice and it lets you ship binary libraries but still let the programmer compile against it. In thisfile I have several advanced CPP techniques I’m going to quickly describe and then have you see in action later:
object.h

1 #ifndef _object_h
2 #define _object_h
3
4 typedef enum {
5 NORTH, SOUTH, EAST, WEST
6 } Direction;
7
8 typedef struct {
9 char *description;
10 int (*init)(void *self);
11 void (*describe)(void *self);
12 void (*destroy)(void *self);
13 void *(*move)(void *self, Direction direction);
14 int (*attack)(void *self, int damage);
15 } Object;
16
17 int Object_init(void *self);
18 void Object_destroy(void *self);
19 void Object_describe(void *self);
20 void *Object_move(void *self, Direction direction);
21 int Object_attack(void *self, int damage);
22 void *Object_new(size_t size, Object proto, char *description);
23
24 #define NEW(T, N) Object_new(sizeof(T), T##Proto, N)
25 #define _(N) proto.N
26
27 #endif

Taking a look at this file, you can see we have a few new pieces of syntax you haven’t encountered before:
#ifndef You’ve seen a #define for making simple constants, but the CPP can also do logic and remove sectionsof code. This #ifndef is "if not defined" and checks if there’s already a #define _object_h and if thereis it skips all of this code. I do this so that we can include this file any time we want and not worry about itdefining things multiple times.
#define With the above #ifndef shielding this file fromwe then add the _object_h define so that any attemptsto include it later cause the above to skip.
#define NEW(T,N) This makes amacro, and it works like a template function that spits out the code on the right,whenever you write use the macro on the left. This one is simply making a short version of the normalway we’ll call Object_new and avoids potential errors with calling it wrong. The way the macro works isthe T and N parameters to NEW are "injected" into the line of code on the right. The syntax T##Proto says

20.2. THE PROTOTYPE OBJECT SYSTEM 89
to "concat Proto at the end of T", so if you had NEW(Room, "Hello.") then it’d make RoomProto there.

#define _(N) Thismacro is a bit of "syntactic sugar" for the object system and basically helps youwrite obj->proto.blahas simply obj->_(blah). It’s not necessary, but it’s a fun little trick that I’ll use later.

20.2.2 The Object Source File

The object.h file is declaring functions and data types that are defined (created) in the object.c, so that’snext:
object.c

1 #include <stdio.h>
2 #include <string.h>
3 #include <stdlib.h>
4 #include "object.h"
5 #include <assert.h>
6
7 void Object_destroy(void *self)
8 {
9 Object *obj = self;
10
11 if(obj) {
12 if(obj->description) free(obj->description);
13 free(obj);
14 }
15 }
16
17 void Object_describe(void *self)
18 {
19 Object *obj = self;
20 printf("%s.\n", obj->description);
21 }
22
23 int Object_init(void *self)
24 {
25 // do nothing really
26 return 1;
27 }
28
29 void *Object_move(void *self, Direction direction)
30 {
31 printf("You can't go that direction.\n");
32 return NULL;
33 }
34
35 int Object_attack(void *self, int damage)
36 {
37 printf("You can't attack that.\n");
38 return 0;
39 }
40
41 void *Object_new(size_t size, Object proto, char *description)
42 {
43 // setup the default functions in case they aren't set
44 if(!proto.init) proto.init = Object_init;

90 CHAPTER 20. EXERCISE 19: A SIMPLE OBJECT SYSTEM

45 if(!proto.describe) proto.describe = Object_describe;
46 if(!proto.destroy) proto.destroy = Object_destroy;
47 if(!proto.attack) proto.attack = Object_attack;
48 if(!proto.move) proto.move = Object_move;
49
50 // this seems weird, but we can make a struct of one size,
51 // then point a different pointer at it to "cast" it
52 Object *el = calloc(1, size);
53 *el = proto;
54
55 // copy the description over
56 el->description = strdup(description);
57
58 // initialize it with whatever init we were given
59 if(!el->init(el)) {
60 // looks like it didn't initialize properly
61 el->destroy(el);
62 return NULL;
63 } else {
64 // all done, we made an object of any type
65 return el;
66 }
67 }

There’s really nothing new in this file, except one tiny little trick. The function Object_new uses an aspect ofhow structs work by putting the base prototype at the beginning of the struct. When you look at the ex19.hheader later, you’ll see how I make the first field in the struct an Object. Since C puts the fields in a struct inorder, and since a pointer just points at a chunk of memory, I can "cast" a pointer to anything I want. In thiscase, even though I’m taking a potentially larger block of memory from calloc, I’m using a Object pointer towork with it.
I explain this a bit better when we write the ex19.h file since it’s easier to understand when you see it beingused.
That creates your base object system, but you’ll need a way to compile it and link it into your ex19.c file tocreate a complete program. The object.c file on its own doesn’t have a main so it isn’t enough to make a fullprogram. Here’s a Makefile that will do this based on the one you’ve been using:

The Makefile

1 CFLAGS=-Wall -g23 all: ex1945 ex19: object.o67 clean:8 rm -f ex19

This Makefile is doing nothing more than saying that ex19 depends on object.o. Remember how make knowshow to build different kinds of files by their extensions? Doing this tells make the following:
1. When I say run make the default all should just build ex19.
2. When you build ex19, you need to also build object.o and include it in the build.

20.3. THE GAME IMPLEMENTATION 91
3. make can’t see anything in the file for object.o, but it does see an object.c file, and it knows how to turna .c into a .o, so it does that.
4. Once it has object.o built it then runs the correct compile command to build ex19 from ex19.c and

object.o.

20.3 The Game Implementation

Once you have those files you just need to implement the actual game using the object system, and first step isputting all the data types and function declarations in a ex19.h file:
ex19.h

1 #ifndef _ex19_h
2 #define _ex19_h
3
4 #include "object.h"
5
6 struct Monster {
7 Object proto;
8 int hit_points;
9 };
10
11 typedef struct Monster Monster;
12
13 int Monster_attack(void *self, int damage);
14 int Monster_init(void *self);
15
16 struct Room {
17 Object proto;
18
19 Monster *bad_guy;
20
21 struct Room *north;
22 struct Room *south;
23 struct Room *east;
24 struct Room *west;
25 };
26
27 typedef struct Room Room;
28
29 void *Room_move(void *self, Direction direction);
30 int Room_attack(void *self, int damage);
31 int Room_init(void *self);
32
33
34 struct Map {
35 Object proto;
36 Room *start;
37 Room *location;
38 };
39
40 typedef struct Map Map;
41
42 void *Map_move(void *self, Direction direction);

92 CHAPTER 20. EXERCISE 19: A SIMPLE OBJECT SYSTEM

43 int Map_attack(void *self, int damage);
44 int Map_init(void *self);
45
46 #endif

That sets up three new Objects you’ll be using: Monster, Room, and Map.
Taking a look at object.c:52 you can see where I use a pointer Object *el = calloc(1, size). Go backand look at the NEW macro in object.h and you can see that it is getting the sizeof another struct, say Room,and I allocate that much. However, because I’ve pointed a Object pointer at this block of memory, and becauseI put an Object proto field at the front of Room, I’m able to treat a Room like it’s an Object.
The way to break this down is like so:
1. I call NEW(Room, "Hello.")which the CPP expands as amacro into Object_new(sizeof(Room), RoomProto, "Hello.").
2. This runs, and inside Object_new I allocate a piece of memory that’s Room in size, but point a Object *elpointer at it.
3. Since C puts the Room.proto field first, that means the el pointer is really only pointing at enough of theblock of memory to see a full Object struct. It has no idea that it’s even called proto.
4. It then uses this Object *el pointer to set the contents of the piece ofmemory correctlywith *el = proto;.Remember that you can copy structs, and that *elmeans "the value of whatever el points at", so this means"assign the proto struct to whatever el points at".
5. Now that this mystery struct is filled in with the right data from proto, the function can then call init or

destroy on the Object, but the cool part is whoever called this function can change these out for whateverones they want.
And with that, we have a way to get this one function to construct new types, and give them new functions tochange their behavior. This may seem like "hackery" but it’s stock C and totally valid. In fact there’s quite a fewstandard system functions that work this same way, and we’ll be using some of them for converting addressesin network code.
With the function definitions and data structures written out I can now actually implement the game with fourrooms and a minotaur to beat up:

ex19.c
1 #include <stdio.h>
2 #include <errno.h>
3 #include <stdlib.h>
4 #include <string.h>
5 #include <time.h>
6 #include "ex19.h"
7
8
9 int Monster_attack(void *self, int damage)
10 {
11 Monster *monster = self;
12
13 printf("You attack %s!\n", monster->_(description));
14
15 monster->hit_points -= damage;
16
17 if(monster->hit_points > 0) {
18 printf("It is still alive.\n");
19 return 0;

20.3. THE GAME IMPLEMENTATION 93

20 } else {
21 printf("It is dead!\n");
22 return 1;
23 }
24 }
25
26 int Monster_init(void *self)
27 {
28 Monster *monster = self;
29 monster->hit_points = 10;
30 return 1;
31 }
32
33 Object MonsterProto = {
34 .init = Monster_init,
35 .attack = Monster_attack
36 };
37
38
39 void *Room_move(void *self, Direction direction)
40 {
41 Room *room = self;
42 Room *next = NULL;
43
44 if(direction == NORTH && room->north) {
45 printf("You go north, into:\n");
46 next = room->north;
47 } else if(direction == SOUTH && room->south) {
48 printf("You go south, into:\n");
49 next = room->south;
50 } else if(direction == EAST && room->east) {
51 printf("You go east, into:\n");
52 next = room->east;
53 } else if(direction == WEST && room->west) {
54 printf("You go west, into:\n");
55 next = room->west;
56 } else {
57 printf("You can't go that direction.");
58 next = NULL;
59 }
60
61 if(next) {
62 next->_(describe)(next);
63 }
64
65 return next;
66 }
67
68
69 int Room_attack(void *self, int damage)
70 {
71 Room *room = self;
72 Monster *monster = room->bad_guy;
73
74 if(monster) {
75 monster->_(attack)(monster, damage);

94 CHAPTER 20. EXERCISE 19: A SIMPLE OBJECT SYSTEM

76 return 1;
77 } else {
78 printf("You flail in the air at nothing. Idiot.\n");
79 return 0;
80 }
81 }
82
83
84 Object RoomProto = {
85 .move = Room_move,
86 .attack = Room_attack
87 };
88
89
90 void *Map_move(void *self, Direction direction)
91 {
92 Map *map = self;
93 Room *location = map->location;
94 Room *next = NULL;
95
96 next = location->_(move)(location, direction);
97
98 if(next) {
99 map->location = next;
100 }
101
102 return next;
103 }
104
105 int Map_attack(void *self, int damage)
106 {
107 Map* map = self;
108 Room *location = map->location;
109
110 return location->_(attack)(location, damage);
111 }
112
113
114 int Map_init(void *self)
115 {
116 Map *map = self;
117
118 // make some rooms for a small map
119 Room *hall = NEW(Room, "The great Hall");
120 Room *throne = NEW(Room, "The throne room");
121 Room *arena = NEW(Room, "The arena, with the minotaur");
122 Room *kitchen = NEW(Room, "Kitchen, you have the knife now");
123
124 // put the bad guy in the arena
125 arena->bad_guy = NEW(Monster, "The evil minotaur");
126
127 // setup the map rooms
128 hall->north = throne;
129
130 throne->west = arena;
131 throne->east = kitchen;

20.3. THE GAME IMPLEMENTATION 95

132 throne->south = hall;
133
134 arena->east = throne;
135 kitchen->west = throne;
136
137 // start the map and the character off in the hall
138 map->start = hall;
139 map->location = hall;
140
141 return 1;
142 }
143
144 Object MapProto = {
145 .init = Map_init,
146 .move = Map_move,
147 .attack = Map_attack
148 };
149
150 int process_input(Map *game)
151 {
152 printf("\n> ");
153
154 char ch = getchar();
155 getchar(); // eat ENTER
156
157 int damage = rand() % 4;
158
159 switch(ch) {
160 case -1:
161 printf("Giving up? You suck.\n");
162 return 0;
163 break;
164
165 case 'n':
166 game->_(move)(game, NORTH);
167 break;
168
169 case 's':
170 game->_(move)(game, SOUTH);
171 break;
172
173 case 'e':
174 game->_(move)(game, EAST);
175 break;
176
177 case 'w':
178 game->_(move)(game, WEST);
179 break;
180
181 case 'a':
182
183 game->_(attack)(game, damage);
184 break;
185 case 'l':
186 printf("You can go:\n");
187 if(game->location->north) printf("NORTH\n");

96 CHAPTER 20. EXERCISE 19: A SIMPLE OBJECT SYSTEM

188 if(game->location->south) printf("SOUTH\n");
189 if(game->location->east) printf("EAST\n");
190 if(game->location->west) printf("WEST\n");
191 break;
192
193 default:
194 printf("What?: %d\n", ch);
195 }
196
197 return 1;
198 }
199
200 int main(int argc, char *argv[])
201 {
202 // simple way to setup the randomness
203 srand(time(NULL));
204
205 // make our map to work with
206 Map *game = NEW(Map, "The Hall of the Minotaur.");
207
208 printf("You enter the ");
209 game->location->_(describe)(game->location);
210
211 while(process_input(game)) {
212 }
213
214 return 0;
215 }

Honestly there isn’t much in this that you haven’t seen, and only you might need to understand how I’m usingthe macros I made from the headers files. Here’s the important key things to study and understand:
1. Implementing a prototype involves creating its version of the functions, and then creating a single structending in "Proto". Look at MonsterProto, RoomProto and MapProto.
2. Because of how Object_new is implemented, if you don’t set a function in your prototype, then it will getthe default implementation created in object.c.
3. In Map_init I create the little world, but more importantly I use the NEWmacro from object.h to build allof the objects. To get this concept in your head, try replacing the NEW usage with direct Object_new callsto see how it’s being translated.
4. Working with these objects involves calling functions on them, and the _(N) macro does this for me. Ifyou look at the code monster->_(attack)(monster, damage) you see that I’m using the macro, whichgets replaced with monster->proto.attack(monster, damage). Study this transformation again byrewriting these calls back to their original. Also, if you get stuck then run cpp manually to see what it’sgoing to do.
5. I’m using two new functions srand and rand, which setup a simple random number generator goodenough for the game. I also use time to initialize the random number generator. Research those.
6. I use a new function getchar that gets a single character from the stdin. Research it.

20.4 What You Should See

Here’s me playing my own game:

20.4. WHAT YOU SHOULD SEE 97

ex19 output

1 $ make ex192 cc -Wall -g -c -o object.o object.c3 cc -Wall -g ex19.c object.o -o ex194 $./ex195 You enter the The great Hall.67 > l8 You can go:9 NORTH1011 > n12 You go north, into:13 The throne room.1415 > l16 You can go:17 SOUTH18 EAST19 WEST2021 > e22 You go east, into:23 Kitchen, you have the knife now.2425 > w26 You go west, into:27 The throne room.2829 > s30 You go south, into:31 The great Hall.3233 > n34 You go north, into:35 The throne room.3637 > w38 You go west, into:39 The arena, with the minotaur.4041 > a42 You attack The evil minotaur!43 It is still alive.4445 > a46 You attack The evil minotaur!47 It is dead!4849 > ^D50 Giving up? You suck.51 $

98 CHAPTER 20. EXERCISE 19: A SIMPLE OBJECT SYSTEM
20.5 Auditing The Game

As an exercise for you I have left out all of the assert checks I normally put into a piece of software. You’veseen me use assert to make sure a program is running correctly, but now I want you to go back and do thefollowing:
1. Look at each function you’ve defined, one file at a time.
2. At the top of each function, add asserts that make sure the input parameters are correct. For example, in

Object_new you want a assert(description != NULL).
3. Go through each line of the function, and find any functions being called. Read the documentation (manpage) for that function, and confirmwhat it returns for an error. Add another assert to check that the errordidn’t happen. For example, in Object_new you need one after the call to calloc that does assert(el != NULL).
4. If a function is expected to return a value, either make sure it returns an error value (like NULL), or havean assert to make sure that the returned variable isn’t invalid. For example, in Object_new, you need tohave assert(el != NULL) again before the last return since that part can never be NULL.
5. For every if-statement you write, make sure there’s an else clause unless that if is an error check thatcauses an exit.
6. For every switch-statement you write, make sure that there’s a default case that handles anything youdidn’t anticipate.

Take your time going through every line of the function and find any errors you make. Remember that the pointof this exercise is to stop being a "coder" and switch your brain into being a "hacker". Try to see how you couldbreak it, then write code to prevent it or abort early if you can.

20.6 Extra Credit

1. Update the Makefile so that when you do make clean it will also remove the object.o file.
2. Write a test script that works the game in different ways and augment the Makefile so you can run make

test and it’ll thrash the game with your script.
3. Add more rooms and monsters to the game.
4. Put the game mechanics into a third file, compile it to .o, and then use that to write another little game. Ifyou’re doing it right you should only have a new Map and a main function in the new game.

Chapter 21

Exercise 20: Zed’s Awesome Debug

Macros

There is a constant problem in C that you have been dancing around but which I am going to solve in thisexercise using a set of macros I developed. You can thank me later when you realize how insanely awesomethese macros are. Right now you won’t realize how awesome they are, so you’ll just have to use them and thenyou can walk up to me one day and say, "Zed, those Debug Macros were the bomb. I owe you my first born childbecause you saved me a decade of heartache and prevented me from killing myself more than once. Thank yougood sir, here’s a million dollars and the original Snakehead Telecaster prototype signed by Leo Fender."
Yes, they are that awesome.

21.1 The C Error Handling Problem

In almost every programming language handling errors is a difficult activity. There’s entire programming lan-guages that try as hard as they can to avoid even the concept of an error. Other languages invent complexcontrol structures like exceptions to pass error conditions around. The problem exists mostly because program-mers assume errors don’t happen and this optimism infects the type of languages they use and create.
C tackles the problem by returning error codes and setting a global errno value that you check. This makes forcomplex code that simply exists to check if something you did had an error. As you write more and more C codeyou’ll write code with the pattern:
1. Call a function.
2. If the return value is an error (must look that up each time too).
3. Then cleanup all the resource created so far.
4. and print out an error message that hopefully helps.

This means for every function call (and yes, every function) you are potentially writing 3-4 more lines just tomake sure it worked. That doesn’t include the problem of cleaning up all of the junk you’ve built to that point. Ifyou have 10 different structures, 3 files, and a database connection, when you get an error then you would have14 more lines.
In the past this wasn’t a problem because C programs did what you’ve been doing when there’s an error: die.No point in bothering with cleanup when the OS will do it for you. Today though many C programs need to runfor weeks, months, or years and handle errors from many different sources gracefully. You can’t just have yourwebserver die at the slightest touch, and you definitely can’t have a library you’ve written nuke a the programits used in. That’s just rude.
Other languages solve this problem with exceptions, but those have problems in C (and in other languages too).99

100 CHAPTER 21. EXERCISE 20: ZED’S AWESOME DEBUG MACROS
In C you only have one return value, but exceptions are an entire stack based return system with arbitraryvalues. Trying to marshal exceptions up the stack in C is difficult, and no other libraries will understand it.

21.2 The Debug Macros

The solution I’ve been using for years is a small set of "debug macros" that implement a basic debugging anderror handling system for C. This system is easy to understand, works with every library, and makes C codemore solid and clearer.
It does this by adopting the convention that whenever there’s an error, your function will jump to an "error:"part of the function that knows how to cleanup everything and return an error code. You use a macro called
check to check return codes, print an error message, and then jump to the cleanup section. You combine thatwith a set of logging functions for printing out useful debug messages.
I’ll now show you the entire contents of the most awesome set of brilliance you’ve ever seen:

dbg.h
1 #ifndef __dbg_h__
2 #define __dbg_h__
3
4 #include <stdio.h>
5 #include <errno.h>
6 #include <string.h>
7
8 #ifdef NDEBUG
9 #define debug(M, ...)
10 #else
11 #define debug(M, ...) fprintf(stderr, "DEBUG %s:%d: " M "\n", __FILE__, __LINE__, ##__VA_ARGS__)
12 #endif
13
14 #define clean_errno() (errno == 0 ? "None" : strerror(errno))
15
16 #define log_err(M, ...) fprintf(stderr, "[ERROR] (%s:%d: errno: %s) " M "\n", __FILE__, __LINE__, clean_errno(), ##__VA_ARGS__)
17
18 #define log_warn(M, ...) fprintf(stderr, "[WARN] (%s:%d: errno: %s) " M "\n", __FILE__, __LINE__, clean_errno(), ##__VA_ARGS__)
19
20 #define log_info(M, ...) fprintf(stderr, "[INFO] (%s:%d) " M "\n", __FILE__, __LINE__, ##__VA_ARGS__)
21
22 #define check(A, M, ...) if(!(A)) { log_err(M, ##__VA_ARGS__); errno=0; goto error; }
23
24 #define sentinel(M, ...) { log_err(M, ##__VA_ARGS__); errno=0; goto error; }
25
26 #define check_mem(A) check((A), "Out of memory.")
27
28 #define check_debug(A, M, ...) if(!(A)) { debug(M, ##__VA_ARGS__); errno=0; goto error; }
29
30 #endif

Yes, that’s it, and here’s what every line does:
dbg.h:1-2 The usual defense against accidentally including the file twice, which you saw in the last exercise.
dbg.h:4-6 Includes for the functions that these macros need.
dbg.h:8 The start of a #ifdef which lets you recompile your program so that all the debug log messages areremoved.

21.3. USING DBG.H 101
dbg.h:9 If you compile with NDEBUG defined, then "no debug" messages will remain. You can see in this case the

#define debug() is just replaced with nothing (the right side is empty).
dbg.h:10 The matching #else for the above #ifdef.
dbg.h:11 The alternative #define debug that translates any use of debug("format", arg1, arg2) into an

fprintf call to stderr. Many C programmers don’t know, but you can create macros that actually worklike printf and take variable arguments. Some C compilers (actually cpp) don’t support this, but the onesthat matter do. The magic here is the use of ##__VA_ARGS__ which says "put whatever they had for extraarguments (...) here". Also notice the use of __FILE__ and __LINE__ to get the current file:line for thedebug message. Very helpful.
dbg.h:12 The end of the #ifdef.
dbg.h:14 The clean_errnomacro that’s used in the others to get a safe readable version of errno. That strangesyntax in the middle is a "ternary operator" and you’ll learn what it does later.
dbg.h:16-20 The log_err, log_warn, and log_info, macros for logging messages meant for the end user.Works like debug but can’t be compiled out.
dbg.h:22 The best macro ever, check will make sure the condition A is true, and if not logs the error M (withvariable arguments for log_err), then jumps to the function’s error: for cleanup.
dbg.h:24 The 2nd best macro ever, sentinel is placed in any part of a function that shouldn’t run, and ifit does prints an error message then jumps to the error: label. You put this in if-statements and

switch-statements to catch conditions that shouldn’t happen, like the default:.
dbg.h:26 A short-hand macro check_mem that makes sure a pointer is valid, and if it isn’t reports it as an errorwith "Out of memory."
dbg.h:28 An alternative macro check_debug that still checks and handles an error, but if the error is commonthen you don’t want to bother reporting it. In this one it will use debug instead of log_err to report themessage, so when you define NDEBUG the check still happens, the error jump goes off, but the message isn’tprinted.

21.3 Using dbg.h

Here’s an example of using all of dbg.h in a small program. This doesn’t actually do anything but demonstratehow to use each macro, but we’ll be using these macros in all of the programs we write from now on, so be sureto understand how to use them.
ex20.c

1 #include "dbg.h"
2 #include <stdlib.h>
3 #include <stdio.h>
4
5
6 void test_debug()
7 {
8 // notice you don't need the \n
9 debug("I have Brown Hair.");
10
11 // passing in arguments like printf
12 debug("I am %d years old.", 37);
13 }
14
15 void test_log_err()

102 CHAPTER 21. EXERCISE 20: ZED’S AWESOME DEBUG MACROS

16 {
17 log_err("I believe everything is broken.");
18 log_err("There are %d problems in %s.", 0, "space");
19 }
20
21 void test_log_warn()
22 {
23 log_warn("You can safely ignore this.");
24 log_warn("Maybe consider looking at: %s.", "/etc/passwd");
25 }
26
27 void test_log_info()
28 {
29 log_info("Well I did something mundane.");
30 log_info("It happened %f times today.", 1.3f);
31 }
32
33 int test_check(char *file_name)
34 {
35 FILE *input = NULL;
36 char *block = NULL;
37
38 block = malloc(100);
39 check_mem(block); // should work
40
41 input = fopen(file_name,"r");
42 check(input, "Failed to open %s.", file_name);
43
44 free(block);
45 fclose(input);
46 return 0;
47
48 error:
49 if(block) free(block);
50 if(input) fclose(input);
51 return -1;
52 }
53
54 int test_sentinel(int code)
55 {
56 char *temp = malloc(100);
57 check_mem(temp);
58
59 switch(code) {
60 case 1:
61 log_info("It worked.");
62 break;
63 default:
64 sentinel("I shouldn't run.");
65 }
66
67 free(temp);
68 return 0;
69
70 error:
71 if(temp) free(temp);

21.4. WHAT YOU SHOULD SEE 103

72 return -1;
73 }
74
75 int test_check_mem()
76 {
77 char *test = NULL;
78 check_mem(test);
79
80 free(test);
81 return 1;
82
83 error:
84 return -1;
85 }
86
87 int test_check_debug()
88 {
89 int i = 0;
90 check_debug(i != 0, "Oops, I was 0.");
91
92 return 0;
93 error:
94 return -1;
95 }
96
97 int main(int argc, char *argv[])
98 {
99 check(argc == 2, "Need an argument.");
100
101 test_debug();
102 test_log_err();
103 test_log_warn();
104 test_log_info();
105
106 check(test_check("ex20.c") == 0, "failed with ex20.c");
107 check(test_check(argv[1]) == -1, "failed with argv");
108 check(test_sentinel(1) == 0, "test_sentinel failed.");
109 check(test_sentinel(100) == -1, "test_sentinel failed.");
110 check(test_check_mem() == -1, "test_check_mem failed.");
111 check(test_check_debug() == -1, "test_check_debug failed.");
112
113 return 0;
114
115 error:
116 return 1;
117 }

Pay attention to how check is used, and how when it is false it will jump to the error: label to do a cleanup.The way to read those lines is, "check that A is true and if not say M and jump out."

21.4 What You Should See

When you run this, give it some bogus first parameter and you should see this:

104 CHAPTER 21. EXERCISE 20: ZED’S AWESOME DEBUG MACROS

ex20 output

1 $ make ex202 cc -Wall -g -DNDEBUG ex20.c -o ex203 $./ex20 test4 [ERROR] (ex20.c:16: errno: None) I believe everything is broken.5 [ERROR] (ex20.c:17: errno: None) There are 0 problems in space.6 [WARN] (ex20.c:22: errno: None) You can safely ignore this.7 [WARN] (ex20.c:23: errno: None) Maybe consider looking at: /etc/passwd.8 [INFO] (ex20.c:28) Well I did something mundane.9 [INFO] (ex20.c:29) It happened 1.300000 times today.10 [ERROR] (ex20.c:38: errno: No such file or directory) Failed to open test.11 [INFO] (ex20.c:57) It worked.12 [ERROR] (ex20.c:60: errno: None) I shouldn't run.13 [ERROR] (ex20.c:74: errno: None) Out of memory.

See how it reports the exact line number where the check failed? That’s going to save you hours of debugginglater. See also how it prints the error message for you when errno is set? Again, that will save you hours ofdebugging.

21.5 How The CPP Expands Macros

It’s now time for you to get a small introduction to the CPP so that you know how these macros actually work.To do this, I’m going to break down the most complex macro from dbg.h and have you run cpp so you can seewhat it’s actually doing.
Imagine I have a function called dosomething() that return the typical 0 for success and -1 for an error. Everytime I call dosomething I have to check for this error code, so I’d write code like this:

1 int rc = dosomething();2 if(rc != 0) {3 fprintf(stderr, "There was an error: %s\n", strerror());4 goto error;5 }

What I want to use the CPP for is to encapsulate this if-statement I have to use all the time into a morereadable and memorable line of code. I want what you’ve been doing in dbg.h with the checkmacro:
1 int rc = dosomething();2 check(rc == 0, "There was an error.");

This is much clearer and explains exactly what’s going on: check that the function worked, and if not report anerror. To do this, we need some special CPP "tricks" that make the CPP useful as a code generation tool. Take alook at the check and log_errmacros again:
1 #define log_err(M, ...) fprintf(stderr, "[ERROR] (%s:%d: errno: %s) " M "\n", __FILE__,

↪→__LINE__, clean_errno(), ##__VA_ARGS__)2 #define check(A, M, ...) if(!(A)) { log_err(M, ##__VA_ARGS__); errno=0; goto error; }

The first macro, log_err is simpler and simply replace itself with a call to fprintf to stderr. The only trickypart of this macro is the use of ... in the definition log_err(M, ...). What this does is let you pass variablearguments to the macro, so you can pass in the arguments that should go to fprintf. How do they get injectedinto the fprintf call? Look at the end to the ##__VA_ARGS__ and that’s telling the CPP to take the args enteredwhere the ... is, and inject them at that part of the fprintf call. You can then do things like this:

21.6. EXTRA CREDIT 105
log_err("Age: %d, name: %s", age, name);

The arguments age, name are the ... part of the definition, and those get injected into the fprintf output tobecome:
1 fprintf(stderr, "[ERROR] (%s:%d: errno: %s) Age %d: name %d\n",2 __FILE__, __LINE__, clean_errno(), age, name);

See the age, name at the end? That’s how ... and ##__VA_ARGS__ work together, and it will work in macrosthat call other variable argument macros. Look at the checkmacro now and see it calls log_err, but check isalso using the ... and ##__VA_ARGS__ to do the call. That’s how you can pass full printf style format stringsto check, which go to log_err, and then make both work like printf.
Next thing to study is how check crafts the if-statement for the error checking. If we strip out the log_errusage we see this:
if(!(A)) { errno=0; goto error; }

Which means, if A is false, then clear errno and goto the error label. That has checkmacro being replaced withthe if-statement so if we manually expanded out the macro check(rc == 0, "There was an error.")we’d get:
1 if(!(rc == 0) {2 log_err("There was an error.");3 errno=0;4 goto error;5 }

What you should be getting from this trip through these two macros is that the CPP replaces macros with theexpanded version of their definition, but that it will do this recursively, expanding all the macros in macros.The CPP then is just a recursive templating system, as I mentioned before. Its power comes from its ability togenerate whole blocks of parameterized code thus becoming a handy code generation tool.
That leaves one question: Why not just use a function like die? The reason is you want file:line numbers andthe goto operation for an error handling exit. If you did this inside a function, you wouldn’t get a line numberfor where the error actually happened, and the goto would be much more complicated.
Another reason is you still have to write the raw if-statement, which looks like all the other if-statementsin your code, so it’s not as clear that this one is an error check. By wrapping the if-statement in a macro called
check you make it clear that this is just error checking, and not part of the main flow.
Finally, CPP has the ability to conditionally compile portions of code, so you can have code that’s only presentwhen you build a developer or debug version of the program. You can see this already in the dbg.h file wherethe debug macro has a body only if it’s asked for by the compiler. Without this ability, you’d need a wasted
if-statement that checks for "debug mode", and then still wastes CPU doing that check for no value.

21.6 Extra Credit

1. Put #define NDEBUG at the top of the file and check that all the debug messages go away.
2. Undo that line, and add -DNDEBUG to CFLAGS at the top of the Makefile then recompile to see the samething.
3. Modify the logging so that it include the function name as well as the file:line.

106 CHAPTER 21. EXERCISE 20: ZED’S AWESOME DEBUG MACROS

Chapter 22

Exercise 21: Advanced Data Types And

Flow Control

This exercise will be a complete compendium of the available C data types and flow control structures you canuse. It will work as a reference to complete your knowledge, and won’t have any code for you to enter. I’ll haveyou memorize some of the information by creating flash cards so you can get the important concepts solid inyour mind.
For this exercise to be useful, you should spend at least a week hammering the content and filling out all theelement I have missing here. You’ll be writing out what each one means, and then writing a program to confirmwhat you’ve researched.

22.1 Available Data Types

int Stores a regular integer, defaulting to 32 bits in size.
double Holds a large floating point number.
float Holds a smaller floating point number.
char Holds a single 1 byte character.
void Indicates "no type" and used to say a function returns nothing, or a pointer has no type as in void *thing.
enum Enumerated types, work as integers, convert to integers, but give you symbolic names for sets. Somecompilers will warn you when you don’t cover all elements of an enum in switch-statements.

22.1.1 Type Modifiers

unsigned Changes the type so that it does not have negative numbers, giving you a larger upper bound butnothing lower than 0.
signed Gives you negative and positive numbers, but halves your upper bound in exchange for the same lowerbound negative.
long Uses a larger storage for the type so that it can hold bigger numbers, usually doubling the current size.
short Uses smaller storage for the type so it stores less, but takes half the space.107

108 CHAPTER 22. EXERCISE 21: ADVANCED DATA TYPES AND FLOW CONTROL
22.1.2 Type Qualifiers

const Indicates the variable won’t change after being initialized.
volatile Indicates that all bets are off, and the compiler should leave this alone and try not to do any fancyoptimizations to it. You usually only need this if you’re doing really weird stuff to your variables.
register Forces the compiler to keep this variable in a register, and the compiler can just ignore you. These dayscompilers are better at figuring out where to put variables, so only use this if you actually can measure itimproving the speed.

22.1.3 Type Conversion

C uses a sort of "stepped type promotion" mechanism, where it looks at two operands on either side of an ex-pression, and promotes the smaller side to match the larger side before doing the operation. If one side of anexpression is on this list, then the other side is converted to that type before the operation is done, and this goesin this order:
1. long double
2. double
3. float
4. int (but only char and short int);
5. long

If you find yourself trying to figure out how your conversions are working in an expression, then don’t leave itto the compiler. Use explicit casting operations to make it exactly what you want. For example, if you have:
long + char - int * double

Rather than trying to figure out if it will be converted to double correctly, just use casts:
(double)long - (double)char - (double)int * double

Putting the type you want in parenthesis before the variable name is how you force it into the type you reallyneed. The important thing though is always promote up, not down. Don’t cast long into char unless you knowwhat you’re doing.

22.1.4 Type Sizes

The stdint.h defines both a set of typdefs for exact sized integer types, as well as a set of macros for the sizesof all the types. This is easier to work with than the older limits.h since it is consistent. The types defined are:
int8_t 8 bit signed integer.
uint8_t 8 bit unsigned integer.
int16_t 16 bit signed integer.
uint16_t 16 bit unsigned integer.
int32_t 32 bit signed integer.
uint32_t 32 bit unsigned integer.
int64_t 64 bit signed integer.
uint64_t 64 bit unsigned integer.

22.2. AVAILABLE OPERATORS 109
The pattern here is of the form (u)int(BITS)_t where a u is put in front to indicate "unsigned", then BITS is anumber for the number of bits. This pattern is then repeated for macros that return the maximum values ofthese types:
INTN_MAX Maximum positive number of the signed integer of bits N.
INTN_MIN Minimum negative number of signed integer of bits N.
UINTN_MAX Maximum positive number of unsigned integer of bits N. Since it’s unsigned the minimum is 0and can’t have a negative value.
There are also macros in stdint.h for sizes of the size_t type, integers large enough to hold pointers, andother handy size defining macros. Compilers have to at least have these, and then they can allow other largertypes.
Here is a full list should be in stdint.h:
int_leastN_t holds at least N bits.
uint_leastN_t holds at least N bits unsigned.
INT_LEASTN_MAX max value of the matching leastN type.
INT_LEASTN_MIN min value of the matching leastN type.
UINT_LEASTN_MAX unsigned maximum of the matching N type.
int_fastN_t similar to int_leastN_t but asking for the "fastest" with at least that precision.
uint_fastN_t unsigned fastest least integer.
INT_FASTN_MAX max value of the matching fastestN type.
INT_FASTN_MIN min value of the matching fastestN type.
UINT_FASTN_MAX unsigned max value of the matching fastestN type.
intptr_t a signed integer large enough to hold a pointer.
uintptr_t an unsigned integer large enough to hold a pointer.
INTPTR_MAX max value of a intptr_t.
INTPTR_MIN min value of a intptr_t.
UINTPTR_MAX unsigned max value of a uintptr_t.
intmax_t biggest number possible on that system.
uintmax_t biggest unsigned number possible.
INTMAX_MAX largest value for the biggest signed number.
INTMAX_MIN smallest value for the biggest signed number.
UINTMAX_MAX largest value for the biggest unsigned number.
PTRDIFF_MIN minimum value of ptrdiff_t.
PTRDIFF_MAX maximum value of ptrdiff_t.
SIZE_MAX maximum of a size_t.

22.2 Available Operators

This is a comprehensive list of all the operators you have in the C language. In this list, I’m indicating thefollowing:

110 CHAPTER 22. EXERCISE 21: ADVANCED DATA TYPES AND FLOW CONTROL
(binary) The operator has a left and right: X + Y.
(unary) The operator is on its own: -X.
(prefix) The operator comes before the variable: ++X.
(postfix) Usually the same as the (prefix) version, but placing it after gives it a different meaning: X++.
(ternary) There’s only one of these, so it’s actually called the ternary but it means "three operands": X ? Y : Z.

22.2.1 Math Operators

These are your basic math operations, plus I put () in with these since it calls a function and is close to a "math"operation.
() Function call.
* (binary) multiply.
/ divide.
+ (binary) addition.
+ (unary) positive number.
++ (postfix) read, then increment.
++ (prefix) increment, then read.
−− (postfix) read, then decrement.
−− (prefix) decrement, then read.
- (binary) subtract.
- (unary) negative number.

22.2.2 Data Operators

These are used to access data in different ways and forms.
-> struct pointer access.
. struct value access.
[] Array index.
sizeof size of a type or variable.
& (unary) Address of.
* (unary) Value of.

22.2.3 Logic Operators

These handle testing equality and inequality of variables.
!= does not equal.
< less than.
<= less than or equal.
== equal (not assignment).

22.2. AVAILABLE OPERATORS 111
> greater than.
>= greater than or equal.

22.2.4 Bit Operators

These are more advanced and for shifting and modifying the raw bits in integers.
& (binary) Bitwise and.
<< Shift left.
>> Shift right.
ˆ bitwise xor (exclusive or).
| bitwise or.
~ compliment (flips all the bits).

22.2.5 Boolean Operators

Used in truth testing. Study the ternary operator carefully, it is very handy.
! not.
&& and.
|| or.
?: Ternary truth test, read X ? Y : Z as "if X then Y else Z".

22.2.6 Assignment Operators

Compound assignment operators that assign a value, and/or perform an operation at the same time. Most of theabove operations can also be combined into a compound assignment operator.
= assign.
%= modulus assign.
&= bitwise and assign.
*= multiply assign.
+= plus assign.
-= minus assign.
/= divide assign.
<<= shift left, assign.
>>= shift right, assign.
ˆ= bitwise xor, assign.
|= bitwise or, assign.

112 CHAPTER 22. EXERCISE 21: ADVANCED DATA TYPES AND FLOW CONTROL
22.3 Available Control Structures

There’s a few control structures you haven’t encountered yet:
do-while do { ... } while(X); First does the code in the block, then tests the X expression before exiting.
break Put this in a loop, and it breaks out ending it early.
continue Stops the body of a loop and jumps to the test so it can continue.
goto Jumps to a spot in the code where you’ve placed a label:, and you’ve been using this in the dbg.hmacrosto go to the error: label.

22.3.1 Extra Credit

1. Read stdint.h or a description of it and write out all the possible available size identifiers.
2. Go through each item here and write out what it does in code. Research it so you know you got it right bylooking it up online.
3. Get this information solid as well by making flash cards and spending 15 minutes a day memorizing it.
4. Create a program that prints out examples of each type and confirm that your research is right.

Chapter 23

Exercise 22: The Stack, Scope, And

Globals

The concept of "scope" seems to confuse quite a few people when they first start programming. Originally itcame from the use of the system stack (which we lightly covered earlier) and how it was used to store temporaryvariables. In this exercise, we’ll learn about scope by learning about how a stack data structure works, and thenfeeding that concept back in to how modern C does scoping.
The real purpose of this exercise though is to learn where the hell things live in C. When someone doesn’t graspthe concept of scope, it’s almost always a failure in understanding where variables are created, exist, and die.Once you know where things are, the concept of scope becomes easier.
This exercise will require three files:
ex22.h A header file that sets up some external variables and some functions.
ex22.c Not your main like normal, but instead a source file that will become a object file ex22.o which willhave some functions and variables in it defined from ex22.h.
ex22_main.c The actual main that will include the other two and demonstrate what they contain as well asother scope concepts.

23.0.2 ex22.h and ex22.c

Your first step is to create your own header file named ex22.h which defines the functions and "extern" vari-ables you need:
ex22.h

1 #ifndef _ex22_h
2 #define _ex22_h
3
4 // makes THE_SIZE in ex22.c available to other .c files
5 extern int THE_SIZE;
6
7 // gets and sets an internal static variable in ex22.c
8 int get_age();
9 void set_age(int age);
10
11 // updates a static variable that's inside update_ratio
12 double update_ratio(double ratio);

113

114 CHAPTER 23. EXERCISE 22: THE STACK, SCOPE, AND GLOBALS

13
14 void print_size();
15
16 #endif

The important thing to see is the use of extern int THE_SIZE, which I’ll explain after you also create thematching ex22.c:
ex22.c

1 #include <stdio.h>
2 #include "ex22.h"
3 #include "dbg.h"
4
5 int THE_SIZE = 1000;
6
7 static int THE_AGE = 37;
8
9 int get_age()
10 {
11 return THE_AGE;
12 }
13
14 void set_age(int age)
15 {
16 THE_AGE = age;
17 }
18
19
20 double update_ratio(double new_ratio)
21 {
22 static double ratio = 1.0;
23
24 double old_ratio = ratio;
25 ratio = new_ratio;
26
27 return old_ratio;
28 }
29
30 void print_size()
31 {
32 log_info("I think size is: %d", THE_SIZE);
33 }

These two files introduce some new kinds of storage for variables:
extern This keyword is a way to tell the compiler "the variable exists, but it’s in another ’external’ location".Typically this means that one .c file is going to use a variable that’s been defined in another .c file. In thiscase, we’re saying ex22.c has a variable THE_SIZE that will be accessed from ex22_main.c.
static (file) This keyword is kind of the inverse of extern and says that the variable is only used in this .c file,and should not be available to other parts of the program. Keep in mind that static at the file level (aswith THE_AGE here) is different than in other places.
static (function) If you declare a variable in a function static, then that variable acts like a static definedin the file, but it’s only accessible from that function. It’s a way of creating constant state for a function, butin reality it’s rarely used in modern C programming because they are hard to use with threads.

115
In these two files then, you have the following variables and functions that you should understand:
THE_SIZE This is the variable you declared extern that you’ll play with from ex22_main.c.
get_age and set_age These are taking the static variable THE_AGE, but exposing it to other parts of the programthrough functions. You couldn’t access THE_AGE directly, but these functions can.
update_ratio This takes a new ratio value, and returns the old one. It uses a function level static variable

ratio to keep track of what the ratio currently is.
print_size Prints out what ex22.c thinks THE_SIZE is currently.

23.0.3 ex22_main.c

Once you have that file written, you can then make the main function which uses all of these and demonstratessome more scope conventions:
ex22_main.c

1 #include "ex22.h"
2 #include "dbg.h"
3
4 const char *MY_NAME = "Zed A. Shaw";
5
6 void scope_demo(int count)
7 {
8 log_info("count is: %d", count);
9
10 if(count > 10) {
11 int count = 100; // BAD! BUGS!
12
13 log_info("count in this scope is %d", count);
14 }
15
16 log_info("count is at exit: %d", count);
17
18 count = 3000;
19
20 log_info("count after assign: %d", count);
21 }
22
23 int main(int argc, char *argv[])
24 {
25 // test out THE_AGE accessors
26 log_info("My name: %s, age: %d", MY_NAME, get_age());
27
28 set_age(100);
29
30 log_info("My age is now: %d", get_age());
31
32 // test out THE_SIZE extern
33 log_info("THE_SIZE is: %d", THE_SIZE);
34 print_size();
35
36 THE_SIZE = 9;
37
38 log_info("THE SIZE is now: %d", THE_SIZE);

116 CHAPTER 23. EXERCISE 22: THE STACK, SCOPE, AND GLOBALS

39 print_size();
40
41 // test the ratio function static
42 log_info("Ratio at first: %f", update_ratio(2.0));
43 log_info("Ratio again: %f", update_ratio(10.0));
44 log_info("Ratio once more: %f", update_ratio(300.0));
45
46 // test the scope demo
47 int count = 4;
48 scope_demo(count);
49 scope_demo(count * 20);
50
51 log_info("count after calling scope_demo: %d", count);
52
53 return 0;
54 }

I’ll break this file down line-by-line, and as I do you should find each variable I mention and where it lives.
ex22_main.c:4 Making a const which stands for constant and is an alternative to using a define to create aconstant variable.
ex22_main.c:6 A simple function that demonstrates more scope issues in a function.
ex22_main.c:8 Prints out the value of count as it is at the top of the function.
ex22_main.c:10 An if-statement that starts a new scope block, and then has another count variable in it.This version of count is actually a whole new variable. It’s kind of like the if-statement started a new"mini function".
ex22_main.c:11 The count that is local to this block is actually different from the one in the function’s parame-ter list. What what happens as we continue.
ex22_main.c:13 Prints it out so you can see it’s actually 100 here, not what was passed to scope_demo.
ex22_main.c:16 Now for the freaky part. You have count in two places: the parameters to this function, and inthe if-statement. The if-statement created a new block, so the count on line 11 does not impact theparameter with the same name. This line prints it out and you’ll see that it prints the value of the parameter,not 100.
ex22_main.c:18-20 Then I set the parameter count to 3000 and print that out, which will demonstrate that youcan change function parameters and they don’t impact the caller’s version of the variable.
Make sure you trace through this function, but don’t think that you understand scope quite yet. Just start torealize that if you make a variable inside a block (as in if-statements or while-loops), then those variablesare new variables that exist only in that block. This is crucial to understand, and is also a source of many bugs.We’ll address why you shouldn’t do this shortly.
The rest of the ex22_main.c then demonstrates all of these by manipulating and printing them out:
ex22_main.c:26 Prints out the current values of MY_NAME and gets THE_AGE from ex22.c using the accessorfunction get_age.
ex22_main.c:27-30 Uses set_age in ex22.c to change THE_AGE and then print it out.
ex22_main.c:33-39 Then I do the same thing to THE_SIZE from ex22.c, but this time I’m accessing it directly,and also demonstrating that it’s actually changing in that file by printing it here and with print_size.
ex22_main.c:42-44 Show how the static variable ratio inside update_ratio is maintained between functioncalls.
ex22_main.c:46-51 Finally running scope_demo a few times so you can see the scope in action. Big thing tonotice is that the local count variable remains unchanged. Youmust get that passing in a variable like this

23.1. WHAT YOU SHOULD SEE 117
will not let you change it in the function. To do that you need our old friend the pointer. If you were topass a pointer to this count, then the called function has the address of it and can change it.

That explains what’s going on in all of these files, but you should trace through them and make sure you knowwhere everything is as you study it.

23.1 What You Should See

This time, instead of using your Makefile I want you to build these two files manually so you can see how theyare actually put together by the compiler. Here’s what you should do and what you should see for output.
ex22 output

1 $ cc -Wall -g -DNDEBUG -c -o ex22.o ex22.c2 $ cc -Wall -g -DNDEBUG ex22_main.c ex22.o -o ex22_main3 $./ex22_main4 [INFO] (ex22_main.c:26) My name: Zed A. Shaw, age: 375 [INFO] (ex22_main.c:30) My age is now: 1006 [INFO] (ex22_main.c:33) THE_SIZE is: 10007 [INFO] (ex22.c:32) I think size is: 10008 [INFO] (ex22_main.c:38) THE SIZE is now: 99 [INFO] (ex22.c:32) I think size is: 910 [INFO] (ex22_main.c:42) Ratio at first: 1.00000011 [INFO] (ex22_main.c:43) Ratio again: 2.00000012 [INFO] (ex22_main.c:44) Ratio once more: 10.00000013 [INFO] (ex22_main.c:8) count is: 414 [INFO] (ex22_main.c:16) count is at exit: 415 [INFO] (ex22_main.c:20) count after assign: 300016 [INFO] (ex22_main.c:8) count is: 8017 [INFO] (ex22_main.c:13) count in this scope is 10018 [INFO] (ex22_main.c:16) count is at exit: 8019 [INFO] (ex22_main.c:20) count after assign: 300020 [INFO] (ex22_main.c:51) count after calling scope_demo: 4

Make sure you trace how each variable is changing and match it to the line that gets output. I’musing log_infofrom the dbg.h macros so you can get the exact line number where each variable is printed and find it in thefiles for tracing.

23.2 Scope, Stack, And Bugs

If you’ve done this right you should now see many of the different ways you can place variables in your C code.You can use extern or access functions like get_age to create globals. You can make new variables inside anyblocks, and they’ll retain their own values until that block exits, leaving the outer variables alone. You also canpass a value to a function, and change the parameter but not change the caller’s version of it.
The most important thing to realize though is that all of this causes bugs. C’s ability to place things in manyplaces in your machine and then let you access it in those places means you get confused easily about wheresomething lives. If you don’t where it lives then there’s a chance you’ll not manage it properly.
With that in mind, here’s some rules to follow when writing C code so you avoid bugs related to the stack:
1. Do not "shadow" a variable like I’ve done here with count in scope_demo. It leaves you open to subtle andhidden bugs where you think you’re changing a value and you actually aren’t.

118 CHAPTER 23. EXERCISE 22: THE STACK, SCOPE, AND GLOBALS
2. Avoid too many globals, especially if across multiple files. If you have to then use accessor functions likeI’ve done with get_age. This doesn’t apply to constants, since those are read-only. I’m talking aboutvariables like THE_SIZE. If you want people to modify or set this, then make accessor functions.
3. When in doubt, put it on the heap. Don’t rely on the semantics of the stack or specialized locations andinstead just create things with malloc.
4. Don’t use function static variables like I did in update_ratio. They’re rarely useful and end up being ahuge pain when you need to make your code concurrent in threads. They are also hard as hell to findcompared to a well done global variable.
5. Avoid reusing function parameters as it’s confusing whether you’re just reusing it or if you think you’rechanging the caller’s version of it.

As with all things, these rules can be broken when it’s practical. In fact, I guarantee you’ll run into code thatbreaks all of these rules and is perfectly fine. The constraints of different platforms makes it necessary some-times.

23.3 How To Break It

For this exercise, breaking the program involves trying to access or change things you can’t:
1. Try to directly access variables in ex22.c from ex22_main.c that you think you can’t. For example, youcan’t get at ratio inside update_ratio? What if you had a pointer to it?
2. Ditch the extern declaration in ex22.h to see what you get for errors or warnings.
3. Add static or const specifiers to different variables and then try to change them.

23.4 Extra Credit

1. Research the concept of "pass by value" vs. "pass by reference". Write an example of both.
2. Use pointers to gain access to things you shouldn’t have access to.
3. Use valgrind to see what this kind of access looks like when you do it wrong.
4. Write a recursive function that causes a stack overflow. Don’t know what a recursive function is? Trycalling scope_demo at the bottom of scope_demo itself so that it loops.
5. Rewrite the Makefile so that it can build this.

Chapter 24

Exercise 23: Meet Duff’s Device

This exercise is a brain teaser where I introduce you to one of the most famous hacks in C called "Duff ’s Device",named after Tom Duff the "inventor". This little slice of awesome (evil?) has nearly everything you’ve beenlearning wrapped in one tiny little package. Figuring out how it works is also a good fun puzzle.
Note 6 This Is Only An Exercise

Part of the fun of C is that you can come up with crazy hacks like this, but this is also what makes Cannoying to use. It’s good to learn about these tricks because it gives you a deeper understanding ofthe language and your computer. But, you should never use this. Always strive for easy to read code.
Duff ’s device was "discovered" (created?) by Tom Duff and is a trick with the C compiler that actually shouldn’twork. I won’t tell you what it does yet since this is meant to be a puzzle for you to ponder and try to solve. Youare to get this code running and then try to figure out what it does, and why it does it this way.

ex23.c
1 #include <stdio.h>
2 #include <string.h>
3 #include "dbg.h"
4
5
6 int normal_copy(char *from, char *to, int count)
7 {
8 int i = 0;
9
10 for(i = 0; i < count; i++) {
11 to[i] = from[i];
12 }
13
14 return i;
15 }
16
17 int duffs_device(char *from, char *to, int count)
18 {
19 {
20 int n = (count + 7) / 8;
21
22 switch(count % 8) {
23 case 0: do { *to++ = *from++;
24 case 7: *to++ = *from++;
25 case 6: *to++ = *from++;

119

120 CHAPTER 24. EXERCISE 23: MEET DUFF’S DEVICE

26 case 5: *to++ = *from++;
27 case 4: *to++ = *from++;
28 case 3: *to++ = *from++;
29 case 2: *to++ = *from++;
30 case 1: *to++ = *from++;
31 } while(--n > 0);
32 }
33 }
34
35 return count;
36 }
37
38 int zeds_device(char *from, char *to, int count)
39 {
40 {
41 int n = (count + 7) / 8;
42
43 switch(count % 8) {
44 case 0:
45 again: *to++ = *from++;
46
47 case 7: *to++ = *from++;
48 case 6: *to++ = *from++;
49 case 5: *to++ = *from++;
50 case 4: *to++ = *from++;
51 case 3: *to++ = *from++;
52 case 2: *to++ = *from++;
53 case 1: *to++ = *from++;
54 if(--n > 0) goto again;
55 }
56 }
57
58 return count;
59 }
60
61 int valid_copy(char *data, int count, char expects)
62 {
63 int i = 0;
64 for(i = 0; i < count; i++) {
65 if(data[i] != expects) {
66 log_err("[%d] %c != %c", i, data[i], expects);
67 return 0;
68 }
69 }
70
71 return 1;
72 }
73
74
75 int main(int argc, char *argv[])
76 {
77 char from[1000] = {'a'};
78 char to[1000] = {'c'};
79 int rc = 0;
80
81 // setup the from to have some stuff

24.1. WHAT YOU SHOULD SEE 121

82 memset(from, 'x', 1000);
83 // set it to a failure mode
84 memset(to, 'y', 1000);
85 check(valid_copy(to, 1000, 'y'), "Not initialized right.");
86
87 // use normal copy to
88 rc = normal_copy(from, to, 1000);
89 check(rc == 1000, "Normal copy failed: %d", rc);
90 check(valid_copy(to, 1000, 'x'), "Normal copy failed.");
91
92 // reset
93 memset(to, 'y', 1000);
94
95 // duffs version
96 rc = duffs_device(from, to, 1000);
97 check(rc == 1000, "Duff's device failed: %d", rc);
98 check(valid_copy(to, 1000, 'x'), "Duff's device failed copy.");
99
100 // reset
101 memset(to, 'y', 1000);
102
103 // my version
104 rc = zeds_device(from, to, 1000);
105 check(rc == 1000, "Zed's device failed: %d", rc);
106 check(valid_copy(to, 1000, 'x'), "Zed's device failed copy.");
107
108 return 0;
109 error:
110 return 1;
111 }

In this code I have three versions of a copy function:
normal_copy Which is just a plain for-loop that copies characters from one array to another.
duffs_device This is the brain teaser called "Duff ’s Device", named after Tom Duff, the person to blame for thisdelicious evil.
zeds_device A version of "Duff ’s Device" that just uses a goto so you can get a clue about what’s happening withthe weird do-while placement in duffs_device.
Study these three functions before continuing. Try to explain what’s going on to yourself before continuing.

24.1 What You Should See

There’s no output from this program, it just runs and exits. You should run it under valgrind and make surethere are no errors.

24.2 Solving The Puzzle

The first thing to understand is that C is rather loose regarding some of its syntax. This is why you can put half ofa do-while in one part of a switch-statement, then the other half somewhere else and it will still work. If youlook at my version with the goto again it’s actually more clear what’s going on, but make sure you understandhow that part works.

122 CHAPTER 24. EXERCISE 23: MEET DUFF’S DEVICE
The second thing is how the default fallthrough semantics of switch-statements means you can jump to aparticular case, and then it will just keep running until the end of the switch.
The final clue is the count % 8 and the calculation of n at the top.
Now, to solve how these functions work, do the following:
1. Print this code out so you can write on some paper.
2. On a piece of paper, write each of the variables in a table as they are when they get initialized right beforethe switch-statement.
3. Follow the logic to the switch, then do the jump to the right case.
4. Update the variables, including the to, from, and the arrays they point at.
5. When you get to the while part or my goto alternative, check your variables and then follow the logiceither back to the top of the do-while or to where the again label is located.
6. Follow through this manual tracing, updating the variables, until you are sure you see how this flows.

24.2.1 Why Bother?

When you’ve figured out how it actually works, the final question is: Why would you ever want to do this? Thepurpose of this trick is to manually do "loop unrolling". Large long loops can be slow, so one way to speed themup is to find some fixed chunk of the loop, and then just duplicate the code in the loop out that many timessequentially. For example, if you know a loop runs a minimum of 20 times, then you can put the contents of theloop 20 times in the source code.
Duff ’s device is basically doing this automatically by chunking up the loop into 8 iteration chunks. It’s cleverand actually works, but these days a good compiler will do this for you. You shouldn’t need this except in therare case where you have proven it would improve your speed.

24.3 Extra Credit

1. Never use this again.
2. Go look at the Wikipedia entry for "Duff ’s Device" and see if you can spot the error. Compare it to theversion I have here and read the article carefully to try to understand why the Wikipedia code won’t workfor you but worked for Tom Duff.
3. Create a set of macros that lets you create any length device like this. For example, what if you wanted tohave 32 case statements and didn’t want to write out all of them? Can you do a macro that lays down 8 ata time?
4. Change the main to conduct some speed tests to see which one is really the fastest.
5. Read about memcpy, memmove, memset, and also compare their speed.
6. Never use this again!

Chapter 25

Exercise 24: Input, Output, Files

You’ve been using printf to print things, and that’s great and all, but you need more. In this exercise programyou’re using the functions fscanf and fgets to build information about a person in a structure. After thissimple introduction to reading input, you’ll get a full list of the functions that C has for I/O. Some of these you’vealready seen and used, so this will be another memorization exercise.
ex24.c

1 #include <stdio.h>
2 #include "dbg.h"
3
4 #define MAX_DATA 100
5
6 typedef enum EyeColor {
7 BLUE_EYES, GREEN_EYES, BROWN_EYES,
8 BLACK_EYES, OTHER_EYES
9 } EyeColor;
10
11 const char *EYE_COLOR_NAMES[] = {
12 "Blue", "Green", "Brown", "Black", "Other"
13 };
14
15 typedef struct Person {
16 int age;
17 char first_name[MAX_DATA];
18 char last_name[MAX_DATA];
19 EyeColor eyes;
20 float income;
21 } Person;
22
23
24 int main(int argc, char *argv[])
25 {
26 Person you = {.age = 0};
27 int i = 0;
28 char *in = NULL;
29
30 printf("What's your First Name? ");
31 in = fgets(you.first_name, MAX_DATA-1, stdin);
32 check(in != NULL, "Failed to read first name.");
33

123

124 CHAPTER 25. EXERCISE 24: INPUT, OUTPUT, FILES

34 printf("What's your Last Name? ");
35 in = fgets(you.last_name, MAX_DATA-1, stdin);
36 check(in != NULL, "Failed to read last name.");
37
38 printf("How old are you? ");
39 int rc = fscanf(stdin, "%d", &you.age);
40 check(rc > 0, "You have to enter a number.");
41
42 printf("What color are your eyes:\n");
43 for(i = 0; i <= OTHER_EYES; i++) {
44 printf("%d) %s\n", i+1, EYE_COLOR_NAMES[i]);
45 }
46 printf("> ");
47
48 int eyes = -1;
49 rc = fscanf(stdin, "%d", &eyes);
50 check(rc > 0, "You have to enter a number.");
51
52 you.eyes = eyes - 1;
53 check(you.eyes <= OTHER_EYES && you.eyes >= 0, "Do it right, that's not an option.");
54
55 printf("How much do you make an hour? ");
56 rc = fscanf(stdin, "%f", &you.income);
57 check(rc > 0, "Enter a floating point number.");
58
59 printf("----- RESULTS -----\n");
60
61 printf("First Name: %s", you.first_name);
62 printf("Last Name: %s", you.last_name);
63 printf("Age: %d\n", you.age);
64 printf("Eyes: %s\n", EYE_COLOR_NAMES[you.eyes]);
65 printf("Income: %f\n", you.income);
66
67 return 0;
68 error:
69
70 return -1;
71 }

This program is deceptively simple, and introduces a function called fscanfwhich is the "file scanf". The scanffamily of functions are the inverse of the printf versions. Where printf printed out data based on a format,
scanf reads (or scans) input based on a format.
There’s nothing original in the beginning of the file, so here’s what the main is doing:
ex24.c:24-28 Set up some variables we’ll need.
ex24.c:30-32 Get your first name using the fgets function, which reads a string from the input (in this case

stdin) but makes sure it doesn’t overflow the given buffer.
ex24.c:34-36 Same thing for you.last_name, again using fgets.
ex24.c:38-39 Uses fscanf to read an integer from stdin and put it into you.age. You can see that the sameformat string is used as printf to print an integer. You should also see that you have to give the addressof you.age so that fscanf has a pointer to it and can modify it. This is a good example of using a pointerto a piece of data as an "out parameter".
ex24.c:41-45 Print out all the options available for eye color, with a matching number that works with the

EyeColor enum above.

25.1. WHAT YOU SHOULD SEE 125
ex24.c:47-50 Using fscanf again, get a number for the you.eyes, but make sure the input is valid. This isimportant because someone can enter a value outside the EYE_COLOR_NAMES array and cause a segfault.
ex24.c:52-53 Get how much you make as a float for the you.income.
ex24.c:55-61 Print everything out so you can see if you have it right. Notice that EYE_COLOR_NAMES is used toprint out what the EyeColor enum is actually called.

25.1 What You Should See

When you run this program you should see your inputs being properly converted. Make sure you try to give itbogus input too so you can see how it protects against the input.
ex24 output

1 $ make ex242 cc -Wall -g -DNDEBUG ex24.c -o ex243 $./ex244 What's your First Name? Zed5 What's your Last Name? Shaw6 How old are you? 377 What color are your eyes:8 1) Blue9 2) Green10 3) Brown11 4) Black12 5) Other13 > 114 How much do you make an hour? 1.234515 ----- RESULTS -----16 First Name: Zed17 Last Name: Shaw18 Age: 3719 Eyes: Blue20 Income: 1.234500

25.2 How To Break It

This is all fine and good, but the real important part of this exercise is how scanf actually sucks. It’s fine forsimple conversion of numbers, but fails for strings because it’s difficult to tell scanf how big a buffer is beforeyou read. There’s also a problem with a function like gets (not fgets, the non-f version) which we avoided.That function has no idea how big the input buffer is at all and will just trash your program.
To demonstrate the problemswith fscanf and strings, change the lines that use fgets so they are fscanf(stdin, "%50s", you.first_name)and then try to use it again. Notice it seems to read too much and then eat your enter key? This doesn’t do whatyou think it does, and really rather than deal with weird scanf issues, just use fgets.
Next, change the fgets to use gets, then bust out your valgrind and do this: valgrind ./ex24 < /dev/urandomto feed random garbage into your program. This is called "fuzzing" your program, and it is a good way to findinput bugs. In this case, you’re feeding garbage from the /dev/urandom file, and then watching it crash. Onsome platforms you may have to do this a few times, or even adjust the MAX_DATA define so it’s small enough.

126 CHAPTER 25. EXERCISE 24: INPUT, OUTPUT, FILES
The gets function is so bad that some platforms actually warn you when the program runs that you’re using
gets. You should never use this function, ever.
Finally, take the input for you.eyes and remove the check that the number given is within the right range. Thenfeed it bad numbers like -1 or 1000. Do this under Valgrind too so you can see what happens.

25.3 The I/O Functions

This is a short list of various I/O functions that you should look up and create index cards that have the functionname, what it does, and all the variants similar to it.
1. fscanf
2. fgets
3. fopen
4. freopen
5. fdopen
6. fclose
7. fcloseall
8. fgetpos
9. fseek
10. ftell
11. rewind
12. fprintf
13. fwrite
14. fread
Go through these and memorize the different variants and what they do. For example, for the card on fscanfyou’ll have scanf, sscanf, vscanf, etc. and then what each of those do on the back.
Finally, to get the information you need for these cards, use man to read the help for it. For example, the pagefor fscanf comes from man fscanf.

25.4 Extra Credit

1. Rewrite this to not use fscanf at all. You’ll need to use functions like atoi to convert the input strings tonumbers.
2. Change this to use plain scanf instead of fscanf to see what the difference is.
3. Fix it so that the input names get stripped of the trailing newline characters and any whitespace.
4. Use scanf to write a function that reads a character at a time and files in the names but doesn’t go past theend. Make this function generic so it can take a size for the string, and make sure you end the string with

'\0' no matter what.

Chapter 26

Exercise 25: Variable Argument Functions

In C you can create your own versions of functions like printf and scanf by creating a "variable argumentfunction". These functions use the header stdarg.h and with them you can create nicer interfaces to yourlibrary. They are handy for certain types of "builder" functions, formatting functions, and anything that takesvariable arguments.
Understanding "vararg functions" is not essential to creating C programs. I think I’ve used it maybe a 20 timesin my code in the years I’ve been programming. However, knowing how a vararg function works will help youdebug the ones you use and gives you more understanding of the computer.

ex25.c
1 /** WARNING: This code is fresh and potentially isn't correct yet. */
2
3 #include <stdlib.h>
4 #include <stdio.h>
5 #include <stdarg.h>
6 #include "dbg.h"
7
8 #define MAX_DATA 100
9
10 int read_string(char **out_string, int max_buffer)
11 {
12 *out_string = calloc(1, max_buffer + 1);
13 check_mem(*out_string);
14
15 char *result = fgets(*out_string, max_buffer, stdin);
16 check(result != NULL, "Input error.");
17
18 return 0;
19
20 error:
21 if(*out_string) free(*out_string);
22 *out_string = NULL;
23 return -1;
24 }
25
26 int read_int(int *out_int)
27 {
28 char *input = NULL;
29 int rc = read_string(&input, MAX_DATA);

127

128 CHAPTER 26. EXERCISE 25: VARIABLE ARGUMENT FUNCTIONS

30 check(rc == 0, "Failed to read number.");
31
32 *out_int = atoi(input);
33
34 free(input);
35 return 0;
36
37 error:
38 if(input) free(input);
39 return -1;
40 }
41
42 int read_scan(const char *fmt, ...)
43 {
44 int i = 0;
45 int rc = 0;
46 int *out_int = NULL;
47 char *out_char = NULL;
48 char **out_string = NULL;
49 int max_buffer = 0;
50
51 va_list argp;
52 va_start(argp, fmt);
53
54 for(i = 0; fmt[i] != '\0'; i++) {
55 if(fmt[i] == '%') {
56 i++;
57 switch(fmt[i]) {
58 case '\0':
59 sentinel("Invalid format, you ended with %%.");
60 break;
61
62 case 'd':
63 out_int = va_arg(argp, int *);
64 rc = read_int(out_int);
65 check(rc == 0, "Failed to read int.");
66 break;
67
68 case 'c':
69 out_char = va_arg(argp, char *);
70 *out_char = fgetc(stdin);
71 break;
72
73 case 's':
74 max_buffer = va_arg(argp, int);
75 out_string = va_arg(argp, char **);
76 rc = read_string(out_string, max_buffer);
77 check(rc == 0, "Failed to read string.");
78 break;
79
80 default:
81 sentinel("Invalid format.");
82 }
83 } else {
84 fgetc(stdin);
85 }

129

86
87 check(!feof(stdin) && !ferror(stdin), "Input error.");
88 }
89
90 va_end(argp);
91 return 0;
92
93 error:
94 va_end(argp);
95 return -1;
96 }
97
98
99
100 int main(int argc, char *argv[])
101 {
102 char *first_name = NULL;
103 char initial = ' ';
104 char *last_name = NULL;
105 int age = 0;
106
107 printf("What's your first name? ");
108 int rc = read_scan("%s", MAX_DATA, &first_name);
109 check(rc == 0, "Failed first name.");
110
111 printf("What's your initial? ");
112 rc = read_scan("%c\n", &initial);
113 check(rc == 0, "Failed initial.");
114
115 printf("What's your last name? ");
116 rc = read_scan("%s", MAX_DATA, &last_name);
117 check(rc == 0, "Failed last name.");
118
119 printf("How old are you? ");
120 rc = read_scan("%d", &age);
121
122 printf("---- RESULTS ----\n");
123 printf("First Name: %s", first_name);
124 printf("Initial: '%c'\n", initial);
125 printf("Last Name: %s", last_name);
126 printf("Age: %d\n", age);
127
128 free(first_name);
129 free(last_name);
130 return 0;
131 error:
132 return -1;
133 }

This program is similar to the previous exercise, except I have writtenmy own scanf style function that handlesstrings the way I want. The main function should be clear to you, as well as the two functions read_string and
read_int since they do nothing new.
The varargs function is called read_scan and it does the same thing that scanf is doing using the va_list datastructure and it’s supporting macros and functions. Here’s how it works:
1. I set as the last parameter of the function the keyword ... which indicates to C that this function will takeany number of arguments after the fmt argument. I could put many other arguments before this, but I

130 CHAPTER 26. EXERCISE 25: VARIABLE ARGUMENT FUNCTIONS
can’t put anymore after this.

2. After setting up some variables, I create a va_list variable and initialize it with va_start. This configuresthe gear in stdarg.h that handles variable arguments.
3. I then use a for-loop to loop through the format string fmt and process the same kind of formats that

scanf has, but much simpler. I just have integers, characters, and strings.
4. When I hit a format, I use the switch-statement to figure out what to do.
5. Now, to get a variable from the va_list argp I use the macro va_arg(argp, TYPE) where TYPE is theexact type of what I will assign this function parameter to. The downside to this design is you’re flyingblind, so if you don’t have enough parameters then oh well, you’ll most likely crash.
6. The interesting difference from scanf is I’m assuming that people want read_scan to create the strings itreads when it hits a ’s’ format sequence. When you give this sequence, the function takes two parametersoff the va_list argp stack: the max function size to read, and the output character string pointer. Usingthat information it just runs read_string to do the real work.
7. This makes read_scanmore consistent than scanf since you always give an address-of \& on variables tohave them set appropriately.
8. Finally, if it encounters a character that’s not in the format, it just reads one char to skip it. It doesn’t carewhat that char is, just that it should skip it.

26.1 What You Should See

When you run this one it’s similar to the last one:
ex25.out

1 $ make ex252 cc -Wall -g -DNDEBUG ex25.c -o ex253 $./ex254 What's your first name? Zed5 What's your initial? A6 What's your last name? Shaw7 How old are you? 378 ---- RESULTS ----9 First Name: Zed10 Initial: 'A'11 Last Name: Shaw12 Age: 37

26.2 How To Break It

This program should be more robust against buffer overflows, but it doesn’t handle the formatted input as wellas scanf. To try breaking this, change the code that you forget to pass in the initial size for ’%s’ formats. Try alsogiving it more data than MAX_DATA, and then see how not using calloc in read_string changes how it works.Finally, there’s a problem that fgets eats the newlines, so try to fix that using fgetc but leave out the ’0’ that ends the string.

26.3. EXTRA CREDIT 131
26.3 Extra Credit

1. Make double and triple sure that you know what each of the out_ variables are doing. Most important is
out_string and how it’s a pointer to a pointer, so getting when you’re setting the pointer vs. the contentsis important. Break down each of the

2. Write a similar function to printf that uses the varargs system and rewrite main to use it.
3. As usual, read the man page on all of this so you know what it does on your platform. Some platforms willuse macros and others use functions, and some have these do nothing. It all depends on the compiler andthe platform you use.

132 CHAPTER 26. EXERCISE 25: VARIABLE ARGUMENT FUNCTIONS

Chapter 27

Exercise 26: Write A First Real Program

You are at the half-way mark in the book, so you need to take a mid-term. In this mid-term you’re going torecreate a piece of software I wrote specifically for this book called devpkg. You’ll then extend it in a few keyways and improve the code, most importantly by writing some unit tests for it.
Note 7 WARNING: Beta Draft Content

I wrote this exercise before writing some of the exercises you might need to complete this. If you areattempting this one now, please keep in mind that the software may have bugs, that you might haveproblems because of my mistakes, and that you might not know everything you need to finish it. Ifso, tell me at help@learncodethehardway.org and then wait until I finish the other exercises.

27.1 What Is devpkg?

Devpkg is a simple C program that installs other software. I made it specifically for this book as a way to teachyou how a real software project is structured, and also how to reuse other people’s libraries. It uses a portabilitylibrary called The Apache Portable Runtime (APR) that has many handy C functions which work on tons ofplatforms, including Windows. Other than that, it just grabs code from the internet (or local files) and does theusual ./configure ; make ; make install every programmer does.
Your goal in this exercise is to build devpkg from source, finish each Challenge I give, and use the source tounderstand what devpkg does and why.

27.1.1 What WeWant To Make

We want a tool that has three commands:
devpkg -S Sets up a new install on a computer.
devpkg -I Installs a piece of software from a URL.
devpkg -L Lists all the software that’s been installed.
devpkg -F Fetches some source code for manual building.
devpkg -B Builds fetches source code and installs it, even if already installed.

We want devpkg to be able to take almost any URL, figure out what kind of project it is, download it, install it,and register that it downloaded that software. We’d also like it to process a simple dependency list so it caninstall all the software that a project might need as well.133

http://apr.apache.org/

134 CHAPTER 27. EXERCISE 26: WRITE A FIRST REAL PROGRAM
27.1.2 The Design

To accomplish this goal devpkg will have a very simple design:
Use external commands You’ll do most of the work through external commands like curl, git, and tar. Thisreduces the amount of code devpkg needs to get things done.
Simple File Database You could easily make it more complex, but to start you’ll just make a single simple filedatabase at /usr/local/.devpkg/db to keep track of what’s installed.
/usr/local Always Again you couldmake thismore advanced, but for starters just assume it’s always /usr/localwhich is a standard install path for most software on Unix.
configure, make, make install It’s assumed thatmost software can install with just a configure; make; make

install and maybe configure is optional. If the software can’t at a minimum do that, then there’s someoptions to modify the commands, but otherwise devpkg won’t bother.
The User Can Be root We’ll assume the user can become root using sudo, but that they don’t want to becomeroot until the end.
This will keep our program small at first and work well enough to get it going, at which point you’ll be able tomodify it further for this exercise.

27.1.3 The Apache Portable Runtime

Onemore thing you’ll do is leverage the The Apache Portable Runtime (APR) libraries to get a good set of portableroutines for doing this kind of work. The APR isn’t necessary, and you could probably write this programwithoutthem, but it’d take more code than necessary. I’m also forcing you to use APR now so you get used to linkingand using other libraries. Finally, the APR also works onWindows so your skills with it are transferable to manyother platforms.
You should go get both the apr-1.4.5 and the apr-util-1.3 libraries, as well as browse through the docu-mentation available at the main APR site at apr.apache.org.
Here’s a shell script that will install all the stuff you need. You should write this into a file by hand, and then runit until it can install APR without any errors.

APR Install Script
1 set -e
2
3 # go somewhere safe
4 cd /tmp
5
6 # get the source to base APR 1.4.6
7 curl -L -O http://archive.apache.org/dist/apr/apr-1.4.6.tar.gz
8
9 # extract it and go into the source
10 tar -xzvf apr-1.4.6.tar.gz
11 cd apr-1.4.6
12
13 # configure, make, make install
14 ./configure
15 make
16 sudo make install
17
18 # reset and cleanup
19 cd /tmp

http://apr.apache.org/
http://apr.apache.org/

27.2. PROJECT LAYOUT 135

20 rm -rf apr-1.4.6 apr-1.4.6.tar.gz
21
22 # do the same with apr-util
23 curl -L -O http://archive.apache.org/dist/apr/apr-util-1.4.1.tar.gz
24
25 # extract
26 tar -xzvf apr-util-1.4.1.tar.gz
27 cd apr-util-1.4.1
28
29 # configure, make, make install
30 ./configure --with-apr=/usr/local/apr
31 # you need that extra parameter to configure because
32 # apr-util can't really find it because...who knows.
33
34 make
35 sudo make install
36
37 #cleanup
38 cd /tmp
39 rm -rf apr-util-1.4.1* apr-1.4.6*

I’m having you write this script out because this is basically what we want devpkg to do, but with extra optionsand checks. In fact, you could just do it all in shell with less code, but then that wouldn’t be a very good programfor a C book would it?
Simply run this script and fix it until it works, then you’ll have the libraries you need to complete the rest of thisproject.

27.2 Project Layout

You need to setup some simple project files to get started. Here’s how I usually craft a new project:
Project Skeleton Directory

1 mkdir devpkg
2 cd devpkg
3 touch README Makefile

27.2.1 Other Dependencies

You should have already installed APR and APR-util, so now you need a few more files as basic dependencies:
1. dbg.h from Exercise 20.
2. bstrlib.h and bstrlib.c from http://bstring.sourceforge.net/. Download the .zip file, extract it, and copyjust those two files out.
3. Type make bstrlib.o and if it doesn’t work, read the "Fixing bstring" instructions below.

When that’s all done, you should have a Makefile, README, dbg.h, bstrlib.h, and bstrlib.c ready to go.

http://bstring.sourceforge.net/

136 CHAPTER 27. EXERCISE 26: WRITE A FIRST REAL PROGRAM
Note 8 Fixing bstring

In some platforms the bstring.c file will have an error like:
1 bstrlib.c:2762: error: expected declaration specifiers or '...' before numeric

↪→constant

This is from a bad define the authors added which doesn’t work always. You just need to change theline 2759 that reads #ifdef __GNUC__ and make it:
#if defined(__GNUC__) && !defined(__APPLE__)

Then it should work on Apple Mac OSX.

27.3 The Makefile

A good place to start is the Makefile since this lays out how things are built and what source files you’ll becreating.
Makefile

1 PREFIX?=/usr/local2 CFLAGS=-g -Wall -I${PREFIX}/apr/include/apr-1 -I${PREFIX}/apr/include/apr-util-13 LDFLAGS=-L${PREFIX}/apr/lib -lapr-1 -pthread -laprutil-145 all: devpkg67 devpkg: bstrlib.o db.o shell.o commands.o89 install: all10 install -d $(DESTDIR)/$(PREFIX)/bin/11 install devpkg $(DESTDIR)/$(PREFIX)/bin/1213 clean:14 rm -f *.o15 rm -f devpkg16 rm -rf *.dSYM

There’s nothing in this that you haven’t seen before, except maybe the strange ?= syntax, which says "set PREFIXequal to this unless PREFIX is already set".
Note 9 Ubuntu Annoyances

If you are on more recent versions of Ubuntu and you get errors about apr_off_t or off64_t thenadd -D_LARGEFILE64_SOURCE=1 to CFLAGS.
Another thing is you need to add /usr/local/apr/lib to a file in /etc/ld.conf.so.d/ then run

ldconfig so that it picks up the libraries correctly.

27.4 The Source Files

From the make file, we see that there’s four dependencies for devpkg which are:
bstrlib.o Comes from bstrlib.c and header file bstlib.h which you already have.

27.4. THE SOURCE FILES 137
db.o From db.c and header file db.h, and it will contain code for our little "database" routines.
shell.o From shell.c and header shell.h, with a couple functions that make running other commands like

curl easier.
commands.o From command.c and header command.h, and contains all the commands that devpkg needs tobe useful.
devpkg It’s not explicitly mentioned, but instead is the target (on the left) in this part of the Makefile. It comesfrom devpkg.c which contains the main function for the whole program.
Your job is to now create each of these files and type in their code and get them correct.
Note 10 Don’t Be Fooled By The Magic Show

You may read this description and think, "Man! How is it that Zed is so smart he just sat down andtyped these files out like this!? I could never do that." I didn’t magically craft devpkg in this formwithmy awesome code powers. Instead, what I did is this:
1. I wrote a quick little README to get an idea of how I wanted it to work.
2. I created a simple bash script (like the one you did) to figure out all the pieces that you need.
3. I made one .c file and hacked on it for a few days working through the idea and figuring it out.
4. I got it mostly working and debugged, then I started breaking up the one big file into these fourfiles.
5. After getting these files laid down, I renamed and refined the functions and data structures sothey’d be more logical and "pretty".
6. Finally, after I had it working the exact same but with the new structure, I added a few featureslike the -F and -B options.
You’re reading this in the order I want to teach it to you, but don’t think this is how I always buildsoftware. Sometimes I already know the subject and I use more planning. Sometimes I just hack upan idea and see how well it’d work. Sometimes I write one, then throw it away and plan out a betterone. It all depends on what my experience tells me is best, or where my inspiration takes me.
If you run into an "expert" who tries to tell you there’s only one way to solve a programming prob-lem, then they’re lying to you. Either they actually use multiple tactics, or they’re not very good.

27.4.1 The DB Functions

There must be a way to record URLs that have been installed, list these URLs, and check if something has alreadybeen installed so we can skip it. I’ll use a simple flat file database and the bstrlib.h library to do it.
First, create the db.h header file so you know what you’ll be implementing.

db.h
1 #ifndef _db_h
2 #define _db_h
3
4 #define DB_FILE "/usr/local/.devpkg/db"
5 #define DB_DIR "/usr/local/.devpkg"
6
7
8 int DB_init();
9 int DB_list();
10 int DB_update(const char *url);
11 int DB_find(const char *url);

138 CHAPTER 27. EXERCISE 26: WRITE A FIRST REAL PROGRAM

12
13 #endif

Then implement those functions in db.c, as you build this, use make like you’ve been to get it to compile cleanly.
db.c

1 #include <unistd.h>
2 #include <apr_errno.h>
3 #include <apr_file_io.h>
4
5 #include "db.h"
6 #include "bstrlib.h"
7 #include "dbg.h"
8
9 static FILE *DB_open(const char *path, const char *mode)
10 {
11 return fopen(path, mode);
12 }
13
14
15 static void DB_close(FILE *db)
16 {
17 fclose(db);
18 }
19
20
21 static bstring DB_load()
22 {
23 FILE *db = NULL;
24 bstring data = NULL;
25
26 db = DB_open(DB_FILE, "r");
27 check(db, "Failed to open database: %s", DB_FILE);
28
29 data = bread((bNread)fread, db);
30 check(data, "Failed to read from db file: %s", DB_FILE);
31
32 DB_close(db);
33 return data;
34
35 error:
36 if(db) DB_close(db);
37 if(data) bdestroy(data);
38 return NULL;
39 }
40
41
42 int DB_update(const char *url)
43 {
44 if(DB_find(url)) {
45 log_info("Already recorded as installed: %s", url);
46 }
47
48 FILE *db = DB_open(DB_FILE, "a+");
49 check(db, "Failed to open DB file: %s", DB_FILE);

27.4. THE SOURCE FILES 139

50
51 bstring line = bfromcstr(url);
52 bconchar(line, '\n');
53 int rc = fwrite(line->data, blength(line), 1, db);
54 check(rc == 1, "Failed to append to the db.");
55
56 return 0;
57 error:
58 if(db) DB_close(db);
59 return -1;
60 }
61
62
63 int DB_find(const char *url)
64 {
65 bstring data = NULL;
66 bstring line = bfromcstr(url);
67 int res = -1;
68
69 data = DB_load(DB_FILE);
70 check(data, "Failed to load: %s", DB_FILE);
71
72 if(binstr(data, 0, line) == BSTR_ERR) {
73 res = 0;
74 } else {
75 res = 1;
76 }
77
78 error: // fallthrough
79 if(data) bdestroy(data);
80 if(line) bdestroy(line);
81
82 return res;
83 }
84
85
86 int DB_init()
87 {
88 apr_pool_t *p = NULL;
89 apr_pool_initialize();
90 apr_pool_create(&p, NULL);
91
92 if(access(DB_DIR, W_OK | X_OK) == -1) {
93 apr_status_t rc = apr_dir_make_recursive(DB_DIR,
94 APR_UREAD | APR_UWRITE | APR_UEXECUTE |
95 APR_GREAD | APR_GWRITE | APR_GEXECUTE, p);
96 check(rc == APR_SUCCESS, "Failed to make database dir: %s", DB_DIR);
97 }
98
99 if(access(DB_FILE, W_OK) == -1) {
100 FILE *db = DB_open(DB_FILE, "w");
101 check(db, "Cannot open database: %s", DB_FILE);
102 DB_close(db);
103 }
104
105 apr_pool_destroy(p);
106 return 0;

140 CHAPTER 27. EXERCISE 26: WRITE A FIRST REAL PROGRAM

107
108 error:
109 apr_pool_destroy(p);
110 return -1;
111 }
112
113
114 int DB_list()
115 {
116 bstring data = DB_load();
117 check(data, "Failed to read load: %s", DB_FILE);
118
119 printf("%s", bdata(data));
120 bdestroy(data);
121 return 0;
122
123 error:
124 return -1;
125 }

Challenge 1: Code Review

Before continuing, read every line of these files carefully and confirm that you have them entered in exactly.Read them line-by-line backwards to practice that. Also trace each function call and make sure you are using
check to validate the return codes. Finally, look up every function that you don’t recognize either on the APRweb site documentation, or in the bstrlib.h and bstrlib.c source.

27.4.2 The Shell Functions

A key design decision for devpkg is to domost of the work using external tools like curl, tar, and git. We couldfind libraries to do all of this internally, but it’s pointless if we just need the base features of these programs.There is no shame in running another command in Unix.
To do this I’m going to use the apr_thread_proc.h functions to run programs, but I also want to make a simplekind of "template" system. I’ll use a struct Shell that holds all the information needed to run a program, buthas "holes" in the arguments list where I can replace them with values.
Look at the shell.h file to see the structure and the commands I’ll use. You can see I’musing extern to indicatethat other .c files can access variables I’m defining in shell.c.

shell.h
1 #ifndef _shell_h
2 #define _shell_h
3
4 #define MAX_COMMAND_ARGS 100
5
6 #include <apr_thread_proc.h>
7
8 typedef struct Shell {
9 const char *dir;
10 const char *exe;
11

27.4. THE SOURCE FILES 141

12 apr_procattr_t *attr;
13 apr_proc_t proc;
14 apr_exit_why_e exit_why;
15 int exit_code;
16
17 const char *args[MAX_COMMAND_ARGS];
18 } Shell;
19
20 int Shell_run(apr_pool_t *p, Shell *cmd);
21 int Shell_exec(Shell cmd, ...);
22
23 extern Shell CLEANUP_SH;
24 extern Shell GIT_SH;
25 extern Shell TAR_SH;
26 extern Shell CURL_SH;
27 extern Shell CONFIGURE_SH;
28 extern Shell MAKE_SH;
29 extern Shell INSTALL_SH;
30
31 #endif

Make sure you’ve created shell.h exactly, and that you’ve got the same names and number of extern Shellvariables. Those are used by the Shell_run and Shell_exec functions to run commands. I define these twofunctions, and create the real variables in shell.c.
shell.c

1 #include "shell.h"
2 #include "dbg.h"
3 #include <stdarg.h>
4
5 int Shell_exec(Shell template, ...)
6 {
7 apr_pool_t *p = NULL;
8 int rc = -1;
9 apr_status_t rv = APR_SUCCESS;
10 va_list argp;
11 const char *key = NULL;
12 const char *arg = NULL;
13 int i = 0;
14
15 rv = apr_pool_create(&p, NULL);
16 check(rv == APR_SUCCESS, "Failed to create pool.");
17
18 va_start(argp, template);
19
20 for(key = va_arg(argp, const char *);
21 key != NULL;
22 key = va_arg(argp, const char *))
23 {
24 arg = va_arg(argp, const char *);
25
26 for(i = 0; template.args[i] != NULL; i++) {
27 if(strcmp(template.args[i], key) == 0) {
28 template.args[i] = arg;

142 CHAPTER 27. EXERCISE 26: WRITE A FIRST REAL PROGRAM

29 break; // found it
30 }
31 }
32 }
33
34 rc = Shell_run(p, &template);
35 apr_pool_destroy(p);
36 va_end(argp);
37 return rc;
38 error:
39 if(p) {
40 apr_pool_destroy(p);
41 }
42 return rc;
43 }
44
45 int Shell_run(apr_pool_t *p, Shell *cmd)
46 {
47 apr_procattr_t *attr;
48 apr_status_t rv;
49 apr_proc_t newproc;
50
51 rv = apr_procattr_create(&attr, p);
52 check(rv == APR_SUCCESS, "Failed to create proc attr.");
53
54 rv = apr_procattr_io_set(attr, APR_NO_PIPE, APR_NO_PIPE,
55 APR_NO_PIPE);
56 check(rv == APR_SUCCESS, "Failed to set IO of command.");
57
58 rv = apr_procattr_dir_set(attr, cmd->dir);
59 check(rv == APR_SUCCESS, "Failed to set root to %s", cmd->dir);
60
61 rv = apr_procattr_cmdtype_set(attr, APR_PROGRAM_PATH);
62 check(rv == APR_SUCCESS, "Failed to set cmd type.");
63
64 rv = apr_proc_create(&newproc, cmd->exe, cmd->args, NULL, attr, p);
65 check(rv == APR_SUCCESS, "Failed to run command.");
66
67 rv = apr_proc_wait(&newproc, &cmd->exit_code, &cmd->exit_why, APR_WAIT);
68 check(rv == APR_CHILD_DONE, "Failed to wait.");
69
70 check(cmd->exit_code == 0, "%s exited badly.", cmd->exe);
71 check(cmd->exit_why == APR_PROC_EXIT, "%s was killed or crashed", cmd->exe);
72
73 return 0;
74
75 error:
76 return -1;
77 }
78
79 Shell CLEANUP_SH = {
80 .exe = "rm",
81 .dir = "/tmp",
82 .args = {"rm", "-rf", "/tmp/pkg-build", "/tmp/pkg-src.tar.gz",
83 "/tmp/pkg-src.tar.bz2", "/tmp/DEPENDS", NULL}
84 };

27.4. THE SOURCE FILES 143

85
86 Shell GIT_SH = {
87 .dir = "/tmp",
88 .exe = "git",
89 .args = {"git", "clone", "URL", "pkg-build", NULL}
90 };
91
92 Shell TAR_SH = {
93 .dir = "/tmp/pkg-build",
94 .exe = "tar",
95 .args = {"tar", "-xzf", "FILE", "--strip-components", "1", NULL}
96 };
97
98 Shell CURL_SH = {
99 .dir = "/tmp",
100 .exe = "curl",
101 .args = {"curl", "-L", "-o", "TARGET", "URL", NULL}
102 };
103
104 Shell CONFIGURE_SH = {
105 .exe = "./configure",
106 .dir = "/tmp/pkg-build",
107 .args = {"configure", "OPTS", NULL},
108 };
109
110 Shell MAKE_SH = {
111 .exe = "make",
112 .dir = "/tmp/pkg-build",
113 .args = {"make", "OPTS", NULL}
114 };
115
116 Shell INSTALL_SH = {
117 .exe = "sudo",
118 .dir = "/tmp/pkg-build",
119 .args = {"sudo", "make", "TARGET", NULL}
120 };

Read the shell.c from the bottom to the top (which is a common C source layout) and you see I’ve created theactual Shell variables that you indicated were extern in shell.h. They live here, but are available to the restof the program. This is how you make global variables that live in one .o file but are used everywhere. Youshouldn’t make many of these, but they are handy for things like this.
Continuing up the file we get to the Shell_run function, which is a "base" function that just runs a commandbased on what’s in a Shell struct. It uses many of the functions defined in apr_thread_proc.h so go look upeach one to see how it works. This seems like a lot of work compared to just using the system function call, butthis also gives you more control over the other program’s execution. For example, in our Shell struct we havea .dir attribute which forces the program to be in a specific directory before running.
Finally, I have the Shell_exec function, which is a "variable arguments" function. You’ve seen this before, butmake sure you grasp the stdarg.h functions and how to write one of these. In the challenge for this section youare going to analyze this function.

Challenge 2: Analyze Shell_exec

Challenge for these files (in addition to a full code review just like you did in Challenge 1) is to fully analyze
Shell_exec and break down exactly how it works. You should be able to understand each line, how the two
for-loops work, and how arguments are being replaced.

144 CHAPTER 27. EXERCISE 26: WRITE A FIRST REAL PROGRAM
Once you have it analyzed, add a field to struct Shell that gives the number of variable args that must bereplaced. Update all the commands to have the right count of args, and then have an error check that confirmsthese args have been replaced and error exit.

27.4.3 The Command Functions

Now you get to make the actual commands that do the work. These commands will use functions from APR,
db.h and shell.h to do the real work of downloading and building software you want it to build. This isthe most complex set of files, so do them carefully. As before, you start by making the commands.h file, thenimplementing its functions in the commands.c file.

commands.h
1 #ifndef _commands_h
2 #define _commands_h
3
4 #include <apr_pools.h>
5
6 #define DEPENDS_PATH "/tmp/DEPENDS"
7 #define TAR_GZ_SRC "/tmp/pkg-src.tar.gz"
8 #define TAR_BZ2_SRC "/tmp/pkg-src.tar.bz2"
9 #define BUILD_DIR "/tmp/pkg-build"
10 #define GIT_PAT "*.git"
11 #define DEPEND_PAT "*DEPENDS"
12 #define TAR_GZ_PAT "*.tar.gz"
13 #define TAR_BZ2_PAT "*.tar.bz2"
14 #define CONFIG_SCRIPT "/tmp/pkg-build/configure"
15
16 enum CommandType {
17 COMMAND_NONE, COMMAND_INSTALL, COMMAND_LIST, COMMAND_FETCH,
18 COMMAND_INIT, COMMAND_BUILD
19 };
20
21
22 int Command_fetch(apr_pool_t *p, const char *url, int fetch_only);
23
24 int Command_install(apr_pool_t *p, const char *url, const char *configure_opts,
25 const char *make_opts, const char *install_opts);
26
27 int Command_depends(apr_pool_t *p, const char *path);
28
29 int Command_build(apr_pool_t *p, const char *url, const char *configure_opts,
30 const char *make_opts, const char *install_opts);
31
32 #endif

There’s not much in commands.h that you haven’t seen already. You should see that there’s some defines forstrings that are used everywhere. The real interesting code is in commands.c.
commands.c

1 #include <apr_uri.h>
2 #include <apr_fnmatch.h>
3 #include <unistd.h>

27.4. THE SOURCE FILES 145

4
5 #include "commands.h"
6 #include "dbg.h"
7 #include "bstrlib.h"
8 #include "db.h"
9 #include "shell.h"
10
11
12 int Command_depends(apr_pool_t *p, const char *path)
13 {
14 FILE *in = NULL;
15 bstring line = NULL;
16
17 in = fopen(path, "r");
18 check(in != NULL, "Failed to open downloaded depends: %s", path);
19
20 for(line = bgets((bNgetc)fgetc, in, '\n'); line != NULL;
21 line = bgets((bNgetc)fgetc, in, '\n'))
22 {
23 btrimws(line);
24 log_info("Processing depends: %s", bdata(line));
25 int rc = Command_install(p, bdata(line), NULL, NULL, NULL);
26 check(rc == 0, "Failed to install: %s", bdata(line));
27 bdestroy(line);
28 }
29
30 fclose(in);
31 return 0;
32
33 error:
34 if(line) bdestroy(line);
35 if(in) fclose(in);
36 return -1;
37 }
38
39 int Command_fetch(apr_pool_t *p, const char *url, int fetch_only)
40 {
41 apr_uri_t info = {.port = 0};
42 int rc = 0;
43 const char *depends_file = NULL;
44 apr_status_t rv = apr_uri_parse(p, url, &info);
45
46 check(rv == APR_SUCCESS, "Failed to parse URL: %s", url);
47
48 if(apr_fnmatch(GIT_PAT, info.path, 0) == APR_SUCCESS) {
49 rc = Shell_exec(GIT_SH, "URL", url, NULL);
50 check(rc == 0, "git failed.");
51 } else if(apr_fnmatch(DEPEND_PAT, info.path, 0) == APR_SUCCESS) {
52 check(!fetch_only, "No point in fetching a DEPENDS file.");
53
54 if(info.scheme) {
55 depends_file = DEPENDS_PATH;
56 rc = Shell_exec(CURL_SH, "URL", url, "TARGET", depends_file, NULL);
57 check(rc == 0, "Curl failed.");
58 } else {
59 depends_file = info.path;
60 }

146 CHAPTER 27. EXERCISE 26: WRITE A FIRST REAL PROGRAM

61
62 // recursively process the devpkg list
63 log_info("Building according to DEPENDS: %s", url);
64 rv = Command_depends(p, depends_file);
65 check(rv == 0, "Failed to process the DEPENDS: %s", url);
66
67 // this indicates that nothing needs to be done
68 return 0;
69
70 } else if(apr_fnmatch(TAR_GZ_PAT, info.path, 0) == APR_SUCCESS) {
71 if(info.scheme) {
72 rc = Shell_exec(CURL_SH,
73 "URL", url,
74 "TARGET", TAR_GZ_SRC, NULL);
75 check(rc == 0, "Failed to curl source: %s", url);
76 }
77
78 rv = apr_dir_make_recursive(BUILD_DIR,
79 APR_UREAD | APR_UWRITE | APR_UEXECUTE, p);
80 check(rv == APR_SUCCESS, "Failed to make directory %s", BUILD_DIR);
81
82 rc = Shell_exec(TAR_SH, "FILE", TAR_GZ_SRC, NULL);
83 check(rc == 0, "Failed to untar %s", TAR_GZ_SRC);
84 } else if(apr_fnmatch(TAR_BZ2_PAT, info.path, 0) == APR_SUCCESS) {
85 if(info.scheme) {
86 rc = Shell_exec(CURL_SH, "URL", url, "TARGET", TAR_BZ2_SRC, NULL);
87 check(rc == 0, "Curl failed.");
88 }
89
90 apr_status_t rc = apr_dir_make_recursive(BUILD_DIR,
91 APR_UREAD | APR_UWRITE | APR_UEXECUTE, p);
92
93 check(rc == 0, "Failed to make directory %s", BUILD_DIR);
94 rc = Shell_exec(TAR_SH, "FILE", TAR_BZ2_SRC, NULL);
95 check(rc == 0, "Failed to untar %s", TAR_BZ2_SRC);
96 } else {
97 sentinel("Don't now how to handle %s", url);
98 }
99
100 // indicates that an install needs to actually run
101 return 1;
102 error:
103 return -1;
104 }
105
106 int Command_build(apr_pool_t *p, const char *url, const char *configure_opts,
107 const char *make_opts, const char *install_opts)
108 {
109 int rc = 0;
110
111 check(access(BUILD_DIR, X_OK | R_OK | W_OK) == 0,
112 "Build directory doesn't exist: %s", BUILD_DIR);
113
114 // actually do an install
115 if(access(CONFIG_SCRIPT, X_OK) == 0) {
116 log_info("Has a configure script, running it.");
117 rc = Shell_exec(CONFIGURE_SH, "OPTS", configure_opts, NULL);

27.4. THE SOURCE FILES 147

118 check(rc == 0, "Failed to configure.");
119 }
120
121 rc = Shell_exec(MAKE_SH, "OPTS", make_opts, NULL);
122 check(rc == 0, "Failed to build.");
123
124 rc = Shell_exec(INSTALL_SH,
125 "TARGET", install_opts ? install_opts : "install",
126 NULL);
127 check(rc == 0, "Failed to install.");
128
129 rc = Shell_exec(CLEANUP_SH, NULL);
130 check(rc == 0, "Failed to cleanup after build.");
131
132 rc = DB_update(url);
133 check(rc == 0, "Failed to add this package to the database.");
134
135 return 0;
136
137 error:
138 return -1;
139 }
140
141 int Command_install(apr_pool_t *p, const char *url, const char *configure_opts,
142 const char *make_opts, const char *install_opts)
143 {
144 int rc = 0;
145 check(Shell_exec(CLEANUP_SH, NULL) == 0, "Failed to cleanup before building.");
146
147 rc = DB_find(url);
148 check(rc != -1, "Error checking the install database.");
149
150 if(rc == 1) {
151 log_info("Package %s already installed.", url);
152 return 0;
153 }
154
155 rc = Command_fetch(p, url, 0);
156
157 if(rc == 1) {
158 rc = Command_build(p, url, configure_opts, make_opts, install_opts);
159 check(rc == 0, "Failed to build: %s", url);
160 } else if(rc == 0) {
161 // no install needed
162 log_info("Depends successfully installed: %s", url);
163 } else {
164 // had an error
165 sentinel("Install failed: %s", url);
166 }
167
168 Shell_exec(CLEANUP_SH, NULL);
169 return 0;
170
171 error:
172 Shell_exec(CLEANUP_SH, NULL);
173 return -1;

148 CHAPTER 27. EXERCISE 26: WRITE A FIRST REAL PROGRAM

174 }

After you have this entered in and compiling, you can analyze it. If you’ve don the challenges until now, youshould see how the shell.c functions are being used to run shells and how the arguments are being replaced.If not then go back and make sure you truly understand how Shell_exec actually works.

Challenge 3: Critique My Design

As before, do a complete review of this code and make sure it’s exactly the same. Then go through each functionand make sure you know how it works and what it’s doing. You also should trace how each function calls theother functions you’ve written in this file and other files. Finally, confirm that you understand all the functionsyou’re calling from APR here.
Once you have the file correct and analyzed, go back through and assume I’m an idiot. Then, criticize the designI have to see how you can improve it if you can. Don’t actually change the code, just create a little notes.txtfile and write down your thoughts and what you might change.

27.4.4 The devpkgMain Function

The last and most important file, but probably the simplest, is devpkg.c where the main function lives. There’sno .h file for this, since this one includes all the others. Instead this just creates the executable devpkg whencombined with the other .o files from our Makefile. Enter in the code for this file, and make sure it’s correct.
devpkg.c

1 #include <stdio.h>
2 #include <apr_general.h>
3 #include <apr_getopt.h>
4 #include <apr_strings.h>
5 #include <apr_lib.h>
6
7 #include "dbg.h"
8 #include "db.h"
9 #include "commands.h"
10
11 int main(int argc, const char const *argv[])
12 {
13 apr_pool_t *p = NULL;
14 apr_pool_initialize();
15 apr_pool_create(&p, NULL);
16
17 apr_getopt_t *opt;
18 apr_status_t rv;
19
20 char ch = '\0';
21 const char *optarg = NULL;
22 const char *config_opts = NULL;
23 const char *install_opts = NULL;
24 const char *make_opts = NULL;
25 const char *url = NULL;
26 enum CommandType request = COMMAND_NONE;
27
28

27.4. THE SOURCE FILES 149

29 rv = apr_getopt_init(&opt, p, argc, argv);
30
31 while(apr_getopt(opt, "I:Lc:m:i:d:SF:B:", &ch, &optarg) == APR_SUCCESS) {
32 switch (ch) {
33 case 'I':
34 request = COMMAND_INSTALL;
35 url = optarg;
36 break;
37
38 case 'L':
39 request = COMMAND_LIST;
40 break;
41
42 case 'c':
43 config_opts = optarg;
44 break;
45
46 case 'm':
47 make_opts = optarg;
48 break;
49
50 case 'i':
51 install_opts = optarg;
52 break;
53
54 case 'S':
55 request = COMMAND_INIT;
56 break;
57
58 case 'F':
59 request = COMMAND_FETCH;
60 url = optarg;
61 break;
62
63 case 'B':
64 request = COMMAND_BUILD;
65 url = optarg;
66 break;
67 }
68 }
69
70 switch(request) {
71 case COMMAND_INSTALL:
72 check(url, "You must at least give a URL.");
73 Command_install(p, url, config_opts, make_opts, install_opts);
74 break;
75
76 case COMMAND_LIST:
77 DB_list();
78 break;
79
80 case COMMAND_FETCH:
81 check(url != NULL, "You must give a URL.");
82 Command_fetch(p, url, 1);
83 log_info("Downloaded to %s and in /tmp/", BUILD_DIR);
84 break;

150 CHAPTER 27. EXERCISE 26: WRITE A FIRST REAL PROGRAM

85
86 case COMMAND_BUILD:
87 check(url, "You must at least give a URL.");
88 Command_build(p, url, config_opts, make_opts, install_opts);
89 break;
90
91 case COMMAND_INIT:
92 rv = DB_init();
93 check(rv == 0, "Failed to make the database.");
94 break;
95
96 default:
97 sentinel("Invalid command given.");
98 }
99
100
101 return 0;
102
103 error:
104 return 1;
105 }

Challenge 4: The README And Test Files

The challenge for this file is to understand how the arguments are being processed, what the arguments are,and then create the README file with instructions on how to use it. As you write the README, also write a simple
test.sh that runs ./devpkg to check that each command is actually working against real live code. Use the
set -e at the top of your script so that it aborts on the first error.
Finally, run the program under valgrind and make sure it’s all working before moving on to the mid-term exam.

27.5 The Mid-Term Exam

Your final challenge is the mid-term exam and it involves three things:
1. Compare your code to my code available online and starting with 100%, remove 1% for each line you gotwrong.
2. Take your notes.txt on how you would improve the code and functionality of devpkg and implement yourimprovements.
3. Write an alternative version of devpkg using your other favorite language or the one you think can do thisthe best. Compare the two, then improve your C version of devpkg based on what you’ve learned.

To compare your code with mine, do the following:
1 cd .. # get one directory above your current one2 git clone git://gitorious.org/devpkg/devpkg.git devpkgzed3 diff -r devpkg devpkgzed

This will clone my version of devpkg into a directory devpkgzed and then use the tool diff to compare whatyou’ve done to what I did. The files you’re working with in this book come directly from this project, so if youget different lines then that’s an error.
Keep in mind that there’s no real pass or fail on this exercise, just a way for you to challenge yourself to be asexact and meticulous as possible.

Part II

Data Structures And Algorithms

151

Chapter 28

Exercise 27: Creative And Defensive

Programming

You have now learned most of the basics of C programming and are ready to start becoming a serious pro-grammer. This is where you go from beginner to expert, both with C and hopefully with core computer scienceconcepts. I will be teaching you a few of the core data structures and algorithms that every programmer shouldknow, and then a few very interesting ones I’ve used in real software for years.
Before I can do that I have to teach you some basic skills and ideas that will help you make better software.Exercises 27 through 31 will teach you advanced concepts and feature more talking than code, but after thoseyou’ll apply what you learn to making a core library of useful data structures.
The first step in getting better at writing C code (and really any language) is to learn a new mindset called"defensive programming". Defensive programming assumes that you are going to make many mistakes andthen attempts to prevent them at every possible step. In this exercise I’m going to teach you how to think aboutprogramming defensively.

28.1 The Creative Programmer Mindset

It’s not possible to tell you how to be creative in a short exercise like this, but I will tell you that creativityinvolves taking risks and being open minded. Fear will quickly kill creativity, so the mindset I adopt, and manyprogrammers adopt on, accident is designed to make me unafraid of taking chances and looking like an idiot:
1. I can’t make a mistake.
2. It doesn’t matter what people think.
3. Whatever my brain comes up with is going to be a great idea.

I only adopt this mindset temporarily, and even have little tricks to turn it on. By doing this I can come up withideas, find creative solutions, openmy thoughts to odd connections, and just generally invent weirdness withoutfear. In this mindset I will typically write a horrible first version of something just to get the idea out.
However, when I’ve finished my creative prototype I will throw it out and get serious about making it solid.Where other people make a mistake is carrying the creative mindset into their implementation phase. This thenleads to a very different destructive mindset that is the dark side of the creative mindset:
1. It is possible to write perfect software.
2. My brain tells me the truth, and it can’t find any errors, therefore I have written perfect software.
3. My code is who I am and people who criticize its perfection are criticizing me.153

154 CHAPTER 28. EXERCISE 27: CREATIVE AND DEFENSIVE PROGRAMMING
These are lies. You will frequently run into programmers who feel intense pride about what they’ve created,which is natural, but this pride gets in the way of their ability to objectively improve their craft. Because of prideand attachment to what they’ve written, they can continue to believe that what they write is perfect. As long asthey ignore other people’s criticism of their code they can protect their fragile ego and never improve.
The trick to being creative andmaking solid software is to also be able to adopt a defensive programming mind-set.

28.2 The Defensive Programmer Mindset

After you have a working creative prototype and you’re feeling good about the idea, it’s time to switch to beinga defensive programmer. The defensive programmer basically hates your code and believes these things:
1. Software has errors.
2. You are not your software, yet you are are responsible for the errors.
3. You can never remove the errors, only reduce their probability.

This mindset lets you be honest about your work and critically analyze it for improvements. Notice that itdoesn’t say you are full of errors? It says your code is full of errors. This is a significant thing to understandbecause it gives you the power of objectivity for the next implementation.
Just like the creative mindset, the defensive programming mindset has a dark side as well. The defensive pro-grammer is a paranoid who is afraid of everything, and this fear prevents them from possibly being wrong ormaking mistakes. That’s great when you are trying to be ruthlessly consistent and correct, but it is murder oncreative energy and concentration.

28.3 The Eight Defensive Programmer Strategies

Once you’ve adopted this mindset, you can then rewrite your prototype and follow a set of eight strategies I useto make my code as solid as I can. While I work on the "real" version I ruthlessly follow these strategies and tryto remove as many errors as I can, thinking like someone who wants to break the software.
Never Trust Input Never trust the data you are given and always validate it.
Prevent Errors If an error is possible, no matter how probable, try to prevent it.
Fail Early And Openly Fail early, cleanly, and openly, stating what happened, where and how to fix it.
Document Assumptions Clearly state the pre-conditions, post-conditions, and invariants.
Prevention Over Documentation Do not do with documentation, that which can be done with code or avoidedcompletely.
Automate Everything Automate everything, especially testing.
Simplify And Clarify Always simplify the code to the smallest, cleanest form that works without sacrificingsafety.
Question Authority Do not blindly follow or reject rules.
These aren’t the only ones, but they’re the core things I feel programmers have to focus on when trying to makegood solid code. Notice that I don’t really say exactly how to do these. I’ll go into each of these in more detail,and some of the exercises actually cover them extensively.

28.4. APPLYING THE EIGHT STRATEGIES 155
28.4 Applying The Eight Strategies

These ideas are all great pop-psychology platitudes, but how do you actually apply them to working code? I’mnow going to give you a set of things to always do in this book’s code that demonstrate each one with a concreteexample. The ideas aren’t limited to these examples, and you should use these as a guide to making your owncode tougher.

28.4.1 Never Trust Input

Let’s look at an example of bad design and "better" design. I won’t say good design because this could be doneeven better. Take a look at two functions that both copy a string and a simple main to test out the better one.
ex27_1.c

1 #undef NDEBUG
2 #include "dbg.h"
3 #include <stdio.h>
4 #include <assert.h>
5
6 /*
7 * Naive copy that assumes all inputs are always valid
8 * taken from K&R C and cleaned up a bit.
9 */
10 void copy(char to[], char from[])
11 {
12 int i = 0;
13
14 // while loop will not end if from isn't '\0' terminated
15 while((to[i] = from[i]) != '\0') {
16 ++i;
17 }
18 }
19
20 /*
21 * A safer version that checks for many common errors using the
22 * length of each string to control the loops and termination.
23 */
24 int safercopy(int from_len, char *from, int to_len, char *to)
25 {
26 assert(from != NULL && to != NULL && "from and to can't be NULL");
27 int i = 0;
28 int max = from_len > to_len - 1 ? to_len - 1 : from_len;
29
30 // to_len must have at least 1 byte
31 if(from_len < 0 || to_len <= 0) return -1;
32
33 for(i = 0; i < max; i++) {
34 to[i] = from[i];
35 }
36
37 to[to_len - 1] = '\0';
38
39 return i;
40 }
41

156 CHAPTER 28. EXERCISE 27: CREATIVE AND DEFENSIVE PROGRAMMING

42
43 int main(int argc, char *argv[])
44 {
45 // careful to understand why we can get these sizes
46 char from[] = "0123456789";
47 int from_len = sizeof(from);
48
49 // notice that it's 7 chars + \0
50 char to[] = "0123456";
51 int to_len = sizeof(to);
52
53 debug("Copying '%s':%d to '%s':%d", from, from_len, to, to_len);
54
55 int rc = safercopy(from_len, from, to_len, to);
56 check(rc > 0, "Failed to safercopy.");
57 check(to[to_len - 1] == '\0', "String not terminated.");
58
59 debug("Result is: '%s':%d", to, to_len);
60
61 // now try to break it
62 rc = safercopy(from_len * -1, from, to_len, to);
63 check(rc == -1, "safercopy should fail #1");
64 check(to[to_len - 1] == '\0', "String not terminated.");
65
66 rc = safercopy(from_len, from, 0, to);
67 check(rc == -1, "safercopy should fail #2");
68 check(to[to_len - 1] == '\0', "String not terminated.");
69
70 return 0;
71
72 error:
73 return 1;
74 }

The copy function is typical C code and it’s the source of a huge number of buffer overflows. It is flawed becauseit assumes that it will always receive a validly terminated C string (with '\0') and just uses a while-loop toprocess it. Problem is, ensuring that is incredibly difficult, and if not handled right it causes the while-loop toloop infinitely. A cornerstone of writing solid code is never writing loops that can possibly loop forever.
The safercopy function tries to solve this by requiring the caller to give the lengths of the two strings it mustdeal with. By doing this it can make certain checks about these strings that the copy function can’t. It can checkthe lengths are right, that the to string has enough space, and it will always terminate. It’s impossible for thisfunction to run on forever like the copy function.
This is the idea behind never trusting the inputs you receive. If you assume that your function is going to geta string that’s not terminated (which is common) then you design your function to not rely on that to functionproperly. If you need the arguments to never be NULL then you should check for that too. If the sizes should bewithin sane levels, then check that. You simply assume that whoever is calling you got it wrong and try to makeit difficult for them to give you bad state.
This then extends out to software you write that gets input from the external universe. The famous last wordsof the programmer are, "Nobody’s going to do that." I’ve seen them say that and then the next day someone doesexactly that, crashing or hacking their application. If you say nobody is going to do that, just throw in the codeto make sure they simply can’t hack your application. You’ll be glad you did.
There is a diminishing returns on this, but here’s a list of things I try to do with all of my functions I write in C:
1. For each parameter identify what its preconditions are, and whether the precondition should cause a fail-ure or return an error. If you are writing a library, favor errors over failures.

28.4. APPLYING THE EIGHT STRATEGIES 157
2. Add assert calls at the beginning that checks for each failure precondition using assert(test && "message");This little hack does the test, and when it fails the OS will typically print the assert line for you, which thenincludes that message. Very helpful when you’re trying to figure out why that assert is there.
3. For the other preconditions, return the error code or use my check macro to do that and give an errormessage. I didn’t use check in this example since it would confuse the comparison.
4. Document why these preconditions exist so that when a programmer hits the error they can figure out ifthey are really necessary or not.
5. If you are modifying the inputs, make sure that they are correctly formed when the function exits, or abortif they aren’t.
6. Always check the error codes of functions you use. For example, people frequently forget to check thereturn codes from fopen or fread which causes them to use the resources they give despite the error.This causes your program to crash or gives an avenue for an attack.
7. You also need to be returning consistent error codes so that you can do this for all of your functions too.Once you get in this habit you will then understand why my checkmacros work the way they do.

Just doing these simple things will improve your resource handling and prevent quite a few errors.

28.4.2 Prevent Errors

In the previous example you may hear people say, "Well it’s not very likely someone will use copy wrong."Despite the mountain of attacks made against this very kind of function they still believe that the probability ofthis error is very low. Probability is a funny thing because people are incredibly bad at guessing the probabilityof any event. People are however much better at determining if something is possible. They may say the errorin copy is not probably, but they can’t deny that it’s possible.
The key reason is that for something to be probable, it first has to be possible. Determining the possibility is easy,since we can all imagine something happening. What’s not so easy is determining its possibility after that. Is thechance that someone might use copy wrong 20%, 10%, or 1%? Who knows, and to determine that you’d needto gather evidence, look at rates of failure in many software packages, and probably survey real programmersand how they use the function.
This means, if you’re going to prevent errors then you need to try to prevent what is possible, but focus yourenergies on what’s most probable first. It may not be feasible to handle all the possible ways your software canbe broken, but you have to attempt it. But, at the same time, if you don’t constrain your efforts to the mostprobably events with the least effort then you’ll be wasting time on irrelevant attacks.
Here’s a process for determining what to prevent in your software:
1. List all the possible errors that can happen, no matter how probable.1
2. Give each one a probability that’s a percentage of operations that can be vulnerable. If you are handlingrequests from the internet, then it’s the percentage of requests that can cause the error. If it’s functioncalls, then it’s what percentage of function calls can cause it.
3. Give each one an effort in number of hours or amount of code to prevent it. You could also just give an easyor hard metric. Any metric that prevents you from working on the impossible when there’s easier thingsto fix still on the list.
4. Rank them by effort (lowest to highest), and probability (highest to lowest). This is now your task list.
5. Prevent all the errors you can in this list, aiming for removing the possibility, then reducing the probabilityif you can’t make it impossible.
6. If there are errors you can’t fix, then document them so someone else can fix it.

This little process will give you a nice list of things to do, but more importantly keep you fromworking on uselessthings when there’s other more important things to work on. You can also be more or less formal with this
1Within reason of course. No point listing aliens sucking your memories out to steal your passwords.

158 CHAPTER 28. EXERCISE 27: CREATIVE AND DEFENSIVE PROGRAMMING
process. If you’re doing a full security audit this will be better done with a whole team and a nice spreadsheet.If you’re just writing a function then simply reviewing the code and scratching out these into some comments isgood enough. What’s important is you stop assuming that errors don’t happen, and you work on removing themwhen you can without wasting effort.

28.4.3 Fail Early And Openly

If you encounter an error in C you have two choices:
1. Return an error code.
2. Abort the process.

This is just how it is, so what you need to do is make sure the failures happen quickly, are clearly documented,give an error message, and are easy for the programmer to avoid. This is why the checkmacros I’ve given youwork the way they do. For every error you find it prints a message, the file and line number where it happened,and force a return code. If you just use my macros you’ll end up doing the right thing anyway.
I tend to prefer returning error code to aborting the program. If it’s catastrophic then I will, but very few errorsare truly catastrophic. A good example of when I’ll abort a program is if I’m given an invalid pointer, as I did in
safercopy. Instead of having the programmer experience a segmentation fault explosion "somewhere", I catchit right away and abort. However, if it’s common to pass in a NULL then I’ll probably change that to a checkinstead so that the caller can adapt and keep running.
In libraries however, I try my hardest to never abort. The software using my library can decide if it should abort,and typically I’ll only abort if the library is very badly used.
Finally, a big part of being "open" about errors is not using the same message or error code for more than onepossible error. You typically see this with errors on external resources. A library will receive an error on asocket, and then simply report "bad socket". What they should do is return exactly what the error was on thesocket so it can be debugged properly and fixed. When designing your error reporting, make sure you give adifferent error message for the different possible errors.

28.4.4 Document Assumptions

If you’re following along and doing this advice then what you’ll be doing is building a "contract" of how yourfunctions expect the world to be. You’ve created preconditions for each argument, you’ve handled possibleerrors, and you’re failing elegantly. The next step is to complete the contract and add "invariants" and "postcon-ditions".
An invariant is some condition that must be held true in some state while the function runs. This isn’t verycommon in simple functions, but when you’re dealing with complex structures it becomes more necessary. Agood example of an invariant is that a structure is always initialized properly while it’s being used. Anotherwould be that a sorted data structure is always sorted during processing.
A postcondition is a guarantee on the exit value or result of a function running. This can blend together withinvariants, but this is something as simple as "function always returns 0 or -1 on error". Usually these aredocumented, but if your function returns an allocated resource, you can add a postcondition that checks tomake sure it’s returning something and not NULL. Or, you can use NULL to indicate an error, so in that caseyour postcondition is now checking the resource is deallocated on any errors.
In C programming invariants and postconditions are usually more documentation than actual code and asser-tions. The best way to handle them is add assert calls for the ones you can, then document the rest. If you dothat then when people hit an error they can see what assumptions you made when writing the function.

28.4. APPLYING THE EIGHT STRATEGIES 159
28.4.5 Prevention Over Documentation

A common problem when programmers write code is they will document a common bug rather than simply fixit. My favorite is when the Ruby on Rails system simply assumed that all months had 30 days. Calendars arehard, so rather than fix it they threw a tiny little comment somewhere that said this was on purpose, and thenthey refused to fix it for years. Every time someone would complain they would then bluster and yell, "But it’sdocumented!"
Documentation doesn’t matter if you can actually fix the problem, and if the function has a fatal flaw thensimply don’t include it until you can fix it. In the case of Ruby on Rails, not having date functions would havebeen better than including purposefully broken ones that nobody could use.
As you go through your defensive programming cleanups, try to fix everything you can. If you find yourselfdocumenting more and more problems you can’t fix, then consider redesigning the feature or simply removingit. If you really have to keep this horribly broken feature, then I suggest you write it, document it and find a newjob before you are blamed for it.

28.4.6 Automate Everything

You are a programmer, and that means your job is putting other people out of jobs with automation. Thepinnacle of this is putting yourself out of a job with your own automation. Obviously you won’t completelyremove what you do, but if are spending your whole day rerunning manual tests in your terminal, then yourjob is not programming. You are doing QA, and you should automate yourself out of this QA job you probablydon’t really want anyway.
The easiest way to do this is to write automated tests, or unit tests. In this book I’m going to get into how to dothis easily, and I’ll avoid most of the dogma of when you should write tests. I’ll focus on how to write them, whatto test, and how to be efficient at the testing.
Common things programmers fail to automate but they should:
1. Testing and validation.
2. Build processes.
3. Deployment of software.
4. System administration.2
5. Error reporting.

Try to devote some of your time to automating this and you’ll have more time to work on the fun stuff. Or, if thisis fun to you, then maybe you should work on software that makes automating these things easier.

28.4.7 Simplify And Clarify

The concept of "simplicity" is a slippery one to many people, especially smart people. They generally confuse"comprehension" with "simplicity". If they understand it well, clearly it’s simple. The actual test of simplicity isby comparison with something else that could be simpler. But, you’ll see people who write code go running tothe most complex obtuse structures possible because they think the simpler version of the same thing is "dirty".A love affair with complexity is a programming sickness.
You can fight this disease by first telling yourself, "Simple and clear is not dirty, no matter what everyone else isdoing." If everyone else is writing insane visitor patterns involving 19 classes over 12 interfaces and you can doit with two string operations, then you win. They are wrong, no matter how "elegant" they think their complexmonstrosity is.
The simplest test of which function to use is:
2I’m really guilty of this one.

160 CHAPTER 28. EXERCISE 27: CREATIVE AND DEFENSIVE PROGRAMMING
1. Make sure both functions have no errors. It doesn’t matter how fast or simple a function is if it has errors.
2. If you can’t fix one, then pick the other.
3. Do they produce the same result? If not then pick the one that has the result you need.
4. If they produce the same result, then pick the one that either has fewer features, fewer branches, or youjust think is simpler.
5. Make sure you’re not just picking the one that is most impressive. Simple and dirty beats complex andclean any day.

You’ll notice that I mostly give up at the end and tell you to use your judgment. Simplicity is ironically a verycomplex thing, so using your tastes as a guide is the best way to go. Just make sure you adjust your view ofwhat’s "good" as you grow and gain more experience.

28.4.8 Question Authority

The final strategy is the most important because it breaks you out of the defensive programming mindset andlets you transition into the creative mindset. Defensive programming is authoritarian and it can be cruel. Thejob of this mindset is to make you follow rules because without them you’ll miss something or get distracted.
This authoritarian attitude has the disadvantage of disabling independent creative thought. Rules are necessaryfor getting things done, but being a slave to them will kill your creativity.
This final strategy means you should question the rules you follow periodically and assume that they couldbe wrong, just like the software you are reviewing. What I will typically do is, after a session of defensiveprogramming, I’ll go take a non-programming break and let the rules go. Then I’ll be ready to do some creativework or do more defensive coding if need to.

28.5 Order Is Not Important

The final thing I’ll say on this philosophy is that I’m not telling you to do this in a strict order of "CREATE!DEFEND! CREATE! DEFEND!" At first you may want to do that, but I will actually do either in varying amountsdepend on what I want to do, and I may even meld them together with no defined boundary.
I also don’t think one mindset is better than another, or that there are strict separation between them. You needboth creativity and strictness to do programming well, so work on both if you want to improve.

28.6 Extra Credit

1. The code in the book up to this point (and for the rest of it) potentially violates these rules. Go back throughand apply what you’ve learned to one exercise to see if you can improve it or find bugs.
2. Find an open source project and give some of the files a similar code review. Submit a patch that fixes abug if you find it.

Chapter 29

Exercise 28: Intermediate Makefiles

In the next three Exercises you’ll create a skeleton project directory to use in building your C programs later.This skeleton directory will be used in the rest of the book, and in this exercise I’ll cover just the Makefile soyou can understand it.
The purpose of this structure is to make it easy to build medium sized programs without having to resort toconfigure tools. If done right you can get very far with just GNU make and some small shell scripts.

29.1 The Basic Project Structure

The first thing to do is make a c-skeleton directory and then put a set of basic files and directories in it thatmany projects have. Here’s my starter:
Initial C Project Skeleton

1 $ mkdir c-skeleton
2 $ cd c-skeleton/
3 $ touch LICENSE README.md Makefile
4 $ mkdir bin src tests
5 $ cp dbg.h src/ # this is from Ex20
6 $ ls -l
7 total 8
8 -rw-r--r-- 1 zedshaw staff 0 Mar 31 16:38 LICENSE
9 -rw-r--r-- 1 zedshaw staff 1168 Apr 1 17:00 Makefile
10 -rw-r--r-- 1 zedshaw staff 0 Mar 31 16:38 README.md
11 drwxr-xr-x 2 zedshaw staff 68 Mar 31 16:38 bin
12 drwxr-xr-x 2 zedshaw staff 68 Apr 1 10:07 build
13 drwxr-xr-x 3 zedshaw staff 102 Apr 3 16:28 src
14 drwxr-xr-x 2 zedshaw staff 68 Mar 31 16:38 tests
15 $ ls -l src
16 total 8
17 -rw-r--r-- 1 zedshaw staff 982 Apr 3 16:28 dbg.h
18 $

At the end you see me do an ls -l so you can see the final results.
Here’s what each of these does:
LICENSE If you release the source of your projects you’ll want to include a license. If you don’t though, the codeis copyright by you and nobody has rights to it by default.161

162 CHAPTER 29. EXERCISE 28: INTERMEDIATE MAKEFILES
README.md Basic instructions for using your project go here. It ends in .md so that it will be interpreted asmarkdown.
Makefile The main build file for the project.
bin/ Where programs that users can run go. This is usually empty and the Makefile will create it if it’s not there.
build/ Where libraries and other build artifacts go. Also empty and the Makefile will create it if it’s not there.
src/ Where the source code goes, usually .c and .h files.
tests/ Where automated tests go.
src/dbg.h I copied the dbg.h from Exercise 20 into src/ for later.
I’ll now break down each of the components of this skeleton project so you can understand how it works.

29.2 Makefile

The first thing I’ll cover is the Makefile because from that you can understand how everything else works. TheMakefile in this exercise is much more detailed than ones you’ve used so far, so I’m going to break it down afteryou type it in:
c-skeleton/Makefile

1 CFLAGS=-g -O2 -Wall -Wextra -Isrc -rdynamic -DNDEBUG $(OPTFLAGS)2 LIBS=-ldl $(OPTLIBS)3 PREFIX?=/usr/local45 SOURCES=$(wildcard src/**/*.c src/*.c)6 OBJECTS=$(patsubst %.c,%.o,$(SOURCES))78 TEST_SRC=$(wildcard tests/*_tests.c)9 TESTS=$(patsubst %.c,%,$(TEST_SRC))1011 TARGET=build/libYOUR_LIBRARY.a12 SO_TARGET=$(patsubst %.a,%.so,$(TARGET))1314 # The Target Build15 all: $(TARGET) $(SO_TARGET) tests1617 dev: CFLAGS=-g -Wall -Isrc -Wall -Wextra $(OPTFLAGS)18 dev: all1920 $(TARGET): CFLAGS += -fPIC21 $(TARGET): build $(OBJECTS)22 ar rcs $@ $(OBJECTS)23 ranlib $@2425 $(SO_TARGET): $(TARGET) $(OBJECTS)26 $(CC) -shared -o $@ $(OBJECTS)2728 build:29 @mkdir -p build30 @mkdir -p bin3132 # The Unit Tests

29.2. MAKEFILE 163

33 .PHONY: tests34 tests: CFLAGS += $(TARGET)35 tests: $(TESTS)36 sh ./tests/runtests.sh3738 valgrind:39 VALGRIND="valgrind --log-file=/tmp/valgrind-%p.log" $(MAKE)4041 # The Cleaner42 clean:43 rm -rf build $(OBJECTS) $(TESTS)44 rm -f tests/tests.log45 find . -name "*.gc*" -exec rm {} \;46 rm -rf `find . -name "*.dSYM" -print`4748 # The Install49 install: all50 install -d $(DESTDIR)/$(PREFIX)/lib/51 install $(TARGET) $(DESTDIR)/$(PREFIX)/lib/5253 # The Checker54 BADFUNCS='[^_.>a-zA-Z0-9](str(n?cpy|n?cat|xfrm|n?dup|str|pbrk|tok|_)|stpn?cpy|a?sn?printf|byte_)'55 check:56 @echo Files with potentially dangerous functions.57 @egrep $(BADFUNCS) $(SOURCES) || true

Remember that you need to indent the Makefile consistently with tab characters. Your editor should know thatand do the right thing, but if it doesn’t then get a different text editor. No programmer should use an editor thatfails at something so simple.

29.2.1 The Header

This makefile is designed to build a library we’ll be working on later and to do so reliably on almost any platformby using special features of GNU make. I’ll break down each part in sections, starting with the header.
Makefile:1 These are the usual CFLAGS that you set in all of your projects, but with a few others that may beneeded to build libraries. Youmay need to adjust these for different platforms. Notice the OPTFLAGS variableat the end which lets people augment the build options as needed.
Makefile:2 Options used when linking a library, and allows someone else to augment the linking options usingthe OPTLIBS variable.
Makefile:3 Setting an optional variable called PREFIX that will only have this value if the person running theMakefile didn’t already give a PREFIX setting. That’s what the ?= does.
Makefile:5 This fancy line of awesome dynamically creates the SOURCES variable by doing a wildcard searchfor all *.c files in the src/ directory. You have to give both src/**/*.c and src/*.c so that GNU makewill include the files in src and also the ones below it.
Makefile:6 Once you have the list of source files, you can then use the patsubst to take the SOURCES list of *.cfiles and make a new list of all the object files. You do this by telling patsubst to change all %.c extensionsto %.o and then those are assigned to OBJECTS.
Makefile:8 Using the wildcard again to find all the test source files for the unit tests. These are separate fromthe library’s source files.
Makefile:9 Then using the same patsubst trick to dynamically get all the TEST targets. In this case I’mstripping

164 CHAPTER 29. EXERCISE 28: INTERMEDIATE MAKEFILES
away the .c extension so that a full program will be made with the same name. Previously I had replacedthe .c with .o so an object file is created.

Makefile:11 Finally, we say the ultimate target is build/libYOUR_LIBRARY.a, which you will change to bewhatever library you are actually trying to build.
This completes the top of the Makefile, but I should explain what I mean by "lets people augment the build".When you run make you can do this:

A Changing A Make Build
WARNING! Just a demonstration, won't really work right now.
this installs the library into /tmp
$ make PREFIX=/tmp install
this tells it to add pthreads
$ make OPTFLAGS=-pthread

If you pass in options that match the same kind of variables you have in your Makefile, then those will showup in your build. You can then use this to change how the Makefile runs. The first one alters the PREFIX sothat it installs into /tmp instead. The second one sets OPTFLAGS so that the -pthread option is present.

29.2.2 The Target Build

Continuing with the breakdown of the Makefile I have actually building the object files and targets:
Makefile:14 Remember that the first target is what make will run by default when no target is given. In thiscase it’s called all: and it gives $(TARGET) tests as the targets to build. Look up at the TARGET variableand you see that’s the library, so all: will first build the library. The tests target is then further down inthe Makefile and builds the unit tests.
Makefile:16 Another target for making "developer builds" that introduces a technique for changing options forjust one target. If I do a "dev build" I want the CFLAGS to include options like -Wextra that are useful forfinding bugs. If you place them on the target line as options like this, then give another line that says theoriginal target (in this case all) then it will change the options you set. I use this for setting different flagson different platforms that need it.
Makefile:19 Builds the TARGET library, whatever that is, and also uses the same trick from line 15 of giving atarget with just options changes to alter them for this run. In this case I’m adding -fPIC just for the librarybuild using the += syntax to add it on.
Makefile:20 Now the real target where I say first make the build directory, then compile all the OBJECTS.
Makefile:21 Runs the ar command which actually makes the TARGET. The syntax $@ $(OBJECTS) is a way ofsaying, "put the target for this Makefile source here and all the OBJECTS after that". In this case the $@maps back to the $(TARGET) on line 19, which maps to build/libYOUR_LIBRARY.a. It seems like a lot tokeep track of this indirection, and it can be, but once you get it working this means you just change TARGETat the top and build a whole new library.
Makefile:22 Finally, to make the library you run ranlib on the TARGET and it’s built.
Makefile:24-24 This just makes the build/ or bin/ directories if they don’t exist. This is then referenced fromline 19 when it gives the build target to make sure the build/ directory is made.
You now have all the stuff you need to build the software, so we’ll create a way to build and run unit tests to doautomated testing.

29.2. MAKEFILE 165
29.2.3 The Unit Tests

C is different from other languages because it’s easier to create one tiny little program for each thing you’retesting. Some testing frameworks try to emulate the module concept other languages have and do dynamicloading, but this doesn’t work well in C. It’s also unnecessary because you can just make a single program that’srun for each test instead.
I’ll cover this part of the Makefile, and then later you’ll see the contents of the tests/ directory that make itactually work.
Makefile:29 If you have a target that’s not "real", but there is a directory or file with that name, then you needto tag the target with .PHONY: so make will ignore the file and always run.
Makefile:30 I use the same trick formodifying the CFLAGS variable to add the TARGET to the build so that each ofthe test programswill be linkedwith the TARGET library. In this case it will add build/libYOUR_LIBRARY.ato the linking.
Makefile:31 Then I have the actual tests: target which depends on all the programs listed in the TESTS vari-able we created in the header. This one line actually says, "Make, use what you know about buildingprograms and the current CFLAGS settings to build each program in TESTS."
Makefile:32 Finally, when all of the TESTS are built, there’s a simple shell script I’ll create later that knows howto run them all and report their output. This line actually runs it so you can see the test results.
Makefile:34-35 In order to be able to dynamically rerun the tests with Valgrind there’s a valgrind: target thatsets the right variable and runs itself again. This puts the valgrind logs into /tmp/valgrind-*.log so youcan go look and see whatmight be going on. The tests/runtests.sh then knows to run the test programsunder Valgrind when it sees this VALGRIND variable.
For the unit testing to work you’ll need to create a little shell script that knows how to run the programs. Goahead and create this tests/runtests.sh script:

tests/runtests.sh
1 echo "Running unit tests:"
2
3 for i in tests/*_tests
4 do
5 if test -f $i
6 then
7 if $VALGRIND ./$i 2>> tests/tests.log
8 then
9 echo $i PASS
10 else
11 echo "ERROR in test $i: here's tests/tests.log"
12 echo "------"
13 tail tests/tests.log
14 exit 1
15 fi
16 fi
17 done
18
19 echo ""

I’ll be using this later when I cover how unit tests work.

166 CHAPTER 29. EXERCISE 28: INTERMEDIATE MAKEFILES
29.2.4 The Cleaner

I now have fully working unit tests, so next up is making things clean when I need to reset everything.
Makefile:38 The clean: target starts things off whenever we need to clean up the project.
Makefile:39-42 This cleans out most of the junk that various compilers and tools leave behind. It also gets ridof the build/ directory and uses a trick at the end to cleanly erase the weird *.dSYM directories Apple’sXCode leaves behind for debugging purposes.
If you run into junk that you need to clean out, simply augment the list of things being deleted in this target.

29.2.5 The Install

After that I’ll need a way to install the project, and for a Makefile that’s building a library I just need to putsomething in the common PREFIX directory, which is usually /usr/local/lib.
Makefile:45 This makes install: depend on the all: target so that when you run make install it will besure to build everything.
Makefile:46 I then use the program install to create the target lib directory if it doesn’t exist. In this case I’mtrying to make the install as flexible as possible by using two variables that are conventions for installers.

DESTDIR is handed to make by installers that do their builds in secure or odd locations to build packages.
PREFIX is used when people want the project to be installed in someplace other than /usr/local.

Makefile:47 After that I’m just using install to actually install the library where it needs to go.
The purpose of the install program is to make sure things have the right permissions set. When you run
make install you usually have to do it as the root user, so the typical build process is make && sudo make install.

29.2.6 The Checker

The very last part of this Makefile is a bonus that I include in my C projects to help me dig out any attempts touse the "bad" functions in C. Namely the string functions and other "unprotected buffer" functions.
Makefile:50 Sets a variable which is a big regex looking for bad functions like strcpy.
Makefile:51 The check: target so you can run a check whenever you need.
Makefile:52 Just a way to print a message, but doing @echo tells make to not print the command, just its output.
Makefile:53 Run the egrep command on the source files looking for any bad patterns. The || true at the endis a way to prevent make from thinking that egrep not finding things is a failure.
When you run this it will have the odd effect that you’ll get an error when there is nothing bad going on.

29.3 What You Should See

I have twomore exercises to go before I’mdone building the project skeleton directory, but here’s me testing outthe features of the Makefile.
Checking The Makefile

1 $ make clean
2 rm -rf build
3 rm -f tests/tests.log

29.4. EXTRA CREDIT 167

4 find . -name "*.gc*" -exec rm {} \;
5 rm -rf `find . -name "*.dSYM" -print`
6 $ make check
7 Files with potentially dangerous functions.
8 ^Cmake: *** [check] Interrupt: 2
9
10 $ make
11 ar rcs build/libYOUR_LIBRARY.a
12 ar: no archive members specified
13 usage: ar -d [-TLsv] archive file ...
14 ar -m [-TLsv] archive file ...
15 ar -m [-abiTLsv] position archive file ...
16 ar -p [-TLsv] archive [file ...]
17 ar -q [-cTLsv] archive file ...
18 ar -r [-cuTLsv] archive file ...
19 ar -r [-abciuTLsv] position archive file ...
20 ar -t [-TLsv] archive [file ...]
21 ar -x [-ouTLsv] archive [file ...]
22 make: *** [build/libYOUR_LIBRARY.a] Error 1
23 $ make valgrind
24 VALGRIND="valgrind --log-file=/tmp/valgrind-%p.log" make
25 ar rcs build/libYOUR_LIBRARY.a
26 ar: no archive members specified
27 usage: ar -d [-TLsv] archive file ...
28 ar -m [-TLsv] archive file ...
29 ar -m [-abiTLsv] position archive file ...
30 ar -p [-TLsv] archive [file ...]
31 ar -q [-cTLsv] archive file ...
32 ar -r [-cuTLsv] archive file ...
33 ar -r [-abciuTLsv] position archive file ...
34 ar -t [-TLsv] archive [file ...]
35 ar -x [-ouTLsv] archive [file ...]
36 make[1]: *** [build/libYOUR_LIBRARY.a] Error 1
37 make: *** [valgrind] Error 2
38 $

When I run the clean: target that works, but because I don’t have any source files in the src/ directory noneof the other commands really work. I’ll finish that up in the next exercises.

29.4 Extra Credit

1. Try to get the Makefile to actually work by putting a source and header file in src/ andmaking the library.You shouldn’t need a main function in the source file.
2. Research what functions the check: target is looking for in the BADFUNCS regular expression it’s using.
3. If you don’t do automated unit testing, then go read about it so you’re prepared later.

168 CHAPTER 29. EXERCISE 28: INTERMEDIATE MAKEFILES

Chapter 30

Exercise 29: Libraries And Linking

A central part of any C program is the ability to link it to libraries that your operating system provides. Linking ishow you get additional features for your program that someone else created and packaged on the system. You’vebeen using some standard libraries that are automatically included, but I’m going to explain the different typesof libraries and what they do.
First off, libraries are poorly designed in every programming language. I have no ideawhy, but it seems languagedesigners think of linking as something they just slap on later. They are usually confusing, hard to deal with,can’t do versioning right, and end up being linked differently everywhere.
C is no different, but the way linking and libraries are done in C is an artifact of how the Unix operating systemand executable formats were designed years ago. Learning how C links things helps you understand how yourOS works and how it runs your programs.
To start off there are two basic types of libraries:
static You’ve made one of these when you used ar and ranlib to create the libYOUR_LIBRARY.a in the lastexercise. This kind of library is nothingmore than a container for a set of .o object files and their functions,and you can treat it like one big .o file when building your programs.
dynamic These typically end in .so, .dll or about 1 million other endings on OSX depending on the versionand who happened to be working that day. Seriously though, OSX adds .dylib, .bundle, and .frameworkwith not much distinction between the three. These files are built and then placed in a common location.When you run your program the OS dynamically loads these files and links them to your program on thefly.
I tend to like static libraries for small to medium sized projects because they are easier to deal with and work onmore operating systems. I also like to put all of the code I can into a static library so that I can then link it to unittests and to the file programs as needed.
Dynamic libraries are good for larger systems, when space is tight, or if you have a large number of programsthat use common functionality. In this case you don’t want to statically link all of the code for the commonfeatures to every program, so you put it in a dynamic library so that it is loaded only once for all of them.
In the previous exercise I laid out how to make a static library (a .a file), and that’s what I’ll use in the rest ofthe book. In this exercise I’m going to show you how to make a simple .so library, and how to dynamically loadit with the Unix dlopen system. I’ll have you do this manually so that you understand everything that’s actuallyhappening, then the Extra Credit will be to use the c-skeleton skeleton to create it.

30.0.1 Dynamically Loading A Shared Library

To do this I will create two source files. One will be used to make a libex29.so library, the other will be aprogram called ex29 that can load this library and run functions from it.
169

170 CHAPTER 30. EXERCISE 29: LIBRARIES AND LINKING

libex29.c
1 #include <stdio.h>
2 #include <ctype.h>
3 #include "dbg.h"
4
5
6 int print_a_message(const char *msg)
7 {
8 printf("A STRING: %s\n", msg);
9
10 return 0;
11 }
12
13
14 int uppercase(const char *msg)
15 {
16 int i = 0;
17
18 // BUG: \0 termination problems
19 for(i = 0; msg[i] != '\0'; i++) {
20 printf("%c", toupper(msg[i]));
21 }
22
23 printf("\n");
24
25 return 0;
26 }
27
28 int lowercase(const char *msg)
29 {
30 int i = 0;
31
32 // BUG: \0 termination problems
33 for(i = 0; msg[i] != '\0'; i++) {
34 printf("%c", tolower(msg[i]));
35 }
36
37 printf("\n");
38
39 return 0;
40 }
41
42 int fail_on_purpose(const char *msg)
43 {
44 return 1;
45 }

There’s nothing fancy in there, although there’s some bugs I’m leaving in on purpose to see if you’ve been payingattention. You’ll fix those later.
What we want to do is use the functions dlopen, dlsym and dlclose to work with the above functions.

ex29.c

171

1 #include <stdio.h>
2 #include "dbg.h"
3 #include <dlfcn.h>
4
5 typedef int (*lib_function)(const char *data);
6
7
8 int main(int argc, char *argv[])
9 {
10 int rc = 0;
11 check(argc == 4, "USAGE: ex29 libex29.so function data");
12
13 char *lib_file = argv[1];
14 char *func_to_run = argv[2];
15 char *data = argv[3];
16
17 void *lib = dlopen(lib_file, RTLD_NOW);
18 check(lib != NULL, "Failed to open the library %s: %s", lib_file, dlerror());
19
20 lib_function func = dlsym(lib, func_to_run);
21 check(func != NULL, "Did not find %s function in the library %s: %s", func_to_run, lib_file, dlerror());
22
23 rc = func(data);
24 check(rc == 0, "Function %s return %d for data: %s", func_to_run, rc, data);
25
26 rc = dlclose(lib);
27 check(rc == 0, "Failed to close %s", lib_file);
28
29 return 0;
30
31 error:
32 return 1;
33 }

I’ll now break this down so you can see what’s going on in this small bit of useful code:
ex29.c:5 I’ll use this function pointer definition later to call functions in the library. This is nothing new, butmake sure you understand what it’s doing.
ex29.c:17 After the usual setup for a small program, I use the dlopen function to load up the library indicatedby lib_file. This function returns a handle that we use later and works a lot like opening a file.
ex29.c:18 If there’s an error, I do the usual check and exit, but notice at then end that I’m using dlerror to findout what the library related error was.
ex29.c:20 I use dlsym to get a function out of the lib by it’s string name in func_to_run. This is the powerfulpart, since I’m dynamically getting a pointer to a function based on a string I got from the command line

argv.
ex29.c:23 I then call the func function that was returned, and check its return value.
ex29.c:26 Finally, I close the library up just like I would a file. Usually you keep these open the whole time theprogram is running, so closing at the end isn’t as useful, but I’m demonstrating it here.

172 CHAPTER 30. EXERCISE 29: LIBRARIES AND LINKING
30.1 What You Should See

Now that you know what this file does, here’s a shell session of me building the libex29.so, ex29 and thenworking with it. Follow along so you learn how these things are built manually.
Building And Using libex29.so

1 # compile the lib file and make the .so
2 $ cc -c libex29.c -o libex29.o
3 $ cc -shared -o libex29.so libex29.o
4
5 # make the loader program
6 $ cc -Wall -g -DNDEBUG ex29.c -ldl -o ex29
7
8 # try it out with some things that work
9 $ ex29 ./libex29.so print_a_message "hello there"
10 -bash: ex29: command not found
11 $./ex29 ./libex29.so print_a_message "hello there"
12 A STRING: hello there
13 $./ex29 ./libex29.so uppercase "hello there"
14 HELLO THERE
15 $./ex29 ./libex29.so lowercase "HELLO tHeRe"
16 hello there
17 $./ex29 ./libex29.so fail_on_purpose "i fail"
18 [ERROR] (ex29.c:23: errno: None) Function fail_on_purpose return 1 for data: i fail
19
20 # try to give it bad args
21 $./ex29 ./libex29.so fail_on_purpose
22 [ERROR] (ex29.c:11: errno: None) USAGE: ex29 libex29.so function data
23
24 # try calling a function that is not there
25 $./ex29 ./libex29.so adfasfasdf asdfadff
26 [ERROR] (ex29.c:20: errno: None) Did not find adfasfasdf
27 function in the library libex29.so: dlsym(0x1076009b0, adfasfasdf): symbol not found
28
29 # try loading a .so that is not there
30 $./ex29 ./libex.so adfasfasdf asdfadfas
31 [ERROR] (ex29.c:17: errno: No such file or directory) Failed to open
32 the library libex.so: dlopen(libex.so, 2): image not found
33 $

One thing that you may run into is that every OS, every version of every OS, and every compiler on everyversion of every OS, seems to want to change the way you build a shared library every other month that somenew programmer thinks it’s wrong. If the line I use to make the libex29.so file is wrong, then let me know andI’ll add some comments for other platforms.

30.2 How To Break It

Open libex29.so and edit it with an editor that can handle binary files. Change a couple bytes, then close it.Try to see if you can get the dlopen function to load it even though you’ve corrupted it.

30.3. EXTRA CREDIT 173
Note 11 Irritating .so Ordering

Sometimes you’ll do what you think is normal and run this command
cc -Wall -g -DNDEBUG -ldl ex29.c -o ex29 thinking everthing will work, but nope. Yousee, on some platforms the order of where libraries goes makes them work or not, and for no realreason. On Debian or Ubuntu you have to do cc -Wall -g -DNDEBUG ex29.c -ldl -o ex29 forno reason at all. It’s just the way it is, so since this works on OSX I’m doing it here, but in the future, ifyou link against a dynamic library and it can’t find a function, try shuffling things around.
The irritation here is there is an actual platform difference on nothing more than order of com-mand line arguments. On no rational planet should putting an -ldl at one position be different fromanother. It’s an option, and having to know these things is incredibly annoying.

30.3 Extra Credit

1. Were you paying attention to the bad code I have in the libex29.c functions? See how, even though I usea for-loop they still check for '\0' endings? Fix this so the functions always take a length for the string towork with inside the function.
2. Take the c-skeleton skeleton, and create a new project for this exercise. Put the libex29.c file in the

src/ directory. Change the Makefile so that it builds this as build/libex29.so.
3. Take the ex29.c file and put it in tests/ex29_tests.c so that it runs as a unit test. Make this all work,which means you have to change it so that it loads the build/libex29.so file and runs tests similar towhat I did manually above.
4. Read the man dlopen documentation and read about all the related functions. Try some of the otheroptions to dlopen beside RTLD_NOW.

174 CHAPTER 30. EXERCISE 29: LIBRARIES AND LINKING

Chapter 31

Exercise 30: Automated Testing

Automated testing is used frequently in other languages like Python and Ruby, but rarely used in C. Part of thereason comes from the difficulty of automatically loading and testing pieces of C code. In this chapter we’llcreate a very small little testing "framework" and get your skeleton directory building an example test case.
The frameworks I’m going to use, and which you’ll include in your c-skeleton skeleton is called "minunit"which started with code from a tiny snippet of code by Jera Design. I then evolved it further, to be this:

tests/minunit.h
1 #undef NDEBUG
2 #ifndef _minunit_h
3 #define _minunit_h
4
5 #include <stdio.h>
6 #include <dbg.h>
7 #include <stdlib.h>
8
9 #define mu_suite_start() char *message = NULL
10
11 #define mu_assert(test, message) if (!(test)) { log_err(message); return message; }
12 #define mu_run_test(test) debug("\n-----%s", " " #test); \
13 message = test(); tests_run++; if (message) return message;
14
15 #define RUN_TESTS(name) int main(int argc, char *argv[]) {\
16 argc = 1; \
17 debug("----- RUNNING: %s", argv[0]);\
18 printf("----\nRUNNING: %s\n", argv[0]);\
19 char *result = name();\
20 if (result != 0) {\
21 printf("FAILED: %s\n", result);\
22 }\
23 else {\
24 printf("ALL TESTS PASSED\n");\
25 }\
26 printf("Tests run: %d\n", tests_run);\
27 exit(result != 0);\
28 }
29
30
31 int tests_run;

175

http://www.jera.com/techinfo/jtns/jtn002.html

176 CHAPTER 31. EXERCISE 30: AUTOMATED TESTING

32
33 #endif

There’s mostly nothing left of the original, as now I’m using the dbg.hmacros and I’ve created a large macro atthe end for the boilerplate test runner. Even with this tiny amount of code we’ll create a fully functioning unittest system you can use in your C code once it’s combined with a shell script to run the tests.

31.1 Wiring Up The Test Framework

To continue this exercise, you should have your src/libex29.c working and that you completed the Exercise29 extra credit where you got the ex29.c loader program to properly run. In Exercise 29 I had an extra creditto make it work like a unit test, but I’m going to start over and show you how to do that with minunit.h.
The first thing to do is create a simple empty unit test name tests/libex29_tests.c with this in it:

tests/libex29_tests.c.h
1 #include "minunit.h"
2
3 char *test_dlopen()
4 {
5
6 return NULL;
7 }
8
9 char *test_functions()
10 {
11
12 return NULL;
13 }
14
15 char *test_failures()
16 {
17
18 return NULL;
19 }
20
21 char *test_dlclose()
22 {
23
24 return NULL;
25 }
26
27 char *all_tests() {
28 mu_suite_start();
29
30 mu_run_test(test_dlopen);
31 mu_run_test(test_functions);
32 mu_run_test(test_failures);
33 mu_run_test(test_dlclose);
34
35 return NULL;
36 }
37

31.1. WIRING UP THE TEST FRAMEWORK 177

38 RUN_TESTS(all_tests);

This code is demonstrating the RUN_TESTS macro in tests/minunit.h and how to use the other test runnermacros. I have the actual test functions stubbed out so that you can see how to structure a unit test. I’ll breakthis file down first:
libex29_tests.c:1 Include the minunit.h framework.
libex29_tests.c:3-7 A first test. Tests are structured so they take no arguments and return a char * which is

NULL on success. This is important because the other macros will be used to return an error message to thetest runner.
libex29_tests.c:9-25 More tests that are the same as the first one.
libex29_tests.c:27 The runner function that will control all the other tests. It has the same form as any othertest case, but it gets configured with some additional gear.
libex29_tests.c:28 Sets up some common stuff for a test with mu_suite_start.
libex29_tests.c:30 This is how you say what test to run, using the mu_run_testmacro.
libex29_tests.c:35 After you say what tests to run, you then return NULL just like a normal test function.
libex29_tests.c:38 Finally, you just use the big RUN_TESTSmacro to wire up the mainmethod with all the good-ies and tell it to run the all_tests starter.
That’s all there is to running a test, now you should try getting just this to run within the project skeleton. Here’swhat it looks like when I do it:

First run of libex29_tests
1 $ make clean
2 rm -rf build src/libex29.o tests/libex29_tests
3 rm -f tests/tests.log
4 find . -name "*.gc*" -exec rm {} \;
5 rm -rf `find . -name "*.dSYM" -print`
6 $ make
7 cc -g -O2 -Wall -Wextra -Isrc -rdynamic -DNDEBUG -fPIC
8 -c -o src/libex29.o src/libex29.c
9 src/libex29.c: In function ÃćÂĂÂŸfail_on_purposeÃćÂĂÂŹ:
10 src/libex29.c:42: warning: unused parameter ÃćÂĂÂŸmsgÃćÂĂÂŹ
11 ar rcs build/libYOUR_LIBRARY.a src/libex29.o
12 ranlib build/libYOUR_LIBRARY.a
13 cc -shared -o build/libYOUR_LIBRARY.so src/libex29.o
14 cc -g -O2 -Wall -Wextra -Isrc -rdynamic -DNDEBUG build/libYOUR_LIBRARY.a
15 tests/libex29_tests.c -o tests/libex29_tests
16 sh ./tests/runtests.sh
17 Running unit tests:
18 ----
19 RUNNING: ./tests/libex29_tests
20 ALL TESTS PASSED
21 Tests run: 4
22 tests/libex29_tests PASS
23
24 $

Ifirst did a make clean and then I ran the build, which remade the template libYOUR_LIBRARY.a and libYOUR_LIBRARY.sofiles. Remember that you had to do this in the extra credit for Exercise 29, but just in case you didn’t figure itout, here’s the diff for the Makefile I’m using now:

178 CHAPTER 31. EXERCISE 30: AUTOMATED TESTING

Makefile changes for .so builds
diff --git a/code/c-skeleton/Makefile b/code/c-skeleton/Makefile
index 135d538..21b92bf 100644
--- a/code/c-skeleton/Makefile
+++ b/code/c-skeleton/Makefile
@@ -9,9 +9,10 @@ TEST_SRC=$(wildcard tests/*_tests.c)
TESTS=$(patsubst %.c,%,$(TEST_SRC))

TARGET=build/libYOUR_LIBRARY.a
+SO_TARGET=$(patsubst %.a,%.so,$(TARGET))

The Target Build
-all: $(TARGET) tests
+all: $(TARGET) $(SO_TARGET) tests

dev: CFLAGS=-g -Wall -Isrc -Wall -Wextra $(OPTFLAGS)
dev: all
@@ -21,6 +22,9 @@ $(TARGET): build $(OBJECTS)

ar rcs $@ $(OBJECTS)
ranlib $@

+$(SO_TARGET): $(TARGET) $(OBJECTS)
+ $(CC) -shared -o $@ $(OBJECTS)
+
build:

@mkdir -p build
@mkdir -p bin

With those changes you should be now building everything and you can finally fill in the remaining unit testfunctions:
Final version of tests/libex29_tests.c

1 #include "minunit.h"
2 #include <dlfcn.h>
3
4 typedef int (*lib_function)(const char *data);
5 char *lib_file = "build/libYOUR_LIBRARY.so";
6 void *lib = NULL;
7
8 int check_function(const char *func_to_run, const char *data, int expected)
9 {
10 lib_function func = dlsym(lib, func_to_run);
11 check(func != NULL, "Did not find %s function in the library %s: %s", func_to_run, lib_file, dlerror());
12
13 int rc = func(data);
14 check(rc == expected, "Function %s return %d for data: %s", func_to_run, rc, data);
15
16 return 1;
17 error:
18 return 0;
19 }
20

31.2. EXTRA CREDIT 179

21 char *test_dlopen()
22 {
23 lib = dlopen(lib_file, RTLD_NOW);
24 mu_assert(lib != NULL, "Failed to open the library to test.");
25
26 return NULL;
27 }
28
29 char *test_functions()
30 {
31 mu_assert(check_function("print_a_message", "Hello", 0), "print_a_message failed.");
32 mu_assert(check_function("uppercase", "Hello", 0), "uppercase failed.");
33 mu_assert(check_function("lowercase", "Hello", 0), "lowercase failed.");
34
35 return NULL;
36 }
37
38 char *test_failures()
39 {
40 mu_assert(check_function("fail_on_purpose", "Hello", 1), "fail_on_purpose should fail.");
41
42 return NULL;
43 }
44
45 char *test_dlclose()
46 {
47 int rc = dlclose(lib);
48 mu_assert(rc == 0, "Failed to close lib.");
49
50 return NULL;
51 }
52
53 char *all_tests() {
54 mu_suite_start();
55
56 mu_run_test(test_dlopen);
57 mu_run_test(test_functions);
58 mu_run_test(test_failures);
59 mu_run_test(test_dlclose);
60
61 return NULL;
62 }
63
64 RUN_TESTS(all_tests);

Hopefully by now you canfigure outwhat’s going on, since there’s nothing new in this except for the check_functionfunction. This is a common pattern where I see that I’ll be doing a chunk of code repeatedly, and then simplyautomate it either by creating a function or a macro for it. In this case I’m going to run functions in the .so Iload so I just made a little function to do it.

31.2 Extra Credit

1. This works but it’s probably a bit messy. Clean the c-skeleton directory up so that it has all these files, butremove any of the code related to Exercise 29. You should be able to copy this directory over and kickstartnew projects without much editing.

180 CHAPTER 31. EXERCISE 30: AUTOMATED TESTING
2. Study the runtests.sh and go read about bash syntax so you know what it does. Think you could write aC version of this script?

Chapter 32

Exercise 31: Debugging Code

I’ve already taught you about my awesome debug macros and you’ve been using them. When I debug code I usethe debug()macro almost exclusively to analyze what’s going on and track down the problem. In this exerciseI’m going to teach you the basics of using gdb to inspect a simple program that runs and doesn’t exit. You’ll learnhow to use gdb to attach to a running process, stop it, and see what’s happening. After that I’ll give you somelittle tips and tricks that you can use with gdb.

32.1 Debug Printing Vs. GDB Vs. Valgrind

I approach debugging primarily with a "scientific method" style, where I come up with possible causes and thenrule them out or prove they cause the defect. The problem many programmers have though is their panic andrush to solve a bug makes them feel like this approach will "slow them down". In their rush to solve they failto notice that they’re really just flailing around and gathering no useful information. I find that logging (debugprinting) forces me to solve a bug scientifically and it’s also just easier to gather information in more situations.
In addition to that, I also have these reasons for using debug printing as my primary debugging tool:
1. You see an entire tracing of a program’s execution with debug printing of variables which lets you trackhow things are going wrong. With gdb you have to place watch and debug statements all over for everything you want and it’s difficult to get a solid trace of the execution.
2. The debug prints can stay in the code, and when you need them you can recompile and they come back.With gdb you have to configure the same information uniquely for every defect you have to hunt down.
3. It’s easier to turn on debug logging on a server that’s not working right and then inspect the logs while itruns to see what’s going on. System administrators know how to handle logging, they don’t know how touse gdb.
4. Printing things is just easier. Debuggers are always obtuse and weird with their own quirky interface andinconsistencies. There’s nothing complicated about debug("Yo, dis right? %d", my_stuff);.
5. Writing debug prints to find a defect forces you to actually analyze the code and use the scientific method.You can think of a debug usage as, "I hypothesize that the code is broken here." Then when you run ityou get your hypothesis tested and if it’s not broken then you can move to another part where it could be.This may seem like it takes longer, but it’s actually faster because you go through a process of "differentialdiagnosis" and rule out possible causes until you find the real one.
6. Debug printing works better with unit testing. You can actually just compile the debugs in all the timewhile you work, and when a unit test explodes just go look at the logs any time. With gdb you’d have torerun the unit test under gdb and then trace through it to see what’s going on.
7. With valgrind you get the equivalent of debug prints for many memory related errors, so you don’t needto use something like gdb to find those defects anymore.181

182 CHAPTER 32. EXERCISE 31: DEBUGGING CODE
Despite all these reasons that I rely on debug over gdb, I still use gdb in a few situations and I think you shouldhave any tool that helps you get your work done. Sometimes, you just have to connect to a broken program andpoke around. Or, maybe you’ve got a server that’s crashing and you can only get at core files to see why. In theseand a few other cases, gdb is the way to go, and it’s always good to have as many tools as possible to help solveproblems.
I then break down when I use gdb vs. valgrind vs. debug printing like this:
1. Valgrind is used to catch all memory errors. I use gdb if valgrind is having problems or if using valgrindwould slow the program down too much.
2. Print with debug to diagnose and fix defects related to logic or usage. This amounts to about 90% of thedefects after you start using Valgrind.
3. Use gdb for the remaining "mystery weird stuff" or emergency situations to gather information. If Valgrindisn’t turning anything up and I can’t even print out the information I need, then I bust out gdb and startpoking around. My use of gdb in this case is entirely to gather information. Once I have an idea of what’sgoing on I go back to writing a unit test to cause the defect, and then do print statements to find out why.

32.2 A Debugging Strategy

This process will actually work with any debugging technique you’re going to use, whether that’s Valgrind,debug printing, or using a debugger. I’m going to describe it in terms of using gdb since it seems people skip thisprocess the most when using debuggers, but use this for every bug until you only need it on the very difficultones.
1. Start a little text file called notes.txt and use it as a kind of "lab notes" for ideas, bugs, problems, etc.
2. Before you use gdb, write out the bug you’re going to fix and what could be causing it.
3. For each cause, write out the files and functions where you think the cause is coming from, or just writethat you don’t know.
4. Now start gdb and pick the first possible cause with good file:function possibles and set breakpoints there.
5. Use gdb to then run the program and confirm if that is the cause. The best way is to see if you can use the

set command to either fix the program easily or cause the error immediately.
6. If this isn’t the cause, then mark in the notes.txt that it wasn’t and why. Move on to the next possiblecause that’s easiest to debug, and keep adding information you gather.

In case you haven’t noticed, this is basically the scientific method. You write down a set of hypotheses, then youuse debugging to prove or disprove them. This gives you insight into more possible causes and then eventuallyyou find it. This process helps you avoid going over the same possible causes repeatedly even though you’vefound they aren’t possible.
You can also do this with debug printing, the only difference is you actually write out your hypotheses in thesource code where you think the problem is instead of the notes.txt. In a way, debug printing forces you totackle bugs scientifically since you have to write out hypotheses as print statements.

32.3 Using GDB

The program I’ll debug in this exercise is just a while-loop that doesn’t terminate correctly. I’m putting a small
usleep call in it so that there’s something interesting to troll through as well.

ex31.c

32.4. PROCESS ATTACHING 183

1 #include <unistd.h>
2
3 int main(int argc, char *argv[])
4 {
5 int i = 0;
6
7 while(i < 100) {
8 usleep(3000);
9 }
10
11 return 0;
12 }

Compile this like normal and then start it under gdb like this: gdb ./ex31

Once it’s running I want you to play around with these gdb commands to see what they do and how to use them.
help COMMAND Get a short help with COMMAND.
break file.c:(line|function) Sets a break point where you want to pause execution. You can give lines or func-tion names to break at after the file.
run ARGS Runs the program, using the ARGS as arguments to the program.
cont Continues execution until a new breakpoint or error.
step Step through the code, but move into functions. Use this to trace into a function and see what it’s doing.
next Just like step, but go over functions by just running them.
backtrace (or bt) Does a "backtrace", which dumps the trace of function calls leading to the current point inthe program. Very useful for figuring out how you got there, since it also prints the parameters that werepassed to each function. It’s also similar to what Valgrind reports when you have a memory error.
set var X = Y Set variable X equal to Y.
print X Prints out the value of X, and you can usually use C syntax to access the values of pointers and contentsof structs.
ENTER The ENTER key just repeats the last command.
quit Exits gdb
Those are the majority of commands I use with gdb. Your job is to now play with these and ex31 so you can getfamiliar with the output.
Once you’re familiar with gdb you’ll want to play with it somemore. Try using it onmore complicated programslike devpkg to see if you can alter the program’s execution or analyze what it’s doing.

32.4 Process Attaching

The most useful thing about gdb is the ability to attach to a running program and debug it right there. When youhave a crashing server or a GUI program, you can’t usually start it under gdb like you just did. Instead, you haveto start it, hope it doesn’t crash right away, then attach to it and set a breakpoint. In this part of the exercise I’llshow you how to do that.
After you exit gdb I want you to restart ex31 if you stopped it, and then start another Terminal window so youcan process attach to it. Process attaching is where you tell gdb to connect to a program that’s already runningso you can inspect it live. It stops the program and then you can walk through it, and when you’re done it’llcontinue just like normal.

184 CHAPTER 32. EXERCISE 31: DEBUGGING CODE
Here’s a session of me doing it to ex31, stepping through it, then fixing the while-loop to make it exit.

ex31.sh-session
1 $ ps ax | grep ex31
2 10026 s000 S+ 0:00.11 ./ex31
3 10036 s001 R+ 0:00.00 grep ex31
4
5 $ gdb ./ex31 10026
6 GNU gdb 6.3.50-20050815 (Apple version gdb-1705) (Fri Jul 1 10:50:06 UTC 2011)
7 Copyright 2004 Free Software Foundation, Inc.
8 GDB is free software, covered by the GNU General Public License, and you are
9 welcome to change it and/or distribute copies of it under certain conditions.
10 Type "show copying" to see the conditions.
11 There is absolutely no warranty for GDB. Type "show warranty" for details.
12 This GDB was configured as "x86_64-apple-darwin"...Reading symbols for shared libraries .. done
13
14 /Users/zedshaw/projects/books/learn-c-the-hard-way/code/10026: No such file or directory
15 Attaching to program: `/Users/zedshaw/projects/books/learn-c-the-hard-way/code/ex31', process 10026.
16 Reading symbols for shared libraries + done
17 Reading symbols for shared libraries ++........................ done
18 Reading symbols for shared libraries + done
19 0x00007fff862c9e42 in __semwait_signal ()
20
21 (gdb) break 8
22 Breakpoint 1 at 0x107babf14: file ex31.c, line 8.
23
24 (gdb) break ex31.c:11
25 Breakpoint 2 at 0x107babf1c: file ex31.c, line 12.
26
27 (gdb) cont
28 Continuing.
29
30 Breakpoint 1, main (argc=1, argv=0x7fff677aabd8) at ex31.c:8
31 8 while(i < 100) {
32
33 (gdb) p i
34 $1 = 0
35
36 (gdb) cont
37 Continuing.
38
39 Breakpoint 1, main (argc=1, argv=0x7fff677aabd8) at ex31.c:8
40 8 while(i < 100) {
41
42 (gdb) p i
43 $2 = 0
44
45 (gdb) list
46 3
47 4 int main(int argc, char *argv[])
48 5 {
49 6 int i = 0;
50 7
51 8 while(i < 100) {
52 9 usleep(3000);
53 10 }

32.4. PROCESS ATTACHING 185

54 11
55 12 return 0;
56
57 (gdb) set var i = 200
58
59 (gdb) p i
60 $3 = 200
61
62 (gdb) next
63
64 Breakpoint 2, main (argc=1, argv=0x7fff677aabd8) at ex31.c:12
65 12 return 0;
66
67 (gdb) cont
68 Continuing.
69
70 Program exited normally.
71 (gdb) quit
72 $

Note 12 OSX Problems
On OSX you may see a GUI prompt for the root password, and even after you give it you still get anerror from gdb saying "Unable to access task for process-id XXX: (os/kern) failure." In that case stopboth gdb and the ex31 program, then start over and it should work as long as you successfully enteredthe root password.

I’ll walk through this session and explain what I did:
gdb:1 I use ps to find out what the process id is of the ex31 I want to attach.
gdb:5 I’m attaching using gdb ./ex31 PID replacing PID with the process id I have.
gdb:6-19 gdb prints out a bunch of information about it’s license and then all the things it’s reading. 1
gdb:21 The program is attached and stopped at this point, so now I set a breakpoint at line 8 in the file with

break. I’m assuming that I’m already in the file I want to break when I do this.
gdb:24 A better way to do a break, is give file.c:line format so you can be sure you did the right location. Ido that in this break.
gdb:27 I use cont to continue processing until I hit a breakpoint.
gdb:30-31 The breakpoint is reached so gdb prints out variables I need to know about (argc and argv) andwhere it’s stopped, then the line of code for the breakpoint.
gdb:33-34 I use the abbreviation for print "p" to print out the value of the i variable. It’s 0.
gdb:36 Continue again to see if i changes.
gdb:42 Print out i again, and nope it’s not changing.
gdb:45-55 Use list to see what the code is, and then I realize it’s not exiting because I’m not incrementing i.
gdb:57 Confirm my hypothesis that i needs to change by using the set command to change it to be i = 200.This is one of the best features of gdb as it lets you "fix" a program really quick to see if you’re right.
gdb:59 Print out i just to make sure it changed.
gdb:62 Use next to move to the next piece of code, and I see that the breakpoint at ex31.c:12 is hit, so thatmeans the while-loop exited. My hypothesis is correct, I need to make i change.
1Just in case you missed it that gdb really was the GNU debugger and just in case you didn’t know it was doing all this stuff.

186 CHAPTER 32. EXERCISE 31: DEBUGGING CODE
gdb:67 Use cont to continue and the program exits like normal.
gdb:71 I finally use quit to get out of gdb.

32.5 GDB Tricks

Here’s a list of simple tricks you can do with GDB:
gdb –args Normally gdb takes arguments you give it and assumes they are for itself. Using -args passes themto the program.
thread apply all bt Dumps a backtrace for all threads. Very useful.
gdb –batch –ex r –ex bt –ex q –args Runs the program so that, if it bombs you get a backtrace.
? Got one? Leave it in the comments.

32.6 Extra Credit

1. Find a graphical debugger and compare using it to raw gdb. These are useful when the program you’relooking at is local, but they are pointless if you have to debug a program on a server.
2. You can enable "core dumps" on your OS, and when a program crashes you’ll get a core file. This core fileis like a post-mortem of the program so you can load up what happened right at the crash and see whatcaused it. Change ex31.c so that it crashes after a few iterations, then try to get a core dump and analyzeit.

Chapter 33

Exercise 32: Double Linked Lists

The purpose of this book is to teach you how your computer really works, and included in that is how variousdata structures and algorithms function. Computers by themselves don’t do a lot of useful processing. To makethem do useful things you need to structure the data and then organize processing on these structures. Otherprogramming languages either include libraries that implement all of these structures, or they have direct syn-tax for them. C makes you implement all the data structures you need yourself, which makes it the perfectlanguage to learn how they actually work.
My goal in teaching you these data structures and these algorithms is to help you do three things:
1. Understand what is really going on in Python, Ruby, or JavaScript code like: data = {"name": "Zed"}

2. Get even better at C code by applying what you know to a set of solved problems using the data structures.
3. Learn a core set of data structures and algorithms so that you are better informed about what ones workbest in certain situations.

33.1 What Are Data Structures

The name "data structure" is self-explanatory. It is an organization of data that fits a certain model. Maybethe model is designed to allow processing the data in a new way. Maybe it’s just organized to store it on diskefficiently. In this book I’ll follow a simple pattern for making data structures that works reliably:
1. Define a struct for the main "outer structure".
2. Define a struct for the contents, usually nodes with links between them.
3. Create functions that operate on these two.

There’s other styles of data structures in C, but this pattern works well and is consistent for most data structuresyou’ll make.

33.2 Making The Library

For the rest of this book you’ll be creating a library that you can use when you’re done with this book. Thislibrary will have the following elements:
1. Header (.h) files for each data structure.
2. Implementation (.c) files for the algorithms.
3. Unit tests that test all of them to make sure they keep working.187

188 CHAPTER 33. EXERCISE 32: DOUBLE LINKED LISTS
4. Documentation we’ll autogenerate from the header files.

You already have the c-skeleton so use it to create a liblcthw project:
ex32.sh-session

1 $ cp -r c-skeleton liblcthw
2 $ cd liblcthw/
3 $ ls
4 LICENSE Makefile README.md bin build src tests
5 $ vim Makefile
6 $ ls src/
7 dbg.h libex29.c libex29.o
8 $ mkdir src/lcthw
9 $ mv src/dbg.h src/lcthw
10 $ vim tests/minunit.h
11 $ rm src/libex29.* tests/libex29*
12 $ make clean
13 rm -rf build tests/libex29_tests
14 rm -f tests/tests.log
15 find . -name "*.gc*" -exec rm {} \;
16 rm -rf `find . -name "*.dSYM" -print`
17 $ ls tests/
18 minunit.h runtests.sh
19 $

In this session I’m doing the following:
1. Copy the c-skeleton over.
2. Edit the Makefile to change libYOUR_LIBRARY.a to liblcthw.a as the new TARGET.
3. Make the src/lcthw directory where we’ll put our code.
4. Move the src/dbg.h into this new directory.
5. Edit tests/minunit.h so that it uses #include <lcthw/dbg.h> as the include.
6. Get rid of the source and test files we don’t need for libex29.*.
7. Clean up everything that’s left over.

With that you’re ready to start building the library, and the first data structure I’ll build is the Double LinkedList.

33.3 Double Linked Lists

The first data structure we’ll add to liblcthw is a double linked list. This is the simplest data structure you canmake, and it has useful properties for certain operations. A linked list works by nodes having pointers to theirnext or previous element. A "double linked list" contains pointers to both, while a "single linked list" only pointsat the next element.
Because each node has pointers to the next and previous, and because you keep track of the first and last elementof the list, you can do some operations very quickly. Anything that involves inserting or deleting an element willbe very fast. They are also easy to implement by most people.
The main disadvantage of a linked list is that traversing it involves processing every single pointer along theway. This means that searching, most sorting, or iterating over the elements will be slow. It also means that youcan’t really jump to random parts of the list. If you had an array of elements you could just index right into the

33.3. DOUBLE LINKED LISTS 189
middle of the list, but a linked list uses a stream of pointers. That means if you want the 10th element, you haveto go through elements 1-9.

33.3.1 Definition

As I said in the introduction to this exercise, the process to follow is to first write a header file with the right Cstruct statements in it.
src/lcthw/list.h

1 #ifndef lcthw_List_h
2 #define lcthw_List_h
3
4 #include <stdlib.h>
5
6 struct ListNode;
7
8 typedef struct ListNode {
9 struct ListNode *next;
10 struct ListNode *prev;
11 void *value;
12 } ListNode;
13
14 typedef struct List {
15 int count;
16 ListNode *first;
17 ListNode *last;
18 } List;
19
20 List *List_create();
21 void List_destroy(List *list);
22 void List_clear(List *list);
23 void List_clear_destroy(List *list);
24
25 #define List_count(A) ((A)->count)
26 #define List_first(A) ((A)->first != NULL ? (A)->first->value : NULL)
27 #define List_last(A) ((A)->last != NULL ? (A)->last->value : NULL)
28
29 void List_push(List *list, void *value);
30 void *List_pop(List *list);
31
32 void List_shift(List *list, void *value);
33 void *List_unshift(List *list);
34
35 void *List_remove(List *list, ListNode *node);
36
37 #define LIST_FOREACH(L, S, M, V) ListNode *_node = NULL;\
38 ListNode *V = NULL;\
39 for(V = _node = L->S; _node != NULL; V = _node = _node->M)
40
41 #endif

The first thing I do is create two structs for the ListNode and the List that will contain those nodes. This createsthe data structure I’ll use in the functions and macros I define after that. If you read through these functionsthey seem rather simple. I’ll be explaining them when I cover the implementation, but hopefully you can guesswhat they do.

190 CHAPTER 33. EXERCISE 32: DOUBLE LINKED LISTS
How the data structure works is each ListNode has three components:
1. A value, which is a pointer to anything and stores the thing we want to put in the list.
2. A ListNode *next pointer which points at another ListNode that holds the next element in the list.
3. A ListNode *prev that holds the previous element. Complex right? Calling the previous thing "previous".I could have used "anterior" and "posterior" but only a jerk would do that.

The List struct is then nothingmore than a container for these ListNode structs that have been linked togetherin a chain. It keeps track of the count, first and last element of the list.
Finally, take a look at src/lcthw/list.h:37where I define the LIST_FOREACHmacro. This is a common idiomwhere you make a macro that generates iteration code so people can’t mess it up. Getting this kind of processingright can be difficult with data structures, so writing macros helps people out. You’ll see how I use this when Italk about the implementation.

33.3.2 Implementation

Once you understand that, you mostly understand how a double linked list works. It is nothing more than nodeswith two pointers to the next and previous element of the list. You can then write the src/lcthw/list.c codeto see how each operation is implemented.
src/lcthw/list.c

1 #include <lcthw/list.h>
2 #include <lcthw/dbg.h>
3
4 List *List_create()
5 {
6 return calloc(1, sizeof(List));
7 }
8
9 void List_destroy(List *list)
10 {
11 LIST_FOREACH(list, first, next, cur) {
12 if(cur->prev) {
13 free(cur->prev);
14 }
15 }
16
17 free(list->last);
18 free(list);
19 }
20
21
22 void List_clear(List *list)
23 {
24 LIST_FOREACH(list, first, next, cur) {
25 free(cur->value);
26 }
27 }
28
29
30 void List_clear_destroy(List *list)
31 {
32 List_clear(list);

33.3. DOUBLE LINKED LISTS 191

33 List_destroy(list);
34 }
35
36
37 void List_push(List *list, void *value)
38 {
39 ListNode *node = calloc(1, sizeof(ListNode));
40 check_mem(node);
41
42 node->value = value;
43
44 if(list->last == NULL) {
45 list->first = node;
46 list->last = node;
47 } else {
48 list->last->next = node;
49 node->prev = list->last;
50 list->last = node;
51 }
52
53 list->count++;
54
55 error:
56 return;
57 }
58
59 void *List_pop(List *list)
60 {
61 ListNode *node = list->last;
62 return node != NULL ? List_remove(list, node) : NULL;
63 }
64
65 void List_shift(List *list, void *value)
66 {
67 ListNode *node = calloc(1, sizeof(ListNode));
68 check_mem(node);
69
70 node->value = value;
71
72 if(list->first == NULL) {
73 list->first = node;
74 list->last = node;
75 } else {
76 node->next = list->first;
77 list->first->prev = node;
78 list->first = node;
79 }
80
81 list->count++;
82
83 error:
84 return;
85 }
86
87 void *List_unshift(List *list)
88 {

192 CHAPTER 33. EXERCISE 32: DOUBLE LINKED LISTS

89 ListNode *node = list->first;
90 return node != NULL ? List_remove(list, node) : NULL;
91 }
92
93 void *List_remove(List *list, ListNode *node)
94 {
95 void *result = NULL;
96
97 check(list->first && list->last, "List is empty.");
98 check(node, "node can't be NULL");
99
100 if(node == list->first && node == list->last) {
101 list->first = NULL;
102 list->last = NULL;
103 } else if(node == list->first) {
104 list->first = node->next;
105 check(list->first != NULL, "Invalid list, somehow got a first that is NULL.");
106 list->first->prev = NULL;
107 } else if (node == list->last) {
108 list->last = node->prev;
109 check(list->last != NULL, "Invalid list, somehow got a next that is NULL.");
110 list->last->next = NULL;
111 } else {
112 ListNode *after = node->next;
113 ListNode *before = node->prev;
114 after->prev = before;
115 before->next = after;
116 }
117
118 list->count--;
119 result = node->value;
120 free(node);
121
122 error:
123 return result;
124 }

I then implement all of the operations on a double linked list that can’t be done with simple macros. Ratherthan cover every tiny little line of this file, I’m going to give high-level overview of every operation in both the
list.h and list.c file, then leave you to read the code.
list.h:List_count Returns the number of elements in the list, which is maintained as elements are added andremoved.
list.h:List_first Returns the first element of the list, but does not remove it.
list.h:List_last Returns the last element of the list, but does not remove it.
list.h:LIST_FOREACH Iterates over the elements in the list.
list.c:List_create Simply creates the main List struct.
list.c:List_destroy Destroys a List and any elements it might have.
list.c:List_clear Convenience function for freeing the values in each node, not the nodes.
list.c:List_clear_destroy Clears and destroys a list. It’s not very efficient since it loops through them twice.
list.c:List_push The first operation that demonstrates the advantage of a linked list. It adds a new element tothe end of the list, and because that’s just a couple of pointer assignments, does it very fast.

33.4. TESTS 193
list.c:List_pop The inverse of List_push, this takes the last element off and returns it.
list.c:List_shift The other thing you can easily do to a linked list is add elements to the front of the list very fast.In this case I call that List_shift for lack of a better term.
list.c:List_unshift Just like List_pop, this removes the first element and returns it.
list.c:List_remove This is actually doing all of the removal when you do List_pop or List_unshift. Some-thing that seems to always be difficult in data structures is removing things, and this function is no differ-ent. It has to handle quite a few conditions depending on if the element being removed is at the front; theend; both front and end; or middle.
Most of these functions are nothing special, and you should be able to easily digest this and understand it fromjust the code. You should definitely focus on how the LIST_FOREACHmacro is used in List_destroy so you canunderstand how much it simplifies this common operation.

33.4 Tests

After you have those compiling it’s time to create the test that makes sure they operate correctly.
tests/list_tests.c

1 #include "minunit.h"
2 #include <lcthw/list.h>
3 #include <assert.h>
4
5 static List *list = NULL;
6 char *test1 = "test1 data";
7 char *test2 = "test2 data";
8 char *test3 = "test3 data";
9
10
11 char *test_create()
12 {
13 list = List_create();
14 mu_assert(list != NULL, "Failed to create list.");
15
16 return NULL;
17 }
18
19
20 char *test_destroy()
21 {
22 List_clear_destroy(list);
23
24 return NULL;
25
26 }
27
28
29 char *test_push_pop()
30 {
31 List_push(list, test1);
32 mu_assert(List_last(list) == test1, "Wrong last value.");
33
34 List_push(list, test2);

194 CHAPTER 33. EXERCISE 32: DOUBLE LINKED LISTS

35 mu_assert(List_last(list) == test2, "Wrong last value");
36
37 List_push(list, test3);
38 mu_assert(List_last(list) == test3, "Wrong last value.");
39 mu_assert(List_count(list) == 3, "Wrong count on push.");
40
41 char *val = List_pop(list);
42 mu_assert(val == test3, "Wrong value on pop.");
43
44 val = List_pop(list);
45 mu_assert(val == test2, "Wrong value on pop.");
46
47 val = List_pop(list);
48 mu_assert(val == test1, "Wrong value on pop.");
49 mu_assert(List_count(list) == 0, "Wrong count after pop.");
50
51 return NULL;
52 }
53
54 char *test_shift()
55 {
56 List_shift(list, test1);
57 mu_assert(List_first(list) == test1, "Wrong first value.");
58
59 List_shift(list, test2);
60 mu_assert(List_first(list) == test2, "Wrong first value");
61
62 List_shift(list, test3);
63 mu_assert(List_first(list) == test3, "Wrong last value.");
64 mu_assert(List_count(list) == 3, "Wrong count on shift.");
65
66 return NULL;
67 }
68
69 char *test_remove()
70 {
71 // we only need to test the middle remove case since push/shift
72 // already tests the other cases
73
74 char *val = List_remove(list, list->first->next);
75 mu_assert(val == test2, "Wrong removed element.");
76 mu_assert(List_count(list) == 2, "Wrong count after remove.");
77 mu_assert(List_first(list) == test3, "Wrong first after remove.");
78 mu_assert(List_last(list) == test1, "Wrong last after remove.");
79
80 return NULL;
81 }
82
83
84 char *test_unshift()
85 {
86 char *val = List_unshift(list);
87 mu_assert(val == test3, "Wrong value on unshift.");
88
89 val = List_unshift(list);
90 mu_assert(val == test1, "Wrong value on unshift.");

33.5. WHAT YOU SHOULD SEE 195

91 mu_assert(List_count(list) == 0, "Wrong count after unshift.");
92
93 return NULL;
94 }
95
96
97
98 char *all_tests() {
99 mu_suite_start();
100
101 mu_run_test(test_create);
102 mu_run_test(test_push_pop);
103 mu_run_test(test_shift);
104 mu_run_test(test_remove);
105 mu_run_test(test_unshift);
106 mu_run_test(test_destroy);
107
108 return NULL;
109 }
110
111 RUN_TESTS(all_tests);

This test simply goes through every operation and makes sure it works. I use a simplification in the test whereI create just one List *list for the whole program, then have the tests work on it. This saves the trouble ofbuilding a List for every test, but it could mean that some tests only pass because of how the previous test ran.In this case I try to make each test keep the list clear or actually use the previous test’s results.

33.5 What You Should See

If you did everything right, then when you do a build and run the unit tests it should look like this:
Ex32 Session

1 $ make
2 cc -g -O2 -Wall -Wextra -Isrc -rdynamic -DNDEBUG -fPIC -c -o src/lcthw/list.o src/lcthw/list.c
3 ar rcs build/liblcthw.a src/lcthw/list.o
4 ranlib build/liblcthw.a
5 cc -shared -o build/liblcthw.so src/lcthw/list.o
6 cc -g -O2 -Wall -Wextra -Isrc -rdynamic -DNDEBUG build/liblcthw.a tests/list_tests.c -o tests/list_tests
7 sh ./tests/runtests.sh
8 Running unit tests:
9 ----
10 RUNNING: ./tests/list_tests
11 ALL TESTS PASSED
12 Tests run: 6
13 tests/list_tests PASS
14 $

Make sure 6 tests ran, that it builds without warnings or errors, and that it’s making the build/liblcthw.aand build/liblcthw.so files.

196 CHAPTER 33. EXERCISE 32: DOUBLE LINKED LISTS
33.6 How To Improve It

Instead of breaking this, I’m going to tell you how to improve the code:
1. You can make List_clear_destroy more efficient by using LIST_FOREACH and doing both free callsinside one loop.
2. You can add asserts for preconditions that it isn’t given a NULL value for the List *list parameters.
3. You can add invariants that check the list’s contents are always correct, such as count is never < 0, and if

count > 0 then first isn’t NULL.
4. You can add documentation to the header file in the form of comments before each struct, function, andmacro that describes what it does.

These amount to going through the defensive programming practices I talked about and "hardening" this codeagainst flaws or improving usability. Go ahead and do these things, then find as many other ways to improvethe code.

33.7 Extra Credit

1. Research double vs. single linked lists and when one is preferred over the other.
2. Research the limitations of a double linked list. For example, while they are efficient for inserting anddeleting elements, they are very slow for iterating over them all.
3. What operations are missing that you can imagine needing? Some examples are copying, joining, splitting.Implement these operations and write the unit tests for them.

Chapter 34

Exercise 33: Linked List Algorithms

I’m going to cover two algorithms you can do on a linked list that involve sorting. I’m going to warn you firstthat if you need to sort the data, then don’t use a linked list. These are horrible for sorting things, and there’smuch better data structures you can use if that’s a requirement. I’m covering these two algorithms because theyare slightly difficult to pull off with a linked list and get you thinking about manipulating them efficiently.
In the interest of writing this book, I’m going to put the algorithms in two different files list_algos.h and
list_algos.c then write a test in list_algos_test.c. For now just follow my structure, as it does keepthings clean, but if you ever work on other libraries remember this isn’t a common structure.
In this exercise I’m going to also give you an extra challenge and I want you to try not to cheat. I’m going to giveyou the unit test first, and I want you to type it in. Then I want you to try and implement the two algorithmsbased on their descriptions in Wikipedia before seeing if your code is like my code.

34.0.1 Bubble And Merge Sort

You knowwhat’s awesome about the Internet? I can just link you to the Bubble Sort page andMerge Sort page onWikipedia and tell you to read that. Man, that saves me a boat load of typing. Now I can tell you how to actuallyimplement each of these using the pseudo-code they have there. Here’s how you can tackle an algorithm likethis:
1. Read the description and look at any visualizations it has.
2. Either draw the algorithm on paper using boxes and lines, or actually take a deck of numbered cards (likePoker Cards) and try to do the algorithm manually. This gives you a concrete demonstration of how thealgorithm works.
3. Create the skeleton functions in your list_algos.c file and make a working list_algos.h file, thensetup your test harness.
4. Write your first failing test and get everything to compile.
5. Go back to the Wikipedia page and copy-paste the pseudo-code (not the C code!) into the guts of the firstfunction you’re making.
6. Translate this pseudo-code into good C code like I’ve taught you, using your unit test to make sure it’sworking.
7. Fill out some more tests for edge cases like, empty lists, already sorted lists, etc.
8. Repeat for the next algorithm and test.

I just gave you the secret to figuring out most of the algorithms out there, that is until you get to some of themore insane ones. In this case you’re just doing the Bubble and Merge Sorts from Wikipedia, but those will begood starters. 197

http://en.wikipedia.org/wiki/Bubble_sort
http://en.wikipedia.org/wiki/Merge_sort

198 CHAPTER 34. EXERCISE 33: LINKED LIST ALGORITHMS
34.0.2 The Unit Test

Here is the unit test you should try to get passing:
tests/list_algos_tests.c

1 #include "minunit.h"
2 #include <lcthw/list_algos.h>
3 #include <assert.h>
4 #include <string.h>
5
6 char *values[] = {"XXXX", "1234", "abcd", "xjvef", "NDSS"};
7 #define NUM_VALUES 5
8
9 List *create_words()
10 {
11 int i = 0;
12 List *words = List_create();
13
14 for(i = 0; i < NUM_VALUES; i++) {
15 List_push(words, values[i]);
16 }
17
18 return words;
19 }
20
21 int is_sorted(List *words)
22 {
23 LIST_FOREACH(words, first, next, cur) {
24 if(cur->next && strcmp(cur->value, cur->next->value) > 0) {
25 debug("%s %s", (char *)cur->value, (char *)cur->next->value);
26 return 0;
27 }
28 }
29
30 return 1;
31 }
32
33 char *test_bubble_sort()
34 {
35 List *words = create_words();
36
37 // should work on a list that needs sorting
38 int rc = List_bubble_sort(words, (List_compare)strcmp);
39 mu_assert(rc == 0, "Bubble sort failed.");
40 mu_assert(is_sorted(words), "Words are not sorted after bubble sort.");
41
42 // should work on an already sorted list
43 rc = List_bubble_sort(words, (List_compare)strcmp);
44 mu_assert(rc == 0, "Bubble sort of already sorted failed.");
45 mu_assert(is_sorted(words), "Words should be sort if already bubble sorted.");
46
47 List_destroy(words);
48
49 // should work on an empty list
50 words = List_create(words);

199

51 rc = List_bubble_sort(words, (List_compare)strcmp);
52 mu_assert(rc == 0, "Bubble sort failed on empty list.");
53 mu_assert(is_sorted(words), "Words should be sorted if empty.");
54
55 List_destroy(words);
56
57 return NULL;
58 }
59
60 char *test_merge_sort()
61 {
62 List *words = create_words();
63
64 // should work on a list that needs sorting
65 List *res = List_merge_sort(words, (List_compare)strcmp);
66 mu_assert(is_sorted(res), "Words are not sorted after merge sort.");
67
68 List *res2 = List_merge_sort(res, (List_compare)strcmp);
69 mu_assert(is_sorted(res), "Should still be sorted after merge sort.");
70 List_destroy(res2);
71 List_destroy(res);
72
73 List_destroy(words);
74 return NULL;
75 }
76
77
78 char *all_tests()
79 {
80 mu_suite_start();
81
82 mu_run_test(test_bubble_sort);
83 mu_run_test(test_merge_sort);
84
85 return NULL;
86 }
87
88 RUN_TESTS(all_tests);

I suggest that you start with the bubble sort and get that working, then move on to the merge sort. What I woulddo is lay out the function prototypes and skeletons that get all three files compiling, but not passing the test.Then just fill in the implementation until it starts working.

34.0.3 The Implementation

Are you cheating? In future exercises I will do exercises where I just give you a unit test and tell you to imple-ment it, so it’ll be good practice for you to not look at this code until you get your own working. Here’s the codefor the list_algos.c and list_algos.h:
src/lcthw/list_algos.h

1 #ifndef lcthw_List_algos_h
2 #define lcthw_List_algos_h
3

200 CHAPTER 34. EXERCISE 33: LINKED LIST ALGORITHMS

4 #include <lcthw/list.h>
5
6 typedef int (*List_compare)(const void *a, const void *b);
7
8 int List_bubble_sort(List *list, List_compare cmp);
9
10 List *List_merge_sort(List *list, List_compare cmp);
11
12 #endif

src/lcthw/list_algos.c
1 #include <lcthw/list_algos.h>
2 #include <lcthw/dbg.h>
3
4 inline void ListNode_swap(ListNode *a, ListNode *b)
5 {
6 void *temp = a->value;
7 a->value = b->value;
8 b->value = temp;
9 }
10
11 int List_bubble_sort(List *list, List_compare cmp)
12 {
13 int sorted = 1;
14
15 if(List_count(list) <= 1) {
16 return 0; // already sorted
17 }
18
19 do {
20 sorted = 1;
21 LIST_FOREACH(list, first, next, cur) {
22 if(cur->next) {
23 if(cmp(cur->value, cur->next->value) > 0) {
24 ListNode_swap(cur, cur->next);
25 sorted = 0;
26 }
27 }
28 }
29 } while(!sorted);
30
31 return 0;
32 }
33
34 inline List *List_merge(List *left, List *right, List_compare cmp)
35 {
36 List *result = List_create();
37 void *val = NULL;
38
39 while(List_count(left) > 0 || List_count(right) > 0) {
40 if(List_count(left) > 0 && List_count(right) > 0) {
41 if(cmp(List_first(left), List_first(right)) <= 0) {
42 val = List_unshift(left);
43 } else {

201

44 val = List_unshift(right);
45 }
46
47 List_push(result, val);
48 } else if(List_count(left) > 0) {
49 val = List_unshift(left);
50 List_push(result, val);
51 } else if(List_count(right) > 0) {
52 val = List_unshift(right);
53 List_push(result, val);
54 }
55 }
56
57 return result;
58 }
59
60 List *List_merge_sort(List *list, List_compare cmp)
61 {
62 if(List_count(list) <= 1) {
63 return list;
64 }
65
66 List *left = List_create();
67 List *right = List_create();
68 int middle = List_count(list) / 2;
69
70 LIST_FOREACH(list, first, next, cur) {
71 if(middle > 0) {
72 List_push(left, cur->value);
73 } else {
74 List_push(right, cur->value);
75 }
76
77 middle--;
78 }
79
80 List *sort_left = List_merge_sort(left, cmp);
81 List *sort_right = List_merge_sort(right, cmp);
82
83 if(sort_left != left) List_destroy(left);
84 if(sort_right != right) List_destroy(right);
85
86 return List_merge(sort_left, sort_right, cmp);
87 }

The bubble sort isn’t too bad to figure out, although it is really slow. The merge sort is much more complicated,and honestly I could probably spend a bit more time optimizing this code if I wanted to sacrifice clarity.
There is another way to implement merge sort using a "bottom up" method, but it’s a little harder to understandso I didn’t do it. As I’ve already said, sorting algorithms on linked lists are entirely pointless. You could spendall day trying to make this faster and it will still be slower than almost any other sortable data structure. Thenature of linked lists is such that you simply don’t use them if you need to sort things.

202 CHAPTER 34. EXERCISE 33: LINKED LIST ALGORITHMS
34.1 What You Should See

If everything works then you should get something like this:
Ex33 Session

1 $ make clean all
2 rm -rf build src/lcthw/list.o src/lcthw/list_algos.o tests/list_algos_tests tests/list_tests
3 rm -f tests/tests.log
4 find . -name "*.gc*" -exec rm {} \;
5 rm -rf `find . -name "*.dSYM" -print`
6 cc -g -O2 -Wall -Wextra -Isrc -rdynamic -DNDEBUG -fPIC -c -o src/lcthw/list.o src/lcthw/list.c
7 cc -g -O2 -Wall -Wextra -Isrc -rdynamic -DNDEBUG -fPIC -c -o src/lcthw/list_algos.o src/lcthw/list_algos.c
8 ar rcs build/liblcthw.a src/lcthw/list.o src/lcthw/list_algos.o
9 ranlib build/liblcthw.a
10 cc -shared -o build/liblcthw.so src/lcthw/list.o src/lcthw/list_algos.o
11 cc -g -O2 -Wall -Wextra -Isrc -rdynamic -DNDEBUG build/liblcthw.a tests/list_algos_tests.c -o tests/list_algos_tests
12 cc -g -O2 -Wall -Wextra -Isrc -rdynamic -DNDEBUG build/liblcthw.a tests/list_tests.c -o tests/list_tests
13 sh ./tests/runtests.sh
14 Running unit tests:
15 ----
16 RUNNING: ./tests/list_algos_tests
17 ALL TESTS PASSED
18 Tests run: 2
19 tests/list_algos_tests PASS
20 ----
21 RUNNING: ./tests/list_tests
22 ALL TESTS PASSED
23 Tests run: 6
24 tests/list_tests PASS
25 $

After this exercise I’m not going to show you this output unless it’s necessary to show you how it works. Fromnow on you should know that I ran the tests and they all passed and everything compiled.

34.2 How To Improve It

Going back to the description of the algorithms, there’s several ways to improve these implementations, andthere’s a few obvious ones:
1. The merge sort does a crazy amount of copying and creating lists, find ways to reduce this.
2. The bubble sort Wikipedia description mentions a few optimizations, implement them.
3. Can you use the List_split and List_join (if you implemented them) to improve merge sort?
4. Go through all the defensive programming checks and improve the robustness of this implementation, pro-tecting against bad NULL pointers, and create an optional debug level invariant that does what is_sorteddoes after a sort.

34.3. EXTRA CREDIT 203
34.3 Extra Credit

1. Create a unit test that compares the performance of the two algorithms. You’ll want to look at man 3 timefor a basic timer function, and you’ll want to run enough iterations to at least have a few seconds of sam-ples.
2. Play with the amount of data in the lists that need to be sorted and see if that changes your timing.
3. Find a way to simulate filling different sized random lists and measuring how long they take, then graph itand see how it compares to the description of the algorithm.
4. Try to explain why sorting linked lists is a really bad idea.
5. Implement a List_insert_sorted that will take a given value, and using the List_compare, insert theelement at the right position so that the list is always sorted. How does using this method compare tosorting a list after you’ve built it?
6. Try implementing the "bottom up" merge sort on the wikipedia page. The code there is already C so itshould be easy to recreate, but try to understand how it’s working compared to the slower one I have here.

204 CHAPTER 34. EXERCISE 33: LINKED LIST ALGORITHMS

Chapter 35

Exercise 34: Dynamic Array

This is an array that grows on its own and has most of the same features as a linked list. It will usually take upless space, run faster, and has other beneficial properties. This exercise will cover a few of the disadvantageslike very slow removal from the front, with a solution (just do it at the end).
A dynamic array is simply an array of void ** pointers that is pre-allocated in one shot and that point at thedata. In the linked list you had a full struct that stored the void *value pointer, but in a dynamic array there’sjust a single array with all of them. This means you don’t need any other pointers for next and previous recordssince you can just index into it directly.
To start, I’ll give you the header file you should type up for the implementation:

src/lcthw/darray.h
1 #ifndef _DArray_h
2 #define _DArray_h
3 #include <stdlib.h>
4 #include <assert.h>
5 #include <lcthw/dbg.h>
6
7 typedef struct DArray {
8 int end;
9 int max;
10 size_t element_size;
11 size_t expand_rate;
12 void **contents;
13 } DArray;
14
15 DArray *DArray_create(size_t element_size, size_t initial_max);
16
17 void DArray_destroy(DArray *array);
18
19 void DArray_clear(DArray *array);
20
21 int DArray_expand(DArray *array);
22
23 int DArray_contract(DArray *array);
24
25 int DArray_push(DArray *array, void *el);
26
27 void *DArray_pop(DArray *array);
28

205

206 CHAPTER 35. EXERCISE 34: DYNAMIC ARRAY

29 void DArray_clear_destroy(DArray *array);
30
31 #define DArray_last(A) ((A)->contents[(A)->end - 1])
32 #define DArray_first(A) ((A)->contents[0])
33 #define DArray_end(A) ((A)->end)
34 #define DArray_count(A) DArray_end(A)
35 #define DArray_max(A) ((A)->max)
36
37 #define DEFAULT_EXPAND_RATE 300
38
39
40 static inline void DArray_set(DArray *array, int i, void *el)
41 {
42 check(i < array->max, "darray attempt to set past max");
43 array->contents[i] = el;
44 error:
45 return;
46 }
47
48 static inline void *DArray_get(DArray *array, int i)
49 {
50 check(i < array->max, "darray attempt to get past max");
51 return array->contents[i];
52 error:
53 return NULL;
54 }
55
56 static inline void *DArray_remove(DArray *array, int i)
57 {
58 void *el = array->contents[i];
59
60 array->contents[i] = NULL;
61
62 return el;
63 }
64
65 static inline void *DArray_new(DArray *array)
66 {
67 check(array->element_size > 0, "Can't use DArray_new on 0 size darrays.");
68
69 return calloc(1, array->element_size);
70
71 error:
72 return NULL;
73 }
74
75 #define DArray_free(E) free((E))
76
77 #endif

This header file is showing you a new technique where I put static inline functions right in the header.These function definitions will work similar to the #define macros you’ve been making, but they’re cleanerand easier to write. If you need to create a block of code for a macro and you don’t need code generation, thenuse a static inline function.
Compare this technique to the LIST_FOREACH that generates a proper for-loop for a list. This would be impos-sible to do with a static inline function because it actually has to generate the inner block of code for the

207
loop. The only way to do that is with a callback function, but that’s not as fast and is harder to use.
I’ll then change things up and have you create the unit test for DArray:

tests/darray_tests.c
1 #include "minunit.h"
2 #include <lcthw/darray.h>
3
4 static DArray *array = NULL;
5 static int *val1 = NULL;
6 static int *val2 = NULL;
7
8 char *test_create()
9 {
10 array = DArray_create(sizeof(int), 100);
11 mu_assert(array != NULL, "DArray_create failed.");
12 mu_assert(array->contents != NULL, "contents are wrong in darray");
13 mu_assert(array->end == 0, "end isn't at the right spot");
14 mu_assert(array->element_size == sizeof(int), "element size is wrong.");
15 mu_assert(array->max == 100, "wrong max length on initial size");
16
17 return NULL;
18 }
19
20 char *test_destroy()
21 {
22 DArray_destroy(array);
23
24 return NULL;
25 }
26
27 char *test_new()
28 {
29 val1 = DArray_new(array);
30 mu_assert(val1 != NULL, "failed to make a new element");
31
32 val2 = DArray_new(array);
33 mu_assert(val2 != NULL, "failed to make a new element");
34
35 return NULL;
36 }
37
38 char *test_set()
39 {
40 DArray_set(array, 0, val1);
41 DArray_set(array, 1, val2);
42
43 return NULL;
44 }
45
46 char *test_get()
47 {
48 mu_assert(DArray_get(array, 0) == val1, "Wrong first value.");
49 mu_assert(DArray_get(array, 1) == val2, "Wrong second value.");
50
51 return NULL;

208 CHAPTER 35. EXERCISE 34: DYNAMIC ARRAY

52 }
53
54 char *test_remove()
55 {
56 int *val_check = DArray_remove(array, 0);
57 mu_assert(val_check != NULL, "Should not get NULL.");
58 mu_assert(*val_check == *val1, "Should get the first value.");
59 mu_assert(DArray_get(array, 0) == NULL, "Should be gone.");
60 DArray_free(val_check);
61
62 val_check = DArray_remove(array, 1);
63 mu_assert(val_check != NULL, "Should not get NULL.");
64 mu_assert(*val_check == *val2, "Should get the first value.");
65 mu_assert(DArray_get(array, 1) == NULL, "Should be gone.");
66 DArray_free(val_check);
67
68 return NULL;
69 }
70
71 char *test_expand_contract()
72 {
73 int old_max = array->max;
74 DArray_expand(array);
75 mu_assert((unsigned int)array->max == old_max + array->expand_rate, "Wrong size after expand.");
76
77 DArray_contract(array);
78 mu_assert((unsigned int)array->max == array->expand_rate + 1, "Should stay at the expand_rate at least.");
79
80 DArray_contract(array);
81 mu_assert((unsigned int)array->max == array->expand_rate + 1, "Should stay at the expand_rate at least.");
82
83 return NULL;
84 }
85
86 char *test_push_pop()
87 {
88 int i = 0;
89 for(i = 0; i < 1000; i++) {
90 int *val = DArray_new(array);
91 *val = i * 333;
92 DArray_push(array, val);
93 }
94
95 mu_assert(array->max == 1201, "Wrong max size.");
96
97 for(i = 999; i >= 0; i--) {
98 int *val = DArray_pop(array);
99 mu_assert(val != NULL, "Shouldn't get a NULL.");
100 mu_assert(*val == i * 333, "Wrong value.");
101 DArray_free(val);
102 }
103
104 return NULL;
105 }
106
107

209

108 char * all_tests() {
109 mu_suite_start();
110
111 mu_run_test(test_create);
112 mu_run_test(test_new);
113 mu_run_test(test_set);
114 mu_run_test(test_get);
115 mu_run_test(test_remove);
116 mu_run_test(test_expand_contract);
117 mu_run_test(test_push_pop);
118 mu_run_test(test_destroy);
119
120 return NULL;
121 }
122
123 RUN_TESTS(all_tests);

This shows you how all of the operations are used, which then makes implementing the DArraymuch easier:
src/lcthw/darray.c

1 #include <lcthw/darray.h>
2 #include <assert.h>
3
4
5 DArray *DArray_create(size_t element_size, size_t initial_max)
6 {
7 DArray *array = malloc(sizeof(DArray));
8 check_mem(array);
9 array->max = initial_max;
10 check(array->max > 0, "You must set an initial_max > 0.");
11
12 array->contents = calloc(initial_max, sizeof(void *));
13 check_mem(array->contents);
14
15 array->end = 0;
16 array->element_size = element_size;
17 array->expand_rate = DEFAULT_EXPAND_RATE;
18
19 return array;
20
21 error:
22 if(array) free(array);
23 return NULL;
24 }
25
26 void DArray_clear(DArray *array)
27 {
28 int i = 0;
29 if(array->element_size > 0) {
30 for(i = 0; i < array->max; i++) {
31 if(array->contents[i] != NULL) {
32 free(array->contents[i]);
33 }
34 }

210 CHAPTER 35. EXERCISE 34: DYNAMIC ARRAY

35 }
36 }
37
38 static inline int DArray_resize(DArray *array, size_t newsize)
39 {
40 array->max = newsize;
41 check(array->max > 0, "The newsize must be > 0.");
42
43 void *contents = realloc(array->contents, array->max * sizeof(void *));
44 // check contents and assume realloc doesn't harm the original on error
45
46 check_mem(contents);
47
48 array->contents = contents;
49
50 return 0;
51 error:
52 return -1;
53 }
54
55 int DArray_expand(DArray *array)
56 {
57 size_t old_max = array->max;
58 check(DArray_resize(array, array->max + array->expand_rate) == 0,
59 "Failed to expand array to new size: %d",
60 array->max + (int)array->expand_rate);
61
62 memset(array->contents + old_max, 0, array->expand_rate + 1);
63 return 0;
64
65 error:
66 return -1;
67 }
68
69 int DArray_contract(DArray *array)
70 {
71 int new_size = array->end < (int)array->expand_rate ? (int)array->expand_rate : array->end;
72
73 return DArray_resize(array, new_size + 1);
74 }
75
76
77 void DArray_destroy(DArray *array)
78 {
79 if(array) {
80 if(array->contents) free(array->contents);
81 free(array);
82 }
83 }
84
85 void DArray_clear_destroy(DArray *array)
86 {
87 DArray_clear(array);
88 DArray_destroy(array);
89 }
90

35.1. ADVANTAGES AND DISADVANTAGES 211

91 int DArray_push(DArray *array, void *el)
92 {
93 array->contents[array->end] = el;
94 array->end++;
95
96 if(DArray_end(array) >= DArray_max(array)) {
97 return DArray_expand(array);
98 } else {
99 return 0;
100 }
101 }
102
103 void *DArray_pop(DArray *array)
104 {
105 check(array->end - 1 >= 0, "Attempt to pop from empty array.");
106
107 void *el = DArray_remove(array, array->end - 1);
108 array->end--;
109
110 if(DArray_end(array) > (int)array->expand_rate && DArray_end(array) % array->expand_rate) {
111 DArray_contract(array);
112 }
113
114 return el;
115 error:
116 return NULL;
117 }

This shows you another way to tackle complex code. Instead of diving right into the .c implementation, look atthe header file, then read the unit test. This gives you an "abstract to concrete" understanding how the pieceswork together and making it easier to remember.

35.1 Advantages And Disadvantages

A DArray is better when you need to optimize these operations:
1. Iteration. You can just use a basic for-loop and DArray_count with DArray_get and you’re done. Nospecial macros needed, and it’s faster because you aren’t walking pointers.
2. Indexing. You can use DArray_get and DArray_set to access any element at random, but with a List youhave to go through N elements to get to N+1.
3. Destroying. You just free the struct and the contents in two operations. A List requires a series of freecalls and also walking every element.
4. Cloning. You can also clone it in just two operations (plus whatever it’s storing) by copying the struct and

contents. A list again requires walking the whole thing and copying every ListNode plus its value.
5. Sorting. As you saw, List is horrible if you need to keep the data sorted. A DArray opens up a whole classof great sorting algorithms because now you can access elements randomly.
6. Large Data. If you need to keep around a lot of data, then a DArray wins since it’s base contents takes upless memory than the same number of ListNode structs.

The List however wins on these operations:
1. Insert and remove on the front (what I called shift). A DArray needs special treatment to be able to do thisefficiently, and usually has to do some copying.

212 CHAPTER 35. EXERCISE 34: DYNAMIC ARRAY
2. Splitting or joining. A List can just copy some pointers and it’s done, but with a DArray you have to docopying of the arrays involved.
3. Small Data. If you only need to store a few elements, then typically the storage will be less in a List than ageneric DArray because the DArray needs to expand the backing store to accommodate future inserts, buta List only makes what it needs.

With this, I prefer to use a DArray for most of the things you see other people use a List. I reserve using Listfor any data structure that requires small number of nodes that are inserted and removed from either end. I’llshow you two similar data structures called a Stack and Queue where this is important.

35.2 How To Improve It

As usual, go through each function and operation and add the defensive programming checks, pre-conditions,invariants, and anything else you can find to make the implementation more bulletproof.

35.3 Extra Credit

1. Improve the unit tests to cover more of the operations and test that using a for-loop to iterate works.
2. Research what it would take to implement bubble sort and merge sort for DArray, but don’t do it yet. I’ll beimplementing DArray algorithms next and you’ll do this then.
3. Write some performance tests for common operations and compare them to the same operations in List.You did some of this, but this time, write a unit test that repeatedly does the operation in question, then inthe main runner do the timing.
4. Look at how the DArray_expand is implemented using a constant increase (size + 300). Typically dynamicarrays are implementedwith amultiplicative increase (size * 2), but I’ve found this to cost needlessmemoryfor no real performance gain. Test my assertion and see when you’d want a multiplied increase instead ofa constant increase.

Chapter 36

Exercise 35: Sorting And Searching

In this exercise I’m going to cover four sorting algorithms and one search algorithm. The sorting algorithms aregoing to be quick sort, heap sort, merge sort, and radix sort. I’m then going to show you how to binary searchafter you’ve done a radix sort.
However, I’m a lazy guy, and in most standard C libraries you have existing implementations of the heapsort,quicksort, and mergesort algorithms. Here’s how you use them:

src/lcthw/darray_algos.c
1 #include <lcthw/darray_algos.h>
2 #include <stdlib.h>
3
4 int DArray_qsort(DArray *array, DArray_compare cmp)
5 {
6 qsort(array->contents, DArray_count(array), sizeof(void *), cmp);
7 return 0;
8 }
9
10 int DArray_heapsort(DArray *array, DArray_compare cmp)
11 {
12 return heapsort(array->contents, DArray_count(array), sizeof(void *), cmp);
13 }
14
15 int DArray_mergesort(DArray *array, DArray_compare cmp)
16 {
17 return mergesort(array->contents, DArray_count(array), sizeof(void *), cmp);
18 }

That’s the whole implementation of the darray_algos.c file, and it should work onmost modern Unix systems.What each of these does is sort the contents store of void pointers using the DArray_compare you give it. I’llshow you the header file for this too:
src/lcthw/darray_algos.h

1 #ifndef darray_algos_h
2 #define darray_algos_h
3
4 #include <lcthw/darray.h>
5

213

214 CHAPTER 36. EXERCISE 35: SORTING AND SEARCHING

6 typedef int (*DArray_compare)(const void *a, const void *b);
7
8 int DArray_qsort(DArray *array, DArray_compare cmp);
9
10 int DArray_heapsort(DArray *array, DArray_compare cmp);
11
12 int DArray_mergesort(DArray *array, DArray_compare cmp);
13
14 #endif

About the same size and should be what you expect. Next you can see how these functions are used in the unittest for these three:
tests/darray_algos_tests.c

1 #include "minunit.h"
2 #include <lcthw/darray_algos.h>
3
4 int testcmp(char **a, char **b)
5 {
6 return strcmp(*a, *b);
7 }
8
9 DArray *create_words()
10 {
11 DArray *result = DArray_create(0, 5);
12 char *words[] = {"asdfasfd", "werwar", "13234", "asdfasfd", "oioj"};
13 int i = 0;
14
15 for(i = 0; i < 5; i++) {
16 DArray_push(result, words[i]);
17 }
18
19 return result;
20 }
21
22 int is_sorted(DArray *array)
23 {
24 int i = 0;
25
26 for(i = 0; i < DArray_count(array) - 1; i++) {
27 if(strcmp(DArray_get(array, i), DArray_get(array, i+1)) > 0) {
28 return 0;
29 }
30 }
31
32 return 1;
33 }
34
35 char *run_sort_test(int (*func)(DArray *, DArray_compare), const char *name)
36 {
37 DArray *words = create_words();
38 mu_assert(!is_sorted(words), "Words should start not sorted.");
39
40 debug("--- Testing %s sorting algorithm", name);

36.1. RADIX SORT AND BINARY SEARCH 215

41 int rc = func(words, (DArray_compare)testcmp);
42 mu_assert(rc == 0, "sort failed");
43 mu_assert(is_sorted(words), "didn't sort it");
44
45 DArray_destroy(words);
46
47 return NULL;
48 }
49
50 char *test_qsort()
51 {
52 return run_sort_test(DArray_qsort, "qsort");
53 }
54
55 char *test_heapsort()
56 {
57 return run_sort_test(DArray_heapsort, "heapsort");
58 }
59
60 char *test_mergesort()
61 {
62 return run_sort_test(DArray_mergesort, "mergesort");
63 }
64
65
66 char * all_tests()
67 {
68 mu_suite_start();
69
70 mu_run_test(test_qsort);
71 mu_run_test(test_heapsort);
72 mu_run_test(test_mergesort);
73
74 return NULL;
75 }
76
77 RUN_TESTS(all_tests);

The thing to notice, and actually what tripped me up for a whole day, is the definition of testcmp on line 4.You have to use a char ** and not a char * because qsort is going to give you a pointer to the pointers in the
contents array. The reason is qsort and friends are scanning the array, and handing pointers to each elementin the array to your comparison function. Since what I have in the contents array is pointers, that means youget a pointer to a pointer.
With that out of the way you have to just implemented three difficult sorting algorithms in about 20 lines ofcode. You could stop there, but part of this book is learning how these algorithms work so the extra credit isgoing to involve implementing each of these.

36.1 Radix Sort And Binary Search

Since you’re going to implement quicksort, heapsort, and mergesort on your own, I’m going to show you a funkyalgorithm called Radix Sort. It has a slightly narrow usefulness in sorting arrays of integers, and seems to worklike magic. In this case I’m going to create a special data structure called a RadixMap that is used to map oneinteger to another.

216 CHAPTER 36. EXERCISE 35: SORTING AND SEARCHING
Here’s the header file for the new algorithm that is both algorithm and data structure in one:

src/lcthw/radixmap.h
1 #ifndef _radixmap_h
2 #include <stdint.h>
3
4 typedef union RMElement {
5 uint64_t raw;
6 struct {
7 uint32_t key;
8 uint32_t value;
9 } data;
10 } RMElement;
11
12 typedef struct RadixMap {
13 size_t max;
14 size_t end;
15 uint32_t counter;
16 RMElement *contents;
17 RMElement *temp;
18 } RadixMap;
19
20
21 RadixMap *RadixMap_create(size_t max);
22
23 void RadixMap_destroy(RadixMap *map);
24
25 void RadixMap_sort(RadixMap *map);
26
27 RMElement *RadixMap_find(RadixMap *map, uint32_t key);
28
29 int RadixMap_add(RadixMap *map, uint32_t key, uint32_t value);
30
31 int RadixMap_delete(RadixMap *map, RMElement *el);
32
33 #endif

You see I have a lot of the same operations as in a Dynamic Array or a List data structure, the difference isI’mworking only with fixed size 32 bit uin32_t integers. I’m also introducing you to a new C concept called the
union here.

36.1.1 C Unions

A union is a way to refer to the same piece of memory in a number of different ways. How they work is youdefine them like a struct except every element is sharing the same space with all of the others. You can thinkof a union as a picture of the memory, and the elements in the union as different colored lenses to view thepicture.
What they are used for is to either save memory, or to convert chunks of memory between formats. The firstusage is typically done with "variant types", where you create a struct that has "tag" for the type, and then aunion inside it for each type. When used for converting between formats of memory, you simply define the twostructures, and then access the right one.
First let me show you how to make a variant type with C unions:

36.1. RADIX SORT AND BINARY SEARCH 217

ex35.c
1 #include <stdio.h>
2
3 typedef enum {
4 TYPE_INT,
5 TYPE_FLOAT,
6 TYPE_STRING,
7 } VariantType;
8
9 struct Variant {
10 VariantType type;
11 union {
12 int as_integer;
13 float as_float;
14 char *as_string;
15 } data;
16 };
17
18 typedef struct Variant Variant;
19
20 void Variant_print(Variant *var)
21 {
22 switch(var->type) {
23 case TYPE_INT:
24 printf("INT: %d\n", var->data.as_integer);
25 break;
26 case TYPE_FLOAT:
27 printf("FLOAT: %f\n", var->data.as_float);
28 break;
29 case TYPE_STRING:
30 printf("STRING: %s\n", var->data.as_string);
31 break;
32 default:
33 printf("UNKNOWN TYPE: %d", var->type);
34 }
35 }
36
37 int main(int argc, char *argv[])
38 {
39 Variant a_int = {.type = TYPE_INT, .data.as_integer = 100};
40 Variant a_float = {.type = TYPE_FLOAT, .data.as_float = 100.34};
41 Variant a_string = {.type = TYPE_STRING, .data.as_string = "YO DUDE!"};
42
43 Variant_print(&a_int);
44 Variant_print(&a_float);
45 Variant_print(&a_string);
46
47 // here's how you access them
48 a_int.data.as_integer = 200;
49 a_float.data.as_float = 2.345;
50 a_string.data.as_string = "Hi there.";
51
52 Variant_print(&a_int);
53 Variant_print(&a_float);
54 Variant_print(&a_string);

218 CHAPTER 36. EXERCISE 35: SORTING AND SEARCHING

55
56 return 0;
57 }

You find this in many implementations of dynamic languages. The language will define some base variant typewith tags for all the base types of the language, and then usually there’s a generic "object" tag for the types youcreate. The advantage of doing this is that the Variant only takes up as much space as the VariantType typetag and the largest member of the union. This is because C is "layering" each element of the Variant.dataunion together so they overlap, and to do that it sizes it big enough to hold the largest element.
In the radixmap.h file I have the RMElement union which demonstrates using a union to convert blocks ofmemory between types. In this case, I want to store a uint64_t sized integer for sorting purposes, but I want atwo uint32_t integers for the data to represent a key and value pair. By using a union I’m able to access thesame block of memory in the two different ways I need cleanly.

36.1.2 The Implementation

I next have the actual RadixMap implementation for each of these operations:
src/lcthw/radixmap.c

1 /*
2 * Based on code by Andre Reinald then heavily modified by Zed A. Shaw.
3 */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <assert.h>
8 #include <lcthw/radixmap.h>
9 #include <lcthw/dbg.h>
10
11 RadixMap *RadixMap_create(size_t max)
12 {
13 RadixMap *map = calloc(sizeof(RadixMap), 1);
14 check_mem(map);
15
16 map->contents = calloc(sizeof(RMElement), max + 1);
17 check_mem(map->contents);
18
19 map->temp = calloc(sizeof(RMElement), max + 1);
20 check_mem(map->temp);
21
22 map->max = max;
23 map->end = 0;
24
25 return map;
26 error:
27 return NULL;
28 }
29
30 void RadixMap_destroy(RadixMap *map)
31 {
32 if(map) {
33 free(map->contents);
34 free(map->temp);

36.1. RADIX SORT AND BINARY SEARCH 219

35 free(map);
36 }
37 }
38
39
40 #define ByteOf(x,y) (((uint8_t *)x)[(y)])
41
42 static inline void radix_sort(short offset, uint64_t max, uint64_t *source, uint64_t *dest)
43 {
44 uint64_t count[256] = {0};
45 uint64_t *cp = NULL;
46 uint64_t *sp = NULL;
47 uint64_t *end = NULL;
48 uint64_t s = 0;
49 uint64_t c = 0;
50
51 // count occurences of every byte value
52 for (sp = source, end = source + max; sp < end; sp++) {
53 count[ByteOf(sp, offset)]++;
54 }
55
56 // transform count into index by summing elements and storing into same array
57 for (s = 0, cp = count, end = count + 256; cp < end; cp++) {
58 c = *cp;
59 *cp = s;
60 s += c;
61 }
62
63 // fill dest with the right values in the right place
64 for (sp = source, end = source + max; sp < end; sp++) {
65 cp = count + ByteOf(sp, offset);
66 dest[*cp] = *sp;
67 ++(*cp);
68 }
69 }
70
71 void RadixMap_sort(RadixMap *map)
72 {
73 uint64_t *source = &map->contents[0].raw;
74 uint64_t *temp = &map->temp[0].raw;
75
76 radix_sort(0, map->end, source, temp);
77 radix_sort(1, map->end, temp, source);
78 radix_sort(2, map->end, source, temp);
79 radix_sort(3, map->end, temp, source);
80 }
81
82 RMElement *RadixMap_find(RadixMap *map, uint32_t to_find)
83 {
84 int low = 0;
85 int high = map->end - 1;
86 RMElement *data = map->contents;
87
88 while (low <= high) {
89 int middle = low + (high - low)/2;
90 uint32_t key = data[middle].data.key;

220 CHAPTER 36. EXERCISE 35: SORTING AND SEARCHING

91
92 if (to_find < key) {
93 high = middle - 1;
94 } else if (to_find > key) {
95 low = middle + 1;
96 } else {
97 return &data[middle];
98 }
99 }
100
101 return NULL;
102 }
103
104 int RadixMap_add(RadixMap *map, uint32_t key, uint32_t value)
105 {
106 check(key < UINT32_MAX, "Key can't be equal to UINT32_MAX.");
107
108 RMElement element = {.data = {.key = key, .value = value}};
109 check(map->end + 1 < map->max, "RadixMap is full.");
110
111 map->contents[map->end++] = element;
112
113 RadixMap_sort(map);
114
115 return 0;
116
117 error:
118 return -1;
119 }
120
121 int RadixMap_delete(RadixMap *map, RMElement *el)
122 {
123 check(map->end > 0, "There is nothing to delete.");
124 check(el != NULL, "Can't delete a NULL element.");
125
126 el->data.key = UINT32_MAX;
127
128 if(map->end > 1) {
129 // don't bother resorting a map of 1 length
130 RadixMap_sort(map);
131 }
132
133 map->end--;
134
135 return 0;
136 error:
137 return -1;
138 }

As usual enter this in and get it working along with the unit test then I’ll explain what’s happening. Take specialcare with the radix_sort function as it’s very particular in how it’s implemented.
tests/radixmap_tests.c

1 #include "minunit.h"
2 #include <lcthw/radixmap.h>

36.1. RADIX SORT AND BINARY SEARCH 221

3 #include <time.h>
4
5 static int make_random(RadixMap *map)
6 {
7 size_t i = 0;
8
9 for (i = 0; i < map->max - 1; i++) {
10 uint32_t key = (uint32_t)(rand() | (rand() << 16));
11 check(RadixMap_add(map, key, i) == 0, "Failed to add key %u.", key);
12 }
13
14 return i;
15
16 error:
17 return 0;
18 }
19
20 static int check_order(RadixMap *map)
21 {
22 RMElement d1, d2;
23 unsigned int i = 0;
24
25 // only signal errors if any (should not be)
26 for (i = 0; map->end > 0 && i < map->end-1; i++) {
27 d1 = map->contents[i];
28 d2 = map->contents[i+1];
29
30 if(d1.data.key > d2.data.key) {
31 debug("FAIL:i=%u, key: %u, value: %u, equals max? %d\n", i, d1.data.key, d1.data.value,
32 d2.data.key == UINT32_MAX);
33 return 0;
34 }
35 }
36
37 return 1;
38 }
39
40 static int test_search(RadixMap *map)
41 {
42 unsigned i = 0;
43 RMElement *d = NULL;
44 RMElement *found = NULL;
45
46 for(i = map->end / 2; i < map->end; i++) {
47 d = &map->contents[i];
48 found = RadixMap_find(map, d->data.key);
49 check(found != NULL, "Didn't find %u at %u.", d->data.key, i);
50 check(found->data.key == d->data.key, "Got the wrong result: %p:%u looking for %u at %u",
51 found, found->data.key, d->data.key, i);
52 }
53
54 return 1;
55 error:
56 return 0;
57 }
58

222 CHAPTER 36. EXERCISE 35: SORTING AND SEARCHING

59 // test for big number of elements
60 static char *test_operations()
61 {
62 size_t N = 200;
63
64 RadixMap *map = RadixMap_create(N);
65 mu_assert(map != NULL, "Failed to make the map.");
66 mu_assert(make_random(map), "Didn't make a random fake radix map.");
67
68 RadixMap_sort(map);
69 mu_assert(check_order(map), "Failed to properly sort the RadixMap.");
70
71 mu_assert(test_search(map), "Failed the search test.");
72 mu_assert(check_order(map), "RadixMap didn't stay sorted after search.");
73
74 while(map->end > 0) {
75 RMElement *el = RadixMap_find(map, map->contents[map->end / 2].data.key);
76 mu_assert(el != NULL, "Should get a result.");
77
78 size_t old_end = map->end;
79
80 mu_assert(RadixMap_delete(map, el) == 0, "Didn't delete it.");
81 mu_assert(old_end - 1 == map->end, "Wrong size after delete.");
82
83 // test that the end is now the old value, but uint32 max so it trails off
84 mu_assert(check_order(map), "RadixMap didn't stay sorted after delete.");
85 }
86
87 RadixMap_destroy(map);
88
89 return NULL;
90 }
91
92
93 char *all_tests()
94 {
95 mu_suite_start();
96 srand(time(NULL));
97
98 mu_run_test(test_operations);
99
100 return NULL;
101 }
102
103 RUN_TESTS(all_tests);

I shouldn’t have to explain too much about the test. It’s simply simulating placing random integers into the
RadixMap and then making sure it can get them out reliably. Not too interesting.
In the radixmap.c file most of the operations are easy to understand if you read the code. Here’s a descriptionof what the basic functions are doing and how they work:
RadixMap_create As usual I’m allocating all the memory needed for the structures defined in radixmap.h. I’llbe using the temp and contents later when I talk about radix_sort.
RadixMap_destroy Again, just destroying what was created.
radix_sort The meat of the data structure, but I’ll explain what it’s doing in the next section.

36.1. RADIX SORT AND BINARY SEARCH 223
RadixMap_sort This uses the radix_sort function to actually sort the contents. It does this by sorting be-tween the contents and temp until finally contents is sorted. You’ll see how this works when I describe

radix_sort later.
RadixMap_find This is using a binary search algorithm to find a key you give it. I’ll explain how this worksshortly.
RadixMap_add Using the RadixMap_sort function, this will add the key and value you request at the end, thensimply sort it again so that everything is in the right place. Once everything is sorted, the RadixMap_findwill work properly because it’s a binary search.
RadixMap_delete Works the same as RadixMap_add except "deletes" elements of the structure by setting theirvalues to the max for a unsigned 32 bit integer, UINT32_MAX. This means you can’t use that value as an keyvalue, but it makes deleting elements easy. Simply set it to that and then sort and it’ll get moved to the end.Now it’s deleted.
Study the code for the ones I described, and then that just leaves RadixMap_sort, radix_sort, and RadixMap_findto understand.

36.1.3 RadixMap_find And Binary Search

I’ll start with how the binary search is implemented. Binary search is simple algorithm that most people canunderstand intuitively. In fact, you could take a deck of playing cards (or cards with numbers) and do thismanually. Here’s how this function works, and how a binary search works:
1. Set a high and low mark based on the size of the array.
2. Get the middle element between the low and high marks.
3. If the key is less-than, then the key must be below the middle. Set high to one less than middle.
4. If the key is greater-than, then the key must be above the middle. Set the low mark one greater than themiddle.
5. If it’s equal then you found it, stop.
6. Keep looping until low and high pass each other. You don’t find it if you exit the loop.

What you are effectively doing is guessing where the keymight be by picking themiddle and comparing it. Sincethe data is sorted, you know that the the key has to be above or below this. If it’s below, then you just dividedthe search space in half. You keep going until you either find it or you overlap the boundaries and exhaust thesearch space.

36.1.4 RadixMap_sort And radix_sort

A radix sort is easy to understand if you try to do it manually first. What this algorithm does is exploit the factthat numbers are stored with a sequence of digits that go from "least significant" to "most significant". It thentakes the numbers and buckets them by the digit, and when it has processed all the digits the numbers comeout sorted. At first it seems like magic, and honestly looking at the code sure seems like it is, but try doing itmanually once.
To do this algorithm write out a bunch of three digit numbers, in a random order, let’s say we do 223, 912, 275,100, 633, 120, and 380.
1. Place the number in buckets by their 1’s digit: [380, 100, 120], [912], [633, 223], [275].
2. I nowhave to go through each of these buckets in order, and then sort it into 10’s buckets: [100], [912], [120, 223], [633], [275], [380].
3. Now each bucket contains numbers that are sorted by the 1’s then 10’s digit. I need to then go throughthese in order and fill the final 100’s buckets: [100, 120], [223, 275], [380], [633], [912].

224 CHAPTER 36. EXERCISE 35: SORTING AND SEARCHING
4. At this point each bucket is sorted by 100’s, 10’s, then 1’s and if I take each bucket in order I get the finalsorted list: 100, 120, 223, 275, 380, 633, 912.

Make sure you do this a few times so you understand how it works. It really is a slick little algorithm and mostimportantly it will work on numbers of arbitrary size, so you can sort really huge numbers because you are justdoing them one byte at a time.
In my situation the "digits" are individual 8 bit bytes, so I need 256 buckets to store the distribution of thenumbers by their digits. I also need a way to store them such that I don’t use too much space. If you look at
radix_sort first thing I do is build a count histogram so I know how many occurances of each digit there arefor the given offset.
Once I know the counts for each digit (all 256 of them) I can then use that as distribution points into a targetarray. For example, if I have 10 bytes that are 0x00, then I know I can place them in the first 10 slots of the targetarray. This gives me an index for where they go in the target array, which is the second for-loop in radix_sort.
Finally, once I know where they can go in the target array, I simply go through all the digits in the source array,for this offset and place the numbers in their slots in order. Using the ByteOfmacro helps keep the code cleansince there’s a bit of pointer hackery to make it work, but the end result is all of the integers will be placed in thebucket for their digit when the final for-loop is done.
What becomes interesting is then how I use this in RadixMap_sort to sort these 64 bit integers by just the first32 bits. Remember how I have the key and value in a union for the RMElement type? That means to sort thisarray by the key I only need to sort the first 4 bytes (32 bits / 8 bits per byte) of every integer.
If you look at the RadixMap_sort you see that I grab a quick pointer to the contents and temp to for sourceand target arrays, and then I call radix_sort four times. Each time I call it, I alternate source and target anddo the next byte. When I’m done, the radix_sort has done its job and the final copy has been done into the
contents.

36.2 How To Improve It

There is a big disadvantage to this implementation because it has to process the entire array four times on everyinsertion. It does do it fast, but it’d be better if you could limit the amount of sorting by the size of what needs tobe sorted.
There’s two ways you can improve this implementation:
1. Use a binary search to find the minimum position for the new element, then only sort from there to theend. You find the minimum, put the new element on the end, then just sort from the minimum on. Thiswill cut your sort space down considerably most of the time.
2. Keep track of the biggest key currently being used, and then only sort enough digits to handle that key. Youcan also keep track of the smallest number, and then only sort the digits necessary for the range. To do thisyou’ll have to start caring about CPU integer ordering (endianess).

Try these optimizations, but after you augment the unit test with some timing information so you can see ifyou’re actually improving the speed of the implementation.

36.3 Extra Credit

1. Implement quicksort, heapsort, and mergesort and provide a #define that lets you pick between the two,or create a second set of functions you can call. Use the technique I taught you to read the Wikipedia pagefor the algorithm and then implement it with the psuedo-code.
2. Compare the performance of your implementations to the original ones.
3. Use these sorting functions to create a DArray_sort_add that adds elements to the DArray but sorts the

36.3. EXTRA CREDIT 225
array after.

4. Write a DArray_find that uses the binary search algorithm from RadixMap_find and the DArray_compareto find elements in a sorted DArray.

226 CHAPTER 36. EXERCISE 35: SORTING AND SEARCHING

Chapter 37

Exercise 36: Safer Strings

I’ve already introduced you to the Better String library in Exercise 26 when we made devpkg. This exercise isdesigned to get you into using bstring from now on, why C’s strings are an incredibly bad idea, and then haveyou change the liblcthw code to use bstring.

37.1 Why C Strings Were A Horrible Idea

When people talk about problems with C, it’s concept of a "string" is one of the top flaws. You’ve been usingthese extensively, and I’ve talked about the kinds of flaws they have, but there’s not much that explains exactlywhy C strings are flawed and always will be. I’ll try to explain that right now, but part of my explanation willjust be that after decades of using C’s strings there’s enough evidence that they are just a bad idea.
It is impossible to confirm that any given C string is valid:
1. A C string is invalid if it does not end in '\0'.
2. Any loop that processes an invalid C string will loop infinitely (or, just buffer overflow).
3. C strings do not have a known length, so the only way to check if it’s terminated correctly is to loop throughit.
4. Therefore, it is not possible to validate a C string without possibly looping infinitely.

This is simple logic. You can’t write a loop that checks if a C string is valid because invalid C strings cause loopsto never terminate. That’s it, and the only solution is to include the size. Once you know the size you can avoidthe infinite loop problem. If you look at the two functions I showed you from Exercise 27 you can see this:
ex36.c

1 void copy(char to[], char from[])
2 {
3 int i = 0;
4
5 // while loop will not end if from isn't '\0' terminated
6 while((to[i] = from[i]) != '\0') {
7 ++i;
8 }
9 }
10
11 int safercopy(int from_len, char *from, int to_len, char *to)
12 {

227

http://bstring.sourceforge.net/

228 CHAPTER 37. EXERCISE 36: SAFER STRINGS

13 int i = 0;
14 int max = from_len > to_len - 1 ? to_len - 1 : from_len;
15
16 // to_len must have at least 1 byte
17 if(from_len < 0 || to_len <= 0) return -1;
18
19 for(i = 0; i < max; i++) {
20 to[i] = from[i];
21 }
22
23 to[to_len - 1] = '\0';
24
25 return i;
26 }

Imagine you want to add a check to the copy function to confirm that the from string is valid. How would youdo that? Why you’d write a loop that checked that the string ended in '\0'. Oh wait, if the string doesn’t end in
'\0' then how does the checking loop end? It doesn’t. Checkmate.
No matter what you do, you can’t check that a C string is valid without knowing the length of the underlyingstorage, and in this case the safercopy includes those lengths. This function doesn’t have the same problem asit’s loops will always terminate, even if you lie to it about the size, you still have to give it a finite size.
What the Better String library does is create a struct that always includes the length of the string’s storage. Be-cause the length is always available to a bstring then all of its operations can be safer. The loops will terminate,the contents can be validated, and it will not have this major flaw. The bstring library also comes with a ton ofoperations you need with strings, like splitting, formatting, searching, and they are most likely done right andsafer.
There could be flaws in bstring, but it’s been around a long time so those are probably minimal. They still findflaws in glibc so what’s a programmer to do right?

37.2 Using bstrlib

There’s quite a few improved string libraries, but I like bstrlib because it fits in one file for the basics and hasmost of the stuff you need to deal with strings. You’ve already used it a bit, so in this exercise you’ll go get thetwo files bstrlib.c and bstrlib.h from the Better String project.
Here’s me doing this in the liblcthw project directory:

Adding bstrlib.c
1 $ mkdir bstrlib
2 $ cd bstrlib/
3 $ unzip ~/Downloads/bstrlib-05122010.zip
4 Archive: /Users/zedshaw/Downloads/bstrlib-05122010.zip
5 ...
6 $ ls
7 bsafe.c bstraux.c bstrlib.h bstrwrap.h license.txt test.cpp
8 bsafe.h bstraux.h bstrlib.txt cpptest.cpp porting.txt testaux.c
9 bstest.c bstrlib.c bstrwrap.cpp gpl.txt security.txt
10 $ mv bstrlib.h bstrlib.c ../src/lcthw/
11 $ cd ../
12 $ rm -rf bstrlib
13 # make the edits

http://bstring.sourceforge.net/

37.3. LEARNING THE LIBRARY 229

14 $ vim src/lcthw/bstrlib.c
15 $ make clean all
16 ...
17 $

On line 14 you seem me edit the bstrlib.c file to move it to a new location and to fix a bug on OSX. Here’s thediff:
bstrlib.diff

25c25
< #include "bstrlib.h"

> #include <lcthw/bstrlib.h>
2759c2759
< #ifdef __GNUC__

> #if defined(__GNUC__) && !defined(__APPLE__)

That is, change the include to be <lcthw/bstrlib.h>, and then fix one of the ifdef at line 2759.

37.3 Learning The Library

This exercise is short and simply getting you ready for the remaining exercises that use the library. In the nexttwo exercises I’ll use bstrlib.c to create a Hashmap data structure.
You should now get familiar with this library by reading the header file, the implementations, and then write a
tests/bstr_tests.c that tests out the following functions:
bfromcstr Create a bstring from a C style constant.
blk2bstr Same but give the length of the buffer.
bstrcpy Copy a bstring.
bassign Set one bstring to another.
bassigncstr Set a bstring to a C string’s contents.
bassignblk Set a bstring to a C string but give the length.
bdestroy Destroy a bstring.
bconcat Concatenate one bstring onto another.
bstricmp Compare two bstrings returning the same result as strcmp.
biseq Tests if two bstrings are equal.
binstr Tells if one bstring is in another.
bfindreplace Find one bstring in another then replace it with a third.
bsplit How to split a bstring into a bstrList.
bformat Doing a format string, super handy.
blength Getting the length of a bstring.
bdata Getting the data from a bstring.

230 CHAPTER 37. EXERCISE 36: SAFER STRINGS
bchar Getting a char from a bstring.
Your test should try out all of these operations, and a few more that you find interesting from the header file.Make sure to run the test under valgrind to make sure you use the memory correctly.

Chapter 38

Exercise 37: Hashmaps

Hash Maps (Hashmaps, Hashes, or sometimes Dictionaries) are used frequently in many dynamic programmingfor storing key/value data. A Hashmap works by performing a "hashing" calculation on the keys to produce aninteger, then uses that integer to find a bucket to get or set the value. It is a very fast practical data structuresince it works on nearly any data and they are easy to implement.
Here’s an example of using a Hashmap (aka dict) in Python:

ex37.py
1 fruit_weights = {'Apples': 10, 'Oranges': 100, 'Grapes': 1.0}
2
3 for key, value in fruit_weights.items():
4 print key, "=", value

Almost every modern language has something like this, so many people end up writing code and never under-stand how this actually works. By creating the Hashmap data structure in C I’ll show you how this works. I’llstart with the header file so I can talk about the data structure.
src/lcthw/hashmap.h

1 #ifndef _lcthw_Hashmap_h
2 #define _lcthw_Hashmap_h
3
4 #include <stdint.h>
5 #include <lcthw/darray.h>
6
7 #define DEFAULT_NUMBER_OF_BUCKETS 100
8
9 typedef int (*Hashmap_compare)(void *a, void *b);
10 typedef uint32_t (*Hashmap_hash)(void *key);
11
12 typedef struct Hashmap {
13 DArray *buckets;
14 Hashmap_compare compare;
15 Hashmap_hash hash;
16 } Hashmap;
17
18 typedef struct HashmapNode {
19 void *key;

231

232 CHAPTER 38. EXERCISE 37: HASHMAPS

20 void *data;
21 uint32_t hash;
22 } HashmapNode;
23
24 typedef int (*Hashmap_traverse_cb)(HashmapNode *node);
25
26 Hashmap *Hashmap_create(Hashmap_compare compare, Hashmap_hash);
27 void Hashmap_destroy(Hashmap *map);
28
29 int Hashmap_set(Hashmap *map, void *key, void *data);
30 void *Hashmap_get(Hashmap *map, void *key);
31
32 int Hashmap_traverse(Hashmap *map, Hashmap_traverse_cb traverse_cb);
33
34 void *Hashmap_delete(Hashmap *map, void *key);
35
36 #endif

The structure consists of a Hashmap that contains any number of HashmapNode structs. Looking at Hashmap youcan see that it is structured like this:
DArray *buckets A dynamic array that will be set to a fixed size of 100 buckets. Each bucket will in turn containa DArray that will actually hold HashmapNode pairs.
Hashmap_compare compare This is a comparison function that the Hashmap uses to actually find elements bytheir key. It should work like all of the other compare functions, and defaults to using bstrcmp so that keysare just bstrings.
Hashmap_hash hash This is the hashing function and it’s responsible for taking a key, processing its contents,and producing a single uint32_t index number. You’ll see the default one soon.
This almost tells you how the data is stored, but the buckets DArray isn’t created yet. Just remember that it’skind of a two level mapping:
1. There are 100 buckets that make up the first level, and things are in these buckets based on their hash.
2. Each bucket is a DArray that then contains HashmapNode structs simply appended to the end as they’readded.

The HashmapNode is then composed of these three elements:
void *key The key for this key=value pair.
void *value The value.
uint32_t hash The calculated hash, which makes finding this node quicker since we can just check the hash andskip any that don’t match, only checking they key if it’s equal.
The rest of the header file is nothing new, so now I can show you the implementation hashmap.c file:

src/lcthw/hashmap.c
1 #undef NDEBUG
2 #include <stdint.h>
3 #include <lcthw/hashmap.h>
4 #include <lcthw/dbg.h>
5 #include <lcthw/bstrlib.h>
6
7 static int default_compare(void *a, void *b)
8 {

233

9 return bstrcmp((bstring)a, (bstring)b);
10 }
11
12 /**
13 * Simple Bob Jenkins's hash algorithm taken from the
14 * wikipedia description.
15 */
16 static uint32_t default_hash(void *a)
17 {
18 size_t len = blength((bstring)a);
19 char *key = bdata((bstring)a);
20 uint32_t hash = 0;
21 uint32_t i = 0;
22
23 for(hash = i = 0; i < len; ++i)
24 {
25 hash += key[i];
26 hash += (hash << 10);
27 hash ^= (hash >> 6);
28 }
29
30 hash += (hash << 3);
31 hash ^= (hash >> 11);
32 hash += (hash << 15);
33
34 return hash;
35 }
36
37
38 Hashmap *Hashmap_create(Hashmap_compare compare, Hashmap_hash hash)
39 {
40 Hashmap *map = calloc(1, sizeof(Hashmap));
41 check_mem(map);
42
43 map->compare = compare == NULL ? default_compare : compare;
44 map->hash = hash == NULL ? default_hash : hash;
45 map->buckets = DArray_create(sizeof(DArray *), DEFAULT_NUMBER_OF_BUCKETS);
46 map->buckets->end = map->buckets->max; // fake out expanding it
47 check_mem(map->buckets);
48
49 return map;
50
51 error:
52 if(map) {
53 Hashmap_destroy(map);
54 }
55
56 return NULL;
57 }
58
59
60 void Hashmap_destroy(Hashmap *map)
61 {
62 int i = 0;
63 int j = 0;
64

234 CHAPTER 38. EXERCISE 37: HASHMAPS

65 if(map) {
66 if(map->buckets) {
67 for(i = 0; i < DArray_count(map->buckets); i++) {
68 DArray *bucket = DArray_get(map->buckets, i);
69 if(bucket) {
70 for(j = 0; j < DArray_count(bucket); j++) {
71 free(DArray_get(bucket, j));
72 }
73 DArray_destroy(bucket);
74 }
75 }
76 DArray_destroy(map->buckets);
77 }
78
79 free(map);
80 }
81 }
82
83 static inline HashmapNode *Hashmap_node_create(int hash, void *key, void *data)
84 {
85 HashmapNode *node = calloc(1, sizeof(HashmapNode));
86 check_mem(node);
87
88 node->key = key;
89 node->data = data;
90 node->hash = hash;
91
92 return node;
93
94 error:
95 return NULL;
96 }
97
98
99 static inline DArray *Hashmap_find_bucket(Hashmap *map, void *key,
100 int create, uint32_t *hash_out)
101 {
102 uint32_t hash = map->hash(key);
103 int bucket_n = hash % DEFAULT_NUMBER_OF_BUCKETS;
104 check(bucket_n >= 0, "Invalid bucket found: %d", bucket_n);
105 *hash_out = hash; // store it for the return so the caller can use it
106
107
108 DArray *bucket = DArray_get(map->buckets, bucket_n);
109
110 if(!bucket && create) {
111 // new bucket, set it up
112 bucket = DArray_create(sizeof(void *), DEFAULT_NUMBER_OF_BUCKETS);
113 check_mem(bucket);
114 DArray_set(map->buckets, bucket_n, bucket);
115 }
116
117 return bucket;
118
119 error:
120 return NULL;

235

121 }
122
123
124 int Hashmap_set(Hashmap *map, void *key, void *data)
125 {
126 uint32_t hash = 0;
127 DArray *bucket = Hashmap_find_bucket(map, key, 1, &hash);
128 check(bucket, "Error can't create bucket.");
129
130 HashmapNode *node = Hashmap_node_create(hash, key, data);
131 check_mem(node);
132
133 DArray_push(bucket, node);
134
135 return 0;
136
137 error:
138 return -1;
139 }
140
141 static inline int Hashmap_get_node(Hashmap *map, uint32_t hash, DArray *bucket, void *key)
142 {
143 int i = 0;
144
145 for(i = 0; i < DArray_end(bucket); i++) {
146 debug("TRY: %d", i);
147 HashmapNode *node = DArray_get(bucket, i);
148 if(node->hash == hash && map->compare(node->key, key) == 0) {
149 return i;
150 }
151 }
152
153 return -1;
154 }
155
156 void *Hashmap_get(Hashmap *map, void *key)
157 {
158 uint32_t hash = 0;
159 DArray *bucket = Hashmap_find_bucket(map, key, 0, &hash);
160 if(!bucket) return NULL;
161
162 int i = Hashmap_get_node(map, hash, bucket, key);
163 if(i == -1) return NULL;
164
165 HashmapNode *node = DArray_get(bucket, i);
166 check(node != NULL, "Failed to get node from bucket when it should exist.");
167
168 return node->data;
169
170 error: // fallthrough
171 return NULL;
172 }
173
174
175 int Hashmap_traverse(Hashmap *map, Hashmap_traverse_cb traverse_cb)
176 {

236 CHAPTER 38. EXERCISE 37: HASHMAPS

177 int i = 0;
178 int j = 0;
179 int rc = 0;
180
181 for(i = 0; i < DArray_count(map->buckets); i++) {
182 DArray *bucket = DArray_get(map->buckets, i);
183 if(bucket) {
184 for(j = 0; j < DArray_count(bucket); j++) {
185 HashmapNode *node = DArray_get(bucket, j);
186 rc = traverse_cb(node);
187 if(rc != 0) return rc;
188 }
189 }
190 }
191
192 return 0;
193 }
194
195 void *Hashmap_delete(Hashmap *map, void *key)
196 {
197 uint32_t hash = 0;
198 DArray *bucket = Hashmap_find_bucket(map, key, 0, &hash);
199 if(!bucket) return NULL;
200
201 int i = Hashmap_get_node(map, hash, bucket, key);
202 if(i == -1) return NULL;
203
204 HashmapNode *node = DArray_get(bucket, i);
205 void *data = node->data;
206 free(node);
207
208 HashmapNode *ending = DArray_pop(bucket);
209
210 if(ending != node) {
211 // alright looks like it's not the last one, swap it
212 DArray_set(bucket, i, ending);
213 }
214
215 return data;
216 }

There’s nothing very complicated in the implementation, but the default_hash and Hashmap_find_bucketfunctions will need some explanation. When you use Hashmap_create you can pass in any compare and hashfunctions you want, but if you don’t it uses the default_compare and default_hash functions.
The first thing to look at is how default_hash does its thing. This is a simple hash function called a "Jenkinshash" after Bob Jenkins. I got if from the Wikipedia page for the algorithm. It simply goes through each byte ofthe key to hash (a bstring) and works the bits so that the end result is a single uint32_t. It does this with someadding and xor operations.
There are many different hash functions, all with different properties, but once you have one you need a way touse it to find the right buckets. The Hashmap_find_bucket does it like this:
1. First it calls map->hash(key) to get the hash for the key.
2. It then finds the bucket using hash % DEFAULT_NUMBER_OF_BUCKETS, that way every hash will alwaysfind some bucket no matter how big it is.
3. It then gets the bucket, which is also a DArray, and if it’s not there it will create it. That depends on if the

http://en.wikipedia.org/wiki/Jenkins_hash_function

237
create variable says too.

4. Once it has found the DArray bucket for the right hash, it returns it, and also the hash_out variable is usedto give the caller the hash that was found.
All of the other functions then use Hashmap_find_bucket to do their work:
1. Setting a key/value involves finding the bucket, then making a HashmapNode, and then adding it to thebucket.
2. Getting a key involves finding the bucket, then finding the HashmapNode that matches the hash and keyyou want.
3. Deleting an item again finds the bucket, finds where the requested node is, and then removes it by swap-ping the last node into its place.

The only other function that you should study is the Hashmap_travers. This simply walks every bucket, andfor any bucket that has possible values, it calls the traverse_cb on each value. This is how you scan a whole
Hashmap for its values.

38.0.1 The Unit Test

Finally you have the unit test that is testing all of these operations:
tests/hashmap_tests.c

1 #include "minunit.h"
2 #include <lcthw/hashmap.h>
3 #include <assert.h>
4 #include <lcthw/bstrlib.h>
5
6 Hashmap *map = NULL;
7 static int traverse_called = 0;
8 struct tagbstring test1 = bsStatic("test data 1");
9 struct tagbstring test2 = bsStatic("test data 2");
10 struct tagbstring test3 = bsStatic("xest data 3");
11 struct tagbstring expect1 = bsStatic("THE VALUE 1");
12 struct tagbstring expect2 = bsStatic("THE VALUE 2");
13 struct tagbstring expect3 = bsStatic("THE VALUE 3");
14
15 static int traverse_good_cb(HashmapNode *node)
16 {
17 debug("KEY: %s", bdata((bstring)node->key));
18 traverse_called++;
19 return 0;
20 }
21
22
23 static int traverse_fail_cb(HashmapNode *node)
24 {
25 debug("KEY: %s", bdata((bstring)node->key));
26 traverse_called++;
27
28 if(traverse_called == 2) {
29 return 1;
30 } else {
31 return 0;
32 }

238 CHAPTER 38. EXERCISE 37: HASHMAPS

33 }
34
35
36 char *test_create()
37 {
38 map = Hashmap_create(NULL, NULL);
39 mu_assert(map != NULL, "Failed to create map.");
40
41 return NULL;
42 }
43
44 char *test_destroy()
45 {
46 Hashmap_destroy(map);
47
48 return NULL;
49 }
50
51
52 char *test_get_set()
53 {
54 int rc = Hashmap_set(map, &test1, &expect1);
55 mu_assert(rc == 0, "Failed to set &test1");
56 bstring result = Hashmap_get(map, &test1);
57 mu_assert(result == &expect1, "Wrong value for test1.");
58
59 rc = Hashmap_set(map, &test2, &expect2);
60 mu_assert(rc == 0, "Failed to set test2");
61 result = Hashmap_get(map, &test2);
62 mu_assert(result == &expect2, "Wrong value for test2.");
63
64 rc = Hashmap_set(map, &test3, &expect3);
65 mu_assert(rc == 0, "Failed to set test3");
66 result = Hashmap_get(map, &test3);
67 mu_assert(result == &expect3, "Wrong value for test3.");
68
69 return NULL;
70 }
71
72 char *test_traverse()
73 {
74 int rc = Hashmap_traverse(map, traverse_good_cb);
75 mu_assert(rc == 0, "Failed to traverse.");
76 mu_assert(traverse_called == 3, "Wrong count traverse.");
77
78 traverse_called = 0;
79 rc = Hashmap_traverse(map, traverse_fail_cb);
80 mu_assert(rc == 1, "Failed to traverse.");
81 mu_assert(traverse_called == 2, "Wrong count traverse for fail.");
82
83 return NULL;
84 }
85
86 char *test_delete()
87 {
88 bstring deleted = (bstring)Hashmap_delete(map, &test1);

38.1. HOW TO IMPROVE IT 239

89 mu_assert(deleted != NULL, "Got NULL on delete.");
90 mu_assert(deleted == &expect1, "Should get test1");
91 bstring result = Hashmap_get(map, &test1);
92 mu_assert(result == NULL, "Should delete.");
93
94 deleted = (bstring)Hashmap_delete(map, &test2);
95 mu_assert(deleted != NULL, "Got NULL on delete.");
96 mu_assert(deleted == &expect2, "Should get test2");
97 result = Hashmap_get(map, &test2);
98 mu_assert(result == NULL, "Should delete.");
99
100 deleted = (bstring)Hashmap_delete(map, &test3);
101 mu_assert(deleted != NULL, "Got NULL on delete.");
102 mu_assert(deleted == &expect3, "Should get test3");
103 result = Hashmap_get(map, &test3);
104 mu_assert(result == NULL, "Should delete.");
105
106 return NULL;
107 }
108
109 char *all_tests()
110 {
111 mu_suite_start();
112
113 mu_run_test(test_create);
114 mu_run_test(test_get_set);
115 mu_run_test(test_traverse);
116 mu_run_test(test_delete);
117 mu_run_test(test_destroy);
118
119 return NULL;
120 }
121
122 RUN_TESTS(all_tests);

The only thing to learn about this unit test is that at the top I use a feature of bstring to create static strings towork with in the tests. I use the tagbstring and bsStatic to create them on lines 7-13.

38.1 How To Improve It

This is a very simple implementation of Hashmap as are most of the other data structures in this book. Mygoal isn’t to give you insanely great hyper speed well tuned data structures. Usually those are much too com-plicated to discuss and only distract you from the real basic data structure at work. My goal is to give you anunderstandable starting point to then improve it or understand how they are implemented.
In this case, there’s some things you can do with this implementation:
1. You can use a sort on each bucket so that they are always sorted. This increases your insert time, butdecreases your find time because you can then use a binary search to find each node. Right now it’s loopingthrough all of the nodes in a bucket just to find one.
2. You can dynamically size the number of buckets, or let the caller specify the number for each Hashmapcreated.
3. You can use a better default_hash. There are tons of them.
4. This (and nearly every Hashmap is vulnerable to someone picking keys that will fill only one bucket, and

240 CHAPTER 38. EXERCISE 37: HASHMAPS
then tricking your program into processing them. This then makes your program run slower because itchanges from processing a Hashmap to effectively processing a single DArray. If you sort the nodes in thebucket this helps, but you can also use better hashing functions, and for the really paranoid add a randomsalt so that keys can’t be predicted.

5. You could have it delete buckets that are empty of nodes to save space, or put empty buckets into a cacheso you save on creating and destroying them.
6. Right now it just adds elements even if they already exist. Write an alternative set method that only addsit if it isn’t set already.

As usual you should go through each function and make it bullet proof. The Hashmap could also use a debugsetting for doing an invariant check.

38.2 Extra Credit

1. Research the Hashmap implementation of your favorite programming language to see what features theyhave.
2. Find out what the major disadvantages of a Hashmap are and how to avoid them. For example, they do notpreserve order without special changes and they don’t work when you need to find things based on partsof keys.
3. Write a unit test that demonstrates the defect of filling a Hashmap with keys that land in the same bucket,then test how this impact performance. A good way to do this is to just reduce the number of buckets tosomething stupid like 5.

Chapter 39

Exercise 38: Hashmap Algorithms

There are three hash functions that you’ll implement in this exercise:
FNV-1a Named after the creators Glenn Fowler, Phong Vo, and Landon Curt Noll. This hash produces goodnumbers and is reasonably fast.
Adler-32 Named after Mark Adler, is a horrible hash algorithm, but it’s been around a long time and it’s goodfor studying.
DJB Hash This hash algorithm is attributed to Dan J. Bernstein (DJB) but it’s difficult to find his discussion of thealgorithm. It’s shown to be fast, but possibly not great numbers.
You’ve already seen the Jenkins hash as the default hash for the Hashmap data structure, so this exercise will belooking at these three new ones. The code for them is usually small, and it’s not optimized at all. As usual I’mgoing for understanding and not blinding latest speed.
The header file is very simple, so I’ll start with that:

src/lcthw/hashmap_algos.h
1 #ifndef hashmap_algos_h
2 #define hashmap_algos_h
3
4 #include <stdint.h>
5
6 uint32_t Hashmap_fnv1a_hash(void *data);
7
8 uint32_t Hashmap_adler32_hash(void *data);
9
10 uint32_t Hashmap_djb_hash(void *data);
11
12 #endif

I’m just declaring the three functions I’ll implement in the hashmap_algos.c file:
src/lcthw/hashmap_algos.c

1 #include <lcthw/hashmap_algos.h>
2 #include <lcthw/bstrlib.h>
3
4 // settings taken from
5 // http://www.isthe.com/chongo/tech/comp/fnv/index.html#FNV-param

241

242 CHAPTER 39. EXERCISE 38: HASHMAP ALGORITHMS

6 const uint32_t FNV_PRIME = 16777619;
7 const uint32_t FNV_OFFSET_BASIS = 2166136261;
8
9 uint32_t Hashmap_fnv1a_hash(void *data)
10 {
11 bstring s = (bstring)data;
12 uint32_t hash = FNV_OFFSET_BASIS;
13 int i = 0;
14
15 for(i = 0; i < blength(s); i++) {
16 hash ^= bchare(s, i, 0);
17 hash *= FNV_PRIME;
18 }
19
20 return hash;
21 }
22
23 const int MOD_ADLER = 65521;
24
25 uint32_t Hashmap_adler32_hash(void *data)
26 {
27 bstring s = (bstring)data;
28 uint32_t a = 1, b = 0;
29 int i = 0;
30
31 for (i = 0; i < blength(s); i++)
32 {
33 a = (a + bchare(s, i, 0)) % MOD_ADLER;
34 b = (b + a) % MOD_ADLER;
35 }
36
37 return (b << 16) | a;
38 }
39
40 uint32_t Hashmap_djb_hash(void *data)
41 {
42 bstring s = (bstring)data;
43 uint32_t hash = 5381;
44 int i = 0;
45
46 for(i = 0; i < blength(s); i++) {
47 hash = ((hash << 5) + hash) + bchare(s, i, 0); /* hash * 33 + c */
48 }
49
50 return hash;
51 }

This file then has the three hash algorithms. You should notice that I’m defaulting to just using a bstring forthe key, and I’m using the bchare function to get a character from the bstring, but return 0 if that character isoutside the string’s length.
Each of these algorithms are found online so go search for them and read about them. Again I used Wikipediaprimarily and then followed it to other sources.
I then have a unit test that tests out each algorithm, but also tests that it will distribute well across a number ofbuckets:

243

tests/hashmap_algos_tests.c
1 #include <lcthw/bstrlib.h>
2 #include <lcthw/hashmap.h>
3 #include <lcthw/hashmap_algos.h>
4 #include <lcthw/darray.h>
5 #include "minunit.h"
6
7 struct tagbstring test1 = bsStatic("test data 1");
8 struct tagbstring test2 = bsStatic("test data 2");
9 struct tagbstring test3 = bsStatic("xest data 3");
10
11 char *test_fnv1a()
12 {
13 uint32_t hash = Hashmap_fnv1a_hash(&test1);
14 mu_assert(hash != 0, "Bad hash.");
15
16 hash = Hashmap_fnv1a_hash(&test2);
17 mu_assert(hash != 0, "Bad hash.");
18
19 hash = Hashmap_fnv1a_hash(&test3);
20 mu_assert(hash != 0, "Bad hash.");
21
22 return NULL;
23 }
24
25 char *test_adler32()
26 {
27 uint32_t hash = Hashmap_adler32_hash(&test1);
28 mu_assert(hash != 0, "Bad hash.");
29
30 hash = Hashmap_adler32_hash(&test2);
31 mu_assert(hash != 0, "Bad hash.");
32
33 hash = Hashmap_adler32_hash(&test3);
34 mu_assert(hash != 0, "Bad hash.");
35
36 return NULL;
37 }
38
39 char *test_djb()
40 {
41 uint32_t hash = Hashmap_djb_hash(&test1);
42 mu_assert(hash != 0, "Bad hash.");
43
44 hash = Hashmap_djb_hash(&test2);
45 mu_assert(hash != 0, "Bad hash.");
46
47 hash = Hashmap_djb_hash(&test3);
48 mu_assert(hash != 0, "Bad hash.");
49
50 return NULL;
51 }
52
53 #define BUCKETS 100
54 #define BUFFER_LEN 20

244 CHAPTER 39. EXERCISE 38: HASHMAP ALGORITHMS

55 #define NUM_KEYS BUCKETS * 1000
56 enum { ALGO_FNV1A, ALGO_ADLER32, ALGO_DJB};
57
58 int gen_keys(DArray *keys, int num_keys)
59 {
60 int i = 0;
61 FILE *urand = fopen("/dev/urandom", "r");
62 check(urand != NULL, "Failed to open /dev/urandom");
63
64 struct bStream *stream = bsopen((bNread)fread, urand);
65 check(stream != NULL, "Failed to open /dev/urandom");
66
67 bstring key = bfromcstr("");
68 int rc = 0;
69
70 // FNV1a histogram
71 for(i = 0; i < num_keys; i++) {
72 rc = bsread(key, stream, BUFFER_LEN);
73 check(rc >= 0, "Failed to read from /dev/urandom.");
74
75 DArray_push(keys, bstrcpy(key));
76 }
77
78 bsclose(stream);
79 fclose(urand);
80 return 0;
81
82 error:
83 return -1;
84 }
85
86 void destroy_keys(DArray *keys)
87 {
88 int i = 0;
89 for(i = 0; i < NUM_KEYS; i++) {
90 bdestroy(DArray_get(keys, i));
91 }
92
93 DArray_destroy(keys);
94 }
95
96 void fill_distribution(int *stats, DArray *keys, Hashmap_hash hash_func)
97 {
98 int i = 0;
99 uint32_t hash = 0;
100
101 for(i = 0; i < DArray_count(keys); i++) {
102 hash = hash_func(DArray_get(keys, i));
103 stats[hash % BUCKETS] += 1;
104 }
105
106 }
107
108 char *test_distribution()
109 {
110 int i = 0;

39.1. WHAT YOU SHOULD SEE 245

111 int stats[3][BUCKETS] = {{0}};
112 DArray *keys = DArray_create(0, NUM_KEYS);
113
114 mu_assert(gen_keys(keys, NUM_KEYS) == 0, "Failed to generate random keys.");
115
116 fill_distribution(stats[ALGO_FNV1A], keys, Hashmap_fnv1a_hash);
117 fill_distribution(stats[ALGO_ADLER32], keys, Hashmap_adler32_hash);
118 fill_distribution(stats[ALGO_DJB], keys, Hashmap_djb_hash);
119
120 fprintf(stderr, "FNV\tA32\tDJB\n");
121
122 for(i = 0; i < BUCKETS; i++) {
123 fprintf(stderr, "%d\t%d\t%d\n",
124 stats[ALGO_FNV1A][i],
125 stats[ALGO_ADLER32][i],
126 stats[ALGO_DJB][i]);
127 }
128
129 destroy_keys(keys);
130
131 return NULL;
132 }
133
134 char *all_tests()
135 {
136 mu_suite_start();
137
138 mu_run_test(test_fnv1a);
139 mu_run_test(test_adler32);
140 mu_run_test(test_djb);
141 mu_run_test(test_distribution);
142
143 return NULL;
144 }
145
146 RUN_TESTS(all_tests);

I have the number of BUCKETS in this code set fairly high, since I have a fast enough computer, but if it runsslow just lower them, and also lower NUM_KEYS. What this test lets me do is run the test and then look at thedistribution of keys for each hash function using a bit of analysis with a language called R.
How I do this is I craft a big list of keys using the gen_keys function. These keys are taken out of the /dev/urandomdevice they are random byte keys. I then use these keys to have the fill_distribution function fill up the
stats array with where those keys would hash in a theoretial set of buckets. All this function does is go throughall the keys, do the hash, then do what the Hashmap would do to find its bucket.
Finally I’m simply printing out a three column table of the final count for each bucket, showing how many keysmanaged to get into each bucket randomly. I can then look at these numbers to see if the hash functions aredistributing keys mostly evenly.

39.1 What You Should See

Teaching you R is outside the scope of this book, but if you want to get it and try this then it can be found atr-project.org.
Here is an abbreviated shell session showingme run the tests/hashmap_algos_test to get the table produced

http://www.r-project.org/

246 CHAPTER 39. EXERCISE 38: HASHMAP ALGORITHMS
by test_distribution (not shown here), and then use R to see what the summary statistics are:

R Analysis of hashmap_algos_tests.c
1 $ tests/hashmap_algos_tests
2 # copy-paste the table it prints out
3 $ vim hash.txt
4 $ R
5 > hash <- read.table("hash.txt", header=T)
6 > summary(hash)
7 FNV A32 DJB
8 Min. : 945 Min. : 908.0 Min. : 927
9 1st Qu.: 980 1st Qu.: 980.8 1st Qu.: 979
10 Median : 998 Median :1000.0 Median : 998
11 Mean :1000 Mean :1000.0 Mean :1000
12 3rd Qu.:1016 3rd Qu.:1019.2 3rd Qu.:1021
13 Max. :1072 Max. :1075.0 Max. :1082
14 >

First I just run the test, which on your screen will print the table. Then I just copy-paste it out of my terminaland use vim hash.txt to save the data. If you look at the data it has the header FNV A32 DJB for each of thethree algorithms.
Second I run R and load the data using the read.table command. This is a smart function that works with thiskind of tab-delimited data and I only have to tell it header=T so it knows the data has a header.
Finally, I have the data loaded and I can use summary to print out its summary statistics for each column. Hereyou can see that each function actually does alright with this random data. I’ll explain what each of these rowsmeans:
Min. This is the minimum value found for the data in that column. FNV seems to win this on this run since ithas the largest number, meaning it has a tighter range at the low end.
1st Qu. The point where the first quarter of the data ends.
Median This is the number that is in the middle if you sorted them. Median is most useful when compared tomean.
Mean Mean is the "average" most people think of, and is the sum/count of the data. If you look, all of them are1000, which is great. If you compare this to the median you see that all three have really close medians tothe mean. What this means is the data isn’t "skewed" in one direction, so you can trust the mean.
3rd Qu. The point where the last quarter of the data starts and represents the tail end of the numbers.
Max. This is the maximum number of the data, and presents the upper bound on all of them.
Looking at this data, you see that all of these hashes seem to do good on random keys, and that the means matchthe NUM_KEYS setting I made. What I’m looking for is that if I make 1000 keys per buckets (BUCKETS * 1000),then on average each bucket should have 1000 keys in it. If the hash function isn’t working then you’ll see thesesummary statistics show a Mean that’s not 1000, and really high ranges at the 1st quarter and 3rd quarter. Agood hash function should have a dead on 1000 mean, and as tight as possible range.
You should also know that you will get mostly different numbers from mine, and even between different runsof this unit test.

39.2 How To Break It

I’m finally going to have you do some breaking in this exercise. I want you to write the worst hash function youcan, and then use the data to prove that it’s really bad. You can use R to do the stats, just like I did, but maybe

39.3. EXTRA CREDIT 247
you have another tool you can use to give you the same summary statistics.
The goal is to make a hash function that seems normal to an untrained eye, but when actually run has a badmean and is all over the place. That means you can’t just have it return 1, but have to give a stream of numbersthat seem alright, but really are all over the place and loading up some buckets too much.
Extra points if you can make a minimal change to one of the four hash algorithms I gave you to do this.
The purpose of this exercise is to imagine that some "friendly" coder comes to you and offers to improve yourhash function, but actually just makes a nice little backdoor that screws up your Hashmap.
As the Royal Society says, "Nullius in verba."

39.3 Extra Credit

1. Take the default_hash out of the hashmap.c, make it one of the algorithms in hashmap_algos.c andthen make all the tests work again.
2. Add the default_hash to the hashmap_algos_tests.c test and compare its statistics to the other hashfunctions.
3. Find a few more hash functions and add them too. You can never have too many hash functions!

248 CHAPTER 39. EXERCISE 38: HASHMAP ALGORITHMS

Chapter 40

Exercise 39: String Algorithms

In this exercise I’m going to show you one of the supposedly faster string search algorithms, and compare itto the one that exists in bstrlib.c call binstr. The documentation for binstr says that it uses a simple"brute force" string search to find the first instance. The one I’ll implement will use the Boyer-Moore-Horspool(BMH) algorithm, which is supposed to be faster if you analyze the theoretical time. You’ll see that, assumingmy implementation isn’t flawed, that the practical time for BMH is much worse than the simple brute force of
binstr.
The point of this exercise isn’t really to explain the algorithm because it’s simple enough for you to go to theBoyer-Moore-Horspool Wikipedia page and read it. The gist of this algorithm is that it calculates a "skip charac-ters list" as a first operation, then it uses this list to quickly scan through the string. It is supposed to be fasterthan brute force, so let’s get the code into the right files and see.
First, I have the header:

src/lcthw/string_algos.h
1 #ifndef string_algos_h
2 #define string_algos_h
3
4 #include <lcthw/bstrlib.h>
5 #include <lcthw/darray.h>
6
7 typedef struct StringScanner {
8 bstring in;
9 const unsigned char *haystack;
10 ssize_t hlen;
11 const unsigned char *needle;
12 ssize_t nlen;
13 size_t skip_chars[UCHAR_MAX + 1];
14 } StringScanner;
15
16 int String_find(bstring in, bstring what);
17
18 StringScanner *StringScanner_create(bstring in);
19
20 int StringScanner_scan(StringScanner *scan, bstring tofind);
21
22 void StringScanner_destroy(StringScanner *scan);
23
24 #endif

249

http://en.wikipedia.org/wiki/Boyer%E2%80%93Moore%E2%80%93Horspool_algorithm
http://en.wikipedia.org/wiki/Boyer%E2%80%93Moore%E2%80%93Horspool_algorithm

250 CHAPTER 40. EXERCISE 39: STRING ALGORITHMS
In order to see the effects of this "skip characters list" I’m going to make two versions of the BMH algorithm:
String_find Simply find the first instance of one string in another, doing the entire algorithm in one shot.
StringScanner_scan Uses a StringScanner state structure to separate the skip list build from the actual find.This will let me see what impact that has on performance. This model also has the advantage that I canincrementally scan for one string in another and find all instances quickly.
Once you have that, here’s the implementation:

src/lcthw/string_algos.c
1 #include <lcthw/string_algos.h>
2 #include <limits.h>
3
4 static inline void String_setup_skip_chars(
5 size_t *skip_chars,
6 const unsigned char *needle, ssize_t nlen)
7 {
8 size_t i = 0;
9 size_t last = nlen - 1;
10
11 for(i = 0; i < UCHAR_MAX + 1; i++) {
12 skip_chars[i] = nlen;
13 }
14
15 for (i = 0; i < last; i++) {
16 skip_chars[needle[i]] = last - i;
17 }
18 }
19
20
21 static inline const unsigned char *String_base_search(
22 const unsigned char *haystack, ssize_t hlen,
23 const unsigned char *needle, ssize_t nlen,
24 size_t *skip_chars)
25 {
26 size_t i = 0;
27 size_t last = nlen - 1;
28
29 assert(haystack != NULL && "Given bad haystack to search.");
30 assert(needle != NULL && "Given bad needle to search for.");
31
32 check(nlen > 0, "nlen can't be <= 0");
33 check(hlen > 0, "hlen can't be <= 0");
34
35 while (hlen >= nlen)
36 {
37 for (i = last; haystack[i] == needle[i]; i--) {
38 if (i == 0) {
39 return haystack;
40 }
41 }
42
43 hlen -= skip_chars[haystack[last]];
44 haystack += skip_chars[haystack[last]];
45 }
46

251

47 error: // fallthrough
48 return NULL;
49 }
50
51 int String_find(bstring in, bstring what)
52 {
53 const unsigned char *found = NULL;
54
55 const unsigned char *haystack = (const unsigned char *)bdata(in);
56 ssize_t hlen = blength(in);
57 const unsigned char *needle = (const unsigned char *)bdata(what);
58 ssize_t nlen = blength(what);
59 size_t skip_chars[UCHAR_MAX + 1] = {0};
60
61 String_setup_skip_chars(skip_chars, needle, nlen);
62
63 found = String_base_search(haystack, hlen, needle, nlen, skip_chars);
64
65 return found != NULL ? found - haystack : -1;
66 }
67
68 StringScanner *StringScanner_create(bstring in)
69 {
70 StringScanner *scan = calloc(1, sizeof(StringScanner));
71 check_mem(scan);
72
73 scan->in = in;
74 scan->haystack = (const unsigned char *)bdata(in);
75 scan->hlen = blength(in);
76
77 assert(scan != NULL && "fuck");
78 return scan;
79
80 error:
81 free(scan);
82 return NULL;
83 }
84
85 static inline void StringScanner_set_needle(StringScanner *scan, bstring tofind)
86 {
87 scan->needle = (const unsigned char *)bdata(tofind);
88 scan->nlen = blength(tofind);
89
90 String_setup_skip_chars(scan->skip_chars, scan->needle, scan->nlen);
91 }
92
93 static inline void StringScanner_reset(StringScanner *scan)
94 {
95 scan->haystack = (const unsigned char *)bdata(scan->in);
96 scan->hlen = blength(scan->in);
97 }
98
99 int StringScanner_scan(StringScanner *scan, bstring tofind)
100 {
101 const unsigned char *found = NULL;
102 ssize_t found_at = 0;

252 CHAPTER 40. EXERCISE 39: STRING ALGORITHMS

103
104 if(scan->hlen <= 0) {
105 StringScanner_reset(scan);
106 return -1;
107 }
108
109 if((const unsigned char *)bdata(tofind) != scan->needle) {
110 StringScanner_set_needle(scan, tofind);
111 }
112
113 found = String_base_search(
114 scan->haystack, scan->hlen,
115 scan->needle, scan->nlen,
116 scan->skip_chars);
117
118 if(found) {
119 found_at = found - (const unsigned char *)bdata(scan->in);
120 scan->haystack = found + scan->nlen;
121 scan->hlen -= found_at - scan->nlen;
122 } else {
123 // done, reset the setup
124 StringScanner_reset(scan);
125 found_at = -1;
126 }
127
128 return found_at;
129 }
130
131
132 void StringScanner_destroy(StringScanner *scan)
133 {
134 if(scan) {
135 free(scan);
136 }
137 }

The entire algorithm is in two static inline functions called String_setup_skip_chars and String_base_search.These are then used in the other functions to actually implement the searching styles I want. Study these firsttwo functions and compare them to the Wikipedia description so you know what’s going on.
The String_find then just uses these two functions to do a find and return the position found. It’s very simpleand I’ll use it to see how this "build skip chars" phase impacts real practical performance. Keep in mind that youcould maybe make this faster, but I’m teaching you how to confirm theoretical speed after you implement analgorithm.
The StringScanner_scan function is then following the common pattern I use of "create, scan, destroy" and isused to incrementally scan a string for another string. You’ll see how this is used when I show you the unit testthat will test this out.
Finally, I have the unit test that first confirms this is all working, then runs simple performance tests for all threefinding algorithms in a commented out section.

tests/string_algos_tests.c
1 #include "minunit.h"
2 #include <lcthw/string_algos.h>
3 #include <lcthw/bstrlib.h>

253

4 #include <time.h>
5
6 struct tagbstring IN_STR = bsStatic("I have ALPHA beta ALPHA and oranges ALPHA");
7 struct tagbstring ALPHA = bsStatic("ALPHA");
8 const int TEST_TIME = 1;
9
10 char *test_find_and_scan()
11 {
12 StringScanner *scan = StringScanner_create(&IN_STR);
13 mu_assert(scan != NULL, "Failed to make the scanner.");
14
15 int find_i = String_find(&IN_STR, &ALPHA);
16 mu_assert(find_i > 0, "Failed to find 'ALPHA' in test string.");
17
18 int scan_i = StringScanner_scan(scan, &ALPHA);
19 mu_assert(scan_i > 0, "Failed to find 'ALPHA' with scan.");
20 mu_assert(scan_i == find_i, "find and scan don't match");
21
22 scan_i = StringScanner_scan(scan, &ALPHA);
23 mu_assert(scan_i > find_i, "should find another ALPHA after the first");
24
25 scan_i = StringScanner_scan(scan, &ALPHA);
26 mu_assert(scan_i > find_i, "should find another ALPHA after the first");
27
28 mu_assert(StringScanner_scan(scan, &ALPHA) == -1, "shouldn't find it");
29
30 StringScanner_destroy(scan);
31
32 return NULL;
33 }
34
35 char *test_binstr_performance()
36 {
37 int i = 0;
38 int found_at = 0;
39 unsigned long find_count = 0;
40 time_t elapsed = 0;
41 time_t start = time(NULL);
42
43 do {
44 for(i = 0; i < 1000; i++) {
45 found_at = binstr(&IN_STR, 0, &ALPHA);
46 mu_assert(found_at != BSTR_ERR, "Failed to find!");
47 find_count++;
48 }
49
50 elapsed = time(NULL) - start;
51 } while(elapsed <= TEST_TIME);
52
53 debug("BINSTR COUNT: %lu, END TIME: %d, OPS: %f",
54 find_count, (int)elapsed, (double)find_count / elapsed);
55 return NULL;
56 }
57
58 char *test_find_performance()
59 {

254 CHAPTER 40. EXERCISE 39: STRING ALGORITHMS

60 int i = 0;
61 int found_at = 0;
62 unsigned long find_count = 0;
63 time_t elapsed = 0;
64 time_t start = time(NULL);
65
66 do {
67 for(i = 0; i < 1000; i++) {
68 found_at = String_find(&IN_STR, &ALPHA);
69 find_count++;
70 }
71
72 elapsed = time(NULL) - start;
73 } while(elapsed <= TEST_TIME);
74
75 debug("FIND COUNT: %lu, END TIME: %d, OPS: %f",
76 find_count, (int)elapsed, (double)find_count / elapsed);
77
78 return NULL;
79 }
80
81 char *test_scan_performance()
82 {
83 int i = 0;
84 int found_at = 0;
85 unsigned long find_count = 0;
86 time_t elapsed = 0;
87 StringScanner *scan = StringScanner_create(&IN_STR);
88
89 time_t start = time(NULL);
90
91 do {
92 for(i = 0; i < 1000; i++) {
93 found_at = 0;
94
95 do {
96 found_at = StringScanner_scan(scan, &ALPHA);
97 find_count++;
98 } while(found_at != -1);
99 }
100
101 elapsed = time(NULL) - start;
102 } while(elapsed <= TEST_TIME);
103
104 debug("SCAN COUNT: %lu, END TIME: %d, OPS: %f",
105 find_count, (int)elapsed, (double)find_count / elapsed);
106
107 StringScanner_destroy(scan);
108
109 return NULL;
110 }
111
112
113 char *all_tests()
114 {
115 mu_suite_start();

40.1. WHAT YOU SHOULD SEE 255

116
117 mu_run_test(test_find_and_scan);
118
119 // this is an idiom for commenting out sections of code
120 #if 0
121 mu_run_test(test_scan_performance);
122 mu_run_test(test_find_performance);
123 mu_run_test(test_binstr_performance);
124 #endif
125
126 return NULL;
127 }
128
129 RUN_TESTS(all_tests);

I have it written here with #if 0which is a way to use the CPP to comment out a section of code. Type it in likethis, and then remove that and the #endif so you can see these performance tests run. When you continue withthe book, simply comment these out so that the test doesn’t waste development time.
There’s nothing amazing in this unit test, it just runs each of the different functions in loops that last long enoughto get a few seconds of sampling. The first test (test_find_and_scan) just confirms that what I’ve writtenworks, because there’s no point in testing the speed of something that doesn’t work. Then the next three func-tions run a large number of searches using each of the three functions.
The trick to notice is that I grab the starting time in start, and then I loop until at least TEST_TIME seconds havepassed. This makes sure that I get enough samples to work with in comparing the three. I’ll then run this testwith different TEST_TIME settings and analyze the results.

40.1 What You Should See

When I run this test on my laptop, I get number that look like this:
2 Second Test Run

1 $./tests/string_algos_tests
2 DEBUG tests/string_algos_tests.c:124: ----- RUNNING: ./tests/string_algos_tests
3 ----
4 RUNNING: ./tests/string_algos_tests
5 DEBUG tests/string_algos_tests.c:116:
6 ----- test_find_and_scan
7 DEBUG tests/string_algos_tests.c:117:
8 ----- test_scan_performance
9 DEBUG tests/string_algos_tests.c:105: SCAN COUNT: 110272000, END TIME: 2, OPS: 55136000.000000
10 DEBUG tests/string_algos_tests.c:118:
11 ----- test_find_performance
12 DEBUG tests/string_algos_tests.c:76: FIND COUNT: 12710000, END TIME: 2, OPS: 6355000.000000
13 DEBUG tests/string_algos_tests.c:119:
14 ----- test_binstr_performance
15 DEBUG tests/string_algos_tests.c:54: BINSTR COUNT: 72736000, END TIME: 2, OPS: 36368000.000000
16 ALL TESTS PASSED
17 Tests run: 4
18 $

I look at this and I sort of want to do more than 2 seconds of each run, and I want to run this many times then

256 CHAPTER 40. EXERCISE 39: STRING ALGORITHMS
use R to check it out like I did before. Here’s what I get for 10 samples of about 10 seconds each:

10 Runs At 10 Seconds, Operations / Second
scan find binstr
71195200 6353700 37110200
75098000 6358400 37420800
74910000 6351300 37263600
74859600 6586100 37133200
73345600 6365200 37549700
74754400 6358000 37162400
75343600 6630400 37075000
73804800 6439900 36858700
74995200 6384300 36811700
74781200 6449500 37383000

The way I got this is with a little bit of shell help and then editing the output:
Getting Timing Logs

1 $ for i in 1 2 3 4 5 6 7 8 9 10; do echo "RUN --- $i" >> times.log; ./tests/string_algos_tests 2>&1 | grep COUNT >> times.log ; done
2 $ less times.log
3 $ vim times.log

Right away you can see that the scanning system beats the pants off both of the others, but I’ll open this in R andconfirm the results:
R Summary Of Operations/Second

1 > times <- read.table("times.log", header=T)
2 > summary(times)
3 scan find binstr
4 Min. :71195200 Min. :6351300 Min. :36811700
5 1st Qu.:74042200 1st Qu.:6358100 1st Qu.:37083800
6 Median :74820400 Median :6374750 Median :37147800
7 Mean :74308760 Mean :6427680 Mean :37176830
8 3rd Qu.:74973900 3rd Qu.:6447100 3rd Qu.:37353150
9 Max. :75343600 Max. :6630400 Max. :37549700
10 >

To understand why I’m getting the summary statistics I have to explain some statistics for you. What I’m lookingfor in these numbers can be said simply to be, "Are these three functions (scan, find, bsinter) actually different?"I know that each time I run my tester function I get slightly different numbers, and that those numbers cancover a certain range. You see here that the 1st and 3rd quarters do that for each sample.
What I look at first is the mean and I want to see if each sample’s mean is different from the others. I can seethat, and clearly the scan beats binstr which also beats find. However, I have a problem, if I use just themean, there’s a chance that the ranges of each sample might overlap.
What if I have means that are different, but the 1st and 3rd quarters overlap? In that case I could say that there’sa chance that if I ran the samples again the means might not be different. The more overlap I have in the rangesthe higher probability that my two samples (and my two functions) are not actually different. Any differenceI’m seeing in the two (in this case three) is just random chance.
Statistics has many tools to solve this problem, but in our case I can just look at the 1st and 3rd quarters as

40.2. ANALYZING THE RESULTS 257
well as the mean for all three samples. If the means are different and the quarters are way off never possiblyoverlapping, then it’s alright to say they are different.
In my three samples I can say that scan, find and binstr are different, don’t overlap in range, and that I cantrust the sample (for the most part).

40.2 Analyzing The Results

Looking at the results I can see that String_find is much slower than the other two. In fact, so slow I’d thinkthere’s something wrong with how I implemented it. However when I compare it with StringScanner_scan Ican see that it’s the part that builds the skip list that is most likely costing the time. Not only is find slower, it’salso doing less than scan because it’s just finding the first string while scan finds all of them.
I can also see that scan beats binstr as well by quite a large margin. Again I can say that not only does scan domore than both of these, but it’s also much faster.
There’s a few caveats with this analysis:
1. I may have messed up this implementation or the test. At this point I would go research all the possibleways to do a BMH algorithm and try to improve it. I would also confirm that I’m doing the test right.
2. If you alter the time the test runs, you get different results. There is a "warm up" period I’m not investigat-ing.
3. The test_scan_performance unit test isn’t quite the same as the others, but it is doing more than theother tests so it’s probably alright.
4. I’m only doing the test by searching for one string in another. I could randomize the strings to find toremove their position and length as a confounding factor.
5. Maybe binstr is implemented better than "simple" brute force.
6. I could be running these in an unfortunate order and maybe randomizing which test runs first will givebetter results.

One thing to gather from this is you need to confirm real performance even if you implement an algorithm"correctly". In this case the claim is that the BMH algorithm should have beaten the binstr algorithm, but asimple test proved it didn’t. Had I not done this I would have been using an inferior algorithm implementationwithout knowing it. With these metrics I can start to tune my implementation, or simply scrap it and findanother one.

40.3 Extra Credit

1. See if you can make the Scan_find faster. Why is my implementation here slow?
2. Try some different scan times and see if you get different numbers. What impact does the length of timethat you run the test have on the scan times? What can you say about that result?
3. Alter the unit test so that it runs each function for a short burst in the beginning to clear out any "warmup" period, then start the timing portion. Does that change the dependence on the length of time the testruns and how many operations / second are possible?
4. Make the unit test randomize the strings to find and then measure the performance you get. One way todo this is use the bsplit function from bstrlib.h to split the IN_STR on spaces. Then use the bstrListstruct you get to access each string it returns. This will also teach you how to use bstrList operations forstring processing.
5. Try some runs with the tests in different orders and see if you get different results.

258 CHAPTER 40. EXERCISE 39: STRING ALGORITHMS

Chapter 41

Exercise 40: Binary Search Trees

The binary tree is the simplest tree based data structure and while it has been replaced by Hash Maps in manylanguages is still useful for many applications. Variants on the binary tree exist for very useful things likedatabase indexes, search algorithm structures, and even graphics processing.
I’m calling my binary tree a BSTree for "binary search tree" and the best way to describe it is that it’s anotherway to do a Hashmap style key/value store. The difference is that instead of hashing the key to find a location,the BSTree compares the key to nodes in a tree, and then walks the tree to find the best place to store it basedon how it compares to other nodes.
Before I really explain how this works, let me show you the bstree.h header file so you can see the datastructures, then I can use that to explain how it’s built.

src/lcthw/bstree.h
1 #ifndef _lcthw_BSTree_h
2 #define _lcthw_BSTree_h
3
4
5 typedef int (*BSTree_compare)(void *a, void *b);
6
7 typedef struct BSTreeNode {
8 void *key;
9 void *data;
10
11 struct BSTreeNode *left;
12 struct BSTreeNode *right;
13 struct BSTreeNode *parent;
14 } BSTreeNode;
15
16 typedef struct BSTree {
17 int count;
18 BSTree_compare compare;
19 BSTreeNode *root;
20 } BSTree;
21
22 typedef int (*BSTree_traverse_cb)(BSTreeNode *node);
23
24 BSTree *BSTree_create(BSTree_compare compare);
25 void BSTree_destroy(BSTree *map);
26
27 int BSTree_set(BSTree *map, void *key, void *data);

259

260 CHAPTER 41. EXERCISE 40: BINARY SEARCH TREES

28 void *BSTree_get(BSTree *map, void *key);
29
30 int BSTree_traverse(BSTree *map, BSTree_traverse_cb traverse_cb);
31
32 void *BSTree_delete(BSTree *map, void *key);
33
34 #endif

This follows the same pattern I’ve been using this whole time where I have a base "container" named BSTreeand that then has nodes names BSTreeNode that make up the actual contents. Bored yet? Good, there’s noreason to be clever with this kind of structure.
The important part is how the BSTreeNode is configured and how it gets used to do each operation: set, get, anddelete. I’ll cover get first since it’s the easiest operation and I’ll pretend I’m doing it manually against the datastructure:
1. I take the key you’re looking for and I start at the root. First thing I do is compare your key with that node’skey.
2. If your key is less-than the node.key, then I traverse down the tree using the left pointer.
3. If your key is greater-than the node.key, then I go down with right.
4. I repeat step 2 and 3 until either I find a matching node.key, or I get to a node that has no left and right. Inthe first case I return the node.data, in the second I return NULL.

That’s all there is to get, so now to do set it’s nearly the same thing, except you’re looking for where to put anew node:
1. If there is no BSTree.root then I just make that and we’re done. That’s the first node.
2. After that I compare your key to node.key, starting at the root.
3. If your key is less-than or equal to the node.key then I want to go left. If your key is greater-than (notequal) then I want to go right.
4. I keep repeating 3 until I reach a node where the left or right doesn’t exist, but that’s the direction I need togo.
5. Once there I set that direction (left or right) to a new node for the key and data I want, and set this newnode’s parent to the previous node I came from. I’ll use the parent node when I do delete.

This also makes sense given how get works. If finding a node involves going left or right depending on how theykey compares, well then setting a node involves the same thing until I can set the left or right for a new node.
Take some time to draw out a few trees on paper and go through some setting and getting nodes so you under-stand how it work. After that you are ready to look at the implementation so that I can explain delete. Deletingin trees is amajor pain, and so it’s best explained by doing a line-by-line code breakdown.

src/lcthw/bstree.c
1 #include <lcthw/dbg.h>
2 #include <lcthw/bstree.h>
3 #include <stdlib.h>
4 #include <lcthw/bstrlib.h>
5
6 static int default_compare(void *a, void *b)
7 {
8 return bstrcmp((bstring)a, (bstring)b);
9 }
10

261

11
12 BSTree *BSTree_create(BSTree_compare compare)
13 {
14 BSTree *map = calloc(1, sizeof(BSTree));
15 check_mem(map);
16
17 map->compare = compare == NULL ? default_compare : compare;
18
19 return map;
20
21 error:
22 if(map) {
23 BSTree_destroy(map);
24 }
25 return NULL;
26 }
27
28 static int BSTree_destroy_cb(BSTreeNode *node)
29 {
30 free(node);
31 return 0;
32 }
33
34 void BSTree_destroy(BSTree *map)
35 {
36 if(map) {
37 BSTree_traverse(map, BSTree_destroy_cb);
38 free(map);
39 }
40 }
41
42
43 static inline BSTreeNode *BSTreeNode_create(BSTreeNode *parent, void *key, void *data)
44 {
45 BSTreeNode *node = calloc(1, sizeof(BSTreeNode));
46 check_mem(node);
47
48 node->key = key;
49 node->data = data;
50 node->parent = parent;
51 return node;
52
53 error:
54 return NULL;
55 }
56
57
58 static inline void BSTree_setnode(BSTree *map, BSTreeNode *node, void *key, void *data)
59 {
60 int cmp = map->compare(node->key, key);
61
62 if(cmp <= 0) {
63 if(node->left) {
64 BSTree_setnode(map, node->left, key, data);
65 } else {
66 node->left = BSTreeNode_create(node, key, data);
67 }

262 CHAPTER 41. EXERCISE 40: BINARY SEARCH TREES

68 } else {
69 if(node->right) {
70 BSTree_setnode(map, node->right, key, data);
71 } else {
72 node->right = BSTreeNode_create(node, key, data);
73 }
74 }
75 }
76
77
78 int BSTree_set(BSTree *map, void *key, void *data)
79 {
80 if(map->root == NULL) {
81 // first so just make it and get out
82 map->root = BSTreeNode_create(NULL, key, data);
83 check_mem(map->root);
84 } else {
85 BSTree_setnode(map, map->root, key, data);
86 }
87
88 return 0;
89 error:
90 return -1;
91 }
92
93 static inline BSTreeNode *BSTree_getnode(BSTree *map, BSTreeNode *node, void *key)
94 {
95 int cmp = map->compare(node->key, key);
96
97 if(cmp == 0) {
98 return node;
99 } else if(cmp < 0) {
100 if(node->left) {
101 return BSTree_getnode(map, node->left, key);
102 } else {
103 return NULL;
104 }
105 } else {
106 if(node->right) {
107 return BSTree_getnode(map, node->right, key);
108 } else {
109 return NULL;
110 }
111 }
112 }
113
114 void *BSTree_get(BSTree *map, void *key)
115 {
116 if(map->root == NULL) {
117 return NULL;
118 } else {
119 BSTreeNode *node = BSTree_getnode(map, map->root, key);
120 return node == NULL ? NULL : node->data;
121 }
122 }
123

263

124
125 static inline int BSTree_traverse_nodes(BSTreeNode *node, BSTree_traverse_cb traverse_cb)
126 {
127 int rc = 0;
128
129 if(node->left) {
130 rc = BSTree_traverse_nodes(node->left, traverse_cb);
131 if(rc != 0) return rc;
132 }
133
134 if(node->right) {
135 rc = BSTree_traverse_nodes(node->right, traverse_cb);
136 if(rc != 0) return rc;
137 }
138
139 return traverse_cb(node);
140 }
141
142 int BSTree_traverse(BSTree *map, BSTree_traverse_cb traverse_cb)
143 {
144 if(map->root) {
145 return BSTree_traverse_nodes(map->root, traverse_cb);
146 }
147
148 return 0;
149 }
150
151 static inline BSTreeNode *BSTree_find_min(BSTreeNode *node)
152 {
153 while(node->left) {
154 node = node->left;
155 }
156
157 return node;
158 }
159
160 static inline void BSTree_replace_node_in_parent(BSTree *map, BSTreeNode *node, BSTreeNode *new_value)
161 {
162 if(node->parent) {
163 if(node == node->parent->left) {
164 node->parent->left = new_value;
165 } else {
166 node->parent->right = new_value;
167 }
168 } else {
169 // this is the root so gotta change it
170 map->root = new_value;
171 }
172
173 if(new_value) {
174 new_value->parent = node->parent;
175 }
176 }
177
178 static inline void BSTree_swap(BSTreeNode *a, BSTreeNode *b)
179 {
180 void *temp = NULL;

264 CHAPTER 41. EXERCISE 40: BINARY SEARCH TREES

181 temp = b->key; b->key = a->key; a->key = temp;
182 temp = b->data; b->data = a->data; a->data = temp;
183 }
184
185 static inline BSTreeNode *BSTree_node_delete(BSTree *map, BSTreeNode *node, void *key)
186 {
187 int cmp = map->compare(node->key, key);
188
189 if(cmp < 0) {
190 if(node->left) {
191 return BSTree_node_delete(map, node->left, key);
192 } else {
193 // not found
194 return NULL;
195 }
196 } else if(cmp > 0) {
197 if(node->right) {
198 return BSTree_node_delete(map, node->right, key);
199 } else {
200 // not found
201 return NULL;
202 }
203 } else {
204 if(node->left && node->right) {
205 // swap this node for the smallest node that is bigger than us
206 BSTreeNode *successor = BSTree_find_min(node->right);
207 BSTree_swap(successor, node);
208
209 // this leaves the old successor with possibly a right child
210 // so replace it with that right child
211 BSTree_replace_node_in_parent(map, successor, successor->right);
212
213 // finally it's swapped, so return successor instead of node
214 return successor;
215 } else if(node->left) {
216 BSTree_replace_node_in_parent(map, node, node->left);
217 } else if(node->right) {
218 BSTree_replace_node_in_parent(map, node, node->right);
219 } else {
220 BSTree_replace_node_in_parent(map, node, NULL);
221 }
222
223 return node;
224 }
225 }
226
227 void *BSTree_delete(BSTree *map, void *key)
228 {
229 void *data = NULL;
230
231 if(map->root) {
232 BSTreeNode *node = BSTree_node_delete(map, map->root, key);
233
234 if(node) {
235 data = node->data;
236 free(node);

265

237 }
238 }
239
240 return data;
241 }

Before getting into how BSTree_deleteworks I want to explain a pattern I’musing for doing recursive functioncalls in a sane way. You’ll find that many tree based data structures are easy to write if you use recursion, butthat forumlating a single recursive function is difficult. Part of the problem is that you need to setup some initialdata for the first operation, then recurse into the data structure, which is hard to do with one function.
The solution is to use two functions. One function "sets up" the data structure and initial recursion conditionsso that a second function can do the real work. Take a look at BSTree_get first to see what I mean:
1. I have an initial condition to handle that if map->root is NULL then return NULL and don’t recurse.
2. I then setup a call to the real recursion, which is in BSTree_getnode. I create the initial condition of theroot node to start with, the key, and the map.
3. In the BSTree_getnode then I do the actual recursive logic. I compare the keyswith map->compare(node->key, key)and go left, right, or equal depending on that.
4. Since this function is "self-similar" and doesn’t have to handle any initial conditions (because BSTree_getdid) then I can structure it verys simply. When it’s done it returns to the caller, and that return then comesback to BSTree_get the result.
5. At the end, the BSTree_get then handles getting the node.data element but only if the result isn’t NULL.

This way of structuring a recursive algorithm matches the way I structure my recursive data structures. I havean initial "base function" that handles initial conditions and some edge cases, then it calls a clean recursivefunction that does the work. Compare that with how I have a "base struct" in BStree combined with recursive
BSTreeNode structures that all reference each other in a tree. Using this pattern makes it easy to deal withrecursion and keep it straight.
Next, go look at BSTree_set and BSTree_setnode to see the exact same pattern going on. I use BSTree_setto configure the initial conditions and edge cases. A common edge case is that there’s no root node, so I have tomake one to get things started.
This pattern will work with nearly any recursive algorithm you have to figure out. The way I do this is I followthis pattern:
1. Figure out the initial variables, how they change, and what the stopping conditions are for each recursivestep.
2. Write a recursive function that calls itself, with arguments for each stopping condition and initial variable.
3. Write a setup function to set initial starting conditions for the algorithm and handle edge cases, then it callsthe recursive function.
4. Finally, the setup function returns thefinal result and possibly alters it if the recursive function can’t handlefinal edge cases.

Which leadsme finally to BSTree_delete and BSTree_node_delete. First you can just look at BSTree_deleteand see that it’s the setup function, and what it is doing is grabbing the resulting node data and freeing the nodethat’s found. In BSTree_node_delete is where things get complex because to delete a node at any point in thetree, I have to rotate that node’s children up to the parent. I’ll break this function down and the ones it uses:
bstree.c:190 I run the compare function to figure out which direction I’m going.
bstree.c:192-198 This is the usual "less-than" branch where I want to go left. I’m handling the case that leftdoesn’t exist here and returning NULL to say "not found". This handles deleting something that isn’t in the

BSTree.
bstree.c:199-205 The same thing but for the right branch of the tree. Just keep recursing down into the tree just

266 CHAPTER 41. EXERCISE 40: BINARY SEARCH TREES
like in the other functions, and return NULL if it doesn’t exist.

bstree.c:206 This is where I have found the node since the key is equal (compare return 0).
bstree.c:207 This node has both a left and right branch, so it’s deeply embedded in the tree.
bstree.c:209 To remove this node I need to first find the smallest node that’s greater than this node, whichmeans I call BSTree_find_min on the right child.
bstree.c:210 Once I have this node, I will do a swap on its key and data with the current node’s. This willeffectively take this node that was down at the bottom of the tree, and put it’s contents here so that I don’thave to try and shuffle this node out by its pointers.
bstree.c:214 The successor is now this dead branch that has the current node’s values. It could just be re-moved, but there’s a chance that it has a right node value, which means I need to do a single rotate so thatthe successor’s right node gets moved up to completely detach it.
bstree.c:217 At this point, the successor is removed from the tree, its values replaced the current node’s values,and any children it had are moved up into the parent. I can return the successor as if it were the node.
bstree.c:218 At this branch I know that the node has a left but no right, so I want to replace this node with itsleft child.
bstree.c:219 I again use BSTree_replace_node_in_parent to do the replace, rotating the left child up.
bstree.c:220 This branch of the if-statement means I have a right child but no left child, so I want to rotate theright child up.
bstree.c:221 Again, use the function to do the rotate, but this time of the right node.
bstree.c:222 Finally, the only thing that’s left is the condition that I’ve found the node, and it has no children(no left or right). In this case, I simply replace this node with NULL using the same function I did with allthe others.
bstree.c:210 After all that, I have the current node rotated out of the tree and replaced with some child elementthat will fit in the tree. I just return this to the caller so it can be freed and managed.
This operation is very complex, and to be honest, in some tree data structures I just don’t bother doing deletesand treat them like constant data inmy software. If I need to do heavy insert and delete, I use a Hashmap instead.
Finally, you can look at the unit test to see how I’m testing it:

tests/bstree_tests.c
1 #include "minunit.h"
2 #include <lcthw/bstree.h>
3 #include <assert.h>
4 #include <lcthw/bstrlib.h>
5 #include <stdlib.h>
6 #include <time.h>
7
8 BSTree *map = NULL;
9 static int traverse_called = 0;
10 struct tagbstring test1 = bsStatic("test data 1");
11 struct tagbstring test2 = bsStatic("test data 2");
12 struct tagbstring test3 = bsStatic("xest data 3");
13 struct tagbstring expect1 = bsStatic("THE VALUE 1");
14 struct tagbstring expect2 = bsStatic("THE VALUE 2");
15 struct tagbstring expect3 = bsStatic("THE VALUE 3");
16
17 static int traverse_good_cb(BSTreeNode *node)
18 {

267

19 debug("KEY: %s", bdata((bstring)node->key));
20 traverse_called++;
21 return 0;
22 }
23
24
25 static int traverse_fail_cb(BSTreeNode *node)
26 {
27 debug("KEY: %s", bdata((bstring)node->key));
28 traverse_called++;
29
30 if(traverse_called == 2) {
31 return 1;
32 } else {
33 return 0;
34 }
35 }
36
37
38 char *test_create()
39 {
40 map = BSTree_create(NULL);
41 mu_assert(map != NULL, "Failed to create map.");
42
43 return NULL;
44 }
45
46 char *test_destroy()
47 {
48 BSTree_destroy(map);
49
50 return NULL;
51 }
52
53
54 char *test_get_set()
55 {
56 int rc = BSTree_set(map, &test1, &expect1);
57 mu_assert(rc == 0, "Failed to set &test1");
58 bstring result = BSTree_get(map, &test1);
59 mu_assert(result == &expect1, "Wrong value for test1.");
60
61 rc = BSTree_set(map, &test2, &expect2);
62 mu_assert(rc == 0, "Failed to set test2");
63 result = BSTree_get(map, &test2);
64 mu_assert(result == &expect2, "Wrong value for test2.");
65
66 rc = BSTree_set(map, &test3, &expect3);
67 mu_assert(rc == 0, "Failed to set test3");
68 result = BSTree_get(map, &test3);
69 mu_assert(result == &expect3, "Wrong value for test3.");
70
71 return NULL;
72 }
73
74 char *test_traverse()

268 CHAPTER 41. EXERCISE 40: BINARY SEARCH TREES

75 {
76 int rc = BSTree_traverse(map, traverse_good_cb);
77 mu_assert(rc == 0, "Failed to traverse.");
78 mu_assert(traverse_called == 3, "Wrong count traverse.");
79
80 traverse_called = 0;
81 rc = BSTree_traverse(map, traverse_fail_cb);
82 mu_assert(rc == 1, "Failed to traverse.");
83 mu_assert(traverse_called == 2, "Wrong count traverse for fail.");
84
85 return NULL;
86 }
87
88 char *test_delete()
89 {
90 bstring deleted = (bstring)BSTree_delete(map, &test1);
91 mu_assert(deleted != NULL, "Got NULL on delete.");
92 mu_assert(deleted == &expect1, "Should get test1");
93 bstring result = BSTree_get(map, &test1);
94 mu_assert(result == NULL, "Should delete.");
95
96 deleted = (bstring)BSTree_delete(map, &test1);
97 mu_assert(deleted == NULL, "Should get NULL on delete");
98
99 deleted = (bstring)BSTree_delete(map, &test2);
100 mu_assert(deleted != NULL, "Got NULL on delete.");
101 mu_assert(deleted == &expect2, "Should get test2");
102 result = BSTree_get(map, &test2);
103 mu_assert(result == NULL, "Should delete.");
104
105 deleted = (bstring)BSTree_delete(map, &test3);
106 mu_assert(deleted != NULL, "Got NULL on delete.");
107 mu_assert(deleted == &expect3, "Should get test3");
108 result = BSTree_get(map, &test3);
109 mu_assert(result == NULL, "Should delete.");
110
111 // test deleting non-existent stuff
112 deleted = (bstring)BSTree_delete(map, &test3);
113 mu_assert(deleted == NULL, "Should get NULL");
114
115 return NULL;
116 }
117
118 char *test_fuzzing()
119 {
120 BSTree *store = BSTree_create(NULL);
121 int i = 0;
122 int j = 0;
123 bstring numbers[100] = {NULL};
124 bstring data[100] = {NULL};
125 srand((unsigned int)time(NULL));
126
127 for(i = 0; i < 100; i++) {
128 int num = rand();
129 numbers[i] = bformat("%d", num);
130 data[i] = bformat("data %d", num);

41.1. HOW TO IMPROVE IT 269

131 BSTree_set(store, numbers[i], data[i]);
132 }
133
134 for(i = 0; i < 100; i++) {
135 bstring value = BSTree_delete(store, numbers[i]);
136 mu_assert(value == data[i], "Failed to delete the right number.");
137
138 mu_assert(BSTree_delete(store, numbers[i]) == NULL, "Should get nothing.");
139
140 for(j = i+1; j < 99 - i; j++) {
141 bstring value = BSTree_get(store, numbers[j]);
142 mu_assert(value == data[j], "Failed to get the right number.");
143 }
144
145 bdestroy(value);
146 bdestroy(numbers[i]);
147 }
148
149 BSTree_destroy(store);
150
151 return NULL;
152 }
153
154 char *all_tests()
155 {
156 mu_suite_start();
157
158 mu_run_test(test_create);
159 mu_run_test(test_get_set);
160 mu_run_test(test_traverse);
161 mu_run_test(test_delete);
162 mu_run_test(test_destroy);
163 mu_run_test(test_fuzzing);
164
165 return NULL;
166 }
167
168 RUN_TESTS(all_tests);

I’ll point you at the test_fuzzing function, which is an interesting technique for testing complex data struc-tures. It is difficult to create a set of keys that cover all the branches in BSTree_node_delete, and chances areI would miss some edge case. A better way is to create a "fuzz" function that does all the operations, but doesthem in as horrible and random a way as possible. In this case I’m inserting a set of random string keys, thenI’m deleting them and trying to get the rest after each delete.
Doing this prevents the situation where you test only what you know to work, which means you’ll miss thingsyou don’t know. By throwing random junk at your data structures you’ll hit things you didn’t expect and workout any bugs you have.

41.1 How To Improve It

Do not do any of these yet since in the next exercise I’ll be using this unit test to teach you some more perfor-mance tuning tricks. You’ll come back and do these after you do Exercise 41.
1. As usual, you should go through all the defensive programming checks and add asserts for conditions

270 CHAPTER 41. EXERCISE 40: BINARY SEARCH TREES
that shouldn’t happen. For example, you should not be getting NULL values for the recursion functions, soassert that.

2. The traverse function traverses the tree in order by traversing left, then right, then the current node. Youcan create traverse functions for reverse order as well.
3. It does a full string compare on every node, but I could use the Hashmap hashing functions to speed thisup. I could hash the keys, then keep the hash in the BSTreeNode. Then in each of the set up functions I canhash the key ahead of time, and pass it down to the recursive function. Using this hash I can then compareeach node much quicker similar to I do in Hashmap.

41.2 Extra Credit

Again, do not do these yet, wait until Exercise 41 when you can use performance tuning features of Valgrind todo them.
1. There’s an alternative way to do this data structure without using recursion. The Wikipedia page showsalternatives that don’t use recursion but do the same thing. Why would this be better or worse?
2. Read up on all the different similar trees you can find. There’s AVL trees, Red-Black trees, and some non-tree structures like Skip Lists.

Chapter 42

Exercise 41: Using Cachegrind And

Callgrind For Performance Tuning

In this exercise I’m going to give you a quick course in using two tools for Valgrind called callgrind and
cachegrind. These two tools will analyze your program’s execution and tell you what parts are running slow.The results are accurate because of the way Valgrind works and help you spot problems such as lines of codethat execute too much, hot spots, memory access problems, and even CPU cache misses.
To do this exercise I’m going to use the bstree_tests unit tests you just did to look for places to improve thealgorithms used. Make sure your versions of these programs are running without any valgrind errors and thatit is exactly like my code. I’ll be using dumps of my code to talk about how cachegrind and callgrind work.

42.1 Running Callgrind

To run callgrind you pass the --tool=callgrind option to valgrind and it will produce a callgrind.out.PIDfile (where PID is replace with the process ID of the program that ran). Once you run it you can analyze this
callgrind.out file with a tool called callgrind_annotate which will tell you which functions used the mostinstructions to run. Here’s an example of me running callgrind on bstree_tests and then getting its infor-mation:

Callgrind On bstree_tests
1 $ valgrind --dsymutil=yes --tool=callgrind tests/bstree_tests
2 ...
3 $ callgrind_annotate callgrind.out.1232
4 --
5 Profile data file 'callgrind.out.1232' (creator: callgrind-3.7.0.SVN)
6 --
7 I1 cache:
8 D1 cache:
9 LL cache:
10 Timerange: Basic block 0 - 1098689
11 Trigger: Program termination
12 Profiled target: tests/bstree_tests (PID 1232, part 1)
13 Events recorded: Ir
14 Events shown: Ir
15 Event sort order: Ir
16 Thresholds: 99
17 Include dirs:

271

272 CHAPTER 42. EXERCISE 41: USING CACHEGRIND AND CALLGRIND FOR PERFORMANCE TUNING

18 User annotated:
19 Auto-annotation: off
20
21 --
22 Ir
23 --
24 4,605,808 PROGRAM TOTALS
25
26 --
27 Ir file:function
28 --
29 670,486 src/lcthw/bstrlib.c:bstrcmp [tests/bstree_tests]
30 194,377 src/lcthw/bstree.c:BSTree_get [tests/bstree_tests]
31 65,580 src/lcthw/bstree.c:default_compare [tests/bstree_tests]
32 16,338 src/lcthw/bstree.c:BSTree_delete [tests/bstree_tests]
33 13,000 src/lcthw/bstrlib.c:bformat [tests/bstree_tests]
34 11,000 src/lcthw/bstrlib.c:bfromcstralloc [tests/bstree_tests]
35 7,774 src/lcthw/bstree.c:BSTree_set [tests/bstree_tests]
36 5,800 src/lcthw/bstrlib.c:bdestroy [tests/bstree_tests]
37 2,323 src/lcthw/bstree.c:BSTreeNode_create [tests/bstree_tests]
38 1,183 /private/tmp/pkg-build/coregrind//vg_preloaded.c:vg_cleanup_env [/usr/local/lib/valgrind/vgpreload_core-amd64-darwin.so]
39
40 $

I’ve removed the unit test run and the valgrind output since it’s not very useful for this exercise. What youshould look at is the callgrind_anotate output. What this shows you is the number of instructions run (which
valgrind calls Ir) for each function, and the functions sorted highest to lowest. You can usually ignore theheader data and just jump to the list of functions.

Note 13 More OSX Annoyances
In if you get a ton of "???:Image" lines and things that are not in your program then you’re picking upjunk from the OS. Just add | grep -v "???" at the end to filter those out, like this.

I can now do a quick breakdown of this output to figure out where to look next:
1. Each line lists the number of Ir and the file:function that executed them. The Ir is just the instructioncount, and if you make that lower then you have made it faster. There’s some complexity to that, but atfirst just focus on getting the Ir down.
2. The way to attack this is to look at your top functions, and then see which one you think you can im-prove first. In this case, I’d look at improving bstrcmp or BStree_get. It’s probably easier to start with

BStree_get.
3. Some of these functions are just called from the unit test, so I would just ignore those. Functions like

bformat, bfromcstralloc, and bdestroy fit this description.
4. I would also look for functions I can simply avoid calling. For example, maybe I can just say BSTree onlyworks with bstring keys, and then I can just not use the callback system and remove default_compareentirely.

At this point though, I only know that I want to look at BSTree_get to improve it, and not the reason BSTree_getis slow. That is phase two of the analysis.

42.2. CALLGRIND ANNOTATING SOURCE 273
42.2 Callgrind Annotating Source

I will next tell callgrind_annotate to dump out the bstree.c file and annotate each line with the number of
Ir it took. You get the annotated source file by running:

Callgrind Annotated BSTree_get
1 $ callgrind_annotate callgrind.out.1232 src/lcthw/bstree.c
2 ...

Your outputwill have a big dump of thefile’s source, but I’ve cut out the parts for BSTree_get and BSTree_getnode:
Callgrind Annotated BSTree_get

--
-- User-annotated source: src/lcthw/bstree.c
--

Ir

2,453 static inline BSTreeNode *BSTree_getnode(BSTree *map, BSTreeNode *node, void *key)
. {

61,853 int cmp = map->compare(node->key, key);
663,908 => src/lcthw/bstree.c:default_compare (14850x)

.
14,850 if(cmp == 0) {

. return node;
24,794 } else if(cmp < 0) {
30,623 if(node->left) {

. return BSTree_getnode(map, node->left, key);

. } else {

. return NULL;

. }

. } else {
13,146 if(node->right) {

. return BSTree_getnode(map, node->right, key);

. } else {

. return NULL;

. }

. }

. }

.

. void *BSTree_get(BSTree *map, void *key)
4,912 {
24,557 if(map->root == NULL) {
14,736 return NULL;

. } else {

. BSTreeNode *node = BSTree_getnode(map, map->root, key);
2,453 return node == NULL ? NULL : node->data;

. }

. }

Each line is shown with either the number of Ir (instructions) it ran, or a period (.) to show that it’s not impor-tant. What I’m looking for is hotspots, or lines that have huge numbers of Ir that I can possibly bring down.

274 CHAPTER 42. EXERCISE 41: USING CACHEGRIND AND CALLGRIND FOR PERFORMANCE TUNING
In this case, line 10 of the output above shows that what makes BSTree_getnode so expensive is that it calls
default_comaprewhich calls bstrcmp. I already know that bstrcmp is the worst running function, so if I wantto improve the speed of BSTree_getnode I should work on that first.
I’ll then look at bstrcmp the same way:

Callgrind Annotated bstcmp
98,370 int bstrcmp (const_bstring b0, const_bstring b1) {

. int i, v, n;

.
196,740 if (b0 == NULL || b1 == NULL || b0->data == NULL || b1->data == NULL ||
32,790 b0->slen < 0 || b1->slen < 0) return SHRT_MIN;
65,580 n = b0->slen; if (n > b1->slen) n = b1->slen;
89,449 if (b0->slen == b1->slen && (b0->data == b1->data || b0->slen == 0))

. return BSTR_OK;

.
23,915 for (i = 0; i < n; i ++) {
163,642 v = ((char) b0->data[i]) - ((char) b1->data[i]);

. if (v != 0) return v;

. if (b0->data[i] == (unsigned char) '\0') return BSTR_OK;

. }

.

. if (b0->slen > n) return 1;

. if (b1->slen > n) return -1;

. return BSTR_OK;

. }

The Ir for this function shows two lines that take upmost of the execution. First, bstrcmp seems to go through alot of trouble to make sure that it is not given a NULL value. That’s a good thing so I want to leave that alone, butI’d consider writing a different compare function that was more "risky" and assumed it was never given a NULL.The next one is the loop that does the actual comparison. It seems that there’s some optimization that could bedone in comparing the characters of the two data buffers.

42.3 Analyzing Memory Access With Cachegrind

What I want to do next is see howmany times this bstrcmp function access memory to either read it or write it.The tool for doing that (and other things) is cachegrind and you use it like this:
Cachegrind On bstree_tests

1 $ valgrind --tool=cachegrind tests/bstree_tests
2 ...
3 $ cg_annotate --show=Dr,Dw cachegrind.out.1316 | grep -v "???"
4 --
5 I1 cache: 32768 B, 64 B, 8-way associative
6 D1 cache: 32768 B, 64 B, 8-way associative
7 LL cache: 4194304 B, 64 B, 16-way associative
8 Command: tests/bstree_tests
9 Data file: cachegrind.out.1316
10 Events recorded: Ir I1mr ILmr Dr D1mr DLmr Dw D1mw DLmw
11 Events shown: Dr Dw
12 Event sort order: Ir I1mr ILmr Dr D1mr DLmr Dw D1mw DLmw

42.3. ANALYZING MEMORY ACCESS WITH CACHEGRIND 275

13 Thresholds: 0.1 100 100 100 100 100 100 100 100
14 Include dirs:
15 User annotated:
16 Auto-annotation: off
17
18 --
19 Dr Dw
20 --
21 997,124 349,058 PROGRAM TOTALS
22
23 --
24 Dr Dw file:function
25 --
26 169,754 19,430 src/lcthw/bstrlib.c:bstrcmp
27 67,548 27,428 src/lcthw/bstree.c:BSTree_get
28 19,430 19,430 src/lcthw/bstree.c:default_compare
29 5,420 2,383 src/lcthw/bstree.c:BSTree_delete
30 2,000 4,200 src/lcthw/bstrlib.c:bformat
31 1,600 2,800 src/lcthw/bstrlib.c:bfromcstralloc
32 2,770 1,410 src/lcthw/bstree.c:BSTree_set
33 1,200 1,200 src/lcthw/bstrlib.c:bdestroy
34
35 $

I tell valgrind to use the cachegrind tool, which runs bstree_tests and then produces a cachegrind.out.PIDfile just like callgrind did. I then use the program cg_annotate to get a similar output, but notice that I’mtelling it to do -show=Dr,Dw. This option says that I only want the memory read Dr and write Dw counts for eachfunction.
After that you get your usual header and then the counts for Dr and Dw for each file:function combination. I’veedited this down so it shows the files and also removed any OS junk with | grep -v "???" so your output maybe a little different. What you see in my output is that bstrcmp is the worst function for memory usage too,which is to be expected since that’s mostly the only thing it does. I’m going to now dump it’s annotated source tosee where.

Cachegrind Annotated bstrcmp
--
-- User-annotated source: src/lcthw/bstrlib.c
--

Dr Dw

0 19,430 int bstrcmp (const_bstring b0, const_bstring b1) {
. . int i, v, n;
. .

77,720 0 if (b0 == NULL || b1 == NULL || b0->data == NULL || b1->data == NULL ||
38,860 0 b0->slen < 0 || b1->slen < 0) return SHRT_MIN;

0 0 n = b0->slen; if (n > b1->slen) n = b1->slen;
0 0 if (b0->slen == b1->slen && (b0->data == b1->data || b0->slen == 0))
. . return BSTR_OK;
. .
0 0 for (i = 0; i < n; i ++) {

53,174 0 v = ((char) b0->data[i]) - ((char) b1->data[i]);
. . if (v != 0) return v;
. . if (b0->data[i] == (unsigned char) '\0') return BSTR_OK;

276 CHAPTER 42. EXERCISE 41: USING CACHEGRIND AND CALLGRIND FOR PERFORMANCE TUNING

. . }

. .

. . if (b0->slen > n) return 1;

. . if (b1->slen > n) return -1;

. . return BSTR_OK;

. . }

The surprising thing about this output is that the worst line of bstrcmp isn’t the character comparison like Ithought. For memory access it’s that protective if-statement at the top that checks every possible bad variable itcould receive. That one if statement does more than twice as many memory accesses compared to the line that’scomparing the characters on line 17 of this output. If I were to make bstrcmp then I would definitely just ditchthat or do it once somewhere else.
Another option is to turn this check into an assert that only exists when running in development, and thencompile it out in production. I now have enough evidence to say that this line is bad for this data structure, so Ican justify removing it.
What I don’t want to do however is justify making this function less defensive to just gain a few more cycles. Ina real performance improvement situation I would simply put this on a list and then dig for other gains I canmake in the program.

42.4 Judo Tuning

"We should forget about small efficiencies, say about 97% of the time: premature optimization is theroot of all evil."
(Donald Knuth)

In my opinion, this quote seems to miss a major point about performance tuning. In this Knuth is saying thatwhen you performance tune matters, in that if you do it in the beginning, then you’ll cause all sorts of problems.According to him optimization should happen "sometime later", or at least that’s my guess. Who knows thesedays really.
I’m going to declare this quote not necessarily wrong, but missing the point, and instead I’m going to officiallygive my quote. You can quote me on this:

"Use evidence to find the biggest optimizations that take the least effort."
(Zed A. Shaw)

It doesn’t matter when you try to optimize something, but instead it’s how you figure out if your optimizationactually improved the software, and how much effort you put into doing them. With evidence you can findthe places in the code where just a little effort gets you big improvements. Usually these places are just dumbdecisions, as in bstrcmp trying to check everything possible for a NULL value.
At a certain point you have tuned the code to where the only thing that remains is tiny little micro-optimizationssuch as reorganizing if-statements and special loops like Duff ’s Device. At this point, just stop because there’s agood chance that you’d gain more by redesigning the software to just not do things.
This is something that programmers who are optimizing simply fail to see. Many times the best way to dosomething fast is to find out ways to not do them. In the above analysis, I wouldn’t try to make bstrcmp faster,I’d try to find a way to not use bstrcmp so much. Maybe there’s a hashing scheme I can use that let’s me do asortable hash instead of constantly doing bstrcmp. Maybe I can optimize it by trying the first char first, and ifit’s comparable just don’t call bstrcmp.
If after all that you can’t do a redesign then start looking for little micro-optimizations, but as you do themconstantly confirm they improve speed. Remember that the goal is to cause the biggest impact with the least

42.5. USING KCACHEGRIND 277
effort possible.

42.5 Using KCachegrind

The final section of this exercise is going to point you at a tool called KCachegrind. This is a fantastic GUI foranalyzing callgrind and cachegrind output. I use it almost exclusively when I’mworking on a Linux or BSDcomputer, and I’ve actually switched to just coding on Linux for projects because of KCachegrind.
Teaching you how to use it is outside the scope of this exercise, but you should be able to understand how to useit after this exercise. The output is nearly the same except KCachegrind lets you do the following:
1. Graphically browse the source and execution times doing various sorts to find things to improve.
2. Analyze different graphs to visually see what’s taking up the most time and also what it is calling.
3. Look at the actual machine code assembler output so you can see possible instructions that are happening,giving you more clues.
4. Visualize the jump patterns for loops and branches in the source code, helping you find wayso to optimizethe code easier.

You should spend some time getting KCachegrind installed and play with it.

42.6 Extra Credit

1. Read the callgrind manual and try some advanced options.
2. Read the cachegrind manual and also try some advanced options.
3. Use callgrind and cachegrind on all the unit tests and see if you can find optimizations to make. Didyou find some things that surprised you? If not you probably aren’t looking hard enough.
4. Use KCachegrind and see how it compares to doing the terminal output like I’m doing here.
5. Now use these tools to do the Exercise 40 extra credits and improvements.

http://kcachegrind.sourceforge.net/html/Home.html
http://valgrind.org/docs/manual/cl-manual.html
http://valgrind.org/docs/manual/cg-manual.html

278 CHAPTER 42. EXERCISE 41: USING CACHEGRIND AND CALLGRIND FOR PERFORMANCE TUNING

Chapter 43

Exercise 42: Stacks and Queues

At this point in the book you knowmost of the data structures that are used to build all the other data structures.If you have some kind of List, DArray, Hashmap, and Tree then you can build most anything else that’s outthere. Everything else you run into either uses these or is some variant on these. If it’s not then it’s most likelyan exotic data structure that you probably will not need.
Stacks and Queues are very simple data structures that are really variants of the List data structure. All theyare is using a List with a "discipline" or convention that says you’ll always place elements on one end of the
List. For a Stack, you always push and pop. For a Queue, you always shift to the front, but pop from the end.
I can implement both data structures using nothing but the CPP and two header files. My header files are 21lines long and do all the Stack and Queue operations without any fancy defines.
To see if you’ve been paying attention, I’m going to show you the unit tests, and then you have to implementthe header files needed to make them work. To pass this exercise you can’t create any stack.c or queue.cimplementation files. Use only the stack.h and queue.h files to make the tests runs.

tests/stack_tests.c
1 #include "minunit.h"
2 #include <lcthw/stack.h>
3 #include <assert.h>
4
5 static Stack *stack = NULL;
6 char *tests[] = {"test1 data", "test2 data", "test3 data"};
7 #define NUM_TESTS 3
8
9
10 char *test_create()
11 {
12 stack = Stack_create();
13 mu_assert(stack != NULL, "Failed to create stack.");
14
15 return NULL;
16 }
17
18 char *test_destroy()
19 {
20 mu_assert(stack != NULL, "Failed to make stack #2");
21 Stack_destroy(stack);
22
23 return NULL;

279

280 CHAPTER 43. EXERCISE 42: STACKS AND QUEUES

24 }
25
26 char *test_push_pop()
27 {
28 int i = 0;
29 for(i = 0; i < NUM_TESTS; i++) {
30 Stack_push(stack, tests[i]);
31 mu_assert(Stack_peek(stack) == tests[i], "Wrong next value.");
32 }
33
34 mu_assert(Stack_count(stack) == NUM_TESTS, "Wrong count on push.");
35
36 STACK_FOREACH(stack, cur) {
37 debug("VAL: %s", (char *)cur->value);
38 }
39
40 for(i = NUM_TESTS - 1; i >= 0; i--) {
41 char *val = Stack_pop(stack);
42 mu_assert(val == tests[i], "Wrong value on pop.");
43 }
44
45 mu_assert(Stack_count(stack) == 0, "Wrong count after pop.");
46
47 return NULL;
48 }
49
50 char *all_tests() {
51 mu_suite_start();
52
53 mu_run_test(test_create);
54 mu_run_test(test_push_pop);
55 mu_run_test(test_destroy);
56
57 return NULL;
58 }
59
60 RUN_TESTS(all_tests);

Then the queue_tests.c is almost the same just using Queue:
tests/queue_tests.c

1 #include "minunit.h"
2 #include <lcthw/queue.h>
3 #include <assert.h>
4
5 static Queue *queue = NULL;
6 char *tests[] = {"test1 data", "test2 data", "test3 data"};
7 #define NUM_TESTS 3
8
9
10 char *test_create()
11 {
12 queue = Queue_create();
13 mu_assert(queue != NULL, "Failed to create queue.");

43.1. WHAT YOU SHOULD SEE 281

14
15 return NULL;
16 }
17
18 char *test_destroy()
19 {
20 mu_assert(queue != NULL, "Failed to make queue #2");
21 Queue_destroy(queue);
22
23 return NULL;
24 }
25
26 char *test_send_recv()
27 {
28 int i = 0;
29 for(i = 0; i < NUM_TESTS; i++) {
30 Queue_send(queue, tests[i]);
31 mu_assert(Queue_peek(queue) == tests[0], "Wrong next value.");
32 }
33
34 mu_assert(Queue_count(queue) == NUM_TESTS, "Wrong count on send.");
35
36 QUEUE_FOREACH(queue, cur) {
37 debug("VAL: %s", (char *)cur->value);
38 }
39
40 for(i = 0; i < NUM_TESTS; i++) {
41 char *val = Queue_recv(queue);
42 mu_assert(val == tests[i], "Wrong value on recv.");
43 }
44
45 mu_assert(Queue_count(queue) == 0, "Wrong count after recv.");
46
47 return NULL;
48 }
49
50 char *all_tests() {
51 mu_suite_start();
52
53 mu_run_test(test_create);
54 mu_run_test(test_send_recv);
55 mu_run_test(test_destroy);
56
57 return NULL;
58 }
59
60 RUN_TESTS(all_tests);

43.1 What You Should See

Your unit test should run without you changing the tests, and it should pass valgrind with no memory errors.Here’s what it looks like if I run stack_tests directly:

282 CHAPTER 43. EXERCISE 42: STACKS AND QUEUES

stack_tests run
1 $./tests/stack_tests
2 DEBUG tests/stack_tests.c:60: ----- RUNNING: ./tests/stack_tests
3 ----
4 RUNNING: ./tests/stack_tests
5 DEBUG tests/stack_tests.c:53:
6 ----- test_create
7 DEBUG tests/stack_tests.c:54:
8 ----- test_push_pop
9 DEBUG tests/stack_tests.c:37: VAL: test3 data
10 DEBUG tests/stack_tests.c:37: VAL: test2 data
11 DEBUG tests/stack_tests.c:37: VAL: test1 data
12 DEBUG tests/stack_tests.c:55:
13 ----- test_destroy
14 ALL TESTS PASSED
15 Tests run: 3
16 $

The queue_test is basically the same kind of output so I shouldn’t have to show it to you at this stage.

43.2 How To Improve It

The only real improvement you could make to this is to switch from using a List to using a DArray. The Queuedata structure is more difficult to do with a DArray because it works at both ends of the list of nodes.
A disadvantage of doing this entirely in a header file is that you can’t easily performance tune it. Mostly whatyou’re doing with this technique is establishing a "protocol" for how to use a List in a certain style. Whenperformance tuning, if you make List fast then these two should improve as well.

43.3 Extra Credit

1. Implement Stack using DArray instead of List without changing the unit test. That means you’ll have tocreate your own STACK_FOREACH.

Chapter 44

Exercise 43: A Simple Statistics Engine

This is a simple algorithm I use for collecting summary statistics "online", or without storing all of the samples. Iuse this in any software that needs to keep some statistics such as mean, standard deviation, and sum, but whereI can’t store all the samples needed. Instead I can just store the rolling results of the calculations which is only 5numbers.

44.1 Rolling Standard Deviation And Mean

The first thing you need is a sequence of samples. This can be anything from time to complete a task, numbersof times someone accesses something, or even star ratings on a website. Doesn’t really matter what, just so longas you have a stream of numbers and you want to know the following summary statistics about them:
sum This is the total of all the numbers added together.
sum squared (sumsq) This is the sum of the square of each number.
count (n) This is the number samples you’ve taken.
min This is the smallest sample you’ve seen.
max This is the largest sample you’ve seen.
mean This is the most likely middle number. It’s not actually the middle, since that’s the median, but it’s anaccepted approximation for it.
stddev Calculated using sqrt(sumsq − (sum ∗ mean))/(n − 1))) where sqrt is the square root function in the

math.h header.
I will confirm this calculation works using R since I know R gets these right:

Standard Deviation in R
1 > s <- runif(n=10, max=10)
2 > s
3 [1] 6.1061334 9.6783204 1.2747090 8.2395131 0.3333483 6.9755066 1.0626275
4 [8] 7.6587523 4.9382973 9.5788115
5 > summary(s)
6 Min. 1st Qu. Median Mean 3rd Qu. Max.
7 0.3333 2.1910 6.5410 5.5850 8.0940 9.6780
8 > sd(s)
9 [1] 3.547868
10 > sum(s)

283

284 CHAPTER 44. EXERCISE 43: A SIMPLE STATISTICS ENGINE

11 [1] 55.84602
12 > sum(s * s)
13 [1] 425.1641
14 > sum(s) * mean(s)
15 [1] 311.8778
16 > sum(s * s) - sum(s) * mean(s)
17 [1] 113.2863
18 > (sum(s * s) - sum(s) * mean(s)) / (length(s) - 1)
19 [1] 12.58737
20 > sqrt((sum(s * s) - sum(s) * mean(s)) / (length(s) - 1))
21 [1] 3.547868
22 >

You don’t need to know R, just follow along while I explain how I’m breaking this down to check my math:
lines 1-4 I use the function runif to get a "random uniform" distribution of numbers, then print them out. I’lluse these in the unit test later.
lines 5-7 Here’s the summary, so you can see the values that R calculates for these.
lines 8-9 This is the stddev using the sd function.
lines 10-11 Now I begin to build this calculation manually, first by getting the sum.
lines 12-13 Next piece of the stdev formula is the sumsq, which I can get with sum(s * s) which tells R tomultiple the whole s list by itself and then sum those.1
lines 14-15 Looking at the formula, I then need the summultiplied by mean, so I do sum(s) * mean(s).
lines 16-17 I then combine the sumsq with this to get sum(s * s) - sum(s) * mean(s).
lines 18-19 That needs to be divided by n−1, so I do (sum(s * s) - sum(s) * mean(s)) / (length(s) - 1).
lines 20-21 Finally, I sqrt that and I get 3.547868 which matches the number R gave me for sd above.

44.2 Implemention

That’s how you calculate the stddev, so now I can make some simple code to implement this calculation.
src/lcthw/stats.h

1 #ifndef lcthw_stats_h
2 #define lctwh_stats_h
3
4 typedef struct Stats {
5 double sum;
6 double sumsq;
7 unsigned long n;
8 double min;
9 double max;
10 } Stats;
11
12 Stats *Stats_recreate(double sum, double sumsq, unsigned long n, double min, double max);
13
14 Stats *Stats_create();

1The power of R is being able to do math on entire data structures like this.

44.2. IMPLEMENTION 285

15
16 double Stats_mean(Stats *st);
17
18 double Stats_stddev(Stats *st);
19
20 void Stats_sample(Stats *st, double s);
21
22 void Stats_dump(Stats *st);
23
24 #endif

Here you can see I’ve put the calculations I need to store in a struct and then I have functions for sampling andgetting the numbers. Implementing this is then just an exercise in converting the math:
src/lcthw/stats.c

1 #include <math.h>
2 #include <lcthw/stats.h>
3 #include <stdlib.h>
4 #include <lcthw/dbg.h>
5
6 Stats *Stats_recreate(double sum, double sumsq, unsigned long n, double min, double max)
7 {
8 Stats *st = malloc(sizeof(Stats));
9 check_mem(st);
10
11 st->sum = sum;
12 st->sumsq = sumsq;
13 st->n = n;
14 st->min = min;
15 st->max = max;
16
17 return st;
18
19 error:
20 return NULL;
21 }
22
23 Stats *Stats_create()
24 {
25 return Stats_recreate(0.0, 0.0, 0L, 0.0, 0.0);
26 }
27
28 double Stats_mean(Stats *st)
29 {
30 return st->sum / st->n;
31 }
32
33 double Stats_stddev(Stats *st)
34 {
35 return sqrt((st->sumsq - (st->sum * st->sum / st->n)) / (st->n - 1));
36 }
37
38 void Stats_sample(Stats *st, double s)
39 {
40 st->sum += s;

286 CHAPTER 44. EXERCISE 43: A SIMPLE STATISTICS ENGINE

41 st->sumsq += s * s;
42
43 if(st->n == 0) {
44 st->min = s;
45 st->max = s;
46 } else {
47 if(st->min > s) st->min = s;
48 if(st->max < s) st->max = s;
49 }
50
51 st->n += 1;
52 }
53
54 void Stats_dump(Stats *st)
55 {
56 fprintf(stderr, "sum: %f, sumsq: %f, n: %ld, min: %f, max: %f, mean: %f, stddev: %f",
57 st->sum, st->sumsq, st->n, st->min, st->max,
58 Stats_mean(st), Stats_stddev(st));
59 }

Here’s what each function in stats.c does:
Stats_recreate I’ll want to load these numbers from some kind of database, and this function let’s me recreatea Stats struct.
Stats_create Simply called Stats_recreate with all 0 values.
Stats_mean Using the sum and n it gives the mean.
Stats_stddev Implements the formula I worked out, with the only difference being that I calculate the meanwith st->sum / st->n in this formula instead of calling Stats_mean.
Stats_sample This does the work of maintaining the numbers in the Stats struct. When you give it the firstvalue it sees that n is 0 and sets min and max accordingly. Every call after that keeps increasing sum, sumsq,and n. It then figures out if this new sample is a new min or max.
Stats_dump Simple debug function that dumps the stats so you can view them.
The last thing I need to do is confirm that this math is correct. I’m going to use my numbers and calculationsfrom my R session to create a unit test that confirms I’m getting the right results.

tests/stats_tests.c
1 #include "minunit.h"
2 #include <lcthw/stats.h>
3 #include <math.h>
4
5 const int NUM_SAMPLES = 10;
6 double samples[] = {
7 6.1061334, 9.6783204, 1.2747090, 8.2395131, 0.3333483,
8 6.9755066, 1.0626275, 7.6587523, 4.9382973, 9.5788115
9 };
10
11 Stats expect = {
12 .sumsq = 425.1641,
13 .sum = 55.84602,
14 .min = 0.333,
15 .max = 9.678,

44.2. IMPLEMENTION 287

16 .n = 10,
17 };
18 double expect_mean = 5.584602;
19 double expect_stddev = 3.547868;
20
21 #define EQ(X,Y,N) (round((X) * pow(10, N)) == round((Y) * pow(10, N)))
22
23 char *test_operations()
24 {
25 int i = 0;
26 Stats *st = Stats_create();
27 mu_assert(st != NULL, "Failed to create stats.");
28
29 for(i = 0; i < NUM_SAMPLES; i++) {
30 Stats_sample(st, samples[i]);
31 }
32
33 Stats_dump(st);
34
35 mu_assert(EQ(st->sumsq, expect.sumsq, 3), "sumsq not valid");
36 mu_assert(EQ(st->sum, expect.sum, 3), "sum not valid");
37 mu_assert(EQ(st->min, expect.min, 3), "min not valid");
38 mu_assert(EQ(st->max, expect.max, 3), "max not valid");
39 mu_assert(EQ(st->n, expect.n, 3), "max not valid");
40 mu_assert(EQ(expect_mean, Stats_mean(st), 3), "mean not valid");
41 mu_assert(EQ(expect_stddev, Stats_stddev(st), 3), "stddev not valid");
42
43 return NULL;
44 }
45
46 char *test_recreate()
47 {
48 Stats *st = Stats_recreate(expect.sum, expect.sumsq, expect.n, expect.min, expect.max);
49
50 mu_assert(st->sum == expect.sum, "sum not equal");
51 mu_assert(st->sumsq == expect.sumsq, "sumsq not equal");
52 mu_assert(st->n == expect.n, "n not equal");
53 mu_assert(st->min == expect.min, "min not equal");
54 mu_assert(st->max == expect.max, "max not equal");
55 mu_assert(EQ(expect_mean, Stats_mean(st), 3), "mean not valid");
56 mu_assert(EQ(expect_stddev, Stats_stddev(st), 3), "stddev not valid");
57
58 return NULL;
59 }
60
61 char *all_tests()
62 {
63 mu_suite_start();
64
65 mu_run_test(test_operations);
66 mu_run_test(test_recreate);
67
68 return NULL;
69 }
70
71 RUN_TESTS(all_tests);

288 CHAPTER 44. EXERCISE 43: A SIMPLE STATISTICS ENGINE
There’s nothing new in this unit test, except maybe the EQ macro. I felt lazy and didn’t want to look up thestandard way to tell if two double values are close, so I made this macro. The problem with double is thatequality assumes totally equal, but I’m using two different systems with slightly different rounding errors. Thesolution is to say I want the numbers to be "equal to X decimal places".
I do this with EQ by raising the number to a power of 10, then using the round function to get an integer. This isa simple way to round to N decimal places and compare the results as an integer. I’m sure there’s a billion otherways to do the same thing, but this works for now.
The expected results are then in a Stats struct and then I simply make sure that the number I get is close tothe number R gave me.

44.3 How To Use It

You can use the standard deviation and mean to determine if a new sample is "interesting", or you can use thisto collect statistics on statistics. The first one is easy for people to understand so I’ll explain that quickly usingan example for login times.
Imagine you’re tracking how long users spend on a server and you’re using stats to analyze it. Every timesomeone logs in, you keep track of how long they are there, then you call Stats_sample. I’m looking for peopleare a on "too long" and also people who seem to be on "too quickly".
Instead of setting specific levels, what I’d do is compare how long someone is on with the mean (plus or
minus) 2 * stddev range. I get the mean and 2 * stddev, and consider login times to be "interesting" ifthey are outside these two ranges. Since I’m keeping these statistics using a rolling algorithm this is a very fastcalculation and I can then have the software flag the users who are outside of this range.
This doesn’t necessarily point out people who are behaving badly, but instead it flags potential problems thatyou can review to see what’s going on. It’s also doing it based on the behavior of all the users, which avoids theproblem where you pick some arbitrary number that’s not based on what’s really happening.
The general rule you can get from this is that the mean (plus or minus) 2 * stddev is an estimate of where90% of the values are expected to fall, and that anything outside those ranges is interesting.
The secondway to use these statistics is to gometa and calculate them for other Stats calculations. You basicallydo your Stats_sample like normal, but then you run Stats_sample on the min, max, n, mean, and stddev onthat sample. This gives a two-level measurement, and let’s you compare samples of samples.
Confusing right? I’ll continue my example above and add that you have 100 servers that each hold a differentapplication. You are already tracking user’s login times for each application server, but you want to compare all100 applications and flag any users that are logging in "too much" on all of them. Easiest way to do that is eachtime someone logs in, calculate the new login stats, then add that Stats structs elements to a second Stat.
What you end up with is a series of stats that can be named like this:
mean of means This is a full Stats struct that gives you mean and stddev of the means of all the servers.Any server or user who is outside of this is work looking at on a global level.
mean of stddevs Another Stats struct that produces the statistics of how all of the servers range. You canthen analyze each server and see if any of them have unusually wide ranging numbers by comparing their

stddev to this mean of stddevs statistic.
You could do them all, but these are the most useful. If you wanted to then monitor servers for erratic logintimes you’d do this:
1. User John logs into and out of server A. Grab server A’s stats, update them.
2. Grab the mean of means stats, and take A’s mean and add it as a sample. I’ll call this m_of_m.
3. Grab the mean of stddevs stats, and add A’s stddev to it as a sample. I’ll call this m_of_s.
4. If A’s mean is outside of m_of_m.mean + 2 * m_of_m.stddev then flag it as possibly having a problem.

44.4. EXTRA CREDIT 289
5. If A’s stddev is outside of m_of_s.mean + 2 * m_of_s.stddev then flag it as possible behaving too er-ratically.
6. Finally, if John’s login time is outside of A’s range, or A’s m_of_m range, then flag it as interesting.

Using this "mean of means" and "mean of stddevs" calculation you can do efficient tracking of many metricswith a minimal amount of processing and storage.

44.4 Extra Credit

1. Convert the Stats_stddev and Stats_mean to static inline functions in the stats.h file instead of inthe stats.c file.
2. Use this code to write a performance test of the string_algos_test.c. Make it optional and have it runthe base test as a series of samples then report the results.
3. Write a version of this in another programming language you know. Confirm that this version is correctbased on what I have here.
4. Write a little program that can take a file full of numbers and spit these statistics out for them.
5. Make the program accept a table of data that has headers on one line, then all the other numbers on linesafter it separated by any number of spaces. Your program should then print out these stats for each columnby the header name.

290 CHAPTER 44. EXERCISE 43: A SIMPLE STATISTICS ENGINE

Chapter 45

Exercise 44: Ring Buffer

Ring buffers are incredibly useful when processing asynchronous IO. They allow one side to receive data inrandom intervals of random sizes, but feed cohesive chunks to another side in set sizes or intervals. They are avariant on the Queue data structure but it focuses on blocks of bytes instead of a list of pointers. In this exerciseI’m going to show you the RingBuffer code, and then you have to make a full unit test for it.
src/lcthw/ringbuffer.h

1 #ifndef _lcthw_RingBuffer_h
2 #define _lcthw_RingBuffer_h
3
4 #include <lcthw/bstrlib.h>
5
6 typedef struct {
7 char *buffer;
8 int length;
9 int start;
10 int end;
11 } RingBuffer;
12
13 RingBuffer *RingBuffer_create(int length);
14
15 void RingBuffer_destroy(RingBuffer *buffer);
16
17 int RingBuffer_read(RingBuffer *buffer, char *target, int amount);
18
19 int RingBuffer_write(RingBuffer *buffer, char *data, int length);
20
21 int RingBuffer_empty(RingBuffer *buffer);
22
23 int RingBuffer_full(RingBuffer *buffer);
24
25 int RingBuffer_available_data(RingBuffer *buffer);
26
27 int RingBuffer_available_space(RingBuffer *buffer);
28
29 bstring RingBuffer_gets(RingBuffer *buffer, int amount);
30
31 #define RingBuffer_available_data(B) (((B)->end + 1) % (B)->length - (B)->start - 1)
32
33 #define RingBuffer_available_space(B) ((B)->length - (B)->end - 1)

291

292 CHAPTER 45. EXERCISE 44: RING BUFFER

34
35 #define RingBuffer_full(B) (RingBuffer_available_data((B)) - (B)->length == 0)
36
37 #define RingBuffer_empty(B) (RingBuffer_available_data((B)) == 0)
38
39 #define RingBuffer_puts(B, D) RingBuffer_write((B), bdata((D)), blength((D)))
40
41 #define RingBuffer_get_all(B) RingBuffer_gets((B), RingBuffer_available_data((B)))
42
43 #define RingBuffer_starts_at(B) ((B)->buffer + (B)->start)
44
45 #define RingBuffer_ends_at(B) ((B)->buffer + (B)->end)
46
47 #define RingBuffer_commit_read(B, A) ((B)->start = ((B)->start + (A)) % (B)->length)
48
49 #define RingBuffer_commit_write(B, A) ((B)->end = ((B)->end + (A)) % (B)->length)
50
51 #endif

Looking at the data structure you see I have a buffer, start and end. A RingBuffer does nothing more thanmove the start and end around the buffer so that it "loops" whenever it reaches the buffer’s end. Doing thisgives the illusion of an infinite read device in a small space. I then have a bunch of macros that do variouscalculations based on this.
Here’s the implementation which is a much better explanation of how this works:

src/lcthw/ringbuffer.c
1 #undef NDEBUG
2 #include <assert.h>
3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <string.h>
6 #include <lcthw/dbg.h>
7 #include <lcthw/ringbuffer.h>
8
9 RingBuffer *RingBuffer_create(int length)
10 {
11 RingBuffer *buffer = calloc(1, sizeof(RingBuffer));
12 buffer->length = length + 1;
13 buffer->start = 0;
14 buffer->end = 0;
15 buffer->buffer = calloc(buffer->length, 1);
16
17 return buffer;
18 }
19
20 void RingBuffer_destroy(RingBuffer *buffer)
21 {
22 if(buffer) {
23 free(buffer->buffer);
24 free(buffer);
25 }
26 }
27
28 int RingBuffer_write(RingBuffer *buffer, char *data, int length)

293

29 {
30 if(RingBuffer_available_data(buffer) == 0) {
31 buffer->start = buffer->end = 0;
32 }
33
34 check(length <= RingBuffer_available_space(buffer),
35 "Not enough space: %d request, %d available",
36 RingBuffer_available_data(buffer), length);
37
38 void *result = memcpy(RingBuffer_ends_at(buffer), data, length);
39 check(result != NULL, "Failed to write data into buffer.");
40
41 RingBuffer_commit_write(buffer, length);
42
43 return length;
44 error:
45 return -1;
46 }
47
48 int RingBuffer_read(RingBuffer *buffer, char *target, int amount)
49 {
50 check_debug(amount <= RingBuffer_available_data(buffer),
51 "Not enough in the buffer: has %d, needs %d",
52 RingBuffer_available_data(buffer), amount);
53
54 void *result = memcpy(target, RingBuffer_starts_at(buffer), amount);
55 check(result != NULL, "Failed to write buffer into data.");
56
57 RingBuffer_commit_read(buffer, amount);
58
59 if(buffer->end == buffer->start) {
60 buffer->start = buffer->end = 0;
61 }
62
63 return amount;
64 error:
65 return -1;
66 }
67
68 bstring RingBuffer_gets(RingBuffer *buffer, int amount)
69 {
70 check(amount > 0, "Need more than 0 for gets, you gave: %d ", amount);
71 check_debug(amount <= RingBuffer_available_data(buffer),
72 "Not enough in the buffer.");
73
74 bstring result = blk2bstr(RingBuffer_starts_at(buffer), amount);
75 check(result != NULL, "Failed to create gets result.");
76 check(blength(result) == amount, "Wrong result length.");
77
78 RingBuffer_commit_read(buffer, amount);
79 assert(RingBuffer_available_data(buffer) >= 0 && "Error in read commit.");
80
81 return result;
82 error:
83 return NULL;
84 }

294 CHAPTER 45. EXERCISE 44: RING BUFFER
This is all there is to a basic RingBuffer implementation. You can read and write blocks of data to it. You canask how much is in it and how much space it has. There are some fancier ring buffers that use tricks in the OSto create an imaginary infinite store, but those aren’t portable.
Since my RingBuffer deals with reading and writing blocks of memory, I’mmaking sure that any time end ==
start then I reset them to 0 (zero) so that they go to the beginning of the buffer. In the Wikipedia version itwasn’t writing blocks of data, so it only had to move end and start around in a circle. To better handle blocksyou have to drop to the beginning of the internal buffer whenever the data is empty.

45.1 The Unit Test

For your unit test, you’ll want to test as many possible conditions as you can. Easiest way to do that is to pre-construct different RingBuffer structs and then manually check that the functions and math work right. Forexample, you could make one where end is right at the end of the buffer and start is right before it, then seehow it fails.

45.2 What You Should See

Here’s my ringbuffer_tests run:
ringbuffer_tests

1 $./tests/ringbuffer_tests
2 DEBUG tests/ringbuffer_tests.c:60: ----- RUNNING: ./tests/ringbuffer_tests
3 ----
4 RUNNING: ./tests/ringbuffer_tests
5 DEBUG tests/ringbuffer_tests.c:53:
6 ----- test_create
7 DEBUG tests/ringbuffer_tests.c:54:
8 ----- test_read_write
9 DEBUG tests/ringbuffer_tests.c:55:
10 ----- test_destroy
11 ALL TESTS PASSED
12 Tests run: 3
13 $

You should have at least three tests that confirm all the basic operations, and then see how much more you cantest beyond what I’ve done.

45.3 How To Improve It

As usual you should go back and add the defensive programming checks to this exercise. Hopefully you’ve beendoing this because the base code in most of liblcthw doesn’t check for common defensive programming thatI’m teaching you. I leave this to you so that you get used to improving code with these extra checks.
For example, in this ring buffer there’s not a lot of checking that an access will actually be inside the buffer.
If you read the Ring Buffer Wikipedia page you’ll see the "Optimized POSIX implementation" that uses POSIXspecific calls to create an infinite space. Study that as I’ll have you try it in the extra credit.

http://en.wikipedia.org/wiki/Ring_buffer

45.4. EXTRA CREDIT 295
45.4 Extra Credit

1. Create an alternative implementation of RingBuffer that uses the POSIX trick and a unit test for it.
2. Add a performance comparison test to this unit test that compares the two versions by fuzzing them withrandom data and random read/write operations. Make sure that you setup this fuzzing so that the sameoperations are done to each so you can compare them between runs.
3. Use callgrind and cachegrind to compare the performance of these two.

296 CHAPTER 45. EXERCISE 44: RING BUFFER

Chapter 46

Exercise 45: A Simple TCP/IP Client

I’m going to use the RingBuffer to create a very simplistic little network testing tool called netclient. To dothis I have to add some stuff to the Makefile to handle little programs in the bin/ directory.

46.1 Augment The Makefile

First, add a variable for the programs just like the unit tests TESTS and TEST_SRC variables:
PROGRAMS_SRC=$(wildcard bin/*.c)
PROGRAMS=$(patsubst %.c,%,$(PROGRAMS_SRC))

Then you want to add the PROGRAMS to the all target:
all: $(TARGET) $(SO_TARGET) tests $(PROGRAMS)

Then add PROGRAMS to the rm line in the clean target:
rm -rf build $(OBJECTS) $(TESTS) $(PROGRAMS)

Finally you just need a target at the end to build them all:
$(PROGRAMS): CFLAGS += $(TARGET)

With these changes you can drop simple .c files into bin and make will build them and link them to the libraryjust like the tests are done.

46.2 The netclient Code

The code for the little netclient looks like this:
bin/netclient.c

1 #undef NDEBUG
2 #include <stdlib.h>
3 #include <sys/select.h>
4 #include <stdio.h>
5 #include <lcthw/ringbuffer.h>
6 #include <lcthw/dbg.h>
7 #include <sys/socket.h>
8 #include <sys/types.h>

297

298 CHAPTER 46. EXERCISE 45: A SIMPLE TCP/IP CLIENT

9 #include <sys/uio.h>
10 #include <arpa/inet.h>
11 #include <netdb.h>
12 #include <unistd.h>
13 #include <fcntl.h>
14
15 struct tagbstring NL = bsStatic("\n");
16 struct tagbstring CRLF = bsStatic("\r\n");
17
18 int nonblock(int fd) {
19 int flags = fcntl(fd, F_GETFL, 0);
20 check(flags >= 0, "Invalid flags on nonblock.");
21
22 int rc = fcntl(fd, F_SETFL, flags | O_NONBLOCK);
23 check(rc == 0, "Can't set nonblocking.");
24
25 return 0;
26 error:
27 return -1;
28 }
29
30 int client_connect(char *host, char *port)
31 {
32 int rc = 0;
33 struct addrinfo *addr = NULL;
34
35 rc = getaddrinfo(host, port, NULL, &addr);
36 check(rc == 0, "Failed to lookup %s:%s", host, port);
37
38 int sock = socket(AF_INET, SOCK_STREAM, 0);
39 check(sock >= 0, "Cannot create a socket.");
40
41 rc = connect(sock, addr->ai_addr, addr->ai_addrlen);
42 check(rc == 0, "Connect failed.");
43
44 rc = nonblock(sock);
45 check(rc == 0, "Can't set nonblocking.");
46
47 freeaddrinfo(addr);
48 return sock;
49
50 error:
51 freeaddrinfo(addr);
52 return -1;
53 }
54
55 int read_some(RingBuffer *buffer, int fd, int is_socket)
56 {
57 int rc = 0;
58
59 if(RingBuffer_available_data(buffer) == 0) {
60 buffer->start = buffer->end = 0;
61 }
62
63 if(is_socket) {
64 rc = recv(fd, RingBuffer_starts_at(buffer), RingBuffer_available_space(buffer), 0);

46.2. THE NETCLIENT CODE 299

65 } else {
66 rc = read(fd, RingBuffer_starts_at(buffer), RingBuffer_available_space(buffer));
67 }
68
69 check(rc >= 0, "Failed to read from fd: %d", fd);
70
71 RingBuffer_commit_write(buffer, rc);
72
73 return rc;
74
75 error:
76 return -1;
77 }
78
79
80 int write_some(RingBuffer *buffer, int fd, int is_socket)
81 {
82 int rc = 0;
83 bstring data = RingBuffer_get_all(buffer);
84
85 check(data != NULL, "Failed to get from the buffer.");
86 check(bfindreplace(data, &NL, &CRLF, 0) == BSTR_OK, "Failed to replace NL.");
87
88 if(is_socket) {
89 rc = send(fd, bdata(data), blength(data), 0);
90 } else {
91 rc = write(fd, bdata(data), blength(data));
92 }
93
94 check(rc == blength(data), "Failed to write everything to fd: %d.", fd);
95 bdestroy(data);
96
97 return rc;
98
99 error:
100 return -1;
101 }
102
103
104 int main(int argc, char *argv[])
105 {
106 fd_set allreads;
107 fd_set readmask;
108
109 int socket = 0;
110 int rc = 0;
111 RingBuffer *in_rb = RingBuffer_create(1024 * 10);
112 RingBuffer *sock_rb = RingBuffer_create(1024 * 10);
113
114 check(argc == 3, "USAGE: netclient host port");
115
116 socket = client_connect(argv[1], argv[2]);
117 check(socket >= 0, "connect to %s:%s failed.", argv[1], argv[2]);
118
119 FD_ZERO(&allreads);
120 FD_SET(socket, &allreads);

300 CHAPTER 46. EXERCISE 45: A SIMPLE TCP/IP CLIENT

121 FD_SET(0, &allreads);
122
123 while(1) {
124 readmask = allreads;
125 rc = select(socket + 1, &readmask, NULL, NULL, NULL);
126 check(rc >= 0, "select failed.");
127
128 if(FD_ISSET(0, &readmask)) {
129 rc = read_some(in_rb, 0, 0);
130 check_debug(rc != -1, "Failed to read from stdin.");
131 }
132
133 if(FD_ISSET(socket, &readmask)) {
134 rc = read_some(sock_rb, socket, 0);
135 check_debug(rc != -1, "Failed to read from socket.");
136 }
137
138 while(!RingBuffer_empty(sock_rb)) {
139 rc = write_some(sock_rb, 1, 0);
140 check_debug(rc != -1, "Failed to write to stdout.");
141 }
142
143 while(!RingBuffer_empty(in_rb)) {
144 rc = write_some(in_rb, socket, 1);
145 check_debug(rc != -1, "Failed to write to socket.");
146 }
147 }
148
149 return 0;
150
151 error:
152 return -1;
153 }

This code uses select to handle events from both stdin (file descriptor 0) and from the socket it uses totalk to a server. It uses RingBuffers to store the data and copy it around, and you can consider the functions
read_some and write_some early prototypes for similar functions in the RingBuffer library.
In this little bit of code are quite a few networking functions you may not know. As you hit a function you don’tknow, look it up in the man pages and make sure you understand it. This one little file could actually get you toresearch all the APIs required to write a little server in C.

46.3 What You Should See

If you have everything building then the quickest way to test it is see if you can get a special file off learncode-thehardway.org:
Testing netclient

1 $
2 $./bin/netclient learncodethehardway.org 80
3 GET /ex45.txt HTTP/1.1
4 Host: learncodethehardway.org
5

46.4. HOW TO BREAK IT 301

6 HTTP/1.1 200 OK
7 Date: Fri, 27 Apr 2012 00:41:25 GMT
8 Content-Type: text/plain
9 Content-Length: 41
10 Last-Modified: Fri, 27 Apr 2012 00:42:11 GMT
11 ETag: 4f99eb63-29
12 Server: Mongrel2/1.7.5
13
14 Learn C The Hard Way, Exercise 45 works.
15 ^C
16 $

What I did there is I type in the syntax needed to make the HTTP request for the file /ex45.txt, then the Host:header line, then hit ENTER to get an empty line. I then get the response, with headers and the content. Afterthat I just hit CTRL-c to exit.

46.4 How To Break It

This code definitely could have bugs, and currently in the draft of the book I’m going to have to keep workingon this. In the meantime, try analyzing the code I have here and thrashing it against other servers. There’s atool called netcat that is great for setting up these kinds of servers. Another thing to do is use a language like
Python or Ruby to create a simple "junk server" that spews out junk and bad data, closes connections randomly,and other nasty things.
If you find bugs, report them in the comments and I’ll fix them up.

46.5 Extra Credit

1. As I mentioned, there’s quite a few functions you may not know, so look them up. In fact, look them all upeven if you think you know them.
2. Run this under valgrind and look for errors.
3. Go back through and add various defensive programming checks to the functions to improve them.
4. Use the getopt function to allow the user to give this the option to not translate \n to \r\n. This is onlyneeded on protocols that require it for line endings, like HTTP. Sometimes you don’t want the translation,so give the user an option.

302 CHAPTER 46. EXERCISE 45: A SIMPLE TCP/IP CLIENT

Chapter 47

Exercise 46: Ternary Search Tree

The final data structure I’ll show you is call the TSTree and it’s similar to the BSTree except it has three branches
low, equal, and high. It’s primarily used to just like BSTree and Hashmap to store key/value data, but it is keyedoff of the individual characters in the keys. This gives the TSTree some abilities that neither BSTree or Hashmaphave.
How a TSTree works is every key is a string, and it’s inserted by walking and building a tree based on theequality of the characters in the string. Start at the root, look at the character for that node, and if lower, equalto, or higher than that then go in that direction. You can see this in the header file:

src/lcthw/tstree.h
1 #ifndef _lcthw_TSTree_h
2 #define _lctwh_TSTree_h
3
4 #include <stdlib.h>
5 #include <lcthw/darray.h>
6
7 typedef struct TSTree {
8 char splitchar;
9 struct TSTree *low;
10 struct TSTree *equal;
11 struct TSTree *high;
12 void *value;
13 } TSTree;
14
15 void *TSTree_search(TSTree *root, const char *key, size_t len);
16
17 void *TSTree_search_prefix(TSTree *root, const char *key, size_t len);
18
19 typedef void (*TSTree_traverse_cb)(void *value, void *data);
20
21 TSTree *TSTree_insert(TSTree *node, const char *key, size_t len, void *value);
22
23 void TSTree_traverse(TSTree *node, TSTree_traverse_cb cb, void *data);
24
25 void TSTree_destroy(TSTree *root);
26
27 #endif

The TSTree has the following elements:
303

304 CHAPTER 47. EXERCISE 46: TERNARY SEARCH TREE
splitchar The character at this point in the tree.
low The branch that is lower than splitchar.
equal The branch that is equal to splitchar.
high The branch that is higher than splitchar.
value The value set for a string at that point with that splitchar.
You can see this implementation has the following operations:
search Typical "find a value for this key" operation.
search_prefix Finds the first value that has this as a prefix of its key. This is the an operation that you can’teasily do in a BSTree or Hashmap.
insert Breaks the key down by each character and inserts it into the tree.
traverse Walks the tree allowing you to collect or analyze all the keys and values it contains.
The only thing missing is a TSTree_delete, and that’s because it is a horribly expensive operation, even morethan BSTree_deletewas. When I use TSTree structures I treat them as constant data that I plan on traversingmany times and not removing anything from them. They are very fast for this, but are not good if you need toinsert and delete quickly. For that I use Hashmap since it beats both BSTree and TSTree.
The implementation for the TSTree is actually simple, but it might be hard to follow at first. I’ll break it downafter you enter it in:

src/lcthw/tstree.c
1 #include <stdlib.h>
2 #include <stdio.h>
3 #include <assert.h>
4 #include <lcthw/dbg.h>
5 #include <lcthw/tstree.h>
6
7 static inline TSTree *TSTree_insert_base(TSTree *root, TSTree *node,
8 const char *key, size_t len, void *value)
9 {
10 if(node == NULL) {
11 node = (TSTree *) calloc(1, sizeof(TSTree));
12
13 if(root == NULL) {
14 root = node;
15 }
16
17 node->splitchar = *key;
18 }
19
20 if(*key < node->splitchar) {
21 node->low = TSTree_insert_base(root, node->low, key, len, value);
22 } else if(*key == node->splitchar) {
23 if(len > 1) {
24 node->equal = TSTree_insert_base(root, node->equal, key+1, len - 1, value);
25 } else {
26 assert(node->value == NULL && "Duplicate insert into tst.");
27 node->value = value;
28 }
29 } else {
30 node->high = TSTree_insert_base(root, node->high, key, len, value);

305

31 }
32
33 return node;
34 }
35
36 TSTree *TSTree_insert(TSTree *node, const char *key, size_t len, void *value)
37 {
38 return TSTree_insert_base(node, node, key, len, value);
39 }
40
41 void *TSTree_search(TSTree *root, const char *key, size_t len)
42 {
43 TSTree *node = root;
44 size_t i = 0;
45
46 while(i < len && node) {
47 if(key[i] < node->splitchar) {
48 node = node->low;
49 } else if(key[i] == node->splitchar) {
50 i++;
51 if(i < len) node = node->equal;
52 } else {
53 node = node->high;
54 }
55 }
56
57 if(node) {
58 return node->value;
59 } else {
60 return NULL;
61 }
62 }
63
64 void *TSTree_search_prefix(TSTree *root, const char *key, size_t len)
65 {
66 if(len == 0) return NULL;
67
68 TSTree *node = root;
69 TSTree *last = NULL;
70 size_t i = 0;
71
72 while(i < len && node) {
73 if(key[i] < node->splitchar) {
74 node = node->low;
75 } else if(key[i] == node->splitchar) {
76 i++;
77 if(i < len) {
78 if(node->value) last = node;
79 node = node->equal;
80 }
81 } else {
82 node = node->high;
83 }
84 }
85
86 node = node ? node : last;

306 CHAPTER 47. EXERCISE 46: TERNARY SEARCH TREE

87
88 // traverse until we find the first value in the equal chain
89 // this is then the first node with this prefix
90 while(node && !node->value) {
91 node = node->equal;
92 }
93
94 return node ? node->value : NULL;
95 }
96
97 void TSTree_traverse(TSTree *node, TSTree_traverse_cb cb, void *data)
98 {
99 if(!node) return;
100
101 if(node->low) TSTree_traverse(node->low, cb, data);
102
103 if(node->equal) {
104 TSTree_traverse(node->equal, cb, data);
105 }
106
107 if(node->high) TSTree_traverse(node->high, cb, data);
108
109 if(node->value) cb(node->value, data);
110 }
111
112 void TSTree_destroy(TSTree *node)
113 {
114 if(node == NULL) return;
115
116 if(node->low) TSTree_destroy(node->low);
117
118 if(node->equal) {
119 TSTree_destroy(node->equal);
120 }
121
122 if(node->high) TSTree_destroy(node->high);
123
124 free(node);
125 }

For TSTree_insert I’m using the same pattern for recursive structures where I have a small function that callsthe real recursive function. I’m not doing any additional check here but you should add the usual defensiveprogramming to it. One thing to keep in mind is it is using a slightly different design where you don’t havea separate TSTree_create function, and instead if you pass it a NULL for the node then it will create it, andreturns the final value.
That means I need to break down TSTree_insert_base for you to understand the insert operation:
tstree.c:10-18 As I mentioned, if I’m given a NULL then I need to make this node and assign the *key (currentchar) to it. This is used to build the tree as we insert keys.
tstree.c:20-21 If the *key < this then recurse, but go to the low branch.
tstree.c:22 This splitchar is equal, so I want to go to deal with equality. This will happen if we just createdthis node, so we’ll be building the tree at this point.
tstree.c:23-24 There’s still characters to handle, so recurse down the equal branch, but go to the next *keychar.

307
tstree.c:26-27 This is the last char, so I set the value and that’s it. I have an assert here in case of a duplicate.
tstree.c:29-30 The last condition is that this *key is greater than splitchar so I need to recurse down the highbranch.
The key to some of the properties of this data structure is the fact that I’m only incrementing the character Ianalyze when a splitchar is equal. The other two conditions I just walk the tree until I hit an equal characterto recurse into next. What this does is it makes it very fast to not find a key. I can get a bad key, and simply walka few high and low nodes until I hit a dead end to know that this key doesn’t exist. I don’t need to process everycharacter of the key, or every node of the tree.
Once you understand that then move onto analyzing how TSTree_search works:
tstree.c:46 I don’t need to process the tree recursively in the TSTree, I can just use a while loop and a node forwhere I am currently.
tstree.c:47-48 If the current char is less than the node splitchar, then go low.
tstree.c:49-51 If it’s equal, then increment i and go equal as long as it’s not the last character. That’s why the

if(i < len) is there, so that I don’t go too far past the final value.
tstree.c:52-53 Otherwise I go high since the char is greater.
tstree.c:57-61 If after the loop I have a node, then return its value, otherwise return NULL.
This isn’t too difficult to understand, and you can then see that it’s almost exacty the same algorithm for the
TSTree_search_prefix function. The only difference is I’m trying to not find an exact match, but the longestprefix I can. To do that I keep track of the last node that was equal, and then after the search loop, walk thatnode until I find a value.
Looking at TSTree_search_prefix you can start to see the second advantage a TSTree has over the BSTreeand Hashmap for finding strings. Given any key of X length, you can find any key in X moves. You can also findthe first prefix in X moves, plus N more depending on how big the matching key is. If the biggest key in the treeis 10 characters long, then you can find any prefix in that key in 10 moves. More importantly, you can do all ofthis by only comparing each character of the key once.
In comparison, to do the same with a BSTree you would have to check the prefixes of each character in everypossibly matching node in the BSTree against the characters in the prefix. It’s the same for finding keys, orseeing if a key doesn’t exist. You have to compare each character against most of the characters in the BSTreeto find or not find a match.
A Hashamp is even worse for finding prefixes since you can’t hash just the prefix. You basically can’t do thisefficiently in a Hashmap unless the data is something you can parse like a URL. Even then that usually requireswhole trees of Hashmaps.
The last two functions should be easy for you to analyze as they are the typical traversing and destroying oper-ations you’ve seen already for other data structures.
Finally, I have a simple unit test for the whole thing to make sure it works right:

tests/tstree_tests.c
1 #include "minunit.h"
2 #include <lcthw/tstree.h>
3 #include <string.h>
4 #include <assert.h>
5 #include <lcthw/bstrlib.h>
6
7
8 TSTree *node = NULL;
9 char *valueA = "VALUEA";
10 char *valueB = "VALUEB";

308 CHAPTER 47. EXERCISE 46: TERNARY SEARCH TREE

11 char *value2 = "VALUE2";
12 char *value4 = "VALUE4";
13 char *reverse = "VALUER";
14 int traverse_count = 0;
15
16 struct tagbstring test1 = bsStatic("TEST");
17 struct tagbstring test2 = bsStatic("TEST2");
18 struct tagbstring test3 = bsStatic("TSET");
19 struct tagbstring test4 = bsStatic("T");
20
21 char *test_insert()
22 {
23 node = TSTree_insert(node, bdata(&test1), blength(&test1), valueA);
24 mu_assert(node != NULL, "Failed to insert into tst.");
25
26 node = TSTree_insert(node, bdata(&test2), blength(&test2), value2);
27 mu_assert(node != NULL, "Failed to insert into tst with second name.");
28
29 node = TSTree_insert(node, bdata(&test3), blength(&test3), reverse);
30 mu_assert(node != NULL, "Failed to insert into tst with reverse name.");
31
32 node = TSTree_insert(node, bdata(&test4), blength(&test4), value4);
33 mu_assert(node != NULL, "Failed to insert into tst with second name.");
34
35 return NULL;
36 }
37
38 char *test_search_exact()
39 {
40 // tst returns the last one inserted
41 void *res = TSTree_search(node, bdata(&test1), blength(&test1));
42 mu_assert(res == valueA, "Got the wrong value back, should get A not B.");
43
44 // tst does not find if not exact
45 res = TSTree_search(node, "TESTNO", strlen("TESTNO"));
46 mu_assert(res == NULL, "Should not find anything.");
47
48 return NULL;
49 }
50
51 char *test_search_prefix()
52 {
53 void *res = TSTree_search_prefix(node, bdata(&test1), blength(&test1));
54 debug("result: %p, expected: %p", res, valueA);
55 mu_assert(res == valueA, "Got wrong valueA by prefix.");
56
57 res = TSTree_search_prefix(node, bdata(&test1), 1);
58 debug("result: %p, expected: %p", res, valueA);
59 mu_assert(res == value4, "Got wrong value4 for prefix of 1.");
60
61 res = TSTree_search_prefix(node, "TE", strlen("TE"));
62 mu_assert(res != NULL, "Should find for short prefix.");
63
64 res = TSTree_search_prefix(node, "TE--", strlen("TE--"));
65 mu_assert(res != NULL, "Should find for partial prefix.");
66

47.1. ADVANTAGES AND DISADVANTAGES 309

67
68 return NULL;
69 }
70
71 void TSTree_traverse_test_cb(void *value, void *data)
72 {
73 assert(value != NULL && "Should not get NULL value.");
74 assert(data == valueA && "Expecting valueA as the data.");
75 traverse_count++;
76 }
77
78 char *test_traverse()
79 {
80 traverse_count = 0;
81 TSTree_traverse(node, TSTree_traverse_test_cb, valueA);
82 debug("traverse count is: %d", traverse_count);
83 mu_assert(traverse_count == 4, "Didn't find 4 keys.");
84
85 return NULL;
86 }
87
88 char *test_destroy()
89 {
90 TSTree_destroy(node);
91
92 return NULL;
93 }
94
95 char * all_tests() {
96 mu_suite_start();
97
98 mu_run_test(test_insert);
99 mu_run_test(test_search_exact);
100 mu_run_test(test_search_prefix);
101 mu_run_test(test_traverse);
102 mu_run_test(test_destroy);
103
104 return NULL;
105 }
106
107 RUN_TESTS(all_tests);

47.1 Advantages And Disadvantages

There’s other interesting practical things you can do with a TSTree:
1. In addition to finding prefixes, you can reverse all the keys you insert, and then find by suffix. I use this tolookup host names, since I want to find *.learncodethehardway.com so if I go backwards I can matchthem quickly.
2. You can do "approximate" matching, where you gather all the nodes that have most of the same charactersas the key, or using other algorithms for what’s a close match.
3. You can find all the keys that have a part in the middle.

310 CHAPTER 47. EXERCISE 46: TERNARY SEARCH TREE
I’ve already talked about some of the things TSTrees can do, but they aren’t the best data structure all the time.The disadvantages of the TSTree are:
1. As I mentioned, deleting from them is murder. They are better for data that needs to be looked up fast andyou rarely remove from. If you need to delete then simply disable the value and then periodically rebuildthe tree when it gets too big.
2. It uses a ton of memory compared to BSTree and Hashmaps for the same key space. Think about it, it’susing a full node for each character in every key. It might do better for smaller keys, but if you put a lot ina TSTree it will get huge.
3. They also do not work well with large keys, but "large" is subjective so as usual test first. If you’re trying tostore 10k character sized keys then use a Hashmap.

47.2 How To Improve It

As usual, go through and improve this by adding the defensive preconditions, asserts, and checks to each func-tion. There’s some other possible improvements, but you don’t necessarily have to implement all of these:
1. You could allow duplicates by using a DArray instead of the value.
2. As I mentioned deleting is hard, but you could simulate it by setting the values to NULL so they are effec-tively gone.
3. There are no ways to collect all the possible matching values. I’ll have you implement that in an extracredit.
4. There are other algorithms that are more complex but have slightly better properties. Take a look at SuffixArray, Suffix Tree, and Radix Tree structures.

47.3 Extra Credit

1. Implement a TSTree_collect that returns a DArray containing all the keys that match the given prefix.
2. Implement TSTree_search_suffix and a TSTree_insert_suffix so you can do suffix searches andinserts.
3. Use valgrind to see how much memory this structure uses to store data compared to the BSTree and

Hashmap.

Chapter 48

Exercise 47: A Fast URL Router

I’m going to now show you how I use the TSTree to do fast URL routing in web servers I’ve written. Thisworks for simple URL routing you might use at the edge of an application, not really for the more complex (andsometimes unecessary) routing found in many web application frameworks.
To play with routing I’m going to make a little command line tool I’m calling urlor that reads a simple file ofroutes, and then prompts the user to enter in URLs to look up.

bin/urlor.c
1 #include <lcthw/tstree.h>
2 #include <lcthw/bstrlib.h>
3
4 TSTree *add_route_data(TSTree *routes, bstring line)
5 {
6 struct bstrList *data = bsplit(line, ' ');
7 check(data->qty == 2, "Line '%s' does not have 2 columns",
8 bdata(line));
9
10 routes = TSTree_insert(routes,
11 bdata(data->entry[0]), blength(data->entry[0]),
12 bstrcpy(data->entry[1]));
13
14 bstrListDestroy(data);
15
16 return routes;
17
18 error:
19 return NULL;
20 }
21
22 TSTree *load_routes(const char *file)
23 {
24 TSTree *routes = NULL;
25 bstring line = NULL;
26 FILE *routes_map = NULL;
27
28 routes_map = fopen(file, "r");
29 check(routes_map != NULL, "Failed to open routes: %s", file);
30
31 while((line = bgets((bNgetc)fgetc, routes_map, '\n')) != NULL) {
32 check(btrimws(line) == BSTR_OK, "Failed to trim line.");

311

312 CHAPTER 48. EXERCISE 47: A FAST URL ROUTER

33 routes = add_route_data(routes, line);
34 check(routes != NULL, "Failed to add route.");
35 bdestroy(line);
36 }
37
38 fclose(routes_map);
39 return routes;
40
41 error:
42 if(routes_map) fclose(routes_map);
43 if(line) bdestroy(line);
44
45 return NULL;
46 }
47
48 bstring match_url(TSTree *routes, bstring url)
49 {
50 bstring route = TSTree_search(routes, bdata(url), blength(url));
51
52 if(route == NULL) {
53 printf("No exact match found, trying prefix.\n");
54 route = TSTree_search_prefix(routes, bdata(url), blength(url));
55 }
56
57 return route;
58 }
59
60 bstring read_line(const char *prompt)
61 {
62 printf("%s", prompt);
63
64 bstring result = bgets((bNgetc)fgetc, stdin, '\n');
65 check_debug(result != NULL, "stdin closed.");
66
67 check(btrimws(result) == BSTR_OK, "Failed to trim.");
68
69 return result;
70
71 error:
72 return NULL;
73 }
74
75 void bdestroy_cb(void *value, void *ignored)
76 {
77 (void)ignored;
78 bdestroy((bstring)value);
79 }
80
81 void destroy_routes(TSTree *routes)
82 {
83 TSTree_traverse(routes, bdestroy_cb, NULL);
84 TSTree_destroy(routes);
85 }
86
87 int main(int argc, char *argv[])
88 {

48.1. WHAT YOU SHOULD SEE 313

89 bstring url = NULL;
90 bstring route = NULL;
91 check(argc == 2, "USAGE: urlor <urlfile>");
92
93 TSTree *routes = load_routes(argv[1]);
94 check(routes != NULL, "Your route file has an error.");
95
96 while(1) {
97 url = read_line("URL> ");
98 check_debug(url != NULL, "goodbye.");
99
100 route = match_url(routes, url);
101
102 if(route) {
103 printf("MATCH: %s == %s\n", bdata(url), bdata(route));
104 } else {
105 printf("FAIL: %s\n", bdata(url));
106 }
107
108 bdestroy(url);
109 }
110
111 destroy_routes(routes);
112 return 0;
113
114 error:
115 destroy_routes(routes);
116 return 1;
117 }

I’ll then make a simple file with some fake routes to play with:
urls.txt

/ MainApp
/hello Hello
/hello/ Hello
/signup Signup
/logout Logout
/album/ Album

48.1 What You Should See

Once you have urlor working and a routes file, you can try it out:
Working With urlor

1 $./bin/urlor urls.txt
2 URL> /
3 MATCH: / == MainApp
4 URL> /hello

314 CHAPTER 48. EXERCISE 47: A FAST URL ROUTER

5 MATCH: /hello == Hello
6 URL> /hello/zed
7 No exact match found, trying prefix.
8 MATCH: /hello/zed == Hello
9 URL> /album
10 No exact match found, trying prefix.
11 MATCH: /album == Album
12 URL> /album/12345
13 No exact match found, trying prefix.
14 MATCH: /album/12345 == Album
15 URL> asdfasfdasfd
16 No exact match found, trying prefix.
17 FAIL: asdfasfdasfd
18 URL> /asdfasdfasf
19 No exact match found, trying prefix.
20 MATCH: /asdfasdfasf == MainApp
21 URL>
22 $

You can see that the routing system first tries an exact match, and then if it can’t find one it will give a prefixmatch. This is mostly to try out the difference between the two. Depending on the semantics of your URLs youmay want to always match exactly, always to prefixes, or do both and pick the "best" one.

48.2 How To Improve It

URLs are weird because people want them to magically handle all of the insane things their web applicationsdo, even if that’s not very logical. In this simple demonstration of how to use the TSTree to do routing, it hassome flaws that people wouldn’t be able to articulate. For example, it will match /al to Album, which generallisn’t what they want. They want /album/* to match Album and /al to be a 404 error.
This isn’t difficult to implement though, since you could change the prefix algorithm tomatch any way youwant.If you change the matching algorithm to find all matching prefixes, and then pick the "best" one, you’ll be ableto do it easily. In this case, /al could match MainApp or Album. Take those results then do a little logic on whichis "best".
Another thing you can do in a real routing system is use the TSTree to finall possible matches, but that thesematches are a small set of patterns to check. In many web applications there’s a list of regex that have to bematched against URLs on each request. Running all the regex can be time consuming, so you can use a TSTreeto find all the possible ones by their prefixes. Then you narrow the patterns to try down to a few very quickly.
Using this method, your URLs will match exactly since you are actually running real regex patterns, and they’llmatch much faster since you’re finding them by possible prefixes.
This kind of algorithm also works for anything else that needs to have flexible user-visible routing mechanisms.Domain names, IP address, registries and directories, files, or URLs.

48.3 Extra Credit

1. Instead of just storing the string for the handler, create an actual engine that uses an Handler struct tostore the application. The struct would store the URL it is attached to, the name, and anything else you’dneed to make an actual routing system.
2. Instead of mapping URLs to arbitrary names, map them to .so files and use the dlopen system to loadhandlers on the fly and call callbacks they contain. Put these callbacks in your Handler struct and then

48.3. EXTRA CREDIT 315
you have yourself a fully dynamic callback handler system in C.

316 CHAPTER 48. EXERCISE 47: A FAST URL ROUTER

Chapter 49

Exercise 48: A Tiny Virtual Machine Part 1

The rest of the book will be implementing a version of the DCPU16 virtual machine using the algorithms createdso far. This will be done in 5 parts so it’s broken down and understandable. It will apply nearly everythingtaught so far.

49.1 What You Should See

49.2 How To Break It

49.3 Extra Credit

317

318 CHAPTER 49. EXERCISE 48: A TINY VIRTUAL MACHINE PART 1

Chapter 50

Exercise 48: A Tiny Virtual Machine Part 2

50.1 What You Should See

50.2 How To Break It

50.3 Extra Credit

319

320 CHAPTER 50. EXERCISE 48: A TINY VIRTUAL MACHINE PART 2

Chapter 51

Exercise 50: A Tiny Virtual Machine Part 3

51.1 What You Should See

51.2 How To Break It

51.3 Extra Credit

321

322 CHAPTER 51. EXERCISE 50: A TINY VIRTUAL MACHINE PART 3

Chapter 52

Exercise 51: A Tiny Virtual Machine Part 4

52.1 What You Should See

52.2 How To Break It

52.3 Extra Credit

323

324 CHAPTER 52. EXERCISE 51: A TINY VIRTUAL MACHINE PART 4

Chapter 53

Exercise 52: A Tiny Virtual Machine Part 5

53.1 What You Should See

53.2 How To Break It

53.3 Extra Credit

325

326 CHAPTER 53. EXERCISE 52: A TINY VIRTUAL MACHINE PART 5

Chapter 54

Next Steps

After you read this book you should...

327

328 CHAPTER 54. NEXT STEPS

Part III

Reviewing And Critiquing Code

329

Chapter 55

Deconstructing "K&R C"

When I was a kid I read this awesome book called "The C Programming Language" by the language’s creators,Brian Kernighan and Dennis Ritchie. This book taught me and many people of my generation, and a generationbefore, how to write C code. You talk to anyone, whether they know C or not, and they’ll say, "You can’t beat
"K&R C" . It’s the best C book." It is an established piece of programmer lore that is not soon to die.
I myself believed that until I started writing this book. You see, "K&R C" is actually riddled with bugs and badstyle. Its age is no excuse. These were bugs when they wrote the first printing, and the 42nd printing. I hadn’tactually realized just how bad most of the code was in this book and recommended it to many people. Afterreading through it for just an hour I decided that it needs to be taken down from its pedestal and relegated tohistory rather than vaunted as state of the art.
I believe it is time to lay this book to rest, but I want to use it as an exercise for you in finding hacks, attacks,defects, and bugs by going through "K&R C" to break all the code. That’s right, you are going to destroy thissacred cow for me, and you’re going to have no problem doing it. When you are done doing this, you will have afinely honed eye for defect. You will also have an informed opinion of the book’s actual quality, and will be ableto make your own decisions on how to use the knowledge it contains.
In this chapter we will use all the knowledge you’ve gained from this book, and spend it reviewing the code in
"K&R C" . What we will do is take many pieces of code from the book, find all the bugs in it, and write a unittest that exercises the bugs. We’ll then run this test under Valgrind to get statistics and data, and then we’ll fixthe bugs with a redesign.
This will obviously be a long chapter so I’m going to only do a handful of these and then I’m going have you dothe rest. I’ll provide a guide that is each page, with the code on it, and hints to the bugs that it has. Your job is tothen tear that piece of code apart and try to think like an attacker trying to break the code.
Note 14 Warning For The Fanboys

As you read this, if you feel that I am being disrespectful to the authors, then that’s not my intent. Irespect the authors more than anything you know and owe them a debt of gratitude for writing theirbook. My criticisms here are both for educational purposes of teaching peoplemodern C code, and todestroy the belief in their work as a item of worship that cannot be questioned.
However, if when you read this you have feelings of me insulting you then just stop reading. Youwill gain nothing from this chapter but personal grief because you’ve attached your identity to "K&R

C" and my criticisms will only be taken personally.

55.1 An Overall Critique Of Correctness

The primary problem "K&R C" has is its view of "correctness" comes from the first system it was used on: Unix.In the world of Unix software programs have a particular set of properties:331

332 CHAPTER 55. DECONSTRUCTING "K&R C"

1. Programs are started and then exit, making resource allocation easier.
2. Most functions are only called by other parts of the same program in set ways.
3. The inputs to the program are limited to "expert" restricted users.

In the context of this 1970’s computing style, "K&R C" is actually correct. As long as only trusted people runcomplete cohesive programs that exit and clean up all their resources then their code is fine.
Where "K&R C" runs into problems is when the functions or code snippets are taken out of the book and used inother programs. Once you take many of these code snippets and try use them in some other program they fallapart. They then have blatant buffer overflows, bugs, and problems that a beginner will trip over.
Another problem is that software these days doesn’t exit right away, but instead it stays running for long periodsof time because they’re servers, desktop applications and mobile applications. The old style of "leaving thecleanup to the OS" doesn’t work in the modern world the way it did back in the day.
The final problem though is that no software lives in a vacuum anymore. Software is now frequently attackedby people over network connections in an attempt to gain special privilege or simple street cred. The idea that"nobody will ever do that" is dead, and actually that’s probably the first thing somebody will do.
The best way to summarize the problem of "K&R C" "correctness" is with an example from English. Imagine ifyou have the pair of sentences, "Jack and Jill went up the hill. He fell down." Well, from context clues you knowthat "He" means Jack. However, if you have that sentence on its own it’s not clear who "He" is. Now, if you putthat sentence at the end of another sentence you can get an unclear pronoun reference: "Jack and Frank wentup the hill. He fell down." Which "He" are we talking about in that sentence?
This is how the code in "K&R C" works. As long as that code is not used in other programs without seriousanalysis of the entire software then it works. The second you take many of the functions out and try to use themin other systems they fall apart. And, what’s the point of a book full of code you can’t actually use in your ownprograms?

55.1.1 A First Demonstration Defect

The following copy function is found in the very first chapter and is an example of copying two strings. Here’sa new source file to demonstrate the defects in this function.
exercise-1.9-1.c

1 #include <stdio.h>
2 #include <assert.h>
3 #include <stdlib.h>
4
5 #define MAXLINE 10 // in the book this is 1000
6
7 void copy(char to[], char from[])
8 {
9 int i;
10
11 i = 0;
12 while((to[i] = from[i]) != '\0')
13 ++i;
14 }
15
16 int main(int argc, char *argv[])
17 {
18 int i;
19

55.1. AN OVERALL CRITIQUE OF CORRECTNESS 333

20 // use heap memory as many modern systems do
21 char *line = malloc(MAXLINE);
22 char *longest = malloc(MAXLINE);
23
24 assert(line != NULL && longest != NULL && "memory error");
25
26 // initialize it but make a classic "off by one" error
27 for(i = 0; i < MAXLINE; i++) {
28 line[i] = 'a';
29 }
30
31 // cause the defect
32 copy(longest, line);
33
34 free(line);
35 free(longest);
36
37 return 0;
38 }

In the above example, I’m doing something that is fairly common: switching from using stack allocation to heapallocation with malloc. What happens is, typically malloc returns memory from the heap, and so the bytesafter it are not initialized. Then you see me use a loop to accidentally initialize it wrong. This is a commondefect, and one of the reasons we avoided classic style C strings in this book. You could also have this bug inprograms that read from files, sockets, or other external resources. It is a very common bug, probably the mostcommon in the world.
Before the switch to heap memory, this program probably ran just fine because the stack allocated memory willprobably have a '\0' character at the end on accident. In fact, it would appear to run fine almost always sinceit just runs and exits quickly.
What’s the effect of running this new program with copy used wrong?

exercise-1.9-1.c Valgrind Failures

1 $ make 1.9-12 cc 1.9-1.c -o 1.9-13 $./1.9-14 $5 $ valgrind ./1.9-16 ==2162== Memcheck, a memory error detector7 ==2162== Copyright (C) 2002-2010, and GNU GPL'd, by Julian Seward et al.8 ==2162== Using Valgrind-3.6.0.SVN-Debian and LibVEX; rerun with -h for copyright info9 ==2162== Command: ./1.9-110 ==2162==11 ==2162== Invalid read of size 112 ==2162== at 0x4005C0: copy (in
↪→/home/zedshaw/projects/books/learn-c-the-hard-way/code/krc/1.9-1)13 ==2162== by 0x400651: main (in
↪→/home/zedshaw/projects/books/learn-c-the-hard-way/code/krc/1.9-1)14 ==2162== Address 0x51b104a is 0 bytes after a block of size 10 alloc'd15 ==2162== at 0x4C2815C: malloc (vg_replace_malloc.c:236)16 ==2162== by 0x4005E6: main (in
↪→/home/zedshaw/projects/books/learn-c-the-hard-way/code/krc/1.9-1)17 ==2162==

334 CHAPTER 55. DECONSTRUCTING "K&R C"

18 ==2162== Invalid write of size 119 ==2162== at 0x4005C3: copy (in
↪→/home/zedshaw/projects/books/learn-c-the-hard-way/code/krc/1.9-1)20 ==2162== by 0x400651: main (in
↪→/home/zedshaw/projects/books/learn-c-the-hard-way/code/krc/1.9-1)21 ==2162== Address 0x51b109a is 0 bytes after a block of size 10 alloc'd22 ==2162== at 0x4C2815C: malloc (vg_replace_malloc.c:236)23 ==2162== by 0x4005F4: main (in
↪→/home/zedshaw/projects/books/learn-c-the-hard-way/code/krc/1.9-1)24 ==2162==25 ==2162== Invalid read of size 126 ==2162== at 0x4005C5: copy (in
↪→/home/zedshaw/projects/books/learn-c-the-hard-way/code/krc/1.9-1)27 ==2162== by 0x400651: main (in
↪→/home/zedshaw/projects/books/learn-c-the-hard-way/code/krc/1.9-1)28 ==2162== Address 0x51b109a is 0 bytes after a block of size 10 alloc'd29 ==2162== at 0x4C2815C: malloc (vg_replace_malloc.c:236)30 ==2162== by 0x4005F4: main (in
↪→/home/zedshaw/projects/books/learn-c-the-hard-way/code/krc/1.9-1)31 ==2162==32 ==2162==33 ==2162== HEAP SUMMARY:34 ==2162== in use at exit: 0 bytes in 0 blocks35 ==2162== total heap usage: 2 allocs, 2 frees, 20 bytes allocated36 ==2162==37 ==2162== All heap blocks were freed -- no leaks are possible38 ==2162==39 ==2162== For counts of detected and suppressed errors, rerun with: -v40 ==2162== ERROR SUMMARY: 3 errors from 3 contexts (suppressed: 4 from 4)41 $

As you’ve already learned, Valgrind will show you all of your sins in full color. In this case, a perfectly harmlessseeming program has a ton of "Invalid read of size 1". If you kept running it you’d find other errors pop up atrandom.
Now, in the context of the entire program in the original "K&R C" example, this function will work correctly.However, the second this function is called with longest and line uninitialized, initialized wrong, without atrailing '\0' character, then you’ll hit difficult to debug errors.
This is the failing of the book. While the code works in the book, it does not work in many other situationsleading to difficult to spot defects, and those are the worst kind of defects for a beginner (or expert). Insteadof code that only works in this delicate balance, we will strive to create code that has a higher probability ofworking in any situation.

55.1.2 Why copy() Fails

Many people have looked at this copy function and thought that it is not defective. They claim that, as long as it’sused correctly, it is correct. One person even went so far as to say, "It’s not defective, it’s just unsafe." Odd, sinceI’m sure this person wouldn’t get into a car if the manufacturer said, "Our car is not defective, it’s just unsafe."
However, there is a way to formally prove that this function is defective by enumerating the possible inputs andthen seeing if any of them cause the while loop to never terminate.
What we’ll do is have two strings, A and B, and figure out what copy() does with them:
1. A = {'a','b','\0'}; B = {'a', 'b', '\0'}; copy(A,B);

55.1. AN OVERALL CRITIQUE OF CORRECTNESS 335
2. A = {'a','b'}; B = {'a', 'b', '\0'}; copy(A,B);

3. A = {'a','b','\0'}; B = {'a', 'b'}; copy(A,B);

4. A = {'a','b'}; B = {'a', 'b'}; copy(A,B);

This is all the basic permutations of strings that can be passed to the function based on whether they are termi-nated with a '\0' or not. To be complete I’m covering all possible permutations, even if they seem irrelevant.You may think there’s no need to include permutations on A, but as you’ll see in the analysis, not including Afails to find buffer overflows that are possible.
We can then go through each case and determine if the while loop in copy() terminates:
1. while-loop finds '\0' in B, copy fits in A, terminates.
2. while-loop finds '\0' in B, overflows A, terminates.
3. while-loop does not find '\0' in B, overflows A, does not terminate.
4. while-loop does not find '\0' in B, overflows A, does not terminate.

This provides a formal proof that the function is defective because there are possible inputs that causes thewhile-loop to run forever or overflow the target. If you were to try and use this function safely, you would needto follow all paths to its usage, and confirm that the data is correct along every path. That gives every path tothis function a 50% to 75% chance it will fail with just the inputs above. You could find somemore permutationsof failure but these are the most basic ones.
Let’s now compare this to a copy function that knows the lengths of all the inputs to see what it’s probability offailure is:
1. A = {'a','b','\0'}; B = {'a', 'b', '\0'}; safercopy(2, A, 2, B);

2. A = {'a','b'}; B = {'a', 'b', '\0'}; safercopy(2, A, 2, B);

3. A = {'a','b','\0'}; B = {'a', 'b'}; safercopy(2, A, 2, B);

4. A = {'a','b'}; B = {'a', 'b'}; safercopy(2, A, 2, B);

Also assume that the safercopy() function uses a for-loop that does not test for a '\0' only, but instead uses thegiven lengths to determine the amount to copy. With that we can then do the same analysis:
1. for-loop processes 2 characters of A, terminates.
2. for-loop processes 2 characters of A, terminates.
3. for-loop processes 2 characters of A, terminates.
4. for-loop processes 2 characters of A, terminates.

In every case the for-loop variant with string length given as arguments will terminate no matter what. Toreally test the for-loop variant we’d need to add some permutations for differing lengths of strings A and B,but in every case the for-loop will always stop because it will only go through a fixed previously known finitenumber of characters.
That means the for-loop will never loop forever, and as long as it handles all the possible differing lengths of Aand B, never overflow either side. The only way to break safercopy() is to lie about the lengths of the strings, buteven then it will still always terminate. The worst possible scenario for the safercopy() function is that you aregiven an erroneous length for one of the strings and that string does not have a '\0' properly, so the functionbuffer overflows.
This shows exactly why the copy() function is defective, because it does not terminate cleanly for most possibleinputs, and is only reliable for one of the conditions: B terminated and A the right size. It also shows why afor-loop variant with a given fixed length for each input is superior.
Finally, the significance of this is that I’ve effectively done a formal proof (well, mostly formal) that shows whatyou should be doing to analyze code. Each function has to stand on its own and not have any defects such aswhile-loops that do not terminate. In the above discussion I’ve shown that the original "K&R C" is defective, and

336 CHAPTER 55. DECONSTRUCTING "K&R C"

fatally so since there is no way to fix it given the inputs. There’s no way from just a pointer to ask if a string isproperly formed since the only way to test that is to scan it, and scanning it runs into this same problem.

55.1.3 But, That’s Not A C String

Some folks then defend this function (despite the proof above) by claiming that the strings in the proof aren’t Cstrings. They want to apply an artful dodge that says "the function is not defective because you aren’t giving itthe right inputs", but I’m saying the function is defective because most of the possible inputs cause it to crash thesoftware.
The problem with this mindset is there’s no way to confirm that a C string is valid. Imagine you wanted towrite a little assert_good_string function that checks if a C string is correctly terminated before using it. Thisfunction needs to go to the end of the string and see if there’s a '\0' terminator. How does it do this? Thisfunction would also have to scan the target function to confirm that it ended in '\0', which means it has thesame problem as copy() because the input may not be terminated.
This may seem silly, but people actually do this with strlen(). They take an input and think that they just have torun strlen() on the input to confirm that it’s the right length, but strlen() itself has the same fatal flaw because ithas to scan and if the string isn’t terminated it will also overflow.
This means any attempt to fix the problem using just C strings also has this problem. The only way to solve it isto include the length of every string and use that to scan it.
If you can’t validate a C string in your function, then your only choice is to do full code reviews manually. Thisintroduces human error and no matter what you do the error will happen.

55.1.4 Just Don’t Do That

Another argument in favor of this copy() function is when the proponents of "K&R C" state that you are "justsupposed to not use bad strings". Despite the mountains of empirical evidence that this is impossible in C code,they are basically correct and that’s what I’m teaching in this exercise. But, instead of saying "just don’t do thatby checking all possible inputs", I’m advocating "just don’t do that by not using this kind of function". I’ll explainfurther.
In order to confirm that all inputs to this function are valid I have to go through a code review process thatinvolves this:
1. Find all the places the copy() function is called.
2. Trace backwards from that call point to where the inputs are created.
3. Confirm that the data is created correctly.
4. Follow the path from the creation point of the data to where it’s used and confirm that no line of code altersthe data.
5. Repeat this for all paths and all branches, including all loops and if-statements involving the data.

In my experience this is only possible in small programs like the little ones that "K&R C" has. In real softwarethe number of possible branches you’d need to check is much too high for most people to validate, especially ina team environment where individuals have varying degrees of capability. A way to quantify this difficulty isthat each branch in the code leading to a function like copy() has a 50-70% chance of causing the defect.
However, if you can use a different function and avoid all of these checks then doesn’t that mean the copy()function is defective by comparison? These people are right, the solution is to "just not do that" by just not usingthe copy() function. You can change the function to one that includes the sizes of the two strings and the problemis solved. If that’s the case then the people who think "just don’t do that" have just proved that the function isdefective, because the simpler way to "not do that" is to use a better function.
If you think copy() is valid as long as you avoid the errors I outline, and if safercopy() avoids the errors, then

55.2. CHAPTER 1 EXAMPLES 337
safercopy() is superior and copy() is defective by comparison.

55.1.5 Stylistic Issues

A more minor critique of the book is that the style is not only old, but just error prone and annoyingly "clever".Take the code you just saw again and look at the while-loop in copy. There’s no reason to write this loop thisway, as the compiler can just as easily work with a for-loop and without the clever triple-equality trick. Theoriginal code also has a while-loop without braces, but an if-statement with braces, which leads to even moreconfusion:
Braces Are Free, Use Them

1 /* bad use of while loop with compound if-statement */
2 while ((len = getline(line, MAXLINE)) > 0)
3 if (len > max) {
4 max = len;
5 copy(longest, line);
6 }
7 if (max > 0) /* there was a line */
8 printf("%s", longest);

This code is incredibly error prone because you can’t easily tell where the pair of if-statements and the while-loop are paired. A quick glance makes it seem like this while-loop will loop both if-statements, but it doesn’t. Inmodern C code you would instead just use braces all the time and avoid the confusion completely.
While the book could be forgiven for this because of its age, it has been republished in this form 42 times, andit was updated for the ANSI standard. At some point in its history you’d think the authors or some publisherghostwriter could have been bothered to update the book’s style. However, this is the problemwith sacred cows.Once they become idols of worship people are reluctant to question them or modify them.
In the rest of this chapter thoughwewill bemodernizing the code in "K&R C" to fit the style you’ve been learningthroughout this book. It will be more verbose, but it will be clearer and less error prone because of this slightincrease in verbosity.

55.2 Chapter 1 Examples

Now we begin...

	I Basic Skills
	Exercise 0: The Setup
	Linux
	Mac OSX
	Windows
	Text Editor
	WARNING: Do Not Use An IDE

	Exercise 1: Dust Off That Compiler
	What You Should See
	How To Break It
	Extra Credit

	Exercise 2: Make Is Your Python Now
	Using Make
	What You Should See
	How To Break It
	Extra Credit

	Exercise 3: Formatted Printing
	What You Should See
	External Research
	How To Break It
	Extra Credit

	Exercise 4: Introducing Valgrind
	Installing Valgrind
	Using Valgrind
	What You Should See
	Extra Credit

	Exercise 5: The Structure Of A C Program
	What You Should See
	Breaking It Down
	Extra Credit

	Exercise 6: Types Of Variables
	What You Should See
	How To Break It
	Extra Credit

	Exercise 7: More Variables, Some Math
	What You Should See
	How To Break It
	Extra Credit

	Exercise 8: Sizes And Arrays
	What You Should See
	How To Break It
	Extra Credit

	Exercise 9: Arrays And Strings
	What You Should See
	How To Break It
	Extra Credit

	Exercise 10: Arrays Of Strings, Looping
	What You Should See
	Understanding Arrays Of Strings

	How To Break It
	Extra Credit

	Exercise 11: While-Loop And Boolean Expressions
	What You Should See
	How To Break It
	Extra Credit

	Exercise 12: If, Else-If, Else
	What You Should See
	How To Break It
	Extra Credit

	Exercise 13: Switch Statement
	What You Should See
	How To Break It
	Extra Credit

	Exercise 14: Writing And Using Functions
	What You Should See
	How To Break It
	Extra Credit

	Exercise 15: Pointers Dreaded Pointers
	What You Should See
	Explaining Pointers
	Practical Pointer Usage
	The Pointer Lexicon
	Pointers Are Not Arrays
	How To Break It
	Extra Credit

	Exercise 16: Structs And Pointers To Them
	What You Should See
	Explaining Structures
	How To Break It
	Extra Credit

	Exercise 17: Heap And Stack Memory Allocation
	What You Should See
	Heap vs. Stack Allocation
	How To Break It
	Extra Credit

	Exercise 18: Pointers To Functions
	What You Should See
	How To Break It
	Extra Credit

	Exercise 19: A Simple Object System
	How The CPP Works
	The Prototype Object System
	The Object Header File
	The Object Source File

	The Game Implementation
	What You Should See
	Auditing The Game
	Extra Credit

	Exercise 20: Zed's Awesome Debug Macros
	The C Error Handling Problem
	The Debug Macros
	Using dbg.h
	What You Should See
	How The CPP Expands Macros
	Extra Credit

	Exercise 21: Advanced Data Types And Flow Control
	Available Data Types
	Type Modifiers
	Type Qualifiers
	Type Conversion
	Type Sizes

	Available Operators
	Math Operators
	Data Operators
	Logic Operators
	Bit Operators
	Boolean Operators
	Assignment Operators

	Available Control Structures
	Extra Credit

	Exercise 22: The Stack, Scope, And Globals
	ex22.h and ex22.c
	ex22_main.c

	What You Should See
	Scope, Stack, And Bugs
	How To Break It
	Extra Credit

	Exercise 23: Meet Duff's Device
	What You Should See
	Solving The Puzzle
	Why Bother?

	Extra Credit

	Exercise 24: Input, Output, Files
	What You Should See
	How To Break It
	The I/O Functions
	Extra Credit

	Exercise 25: Variable Argument Functions
	What You Should See
	How To Break It
	Extra Credit

	Exercise 26: Write A First Real Program
	What Is devpkg?
	What We Want To Make
	The Design
	The Apache Portable Runtime

	Project Layout
	Other Dependencies

	The Makefile
	The Source Files
	The DB Functions
	The Shell Functions
	The Command Functions
	The devpkg Main Function

	The Mid-Term Exam

	II Data Structures And Algorithms
	Exercise 27: Creative And Defensive Programming
	The Creative Programmer Mindset
	The Defensive Programmer Mindset
	The Eight Defensive Programmer Strategies
	Applying The Eight Strategies
	Never Trust Input
	Prevent Errors
	Fail Early And Openly
	Document Assumptions
	Prevention Over Documentation
	Automate Everything
	Simplify And Clarify
	Question Authority

	Order Is Not Important
	Extra Credit

	Exercise 28: Intermediate Makefiles
	The Basic Project Structure
	Makefile
	The Header
	The Target Build
	The Unit Tests
	The Cleaner
	The Install
	The Checker

	What You Should See
	Extra Credit

	Exercise 29: Libraries And Linking
	Dynamically Loading A Shared Library
	What You Should See
	How To Break It
	Extra Credit

	Exercise 30: Automated Testing
	Wiring Up The Test Framework
	Extra Credit

	Exercise 31: Debugging Code
	Debug Printing Vs. GDB Vs. Valgrind
	A Debugging Strategy
	Using GDB
	Process Attaching
	GDB Tricks
	Extra Credit

	Exercise 32: Double Linked Lists
	What Are Data Structures
	Making The Library
	Double Linked Lists
	Definition
	Implementation

	Tests
	What You Should See
	How To Improve It
	Extra Credit

	Exercise 33: Linked List Algorithms
	Bubble And Merge Sort
	The Unit Test
	The Implementation

	What You Should See
	How To Improve It
	Extra Credit

	Exercise 34: Dynamic Array
	Advantages And Disadvantages
	How To Improve It
	Extra Credit

	Exercise 35: Sorting And Searching
	Radix Sort And Binary Search
	C Unions
	The Implementation
	RadixMap_find And Binary Search
	RadixMap_sort And radix_sort

	How To Improve It
	Extra Credit

	Exercise 36: Safer Strings
	Why C Strings Were A Horrible Idea
	Using bstrlib
	Learning The Library

	Exercise 37: Hashmaps
	The Unit Test
	How To Improve It
	Extra Credit

	Exercise 38: Hashmap Algorithms
	What You Should See
	How To Break It
	Extra Credit

	Exercise 39: String Algorithms
	What You Should See
	Analyzing The Results
	Extra Credit

	Exercise 40: Binary Search Trees
	How To Improve It
	Extra Credit

	Exercise 41: Using Cachegrind And Callgrind For Performance Tuning
	Running Callgrind
	Callgrind Annotating Source
	Analyzing Memory Access With Cachegrind
	Judo Tuning
	Using KCachegrind
	Extra Credit

	Exercise 42: Stacks and Queues
	What You Should See
	How To Improve It
	Extra Credit

	Exercise 43: A Simple Statistics Engine
	Rolling Standard Deviation And Mean
	Implemention
	How To Use It
	Extra Credit

	Exercise 44: Ring Buffer
	The Unit Test
	What You Should See
	How To Improve It
	Extra Credit

	Exercise 45: A Simple TCP/IP Client
	Augment The Makefile
	The netclient Code
	What You Should See
	How To Break It
	Extra Credit

	Exercise 46: Ternary Search Tree
	Advantages And Disadvantages
	How To Improve It
	Extra Credit

	Exercise 47: A Fast URL Router
	What You Should See
	How To Improve It
	Extra Credit

	Exercise 48: A Tiny Virtual Machine Part 1
	What You Should See
	How To Break It
	Extra Credit

	Exercise 48: A Tiny Virtual Machine Part 2
	What You Should See
	How To Break It
	Extra Credit

	Exercise 50: A Tiny Virtual Machine Part 3
	What You Should See
	How To Break It
	Extra Credit

	Exercise 51: A Tiny Virtual Machine Part 4
	What You Should See
	How To Break It
	Extra Credit

	Exercise 52: A Tiny Virtual Machine Part 5
	What You Should See
	How To Break It
	Extra Credit

	Next Steps

	III Reviewing And Critiquing Code
	Deconstructing "K&R C"
	An Overall Critique Of Correctness
	A First Demonstration Defect
	Why copy() Fails
	But, That's Not A C String
	Just Don't Do That
	Stylistic Issues

	Chapter 1 Examples

