
C O V E R

B A C K C O V E R

TITLE PAGE

 Atomic Scala

2nd Edition

Bruce Eckel

Dianne Marsh

MindView LLC, Crested Butte, CO

 Contents
How to Use This Book ... 9

Introduction ... 10

Editors ... 17

The Shell ... 18

Installation (Windows) ... 22

Installation (Mac) ... 28

Installation (Linux) .. 33

Running Scala .. 41

Comments .. 42

Scripting ... 43

Values ... 45

Data Types ... 48

Variables ... 52

Expressions .. 54

Conditional Expressions ... 57

Evaluation Order .. 60

Compound Expressions .. 64

Summary 1 ... 69

Methods .. 74

Classes & Objects... 81

ScalaDoc ... 87

Creating Classes .. 89

Methods Inside Classes ... 92

Imports & Packages ... 95

Testing ... 100

Fields ... 107

For Loops ... 110

Vectors .. 114

More Conditionals .. 119

Summary 2.. 123

Pattern Matching .. 136

Class Arguments .. 139

Named & Default Arguments ... 144

Overloading .. 148

Constructors ... 151

Auxiliary Constructors .. 156

Class Exercises ... 159

Case Classes.. 162

String Interpolation ... 166

Parameterized Types ... 169

Functions as Objects .. 172

map & reduce ... 178

Comprehensions .. 182

Pattern Matching with Types ... 189

Pattern Matching with Case Classes .. 193

Brevity ... 197

A Bit of Style ... 204

Idiomatic Scala ... 207

Defining Operators .. 208

Automatic String Conversion ... 212

Tuples ... 215

Companion Objects ... 220

Inheritance ... 228

Base Class Initialization .. 231

Overriding Methods .. 236

Enumerations .. 240

Abstract Classes .. 244

Traits ... 249

Uniform Access & Setters ... 257

Reaching into Java ... 260

Applications ... 264

A Little Reflection .. 267

Polymorphism ... 270

Composition ... 277

Using Traits .. 285

Tagging Traits & Case Objects ... 289

Type Parameter Constraints .. 291

Building Systems with Traits ... 295

Sequences .. 302

Lists & Recursion ... 307

Combining Sequences with zip ... 311

Sets .. 314

Maps .. 318

References & Mutability ... 322

Pattern Matching with Tuples .. 326

Error Handling with Exceptions ... 331

Constructors & Exceptions .. 338

Error Reporting with Either ... 343

Handling Non-Values with Option ... 349

Converting Exceptions with Try ... 357

Custom Error Reporting ... 368

Design by Contract ... 377

Logging .. 381

Extension Methods .. 385

Extensible Systems with Type Classes .. 389

Where to Go Now ... 396

Appendix A: AtomicTest ... 397

Appendix B: Calling Scala from Java .. 399

Copyright .. 401

Index .. 403

Atomic Scala • How to Use This Book • 9

 How to Use This Book
This book teaches the Scala language to both programming beginners

and those who have already programmed in another language.

Beginners: Start with the Introduction and move through each chapter

(we call chapters atoms because they’re so small) as you would any

other book – including the Summary atoms, which solidify your

knowledge.

Experienced Programmers: Because you already understand the

fundamentals of programming, we have prepared a “fast track”:

1. Read the Introduction.

2. Perform the installation for your platform following the

appropriate atom. We assume you already have a programming

editor and you can use a shell; if not read Editors and The Shell.

3. Read Running Scala and Scripting.

4. Jump forward to Summary 1; read it and solve the exercises.

5. Jump forward to Summary 2; read it and solve the exercises.

6. At this point, continue normally through the book, starting

with Pattern Matching.

Changes in the Second Edition
These are predominantly (many) fixes to the exercises and solutions,

corrections from bug reports, and any updates necessary for Scala

version 2.11. Some examples are replaced or improved, and a large

amount of prose is improved. If you bought the first edition eBook,

you automatically get an update to the second edition. Unfortunately,

the number of changes to the first edition print book are just too

comprehensive to summarize in a document.

10 • Atomic Scala • Introduction

 Introduction
This should be your first Scala book, not your last. We show you

enough to become familiar and comfortable with the language –

competent, but not expert. You’ll write useful Scala code, but you

won’t necessarily be able to read all the Scala code you encounter.

When you’re done, you’ll be ready for more complex Scala books,

several of which we recommend at the end of this one.

This is a book for a dedicated novice. “Novice” because you don’t need

prior programming knowledge, but “dedicated” because we’re giving

you just enough to figure it out on your own. We give you a

foundation in programming and in Scala but we don’t overwhelm you

with the full extent of the language.

Beginning programmers should think of it as a game: You’ll get

through by solving a few puzzles along the way. Experienced

programmers can move rapidly through the book and find the place

where they must slow down and start paying attention.

Atomic Concepts
All programming languages consist of features that you apply to

produce results. Scala is powerful: not only does it have more

features, but you can usually express those features in numerous

ways. The combination of more features and more ways to express

them can, if everything is dumped on you too quickly, make you flee,

declaring that Scala is “too complicated.”

It doesn’t have to be.

Atomic Scala • Introduction • 11

If you know the features, you can look at any Scala code and tease out

the meaning. Indeed, it’s often easier to understand a single page of

Scala that produces the same effect as many pages of code in another

language, because you see all the Scala code in one place.

Because it’s easy to get overwhelmed, we teach you the language

carefully and deliberately, using the following principles:

1. Baby steps and small wins. We cast off the tyranny of the

chapter. Instead, we present each small step as an atomic

concept or simply atom, which looks like a tiny chapter. A typical

atom contains one or more small, runnable pieces of code and

the output it produces. We describe what’s new and different.

We try to present only one new concept per atom.

2. No forward references. It often helps authors to say, “These

features are explained in a later chapter.” This confuses the

reader, so we don’t do it.

3. No references to other languages. We almost never refer to

other languages (only when absolutely necessary). We don’t

know what languages you’ve learned (if any), and if we make

an analogy to a feature in a language you don’t understand, it

just frustrates you.

4. Show don’t tell. Instead of verbally describing a feature, we

prefer examples and output that demonstrate what the feature

does. It’s better to see it in code.

5. Practice before theory. We try to show the mechanics of the

language first, then tell why those features exist. This is

backwards from “traditional” teaching, but it often seems to

work better.

12 • Atomic Scala • Introduction

We’ve worked hard to make your learning experience the best it can

be, but there’s a caveat: For the sake of making things easier to

understand, we occasionally oversimplify or abstract a concept that

you might later discover isn’t precisely correct. We don’t do this often,

and only after careful consideration. We believe it helps you learn

more easily now, and that you’ll successfully adapt once you know

the full story.

Cross-References
When we refer to another atom in the book, the reference has a grey

box around it. A reference to the current atom looks like this:

Introduction.

Sample the Book
To introduce the book and get you going in Scala, we’ve released a

sample of the electronic book as a free distribution, which you can

find at AtomicScala.com. We tried to make the sample large enough

that it is useful by itself.

The complete book is for sale, both in print form and in eBook format.

If you like what we’ve done in the free sample, please support us and

help us continue our work by paying for what you use. We hope that

the book helps and we greatly appreciate your sponsorship.

In the age of the Internet, it doesn’t seem possible to control any piece

of information. You’ll probably find the complete electronic version of

this book in numerous places. If you are unable to pay for the book

right now and you do download it from one of these sites, please “pay

it forward.” For example, help someone else learn the language once

you’ve learned it. Or help someone in any way they need. Perhaps in

the future you’ll be better off, and you can buy something.

Atomic Scala • Introduction • 13

Example Code & Exercise Solutions
These are available for download from AtomicScala.com.

Consulting
Bruce Eckel believes that the foundation of the art of consulting is

understanding the particular needs and abilities of your team and

organization, and through that, discovering the tools and techniques

that will serve and move you forward in an optimal way. These

include mentoring and assisting in multiple areas: helping you

analyze your plan, evaluating strengths and risks, design assistance,

tool evaluation and choice, language training, project bootstrapping

workshops, mentoring visits during development, guided code

walkthroughs, and research and spot training on specialized topics.

To find out Bruce’s availability and fitness for your needs, contact him

at MindviewInc@gmail.com.

Conferences
Bruce has organized the Java Posse Roundup (which has become the

Winter Tech Forum: www.WinterTechForum.com), an Open-Spaces

conference, and the Scala Summit (www.ScalaSummit.com) a recurring

Open-Spaces conference for Scala. Dianne has organized the Ann

Arbor Scala Enthusiasts group, and is one of the organizers for

CodeMash. Join the mailing list at AtomicScala.com to stay informed

about our activities and where we are speaking.

Support Us
This was a big project. It took time and effort to produce this book and

accompanying support materials. If you enjoy this book and want to

see more things like it, please support us:

14 • Atomic Scala • Introduction

 Blog, tweet, etc. and tell your friends. This is a grassroots marketing

effort so everything you do will help.

 Purchase an eBook or print version of this book at AtomicScala.com.

 Check AtomicScala.com for other support products or events.

About Us
Bruce Eckel is the author of the multi-award-winning Thinking in Java

and Thinking in C++, and several other books on computer

programming. Living in the computer industry for over 30 years, he

periodically gets frustrated and tries to quit, then something like Scala

comes along, offering hope and drawing him back in. He’s given

hundreds of presentations around the world and enjoys putting on

alternative conferences and events like The Winter Tech Forum and

Scala Summit. He lives in Crested Butte, Colorado where he often acts

in the community theatre. Although he will probably never be more

than an intermediate-level skier or mountain biker, he considers

these among his stable of life-projects, along with abstract painting.

Bruce has a BS in applied physics, and an MS in computer

engineering. He studies organizational dynamics, trying to find a new

way to organize companies so working together becomes a joy; read

about his struggles at www.reinventing-business.com, while his

programming work is at www.mindviewinc.com.

Dianne Marsh is the Director of Engineering for Cloud Tools at Netflix.

Previously, she co-founded and ran SRT Solutions, a custom software

development firm, before selling the company in 2013. Her expertise

in programming and technology includes manufacturing, genomics

decision support and real-time processing applications. Dianne

started her professional career using C and has since enjoyed

languages including C++, Java, and C#, and is currently having fun

using Scala. Dianne helped organize CodeMash (www.codemash.org),

an all-volunteer developer conference bringing together programmers

of various languages to learn from each other, and was a board

Atomic Scala • Introduction • 15

member of the Ann Arbor Hands-On Museum. She is active with local

user groups and hosts several. She earned her Master of Science

degree in computer science from Michigan Technological University.

She’s married to her best friend, has two fun young children and she

talked Bruce into doing this book.

Acknowledgements
We thank the Programming Summer Camp 2011 attendees for their early

comments and participation with the book. We specifically thank

Steve Harley, Alf Kristian Stoyle, Andrew Harmel-Law, Al Gorup, Joel

Neely, and James Ward, all of whom were generous with their time

and comments. We also thank the many reviewers of this book in

Google Docs format.

Bruce thanks Josh Suereth for all his technical help. Also, Rumors

Coffee and Tea House/Townie Books in Crested Butte for all the time

he spent there working on this book, and Mimi and Jay at Bliss

Chiropractic for regularly straightening him out during the process.

Dianne thanks her SRT business partner, Bill Wagner, and her

employees at SRT Solutions for the time that she’s spent away from

the business. She also thanks Bruce for agreeing to write the book

with her and keeping her on task throughout the process, even as he

grew weary of passive voice and punctuation errors. And special

thanks go to her husband, Tom Sosnowski, for his tolerance and

encouragement throughout this process.

Finally, thanks to Bill Venners and Dick Wall, whose “Stairway to

Scala” class helped solidify our understanding of the language.

Dedication
To Julianna and Benjamin Sosnowski. You are amazing.

16 • Atomic Scala • Introduction

Copyrights
All copyrights in this book are the property of their respective holders.

See Copyright for full details.

Atomic Scala • Editors • 17

 Editors
To install Scala, you might need to make changes to your system

configuration files. To do this you need a program called an editor. You

also need an editor to create the Scala program files – the code listings

that we show in this book.

Programming editors vary from Integrated Development Environments

(IDEs, like Eclipse and IntelliJ IDEA) to standalone programs. If you

already have an IDE, you’re free to use that for Scala, but in the

interest of keeping things simple, we use the Sublime Text editor in our

seminars and demonstrations. Find it at www.sublimetext.com.

Sublime Text works on all platforms (Windows, Mac and Linux) and

has a built-in Scala mode that is automatically invoked when you

open a Scala file. It isn’t a heavy-duty IDE so it doesn’t get “too

helpful,” which is ideal for our purposes. On the other hand, it has

some handy editing features that you’ll probably come to love. More

details are on their site.

Although Sublime Text is commercial software, you can freely use it

for as long as you like (you periodically get a pop-up window asking

you to register, but this doesn’t prevent you from continuing to use it).

If you’re like us, you’ll soon decide that you want to support them.

There are many other editors; these are a subculture unto themselves

and people even get into heated arguments about their merits. If you

find one you like better, it’s not too hard to change. The important

thing is to choose one and get comfortable with it.

18 • Atomic Scala • The Shell

 The Shell
If you haven’t programmed before, you might never have used your

operating system shell (also called the command prompt in Windows).

The shell harkens back to the early days of computing when you did

everything by typing commands and the computer responded by

printing responses – everything was text-based.

Although it can seem primitive in the age of graphical user interfaces,

there are still a surprising number of valuable things to accomplish

with a shell, and we use it regularly, both as part of the installation

process and to run Scala programs.

Starting a Shell
Mac: Click on the Spotlight (the magnifying-glass icon in the upper-

right corner of the screen) and type “terminal.” Click on the

application that looks like a little TV screen (you might also be able to

hit “Return”). This starts a shell in your home directory.

Windows: First, you must start the Windows Explorer to navigate

through your directories. In Windows 7, click the “Start” button in the

lower left corner of the screen. In the Start Menu search box area type

“explorer” and then press the “Enter” key. In Windows 8, click

Windows+Q, type “explorer” and then press the “Enter” key.

Once the Windows Explorer is running, move through the folders on

your computer by double-clicking on them with the mouse. Navigate

to the desired folder. Now click in the address bar at the top of the

Explorer window, type “powershell” and press the “Enter” key. This

opens a shell in the destination directory. (If Powershell doesn’t start,

go to the Microsoft website and install it from there).

Atomic Scala • The Shell • 19

To execute scripts in Powershell (which you must do to test the book

examples), you must first change the Powershell execution policy.

On Windows 7, go to the “Control Panel” … “System and Security” …

“Administrative Tools.” Right click on “Windows Powershell Modules”

and select “Run as Administrator.”

On Windows 8, use Windows+W to bring up “Settings.” Select “Apps”

and then type “power” in the edit box. Click on “Windows PowerShell”

and then choose “Run as administrator.”

At the Powershell prompt, run the following command:

Set-ExecutionPolicy RemoteSigned

If asked, confirm that you want to change the execution policy by

entering “Y” for Yes.

From now on, in any new Powershells you open, you can run

Powershell scripts (files that end with “.ps1”) by typing ./ followed by

the script’s file name at the Powershell prompt.

Linux: Press ALT-F2. In the dialog box that pops up, type gnome-

terminal and press “Return.” This opens a shell in your home

directory.

Directories
Directories are one of the fundamental elements of a shell. Directories

hold files, as well as other directories. Think of a directory as a tree

with branches. If books is a directory on your system and it has two

other directories as branches, for example math and art, we say that

you have a directory books with two subdirectories math and art. We

refer to them as books/math and books/art since books is their parent

directory.

20 • Atomic Scala • The Shell

Basic Shell Operations
The shell operations we show here are approximately identical across

operating systems. Here are the essential operations in a shell, ones

we use in this book:

 Change directory: Use cd followed by the name of the directory

where you want to move, or “cd ..” if you want to move up a

directory. If you want to move to a new directory while

remembering where you came from, use pushd followed by the

new directory name. Then, to return to the previous directory,

just say popd.

 Directory listing: ls displays all the files and subdirectory names

in the current directory. Use the wildcard ‘*’ (asterisk) to narrow

your search. For example, if you want to list all the files ending

in “.scala,” you say ls *.scala. If you want to list the files starting

with “F” and ending in “.scala,” you say ls F*.scala.

 Create a directory: use the mkdir (“make directory”) command,

followed by the name of the directory you want to create. For

example, mkdir books.

 Remove a file: Use rm (“remove”) followed by the name of the

file you wish to remove. For example, rm somefile.scala.

 Remove a directory: use the rm -r command to remove the files

in the directory and the directory itself. For example, rm -r

books.

 Repeat the last argument of the previous command line (so you

don’t have to type it over again in your new command). Within

your current command line, type !$ in Mac/Linux and $$ in

Powershell.

 Command history: history in Mac/Linux and h in Powershell.

This gives you a list of all the commands you’ve entered, with

numbers to refer to when you want to repeat a command.

Atomic Scala • The Shell • 21

 Repeat a command: Try the “up arrow” on all three operating

systems, which moves through previous commands so you can

edit and repeat them. In Powershell, r repeats the last command

and r n repeats the nth command, where n is a number from the

command history. On Mac/Linux, !! repeats the last command

and !n repeats the nth command.

 Unpacking a zip archive: A file name ending with .zip is an

archive containing other files in a compressed format. Both

Linux and the Mac have command-line unzip utilities, and it’s

possible to install a command-line unzip for Windows via the

Internet. However, in all three systems the graphical file browser

(Windows Explorer, the Mac Finder, or Nautilus or equivalent on

Linux) will browse to the directory containing your zip file. Then

right-mouse-click on the file and select “Open” on the Mac,

“Extract Here” on Linux, or “Extract all …” on Windows.

To learn more about your shell, search Wikipedia for “Windows

Powershell,” or “Bash_(Unix_shell)” for Mac/Linux.

22 • Atomic Scala • Installation (Windows)

 Installation (Windows)
Scala runs on top of Java, so you must first install Java version 1.6 or

later (you only need basic Java; the development kit also works but is

not required). In this book we use JDK8 (Java 1.8).

Follow the instructions in The Shell to open a Powershell. Run java -

version at the prompt (regardless of the subdirectory you’re in) to see

if Java is installed on your computer. If it is, you see something like

the following (sub-version numbers and actual text will vary):

java version "1.8.0_11"

Java(TM) SE Runtime Environment (build 1.8.0_25-b18)

Java HotSpot(TM) 64-Bit Server VM (build 25.25-b02, mixed

mode)

If you have at least Version 6 (also known as Java 1.6), you do not need

to update Java.

If you need to install Java, first determine whether you’re running 32-

bit or 64-bit Windows.

In Windows 7, go to “Control Panel,” then “System and Security,” then

“System.” Under “System,” you see “System type,” which will say

either “32-bit Operating System” or “64-bit Operating System.”

In Windows 8, press the Windows+W keys, and then type “System”

and press “Return” to open the System application. Look for “System

Type,” which will say either “32-bit Operating System” or “64-bit

Operating System.”

To install Java, follow the instructions here:

java.com/en/download/manual.jsp

Atomic Scala • Installation (Windows) • 23

This attempts to detect whether to install a 32-bit or 64-bit version of

Java, but you can manually choose the correct version if necessary.

After installation, close all installation windows by pressing “OK,” and

then verify the Java installation by closing your old Powershell and

running java -version in a new Powershell.

Set the Path
If your system still can’t run java -version in Powershell, you must

add the appropriate bin directory to your path. The path tells the

operating system where to find executable programs. For example,

something like this goes at the end of the path:

;C:\Program Files\Java\jre8\bin

This assumes the default location for the installation of Java. If you

put it somewhere else, use that path. Note the semicolon at the

beginning – this separates the new directory from previous path

directives.

In Windows 7, go to the control panel, select “System,” then

“Advanced System Settings,” then “Environment Variables.” Under

“System variables,” open or create Path, then add the installation

directory “bin” folder shown above to the end of the “Variable value”

string.

In Windows 8, press Windows+W, then type env in the edit box, and

choose “Edit Environment Variables for your account.” Choose “Path,”

if it exists already, or add a new Path environment variable if it does

not. Then add the installation directory “bin” folder shown above to

the end of the “Variable value” string for Path.

24 • Atomic Scala • Installation (Windows)

Close your old Powershell window and start a new one to see the

change.

Install Scala
In this book, we use Scala version 2.11, the latest available at the time.

In general, the code in this book should also work on versions more

recent than 2.11.

The main download site for Scala is:

www.scala-lang.org/downloads

Choose the MSI installer which is custom-made for Windows. Once it

downloads, execute the resulting file by double-clicking on it, then

follow the instructions.

Note: If you are running Windows 8, you might see a message that

says “Windows SmartScreen prevented an unrecognized app from

starting. Running this app might put your PC at risk.” Choose “More

info” and then “Run anyway.”

When you look in the default installation directory (C:\Program Files

(x86)\scala or C:\Program Files\scala), it should contain:

bin doc lib api

The installer will automatically add the bin directory to your path.

Now open a new Powershell and type

scala -version

at the Powershell prompt. You’ll see the version information for your

Scala installation.

Atomic Scala • Installation (Windows) • 25

Source Code for the Book
We include a way to easily test the Scala exercises in this book with a

minimum of configuration and download. Follow the links for the

book’s source code at AtomicScala.com and download the package

(this places it in your “Downloads” directory unless you have

configured your system to place it elsewhere).

To unpack the book’s source code, locate the file using the Windows

explorer, then right-click on atomic-scala-examples-master.zip and

choose “Extract all …” then choose the default destination folder.

Once everything is extracted, move into the destination folder and

navigate down until you find the examples directory.

Move to the C:\ directory and create the C:\AtomicScala directory.

Either copy or drag the examples directory into the C:\AtomicScala

directory. Now the AtomicScala directory contains all the examples

from the book.

Set Your CLASSPATH
To run the examples, you must first set your CLASSPATH, an

environment variable used by Java (Scala runs atop Java) to locate code

files. If you want to run code files from a particular directory, you

must add that new directory to the CLASSPATH.

In Windows 7, go to “Control Panel,” then “System and Security,” then

“System,” then “Advanced System Settings,” and finally “Environment

Variables.”

In Windows 8, open Settings with Windows-W, type “env” in the edit

box, then choose “Edit Environment Variables for your account.”

Under “System variables,” open “CLASSPATH,” or create it if it doesn’t

exist. Then add to the end of the “Variable value” string:

26 • Atomic Scala • Installation (Windows)

;C:\AtomicScala\examples

This assumes the aforementioned location for the installation of the

Atomic Scala code. If you put it somewhere else, use that path.

Open a Powershell window, change to the C:\AtomicScala\examples

subdirectory, and run:

scalac AtomicTest.scala

If everything is configured correctly, this creates a subdirectory

com\atomicscala that includes several files, including:

AtomicTest$.class

AtomicTest.class

The source-code download package from AtomicScala.com includes a

Powershell script, testall.ps1, to test all the code in the book using

Windows. Before you run the script for the first time, you must tell

Powershell that it’s OK. In addition to setting the Execution Policy as

described in The Shell, you must unblock the script. Using the

Windows Explorer, go to the C:\AtomicScala\examples directory. Right

click on testall.ps1, choose “Properties” and then check “Unblock.”

Running ./testall.ps1 tests all the code examples from the book. You

get a couple of errors when you do this and that’s fine; it’s due to

things that we explain later in the book.

Exercises
These exercises will verify your installation.

1. Verify your Java version by typing java –version in a shell. The

version must be 1.6 or greater.

Atomic Scala • Installation (Windows) • 27

2. Verify your Scala version by typing scala in a shell (This starts the

REPL). The version must be 2.11 or greater.

3. Quit the REPL by typing :quit.

28 • Atomic Scala • Installation (Mac)

 Installation (Mac)
Scala runs atop Java, and the Mac comes with Java pre-installed. Use

Software Update on the Apple menu to check that you have the most

up-to-date version of Java for your Mac, and update it if necessary.

You need at least Java version 1.6. It is not necessary to update your

Mac operating system software. In this book we use JDK8 (Java 1.8).

Follow the instructions in The Shell to open a shell in the desired

directory. Now type “java -version” at the prompt (regardless of the

subdirectory you’re in) and see the version of Java installed on your

computer. You should see something like the following (version

numbers and actual text will vary):

java version "1.6.0_37"

Java(TM) SE Runtime Environment (build 1.6.0_37-b06-434-

10M3909)

Java HotSpot(TM) 64-Bit Server VM (build 20.12-b01-434,

mixed mode)

If you see a message that the command is not found or not

recognized, there’s a problem with your Mac. Java should always be

available in the shell.

Install Scala
In this book, we use Scala version 2.11, the latest available at the time.

In general, the code in this book should also work on versions more

recent than 2.11.

The main download site for Scala is:

www.scala-lang.org/downloads

Atomic Scala • Installation (Mac) • 29

Download the version with the .tgz extension. Click on the link on the

web page, then select “open with archive utility.” This puts it in your

“Downloads” directory and un-archives the file into a folder. (If you

download without opening, open a new Finder window, right-click on

the .tgz file, then choose “Open With -> Archive Utility”).

Rename the un-archived folder to “Scala” and then drag it to your

home directory (the directory with an icon of a home, and is named

whatever your user name is). If you don’t see a home icon, open

“Finder,” choose “Preferences” and then choose the “Sidebar” icon.

Check the box with the home icon next to your name in the list.

When you look at your Scala directory, it should contain:

bin doc examples lib man misc src

Set the Path
Now add the appropriate bin directory to your path. Your path is

usually stored in a file called .profile or .bash_profile, located in your

home directory. We assume that you’re editing .bash_profile from this

point forward.

If neither file exists, create an empty file by typing:

touch ~/.bash_profile

Update your path by editing this file. Type:

open ~/.bash_profile.

Add the following at the end of all other PATH statement lines:

PATH="$HOME/Scala/bin/:${PATH}"

export PATH

30 • Atomic Scala • Installation (Mac)

By putting this at the end of the other PATH statements, when the

computer searches for Scala it will find your version of Scala first,

rather than others that can exist elsewhere in the path.

From that same terminal window, type:

source ~/.bash_profile

Now open a new shell and type

scala -version

at the shell prompt. You’ll see the version information for your Scala

installation.

Source Code for the Book
We include a way to easily test the Scala exercises in this book with a

minimum of configuration and download. Follow the links for the

book’s source code at AtomicScala.com and download atomic-scala-

examples-master.zip into a convenient location on your computer.

Unpack the book’s source code by double clicking on atomic-scala-

examples-master.zip. Navigate down into the resulting unpacked

folder until you find the examples directory. Create an AtomicScala

directory in your home directory, and drag examples into the

AtomicScala directory, using the directions above (for installing Scala).

The ~/AtomicScala directory now contains all the examples from the

book in the subdirectory examples.

Atomic Scala • Installation (Mac) • 31

Set Your CLASSPATH
The CLASSPATH is an environment variable used by Java (Scala runs

atop Java) to locate Java program files. If you want to place code files

in a new directory, you must add that new directory to the

CLASSPATH.

Edit your ~/.profile or ~/.bash_profile, depending on where your path

information is located, and add the following:

CLASSPATH="$HOME/AtomicScala/examples:${CLASSPATH}"

export CLASSPATH

Open a new terminal window and change to the AtomicScala

subdirectory by typing:

cd ~/AtomicScala/examples

Now run:

scalac AtomicTest.scala

If everything is configured correctly, this creates a subdirectory

com/atomicscala that includes several files, including:

AtomicTest$.class

AtomicTest.class

Finally, test all the code in the book by running the testall.sh file that

you find there (part of the book’s source-code download from

AtomicScala.com) with:

chmod +x testall.sh

./testall.sh

32 • Atomic Scala • Installation (Mac)

You get a couple of errors when you do this and that’s fine; it’s due to

things that we explain later in the book.

Exercises
These exercises will verify your installation.

1. Verify your Java version by typing java –version in a shell. The

version must be 1.6 or greater.

2. Verify your Scala version by typing scala in a shell (This starts the

REPL). The version must be 2.11 or greater.

3. Quit the REPL by typing :quit.

Atomic Scala • Installation (Linux) • 33

 Installation (Linux)
In this book, we use Scala version 2.11, the latest available at the time.

In general, the examples in this book should also work on versions

more recent than 2.11.

Standard Package Installation
Important: The standard package installer might not install the most

recent version of Scala. There is often a significant delay between a

release of Scala and its inclusion in the standard packages. If the

resulting version is not what you need, follow the instructions in the

section titled “Install Recent Version From tgz File.”

Ordinarily, you can use the standard package installer, which also

installs Java if necessary, using one of the following shell commands

(see The Shell):

Ubuntu/Debian: sudo apt-get install scala

Fedora/Redhat release 17+: sudo yum install scala

(Prior to release 17, Fedora/Redhat contains an old version of Scala,

incompatible with this book).

Now follow the instructions in the next section to ensure that both

Java and Scala are installed and that you have the right versions.

Verify Your Installation
Open a shell (see The Shell) and type “java -version” at the prompt.

You should see something like the following (Version numbers and

actual text will vary):

34 • Atomic Scala • Installation (Linux)

java version "1.7.0_09"

Java(TM) SE Runtime Environment (build 1.7.0_09-b05)

Java HotSpot(TM) Client VM (build 23.5-b02, mixed mode)

If you see a message that the command is not found or not

recognized, add the java directory to the computer’s execution path

using the instructions in the section “Set the Path.”

Test the Scala installation by starting a shell and typing “scala -

version.” This should produce Scala version information; if it doesn’t,

add Scala to your path using the following instructions.

Configure your Editor
If you already have an editor that you like, skip this section. If you

chose to install Sublime Text 2, as we described in Editors, you must

tell Linux where to find the editor. Assuming you have installed

Sublime Text 2 in your home directory, create a symbolic link with the

shell command:

sudo ln -s ~/"Sublime Text 2"/sublime_text

/usr/local/bin/sublime

This allows you to edit a file named filename using the command:

sublime filename

Set the Path
If your system can’t run java -version or scala -version from the

console (terminal) command line, you might need to add the

appropriate bin directory to your path.

Atomic Scala • Installation (Linux) • 35

Your path is usually stored in a file called .profile located in your

home directory. We assume that you’re editing .profile from this point

forward.

Run ls -a to see if the file exists. If not, create a new file using the

sublime editor, as described above, by running:

sublime ~/.profile.

Java is typically installed in /usr/bin. Add Java’s bin directory to your

path if your location is different. The following PATH directive

includes both /user/bin (for Java) and Scala’s bin, assuming your Scala

is in a Scala subdirectory off of your home directory (note that we use

a fully qualified path name – not ~ or $HOME – for your home

directory):

export PATH=/usr/bin:/home/`whoami`/Scala/bin/:$PATH:

`whoami` (note the back quotes) inserts your username.

Note: Add this line at the end of the .profile file, after any other lines

that set the PATH.

Next, type:

source ~/.profile

to get the new settings (or close your shell and open a new one). Now

open a new shell and type

scala -version

at the shell prompt. You’ll see the version information for your Scala

installation.

36 • Atomic Scala • Installation (Linux)

If you get the desired version information from both java -version and

scala -version, skip the next section.

Install Recent Version from tgz File
Try running java -version to see if you already have Java 1.6 or greater

installed. If not, go to www.java.com/getjava, click “Free Java

Download” and scroll down to the download for “Linux” (there is also

a “Linux RPM” but we just use the regular version). Start the download

and ensure that you are getting a file that starts with jre- and ends

with .tar.gz (You must also verify that you get the 32-bit or 64-bit

version depending on which Linux you’ve installed).

That site contains detailed instructions via help links.

Move the file to your home directory, then start a shell in your home

directory and run the command:

tar zxvf jre-*.tar.gz

This creates a subdirectory starting with jre and ending with the

version of Java you just installed. Below is a bin directory. Edit your

.profile (following the instructions earlier in this atom) and locate the

last PATH directive, if there is one. Add or modify your PATH so Java’s

bin directory is the first one in your PATH (there are more “proper”

ways to do this but we’re being expedient). For example, the

beginning of the PATH directive in your ~/.profile file can look like:

export set PATH=/home/`whoami`/jre1.7.0_09/bin:$PATH: …

This way, if there are any other versions of Java on your system, the

version you just installed will always be seen first.

Reset your PATH with the command:

Atomic Scala • Installation (Linux) • 37

source ~/.profile

(Or just close your shell and open a new one). Now you should be able

to run java -version and see a version number that agrees with what

you’ve just installed.

Install Scala
The main download site for Scala is www.scala-lang.org/downloads.

Scroll through this page to locate the desired release number, and

then download the one marked “Unix, Mac OSX, Cygwin.” The file has

an extension of .tgz. After it downloads, move the file into your home

directory.

Start a shell in your home directory and run the command:

tar zxvf scala-*.tgz

This creates a subdirectory starting with scala- and ending with the

version of Scala you just installed. Below is a bin directory. Edit your

.profile file and locate the PATH directive. Add the bin directory to

your PATH, again before the $PATH. For example, the PATH directive

in your ~/.profile file can look like this:

export set

PATH=/home/`whoami`/jre1.7.0_09/bin:/home/`whoami`/scala-

2.11.4/bin:$PATH:

Reset your PATH with the command

source ~/.profile

(Or just close your shell and open a new one). Now you should be able

to run scala -version and see a version number that agrees with what

you’ve just installed.

38 • Atomic Scala • Installation (Linux)

Source Code for the Book
We include a way to easily test the Scala exercises in this book with a

minimum of configuration and download. Follow the links for the

book’s source code at AtomicScala.com into a convenient location on

your computer.

Move atomic-scala-examples-master.zip to your home directory using

the shell command:

cp atomic-scala-examples-master.zip ~

Unpack the book’s source code by running unzip atomic-scala-

examples-master.zip. Navigate down into the resulting unpacked

folder until you find the examples directory.

Create an AtomicScala directory in your home directory, and move

examples into the AtomicScala directory. The ~/AtomicScala directory

now contains all the examples from the book in the subdirectory

examples.

Set Your CLASSPATH
Note: Sometimes (on Linux, at least) you don’t need to set the

CLASSPATH at all and everything still works right. Before setting your

CLASSPATH, try running the testall.sh script (see below) and see if it’s

successful.

The CLASSPATH is an environment variable used by Java (Scala runs

atop Java) to locate code files. If you want to place code files in a new

directory, then you must add that new directory to the CLASSPATH.

For example, this adds AtomicScala to your CLASSPATH when added

to your ~/.profile, assuming you installed into the AtomicScala

subdirectory located off your home directory:

Atomic Scala • Installation (Linux) • 39

export

CLASSPATH="/home/`whoami`/AtomicScala/examples:$CLASSPATH"

The changes to CLASSPATH will take effect if you run:

source ~/.profile

or if you open a new shell.

Verify that everything is working by changing to the

AtomicScala/examples subdirectory. Then run:

scalac AtomicTest.scala

If everything is configured correctly, this creates a subdirectory

com/atomicscala that includes several files, including:

AtomicTest$.class

AtomicTest.class

Finally, test all the code in the book by running:

chmod +x testall.sh

./testall.sh

You get a couple of errors when you do this and that’s fine; it’s due to

things that we explain later in the book.

Exercises
These exercises will verify your installation.

1. Verify your Java version by typing java –version in a shell. The

version must be 1.6 or greater.

40 • Atomic Scala • Installation (Linux)

2. Verify your Scala version by typing scala in a shell (This starts the

REPL). The version must be 2.11 or greater.

3. Quit the REPL by typing :quit.

Atomic Scala • Running Scala • 41

 Running Scala
The Scala interpreter is also called the REPL (for Read-Evaluate-Print-

Loop). You get the REPL when you type scala by itself on the command

line. You should see something like the following (it can take a few

moments to start):

Welcome to Scala version 2.11.4 (Java HotSpot(TM) 64-Bit

Server VM, Java 1.7.0_09).

Type in expressions to have them evaluated.

Type :help for more information.

scala>

The exact version numbers will vary depending on the versions of

Scala and Java you’ve installed, but make sure that you’re running

Scala 2.11 or greater.

The REPL gives you immediate interactive feedback, which is helpful

for experimentation. For example, you can do arithmetic:

scala> 42 * 11.3

res0: Double = 474.6

res0 is the name Scala gave to the result of the calculation. Double

means “double precision floating point number.” A floating-point

number can hold fractional values, and “double precision” refers to

the number of significant places to the right of the decimal point that

the number is capable of representing.

Find out more by typing :help at the Scala prompt. To exit the REPL,

type:

scala> :quit

42 • Atomic Scala • Comments

 Comments
A Comment is illuminating text that is ignored by Scala. There are two

forms of comment. The // (two forward slashes) begins a comment

that goes to the end of the current line:

47 * 42 // Single-line comment

47 + 42

Scala will evaluate the multiplication, but will ignore the // and

everything after it until the end of the line. On the following line, it

will pay attention again and perform the sum.

The multiline comment begins with a /* (a forward slash followed by

an asterisk) and continues – including line breaks (which we call

newlines) – until a */ (an asterisk followed by a forward slash) ends the

comment:

47 + 42 /* A multiline comment

Doesn't care

about newlines */

It’s possible to have code on the same line after the closing */ of a

comment, but it’s confusing so people don’t usually do it. In practice,

you see the // comment used a lot more than the multiline comment.

Comments should add new information that isn’t obvious from

reading the code. If the comments just repeat what the code says, it

becomes annoying (and people start ignoring your comments). When

the code changes, programmers often forget to update comments, so

it’s a good practice to use comments judiciously, mainly for

highlighting tricky aspects of your code.

Atomic Scala • Scripting • 43

 Scripting
A script is a file filled with Scala code that runs from the command-

line prompt. Suppose you have a file named myfile.scala containing a

Scala script. To execute that script from your operating system shell

prompt, enter:

scala myfile.scala

Scala will then execute all the lines in your script. This is more

convenient than typing all those lines into the Scala REPL.

Scripting makes it easy to quickly create simple programs, so we use

it throughout much of this book (thus, you run the examples via The

Shell). Scripting solves basic problems, such as making utilities for

your computer. More sophisticated programs require the compiler,

which we explore when the time comes.

Using Sublime Text (from Editors), type in the following lines and save

the file as ScriptDemo.scala:

// ScriptDemo.scala

println("Hello, Scala!")

We always begin a code file with a comment that contains the name

of the file.

Assuming you’ve followed the instructions in the “Installation” atom

for your computer’s operating system, the book’s examples are in a

directory called AtomicScala. Although you can download the code,

we urge you to type in the code from the book, since the hands-on

experience can help you learn.

The above script has a single executable line of code.

44 • Atomic Scala • Scripting

println("Hello, Scala!")

When you run this script by typing (at the shell prompt):

scala ScriptDemo.scala

You should see:

Hello, Scala!

Now we’re ready to start learning about Scala.

Atomic Scala • Values • 45

 Values
A value holds a particular type of information. You define a value like

this:

val name = initialization

That is, the val keyword followed by the name (that you make up), an

equals sign and the initialization value. The name begins with a letter

or an underscore, followed by more letters, numbers and underscores.

The dollar sign ($) is for internal use, so don’t use it in names you

make up. Upper and lower case are distinguished (so thisvalue and

thisValue are different).

Here are some value definitions:

1 // Values.scala
2

3 val whole = 11

4 val fractional = 1.4

5 val words = "A value"
6

7 println(whole, fractional, words)
8

9 /* Output:

10 (11,1.4,A value)

11 */

The first line of each example in this book contains the name of the

source code file as you find it in the AtomicScala directory that you

set up in your appropriate “Installation” atom. You also see line

numbers on all of our code samples. Line numbers do not appear in

legal Scala code, so don’t add them in your code. We use them merely

as a convenience when describing the code.

46 • Atomic Scala • Values

We also format the code in this book so it fits on an eBook reader

page, so we sometimes add line breaks – to shorten the lines – where

they would not otherwise be necessary.

On line 3, we create a value named whole and store 11 in it. Similarly,

on line 4, we store the “fractional number” 1.4, and on line 5 we store

some text (a string) in the value words.

Once you initialize a val, you can’t change it (it is constant or

immutable). Once we set whole to 11, for example, we can’t later say:

whole = 15

If we do this, Scala complains, saying “error: reassignment to val.”

It’s important to choose descriptive names for your identifiers. This

makes your code easier to understand and often reduces the need for

comments. Looking at the code snippet above, you have no idea what

whole represents. If your program is storing the number 11 to

represent the time of day when you get coffee, it’s more obvious to

others if you name it coffeetime and easier to read if it’s coffeeTime.

In the first few examples of this book, we show the output at the end

of the listing, inside a multiline comment. Note that println will take a

single value, or a comma-separated sequence of values.

We include exercises with each atom from this point forward. The

solutions are available at AtomicScala.com. The solution folders

match the names of the atoms.

Atomic Scala • Values • 47

Exercises
Solutions are available at AtomicScala.com.

1. Store (and print) the value 17.

2. Using the value you just stored (17), try to change it to 20. What

happened?

3. Store (and print) the value “ABC1234.”

4. Using the value you just stored (“ABC1234”), try to change it to

“DEF1234.” What happened?

5. Store the value 15.56. Print it.

48 • Atomic Scala • Data Types

 Data Types
Scala distinguishes different types of values. When you’re doing a

math problem, you just write the computation:

5.9 + 6

You know that when you add those numbers together, you get

another number. Scala does that too. You don’t care that one is a

fractional number (5.9), which Scala calls a Double, and the other is a

whole number (6), which Scala calls an Int. When you do math by

hand, you know that you get a fractional number, but you probably

don’t think about it much. Scala categorizes these different ways of

representing data into ‘types’ so it knows if you’re using the right kind

of data. Here, Scala creates a new value of type Double to hold the

result.

Using types, Scala either adapts to what you need, as above, or if you

ask it to do something silly it gives you an error message. For

example, what if you use the REPL to add a number and a String:

scala> 5.9 + "Sally"

res0: String = 5.9Sally

Does that make any sense? In this case, Scala has rules that tell it how

to add a String to a number. The types are important because Scala

uses them to figure out what to do. Here, it appends the two values

together and creates a String to hold the result.

Now try multiplying a Double and a String:

5.9 * "Sally"

Atomic Scala • Data Types • 49

Combining types this way doesn’t make any sense to Scala, so it gives

you an error.

In Values, we stored several types, from numbers to letters. Scala

figured out the type for us, based on how we used it. This is called type

inference.

We can be more verbose and specify the type:

val name:type = initialization

That is, the val keyword followed by the name (that you make up), a

colon, the type, and the initialization value. So instead of saying:

val n = 1

val p = 1.2

You can say:

val n:Int = 1

val p:Double = 1.2

When you explicitly specify the type, you tell Scala that n is an Int and

p is a Double, rather than letting it infer the type.

Here are Scala’s basic types:

1 // Types.scala
2

3 val whole:Int = 11

4 val fractional:Double = 1.4

5 // true or false:

6 val trueOrFalse:Boolean = true

7 val words:String = "A value"

8 val lines:String = """Triple quotes let

50 • Atomic Scala • Data Types

9 you have many lines

10 in your string"""
11

12 println(whole, fractional,

13 trueOrFalse, words)

14 println(lines)
15

16 /* Output:

17 (11,1.4,true,c,A value)

18 Triple quotes allow

19 you to have many lines

20 in your string

21 */

The Int data type is an integer, which means it only holds whole

numbers. You see this on line 3. To hold fractional numbers, as on

line 4, use a Double.

A Boolean data type, as on line 6, only holds the two special values

true and false.

A String holds a sequence of characters. You assign a value using a

double-quoted string as on line 7, or if you have many lines and/or

special characters, you surround them with triple-double-quotes, as

on lines 8-10 (this is a multiline string).

Scala uses type inference to figure out what you mean when you mix

types. When you mix Ints and Doubles using addition, for example,

Scala decides the type to use for the resulting value. Try the following

in the REPL:

scala> val n = 1 + 1.2

n: Double = 2.2

Atomic Scala • Data Types • 51

This shows that when you add an Int to a Double, the result becomes

a Double. With type inference, Scala determines that n is a Double

and ensures that it follows all the rules for Doubles.

Scala does a lot of type inference for you, as part of its strategy of

doing work for the programmer. If you leave out the type declaration,

Scala will usually pick up the slack. If not, it will give you an error

message. We’ll see more of this as we go.

Exercises
Solutions are available at AtomicScala.com.

1. Store the value 5 as an Int and print the value.

2. Store (and print) the value “ABC1234” as a String.

3. Store the value 5.4 as a Double. Print it.

4. Store the value true. What type did you use? What did it print?

5. Store a multiline String. Does it print in multiple lines?

6. What happens if you try to store the String “maybe” in a Boolean?

7. What happens if you try to store the number 15.4 in an Int value?

8. What happens if you try to store the number 15 in a Double value?

Print it.

52 • Atomic Scala • Variables

 Variables
In Values, you learned to create values that you set once and don’t

change. When this is too restrictive, use a variable instead of a value.

Like a value, a variable holds a particular type of information. But with

a variable, you can change the stored data. You define a variable in

exactly the same way you define a value, except you use the var

keyword in place of the val keyword:

var name:type = initialization

The word variable describes something that can change (a var), while

value indicates something that cannot change (a val).

Variables come in handy when data must change as the program is

running. Choosing when to use variables (var) vs. values (val) comes

up a lot in Scala. In general, your programs are easier to extend and

maintain if you use vals. Sometimes, it’s too complex to solve a

problem using only vals, and for that reason, Scala gives you the

flexibility of vars.

Note: Most programming languages have style guidelines, intended to

help you write code that is easy for you and others to understand.

When you define a value, for example, Scala style recommends that

you leave a space between the name: and the type. Books have limited

space and we’ve chosen to make the book more readable at the cost of

some style guidelines. Scala doesn’t care about this space. You can

follow the Scala style guidelines, but we don’t want to burden you

with that before you’re comfortable with the language. From this

point in the book, we conserve space by omitting the space.

Atomic Scala • Variables • 53

Exercises
Solutions are available at AtomicScala.com.

1. Create an Int value (val) and set it to 5. Try to update that number

to 10. What happened? How would you solve this problem?

2. Create an Int variable (var) named v1 and set it to 5. Update it to 10

and store in a val named constantv1. Did this work? Can you think

of how this is useful?

3. Using v1 and constantv1 from above, set v1 to 15. Did the value of

constantv1 change?

4. Create a new Int variable (var) called v2 initialized to v1. Set v1 to

20. Did the value of v2 change?

54 • Atomic Scala • Expressions

 Expressions
The smallest useful fragment of code in many programming

languages is either a statement or an expression. These have one simple

difference.

A statement in a programming language does not produce a result. In

order for the statement to do something interesting, it must change

the state of its surroundings. Another way of putting this is “a

statement is called for its side effects” (that is, what it does other than

producing a result). As a memory aid:

A statement changes state

One definition of “express” is “to force or squeeze out,” as in “to

express the juice from an orange.” So

An expression expresses

That is, it produces a result.

Essentially, everything in Scala is an expression. The easiest way to

see this is in the REPL:

scala> val i = 1; val j = 2

i: Int = 1

j: Int = 2

scala> i + j

res1: Int = 3

Semicolons allow you to put more than one statement or expression

on a line. The expression i + j produces a value – the sum.

Atomic Scala • Expressions • 55

You can also have multiline expressions surrounded by curly braces,

as seen on lines 3-7:

1 // Expressions.scala
2

3 val c = {

4 val i1 = 2

5 val j1 = 4/i1

6 i1 * j1

7 }

8 println(c)

9 /* Output:

10 4

11 */

Line 4 is an expression that sets a value to the number 2. Line 5 is an

expression that divides 4 by the value stored in i1 (that is, 4 “divided

by” 2) resulting in 2. Line 6 multiplies those values together, and the

resulting value is stored in c.

What if an expression doesn’t produce a result? The REPL answers the

question via type inference:

scala> val e = println(5)

e: Unit = ()

The call to println doesn’t produce a value, so the expression doesn’t

either. Scala has a special type for an expression that doesn’t produce

a value: Unit. The same result comes from an empty set of curly

braces:

scala> val f = {}

f: Unit = ()

56 • Atomic Scala • Expressions

As with the other data types, you can explicitly declare something as

Unit when necessary.

Exercises
Solutions are available at AtomicScala.com.

1. Create an expression that initializes feetPerMile to 5280.

2. Create an expression that initializes yardsPerMile by dividing

feetPerMile by 3.0.

3. Create an expression that divides 2000 by yardsPerMile to calculate

miles.

4. Combine the above three expressions into a multiline expression

that returns miles.

Atomic Scala • Conditional Expressions • 57

 Conditional Expressions
A conditional makes a choice. It tests an expression to see if it’s true or

false and does something based on the result. A true-or-false

expression is called a Boolean, after the mathematician George Boole

who invented the logic behind such expressions. Here’s a simple

conditional that uses the > (greater than) sign and shows Scala’s if

keyword:

1 // If.scala
2

3 if(1 > 0) {

4 println("It's true!")

5 }
6

7 /* Output:

8 It's true!

9 */

The expression inside the parentheses of the if must evaluate to true

or false. If it is true, the code within the curly braces is executed.

We can create a Boolean expression separately from where it is used:

1 // If2.scala
2

3 val x:Boolean = { 1 > 0 }
4

5 if(x) {

6 println("It's true!")

7 }
8

9 /* Output:

10 It's true!

11 */

58 • Atomic Scala • Conditional Expressions

Because x is Boolean, the if can test it directly by saying if(x).

You test for the opposite of the Boolean expression using the “not”

operator ‘!’:

1 // If3.scala
2

3 val y:Boolean = { 11 > 12 }
4

5 if(!y) {

6 println("It's false")

7 }
8

9 /* Output:

10 It's false

11 */

By putting the “not” operator in front, if(!y) reads “if not y.”

The else keyword allows you to deal with both the true and false

paths:

1 // If4.scala
2

3 val z:Boolean = false
4

5 if(z) {

6 println("It's true!")

7 } else {

8 println("It's false")

9 }
10

11 /* Output:

12 It's false

13 */

Atomic Scala • Conditional Expressions • 59

The else keyword is only used in conjunction with if.

The entire if is an expression, so it can produce a result:

1 // If5.scala
2

3 val result = {

4 if(99 > 100) { 4 }

5 else { 42 }

6 }

7 println(result)
8

9 /* Output:

10 42

11 */

You will learn more about conditionals in later atoms.

Exercises
Solutions are available at AtomicScala.com.

1. Set the values a and b to 1 and 5, respectively. Write a conditional

expression that checks to see if a is less than b. Print “a is less than

b” or “a is not less than b.”

2. Using a and b, above, write some conditional expressions to check

if the values are less than 2 or greater than 2. Print the results.

3. Set the value c to 5. Modify the first exercise, above, to check if

a < c. Then, check if b < c (where ‘<’ is the less-than operator). Print

the results.

60 • Atomic Scala • Evaluation Order

 Evaluation Order
Programming languages define the order in which operations are

performed. Here’s an example of evaluation order which mixes

arithmetic operations:

45 + 5 * 6

The multiplication operation 5 * 6 is performed first, followed by the

addition 30 + 45 to produce 75.

If you want 45 + 5 to happen first, use parentheses:

(45 + 5) * 6

For a result of 300.

As another example, let’s calculate body mass index (BMI), which is

weight in kilograms divided by height in meters squared. If you have a

BMI of less than 18.5, you are underweight. Between 18.5-24.9 is

normal weight. BMI of 25 and higher is overweight.

1 // BMI.scala
2

3 val kg = 72.57 // 160 lbs

4 val heightM = 1.727 // 68 inches
5

6 val bmi = kg/(heightM * heightM)

7 if(bmi < 18.5) println("Underweight")

8 else if(bmi < 25) println("Normal weight")

9 else println("Overweight")

Atomic Scala • Evaluation Order • 61

If you remove the parentheses on line 6, you divide kg by heightM

then multiply that result by heightM. That’s a much larger number,

and the wrong answer.

Here’s another case where different evaluation order produces

different results:

1 // EvaluationOrder.scala
2

3 val sunny = true

4 val hoursSleep = 6

5 val exercise = false

6 val temp = 55
7

8 val happy1 = sunny && temp > 50 ||

9 exercise && hoursSleep > 7

10 println(happy1) // true
11

12 val sameHappy1 = (sunny && temp > 50) ||

13 (exercise && hoursSleep > 7)

14 println(sameHappy1) // true
15

16 val notSame =

17 (sunny && temp > 50 || exercise) &&

18 hoursSleep > 7

19 println(notSame) // false

We introduce more Boolean Algebra here: The && means “and” and it

requires that both the Boolean expression on the left and the one on

the right are true to produce a true result. Here, the Boolean

expressions are sunny, temp > 50, exercise, and hoursSleep > 7. The ||

means “or” and produces true if either the expression on the left or

right of the operator is true (or if both are true).

62 • Atomic Scala • Evaluation Order

Lines 8-9 read “It’s sunny and the temperature is greater than 50 or

I’ve exercised and had more than 7 hours of sleep.” But does “and”

have precedence over “or,” or vice versa?

Lines 8-9 uses Scala’s default evaluation order. This produces the

same result as lines 12-13 (without parentheses, the “ands” are

evaluated first, then the “or”). Lines 16-18 use parentheses to produce

a different result; in that expression we’re only happy if we get at

least 7 hours of sleep.

When you’re not sure what evaluation order Scala will choose, use

parentheses to force your intention. This also makes it clear to anyone

who reads your code.

BMI.scala uses Doubles for the weight and height. Here’s a version

using Ints (for English units instead of metric):

1 // IntegerMath.scala
2

3 val lbs = 160

4 val height = 68
5

6 val bmi = lbs / (height * height) * 703.07
7

8 if (bmi < 18.5) println("Underweight")

9 else if (bmi < 25) println("Normal weight")

10 else println("Overweight")

Scala implies that both lbs and height are integers (Ints) because the

initialization values are integers (they have no decimal points). When

you divide an integer by another integer, Scala produces an integer

result. The standard way to deal with the remainder during integer

division is truncation, meaning “chop it off and throw it away” (there’s

no rounding). So if you divide 5 by 2 you get 2, and 7/10 is zero. When

Scala calculates bmi on line 6, it divides 160 by 68*68 and gets zero. It

then multiplies zero by 703.07 to get zero. We get unexpected results

Atomic Scala • Evaluation Order • 63

because of integer math. To avoid the problem, declare either lbs or

height (or both, if you prefer) as Double. You can also tell Scala to infer

Double by adding ‘.0’ at the end of the initialization values.

Exercises
Solutions are available at AtomicScala.com.

1. Write an expression that evaluates to true if the sky is “sunny” and

the temperature is more than 80 degrees.

2. Write an expression that evaluates to true if the sky is either

“sunny” or “partly cloudy” and the temperature is more than 80

degrees.

3. Write an expression that evaluates to true if the sky is either

“sunny” or “partly cloudy” and the temperature is either more than

80 degrees or less than 20 degrees.

4. Convert Fahrenheit to Celsius. Hint: first subtract 32, then multiply

by 5/9. If you get 0, check to make sure you didn’t do integer math.

5. Convert Celsius to Fahrenheit. Hint: first multiply by 9/5, then add

32. Use this to check your solution for the previous exercise.

64 • Atomic Scala • Compound Expressions

 Compound Expressions
In Expressions, you learned that nearly everything in Scala is an

expression, and that expressions can contain one line of code, or

multiple lines of code surrounded with curly braces. Now we

differentiate between basic expressions, which don’t need curly

braces, and compound expressions, which must be surrounded by curly

braces. A compound expression can contain any number of other

expressions, including other curly-braced expressions.

Here’s a simple compound expression:

scala> val c = { val a = 11; a + 42 }

c: Int = 53

Notice that a is defined inside the compound expression. The result of

the last expression becomes the result of the compound expression;

here, the sum of 11 and 42 as reported by the REPL. But what about a?

Once you leave the compound expression (move outside the curly

braces), you can’t access a. It is a temporary variable, and is discarded

once you exit the scope of the expression.

Here’s a compound expression that determines if a business is open

or closed, based on the hour:

1 // CompoundExpressions1.scala
2

3 val hour = 6
4

5 val isOpen = {

6 val opens = 9

7 val closes = 20

8 println("Operating hours: " +

9 opens + " - " + closes)

Atomic Scala • Compound Expressions • 65

10 if(hour >= opens && hour <= closes) {

11 true

12 } else {

13 false

14 }

15 }

16 println(isOpen)
17

18 /* Output:

19 Operating hours: 9 - 20

20 false

21 */

Notice on lines 8 and 9 that strings can be assembled using ‘+’ signs.

The Boolean >= operator returns true if the expression on the left side

of the operator is greater than or equal to that on the right. Likewise,

the Boolean operator <= returns true if the expression on the left side

is less than or equal to that on the right. Line 10 checks whether hour is

between opening time and closing time, so we combine the

expressions with the Boolean && (and).

This expression contains an additional level of curly-braced nesting:

1 // CompoundExpressions2.scala
2

3 val activity = "swimming"

4 val hour = 10
5

6 val isOpen = {

7 if(activity == "swimming" ||

8 activity == "ice skating") {

9 val opens = 9

10 val closes = 20

11 println("Operating hours: " +

12 opens + " - " + closes)

13 if(hour >= opens && hour <= closes) {

66 • Atomic Scala • Compound Expressions

14 true

15 } else {

16 false

17 }

18 } else {

19 false

20 }

21 }
22

23 println(isOpen)

24 /* Output:

25 Operating hours: 9 - 20

26 true

27 */

The compound expression from CompoundExpressions1.scala is

inserted into lines 9-17, adding another expression layer, with an if

expression on line 7 to verify whether we even need to check business

hours. The Boolean == operator returns true if the expressions on

each side of the operator are equivalent.

Expressions like println don’t produce a result. Compound

expressions don’t necessarily produce a result, either:

scala> val e = { val x = 0 }

e: Unit = ()

Defining x doesn’t produce a result, so the compound expression

doesn’t either; the REPL shows that the type of such an expression is

Unit.

Expressions that produce results simplify code:

1 // CompoundExpressions3.scala

2 val activity = "swimming"

3 val hour = 10

Atomic Scala • Compound Expressions • 67

4

5 val isOpen = {

6 if(activity == "swimming" ||

7 activity == "ice skating") {

8 val opens = 9

9 val closes = 20

10 println("Operating hours: " +

11 opens + " - " + closes)

12 (hour >= opens && hour <= closes)

13 } else {

14 false

15 }

16 }
17

18 println(isOpen)

19 /* Output:

20 Operating hours: 9 - 20

21 true

22 */

Line 12 is the last expression in the “true” part of the if statement, so

it becomes the result when the if evaluates to true.

Exercises
Solutions are available at AtomicScala.com.

1. In Exercise 3 of Conditional Expressions, you checked to see if a

was less than c, and then if b was less than c. Repeat that exercise

but this time use less than or equal.

2. Adding to your solution for the previous exercise, check first to see

if both a and b are less than or equal to c using a single if. If they

are not, then check to see if either one is less than or equal to c. If

you set a to 1, b to 5, and c to 5, you should see “both are!” If,

instead, you set b to 6, you should see “one is and one isn’t!”

68 • Atomic Scala • Compound Expressions

3. Modify CompoundExpressions2.scala to add a compound

expression for goodTemperature. Pick a temperature (low and

high) for each of the activities and determine if you want to do

each activity based on both temperature and if a facility is open.

Print the results of the comparisons to match the output described

below. Do this with the following code, once you define the

expression for goodTemperature.

val doActivity = isOpen && goodTemperature

println(activity + ": " + isOpen + " && " +

 goodTemperature + " = " + doActivity)

/* Output

(run 4 times, once for each activity):

swimming: false && false = false

walking: true && true = true

biking: true && false = false

couch: true && true = true

*/

4. Create a compound expression that determines whether to do an

activity. For example, do the running activity if the distance is less

than 6 miles, the biking activity if the distance is less than 20

miles, and the swimming activity if the distance is less than 1

mile. You choose, and set up the compound expression. Test

against various distances and various activities, and print your

results. Here’s some code to get you started.

val distance = 9

val activity = "running"

val willDo = // fill this in

/* Output

(run 3 times, once for each activity):

running: true

walking: false

biking: true

*/

Atomic Scala • Summary 1 • 69

 Summary 1
This atom summarizes and reviews the atoms from Values through

Compound Expressions. If you’re an experienced programmer, this

should be your first atom after installation. Beginning programmers

should read this atom and perform the exercises as review.

If any information here isn’t clear to you, go back and study the earlier

atom for that particular topic.

Values, Data Types, & Variables
Once a value is assigned, it cannot be reassigned. To create a value,

use the val keyword followed by an identifier name that you choose, a

colon, and the type for that value. Next, there’s an equals sign and

whatever you’re assigning to the val:

val name:type = initialization

Scala’s type inference can usually determine the type automatically

based on the initialization. This produces a simpler definition:

val name = initialization

Thus, both of the following are valid:

val daysInFebruary = 28

val daysInMarch:Int = 31

A variable definition looks the same, with var substituted for val:

var name = initialization

var name:type = initialization

70 • Atomic Scala • Summary 1

Unlike a val, you can modify a var, so the following is valid:

var hoursSpent = 20

hoursSpent = 25

However, the type can’t be changed, so you get an error if you say:

hoursSpent = 30.5

Expressions & Conditionals
The smallest useful fragment of code in most programming languages

is either a statement or an expression. These have one simple

difference:

A statement changes state

An expression expresses

That is, an expression produces a result, while a statement does not.

Because it doesn’t return anything, a statement must change the state

of its surroundings to do anything useful.

Almost everything in Scala is an expression. Using the REPL:

scala> val hours = 10

scala> val minutesPerHour = 60

scala> val minutes = hours * minutesPerHour

In each case, everything to the right of the ‘=’ is an expression, which

produces a result that is assigned to the val on the left.

Some expressions, like println, don’t seem to produce a result. Scala

has a special Unit type for these:

Atomic Scala • Summary 1 • 71

scala> val result = println("???")

???

result: Unit = ()

Conditional expressions can have both if and else expressions. The

entire if is itself an expression, so it can produce a result:

scala> if (99 < 100) { 4 } else { 42 }

res0: Int = 4

Because we didn’t create a var or val identifier to hold the result of

this expression, the REPL assigned the result to the temporary variable

res0. You can specify your own value:

scala> val result = if (99 < 100) { 4 } else { 42 }

result: Int = 4

When entering multiline expressions in the REPL, it’s helpful to put it

into paste mode with the :paste command. This delays interpretation

until you enter CTRL-D. Paste mode is especially useful when copying

and pasting chunks of code into the REPL.

Evaluation Order
If you’re not sure what order Scala will evaluate expressions, use

parentheses to force your intention. This also makes it clear to anyone

who reads your code. Understanding evaluation order helps you to

decipher what a program does, both with logical operations (Boolean

expressions) and with mathematical operations.

When you divide an Int with another Int, Scala produces an Int result,

and any remainder is truncated. So 1/2 produces 0. If a Double is

involved, the Int is promoted to Double before the operation, so 1.0/2

produces 0.5.

72 • Atomic Scala • Summary 1

You might expect the following to produce 3.4:

scala> 3.0 + 2/5

res1: Double = 3.0

But it doesn’t. Because of evaluation order, Scala divides 2 by 5 first,

and integer math produces 0, yielding a final answer of 3.0. The same

evaluation order does produce the expected result here:

scala> 3 + 2.0/5

res3: Double = 3.4

2.0 divided by 5 produces 0.4. The 3 is promoted to a Double because

we add it to a Double (0.4), which produces 3.4.

Compound Expressions
Compound expressions are contained within curly braces. A compound

expression holds any number of other expressions, including other

curly-braced expressions. For example:

1 // CompoundBMI.scala

2 val lbs = 150.0

3 val height = 68.0

4 val weightStatus = {

5 val bmi = lbs/(height * height) * 703.07

6 if(bmi < 18.5) "Underweight"

7 else if(bmi < 25) "Normal weight"

8 else "Overweight"

9 }

10 println(weightStatus)

A value defined inside an expression, such as bmi on line 5, is not

accessible outside the scope of the expression. Notice that lbs and

height are accessible inside the compound expression.

Atomic Scala • Summary 1 • 73

The result of the compound expression is the result of its last

expression; here, the String “Normal weight.”

Experienced programmers should go to Summary 2 after working the

following exercises.

Exercises
Solutions are available at AtomicScala.com.

Work exercises 1-8 in the REPL.

1. Store and print an Int value.

2. Try to change the value. What happened?

3. Create a var and initialize it to an Int, then try reassigning to a

Double. What happened?

4. Store and print a Double. Did you use type inference? Try declaring

the type.

5. What happens if you try to store the number 15 in a Double value?

6. Store a multiline String (see Data Types) and print it.

7. What happens if you try to store the String “maybe” in a Boolean?

8. What happens if you try to store the number 15.4 in an Int value?

9. Modify weightStatus in CompoundBMI.scala to produce Unit

instead of String.

10. Modify CompoundBMI.scala to produce an idealWeight based on a

BMI of 22.0. Hint:

idealWeight = bmi * (height * height) / 703.07

74 • Atomic Scala • Methods

 Methods
A method is a mini-program packaged under a name. When you use a

method (sometimes described as invoking a method), this mini-program

is executed. A method combines a group of activities into a single

name, and is the most basic way to organize your programs.

Ordinarily, you pass information into a method, and the method uses

that information to calculate a result, which it returns to you. The

basic form of a method in Scala is:

def methodName(arg1:Type1, arg2:Type2, …):returnType = {

 lines of code

 result

}

Method definitions begin with the keyword def, followed by the

method name and the argument list in parentheses. The arguments are

the information that you pass into the method, and each one has a

name followed by a colon and the type of that argument. The closing

parenthesis of the argument list is followed by a colon and the type of

the result that the method produces when you call it. Finally, there’s

an equal sign, to say “here’s the method body itself.” The lines of code

in the method body are enclosed in curly braces, and the last line is

the result that the method returns to you when it’s finished. Note that

this is the same behavior we described in Compound Expressions: a

method body is an expression.

You don’t need to say anything special to produce the result; it’s just

whatever is on the last line in the method. Here’s an example:

1 // MultiplyByTwo.scala
2

3 def multiplyByTwo(x:Int):Int = {

Atomic Scala • Methods • 75

4 println("Inside multiplyByTwo")

5 x * 2 // Return value

6 }
7

8 val r = multiplyByTwo(5) // Method call

9 println(r)

10 /* Output:

11 Inside multiplyByTwo

12 10

13 */

On line 3 you see the def keyword, the method name, and an

argument list consisting of a single argument. Note that declaring

arguments is just like declaring vals: the argument name, a colon, and

the type returned from the method. Thus, this method takes an Int

and returns an Int. Lines 4 and 5 are the body of the method. Note

that line 5 performs a calculation and, since it’s the last line, the

result of that calculation becomes the result of the method.

Line 8 runs the method by calling it with an appropriate argument, and

captures the result into the value r. The method call mimics the form

of its declaration: the method name, followed by arguments inside

parentheses.

Observe that println is also a method call – it just happens to be a

method defined by Scala.

All the lines of code in a method (you can put in a lot of code) are now

executed by a single call, using the method name multiplyByTwo as

an abbreviation for that code. This is why methods are the most basic

form of simplification and code reuse in programming. You can also

think of a method as an expression with substitutable values (the

arguments).

Let’s look at two more method definitions:

76 • Atomic Scala • Methods

1 // AddMultiply.scala
2

3 def addMultiply(x:Int,

4 y:Double, s:String):Double = {

5 println(s)

6 (x + y) * 2.1

7 }
8

9 val r2:Double = addMultiply(7, 9,

10 "Inside addMultiply")

11 println(r2)
12

13 def test(x:Int, y:Double,

14 s:String, expected:Double):Unit = {

15 val result = addMultiply(x, y, s)

16 assert(result == expected,

17 "Expected " + expected +

18 " Got " + result)

19 println("result: " + result)

20 }
21

22 test(7, 9, "Inside addMultiply", 33.6)
23

24 /* Output:

25 Inside addMultiply

26 33.6

27 Inside addMultiply

28 result: 33.6

29 */

addMultiply takes three arguments of three different types. It prints

the third argument, a String, and returns a Double value, the result of

the calculation on line 6.

Line 13 begins another method, only defined to test the addMultiply

method. In previous atoms, we printed the output and relied on

Atomic Scala • Methods • 77

ourselves to catch any discrepancies. That’s unreliable; even in a book

where we scrutinize the code over and over, we’ve learned that visual

inspection can’t be trusted to find errors. So the test method

compares the result of addMultiply with an expected result and

complains if the two don’t agree.

The assert on line 16 is a method defined by Scala. It takes a Boolean

expression and a String message (which we build using +’s). If the

expression is false, Scala prints the message and stops executing code

in the method. This is throwing an exception, and Scala prints out a lot

of information to help you figure out what happened, including the

line number where the exception happened. Try it – on line 22 change

the last argument (the expected value) to 40.1. You see something like

the following:

Inside addMultiply

33.6

Inside addMultiply

java.lang.AssertionError: assertion failed: Expected 40.1

Got 33.6

 at scala.Predef$.assert(Predef.scala:173)

 at Main$$anon$1.test(AddMultiply.scala:16)

 at Main$$anon$1.<init>(AddMultiply.scala:22)

 at Main$.main(AddMultiply.scala:1)

 at Main.main(AddMultiply.scala)

 [many more lines deleted here]

Notice that if the assert fails then line 19 never runs; that’s because

the exception aborts the program’s execution.

There’s more to know about exceptions, but for now just treat them as

something that produces error messages.

78 • Atomic Scala • Methods

Note that test returns nothing, so we explicitly declare the return type

as Unit on line 14. A method that doesn’t return a result is called for

its side effects – whatever it does other than returning something.

When writing methods, choose descriptive names to make reading

the code easier and to reduce the need for code comments. We won’t

be as explicit as we would prefer in this book because we’re

constrained by line widths.

In other Scala code, you’ll see many ways to write methods in

addition to the form shown in this atom. Scala is expressive this way

and it saves effort when writing and reading code. However, it can be

confusing to see all these forms right away, when you’re just learning

the language, so for now we use this form and introduce the others

after you’re more comfortable with Scala.

Exercises
Solutions are available at AtomicScala.com.

1. Create a method getSquare that takes an Int argument and returns

its square. Print your answer. Test using the following code.

val a = getSquare(3)

assert(/* fill this in */)

val b = getSquare(6)

assert(/* fill this in */)

val c = getSquare(5)

assert(/* fill this in */)

2. Create a method getSquareDouble that takes a Double argument

and returns its square. Print your answer. How does this differ

from Exercise 1? Use the following code to check your solutions.

val sd1 = getSquareDouble(1.2)

assert(1.44 == sd1, "Your message here")

val sd2 = getSquareDouble(5.7)

assert(32.49 == sd2, "Your message here")

Atomic Scala • Methods • 79

3. Create a method isArg1GreaterThanArg2 that takes two Double

arguments. Return true if the first argument is greater than the

second. Return false otherwise. Print your answer. Satisfy the

following:

val t1 = isArg1GreaterThanArg2(4.1, 4.12)

assert(/* fill this in */)

val t2 = isArg1GreaterThanArg2(2.1, 1.2)

assert(/* fill this in */)

4. Create a method getMe that takes a String and returns the same

String, but all in lowercase letters (There’s a String method called

toLowerCase). Print your answer. Satisfy the following:

val g1 = getMe("abraCaDabra")

assert("abracadabra" == g1,

 "Your message here")

val g2 = getMe("zyxwVUT")

assert("zyxwvut"== g2, "Your message here")

5. Create a method addStrings that takes two Strings as arguments,

and returns the Strings appended (added) together. Print your

answer. Satisfy the following:

val s1 = addStrings("abc", "def")

assert(/* fill this in */)

val s2 = addStrings("zyx", "abc")

assert(/* fill this in */)

6. Create a method manyTimesString that takes a String and an Int

as arguments and returns the String duplicated that many times.

Print your answer. Satisfy the following:

val m1 = manyTimesString("abc", 3)

assert("abcabcabc" == m1,

 "Your message here")

val m2 = manyTimesString("123", 2)

assert("123123" == m2, "Your message here")

80 • Atomic Scala • Methods

7. In the exercises for Evaluation Order, you calculated body mass

index (BMI) using weight in pounds and height in inches. Rewrite

as a method. Satisfy the following:

val normal = bmiStatus(160, 68)

assert("Normal weight" == normal,

 "Expected Normal weight, Got " + normal)

val overweight = bmiStatus(180, 60)

assert("Overweight" == overweight,

 "Expected Overweight, Got " +

 overweight)

val underweight = bmiStatus(100, 68)

assert("Underweight" == underweight,

 "Expected Underweight, Got " +

 underweight)

Atomic Scala • Classes & Objects • 81

 Classes & Objects
Objects are the foundation for numerous modern languages, including

Scala. In an object-oriented (OO) programming language, you think

about “nouns” in the problem you’re solving, and translate those

nouns to objects, which hold data and perform actions. An object-

oriented language is oriented towards creating and using objects.

Scala isn’t just object-oriented; it’s also functional. In a functional

language, you think about “verbs,” the actions that you want to

perform, and you typically describe these as mathematical equations.

Scala differs from many other programming languages in that it

supports both object-oriented and functional programming. This book

focuses on objects and only introduces a few of the functional

subjects.

Objects contain vals and vars to store data (these are called fields) and

perform operations using Methods. A class defines fields and methods

for what is essentially a new, user-defined data type. Making a val or

var of a class is called creating an object or creating an instance. We even

refer to instances of built-in types like Double or String as objects.

Consider Scala’s Range class:

val r1 = Range(0, 10)

val r2 = Range(5, 7)

Each object has its own piece of storage in memory. For example,

Range is a class, but a particular range r1 from 0 to 10 is an object. It’s

distinct from another range r2 from 5 to 7. So we have a single Range

class, of which there are two objects or instances.

82 • Atomic Scala • Classes & Objects

Classes can have many operations (methods). In Scala, it’s easy to

explore classes using the REPL, which has the valuable feature of code

completion. This means if you start typing something and then hit the

TAB key, the REPL will attempt to complete what you’re typing. If it

can’t complete it, you get a list of options. We can find the possible

operations on any class this way (the REPL will give lots of

information – ignore the things you see here that we haven’t talked

about yet).

Let’s look at Range in the REPL. First, we create an object called r of

type Range:

scala> val r = Range(0, 10)

Now if we type the identifier name followed by a dot, then press TAB,

the REPL will show us the possible completions:

scala> r.(PRESS THE TAB KEY)

++ ++:

+: /:

/:\ :+

:\ addString

aggregate andThen

apply applyOrElse

asInstanceOf by

canEqual collect

collectFirst combinations

companion compose

contains containsSlice

copyToArray copyToBuffer

corresponds count

diff distinct

drop dropRight

dropWhile end

endsWith exists

Atomic Scala • Classes & Objects • 83

filter filterNot

find flatMap

flatten fold

foldLeft foldRight

forall foreach

genericBuilder groupBy

grouped hasDefiniteSize

head headOption

inclusive indexOf

indexOfSlice indexWhere

indices init

inits intersect

isDefinedAt isEmpty

isInclusive isInstanceOf

isTraversableAgain iterator

last lastElement

lastIndexOf lastIndexOfSlice

lastIndexWhere lastOption

length lengthCompare

lift map

max maxBy

min minBy

mkString nonEmpty

numRangeElements orElse

padTo par

partition patch

permutations prefixLength

product reduce

reduceLeft reduceLeftOption

reduceOption reduceRight

reduceRightOption repr

reverse reverseIterator

reverseMap run

runWith sameElements

scan scanLeft

scanRight segmentLength

84 • Atomic Scala • Classes & Objects

seq size

slice sliding

sortBy sortWith

sorted span

splitAt start

startsWith step

stringPrefix sum

tail tails

take takeRight

takeWhile terminalElement

to toArray

toBuffer toIndexedSeq

toIterable toIterator

toList toMap

toSeq toSet

toStream toString

toTraversable toVector

transpose union

unzip unzip3

updated validateRangeBoundaries

view withFilter

zip zipAll

There are a surprising number of operations available for a Range;

some are simple and obvious, like reverse, and others require more

learning before you can use them. If you try calling some of those, the

REPL will tell you that you need arguments. To know enough to call

those operations, look them up in the Scala documentation, which we

introduce in the following atom.

A warning: although the REPL is a useful tool, it has its flaws and

limits. In particular, it will often not show every possible completion.

Lists like the above are helpful when getting started, but don’t assume

that it’s exhaustive – the Scala documentation might include other

Atomic Scala • Classes & Objects • 85

features. In addition, the REPL and scripts will sometimes have

behavior that is not proper for regular Scala programs.

A Range is a kind of object, and a defining characteristic of objects is

that you perform operations on them. Instead of “performing an

operation,” we sometimes say sending a message or calling a method. To

perform an operation on an object, give the object identifier, then a

dot, then the name of the operation. Since reverse is a method that

the REPL says is defined for range, you call it by saying r.reverse,

which reverses the order of the Range we previously created, resulting

in (9,8,7,6,5,4,3,2,1,0).

For now, it’s enough to know what an object is and how to use it. Soon

you’ll learn to define your own classes.

Exercises
Solutions are available at AtomicScala.com.

1. Create a Range object and print the step value. Create a second

Range object with a step value of 2 and then print the step value.

What’s different?

2. Create a String object initialized to "This is an experiment" and call

the split method on it, passing a space (" ") as the argument to the

split method.

3. Create a String object s1 (as a var) initialized to "Sally". Create a

second String object s2 (as a var) initialized to "Sally". Use

s1.equals(s2) to determine if the two Strings are equivalent. If they

are, print “s1 and s2 are equal,” otherwise print “s1 and s2 are not

equal.”

4. Building from Exercise 3, set s2 to "Sam". Do the strings match? If

they match, print “s1 and s2 are equal.” If they do not match, print

“s1 and s2 are not equal.” Is s1 still set to "Sally"?

86 • Atomic Scala • Classes & Objects

5. Building from Exercise 3, create a String object s3 by calling

toUpperCase on s1. Call contentEquals to compare the Strings s1

and s3. If they match, print “s1 and s3 are equal.” If they do not

match, print “s1 and s3 are not equal.” Hint: use s1.toUpperCase.

Atomic Scala • ScalaDoc • 87

 ScalaDoc
Scala provides an easy way to get documentation about classes. While

the REPL shows you the available operations for a class, ScalaDoc

provides much more detail. It’s helpful to keep a window open with

the REPL running for quick experiments when you have a question,

and a second window containing the documentation.

The documentation can be installed on your machine (see below), or

find it online at:

www.scala-lang.org/api/current/index.html

Try typing Range into the upper-left search box to see the results

directly below. You see several items that contain the word “Range.”

Click on Range; the right-hand window will display all the

documentation for the Range class. Note that the right-hand window

also has its own search box partway down the page. Type one of the

operations you discovered in the previous atom into Range’s search

box, and scroll down to see the results. Although you won’t

understand most of it at this time, it’s helpful to get used to the Scala

documentation so you become comfortable looking things up.

If the Scala installation process you used didn’t give you the option to

install the documentation locally, download it from www.scala-

lang.org by selecting the “Documentation” menu item, then “Scala

API” and “Download Locally.” On the page that comes up, look for

“Scala API.” (The abbreviation API stands for Application Programming

Interface).

Note: As of this writing, there’s an error of omission in the ScalaDoc.

Some Scala classes are actually Java classes, and they were dropped

from the ScalaDoc as of 2.8. String is an example of a Java class we

often use in this book, which Scala programmers use as if it were a

88 • Atomic Scala • ScalaDoc

Scala class. Here’s a link to the corresponding (Java) documentation

for String:

docs.oracle.com/javase/6/docs/api/java/lang/String.html

Atomic Scala • Creating Classes • 89

 Creating Classes
As well as using predefined types like Range, you can create your own

types of objects. Indeed, creating new types comprises much of the

activity in object-oriented programming. You create new types by

defining classes.

An object is a piece of the solution for a problem you’re trying to

solve. Start by thinking of objects as expressing concepts. As a first

approximation, if you discover a “thing” in your problem, represent

that thing as an object in your solution. For example, suppose you are

creating a program that manages animals in a zoo. Each animal

becomes an object in your program.

It makes sense to categorize the different types of animals based on

how they behave, their needs, animals they get along with and those

they fight with – everything (that you care about for your solution)

different about a species of animal is captured in the classification of

that animal’s object. Scala provides the class keyword to create new

types of objects:

1 // Animals.scala
2

3 // Create some classes:

4 class Giraffe

5 class Bear

6 class Hippo
7

8 // Create some objects:

9 val g1 = new Giraffe

10 val g2 = new Giraffe

11 val b = new Bear

12 val h = new Hippo
13

14 // Each object is unique:

90 • Atomic Scala • Creating Classes

15 println(g1)

16 println(g2)

17 println(h)

18 println(b)

Begin with class, followed by the name – that you make up – of your

new class. The class name must begin with a letter (A-Z, upper or

lower case), but can include things like numbers and underscores.

Following convention, we capitalize the first letter of a class name,

and lowercase the first letter of all vals and vars.

Lines 4-6 define three new classes, and lines 9-12 create objects (also

known as instances) of those classes using new. The new keyword

creates a new object, given a class.

Giraffe is a class, but a particular five-year-old male giraffe that lives

in Arizona is an object. When you create a new object, it’s different

from all the others, so we give them names like g1 and g2. You see

their uniqueness in the rather cryptic output of lines 15-18, which

looks something like:

Main$$anon1Giraffe@53f64158

Main$$anon1Giraffe@4c3c2378

Main$$anon1Hippo@3cc262

Main$$anon1Bear@14fdb00d

If we remove the common Main$$anon1 part, we see:

Giraffe@53f64158

Giraffe@4c3c2378

Hippo@3cc262

Bear@14fdb00d

The part before the ‘@’ is the class name, and the number (yes, that’s

a number even though it includes some letters – it’s called

Atomic Scala • Creating Classes • 91

“hexadecimal notation” and it’s explained in Wikipedia) is the address

where the object is located in your computer’s memory.

The classes defined here (Giraffe, Bear, and Hippo) are as simple as

possible: the entire class definition is a single line. More complex

classes use curly braces ‘{’ and ‘}’ to describe the characteristics and

behaviors for that class. This can be as trivial as showing an object is

being created:

1 // Hyena.scala
2

3 class Hyena {

4 println("This is in the class body")

5 }

6 val hyena = new Hyena

The code inside the curly braces is the class body, and is executed

when an object is created.

Exercises
Solutions are available at AtomicScala.com.

1. Create classes for Hippo, Lion, Tiger, Monkey, and Giraffe, then

create an instance of each one of those classes. Display the objects.

Do you see five different ugly-looking (but unique) strings? Count

and inspect them.

2. Create a second instance of Lion and two more Giraffes. Print

those objects. How do they differ from the original objects that you

created?

3. Create a class Zebra that prints “I have stripes” when you create it.

Test it.

92 • Atomic Scala • Methods Inside Classes

 Methods Inside Classes
A method defined within a class belongs to that class. Here, the bark

method belongs to the Dog class:

1 // Dog.scala

2 class Dog {

3 def bark():String = { "yip!" }

4 }

Methods are called (invoked) with the object name, followed by a ‘.’

(dot/period), followed by the method name and argument list. Here,

we call the meow method on line 7, and we use assert to validate the

result:

1 // Cat.scala

2 class Cat {

3 def meow():String = { "mew!" }

4 }
5

6 val cat = new Cat

7 val m1 = cat.meow()

8 assert("mew!" == m1,

9 "Expected mew!, Got " + m1)

Methods have special access to the other elements within a class. For

example, you can call another method within the class without using

a dot (that is, without qualifying it). Here, the exercise method calls the

speak method without qualification:

1 // Hamster.scala

2 class Hamster {

3 def speak():String = { "squeak!" }

4 def exercise():String = {

Atomic Scala • Methods Inside Classes • 93

5 speak() + " Running on wheel"

6 }

7 }
8

9 val hamster = new Hamster

10 val e1 = hamster.exercise()

11 assert(

12 "squeak! Running on wheel" == e1,

13 "Expected squeak! Running on wheel" +

14 ", Got " + e1)

Outside the class, you must say hamster.exercise (as on line 10) and

hamster.speak.

The methods that we created in Methods didn’t appear to be inside a

class definition, but it turns out that everything in Scala is an object.

When we use the REPL or run a script, Scala takes any methods that

aren’t inside classes and invisibly bundles them inside of an object.

Exercises
Solutions are available at AtomicScala.com.

1. Create a Sailboat class with methods to raise and lower the sails,

printing “Sails raised,” and “Sails lowered,” respectively. Create a

Motorboat class with methods to start and stop the motor,

returning “Motor on,” and “Motor off,” respectively. Make an object

(instance) of the Sailboat class. Use assert for verification:

val sailboat = new Sailboat

val r1 = sailboat.raise()

assert(r1 == "Sails raised",

 "Expected Sails raised, Got " + r1)

val r2 = sailboat.lower()

assert(r2 == "Sails lowered",

 "Expected Sails lowered, Got " + r2)

val motorboat = new Motorboat

http://www.atomicscala.com/

94 • Atomic Scala • Methods Inside Classes

val s1 = motorboat.on()

assert(s1 == "Motor on",

 "Expected Motor on, Got " + s1)

val s2 = motorboat.off()

assert(s2 == "Motor off",

 "Expected Motor off, Got " + s2)

2. Create a new class Flare. Define a light method in the Flare class.

Satisfy the following:

val flare = new Flare

val f1 = flare.light

assert(f1 == "Flare used!",

 "Expected Flare used!, Got " + f1)

3. In each of the Sailboat and Motorboat classes, add a method signal

that creates a Flare object and calls the light method on the Flare.

Satisfy the following:

val sailboat2 = new Sailboat2

val signal = sailboat2.signal()

assert(signal == "Flare used!",

 "Expected Flare used! Got " + signal)

val motorboat2 = new Motorboat2

val flare2 = motorboat2.signal()

assert(flare2 == "Flare used!",

 "Expected Flare used!, Got " + flare2)

Atomic Scala • Imports & Packages • 95

 Imports & Packages
A fundamental principle in programming is the acronym DRY: Don’t

Repeat Yourself. Duplicating code is not just extra work. You also create

multiple identical pieces of code that you must change whenever you

make fixes or improvements. Every duplication is a place to make

another mistake.

Scala’s import reuses code from other files. One way to use import is

to specify a class name:

import packagename.classname

A package is an associated collection of code; each package is usually

designed to solve a particular problem, and often contains multiple

classes. For example, Scala’s standard util package includes Random,

which generates a random number:

1 // ImportClass.scala

2 import util.Random
3

4 val r = new Random

5 println(r.nextInt(10))

6 println(r.nextInt(10))

7 println(r.nextInt(10))

After creating a Random object, lines 5-7 use nextInt to generate

random numbers between 0 and 10, not including 10.

The util package contains other classes and objects as well, such as

the Properties object. To import more than one class, we use multiple

import statements:

96 • Atomic Scala • Imports & Packages

1 // ImportMultiple.scala

2 import util.Random

3 import util.Properties
4

5 val r = new Random

6 val p = Properties

Here, we import more than one item within the same import

statement:

1 // ImportSameLine.scala

2 import util.Random, util.Properties
3

4 val r = new Random

5 val p = Properties

Here, we combine multiple classes in a single import statement:

1 // ImportCombined.scala

2 import util.{Random, Properties}
3

4 val r = new Random

5 val p = Properties

You can even change the name as you import:

1 // ImportNameChange.scala

2 import util.{ Random => Bob,

3 Properties => Jill }
4

5 val r = new Bob

6 val p = Jill

If you want to import everything from a package, use the underscore:

Atomic Scala • Imports & Packages • 97

1 // ImportEverything.scala

2 import util._
3

4 val r = new Random

5 val p = Properties

Finally, if you only use something in a single place, you may choose to

skip the import statement and fully qualify the name:

1 // FullyQualify.scala
2

3 val r = new util.Random

4 val p = util.Properties

So far in this book we’ve used simple scripts for our examples, but

eventually you’ll want to write code and use it in multiple places.

Rather than duplicating the code, Scala allows you to create and

import packages. You create your own package using the package

keyword (this must be the first non-comment statement in the file)

followed by the name of your package (all lowercase):

1 // PythagoreanTheorem.scala

2 package pythagorean
3

4 class RightTriangle {

5 def hypotenuse(a:Double, b:Double):Double={

6 Math.sqrt(a*a + b*b)

7 }

8 def area(a:Double, b:Double):Double = {

9 a*b/2

10 }

11 }

On line 2, we name the package pythagorean, and then define the

class RightTriangle in the usual way. Notice there’s no requirement to

name the source-code file anything special.

98 • Atomic Scala • Imports & Packages

To make the package accessible to a script, we must compile the

package using the scalac command at the shell prompt:

scalac PythagoreanTheorem.scala

Packages cannot be scripts – they can only be compiled.

Once scalac is finished, you discover there’s a new directory with the

same name as the package; here the directory name is pythagorean.

This directory contains a file for each class defined in the pythagorean

package, each with .class at the end of the file name.

Now the elements in the pythagorean package are available to any

script in our directory by using an import:

1 // ImportPythagorean.scala

2 import pythagorean.RightTriangle
3

4 val rt = new RightTriangle

5 println(rt.hypotenuse(3,4))

6 println(rt.area(3,4))

7 assert(rt.hypotenuse(3,4) == 5)

8 assert(rt.area(3,4) == 6)

Run the script as usual with:

scala ImportPythagorean.scala

You need ‘.’ In your CLASSPATH for this to work. A bug in Scala 2.11

and below causes a delay between compiling and making the classes

available for import. To get around this bug, use nocompdaemon:

scala -nocompdaemon ImportPythagorean.scala

Atomic Scala • Imports & Packages • 99

Package names should be unique, and the Scala community has a

convention of using the reversed-domain package name of the creator

to ensure this. Since our domain name is Atomicscala.com, for our

package to be part of a distributed library it should be named

com.atomicscala.pythagorean rather than just pythagorean. This

helps us avoid name collisions with other libraries that might also use

the name pythagorean.

Exercises
Solutions are available at AtomicScala.com.

1. Rename the package pythagorean using the reverse domain-name

standard described above. Build it with scalac, following the

previously described steps, and ensure that a directory hierarchy is

created on your computer to hold these classes. Revise

ImportPythagorean.scala, above, and save as Solution-1.scala.

Remember to update the package import to use your new class.

Ensure that the tests run properly.

2. Add another class EquilateralTriangle to your solution for Exercise

1. Create a method area with an argument side (as a Double); look

up the formula in Wikipedia. Display a test result and use assert to

verify it.

3. Modify ImportPythagorean.scala to use the various different

importing methods shown in this atom.

4. Create your own package containing three trivial classes (just

define the classes, don’t give them bodies). Use the techniques in

this atom to import one class, two classes, and all classes, and

show that you’ve successfully imported them in each case.

100 • Atomic Scala • Testing

 Testing
Robust code must be tested constantly – every time you make

changes. This way, if you change one part of your code that

unexpectedly affects other code, you know immediately, as soon as

you make the change, and you know which change caused things to

break. If you don’t find out immediately, changes accumulate and you

don’t know which one caused the problem – you spend a lot longer

tracking it down. Constant testing is therefore essential for rapid

program development.

Because testing is a crucial practice, we introduce it early and use it

throughout the rest of the book. This way, you become accustomed to

testing as a standard part of the programming process.

Using println to verify code correctness is a weak approach; you must

pay attention to the output every time and consciously ensure that it’s

right. Using assert is better because it happens automatically.

However, a failed assert produces noisy output that’s often less than

clear. In addition, we’d like a more natural syntax for writing tests.

To simplify your experience using this book, we created our own tiny

testing system. The goal is a minimal approach that:

 Shows the expected result of expressions right next to those

expressions, for easier comprehension.

 Shows some output so you see that the program is running, even

when all the tests succeed.

 Ingrains the concept of testing early in your practice.

 Requires no extra downloads or installations to work.

Although useful, this is not a testing system for use in the workplace.

Others have worked long and hard to create such test systems – in

Atomic Scala • Testing • 101

particular, Bill Venners’ ScalaTest (www.scalatest.org) has become the

de facto standard for Scala testing, so reach for that when you start

producing real Scala code.

Here, our testing framework is imported on line 2:

1 // TestingExample.scala

2 import com.atomicscala.AtomicTest._
3

4 val v1 = 11

5 val v2 = "a String"
6

7 // "Natural" syntax for test expressions:

8 v1 is 11

9 v2 is "a String"

10 v2 is "Produces Error" // Show failure

11 /* Output:

12 11

13 a String

14 a String

15 [Error] expected:

16 Produces Error

17 */

Before running a Scala script that uses AtomicTest, you must follow

the instructions in your appropriate “Installation” atom to compile the

AtomicTest object (or run the “testall” script, also described in that

atom).

We don’t intend that you understand the code for

com.atomicscala.AtomicTest because it uses some tricks that are

beyond the scope of this book. The code is in Appendix A.

To produce a clean, comfortable appearance, AtomicTest uses a Scala

feature that you haven’t seen before: the ability to write a method call

a.method(b) in the text-like form:

102 • Atomic Scala • Testing

a method b

This is called infix notation. AtomicTest uses this feature by defining

the is method:

expression is expected

You see this used on lines 8-10 in the previous example.

This system is flexible – almost anything works as a test expression. If

expected is a string, then expression is converted to a string and the two

strings are compared. Otherwise, expression and expected are compared

directly (without converting them first). In either case, expression is

displayed on the console so you see something happening when the

program runs. If expression and expected are not equivalent,

AtomicTest prints an error message when the program runs (and

records it in the file _AtomicTestErrors.txt).

Lines 12-16 show the output; the output from lines 8 and 9 are on

lines 12 and 13; even though the tests succeeded you still get output

showing the contents of the object on the left of is. Line 10

intentionally fails so you see an example of failure output. Line 14

shows what the object is, followed by the error message, followed by

what the program expected to see for that object.

That’s all there is to it. The is method is the only operation defined for

AtomicTest – it truly is a minimal testing system. Now you can put

“is” expressions anywhere in a script to produce both a test and some

console output.

From now on we won’t need commented output blocks because the

testing code will do everything we need (and better, because you see

the results right there rather than scrolling to the bottom and

detecting which line of output corresponds to a particular println).

Atomic Scala • Testing • 103

Anytime you run a program that uses AtomicTest, you automatically

verify the correctness of that program. Ideally, by seeing the benefits

of using testing throughout the rest of the book, you’ll become

addicted to the idea of testing and will feel uncomfortable when you

see code that doesn’t have tests. You will probably start feeling that

code without tests is broken by definition.

Testing as Part of Programming
There’s another benefit to writing testably – it changes the way you

think about and design your code. In the above example, we could just

display the results to the console. But the test mindset makes you

think, “How will I test this?” When you create a method, you begin

thinking that you should return something from the method, if for no

other reason than to test that result. Methods that take one thing and

transform it into something else tend to produce better designs, as

well.

Testing is most effective when it’s built into your software

development process. Writing tests ensures that you’re getting the

results you expect. Many people advocate writing tests before writing

the implementation code – to be rigorous, you first make the test fail

before you write the code to make it pass. This technique, called Test

Driven Development (TDD), is a way to make sure that you’re really

testing what you think you are. There’s a more complete description

of TDD on Wikipedia (search for “Test_driven_development”).

Here’s a simplified example using TDD to implement the BMI

calculation from Evaluation Order. First, we write the tests, along with

an initial implementation that fails (because we haven’t yet

implemented the functionality).

1 // TDDFail.scala

2 import com.atomicscala.AtomicTest._

104 • Atomic Scala • Testing

3

4 calculateBMI(160, 68) is "Normal weight"

5 calculateBMI(100, 68) is "Underweight"

6 calculateBMI(200, 68) is "Overweight"
7

8 def calculateBMI(lbs: Int,

9 height: Int):String = { "Normal weight" }

Only the first test passes. Next we add code to determine which

weights are in which categories:

1 // TDDStillFails.scala

2 import com.atomicscala.AtomicTest._
3

4 calculateBMI(160, 68) is "Normal weight"

5 calculateBMI(100, 68) is "Underweight"

6 calculateBMI(200, 68) is "Overweight"
7

8 def calculateBMI(lbs:Int,

9 height:Int):String = {

10 val bmi = lbs / (height*height) * 703.07

11 if (bmi < 18.5) "Underweight"

12 else if (bmi < 25) "Normal weight"

13 else "Overweight"

14 }

Now all the tests fail because we’re using Ints instead of Doubles,

producing a zero result. The tests guide us to the fix:

1 // TDDWorks.scala

2 import com.atomicscala.AtomicTest._
3

4 calculateBMI(160, 68) is "Normal weight"

5 calculateBMI(100, 68) is "Underweight"

6 calculateBMI(200, 68) is "Overweight"
7

8 def calculateBMI(lbs:Double,

Atomic Scala • Testing • 105

9 height:Double):String = {

10 val bmi = lbs / (height*height) * 703.07

11 if (bmi < 18.5) "Underweight"

12 else if (bmi < 25) "Normal weight"

13 else "Overweight"

14 }

You may choose to add additional tests to ensure that we have tested

the boundary conditions completely.

Wherever possible in the remaining exercises of this book, we include

tests your code must pass. Feel free to test additional cases.

Exercises
Solutions are available at AtomicScala.com.

1. Create a value named myValue1 initialized to 20. Create a value

named myValue2 initialized to 10. Use “is” to test that they do not

match.

2. Create a value named myValue3 initialized to 10. Create a value

named myValue4 initialized to 10. Use “is” to test that they do

match.

3. Compare myValue2 and myValue3. Do they match?

4. Create a value named myValue5 initialized to the String “10”.

Compare it to myValue2. Does it match?

5. Use Test Driven Development (write a failing test, and then write

the code to fix it) to calculate the area of a quadrangle. Start with

the following sample code and fix the intentional bugs:

def squareArea(x: Int):Int = { x * x }

def rectangleArea(x:Int, y:Int):Int = { x * x }

def trapezoidArea(x:Int, y:Int,

 h:Int):Double = { h/2 * (x + y) }

106 • Atomic Scala • Testing

squareArea(1) is 1

squareArea(2) is 4

squareArea(5) is 25

rectangleArea(2, 2) is 4

rectangleArea(5, 4) is 20

trapezoidArea(2, 2, 4) is 8

trapezoidArea(3, 4, 1) is 3.5

Atomic Scala • Fields • 107

 Fields
A field is a var or val that’s part of an object. Each object gets its own

storage for fields:

1 // Cup.scala

2 import com.atomicscala.AtomicTest._
3

4 class Cup {

5 var percentFull = 0

6 }
7

8 val c1 = new Cup

9 c1.percentFull = 50

10 val c2 = new Cup

11 c2.percentFull = 100

12 c1.percentFull is 50

13 c2.percentFull is 100

Defining a var or val inside a class looks just like defining it outside

the class. However, the var or val becomes part of that class, and to

refer to it, you must specify its object using dot notation as on lines 9

and 11-13.

Note that c1 and c2 have different values in their percentFull vars,

which shows that each object has its own piece of storage for

percentFull.

A method can refer to a field within its object without using a dot

(that is, without qualifying it):

108 • Atomic Scala • Fields

1 // Cup2.scala

2 import com.atomicscala.AtomicTest._
3

4 class Cup2 {

5 var percentFull = 0

6 val max = 100

7 def add(increase:Int):Int = {

8 percentFull += increase

9 if(percentFull > max) {

10 percentFull = max

11 }

12 percentFull // Return this value

13 }

14 }
15

16 val cup = new Cup2

17 cup.add(50) is 50

18 cup.add(70) is 100

The ‘+=’ operator on line 8 adds increase to percentFull and assigns

the result to percentFull in a single operation. It is equivalent to

saying:

percentFull = percentFull + increase

The add method tries to add increase to percentFull but ensures that

it doesn’t go past 100%. The method add, like the field percentFull, is

defined inside the class Cup2. To refer to either of them from outside

the class, as on line 17, you use the dot between the object and the

name of the field or method.

Atomic Scala • Fields • 109

Exercises
Solutions are available at AtomicScala.com.

1. What happens in Cup2’s add method if increase is a negative

value? Is any additional code necessary to satisfy the following

tests:

val cup2 = new Cup2

cup2.add(45) is 45

cup2.add(-15) is 30

cup2.add(-50) is -20

2. To your solution for Exercise 1, add code to handle negative values

to ensure that the total never goes below 0. Satisfy the following

tests:

val cup3 = new Cup3

cup3.add(45) is 45

cup3.add(-55) is 0

cup3.add(10) is 10

cup3.add(-9) is 1

cup3.add(-2) is 0

3. Can you set percentFull from outside the class? Try it, like this:

cup3.percentFull = 56

cup3.percentFull is 56

4. Write methods that allow you to both set and get the value of

percentFull. Satisfy the following:

val cup4 = new Cup4

cup4.set(56)

cup4.get() is 56

110 • Atomic Scala • For Loops

 For Loops
A for loop steps through a sequence of values to perform operations

using each value. You start with the keyword for, followed by a

parenthesized expression that traverses the sequence. Within the

parentheses, you first see the identifier that receives each of the

values in turn, pointed at by a <- (backwards-pointing arrow; you may

choose to read this as “gets”), and then an expression that generates

the sequence. On lines 5, 11 and 17, we show three equivalent

expressions: 0 to 9, 0 until 10 and Range(0, 10) (to and until are

additional examples of infix notation). Each produces a sequence of Ints

that we append to a var String called result (using the ‘+=’ operator) to

produce something testable (then we reset result to an empty string

for the next for loop):

1 // For.scala

2 import com.atomicscala.AtomicTest._
3

4 var result = ""

5 for(i <- 0 to 9) {

6 result += i + " "

7 }

8 result is "0 1 2 3 4 5 6 7 8 9 "
9

10 result = ""

11 for(i <- 0 until 10) {

12 result += i + " "

13 }

14 result is "0 1 2 3 4 5 6 7 8 9 "
15

16 result = ""

17 for(i <- Range(0, 10)) {

18 result += i + " "

19 }

20 result is "0 1 2 3 4 5 6 7 8 9 "

Atomic Scala • For Loops • 111

21

22 result = ""

23 for(i <- Range(0, 20, 2)) {

24 result += i + " "

25 }

26 result is "0 2 4 6 8 10 12 14 16 18 "
27

28 var sum = 0

29 for(i <- Range(0, 20, 2)) {

30 println("adding " + i + " to " + sum)

31 sum += i

32 }

33 sum is 90

On lines 5 and 11, we use for loops to generate all the values,

demonstrating both to and until. Specifying a Range with start and

end points is more obvious. On line 17, Range creates a list of values

from 0 up to but not including 10. If you want to include the endpoint

(10), use:

Range(0, 10).inclusive

or

Range(0, 11)

The first form makes the meaning more explicit.

Note the type inference for i in the various for loops.

The expression following the for loop is called the body. The body is

executed for each value of i. The body, like any other expression, can

contain just one line of code (lines 6, 12, 18 and 24) or more than one

line of code (lines 30-31).

112 • Atomic Scala • For Loops

Line 23 also uses a Range to print a series of values, but the third

argument (2) steps the sequence by a value of two instead of one (try

different step values).

On line 28, we declare sum as a var instead of a val, so we modify sum

each time through the loop.

There are more concise ways to write for loops in Scala, but we start

with this form because it’s often easier to read.

Exercises
Solutions are available at AtomicScala.com.

1. Create a value of type Range that goes from 0 to 10 (not including

10). Satisfy the following tests:

val r1 = // fill this in

r1 is // fill this in

2. Use Range.inclusive to solve the problem above. What changed?

3. Write a for loop that adds the values 0 through 10 (including 10).

Sum all the values and ensure that it equals 55. Must you use a var

instead of a val? Why? Satisfy the following test:

total is 55

4. Write a for loop that adds even numbers between 1 and 10

(including 10). Sum all the values and ensure that it equals 30.

Hint: this conditional expression determines if a number is even:

if (number % 2 == 0)

The % (modulo) operator checks to see if there is a remainder

when you divide number by 2. Satisfy the following:

totalEvens is 30

Atomic Scala • For Loops • 113

5. Write a for loop to add even numbers between 1 and 10 (including

10) and odd numbers between 1 and 10. Calculate a sum for the

even numbers and a sum for the odd numbers. Did you write two

for loops? If so, try rewriting this with a single for loop. Satisfy the

following tests:

evens is 30

odds is 25

(evens + odds) is 55

6. If you didn’t use Range for Exercise 5, rewrite using Range. If you

did use Range, rewrite the for using to or until.

114 • Atomic Scala • Vectors

 Vectors
A Vector is a container – something that holds other objects.

Containers are also called collections. Vectors are part of the standard

Scala package so they’re available without any imports. On line 4 in

the following example, we create a Vector populated with Ints by

stating the Vector name and handing it initialization values:

1 // Vectors.scala

2 import com.atomicscala.AtomicTest._
3

4 // A Vector holds other objects:

5 val v1 = Vector(1, 3, 5, 7, 11, 13)

6 v1 is Vector(1, 3, 5, 7, 11, 13)
7

8 v1(4) is 11 // "Indexing" into a Vector
9

10 // Take each element of the Vector:

11 var result = ""

12 for(i <- v1) {

13 result += i + " "

14 }

15 result is "1 3 5 7 11 13 "
16

17 val v3 = Vector(1.1, 2.2, 3.3, 4.4)

18 // reverse is an operation on the Vector:

19 v3.reverse is Vector(4.4, 3.3, 2.2, 1.1)
20

21 var v4 = Vector("Twas", "Brillig", "And",

22 "Slithy", "Toves")

23 v4 is Vector("Twas", "Brillig", "And",

24 "Slithy", "Toves")

25 v4.sorted is Vector("And", "Brillig",

26 "Slithy", "Toves", "Twas")

27 v4.head is "Twas"

28 v4.tail is Vector("Brillig", "And",

Atomic Scala • Vectors • 115

29 "Slithy", "Toves")

Here’s something different: notice that all the Vector objects are

created without using the new keyword. For convenience, Scala

allows you to build a class that can be instantiated without new, and

Vector is such a class. In fact, you can’t create a Vector object using

the new keyword – try it and see what error message you get, so you

recognize when it happens with other classes. You’ll eventually learn

how to do this with your own classes, but for now it’s enough to know

that some library classes behave this way.

Line 6 shows that when you display a Vector, it produces the output in

the same form as the initialization expression, making it easy to

understand.

On line 8, parentheses are used to index into the Vector. A Vector

keeps its elements in initialization order, and you select them

individually by number. Like most programming languages, Scala

starts indexing at element zero, which in this case produces the value

1. Thus, the index of 4 produces a value of 11.

Forgetting that indexing starts at zero is responsible for the so-called

off-by-one error. If you try to use an index beyond the last element in

the Vector, Scala will throw one of the exceptions we talked about in

Methods. The exception will display an error message telling you it’s

an IndexOutOfBoundsException so you can figure out what the problem

is. Try adding the following, any time after line 22:

println(v4(5))

In a language like Scala we often don’t select elements one at a time,

but instead iterate through a whole container – an approach that

eliminates off-by-one errors. On line 12, notice that for loops work

well with Vectors: for(i <- v1) means “i gets each value in v1.” This is

more help from Scala: you don’t even declare val i or give its type;

116 • Atomic Scala • Vectors

Scala knows from the context that this is a for loop variable, and takes

care of it for you. Many other programming languages will force you

to do extra work – this can be annoying because, in the back of your

mind, you know that the language can figure it out and it seems like

it’s making you do extra work out of spite. For this and many other

reasons, programmers from other languages find Scala to be a breath

of fresh air – it seems to be saying, “How can I serve you?” instead of

cracking a whip and forcing you to jump through hoops.

A Vector can hold all different types; on line 17 we create a Vector of

Double. On line 19 this is displayed in reverse order.

The rest of the program experiments with a few other operations.

Note the use of the word sorted instead of “sort.” When you call

sorted it produces a new Vector containing the same elements as the

old, in sorted order – but it leaves the original Vector alone. Calling it

“sort” implies that the original Vector is changed directly (a.k.a. sorted

in place). Throughout Scala, you see this tendency of “leaving the

original thing alone and producing a new thing.” For example, the

head operation produces the first element of the Vector but leaves the

original alone, and the tail operation produces a new Vector

containing all but the first elements – and leaves the original alone.

Learn more about Vector by looking it up in ScalaDoc.

Note: Since we speak highly of Scala’s consistency we also wanted to

point out that it’s not perfect. The reverse method on line 19 produces

a new Vector, ordered end to beginning. To maintain consistency with

sorted, that name should be “reversed.”

Exercises
Solutions are available at AtomicScala.com.

Atomic Scala • Vectors • 117

1. Use the REPL to create several Vectors, each populated by a

different type of data. See how the REPL responds and guess what

it means.

2. Use the REPL to see if you can make a Vector containing other

Vectors. How can you use such a thing?

3. Create a Vector and populate it with words (which are Strings).

Add a for loop that prints each element in the Vector. Now append

to a var String to create a sentence. Satisfy the following test:

sentence.toString() is

 "The dog visited the firehouse "

4. That last space is unexpected. Use String’s replace method to

replace “firehouse ” with “firehouse!” Satisfy the following test:

theString is

 "The dog visited the firehouse!"

5. Building from your solution for Exercise 4, write a for loop that

prints each word, reversed. Your output should match:

/* Output:

ehT

god

detisiv

eht

esuoherif

*/

6. Write a for loop that prints the words from Exercise 4 in reverse

order (last word first, etc.). Your output should match:

/* Output:

firehouse

the

visited

dog

The

*/

118 • Atomic Scala • Vectors

7. Create and initialize two Vectors, one containing Ints and one

containing Doubles. Call the sum, min and max operations on

each one.

8. Create a Vector containing Strings and apply the sum, min and

max operations. Explain the results. One of those methods won’t

work. Why?

9. In For Loops, we added the values in a Range to get the sum. Try

calling the sum operation on a Range. Does this do the entire

summation in one step?

10. List and Set are similar to Vector. Use the REPL to discover their

operations and compare them to those of Vector.

11. Create and initialize a List and Set with words, then print each

one. Try the reverse and sorted operations and see what happens.

12. Create two Vectors of Int named myVector1 and myVector2, each

initialized to 1, 2, 3, 4, 5, 6. Use AtomicTest to show whether they

are equivalent.

Atomic Scala • More Conditionals • 119

 More Conditionals
Let’s practice creating methods by writing some that take Boolean

arguments (You learned about Booleans in Conditional Expressions):

1 // TrueOrFalse.scala

2 import com.atomicscala.AtomicTest._
3

4 def trueOrFalse(exp:Boolean):String = {

5 if(exp) {

6 return "It's true!" // Need 'return'

7 }

8 "It's false"

9 }
10

11 val b = 1

12 trueOrFalse(b < 3) is "It's true!"

13 trueOrFalse(b > 3) is "It's false"

The Boolean argument exp is passed to the method trueOrFalse. If the

argument is passed as an expression, such as b < 3, that expression is

first evaluated and the result is passed to the method. Here, exp is

tested and if it is true, the lines within the curly braces are executed.

The return keyword is new here. It says, “Leave this method and

return this value.” Normally, the last expression in a Scala method

produces the value returned from that method, so we don’t usually

need the return keyword and you won’t see it often. If we give the

String “It’s true” without the return, nothing happens; the method

continues and always return “It’s false” (Try it – remove the return

and see what happens).

It’s more common to use the else keyword:

120 • Atomic Scala • More Conditionals

1 // OneOrTheOther.scala

2 import com.atomicscala.AtomicTest._
3

4 def oneOrTheOther(exp:Boolean):String = {

5 if(exp) {

6 "True!" // No 'return' necessary

7 }

8 else {

9 "It's false"

10 }

11 }
12

13 val v = Vector(1)

14 val v2 = Vector(3, 4)

15 oneOrTheOther(v == v.reverse) is "True!"

16 oneOrTheOther(v2 == v2.reverse) is

17 "It's false"

The oneOrTheOther method is now a single expression, instead of the

two expressions inside trueOrFalse. The result of that expression –

line 6 if exp is true, or line 9 if exp is false – becomes the returned

value, so the return keyword is no longer necessary.

Some people feel strongly that return should never be used to exit a

method in the middle, but we remain neutral on the subject.

The tests show that if a Vector of length one is reversed it is always

equal to the original, but if it is longer than one the reverse typically

isn’t equal to the original.

You are not limited to a single test. Test multiple combinations by

combining else and if:

1 // CheckTruth.scala

2 import com.atomicscala.AtomicTest._
3

Atomic Scala • More Conditionals • 121

4 def checkTruth(

5 exp1:Boolean, exp2:Boolean):String = {

6 if(exp1 && exp2) {

7 "Both are true"

8 }

9 else if(!exp1 && !exp2) {

10 "Both are false"

11 }

12 else if(exp1) {

13 "First: true, second: false"

14 }

15 else {

16 "First: false, second: true"

17 }

18 }
19

20 checkTruth(true || false, true) is

21 "Both are true"

22 checkTruth(1 > 0 && -1 < 0, 1 == 2) is

23 "First: true, second: false"

24 checkTruth(1 >= 2, 1 >= 1) is

25 "First: false, second: true"

26 checkTruth(true && false,false && true) is

27 "Both are false"

The typical pattern is to start with if, followed by as many else if

clauses as you need, and ending with a final else for anything that

doesn’t match all the previous tests. When an if expression reaches a

certain size and complexity you’ll probably want to use pattern

matching, described after Summary 2.

Exercises
Solutions are available at AtomicScala.com.

122 • Atomic Scala • More Conditionals

1. Under what conditions does a Vector of length greater than one

equal its reverse?

2. Palindromes are words or phrases that read the same forward and

backward. Some examples include “mom” and “dad.” Write a

method to test words or phrases for palindromes. Hint: String’s

reverse method may prove useful here. Use AtomicTest to check

your solution (remember to import it!). Satisfy the following tests:

isPalindrome("mom") is true

isPalindrome("dad") is true

isPalindrome("street") is false

3. Building on the previous exercise, ignore case when testing for

palindromes. Satisfy the following tests:

isPalIgnoreCase("Bob") is true

isPalIgnoreCase("DAD") is true

isPalIgnoreCase("Blob") is false

4. Building on the previous exercise, strip out special characters

before palindrome testing. Here is sample code and tests: (Hint: In

integer values, ‘A’ is 65, ‘B’ is 66, … ‘a’ is 97 … ‘z’ is 122. ‘0’ is 48 …

‘9’ is 57)

var createdStr = ""

for (c <- str) {

 // Convert to Int for comparison:

 val theValue = c.toInt

 if (/* Check for letters */) {

 createdStr += c

 }

 else if (/* check for numbers */) {

 createdStr += c

 }

}

isPalIgnoreSpecial("Madam I'm adam") is

true

isPalIgnoreSpecial("trees") is false

Atomic Scala • Summary 2 • 123

 Summary 2
This atom summarizes and reviews the atoms from Methods through

More Conditionals. If you’re an experienced programmer, this is your

next atom after Summary 1.

Beginning programmers should read this atom and perform the

exercises as review. If any information here isn’t clear to you, go back

and study the atom for that particular topic.

The topics appear in appropriate order for experienced programmers,

which is not the same as the order of the atoms in the book. For

example, we start by introducing packages and imports so we can use

our minimal test framework for the rest of the atom.

Packages, Imports & Testing
Any number of reusable library components can be bundled under a

single library name using the package keyword:

1 // ALibrary.scala

2 package com.yoururl.libraryname

3 // Components to reuse ...

4 class X

You can put multiple components in a single file, or spread

components out among multiple files under the same package name.

Here we’ve defined an empty class called X as the sole component.

You must compile libraries using the scalac command:

scalac ALibrary.scala

124 • Atomic Scala • Summary 2

The package name conventionally begins with your reversed domain

name to make it unique. On line 2, the domain name is yoururl.com. If

the package name contains periods, each part of the name becomes a

subdirectory. So when you compile ALibrary.scala, you produce the

directory structure (beneath the current directory):

com/yoururl/libraryname

The libraryname directory will contain a compiled file with a name

ending in .class for each component in your library.

Write an import statement to use a library:

1 // UseALibrary.scala

2 import com.yoururl.libraryname._

3 new X

The underscore after the library name tells Scala to bring in all the

components of a library. Now we can refer to X without producing an

error. You can also select components individually; details are in

Imports and Packages.

Note: there is a bug in Scala 2.11 and below that causes a delay

between compiling and making the classes available for import. To

get around this bug, use the nocompdaemon flag:

scala -nocompdaemon UseALibrary.scala

An important library in this book is AtomicTest, our simple testing

framework. Once it’s imported, you use “is” almost as if it were a

language keyword:

1 // UsingAtomicTest.scala

2 import com.atomicscala.AtomicTest._
3

Atomic Scala • Summary 2 • 125

4 val pi = 3.14

5 val pie = "A round dessert"
6

7 pi is 3.14

8 pie is "A round dessert"

9 pie is "Square" // Produces error

The ability to use is without any dots or parentheses is called infix

notation, a fundamental language feature. AtomicTest makes is an

assertion of truth which also prints the result on the left side of the is

statement, and an error message if the expression on the right of the

is doesn’t agree. This way you see verified results in the source code.

AtomicTest is defined in Appendix A; you must compile it with the

command line scalac AtomicTest.scala before the above code will

work.

Methods
Almost all named subroutines in Scala are created as methods. The

basic form is:

def methodName(arg1:Type1, arg2:Type2, …):returnType = {

 lines of code

 result

}

The def keyword is followed by the method name and the argument

list in parentheses. Each argument must have a type (Scala cannot

infer argument types). The method itself has a type, defined in the

same way as a type for a var or val: a colon followed by the type

name. A method’s type is the type of the returned result.

The method signature is followed by an “=” and the method body,

which is effectively just an expression; this is typically a compound

126 • Atomic Scala • Summary 2

expression surrounded by curly braces as you see above. The result of

the body – the last line of the compound expression above – becomes

the return value of the method.

Here’s a method that produces the cube of its argument, and another

one that adds an exclamation point to a String:

1 // BasicMethods.scala

2 import com.atomicscala.AtomicTest._
3

4 def cube(x:Int):Int = { x * x * x }

5 cube(3) is 27
6

7 def bang(s:String):String = { s + "!" }

8 bang("pop") is "pop!"

In each case, the method body is a single expression that produces the

method’s return value.

Classes & Objects
Scala is a hybrid object-functional language: it supports both object-

oriented and functional programming paradigms.

Objects contain vals and vars to store data (these are called fields) and

they perform operations using methods. A class defines fields and

methods for what is essentially a new, user-defined data type. When

you create a val or var of a class, it’s called creating an object or

sometimes creating an instance. Even instances of what would be built-

in types in other languages (like Double or String) are objects in Scala.

An especially useful type of object is the container or collection: an

object that holds other objects. In this book, we primarily use the

Vector because it’s the most general-purpose sequence. Here we

create a Vector holding Doubles and perform several operations on it:

Atomic Scala • Summary 2 • 127

1 // VectorCollection.scala

2 import com.atomicscala.AtomicTest._
3

4 val v1 = Vector(19.2, 88.3, 22.1)

5 v1 is Vector(19.2, 88.3, 22.1)

6 v1(1) is 88.3 // Indexing

7 v1.reverse is Vector(22.1, 88.3, 19.2)

8 v1.sorted is Vector(19.2, 22.1, 88.3)

9 v1.max is 88.3

10 v1.min is 19.2

No import statement is required to use a Vector. On line 6, notice that

Scala uses parentheses for indexing into sequences (indexing is zero-

based) rather than square brackets as in many languages.

Lines 7 - 10 show examples of the numerous methods available for

Scala collections. The REPL is useful as an investigation tool here;

create a Vector object:

scala> val v = Vector(1)

Now type v. (v followed by a period) as if you’re about to call a method

for v, but instead, press the TAB key. This works for any type of object;

the REPL produces a list of possible methods to call.

To find out what all those methods mean, use the Scala

documentation, available as a download or online. See the ScalaDoc

atom for details.

When you call reverse and sorted as on lines 7 and 8, the Vector v1 is

not modified. Instead, a new Vector is created and returned,

containing the desired result. This approach of never modifying the

original object is consistent throughout Scala libraries and you should

endeavor to follow this pattern when possible.

128 • Atomic Scala • Summary 2

Creating Classes
A class definition consists of the class keyword, a name for the class,

and an optional body. The body can contain:

1. Field definitions (vals and vars)

2. Method definitions

3. Code executed during the creation of each object

This example shows fields and initialization code:

1 // ClassBodies.scala
2

3 class NoBody

4 val nb = new NoBody
5

6 class SomeBody {

7 val name = "Janet Doe"

8 println(name + " is SomeBody")

9 }

10 val sb = new SomeBody
11

12 class EveryBody {

13 val all = Vector(new SomeBody,

14 new SomeBody, new SomeBody)

15 }

16 val eb = new EveryBody

 A class without a body simply has a name, as on line 3. To create an

instance of a class, you use the new keyword as on lines 4, 10 and 16.

Lines 7 and 13 show fields within class bodies. Fields can be any type;

here we see a String on line 7 and a Vector holding SomeBody objects

on line 13. Fields with fixed contents are of limited use; things will get

more interesting later.

Atomic Scala • Summary 2 • 129

Line 8 is not part of a field or method. When you run this script, you

see that line 8 executes every time a SomeBody object is created.

Here’s a class with methods:

1 // Temperature.scala

2 import com.atomicscala.AtomicTest._
3

4 class Temperature {

5 var current = 0.0

6 var scale = "f"

7 def setFahrenheit(now:Double):Unit = {

8 current = now

9 scale = "f"

10 }

11 def setCelsius(now:Double):Unit = {

12 current = now

13 scale = "c"

14 }

15 def getFahrenheit():Double = {

16 if(scale == "f")

17 current

18 else

19 current * 9.0/5.0 + 32.0

20 }

21 def getCelsius():Double = {

22 if(scale == "c")

23 current

24 else

25 (current - 32.0) * 5.0/9.0

26 }

27 }
28

29 val temp = new Temperature

30 temp.setFahrenheit(98.6)

31 temp.getFahrenheit() is 98.6

130 • Atomic Scala • Summary 2

32 temp.getCelsius is 37.0

33 temp.setCelsius(100.0)

34 temp.getFahrenheit is 212.0

These methods are just like those we’ve defined outside of classes,

except they belong to the class and have unqualified access to the

other members of the class – such as current and scale (methods can

also call other methods in the class without qualification).

Notice that line 29 uses a val for temp, but lines 30 and 33 modify the

Temperature object. The val declaration prevents the reference temp

from being reassigned to a new object; it does not restrict the behavior

of the object itself.

Notice on lines 31, 32 and 34 that, if a method has an empty argument

list, Scala allows you to call it with or without parentheses.

The following two classes are the foundation of a tic-tac-toe game.

They also further demonstrate conditional expressions:

1 // TicTacToe.scala

2 import com.atomicscala.AtomicTest._
3

4 class Cell {

5 var entry = ' '

6 def set(e:Char):String = {

7 if(entry==' ' && (e=='X' || e=='O')) {

8 entry = e

9 "successful move"

10 } else

11 "invalid move"

12 }

13 }
14

Atomic Scala • Summary 2 • 131

15 class Grid {

16 val cells = Vector(

17 Vector(new Cell, new Cell, new Cell),

18 Vector(new Cell, new Cell, new Cell),

19 Vector(new Cell, new Cell, new Cell)

20)

21 def play(e:Char, x:Int, y:Int):String = {

22 if(x < 0 || x > 2 || y < 0 || y > 2)

23 "invalid move"

24 else

25 cells(x)(y).set(e)

26 }

27 }
28

29 val grid = new Grid

30 grid.play('X', 1, 1) is "successful move"

31 grid.play('X', 1, 1) is "invalid move"

32 grid.play('O', 1, 3) is "invalid move"

The entry field in Cell is a var so it can be modified. The single quotes

in the initialization on line 5 produce a Char type, so all assignments

to entry must also be Chars.

The set method starting on line 6 tests that the space is available and

that you’ve passed it the right character; it returns a String result to

indicate success or failure.

The Grid class contains a Vector containing three Vectors, each

containing three Cells – a matrix. The play method checks to see if the

x and y indices are within range, then indexes into the matrix on line

25, relying on the tests performed by the set method.

132 • Atomic Scala • Summary 2

For Loops
All programming languages have looping constructs and virtually

always have a for loop, but often resort to counting through integers

to use as an index into a sequence. Scala’s for focuses on the

sequence rather than the numbers. For example, this for selects each

element in a Vector:

1 // ForVector.scala

2 val v = Vector("Somewhere", "over",

3 "the", "rainbow")

4 for(word <- v) {

5 println(word)

6 }

The left arrow <- selects each element from the generator expression

on the right. Here the generator expression is just a Vector, but it can

be more complex. Note that word isn’t declared as a var or val – it’s

automatically a val. Unlike the integral-indexing approach used by

many languages, Scala’s for automatically keeps track of the number

of elements in the generator expression, eliminating the errors that

come from accidentally indexing off the end of a sequence.

It’s still possible to step through integral values using a Range object

as a generator:

1 // ForWithRanges.scala

2 import com.atomicscala.AtomicTest._
3

4 var result = ""

5 for(i <- Range(0, 10)) {

6 result += i + " "

7 }

8 result is "0 1 2 3 4 5 6 7 8 9 "
9

10 result = ""

Atomic Scala • Summary 2 • 133

11 for(i <- Range(1, 21, 3)) {

12 result += i + " "

13 }

14 result is "1 4 7 10 13 16 19 "

The end value is excluded, as you see on line 8. The optional third

argument to Range is the step value, used on line 11.

Scala provides some readable shorthand to produce Ranges:

1 // RangeShorthand.scala

2 import com.atomicscala.AtomicTest._
3

4 var result = ""

5 for(i <- 0 until 10) {

6 result += i + " "

7 }

8 result is "0 1 2 3 4 5 6 7 8 9 "
9

10 result = ""

11 for(i <- 0 to 10) {

12 result += i + " "

13 }

14 result is "0 1 2 3 4 5 6 7 8 9 10 "
15

16 result = ""

17 for(i <- 'a' to 'h') {

18 result += i + " "

19 }

20 result is "a b c d e f g h "

The effect of until is the same as Range, but to includes the endpoint.

Note the clarity of creating a Range of characters on line 17.

134 • Atomic Scala • Summary 2

Exercises
Solutions are available at AtomicScala.com.

Whenever possible, use AtomicTest to test the solutions for these

exercises.

1. Create a Vector filled with Chars, one filled with Ints, and one

filled with Strings. Sort each Vector and produce the min and max

for each. Write a for loop for each sorted Vector that appends its

elements, separated by spaces, to a String.

2. Create a Vector containing all the Vectors from Exercise 1. Write a

for loop within a for loop to move through this Vector of Vectors

and append all the elements to a single String.

3. In the REPL, create a single Vector containing a Char, an Int, a

String and a Double. What type does this Vector contain? Try to

find the max of your Vector. Does this make sense?

4. Modify BasicMethods.scala so the two methods are part of a class.

Put the class in a package and compile it. Import the resulting

library into a script and test it.

5. Create a package containing the classes in ClassBodies.scala.

Compile this package, then import it into a script. Modify the

classes by adding methods that produce results that can be tested

with AtomicTest.

6. Add Kelvin temperature units to Temperature.scala (Kelvin is

Celsius + 273.15). When writing the new code, call the existing

methods whenever possible.

7. Add a method to TicTacToe.scala that displays the game board

(hint: use a for loop within a for loop). Call this method

automatically for each move.

Atomic Scala • Summary 2 • 135

8. Add a method to TicTacToe.scala that determines if there is a

winner or if the game is a draw. Call this method automatically for

each move.

136 • Atomic Scala • Pattern Matching

 Pattern Matching
A large part of computer programming makes comparisons and takes

action based on whether something matches. Anything that makes

this task easier is a boon for programmers, so Scala provides

extensive language support in the form of pattern matching.

A match expression compares a value against a selection of possibilities.

All match expressions begin with the value you want to compare,

followed by the keyword match, an opening curly brace, and then a

set of possible matches and their associated actions, and ends with a

closing curly brace. Each possible match and its associated action

begins with the keyword case followed by an expression. The

expression is evaluated and compared to the target value. If it

matches, the expression to the right of the => (“rocket”) produces the

result of the match expression.

1 // MatchExpressions.scala

2 import com.atomicscala.AtomicTest._
3

4 def matchColor(color:String):String = {

5 color match {

6 case "red" => "RED"

7 case "blue" => "BLUE"

8 case "green" => "GREEN"

9 case _ => "UNKNOWN COLOR: " + color

10 }

11 }
12

13 matchColor("white") is

14 "UNKNOWN COLOR: white"

15 matchColor("blue") is "BLUE"

Atomic Scala • Pattern Matching • 137

Line 5 begins the match expression: The value name color followed by

the match keyword and a set of expressions in curly braces,

representing things to match against. Lines 6-8 compare the value

color to "red", "blue" and "green". The first successful match finishes

the execution of the pattern match – here, a String is produced by the

pattern match which becomes the return value of matchColor.

Line 9 is another special use of “_” (underscore). Here, it is a wildcard,

and matches anything not matched above. When we test against

"white" on line 13, it doesn’t match red, blue, or green, and hits the

wildcard pattern, which always appears last in the match list. If you do

not include it, you get an error when you try to match on something

other than the listed patterns.

The example shown here only matches against a simple type (String)

but you’ll learn in later atoms that pattern matching can be much

more sophisticated.

Notice that pattern matching can overlap with the functionality of if

statements. Because pattern matching is more flexible and powerful,

we prefer it over if statements when there’s a choice.

Exercises
Solutions are available at AtomicScala.com.

1. Rewrite matchColor using if/else. Which approach seems more

straightforward? Satisfy the following tests:

matchColor("white") is

"UNKNOWN COLOR: white"

matchColor("blue") is "BLUE"

2. Rewrite oneOrTheOther from More Conditionals using pattern

matching. Satisfy the following tests:

val v = Vector(1)

val v2 = Vector(3, 4)

http://www.atomicscala.com/

138 • Atomic Scala • Pattern Matching

oneOrTheOther(v == v.reverse) is "True!"

oneOrTheOther(v2 == v2.reverse) is

"It's false"

3. Rewrite checkTruth from More Conditionals with pattern

matching. Satisfy the following tests:

checkTruth(true || false, true) is

 "Both are true"

checkTruth(1 > 0 && -1 < 0, 1 == 2) is

 "First: true, second: false"

checkTruth(1 >= 2, 1 >= 1) is

 "First: false, second: true"

checkTruth(true && false, false && true) is

 "Both are false"

4. Create a method forecast that represents the percentage of

cloudiness, and use it to produce a “weather forecast” string such

as “Sunny” (100), “Mostly Sunny” (80), “Partly Sunny” (50), “Mostly

Cloudy” (20), and “Cloudy” (0). For this exercise, only match for the

legal values 100, 80, 50, 20, and 0. Everything else should produce

“Unknown.” Satisfy the following tests:

forecast(100) is "Sunny"

forecast(80) is "Mostly Sunny"

forecast(50) is "Partly Sunny"

forecast(20) is "Mostly Cloudy"

forecast(0) is "Cloudy"

forecast(15) is "Unknown"

5. Create a Vector named sunnyData that holds the values (100, 80,

50, 20, 0, 15). Use a for loop to call forecast with the contents of

sunnyData. Display the answers and ensure that they match the

responses above.

Atomic Scala • Class Arguments • 139

 Class Arguments
When you create a new object, you typically want to initialize it by

passing some information. You do this using class arguments. The class

argument list looks like a method argument list, but placed after the

class name:

1 // ClassArg.scala

2 import com.atomicscala.AtomicTest._
3

4 class ClassArg(a:Int) {

5 println(f)

6 def f():Int = { a * 10 }

7 }
8

9 val ca = new ClassArg(19)

10 ca.f() is 190

11 // ca.a // error

Now the new expression requires an argument (try it without one).

The initialization of a happens before we enter the class body, so it’s

always set to the expected value. And even though the println on line

5 appears to happen before f is defined, all the definitions (values and

methods) are actually initialized before the rest of the body is

executed, so it doesn’t matter that line 5 appears first – f is still

available at that point.

Note that a is not accessible outside the class body, as shown by the

error that comes from uncommenting line 11. If you want a to be

visible outside the class body, declare it as a var or val in the

argument list:

1 // VisibleClassArgs.scala

2 import com.atomicscala.AtomicTest._
3

140 • Atomic Scala • Class Arguments

4 class ClassArg2(var a:Int)

5 class ClassArg3(val a:Int)
6

7 val ca2 = new ClassArg2(20)

8 val ca3 = new ClassArg3(21)
9

10 ca2.a is 20

11 ca3.a is 21

12 ca2.a = 24

13 ca2.a is 24

14 // Can't do this: ca3.a = 35

These class definitions have no explicit class bodies (the bodies are

implied). Because a is declared using var or val, it becomes visible

outside the class body as seen on lines 10-13. Class arguments that

are declared with val cannot be changed outside of the class, but

those that are declared with var can, as you might expect (See lines

12-14).

Note that ca2 is a val (lines 7). Does the fact that you change the value

of a on line 12 surprise you? It might help to think of an analogy.

Consider a house as a val, and a sofa inside the house as a var. You

can change the sofa inside the house because it’s a var. You can’t

change the house, though – it’s a val. Here, making ca2 and ca3 vals

means you can’t point them at other objects. But the val doesn’t

control the insides of the object.

Your class can have many arguments:

1 // MultipleClassArgs.scala

2 import com.atomicscala.AtomicTest._
3

4 class Sum3(a1:Int, a2:Int, a3:Int) {

5 def result():Int = { a1 + a2 + a3 }

6 }
7

Atomic Scala • Class Arguments • 141

8 new Sum3(13, 27, 44).result() is 84

You can support any number of arguments using a variable argument

list, denoted by a trailing ‘*’:

1 // VariableClassArgs.scala

2 import com.atomicscala.AtomicTest._
3

4 class Sum(args:Int*) {

5 def result():Int = {

6 var total = 0

7 for(n <- args) {

8 total += n

9 }

10 total

11 }

12 }
13

14 new Sum(13, 27, 44).result() is 84

15 new Sum(1, 3, 5, 7, 9, 11).result() is 36

The trailing ‘*’ on args (line 4) turns the arguments into a sequence

that can be traversed using a ‘<-’ in a for expression. Methods can also

have variable argument lists.

Exercises
Solutions are available at AtomicScala.com.

1. Create a new class Family that takes a variable argument list

representing the names of family members. Satisfy the following

tests:

val family1 = new Family("Mom",

 "Dad", "Sally", "Dick")

family1.familySize() is 4

val family2 =

http://www.atomicscala.com/

142 • Atomic Scala • Class Arguments

 new Family("Dad", "Mom", "Harry")

family2.familySize() is 3

2. Adapt the Family class definition to include class arguments for a

mother, father, and a variable number of children. What changes

did you have to make? Satisfy the following tests:

val family3 = new FlexibleFamily(

 "Mom", "Dad", "Sally", "Dick")

family3.familySize() is 4

val family4 =

 new FlexibleFamily("Dad", "Mom", "Harry")

family4.familySize() is 3

3. Does it work to leave out the kids altogether? Should you modify

your familySize method? Satisfy the following test:

val familyNoKids =

 new FlexibleFamily("Mom", "Dad")

familyNoKids.familySize() is 2

4. Can you use a variable argument list for both parents and

children?

5. Can you put the variable argument list first, and the parents last?

6. Fields contained a class Cup2 with a field percentFull. Rewrite that

class definition, using a class argument instead of defining a field.

7. Using your solution for Exercise 6, can you get and set the value of

percentFull without writing any new methods? Try it!

8. Continue working with the Cup2 class. Modify the add method to

take a variable argument list. Specify any number of pours

(increase) and spills (decrease = increase with a negative value)

and return the resulting value. Satisfy the following tests:

val cup5 = new Cup5(0)

cup5.increase(20, 30, 50,

 20, 10, -10, -40, 10, 50) is 100

Atomic Scala • Class Arguments • 143

cup5.increase(10, 10, -10, 10,

 90, 70, -70) is 30

9. Write a method that squares a variable argument list of numbers

and returns the sum. Satisfy the following tests:

squareThem(2) is 4

squareThem(2, 4) is 20

squareThem(1, 2, 4) is 21

144 • Atomic Scala • Named & Default Arguments

 Named & Default
Arguments
When creating an instance of a class that has an argument list, you

can specify the argument names, as on lines 4 and 5:

1 // NamedArguments.scala
2

3 class Color(red:Int, blue:Int, green:Int)

4 new Color(red = 80, blue = 9, green = 100)

5 new Color(80, 9, green = 100)

All the argument names are specified on line 4, and on line 5 you see

how to choose the ones you want to name.

Named arguments are useful for code readability, and this is

especially true for long and complex argument lists – named

arguments can be clear enough that the reader doesn’t need to check

the documentation.

Named arguments are even more useful when combined with default

arguments: default values for arguments in the class definition:

1 // NamedAndDefaultArgs.scala
2

3 class Color2(red:Int = 100,

4 blue:Int = 100, green:Int = 100)

5 new Color2(20)

6 new Color2(20, 17)

7 new Color2(blue = 20)

8 new Color2(red = 11, green = 42)

Atomic Scala • Named & Default Arguments • 145

Any argument you don’t specify gets its default value, so you need

only provide the arguments that are different from the defaults. If you

have a long argument list, this can greatly simplify the resulting code,

making it far easier to write and (more importantly) to read.

Named and default arguments also work in method argument lists.

Named and default arguments work with variable argument lists

(introduced in Class Arguments); however (as is always the case) the

variable argument list must appear last. Also, the variable argument

list itself cannot support default arguments.

Warning: Named and default arguments currently have an

idiosyncrasy when combined with a variable argument list – you

cannot vary the order of the named arguments from their definition.

For example:

1 // Family.scala
2

3 class Family(mom:String, dad:String,

4 kids:String*)
5

6 new Family(mom="Mom", dad="Dad")

7 // Doesn't work:

8 // new Family(dad="Dad", mom="Mom")
9

10 new Family(mom="Mom", dad="Dad",

11 kids="Sammy", "Bobby")

12 // Doesn't work:

13 /* new Family(dad="Dad", mom="Mom",

14 kids="Sammy", "Bobby") */

Ordinarily, named arguments allow us to change the order of the

parents, so we can specify first dad, then mom. When you add a

variable argument list, however, you can no longer reorder arguments

by naming them. The reason for this restriction is beyond the scope of

146 • Atomic Scala • Named & Default Arguments

this book; we recommend that you avoid using named arguments

with variable argument lists.

Exercises
Solutions are available at AtomicScala.com.

1. Define a class SimpleTime that takes two arguments: an Int that

represents hours, and an Int that represents minutes. Use named

arguments to create a SimpleTime object. Satisfy the following

tests:

val t = new SimpleTime(hours=5, minutes=30)

t.hours is 5

t.minutes is 30

2. Using the solution for SimpleTime above, default minutes to 0 so

you don’t have to specify them. Satisfy the following tests:

val t2 = new SimpleTime2(hours=10)

t2.hours is 10

t2.minutes is 0

3. Create a class Planet that has, by default, a single moon. The

Planet class should have a name (String) and description (String).

Use named arguments to specify the name and description, and a

default for the number of moons. Satisfy the following test:

val p = new Planet(name = "Mercury",

 description = "small and hot planet",

 moons = 0)

p.hasMoon is false

4. Modify your solution for the previous exercise by changing the

order of the arguments that you use to create the Planet. Did you

have to change any code? Satisfy the following test:

val earth = new Planet(moons = 1,

 name = "Earth",

 description = "a hospitable planet")

earth.hasMoon is true

http://www.atomicscala.com/

Atomic Scala • Named & Default Arguments • 147

5. Can you modify your solution for Exercise 2 in Class Arguments to

default the mother’s name to “Mom” and the father’s name to

“Dad?” Why do you get an error? Hint: Scala does a good job of

telling you what the problem is.

6. Demonstrate that named and default arguments can be used with

methods. Create a class Item that takes two class arguments: A

String for name and a Double for price. Add a method cost which

has named arguments for grocery (Boolean), medication (Boolean),

and taxRate (Double). Default grocery and medication to false,

taxRate to 0.10. In this scenario, groceries and medications are not

taxable. Return the total cost of the item by calculating the

appropriate tax. Satisfy the following tests:

val flour = new Item(name="flour", 4)

flour.cost(grocery=true) is 4

val sunscreen = new Item(

 name="sunscreen", 3)

sunscreen.cost() is 3.3

val tv = new Item(name="television", 500)

tv.cost(taxRate = 0.06) is 530

148 • Atomic Scala • Overloading

 Overloading
The term overload refers to the name of a method: You use the same

name (“overload” that name) for different methods as long as the

argument lists differ.

1 // Overloading.scala

2 import com.atomicscala.AtomicTest._
3

4 class Overloading1 {

5 def f():Int = { 88 }

6 def f(n:Int):Int = { n + 2 }

7 }
8

9 class Overloading2 {

10 def f():Int = { 99 }

11 def f(n:Int):Int = { n + 3 }

12 }
13

14 val mo1 = new Overloading1

15 val mo2 = new Overloading2

16 mo1.f() is 88

17 mo1.f(11) is 13

18 mo2.f() is 99

19 mo2.f(11) is 14

On lines 5 and 6 you see two methods with the same name, f. The

method’s signature consists of the name, argument list and return

type. Scala distinguishes one method from another by comparing

signatures. The only difference between the signatures on lines 5 and

6 is the argument list, and that’s all Scala needs to decide that the two

methods are different. The calls on lines 16 and 17 show that they are

indeed different methods. A method signature also includes

information about the enclosing class. Thus, the overloaded f

Atomic Scala • Overloading • 149

methods in Overloading1 don’t clash with the f methods in

Overloading2.

Why is overloading useful? It allows you to express “variations on a

theme” more clearly than if you were forced to use different method

names. Let’s say you want method for adding:

1 // OverloadingAdd.scala

2 import com.atomicscala.AtomicTest._
3

4 def addInt(i:Int, j:Int):Int = { i + j }

5 def addDouble(i:Double, j:Double):Double ={

6 i + j

7 }
8

9 def add(i:Int, j:Int):Int = { i + j }

10 def add(i:Double, j:Double):Double = {

11 i + j

12 }
13

14 addInt(5, 6) is add(5, 6)
15

16 addDouble(56.23, 44.77) is

17 add(56.23, 44.77)

addInt takes two Ints and returns an Int, while addDouble takes two

Doubles and returns a Double. Without overloading, you can’t just

name the operation, so programmers typically conflate what with how

to produce unique names (you can also create unique names using

random characters but the typical pattern is to use meaningful

information like argument types). In contrast, the overloaded add on

lines 9 and 10 is much clearer.

The lack of overloading in a language is not a terrible hardship, but it

provides a valuable simplification that produces more readable code.

With overloading, you just say what, which raises the level of

150 • Atomic Scala • Overloading

abstraction and puts less mental load on the reader. If you want to

know how, look at the arguments. Notice also that overloading

reduces redundancy: If we must say addInt and addDouble, then we

essentially repeat the argument information in the method name.

Overloading doesn’t work in the REPL. If you define the methods

above, the second add overwrites rather than overloads the first add.

The REPL is great for simple experimentation, but even slight

complexity can produce inconsistent results. To overcome this

limitation, use the REPL’s :paste mode described in Summary 1 (in

“Expressions & Conditionals”).

Exercises
Solutions are available at AtomicScala.com.

1. Modify Overloading.scala so the argument lists for all the methods

are identical. Observe the error messages.

2. Create five overloaded methods that sum their arguments. Create

the first with no arguments, the second with one argument, etc.

Satisfy the following tests:

f() is 0

f(1) is 1

f(1, 2) is 3

f(1, 2, 3) is 6

f(1, 2, 3, 4) is 10

3. Modify Exercise 2 to define the methods inside of a class.

4. Modify your solution for Exercise 3 to add a method with the same

name and arguments, but a different return type. Does that work?

Does it matter if you use an explicit return type or type inference

for the return type?

Atomic Scala • Constructors • 151

 Constructors
Initialization is a significant stumbling block. Your code might do all

the right things, but if you don’t set up the proper initial conditions it

won’t work correctly.

Each object is its own isolated world. A program is a collection of

objects, so correct initialization of each object solves a large part of

the initialization problem. Scala provides mechanisms to guarantee

proper object initialization, some of which you’ve seen in the last few

atoms.

The constructor is the code that “constructs” a new object. The

constructor is the combined effect of the class argument list –

initialized before entering the class body – and the class body, whose

statements execute from top to bottom.

The simplest form of a constructor is a single line class definition,

with no class arguments and no executable lines of code, such as:

class Bear

In Fields, the constructor initializes the fields to the values specified,

or to defaults if no values were specified. In Class Arguments, the

constructor quietly initializes the arguments and makes them

accessible to other objects; it also unravels a variable argument list.

In those cases, we didn’t write constructor code – Scala did it for us.

For more customization, add your own constructor code. For example:

152 • Atomic Scala • Constructors

1 // Coffee.scala

2 import com.atomicscala.AtomicTest._
3

4 class Coffee(val shots:Int = 2,

5 val decaf:Boolean = false,

6 val milk:Boolean = false,

7 val toGo:Boolean = false,

8 val syrup:String = "") {

9 var result = ""

10 println(shots, decaf, milk, toGo, syrup)

11 def getCup():Unit = {

12 if(toGo)

13 result += "ToGoCup "

14 else

15 result += "HereCup "

16 }

17 def pourShots():Unit = {

18 for(s <- 0 until shots)

19 if(decaf)

20 result += "decaf shot "

21 else

22 result += "shot "

23 }

24 def addMilk():Unit = {

25 if(milk)

26 result += "milk "

27 }

28 def addSyrup():Unit = {

29 result += syrup

30 }

31 getCup()

32 pourShots()

33 addMilk()

34 addSyrup()

35 }
36

Atomic Scala • Constructors • 153

37 val usual = new Coffee

38 usual.result is "HereCup shot shot "

39 val mocha = new Coffee(decaf = true,

40 toGo = true, syrup = "Chocolate")

41 mocha.result is

42 "ToGoCup decaf shot decaf shot Chocolate"

Notice that the methods have access to the class arguments without

explicitly passing them, and that result is available as an object field.

Although all the methods are called at the end of the class body, they

can actually be called at the beginning or any other place in the body

(try it).

When the Coffee constructor completes, it guarantees that the class

body has successfully run and all proper initialization has occurred;

the result field captures all the operations.

We’re using default arguments here, just as we use them in any other

method. If all arguments have defaults, you can say new Coffee

without using parentheses, as on line 37.

Exercises
Solutions are available at AtomicScala.com.

1. Modify Coffee.scala to specify some caffeinated shots and some

decaf shots. Satisfy the following tests:

val doubleHalfCaf =

 new Coffee(shots=2, decaf=1)

val tripleHalfCaf =

 new Coffee(shots=3, decaf=2)

doubleHalfCaf.decaf is 1

doubleHalfCaf.caf is 1

doubleHalfCaf.shots is 2

tripleHalfCaf.decaf is 2

154 • Atomic Scala • Constructors

tripleHalfCaf.caf is 1

tripleHalfCaf.shots is 3

2. Create a new class Tea that has 2 methods: describe, which

includes information about whether the tea includes milk, sugar,

is decaffeinated, and includes the name; and calories, which adds

100 calories for milk and 16 calories for sugar. Satisfy the following

tests:

val tea = new Tea

tea.describe is "Earl Grey"

tea.calories is 0

val lemonZinger = new Tea(

 decaf = true, name="Lemon Zinger")

lemonZinger.describe is

 "Lemon Zinger decaf"

lemonZinger.calories is 0

val sweetGreen = new Tea(

 name="Jasmine Green", sugar=true)

sweetGreen.describe is

 "Jasmine Green + sugar"

sweetGreen.calories is 16

val teaLatte = new Tea(

 sugar=true, milk=true)

teaLatte.describe is

 "Earl Grey + milk + sugar"

 teaLatte.calories is 116

Atomic Scala • Constructors • 155

3. Use your solution for Exercise 2 as a starting point. Make decaf,

milk, sugar and name accessible outside of the class. Satisfy the

following tests:

val tea = new Tea2

tea.describe is "Earl Grey"

tea.calories is 0

tea.name is "Earl Grey"

val lemonZinger = new Tea2(decaf = true,

 name="Lemon Zinger")

lemonZinger.describe is

 "Lemon Zinger decaf"

lemonZinger.calories is 0

lemonZinger.decaf is true

val sweetGreen = new Tea2(

 name="Jasmine Green", sugar=true)

sweetGreen.describe is

 "Jasmine Green + sugar"

sweetGreen.calories is 16

sweetGreen.sugar is true

val teaLatte = new Tea2(sugar=true,

 milk=true)

teaLatte.describe is

 "Earl Grey + milk + sugar"

teaLatte.calories is 116

teaLatte.milk is true

156 • Atomic Scala • Auxiliary Constructors

 Auxiliary Constructors
Named and default arguments in the class argument list can

construct objects in multiple ways. We can also use constructor

overloading by creating multiple constructors. The name is overloaded

here because you’re making different ways to create objects of the

same class. To create an overloaded constructor you define a method

(with a distinct argument list) called this (a keyword). Overloaded

constructors have a special name in Scala: auxiliary constructors.

Because constructors are responsible for the important act of

initialization, constructor overloading has an additional constraint: all

auxiliary constructors must first call the primary constructor. This is the

constructor produced by the class argument list together with the

class body. To call the primary constructor within an auxiliary

constructor, you don’t use the class name, but instead the this

keyword:

1 // GardenGnome.scala

2 import com.atomicscala.AtomicTest._
3

4 class GardenGnome(val height:Double,

5 val weight:Double, val happy:Boolean) {

6 println("Inside primary constructor")

7 var painted = true

8 def magic(level:Int):String = {

9 "Poof! " + level

10 }

11 def this(height:Double) {

12 this(height, 100.0, true)

13 }

14 def this(name:String) = {

15 this(15.0)

16 painted is true

Atomic Scala • Auxiliary Constructors • 157

17 }

18 def show():String = {

19 height + " " + weight +

20 " " + happy + " " + painted

21 }

22 }
23

24 new GardenGnome(20.0, 110.0, false).

25 show() is "20.0 110.0 false true"

26 new GardenGnome("Bob").show() is

27 "15.0 100.0 true true"

The first auxiliary constructor begins on line 11. You do not declare a

return type for an auxiliary constructor, and it doesn’t matter if you

include an ‘=’ (line 14) or leave it out (line 11). The first line in any

auxiliary constructor must be a call to either the primary constructor

(line 12) or another auxiliary constructor (line 15). This means that,

ultimately, the primary constructor is always called first, which

guarantees that the object is properly initialized before the auxiliary

constructor comes into play. You can’t use val or var for the auxiliary

constructor arguments; that would mean the field is generated by

only that auxiliary constructor. By forcing the field-generating class

arguments to only be in the primary constructor, Scala guarantees

that all objects have the same structure.

The expressions within a constructor are treated as statements, so

they are only executed for their side effects, which in this case is how

they affect the state of the object being created. The result of the final

expression in a constructor is not returned, but ignored. In addition,

Scala will not allow you to short-circuit the creation of an object. You

cannot, for example, put a return in the middle of a class body (try it

and see the error message).

158 • Atomic Scala • Auxiliary Constructors

You’ll probably solve most of your constructor needs using named

and default arguments, but sometimes you must overload a

constructor.

Exercises
Solutions are available at AtomicScala.com.

1. Create a class called ClothesWasher with a default constructor and

two auxiliary constructors, one that specifies model (as a String)

and one that specifies capacity (as a Double).

2. Create a class ClothesWasher2 that looks just like your solution for

Exercise 1, but use named and default arguments instead so you

produce the same results with just a default constructor.

3. Show that the first line of an auxiliary constructor must be a call to

the primary constructor.

4. Recall from Overloading that methods can be overloaded in Scala,

and that this is different from the way that we overload

constructors (writing auxiliary constructors). Add two methods to

your solution for Exercise 1 to show that methods can be

overloaded. Satisfy the following tests:

val washer =

 new ClothesWasher3("LG 100", 3.6)

washer.wash(2, 1) is

"Wash used 2 bleach and 1 fabric softener"

washer.wash() is "Simple wash"

Atomic Scala • Class Exercises • 159

 Class Exercises
Now you’re ready to solve some more comprehensive exercises about

defining and using classes.

Exercises
Solutions are available at AtomicScala.com.

1. Make a class Dimension that has an integer field height and an

integer field width that can be both retrieved and modified from

outside the class. Satisfy the following tests:

val c = new Dimension(5,7)

c.height is 5

c.height = 10

c.height is 10

c.width = 19

c.width is 19

2. Make a class Info that has a String field name that can be retrieved

from outside the class (but not modified) and a String field

description that can be both modified and retrieved from outside

the class. Satisfy the following tests:

val info = new Info("stuff", "Something")

info.name is "stuff"

info.description is "Something"

info.description = "Something else"

info.description is "Something else"

3. Working from your solution to Exercise 2, modify the Info class to

satisfy the following test:

info.name = "This is the new name"

info.name is "This is the new name"

4. Modify SimpleTime (from Named & Default Arguments) to add a

method subtract that subtracts one SimpleTime object from

http://www.atomicscala.com/

160 • Atomic Scala • Class Exercises

another. If the second time is greater than the first, just return

zero. Satisfy the following tests:

val t1 = new SimpleTime(10, 30)

val t2 = new SimpleTime(9, 30)

val st = t1.subtract(t2)

st.hours is 1

st.minutes is 0

val st2 = new SimpleTime(10, 30).

 subtract(new SimpleTime(9, 45))

st2.hours is 0

st2.minutes is 45

val st3 = new SimpleTime(9, 30).

 subtract(new SimpleTime(10, 0))

st3.hours is 0

st3.minutes is 0

5. Modify your SimpleTime solution to use default arguments for

minutes (see Named & Default Arguments). Satisfy the following

tests:

val anotherT1 =

 new SimpleTimeDefault(10, 30)

val anotherT2 = new SimpleTimeDefault(9)

val anotherST =

 anotherT1.subtract(anotherT2)

anotherST.hours is 1

anotherST.minutes is 30

val anotherST2 = new SimpleTimeDefault(10).

 subtract(new SimpleTimeDefault(9, 45))

anotherST2.hours is 0

anotherST2.minutes is 15

Atomic Scala • Class Exercises • 161

6. Modify your solution for Exercise 5 to use an auxiliary constructor.

Again, satisfy the following tests:

val auxT1 = new SimpleTimeAux(10, 5)

val auxT2 = new SimpleTimeAux(6)

val auxST = auxT1.subtract(auxT2)

auxST.hours is 4

auxST.minutes is 5

val auxST2= new SimpleTimeAux(12).subtract(

 new SimpleTimeAux(9, 45))

auxST2.hours is 2

auxST2.minutes is 15

7. Defaulting both hours and minutes in the previous exercise is

problematic. Can you see why? Can you figure out how to use

named arguments to solve this problem? Did you have to change

any code?

162 • Atomic Scala • Case Classes

 Case Classes
The class mechanism does a fair amount of work for you, but there is

still a significant amount of repetitive code when creating classes that

primarily hold data. Scala tries to eliminate repetition whenever it

can, and that’s what the case class does. You define a case class like

this:

case class TypeName(arg1:Type, arg2:Type, ...)

At first glance, a case class looks like an ordinary class with the case

keyword in front of it. However, a case class automatically creates all

the class arguments as vals. If you want to be verbose, you can specify

val before each field name and produce an identical result. If you need

a class argument to be a var instead, put a var in front of that

argument.

When your class is basically a data-holder, case classes simplify your

code and perform common work.

Here we define two new types, Dog and Cat, with instances of each:

1 // CaseClasses.scala

2 import com.atomicscala.AtomicTest._
3

4 case class Dog(name:String)

5 val dog1 = Dog("Henry")

6 val dog2 = Dog("Cleo")

7 val dogs = Vector(dog1, dog2)

8 dogs is Vector(Dog("Henry"), Dog("Cleo"))
9

10 case class Cat(name:String, age:Int)

11 val cats =

12 Vector(Cat("Miffy", 3), Cat("Rags", 2))

Atomic Scala • Case Classes • 163

13 cats is

14 "Vector(Cat(Miffy,3), Cat(Rags,2))"

With case classes, unlike regular classes, we don’t have to use the

new keyword when creating an object. You see this where the Dog

and Cat objects are created.

Case classes also provide a way to print objects in a nice, readable

format without having to define a special display method. You see

both the name of the case class (Dog or Cat) and the field information

for each object, as on line 14.

This is only a basic introduction to case classes. You’ll see more of

their value as the book progresses.

Exercises
Solutions are available at AtomicScala.com.

1. Create a case class to represent a Person in an address book,

complete with Strings for the name and a String for contact

information. Satisfy the following tests:

val p = Person("Jane", "Smile",

"jane@smile.com")

p.first is "Jane"

p.last is "Smile"

p.email is "jane@smile.com"

2. Create some Person objects. Put the Person objects in a Vector.

Satisfy the following tests:

val people = Vector(

Person("Jane","Smile","jane@smile.com"),

Person("Ron","House","ron@house.com"),

Person("Sally","Dove","sally@dove.com"))

people(0) is

"Person(Jane,Smile,jane@smile.com)"

http://www.atomicscala.com/

164 • Atomic Scala • Case Classes

people(1) is

"Person(Ron,House,ron@house.com)"

people(2) is

"Person(Sally,Dove,sally@dove.com)"

3. First, create a case class that represents a Dog, using a String for

name and a String for breed. Then, create a Vector of Dogs. Satisfy

the following tests:

val dogs = Vector(

 /* Insert Vector initialization */

)

dogs(0) is "Dog(Fido,Golden Lab)"

dogs(1) is "Dog(Ruff,Alaskan Malamute)"

dogs(2) is "Dog(Fifi,Miniature Poodle)"

4. As in Class Exercises, make a case class Dimension that has an

integer field height and an integer field width that can be both

retrieved and modified from outside of the class. Create and print

an object of this class. How does this solution differ from your

solution for Exercise 1 in Class Exercises? Satisfy the following

tests:

val c = new Dimension(5,7)

c.height is 5

c.height = 10

c.height is 10

c.width = 19

c.width is 19

5. Modify your solution for Exercise 4, using one ordinary (val)

argument for height and one var argument for width. Demonstrate

that one is read-only and the other is modifiable.

Atomic Scala • Case Classes • 165

6. Can you use default arguments with case classes? Repeat Exercise

5 from Class Exercises to find out. How does your solution differ, if

at all? Satisfy the following tests:

val anotherT1 =

 new SimpleTimeDefault(10, 30)

val anotherT2 = new SimpleTimeDefault(9)

val anotherST =

 anotherT1.subtract(anotherT2)

anotherST.hours is 1

anotherST.minutes is 30

val anotherST2 =

 new SimpleTimeDefault(10).subtract(

 new SimpleTimeDefault(9, 45))

anotherST2.hours is 0

anotherST2.minutes is 15

166 • Atomic Scala • String Interpolation

 String Interpolation
With string interpolation, you create strings containing formatted

values. You put an ‘s’ in front of the string, and a ‘$’ before the

identifier you want Scala to interpolate:

1 // StringInterpolation.scala

2 import com.atomicscala.AtomicTest._
3

4 def i(s:String, n:Int, d:Double):String = {

5 s"first: $s, second: $n, third: $d"

6 }
7

8 i("hi", 11, 3.14) is

9 "first: hi, second: 11, third: 3.14"

Notice that any identifier preceded by a ‘$’ is converted to string form.

You can evaluate and convert an expression by placing it inside ‘${}’

(this is especially helpful for systems that generate web pages):

1 // ExpressionInterpolation.scala

2 import com.atomicscala.AtomicTest._
3

4 def f(n:Int):Int = { n * 11 }
5

6 s"f(7) is ${f(7)}!" is "f(7) is 77!"

The expressions can be complex, but it’s more readable to keep them

simple.

Interpolation also works with case classes:

Atomic Scala • String Interpolation • 167

1 // CaseClassInterpolation.scala

2 import com.atomicscala.AtomicTest._
3

4 case class Sky(color:String)
5

6 s"""${new Sky("Blue")}""" is "Sky(Blue)"

We use triple quotes around the string on line 6 to allow quotes on the

argument of the Sky constructor.

Exercises
Solutions are available at AtomicScala.com.

1. The Garden Gnome example in Auxiliary Constructors has a show

method to display information about a gnome. Rewrite show using

String interpolation. Satisfy the following tests:

val gnome =

 new GardenGnome(20.0, 110.0, false)

gnome.show() is "20.0 110.0 false true"

val bob = new GardenGnome("Bob")

bob.show() is "15.0 100.0 true true"

2. Use GardenGnome’s magic method with String Interpolation. Add

a method show that takes one parameter, level, and calls

magic(level) in place of height and width. Satisfy the following

tests:

val gnome =

 new GardenGnome(20.0, 50.0, false)

gnome.show(87) is "Poof! 87 false true"

val bob = new GardenGnome("Bob")

bob.show(25) is "Poof! 25 true true"

3. Rework your solution for Exercise 1 to display height and weight

with labels. Satisfy the following tests:

val gnome =

 new GardenGnome(20.0, 110.0, false)

http://www.atomicscala.com/

168 • Atomic Scala • String Interpolation

gnome.show() is "height: 20.0 " +

"weight: 110.0 happy: false painted: true"

val bob = new GardenGnome("Bob")

bob.show() is

"height: 15.0 weight: 100.0 true true"

Atomic Scala • Parameterized Types • 169

 Parameterized Types
We consider it a good idea to let Scala infer types whenever possible.

It tends to make the code cleaner and easier to read. Sometimes,

however, Scala can’t figure out what type to use (it complains), so we

must help. For example, we must occasionally tell Scala the type

contained in a Vector. Often, Scala can figure this out:

1 // ParameterizedTypes.scala

2 import com.atomicscala.AtomicTest._
3

4 // Type is inferred:

5 val v1 = Vector(1,2,3)

6 val v2 = Vector("one", "two", "three")

7 // Exactly the same, but explicitly typed:

8 val p1:Vector[Int] = Vector(1,2,3)

9 val p2:Vector[String] =

10 Vector("one", "two", "three")
11

12 v1 is p1

13 v2 is p2

The initialization values tell Scala that the Vector on line 5 contains

Ints and the Vector on line 6 contains Strings.

To show you how it looks, we rewrite lines 5 and 6 using explicit

typing. Line 8 is the rewrite of line 5. The part on the right side of the

equals sign is the same, but on the left side we add the colon and the

type declaration, Vector[Int]. The square brackets are new here; they

denote a type parameter. Here, the container holds objects of the type

parameter. You typically pronounce Vector[Int] “vector of Int,” and the

same for other types of container: “list of Int,” “set of Int” and so forth.

170 • Atomic Scala • Parameterized Types

Type parameters are useful for elements other than containers, but

you usually see them with container-like objects, and in this book we

normally use Vector as a container.

Return types can also have parameters:

1 // ParameterizedReturnTypes.scala

2 import com.atomicscala.AtomicTest._
3

4 // Return type is inferred:

5 def inferred(c1:Char, c2:Char, c3:Char)={

6 Vector(c1, c2, c3)

7 }
8

9 // Explicit return type:

10 def explicit(c1:Char, c2:Char, c3:Char):

11 Vector[Char] = {

12 Vector(c1, c2, c3)

13 }
14

15 inferred('a', 'b', 'c') is

16 "Vector(a, b, c)"

17 explicit('a', 'b', 'c') is

18 "Vector(a, b, c)"

On line 5 we allow Scala to infer the return type of the method, and on

line 11 we specify the method return type. You can’t just say it returns

a Vector; Scala will complain, so you must give the type parameter as

well. When you specify the return type of a method, Scala can check

and enforce your intention.

Atomic Scala • Parameterized Types • 171

Exercises
Solutions are available at AtomicScala.com.

1. Modify explicit in ParameterizedReturnTypes.scala so it creates

and returns a Vector of Double. Satisfy the following test:

explicitDouble(1.0, 2.0, 3.0) is

Vector(1.0, 2.0, 3.0)

2. Building on the previous exercise, change explicit to take a Vector.

Create and return a List. Refer to the ScalaDoc for List, if necessary.

Satisfy the following tests:

explicitList(Vector(10.0, 20.0)) is

List(10.0, 20.0)

explicitList(Vector(1, 2, 3)) is

List(1.0, 2.0, 3.0)

3. Building on the previous exercise, change explicit to return a Set.

Satisfy the following tests:

explicitSet(Vector(10.0, 20.0, 10.0)) is

Set(10.0, 20.0)

explicitSet(Vector(1, 2, 3, 2, 3, 4)) is

Set(1.0, 2.0, 3.0, 4.0)

4. In Pattern Matching, we created a method for weather forecasts

using “Sunny” (100), “Mostly Sunny” (80), “Partly Sunny” (50),

“Mostly Cloudy” (20), and “Cloudy” (0). Using parameterized types,

create a method historicalData that counts the number of sunny,

partly sunny, etc. days. Satisfy the following tests:

val weather = Vector(100, 80, 20, 100, 20)

historicalData(weather) is

"Sunny=2, Mostly Sunny=1, Mostly Cloudy=2"

http://www.atomicscala.com/

172 • Atomic Scala • Functions as Objects

 Functions as Objects
It’s possible to pass methods – in the form of objects – as arguments

to other methods. To accomplish this, the methods are packaged

using function objects, often called simply functions.

For example, foreach is a helpful method available for sequences like

Vector. It takes its argument – a function – and applies it to each

element in the sequence. Here, we take each element of a Vector and

display it along with a leading ‘>’:

1 // DisplayVector.scala
2

3 def show(n:Int):Unit = { println("> "+ n) }

4 val v = Vector(1, 2, 3, 4)

5 v.foreach(show)

A method is attached to a class or object, while a function is its own

object (this is why we can pass it around so easily). show is a method

that becomes part of the object that Scala automatically creates for

scripts. When we pass show as if it were a function, as on line 5, Scala

automatically converts it to a function object. This is called lifting.

Functions you pass as arguments to other methods or functions are

often quite small, and it’s common that you only use them once. It

seems like extra effort for the programmer and distracting for the

reader to be forced to create a named method, then pass it as an

argument. So instead, you can define a function in place, without

giving it a name. This is called an anonymous function or a function

literal.

An anonymous function is defined using the => symbol, often called

“rocket.” To the left of the rocket is the argument list, and to the right

is a single expression – which can be compound – that produces the

Atomic Scala • Functions as Objects • 173

function result. We can transition show into an anonymous function

and hand it directly to foreach. First, remove the def and the function

name:

(n:Int) = { println("> " + n) }

Now change the = to a rocket to tell Scala it’s a function:

(n:Int) => { println("> " + n) }

This is a legitimate anonymous function (try it in the REPL), but we

can simplify it further. If there’s only a single expression, Scala allows

us to remove the curly braces:

(n:Int) => println("> " + n)

If there’s only a single argument and if Scala can infer the type of that

argument, we can leave off the parentheses and the argument type:

n => println("> " + n)

With these simplifications, DisplayVector.scala becomes:

1 // DisplayVectorWithAnonymous.scala
2

3 val v = Vector(1, 2, 3, 4)

4 v.foreach(n => println("> " + n))

Not only does this produce fewer lines of code, the call becomes a

succinct description of the operation. In addition, type inference

allows us to apply the same anonymous function to sequences

holding other types:

1 // DisplayDuck.scala
2

174 • Atomic Scala • Functions as Objects

3 val duck = "Duck".toVector

4 duck.foreach(n => println("> " + n))

Line 3 takes the String “Duck” and turns it into a Vector, with one

character in each location. When we pass our anonymous function,

Scala infers the function type to the Chars in the Vector.

Let’s produce a testable version by storing the results in a String

rather than sending output to the console. The function passed to

foreach appends the result to that String:

1 // DisplayDuckTestable.scala

2 import com.atomicscala.AtomicTest._
3

4 var s = ""

5 val duck = "Duck".toVector

6 duck.foreach(n => s = s + n + ":")

7 s is "D:u:c:k:"

If you need more than one argument, you must use parentheses for

the argument list. You can still take advantage of type inference:

1 // TwoArgAnonymous.scala

2 import com.atomicscala.AtomicTest._
3

4 val v = Vector(19, 1, 7, 3, 2, 14)

5 v.sorted is Vector(1, 2, 3, 7, 14, 19)

6 v.sortWith((i, j) => j < i) is

7 Vector(19, 14, 7, 3, 2, 1)

The default sorted method produces the expected ascending order.

The sortWith method takes a two-argument function and produces a

Boolean result indicating whether the first argument is less than the

second one; reversing the comparison produces the sorted output in

descending order.

Atomic Scala • Functions as Objects • 175

A function with zero arguments can also be anonymous. In the

following example, we define a class that takes a zero-argument

function as an argument, then calls that function sometime later. Pay

attention to the type of the class argument, declared using

anonymous-function syntax – no arguments, a rocket, and Unit to

indicate that nothing is returned:

1 // CallLater.scala
2

3 class Later(val f: () => Unit) {

4 def call():Unit = { f() }

5 }
6

7 val cl = new Later(() => println("now"))

8 cl.call()

You can even assign an anonymous function to a var or val:

1 // AssignAnonymous.scala
2

3 val later1 = () => println("now")

4 var later2 = () => println("now")
5

6 later1()

7 later2()

You can use an anonymous function anywhere you use a regular

function, but if the anonymous function starts getting too complex it’s

usually better to define a named function, for clarity, even if you’re

only going to use it once.

Exercises
Solutions are available at AtomicScala.com.

176 • Atomic Scala • Functions as Objects

1. Modify DisplayVectorWithAnonymous.scala to store results in a

String, as in DisplayDuckTestable.scala. Satisfy the following test:

str is "1234"

2. Working from your solution to the exercise above, add a comma

between each number. Satisfy the following test:

str is "1,2,3,4,"

3. Create an anonymous function that calculates age in “dog years”

(by multiplying years by 7). Assign it to a val and then call your

function. Satisfy the following test:

val dogYears = // Your function here

dogYears(10) is 70

4. Create a Vector and append the result of dogYears to a String for

each value in the Vector. Satisfy the following test:

var s = ""

val v = Vector(1, 5, 7, 8)

v.foreach(/* Fill this in */)

s is "7 35 49 56 "

5. Repeat Exercise 4 without using the dogYears method:

var s = ""

val v = Vector(1, 5, 7, 8)

v.foreach(/* Fill this in */)

s is "7 35 49 56 "

6. Create an anonymous function with three arguments

(temperature, low, and high). The anonymous function will return

true if the temperature is between high and low, and false

otherwise. Assign the anonymous function to a def and then call

your function. Satisfy the following tests:

between(70, 80, 90) is false

between(70, 60, 90) is true

7. Create an anonymous function to square a list of numbers. Call the

function for every element in a Vector, using foreach. Satisfy the

Atomic Scala • Functions as Objects • 177

following test:

var s = ""

val numbers = Vector(1, 2, 5, 3, 7)

numbers.foreach(/* Fill this in */)

s is "1 4 25 9 49 "

8. Create an anonymous function and assign it to the name pluralize.

It should construct the (simple) plural form of a word by just

adding an “s.” Satisfy the following tests:

pluralize("cat") is "cats"

pluralize("dog") is "dogs"

pluralize("silly") is "sillys"

9. Use pluralize from the previous exercise. Use foreach on a Vector

of Strings and print the plural form of each word. Satisfy the

following test:

var s = ""

val words = Vector("word", "cat", "animal")

words.foreach(/* Fill this in */)

s is "words cats animals "

178 • Atomic Scala • map & reduce

 map & reduce
In the previous atom you learned about anonymous functions, using

foreach as an example. Although foreach can be useful, it is limited

because it can only be used for its side effects: foreach doesn’t return

anything. That’s why we used println to check solutions.

Methods that return values are often more useful; two good examples

are map and reduce, both of which work with sequences like Vector.

map takes its argument – a function that takes a single argument and

produces a result – and applies it to each element in the sequence.

This is similar to what we saw with foreach, but map captures the

return value from each call and stores it in a new sequence, which

map produces as its return value. Here’s an example that adds one to

each element of a Vector:

1 // SimpleMap.scala

2 import com.atomicscala.AtomicTest._
3

4 val v = Vector(1, 2, 3, 4)

5 v.map(n => n + 1) is Vector(2, 3, 4, 5)

This uses the succinct form of the anonymous function, as we

explored in the previous atom.

Here’s one way to add up the values in a sequence:

1 // Sum.scala

2 import com.atomicscala.AtomicTest._
3

4 val v = Vector(1, 10 , 100, 1000)

5 var sum = 0

6 v.foreach(x => sum += x)

Atomic Scala • map & reduce • 179

7 sum is 1111

It’s awkward to adapt foreach to this purpose; for one thing it requires

a var to accumulate the sum (there’s almost always a way to use vals

instead of vars, and it becomes an intriguing puzzle to try to do so).

reduce uses its argument – in the following example, an anonymous

function – to combine all the elements of a sequence. This produces a

cleaner way to sum a sequence (notice there are no vars):

1 // Reduce.scala

2 import com.atomicscala.AtomicTest._
3

4 val v = Vector(1, 10, 100, 1000)

5 v.reduce((sum, n) => sum + n) is 1111

reduce first adds 1 and 10 to get 11. That becomes the sum, which is

added to the 100 to get 111, which becomes the new sum. This is

added to 1000 to get 1111, which becomes the sum. reduce then stops

because there is nothing else to add, returning the final sum of 1111.

Of course, Scala doesn’t really know it’s doing a “sum” – the choice of

variable name was ours. We could also have defined the anonymous

function with (x, y), but we use a meaningful name to make it easier

to understand at a glance.

reduce can perform all sorts of operations on sequences. It’s not

limited to Ints, or to addition:

1 // MoreReduce.scala

2 import com.atomicscala.AtomicTest._
3

4 (1 to 100).reduce((sum, n) => sum + n) is

5 5050

6 val v2 = Vector("D", "u", "c", "k")

7 v2.reduce((sum, n) => sum + n) is "Duck"

180 • Atomic Scala • map & reduce

Line 4 sums the values from 1 to 100 (the mathematician Carl

Friederich Gauss was said to have done this in his head as an

elementary student). Line 7 uses that same anonymous function –

along with different type inference – to combine a Vector of letters.

Notice that map and reduce take care of the iteration code that you

normally write by hand. Although managing the iteration yourself

might not seem like much effort, it’s one more error-prone detail, one

more place to make a mistake (and since they’re so “obvious,” such

mistakes are particularly hard to find).

This is one of the hallmarks of functional programming (of which map,

reduce and foreach are examples): It solves problems in small steps,

and the functions often do things that seem trivial – obviously, it’s not

that hard to write your own code rather than using map, reduce and

foreach. However, once you have a collection of these small, debugged

solutions, you can easily combine them without having to debug at

each level, and this way create more robust code, more quickly. Scala

sequences, for example, come with a fair number of functional

programming operations in the same vein as map, reduce and

foreach.

Exercises
Solutions are available at AtomicScala.com.

1. Modify SimpleMap.scala so the anonymous function multiplies

each value by 11 and adds 10. Satisfy the following tests:

val v = Vector(1, 2, 3, 4)

v.map(/* Fill this in */) is

 Vector(21, 32, 43, 54)

2. Can you replace map with foreach in the above solution? What

happens? Test the result.

Atomic Scala • map & reduce • 181

3. Rewrite the solution for the previous exercise using for. Was this

more or less complex than using map? Which approach has the

greater potential for errors?

4. Rewrite SimpleMap.scala using a for loop instead of map, and

observe the additional complexity this introduces.

5. Rewrite Reduce.scala using for loops.

6. Use reduce to implement a method sumIt that takes a variable

argument list and sums those arguments. Satisfy the following

tests:

sumIt(1, 2, 3) is 6

sumIt(45, 45, 45, 60) is 195

182 • Atomic Scala • Comprehensions

 Comprehensions
Now you’re ready to learn about a powerful combination of for and if

called the for comprehension, or just comprehension.

In Scala, comprehensions combine generators, filters, and definitions.

The for loop you saw in For Loops was a comprehension with a single

generator that looks like this:

for(n <- v)

Each time through the loop, the next element of the sequence v is

placed in n. The type of n is inferred based on the type contained in v.

Comprehensions can be more complex. In the following example, the

method evenGT5 (“even, greater than 5”) takes and returns Vectors

containing Ints. It selects Ints from the input Vector that satisfy a

particular criterion (that is, it filters on that criterion) and puts those in

the result Vector:

1 // Comprehension.scala

2 import com.atomicscala.AtomicTest._
3

4 def evenGT5(v:Vector[Int]):Vector[Int] = {

5 // 'var' so we can reassign 'result':

6 var result = Vector[Int]()

7 for {

8 n <- v

9 if n > 5

10 if n % 2 == 0

11 } result = result :+ n

12 result

13 }
14

Atomic Scala • Comprehensions • 183

15 val v = Vector(1,2,3,5,6,7,8,10,13,14,17)

16 evenGT5(v) is Vector(6, 8, 10, 14)

Notice that result is not the usual val, but rather a var, so we can

modify result. Ordinarily, we always try to use a val because vals can’t

be changed and that makes our code more self-contained and easily

changed. Sometimes, however, you can’t seem to achieve your goal

without changing an object. Here, we are building up the result Vector

by assembling it, so result must be changeable. By initializing it with

Vector[Int]() (you learned about the type parameter [Int] in

Parameterized Types) we establish the type parameter as Int and

create an empty Vector.

On lines 7 and 11, we use curly braces { } instead of parentheses ().

This allows the for to include multiple statements or expressions.

While you can use parentheses, that requires a discussion about when

semicolons are necessary, and we think this is easier. It’s also the way

most Scala programmers write their comprehensions.

The comprehension begins typically: n gets all the values from v. But

instead of stopping there, we see two if expressions. Each of these

filters the value of n that make it through the comprehension. First,

each n that we’re looking for must be greater than 5. But an n of

interest must also satisfy n % 2 == 0 (the modulus operator %

produces the remainder, so the expression looks for even numbers).

Next, we want to append all those numbers to result. Because result is

a var, we can assign to it. But a Vector can’t be modified, so how do

we “add to” our Vector? Vector has an operator ‘:+’ which creates a

new Vector by taking an existing one (but not changing it) and

combining it with the element to the right of the operator. So result =

result :+ n produces a new Vector by appending n to the old one, and

then assigns this new Vector to result (here, the old Vector is thrown

away and Scala automatically cleans it up). When the for loop ends,

there’s a new Vector filled with the desired values.

184 • Atomic Scala • Comprehensions

There is a way to use val (instead of var) for result: by building result

“in place” rather than creating it piece-by-piece. To achieve this, use

Scala’s yield keyword. When you say yield n, it “yields up” the value n

to become part of result. Here’s an example:

1 // Yielding.scala

2 import com.atomicscala.AtomicTest._
3

4 def yielding(v:Vector[Int]):Vector[Int]={

5 val result = for {

6 n <- v

7 if n < 10

8 if n % 2 != 0

9 } yield n

10 result

11 }
12

13 val v = Vector(1,2,3,5,6,7,8,10,13,14,17)

14 yielding(v) is Vector(1, 3, 5, 7)

yield always fills a container. But we haven’t declared the type of

result on line 5, so how does Scala know what kind of container to

create? It infers the type from the container the comprehension

traverses – v is a Vector[Int], so yield creates a Vector[Int] (the first line

of the comprehension determines the type of the result). Now, with a

comprehension and yield, we create the entire Vector before assigning

it to result, so result can be a val instead of a var.

The Boolean ‘!=’ operator means “not equal” (it produces true if the

left-hand operand is not equal to the right-hand operand).

You can also define values within a comprehension. Here we assign to

isOdd and then use it to filter the results:

Atomic Scala • Comprehensions • 185

1 // Yielding2.scala

2 import com.atomicscala.AtomicTest._
3

4 def yielding2(v:Vector[Int]):Vector[Int]={

5 for {

6 n <- v

7 if n < 10

8 isOdd = (n % 2 != 0)

9 if(isOdd)

10 } yield n

11 }
12

13 val v = Vector(1,2,3,5,6,7,8,10,13,14,17)

14 yielding2(v) is Vector(1, 3, 5, 7)

Notice that you don’t declare n or isOdd as a val or a var. Both n and

isOdd change each time through the loop, but you can’t manually

modify them; instead, you rely on Scala to do it. Think of them as

temporary variables that are set each time through the loop.

This solution also doesn’t store and return an intermediate result as

we did previously. The result of the comprehension is the Vector we

want to return. Since that expression is the last thing in the method,

we just give the expression.

As with any expression, the yield expression can be compound (lines

10-13):

1 // Yielding3.scala

2 import com.atomicscala.AtomicTest._
3

4 def yielding3(v:Vector[Int]):Vector[Int]={

5 for {

6 n <- v

7 if n < 10

8 isOdd = (n % 2 != 0)

186 • Atomic Scala • Comprehensions

9 if(isOdd)

10 } yield {

11 val u = n * 10

12 u + 2

13 }

14 }
15

16 val v = Vector(1,2,3,5,6,7,8,10,13,14,17)

17 yielding3(v) is Vector(12, 32, 52, 72)

Note that only inside the comprehension can you get away without

declaring val or var for new identifiers.

You can only have one yield expression connected with a

comprehension, and you cannot place yields in the body of the

comprehension. You can, however, nest comprehensions:

1 // Yielding4.scala

2 import com.atomicscala.AtomicTest._
3

4 def yielding4(v:Vector[Int]) = {

5 for {

6 n <- v

7 if n < 10

8 isOdd = (n % 2 != 0)

9 if(isOdd)

10 } yield {

11 for(u <- Range(0, n))

12 yield u

13 }

14 }
15

16 val v = Vector(1,2,3,5,6,7,8,10,13,14,17)

17 yielding4(v) is Vector(

18 Vector(0),

19 Vector(0, 1, 2),

Atomic Scala • Comprehensions • 187

20 Vector(0, 1, 2, 3, 4),

21 Vector(0, 1, 2, 3, 4, 5, 6)

22)

Here, we let type inference determine the return type of yielding4.

Each yield produces a Vector, so the end result is a Vector of Vectors.

Exercises
Solutions are available at AtomicScala.com.

1. Change yielding to a more descriptive name.

2. Modify yielding2 to accept a List instead of a Vector. Return a List.

Satisfy the following test:

val theList =

 List(1,2,3,5,6,7,8,10,13,14,17)

yielding2(theList) is List(1,3,5,7)

3. Start with yielding3 and rewrite the comprehension so it is as

compact as possible (reduce isOdd and the yield clause). Now

assign the comprehension to an explicitly-typed value called

result, and return result at the end of the method. Continue to

satisfy the existing tests in Yielding3.scala.

4. Confirm that you can’t modify n or isOdd in yielding3. Declare

them as vars. What happened? Did you find a way to do this? Did

it make sense to you?

5. Create a case class named Activity that contains a String for the

date (like “01-30”) and a String for the activity you did that day (like

“Bike,” “Run,” “Ski”). Store your activities in a Vector. Create a

method getDates that returns a Vector of String corresponding to

the days that you did the specified activity. Satisfy the following

tests:

val activities = Vector(

Activity("01-01", "Run"),

188 • Atomic Scala • Comprehensions

Activity("01-03", "Ski"),

Activity("01-04", "Run"),

Activity("01-10", "Ski"),

Activity("01-03", "Run"))

getDates("Ski", activities) is

 Vector("01-03", "01-10")

getDates("Run", activities) is

 Vector("01-01", "01-04", "01-03")

getDates("Bike", activities) is Vector()

6. Building on the previous exercise, create a method getActivities

that flips things around by returning a Vector of Strings

corresponding to the names of the activities that you did on the

specified day. Satisfy the following tests:

getActivities("01-01", activities) is

 Vector("Run")

getActivities("01-02", activities) is

 Vector()

getActivities("01-03", activities) is

 Vector("Ski", "Run")

getActivities("01-04", activities) is

 Vector("Run")

getActivities("01-10", activities) is

 Vector("Ski")

Atomic Scala • Pattern Matching with Types • 189

 Pattern Matching with
Types
You’ve seen pattern matching with values. You can also match

against the type of a value. Here’s a method that doesn’t care about

the type of its argument:

1 // PatternMatchingWithTypes.scala

2 import com.atomicscala.AtomicTest._
3

4 def acceptAnything(x:Any):String = {

5 x match {

6 case s:String => "A String: " + s

7 case i:Int if(i < 20) =>

8 s"An Int Less than 20: $i"

9 case i:Int => s"Some Other Int: $i"

10 case p:Person => s"A person ${p.name}"

11 case _ => "I don't know what that is!"

12 }

13 }

14 acceptAnything(5) is

15 "An Int Less than 20: 5"

16 acceptAnything(25) is "Some Other Int: 25"

17 acceptAnything("Some text") is

18 "A String: Some text"
19

20 case class Person(name:String)

21 val bob = Person("Bob")

22 acceptAnything(bob) is "A person Bob"

23 acceptAnything(Vector(1, 2, 5)) is

24 "I don't know what that is!"

190 • Atomic Scala • Pattern Matching with Types

The argument type for acceptAnything is something you haven’t seen

before: Any. As the name implies, Any allows any type of argument. If

you want to pass a variety of types to a method and they have nothing

in common, Any solves the problem.

The match expression looks for String, Int, or our own type Person

and returns an appropriate message for each. Notice how the value

declaration (s:String, i:Int, and p:Person) provides the resulting value

for the expression to the right of the =>.

Line 7 restricts the match beyond just the type by using an if test on

the value.

Remember from Pattern Matching that the underscore acts as a

wildcard, matching anything without capturing the matched object

into a value.

Exercises
Solutions are available at AtomicScala.com.

1. Create a method plus1 that pluralizes a String, adds 1 to an Int,

and adds “+ guest” to a Person. Satisfy the following tests:

plus1("car") is "cars"

plus1(67) is 68

plus1(Person("Joanna")) is

 "Person(Joanna) + guest"

2. Create a method convertToSize that converts a String to its length,

uses Int and Double directly, and converts a Person to 1. Return 0 if

you don’t have a matching type. What was the return type of your

method? Satisfy the following tests:

convertToSize(45) is 45

convertToSize("car") is 3

convertToSize("truck") is 5

convertToSize(Person("Joanna")) is 1

Atomic Scala • Pattern Matching with Types • 191

convertToSize(45.6F) is 45.6F

convertToSize(Vector(1, 2, 3)) is 0

3. Modify convertToSize from the previous exercise so it returns an

Int. Use the scala.math.round method to round the Double first.

Did you need to declare the return type? Do you see an advantage

to doing so? Satisfy the following tests:

convertToSize2(45) is 45

convertToSize2("car") is 3

convertToSize2("truck") is 5

convertToSize2(Person("Joanna")) is 1

convertToSize2(45.6F) is 46

convertToSize2(Vector(1, 2, 3)) is 0

4. Create a new method quantify to return “small” if the argument is

less than 100, “medium” if the argument is between 100 and 1000,

and “large” if the argument is greater than 1000. Support both

Doubles and Ints. Satisfy the following tests:

quantify(100) is "medium"

quantify(20.56) is "small"

quantify(100000) is "large"

quantify(-15999) is "small"

5. Pattern Matching included an exercise to check the forecast, based

on sunniness. We tested using discrete values. Revisit that

exercise with ranges of values. Create a method forecast that

represents the percentage of cloudiness, and use it to produce a

“weather forecast” string such as “Sunny” (100), “Mostly Sunny”

(80), “Partly Sunny” (50), “Mostly Cloudy” (20), and “Cloudy” (0).

Satisfy the following tests:

forecast(100) is "Sunny"

forecast(81) is "Sunny"

forecast(80) is "Mostly Sunny"

forecast(51) is "Mostly Sunny"

forecast(50) is "Partly Sunny"

forecast(21) is "Partly Sunny"

192 • Atomic Scala • Pattern Matching with Types

forecast(20) is "Mostly Cloudy"

forecast(1) is "Mostly Cloudy"

forecast(0) is "Cloudy"

forecast(-1) is "Unknown"

Atomic Scala • Pattern Matching with Case Classes • 193

 Pattern Matching with
Case Classes
Although you’ve seen that case classes are generally useful, they were

originally designed for use with pattern matching, and are well suited

for that task. When working with case classes, a match expression

can even extract the class argument fields.

Here’s a description of a trip taken by travelers using various modes of

transportation:

1 // PatternMatchingCaseClasses.scala

2 import com.atomicscala.AtomicTest._
3

4 case class Passenger(

5 first:String, last:String)

6 case class Train(

7 travelers:Vector[Passenger],

8 line:String)

9 case class Bus(

10 passengers:Vector[Passenger],

11 capacity:Int)
12

13 def travel(transport:Any):String = {

14 transport match {

15 case Train(travelers, line) =>

16 s"Train line $line $travelers"

17 case Bus(travelers, seats) =>

18 s"Bus size $seats $travelers"

19 case Passenger => "Walking along"

20 case what => s"$what is in limbo!"

21 }

22 }
23

194 • Atomic Scala • Pattern Matching with Case Classes

24 val travelers = Vector(

25 Passenger("Harvey", "Rabbit"),

26 Passenger("Dorothy", "Gale"))
27

28 val trip = Vector(

29 Train(travelers, "Reading"),

30 Bus(travelers, 100))
31

32 travel(trip(0)) is "Train line Reading " +

33 "Vector(Passenger(Harvey,Rabbit), " +

34 "Passenger(Dorothy,Gale))"

35 travel(trip(1)) is "Bus size 100 " +

36 "Vector(Passenger(Harvey,Rabbit), " +

37 "Passenger(Dorothy,Gale))"

Line 4 is a Passenger class containing the name of the passenger, and

lines 6-11 show different modes of transportation along with varying

details about each mode. However, all transportation types have

something in common: they carry passengers. The simplest

“passenger list” we can make is a Vector[Passenger]. Notice how easy

it is to include this in the case class: just put it in the argument list.

The travel method contains a single match expression. The argument

type for travel is Any, like the previous atom. We need Any in this

situation because we want to apply travel to all the case classes we’ve

defined above, and they have nothing in common.

Line 15 shows a case class being matched – including the argument(s)

used to create the matched object. On line 15, the arguments are

named travelers and line, just like in the class definition, but you can

use any names. When a match happens, the identifiers travelers and

line are created and get the arguments values from when the Train

object was created, so they can be used in the expression on the right

side of the “rocket” (=>) symbol. This is powerful; we declare any

variable in the case expression and use it directly. The types

(Vector[Passenger] and String, in this case) are inferred.

Atomic Scala • Pattern Matching with Case Classes • 195

The name in the constructor doesn’t have to match the case class

arguments (line 17). When we define Bus on line 9, we specify the

fields as passengers and capacity. Our pattern match uses travelers

and seats, and the match expression extraction fills those in

appropriately, based on the ordering used in the constructor.

You are not forced to unpack the case class arguments. Line 19

matches the type, without the arguments. But if you choose to unpack

it into a value, you can treat it like any other object and access its

properties.

Line 20 matches an identifier (what) that has no type. This means it

matches anything else that the case expressions above it missed. The

identifier is used as part of the resulting string on the right of the

“rocket.” If you don’t need the matched value, use the special

character ‘_’ as the wildcard identifier.

On line 24 we create a Vector[Passenger] and on line 28 we create a

Vector of the different types of transportation. Each type of

transportation carries our travelers and also has details about the

transportation.

The point of this example is to show the power of Scala – how easy it

is to build a model that represents your system. As you learn, you’ll

discover that Scala contains numerous ways to keep representations

simple, even as your systems get more complex.

196 • Atomic Scala • Pattern Matching with Case Classes

Exercises
Solutions are available at AtomicScala.com.

1. Building from PatternMatchingCaseClasses.scala, define a new

class Plane containing a Vector of Passengers and a name for the

plane, so you can create a trip. Satisfy the following test:

val trip2 = Vector(

 Train(travelers, "Reading"),

 Plane(travelers, "B757"),

 Bus(travelers, 100))

travel(trip2(1)) is "Plane B757 " +

 "Vector(Passenger(Harvey,Rabbit), " +

 "Passenger(Dorothy,Gale))"

2. Building on your solution for Exercise 1, change the case for

Passenger so it extracts the object. Satisfy the following test:

travel2(Passenger("Sally", "Marie")) is

 "Sally is walking"

3. Building on your solution for Exercise 2, determine if you must

make any changes to pass in a Kitten. Satisfy the following test:

case class Kitten(name:String)

travel2(Kitten("Kitty")) is

 "Kitten(Kitty) is in limbo!"

http://www.atomicscala.com/

Atomic Scala • Brevity • 197

 Brevity
Many languages require the programmer to write a lot of code to do

something simple. This is often called “boilerplate” or “jumping

through hoops.”

Scala can express concepts briefly – sometimes, arguably, too briefly.

As you learn the language you will understand that this powerful

brevity can produce the impression that Scala is “too complicated.”

Until now we’ve used a consistent form for code, without introducing

syntactic shorteners. However, we don’t want you to be too surprised

when you see other people’s Scala code, so we are going to show a few

of the most useful coding short-forms. This way you start getting

comfortable with their existence.

Eliminate Intermediate Results
The last expression in a compound expression becomes the result of

that expression. Here’s an example where values are captured into a

val result, then result is returned from the method:

1 // Brevity1.scala

2 import com.atomicscala.AtomicTest._
3

4 def filterWithYield1(

5 v:Vector[Int]):Vector[Int] = {

6 val result = for {

7 n <- v

8 if n < 10

9 if n % 2 != 0

10 } yield n

11 result

12 }

198 • Atomic Scala • Brevity

13

14 val v = Vector(1,2,3,5,6,7,8,10,13,14,17)

15 filterWithYield1(v) is Vector(1,3,5,7)

Instead of putting it into an intermediate value, the comprehension

itself can produce the result:

1 // Brevity2.scala

2 import com.atomicscala.AtomicTest._
3

4 def filterWithYield2(

5 v:Vector[Int]):Vector[Int] = {

6 for {

7 n <- v

8 if n < 10

9 if n % 2 != 0

10 } yield n

11 }
12

13 val v = Vector(1,2,3,5,6,7,8,10,13,14,17)

14 filterWithYield2(v) is Vector(1,3,5,7)

It becomes easier when you remember that everything is an

expression, and the final expression becomes the result of the outer

expression.

Omit Unnecessary Curly Braces
If a method consists of a single expression, the curly braces around

the method are unnecessary. filterWithYield2 is effectively only one

expression, so it doesn’t need the surrounding curly braces:

1 // Brevity3.scala

2 import com.atomicscala.AtomicTest._
3

4 def filterWithYield3(

Atomic Scala • Brevity • 199

5 v:Vector[Int]):Vector[Int] =

6 for {

7 n <- v

8 if n < 10

9 if n % 2 != 0

10 } yield n
11

12 val v = Vector(1,2,3,5,6,7,8,10,13,14,17)

13 filterWithYield3(v) is Vector(1,3,5,7)

Note that this became possible because we eliminated the

intermediate result, producing a single expression.

At first the presence or absence of curly braces can be a little

unsettling between one method and the next, but we found that we

rapidly became comfortable with it and tend to want to eliminate

braces whenever possible.

Should You Use Semicolons?
Note that lines 7-9 in the previous example are distinct expressions

within the curly braces of the comprehension. In that configuration,

the line breaks determine the end of each expression. You can put

them all on the same line using semicolons:

1 // Brevity4.scala

2 import com.atomicscala.AtomicTest._
3

4 // Semicolons allow a single-line for:

5 def filterWithYield4(

6 v:Vector[Int]):Vector[Int] =

7 for{n <- v; if n < 10; if n % 2 != 0}

8 yield n
9

10 val v = Vector(1,2,3,5,6,7,8,10,13,14,17)

11 filterWithYield4(v) is Vector(1,3,5,7)

200 • Atomic Scala • Brevity

You can even put the entire method onto a single line (try it). Is that

more readable? Or just briefer? We prefer each expression within a

comprehension to be on its own line, as in the more straightforward

Brevity3.scala.

“Do not use semicolons,” said the author Kurt Vonnegut. “They are

transvestite hermaphrodites representing absolutely nothing. All they

do is show you’ve been to college.” (We probably use too many

semicolons in this book’s prose).

Remove Unnecessary Arguments
In Functions as Objects, we introduced the foreach method to apply

an anonymous function to each element of a sequence. Here we pass

anonymous functions that call print for each letter of a String (foreach

treats the String as a sequence and pulls each letter out):

1 // Brevity5.scala

2 "OttoBoughtAnAuto".foreach(c => print(c))

3 println

4 "OttoBoughtAnAuto".foreach(print(_))

5 println

6 "OttoBoughtAnAuto".foreach(print)

The anonymous function in line 2 already applies some brevity:

There’s only one argument in the argument list so we leave off the

parentheses, and only one expression in the function so we leave off

curly braces.

We can go further by using Scala’s special underscore character on

line 4. So far, we’ve only seen the underscore used as a wildcard, but

when it’s part of a method call, the underscore means “fill in the

blank,” and Scala passes each character without needing a named

argument. Since there’s only one argument to print and because Scala

Atomic Scala • Brevity • 201

sees that print will accept a Char, Scala allows you to take brevity to

the extreme and pass the method name as the argument to foreach

without any argument list at all, as on line 6. In general, Scala will do

the extra work to construct the proper method call whenever it can,

so if you think something might work, it’s worth experimenting.

The form of line 6 can seem a bit advanced, but it is a commonly used

idiom (and arguably more readable than the longer form). If you’re

coming from a different language it can require some mental shifting,

but you’ll probably come to appreciate the succinctness.

Use Type Inference for Return
Types
Up to this point, we’ve written out the return type for methods, as on

line 4 of the following example. For brevity’s sake, we use Scala’s type

inference and leave off the return type, as seen on line 10:

1 // Brevity6.scala

2 import com.atomicscala.AtomicTest._
3

4 def explicitReturnType():Vector[Int] =

5 Vector(11, 22, 99, 34)
6

7 explicitReturnType() is

8 Vector(11, 22, 99, 34)
9

10 def inferredReturnType() =

11 Vector(11, 22, 99, 34)
12

13 inferredReturnType() is

14 Vector(11, 22, 99, 34)
15

16 def unitReturnType() {

17 Vector(11, 22, 99, 34)

18 }

202 • Atomic Scala • Brevity

19

20 unitReturnType() is (())

For type inference to work, the ‘=’ sign is still necessary between the

method argument list and the method body. If you leave off the ‘=’ as

on line 16, Scala will decide that you mean the method returns

nothing, which you can also express as Unit or ‘()’. (The extra

parentheses are required to make it explicit to AtomicTest). Some

Scala developers prefer to define the return type for methods, because

it makes their intent clear. It also enables the compiler to help detect

errors in usage.

Aliasing Names with type
When using someone else’s code, you might find the names they’ve

chosen to be too long or awkward. Scala allows you to alias an

existing name to a new name using the type keyword:

1 // Alias.scala

2 import com.atomicscala.AtomicTest._
3

4 case class LongUnrulyNameFromSomeone()

5 type Short = LongUnrulyNameFromSomeone

6 new Short is LongUnrulyNameFromSomeone()

Line 6 shows that Short is just another name for

LongUnrulyNameFromSomeone.

Finding a Balance
Scala will figure out what you mean whenever it can. The safest way

to approach Scala brevity is to start by being completely explicit, and

then slowly pare down your code. When you go too far, either Scala

will produce an error message or you get the wrong result. Of course,

you must test everything as you go.

Atomic Scala • Brevity • 203

These brevity techniques result in more compact code but can also

make it harder to read. Make appropriate choices depending on who

will be reading your code.

Exercises
Solutions are available at AtomicScala.com.

1. Refactor the following example. First, remove the intermediate

result and satisfy the tests:

def assignResult(arg:Boolean):Int = {

 val result = if(arg) 42 else 47

 result

}

assignResult(true) is 42

assignResult(false) is 47

2. Continue the previous exercise by removing unnecessary curly

braces. Satisfy the following tests:

assignResult2(true) is 42

assignResult2(false) is 47

3. Continue the previous exercise by removing the return type of the

method. Note that you had to keep the equals sign. Do you see a

downside if you don’t declare the return type? Satisfy the

following tests:

assignResult3(true) is 42

assignResult3(false) is 47

4. Refactor Coffee.scala from Constructors using the techniques in

this atom.

http://www.atomicscala.com/

204 • Atomic Scala • A Bit of Style

 A Bit of Style
Most programming languages develop style guides as they mature. In

some cases, these guides tell you how to format the code on the page

for greater readability. Fortunately, code-formatting style for Scala

was established from the inception of the language (and, in some

cases, is enforced by the language syntax). Most editing tools that

support Scala automatically format your code as you create it, so you

don’t need to think too hard about that.

The Scala Style Guide, at docs.scala-lang.org/style, includes useful

information about generally accepted style in Scala. In this book we

break some of those rules, in particular those that relate to adding

spaces for readability, due to page width restrictions in the book. As

you develop experience with Scala you will find useful tidbits in the

Scala Style Guide.

One important guideline involves parentheses on methods that take

no arguments.

1 // MethodParentheses.scala

2 import com.atomicscala.AtomicTest._
3

4 class Simple(val s:String) {

5 def getA() = s

6 def getB = s

7 }
8

9 val simple = new Simple("Hi")

10 simple.getA() is "Hi"

11 simple.getA is "Hi"

12 simple.getB is "Hi"

13 // simple.getB() is "Hi" // Rejected

Atomic Scala • A Bit of Style • 205

Neither method getA nor getB takes arguments. Both methods are as

succinct as possible: single expressions (requiring no curly braces)

that return the value of s. Here, we leave off the return type, taking

advantage of Scala’s ability to infer that each produces a String.

A method without arguments can leave off the parentheses in the

definition, as shown in getB on line 6. In the test code on lines 10 and

11, notice that even though getA is defined with parentheses, it can be

called with or without them. However, because getB is defined

without parentheses, it can only be called without parentheses.

Here’s the style question: Since Scala is flexible about the way you call

a method that doesn’t have arguments, does it matter? Yes:

Parentheses have stylistic meaning in the Scala community. If a

method modifies the internal state of the object – if internal variables

change when you call the method – then leave the parentheses on in

the method definition. This signals the reader that this is a mutating

method (it causes the object to change). Ideally, when you call the

method you also include the parentheses to send the same message

(although you’ve seen that Scala doesn’t require it).

On the other hand, if calling the method produces a result without

changing the state of the object, the convention is to leave the

parentheses off the method definition, telling the reader that this

method reads data without mutating the object. Since both methods

return the stored value of s, getB is the preferred form.

Why is it preferable to leave the parentheses off methods that don’t

change an object? Programmers who call getB should not have to care

whether getB is a field (val) or a method (def). The caller only cares

that getB produces the desired value, not how it happens (this is the

Uniform Access Principle).

206 • Atomic Scala • A Bit of Style

Exercises
Solutions are available at AtomicScala.com.

1. Create a class Exclaim with a class argument var s:String. Create

methods parens and noParens that append an exclamation point

to s and return it. Satisfy the following tests:

val e = new Exclaim("yes")

e.noParens is "yes!"

e.parens() is "yes!"

2. Building on Exercise 1, change noParens to be a field (val) instead

of a method. Satisfy the following tests:

val e2 = new Exclaim2("yes")

e2.noParens is "yes!"

e2.parens() is "yes!"

3. Refactor your solution to Exercise 1, renaming the class Exclaim3.

Remove the method that doesn’t match the conventional style for

parentheses in Scala.

4. Add the variable count to the class in the previous exercise.

Increment count when someone calls the method that adds an

exclamation point. Call that method twice and satisfy the

following test:

val e4 = new Exclaim4("counting")

// Call exclamation method

// Call exclamation method again

e4.count is 2

http://www.atomicscala.com/

Atomic Scala • Idiomatic Scala • 207

 Idiomatic Scala
Native speakers of spoken languages use idioms: expressions that

other native speakers not only understand, but have come to expect.

To keep things easy, we didn’t burden you with stylistic

recommendations earlier in this book. Now that you’ve seen the

Brevity and A Bit of Style atoms, let’s rework some earlier exercises to

conform more closely to the expectations of the Scala community.

Exercises
Solutions are available at AtomicScala.com.

Work the following exercises to reflect the Brevity and A Bit of Style

guidelines, as well as other constructs that you have learned up to

this point.

1. Refactor If4.scala and If5.scala from Conditional Expressions.

2. Refactor For.scala from For Loops.

3. Refactor CompoundExpressions2.scala from Compound

Expressions.

4. Refactor AddMultiply.scala from Methods. Remove the return type

of the method.

5. Refactor CheckTruth.scala from More Conditionals.

6. Refactor Dog.scala, Cat.scala and Hamster.scala from Methods

Inside Classes.

7. Refactor ClassArg.scala and VariableClassArgs.scala from Class

Arguments.

208 • Atomic Scala • Defining Operators

 Defining Operators
Method names can contain almost any characters. For example, when

creating a math package you can define the Greek letter sigma the

same way mathematicians do: to sum a series. Or you might find it

useful to create a meaning for the ‘+’ operator. Scala treats sigma and

‘+’ just like any other characters that can be used in a method name,

like f or g or plus:

1 // Molecule.scala

2 class Molecule {

3 var attached:Molecule = _

4 def plus(other:Molecule) =

5 attached = other

6 def +(other:Molecule) =

7 attached = other

8 }
9

10 var m1 = new Molecule

11 var m2 = new Molecule

12 m1.plus(m2)

13 m1.+(m2)

14 // Infix calls:

15 m1 plus m2

16 m1 + m2

This class models something called a Molecule that attaches to

another object of its own kind. The attached field on line 3 connects

one Molecule to another, and must be initialized to keep Scala from

complaining. Here, we invoke yet another meaning for Scala’s special

“blank” character, the underscore. When used in an initialization

expression, it means “default initialization value.”

Atomic Scala • Defining Operators • 209

Notice that the methods defined on lines 4-5 and 6-7 are identical

except for the name of the method: in one case the name is plus, in

the other it is +. Scala treats the two methods equally. On lines 12 and

13, you see the ordinary “dot notation” method calls, but both

methods can also be called using infix notation, placing the method

name between the objects as on lines 15 and 16. Line 16 happens to

read like a familiar math expression, but it’s no different than using

plus on line 12. (Infix notation enables AtomicTest to support its

“object is expression” syntax).

Some languages include operator overloading, which means a select

group of characters is set aside for special parsing and behavior.

Instead of that, Scala makes all characters equal and treats all

methods the same – if they happen to look like operators, that’s your

perception. Scala therefore doesn’t provide operator overloading,

choosing instead the more elegant approach.

Because characters are treated equally in method names, you can

easily create incomprehensible code (the import statement removes a

warning):

1 // Swearing.scala

2 import language.postfixOps
3

4 class Swearing {

5 def #!>% = "Rowzafrazaca!"

6 }

7 val x = new Swearing

8 println(x.#!>%)

9 println(x #!>%)

Scala accepts this code, but what does it mean to the reader? Because

code is read much more than it is written, you should make your

programs as understandable as possible. Unfortunately, even some

standard Scala libraries have violated this principle, and this helps

210 • Atomic Scala • Defining Operators

produce accusations that Scala is too complicated and obtuse.

Because the language doesn’t remove programming power in order to

protect you from yourself, it is indeed possible to create complicated

and obtuse code. You can also create elegant and transparent code.

Languages work just fine without overloading or the ability to invent

your own operators. These aren’t essential features, but are excellent

examples of how a language is more than just a way to manipulate

the underlying computer. That’s the easy part. The hard part is

crafting the language to provide better ways to express your

abstractions, so humans have an easier time understanding the code

without getting bogged down in needless detail. It’s possible to define

operators in ways that obscure meaning, so tread carefully.

“Everything is syntactic sugar. Toilet paper is syntactic sugar, and I still

want it.” – Barry Hawkins

Exercises
Solutions are available at AtomicScala.com.

1. In Exercise 4 of Class Exercises, you created a class SimpleTime

with a subtract method. Change the name of that method to use

the minus sign (-). Satisfy the following tests:

val someT1 = new SimpleTime2(10, 30)

val someT2 = new SimpleTime2(9, 30)

val someST = someT1 - someT2

someST.hours is 1

someST.minutes is 0

val someST2 = new SimpleTime2(10, 30) -

 new SimpleTime2(9, 45)

someST2.hours is 0

someST2.minutes is 45

2. Create a class FancyNumber1 that takes an Int as a class

parameter and has one method, power(n: Int) that raises that

http://www.atomicscala.com/

Atomic Scala • Defining Operators • 211

number to the nth power. Hint: you may choose to use

scala.math.pow, and if you do, investigate toInt and toDouble.

Satisfy the following tests:

val a1 = new FancyNumber1(2)

a1.power(3) is 8

val b1 = new FancyNumber1(10)

b1.power(2) is 100

3. Adding to your solution for the previous exercise, replace power

with ^. Satisfy the following tests:

val a2 = new FancyNumber2(2)

a2.^(3) is 8

val b2 = new FancyNumber2(10)

b2 ^ 2 is 100

4. Building on the previous exercise, add another method ** which

does the same thing as ^. Do you see a benefit to leaving in the

method power and calling that from both methods? Satisfy the

following tests:

val a3 = new FancyNumber3(2.0)

a3.**(3) is 8

val b3 = new FancyNumber3(10.0)

b3 ** 2 is 100

212 • Atomic Scala • Automatic String Conversion

 Automatic String
Conversion
case classes nicely format an object for display, including its

arguments (line 6):

1 // Bicycle.scala

2 import com.atomicscala.AtomicTest._
3

4 case class Bicycle(riders:Int)

5 val forTwo = Bicycle(2)

6 forTwo is "Bicycle(2)" // Nice

A method called toString is automatically defined when you create a

case class. Whenever you do anything with an object that expects a

String, Scala silently produces a String representation for the object by

calling toString.

If you create a regular, non-case class, you still get an automatic

toString:

1 // Surrey.scala

2 class Surrey(val adornment:String)

3 val fancy = new Surrey("fringe on top")

4 println(fancy) // Ugly

This is the default toString and isn’t too useful; when you run

Surrey.scala you get output that looks something like

Main$$anon1Surrey@7b2884e0. For better results, define your own

toString:

Atomic Scala • Automatic String Conversion • 213

1 // SurreyWithToString.scala

2 import com.atomicscala.AtomicTest._
3

4 class Surrey2(val adornment:String) {

5 override def toString =

6 s"Surrey with the $adornment"

7 }
8

9 val fancy2 = new Surrey2("fringe on top")

10 fancy2 is "Surrey with the fringe on top"

Line 5 introduces a new keyword: override. This is necessary – Scala

insists on it – because toString is already defined (the definition that

produces that ugly result). The override keyword tells Scala that yes,

we do actually want to replace it with our own definition; this

explicitness makes it clear to the reader of the code what is

happening and helps prevent mistakes. Note that we use the brief

syntax forms here: no parentheses (because this method doesn’t

change the object), return type inference, and a single-line method.

A good toString is useful when debugging a program; sometimes just

looking inside an object is enough to see what’s going wrong.

Exercises
Solutions are available at AtomicScala.com.

1. Override toString in a case class. Modify Bicycle so its toString

produces “Bicycle built for 2.” Satisfy the following test:

val forTwo = Bicycle(2)

forTwo is "Bicycle built for 2"

2. Build on the previous exercise to show that the toString method

can be more complex than a single-line method.

A) Change the class name to Cycle and pass the number of wheels

as a class argument when you create the object.

http://www.atomicscala.com/

214 • Atomic Scala • Automatic String Conversion

B) Use pattern matching to display “Unicycle” for a single wheeled

cycle, “Bicycle” for 2 wheels, “Tricycle” for 3 wheels, “Quadricycle”

for 4 wheels, and “Cycle with n wheels” for numbers greater than

4, replacing “n” with the argument. Satisfy the following tests:

val c1 = Cycle(1)

c1 is "Unicycle"

val c2 = Cycle(2)

c2 is "Bicycle"

val cn = Cycle(5)

cn is "Cycle with 5 wheels"

3. Add to the previous exercise. For a negative number of wheels,

satisfy the following test:

Cycle(-2) is "That's not a cycle!"

Atomic Scala • Tuples • 215

 Tuples
Suppose you must return more than one item from a method, perhaps

a value and some information about that value. A perfectly legitimate

approach is to create a special class to hold the return value:

1 // ReturnBlob.scala

2 import com.atomicscala.AtomicTest._
3

4 case class

5 ReturnBlob(data:Double, info:String)
6

7 def data(input:Double) =

8 if(input > 5.0)

9 ReturnBlob(input * 2, "High")

10 else

11 ReturnBlob(input * 2, "Low")
12

13 data(7.0) is ReturnBlob(14.0, "High")

14 data(4.0) is ReturnBlob(8.0, "Low")

Many programming language designers consider this an adequate

solution, but this is a case where little things make a big difference:

even though returning multiple values is a helpful technique, in

languages that do not support tuples, you don’t see it used that often.

A tuple allows you to collect multiple elements, effortlessly. It’s like

ReturnBlob, but Scala automates everything for you. You create a

tuple by grouping elements together inside parentheses:

(element1, element2, element3, …)

We can rewrite the above example using tuples:

1 // Tuples.scala

216 • Atomic Scala • Tuples

2 import com.atomicscala.AtomicTest._
3

4 def data2(input:Double):(Double, String) =

5 if(input > 5.0)

6 (input * 2, "High")

7 else

8 (input * 2, "Low")
9

10 data2(7.0) is (14.0, "High")

11 data2(4.0) is (8.0, "Low")
12

13 def data3(input:Double) =

14 if(input > 5.0)

15 (input * 2, "High", true)

16 else

17 (input * 2, "Low", false)
18

19 data3(7.0) is (14.0, "High", true)

20 data3(4.0) is (8.0, "Low", false)

Line 4 specifies the return type; A tuple return type simply means

surrounding your types with parentheses. Line 13 uses type inference

for the return tuple. Note that lines 6, 8, 15 and 16 return tuples by

surrounding the values with parentheses. Lines 15 and 16 show that

returning additional elements is easy. Tuples make grouping elements

so trivial that it becomes an effortless choice; indeed, before

programmers know about tuples they tend to only think in terms of

returning a single thing, and afterwards returning multiple elements

becomes a natural approach – the existence of the feature changes the

way you program.

If you have a tuple and want to capture the values, use tuple

unpacking as on line 6:

Atomic Scala • Tuples • 217

1 // TupleUnpacking.scala

2 import com.atomicscala.AtomicTest._
3

4 def f = (1,3.14,"Mouse",false,"Altitude")
5

6 val (n, d, a, b, h) = f
7

8 (a, b, n, d, h) is

9 ("Mouse", false, 1, 3.14, "Altitude")
10

11 // Tuple indexing:

12 val all = f

13 f._1 is 1

14 f._2 is 3.14

15 f._3 is "Mouse"

16 f._4 is false

17 f._5 is "Altitude"

On line 6, a single val followed by a tuple of identifiers unpacks the

tuple returned by f. On line 8 we even write the test with a tuple on

the left of the is (moving some elements to make it interesting).

If instead you capture the entire tuple into a single val or var as on

line 12, you can select each element by indexing with “._n” (lines 13-

17; note that we start counting from one and not zero).

There’s a similar form to unpack case classes. On line 6, the case class

almost behaves like a tuple with a class name attached:

1 // CaseUnpack.scala

2 import com.atomicscala.AtomicTest._
3

4 case class Employee(name:String, ID:Int)

5 val empA = Employee("Bob", 1130)

6 val Employee(nm, id) = empA

7 nm is "Bob"

218 • Atomic Scala • Tuples

8 id is 1130

You can even combine initializations using tuples (whether this

makes your code more readable depends on context):

scala> var (d, n, s) = (1.1, 12, "Hi")

d: Double = 1.1

n: Int = 12

s: String = Hi

Without tuples, methods that group elements together become

awkward. With tuples, collecting elements in groups becomes

effortless enough that it tends to produce better code.

Exercises
Solutions are available at AtomicScala.com.

1. Unpack the values from the tuples below into named variables for

temp, sky, and view. Satisfy the following tests:

val tuple1 = (65, "Sunny", "Stars")

val (/* fill this in */) = tuple1

temp1 is 65

sky1 is "Sunny"

view1 is "Stars"

val tuple2 =

 (78, "Cloudy", "Satellites")

val (/* fill this in */) = tuple2

temp2 is 78

ski2 is "Cloudy"

view2 is "Satellites"

val tuple3 = (51, "Blue", "Night")

val (/* fill this in */) = tuple3

temp3 is 51

Atomic Scala • Tuples • 219

ski3 is "Blue"

view3 is "Night"

2. Create a tuple to hold the values 50 and 45. Unpack the values

using numeric indices. Satisfy the following tests:

val info = // fill this in

info./* what goes here? */ is 50

info./* what goes here? */ is 45

3. Create a method weather that takes arguments for temperature

and humidity. Your method will return “Hot” if the temp is above

80 degrees and “Cold” if the temperature is below 50 degrees.

Otherwise, return “Temperate.” Your method will also return

“Humid” if humidity is above 40%, unless the temperature is below

50. In that case, it should return “Damp.” Otherwise, return

“Pleasant.” Write tests for the above conditions, and also satisfy

the following tests:

weather(81, 45) is ("Hot", "Humid")

weather(50, 45) is ("Temperate", "Humid")

4. Using your solution for the previous exercise, unpack the values

into heat and moisture. Satisfy the following tests:

val (/* fill this in */) = weather(81, 45)

heat1 is "Hot"

moisture1 is "Humid"

val (/* fill this in */) = weather(27, 55)

heat2 is "Cold"

moisture2 is "Damp"

220 • Atomic Scala • Companion Objects

 Companion Objects
Methods act on particular instances of a class:

1 // ObjectsAndMethods.scala

2 import com.atomicscala.AtomicTest._
3

4 class X(val n:Int) {

5 def f = n * 10

6 }
7

8 val x1 = new X(1)

9 val x2 = new X(2)
10

11 x1.f is 10

12 x2.f is 20

When you call f, you must call it with an object. During the call, f can

access the members of that object, without qualification (on line 5, we

just say n, without specifying the object).

Scala keeps track of the object of interest by quietly passing around a

reference to that object. That reference is available as the keyword

this. You can access this explicitly, but most of the time it isn’t

necessary. This example is exactly the same as the previous one,

except this is added to line 5:

1 // ThisKeyword.scala

2 import com.atomicscala.AtomicTest._
3

4 class X(val n:Int) {

5 def f = this.n * 10

6 }
7

8 val x1 = new X(1)

Atomic Scala • Companion Objects • 221

9 val x2 = new X(2)
10

11 x1.f is 10

12 x2.f is 20

Note how the n that’s part of x1 is distinguished from the n that’s part

of x2. Scala does this for you, under the covers.

Some methods aren’t “about” a particular object, so it doesn’t make

sense to tie them to an object. You could argue that, in this case, you

should just make an ordinary method (some languages work this

way), but it’s more expressive if you also say, “this method or field is

about the class, but not about a particular object.”

Scala’s object keyword defines something that looks roughly like a

class, except you can’t create instances of an object – there’s only one.

An object is a way to collect methods and fields that logically belong

together but don’t need multiple instances. Thus, you never create

any instances – there’s only one instance and it’s “just there.”

1 // ObjectKeyword.scala

2 import com.atomicscala.AtomicTest._
3

4 object X {

5 val n = 2

6 def f = n * 10

7 def g = this.n * 20

8 }
9

10 X.n is 2

11 X.f is 20

12 X.g is 40

You can’t say new X. If you try, Scala complains that there is no “type

X.” That’s because the object declaration sets up the structure and

creates the object at the same time.

222 • Atomic Scala • Companion Objects

When using object, the naming convention is slightly different.

Typically, when we create an instance of a class using the new

keyword, we lower-case the first letter of the instance name. When

you define an object, however, Scala defines the class and creates a

single instance of that class. Thus, we capitalize the first letter of the

object name because it represents both a class and an instance.

Notice on line 7 that the this keyword still works, but it just refers to

that one object instance rather than multiple possible instances.

The object keyword allows you to create a companion object for a class.

The only difference between an ordinary object and a companion

object is the latter has the same name as the name of a regular class.

This creates an association between the companion object and its

class:

1 // CompanionObject.scala

2 class X

3 object X

This makes object X the companion object of class X.

If you create a field inside a companion object, it produces a single

piece of data for that field no matter how many instances of the

associated class you make:

1 // ObjectField.scala

2 import com.atomicscala.AtomicTest._
3

4 class X {

5 def increment() = { X.n += 1; X.n }

6 }
7

8 object X {

9 var n:Int = 0 // Only one of these

Atomic Scala • Companion Objects • 223

10 }
11

12 var a = new X

13 var b = new X

14 a.increment() is 1

15 b.increment() is 2

16 a.increment() is 3

Lines 14-16 show that n has only a single piece of storage (no matter

how many instances are created) and that a and b are both accessing

that same memory. To access elements of the companion object from

methods of the class, you must give the name of the companion

object, as on line 5.

When a method is only accessing fields in the companion object, it

makes sense to move that method into the companion object:

1 // ObjectMethods.scala

2 import com.atomicscala.AtomicTest._
3

4 class X
5

6 object X {

7 var n:Int = 0

8 def increment() = { n += 1; n }

9 def count() = increment()

10 }
11

12 X.increment() is 1

13 X.increment() is 2

14 X.count() is 3

On line 8 we no longer need to qualify access for n because the

method is now in the same scope as n. Line 9 shows that companion

object methods can call other companion object methods without

qualification.

224 • Atomic Scala • Companion Objects

Here’s a helpful use for companion objects: Count each instance and

include the count when displaying the object. This gives each object a

unique identifier:

1 // ObjCounter.scala

2 import com.atomicscala.AtomicTest._
3

4 class Count() {

5 val id = Count.id()

6 override def toString = s"Count$id"

7 }
8

9 object Count {

10 var n = -1

11 def id() = { n += 1; n }

12 }
13

14 Vector(new Count, new Count, new Count,

15 new Count, new Count) is

16 "Vector(Count0, Count1, " +

17 "Count2, Count3, Count4)"

By initializing n to -1, the first call to id produces zero. This code also

works with case classes – try adding the case keyword on line 4.

Companion objects enable some pleasant syntax sugar. You’ve

already seen one of the more common of these: when you create a

case class, you don’t have to use new to create an instance of that

class:

scala> case class Car(make:String)

defined class Car

scala> Car("Toyota")

res1: Car = Car(Toyota)

Atomic Scala • Companion Objects • 225

This happens because creating a case class automatically creates a

companion object containing a special method apply, called a factory

method because it creates other objects. When you give the companion

object’s name followed by parentheses (with arguments as

appropriate), Scala calls apply. Here, we write a factory method for a

non-case-class:

1 // FactoryMethod.scala

2 import com.atomicscala.AtomicTest._
3

4 class Car(val make:String) {

5 override def toString = s"Car($make)"

6 }
7

8 object Car {

9 def apply(make:String) = new Car(make)

10 }
11

12 val myCar = Car("Toyota")

13 myCar is "Car(Toyota)"

Our toString produces nice output, just as the case class does.

Companion objects have several other bits of syntax sugar you can

learn about elsewhere. Companion objects are not strictly necessary

(imagine using ordinary methods and vars/vals), but they provide

improvements in organization and syntax that makes code easier to

understand.

When viewing the ScalaDoc, you switch between class view and

companion-object view by clicking on the graphic “O” or “C” that’s in

the upper-left region of the documentation pages (you can see

whether this switching is possible for a particular class if it looks like

the “O” or “C” has a little peeled-back corner).

226 • Atomic Scala • Companion Objects

Exercises
Solutions are available at AtomicScala.com.

1. Create a class WalkActivity that takes no class arguments. Create a

companion object with a single method start that has a single

argument for a name and prints “started!” Demonstrate how to

call this method. Did you have to instantiate the WalkActivity

object?

2. Building on your solution for the previous exercise, add a field to

the companion object to log activities (Hint: Use a var String).

Calling start("Sally") should append “[Sally] Activity started.” Also,

add a stop method that similarly appends “[Sally] Activity

stopped.”

3. Add a field for Metabolic Equivalent of Task (MET) initialized to 2.3.

Add the supplied method calories. Where did you put the field?

Where did you put the method? If you didn’t put them in the

companion object, do so now. Did you have to make any changes

to do so? Satisfy the following tests:

def calories(lbs:Int, mins:Int,

 mph:Double=3):Long = math.round(

 (MET * 3.5 * lbs * 0.45)/200.0 * mins

)

val sally = new WalkActivity3

sally.calories(150, 30) is 82

4. Vary the Metabolic Equivalent of Task based on speed of walking.

Add the following MET method. Validate the method with tests.

Did you put it in the class or the companion object? Update your

calories method to call MET(mph). Satisfy the following tests:

def MET(mph: Double) = mph match {

 case x if(x < 1.7) => 2.3

 case x if(x < 2.5) => 2.9

 case x if(x < 3) => 3.3

 case x if(x >= 3) => 3.3

Atomic Scala • Companion Objects • 227

 case _ => 2.3

}

WalkActivity4.MET(1.0) is 2.3

WalkActivity4.MET(2.7) is 3.3

val suzie = new WalkActivity4

suzie.calories(150, 30) is 117

val john = new WalkActivity4

john.calories(150, 30, 1.5) is 82

228 • Atomic Scala • Inheritance

 Inheritance
Objects store data in fields and perform actions via operations

(typically called methods). Each object occupies a unique place in

storage so one object’s fields can have different values from every

other object.

An object also belongs to a category called a class, which determines

the form or template for its objects: the fields and the methods. Thus,

all objects look like the class that created them (via its constructor).

Creating and debugging a class can require a lot of work. What if you

want to make a class like an existing class, but with some variations?

It seems like a pity to build a new class from scratch, so object-

oriented languages provide a mechanism for reuse called inheritance.

With inheritance (following the concept of biological inheritance), you

say, “I want to make a new class from an existing class, but with some

additions and modifications.” You inherit a new class based on an

existing class using the extends keyword on lines 9-11:

1 // GreatApe.scala

2 import com.atomicscala.AtomicTest._
3

4 class GreatApe {

5 val weight = 100.0

6 val age = 12

7 }
8

9 class Bonobo extends GreatApe

10 class Chimpanzee extends GreatApe

11 class BonoboB extends Bonobo
12

13 def display(ape:GreatApe) =

14 s"weight: ${ape.weight} age: ${ape.age}"

Atomic Scala • Inheritance • 229

15 display(new GreatApe) is

16 "weight: 100.0 age: 12"

17 display(new Bonobo) is

18 "weight: 100.0 age: 12"

19 display(new Chimpanzee) is

20 "weight: 100.0 age: 12"

21 display(new BonoboB) is

22 "weight: 100.0 age: 12"

The terms base class and derived class (or parent class and child class, or

superclass and subclass) are often used to describe the inheritance

relationship. Here, GreatApe is the base class, and it looks a bit

strange for reasons you’ll understand in the next atom: it has two

fields with fixed values. The derived classes Bonobo, Chimpanzee and

BonoboB are new types that are identical to their parent class.

The display method on line 13 takes a GreatApe as an argument, and

naturally you call it with a GreatApe as on line 15. But see on lines 17

and 19 that you can also call display with a Bonobo or a Chimpanzee!

Even though the latter two are distinct types, Scala happily accepts

them as if they were the same type as GreatApe. This works at any

level of inheritance, as you see on line 21 (BonoboB is two inheritance

levels away from GreatApe).

This works because inheritance guarantees that anything that inherits

from GreatApe is a GreatApe. All code that acts upon objects of these

derived classes knows that GreatApe is at their core, so any methods

and fields in GreatApe will also be available in its children.

Inheritance enables you to write a single piece of code (the display

method) that works not just with one type, but with that type and

every class that inherits that type. Thus, inheritance creates

opportunities for code simplification and reuse.

230 • Atomic Scala • Inheritance

This example is a bit too simple because all the classes are exactly

identical. It only gets interesting when child classes can differentiate

themselves from their parents. First, however, we must learn about

object initialization during inheritance.

Exercises
Solutions are available at AtomicScala.com.

1. Add a method vocalize to GreatApe. Satisfy the following tests:

val ape1 = new GreatApe

ape1.vocalize is "Grrr!"

val ape2 = new Bonobo

ape2.vocalize is "Grrr!"

val ape3 = new Chimpanzee

ape3.vocalize is "Grrr!"

2. Building on the previous exercise, create a method says that takes

a GreatApe argument and calls vocalize. Satisfy the following tests:

says(new GreatApe) is "says Grrr!"

says(new Bonobo) is "says Grrr!"

says(new Chimpanzee) is "says Grrr!"

says(new BonoboB) is "says Grrr!"

3. Create a class Cycle that has a field for wheels set to 2, and a

method ride that returns “Riding.” Create a derived class Bicycle

that inherits from Cycle. Satisfy the following tests:

val c = new Cycle

c.ride is "Riding"

val b = new Bicycle

b.ride is "Riding"

b.wheels is 2

http://www.atomicscala.com/

Atomic Scala • Base Class Initialization • 231

 Base Class Initialization
Scala guarantees correct object creation by ensuring that all

constructors are called: not just the constructors for the derived-class

parts of the object, but also the constructor for the base class. In our

Inheritance example, the base class didn’t have constructor

arguments. If a base class does have constructor arguments, then any

class that inherits from that base must provide those arguments

during construction.

Let’s rewrite GreatApe in a more sensible fashion, using constructor

arguments:

1 // GreatApe2.scala

2 import com.atomicscala.AtomicTest._
3

4 class GreatApe(

5 val weight:Double, val age:Int)
6

7 class Bonobo(weight:Double, age:Int)

8 extends GreatApe(weight, age)

9 class Chimpanzee(weight:Double, age:Int)

10 extends GreatApe(weight, age)

11 class BonoboB(weight:Double, age:Int)

12 extends Bonobo(weight, age)
13

14 def display(ape:GreatApe) =

15 s"weight: ${ape.weight} age: ${ape.age}"
16

17 display(new GreatApe(100, 12)) is

18 "weight: 100.0 age: 12"

19 display(new Bonobo(100, 12)) is

20 "weight: 100.0 age: 12"

21 display(new Chimpanzee(100, 12)) is

22 "weight: 100.0 age: 12"

232 • Atomic Scala • Base Class Initialization

23 display(new BonoboB(100, 12)) is

24 "weight: 100.0 age: 12"

When we inherit from GreatApe, Scala forces us to pass the

constructor arguments to the GreatApe base class (otherwise you get

an error message). You typically produce those arguments by creating

an argument list for the derived class, as on lines 7, 9, and 11. Then

you use those arguments when calling the base-class constructor.

After Scala creates memory for your object, it calls the base-class

constructor first, then the constructor for the next-derived class, and

so on until it reaches the most-derived constructor. This way, all the

constructor calls can rely on the validity of all the sub-objects created

before them. Indeed, those are the only things it knows about; a

Bonobo knows that it inherits from GreatApe and the Bonobo

constructor can call methods in the GreatApe class, but a GreatApe

cannot know whether it’s a Bonobo or a Chimpanzee or call methods

specific to those subclasses.

When you inherit, the derived-class constructor must call the primary

base-class constructor; if there are auxiliary (overloaded) constructors

in the base class you may optionally call one of those instead. The

derived-class constructor must pass the appropriate arguments to the

base-class constructor:

1 // AuxiliaryInitialization.scala

2 import com.atomicscala.AtomicTest._
3

4 class House(val address:String,

5 val state:String, val zip:String) {

6 def this(state:String, zip:String) =

7 this("address?", state, zip)

8 def this(zip:String) =

9 this("address?", "state?", zip)

10 }

Atomic Scala • Base Class Initialization • 233

11

12 class Home(address:String, state:String,

13 zip:String, val name:String)

14 extends House(address, state, zip) {

15 override def toString =

16 s"$name: $address, $state $zip"

17 }
18

19 class VacationHouse(

20 state:String, zip:String,

21 val startMonth:Int, val endMonth:Int)

22 extends House(state, zip)
23

24 class TreeHouse(

25 val name:String, zip:String)

26 extends House(zip)
27

28 val h = new Home("888 N. Main St.", "KS",

29 "66632", "Metropolis")

30 h.address is "888 N. Main St."

31 h.state is "KS"

32 h.name is "Metropolis"

33 h is

34 "Metropolis: 888 N. Main St., KS 66632"
35

36 val v =

37 new VacationHouse("KS", "66632", 6, 8)

38 v.state is "KS"

39 v.startMonth is 6

40 v.endMonth is 8
41

42 val tree = new TreeHouse("Oak", "48104")

43 tree.name is "Oak"

44 tree.zip is "48104"

When Home inherits from House it passes the appropriate arguments

to the primary House constructor. Notice that it also adds its own val

234 • Atomic Scala • Base Class Initialization

argument – you aren’t limited to the number, type or order of the

arguments in the base class. Your only responsibility is to provide the

correct base-class arguments.

In a derived class, you call any of the overloaded base-class

constructors via the derived-class primary constructor by providing

the necessary constructor arguments in the base-class constructor

call. You see this in the definitions of Home, VacationHouse and

TreeHouse. Each uses a different base-class constructor.

You can’t call base-class constructors inside of overloaded derived-

class constructors. As before, the primary constructor is the “gateway”

for all the overloaded constructors.

Inheritance from case classes is limited, as seen in Exercise 8.

Exercises
Solutions are available at AtomicScala.com.

1. In GreatApe2.scala, add another val field in GreatApe. Now add a

new subclass BonoboC that inherits from BonoboB. Write a test for

BonoboC.

2. Demonstrate that the Bonobo constructor can call methods in the

GreatApe class by adding a method to GreatApe and calling it from

the Bonobo constructor.

3. Define a class Home derived from House with an additional

Boolean field heart. Satisfy the following tests:

val h = new Home

h.toString is "Where the heart is"

h.heart is true

4. Modify VacationHouse by including a class to represent months

rented (pattern matching can help here). Satisfy the following:

Atomic Scala • Base Class Initialization • 235

val v = new VacationHouse("MI","49431",6,8)

v is "Rented house in MI for months of " +

 "June through August."

5. Create a class Trip including origin, destination, start and end

dates. Create a subclass AirplaneTrip, including the name of an in-

flight movie. Create a second subclass CarTrip, including a list of

cities you will drive through. Satisfy the following tests:

val t = new Trip("Detroit","Houston",

 "5/1/2012","6/1/2012")

val a = new AirplaneTrip("Detroit",

 "London","9/1/1939",

 "10/31/1939", "Superman")

val cities = Vector("Boston",

 "Albany","Buffalo","Cleveland",

 "Columbus","Indianapolis",

 "St. Louis", "Kansas City",

 "Denver","Grand Junction",

 "Salt Lake City","Las Vegas",

 "Bakersfield","San Francisco")

val c = new CarTrip(cities,

 "6/1/2012","7/1/2012")

c.origination is "Boston"

c.destination is "San Francisco"

c.startDate is "6/1/2012"

t is "From Detroit to Houston:"

 + " 5/1/2012 to 6/1/2012"

a is "On a flight from Detroit to"

 + " London, we watched Superman"

c is "From Boston to San Francisco:"

 + " 6/1/2012 to 7/1/2012"

6. Does inheritance simplify the implementation of Exercise 5?

7. Can you think of other ways to design the classes in Exercise 5?

8. Show what happens if you try to inherit from a case class.

236 • Atomic Scala • Overriding Methods

 Overriding Methods
So far, the classes we’ve inherited haven’t really done anything to

distinguish themselves. Inheritance gets interesting when you start

overriding methods, which means redefining a method from a base

class to do something different in a derived class. Let’s look at another

version of the GreatApe example, this time without worrying about

constructor calls:

1 // GreatApe3.scala

2 import com.atomicscala.AtomicTest._
3

4 class GreatApe {

5 def call = "Hoo!"

6 var energy = 3

7 def eat() = { energy += 10; energy }

8 def climb(x:Int) = energy -= x

9 }
10

11 class Bonobo extends GreatApe {

12 override def call = "Eep!"

13 // Modify the base-class var:

14 energy = 5

15 // Call the base-class version:

16 override def eat() = super.eat() * 2

17 // Add a new method:

18 def run() = "Bonobo runs"

19 }
20

21 class Chimpanzee extends GreatApe {

22 override def call = "Yawp!"

23 override def eat() = super.eat() * 3

24 def jump = "Chimp jumps"

25 val kind = "Common" // New field

26 }

Atomic Scala • Overriding Methods • 237

27

28 def talk(ape:GreatApe) = {

29 // ape.run() // Not an ape method

30 // ape.jump // Nor this

31 ape.climb(4)

32 ape.call + ape.eat()

33 }
34

35 talk(new GreatApe) is "Hoo!9"

36 talk(new Bonobo) is "Eep!22"

37 talk(new Chimpanzee) is "Yawp!27"

Now we’re looking at what the apes do and how it relates to their

energy. Any GreatApe has a call, they store energy when they eat and

expend energy when they climb. Note that call doesn’t change the

internal state of the object so it doesn’t use parentheses, while eat

does change the internal state and so it uses parentheses, following

the convention described in A Bit of Style.

Notice that call is defined the same way in Bonobo and Chimpanzee

as it is in GreatApe: It takes no arguments and returns a String (as

determined through type inference). This combination of name,

arguments and return type is the method signature.

Both Bonobo and Chimpanzee have different calls than GreatApe, so

we want to change their definitions of call. If you create an identical

method signature in a derived class as in a base class, you substitute

the behavior defined in the base class with your new behavior. This is

called overriding.

When Scala sees an identical method signature in the derived class as

in the base class, it decides that you’ve made a mistake, called an

accidental override. It assumes you’ve unintentionally chosen the same

name, arguments and return type unless you use the override keyword

(which you first saw in Automatic String Conversion) to say “yes, I

238 • Atomic Scala • Overriding Methods

mean to do this.” The override keyword also helps when reading the

code so you don’t have to compare signatures to notice the overrides.

If you accidentally write a method that has the same name as a

method in the base class, you get an error message saying that you

forgot the override keyword (try it!).

It’s even more interesting to take a Bonobo or a Chimpanzee and treat

it as an ordinary GreatApe. In the talk method on line 28, the method

call produces the correct behavior in each case. talk somehow knows

the exact type of the object and produces the appropriate variation of

call. This is Polymorphism.

Inside talk, you can only call GreatApe methods. Even though Bonobo

defines run and Chimpanzee defines jump, neither method is part of

GreatApe, and the argument to talk is only a GreatApe, not anything

more specific.

Often when you override a method, you want to call the base-class

version of that method (for one thing, to reuse the code), as with eat

on lines 16 and 23. This produces a conundrum: If you simply call eat,

you call the same method you’re currently inside (this is recursion). To

specify that you want to call the base-class version of eat, use the

super keyword, short for “superclass.”

Exercises
Solutions are available at AtomicScala.com.

1. On line 7 in GreatApe3.scala, the method eat is defined with

parentheses. Do you recall why?

2. Rework your solution for Exercise 2 in Base Class Initialization by

defining myWords in the base class and overriding it in the

derived class. Satisfy the following tests:

val roaringApe =

Atomic Scala • Overriding Methods • 239

 new GreatApe2(112, 9, "Male")

roaringApe.myWords is Vector("Roar")

val chattyBonobo =

 new Bonobo2(150, 14, "Female")

chattyBonobo.myWords is

Vector("Roar","Hello")

3. Rework your solution for the Trip, AirplaneTrip, and CarTrip

exercises in Base Class Initialization, using super on the toString

method from the base class rather than duplicating the code. Start

with the same setup as before, but satisfy these tests:

t is "From Detroit to Houston:" +

 " 5/1/2012 to 6/1/2012"

a is

 "From Detroit to London:" +

 " 9/1/1939 to 10/31/1939" +

 ", we watched Superman"

c.origination is "Boston"

c.destination is "San Francisco"

c.startDate is "6/1/2012"

c is "From Boston to San Francisco:" +

 " 6/1/2012 to 7/1/2012, we visited" +

 " Vector(Albany, Buffalo, " +

 "Cleveland, Columbus, Indianapolis," +

 " St. Louis, Kansas City, Denver, " +

 "Grand Junction, Salt Lake City, " +

 "Las Vegas, Bakersfield)"

240 • Atomic Scala • Enumerations

 Enumerations
An enumeration is a collection of names. Scala’s Enumeration class is a

convenient way to manage these names. To create an enumeration,

you inherit, typically into an object:

1 // Level.scala

2 import com.atomicscala.AtomicTest._
3

4 object Level extends Enumeration {

5 type Level = Value

6 val Overflow, High, Medium,

7 Low, Empty = Value

8 }
9

10 Level.Medium is "Medium"

11 import Level._

12 Medium is "Medium"
13

14 { for(n <- Range(0, Level.maxId))

15 yield (n, Level(n)) } is

16 Vector((0, Overflow), (1, High),

17 (2, Medium), (3, Low), (4, Empty))
18

19 { for(lev <- Level.values)

20 yield lev }.toIndexedSeq is

21 Vector(Overflow, High,

22 Medium, Low, Empty)
23

24 def checkLevel(level:Level)= level match {

25 case Overflow => ">>> Overflow!"

26 case Empty => "Alert: Empty"

27 case other => s"Level $level OK"

28 }
29

30 checkLevel(Low) is "Level Low OK"

Atomic Scala • Enumerations • 241

31 checkLevel(Empty) is "Alert: Empty"

32 checkLevel(Overflow) is ">>> Overflow!"

The Enumeration names represent various levels (lines 6 and 7). At

first glance it can seem like we’re creating a set of vals and only

Empty is assigned to Value (part of Enumeration), but Scala allows you

to abbreviate your definitions – this actually means a new Value is

created for each of the vals that you see.

Line 5 is a bit surprising at first. It seems like the definition of Level on

line 4 is enough to introduce a new type, but if you comment out line

5 you see this isn’t the case. That’s because creating an object doesn’t

create a new type the way creating a class does. If we want to treat it

as a type, we use the type keyword (introduced in Brevity) to alias

Level to Value.

On line 10 you see that if you only create the enumeration, you must

qualify each reference to the enumeration names. To eliminate this

extra noise, use the import statement on line 11, which in this case

doesn’t import a package from outside this file, but instead imports all

the names from the enumeration into the current name space (a way to

keep names from colliding with each other). On line 12 you see that

we no longer need to qualify access to the enumeration names.

There’s an id field in Value which is incremented each time a new

Value is created. The for loop on lines 14 & 15 creates a combination

of each id and the display name for that id, and yields the two as a

tuple (see Tuples). Notice how the ids are numbered from 0 to maxId.

Line 15 shows how to use an id value to look up the corresponding

enumeration element (just use parentheses).

Line 19 shows that you can also iterate through the enumeration

names, using the values field. We call toIndexedSeq to produce a

Vector because that’s a familiar collection.

242 • Atomic Scala • Enumerations

The checkLevel method starting on line 24 shows how Level has

become a new type, but with convenient names used within the

method. Again, without the import statement on line 11, Scala will

not recognize Level.

Enumerations can make your code more readable, which is always

desirable.

Exercises
Solutions are available at AtomicScala.com.

1. Create an enumeration for MonthName, using January, February,

etc. Satisfy the following test:

MonthName.February is "February"

MonthName.February.id is 1

2. In the previous exercise, an id of 1 isn’t really what we expected

for February. We want that to be 2, since February is the second

month. Try explicitly setting January to Value(1) and leaving the

others alone. What does that tell you about what Value does?

Satisfy the following tests:

MonthName2.February is "February"

MonthName2.February.id is 2

MonthName2.December.id is 12

MonthName2.July.id is 7

3. Building from the previous exercise, demonstrate how to use

import so you don’t have to qualify the name space. Create a

method monthNumber that returns the appropriate value. Satisfy

the following tests:

July is "July"

monthNumber(July) is 7

http://www.atomicscala.com/

Atomic Scala • Enumerations • 243

4. Create a method season that takes a MonthName type (from

Exercise 1) and returns “Winter” if the month is December,

January, or February, “Spring” if March, April, or May, “Summer” if

June, July, or August, and “Autumn” if September, October, or

November. Satisfy the following tests:

season(January) is "Winter"

season(April) is "Spring"

season(August) is "Summer"

season(November) is "Autumn"

5. Modify TicTacToe.scala from Summary 2 to use enumerations.

6. Modify the Level enumeration code from Level.scala. Create a new

val and add another set of values for “Draining, Pooling, and Dry”

to the Level enumeration. Update the code on lines 14-28 as

necessary. Satisfy the following tests:

Level.Draining is Draining

Level.Draining.id is 5

checkLevel(Low) is "Level Low OK"

checkLevel(Empty) is "Alert"

checkLevel(Draining) is "Level Draining OK"

checkLevel(Pooling) is "Warning!"

checkLevel(Dry) is "Alert"

244 • Atomic Scala • Abstract Classes

 Abstract Classes
An abstract class is like an ordinary class except one or more methods

or fields is incomplete. Scala insists that you use the abstract keyword

for a class containing methods without definitions or fields without

initialization. Try removing the abstract keyword from either of the

following classes and see what message you get:

1 // AbstractKeyword.scala

2 abstract class WithValVar {

3 val x:Int

4 var y:Int

5 }
6

7 abstract class WithMethod {

8 def f():Int

9 def g(n:Double)

10 }

Lines 3 and 4 declare x and y but provide no initialization values (a

declaration describes something without providing a definition to create

storage for a value or code for a method). Without an initializer, Scala

considers vars and vals to be abstract, and requires the abstract

keyword on the class. Without an initializer, Scala has nothing from

which to infer type, so it also requires type information for an abstract

var or val.

Lines 8 and 9 declare f and g but provide no method definitions, again

forcing the class to be abstract. If you don’t give a return type for the

method as in line 9, Scala assumes it returns Unit.

Abstract methods and fields must somehow exist (be made concrete) in

the class that you ultimately create using the abstract class as a

foundation.

Atomic Scala • Abstract Classes • 245

Declaring methods without defining them allows you to describe

structure without specifying form. The most common use for this is

the template method pattern. A template method captures common

behavior in the base class and relegates the details that vary to

derived classes.

Suppose we are creating a children’s program describing animals and

what they say, producing statements of the form, “The <animal> goes

<sound>.” We can easily create a new method in each specific animal

class to do this, but that duplicates effort and if we want to change

the phrase we’d have to repeat all the changes (and we might miss

some).

1 // AbstractClasses.scala

2 import com.atomicscala.AtomicTest._
3

4 abstract class Animal {

5 def templateMethod =

6 s"The $animal goes $sound"

7 // Abstract methods (no method body):

8 def animal:String

9 def sound:String

10 }
11

12 // Error -- abstract class

13 // cannot be instantiated:

14 // val a = new Animal
15

16 class Duck extends Animal {

17 def animal = "Duck"

18 // "override" is optional here:

19 override def sound = "Quack"

20 }
21

246 • Atomic Scala • Abstract Classes

22 class Cow extends Animal {

23 def animal = "Cow"

24 def sound = "Moo"

25 }
26

27 (new Duck).templateMethod is

28 "The Duck goes Quack"

29 (new Cow).templateMethod is

30 "The Cow goes Moo"

The templateMethod in class Animal captures common code in a

single place. Notice it’s completely legal for templateMethod to call

the animal and sound methods, even if those methods aren’t defined

yet. This is safe because Scala will not allow you to make an instance

of an abstract class, as you see on line 14 (try removing the ‘//’ and see

what happens).

We define Duck and Cow by extending Animal and only specifying the

behavior that varies. The common behavior is captured in the base

class, in templateMethod. Notice that Duck and Cow are not abstract

because all their methods now have definitions – we call such classes

concrete.

When you provide a definition for an abstract method from a base

class, the keyword override is optional. Technically, you’re not

overriding because there’s no definition to override. When something

is optional in Scala, we generally leave it out to reduce visual noise.

Since Duck and Cow are concrete, they can be instantiated, as you see

on lines 27 and 29. Because we are only creating the objects in order to

call templateMethod on them, we use a shortcut: We don’t assign the

objects to an identifier. Instead, we surround the new expression with

parentheses and call templateMethod on the resulting object.

Atomic Scala • Abstract Classes • 247

Abstract classes can have arguments, just like ordinary classes:

1 // AbstractAdder.scala

2 import com.atomicscala.AtomicTest._
3

4 abstract class Adder(x:Int) {

5 def add(y:Int):Int

6 }

Since Adder is abstract, it cannot be instantiated, but any class that

inherits from Adder can now perform base-class initialization by

calling the Adder constructor (as you’ll see in the exercises).

Exercises
Solutions are available at AtomicScala.com.

1. Modify Animal and its subclasses to also indicate what each

animal eats. Satisfy the following tests:

val duck = new Duck

duck.food is "plants"

val cow = new Cow

cow.food is "grass"

2. Add new classes for Chicken and Pig. Satisfy the following tests:

val chicken = new Chicken

chicken.food is "insects"

val pig = new Pig

pig.food is "anything"

248 • Atomic Scala • Abstract Classes

3. Inherit from the Adder class to make it operational. Satisfy the

following tests:

class NumericAdder(val x:Int)

extends Adder(x) {

 def add(y:Int):Int = // Complete this

}

val num = new NumericAdder(5)

num.add(10) is 15

4. Can case classes inherit from abstract classes?

5. Inherit a class from Animal and try making an animal method that

takes an argument.

Atomic Scala • Traits • 249

 Traits
Inheritance creates a new class by building on an existing class, so

you don’t need to rewrite everything from scratch. Traits are an

alternate approach to creating classes: they let you acquire abilities

piecemeal rather than inheriting them as a clump. Traits are small,

logical concepts; basic pieces of functionality that allow you to easily

“mix in” ideas to create a class. For this reason they are often called

mixin types.

Ideally, a trait represents a single concept. For example, traits allow

you to separate the concepts “color,” “texture” and “resilience,” rather

than putting them all in one place just because you’re creating a base

class.

A trait definition looks like a class, but uses the trait keyword instead

of class. To combine traits into a class, you always begin with the

extends keyword, then add additional traits using the with keyword:

1 // Materials.scala
2

3 trait Color

4 trait Texture

5 trait Hardness
6

7 class Fabric
8

9 class Cloth extends Fabric with Color

10 with Texture with Hardness
11

12 class Paint extends Color with Texture

13 with Hardness

Lines 9-10 create Cloth from the Fabric class using the extends

keyword, and adds additional traits using with. A class can only

250 • Atomic Scala • Traits

inherit from a single concrete or abstract base class, but it can

combine as many traits as you want. If there is no concrete or abstract

base class, as on lines 12-13, you still start with the extends keyword

for the first trait, followed by the with keyword for the remaining

traits.

Like an abstract class, fields and methods in traits can have

definitions or they can be left abstract:

1 // TraitBodies.scala
2

3 trait AllAbstract {

4 def f(n:Int):Int

5 val d:Double

6 }
7

8 trait PartialAbstract {

9 def f(n:Int):Int

10 val d:Double

11 def g(s:String) = s"($s)"

12 val j = 42

13 }
14

15 trait Concrete {

16 def f(n:Int) = n * 11

17 val d = 1.61803

18 }
19

20 /* None of these are legal -- traits

21 cannot be instantiated:

22 new AllAbstract

23 new PartialAbstract

24 new Concrete

25 */
26

27 // Scala requires 'abstract' keyword:

28 abstract class Klass1 extends AllAbstract

Atomic Scala • Traits • 251

29 with PartialAbstract
30

31 /* Can't do this -- d and f are undefined:

32 new Klass1

33 */
34

35 // Class can provide definitions:

36 class Klass2 extends AllAbstract {

37 def f(n:Int) = n * 12

38 val d = 3.14159

39 }
40

41 new Klass2
42

43 // Concrete's definitions satisfy d & f:

44 class Klass3 extends AllAbstract

45 with Concrete
46

47 new Klass3
48

49 class Klass4 extends PartialAbstract

50 with Concrete
51

52 new Klass4
53

54 class Klass5 extends AllAbstract

55 with PartialAbstract with Concrete
56

57 new Klass5
58

59 trait FromAbstract extends Klass1

60 trait fromConcrete extends Klass2
61

62 trait Construction {

63 println("Constructor body")

64 }
65

66 class Constructable extends Construction

252 • Atomic Scala • Traits

67 new Constructable
68

69 // Create unnamed class on-the-fly:

70 val x = new AllAbstract with

71 PartialAbstract with Concrete

A free-standing trait cannot be instantiated; for one thing, it does not

have a full-fledged constructor. When combining traits to generate a

new class, all the fields and methods must have definitions or Scala

will insist that you include the abstract keyword, as on lines 28-29

(put another way, an abstract class can inherit from a trait).

Definitions can be provided by the class, as with Klass2, or through

other traits as Concrete does in Klass3, Klass4 and Klass5 (the

methods in an abstract class will also work).

Traits can inherit from abstract or concrete classes (lines 59-60). Lines

62-67 show that, even though traits cannot have constructor

arguments, they can have constructor bodies.

Lines 70-71 show an interesting trick: creating an instance of a class

that you assemble at the site of creation. The resulting object has no

type name. This technique creates a single instance of an object

without creating a new named class just for that one usage.

Traits can inherit from other traits:

1 // TraitInheritance.scala
2

3 trait Base {

4 def f = "f"

5 }
6

7 trait Derived1 extends Base {

8 def g = "17"

9 }
10

Atomic Scala • Traits • 253

11 trait Derived2 extends Derived1 {

12 def h = "1.11"

13 }
14

15 class Derived3 extends Derived2
16

17 val d = new Derived3
18

19 d.f

20 d.g

21 d.h

When combining traits, it’s possible to mix two methods with the

same signature (the name combined with the type). If method or field

signatures collide, resolve the collisions by hand, as seen in object C

(Here, an object serves as a shorthand for creating a class and then an

instance):

1 // TraitCollision.scala

2 import com.atomicscala.AtomicTest._
3

4 trait A {

5 def f = 1.1

6 def g = "A.g"

7 val n = 7

8 }
9

10 trait B {

11 def f = 7.7

12 def g = "B.g"

13 val n = 17

14 }
15

16 object C extends A with B {

17 override def f = 9.9

18 override val n = 27

19 override def g = super[A].g + super[B].g

254 • Atomic Scala • Traits

20 }
21

22 C.f is 9.9

23 C.g is "A.gB.g"

24 C.n is 27

The methods f and g and the field n have identical signatures across

traits A and B so Scala doesn’t know what to do and gives an error

message (try individually commenting lines 17-19). Methods and fields

can be overridden with new definitions (lines 17-18), but methods can

also access the base versions of themselves using the super keyword

as demonstrated on line 19 (this behavior is not available for fields but

might be in the future). Collisions where the identifier is the same but

the type is different are not allowed in Scala, so you cannot resolve

them.

Trait fields and methods can be used in calculations, even though

they’re not yet defined:

1 // Framework.scala

2 import com.atomicscala.AtomicTest._
3

4 trait Framework {

5 val part1:Int

6 def part2:Double

7 // Even without definitions:

8 def templateMethod = part1 + part2

9 }
10

11 def operation(impl:Framework) =

12 impl.templateMethod
13

14 class Implementation extends Framework {

15 val part1 = 42

16 val part2 = 2.71828

17 }

Atomic Scala • Traits • 255

18

19 operation(new Implementation) is 44.71828

On line 8, templateMethod uses part1 and part2 even though they

have no definitions at that point. Traits guarantee that all abstract

fields and methods must be implemented before any objects can be

created – and you can’t call a method unless you’ve got an object.

Defining an operation in a base type that relies on pieces to be defined

by a derived type is commonly called the Template Method pattern and

is the foundation for many frameworks. The framework designer

writes the template methods, and you inherit from those types and

customize it to your needs by filling in the missing pieces (as on lines

14-17).

Some object-oriented languages support multiple inheritance to

combine multiple classes. Traits are usually considered a superior

solution. If you have a choice between classes and traits, prefer traits.

Exercises
Solutions are available at AtomicScala.com.

1. Create a trait BatteryPower to report remaining charge. If the

charge is greater than 40%, report “green.” If the charge is between

20-39%, report “yellow.” If the charge is less than 20%, report “red.”

Instantiate the trait and satisfy the following tests:

class Battery extends

 EnergySource with BatteryPower

val battery = new Battery

battery.monitor(80) is "green"

battery.monitor(30) is "yellow"

battery.monitor(10) is "red"

256 • Atomic Scala • Traits

2. Create a new class Toy. Use Toy and BatteryPower to create a new

class BatteryPoweredToy. Satisfy the following tests:

val toy = new BatteryPoweredToy

toy.monitor(50) is "green"

3. Instantiate an object without creating an intermediate class, using

Toy and BatteryPower directly. Satisfy the following test:

val toy2 = new // Fill this in

toy2.monitor(50) is "green"

Atomic Scala • Uniform Access & Setters • 257

 Uniform Access &
Setters
Here’s an example of the flexibility (and good design) of Scala:

1 // UniformAccess.scala

2 import com.atomicscala.AtomicTest._
3

4 trait Base {

5 def f1:Int

6 def f2:Int

7 val d1:Int

8 val d2:Int

9 var d3:Int

10 var n = 1

11 }
12

13 class Derived extends Base {

14 def f1 = 1

15 val f2 = 1 // Was def, now val

16 val d1 = 1

17 // Can't do this; must be a val:

18 // def d2 = 1

19 val d2 = 1

20 def d3 = n

21 def d3_=(newVal:Int) = n = newVal

22 }
23

24 val d = new Derived

25 d.d3 is 1 // Calls getter (line 20)

26 d.d3 = 42 // Calls setter (line 21)

27 d.d3 is 42

258 • Atomic Scala • Uniform Access & Setters

The abstract methods declared on lines 5 and 6 have the identical

implementations on lines 14 and 15, with a single exception: line 14,

like its base version, is a def, but line 15 implements the def on line 6

using a val! Is this a problem? Well, whenever we call the method f2,

it’s treated as a method that produces an Int. And when we reference

the val f2, it also produces an Int. In Scala, methods without

arguments that produce a result can be treated identically to vals that

produce a result of that same type. This is an example of the Uniform

Access Principle: From the client programmer’s perspective, you can’t

tell how something is implemented (here, you can’t tell the difference

between storage and computation).

Going the other way doesn’t work: if you have a val in the base type,

you can’t implement it using a def. Scala says “d2 must be a stable,

immutable value.” That’s because a val represents a promise that

things can’t change, while a def means you execute code in the

process of producing your result.

But what if the field is a var, as on line 9? Then there’s no promise

that it always has to be the same, and it should work if you

implement it with a def. However, you can’t just implement d3 using

line 20 by itself, because that only produces (“gets”) the result, and a

var must also be settable. Scala will say, “... an abstract var requires a

setter in addition to the getter.” Line 21 shows the form of a setter; the

identifier followed by “_=” and a single argument. Now you both read

the variable via line 20’s method, and change the variable via line 21.

Exercises
Solutions are available at AtomicScala.com.

1. Show that the uniform access principle demonstrated in

UniformAccess.scala works when Base is an abstract class.

2. Does the uniform access principle demonstrated in

UniformAccess.scala work when Base is a concrete class? Can you

Atomic Scala • Uniform Access & Setters • 259

think of a different way to use a setter here? Hint: Look at Base

Class Initialization.

3. Create a class with a var named internal and a getter and setter for

internal named x, and demonstrate that it works.

260 • Atomic Scala • Reaching into Java

 Reaching into Java
Sometimes you must import a Java package to use Java classes. Java’s

Date class, for example, is not automatically available. It’s in

java.util.Date and you import it the same way you import Scala

packages. Using the REPL:

scala> val d = new Date

<console>:7: error: not found: type Date

 val d = new Date

 ^

scala> import java.util.Date

import java.util.Date

scala> val d = new Date

d: java.util.Date = Sat Aug 09 14:27:18 MDT 2014

The entire Java standard library is available using imports like this.

You can also download third-party Java libraries and use them in

Scala. This is powerful because it builds on all the effort invested in

those Java libraries. For example, you can fit points to a line using a

linear regression least-squares fit (see Wikipedia) provided by the

popular Apache Commons Math library, written in Java.

Download the Apache Commons Math library from

archive.apache.org/dist/commons/math/binaries. For this edition of

the book, the latest version of the library was commons-math3-3.3-

bin.zip. If there’s a more recent one you can download that, but be

aware you might need to make some adjustments in the instructions

and code below (for example, once Apache moved to the “math3”

library, we had to change the import from org.apache.commons.math

to org.apache.commons.math3).

Atomic Scala • Reaching into Java • 261

Extract the contents of the zip file to the directory on your disk where

you installed AtomicScala in your appropriate “Installation” atom. If

you chose our defaults, this is C:\AtomicScala on Windows, or

~/AtomicScala on Mac or Linux.

For now, just add this library to your CLASSPATH when you run the

Scala script, by specifying the path to the library with the

-classpath flag. For the default directory the shell command is (all on

a single line):

scala -classpath $CLASSPATH:$HOME/AtomicScala/commons-

math3-3.3/commons-math3-3.3.jar LinearRegression.scala

Type the line above from your AtomicScala/examples directory to

make sure your CLASSPATH is set properly.

To use the library without using the –classpath argument, add

AtomicScala/commons-math3-3.3/commons-math3-3.3.jar to the

CLASSPATH in your profile using the same process as in your

appropriate “Installation” atom.

Import the SimpleRegression package the same way you import any

other library:

1 // LinearRegression.scala

2 import com.atomicscala.AtomicTest._

3 import org.apache.commons.math3._

4 import stat.regression.SimpleRegression
5

6 val r = new SimpleRegression

7 r.addData(1, 1)

8 r.addData(2, 1.1)

9 r.addData(3, 0.9)

10 r.addData(4, 1.2)

262 • Atomic Scala • Reaching into Java

11

12 r.getN is 4

13 r.predict(6) is 1.19

The code in lines 6-10 creates an object of type SimpleRegression and

adds x and y coordinates. On line 12 we ensure there are 4 data

points. On line 13, we ask for a prediction of the value for x=6. We’re

using this class as if it were a Scala class, when in fact it’s

implemented in Java. The Java library ecosystem is a huge benefit to

Scala.

Exercises
Solutions are available at AtomicScala.com.

1. Import the class SimpleDateFormat, used for specifying what the

input date string looks like, from java.text.SimpleDateFormat. Use

Java’s SimpleDateFormat to create a pattern, named datePattern,

that you parse as 2-digit Month/2-digit Day/2-digit Year (Hint:

MM/dd/yy). Satisfy the following test:

val mayDay = datePattern.parse("05/01/12")

mayDay.getDate is 1

mayDay.getMonth is 4

2. In your solution for Exercise 1, why do you specify “MM” in the

SimpleDateFormat pattern instead of “mm?” What does the parser

expect if you specify “mm?” Try it.

3. In your solution for Exercise 1, why is May represented as a 4

instead of a 5? Is this what you expect? Is this consistent with the

day?

4. The Apache Commons Math library (imported in this atom),

contains a class called Frequency in

org.apache.commons.math.stat.Frequency. Use its addValue

method to add some strings to Frequency. Satisfy the following

test:

http://www.atomicscala.com/

Atomic Scala • Reaching into Java • 263

val f = new Frequency

// add values for cat, dog, cat, bird,

// cat, cat, kitten, mouse here

f.getCount("cat") is 4

5. Using the Apache Commons Math library that you imported above,

calculate the mean and standard deviation and percentile of the

following data set: 10, 20, 30, 80, 90, and 100. Satisfy the following

tests:

val s = new SummaryStatistics

// add values here

s.getMean is 55

s.getStandardDeviation is

39.370039370059054

264 • Atomic Scala • Applications

 Applications
To keep things as simple as possible, we’ve used scripts in this book.

A more common way to build a program is to compile everything,

including code we’ve put in scripts. To do this, create an object that

extends App. The constructor code for that object executes when you

run the program. Here’s what it looks like:

1 // Compiled.scala
2

3 object WhenAmI extends App {

4 hi

5 println(new java.util.Date())

6 def hi = println("Hello! It's:")

7 }

The object does not need to be in a file by itself. As usual, constructor

statements execute in order. Here, the hi method executes followed

by a call to the Date class in the Java standard library (as shown in

Reaching into Java). To compile this application, use scalac in the

shell:

scalac Compiled.scala

It doesn’t matter what you call the file; the name of the resulting

program depends on the name of the object. A directory listing shows

WhenAmI.class which is the compiled object. To run the program in

the shell, you use scala and the object name (but not the .class

extension):

scala WhenAmI

Now instead of running the program as a script, Scala finds the

compiled object and executes that.

Atomic Scala • Applications • 265

What if you want to pass arguments on the command line? App

comes with an object args that contains the command-line arguments

as Strings. Here’s an application that echoes its arguments:

1 // CompiledWithArgs.scala
2

3 object EchoArgs extends App {

4 for(arg <- args)

5 println(arg)

6 }

You compile it as before:

scalac CompiledWithMain.scala

If you run the program like this:

scala EchoArgs bar baz bingo

You see the output:

bar

baz

bingo

There’s another form that follows a pattern used in older

programming languages: you define a method called main, and the

method arguments contain the command-line arguments. Note that

here, you do not inherit from App:

266 • Atomic Scala • Applications

1 // CompiledWithMain.scala
2

3 object EchoArgs2 {

4 def main(args:Array[String]) =

5 for(arg <- args)

6 println(arg)

7 }

For our purposes, an Array is the same as a Vector, and all the

arguments come in as Strings. There’s no particular reason to use a

main other than that it can make the code familiar to programmers

from other languages (Java, in particular).

Exercises
Solutions are available at AtomicScala.com.

1. Use the code from Compiled.scala. Compile it using scalac, as

described above. Run it with the shell command scala WhenAmI.

2. In Exercise 1 from Traits, you implemented a class called Battery.

Rework that as an application (hint: use a companion object). Run

the same tests inside the application object.

3. Adding to your solution for the previous exercise, pass in an

argument to represent the charge(s). Compile the application, then

run it with the following shell command to verify the results:

scala Battery2 80 30 10

Hint: recall that you can convert from a String to an Int using toInt.

http://www.atomicscala.com/

Atomic Scala • A Little Reflection • 267

 A Little Reflection
Reflection means taking an object and holding it up to a mirror, so it

discovers things about itself. For example, we often want to find out

an object’s class name. Here’s a trait that automatically adds a

toString to any class so it displays the class name:

1 // Name.scala

2 package com.atomicscala

3 import reflect.runtime.currentMirror
4

5 object Name {

6 def className(o:Any) =

7 currentMirror.reflect(o).symbol.

8 toString.replace('$', ' ').

9 split(' ').last

10 }
11

12 trait Name {

13 override def toString =

14 Name.className(this)

15 }

The className method takes an Any object and produces that

object’s class name. To do this, we reflect the object in the

currentMirror; this gives us access to the object’s symbol, which we

convert to a string.

This string isn’t as plain as we’d like. Sometimes there are spaces in

the string, and sometimes Scala inserts ‘$’ signs in the name. If we

replace the ‘$’ signs with spaces using replace, we can then use

Scala’s split method to break the string across spaces. The result is a

sequence of strings, and by calling last we get the end element which

is the actual name of the class.

268 • Atomic Scala • A Little Reflection

Now any class we combine with the Name trait will automatically

include a toString that knows its own name. By passing the this

keyword to className, we pass the current object.

Now have a reusable tool to combine with any class and automatically

add a toString method:

1 // Solid.scala

2 import com.atomicscala.AtomicTest._

3 import com.atomicscala.Name
4

5 class Solid extends Name

6 val s = new Solid

7 s is "Solid"
8

9 class Solid2(val size:Int) extends Name {

10 override def toString =

11 s"${super.toString}($size)"

12 }

13 val s2 = new Solid2(47)

14 s2 is "Solid2(47)"

Solid combines Name in the simplest way possible, but Solid2

overrides toString again, calling Name’s version using the super

keyword to get the class name, then adding the size argument to

produce more informative output – just like a case class.

Scala’s reflection API is much more powerful and complex than we’ve

shown here.

Atomic Scala • A Little Reflection • 269

Exercises
Solutions are available at AtomicScala.com.

1. Call println on an instance of a case class. Now combine the case

class with Name and notice the difference. Remember to compile

Name.scala and import it.

2. Can you use reflection on a class that isn’t a case class? Repeat

Exercise 1 using a non-case class.

3. Comment out the code in Name.scala that replaces the $ with

spaces and splits the String, so you see what Scala’s reflection

returns before our modifications. Repeat Exercise 2 using this new

class.

4. In TraitBodies.scala in the Traits atom, we assert that the code on

lines 70-71 creates a class without a type name. Determine if this

is an exact statement.

270 • Atomic Scala • Polymorphism

 Polymorphism
Polymorphism is an ancient Greek term that means “many forms.” In

programming, polymorphism means we perform the same operation

on different types.

Base classes and traits are useful for more than just assembling

classes. If we create a new class using class A along with traits B and

C, we can choose to treat that new class as if it were only an A or only

a B or only a C. For example, if both animals and vehicles can move,

and you mix in a Mobile trait for both of them, you can write a

method that takes a Mobile argument, and that method will

automatically work for both animals and vehicles.

Suppose we want to create a fantasy game. Each game element will

draw itself on the screen based on its location in the game world, and

when two elements are in proximity, they interact. Here’s a rough

draft that uses polymorphism to give you a general idea of how you

can design such a game, although we leave out the vast majority of

implementation details:

1 // Polymorphism.scala

2 import com.atomicscala.AtomicTest._

3 import com.atomicscala.Name
4

5 class Element extends Name {

6 def interact(other:Element) =

7 s"$this interact $other"

8 }
9

10 class Inert extends Element

11 class Wall extends Inert
12

13 trait Material {

14 def resilience:String

Atomic Scala • Polymorphism • 271

15 }

16 trait Wood extends Material {

17 def resilience = "Breakable"

18 }

19 trait Rock extends Material {

20 def resilience = "Hard"

21 }

22 class RockWall extends Wall with Rock

23 class WoodWall extends Wall with Wood
24

25 trait Skill

26 trait Fighting extends Skill {

27 def fight = "Fight!"

28 }

29 trait Digging extends Skill {

30 def dig = "Dig!"

31 }

32 trait Magic extends Skill {

33 def castSpell = "Spell!"

34 }

35 trait Flight extends Skill {

36 def fly = "Fly!"

37 }
38

39 class Character(var player:String="None")

40 extends Element

41 class Fairy extends Character with Magic

42 class Viking extends Character

43 with Fighting

44 class Dwarf extends Character with Digging

45 with Fighting

46 class Wizard extends Character with Magic

47 class Dragon extends Character with Magic

48 with Flight
49

50 val d = new Dragon

51 d.player = "Puff"

272 • Atomic Scala • Polymorphism

52 d.interact(new Wall) is

53 "Dragon interact Wall"
54

55 def battle(fighter:Fighting) =

56 s"$fighter, ${fighter.fight}"

57 battle(new Viking) is "Viking, Fight!"

58 battle(new Dwarf) is "Dwarf, Fight!"

59 battle(new Fairy with Fighting) is

60 "anon, Fight!"
61

62 def fly(flyer:Element with Flight,

63 opponent:Element) =

64 s"$flyer, ${flyer.fly}, " +

65 s"${opponent.interact(flyer)}"
66

67 fly(d, new Fairy) is

68 "Dragon, Fly!, Fairy interact Dragon"

The interact method on line 6 is how one game element interacts with

another when the two are in proximity. interact means something

different depending on the exact types of elements participating in

the interaction, and this is an interesting and challenging design

problem in itself ... which we ignore by simply printing out the names

of the two interacting elements.

Now we create different types of elements and traits, mixing them to

achieve different effects. Note that, just like classes, traits can inherit

from each other.

The Skill trait on line 25 is only used for its name, to classify the traits

that follow it. However, if you later decide that all Skills need common

fields or methods, add those to Skill and they automatically appear in

everything that incorporates it.

At this point, we’re ready to define some characters for players to

actually manipulate. The constructor argument player, on line 39, has

Atomic Scala • Polymorphism • 273

a default argument (see Named & Default Arguments), specified by

the ‘=’ after the argument type and the string "None".

After assembling several different Character types, we create a Dragon

on line 50, and then on line 51 we change player from its default value

of "None" to "Puff". We can do this because player is a var rather than

our usual val, and a var can be changed. Ordinarily we’d stick with val

and use base-class constructor calls (You will make that change in the

exercises).

Line 52 is our first example of polymorphism. Dragon inherits the

interact method from Element, but interact takes an Element

argument – we pass it a Wall. However, Wall ultimately inherits from

Element, so we say that “Wall is an Element” and Scala agrees. The

interact method takes an Element or anything derived from Element.

That’s polymorphism, and it’s powerful because any method you

write is more general. It applies to more types than just the type you

write it for – it also applies to anything that inherits from that type.

This is transparent and safe because Scala guarantees that a derived

class “is a” base class by ensuring that the derived class has (at least)

all the methods of the base class.

Line 55 shows a second example, this time using a trait

polymorphically. The argument fighter happens to be a trait, and this

means any object incorporating that trait can be safely passed into the

fight method. The Fighting trait has only one method: fight, and that’s

all it can access in fighter because nothing else is defined in the

Fighting trait.

Both Viking and Dwarf include the Fighting trait, so they can both be

passed to battle, which again demonstrates polymorphism. Without

polymorphism, you must write specific methods; for example

battle_viking for Viking objects, and battle_dwarf for Dwarf objects.

With polymorphism, you write one method that not only works with

Vikings and Dwarfs, but also with anything else that implements

274 • Atomic Scala • Polymorphism

Fighting, including types you haven’t thought of at the time you write

battle. Polymorphism is a tool that allows you to write less code and

make it more reusable.

As an example of “types you haven’t thought of yet,” consider line 59,

in particular the argument passed to battle:

new Fairy with Fighting

The type of the object is created for us, as we write the new

expression! In the expression, we combine the existing Fairy class

with the Fighting trait, which creates a new class, and we

immediately make an instance of that class. We didn’t give the class a

name, so Scala generates one for us: $anon$1 (“anon” is short for

“anonymous”) and when Element’s id encounters this, it produces the

‘1’.

This technique of putting together types just as you need them also

works for arguments, as you see on line 62. The first argument, flyer,

mixes Element with Flight. Because we included id in the Skill mix, fly

will work anyway for flyer.id and flyer.fly, but for

opponent.interact(flyer) to work, flyer must actually be an Element. By

saying Element with Flight, Scala will ensure that any argument you

pass as a flyer includes both Element and Flight, so fly can properly

call everything it must.

A question often arises: “How did you know to do it this way?” This is

the design challenge. Once you decide what you want to build, there

are different ways to assemble it. So far, you’ve seen how to create a

base class and add new methods during inheritance, or mix in

functionality using traits. These are design decisions you make using

a combination of experience and observing how your system is used.

You decide what makes sense, based on the requirements of your

system. That’s the design process.

Atomic Scala • Polymorphism • 275

The pragmatic approach is not to assume that you get it right the first

time. Instead, write something, get it working, and then see how it

looks. As you learn, “refactor” your code until the design feels right

(don’t settle for the first thing that works).

Exercises
Solutions are available at AtomicScala.com.

1. Write code that verifies the animals/vehicles description in the

second paragraph of this atom.

2. Add a draw method to Element in Polymorphism.scala. Satisfy the

following tests:

val e = new Element

e.draw is "Drawing the element"

val in = new Inert

in.draw is "Inert drawing!"

val wall = new Wall

wall.draw is "Inert drawing!"

3. Building on the previous exercise, add a new draw method to Wall

(that is, don’t use the Inert draw method). Satisfy the following

test:

val wall = new Wall

wall.draw is "Don't draw on the wall!"

4. In the definition of Character on line 39 of Polymorphism.scala, we

use a var for the player, and then change the player on line 51. Use

a val to accomplish the same thing. Satisfy the following test:

class Character(val player:String="None")

 extends Element

// Change the next line

class Dragon extends Character

val d = new Dragon("Puff")

d.player is "Puff"

http://www.atomicscala.com/

276 • Atomic Scala • Polymorphism

5. Create a class Seed with subclasses Tomato, Corn and Zucchini.

Override toString in each subclass to indicate the type of plant.

Create a class Garden which takes as its constructor argument any

number of Seeds. Store the Seeds in a Vector inside Garden.

Override Garden’s toString to produce the string representation of

this Vector, formatted with the mkString method. Satisfy the

following test:

val garden = new Garden(

new Tomato, new Corn, new Zucchini)

garden is "Tomato, Corn, Zucchini"

6. Create a trait Shape with a method draw that returns a String.

Create concrete Ellipse and Rectangle subclasses of Shape. Create a

Circle subclass of Ellipse and a Square subclass of Rectangle.

Create a Drawing class with a constructor that takes any number

of Shape objects, and stores it internally in a Vector. Create draw

methods for all these classes and an additional toString for

Drawing. Satisfy the following tests:

val drawing = new Drawing(

 new Rectangle, new Square,

 new Ellipse, new Circle)

drawing.draw is "Vector(Rectangle," +

 " Square, Ellipse, Circle)"

drawing is "Rectangle, Square," +

 " Ellipse, Circle"

Atomic Scala • Composition • 277

 Composition
Suppose you are modeling a house. You might start like this:

1 // House1.scala
2

3 trait Building

4 trait Kitchen

5 trait House extends Building with Kitchen

That reads nicely: “A house is a building with a kitchen.” But what if

your house includes an additional space for another person to live and

cook? Now you have two kitchens, and you can’t inherit the same

trait twice (even if you put a type parameter on that trait).

Inheritance describes an is-a relationship, and it’s often helpful to

read the description aloud: “A house is a building.” That sounds right,

doesn’t it? When the is-a relationship makes sense, inheritance

usually makes sense.

A trait represents a capability, so we say it is a has-ability relationship.

So we might read, “A house has … kitchen … ability.” It almost makes

sense, but it’s rather forced.

The most fundamental relationship is not inheritance, nor traits, but

composition. Composition is often overlooked because it seems so

simple: you just put something inside. Composition is a has-a

relationship, and it solves our problem because we can say “The

house has two kitchens:”

1 // House2.scala
2

3 trait Building

4 trait Kitchen

278 • Atomic Scala • Composition

5

6 trait House extends Building {

7 val kitchen1:Kitchen

8 val kitchen2:Kitchen

9 }

If you want to allow any number of kitchens, compose with a

collection:

1 // House3.scala
2

3 trait Building

4 trait Kitchen
5

6 trait House extends Building {

7 val kitchens:Vector[Kitchen]

8 }

We spend time and effort understanding inheritance and mixins

because they are more complex, but this often gives the impression

that they are somehow more important. On the contrary:

Prefer composition to inheritance

Composition produces simpler designs and implementations. This

doesn’t mean you should try to avoid inheritance or mixins. Not at all.

It’s just that we tend to get bound up in those more complicated

relationships. The maxim “prefer composition to inheritance” is a

reminder to step back, look at your design, and wonder whether to

simplify things using composition. The ultimate goal is to properly

apply your tools and produce a good design.

A kitchen has the ability to store food and utensils, cook food, and

clean utensils. Abilities translate into traits:

Atomic Scala • Composition • 279

1 // House4.scala
2

3 trait Building

4 trait Food

5 trait Utensil

6 trait Store[T]

7 trait Cook[T]

8 trait Clean[T]

9 trait Kitchen extends Store[Food]

10 with Cook[Food] with Clean[Utensil]

11 // Oops. Can't do this:

12 // with Store[Utensil]

13 // with Clean[Food]
14

15 trait House extends Building {

16 val kitchens:Vector[Kitchen]

17 }

Even though we’d like to store utensils and clean food, this approach

doesn’t allow it because you can’t inherit a trait twice. Once you have

an ability, adding that ability a second time doesn’t mean anything.

Once again, we “prefer composition to inheritance.” What if it’s not

the kitchen that has these abilities, but the items themselves? This is

not to say that a vegetable automatically washes itself, but rather that

a vegetable has the ability to be washed. The kitchen does have

storage and a sink, but those are general-purpose and not dedicated to

either food or utensils (You can also wash shoes, babies and small

dogs in the sink). The model becomes:

1 // House5.scala
2

3 trait Building

4 trait Room

5 trait Storage

6 trait Sink

280 • Atomic Scala • Composition

7 trait Store[T]

8 trait Cook[T]

9 trait Clean[T]

10 trait Food extends Store[Food]

11 with Clean[Food] with Cook[Food]

12 trait Utensil extends Store[Utensil]

13 with Clean[Utensil] with Cook[Utensil]
14

15 trait Kitchen extends Room {

16 val storage:Storage

17 val sinks:Vector[Sink]

18 val food:Food

19 val utensils:Vector[Utensil]

20 }
21

22 trait House extends Building {

23 val kitchens:Vector[Kitchen]

24 }

We’ve added another is-a relationship here: a Kitchen is a Room. A

kitchen can contain several rooms, but the “roomness” of a kitchen is

fundamental.

To be honest, our first impulse was to say, “A kitchen has the ability

to store things,” thus storage is an ability and we should inherit

Kitchen from Storage. Further thought and another application of

“prefer composition to inheritance” showed that “a kitchen has

storage” not only makes more sense, it’s more flexible. Note that line

17 allows the kitchen to have more than one sink – a good test is

whether composition makes it easy to have multiple items (and

different kinds). When inheriting a trait, you can’t represent more

than one.

Exercises
Solutions are available at AtomicScala.com.

http://www.atomicscala.com/

Atomic Scala • Composition • 281

1. Create a trait Mobility with a String method mobility that returns a

description of the type of mobility. Create similar traits for Vision

and Manipulator. Inherit a class Robot that takes mobility, vision,

and manipulator arguments, and overrides toString. Satisfy the

following tests:

val walker = new Robot("Legs",

 "Visible Spectrum", "Magnet")

walker is

 "Legs, Visible Spectrum, Magnet"

val crawler = new Robot("Treads",

 "Infrared", "Claw")

crawler is "Treads, Infrared, Claw"

val arial = new Robot("Propeller",

 "UV", "None")

arial is "Propeller, UV, None"

2. Start with your solution to Exercise 1. Turn the traits into case

classes. Make those classes the arguments to class Robot. Satisfy

the following tests:

val walker = new Robot(

 Mobility("Legs"),

 Vision("Visible Spectrum"),

 Manipulator("Magnet"))

walker is "Mobility(Legs), " +

 "Vision(Visible Spectrum)," +

 " Manipulator(Magnet)"

val crawler = new Robot(

 Mobility("Treads"),

 Vision("Infrared"),

 Manipulator("Claw"))

crawler is "Mobility(Treads)," +

 " Vision(Infrared), " +

 "Manipulator(Claw)"

282 • Atomic Scala • Composition

val arial = new Robot(

 Mobility("Propeller"),

 Vision("UV"),

 Manipulator("None"))

arial is "Mobility(Propeller)," +

 " Vision(UV), Manipulator(None)"

3. Start with your solution for Exercise 2. Change the arguments for

Robot to allow more than one ability. Use mkString in your

overridden toString. Satisfy the following tests:

val bot = new Robot(

 Vector(

 Mobility("Propeller"),

 Mobility("Legs")),

 Vector(

 Vision("UV"),

 Vision("Visible Spectrum")),

 Vector(

 Manipulator("Magnet"),

 Manipulator("Claw"))

)

bot is "Mobility(Propeller)," +

" Mobility(Legs) | Vision(UV)," +

" Vision(Visible Spectrum) | " +

"Manipulator(Magnet), " +

"Manipulator(Claw)"

4. Modify your solution for Exercise 3 so the case classes inherit from

a trait Ability, and change Robot to take a single Vector[Ability].

Satisfy the following tests:

val bot = new Robot(

 Vector(Mobility("Propeller"),

 Mobility("Legs"),

 Vision("UV"),

 Vision("Visible Spectrum"),

Atomic Scala • Composition • 283

 Manipulator("Magnet"),

 Manipulator("Claw"))

)

bot is "Mobility(Propeller), " +

"Mobility(Legs), Vision(UV), " +

"Vision(Visible Spectrum), " +

"Manipulator(Magnet), " +

"Manipulator(Claw)"

5. Modify your solution for Exercise 3 to implement a “builder”

approach. Robot has no constructor arguments, but instead has

methods to addMobility, addVision and addManipulator. Satisfy

the following tests:

val bot = new Robot

bot.addMobility(

 Mobility("Propeller"))

bot.addMobility(

 Mobility("Legs"))

bot.addVision(

 Vision("UV"))

bot.addVision(Vision(

 "Visible Spectrum"))

bot.addManipulator(

 Manipulator("Magnet"))

bot.addManipulator(

 Manipulator("Claw"))

bot is "Mobility(Propeller)," +

" Mobility(Legs) | Vision(UV)," +

" Vision(Visible Spectrum) | " +

"Manipulator(Magnet)," +

" Manipulator(Claw)"

6. Modify your solution for Exercise 5 to turn the “add” methods into

overloaded ‘+’ operators. For chaining, you must return this from

284 • Atomic Scala • Composition

each operator. Compare all the solutions for this atom. Satisfy the

following tests:

val bot = new Robot +

 Mobility("Propeller") +

 Mobility("Legs") +

 Vision("UV") +

 Vision("Visible Spectrum") +

 Manipulator("Magnet") +

 Manipulator("Claw")

bot is "Mobility(Propeller)," +

" Mobility(Legs) | Vision(UV)," +

" Vision(Visible Spectrum) |" +

" Manipulator(Magnet)," +

" Manipulator(Claw)"

Atomic Scala • Using Traits • 285

 Using Traits
Scala enables you to partition your model into appropriate pieces,

whereas some languages force you into awkward abstractions. Traits

(and the mixins they enable) might be the most powerful of these

tools. Traits not only allow elegant and meaningful syntax, they

prevent code duplication (and the associated bloat and maintenance

headaches). So:

 Prefer traits to more concrete types (more abstract == more

flexible)

 Divide models into independent pieces

 Delay concreteness

The primary difference between traits and abstract classes is that

traits cannot have constructor arguments (although they can contain

constructor expressions within the trait body). This makes sense

because a trait is more of a “capability” than it is a physical thing – a

trait is designed for reuse rather than instantiation. In this example,

the Aerobic trait calculates whether someone is exercising in the

aerobic zone, while Activity describes what they are doing:

1 // AerobicExercise.scala

2 import com.atomicscala.AtomicTest._
3

4 trait Aerobic {

5 val age:Int

6 def minAerobic = .5 * (220 - age)

7 def isAerobic(heartRate:Int) =

8 heartRate >= minAerobic

9 }
10

286 • Atomic Scala • Using Traits

11 trait Activity {

12 val action:String

13 def go:String

14 }
15

16 class Person(val age:Int)
17

18 class Exerciser(age:Int,

19 val action:String = "Running",

20 val go:String = "Run!") extends

21 Person(age) with Activity with Aerobic
22

23 val bob = new Exerciser(44)

24 bob.isAerobic(180) is true

25 bob.isAerobic(80) is false

26 bob.minAerobic is 88.0

Traits combine their functionality with another object, as Exerciser

combines Aerobic and Activity with a Person. Note how the age field

in Person satisfies the abstract age field in Aerobic. The definitions of

action and go on lines 19-20 must be vals (with the same names as the

fields in Activity) to make them fields in the resulting object, and to

thus satisfy the requirements from Activity.

Exercises
Solutions are available at AtomicScala.com.

1. Create a trait WIFI that reports a status and has an address. Create

a class Camera, and then another class WIFICamera that uses both

the Camera class and WIFI trait. Satisfy the following tests:

val webcam = new WIFICamera

webcam.showImage is "Showing video"

webcam.address is "192.168.0.200"

webcam.reportStatus is "working"

http://www.atomicscala.com/

Atomic Scala • Using Traits • 287

2. Create a trait Connections that tells how many connected users

there are and limits the number of connections to five. Satisfy the

following tests:

val c = new Object with Connections

c.maxConnections is 5

c.connect(true) is true

c.connected is 1

for(i <- 0 to 3)

 c.connect(true) is true

c.connect(true) is false

c.connect(false) is true

c.connected is 4

for(i <- 0 to 3)

 c.connect(false) is true

c.connected is 0

c.connect(false) is false

3. Using the Connections trait from Exercise 2, create a WIFICamera

class that limits connections to five. Did you have to create any

additional classes or methods? Satisfy the following tests:

val c2 = new WIFICamera with Connections

c2.maxConnections is 5

c2.connect(true) is true

c2.connected is 1

c2.connect(false) is true

c2.connected is 0

c2.connect(false) is false

288 • Atomic Scala • Using Traits

4. Create a new trait ArtPeriod, showing the art era associated with

the creation year. Implement it for the following dates, ignoring

potential lack of historical accuracy, and satisfy the following tests:

// From wikipedia.org/wiki/Art_periods

// Pre-Renaissance: before 1300

// Renaissance: 1300-1599

// Baroque: 1600-1699

// Late Baroque: 1700-1789

// Romanticism: 1790-1880

// Modern: 1881-1970

// Contemporary: after 1971

val art = new ArtPeriod

art.period (1400) is "Renaissance"

art.period(1650) is "Baroque"

art.period(1279) is "Pre-Renaissance"

5. Create a class Painting by adding in the trait ArtPeriod, passing the

year into the Painting constructor. Satisfy the following test:

val painting =

 new Painting("The Starry Night", 1889)

painting.period is "Modern"

Atomic Scala • Tagging Traits & Case Objects • 289

 Tagging Traits & Case
Objects
A tagging trait groups classes or objects together. The following

example is an alternative to the approach in Enumerations. It has

benefits and drawbacks compared to that technique – for example,

there’s no automatic way to iterate through all the types as there is

with enumerations (solved by defining values on line 9):

1 // TaggingTrait.scala

2 import com.atomicscala.AtomicTest._
3

4 sealed trait Color

5 case object Red extends Color

6 case object Green extends Color

7 case object Blue extends Color

8 object Color {

9 val values = Vector(Red, Green, Blue)

10 }
11

12 def display(c:Color) = c match {

13 case Red => s"It's $c"

14 case Green => s"It's $c"

15 case Blue => s"It's $c"

16 }
17

18 Color.values.map(display) is

19 "Vector(It's Red, It's Green, It's Blue)"

The hallmark of a tagging trait (Color, in this case) is that it only exists

to collect types under a common name, thus it typically has no fields

or methods. The sealed keyword on line 4 tells Scala “there are no

subtypes of Color other than the ones you see here” (all subtypes of a

290 • Atomic Scala • Tagging Traits & Case Objects

sealed class must live in the same source file). Scala warns you that a

“match may not be exhaustive” if you don’t cover all the cases – try

commenting out one of lines 13-15 to see this.

A case object is like a case class except it produces an object instead

of a class. You get pattern-matching benefits (lines 13-15) and nice

output when you convert a case object to a String (line 19).

Note that the argument to display is the tagging trait Color. We can

refer directly to any of the instances of the case objects (lines 13-15).

The values field allows iteration through all the Colors; you see it used

on line 18 (since display only takes a single argument, we use the

abbreviated form – introduced in Brevity – of the map argument). The

problem with this approach (solved by Enumerations) is that someone

might edit this file and add a new type of Color but forget to update

values.

Exercises
Solutions are available at AtomicScala.com.

1. Add “Purple” to TaggingTrait.scala. Don’t add to the match

expression. What happens?

2. Implement Color as an Enumeration called EnumColor for

comparison. Satisfy the following tests:

EnumColor.Red is "Red"

EnumColor.Blue is "Blue"

EnumColor.Green is "Green"

3. Add another Red to EnumColor. What happens?

4. Add another Red to the tagging trait Color. What happens?

Atomic Scala • Type Parameter Constraints • 291

 Type Parameter
Constraints
Let’s revisit Enumerations. What if you’d like your enumeration to be

a subtype of a trait? If this were a normal class you’d just add the trait

to the list of base types during inheritance, but with enumerations

you must create a new Value type by inheriting from Val. This

example shows parameterized types with traits, and introduces type

constraints, which allow you to impose conditions on type

parameters:

1 // Resilience.scala

2 import com.atomicscala.AtomicTest._
3

4 trait Resilience
5

6 object Bounciness extends Enumeration {

7 case class _Val() extends Val

8 with Resilience

9 type Bounciness = _Val

10 val level1, level2, level3 = _Val()

11 }

12 import Bounciness._
13

14 object Flexibility extends Enumeration {

15 case class _Val() extends Val

16 with Resilience

17 type Flexibility = _Val

18 val type1, type2, type3 = _Val()

19 }

20 import Flexibility._
21

292 • Atomic Scala • Type Parameter Constraints

22 trait Spring[R <: Resilience] {

23 val res:R

24 }
25

26 case class BouncingBall(res:Bounciness)

27 extends Spring[Bounciness]
28

29 BouncingBall(level2) is

30 "BouncingBall(level2)"
31

32 case class FlexingWall(res:Flexibility)

33 extends Spring[Flexibility]
34

35 FlexingWall(type3) is "FlexingWall(type3)"

Here, the tagging trait is Resilience, and in order that the enumeration

instances of Bounciness and Flexibility be subtypes of Resilience, each

Enumeration creates a nested subtype of Val. Note that both the

enumeration instances and the type alias must be of the new subtype

_Val.

Lines 22-24 show a trait with a type parameter R. Now, if you say trait

Spring[R]{}, Scala will accept it but there’s nothing much to do with R

except hold it (contain it); thus container types can be quite flexible

because they don’t particularly care what they hold. However, if you

actually want to do something with R – say, call a method – then you

must somehow determine that R is capable, that it has that method

available. You must constrain R using bounds.

You’re telling Scala, “I want to do something particular to R, so R must

follow these rules.” One of the most basic rules is inheritance,

expressed by the <: symbol that you see on line 22. Here, it says, “R

must be of type Resilience or something inherited from Resilience.”

Equivalently, we say that Resilience is the upper bound for R.

Atomic Scala • Type Parameter Constraints • 293

Here, we’re only using R to declare the field res on line 23 so it’s of

type R. But because we know R is of type Resilience, we can also

access any other fields or call methods that happen to be part of

Resilience. Without the constraint, we can’t make any assumptions

about R.

Our ultimate results here are almost trivial, and just demonstrations:

BouncingBall and FlexingWall each extend Spring with their own

subtype of Resilience. Their res field is satisfied by the res argument

of the case class, but that field is a different subtype in each case.

Here’s a slightly more interesting example that uses type constraints

to call a method:

1 // Constraint.scala

2 import com.atomicscala.AtomicTest._
3

4 class WithF {

5 def f(n:Int) = n * 11

6 }
7

8 class CallF[T <: WithF](t:T) {

9 def g(n:Int) = t.f(n)

10 }
11

12 new CallF(new WithF).g(2) is 22
13

14 new CallF(new WithF {

15 override def f(n:Int) = n * 7

16 }).g(2) is 14

The only reason it’s possible to call f inside CallF is that the type is

constrained to be WithF or a subclass of WithF. On line 12 we pass an

instance of WithF, but on lines 14-16 you see a new trick: It’s possible

to make an unnamed subclass of WithF inline, by following the new

294 • Atomic Scala • Type Parameter Constraints

WithF with curly braces containing the body of the inherited class.

Line 15 overrides f to give it a new meaning.

Type parameter constraints can be much more complex than what

you see here; it’s an algebra of its own that we won’t delve into in this

book. But you’ll see constraints in code so it’s good to start getting

comfortable with the idea.

After seeing type inference, you might wonder why Scala can’t also

infer type constraints rather than forcing the programmer to write

them out. This should eventually be possible in programming

languages (and such languages may already exist), but it’s not

something we’ve seen yet in mainstream languages because it’s a

hard problem to solve (however, at one point, type inference seemed

too difficult). One could also make the argument that we must see the

type constraints written out in order to understand how to use

something; perhaps when type constraint inference becomes

available we might change our minds about that.

Exercises
Solutions are available at AtomicScala.com.

1. Modify House5.scala from Composition by adding Enumerations

for different types of food and utensils. Use type constraints for

Clean and Store as shown in Resilience.scala.

2. Modify Constraint.scala so CallF is a method rather than a class.

3. Create a three-level inheritance hierarchy Base, Derived and Most.

Create three methods f1, f2 and f3 that each take a single object

argument, constrained to a different class in the hierarchy. Try

passing all different objects to all different methods.

Atomic Scala • Building Systems with Traits • 295

 Building Systems with
Traits
Because traits are so independent and low-impact, you can break your

problem down into pieces that are as numerous and small as

necessary. Here’s a model of the various ingredients that make up

different kinds of ice-cream treats. We use the Enumeration subtype

technique along with the type constraints introduced in the previous

atom:

1 // SodaFountain.scala

2 package sodafountain
3

4 object Quantity extends Enumeration {

5 type Quantity = Value

6 val None, Small, Regular,

7 Extra, Super = Value

8 }

9 import Quantity._
10

11 object Holder extends Enumeration {

12 type Holder = Value

13 val Bowl, Cup, Cone, WaffleCone = Value

14 }

15 import Holder._
16

17 trait Flavor
18

19 object Syrup extends Enumeration {

20 case class _Val() extends Val

21 with Flavor

22 type Syrup = _Val

23 val Chocolate, HotFudge,

24 Butterscotch, Caramel = _Val()

296 • Atomic Scala • Building Systems with Traits

25 }

26 import Syrup._
27

28 object IceCream extends Enumeration {

29 case class _Val() extends Val

30 with Flavor

31 type IceCream = _Val

32 val Chocolate, Vanilla, Strawberry,

33 Coffee, MochaFudge, RumRaisin,

34 ButterPecan = _Val()

35 }

36 import IceCream._
37

38 object Sprinkle extends Enumeration {

39 case class _Val() extends Val

40 with Flavor

41 type Sprinkle = _Val

42 val None, Chocolate, Rainbow = _Val()

43 }

44 import Sprinkle._
45

46 trait Amount {

47 val quant:Quantity

48 }
49

50 trait Taste[F <: Flavor] extends Amount {

51 val flavor:F

52 }
53

54 case class

55 Scoop(quant:Quantity, flavor:IceCream)

56 extends Taste[IceCream]
57

58 trait Topping
59

Atomic Scala • Building Systems with Traits • 297

60 case class

61 Sprinkles(quant:Quantity, flavor:Sprinkle)

62 extends Taste[Sprinkle] with Topping
63

64 case class

65 Sauce(quant:Quantity, flavor:Syrup)

66 extends Taste[Syrup] with Topping
67

68 case class WhippedCream(quant:Quantity)

69 extends Amount with Topping
70

71 case class Nuts(quant:Quantity)

72 extends Amount with Topping
73

74 class Cherry extends Topping

Lines 46-52 create the concept of a Taste as something that has an

Amount and a Flavor. At first you might wonder why we don’t just go

straight to creating Taste without creating Amount as a separate trait,

and indeed this makes sense until you see WhippedCream and Nuts,

which each have an Amount but no need to vary flavors.

Note that Flavor and Topping are both tagging traits.

As you analyze this code, keep in mind that we are trying to:

 Create a set of types that fit together in a sensible way.

 Configure it so the compiler catches any misuse of types.

 Eliminate duplicate code.

The last point is worth further consideration. A basic maxim in

writing is “shorter sentences are better.” Almost anything you do that

shortens a sentence will also make it better (simpler, clearer, more

active voice, etc.). The parallel maxim in programming is “eliminate

code duplication.” There’s even an acronym: DRY, for don’t repeat

298 • Atomic Scala • Building Systems with Traits

yourself. And consider Methods, perhaps the most basic tool in

programming: they capture common code.

The biggest problem with code duplication is forking: you end up with

more than one piece of code that does the same thing. Then, when

you need to change that functionality – as you always will – you must

remember to change it everywhere. And you inevitably forget. You

spend time chasing down the bug, and instead of rewriting it to

eliminate the code duplication, you just “fix” the duplication. Because

you, or your management, is “in a hurry.” Or because you are the

person who wrote the duplicate code in the first place and you don’t

think it’s so bad.

Code duplication is the most elementary programming offense. If you

discover yourself doing it, take the time and effort to root it out. As

you focus on it, over time you’ll start doing it less and less (and

become a better programmer in the process). If you discover someone

else doing it, gently point it out to them. If they don’t seem to care,

see if you can talk them into caring. If you can’t do that, then

someone needs a different job (either you or them). Otherwise, your

life devolves into frustration.

Compile the above code using the shell command:

scalac SodaFountain.scala

Now we make some ice cream confections:

1 // MaltShoppe.scala

2 import com.atomicscala.AtomicTest._

3 import sodafountain._

4 import Quantity._

5 import Holder._

6 import Syrup._

7 import IceCream._

Atomic Scala • Building Systems with Traits • 299

8 import Sprinkle._
9

10 case class

11 Scoops(holder:Holder, scoops:Scoop*)
12

13 val iceCreamCone = Scoops(

14 WaffleCone,

15 Scoop(Extra, MochaFudge),

16 Scoop(Extra, ButterPecan),

17 Scoop(Extra, IceCream.Chocolate))
18

19 iceCreamCone is "Scoops(WaffleCone," +

20 "WrappedArray(Scoop(Extra,MochaFudge), " +

21 "Scoop(Extra,ButterPecan), " +

22 "Scoop(Extra,Chocolate)))"
23

24 case class MadeToOrder(

25 holder:Holder,

26 scoops:Seq[Scoop],

27 toppings:Seq[Topping])
28

29 val iceCreamDish = MadeToOrder(

30 Bowl,

31 Seq(

32 Scoop(Regular, Strawberry),

33 Scoop(Regular, ButterPecan)),

34 Seq[Topping]())
35

36 iceCreamDish is "MadeToOrder(Bowl," +

37 "List(Scoop(Regular,Strawberry), " +

38 "Scoop(Regular,ButterPecan)),List())"
39

40 case class Sundae(

41 sauce:Sauce,

42 sprinkles:Sprinkles,

43 whipped:WhippedCream,

44 nuts:Nuts,

300 • Atomic Scala • Building Systems with Traits

45 scoops:Scoop*) {

46 val holder:Holder = Bowl

47 }
48

49 val hotFudgeSundae = Sundae(

50 Sauce(Regular, HotFudge),

51 Sprinkles(Regular, Sprinkle.Chocolate),

52 WhippedCream(Regular), Nuts(Regular),

53 Scoop(Regular, Coffee),

54 Scoop(Regular, RumRaisin))
55

56 hotFudgeSundae is "Sundae(" +

57 "Sauce(Regular,HotFudge)," +

58 "Sprinkles(Regular,Chocolate)," +

59 "WhippedCream(Regular),Nuts(Regular)," +

60 "WrappedArray(Scoop(Regular,Coffee), " +

61 "Scoop(Regular,RumRaisin)))"

Scoops is a basic implementation that allows you to create a cone or

dish of ice cream. MadeToOrder adds possibilities but is still generic in

that it allows any Seq[Topping], while Sundae is quite specific in how

it describes what a sundae means.

You’ll see in the exercises that there are numerous ways to assemble

traits and classes into a system. Your final design depends on what

works best for you – and you’ll find that you don’t usually discover

“best” (or even “good enough”) on your first try, so it’s important to

keep your structures flexible to easily try new approaches. This

flexibility is the deeper part of good design.

Exercises
Solutions are available at AtomicScala.com.

http://www.atomicscala.com/

Atomic Scala • Building Systems with Traits • 301

1. Rewrite Coffee.scala from Constructors using traits. Satisfy the

following tests:

Coffee(Single, Caf, Here, Skim, Choc) is

 "Coffee(Single,Caf,Here,Skim,Choc)"

Coffee(Double, Caf,

 Here, NoMilk, NoFlavor) is

 "Coffee(Double,Caf,Here,NoMilk,NoFlavor)"

Coffee(Double,HalfCaf,ToGo,Skim,Choc) is

 "Coffee(Double,HalfCaf,ToGo,Skim,Choc)"

2. Assume a latte is a coffee with milk. Create a new class Latte.

Simplify the Milk trait to remove NoMilk. Coffee should no longer

take Milk as a class argument. Did you implement Coffee as a

trait? Why or why not? Satisfy the following tests:

val latte = new Latte(Single, Caf,

 Here, Skim)

latte is "Latte(Single,Caf,Here,Skim)"

val usual = new Coffee(Double, Caf, Here)

usual is "Coffee(Double,Caf,Here)"

3. A mocha is a variant of a latte, with chocolate. Satisfy the

following tests:

val mocha = new Mocha(Double,Caf,ToGo,Skim)

mocha is "Mocha(Double,Caf,ToGo,Skim,Choc)"

4. Import sodafountain, and add a Container with Pint, Quart and

HalfGallon. Create a TakeHome class with arguments of type

Container and Flavor. Satisfy the following tests:

TakeHome(Pint, Chocolate) is

 "TakeHome(Pint,Chocolate)"

TakeHome(Quart, Strawberry) is

 "TakeHome(Quart,Strawberry)"

TakeHome(HalfGallon, Vanilla) is

 "TakeHome(HalfGallon,Vanilla)"

302 • Atomic Scala • Sequences

 Sequences
In this book we’ve used Vectors to hold objects. A Vector is a collection

– as the name indicates, it collects objects. More specifically, a Vector

is a sequence, and we now look at another basic sequence, the List. You

use these without importing anything, as if they are native types in

the language.

We’ve only used the most basic functionality of Vector, placing

objects in Vectors and stepping through them with for loops.

However, Vector has many powerful built-in operations. Here are

several of the simpler ones, with explanations embedded in the code

as comments. Vector and List inherit from Seq (“sequence”) and thus

have operations in common, so the method testSeq works on both.

Note that testSeq is written to a specific sequence of values. Also,

Scala allows us to call testSeq prior to the point where it is defined:

1 // SeqOperations.scala

2 import com.atomicscala.AtomicTest._
3

4 testSeq(Vector(1, 7, 22, 11, 17))

5 testSeq(List(1, 7, 22, 11, 17))
6

7 def testSeq(s:Seq[Int]) = {

8 // Is there anything inside?

9 s.isEmpty is false

10 // How many elements inside?

11 s.length is 5
12

13 // Appending to the end:

14 s :+ 99 is Seq(1, 7, 22, 11, 17, 99)

15 // Inserting at the beginning:

16 47 +: s is Seq(47, 1, 7, 22, 11, 17)
17

18 // Get the first element:

Atomic Scala • Sequences • 303

19 s.head is 1

20 // Get the rest after the first:

21 s.tail is Seq(7, 22, 11, 17)

22 // Get the last element:

23 s.last is 17

24 // Get all elements after the 3rd:

25 s.drop(3) is Seq(11, 17)

26 // Get all elements except last 3:

27 s.dropRight(3) is Seq(1, 7)

28 // Get first 3 elements:

29 s.take(3) is Seq(1, 7, 22)

30 // Get final 3 elements:

31 s.takeRight(3) is Seq(22, 11, 17)

32 // Section from indices 2 up to 5:

33 s.slice(2,5) is Seq(22, 11, 17)
34

35 // Get value at location 3:

36 s(3) is 11

37 // See if it contains a value:

38 s.contains(22) is true

39 s.indexOf(22) is 2

40 // Replace value at location 3:

41 s.updated(3, 16) is

42 Seq(1, 7, 22, 16, 17)

43 // Remove location 3:

44 s.patch(3, Nil, 1) is

45 Seq(1, 7, 22, 17)
46

47 // Append two sequences:

48 val seq2 = s ++ Seq(99, 88)

49 seq2 is Seq(1, 7, 22, 11, 17, 99, 88)

50 // Find the unique values and sort them:

51 s.distinct.sorted is

52 Seq(1, 7, 11, 17, 22)

53 // Reverse the order:

54 s.reverse is

304 • Atomic Scala • Sequences

55 Seq(17, 11, 22, 7, 1)

56 // Find the common elements:

57 s.intersect(seq2) is Seq(1,7,22,11,17)

58 // Smallest and largest values:

59 s.min is 1

60 s.max is 22

61 // Does it begin or end

62 // with these sequences?

63 s.startsWith(Seq(1,7)) is true

64 s.endsWith(Seq(11,17)) is true

65 // Total all the values:

66 s.sum is 58

67 // Multiply together all the values:

68 s.product is 28798

69 // "Set" forces unique values:

70 s.toSet is Set(1, 17, 22, 7, 11)

71 }

Within testSeq we create Seq objects whenever we need a sequence to

work with either a Vector or a List, and Scala adapts. This is another

form of polymorphism.

The difference between List and Vector is subtle, and can be

confusing. List and Vector have all their operations in common, but

some operations are more efficient for a List and others are more

efficient for a Vector. In general, choose Vector, and when you get to

the point where you are tuning your program for speed, there are

special tools (profilers) to tell you where your bottlenecks are (answer:

never where you think).

Exercises
Solutions are available at AtomicScala.com.

1. Create a case class that represents a Person in an address book,

complete with name and email address. Satisfy the following tests:

http://www.atomicscala.com/

Atomic Scala • Sequences • 305

val p = Person("John", "Smith",

 "john@smith.com")

p.fullName is "John Smith"

p.first is "John"

p.email is "john@smith.com"

2. Create three Person objects and put them in a Vector named

people. Satisfy the following test: people.size is 3

3. Sort the Vector of Person objects by last name to produce a sorted

Vector. Hint: Use sortBy(_.fieldname), where fieldname is the field

that you want to sort by. Satisfy the following tests:

val people = Vector(

Person("Zach","Smith","zach@smith.com"),

Person("Mary", "Add", "mary@add.com"),

Person("Sally", "Taylor",

 "sally@taylor.com"))

val sorted = // call sort here

sorted is "Vector(" +

+ "Person(Mary,Add,mary@add.com)," +

+ "Person(Zach,Smith,zach@smith.com)," +

+ "Person(Sally,Taylor,sally@taylor.com))"

4. Move the email address to a Contact trait, and mix that in to create

a new class Friend. Add Friend objects to a Vector. Sort on the

email address. Satisfy the following (this may require refactoring):

val friends = Vector(

 new Friend(

 "Zach", "Smith", "zach@smith.com"),

 new Friend(

 "Mary", "Add", "mary@add.com"),

 new Friend(

 "Sally","Taylor","sally@taylor.com"))

val sorted = // call sort here

sorted is "Vector(Mary Add, " +

"Sally Taylor, Zach Smith)"

306 • Atomic Scala • Sequences

5. What if you want to sort on a primary field (e.g., last name) and

resolve any “ties” with a secondary field (e.g., first name)? Hint:

sortBy is “stable” so if you sort the list first by the tiebreaker and

then by the primary field, you accomplish the goal. Satisfy:

val friends2 = Vector(

 new Friend(

 "Zach", "Smith", "zach@smith.com"),

 new Friend(

 "Mary", "Add", "mary@add.com"),

 new Friend(

 "Sally","Taylor","sally@taylor.com"),

 new Friend(

 "Mary", "Smith", "mary@smith.com"))

val s1 = // call first sort here

val s2 = // sort s1 here

s2 is "Vector(Mary Add, Mary Smith, " +

"Zach Smith, Sally Taylor)"

6. Sort in a different way than in the previous example. Use the first

name as your primary sort key and the last name as your tie

breaker. Satisfy the following test:

val friends3 = Vector(

 new Friend(

 "Zach", "Smith", "zach@smith.com"),

 new Friend(

 "Mary", "Add", "mary@add.com"),

 new Friend(

 "Sally","Taylor","sally@taylor.com"),

 new Friend(

 "Mary", "Smith", "mary@smith.com"))

val s3 = // call first sort here

val s4 = // sort s1 here

s4 is "Vector(Mary Add, Mary Smith, " +

"Sally Taylor, Zach Smith)"

Atomic Scala • Lists & Recursion • 307

 Lists & Recursion
In the previous atom, every operation that testSeq performed on a

Vector also works with a List. In almost all cases, choose Vector as

your sequence container because it performs most operations in the

most efficient manner. Sometimes Scala chooses a List instead. Here,

for example, if we ask for a Seq, we get a List:

scala> Seq(1,3,5,7)

res0: Seq[Int] = List(1, 3, 5, 7)

Lists are optimized for a special type of operation, called recursion. In

recursion, you operate on the first element of the sequence, and then

call the same method you’re inside (make a recursive call or simply

recurse), passing it the rest of the sequence – that is, the sequence

minus the first element. The recursion ends when you run out of

elements. Here’s a simple example:

1 // RecursivePrint.scala

2 def rPrint(s:Seq[Char]):Unit = {

3 print(s.head)

4 if(s.tail.nonEmpty)

5 rPrint(s.tail) // Recursive call

6 }
7

8 rPrint("Recursion")

The call to head returns the first element, and tail produces the rest of

the sequence minus the first element. With each recursion, the

sequence passed to rPrint gets smaller until nonEmpty becomes false

when there’s nothing left, at which point the recursion ends. The

string passed to rPrint on line 8 automatically becomes a Seq.

Note the explicit return type on line 2, which Scala requires for a

recursive method.

308 • Atomic Scala • Lists & Recursion

Recursion is often used for calculations on a sequence. For example,

when summing a sequence you can avoid a variable (var) by creating

the sum piece-by-piece during the recursion. Here’s a recursive

method that takes a list to sum and an integer to hold the sum:

1 // RecursiveSum.scala

2 import com.atomicscala.AtomicTest._
3

4 def sumIt(toSum:List[Int], sum:Int=0):Int =

5 if(toSum.isEmpty)

6 sum

7 else

8 sumIt(toSum.tail, sum + toSum.head)
9

10 sumIt(List(10, 20, 30, 40, 50)) is 150

The top-level call to sumIt on line 10 uses the default value of zero for

sum. If the list isn’t empty, line 8 adds sum to the head of toSum, then

calls the method again, passing tail as the new list to sum. The

method recurses until it hits the end of the list (becomes empty), then

returns sum. Here’s what happens in detail for the call on line 10:

sumIt is called with the List(10, 20, 30, 40, 50) and a sum of 0. The list

is not empty, so we add sum to the head (10), calculating 0+10 = 10.

sumIt is then called with the List(20, 30, 40, 50) and a sum of 10. The

list is not empty, so we add sum to the head (20), calculating 10+20 =

30.

sumIt is then called with the List(30, 40, 50) and a sum of 30. The list is

not empty, so we add sum to the head (30), calculating 30+30=60.

sumIt is then called with the List(40, 50) and a sum of 60. The list is

not empty, so we add sum to the head (40), calculating 60+40=100.

sumIt is then called with the List(50) and a sum of 100. The list is not

empty, so we add sum to the head (50), calculating 100+50=150.

Atomic Scala • Lists & Recursion • 309

sumIt is then called with an empty list. Because the list is empty, we

return 150.

Before you write a recursive method on a List, consider whether one

might already be available. Scala collections have a built-in sum, so

instead of writing sumIt, you say:

1 // CollectionSums.scala

2 import com.atomicscala.AtomicTest._
3

4 List(10, 20, 30, 40, 50).sum is 150

5 Vector(10, 20, 30, 40, 50).sum is 150

6 Seq(10, 20, 30, 40, 50).sum is 150

7 Set(10, 20, 30, 40, 50, 50, 50).sum is 150

8 (10 to 50 by 10).sum is 150

Recursion can be a little tricky, and it’s only occasionally useful. In

those cases, because a List is built as a head and a tail, it’s ideally

suited for recursion.

Exercises
Solutions are available at AtomicScala.com.

1. Write a recursive method max to find the maximum value in a

List, without using List’s max method. Satisfy the following tests:

val aList = List(10, 20, 45, 15, 30)

max(aList) is 45

2. Add println statements to RecursiveSum.scala to trace what

happens during recursion.

http://www.atomicscala.com/

310 • Atomic Scala • Lists & Recursion

3. In map and reduce, you implemented a method sumIt that used

reduce to do a summation. There, you used a variable argument

list. Reimplement using a List. Compare this to your solution for

Exercise 1, above. Satisfy the following tests:

sumIt(List(1, 2, 3)) is 6

sumIt(List(45, 45, 45, 60)) is 195

4. In Reaching into Java, we used a math library method Frequency to

calculate the frequency of “cat” in a List of animals. Use a recursive

method to do the same thing. Satisfy the following tests:

calcFreq(animalList, "cat") is 4

calcFreq(animalList, "dog") is 1

Atomic Scala • Combining Sequences with zip • 311

 Combining Sequences
with zip
It’s often useful to take two sequences and pair them up; this is called

“zipping” because it mimics the behavior of the zipper on your jacket:

1 // Zipper.scala

2 import com.atomicscala.AtomicTest._
3

4 val left = Vector("a", "b", "c", "d")

5 val right = Vector("q", "r", "s", "t")
6

7 left.zip(right) is

8 "Vector((a,q), (b,r), (c,s), (d,t))"
9

10 left.zip(0 to 4) is

11 "Vector((a,0), (b,1), (c,2), (d,3))"
12

13 left.zipWithIndex is

14 "Vector((a,0), (b,1), (c,2), (d,3))"

On line 7 we combine left with right. The result is a Vector of tuples

pairing each element from left with each element in right.

Line 10 combines left with the Range 0 to 4, also a sequence. What if

you want to put an index on each element in a sequence? There’s a

dedicated method for this, zipWithIndex, shown on line 13.

Here’s a method that puts the numbers as the first tuple element

instead of the second (a clever functional programmer could probably

find a way to do this from the output of zipWithIndex):

1 // IndexWithZip.scala

2 import com.atomicscala.AtomicTest._

312 • Atomic Scala • Combining Sequences with zip

3

4 def number(s:String) =

5 Range(0, s.length).zip(s)
6

7 number("Howdy") is

8 Vector((0,'H'), (1,'o'), (2,'w'),

9 (3,'d'), (4,'y'))

Notice that zipping with a String automatically breaks the String into

its component characters.

We finish with an example that combines zip and map to give you a

taste of what’s possible with functional programming:

1 // ZipMap.scala

2 import com.atomicscala.AtomicTest._
3

4 case class Person(name:String, ID:Int)

5 val names = Vector("Bob", "Jill", "Jim")

6 val IDs = Vector(1731, 9274, 8378)
7

8 names.zip(IDs).map {

9 case (n, id) => Person(n, id)

10 } is "Vector(Person(Bob,1731), " +

11 "Person(Jill,9274), Person(Jim,8378))"

Line 8 uses zip to produce a sequence of name-id tuples, which it then

passes to map. The map method can apply a function, but it can also

apply a match clause (without the need to say match) as seen here.

The case statement unpacks each tuple and passes the values to the

Person constructor. The result is a Vector of initialized objects.

Note the succinctness of the expression on lines 8-10. As you become

fluent in the functional programming style, you’ll write concise

expressions like this, and because you know the built-in methods like

Atomic Scala • Combining Sequences with zip • 313

zip and map are correct, it gives you confidence that the combined

expression is also correct.

Exercises
Solutions are available at AtomicScala.com.

1. Write code to pair people up to do exercises in a programming

seminar. Take the list of attendees and split it into two lists. Use

zip to create the pairs. Satisfy the following tests:

val people = Vector("Sally Smith",

 "Dan Jones", "Tom Brown", "Betsy Blanc",

 "Stormy Morgan", "Hal Goodsen")

val group1 = // fill this in

val group2 = // fill this in

val pairs = // fill this in

pairs is Vector(

 ("Sally Smith","Betsy Blanc"),

 ("Dan Jones","Stormy Morgan"),

 ("Tom Brown","Hal Goodsen"))

2. What happens when the initial list is an odd number, so the

groups split into uneven sizes? Try it.

3. Repeat Exercise 1 using a List instead of a Vector. Did you have to

make any other modifications?

4. Taking a similar approach as ZipMap.scala, modify

IndexWithZip.scala to use the result of zipWithIndex.

314 • Atomic Scala • Sets

 Sets
A Set ensures that it contains only one element of each value, so it

automatically removes duplicates. The most common thing to do with

a Set is to test for membership using the () operator:

1 // Sets.scala

2 import com.atomicscala.AtomicTest._
3

4 val set =

5 Set(1, 1, 2, 3, 9, 9, 4, 22, 11, 7, 6)

6 // No duplicates:

7 set is Set(1, 6, 9, 2, 22, 7, 3, 11, 4)
8

9 // Set membership:

10 set(9) is true

11 set(99) is false
12

13 // Is this set contained within another?

14 Set(1, 6, 9, 2).subsetOf(set) is true
15

16 // Two different versions of set union:

17 set.union(Set(2, 3, 4, 99)) is

18 Set(1, 6, 9, 2, 22, 7, 3, 11, 99, 4)

19 set | Set(2, 3, 4, 99) is

20 Set(1, 6, 9, 2, 22, 7, 3, 11, 99, 4)
21

22 // Set intersection:

23 set & Set(0,1,11,22,87) is Set(1,22,11)

24 set intersect Set(0,1,11,22,87) is

25 Set(1,22,11)
26

27 // Set difference:

28 set &~ Set(0, 1, 11, 22, 87) is

29 Set(6, 9, 2, 7, 3, 4)

30 set -- Set(0, 1, 11, 22, 87) is

Atomic Scala • Sets • 315

31 Set(6, 9, 2, 7, 3, 4)

Many of the operations in Vector and List also show up in Set; here we

only show some that are unique to Set.

Line 7 shows that placing duplicate items into a Set automatically

removes the duplicates. Lines 10 and 11 use the () operator to test for

membership. You can also perform the usual Venn-diagram

operations like checking for subset, union, intersection and difference.

You can either use operators (like &) or their equivalent descriptive

names (like intersect).

If you have a sequence and you want to remove duplicates, use toSet

to convert it to a Set:

1 // RemoveDuplicates.scala

2 import com.atomicscala.AtomicTest._
3

4 val ch = for(i <- 0 to 2) yield 'a' to 'd'

5 ch is "Vector(NumericRange(a, b, c, d), " +

6 "NumericRange(a, b, c, d), " +

7 "NumericRange(a, b, c, d))"
8

9 ch.flatten is "Vector(a, b, c, d, " +

10 "a, b, c, d, a, b, c, d)"
11

12 ch.flatten.toSet is "Set(a, b, c, d)"

The comprehension on line 4 yields three copies of ‘a’ to ‘d’. But

notice lines 5-7, which show that this is actually a Vector holding

three containers rather than just the letters tossed into the Vector.

This issue of producing a container of containers, instead of just a

container of the things you want, happens so often that there’s a

method flatten (for virtually all sequences) to smash everything into a

single-level sequence. Notice the effect on lines 9-10, and that the

316 • Atomic Scala • Sets

result has duplicate entries. Now if we apply toSet, the result is a Set

with no duplicates.

Exercises
Solutions are available at AtomicScala.com.

1. Create sets for fruits, vegetables, and meats. Create a grocery list,

and calculate what percentage of your list is in each category,

including an “other” category determined by not matching any

category. Satisfy the following tests:

val fruits = Set("apple", "orange",

 "banana", "kiwi")

val vegetables = Set("beans", "peas",

 "carrots", "sweet potatoes",

 "asparagus", "spinach")

val meats = Set("beef", "chicken")

val groceryCart = Set("apple",

 "pretzels", "bread", "orange", "beef",

 "beans", "asparagus", "sweet potatoes",

 "spinach", "carrots")

percentMeat(groceryCart) is 10.0

percentFruit(groceryCart) is 20.0

percentVeggies(groceryCart) is 50.0

percentOther(groceryCart) is 20.0

2. Using your solution for Exercise 1, add a set for protein that

includes the set for meats, and an additional set for vegetarian

proteins. Satisfy the following tests:

val vegetarian = Set("kidney beans",

 "black beans", "tofu")

val groceryCart2 = Set("apple",

 "pretzels", "bread", "orange", "beef",

 "beans", "asparagus", "sweet potatoes",

 "kidney beans", "black beans")

percentMeat(groceryCart2) is 10.0

http://www.atomicscala.com/

Atomic Scala • Sets • 317

percentVegetarian(groceryCart2) is 20.0

percentProtein(groceryCart2) is 30.0

3. Write code that produces a container of containers of containers.

Use flatten to reduce your container to a single-level sequence.

Hint: you may want to do this in multiple steps. Satisfy the

following tests:

val box1 = Set("shoes", "clothes")

val box2 = Set("toys", "dishes")

val box3 = Set("toys", "games", "books")

val attic = Set(box1, box2)

val basement = Set(box3)

val house = Set(attic, basement)

Set("shoes", "clothes", "toys",

 "dishes") is attic.flatten

Set("toys", "games", "books") is

 basement.flatten

Set("shoes", "clothes", "toys",

 "dishes", "games", "books") is

/* fill this in -- call flatten */

318 • Atomic Scala • Maps

 Maps
History leaves us with some slightly confusing terminology. The map

operation described in map and reduce is quite different from the Map

class, which connects keys to values. A Map looks up a value when

given a key. You create a Map by giving it a set of key-value pairs,

where each key is separated from its associated value by an arrow, as

seen on lines 4-5:

1 // Maps.scala

2 import com.atomicscala.AtomicTest._
3

4 val constants = Map("Pi" -> 3.141,

5 "e" -> 2.718, "phi" -> 1.618)
6

7 Map(("Pi", 3.141), ("e", 2.718),

8 ("phi", 1.618)) is constants
9

10 Vector(("Pi", 3.141), ("e", 2.718),

11 ("phi", 1.618)).toMap is constants
12

13 // Look up a value from a key:

14 constants("e") is 2.718
15

16 constants.keys is "Set(Pi, e, phi)"
17

18 constants.values is

19 "MapLike(3.141, 2.718, 1.618)"
20

21 // Iterate through key-value pairs:

22 (for(pair <- constants)

23 yield pair.toString) is

24 "List((Pi,3.141), (e,2.718), (phi,1.618))"
25

Atomic Scala • Maps • 319

26 // Unpack during iteration:

27 (for((k,v) <- constants)

28 yield k + ": " + v) is

29 "List(Pi: 3.141, e: 2.718, phi: 1.618)"

Lines 7-8 show that a Map can also be initialized using a comma-

separated list of tuples. Lines 10-11 take this one step further by

creating a Vector of tuples, then converting that to a Map.

With a Map, the () operator is used for lookup (line 14). You can get all

the keys with the keys method and all the values with the values

method. Map’s keys method produces a Set because all keys in a Map

must already be unique (otherwise you’d have ambiguity during a

lookup). MapLike is another sequence, so you can iterate through it

using a for loop, for example.

Iterating through the Map itself produces key-value pairs as tuples, as

on line 22. Because these are tuples, you can unpack them as you

iterate, shown on line 27.

You can store class objects as values in a Map. Here, we create some

pets using the Name trait defined in A Little Reflection:

1 // PetMap.scala

2 import com.atomicscala.AtomicTest._

3 import com.atomicscala.Name
4

5 trait Pet extends Name

6 class Bird extends Pet

7 class Duck extends Bird

8 class Cat extends Pet

9 class Dog extends Pet
10

11 val petMap = Map("Dick" -> new Bird,

12 "Carl" -> new Duck, "Joe" -> new Cat,

13 "Tor" -> new Dog)

320 • Atomic Scala • Maps

14

15 petMap.keys is

16 Set("Dick", "Carl", "Joe", "Tor")

17 petMap.values.toVector is

18 "Vector(Bird, Duck, Cat, Dog)"

It’s also possible to use class objects as keys in a Map, but that’s

trickier and is beyond the scope of this book.

Maps look like simple little databases. Although they are quite limited

compared to a full-featured database, they are nonetheless

remarkably useful (and far more efficient than a database).

Exercises
Solutions are available at AtomicScala.com.

1. Modify Maps.scala so the numbers are keys and the strings are

values.

2. Maps store information using unique keys. An email address can

serve as a unique key. Create a class Name containing firstName

and lastName. Create a Map that associates emailAddress (a

String) with Name. Satisfy the following test:

val m = Map("sally@taylor.com"

 -> Name("Sally","Taylor"))

m("sally@taylor.com") is

 Name("Sally", "Taylor")

3. Adding to your solution for the previous exercise, add Jiminy

Cricket to the existing map, where the email address is

“jiminy@cricket.com.” Satisfy the following tests:

m2("jiminy@cricket.com") is

Name("Jiminy", "Cricket")

m2("sally@taylor.com") is

Name("Sally", "Taylor")

Atomic Scala • Maps • 321

4. Map keys must be distinct values. Create a Map with keys for the

following languages: English, French, Spanish, German, and

Chinese. What happens when you try to add Turkish?

5. Adding to your solution for the previous exercise, try to add a

language that already exists to the Map (for example, French).

Write tests to show what happens.

6. Remove “Spanish” from your Map in Exercise 4. Remove

“jiminy@cricket.com” from the Map in Exercise 3. Write tests to

show the removals.

7. Case classes can be used as keys for Maps. Create a class for

Person(name:String). Create a mapping of Person to String. Remove

the case keyword and see what error message(s) you get. Fix it and

satisfy the following test:

m(Person("Janice")) is "CFO"

322 • Atomic Scala • References & Mutability

 References & Mutability
We’ve said that vars can be changed while vals cannot. This is an

oversimplification. Consider:

1 // ChangingAVal.scala

2 import com.atomicscala.AtomicTest._
3

4 class X(var n:Int)

5 val x = new X(11)

6 x.n is 11

7 x.n = 22

8 x.n is 22

9 // x = new X(22) // Not allowed

Although x is a val, its object can be modified. The val prevents it

from being reassigned to a new object. Similarly:

1 // AnUnchangingVar.scala

2 import com.atomicscala.AtomicTest._
3

4 class Y(val n:Int)

5 var y = new Y(11)

6 y.n is 11

7 // y.n = 22 // Not allowed

8 y = new Y(22)

Even though y is a var, its object cannot be modified. However, y can

be reassigned to a new object.

We’ve talked about identifiers like x and y as if they were objects.

However, they actually just refer to objects – x and y are called

references. One way to see this is to observe that two identifiers can

reference the same object:

Atomic Scala • References & Mutability • 323

1 // References.scala

2 import com.atomicscala.AtomicTest._
3

4 class Z(var n:Int)

5 var z1 = new Z(13)

6 var z2 = z1

7 z2.n is 13

8 z1.n = 97

9 z2.n is 97

When z1 modifies the object, z2 sees the modification. Print z1 and z2

to see that they produce the same address.

Thus, var and val control references rather than objects. A var allows

you to rebind a reference to a different object, and a val prevents you

from doing so.

Mutability
Mutability means an object can change its state. In the examples

above, class X and class Z create mutable objects while class Y creates

immutable objects.

Many classes in the Scala standard library are immutable by default

but also have mutable versions. When you ask for a plain Map, it’s

immutable:

1 // ImmutableMaps.scala

2 import com.atomicscala.AtomicTest._
3

4 val m = Map(5->"five", 6->"six")

5 m(5) is "five"

6 // m(5) = "5ive" // Fails

7 m + (4->"four") // Doesn't change m

8 m is Map(5 -> "five", 6 -> "six")

9 val m2 = m + (4->"four")

324 • Atomic Scala • References & Mutability

10 m2 is

11 Map(5 -> "five", 6 -> "six", 4 -> "four")

Line 4 creates a Map associating Ints with Strings. If we try to replace

a String as on line 6, we see:

value update is not a member of

scala.collection.immutable.Map[Int,String]

An immutable Map doesn’t include an = operator.

Lines 7-8 show that + just creates a new Map that includes both the

old elements and the new one, but doesn’t affect the original Map.

Immutable objects are “read-only.” The only way to add an element is

to create a new Map as in line 9.

Scala’s collections are immutable by default, meaning that if you

don’t explicitly say you want a mutable collection, you won’t get one.

Here’s how you create a mutable Map:

1 // MutableMaps.scala

2 import com.atomicscala.AtomicTest._

3 import collection.mutable.Map
4

5 val m = Map(5 -> "five", 6 -> "six")

6 m(5) is "five"

7 m(5) = "5ive"

8 m(5) is "5ive"

9 m += 4 -> "four"

10 m is

11 Map(5 -> "5ive", 4 -> "four", 6 -> "six")

12 // Can't reassign val m:

13 // m = m + (3->"three")

Notice that, once we import the mutable version of Map, the default

Map becomes the mutable one – we define a Map on line 5 without

Atomic Scala • References & Mutability • 325

qualification. Line 7 modifies an element of the Map. Line 9 adds a

key-value pair to the map.

Exercises
Solutions are available at AtomicScala.com.

1. Create a var reference to an immutable Map and demonstrate

what this means (prove you can’t change its contents, nor append

to it. Show that you can rebind the reference). Now create a val

reference to a mutable Map and demonstrate what this means.

2. Show the difference between a mutable and immutable Set.

3. Show the difference between a mutable and immutable List.

4. Vector doesn’t have a mutable equivalent. How do you change the

contents of a Vector?

5. We don’t declare method arguments as var or val. Discover

whether Scala uses var or val method arguments by creating a

simple class, then a method that takes an argument of that class.

Inside the method, attempt to rebind the argument to a new object

and observe the error message.

6. Create a class containing a var field. Write a method that takes an

argument of this class. Inside the method, modify the var field to

see if your method has side effects.

7. Create a class that has both mutable and immutable fields. Is the

resulting class mutable or immutable?

326 • Atomic Scala • Pattern Matching with Tuples

 Pattern Matching with
Tuples
Consider an Enumeration that represents paint colors:

1 // PaintColors.scala

2 package paintcolors
3

4 object Color extends Enumeration {

5 type Color = Value

6 val red, blue, yellow, purple,

7 green, orange, brown = Value

8 }

We’ll create a method blend to show the resulting color when you

combine two colors. Conveniently, you can pattern match on a tuple:

1 // ColorBlend.scala

2 import paintcolors.Color

3 import paintcolors.Color._
4

5 package object colorblend {
6

7 def blend(a:Color, b:Color) =

8 (a, b) match {

9 case _ if a == b => a

10 case (`red`, `blue`) |

11 (`blue`, `red`) => purple

12 case (`red`, `yellow`) |

13 (`yellow`, `red`) => orange

14 case (`blue`, `yellow`) |

15 (`yellow`, `blue`) => green

16 case (`brown`, _) |

Atomic Scala • Pattern Matching with Tuples • 327

17 (_, `brown`) => brown

18 case _ => // Interesting, not accurate:

19 Color((a.id + b.id) % Color.maxId)

20 }
21

22 }

To put blend inside a package, we introduce a shorthand: the package

object on line 5, which not only creates the colorblend object but

simultaneously makes it a package.

In line 8 a tuple is pattern-matched, like any other type. The first case

on line 9 says, “if the colors are identical, the output is the same.”

Lines 10-15 show that a case can also be a tuple, and that cases can be

ORed together using the single ‘|’, the short-circuiting OR. “Short

circuiting” means that if you have a chain of expressions ORed

together, the first expression that succeeds stops the evaluation of the

chain (since it’s an OR, all you need is one true to make the entire

expression true). The short-circuit single ‘|’ is the only OR allowed in

case statements.

There’s something else odd here. On the left side of the “rocket” (but

not the right side), we’ve put single back-quotes (sometimes called

“backticks”) on all the color names. This is an idiosyncrasy of case

statements: if it sees a non-capitalized name on the left side of a

rocket, it creates a local variable for calculating the pattern match.

We’ve intentionally not capitalized the values of Color to show this

issue. If you put backticks around the name, it tells Scala to treat it as

a symbol.

Lines 16-17 say, “if brown is involved, the result will always be brown,

regardless of the other color.” It uses the wildcard ‘_’ as the other

color.

328 • Atomic Scala • Pattern Matching with Tuples

So far, this method is only an approximation to the colors you’ll

produce (paint quantities have an effect as well). Lines 18-19 are just

an attempt to produce an interesting but inaccurate result for all the

other possibilities. The ordinal values (id) of each color are summed.

The maximum id is used as a modulus to force the calculation result

within the available id values, and that result is used to index into

Color and produce a new value.

Here are some tests for blend:

1 // ColorBlendTest.scala

2 import com.atomicscala.AtomicTest._

3 import paintcolors.Color._

4 import colorblend.blend
5

6 blend(red, yellow) is orange

7 blend(red, red) is red

8 blend(yellow, blue) is green

9 blend(purple, orange) is blue

10 blend(purple, brown) is brown

While the output of most of these tests is plausible, line 9 is obviously

produced by the last case in blend.

Producing output from a tuple of inputs is often called a table lookup.

Using a Map, we solve the problem a second way, by generating the

table ahead of time instead of calculating the result every time.

Sometimes this is a more useful approach.

Here, we populate a Map using colorblend.blend:

1 // ColorBlendMap.scala

2 import com.atomicscala.AtomicTest._

3 import paintcolors.Color

4 import paintcolors.Color._
5

Atomic Scala • Pattern Matching with Tuples • 329

6 val blender = (

7 for {

8 a <- Color.values.toSeq

9 b <- Color.values.toSeq

10 c = colorblend.blend(a, b)

11 } yield ((a, b), c)

12).toMap
13

14 blender.foreach(println)
15

16 def blend(a:Color,b:Color) = blender((a,b))
17

18 blend(red, yellow) is orange

19 blend(red, red) is red

20 blend(yellow, blue) is green

21 blend(purple, orange) is blue

22 blend(purple, brown) is brown

To initialize blender, we create a sequence of tuples of two elements:

the first element is a tuple of the two input colors, and the second

element is the resulting blended color. A Map is created from the

sequence of tuples using toMap.

Line 8 iterates through each of the Color values, and for each of those

values, line 9 iterates through all the Color values again, generating all

possible combinations of two inputs, which are then blended using

colorblend.blend. Line 14 displays each Map key-value pair for

verification, line 16 produces a new version of blend by creating a

tuple to pass to the Map, and then we apply the same tests as before.

Exercises
Solutions are available at AtomicScala.com.

1. Remove the backticks from one of the labels in ColorBlend.scala

and see what error message is produced.

330 • Atomic Scala • Pattern Matching with Tuples

2. Remove the default case from ColorBlend.scala. Satisfy the

following tests:

blend(red, yellow) is orange

blend(red, red) is red

blend(yellow,blue) is green

3. Add another color (magenta) to PaintColors.scala and verify that

the rest of the examples in the atom still work correctly. Satisfy

the following tests:

blend2(red, yellow) is orange

blend2(red, red) is red

blend2(yellow,blue) is green

blend2(yellow, magenta) is purple

blend2(red, magenta) is purple

4. Building on your solution for the previous exercise, add the color

white to PaintColors.scala. In the match expression, return the

“other” color whenever white is blended with it. Satisfy the tests:

blend3(red, yellow) is orange

blend3(red, red) is red

blend3(yellow,blue) is green

blend3(yellow, magenta) is purple

blend3(red, magenta) is purple

blend3(purple, white) is purple

blend3(white, red) is red

Atomic Scala • Error Handling with Exceptions • 331

 Error Handling with
Exceptions
Improved error reporting is one of the most powerful ways to increase

the reliability of your code. Error reporting is especially important in

Scala, where one of the primary goals is to create program

components for others to use. To create a robust system, each

component must be robust. With consistent error reporting,

components can reliably communicate problems to client code.

Ideally, you catch errors when Scala analyzes your program, before it

runs. Many errors cannot be detected this way, and must be handled

at run time by producing error information from methods.

The next few atoms explore “what to do when things go wrong.” It

turns out that handling errors doesn’t have a single obvious solution;

indeed, the topic continues to evolve. We look at the multiple

approaches available in Scala and their appropriate use, starting with

exceptions.

The word “exception” is used in the same sense as the phrase “I take

exception to that.” An exceptional condition prevents the

continuation of the current method or scope. At the point the problem

occurs, you might not know what to do with it, but you do know that

you cannot continue. You don’t have enough information in the

current context to fix the problem. So you must stop, and hand the

problem to an outside context where someone is qualified to take

appropriate action.

It’s important to distinguish an exceptional condition from a normal

problem, in which you have enough information in the current

context to cope with the difficulty somehow. With an exceptional

332 • Atomic Scala • Error Handling with Exceptions

condition, you cannot continue processing. All you can do is jump out

of that context and relegate that problem to a higher context. This is

what happens when you throw an exception.

An exception is an object “thrown” from the site of the error, and can

be “caught” by an appropriate exception handler that matches that type

of error.

Division is a simple example. If you’re about to divide by zero, it’s

worth checking for that condition. But what does it mean that the

denominator is zero? Maybe you know, in the context of the problem

you’re trying to solve in that particular method, how to deal with a

zero denominator. If it’s an unexpected value, however, you cannot

continue along that execution path. One solution is to throw an

exception – escape and force some other part of the code to manage

the issue.

Here’s a basic example showing the configuration and use of

exceptions:

1 // DivZero.scala

2 import com.atomicscala.AtomicTest._
3

4 class Problem(val msg:String)

5 extends Exception
6

7 def f(i:Int) =

8 if(i == 0)

9 throw new Problem("Divide by zero")

10 else

11 24/i
12

Atomic Scala • Error Handling with Exceptions • 333

13 def test(n:Int) =

14 try {

15 f(n)

16 } catch {

17 case err:Problem =>

18 s"Failed: ${err.msg}"

19 }
20

21 test(4) is 6

22 test(5) is 4 // Integer truncation

23 test(6) is 4

24 test(0) is "Failed: Divide by zero"

25 test(24) is 1

26 test(25) is 0 // Also truncation

Scala inherits many exception types from Java, but defines hardly any

of its own. You define a custom exception by inheriting from the

Exception class (lines 4-5).

The f method doesn’t know what to do with an argument of zero, so it

throws an exception on line 9 by creating a new Problem exception

and throwing it via the throw keyword. When you throw an

exception, the current path of execution (the one you can’t continue)

stops and the exception object ejects from the current context. At this

point, the exception-handling mechanism takes over and begins to

look for an appropriate place to continue executing the program.

Execution ends up in the exception handler.

The test method shows how to set up an exception handler. You begin

with the try keyword, followed by a block of code containing

expressions that can throw exceptions. Note that the try block is an

expression; if successful, its result is returned from test.

This is followed by the exception handler: the catch keyword and a

sequence of case statements matching all the different types of

334 • Atomic Scala • Error Handling with Exceptions

exceptions you are prepared to handle (here we only match a Problem

exception). If an exception isn’t handled at this level, it continues to

move out to higher levels, searching for a matching handler. If it finds

a handler, the search stops. If it never finds a handler, it aborts the

program and prints a long and noisy stack trace, detailing where it

came from. To see stack traces in the REPL, enter:

scala> throw new Exception

scala> throw new Exception("Disaster!")

One of the most important aspects of exceptions is that if something

bad happens, they allow you to (if nothing else) force the program to

stop and tell you what went wrong, or (ideally) force the programmer

to deal with the problem and return the program to a stable state.

Often a method generates more than one type of exception – that is, it

has several ways to fail. For reuse, the following is in a package:

1 // Errors.scala

2 package errors
3

4 case class Except1(why:String)

5 extends Exception(why)

6 case class Except2(n:Int)

7 extends Exception(n.toString)

8 case class Except3(msg:String, d:Double)

9 extends Exception(s"$msg $d")
10

11 object toss {

12 def apply(which:Int) =

13 which match {

14 case 1 => throw Except1("Reason")

15 case 2 => throw Except2(11)

16 case 3 =>

17 throw Except3("Wanted:", 1.618)

18 case _ => "OK"

Atomic Scala • Error Handling with Exceptions • 335

19 }

20 }

Each Exception subtype passes a String to the base-class Exception

constructor; that String becomes the message returned by Exception’s

getMessage method.

When we compile Scala code, we can’t have free-standing methods as

we can with scripts, thus we create toss as an object with an apply

method so it looks like a standalone method when we use it (we could

instead have imported a named method):

1 // MultipleExceptions.scala

2 import com.atomicscala.AtomicTest._

3 import errors._
4

5 def test(which:Int) =

6 try {

7 toss(which)

8 } catch {

9 case Except1(why) => s"Except1 $why"

10 case Except2(n) => s"Except2 $n"

11 case Except3(msg, d) =>

12 s"Except3 $msg $d"

13 }
14

15 test(0) is "OK"

16 test(1) is "Except1 Reason"

17 test(2) is "Except2 11"

18 test(3) is "Except3 Wanted: 1.618"

Every time you call toss, you must catch the exceptions it emits if

those exceptions are germane to the result (otherwise, you let them

“bubble up” to be caught elsewhere).

336 • Atomic Scala • Error Handling with Exceptions

Exceptions are essential for interacting with Java libraries, because

Java uses exceptions for everything – both exceptional conditions and

ordinary errors. For this reason, much of your exception code will

occur when using Java libraries, rather than dealing with truly

exceptional conditions. In the next atom, you’ll see an example that

captures exceptions from a Java library.

Although Scala includes language support for exception handling,

you’ll see in subsequent atoms that it tends to emphasize other forms

of error handling and reserves exceptions for situations where you

really don’t know what else to do. Indeed, it’s important to

understand that there are at least two kinds of error conditions:

expected and exceptional, and that you must respond to these

conditions in different ways. If you treat every error condition as an

exception, your code will get messy indeed.

Exercises
Solutions are available at AtomicScala.com.

1. Create a method that throws an object of class Exception inside a

try block. Pass a String argument to the constructor. Catch the

exception inside a catch clause and test the String argument.

2. Create a class with a simple method f. Create a var of that class

and initialize it to the special pre-defined value null, which means

“nothing.” Try to call f using this var. Now wrap the call in a try-

catch clause to catch the exception.

3. Create a Vector containing some elements. Try to index outside

the range of that Vector. Now write code to catch the exception.

4. Inherit your own subclass of Exception. Write a constructor for this

class that takes a String argument and stores it inside the base-

class Exception object. Write a method that displays the stored

String. Create a try-catch clause to test your new exception class.

Atomic Scala • Error Handling with Exceptions • 337

5. Create three new subtypes of Exception. Write a method that

throws all three. In another method, call the first method but only

use a single catch clause to catch all three types of exception.

6. Create a class with two methods, f and g. In g, throw a new type of

exception that you define. In f, call g, catch its exception and, in

the catch clause, throw a different exception (of a second type that

you define). Test your code.

7. Demonstrate that a derived-class constructor cannot catch

exceptions thrown by its base-class constructor.

8. Create a class called FailingConstructor with a constructor that can

fail partway through the construction process and throw an

exception. In another method, write code that properly guards

against this failure.

9. Create a three-level inheritance hierarchy of exceptions. Now

create a base class A with a method f that throws the exception at

the base of your hierarchy. Inherit B from A and override f so it

throws the exception at level two of your hierarchy. Repeat by

inheriting class C from B. Create a C and assign it to an A (this is

called “upcasting”), then call f.

10. The exception-handling mechanism includes another keyword,

finally. A finally clause is executed regardless of what happens in

the try or catch clauses. A finally clause can directly follow a try

clause (with no catch) or it can be placed after a catch clause.

Demonstrate that the finally clause always executes.

338 • Atomic Scala • Constructors & Exceptions

 Constructors &
Exceptions
Constructors are special because they create objects. A new

expression cannot return anything except a newly-created object, so if

construction fails we can’t just return an error. Returning a partially-

constructed object is not a useful option, either, because the client

programmer could easily assume that the object is OK.

There are two basic approaches:

1. Write a constructor so simple it cannot fail. While ideal, this is

often not convenient or simply not possible.

2. Throw exceptions for failure. Since you can’t produce a return

value, and you don’t want to produce a badly-created object, this

seems like the only choice.

Companion objects give us a third possibility: since apply is usually

written as a factory to generate new objects, and it’s a method rather

than a constructor, we can return error information from apply.

Here’s a class that opens a source-code file and turns it into a Vector-

like container, so you can index any line as well as iterate through the

code listing, and perform other operations provided by Scala

containers. The apply captures exceptions and converts them to error

messages, which are also stored in the container. Thus, apply always

returns a Vector[String] which can then be treated uniformly:

Atomic Scala • Constructors & Exceptions • 339

1 // CodeListing.scala

2 package codelisting

3 import java.io.FileNotFoundException
4

5 class ExtensionException(name:String)

6 extends Exception(

7 s"$name doesn't end with '.scala'")
8

9 class CodeListing(val fileName:String)

10 extends collection.IndexedSeq[String] {

11 if(!fileName.endsWith(".scala"))

12 throw new ExtensionException(fileName)

13 val vec = io.Source.fromFile(fileName)

14 .getLines.toVector

15 def apply(idx:Int) = vec(idx)

16 def length = vec.length

17 }
18

19 object CodeListing {

20 def apply(name:String) =

21 try {

22 new CodeListing(name)

23 } catch {

24 case _:FileNotFoundException =>

25 Vector(s"File Not Found: $name")

26 case _:NullPointerException =>

27 Vector("Error: Null file name")

28 case e:ExtensionException =>

29 Vector(e.getMessage)

30 }

31 }

The String argument passed to the Exception constructor on lines 6-7

becomes the message for our new exception type.

340 • Atomic Scala • Constructors & Exceptions

To create a container-like class that holds each line as a String, we

inherit from collection.IndexedSeq[String], which installs all the

necessary mechanisms. To actually hold the lines, we use

composition with an ordinary Vector generated by Scala’s io.Source.

fromFile method. This opens and reads the file, then getLines turns it

into a sequence of lines, and finally toVector converts the sequence

into a Vector.

When you inherit from IndexedSeq, you must define apply and length

(otherwise you get error messages telling you to do so). However,

that’s everything necessary to produce a new type of container (in

comparison to numerous other languages, this is remarkably

straightforward).

On line 13 we use a name in only one place, so we fully qualify it

rather than using an import.

Even though io.Source.fromFile is part of the Scala standard library, it

uses elements from Java that throw the Java exceptions

FileNotFoundException and NullPointerException. In addition, inside

the constructor, we check to ensure that the file name ends with

.scala and throw our own exception if it doesn’t. The factory (apply)

catches and converts all these exceptions. Note lines 24 and 26 do not

capture the exception in an identifier; they are only concerned about

the exception type, whereas line 28 uses the identifier e so it can call

the getMessage method.

Because we revisit this example in later atoms, we create a reusable

test. The argument to CodeListingTester is any function or method

that takes a String (the name of the file) and produces an

IndexedSeq[String]. We use IndexedSeq[String] instead of specifying a

CodeListing because it makes the test more flexible. Each test uses

makeList to create the object to be tested:

Atomic Scala • Constructors & Exceptions • 341

1 // CodeListingTester.scala

2 package codelistingtester

3 import com.atomicscala.AtomicTest._
4

5 class CodeListingTester(

6 makeList:String => IndexedSeq[String]) {
7

8 makeList("CodeListingTester.scala")(4) is

9 "class CodeListingTester("
10

11 makeList("NotAFile.scala")(0) is

12 "File Not Found: NotAFile.scala"
13

14 makeList("NotAScalaFile.txt")(0) is

15 "NotAScalaFile.txt " +

16 "doesn't end with '.scala'"
17

18 makeList(null)(0) is

19 "Error: Null file name"
20

21 }

The result of creating a CodeListing object always looks like a Vector,

which we index (remember indexing starts at 0). For example, line 8

selects element 4.

The null on line 18 is the keyword to indicate “nothing.”

The resulting test code is minimal:

1 // CodeListingTest.scala

2 import codelistingtester._

3 import codelisting._

4 new CodeListingTester(CodeListing.apply)

342 • Atomic Scala • Constructors & Exceptions

The only things we must change from one test to the next is the

import on line 3 and the makeList argument, as you’ll see when we

create different versions of CodeListing in subsequent atoms.

Exercises
Solutions are available at AtomicScala.com.

1. Working from CodeListingTester.scala, write a script that uses

CodeListing.scala to open a source-code file and print all the lines

in the file.

2. Add line numbering to your solution for the previous exercise.

3. Use your new script on a file that does not exist. Do you need to

make additional modifications?

Atomic Scala • Error Reporting with Either • 343

 Error Reporting with
Either
If treating every error as an exception creates code that’s too messy,

what’s the alternative? Historically, programming language designers

and users tried returning values that were out-of-bounds for a

particular method, or setting a global flag to indicate that an error had

occurred. (A global is something that everything everywhere in the

program can see, and often modify, and is the source of untold

problems in the history of programming). There were a confusing

number of approaches, none of them worked particularly well, and

information in globals and return values quickly vanished if you

weren’t rigorous. The result was that no one used these approaches

with any consistency. Worse, the client programmer would ignore

error conditions and pretend that every return value was a good one –

encouraging, in effect, the creation of buggy code.

Scala introduces disjoint unions to return results from methods. A

disjoint union combines two completely different (thus “disjoint”)

types: one type to show success and carry the return value, and one to

indicate failure and hold failure information. When you call a method,

you get back one of these unions and unpack it to see what happened.

One benefit of this approach is that you must always explicitly look at

success and failure; there is no easy way to assume that a method call

“just works.”

The initial experiment uses a union called Either, which combines Left

and Right types. Either was created apart from error handling and has

nothing to do with it, so the experimenters arbitrarily decided that

Left indicates an error (no doubt following the centuries-old prejudice

against the left, or sinister, side) and Right carries successful return

information.

344 • Atomic Scala • Error Reporting with Either

Here’s the basic divide-by-zero example using Either. No imports are

required to use Left and Right, and the return type (Either[String, Int])

is inferred by Scala:

1 // DivZeroEither.scala

2 import com.atomicscala.AtomicTest._
3

4 def f(i:Int) =

5 if(i == 0)

6 Left("Divide by zero")

7 else

8 Right(24/i)
9

10 def test(n:Int) =

11 f(n) match {

12 case Left(why) => s"Failed: $why"

13 case Right(result) => result

14 }
15

16 test(4) is 6

17 test(5) is 4

18 test(6) is 4

19 test(0) is "Failed: Divide by zero"

20 test(24) is 1

21 test(25) is 0

Left is a way to carry information which could be an exception type or

anything else – the documentation for your method interface must

explain to the client programmer what to do with the method results,

and the client programmer must write appropriate code when calling

your method.

The resulting syntax is elegant: on line 11 you see the call, followed by

a match expression that handles both the failure and success cases.

Atomic Scala • Error Reporting with Either • 345

So you say, “This is what I’m trying to do, and this is how I handle the

result.”

Here’s the new version of toss using Either:

1 // MultiEitherErrors.scala

2 import com.atomicscala.AtomicTest._

3 import errors._
4

5 def tossEither(which:Int) = which match {

6 case 1 => Left(Except1("Reason"))

7 case 2 => Left(Except2(11))

8 case 3 => Left(Except3("Wanted:", 1.618))

9 case _ => Right("OK")

10 }
11

12 def test(n:Int) = tossEither(n) match {

13 case Left(err) => err match {

14 case Except1(why) => s"Except1 $why"

15 case Except2(n) => s"Except2 $n"

16 case Except3(msg, d) =>

17 s"Except3 $msg $d"

18 }

19 case Right(x) => x

20 }
21

22 test(0) is "OK"

23 test(1) is "Except1 Reason"

24 test(2) is "Except2 11"

25 test(3) is "Except3 Wanted: 1.618"

We happen to be putting exceptions inside the Left objects, but you

can put any information you want inside Left as your error report.

Either does not provide any guidelines about what Left and Right

mean, so the client programmer must figure it out for each different

method.

346 • Atomic Scala • Error Reporting with Either

Here’s the factory in CodeListing.scala (from the previous atom) using

Either:

1 // CodeListingEither.scala

2 package codelistingeither

3 import codelisting._

4 import java.io.FileNotFoundException
5

6 object CodeListingEither {

7 def apply(name:String) =

8 try {

9 Right(new CodeListing(name))

10 } catch {

11 case _:FileNotFoundException =>

12 Left(s"File Not Found: $name")

13 case _:NullPointerException =>

14 Left("Error: Null file name")

15 case e:ExtensionException =>

16 Left(e.getMessage)

17 }

18 }

Note that apply is a translation of the exceptions into Left results, or

the successful completion into a Right result. Using this class becomes

a matter of unpacking the Either:

1 // ShowListingEither.scala

2 import codelistingtester._

3 import codelistingeither._
4

5 def listing(name:String) = {

6 CodeListingEither(name) match {

7 case Right(lines) => lines

8 case Left(error) => Vector(error)

9 }

Atomic Scala • Error Reporting with Either • 347

10 }
11

12 new CodeListingTester(listing)

Finally, let’s look at an interesting trick for collections of Either: you

can map directly to a match clause, without saying match (you saw

another example of this at the end of Combining Sequences with zip):

1 // EitherMap.scala

2 import com.atomicscala.AtomicTest._
3

4 val evens = Range(0,10) map {

5 case x if x % 2 == 0 => Right(x)

6 case x => Left(x)

7 }
8

9 evens is Vector(Right(0), Left(1),

10 Right(2), Left(3), Right(4), Left(5),

11 Right(6), Left(7), Right(8), Left(9))
12

13 evens map {

14 case Right(x) => s"Even: $x"

15 case Left(x) => s"Odd: $x"

16 } is "Vector(Even: 0, Odd: 1, Even: 2, " +

17 "Odd: 3, Even: 4, Odd: 5, Even: 6, " +

18 "Odd: 7, Even: 8, Odd: 9)"

Lines 4 and 13 show the tricky part – you see map where match would

usually be. It’s shorthand: the map applies the match expression to

each element.

Lines 4-7 start with a Range, and the match expression produces a

Right for even values and a Left for odd values. You see the resulting

Vector on lines 9-11. Then lines 13-16 again use the shorthand syntax

to divide the Lefts and Rights via case statements.

348 • Atomic Scala • Error Reporting with Either

Using Right and Left to indicate “success” and “failure” instantly

becomes awkward. Why apply a non-specific tool to such an

important task? Why not create a disjoint union dedicated to error

reporting, and call the types Success and Failure? It was an

experiment, one that succeeded, and now we have artifacts of that

experiment in the Scala libraries – and possibly always will, for older

code. In newer versions of Scala, efforts to solve the error problem are

redoubled, so we hope for improvements.

Exercises
Solutions are available at AtomicScala.com.

1. Add explicit return type information to DivZeroEither.scala.

2. Modify TicTacToe.scala from Summary 2 to use Either.

3. Using the techniques shown in EitherMap.scala, start with the

range ‘a’ to ‘z’ and divide it into vowels and consonants. Print the

divided results. Satisfy the following test:

letters is "Vector(Left(a), Right(b)," +

"Right(c), Right(d), Left(e), Right(f)," +

"Right(g), Right(h), Left(i), Right(j)," +

"Right(k), Right(l), Right(m), Right(n)," +

"Left(o), Right(p), Right(q), Right(r)," +

"Right(s), Right(t), Left(u), Right(v)," +

"Right(w), Right(x), Right(y), Right(z))"

4. Adding to your solution for the previous exercise, write a

testLetters method that separates the mapping into Left and Right,

as you saw in EitherMap.scala. Satisfy the following tests:

testLetters(0) is "Vowel: a"

testLetters(4) is "Vowel: e"

testLetters(13) is "Consonant: n"

Atomic Scala • Handling Non-Values with Option • 349

 Handling Non-Values
with Option
Consider a method that can sometimes produce results that “have no

meaning.” When this happens, the method doesn’t produce an error

per se; nothing went wrong, there’s just “no answer.” What you’d like

to do is write code as if every value returned from that method is

legitimate, and if it happens to be a “nothing” value, it gets quietly

ignored. This is the intent of the Option type.

The following method is only interested in values between 0 and 1; it

accepts the other values but nothing useful comes from them. We can

use Left and Right to report the result:

1 // Banded.scala

2 import com.atomicscala.AtomicTest._
3

4 def banded(input:Double) =

5 if(input > 1.0 || input < 0.0)

6 Left("Nothing")

7 else

8 Right(math.round(input * 100.0))
9

10 banded(0.555) is Right(56)

11 banded(-0.1) is Left("Nothing")

12 banded(1.1) is Left("Nothing")

“Not returning a value of interest” merits a special system instead of

using Either. Option is another disjoint union created for this purpose,

like a special case of Either with a predefined value for Left called

None, while Right is replaced with Some:

350 • Atomic Scala • Handling Non-Values with Option

1 // BandedOption.scala

2 import com.atomicscala.AtomicTest._
3

4 def banded2(input:Double) =

5 if(input > 1.0 || input < 0.0)

6 None

7 else

8 Some(math.round(input * 100.0))
9

10 banded2(0.555) is Some(56)

11 banded2(-0.1) is None

12 banded2(1.1) is None
13

14 for(x <- banded2(0.1))

15 x is 10
16

17 val result = for {

18 d <- Vector(-0.1, 0.1, 0.3, 0.9, 1.2)

19 n <- banded2(d)

20 } yield n

21 result is Vector(10, 30, 90)

Note that banded2’s return type Option[Long] (the return value of

math.round is Long) is omitted; if you return Some and None then

Scala infers the Option.

The for on line 14 looks like it’s iterating over values in a container.

However, you know that banded2 is only returning a single value – it

happens to be “contained in” an Option. The left-arrow “iteration-

over” operation unpacks the value out of the Option; x is what is

contained inside the Option. Here’s an example showing the

interaction between comprehensions and Options in detail:

1 // ComprehensionOption.scala

2 import com.atomicscala.AtomicTest._
3

Atomic Scala • Handling Non-Values with Option • 351

4 def cutoff(in:Int, thresh:Int, add:Int) =

5 if(in < thresh)

6 None

7 else

8 Some(in + add)
9

10 def a(in:Int) = cutoff(in, 7, 1)

11 def b(in:Int) = cutoff(in, 8, 2)

12 def c(in:Int) = cutoff(in, 9, 3)
13

14 def f(in:Int) =

15 for {

16 u <- Some(in)

17 v <- a(u)

18 w <- b(v)

19 x <- c(w)

20 y = x + 10

21 } yield y * 2 + 1
22

23 f(7) is Some(47)

24 f(6) is None
25

26 val result =

27 for {

28 i <- 1 to 10

29 j <- f(i)

30 } yield j
31

32 result is Vector(47, 49, 51, 53)

The cutoff method has a threshold thresh; if in is below the threshold

the result is None, otherwise the calculation is returned inside a

Some. Methods a, b and c are created from cutoff and used inside f to

show how a comprehension automatically extracts the contents of an

Option and skips operations on None.

352 • Atomic Scala • Handling Non-Values with Option

The first line of a comprehension determines the type of the rest of

the lines as well as the yield type. In f, we want to work with Options

but the input argument is a plain Int, so we wrap it in a Some to

establish the type of the comprehension. Each of lines 16-19

automatically extracts the contents of the Option and wraps the

results in an Option; the result of the yield is also an Option. If any

intermediate result in the comprehension is a None, the final result is

also None – but you don’t have to check each intermediate result.

That’s actually the point of Option: you don’t have to test for None

every time you perform an operation, and the resulting code is clean,

easier to read than wading through all those tests, and still safe.

Note that line 21 yields an expression, not just a single value.

The calculation of result on lines 26-30 is especially impressive – any

calculation that produces None is automatically dropped from result,

as you see on line 32.

Option’s container-like behavior is not limited to comprehensions; it

also provides the basic set of operations you find in most containers,

including foreach and map – both of which do the right thing when

working with None. Thus, when you perform operations on an Option,

you don’t have to check to see whether it’s Some or None, extract the

value, then put the result in an Option – foreach and map do it all for

you!

1 // OptionOperations.scala

2 import com.atomicscala.AtomicTest._
3

4 def p(s:Option[String])= s.foreach(println)
5

6 p(Some("Hi")) // Prints "Hi"

7 p(Option("Hi")) // Prints "Hi"

8 p(None) // Doesn't do anything!
9

10 def f(s:Option[String]) = s.map(_ * 2)

Atomic Scala • Handling Non-Values with Option • 353

11

12 f(Some("Hi")) is Some("HiHi")

13 f(None) is None
14

15 Option(null) is None

Line 4 uses foreach for a side-effect operation (foreach doesn’t

produce a result). On line 6 we pass a Some and this generates output.

You can also hand a value to Option as on line 7, and this also

produces a Some. If you hand it a None, though, it doesn’t do

anything, not even print a blank line. The argument of foreach is not

executed at all.

On lines 10-13 we see similar behavior for map, except a result is

generated from the map operation and wrapped in an Option. Note

that map automatically extracts the contents of a Some before

applying its argument.

Line 15 uses the null keyword, a wart we inherit from Java. In Java,

null is like our None except you must constantly check for null and it

tends to hide, only to blow up when you least expect it. Conveniently,

when Option sees a null it converts it to a None, so when you use a

Java library that can produce a null, just wrap any calls in Option.

While Left and Right have no particular meaning, Some and None are

biased, and operations can take advantage of that bias. Here’s a

further example showing foreach and map ignoring None values. We

chain operations together and everything still works without fail:

1 // OptionChaining.scala

2 import com.atomicscala.AtomicTest._
3

4 def f(n:Int, div:Int) =

5 if(n < div || div == 0)

6 None

7 else

354 • Atomic Scala • Handling Non-Values with Option

8 Some(n/div)
9

10 f(0,0) is None

11 f(0,0).foreach(println) // Nothing printed

12 f(11,5) is Some(2)

13 f(11,5).foreach(println) // 2
14

15 def g(n:Int, div:Int) = f(n,div).map(_ + 2)
16

17 g(5,11) is None

18 g(11,5) is Some(4)

The f method returns an Option, and this is chained to foreach on line

11. A None is ignored; it does nothing at all. Line 13 produces a Some

from f, so the foreach extracts and prints the contents. Line 15 shows

map applied to the Option produced by f; Nones pass through without

attempting the map calculation.

Just like comprehensions, map and foreach don’t care about quantity;

they keep going until they run out of elements in a sequence. If the

number of elements happens to be a single value held inside an

Option, that works too.

Let’s revisit EitherMap.scala from the previous atom. Option also has a

filter method which creates evens:

1 // OptionMap.scala

2 import com.atomicscala.AtomicTest._
3

4 val evens = Range(0,10).

5 map(Option(_).filter(_ % 2 == 0))
6

7 evens is Vector(Some(0), None, Some(2),

8 None, Some(4), None, Some(6),

9 None, Some(8), None)
10

11 evens map {

Atomic Scala • Handling Non-Values with Option • 355

12 case Some(x) => s"Even: $x"

13 case None => "Odd"

14 } is "Vector(Even: 0, Odd, Even: 2, " +

15 "Odd, Even: 4, Odd, Even: 6, " +

16 "Odd, Even: 8, Odd)"

On line 5 we take each element in the Range and turn it into an

Option. Option’s filter method requires a function or method (we use

the shorthand techniques shown in Brevity) that returns a Boolean

result; if the result is true, the value is stored as a Some, otherwise it’s

a None. You see the resulting Vector on lines 7-9. The map-match

shorthand trick works like it did in EitherMap.scala.

A particularly helpful application of Option is to add new arguments

to an existing argument list without breaking code written for the old

argument list. Suppose you create an Art class that includes title and

artist. You publish this class and client programmers begin using it.

Then you discover you want to include the style of the art. In many

languages, your best approach is to use overloading and duplicate

some of your code – but as we’ve pointed out, code duplication is a

path to an un-maintainable code base. With Options, you add the

argument to the existing class or method:

1 // AddNewArguments.scala
2

3 case class Art(title:String, artist:String,

4 style:Option[String] = None)
5

6 val oldCall = Art("Guernica", "Picasso")

7 val newCall = Art("Soup Cans", "Warhol",

8 Option("Pop"))

All the new code you add to Art that manipulates style must treat it as

an Option, which prevents you from accidentally assuming that it’s

always valid. This makes it much easier to extend the code safely, and

356 • Atomic Scala • Handling Non-Values with Option

helps eliminate code duplication. Tools that allow you to evolve your

code promote an incremental approach to system development; as

you learn new things about your system, you more easily modify it to

incorporate your new understanding.

Option is probably a poor term – at first you’re probably wondering

what your “options” are. You don’t really have any; there’s either

something there ... or not. Names are important.

Exercises
Solutions are available at AtomicScala.com.

1. Rewrite DivZeroEither.scala from Error Reporting with Either to use

Option instead of Either. Satisfy the following tests:

f(4) is Some(6)

f(5) is Some(4)

f(6) is Some(4)

f(0) is None

f(24) is Some(1)

f(25) is Some(0)

2. Add explicit return types to the previous exercise.

3. Modify TicTacToe.scala from Summary 2 to use Option.

4. Create a method that ensures that its argument is numeric or

alphabetical. Return None for any other characters. Satisfy the

following tests:

alphanumeric(0) is Some(0)

alphanumeric('a') is Some('a')

alphanumeric('m') is Some('m')

alphanumeric('$') is None

alphanumeric('Z') is Some('Z')

http://www.atomicscala.com/

Atomic Scala • Converting Exceptions with Try • 357

 Converting Exceptions
with Try
To further reduce the amount of exception-management code, Try

captures all exceptions and produces an object. If you say:

Try(expression that can throw exceptions)

You get back a Success object containing the result if no exceptions

are thrown, and a Failure object containing error information if there’s

an exception. Thus, Try converts exceptions into objects, so you don’t

need a catch clause, or to worry that an exception will accidentally

escape from the current context.

Success and Failure are subclasses of Try. Try appeared in Scala 2.10

so it won’t work with earlier versions.

When we use Try in the divide-by-zero example, the method on line 5

becomes simple:

1 // DivZeroTry.scala

2 import com.atomicscala.AtomicTest._

3 import util.{Try, Success, Failure}
4

5 def f(i:Int) = Try(24/i)
6

7 f(24) is Success(1)

8 f(0) is "Failure(" +

9 "java.lang.ArithmeticException: " +

10 "/ by zero)"
11

358 • Atomic Scala • Converting Exceptions with Try

12 def test(n:Int) =

13 f(n) match {

14 case Success(r) => r

15 case Failure(e) =>

16 s"Failed: ${e.getMessage}"

17 }
18

19 test(4) is 6

20 test(0) is "Failed: / by zero"

On line 7 you see that a successful call no longer returns a raw Int, but

instead a Success object that wraps the result (this is identical to the

way that Option returns Some and Either conventionally returns

Right). The exception on line 8 is caught and wrapped in a Failure

object.

The most basic way to “unwrap” the result is with pattern matching,

as in the test method. Because Success and Failure are case classes,

the match expression dissects them for us as on lines 14-16, where r

and e are automatically extracted.

Failure and Success are more descriptive and memorable error-

reporting objects than Either’s Left and Right.

An interesting aside: dividing by zero with Doubles (instead of Ints)

does not produce an exception. Instead, it produces a special “Infinity”

object:

scala> 1.0/0.0

res0: Double = Infinity

Multiple types of exceptions can be further partitioned with a nested

match:

Atomic Scala • Converting Exceptions with Try • 359

1 // Try.scala

2 import com.atomicscala.AtomicTest._

3 import util.{Try, Success, Failure}

4 import errors._
5

6 def f(n:Int) = Try(toss(n)) match {

7 case Success(r) => r

8 case Failure(e) => e match {

9 case Except1(why) => s"Except1 $why"

10 case Except2(n) => s"Except2 $n"

11 case Except3(msg, d) =>

12 s"Except3 $msg $d"

13 }

14 }
15

16 f(0) is "OK"

17 f(1) is "Except1 Reason"

18 f(2) is "Except2 11"

19 f(3) is "Except3 Wanted: 1.618"

At this point, things are getting slightly messy. Fortunately, Try has

additional devices to simplify your code. The recover method takes

any exception and converts it to a valid result:

1 // TryRecover.scala

2 import com.atomicscala.AtomicTest._

3 import util.Try

4 import errors._
5

6 def f(n:Int) = Try(toss(n)).recover {

7 case e:Throwable => e.getMessage

8 }.get
9

360 • Atomic Scala • Converting Exceptions with Try

10 def g(n:Int) = Try(toss(n)).recover {

11 case Except1(why) => why

12 case Except2(n) => n

13 case Except3(msg, d) => s"$msg $d"

14 }.get
15

16 f(0) is "OK"

17 f(1) is "Reason"

18 f(2) is "11"

19 f(3) is "Wanted: 1.618"
20

21 g(0) is "OK"

22 g(1) is "Reason"

23 g(2) is "11"

24 g(3) is "Wanted: 1.618"

Success objects pass untouched through recover, but Failures are

captured and matched with your recover clause. Whatever you

produce from each case is returned, wrapped in a Success. Thus,

when you use recover you only produce Success objects, and they

must all make sense.

The recover in f catches any Throwable and gets the contained

message. The recover in g matches on the specific exceptions of

interest.

When you call get on a Success object, you get the contents back.

However, if you call get on a Failure it generates an exception – the

original exception placed inside the Failure object. For example, trying

to convert the string “pig” to an Int will produce an exception that Try

will capture into a Failure object:

1 // PigInt.scala

2 import util.Try
3

4 val result = Try("pig".toInt)

Atomic Scala • Converting Exceptions with Try • 361

5

6 assert(

7 result.toString.startsWith("Failure"))
8

9 assert((try {

10 result.get

11 } catch {

12 case _:Throwable => "Yep, an exception"

13 }) == "Yep, an exception")

The assert on lines 6-7 shows that a Failure object is indeed produced

(startsWith, as the name implies, is a String method that compares its

argument with the beginning of its String object). On line 10 we call

get on a Failure. The resulting exception is caught in the catch clause;

the assert verifies that it happens. It makes sense to throw an

exception for a bad get – it’s generally a programming error (in

TryRecover.scala, it means your recover clause didn’t include all

possible cases).

Notice that, like Option, Try feels like a container that holds a single

item. Here, Try provides container operations:

1 // ContainerOfOne.scala

2 import com.atomicscala.AtomicTest._

3 import util.{Try, Success}
4

5 Try("1".toInt).map(_ + 1) is Success(2)

6 Try("1".toInt).map(_ + 1).foreach(println)

7 // Doesn't print anything:

8 Try("x".toInt).map(_ + 1).foreach(println)

We apply map to the result of Try on line 5, and the result is another

Try object. On line 6 we chain an additional operation on that Try. It’s

the same as applying those operations to a Vector containing only one

element. However, when the Try fails on line 8, the chained

operations are automatically ignored and nothing further happens.

362 • Atomic Scala • Converting Exceptions with Try

If you want to perform operations for both Success and Failure,

transform takes one function for Success and another for Failure:

1 // TryTransform.scala

2 import com.atomicscala.AtomicTest._

3 import util.Try

4 import errors._
5

6 def f(n:Int) = Try(toss(n)).transform(

7 i => Try(s"$i Bob"), // Success

8 e => e match { // Failure

9 case Except1(why) => Try(why)

10 case Except2(n) => Try(n)

11 case Except3(msg, d) => Try(d)

12 }

13).get
14

15 f(0) is "OK Bob"

16 f(1) is "Reason"

17 f(2) is "11"

18 f(3) is "1.618"

The first argument to transform is used on a Success result, and the

second argument is used on a Failure result. The return value in either

case must be a Try object, although for this example none of the Trys

within the transform can fail (note the call to get on line 13), so we

could have made them all Success objects.

Depending on your needs, Try can produce some succinct error

checking and handling code. For example, if you have a default

fallback value, use getOrElse (also available for Option):

Atomic Scala • Converting Exceptions with Try • 363

1 // IntPercent.scala

2 import com.atomicscala.AtomicTest._

3 import util.Try
4

5 def intPercent(amount:Int, total:Int) =

6 Try(amount * 100 / total).getOrElse(100)
7

8 intPercent(49, 100) is 49

9 intPercent(49, 1000) is 4

10 intPercent(49, 0) is 100

The getOrElse argument can also be an expression.

If you only want to capture a subset of exceptions, create a Catch

object. The catching method is a factory that takes a list of the

exception classes you want to catch. classOf produces a class

reference:

1 // Catching.scala

2 import com.atomicscala.AtomicTest._

3 import util.control.Exception.catching

4 import errors._
5

6 val ct2 = catching(classOf[Except2])
7

8 val ct13 = catching(classOf[Except1],

9 classOf[Except3])
10

11 ct2.toTry(toss(0)) is "OK"

12 ct13.toTry(toss(0)) is "OK"

13 ct13.toTry(toss(1)) is

14 "Failure(errors.Except1: Reason)"

15 ct13.toTry(toss(3)) is

16 "Failure(errors.Except3: Wanted: 1.618)"
17

364 • Atomic Scala • Converting Exceptions with Try

18 (try {

19 ct13.toTry(toss(2))

20 } catch {

21 case e:Throwable => "Except2"

22 }) is "Except2"

The Catch objects are configured as ct2 to catch Except2 and ct13 to

catch either Except1 or Except3. Although Catch objects contain a

litany of functionality (they predated Try), we only show toTry which

produces Try objects; its argument is the expression you want to test.

Notice on lines 14 and 16 that exceptions become Failure objects.

Lines 18-22 show that if a Catch object doesn’t handle a particular

exception, that exception is passed through and must be caught in a

conventional catch clause.

In general, Catch seems less useful than Try.

Try also works with comprehensions. Here is

ComprehensionOption.scala from the previous atom, translated to

use Try instead of Option:

1 // TryComprehension.scala

2 import com.atomicscala.AtomicTest._

3 import util.{Try, Failure, Success}
4

5 def cutoff(in:Int, thresh:Int, add:Int) =

6 if(in < thresh)

7 Failure(new Exception(

8 s"$in below threshhold $thresh"))

9 else

10 Success(in + add)
11

12 def a(in:Int) = cutoff(in, 7, 1)

13 def b(in:Int) = cutoff(in, 8, 2)

14 def c(in:Int) = cutoff(in, 9, 3)
15

Atomic Scala • Converting Exceptions with Try • 365

16 def f(in:Int) =

17 for {

18 u <- Try(in)

19 v <- a(u)

20 w <- b(v)

21 x <- c(w)

22 y = x + 10

23 } yield y * 2 + 1
24

25 f(7) is Success(47)

26 f(6) is "Failure(java.lang.Exception: " +

27 "6 below threshhold 7)"
28

29 val result =

30 for {

31 i <- 1 to 10

32 j <- f(i).toOption

33 } yield j
34

35 result is Vector(47, 49, 51, 53)

Almost everything here is a straightforward translation of

ComprehensionOption.scala except for line 32. In the original version

of the example, we just said j <- f(i) and the result of f(i) was

automatically unpacked into j. If you try the same thing here, you get

an error message complaining that it wants a GenTraversableOnce

instead of a Try. This happens because the first line of a

comprehension (line 31) establishes the type of the sequence of the

comprehension; here the Range 1 to 10 is promoted to a Vector.

Because the comprehension starts with something Vector-like for i,

that’s what it also wants to see for j, and that’s what produces the

complaint: Scala wants something “traversable” (like a Vector), and it

doesn’t know how to make that from a Try.

As we saw in ComprehensionOption.scala, Scala does know how to

“traverse” (in this case, unpack) an Option, so by using toOption we

366 • Atomic Scala • Converting Exceptions with Try

get the desired result. We don’t actually want an Option, but the

conversion tells Scala how to get around the problem.

Here’s the CodeListingEither.scala factory method from Error

Reporting with Either, rewritten using Try and recover:

1 // ShowListingTry.scala

2 import util.Try

3 import java.io.FileNotFoundException

4 import codelisting._

5 import codelistingtester._
6

7 def listing(name:String) =

8 Try(new CodeListing(name)).recover{

9 case _:FileNotFoundException =>

10 Vector(s"File Not Found: $name")

11 case _:NullPointerException =>

12 Vector("Error: Null file name")

13 case e:ExtensionException =>

14 Vector(e.getMessage)

15 }.get
16

17 new CodeListingTester(listing)

Note the improvement: previously we had to wrap a successful call in

a Right, but Try wraps a good result in a Success for us. Unsuccessful

calls were wrapped in Lefts and later unpacked, but recover allows us

to produce a usable result.

In Error Reporting with Either, we asked, “What about a disjoint union

specific to errors?” Try appears be such a union, including the Success

and Failure names. Why not replace Left and Right with Failure and

Success? The difficulty with this approach is addressed in the next

atom, which presents an alternative error-handling approach.

Atomic Scala • Converting Exceptions with Try • 367

A later version of Scala may include a redesign for error reporting and

handling. We have high hopes that the result will produce much

simpler and more intuitive error-handling code.

We’ve focused on handling errors. There’s also a third-party library

that helps you validate data (a somewhat subtle distinction). This is

the Validation component of the scalaz library, which you can explore

on your own.

Exercises
Solutions are available at AtomicScala.com.

1. Modify TryTransform.scala to show that all the Try calls within the

transform argument list can be replaced with Success. Satisfy the

following tests:

f(0) is "OK Bob"

f(1) is "Reason"

f(2) is "11"

f(3) is "1.618"

2. Remove the .get acting on the result of the transform. What must

you do to make the tests pass?

3. Modify ShowListingTry.scala to include line numbers. Were you

able to use the CodeListingTester from your solution in

Constructors and Exceptions?

http://www.atomicscala.com/

368 • Atomic Scala • Custom Error Reporting

 Custom Error Reporting
What should you use to report errors? As we’ve pointed out, Either

was a useful experiment but Left and Right are not particularly

meaningful names for error reporting (and although it’s possible to

use Either in comprehensions, extra syntax is required that makes it

complex and less readable). Try’s Success and Failure are better

names and more useful, but can we use them for ordinary error

reporting?

To begin answering this question, let’s create our own disjoint union

to report errors, producing approximately the same effect as Either

but with meaningful names. Good contains valid result data, and Bad

contains an error message:

1 // CustomErrors.scala

2 import com.atomicscala.AtomicTest._
3

4 sealed trait Result

5 case class Good(x:Int, y:String)

6 extends Result

7 case class Bad(errMsg:String)

8 extends Result
9

10 def tossCustom(which:Int) = which match {

11 case 1 => Bad("No good: 1")

12 case 2 => Bad("No good: 2")

13 case 3 => Bad("No good: 3")

14 case _ => Good(which, "OK")

15 }
16

17 def test(n:Int) = tossCustom(n) match {

18 case Bad(errMsg) => errMsg

19 case Good(x, y) => (x, y)

20 }

Atomic Scala • Custom Error Reporting • 369

21

22 test(47) is (47, "OK")

23 test(1) is "No good: 1"

24 test(2) is "No good: 2"

25 test(3) is "No good: 3"

The sealed keyword on line 4 was introduced in Tagging Traits and

Case Objects.

The argument(s) to Bad could also be exceptions or any other useful

types. Note that defining Good and Bad is about the same effort as

defining your own exceptions.

This is an acceptable solution, as far as it goes. Return information is

different for different methods. The caller must understand and deal

with the return value, and the disjoint union forces the client

programmer to acknowledge that they can get a Bad result. However,

this approach still misses the syntactic power provided by Option and

Try; for example, the ability to write comprehensions like we see in

ComprehensionOption.scala and TryComprehension.scala.

What keeps us from adapting Try to report errors? The primary

objection is that Failure requires a Throwable argument, and

Throwable is the base class for exceptions. It thus comes burdened

with a stack trace, which is all the information about the exception,

where it comes from and all the intermediate steps it takes. Creating a

stack trace in order to produce a simple error report is arguably too

much overhead and will keep some people from using that technique.

Fortunately, there’s a solution: util.control contains a trait called

NoStackTrace that suppresses the creation of the stack trace, thus

removing objections to using Success and Failure as return values.

Here’s a simple library that captures String error messages inside

Failure objects:

370 • Atomic Scala • Custom Error Reporting

1 // Fail.scala

2 package com.atomicscala.reporterr

3 import util.Failure

4 import util.control.NoStackTrace
5

6 class FailMsg(val msg:String) extends

7 Throwable with NoStackTrace {

8 override def toString = msg

9 }
10

11 object Fail {

12 def apply(msg:String) =

13 Failure(new FailMsg(msg))

14 }

Because FailMsg incorporates NoStackTrace, it works as an exception

object but doesn’t create a stack trace:

1 // FailMsgDemo.scala

2 import com.atomicscala.reporterr.FailMsg
3

4 try {

5 throw new FailMsg("Caught in try block")

6 } catch {

7 case e:FailMsg => println(e.msg)

8 }
9

10 throw new FailMsg("Uncaught")

11 println("Beyond uncaught")
12

13 /* Output:

14 Caught in try block

15 Uncaught

16 */

Lines 4-8 show FailMsg behaving as an exception. On line 10 you see

that when you throw a FailMsg and don’t catch it, it goes “all the way

Atomic Scala • Custom Error Reporting • 371

out,” just like any exception. With other exceptions this produces a

long and noisy stack trace, but all you see is “Uncaught.” Also, note

that the println on line 11 never happens because throwing an

exception halts the ordinary forward progress of the program.

Now we can use Success and Failure objects as method return values.

The apply method in object Fail produces a simple syntax when

reporting an error (lines 8 and 10):

1 // UsingFail.scala

2 import com.atomicscala.AtomicTest._

3 import util.{Try, Success}

4 import com.atomicscala.reporterr.Fail
5

6 def f(i:Int) =

7 if(i < 0)

8 Fail(s"Negative value: $i")

9 else if(i > 10)

10 Fail(s"Value too large: $i")

11 else

12 Success(i)
13

14 f(-1) is "Failure(Negative value: -1)"

15 f(7) is "Success(7)"

16 f(11) is "Failure(Value too large: 11)"
17

18 def calc(a:Int, b:String, c:Int) =

19 for {

20 x <- f(a)

21 y <- Try(b.toInt)

22 sum = x + y

23 z <- f(c)

24 } yield sum * z
25

26 calc(10, "11", 7) is "Success(147)"

372 • Atomic Scala • Custom Error Reporting

27 calc(15, "11", 7) is

28 "Failure(Value too large: 15)"

29 calc(10, "dog", 7) is

30 "Failure(java.lang." +

31 "NumberFormatException: " +

32 """For input string: "dog")"""

33 calc(10, "11", -1) is

34 "Failure(Negative value: -1)"

The calc method shows that the Success and Failure objects produced

by both Try and our f method are usable in a comprehension. Notice

line 21, which calls toInt to convert a String to an Int; if this fails it

throws an exception to be captured by Try and reported in the same

way that our custom errors are reported.

Here’s the divide-by-zero example using reporterr:

1 // DivZeroCustom.scala

2 import com.atomicscala.AtomicTest._

3 import util.Success

4 import com.atomicscala.reporterr.Fail
5

6 def f(i:Int) =

7 if(i == 0)

8 Fail("Divide by zero")

9 else

10 Success(24/i)
11

12 def test(n:Int) = f(n).recover{

13 case e => s"Failed: $e"

14 }.get
15

16 test(4) is 6

17 test(5) is 4

18 test(6) is 4

19 test(0) is "Failed: Divide by zero"

Atomic Scala • Custom Error Reporting • 373

20 test(24) is 1

21 test(25) is 0

Lines 12-14 show the benefit of adapting Try instead of creating our

own error-reporting system from scratch (the Good/Bad example).

Here you only see recover and get, but all the Try operations

(including its use with comprehensions, as in UsingFail.scala) are

automatically available when you use reporterr. Try and our reporterr

package work seamlessly together.

Here’s CodeListing.scala from Constructors and Exceptions converted

to use reporterr:

1 // CodeListingCustom.scala

2 package codelistingcustom

3 import codelisting._

4 import java.io.FileNotFoundException

5 import util.Success

6 import com.atomicscala.reporterr.Fail
7

8 object CodeListingCustom {

9 def apply(name:String) =

10 try {

11 Success(new CodeListing(name))

12 } catch {

13 case _:FileNotFoundException =>

14 Fail(s"File Not Found: $name")

15 case _:NullPointerException =>

16 Fail("Error: Null file name")

17 case e:ExtensionException =>

18 Fail(e.getMessage)

19 }

20 }

Remember, we can’t use Success and Fail from inside the constructor,

because you can’t return anything from a constructor, so if the

374 • Atomic Scala • Custom Error Reporting

constructor fails it must throw an exception. The apply factory

method catches these exceptions and converts them to Failure

objects.

To use it we again convert all errors to Vector[String]:

1 // ShowListingCustom.scala

2 import codelistingcustom._

3 import codelistingtester._
4

5 def listing(name:String) =

6 CodeListingCustom(name).recover{

7 case e => Vector(e.toString)

8 }.get
9

10 new CodeListingTester(listing)

Let’s take one more look at this example. We use composition, so the

constructor controls the creation of the composed Vector. Because we

create Vectors to hold error messages, we capture all errors within the

constructor and place them in the composed Vector, to produce more

succinct code:

1 // CodeVector.scala

2 package codevector

3 import util.Try

4 import java.io.FileNotFoundException
5

Atomic Scala • Custom Error Reporting • 375

6 class CodeVector(val name:String)

7 extends collection.IndexedSeq[String] {

8 val vec = name match {

9 case null =>

10 Vector("Error: Null file name")

11 case name

12 if(!name.endsWith(".scala")) =>

13 Vector(

14 s"$name doesn't end with '.scala'")

15 case _ =>

16 Try(io.Source.fromFile(name)

17 .getLines.toVector).recover{

18 case _:FileNotFoundException =>

19 Vector(s"File Not Found: $name")

20 }.get

21 }

22 def apply(idx:Int) = vec(idx)

23 def length = vec.length

24 }

Now the constructor doesn’t throw exceptions, and this eliminates all

error-handling code outside the constructor. Note that if you use

inheritance, there is no way to catch the exceptions thrown by the

base-class constructor.

Since CodeVector has no apply method, we create an anonymous

function (using shorthand notation) as the argument for

CodeListingTester:

1 // ShowCode.scala

2 import codelistingtester._

3 import codevector._

4 new CodeListingTester(new CodeVector(_))

The “no exceptions from the constructor” approach produces the

cleanest code we’ve seen so far. Of course, at some point you must

376 • Atomic Scala • Custom Error Reporting

still deal with the problem; here the information is presumably

transmitted to the end user.

Exercises
Solutions are available at AtomicScala.com.

1. Rewrite ShowListingEither.scala (and other code as necessary) to

use Success and Fail.

2. Modify TicTacToe.scala from Summary 2 to use Success and Fail.

3. Write a method testArgs that takes a variable argument list of

tuples, where each tuple contains a Boolean expression and a

String message for when the Boolean fails. For each tuple, produce

a Success or Failure. Now create a method:

f(s:String, i:Int, d:Double)

Within the method, call testArgs passing it the following tuples:

(s.length > 0, "s must be non-zero length"),

(s.length <= 10, "length of s must be <= 10"),

(i >= 0, "i must be positive"),

(d > 0.1, "d must be > 0.1"),

(d < 0.9, "d must be < 0.9")

Take the output and filter it so only Failure objects remain. Satisfy

the following tests:

f("foo", 11, 0.5) is ""

f("foobarbazbingo", 11, 0.5) is

"Failure(length of s must be <= 10)"

f("", 11, 0.5) is

"Failure(s must be non-zero length)"

f("foo", -11, 0.5) is

"Failure(i must be positive)"

f("foo", 11, 0.1) is

"Failure(d must be > 0.1)"

f("foo", 11, 0.9) is

"Failure(d must be < 0.9)"

Atomic Scala • Design by Contract • 377

 Design by Contract
Design by Contract (DbC) is attributed to Bertrand Meyer, the creator of

the Eiffel programming language, from which Scala draws its DbC

inspiration. DbC focuses on design errors by validating that

arguments and return values conform – at run time – to expected

rules (the “contract”) that are determined during the design process. It

also uses the concept of invariants: values that should be the same at

the beginning and the end of a method call.

DbC is yet another way to discover or avoid errors, which follows the

pattern we’ve seen: There are various approaches for revealing errors

... because it’s not a trivial problem. A single tool doesn’t seem to work

for all situations, so we end up with multiple strategies.

Methods used the built-in assert to ensure that expressions were true.

Scala contains similar methods require and assume (the latter is an

alias for assert) for use as DbC tools. A failure of a require or assume

represents a programming error so there’s no real hope of continuing

execution; you decide the best way of reporting the error and quitting

the program (the default is an exception dump). That’s one nice thing

about require and assume – you insert them as program checks

without putting in any other scaffolding, since they only fire when

they fail (indicating a bug).

1 // DesignByContract.scala

2 import com.atomicscala.AtomicTest._

3 import util.Try
4

5 class Contractual {

6 def f(i:Int, d:Double) = {

7 require(i > 5 && i < 100,

8 "i must be within 5 and 100")

9 val result = d * i

378 • Atomic Scala • Design by Contract

10 assume(result < 1000,

11 "result must be less than 1000")

12 result

13 }

14 }
15

16 def test(i:Int, d:Double) =

17 Try(new Contractual().f(i, d)).recover{

18 case e => e.toString

19 }.get
20

21 test(10, 99) is 990.0

22 test(11, 99) is

23 "java.lang.AssertionError: " +

24 "assumption failed: " +

25 "result must be less than 1000"

26 test(0, 0) is

27 "java.lang.IllegalArgumentException: " +

28 "requirement failed: " +

29 "i must be within 5 and 100"

A precondition typically looks at method arguments, to verify they are

within the set of valid/acceptable values, before the main part of the

method body. If a precondition fails, the method cannot execute. The

require method says, “this must be true,” so it takes a Boolean

expression along with an optional String message, given as part of the

error report. If require fails, it throws an IllegalArgumentException –

another indicator that it tests method arguments.

Because you never know what kinds of arguments the client

programmer will pass to your methods, once you put a precondition

in place you usually never take it out – you can never guarantee that it

won’t be violated, because you can’t predict what the client

programmer will do.

Atomic Scala • Design by Contract • 379

A postcondition normally checks the results of a method call, and is

tested with the assume method, which throws an AssertionError if it

fails. While a precondition guarantees argument correctness, a

postcondition helps verify method correctness, to ensure that your

code doesn’t do anything to violate the rules of your program. This

means that, at some point after you’ve done sufficient testing, you’ve

effectively proven that your postcondition will always be true

(assuming the preconditions are true).

Once you’ve proven this, the postcondition becomes redundant and it

would be nice to take it out, for efficiency’s sake. But it would also be

nice to leave something in place in case you change the code and

want to re-enable testing. Conveniently, Scala provides a compilation

flag to remove elidable expressions. This example demonstrates the

effect:

1 // ElidingDBC.scala

2 import util.Try
3

4 object ElidingDBC extends App {

5 println(Try(require(false, "require!")))

6 println(Try(assume(false, "assume!")))

7 println(Try(assert(false, "assert!")))

8 }

We use Try to reduce the output of lines 5-7 to a single line each.

If you run the shell commands:

scalac -Xelide-below 2001 ElidingDBC.scala

scala ElidingDBC

Only the require in line 5 survives, and the assume and assert on lines

6 and 7 are removed by the compiler. When the value is 2000 or less,

assume and assert survive compilation, while 2001 or greater removes

380 • Atomic Scala • Design by Contract

them. However, require is never removed because you can’t guarantee

that the client programmer will meet the argument preconditions.

There’s an additional construct called assuring that supports the third

part of DbC, invariants (not covered here). Learn more about DbC

through Wikipedia and other web resources.

Exercises
Solutions are available at AtomicScala.com.

1. Create three methods: the first checks only preconditions, the

second checks only postconditions, and the third checks both.

Each method has the same body: it takes a String argument which

must be between 4-10 characters, and each of those characters

must represent a digit. Each method converts each digit into an Int

and then adds up all the digits to produce the result. The

postcondition should verify the result is in the expected range of

values.

2. Write an App (see Applications) with a method that takes the

command-line argument of a String of letters, converts it to

lowercase, and then converts each character to its numerical value

in the alphabet, with ‘a’ being 1, ‘b’ being 2, etc. Sum the values

and display the result. Use preconditions to verify that the input is

in the correct form, and postconditions to ensure that the result is

in the expected range of values.

3. Write a method that takes an Int argument, multiplies it by 3, and

has a postcondition that fails if the result is odd. Elide the

postcondition and show the failure slipping through. Add a

precondition to prevent the failure.

Atomic Scala • Logging • 381

 Logging
In some cases, all you can do when you discover an issue is report it.

In a web application, for example, there’s no option to shut down the

program if something goes wrong. Logging records such events, giving

the programmer and/or administrator of the application yet another

tool to discover problems.

For simplicity, we adapt Java’s built-in logging, which is good enough

for our purposes and doesn’t require additional library installations

(many have found Java’s approach insufficient, so there are numerous

third-party logging packages). We’ve written it as a trait so it can be

combined with any class:

1 // Logging.scala

2 package com.atomicscala

3 import java.util.logging._
4

5 trait Logging {

6 val log = Logger.getLogger(".")

7 log.setUseParentHandlers(false)

8 log.addHandler(

9 new FileHandler("AtomicLog.txt"))

10 log.addHandler(new ConsoleHandler)

11 log.setLevel(Level.ALL)

12 log.getHandlers.foreach(

13 _.setLevel(Level.ALL))

14 def error(msg:String) = log.severe(msg)

15 def warn(msg:String) = log.warning(msg)

16 def info(msg:String) = log.info(msg)

17 def debug(msg:String) = log.fine(msg)

18 def trace(msg:String) = log.finer(msg)

19 }

382 • Atomic Scala • Logging

The Java logging library has loggers, to which you write messages, and

handlers, which record messages to their respective mediums.

If the argument to getLogger is an empty string, the log messages will

include:

java.util.logging.LogManager$RootLogger

If the getLogger argument is a non-empty string, the string itself will

be ignored but the log messages will instead include (along with the

name of the Logging method that was called for the log entry):

com.atomicscala.Logging$class

Each logger can talk to many handlers; the handler on lines 8-9 writes

to a file, and the handler on line 10 writes to the console. There’s also

a default console handler, so to prevent duplicate output we turn that

off via line 7.

We want to set the “logging level” at Level.ALL to show all messages

(other levels show fewer messages). However, we can’t just set the

level of the logger by itself (line 11); both the logger and its handlers

independently pay attention to or ignore messages based on their

levels. Thus, we must also set the level for all the handlers (lines 12-

13).

To use the library, mix the Logging trait into your class:

1 // LoggingTest.scala

2 import com.atomicscala.Logging
3

Atomic Scala • Logging • 383

4 class LoggingTest extends Logging {

5 info("Constructing a LoggingTest")

6 def f = {

7 trace("entering f")

8 // ...

9 trace("leaving f")

10 }

11 def g(i:Int) = {

12 debug(s"inside g with i: $i")

13 if(i < 0)

14 error("i less than 0")

15 if(i > 100)

16 warn(s"i getting high: $i")

17 }

18 }
19

20 val lt = new LoggingTest

21 lt.f

22 lt.g(0)

23 lt.g(-1)

24 lt.g(101)

All the Logging methods become native parts of LoggingTest, so you

call them as you do other methods in the class. For example, on line 5

we call info without any qualification.

After running the program, look at the AtomicLog.txt file. It contains a

lot more than what appears on the console. If you’ve ever looked at

the source code for an HTML file, this looks familiar – everything

seems to have lots of angle brackets and tags describing all the pieces.

The log file is written in XML (eXtensible Markup Language) and it’s

intended to be easy to process and manipulate (The Scala distribution

contains libraries for handling XML). Because log files tend to be long

(especially for a web application), anything that helps you extract

information is a benefit.

384 • Atomic Scala • Logging

We’ve now looked at numerous ways to reveal problems in your

programs, but a preponderance of studies indicate that the single

most effective way to discover errors is through the process of code

review: you get several people together and walk through the code.

Despite these studies (and the fact that code reviews are a great way

to transfer knowledge), code reviews are rarely practiced; they are

deemed “too expensive.” Hope and magical thinking are apparently

considered better business strategies.

Exercises
Solutions are available at AtomicScala.com.

1. Add an additional FileHandler and ConsoleHandler to

Logging.scala and verify that the outputs are duplicated for both.

2. Continue the previous exercise by adding a FileHandler and

ConsoleHandler for each logging level, and set the level of each

handler appropriately. Verify that each handler only captures the

output for its level.

3. Rewrite Logging.scala and LoggingTest.scala to produce an App

(see Applications) that uses its command-line argument to set the

logging level. Verify that it works with all logging levels.

Atomic Scala • Extension Methods • 385

 Extension Methods
Suppose you discover a library that does everything you need …

almost. If it only had one or two additional methods, it would solve

your problem perfectly. But it’s not your code – either you don’t have

access to the source code or you don’t control it (so you’d have to

repeat the modifications every time a new version came out).

Scala supports extension methods: you can, in effect, add your own

methods to existing classes. Extension methods are implemented

using implicit classes. If you put the implicit keyword in front of a class

definition, Scala can automatically use the class argument to produce

an object of your new type, and then apply your methods to that

object. There’s a restriction, though: extension methods must be

defined within an object. Here are two extension methods for the

String class:

1 // Quoting.scala

2 import com.atomicscala.AtomicTest._
3

4 object Quoting {

5 implicit class AnyName(s:String) {

6 def singleQuote = s"'$s'"

7 def doubleQuote = s""""$s""""

8 }

9 }

10 import Quoting._
11

12 "Hi".singleQuote is "'Hi'"

13 "Hi".doubleQuote is "\"Hi\""

Because the class is implicit, Scala takes any String called with either

singleQuote or doubleQuote and converts it to an AnyName, thus

legitimizing the call.

386 • Atomic Scala • Extension Methods

The triple quotes on line 7 allow double quotes within the String. The

backslashes on line 13 are necessary to “escape” the inner quote

marks, so Scala treats them as characters and not the end of the

String.

The name of the implicit class (AnyName) is unimportant, as Scala

only uses it to create an intermediate object on which to call the

extension methods. In some situations, the creation of this

intermediate object is objectionable for performance reasons. To

remove this issue, Scala provides the value type, which doesn’t create

an object but just makes the call. To turn AnyName into a value type,

you inherit from AnyVal, and the single class argument must be a val

as you see on line 4:

1 // Quoting2.scala
2

3 package object Quoting2 {

4 implicit class AnyName(val s:String)

5 extends AnyVal {

6 def singleQuote = s"'$s'"

7 def doubleQuote = s""""$s""""

8 }

9 }

Here, we wrap the implicit class inside a package object to create the

object Quoting2 and also make it into a package.

Now we import and use the extension methods as before, and the

results look the same:

Atomic Scala • Extension Methods • 387

1 // Quote.scala

2 import com.atomicscala.AtomicTest._

3 import Quoting2._
4

5 "Single".singleQuote is "'Single'"

6 "Double".doubleQuote is "\"Double\""

The difference is that, under the covers, no intermediate AnyName

objects are created when making the calls. By using AnyVal, the calls

are made without the extra overhead (Note that, in many cases, this

overhead is minimal and unimportant. The Scala designers didn’t

ever want it to become an issue so they added value classes).

Extension methods can have arguments:

1 // ExtensionMethodArguments.scala

2 import com.atomicscala.AtomicTest._
3

4 case class Book(title:String)
5

6 object BookExtension {

7 implicit class Ops(book:Book) {

8 def categorize(category:String) =

9 s"$book, category: $category"

10 }

11 }

12 import BookExtension._
13

14 Book("Dracula") categorize "Vampire" is

15 "Book(Dracula), category: Vampire"

Because we use a single argument in categorize, we write the call

using “dot-free” infix notation on line 14 (try the conventional

notation to verify that it also works).

388 • Atomic Scala • Extension Methods

Ultimately, extension methods are syntax sugar; the previous

example can be rewritten as a method categorize(Book, String).

However, people seem to find that extension methods make the

resulting code more readable (the best argument for syntax sugar).

Exercises
Solutions are available at AtomicScala.com.

1. Rewrite ExtensionMethodArguments.scala so you get the same

results without using extension methods.

2. Modify ExtensionMethodArguments.scala by adding an additional

extension method in that has two arguments. Write tests.

3. Rewrite ExtensionMethodArguments.scala to turn Ops into a value

class.

Atomic Scala • Extensible Systems with Type Classes • 389

 Extensible Systems with
Type Classes
In this final atom, we open your mind to some of Scala’s deeper

possibilities. We introduce a few additional concepts and features,

and you might find these a bit more challenging. If you don’t get it

right away, it’s the last atom in the book so it’s not a problem if you

come back and figure it out later.

Extensibility is important because you don’t often know the full

breadth of your system when you first build it. As you discover

additional requirements, you build new versions by adding

functionality. We saw one way to create an extensible system in

Polymorphism: inherit a new class and override methods. Here, we

look at type classes, a different way to build an extensible system.

Let’s review the polymorphic approach. Suppose you’re managing

shapes (for graphics, or geometry), and can calculate the area of a

shape. To extend the system, you inherit from Shape and define area

implementations:

1 // Shape_Inheritance.scala

2 import com.atomicscala.AtomicTest._

3 import scala.math.{Pi, sqrt}
4

5 trait Shape {

6 def area:Double

7 }
8

9 case class Circle(radius:Double)

10 extends Shape {

11 def area = 2 * Pi * radius

12 }

390 • Atomic Scala • Extensible Systems with Type Classes

13

14 case class EQLTriangle(side:Double)

15 extends Shape {

16 def area = (sqrt(3)/4) * side * side

17 }
18

19 val shapes = Vector(Circle(2.2),

20 EQLTriangle(3.9), Circle(4.5))
21

22 def a(s:Shape) = f"$s area: ${s.area}%.2f"
23

24 val result = for(s <- shapes) yield a(s)
25

26 result is "Vector(Circle(2.2) area: " +

27 "13.82, EQLTriangle(3.9) area: 6.59," +

28 " Circle(4.5) area: 28.27)"

The area method contains the standard mathematical formula for

each type; EQLTriangle stands for “equilateral triangle,” so all the

sides are the same length. Here, we don’t explicitly use the override

keyword because we’re extending a trait containing an abstract

method.

Each object in the shapes sequence (a Vector[Shape]) is manipulated

as a generic Shape. The area method is resolved – at run time – to its

specific object type so the proper area is calculated.

Line 22 uses String Interpolation with the f interpolator, which gives

you fine-grained control of formatting. Like s, f provides expression

evaluation within ${}. At the end of that line, we use the format string

%.2f to format a floating-point number (our Double result from area)

with two places to the right of the decimal point.

The polymorphism approach is built into all object-oriented

languages. However, the extensibility of this system is tightly bound

to the inheritance hierarchy. This can be a problem if you want to

Atomic Scala • Extensible Systems with Type Classes • 391

create functionality across types, regardless of the hierarchies those

types might or might not belong to. A type class system allows you to

add functionality to new types with a minimum of code, and without

injecting yourself into a type hierarchy. You can even add

functionality to new types when you don’t have control of those

types, for example if they come from a library written by someone

else. It’s similar to Extension Methods but it works across types rather

than just extending a single type.

Type classes allow you to decouple functionality from type. A separate

inheritance relationship is dedicated only to functionality, and can be

applied to any type of object once you’ve “trained” the system to work

with that type. Best of all, Scala automatically and invisibly chooses

the proper functionality to apply to the object. Here is the previous

example rewritten to use type classes; this includes new features that

will be explained:

1 // Shape_TypeClass.scala

2 import com.atomicscala.AtomicTest._

3 import scala.math.{Pi, sqrt}
4

5 trait Calc[S] {

6 def area(shape:S):Double

7 }
8

9 def a[S](shape:S)(implicit calc:Calc[S]) =

10 f"$shape area: ${calc.area(shape)}%2.2f"
11

12 case class Circle(radius:Double)
13

14 implicit object CircleCalc

15 extends Calc[Circle] {

16 def area(shape:Circle) =

17 2 * shape.radius * Pi

18 }
19

392 • Atomic Scala • Extensible Systems with Type Classes

20 case class EQLTriangle(side:Double)
21

22 implicit object EQLTriangleCalc

23 extends Calc[EQLTriangle] {

24 def area(shape:EQLTriangle) =

25 (sqrt(3)/4) * shape.side * shape.side

26 }
27

28 a(Circle(2.2)) is "Circle(2.2) area: 13.82"

29 a(EQLTriangle(3.9)) is

30 "EQLTriangle(3.9) area: 6.59"

31 a(Circle(4.5)) is "Circle(4.5) area: 28.27"

The trait Calc is the root of the “functionality hierarchy.” Note that it

has an unconstrained type parameter S – this means you can’t call

any methods on it because you don’t know its capabilities. The only

action you can perform is to pass it as an argument to a method; the

method area, in this case. When each of the (multiple)

implementations of Calc is created, S is specified and this allows a

particular implementation of area to call methods on its specific type

of shape.

The definition of a on lines 9-10 introduces two new features. The first

is that there appears to be two argument lists. This is called currying,

and for our purposes it means each argument list is evaluated

independently. Second, the argument in the second list is implicit,

which means Scala can automatically insert that argument during a

call. However, for that to work, the rule is that the candidate objects

for insertion – CircleCalc and EQLTriangleCalc – must also be implicit.

Notice in the calls to a on lines 28, 29 and 31 that only the first

argument is provided, because Scala is automatically finding and

inserting the second argument – this syntax is the result of combining

currying and implicit arguments.

Atomic Scala • Extensible Systems with Type Classes • 393

Notice that a calls the area method of calc, passing it the shape. Inside

a, both calc and shape are parameterized on S, so when a is called

their types will be known, and the compiler will check those types.

This is an important difference between this example and the

previous one; in traditional polymorphism, the actual type (and the

correct overridden method) is determined at runtime, but with type

classes everything is resolved at compile time, before the program

runs.

Lines 5-10 create the type class framework. Now we can add any

classes to that framework, along with their associated Calc objects,

and a will work with those new classes. Note that Circle and

EQLTriangle have no connection with each other or any other classes,

unlike in Shape_Inheritance.scala where they had to be bound

together via the Shape base trait. To add a new class to this example,

we either create it, or import it from another library, and then write

the associated Calc object.

Both CircleCalc and EQLTriangleCalc specify their associated object

type when they extend Calc. This allows them to access the elements

of that type; here, radius or side.

When you call a, you hand it an object which goes in the first

argument list. Then Scala looks around for an implicit subtype of Calc

to (silently) place in the second argument list. If it’s unable to find that

object, you get a compile-time error to that effect.

Notice the clean syntax. You pass your object to a, then Scala invisibly

looks up the associated Calc object and performs your operation. If

you want to add another type to your system, you create another Calc

object. In many languages this form of extensibility is a lot messier

and more confusing.

We don’t iterate through a Vector of objects as we did in

Shape_Inheritance.scala. By design, our objects have nothing in

394 • Atomic Scala • Extensible Systems with Type Classes

common, so if we put them in a common collection they get treated

as a generic type, usually Serializable. When you try to pass each

object in the collection to a, it gets a Serializable and doesn’t know

what to do with it. There is a solution for this problem, but we leave it

as an exercise for the reader (... to search the Internet for blog posts on

the subject).

Exercises
Solutions are available at AtomicScala.com.

1. Add class Rectangle to Shape_Inheritance.scala and verify that it

works. Now add class Rectangle and its associated RectangleCalc

to Shape_TypeClass.scala and verify that it works. Note the

differences.

2. Add a new operation checkSum to Shape_Inheritance.scala that

turns the area into a String, then sums each digit (and the decimal

point) to produce an Int result. Verify that it works. Now do the

same thing to Shape_TypeClass.scala and note the differences.

3. Add a new class to Shape_TypeClass.scala but do not create an

associated Calc class. Try to use it and see what happens.

4. Try duplicating lines 19-20 and 24 of Shape_Inheritance.scala in

Shape_TypeClass.scala and see what happens. Why does this

make sense?

5. Create a type class trait called Reporter with a method generate.

Write a method report that takes any object and its associated

Reporter and produces a String (using generate) containing

information about that object. Create case classes Person, Store

and Vehicle, each containing different types of information. Create

their associated Reporter objects and show that your type class

system works correctly.

Atomic Scala • Extensible Systems with Type Classes • 395

6. Create a type class trait called Transformer with a method convert,

but Transformer takes two type parameters: the type it’s

converting from, and the type it’s converting to. Write a method

transform that takes any object and its associated Transformer

and converts the object. Create several classes and their associated

Transformers and show that your type class system works

correctly.

7. Start with the first example class and transformation in the

previous exercise. Try adding a second method transform2 that

produces a different type of result. Why doesn’t this work? Add

code to fix the problem.

396 • Atomic Scala • Where to Go Now

 Where to Go Now
Here is our suggested order of study:

 Check AtomicScala.com for more information, including

supplements, solution guides, seminars and other books.

 Scala Koans: A self-guided exercise tour for beginning Scala

programmers at www.scalakoans.org.

 Twitter’s Scala School at twitter.github.com/scala_school also

treats Scala as a new language (it doesn’t require Java

knowledge). Some material will be review, but they also cover

other topics and some deeper issues than we do here.

 Twitter’s Effective Scala at twitter.github.com/effectivescala

provides helpful usage guidelines.

 Scala for the Impatient by Cay Horstmann at

horstmann.com/scala.

 Programming in Scala, 2nd Edition by Martin Odersky, Lex

Spoon, and Bill Venners at

www.artima.com/shop/programming_in_scala. This is “the big

book of Scala” that covers as much as it can, including some

fairly advanced topics.

Atomic Scala • Appendix A: AtomicTest • 397

 Appendix A: AtomicTest
Here is the test framework we use in the book, but note that it

includes Scala features that are more advanced than are covered in

this book.

1 // AtomicTest.scala

2 /* A tiny little testing framework, to

3 display results and to introduce & promote

4 unit testing early in the learning curve.

5 To use in a script or App, include:

6 import com.atomicscala.AtomicTest._

7 */

8 package com.atomicscala

9 import language.implicitConversions

10 import java.io.FileWriter
11

12 class AtomicTest[T](val target:T) {

13 val errorLog = "_AtomicTestErrors.txt"

14 def tst[E](expected:E)(test: => Boolean){

15 println(target)

16 if(test == false) {

17 val msg = "[Error] expected:\n" +

18 expected

19 println(msg)

20 val el= new FileWriter(errorLog,true)

21 el.write(target + msg + "\n")

22 el.close()

23 }

24 }

25 def str = // Safely convert to a String

26 Option(target).getOrElse("").toString

27 def is(expected:String) = tst(expected) {

28 expected.replaceAll("\r\n","\n") == str

29 }

398 • Atomic Scala • Appendix A: AtomicTest

30 def is[E](expected:E) = tst(expected) {

31 expected == target

32 }

33 def beginsWith(exp:String) = tst(exp) {

34 str.startsWith(

35 exp.replaceAll("\r\n","\n"))

36 }

37 }
38

39 object AtomicTest {

40 implicit def any2Atomic[T](target:T) =

41 new AtomicTest(target)

42 }

Atomic Scala • Appendix B: Calling Scala from Java • 399

 Appendix B: Calling
Scala from Java
This appendix is for Java programmers. Once you see that Java

libraries can be effortlessly called from Scala, and that Scala compiles

to .class files, the question inevitably arises: “Can I call Scala from

Java?”

Yes, and with a little care you can make Scala libraries look just like

Java libraries when called from Java code.

First, you must add scala-library.jar to your CLASSPATH. This file is

part of your standard Scala installation. Like any Jar file, you must add

the entire path including the name of the Jar file itself.

Scala has additional features that aren’t available in Java. Although

it’s possible to access these features by writing special code, it’s easier

and clearer if you write your Scala interface in such a way that it looks

like plain Java inside your Java code. That way, your Java code doesn’t

look strange or intimidating to readers unfamiliar with Scala. If

necessary, write an “adapter” class to simplify the interface for Java.

Here’s an example showing how simple it can be. It’s the well-known

Sieve of Eratosthenes that finds prime numbers. The Scala library is

clever and dense and we won’t explain it (or the additional Scala

features it uses) here – there are numerous explanations on the Web.

Suffice it to say this code is much more compact than possible in Java,

and despite the complexity, easier to verify:

400 • Atomic Scala • Appendix B: Calling Scala from Java

1 // Eratosthenes.scala

2 package primesieve
3

4 object Eratosthenes {

5 def ints(n:Int):Stream[Int] =

6 Stream.cons(n, ints(n+1))

7 def primes(nums:Stream[Int]):Stream[Int]=

8 Stream.cons(nums.head, primes(

9 nums.tail.filter(

10 n => n % nums.head != 0)))

11 def sieve(n:Int) =

12 primes(ints(2)).take(n).toList

13 }

To use it in Java, we simply import the library and call sieve. If your

CLASSPATH is set properly, you should get no warnings or errors

when you compile this code:

1 // FindPrimes.java

2 import primesieve.*;
3

4 public class FindPrimes {

5 public static void main(String[] args) {

6 System.out.println(

7 Eratosthenes.sieve(17));

8 }

9 }

In the Java code, you can’t tell whether you’re calling a Java library or

a Scala library. Here, we wrapped our methods in an object but you

can just as easily use classes.

This approach allows a Java project to benefit from the advantages of

Scala without changing the code base all at once.

Atomic Scala • Copyright • 401

 Copyright
Copyright ©2015, MindView LLC. Authored by Bruce Eckel, President,

MindView, LLC., and Dianne Marsh, Director of Engineering for Cloud

Tools, Netflix.

All rights reserved. Printed in the United States of America. This

publication is protected by copyright, and permission must be

obtained from the publisher prior to any prohibited reproduction,

storage in a retrieval system, or transmission in any form or by any

means, electronic, mechanical, photocopying, recording, or likewise.

For information regarding permissions, see AtomicScala.com.

Created in the United States in Crested Butte, Colorado and Ann

Arbor, Michigan.

ISBN 978-0-9818725-1-3

Text printed in the United States

Second edition (Version 2.0), March 2015

Version 1.1, September 2013

First printing (Version 1.0), March 2013

Front and back cover illustrations by John Lucas.

Cover and interior design by Daniel Will-Harris, www.will-harris.com

Many of the designations used by manufacturers and sellers to

distinguish their products are claimed as trademarks. Where those

designations appear in this book, and the publisher was aware of a

trademark claim, the designations are printed with initial capital

letters or in all capitals.

Scala is a trademark of the Ecole Polytechnique Fédérale (EPF) de

Lausanne, Lausanne, Switzerland. Java is a trademark or registered

402 • Atomic Scala • Copyright

trademark of Oracle, Inc. in the US and other countries. Windows is a

registered trademark of Microsoft Corporation in the United States

and other countries. All other product names and company names

mentioned herein are the property of their respective owners.

The authors and publisher have taken care in the preparation of this

book, but make no expressed or implied warranty of any kind and

assume no responsibility for errors or omissions. No liability is

assumed for incidental or consequential damages in connection with

or arising out of the use of the information or programs contained

herein.

Visit us at
AtomicScala.com

Atomic Scala • Index • 403

 Index
! (not operator), 58
&& (Boolean AND), 61
*/ (multiline comment), 42
/* (multiline comment), 42
// (comment), 42
:+ operator (Vector), 183
_ (wildcard), 137, 195, 327
|| (Boolean OR), 61
<- (get from sequence), 110, 132
< (less than), 59
<= (less than or equal), 65
=> (“rocket”), 136, 172
> (greater than), 57
>= (greater than or equal), 65
abstract class, 244
abstract keyword, 244, 252
access, uniform access

principle, 257
accessibility, class arguments

outside the class body, 139
AND (Boolean &&), 61
anonymous function, 172, 178
Any, 267
Any type, 190, 194
AnyVal, 386
Apache Commons Math

Library, 260
API (Application Programming

Interface), 87
App, creating applications by

extending, 264
Apple Macintosh

classpath, 31
apply, 225

as a factory, 338
archive, unpacking, 21

argument
add new arguments with

Option, 355
class arguments, 139
command line, 265
method argument list, 74
repeating a shell argument,

20
variable argument list, 141

Array, 266
assert, 77, 100, 377
assume, 377
assuring, 380
AtomicTest, 101, 124
automatic string conversion,

212
auxiliary constructor, 156
backticks, and case statement,

327
base class, 229

constructors, 231
initialization, 231

body
class, 91
for loop, 111
method body, 74

Boolean, 57, 119
&& (AND), 61
‘!=’ operator, 184
OR (||), 61
type, 50

bound, upper, 292
braces, curly, unnecessary, 198
brackets, square, 169
brevity, 197
case

404 • Atomic Scala • Index

class, 162
force symbol treatments with

backticks, 327
keyword, 136
object, 290
pattern matching with case

classes, 193
unpacking case classes, 217

catch keyword, 333
catching, and Try, 363
change directory, 20
child class, 229
class

abstract, 244
arguments, 139
arguments accessible outside

the class body, 139
base class initialization, 231
body, 91
case, 162
defining, 89
defining methods, 92
field initialization, 151
implicit, 385
initialization, 151
keyword, 89, 128
type classes, 389

classpath
Linux, 38
Macintosh, 31
Windows, 25

code
completion, in the REPL, 82
duplication, 298
example & exercise solutions,

13
review, 384

collection, 114, 302
mutable vs. immutable, 324

command line, arguments, 265

command line, Windows, 18
command prompt, 18
comment, 42
companion object, 220, 222

apply as a factory, 338
compile a package, 98
composition, 277
compound expressions, 64, 72
comprehension

and Option, 350
and Try, 364
define values within a

comprehension, 184
filters, 182
for comprehension, 182
generators, 182

conditional expression, 57, 71,
119

constraint, type parameter, 292,
295

constructor, 151
and exceptions, 338
auxiliary, 156, 232
derived class, 232
overloading, 156
primary, 156, 232

consulting, 13
container, 114, 302

creating a new type, 340
conversion, automatic string,

212
create directory, 20
curly braces

unnecessary, 198
vs parentheses in for

comprehension, 183
currying, 392
data storage object, 162
data type, 48

user-defined, 81

Atomic Scala • Index • 405

declaration, vs. definition, 244
declaring arguments, 75
def

keyword, 75, 125
overriding with val, 257

default arguments, and named
arguments, 144

define
classes, 89
define values within a

comprehension, 184
definition, vs. declaration, 244
derived class, 229
design, 274

by contract (DbC), 377
directory

change, 20
create, 20
file system, 19
list, 20
parent, 19
remove, 20

disjoint union, 343
dividing by zero, 358
documentation, 87, 225
Double

constant, 63
type, 41

DRY, Don’t Repeat Yourself, 95,
297

duplicate
code, 298
remove using Set, 315

editor
Eclipse, 17
IntelliJ IDEA, 17
sublime text, 17

Either, 343
elidable, compilation flag, 379
else keyword, 119

enumeration, 240
alternative approach using

tagging traits, 289
subtypes, 291, 295

Eratosthenes, Sieve of, 399
error

handling with exceptions,
331

off-by-one error, 115
report with logging, 381
reporting, custom, 368

evaluation
order of, 71
parentheses to control order,

62
example code & exercise

solutions, 13
exception

and constructors, 338
and Java libraries, 336
converting exceptions with

try, 357
define custom, 333
error handling, 331
handler, 332
throwing, 77
thrown by constructor with

inheritance, 375
execution policy, Powershell, 19
expression, 54, 70

compound, 64, 72
conditional, 57, 71, 119
match, 136
new, 139
scope, 64

extends keyword, 228, 249
extensibility with type classes,

389
extension methods, 385
factory

406 • Atomic Scala • Index

apply as a factory, 338
method, 225

Failure, 357
false, 57
field, 81

in an object, 107
initialization inside a class,

151
file

open and read, 340
remove, 20

FileNotFoundException, 340
filter, 354
flatten, 315
for comprehension, 182
for keyword, 110
for loop, 110, 132

and Option, 350
foreach, 172, 178, 352
forking, 298
fromFile, 340
function

anonymous, 178
function literal (anonymous

function), 172
in place definition, 172
method, 74
objects, 172

functional
language, 81
programming, 180, 312

generics, Scala parameterized
types, 169

getLines, 340
getMessage, 340
getOrElse, and Try, 362
global, 343
greater than (>), 57
greater than or equal (>=), 65
guide, style, 52, 204

handler, exception, 332
has-a, 277
head, 116
history, shell, 20
hybrid object-functional, 126
idiomatic Scala, 207
implicit keyword, 385, 392
import, 241

Java packages, 260
keyword, 95, 124

index, into a Vector, 115
IndexedSeq, inheriting from,

340
IndexOutOfBoundsException,

115
inference

return type, 170, 201
type, 49, 69

Infinity, 358
infix notation, 102, 110, 125, 209
inheritance, 228, 277

exceptions thrown by
constructor, 375

multiple, vs traits, 255
vs. composition, 277

initialization
base class, 231
combine multiple using

tuples, 218
Int

truncation, 62
type, 50

interpolation, string, 166, 390
interpreter, 41
invariant, 377
invoking a method, 74
is-a, 277
iterate, through a container,

115
Java

Atomic Scala • Index • 407

calling Scala from Java, 399
classes in Scala, 87
import packages, 260
libraries, and exceptions, 336

keyword
abstract, 244, 252
case, 136
catch, 333
class, 89, 128
def, 75, 125
else, 119
extends, 228, 249
for, 110
implicit, 385, 392
import, 95, 124
new, 90, 338
object, 220, 264
override, 213, 237, 246
package, 97, 123
return, 119
sealed, 289, 369
super, 238, 254, 268
this, 156, 220
throw, 333
trait, 249
type, 202
with, 249
yield, 184

Left, 343
less than (<), 59
less than or equal (<=), 65
lifting, 172
line numbers, 45
linear regression least-squares

fit, 260
Linux

classpath, 38
List, 302, 307
list directory, 20
literal, function, 172

logging, error reporting, 381
lookup, table, 328
loop, for, 110, 132
Macintosh

classpath, 31
main, application using, 265
map, 178, 347, 352, 361

combined with zip, 312
Map, 323, 328

connect keys to values, 318
MapLike, 319
matching

pattern, 136
pattern matching with case

classes, 193
pattern matching with types,

189
math

Apache Commons Math
Library, 260

Integer, 63
message, sending, 85
method, 125

body, 74
defined inside a class, 92
extension methods, 385
factory, 225
function, 74
mutating, 205
overloading, 148
overriding, 236
parentheses vs no

parentheses, 204
signature, 148, 237

modulus operator %, 183
multiline comment, 42
multiline string, 50
multiple inheritance, vs. traits,

255
mutability, object, 322

408 • Atomic Scala • Index

mutating method, 205
name

name space, 241
package naming, 99

named & default arguments,
144

new
and case classes, 163
expression, 139
keyword, 90, 338

None, 349
NoStackTrace, 369
not operator, 58
notation, infix, 102, 110, 209
NullPointerException, 340
object, 81

case, 290
companion, 222, 338
data storage, 162
function objects, 172
initialization, 151
keyword, 220, 264
mutable vs. immutable, 322
object-functional hybrid

language, 126
object-oriented (OO)

programming language, 81
package, 327, 386

off-by-one error, 115
operator

!= (Boolean), 184
% (modulus operator), 183
:+ (Vector), 183
defining (overloading), 208
not, 58

Option, instead of null pointers,
349

OR
Boolean ||, 61
short-circuiting, 327

order of evaluation, 71
overloading

constructor, 156
doesn’t work in the REPL, 150
method, 148
operators, 208

override
keyword, 213, 237, 246
overriding methods, 236
overriding val/def with

def/val, 257
package, 95

keyword, 97, 123
naming, 99
object, 327, 386

parameterized types, 169
parent

class, 229
directory, 19

parentheses
evaluation order, 62
on methods, 204
vs. curly braces in for

comprehension, 183
paste mode, REPL, 71
pattern matching, 136

with case classes, 193
with tuples, 326
with types, 189

pattern, template method
pattern, 245, 255

polymorphism, 238, 270, 304
and extensibility, 389

postcondition, 379
Powershell, 18

execution policy, 19
precondition, 378
primary constructor, 156
principle, uniform access, 257
profiler, 304

Atomic Scala • Index • 409

programming, functional, 180
promotion, 71
Properties, 95
Random, 95
Range, 81, 87, 110, 132
recover, and Try, 359
recursion, 307
reduce, 178
reference, var and val, 322
reflection, 267
regression, linear, 260
remove directory, 20
remove file, 20
repeating shell arguments and

commands, 20
REPL

code completion, 82
flaws and limitations, 84
overloading doesn’t work in,

150
paste mode, 71

require, 377
return

keyword, 119
multiple values with a tuple,

215
type inference for, 201
types, parameterized, 170

reverse, 85, 116
review, code, 384
Right, 343
Scala

calling Scala from Java, 399
idiomatic, 207
interpreter, 41
REPL, 41
running, 41
script, 43
style guide, 204
version number, 41

scalac command, 98
ScalaDoc, 87, 225
ScalaTest, 101
scope, expression, 64
script, 43
sealed keyword, 289, 369
semicolon, 199

for statements or
expressions, 54

Seq, 302, 307
sequence, 302

combining with zip, 311
Set, 314
shell

argument, repeating, 20
gnome-terminal, 19
history, 20
operations, 20
Powershell, 18
repeating a command, 21
terminal, 18
Windows, 18

short-circuiting OR, 327
side effects, 78
Sieve of Eratosthenes, 399
signature, 253

method, 148, 237
solutions, 46

example code & exercise
solutions, 13

Some, 349
sorted, 116, 174
sortWith, 174
space, name, 241
square brackets, 169
stack trace, 334, 369
statement, 54, 70
string

automatic string conversion,
212

410 • Atomic Scala • Index

interpolation, 166, 390
multiline, 50
type, 50

style guide, 52, 204
subclass, 229
subroutine, 74
subtypes, enumeration, 291,

295
Success, 357
sugar, syntax, 210, 388
sum, 309
super keyword, 238, 254, 268
superclass, 229
syntax sugar, 210, 388
table lookup, 328
tagging trait, 289
tail, 116
template method pattern, 245,

255
templates, Scala parameterized

types, 169
temporary variable, 64
Test Driven Development

(TDD), 103
testing, 100
this keyword, 156, 220
throw keyword, 333
throwing an exception, 77
to, in Ranges, 133
toSet, 316
toString, 212, 267
toVector, 340
trace, stack, 334
trait, 267, 277, 285, 295

keyword, 249
tagging, 289
with a type parameter, 292

transform, and Try, 362
true, 57
truncation, Integer, 62

Try, converting exceptions, 357
tuple, 215

indexing, 217
initialization, 218
pattern matching with, 326
table lookup, 328
unpacking, 216

type
Any, 190
Boolean, 50
data, 48
Double, 41
inference, 49, 69

for return types, 201
Int, 50
keyword, 202
parameter, 169

constraint, 292, 295
with a trait, 292

parameterized, 169
pattern matching with types,

189
String, 50
type classes, 389
value, 386

underscore
argument, 200
in import, 124
initialization value, 208
wildcard, 137, 195, 327

uniform access principle, 205,
257

union, disjoint, 343
Unit, 55, 175, 202

return type, 78
unpacking

a tuple, 216
a zip archive, 21

until, in Ranges, 133
upper bound, 292

Atomic Scala • Index • 411

user-defined data type, 81
val, 45, 69

define values within a
comprehension, 184

overriding with def, 257
reference & mutability, 322

Validation, scalaz library, 367
value type, 386
var, 52, 69

reference & mutability, 322
variable argument list, 141
Vector, 114, 126, 172, 178, 183,

302, 307, 338
:+ operator, 183

Venners, Bill, 15

version number, Scala, 41
Wall, Dick, 15
wildcard (underscore), 137, 195,

327
Windows

classpath, 25
command line, 18
shell, 18

with keyword, 249
XML, 383
yield keyword, 184, 352
zero, dividing by, 358
zip, 311

archive, unpacking, 21
combined with map, 312

	Cover
	Back Cover
	Title Page
	 Contents
	 How to Use This Book
	Changes in the Second Edition

	 Introduction
	Atomic Concepts
	Cross-References
	Sample the Book
	Example Code & Exercise Solutions
	Consulting
	Conferences
	Support Us
	About Us
	Acknowledgements
	Dedication
	Copyrights

	 Editors
	 The Shell
	Starting a Shell
	Directories
	Basic Shell Operations

	 Installation (Windows)
	Set the Path
	Install Scala
	Source Code for the Book
	Set Your CLASSPATH
	Exercises

	 Installation (Mac)
	Install Scala
	Set the Path

	Source Code for the Book
	Set Your CLASSPATH
	Exercises

	 Installation (Linux)
	Standard Package Installation
	Verify Your Installation
	Configure your Editor

	Set the Path
	Install Recent Version from tgz File
	Install Scala

	Source Code for the Book
	Set Your CLASSPATH
	Exercises

	 Running Scala
	 Comments
	 Scripting
	 Values
	Exercises

	 Data Types
	Exercises

	 Variables
	Exercises

	 Expressions
	Exercises

	 Conditional Expressions
	Exercises

	 Evaluation Order
	Exercises

	 Compound Expressions
	Exercises

	 Summary 1
	Values, Data Types, & Variables
	Expressions & Conditionals
	Evaluation Order
	Compound Expressions
	Exercises

	 Methods
	Exercises

	 Classes & Objects
	Exercises

	 ScalaDoc
	 Creating Classes
	Exercises

	 Methods Inside Classes
	Exercises

	 Imports & Packages
	Exercises

	 Testing
	Testing as Part of Programming
	Exercises

	 Fields
	Exercises

	 For Loops
	Exercises

	 Vectors
	Exercises

	 More Conditionals
	Exercises

	 Summary 2
	Packages, Imports & Testing
	Methods
	Classes & Objects
	Creating Classes
	For Loops
	Exercises

	 Pattern Matching
	Exercises

	 Class Arguments
	Exercises

	 Named & Default Arguments
	Exercises

	 Overloading
	Exercises

	 Constructors
	Exercises

	 Auxiliary Constructors
	Exercises

	 Class Exercises
	Exercises

	 Case Classes
	Exercises

	 String Interpolation
	Exercises

	 Parameterized Types
	Exercises

	 Functions as Objects
	Exercises

	 map & reduce
	Exercises

	 Comprehensions
	Exercises

	 Pattern Matching with Types
	Exercises

	 Pattern Matching with Case Classes
	Exercises

	 Brevity
	Eliminate Intermediate Results
	Omit Unnecessary Curly Braces
	Should You Use Semicolons?
	Remove Unnecessary Arguments
	Use Type Inference for Return Types
	Aliasing Names with type
	Finding a Balance
	Exercises

	 A Bit of Style
	Exercises

	 Idiomatic Scala
	Exercises

	 Defining Operators
	Exercises

	 Automatic String Conversion
	Exercises

	 Tuples
	Exercises

	 Companion Objects
	Exercises

	 Inheritance
	Exercises

	 Base Class Initialization
	Exercises

	 Overriding Methods
	Exercises

	 Enumerations
	Exercises

	 Abstract Classes
	Exercises

	 Traits
	Exercises

	 Uniform Access & Setters
	Exercises

	 Reaching into Java
	Exercises

	 Applications
	Exercises

	 A Little Reflection
	Exercises

	 Polymorphism
	Exercises

	 Composition
	Exercises

	 Using Traits
	Exercises

	 Tagging Traits & Case Objects
	Exercises

	 Type Parameter Constraints
	Exercises

	 Building Systems with Traits
	Exercises

	 Sequences
	Exercises

	 Lists & Recursion
	Exercises

	 Combining Sequences with zip
	Exercises

	 Sets
	Exercises

	 Maps
	Exercises

	 References & Mutability
	Mutability
	Exercises

	 Pattern Matching with Tuples
	Exercises

	 Error Handling with Exceptions
	Exercises

	 Constructors & Exceptions
	Exercises

	 Error Reporting with Either
	Exercises

	 Handling Non-Values with Option
	Exercises

	 Converting Exceptions with Try
	Exercises

	 Custom Error Reporting
	Exercises

	 Design by Contract
	Exercises

	 Logging
	Exercises

	 Extension Methods
	Exercises

	 Extensible Systems with Type Classes
	Exercises

	 Where to Go Now
	 Appendix A: AtomicTest
	 Appendix B: Calling Scala from Java
	 Copyright
	 Index

