




Machine Learning  
in Python®





Machine Learning  
in Python®

Essential Techniques for  
Predictive Analysis

Michael Bowles



Machine Learning in Python® : Essential Techniques for Predictive Analysis

Published by 
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard  
Indianapolis, IN 46256  
www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc., Indianapolis, Indiana 
Published simultaneously in Canada

ISBN: 978-1-118-96174-2
ISBN: 978-1-118-96176-6 (ebk)
ISBN: 978-1-118-96175-9 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, 
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 
108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or autho-
rization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, 
Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed 
to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ  07030, (201) 748-6011, fax (201) 
748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with 
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including 
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or 
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work 
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional 
services. If professional assistance is required, the services of a competent professional person should be sought. 
Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or 
Web site is referred to in this work as a citation and/or a potential source of further information does not mean that 
the author or the publisher endorses the information the organization or website may provide or recommendations 
it may make. Further, readers should be aware that Internet websites listed in this work may have changed or disap-
peared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the 
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with 
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media 
such as a CD or DVD that is not included in the version you purchased, you may download this material at http://
booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2015930541

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or 
its affiliates, in the United States and other countries, and may not be used without written permission. Python is a 
registered trademark of Python Software Foundation. All other trademarks are the property of their respective owners. 
John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://booksupport.wiley.com
http://www.wiley.com


To my children, Scott, Seth, and Cayley. Their blossoming lives and selves  
bring me more joy than anything else in this world. 

To my close friends David and Ron for their selfless generosity and  
steadfast friendship. 

To my friends and colleagues at Hacker Dojo in Mountain View,  
California, for their technical challenges and repartee. 

To my climbing partners. One of them, Katherine, says climbing partners  
make the best friends because “they see you paralyzed with fear, offer  

encouragement to overcome it, and celebrate when you do.”





vii

About the Author

Dr. Michael Bowles (Mike) holds Bachelor’s and Master’s degrees in Mechani-
cal engineering, an Sc.D. in Instrumentation, and an MBA. He has worked in 
academia, technology, and business. Mike currently works with startup com-
panies where machine learning is integral to success. He serves variously as 
part of the management team, a consultant, or advisor. He also teaches machine 
learning courses at Hacker Dojo, a co‐working space and startup incubator in 
Mountain View, California.

Mike was born in Oklahoma and earned his Bachelor’s and Master’s degrees 
there. Then after a stint in Southeast Asia, Mike went to Cambridge for his 
Sc.D. and then held the C. Stark Draper Chair at MIT after graduation. Mike 
left Boston to work on communications satellites at Hughes Aircraft company 
in Southern California, and then after completing an MBA at UCLA moved to 
the San Francisco Bay Area to take roles as founder and CeO of two successful 
venture‐backed startups.

Mike remains actively involved in technical and startup‐related work. Recent 
projects include the use of machine learning in automated trading, predicting 
biological outcomes on the basis of genetic information, natural language pro-
cessing for website optimization, predicting patient outcomes from demographic 
and lab data, and due diligence work on companies in the machine learning 
and big data arenas. Mike can be reached through www.mbowles.com.

http://www.mbowles.com




ix

About the Technical Editor

Daniel Posner holds Bachelor’s and Master’s degrees in economics and is com-
pleting a Ph.D. in Biostatistics at Boston University. He has provided statistical 
consultation for pharmaceutical and biotech firms as well as for researchers at 
the Palo Alto VA hospital.

Daniel has collaborated with the author extensively on topics covered in this 
book. In the past, they have written grant proposals to develop web‐scale gradi-
ent boosting algorithms. Most recently, they worked together on a consulting 
contract involving random forests and spline basis expansions to identify key 
variables in drug trial outcomes and to sharpen predictions in order to reduce 
the required trial populations.





xi

Credits

Executive Editor
Robert elliott

Project Editor
Jennifer Lynn

Technical Editor
Daniel Posner

Production Editor
Dassi Zeidel

Copy Editor
Keith Cline

Manager of Content Development 
& Assembly
Mary Beth Wakefield

Marketing Director
David Mayhew

Marketing Manager
Carrie Sherrill

Professional Technology &  
Strategy Director
Barry Pruett

Business Manager
Amy Knies

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Brent Savage

Proofreader
Word One New York

Indexer
Johnna VanHoose Dinse

Cover Designer
Wiley





xiii

Acknowledgments

I’d like to acknowledge the splendid support that people at Wiley have offered 
during the course of writing this book. It began with Robert elliot, the acquisi-
tions editor, who first contacted me about writing a book; he was very easy to 
work with. It continued with Jennifer Lynn, who has done the editing on the 
book. She’s been very responsive to questions and very patiently kept me on 
schedule during the writing. I thank you both.

I also want to acknowledge the enormous comfort that comes from having 
such a sharp, thorough statistician and programmer as Daniel Posner doing the 
technical editing on the book. Thank you for that and thanks also for the fun 
and interesting discussions on machine learning, statistics, and algorithms. I 
don’t know anyone else who’ll get as deep as fast.





xv

Introduction xxiii

Chapter 1 The Two Essential Algorithms for Making Predictions 1
Chapter 2 Understand the Problem by Understanding the Data  23
Chapter 3 Predictive Model Building: Balancing Performance,  

Complexity, and Big Data  75
Chapter 4 Penalized Linear Regression  121
Chapter 5 Building Predictive Models Using Penalized Linear  

Methods  165
Chapter 6 Ensemble Methods 211
Chapter 7 Building Ensemble Models with Python  255

Index 319

Contents at a Glance





xvii

Introduction xxiii

Chapter 1 The Two Essential Algorithms for Making Predictions 1
Why Are These Two Algorithms So Useful? 2
What Are Penalized Regression Methods? 7
What Are Ensemble Methods? 9
How to Decide Which Algorithm to Use 11
The Process Steps for Building a Predictive Model 13

Framing a Machine Learning Problem 15
Feature Extraction and Feature Engineering 17
Determining Performance of a Trained Model 18

Chapter Contents and Dependencies 18
Summary 20

Chapter 2 Understand the Problem by Understanding the Data 23
The Anatomy of a New Problem 24

Different Types of Attributes and Labels  
Drive Modeling Choices 26

Things to Notice about Your New Data Set 27
Classification Problems: Detecting Unexploded  

Mines Using Sonar 28
Physical Characteristics of the Rocks Versus Mines Data Set 29
Statistical Summaries of the Rocks versus Mines Data Set 32
Visualization of Outliers Using Quantile‐Quantile Plot 35
Statistical Characterization of Categorical Attributes 37
How to Use Python Pandas to Summarize the  

Rocks Versus Mines Data Set 37

Contents



xviii Contents

Visualizing Properties of the Rocks versus Mines Data Set 40
Visualizing with Parallel Coordinates Plots 40
Visualizing Interrelationships between Attributes and Labels 42
Visualizing Attribute and Label Correlations  

Using a Heat Map 49
Summarizing the Process for Understanding Rocks  

versus Mines Data Set 50
Real‐Valued Predictions with Factor Variables:  

How Old Is Your Abalone? 50
Parallel Coordinates for Regression Problems—Visualize  

Variable Relationships for Abalone Problem 56
How to Use Correlation Heat Map for Regression—Visualize  

Pair‐Wise Correlations for the Abalone Problem 60
Real‐Valued Predictions Using Real‐Valued Attributes:  

Calculate How Your Wine Tastes 62
Multiclass Classification Problem: What Type of Glass Is That? 68
Summary 73

Chapter 3  Predictive Model Building: Balancing Performance,  
Complexity, and Big Data 75
The Basic Problem: Understanding Function Approximation 76

Working with Training Data 76
Assessing Performance of Predictive Models 78

Factors Driving Algorithm Choices and  
Performance—Complexity and Data 79

Contrast Between a Simple Problem and a Complex Problem 80
Contrast Between a Simple Model and a Complex Model 82
Factors Driving Predictive Algorithm Performance 86
Choosing an Algorithm: Linear or Nonlinear? 87

Measuring the Performance of Predictive Models 88
Performance Measures for Different Types of Problems 88
Simulating Performance of Deployed Models 99

Achieving Harmony Between Model and Data 101
Choosing a Model to Balance Problem Complexity,  

Model Complexity, and Data Set Size 102
Using Forward Stepwise Regression to Control Overfitting 103
Evaluating and Understanding Your Predictive Model 108
Control Overfitting by Penalizing Regression  

Coefficients—Ridge Regression 110
Summary 119

Chapter 4 Penalized Linear Regression 121
Why Penalized Linear Regression Methods Are So Useful 122

Extremely Fast Coefficient Estimation 122
Variable Importance Information 122
Extremely Fast Evaluation When Deployed 123



 Contents xix

Reliable Performance 123
Sparse Solutions 123
Problem May Require Linear Model 124
When to Use Ensemble Methods 124

Penalized Linear Regression: Regulating Linear  
Regression for Optimum Performance 124

Training Linear Models: Minimizing Errors and More 126
Adding a Coefficient Penalty to the OLS Formulation 127
Other Useful Coefficient Penalties—Manhattan and  

ElasticNet 128
Why Lasso Penalty Leads to Sparse Coefficient Vectors 129
ElasticNet Penalty Includes Both Lasso and Ridge 131

Solving the Penalized Linear Regression Problem 132
Understanding Least Angle Regression and Its Relationship  

to Forward Stepwise Regression 132
How LARS Generates Hundreds of Models of Varying 

Complexity 136
Choosing the Best Model from The Hundreds  

LARS Generates 139
Using Glmnet: Very Fast and Very General 144

Comparison of the Mechanics of Glmnet and  
LARS Algorithms 145

Initializing and Iterating the Glmnet Algorithm 146
Extensions to Linear Regression with Numeric Input 151

Solving Classification Problems with Penalized Regression 151
Working with Classification Problems Having More Than  

Two Outcomes 155
Understanding Basis Expansion: Using Linear Methods on 

Nonlinear Problems 156
Incorporating Non-Numeric Attributes into Linear Methods 158

Summary 163

Chapter 5  Building Predictive Models Using Penalized  
Linear Methods  165
Python Packages for Penalized Linear Regression 166
Multivariable Regression: Predicting Wine Taste 167

Building and Testing a Model to Predict Wine Taste 168
Training on the Whole Data Set before Deployment 172

Basis Expansion: Improving Performance by  
Creating New Variables from Old Ones 178

Binary Classification: Using Penalized Linear  
Regression to Detect Unexploded Mines 181

Build a Rocks versus Mines Classifier for Deployment 191
Multiclass Classification: Classifying Crime Scene  

Glass Samples 204
Summary 209



xx Contents

Chapter 6 Ensemble Methods 211
Binary Decision Trees 212

How a Binary Decision Tree Generates Predictions 213
How to Train a Binary Decision Tree 214
Tree Training Equals Split Point Selection 218

How Split Point Selection Affects Predictions 218
Algorithm for Selecting Split Points 219
Multivariable Tree Training—Which Attribute to Split? 219
Recursive Splitting for More Tree Depth 220

Overfitting Binary Trees 221
Measuring Overfit with Binary Trees 221
Balancing Binary Tree Complexity for Best Performance 222

Modifications for Classification and Categorical Features 225
Bootstrap Aggregation: “Bagging” 226

How Does the Bagging Algorithm Work? 226
Bagging Performance—Bias versus Variance 229
How Bagging Behaves on Multivariable Problem 231
Bagging Needs Tree Depth for Performance 235

Summary of Bagging 236
Gradient Boosting 236

Basic Principle of Gradient Boosting Algorithm 237
Parameter Settings for Gradient Boosting 239
How Gradient Boosting Iterates Toward a Predictive Model 240

Getting the Best Performance from Gradient Boosting 240
Gradient Boosting on a Multivariable Problem 244
Summary for Gradient Boosting 247

Random Forest 247
Random Forests: Bagging Plus Random Attribute Subsets 250
Random Forests Performance Drivers 251
Random Forests Summary 252

Summary 252

Chapter 7 Building Ensemble Models with Python 255
Solving Regression Problems with Python  

Ensemble Packages 255
Building a Random Forest Model to Predict  

Wine Taste 256
Constructing a RandomForestRegressor Object 256
Modeling Wine Taste with RandomForestRegressor 259
Visualizing the Performance of a Random  

Forests Regression Model 262
Using Gradient Boosting to Predict Wine Taste 263

Using the Class Constructor for GradientBoostingRegressor 263
Using GradientBoostingRegressor to  

Implement a Regression Model 267
Assessing the Performance of a Gradient Boosting Model 269



 Contents xxi

Coding Bagging to Predict Wine Taste 270
Incorporating Non-Numeric Attributes in  

Python Ensemble Models 275
Coding the Sex of Abalone for Input to Random  

Forest Regression in Python 275
Assessing Performance and the Importance of  

Coded Variables 278
Coding the Sex of Abalone for Gradient Boosting  

Regression in Python 278
Assessing Performance and the Importance of Coded  

Variables with Gradient Boosting 282
Solving Binary Classification Problems with Python  

Ensemble Methods 284
Detecting Unexploded Mines with Python Random Forest 285
Constructing a Random Forests Model to Detect  

Unexploded Mines 287
Determining the Performance of a Random  

Forests Classifier 291
Detecting Unexploded Mines with Python  

Gradient Boosting 291
Determining the Performance of a Gradient  

Boosting Classifier 298
Solving Multiclass Classification Problems with  

Python Ensemble Methods 302
Classifying Glass with Random Forests 302
Dealing with Class Imbalances 305
Classifying Glass Using Gradient Boosting 307
Assessing the Advantage of Using Random Forest  

Base Learners with Gradient Boosting 311
Comparing Algorithms 314
Summary 315

Index 319





xxiii

Extracting actionable information from data is changing the fabric of modern 
business in ways that directly affect programmers. One way is the demand 
for new programming skills. Market analysts predict demand for people with 
advanced statistics and machine learning skills will exceed supply by 140,000 
to 190,000 by 2018. That means good salaries and a wide choice of interesting 
projects for those who have the requisite skills. Another development that affects 
programmers is progress in developing core tools for statistics and machine 
learning. This relieves programmers of the need to program intricate algorithms 
for themselves each time they want to try a new one. Among general-purpose 
programming languages, Python developers have been in the forefront, build-
ing state-of-the-art machine learning tools, but there is a gap between having 
the tools and being able to use them efficiently.

Programmers can gain general knowledge about machine learning in a num-
ber of ways: online courses, a number of well-written books, and so on. Many 
of these give excellent surveys of machine learning algorithms and examples 
of their use, but because of the availability of so many different algorithms, it’s 
difficult to cover the details of their usage in a survey.

This leaves a gap for the practitioner. The number of algorithms available 
requires making choices that a programmer new to machine learning might not 
be equipped to make until trying several, and it leaves the programmer to fill 
in the details of the usage of these algorithms in the context of overall problem 
formulation and solution.

This book attempts to close that gap. The approach taken is to restrict the 
algorithms covered to two families of algorithms that have proven to give opti-
mum performance for a wide variety of problems. This assertion is supported by 
their dominant usage in machine learning competitions, their early inclusion in 
newly developed packages of machine learning tools, and their performance in 

Introduction



xxiv Introduction

comparative studies (as discussed in Chapter 1, “The Two Essential Algorithms 
for Making Predictions”). Restricting attention to two algorithm families makes 
it possible to provide good coverage of the principles of operation and to run 
through the details of a number of examples showing how these algorithms 
apply to problems with different structures.

The book largely relies on code examples to illustrate the principles of 
operation for the algorithms discussed. I’ve discovered in the classes I teach 
at Hacker Dojo in Mountain View, California, that programmers generally 
grasp principles more readily by seeing simple code illustrations than by 
looking at math.

This book focuses on Python because it offers a good blend of functionality 
and specialized packages containing machine learning algorithms. Python is 
an often-used language that is well known for producing compact, readable 
code. That fact has led a number of leading companies to adopt Python for 
prototyping and deployment. Python developers are supported by a large 
community of fellow developers, development tools, extensions, and so forth. 
Python is widely used in industrial applications and in scientific programming, 
as well. It has a number of packages that support computationally-intensive 
applications like machine learning, and it is a good collection of the leading 
machine learning algorithms (so you don’t have to code them yourself). Python 
is a better general-purpose programming language than specialized statisti-
cal languages such as R or SAS (Statistical Analysis System). Its collection of 
machine learning algorithms incorporates a number of top-flight algorithms 
and continues to expand.

Who This Book Is For

This book is intended for Python programmers who want to add machine 
learning to their repertoire, either for a specific project or as part of keeping 
their toolkit relevant. Perhaps a new problem has come up at work that requires 
machine learning. With machine learning being covered so much in the news 
these days, it’s a useful skill to claim on a resume.

This book provides the following for Python programmers:

 ■ A description of the basic problems that machine learning attacks
 ■ Several state-of-the-art algorithms
 ■ The principles of operation for these algorithms
 ■ Process steps for specifying, designing, and qualifying a machine learn-
ing system

 ■ Examples of the processes and algorithms

 ■ Hackable code



 Introduction xxv

To get through this book easily, your primary background requirements 
include an understanding of programming or computer science and the abil-
ity to read and write code. The code examples, libraries, and packages are all 
Python, so the book will prove most useful to Python programmers. In some 
cases, the book runs through code for the core of an algorithm to demonstrate 
the operating principles, but then uses a Python package incorporating the 
algorithm to apply the algorithm to problems. Seeing code often gives program-
mers an intuitive grasp of an algorithm in the way that seeing the math does 
for others. Once the understanding is in place, examples will use developed 
Python packages with the bells and whistles that are important for efficient 
use (error checking, handling input and output, developed data structures 
for the models, defined predictor methods incorporating the trained model, 
and so on).

In addition to having a programming background, some knowledge of math 
and statistics will help get you through the material easily. Math require-
ments include some undergraduate-level differential calculus (knowing how 
to take a derivative and a little bit of linear algebra), matrix notation, matrix 
multiplication, and matrix inverse. The main use of these will be to follow 
the derivations of some of the algorithms covered. Many times, that will be 
as simple as taking a derivative of a simple function or doing some basic 
matrix manipulations. Being able to follow the calculations at a conceptual 
level may aid your understanding of the algorithm. Understanding the steps 
in the derivation can help you to understand the strengths and weaknesses 
of an algorithm and can help you to decide which algorithm is likely to be the 
best choice for a particular problem.

This book also uses some general probability and statistics. The require-
ments for these include some familiarity with undergraduate-level probability 
and concepts such as the mean value of a list of real numbers, variance, and 
correlation. You can always look through the code if some of the concepts are 
rusty for you.

This book covers two broad classes of machine learning algorithms: penal-
ized linear regression (for example, Ridge and Lasso) and ensemble methods 
(for example, Random Forests and Gradient Boosting). Each of these families 
contains variants that will solve regression and classification problems. (You 
learn the distinction between classification and regression early in the book.)

Readers who are already familiar with machine learning and are only 
interested in picking up one or the other of these can skip to the two chapters 
covering that family. Each method gets two chapters—one covering principles 
of operation and the other running through usage on different types of prob-
lems. Penalized linear regression is covered in Chapter 4, “Penalized Linear 
Regression,” and Chapter 5, “Building Predictive Models Using Penalized 
Linear Methods.” Ensemble methods are covered in Chapter 6, “Ensemble 
Methods,” and Chapter 7, “Building Predictive Models with Python.” To 



xxvi Introduction

familiarize yourself with the problems addressed in the chapters on usage 
of the algorithms, you might find it helpful to skim Chapter 2, “Understand 
the Problem by Understanding the Data,” which deals with data explora-
tion. Readers who are just starting out with machine learning and want to 
go through from start to finish might want to save Chapter 2 until they start 
looking at the solutions to problems in later chapters.

What This Book Covers

As mentioned earlier, this book covers two algorithm families that are relatively 
recent developments and that are still being actively researched. They both 
depend on, and have somewhat eclipsed, earlier technologies.

Penalized linear regression represents a relatively recent development in 
ongoing research to improve on ordinary least squares regression. Penalized 
linear regression has several features that make it a top choice for predictive 
analytics. Penalized linear regression introduces a tunable parameter that makes 
it possible to balance the resulting model between overfitting and underfitting. 
It also yields information on the relative importance of the various inputs to the 
predictions it makes. Both of these features are vitally important to the process 
of developing predictive models. In addition, penalized linear regression yields 
best prediction performance in some classes of problems, particularly under-
determined problems and problems with very many input parameters such 
as genetics and text mining. Furthermore, there’s been a great deal of recent 
development of coordinate descent methods, making training penalized linear 
regression models extremely fast.

To help you understand penalized linear regression, this book recapitulates 
ordinary linear regression and other extensions to it, such as stepwise regres-
sion. The hope is that these will help cultivate intuition.

Ensemble methods are one of the most powerful predictive analytics tools 
available. They can model extremely complicated behavior, especially for prob-
lems that are vastly overdetermined, as is often the case for many web-based 
prediction problems (such as returning search results or predicting ad click-
through rates). Many seasoned data scientists use ensemble methods as their 
first try because of their performance. They are also relatively simple to use, 
and they also rank variables in terms of predictive performance.

Ensemble methods have followed a development path parallel to penalized 
linear regression. Whereas penalized linear regression evolved from over-
coming the limitations of ordinary regression, ensemble methods evolved to 
overcome the limitations of binary decision trees. Correspondingly, this book’s 
coverage of ensemble methods covers some background on binary decision 
trees because ensemble methods inherit some of their properties from binary 



 Introduction xxvii

decision trees. Understanding them helps cultivate intuition about ensemble 
methods.

How This Book Is Structured

This book follows the basic order in which you would approach a new predic-
tion problem. The beginning involves developing an understanding of the 
data and determining how to formulate the problem, and then proceeds to try 
an algorithm and measure the performance. In the midst of this sequence, the 
book outlines the methods and reasons for the steps as they come up. Chapter 
1 gives a more thorough description of the types of problems that this book 
covers and the methods that are used. The book uses several data sets from 
the UC Irvine data repository as examples, and Chapter 2 exhibits some of the 
methods and tools that you can use for developing insight into a new data set. 
Chapter 3, “Predictive Model Building: Balancing Performance, Complexity, 
and Big Data,” talks about the difficulties of predictive analytics and techniques 
for addressing them. It outlines the relationships between problem complex-
ity, model complexity, data set size, and predictive performance. It discusses 
overfitting and how to reliably sense overfitting. It talks about performance 
metrics for different types of problems. Chapters 4 and 5, respectively, cover 
the background on penalized linear regression and its application to problems 
explored in Chapter 2. Chapters 6 and 7 cover background and application for 
ensemble methods.

What You Need to Use This Book

To run the code examples in the book, you need to have Python 2.x, SciPy, 
NumPy, Pandas, and scikit-learn. These can be difficult to install due to cross-
dependencies and version issues. To make the installation easy, I’ve used a 
free distribution of these packages that’s available from Continuum Analytics 
(http://continuum.io/). Their Anaconda product is a free download and 
includes Python 2.x and all the packages you need to run the code in this book 
(and more). I’ve run the examples on Ubuntu 14.04 Linux but haven’t tried them 
on other operating systems.

Conventions

To help you get the most from the text and keep track of what’s happening, 
we’ve used a number of conventions throughout the book.

http://continuum.io/


xxviii Introduction

Warn In g  Boxes like this one hold important, not-to-be forgotten information 
that is directly relevant to the surrounding text.

nOTE Notes, tips, hints, tricks, and asides to the current discussion are offset and 
appear like this.

As for styles in the text:

 ■ We highlight new terms and important words when we introduce them.

 ■ We show keyboard strokes like this: Ctrl+A.

 ■ We show filenames, URLs, and code within the text like so:  
persistence.properties.

 ■ We present code in two different ways:

We use a monofont type with no highlighting for most code examples.
We use bold to emphasize code that’s particularly important in 
the present context.

Source Code

As you work through the examples in this book, you may choose either to type 
in all the code manually or to use the source code files that accompany the book. 
All the source code used in this book is available for download from http://
www.wiley.com/go/pythonmachinelearning. You will find the code snippets 
from the source code are accompanied by a download icon and note indicating 
the name of the program so that you know it’s available for download and can 
easily locate it in the download file. Once at the site, simply locate the book’s 
title (either by using the Search box or by using one of the title lists) and click 
the Download Code link on the book’s detail page to obtain all the source code 
for the book.

nOTE Because many books have similar titles, you may find it easiest to search by 
ISBN; this book’s ISBN is 978-1-118-96174-2.

After you download the code, just decompress it with your favorite compres-
sion tool.

Errata

We make every effort to ensure that no errors appear in the text or in the code. 
However, no one is perfect, and mistakes do occur. If you find an error in one 

http://www.wiley.com/go/pythonmachinelearning
http://www.wiley.com/go/pythonmachinelearning


 Introduction xxix

of our books, like a spelling mistake or faulty piece of code, we would be very 
grateful for your feedback. By sending in errata, you might save another reader 
hours of frustration, and at the same time you will be helping us provide even 
higher-quality information.

To find the errata page for this book, go to http://www.wiley.com and locate 
the title using the Search box or one of the title lists. Then, on the book details 
page, click the Book Errata link. On this page, you can view all errata that has 
been submitted for this book and posted by Wiley editors.

http://www.wiley.com




Machine Learning  
in Python®





1

This book focuses on the machine learning process and so covers just a few of 
the most effective and widely used algorithms. It does not provide a survey of 
machine learning techniques. Too many of the algorithms that might be included 
in a survey are not actively used by practitioners.

This book deals with one class of machine learning problems, generally 
referred to as function approximation. Function approximation is a subset of 
problems that are called supervised learning problems. Linear regression and its 
classifier cousin, logistic regression, provide familiar examples of algorithms for 
function approximation problems. Function approximation problems include 
an enormous breadth of practical classification and regression problems in all 
sorts of arenas, including text classification, search responses, ad placements, 
spam filtering, predicting customer behavior, diagnostics, and so forth. The list 
is almost endless.

Broadly speaking, this book covers two classes of algorithms for solving 
function approximation problems: penalized linear regression methods and 
ensemble methods. This chapter introduces you to both of these algorithms, 
outlines some of their characteristics, and reviews the results of comparative 
studies of algorithm performance in order to demonstrate their consistent high 
performance.

C h a p t e r 

1

the two essential algorithms for 
Making predictions



2 Chapter 1 ■ the two essential algorithms for Making predictions

This chapter then discusses the process of building predictive models. It 
describes the kinds of problems that you'll be able to address with the tools cov-
ered here and the flexibilities that you have in how you set up your problem and 
define the features that you'll use for making predictions. It describes process 
steps involved in building a predictive model and qualifying it for deployment.

Why Are These Two Algorithms So Useful?

Several factors make the penalized linear regression and ensemble methods a 
useful collection. Stated simply, they will provide optimum or near-optimum 
performance on the vast majority of predictive analytics (function approxima-
tion) problems encountered in practice, including big data sets, little data sets, 
wide data sets, tall skinny data sets, complicated problems, and simple problems. 
Evidence for this assertion can be found in two papers by Rich Caruana and 
his colleagues:

 ■ “An Empirical Comparison of Supervised Learning Algorithms,” by Rich 
Caruana and Alexandru Niculescu‐Mizil1

 ■ “An Empirical Evaluation of Supervised Learning in High Dimensions,” 
by Rich Caruana, Nikos Karampatziakis, and Ainur Yessenalina2

In those two papers, the authors chose a variety of classification problems 
and applied a variety of different algorithms to build predictive models. The 
models were run on test data that were not included in training the models, 
and then the algorithms included in the studies were ranked on the basis of 
their performance on the problems. The first study compared 9 different basic 
algorithms on 11 different machine learning (binary classification) problems. 
The problems used in the study came from a wide variety of areas, including 
demographic data, text processing, pattern recognition, physics, and biology. 
Table 1-1 lists the data sets used in the study using the same names given by 
the study authors. The table shows how many attributes were available for 
predicting outcomes for each of the data sets, and it shows what percentage of 
the examples were positive.

The term positive example in a classification problem means an experiment (a 
line of data from the input data set) in which the outcome is positive. For example, 
if the classifier is being designed to determine whether a radar return signal 
indicates the presence of an airplane, then the positive example would be those 
returns where there was actually an airplane in the radar's field of view. The 
term positive comes from this sort of example where the two outcomes represent 
presence or absence. Other examples include presence or absence of disease in 
a medical test or presence or absence of cheating on a tax return.

Not all classification problems deal with presence or absence. For exam-
ple, determining the gender of an author by machine-reading their text or 



 Chapter 1 ■ the two essential algorithms for Making predictions 3

machine-analyzing a handwriting sample has two classes—male and female—
but there's no sense in which one is the absence of the other. In these cases, 
there's some arbitrariness in the assignment of the designations “positive” and 
“negative.” The assignments of positive and negative can be arbitrary, but once 
chosen must be used consistently.

Some of the problems in the first study had many more examples of one 
class than the other. These are called unbalanced. For example, the two data 
sets Letter.p1 and Letter.p2 pose closely related problems in correctly classify-
ing typed uppercase letters in a wide variety of fonts. The task with Letter.p1 
is to correctly classify the letter O in a standard mix of letters. The task with 
Letter.p2 is to correctly classify A–M versus N–Z. The percentage of positives 
shown in Table 1-1 reflects this difference.

Table 1-1 also shows the number of “attributes” in each of the data sets. 
Attributes are the variables you have available to base a prediction on. For 
example, to predict whether an airplane will arrive at its destination on time or 
not, you might incorporate attributes such as the name of the airline company, 
the make and year of the airplane, the level of precipitation at the destina-
tion airport, the wind speed and direction along the flight path, and so on. 
Having a lot of attributes upon which to base a prediction can be a blessing 
and a curse. Attributes that relate directly to the outcomes being predicted are 
a blessing. Attributes that are unrelated to the outcomes are a curse. Telling 
the difference between blessed and cursed attributes requires data. Chapter 3, 
“Predictive Model Building: Balancing Performance, Complexity, and Big 
Data,” goes into that in more detail.

table 1-1:  Sketch of Problems in Machine Learning Comparison Study3

Data Set NaMe NuMber of attributeS
% of exaMpleS that 
are poSitive

Adult 14 25

Bact 11 69

Cod 15 50

Calhous 9 52

Cov_Type 54 36

HS 200 24

Letter.p1 16 3

Letter.p2 16 53

Medis 63 11

Mg 124 17

Slac 59 50



4 Chapter 1 ■ the two essential algorithms for Making predictions

Table 1-2 shows how the algorithms covered in this book fared relative to the 
other algorithms used in the study. Table 1-2 shows which algorithms showed 
the top five performance scores for each of the problems listed in Table 1-1. 
Algorithms covered in this book are spelled out (boosted decision trees, Random 
Forests, bagged decision trees, and logistic regression). The first three of these 
are ensemble methods. Penalized regression was not fully developed when the 
study was done and wasn't evaluated. Logistic regression is a close relative and 
is used to gauge the success of regression methods. Each of the 9 algorithms 
used in the study had 3 different data reduction techniques applied, for a total of 
27 combinations. The top five positions represent roughly the top 20 percent of 
performance scores. The row next to the heading Covt indicates that the boosted 
decision trees algorithm was the first and second best relative to performance, 
Random Forests algorithm was the fourth and fifth best, and bagged decision 
trees algorithm was the third best. In the cases where algorithms not covered 
here were in the top five, an entry appears in the Other column. The algorithms 
that show up there are k nearest neighbors (KNNs), artificial neural nets (ANNs), 
and support vector machines (SVMs).

table 1-2:  How the Algorithms Covered in This Book Compare on Different Problems

algorithM

booSteD 
DeCiSioN 
treeS

raNDoM 
foreStS

baggeD 
DeCiSioN 
treeS

logiStiC 
regreSSioN other

Covt 1, 2 4, 5 3

Adult 1, 4 2 3, 5

LTR.P1 1 SVM, KNN

LTR.P2 1, 2 4, 5 SVM

MEDIS 1, 3 5 ANN

SLAC 1, 2, 3 4, 5

HS 1, 3 ANN

MG 2, 4, 5 1, 3

CALHOUS 1, 2 5 3, 4

COD 1, 2 3, 4, 5

BACT 2, 5 1, 3, 4

Logistic regression captures top-five honors in only one case in Table 1-2. The 
reason for that is that these data sets have few attributes (at most 200) relative to 
examples (5,000 in each data set). There's plenty of data to resolve a model with 
so few attributes, and yet the training sets are small enough that the training 
time is not excessive.



 Chapter 1 ■ the two essential algorithms for Making predictions 5

Note As you'll see in Chapter 3 and in the examples covered in Chapter 5, “Building 
Predictive Models Using Penalized Linear Methods,” and Chapter 7, “Building 
Ensemble Models with Python,” the penalized regression methods perform best 
relative to other algorithms when there are numerous attributes and not enough 
examples or time to train a more complicated ensemble model.

Caruana et al. have run a newer study (2008) to address how these algorithms 
compare when the number of attributes increases. That is, how do these algorithms 
compare on big data? A number of fields have significantly more attributes than 
the data sets in the first study. For example, genomic problems have several tens 
of thousands of attributes (one attribute per gene), and text mining problems can 
have millions of attributes (one attribute per distinct word or per distinct pair 
of words). Table 1-3 shows how linear regression and ensemble methods fare 
as the number of attributes grows. The results in Table 1-3 show the ranking of 
the algorithms used in the second study. The table shows the performance on 
each of the problems individually and in the far right column shows the rank-
ing of each algorithm's average score across all the problems. The algorithms 
used in the study are broken into two groups. The top group of algorithms are 
ones that will be covered in this book. The bottom group will not be covered.

The problems shown in Table 1-3 are arranged in order of their number of 
attributes, ranging from 761 to 685,569. Linear (logistic) regression is in the 
top three for 5 of the 11 test cases used in the study. Those superior scores 
were concentrated among the larger data sets. Notice that boosted decision 
tree (denoted by BSTDT in Table 1-3) and Random Forests (denoted by RF in 
Table 1-3) algorithms still perform near the top. They come in first and second 
for overall score on these problems.

The algorithms covered in this book have other advantages besides raw pre-
dictive performance. An important benefit of the penalized linear regression 
models that the book covers is the speed at which they train. On big problems, 
training speed can become an issue. In some problems, model training can take 
days or weeks. This time frame can be an intolerable delay, particularly early 
in development when iterations are required to home in on the best approach. 
Besides training very quickly, after being deployed a trained linear model can 
produce predictions very quickly—quickly enough for high‐speed trading or 
Internet ad insertions. The study demonstrates that penalized linear regression 
can provide the best answers available in many cases and be near the top even 
in cases where they are not the best.

In addition, these algorithms are reasonably easy to use. They do not have very 
many tunable parameters. They have well‐defined and well‐structured input 
types. They solve several types of problems in regression and classification. It 
is not unusual to be able to arrange the input data and generate a first trained 
model and performance predictions within an hour or two of starting a new 
problem.



6

ta
bl

e 
1-

3:
  H

ow
 th

e 
A

lg
or

ith
m

s 
Co

ve
re

d 
in

 T
hi

s 
Bo

ok
 C

om
pa

re
 o

n 
Bi

g 
D

at
a 

Pr
ob

le
m

s

D
iM

76
1

76
1

78
0

92
7

13
44

34
48

20
95

8
10

53
54

19
52

03
40

53
33

68
55

69

St
u

rN
C

a
la

M
D

ig
it

S
ti

S
Cr

yS
t

KD
D

98
r‐

S
Ci

te
D

Se
Sp

a
M

iM
D

b
M

ea
N

BS
TD

T
8

1
2

6
1

3
8

1
7

6
3

1

RF
9

4
3

3
2

1
6

5
3

1
3

2

BA
G

D
T

5
2

6
4

3
1

9
1

6
7

3
4

BS
TS

T
2

3
7

7
7

1
7

4
8

8
5

7

LR
4

8
9

1
4

1
2

2
2

4
4

6

SV
M

3
5

5
2

5
2

1
1

5
5

3
3

A
N

N
6

7
4

5
8

1
4

2
1

3
3

5

KN
N

1
6

1
9

6
2

10
1

7
9

6
8

PR
C

7
9

8
8

7
1

3
3

4
2

2
9

N
B

10
10

10
10

9
1

5
1

9
10

7
10



 Chapter 1 ■ the two essential algorithms for Making predictions 7

One of their most important features is that they indicate which of their input 
variables is most important for producing predictions. This turns out to be an 
invaluable feature in a machine learning algorithm. One of the most time‐con-
suming steps in the development of a predictive model is what is sometimes 
called feature selection or feature engineering. This is the process whereby the data 
scientist chooses the variables that will be used to predict outcomes. By rank-
ing features according to importance, the algorithms covered in this book aid 
in the feature-engineering process by taking some of the guesswork out of the 
development process and making the process more sure.

What Are Penalized Regression Methods?

Penalized linear regression is a derivative of ordinary least squares (OLS) regres-
sion—a method developed by Gauss and Legendre roughly 200 years ago. 
Penalized linear regression methods were designed to overcome some basic 
limitations of OLS regression. The basic problem with OLS is that sometimes it 
overfits the problem. Think of OLS as fitting a line through a group of points, 
as in Figure 1-1. This is a simple prediction problem: predicting y, the target 
value given a single attribute x. For example, the problem might be to predict 
men's salaries using only their heights. Height is slightly predictive of salaries 
for men (but not for women).

figure 1-1:  Ordinary least squares fit

x – attribute value

y 
– 

ta
rg

et
 v

al
ue

The points represent men's salaries versus their heights. The line in Figure 1-1 
represents the OLS solution to this prediction problem. In some sense, the line 
is the best predictive model for men's salaries given their heights. The data set 
has six points in it. Suppose that the data set had only two points in it. Imagine 
that there's a population of points, like the ones in Figure 1-1, but that you do 
not get to see all the points. Maybe they are too expensive to generate, like the 



8 Chapter 1 ■ the two essential algorithms for Making predictions

genetic data mentioned earlier. There are enough humans available to isolate 
the gene that is the culprit; the problem is that you do not have gene sequences 
for many of them because of cost.

To simulate this in the simple example, imagine that instead of six points 
you're given only two of the six points. How would that change the nature 
of the line fit to those points? It would depend on which two points you hap-
pened to get. To see how much effect that would have, pick any two points from 
Figure 1-1 and imagine a line through them. Figure 1-2 shows some of the pos-
sible lines through pairs of points from Figure 1-1. Notice how much the lines 
vary depending on the choice of points.

figure 1-2:  Fitting lines with only two points

x – attribute value

y 
– 

ta
rg

et
 v

al
ue

The problem with having only two points to fit a line is that there is not 
enough data for the number of degrees of freedom. A line has two degrees of 
freedom. Having two degrees of freedom means that there are two independent 
parameters that uniquely determine a line. You can imagine grabbing hold 
of a line in the plane and sliding it up and down in the plane or twisting it to 
change its slope. So, vertical position and slope are independent. They can be 
changed separately, and together they completely specify a line. The degrees of 
freedom of a line can be expressed in several equivalent ways (where it intercepts 
the y‐axis and its slope, two points that are on the line, and so on). All of these 
representations of a line require two parameters to specify.

When the number of degrees of freedom is equal to the number of points, the 
predictions are not very good. The lines hit the points used to draw them, but 
there is a lot of variation among lines drawn with different pairs of points. You 
cannot place much faith in a prediction that has as many degrees of freedom 
as the number of points in your data set. The plot in Figure 1-1 had six points 
and fit a line (two degrees of freedom) through them. That is six points and two 
degrees of freedom. The thought problem of determining the genes causing a 
heritable condition illustrated that having more genes to choose from makes it 



 Chapter 1 ■ the two essential algorithms for Making predictions 9

necessary to have more data in order to isolate a cause from among the 20,000 
or so possible human genes. The 20,000 different genes represent 20,000 degrees 
of freedom. Data from even 20,000 different persons will not suffice to get a 
reliable answer, and in many cases, all that can be afforded within the scope of 
a reasonable study is a sample from 500 or so persons. That is where penalized 
linear regression may be the best algorithm choice.

Penalized linear regression provides a way to systematically reduce degrees 
of freedom to match the amount of data available and the complexity of the 
underlying phenomena. These methods have become very popular for problems 
with very many degrees of freedom. They are a favorite for genetic problems 
where the number of degrees of freedom (that is, the number of genes) can be 
several tens of thousands and for problems like text classification where the 
number of degrees of freedom can be more than a million. Chapter 4, “Penalized 
Linear Regression,” gives more detail on how these methods work, sample code 
that illustrates the mechanics of these algorithms, and examples of the process 
for implementing machine learning systems using available Python packages.

What Are Ensemble Methods?

The other family of algorithms covered in this book is ensemble methods. The 
basic idea with ensemble methods is to build a horde of different predictive models 
and then combine their outputs—by averaging the outputs or taking the majority 
answer (voting). The individual models are called base learners. Some results from 
computational learning theory show that if the base learners are just slightly bet-
ter than random guessing, the performance of the ensemble can be very good if 
there is a sufficient number of independent models.

One of the problems spurring the development of ensemble methods has 
been the observation that some particular machine learning algorithms exhibit 
instability. For example, the addition of fresh data to the data set might result in 
a radical change in the resulting model or its performance. Binary decision trees 
and traditional neural nets exhibit this sort of instability. This instability causes 
high variance in the performance of models, and averaging many models can 
be viewed as a way to reduce the variance. The trick is how to generate large 
numbers of independent models, particularly if they are all using the same base 
learner. Chapter 6, “Ensemble Methods,” will get into the details of how this is 
done. The techniques are ingenious, and it is relatively easy to understand their 
basic principles of operation. Here is a preview of what's in store.

The ensemble methods that enjoy the widest availability and usage incorpo-
rate binary decision trees as their base learners. Binary decision trees are often 
portrayed as shown in Figure 1-3. The tree in Figure 1-3 takes a real number, 
called x, as input at the top, and then uses a series of binary (two‐valued) deci-
sions to decide what value should be output in response to x. The first decision 



10 Chapter 1 ■ the two essential algorithms for Making predictions

is whether x is less than 5. If the answer to that question is “no,” the binary 
decision tree outputs the value 4 indicated in the circle below the No leg of the 
upper decision box. Every possible value for x leads to some output y from the 
tree. Figure 1-4 plots the output (y) as a function of the input to the tree (x).

figure 1-3:  Binary decision tree example

x

x < 5?

x < 3?

y = 2 y = 1

y = 4

Yes No

Yes No

figure 1-4:  Input‐output graph for the binary decision tree example

5

4

3Ou
tp

ut

Input

2

1

5 6 74321

This description raises the question of where the comparisons (for example, 
x < 5?) come from and where the output values (in the circles at the bottom of the 
tree) come from. These values come from training the binary tree on the input 
data. The algorithm for doing that training is not difficult to understand and is 



 Chapter 1 ■ the two essential algorithms for Making predictions 11

covered in Chapter 6. The important thing to note at this point is that the values in 
the trained binary decision tree are fixed, given the data. The process for generat-
ing the tree is deterministic. One way to get differing models is to take random 
samples of the training data and train on these random subsets. That technique 
is called Bagging (short for bootstrap aggregating). It gives a way to generate a large 
number of slightly different binary decision trees. Those are then averaged (or 
voted for a classifier) to yield a final result. Chapter 6 describes in more detail 
this technique and other more powerful ones.

How to Decide Which Algorithm to Use

Table 1-4 gives a sketch comparison of these two families of algorithms. Penalized 
linear regression methods have the advantage that they train very quickly. 
Training times on large data sets can extend to hours, days, or even weeks. 
Training usually needs to be done several times before a deployable solution 
is arrived at. Long training times can stall development and deployment on 
large problems. The rapid training time for penalized linear methods makes 
them useful for the obvious reason that shorter is better. Depending on the 
problem, these methods may suffer some performance disadvantages relative 
to ensemble methods. Chapter 3 gives more insight into the types of problems 
where penalized regression might be a better choice and those where ensemble 
methods might be a better choice. Penalized linear methods can sometimes be 
a useful first step in your development process even in the circumstance where 
they yield inferior performance to ensemble methods.

Early in development, a number of training iterations will be necessary for 
purposes of feature selection and feature engineering and for solidifying the 
mathematical problem statement. Deciding what you are going to use as input 
to your predictive model can take some time and thought. Sometimes that is 
obvious, but usually it requires some iteration. Throwing in everything you can 
find is not usually a good solution.

Trial and error is typically required to determine the best inputs for a model. 
For example, if you're trying to predict whether a visitor to your website will click 
a link for an ad, you might try using demographic data for the visitor. Maybe 
that does not give you the accuracy that you need, so you try incorporating data 
regarding the visitor's past behavior on the site—what ad the visitor clicked dur-
ing past site visits or what products the visitor has bought. Maybe adding data 
about the site the visitor was on before coming to your site would help. These 
questions lead to a series of experiments where you incorporate the new data and 
see whether it hurts or helps. This iteration is generally time‐consuming both 
for the data manipulations and for training your predictive model. Penalized 
linear regression will generally be faster than an ensemble method, and the 
time difference can be a material factor in the development process.



12 Chapter 1 ■ the two essential algorithms for Making predictions

For example, if the training set is on the order of a gigabyte, training times 
may be on the order of 30 minutes for penalized linear regression and 5 or 6 
hours for an ensemble method. If the feature engineering process requires 10 
iterations to select the best feature set, the computation time alone comes to 
the difference between taking a day or taking a week to accomplish feature 
engineering. A useful process, therefore, is to train a penalized linear model in 
the early stages of development, feature engineering, and so on. That gives the 
data scientist a feel for which variables are going to be useful and important 
as well as a baseline performance for comparison with other algorithms later 
in development.

Besides enjoying a training time advantage, penalized linear methods gen-
erate predictions much faster than ensemble methods. Generating a predic-
tion involves using the trained model. The trained model for penalized linear 
regression is simply a list of real numbers—one for each feature being used to 
make the predictions. The number of floating‐point operations involved is the 
number of variables being used to make predictions. For highly time‐sensitive 
predictions such as high‐speed trading or Internet ad insertions, computation 
time makes the difference between making money and losing money.

table 1-4:  High‐Level Tradeoff between Penalized Linear Regression and Ensemble Algorithms

traiNiNg 
SpeeD

preDiCtioN 
SpeeD

probleM 
CoMplexity

DealS with 
wiDe attribute

Penalized Linear 
Regression

+ + – +

Ensemble 
Methods

– – + –

For some problems, linear methods may give equivalent or even better per-
formance than ensemble methods. Some problems do not require complicated 
models. Chapter 3 goes into some detail about the nature of problem complexity 
and how the data scientist's task is to balance problem complexity, predictive 
model complexity, and data set size to achieve the best deployable model. The 
basic idea is that on problems that are not complex and problems for which 
sufficient data are not available, linear methods may achieve better overall 
performance than more complicated ensemble methods. Genetic data provide 
a good illustration of this type of problem.

The general perception is that there's an enormous amount of genetic data 
around. Genetic data sets are indeed large when measured in bytes, but in 
terms of generating accurate predictions, they aren't very large. To understand 
this distinction, consider the following thought experiment. Suppose that you 
have two people, one with a heritable condition and the other without. If you 



 Chapter 1 ■ the two essential algorithms for Making predictions 13

had genetic sequences for the two people, could you determine which gene was 
responsible for the condition? Obviously, that's not possible because many genes 
will differ between the two persons. So how many people would it take? At a 
minimum, it would take gene sequences for as many people as there are genes, 
and given any noise in the measurements, it would take even more. Humans 
have roughly 20,000 genes, depending on your count. And each datum costs 
roughly $1,000. So having just enough data to resolve the disease with perfect 
measurements would cost $20 million.

This situation is very similar to fitting a line to two points, as discussed 
earlier in this chapter. Models need to have fewer degrees of freedom than 
the number of data points. The data set typically needs to be a multiple of 
the degrees of freedom in the model. Because the data set size is fixed, the 
degrees of freedom in the model need to be adjustable. The chapters deal-
ing with penalized linear regression will show you how the adjustability is 
built into penalized linear regression and how to use it to achieve optimum 
performance.

Note The two broad categories of algorithms addressed in this book match those 
that Jeremy Howard and I presented at Strata Conference in 2012. Jeremy took ensem-
ble methods, and I took penalized linear regression. We had fun arguing about the 
relative merits of the two groups. In reality, however, those two cover something like 
80 percent of the model building that I do, and there are good reasons for that.

Chapter 3 goes into more detail about why one algorithm or another is 
a better choice for a given problem. It has to do with the complexity of the 
problem and the number of degrees of freedom inherent in the algorithms. 
The linear models tend to train rapidly and often give equivalent performance 
to nonlinear ensemble methods, especially if the data available are somewhat 
constrained. Because they're so rapid to train, it is often convenient to train 
linear models for early feature selection and to ballpark achievable perfor-
mance for a specific problem. The linear models considered in this book can 
give information about variable importance to aid in the feature selection 
process. The ensemble methods often give better performance if there are 
adequate data and also give somewhat indirect measures of relative variable 
importance.

The Process Steps for Building a Predictive Model

Using machine learning requires several different skills. One is the required 
programming skill, which this book does not address. The other skills have to 
do with getting an appropriate model trained and deployed. These other skills 
are what the book does address. What do these other skills include?



14 Chapter 1 ■ the two essential algorithms for Making predictions

Initially, problems are stated in somewhat vague language‐based terms like 
“Show site visitors links that they're likely to click on.” To turn this into a working 
system requires restating the problem in concrete mathematical terms, finding 
data to base the prediction on, and then training a predictive model that will 
predict the likelihood of site visitors clicking the links that are available for 
presentation. Stating the problem in mathematical terms makes assumptions 
about what features will be extracted from the available data sources and how 
they will be structured.

How do you get started with a new problem? First, you look through the avail-
able data to determine which of the data might be of use in prediction. “Looking 
through the data” means running various statistical tests on the data to get a 
feel for what they reveal and how they relate to what you're trying to predict. 
Intuition can guide you to some extent. You can also quantify the outcomes 
and test the degree to which potential prediction features correlate with these 
outcomes. Chapter 2, “Understand the Problem by Understanding the Data,” 
goes through this process for the data sets that are used to characterize and 
compare the algorithms outlined in the rest of the book.

By some means, you develop a set of features and start training the machine 
learning algorithm that you have selected. That produces a trained model 
and estimates its performance. Next, you want to consider making changes 
to the features set, including adding new ones or removing some that proved 
unhelpful, or perhaps changing to a different type of training objective (also 
called a target) to see whether it improves performance. You'll iterate various 
design decisions to determine whether there's a possibility of improving 
performance. You may pull out the examples that show the worst perfor-
mance and then attempt to determine if there's something that unites these 
examples. That may lead to another feature to add to the prediction process, 
or it might cause you to bifurcate the data and train different models on 
different populations.

The goal of this book is to make these processes familiar enough to you that 
you can march through these development steps confidently. That requires your 
familiarity with the input data structures required by different algorithms as 
you frame the problem and begin extracting the data to be used in training and 
testing algorithms. The process usually includes several of the following steps:

 1. Extract and assemble features to be used for prediction.

 2. Develop targets for the training.

 3. Train a model.

 4. Assess performance on test data.

Note The first pass can usually be improved on by trying different sets of features, 
different types of targets, and so on.



 Chapter 1 ■ the two essential algorithms for Making predictions 15

Machine learning requires more than familiarization with a few packages. 
It requires understanding and having practiced the process involved in devel-
oping a deployable model. This book aims to give you that understanding. 
It assumes basic undergraduate math and some basic ideas from probability 
and statistics, but the book doesn't presuppose a background in machine 
learning. At the same time, it intends to arm readers with the very best algo-
rithms for a wide class of problems, not necessarily to survey all machine 
learning algorithms or approaches. There are a number of algorithms that are 
interesting but that don't get used often, for a variety of reasons. For example, 
perhaps they don't scale well, maybe they don't give insight about what is 
going on inside, maybe they're difficult to use, and so on. It is well known, 
for example, that Random Forests (one of the algorithms covered here) is the 
leading winner of online machine competitions by a wide margin. There are 
good reasons why some algorithms are more often used by practitioners, and 
this book will succeed to the extent that you understand these when you've 
finished reading.

Framing a Machine Learning Problem
Beginning work on a machine learning competition presents a simulation of 
a real machine learning problem. The competition presents a brief description 
(for example, announcing that an insurance company would like to better pre-
dict loss rates on their automobile policies). As a competitor, your first step is 
to open the data set, take a look at the data available, and identify what form 
a prediction needs to take to be useful. The inspection of the data will give an 
intuitive feel for what the data represent and how they relate to the prediction 
job at hand. The data can give insight regarding approaches. Figure 1-5 depicts 
the process of starting from a general language statement of objective and 
moving toward an arrangement of data that will serve as input for a machine 
learning algorithm.

figure 1-5:  Framing a machine learning problem

Let’s get
better
results.

??? How?

targets

attributes

??? What does
“better” mean?

??? Any available
helpful data



16 Chapter 1 ■ the two essential algorithms for Making predictions

The generalized statement caricatured as “Let's get better results” has first 
to be converted into specific goals that can be measured and optimized. For a 
website owner, specific performance might be improved click‐through rates or 
more sales (or more contribution margin). The next step is to assemble data that 
might make it possible to predict how likely a given customer is to click various 
links or to purchase various products offered online. Figure 1-5 depicts these 
data as a matrix of attributes. For the website example, they might include other 
pages the visitor has viewed or items the visitor has purchased in the past. In 
addition to attributes that will be used to make predictions, the machine learn-
ing algorithms for this type of problem need to have correct answers to use for 
training. These are denoted as targets in Figure 1-5. The algorithms covered in 
this book learn by detecting patterns in past behaviors, but it is important that 
they not merely memorize past behavior; after all, a customer might not repeat 
a purchase of something he bought yesterday. Chapter 3 discusses in detail how 
this process of training without memorizing works.

Usually, several aspects of the problem formulation can be done in more than 
one way. This leads to some iteration between framing the problem, selecting 
and training a model, and producing performance estimates. Figure 1-6 depicts 
this process.

figure 1-6:  Iteration from formulation to performance

(Re-)Frame the Problem

Qualitative
Problem

Description

Mathematical
Problem

Description

Model Training
and Performance

Assessment

Deployed
Model

The problem may come with specific quantitative training objectives, or part 
of the job might be extracting these data (called targets or labels). Consider, for 
instance, the problem of building a system to automatically trade securities. 
To trade automatically, a first step might be to predict changes in the price of 
a security. The prices are easily available, so it is conceptually simple to use 
historical data to build training examples for which the future price changes 
are known. But even that involves choices and experimentation. Future price 
change could be computed in several different ways. The change could be the 
difference between the current price and the price 10 minutes in the future. It 
could also be the change between the current price and the price 10 days in 
the future. It could also be the difference between the current price and the 
maximum/minimum price over the next 10 minutes. The change in price could 
be characterized by a two‐state variable taking values “higher” of “lower” 



 Chapter 1 ■ the two essential algorithms for Making predictions 17

depending on whether the price is higher or lower 10 minutes in the future. 
Each of these choices will lead to a predictive model, and the predictions will 
be used for deciding whether to buy or sell the security. Some experimentation 
will be required to determine the best choice.

Feature Extraction and Feature Engineering
Deciding which variables to use for making predictions can also involve experi-
mentation. This process is known as feature extraction and feature engineering. 
Feature extraction is the process of taking data from a free‐form arrangement, 
such as words in a document or on a web page, and arranging them into rows 
and columns of numbers. For example, a spam‐filtering problem begins with 
text from emails and might extract things such as the number of capital letters 
in the document and the number of words in all caps, the number of times the 
word "buy" appears in the document and other numeric features selected to 
highlight the differences between spam and non‐spam emails.

Feature engineering is the process of manipulating and combining features 
to arrive at more informative ones. Building a system for trading securities 
involves feature extraction and feature engineering. Feature extraction would 
be deciding what things will be used to predict prices. Past prices, prices of 
related securities, interest rates, and features extracted from news releases have 
all been incorporated into various trading systems that have been discussed 
publicly. In addition, securities prices have a number of engineered features 
with names like stochastic, MACD (moving average convergence divergence), and 
RSI (relative strength index) that are basically functions of past prices that their 
inventors believed to be useful in securities trading.

After a reasonable set of features is developed, you can train a predictive 
model like the ones described in this book, assess its performance, and make 
a decision about deploying the model. Generally, you'll want to make changes 
to the features used, if for no other reason than to confirm that your model's 
performance is adequate. One way to determine which features to use is to try 
all combinations, but that can take a lot of time. Inevitably, you'll face compet-
ing pressures to improve performance but also to get a trained model into use 
quickly. The algorithms discussed in this book have the beneficial property of 
providing metrics on the utility of each attribute in producing predictions. One 
training pass will generate rankings on the features to indicate their relative 
importance. This information helps speed the feature engineering process.

Note Data preparation and feature engineering is estimated to take 80 to 90 
percent of the time required to develop a machine learning model.

The model training process, which begins each time a baseline set of features 
is attempted, also involves a process. A modern machine learning algorithm, 



18 Chapter 1 ■ the two essential algorithms for Making predictions

such as the ones described in this book, trains something like 100 to 5,000 differ-
ent models that have to be winnowed down to a single model for deployment. 
The reason for generating so many models is to provide models of all different 
shades of complexity. This makes it possible to choose the model that is best 
suited to the problem and data set. You don't want a model that's too simple or 
you give up performance, but you don't want a model that's too complicated or 
you'll overfit the problem. Having models in all shades of complexity lets you 
pick one that is just right.

Determining Performance of a Trained Model
The fit of a model is determined by how well it performs on data that were not 
used to train the model. This is an important step and conceptually simple. Just 
set aside some data. Don't use it in training. After the training is finished, use 
the data you set aside to determine the performance of your algorithm. This 
book discusses several systematic ways to hold out data. Different methods have 
different advantages, depending mostly on the size of the training data. As easy 
as it sounds, people continually figure out complicated ways to let the test data 
“leak” into the training process. At the end of the process, you'll have an algorithm 
that will sift through incoming data and make accurate predictions for you. It 
might need monitoring as changing conditions alter the underlying statistics.

Chapter Contents and Dependencies

Different readers may want to take different paths through this book, depend-
ing on their backgrounds and whether they have time to understand the basic 
principles. Figure 1-7 shows how chapters in the book depend on one another.

figure 1-7:  Dependence of chapters on one another

Chapter 1
Two Essential
Algorithms

Chapter 2
Understand the
Problem by
Understanding
the Data

Chapter 4
Penalized
Linear
Regression

Chapter 5
Applying
Penalized Linear
Regression

Chapter 6
Ensemble
Methods

Chapter 7
Applying
Ensemble
Methods

Chapter 3
Predictive
Model Building



 Chapter 1 ■ the two essential algorithms for Making predictions 19

Chapter 2 goes through the various data sets that will be used for problem 
examples to illustrate the use of the algorithms that will be developed and to 
compare algorithms to each other based on performance and other features. 
The starting point with a new machine learning problem is digging into the 
data set to understand it better and to learn its problems and idiosyncrasies. 
Part of the point of Chapter 2 is to demonstrate some of the tools available in 
Python for data exploration. You might want to go through some but not all of 
the examples shown in Chapter 2 to become familiar with the process and then 
come back to Chapter 2 when diving into the solution examples later.

Chapter 3 explains the basic tradeoffs in a machine learning problem and 
introduces several key concepts that are used throughout the book. One key 
concept is the mathematical description of predictive problems. The basic dis-
tinctions between classification and regression problems are shown. Chapter 3 
also introduces the concept of using out‐of‐sample data for determining the 
performance of a predictive model. Out‐of‐sample data are data that have not 
been included in the training of the model. Good machine learning practice 
demands that a developer produce solid estimates of how a predictive model 
will perform when it is deployed. This requires excluding some data from the 
training set and using it to simulate fresh data. The reasons for this requirement, 
the methods for accomplishing it, and the tradeoffs between different methods 
are described. Another key concept is that there are numerous measures of 
system performance. Chapter 3 outlines these methods and discusses tradeoffs 
between them. Readers who are already familiar with machine learning can 
browse this chapter and scan the code examples instead of reading it carefully 
and running the code.

Chapter 4 shows the core ideas of the algorithms for training penalized 
regression models. The chapter introduces the basic concepts and shows how 
the algorithms are derived. Some of the examples introduced in Chapter 3 
are used to motivate the penalized linear regression methods and algorithms 
for their solution. The chapter runs through code for the core algorithms for 
solving penalized linear regression training. Chapter 4 also explains several 
extensions to linear regression methods. One of these extensions shows how to 
code factor variables as real numbers so that linear regression methods can be 
applied. Linear regression can be used only on problems where the predictors 
are real numbers; that is, the quantities being used to make predictions have 
to be numeric. Many practical and important problems have variables like 
“single, married, or divorced” that can be helpful in making predictions. To 
incorporate variables of this type (called categorical variables) in a linear regres-
sion model, means have been devised to convert categorical variables to real 
number variables. Chapter 4 covers those methods. In addition, Chapter 4 also 
shows methods (called basis expansion) for getting nonlinear functions out of 
nonlinear regression. Sometimes basis expansion can be used to squeeze a little 
more performance out of linear regression.



20 Chapter 1 ■ the two essential algorithms for Making predictions

Chapter 5 applies the penalized regression algorithms developed in Chapter 4 
to a number of the problems outlined in Chapter 2. The chapter outlines the 
Python packages that implement penalized regression methods and uses them 
to solve problems. The objective is to cover a wide enough variety of problems 
that practitioners can find a problem close to the one that they have in front 
of them to solve. Besides quantifying and comparing predictive performance, 
Chapter 5 looks at other properties of the trained algorithms. Variable selection 
and variable ranking are important to understand. This understanding will 
help speed development on new problems.

Chapter 6 develops ensemble methods. Because ensemble methods are most 
frequently based on binary decision trees, the first step is to understand the 
principles of training and using binary decision trees. Many of the properties 
of ensemble methods are ones that they inherit directly from binary decision 
trees. With that understanding in place, the chapter explains the three prin-
cipal ensemble methods covered in the book. The common names for these 
are Bagging, boosting, and Random Forest. For each of these, the principles of 
operation are outlined and the code for the core algorithm is developed so that 
you can understand the principles of operation.

Chapter 7 uses ensemble methods to solve problems from Chapter 2 and 
then compares the various algorithms that have been developed. The com-
parison involves a number of elements. Predictive performance is one element 
of comparison. The time required for training and performance is another 
element. All the algorithms covered give variable importance ranking, and 
this information is compared on a given problem across several different 
algorithms.

In my experience, teaching machine learning to programmers and computer 
scientists, I've learned that code examples work better than mathematics for some 
people. The approach taken here is to provide some mathematics, algorithm 
sketches, and code examples to illustrate the important points. Nearly all the 
methods that are discussed will be found in the code included in the book and 
on the website. The intent is to provide hackable code to help you get up and 
running on your own problems as quickly as possible.

Summary

This chapter has given a specification for the kinds of problems that you'll be able 
to solve and a description of the process steps for building predictive models. 
The book concentrates on two algorithm families. Limiting the number of algo-
rithms covered allows for a more thorough explanation of the background for 
these algorithms and of the mechanics of using them. This chapter showed some 
comparative performance results to motivate the choice of these two particular 
families. The chapter discussed the different strengths and characteristics of 



 Chapter 1 ■ the two essential algorithms for Making predictions 21

these two families and gave some description of the types of problems that 
would favor one or the other of the two.

The chapter also laid out the steps in the process of developing a predictive 
model and elaborated on the tradeoffs and outcomes for each step. The use of 
data not included in model training was suggested for generating performance 
estimates for predictive models.

This book's goal is to bring programmers with little or no machine learning 
experience to the point where they feel competent and comfortable incorporat-
ing machine learning into projects. The book does not survey a wide number 
of algorithms. Instead, it covers several best‐in‐class algorithms that can offer 
you performance, flexibility, and clarity. Once you understand a little about how 
these work and have some experience using them, you'll find them easy and 
quick to use. They will enable you to solve a wide variety of problems without 
having to do a lot of fussing to get them trained, and they'll give you insight 
into the sources of their performance.

references

 1. Caruana, Rich, and Alexandru Niculescu‐Mizil. “An Empirical Comparison 
of Supervised Learning Algorithms.” Proceedings of the 23rd International 
Conference on Machine Learning. ACM, 2006.

 2. Caruana, Rich, Nikos Karampatziakis, and Ainur Yessenalina. “An Empirical 
Evaluation of Supervised Learning in High Dimensions.” Proceedings of 
the 25th International Conference on Machine Learning. ACM, 2008.





23

A new data set (problem) is a wrapped gift. It’s full of promise and anticipa-
tion at the miracles you can wreak once you’ve solved it. But it remains a 
mystery until you’ve opened it. This chapter is about opening up your new 
data set so you can see what’s inside, get an appreciation for what you’ll be 
able to do with the data, and start thinking about how you’ll approach model 
building with it.

This chapter has two purposes. One is to familiarize you with data sets that 
will be used later as examples of different types of problems to be solved using 
the algorithms you’ll learn in Chapter 4, “Penalized Linear Regression,” and 
Chapter 6, “Ensemble Methods.” The other purpose is to demonstrate some of 
the tools available in Python for data exploration.

The chapter uses a simple example to review some basic problem structure, 
nomenclature, and characteristics of a machine learning data set. The language 
introduced in this section will be used throughout the rest of the book. After 
establishing some common language, the chapter goes one by one through 
several different types of function approximation problems. These problems 
illustrate common variations of machine learning problems so that you’ll know 
how to recognize the variants when you see them and will know how to handle 
them (and will have code examples for them).

C h a p t e r 

2

Understand the problem by 
Understanding the Data



24 Chapter 2 ■ Understand the problem by Understanding the Data

The Anatomy of a New Problem

The algorithms covered in this book start with a matrix (or table) full of num-
bers and perhaps some character variables. The example in Table 2-1 establishes 
some nomenclature and represents a small machine learning data set in a two‐
dimensional table. The table will give you a mental image of a data set so that 
references to “columns corresponding to attributes” or rows corresponding to 
individual examples will be familiar. In this example, the predictive analytics 
problem is to predict how much money individuals will spend buying books 
online over the next year.

table 2-1:  Data for a Machine Learning Problem

UserID attrIbUte 1 attrIbUte 2 attrIbUte 3 LabeLs

001 6.5 Male 12 $120

004 4.2 Female 17 $270

007 5.7 Male 3 $75

008 5.8 Female 8 $600

The data are arranged into rows and columns. Each row represents an indi-
vidual case (also called an instance, example, or observation). The columns in 
Table 2-1 are given designations that indicate the roles they will play in the 
machine learning problem. The columns designated as attributes will be used 
to make predictions of the dollars spent on books. In the column designated as 
labels, you’ll see how much each customer spent last year on books.

NO te Machine learning data sets are most commonly arranged with columns cor-
responding to a single attribute and rows corresponding to a single observation, but 
not always. For example, some text mining literature arranges the matrix the other 
way around—with columns corresponding to an observation and rows corresponding 
to an attribute.

In Table 2-1, a row represents an individual customer, and the data in the row 
all pertain to that individual. The first column is called UserID and contains 
an identifier that is unique for each row (case). A unique identifier may or may 
not be present in your problem. For instance, websites typically tag site visitors 
with a user ID that is associated with them for the duration of their visit. If a 
user does not register with the site, the same user gets a different ID with each 
visit. The ID is usually assigned to each observation, which will be the subject 
of the prediction you’re going to build. Columns 2, 3, and 4 are called Attributes 
instead of being given more specific names like Height or Gender. The point is 



 Chapter 2 ■ Understand the problem by Understanding the Data 25

to highlight their role in the prediction process. Attributes are data available 
about the case that will be used to make predictions.

 Labels are the things you want to predict. In this example, UserID is a 
simple number, Attribute 1 is height, Attribute 2 is gender, and Attribute 
3 is how many books the person read last year. The column under Labels 
contains how much money the individual spent on books online last year. 
What are the roles that these different categories of data will play? What use 
does a machine learning algorithm make of user ID, attributes, and labels? 
The short answer is this: You ignore the user ID. You use the attributes to 
predict the labels.

The unique ID is for bookkeeping purposes and allows you to refer back to 
the other data available for the specific case. Generally, the unique ID does not 
get used directly in a machine learning algorithm. Attributes are the things that 
you’ve chosen to use for making predictions. Labels are observed outcomes that 
the machine learning algorithm will use to build a predictive model.

User ID doesn’t usually get used for making predictions because it is too 
specific. It pertains to only a single example. The trick with machine learning 
is to build a model that generalizes to new cases (not merely memorizing past 
cases). To achieve that, the algorithm must be derived so that it is forced to pay 
attention to more than one row of data. One possible exception to excluding 
user ID is when the user ID is numeric and assigned in the order that users are 
signed up. Basically, it’s indicating signup date in that case and can be useful 
because users with close IDs signed up at similar times and can be considered 
as a group on that basis.

The process of building a predictive model is called training. The way the 
process proceeds depends on the algorithm, and later chapters cover the 
details, but it is often iterative. The algorithm postulates a predictive rela-
tionship between the attributes and the labels, observes the mistakes that it 
makes, and makes some correction, and then iterates on that process until a 
sound model is achieved. A number of technicalities are addressed later, but 
that’s the basic idea.

What’s IN a Name?

Attributes and labels go by a variety of names, and new machine learners can get 
tripped up by the name switching from one author to another or even one paragraph 
to another from a single author.

Attributes (the variables being used to make predictions) are also known as the 
following:

 ■ Predictors

 ■ Features



26 Chapter 2 ■ Understand the problem by Understanding the Data

Different Types of Attributes and Labels Drive Modeling 
Choices
The attributes shown in Table 2-1 come in two different types: numeric variables 
and categorical (or factor) variables. Attribute 1 (height) is a numeric variable 
and is the most usual type of attribute. Attribute 2 is gender and is indicated 
by the entry Male or Female. This type of attribute is called a categorical or factor 
variable. Categorical variables have the property that there’s no order relation 
between the various values. There’s no sense to Male < Female (despite centuries 
of squabbling). Categorical variables can be two‐valued, like Male Female, or 
multivalued, like states (AL, AK, AR . . . WY). Other distinctions can be drawn 
regarding attributes (integer versus float, for example), but they do not have 
the same impact on machine learning algorithms. The reason for this is that 
many machine learning algorithms take numeric attributes only; they cannot 
handle categorical or factor variables. Penalized regression algorithms deal only 
with numeric attributes. The same is true for support vector machines, kernel 
methods, and K‐nearest neighbors. Chapter 4 will cover methods for converting 
categorical variables to numeric variables. The nature of the variables will shape 
your algorithm choices and the direction you take in developing a predictive 
model, so it’s one of the things you need to pay attention to when you face a 
new problem.

A similar dichotomy arises for the labels. The labels shown in Table 2-1 are 
numeric: the amount of money that the individual spent on books online last 
year. In other problems, though, the labels may also be categorical. For example, 
if the job with Table 2-1 were to predict which individuals would spend more 
than $200 next year the problem would change, and the problem approach would 
change. The new problem of predicting which customers would spend more 
than $200 would have new labels. The new labels would take one of two values. 
Table 2-2 shows the relationship between the labels given in Table 2-1 and new 
labels based on the logical proposition Spending > $200. The new labels shown 
in Table 2-2 take one of two values—True or False.

 ■ Independent variables

 ■ Inputs

Labels are also known as the following:

 ■ Outcomes

 ■ Targets

 ■ Dependent variables

 ■ Responses



 Chapter 2 ■ Understand the problem by Understanding the Data 27

table 2-2:  Numeric Targets versus Categorical Targets

tabLe 1 LabeLs >$200 ?

$120 False

$270 True

$75 False

$600 True

When the labels are numeric, the problem is called a regression problem. When 
the labels are categorical, the problem is called a classification problem. If the 
categorical target takes only two values, the problem is called a binary classifica-
tion problem. If it takes more than two values, the problem is called a multiclass 
classification problem.

In many cases, the choice of problem type is up to the designer. You’ve just seen 
that this example problem can be converted from a regression problem to a binary 
classification problem by the simple transformation of the labels. These are tradeoffs 
that you may might to make as part of your attack on a problem. For example, clas-
sification targets might better support a decision between two courses of action.

The classification problem might also be simpler than the regression problem. 
Consider, for instance, the difference in complexity between a topographic map 
with a single contour line (say the 100‐foot contour line) and a topographic map 
with contour lines every 10 feet. The single contour divides the map into the areas 
that are higher than 100 feet and those that are lower and contains considerably 
less information than the more detailed contour map. A classifier is trying to 
compute a single dividing contour without regard for behavior distant from 
the decision boundary, whereas regression is trying to draw the whole map.

Things to Notice about Your New Data Set
You’ll want to ascertain a number of other features of the data set as part of 
your initial inspection of the data. The following is a checklist and a sequence 
of things to learn about your data set to familiarize yourself with the data and 
to formulate the predictive model development steps that you want to follow. 
These are simple things to check and directly impact your next steps. In addi-
tion, the process gets you moving around the data and learning its properties.

Items to Check

Number of rows and columns

Number of categorical variables and number of unique values for each

Missing values

Summary statistics for attributes and labels



28 Chapter 2 ■ Understand the problem by Understanding the Data

One of the first things to check is the size and shape of the data. Read the 
data into a list of lists; then the dimension of the outer list is the number of 
rows, and the dimension of one of the inner lists is the number of columns. 
The next section shows the concrete application of this to one of the data sets 
that you’ll see used later to illustrate the properties of an algorithm that will 
be developed.

The next step in the process is to determine how many missing values there 
are in each row. The reason for doing it on a row‐by‐row basis is that the sim-
plest way to deal with missing values is to throw away instances that aren’t 
complete (examples with at least one missing value). In many situations, this 
can bias the results, but just a few incomplete examples will not make a mate-
rial difference. By counting the rows with missing data (in addition to the total 
number of missing entries), you’ll know how much of the data set you have to 
discard if you use the easy method.

If you have a large number of rows, as you might if you’re collecting web data, 
the number you’ll lose may be small compared to the number of rows of data 
you have available. If you’re working on biological problems where the data are 
expensive and you have many attributes, you might not be able to afford to throw 
data out. In that case, you’ll have to figure out some ways to fill in the missing 
values or use an algorithm that can deal with them. Filling them in is called 
imputation. The easiest way to impute the missing data is to fill in the missing 
entries using average values of the entries in each row. A more sophisticated 
method is to use one of the predictive methods covered in Chapters 4 and 6. To 
use a predictive method, you treat a column of attributes with missing values 
as though it were labels. Be sure to remove the original problem labels before 
undertaking this process.

The next several sections are going to go through the process outlined here 
and will introduce some methods for characterizing your data set to help you 
decide how to attack the modeling process.

Classification Problems: Detecting Unexploded Mines 
Using Sonar

This section steps through several checks that you might make on a classification 
problem as you begin digging into it. It starts with simple measurements of size 
and shape, reporting data types, counting missing values, and so forth. Then 
it moves on to statistical properties of the data and interrelationships between 
attributes and between attributes and the labels. The data set comes from the 
UC Irvine Data Repository [Ref 1.]. The data result from some experiments 
to determine if sonar can be used to detect unexploded mines left in harbors 
subsequent to military actions. The sonar signal is what’s called a chirped signal. 
That means that the signal rises (or falls) in frequency over the duration of the 



 Chapter 2 ■ Understand the problem by Understanding the Data 29

sound pulse. The measurements in the data set represent the power measure-
ments collected in the sonar receiver at different points in the returned signal. 
For roughly half of the examples, the sonar is illuminating a rock, and for the 
other half a metal cylinder having the shape of a mine. The data set goes by the 
name of “Rocks versus Mines.”

Physical Characteristics of the Rocks Versus Mines Data Set
The first thing to do with a new data set is to determine its size and shape. 
Listing 2-1 shows code for determining the size and shape of the “Rocks versus 
Mines” data set from the UC Irvine Data Repository: the rocks versus mines 
data. Later in this chapter, you’ll learn more about this data set, and the book 
will use it for example purposes as the algorithms are introduced. The process 
for determining the number of rows and columns is pretty simple in this case. 
The file is comma delimited, with the data for one experiment occupying one 
line of text. This makes it a simple matter to read a line, split it on the comma 
delimiters, and stack the resulting lists into an outer list containing the whole 
data set.

Listing 2-1: Sizing Up a New Data Set—rockVmineSummaries.py  
(Output: outputRocksVMinesSummaries.txt)

__author__ = 'mike_bowles'
import urllib2
import sys

#read data from uci data repository
target_url = ("https://archive.ics.uci.edu/ml/machine-learning-"
"databases/undocumented/connectionist-bench/sonar/sonar.all-data")

data = urllib2.urlopen(target_url)

#arrange data into list for labels and list of lists for attributes
xList = []
labels = []
for line in data:
    #split on comma
    row = line.strip().split(",")
    xList.append(row)

sys.stdout.write("Number of Rows of Data = " + str(len(xList)) + '\n')
sys.stdout.write("Number of Columns of Data = " + str(len(xList[1])))

Output:
Number of Rows of Data = 208
Number of Columns of Data = 61

https://archive.ics.uci.edu/ml/machine-learning-


30 Chapter 2 ■ Understand the problem by Understanding the Data

As you can see in the sample output, this data set has 208 rows (lines) and 
61 columns (fields per line). What difference does this make? The number of 
rows and columns has several impacts on how you proceed. First, the overall 
size gives you a rough idea of how long your training times are going to be. 
For a small data set like the rocks versus mines data, training time will be less 
than a minute, which will facilitate iterating through the process of training 
and tweaking. If the data set grows to 1,000 x 1,000, the training times will grow 
to a fraction of a minute for penalized linear regression and a few minutes for 
an ensemble method. As the data set gets to several tens of thousands of rows 
and columns, the training times will expand to 3 or 4 hours for penalized lin-
ear regression and 12 to 24 hours for an ensemble method. The larger training 
times will have an impact on your development time because you’ll iterate a 
number of times.

The second important observation regarding row and column counts is that 
if the data set has many more columns than rows, you may be more likely to get 
the best prediction with penalized linear regression and vice versa. Chapter 3, 
“Predictive Model Building: Balancing Performance, Complexity, and Big Data,” 
and the examples you’ll run later will give you a better understanding of why 
that’s true.

The next step in the checklist is to determine how many of the columns of 
data are numeric versus categorical. Listing 2-2 shows code to accomplish this 
for the rocks versus mine data set. The code runs down each column and adds 
up the number of entries that are numeric (int or float), the number of entries 
that are nonempty strings, and the number that are empty. The result is that 
the first 60 columns contain all numeric values and the last column contains 
all strings. The string values are the labels. Generally, categorical variables are 
presented as strings, as in this example. In some cases, binary‐valued categori-
cal variables are presented as a 0,1 numeric variable.

Listing 2-2: Determining the Nature of Attributes—rockVmineContents.py  
(Output: outputRocksVMinesContents.txt)

__author__ = 'mike_bowles'
import urllib2
import sys

#read data from uci data repository
target_url = ("https://archive.ics.uci.edu/ml/machine-learning-"
"databases/undocumented/connectionist-bench/sonar/sonar.all-data")

data = urllib2.urlopen(target_url)

#arrange data into list for labels and list of lists for attributes
xList = []
labels = []

https://archive.ics.uci.edu/ml/machine-learning-


 Chapter 2 ■ Understand the problem by Understanding the Data 31

for line in data:
    #split on comma
    row = line.strip().split(",")
    xList.append(row)
nrow = len(xList)
ncol = len(xList[1])

type = [0]*3
colCounts = []

for col in range(ncol):
    for row in xList:
        try:
            a = float(row[col])
            if isinstance(a, float):
                type[0] += 1
        except ValueError:
            if len(row[col]) > 0:
                type[1] += 1
            else:
                type[2] += 1

    colCounts.append(type)
    type = [0]*3

sys.stdout.write("Col#" + '\t' + "Number" + '\t' +
                 "Strings" + '\t ' + "Other\n")
iCol = 0
for types in colCounts:
    sys.stdout.write(str(iCol) + '\t\t' + str(types[0]) + '\t\t' +
                     str(types[1]) + '\t\t' + str(types[2]) + "\n")
    iCol += 1

Output:
Col#   Number  Strings Other
 0      208      0      0
 1      208      0      0
 2      208      0      0
 3      208      0      0
 4      208      0      0
 5      208      0      0
 6      208      0      0
 7      208      0      0
 8      208      0      0
 9      208      0      0
10      208      0      0
11      208      0      0
 .        .      .      .
 .        .      .      .
 .        .      .      .

continues



32 Chapter 2 ■ Understand the problem by Understanding the Data

54      208      0      0
55      208      0      0
56      208      0      0
57      208      0      0
58      208      0      0
59      208      0      0
60      0      208      0

Statistical Summaries of the Rocks versus Mines Data Set
After determining which attributes are categorical and which are numeric, you’ll 
want some descriptive statistics for the numeric variables and a count of the 
unique categories in each categorical attribute. Listing 2-3 gives some examples 
of these two procedures.

Listing 2-3: Summary Statistics for Numeric and Categorical Attributes—rVMSummaryStats.py  
(Output: outputSummaryStats.txt)

__author__ = 'mike_bowles'
import urllib2
import sys
import numpy as np

#read data from uci data repository
target_url = ("https://archive.ics.uci.edu/ml/machine-learning-"
"databases/undocumented/connectionist-bench/sonar/sonar.all-data")
data = urllib2.urlopen(target_url)

#arrange data into list for labels and list of lists for attributes
xList = []
labels = []

for line in data:
    #split on comma
    row = line.strip().split(",")
    xList.append(row)
nrow = len(xList)
ncol = len(xList[1])

type = [0]*3
colCounts = []

#generate summary statistics for column 3 (e.g.)
col = 3
colData = []
for row in xList:
    colData.append(float(row[col]))

colArray = np.array(colData)

continued

https://archive.ics.uci.edu/ml/machine-learning-


 Chapter 2 ■ Understand the problem by Understanding the Data 33

colMean = np.mean(colArray)
colsd = np.std(colArray)
sys.stdout.write("Mean = " + '\t' + str(colMean) + '\t\t' +
            "Standard Deviation = " + '\t ' + str(colsd) + "\n")

#calculate quantile boundaries
ntiles = 4

percentBdry = []

for i in range(ntiles+1):
    percentBdry.append(np.percentile(colArray, i*(100)/ntiles))

sys.stdout.write("\nBoundaries for 4 Equal Percentiles \n")
print(percentBdry)
sys.stdout.write(" \n")

#run again with 10 equal intervals
ntiles = 10

percentBdry = []

for i in range(ntiles+1):
    percentBdry.append(np.percentile(colArray, i*(100)/ntiles))

sys.stdout.write("Boundaries for 10 Equal Percentiles \n")
print(percentBdry)
sys.stdout.write(" \n")

#The last column contains categorical variables

col = 60
colData = []
for row in xList:
    colData.append(row[col])

unique = set(colData)
sys.stdout.write("Unique Label Values \n")
print(unique)

#count up the number of elements having each value

catDict = dict(zip(list(unique),range(len(unique))))

catCount = [0]*2

for elt in colData:
    catCount[catDict[elt]] += 1

continues



34 Chapter 2 ■ Understand the problem by Understanding the Data

sys.stdout.write("\nCounts for Each Value of Categorical Label \n")
print(list(unique))
print(catCount)

Output:
Mean =    0.053892307      Standard Deviation =     0.046415983

Boundaries for 4 Equal Percentiles
 [0.0057999999999999996, 0.024375000000000001, 0.044049999999999999,
 0.064500000000000002, 0.4264]

Boundaries for 10 Equal Percentiles
[0.00579999999999, 0.0141, 0.022740000000, 0.0278699999999,
0.0362200000000, 0.0440499999999, 0.050719999999, 0.0599599999999,
0.0779400000000, 0.10836, 0.4264]
Unique Label Values
set(['R', 'M'])

Counts for Each Value of Categorical Label
['R', 'M']
[97, 111]

The first section of the code picks up one column of numeric data, and then 
generates some statistics for it. The first step is to calculate the mean and stan-
dard deviation for the chosen attribute. Knowing these will undergird your 
intuition as you’re developing models.

The next section of code looks for outliers. Here’s how that works. Suppose 
that you’re trying to determine whether you’ve got an outlier in the following 
list of numbers = [0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 4]. This example is constructed 
to have an outlier. The last number (4) is clearly out of scale with the rest of the 
numbers.

One way to reveal this sort of mismatch is to divide a set of numbers into 
percentiles. For example, the 25th percentile contains the smallest 25 percent of 
the data. The 50th percentile contains the smallest 50 percent of the data. The 
easiest way to visualize forming these groupings is to imagine that the data are 
sorted into numeric order. The numbers in the preceding list are arranged in 
numeric order. That makes it easy to see where the percentile boundaries go. 
Some often used percentiles are given special names. The percentiles defined 
by dividing the set into equal quarters, fifths, and tenths are called respectively 
quartiles, quintiles, and deciles.

With the preceding list, it’s easy to define the quartiles because the list is ordered 
and there are eight elements in the list. The first quartile contains 0.1 and 0.15 
and so on. Notice how wide these quartiles are. The first quartile has a range of 
0.5 (0.15–0.1). The second quartile is roughly the same. However, the last quartile 
has a range of 4.6, which is 100 times larger than the range of the other quartiles.

continued



 Chapter 2 ■ Understand the problem by Understanding the Data 35

You can see similar behavior in the quartile boundaries that are calculated 
in Listing 2-3. First the program calculates the quartiles. That shows that the 
upper quartile is much wider than the others. To be more certain, the decile 
boundaries are also calculated and similarly demonstrate that the upper decile 
is unusually wide. Some widening is normal because distributions often thin 
out in the tails.

Visualization of Outliers Using Quantile‐Quantile Plot
One way to study outliers in more detail is to plot the distribution of the data 
in question relative to some reasonable distributions to see whether the relative 
numbers match up. Listing 2-4 shows how to use the Python function probplot 
to help determine whether the data has outliers or not. The resulting plot shows 
how the boundaries associated with empirical percentiles in the data compare 
to the boundaries for the same percentiles of a Gaussian distribution. If the data 
being analyzed comes from a Gaussian distribution, the point being plotted will 
lie on a straight line. Figure 2-1 shows that a couple of points from column 4 
of the rocks versus mines data are very far from the line. That means that the 
tails of the rocks versus mines data contain more examples than the tails of a 
Gaussian density.

Listing 2-4: Quantile‐Quantile Plot for 4th Rocks versus Mines Attribute—
qqplotAttribute.py

__author__ = 'mike bowles'
import numpy as np
import pylab
import scipy.stats as stats
import urllib2
import sys

target_url = ("https://archive.ics.uci.edu/ml/machine-learning-"
"databases/undocumented/connectionist-bench/sonar/sonar.all-data")

data = urllib2.urlopen(target_url)

#arrange data into list for labels and list of lists for attributes
xList = []
labels = []

for line in data:
    #split on comma
    row = line.strip().split(",")
    xList.append(row)
nrow = len(xList)
ncol = len(xList[1])

continues

https://archive.ics.uci.edu/ml/machine-learning-


36 Chapter 2 ■ Understand the problem by Understanding the Data

type = [0]*3
colCounts = []

#generate summary statistics for column 3 (e.g.)
col = 3
colData = []
for row in xList:
    colData.append(float(row[col]))

stats.probplot(colData, dist="norm", plot=pylab)
pylab.show()

Figure 2-1:  Quantile‐quantile plot of attribute 4 from rocks versus mines data

Probability Plot

Or
de

re
d 

Va
lu

es

0.5

0.4

0.3

0.2

0.1

0.0

–0.1
–3 –2 –1 0

Quantiles

R 2 = 0.8544

1 2 3

What do you do with this information? Outliers may cause trouble either for 
model building or prediction. After you’ve trained a model on this data set, you 
can look at the errors your model makes and see whether the errors are cor-
related with these outliers. If they are, you can then take steps to correct them. 
For example, you can replicate the poor‐performing examples to force them to 
be more heavily represented. You can segregate them out and train on them 
as a separate class. You can also edit them out of the data if they represent an 
abnormality that won’t be present in the data your model will see when deployed. 
A reasonable process for this might be to generate quartile boundaries during 
the exploration phase and note potential outliers to get a feel for how much of 
a problem you might (or might not) have with it. Then when you’re evaluating 

continued



 Chapter 2 ■ Understand the problem by Understanding the Data 37

performance data, use quantile‐quantile (Q‐Q) plots to determine which points 
to call outliers for use in your error analysis.

Statistical Characterization of Categorical Attributes
The process just described applies to numeric attributes. But what about 
categorical attributes? You want to check to see how many categories they 
have and how many examples there are from each category. You want to 
learn these things for a couple of reasons. The gender attribute has two pos-
sible values (Male and Female), but if the attribute had been the state of the 
United States, there would have been 50 possible categories. As the number 
of attributes grows, the complexity of dealing with them mounts. Most binary 
tree algorithms, which are the basis for ensemble methods, have a cutoff on 
how many categories they can handle. The popular Random Forests package 
written by Breiman and Cutler (the inventors of the algorithm) has a cutoff 
of 32 categories. If an attribute has more than 32 categories, you’ll need to 
aggregate them.

You’ll see later that training involves taking a random subset of the data 
and training a series of models on it. Suppose, for instance, that the category 
is the state of the United States and that Idaho has only two examples. A ran-
dom draw of training examples might not get any from Idaho. You need to 
see those kinds of problems before they occur so that you can address them. 
In the case of the two Idaho examples, you might merge them with Montana 
or Wyoming, you might duplicate them, or you might manage the random 
draw so that you ensure getting Idaho examples (a procedure called stratified 
sampling).

How to Use Python Pandas to Summarize the Rocks Versus 
Mines Data Set
The Python package Pandas can help automate the process of data inspection 
and handling. It proves particularly useful for the early stages of data inspection 
and preprocessing. The Pandas package makes it possible to read data into a 
specialized data structure called a data frame. The data frame is modeled after 
the CRAN‐R data structure of the same name.

NO te The Pandas package can be difficult to install because it has a number of 
dependencies that need to be correctly versioned and each of those has to be cor-
rectly matched to one another (and so on). An easy way around this hurdle is to use 
the Anaconda Python distribution available for free download from Continuum 
Analytics (http://continuum.io). The installation procedures are easy to follow 
and result in compatible installations of a wide variety of packages for data analysis 
and machine learning.

http://continuum.io


38 Chapter 2 ■ Understand the problem by Understanding the Data

You can think of a data frame as a table or matrix‐like structure as in Table 2-1. 
The data frame is oriented with a row representing a single case (experiment, 
example, measurement) and columns representing particular attributes. The 
structure is matrix‐like, but not a matrix because the elements in various col-
umns may be of different types. Formally, a matrix is defined over a field (like 
the real numbers, binary numbers, complex numbers), and all the entries in a 
matrix are elements from that field. For statistical problems, the matrix is too 
confining because statistical samples typically have a mix of different types.

The simple example in Table 2-1 has real values in the Attribute 1 column, 
categorical variables in the Attribute 2 column, and integer variables in the 
Attribute 3 column. Within a column, the entries are all the same type, but they 
differ from one column to the next. The data frame structure enables access to 
individual elements through an index roughly similar to addressing an entry 
in a Python Numpy array or a list of lists. Similarly, index slicing can be used 
to address an entire row or column from the array. In addition, the Pandas data 
frame enables addressing rows and columns by means of their names. This turns 
out to be very handy, particularly for a small to medium number of columns. 
(A search on “Pandas introduction” will give you a number of links that can 
guide you through the basics of using Pandas.)

Listing 2-5 show how simple it is to read in the rocks versus mines CSV file 
from the UC Irvine Data Repository website. The output shown as part of the 
listing is truncated from the actual output. You can get the full version by run-
ning the code for yourself.

Listing 2-5: Using Python Pandas to Read and Summarize Data—pandasReadSummarize.py

__author__ = 'mike_bowles'
import pandas as pd
from pandas import DataFrame
import matplotlib.pyplot as plot
target_url = ("https://archive.ics.uci.edu/ml/machine-learning-"
"databases/undocumented/connectionist-bench/sonar/sonar.all-data")

#read rocks versus mines data into pandas data frame
rocksVMines = pd.read_csv(target_url,header=None, prefix="V")

#print head and tail of data frame
print(rocksVMines.head())
print(rocksVMines.tail())

#print summary of data frame
summary = rocksVMines.describe()
print(summary)

Output (truncated):

       V0      V1      V2     ...     V57      V58     V59  V60

https://archive.ics.uci.edu/ml/machine-learning-


 Chapter 2 ■ Understand the problem by Understanding the Data 39

0  0.0200  0.0371  0.0428     ...  0.0084   0.0090  0.0032    R
1  0.0453  0.0523  0.0843     ...  0.0049   0.0052  0.0044    R
2  0.0262  0.0582  0.1099     ...  0.0164   0.0095  0.0078    R
3  0.0100  0.0171  0.0623     ...  0.0044   0.0040  0.0117    R
4  0.0762  0.0666  0.0481     ...  0.0048   0.0107  0.0094    R

[5 rows x 61 columns]

         V0      V1      V2     ...      V57     V58     V59  V60
203  0.0187  0.0346  0.0168     ...  0.0115  0.0193  0.0157    M
204  0.0323  0.0101  0.0298     ...  0.0032  0.0062  0.0067    M
205  0.0522  0.0437  0.0180     ...  0.0138  0.0077  0.0031    M
206  0.0303  0.0353  0.0490     ...  0.0079  0.0036  0.0048    M
207  0.0260  0.0363  0.0136     ...  0.0036  0.0061  0.0115    M

[5 rows x 61 columns]

               V0          V1         ...          V58         V59
count  208.000000  208.000000         ...  208.000000  208.000000
mean     0.029164    0.038437         ...    0.007941    0.006507
std      0.022991    0.032960         ...    0.006181    0.005031
min      0.001500    0.000600         ...    0.000100    0.000600
25%      0.013350    0.016450         ...    0.003675    0.003100
50%      0.022800    0.030800         ...    0.006400    0.005300
75%      0.035550    0.047950         ...    0.010325    0.008525
max      0.137100    0.233900         ...    0.036400    0.043900

After reading in the file, the first section of the program prints out head and 
tail. Notice that all the heads have R labels, and the tails have M labels. With 
this data set, the Rs all come first and the Ms second. Note things like that dur-
ing your inspection of the data. You’ll see in later sections that determining 
the quality of your models requires sampling the data. Structure in the way 
the data are stored might need to be factored into your approach for doing 
subsequent sampling. The last bit of the code snippet prints out summaries of 
the real‐valued columns in the data set.

Pandas makes it possible to automate the steps of calculating mean, variance, 
and quantiles. Notice that the summary produced by the describe function is 
itself a data frame so that you can automate the process of screening for attri-
butes that have outliers. To do that, you can compare the differences between 
the various quantiles and raise a flag if any of the differences for an attribute are 
out of scale with the other differences for the same attributes. The attributes that 
are shown in the output indicate that several of them have outliers. It would be 
worth looking to determine how many rows are involved in the outliers. They 
might all come from a handful of examples. This can point out data that needs 
to be inspected more closely.



40 Chapter 2 ■ Understand the problem by Understanding the Data

Visualizing Properties of the Rocks versus  
Mines Data Set

Visualizations can sometimes give you insights into your data that would be 
difficult to see in tables of numbers. This section introduces several that you 
may find useful. Some of the visualizations take slightly different forms for 
classification problems than for regression problems. You’ll see the regression 
variants of the methods in the sections covering the abalone data set and the 
wine quality data set.

Visualizing with Parallel Coordinates Plots
One visualization that is useful for problems with more than a few attributes 
is called a parallel coordinates plot. Figure 2-2 depicts the construction of a 
parallel coordinates plot. The vector of numbers on the right‐hand side of the 
figure represents a row of attribute data from a machine learning data set. 
The parallel coordinates plot of that vector of numbers is shown in the line 
plot in Figure 2-2. The line plots the value of each attribute versus its index. 
The parallel coordinates plot for the whole data set has a line for each row 
of attributes in the data set. Color‐coding based on the labels can help you 
see some types of systematic relationships between the attribute values and 
the labels. Plot the real‐valued attributes from a row versus the index of the 
attribute. (Search “parallel coordinates” and check out the Wikipedia page 
for some more examples.)

Figure 2-2:  Constructing a parallel coordinates plot

1

Attribute 1

At
tri

bu
te

 V
al

ue

Attribute 2 Attribute 3

Index Number

Attribute 4

1 2 3 4

1

2

3

4

3 2 4



 Chapter 2 ■ Understand the problem by Understanding the Data 41

Listing 2-6 shows how this process works for the rocks versus mines data set. 
Figure 2-3 shows the resulting plotted line graphs. The lines are color coded 
according to their labels: blue for R (rock), and red for M (mine). Sometimes a 
plot of this type will show clear areas of separation between the classes. The 
famous “Iris data” show very clear separation that machine learning algorithms 
will exploit for classification purposes. For the rocks versus mines data set, no 
extremely clear separation is evident in the line plot, but there are some areas 
where the blues and reds are separated. Along the bottom of the plot, the blues 
stand out a bit, and in the range of attribute indices from 30 to 40, the blues are 
somewhat higher than the reds. These kinds of insights can help in interpreting 
and confirming predictions made by your trained model.

Figure 2-3:  Parallel coordinates graph of rocks versus mines attributes

1.0

0.8

0.6

At
tri

bu
te

 V
al

ue
s

Attribute Index

0.4

0.2

0.0
V0 V10 V20 V30 V40 V50

Listing 2-6: Parallel Coordinates Graph for Real Attribute Visualization—linePlots.py

__author__ = 'mike_bowles'
import pandas as pd
from pandas import DataFrame
import matplotlib.pyplot as plot
target_url = ("https://archive.ics.uci.edu/ml/machine-learning-"
"databases/undocumented/connectionist-bench/sonar/sonar.all-data")

#read rocks versus mines data into pandas data frame
rocksVMines = pd.read_csv(target_url,header=None, prefix="V")

for i in range(208):
    #assign color based on "M" or "R" labels
    if rocksVMines.iat[i,60] == "M":
        pcolor = "red"

continues

https://archive.ics.uci.edu/ml/machine-learning-


42 Chapter 2 ■ Understand the problem by Understanding the Data

    else:
        pcolor = "blue"

    #plot rows of data as if they were series data
    dataRow = rocksVMines.iloc[i,0:60]
    dataRow.plot(color=pcolor)

plot.xlabel("Attribute Index")
plot.ylabel(("Attribute Values"))
plot.show()

Visualizing Interrelationships between Attributes and Labels
Another question you might ask of the data is how the various attributes relate to 
one another. One quick way to get an idea of pair‐wise relationships is to cross‐
plot the attributes with the labels. Listing 2-7 shows what’s required to generate 
cross‐plots for a couple of representative pairs of attributes. These cross‐plots 
(also called scatter plots) show you how closely related the pairs of variables are.

Listing 2-7: Cross Plotting Pairs of Attributes—corrPlot.py

__author__ = 'mike_bowles'
import pandas as pd
from pandas import DataFrame
import matplotlib.pyplot as plot
target_url = ("https://archive.ics.uci.edu/ml/machine-learning-"
"databases/undocumented/connectionist-bench/sonar/sonar.all-data")

#read rocks versus mines data into pandas data frame
rocksVMines = pd.read_csv(target_url,header=None, prefix="V")

#calculate correlations between real-valued attributes
dataRow2 = rocksVMines.iloc[1,0:60]
dataRow3 = rocksVMines.iloc[2,0:60]

plot.scatter(dataRow2, dataRow3)

plot.xlabel("2nd Attribute")
plot.ylabel(("3rd Attribute"))
plot.show()

dataRow21 = rocksVMines.iloc[20,0:60]

plot.scatter(dataRow2, dataRow21)

plot.xlabel("2nd Attribute")
plot.ylabel(("21st Attribute"))
plot.show()

continued

https://archive.ics.uci.edu/ml/machine-learning-


 Chapter 2 ■ Understand the problem by Understanding the Data 43

Figures 2-4 and 2-5 show the scatter plots for two pairs of attributes from 
the rocks versus mines data set. The rocks versus mines attributes are samples  
from sonar returns. The sonar signal is called a chirped waveform because it’s a 
pulse that starts at low frequency and rises higher over the duration of the pulse. 
The attributes in the rocks versus mines data set are time samples of the sound 
waves that bounce off the rock or mine. These returned acoustic signals bear the 
same relationship between time and frequency as the outgoing transmission. 
The 60 attributes in the rocks versus mines data are samples of the return taken 
at 60 different times (and therefore 60 different frequencies). You’d expect that 
adjacent attributes would be more correlated than attributes separated in time 
from one another because there’s not much difference in frequency between 
adjacent time samples.

This intuition is borne out in Figures 2-4 and 2-5. The points in the scatter 
plot in Figure 2-4 are more closely grouped around a straight line than those 
in Figure 2-5. If you want to develop your intuition about the relation between 
numeric correlation and the shape of the scatter plot, just search “correlation” 
and have a look at the Wikipedia page that comes up. That shows some scatter 
plots and the associated numeric correlation. Basically, if the points in the scat-
ter plot lie along a thin straight line, the two variables are highly correlated; if 
they form a ball of points, they’re uncorrelated.

You can apply the same principle to plotting the correlation between each of 
the attributes and the target. For a problem where the targets are real numbers 
(a regression problem), the plots look much the same as Figures 2-4 and 2-5. The 
rocks versus mines data set is a classification problem. The targets are two‐valued. 
You can follow the same general procedure.

Figure 2-4:  Cross‐plot of rocks versus mines attributes 2 and 3

1.0

0.8

0.6

0.4

0.2

0.0

−0.2
−0.2 0.0 0.2 0.4

2nd Attribute

3r
d 

At
tri

bu
te

0.6 0.8 1.0 1.2



44 Chapter 2 ■ Understand the problem by Understanding the Data

Listing 2-8 shows the code for plotting a scatter plot between the targets and 
attribute 35. The idea of using attribute 35 for the example showing correlation 
with the target came from the parallel coordinates graph in Figure 2-3. That 
graph shows some separation between the rocks and mines (red lines and blue 
lines) around index value 35. The correlation between the target and one of the 
attributes around that index value should also show some separation. Figures 2-6 
and 2-7 plot the results.

Listing 2-8: Correlation between Classification Target and Real Attributes—targetCorr.py

__author__ = 'mike_bowles'
import pandas as pd
from pandas import DataFrame
import matplotlib.pyplot as plot
from random import uniform
target_url = ("https://archive.ics.uci.edu/ml/machine-learning-"
"databases/undocumented/connectionist-bench/sonar/sonar.all-data")

#read rocks versus mines data into pandas data frame
rocksVMines = pd.read_csv(target_url,header=None, prefix="V")

#change the targets to numeric values
target = []
for i in range(208):
    #assign 0 or 1 target value based on "M" or "R" labels
    if rocksVMines.iat[i,60] == "M":
        target.append(1.0)

Figure 2-5:  Cross‐ plot of rocks versus mines attributes 2 and 21

1.0

0.8

0.6

0.4

0.2

0.0

−0.2
−0.2 0.0 0.2 0.4

2nd Attribute

21
st

 A
ttr

ib
ut

e

0.6 0.8 1.0 1.2

https://archive.ics.uci.edu/ml/machine-learning-


 Chapter 2 ■ Understand the problem by Understanding the Data 45

    else:
        target.append(0.0)

#plot 35th attribute
dataRow = rocksVMines.iloc[0:208,35]
plot.scatter(dataRow, target)

plot.xlabel("Attribute Value")
plot.ylabel("Target Value")
plot.show()

#
#To improve the visualization, this version dithers the points a little
# and makes them somewhat transparent
target = []
for i in range(208):

#assign 0 or 1 target value based on "M" or "R" labels
    # and add some dither

    if rocksVMines.iat[i,60] == "M":
        target.append(1.0 + uniform(-0.1, 0.1))
    else:
        target.append(0.0 + uniform(-0.1, 0.1))

    #plot 35th attribute with semi-opaque points
dataRow = rocksVMines.iloc[0:208,35]
plot.scatter(dataRow, target, alpha=0.5, s=120)

plot.xlabel("Attribute Value")
plot.ylabel("Target Value")
plot.show()

The plots show what happens if you make a list corresponding to the list 
of R or M targets but with the substitution of 1 for M and 0 for R. Then you 
can plot a scatter plot as shown in Figure 2-6. Figure 2-6 highlights a common 
problem with cross‐plots. When one of the variables being plotted takes on a 
small number of values, the points get plotted on top of one another. If there 
are a lot of them, you just get a thick dark line, and you don’t get a feel for how 
the points are distributed along the line.

The code in Listing 2-8 generates a second plot with two small changes to 
overcome this problem. A small random number is added to each of the points 
and takes a small number of discrete values (the targets in this case). The target 
values are either 0 or 1 by construction. In the code, you’ll see that the added 
random number is uniformly distributed between –0.1 and 0.1. That spreads 
the points apart, but not so far as to confuse the two lines. Second, the points 
are plotted with alpha=0.5 in order that the points are only partially opaque. 



46 Chapter 2 ■ Understand the problem by Understanding the Data

Then any overplotting shows up as a darkened region in the scatter plot. You 
may have to adjust these numbers a little to make the plot show you what you 
need to know.

Figure 2-7 shows the effect of these two alterations. Notice the somewhat 
higher concentration of attribute 35 on the left end of the upper band of points, 
whereas the points are more uniformly spread from right to left in the lower 
band. The upper band of points corresponds to mines. The lower band corre-
sponds to rocks. You could build a classifier for this problem by testing whether 
attribute 35 is greater than or less than 0.5. If it is greater than 0.5 call it a rock, 

Figure 2-6:  Target‐attribute cross‐plot

1.0

1.2

0.8

0.6

0.4

0.2

0.0

−0.2
−0.2 0.0 0.2 0.4

Attribute Value

Ta
rg

et
 V

al
ue

0.6 0.8 1.0 1.2

1.0

1.2

0.8

0.6

0.4

0.2

0.0

−0.2
−0.2 0.0 0.2 0.4

Attribute Value

Ta
rg

et
 V

al
ue

0.6 0.8 1.0 1.2

Figure 2-7:  Target‐attribute cross‐plot with point dither and partial opacity



 Chapter 2 ■ Understand the problem by Understanding the Data 47

and if it is less than 0.5, call it a mine. The examples where attribute 35 is less 
than 0.5 contain a higher concentration of mines than rock, and the examples 
where attribute 35 is less than 0.5 contain a lower density, so you’d get better 
performance than you would with random guessing.

NO te You’ll see much more systematic approaches to building classifiers in 
Chapters 5, “Building Predictive Models Using Penalized Linear Methods,” and 
Chapter 7, “Building Ensemble Models with Python.” They’ll use all the attributes 
instead of just one or two. However, when you look at what they’re using to make their 
decisions, you can refer back to these types of studies to help you gain confidence 
that what they’re doing is sensible.

The degree of correlation between two attributes (or an attribute and a 
target) can be quantified using Pearson’s correlation coefficient. Pearson’s 
correlation coefficient is defined for two equal length vectors u and v, as 
follows (see Equations 2-1 and 2-2). First subtract the mean value of u from 
all the elements of u (see Equation 2-3) and do the same for v.

u

u

u

un

=

1

2



equation 2-1:  Elements of a vector u

u avg u= ( )

equation 2-2: Average values of the entries in u

∆u

u u

u u

u un

=

−
−

−

1

2



equation 2-3: Subtract the average from each element in u.

For the second vector v, define a vector ∆v  in the same way as ∆u  was defined 
corresponding to the vector u.

Then Pearson’s correlation between u and v is shown in Equation 2-4.

corr u v
u v

u u v v

T

T T
( , )

*

( * ) * ( * )
= ∆ ∆

∆ ∆ ∆ ∆
equation 2-4: Definition of Pearson’s correlation coefficient



48 Chapter 2 ■ Understand the problem by Understanding the Data

Listing 2-9 shows a Python implementation of this function to calculate 
correlation for the pairs of attributes plotted in Figures 2-3 and 2-5. The 
correlation numbers agree with plotted data. The attributes that have close 
index numbers have relatively higher correlations than those that are sepa-
rated further.

Listing 2-9: Pearson’s Correlation Calculation for Attributes 2 versus 3 and 2 versus 21—
corrCalc.py

__author__ = 'mike_bowles'
import pandas as pd
from pandas import DataFrame
from math import sqrt
import sys
target_url = ("https://archive.ics.uci.edu/ml/machine-learning-"
"databases/undocumented/connectionist-bench/sonar/sonar.all-data")

#read rocks versus mines data into pandas data frame
rocksVMines = pd.read_csv(target_url,header=None, prefix="V")

#calculate correlations between real-valued attributes
dataRow2 = rocksVMines.iloc[1,0:60]
dataRow3 = rocksVMines.iloc[2,0:60]
dataRow21 = rocksVMines.iloc[20,0:60]

mean2 = 0.0; mean3 = 0.0; mean21 = 0.0
numElt = len(dataRow2)
for i in range(numElt):
    mean2 += dataRow2[i]/numElt
    mean3 += dataRow3[i]/numElt
    mean21 += dataRow21[i]/numElt

var2 = 0.0; var3 = 0.0; var21 = 0.0
for i in range(numElt):
    var2 += (dataRow2[i] - mean2) * (dataRow2[i] - mean2)/numElt
    var3 += (dataRow3[i] - mean3) * (dataRow3[i] - mean3)/numElt
    var21 += (dataRow21[i] - mean21) * (dataRow21[i] - mean21)/numElt

corr23 = 0.0; corr221 = 0.0
for i in range(numElt):

corr23 += (dataRow2[i] - mean2) * \
              (dataRow3[i] - mean3) / (sqrt(var2*var3) * numElt)
    corr221 += (dataRow2[i] - mean2) * \
               (dataRow21[i] - mean21) / (sqrt(var2*var21) * numElt)

sys.stdout.write("Correlation between attribute 2 and 3 \n")
print(corr23)
sys.stdout.write(" \n")

https://archive.ics.uci.edu/ml/machine-learning-


 Chapter 2 ■ Understand the problem by Understanding the Data 49

sys.stdout.write("Correlation between attribute 2 and 21 \n")
print(corr221)
sys.stdout.write(" \n")

Output:
Correlation between attribute 2 and 3
0.770938121191

Correlation between attribute 2 and 21
0.466548080789

Visualizing Attribute and Label Correlations Using a Heat Map
Calculating the correlations and printing them or drawing cross‐plots works fine 
for a few correlations, but it is difficult to get a grasp of a large table of numbers, 
and it is difficult to squeeze all the cross‐plots onto a page if the problem has 
100 attributes.

One way to check correlations with a large number of attributes is to calculate 
the Pearson’s correlation coefficient for pairs of attributes, arrange those cor-
relations into a matrix where the ij‐th entry is the correlation between the ith 
attribute and the jth attribute, and then plot them in a heat map. Listing 2-10 
gives the code to make this plot. Figure 2-8 shows the plot. The light areas along 
the diagonal confirm that attributes close to one another in index have relatively 
high correlations. As mentioned earlier, this is due to the way in which the 
data are generated. Close indices are sampled at short time intervals from one 
another and consequently have similar frequencies. Similar frequencies reflect 
off the targets similarly (and so on).

Listing 2-10: Presenting Attribute Correlations Visually—sampleCorrHeatMap.py

__author__ = 'mike_bowles'
import pandas as pd
from pandas import DataFrame
import matplotlib.pyplot as plot
target_url = ("https://archive.ics.uci.edu/ml/machine-learning-"
"databases/undocumented/connectionist-bench/sonar/sonar.all-data")

#read rocks versus mines data into pandas data frame
rocksVMines = pd.read_csv(target_url,header=None, prefix="V")

#calculate correlations between real-valued attributes
corMat = DataFrame(rocksVMines.corr())

#visualize correlations using heatmap
plot.pcolor(corMat)
plot.show()

https://archive.ics.uci.edu/ml/machine-learning-


50 Chapter 2 ■ Understand the problem by Understanding the Data

Perfect correlation (correlation = 1) between attributes means that you may 
have made a mistake and included the same thing twice. Very high correlation 
between a set of attributes (pairwise correlations > 0.7) is known as multicol-
linearity and can lead to unstable estimates. Correlation with the targets is a 
different matter. Having an attribute that’s correlated with the target generally 
indicates a predictive relation.

Summarizing the Process for Understanding Rocks versus 
Mines Data Set
In the process of understanding the rocks versus mines data set, this section 
has introduced a number of tools for you to use to gain understanding and 
intuition about your data sets. The section has gone into some detail to make 
their derivation and use clear. The next sections will use several of these same 
tools to inspect the other data sets that the book will use to develop machine 
learning algorithms. Since you’re now familiar with the tools for doing data 
inspection, the next sections will comment on the tools only to the extent that 
they need to be modified because of the different nature of a problem.

Real‐Valued Predictions with Factor Variables: How Old 
Is Your Abalone?

Most of the tools you’ve seen used for understanding the problem of detecting 
unexploded mines can be applied to regression problems. Predicting the age 
of an abalone, given physical measurements, provides an example of such a 

60

50

40

30

20

10

0
6050403020100

Figure 2-8:  Heat map showing attribute cross‐correlations



 Chapter 2 ■ Understand the problem by Understanding the Data 51

problem. The abalone attributes also include an attribute that is a factor variable, 
which will illustrate the differences involved with factor variables.

The abalone data set poses the problem of predicting the age of an abalone 
by taking several measurements. It is possible to get a precise reading on the 
age of an abalone by slicing the shell and counting growth rings, much like 
gauging the age of a tree by counting rings. The problem for scientists study-
ing abalone populations is that it is expensive and time‐consuming to slice the 
shells and count the rings under a microscope. It would be more convenient 
and economical to be able to make simple physical measurements like length, 
width, weight, and so forth and then to use a predictive model to process the 
measurements and make an accurate determination of the age of the abalone. 
There are a myriad of scientific applications for predictive analytics, and one 
of the benefits of studying machine learning is being able to contribute to an 
interesting array of different problems.

The data for this problem are available through the UC Irvine Data Repository. 
The URL for this data set is http://archive.ics.uci.edu/ml/machine‐learn-
ing‐databases/abalone/abalone.data. This data set is in the form of a comma‐
delimited file with no column headers. The names of the columns are in a separate 
file. Listing 2-11 reads the abalone data set into a Pandas data frame and runs 
through some of the same analyses that you saw in “Classification Problems: 
Detecting Unexploded Mines Using Sonar.” For the rocks versus mines data set, 
the column names were somewhat generic because of the nature of the data. For the 
abalone data set, the different columns of data have meanings that can be critical 
to cultivating an intuitive understanding of your progress toward an acceptable 
model. For this reason, you’ll see in the code that the column names have been 
copy‐pasted into the code and attached to the data set to help you make sense of 
what subsequent machine learning algorithms are doing to make predictions. The 
columns of data available for building a predictive model are Sex, Length, Diameter, 
Height, Whole Weight, Shucked Weight, Viscera Weight, Shell Weight, and Rings. 
The last column, Rings, is measured by the laborious process of sawing the shell 
and counting under a microscope. This is the usual arrangement for a supervised 
learning problem. You’ve got a special data set for which the answer is known so 
as to build a model that will generate predictions when the answer is not known.

In addition to showing the code for producing the summaries, Listing 2-11 
shows the printed output from the summarization. The first section prints the 
head and tail of the data set. Only the head is shown in the output to save space. 
When you run the code for yourself, you’ll see both. Most of the data frame is 
filled with floating‐point numbers. The first column, which contains the gender 
of the animal, contains the letters M (male), F (female), and I (indeterminate). 
The gender of an abalone is not determined at birth, but after it has matured a 
little. Therefore, the gender is indeterminate for younger abalones. The gender of 
the abalone is a three‐valued categorical variable. Categorical attributes require 
special attention. Some algorithms only deal with real‐valued attributes (for 

http://archive.ics.uci.edu/ml/machine-learn-ing-databases/abalone/abalone.data


52 Chapter 2 ■ Understand the problem by Understanding the Data

example, support vector machines, K‐nearest neighbors, and penalized linear 
regression, which is introduced in Chapter 4). Chapter 4 discusses techniques 
for translating categorical variables into real‐valued variables so that you can 
employ these algorithms. Listing 2-11 also shows the column‐by‐column statisti-
cal summaries for the real‐valued attributes.

Listing 2-11: Read and Summarize the Abalone Data Set—abaloneSummary.py

__author__ = 'mike_bowles'
import pandas as pd
from pandas import DataFrame
from pylab import *
import matplotlib.pyplot as plot

target_url = ("http://archive.ics.uci.edu/ml/machine-"
              "learning-databases/abalone/abalone.data")
#read abalone data
abalone = pd.read_csv(target_url,header=None, prefix="V")
abalone.columns = ['Sex', 'Length', 'Diameter', 'Height',
                   'Whole weight','Shucked weight', 'Viscera weight',
                   'Shell weight', 'Rings']

print(abalone.head())
print(abalone.tail())

#print summary of data frame
summary = abalone.describe()
print(summary)

#box plot the real-valued attributes
#convert to array for plot routine
array = abalone.iloc[:,1:9].values
boxplot(array)
plot.xlabel("Attribute Index")
plot.ylabel(("Quartile Ranges"))
show()

#the last column (rings) is out of scale with the rest
# - remove and replot
array2 = abalone.iloc[:,1:8].values
boxplot(array2)
plot.xlabel("Attribute Index")
plot.ylabel(("Quartile Ranges"))
show()

#removing is okay but renormalizing the variables generalizes better.
#renormalize columns to zero mean and unit standard deviation
#this is a common normalization and desirable for other operations
# (like k-means clustering or k-nearest neighbors

http://archive.ics.uci.edu/ml/machine-


 Chapter 2 ■ Understand the problem by Understanding the Data 53

abaloneNormalized = abalone.iloc[:,1:9]

for i in range(8):
    mean = summary.iloc[1, i]
    sd = summary.iloc[2, i]

abaloneNormalized.iloc[:,i:(i + 1)] = (
                    abaloneNormalized.iloc[:,i:(i + 1)] - mean) / sd

array3 = abaloneNormalized.values
boxplot(array3)
plot.xlabel("Attribute Index")
plot.ylabel(("Quartile Ranges - Normalized "))
show()

Printed Output: (partial)
  Sex  Length  Diameter  Height  Whole wt  Shucked wt  Viscera wt
0   M   0.455     0.365   0.095    0.5140      0.2245      0.1010
1   M   0.350     0.265   0.090    0.2255      0.0995      0.0485
2   F   0.530     0.420   0.135    0.6770      0.2565      0.1415
3   M   0.440     0.365   0.125    0.5160      0.2155      0.1140
4   I   0.330     0.255   0.080    0.2050      0.0895      0.0395

   Shell weight  Rings
0         0.150     15
1         0.070      7
2         0.210      9
3         0.155     10
4         0.055      7
     Sex  Length  Diameter  Height  Whole weight  Shucked weight
4172   F   0.565     0.450   0.165        0.8870          0.3700
4173   M   0.590     0.440   0.135        0.9660          0.4390
4174   M   0.600     0.475   0.205        1.1760          0.5255
4175   F   0.625     0.485   0.150        1.0945          0.5310
4176   M   0.710     0.555   0.195        1.9485          0.9455

      Viscera weight  Shell weight  Rings
4172          0.2390        0.2490     11
4173          0.2145        0.2605     10
4174          0.2875        0.3080      9
4175          0.2610        0.2960     10
4176          0.3765        0.4950     12
            Length     Diameter       Height    Whole wt  Shucked wt
count  4177.000000  4177.000000  4177.000000 4177.000000 4177.000000
mean      0.523992     0.407881     0.139516    0.828742    0.359367
std       0.120093     0.099240     0.041827    0.490389    0.221963
min       0.075000     0.055000     0.000000    0.002000    0.001000
25%       0.450000     0.350000     0.115000    0.441500    0.186000
50%       0.545000     0.425000     0.140000    0.799500    0.336000

continues



54 Chapter 2 ■ Understand the problem by Understanding the Data

75%       0.615000     0.480000     0.165000    1.153000    0.502000
max       0.815000     0.650000     1.130000    2.825500    1.488000

       Viscera weight  Shell weight        Rings
count     4177.000000   4177.000000  4177.000000
mean         0.180594      0.238831     9.933684
std          0.109614      0.139203     3.224169
min          0.000500      0.001500     1.000000
25%          0.093500      0.130000     8.000000
50%          0.171000      0.234000     9.000000
75%          0.253000      0.329000    11.000000
max          0.760000      1.005000    29.000000

As an alternative to the listing of the statistical summaries, Listing 2-11 gener-
ates box plots for each of the real‐valued columns of data. The first of these is 
shown in Figure 2-9. In Figure 2-9, the statistical summaries are represented by 
box plots, which are also called box and whisker plots. These plots show a small 
rectangle with a red line through it. The red line marks the median value (or 
50th percentile) for the column of data. The top and bottom of the rectangle 
mark the 25th percentile and the 75th percentile, respectively. You can compare 
the numbers in the printed summary to the levels in the box plot to confirm 
this. Above and below the box, you’ll see small horizontal ticks, the so‐called 
whiskers. These are drawn in at levels that are 1.4 times the interquartile spac-
ing above and below the box. Interquartile spacing is the difference between 
the 75th percentile and the 25th percentile. In other words, the space between 
the top of the box and the upper whisker is 1.4 times the height of the box. The 
1.4x spacing for the whisker is adjustable; see the box plot documentation. You’ll 

Figure 2-9:  Box plot of real‐valued attributes from abalone data set

30

25

20

15

Qu
ar

til
e 

Ra
ng

es

10

5

0
1 2 3 4 5

Attribute Index
6 7 8

continued



 Chapter 2 ■ Understand the problem by Understanding the Data 55

notice that in some cases the whiskers are closer than the 1.4x spacing. For these 
cases the data values do not extend all the way to the calculated whisker loca-
tions. In these cases, the whisker is placed at the most extreme data point. In 
other cases, the data extend for a considerable distance beyond the calculated 
whisker locations. These points can be considered outliers.

The box plot in Figure 2-9 is a faster, more visual way to identify outliers 
than the printed data, but the scale on the rings attributes (the rightmost box 
plot) causes the other attributes to be compressed (making them hard to see). 
One way to deal with this is to simply eliminate the larger‐scale attributes. The 
result of that is shown in Figure 2-10. But that approach is unsatisfying because 
it doesn’t automate or scale very well.

Figure 2-10:  Box plot of real‐valued attributes from the abalone data set

3.0

2.5

2.0

1.5

Qu
ar

til
e 

Ra
ng

es

1.0

0.5

0.0
1 2 3 4 5

Attribute Index
6 7

The last section of the code in Listing 2-11 normalizes all the data columns 
before box plotting. Normalization in this case means centering and scaling each 
column so that a unit of attribute number 1 means the same thing as a unit of 
attribute number 2. A number of algorithms and operations in data science 
require this type of normalization. For example, K‐means clustering builds 
clusters based on vector distance between rows of data. Distance is measured 
by subtracting one point from another and squaring. If the units are different, 
the numeric distances are different. The distance to the grocery store can be 1 
if measured in miles or 5,280 if measured in feet. The normalization indicated 
in Listing 2-11 adjusts the variables so that they all have 0 mean and a standard 
deviation of 1. This is a very common normalization. The calculations for the 
normalization make use of the numbers generated by the summary() function. 
The results are plotted in Figure 2-11.



56 Chapter 2 ■ Understand the problem by Understanding the Data

Notice that normalizing to standard deviation of 1.0 does not mean that the 
data all fit between –1.0 and +1.0. It more or less places the lower and upper edges 
of the boxes at –1.0 and +1.0, but much of the data are outside these boundaries.

Parallel Coordinates for Regression Problems—Visualize 
Variable Relationships for Abalone Problem
The next step is to get some ideas about the relationship among the attributes 
and between attributes and labels. For the rocks versus mines data, the color‐
coded parallel coordinates plot portrayed these relationships graphically. That 
approach needs some modification to work for the abalone problem. Rocks 
versus mines was a classifier problem. The parallel coordinates plot for that 
problem color‐coded the lines representing rows of data according to their true 
classification. That helps to visualize the relationship between prediction and 
predictors. The abalone problem is a regression problem, so the color‐coding 
in this example needs to be shades of color corresponding to higher or lower 
target values. To assign shades of color to real values, the real values need to 
be compressed into the interval [0.0, 1.0]. Listing 2-12 uses the min and max 
values generated by the summary() function from Pandas to accomplish this. 
Figure 2-12 shows the results.

Listing 2-11: Parallel Coordinate Plot for Abalone Data—abaloneParallelPlot.py

__author__ = 'mike_bowles'
import pandas as pd
from pandas import DataFrame

Figure 2-11:  Box plot of normalized abalone attributes

25

20

15

10

Qu
ar

til
e 

Ra
ng

es
 - 

No
rm

al
ize

d

5

0

−5
1 2 3 4 5

Attribute Index
6 7 8



 Chapter 2 ■ Understand the problem by Understanding the Data 57

import matplotlib.pyplot as plot
from math import exp

target_url = ("http://archive.ics.uci.edu/ml/machine-"
              "learning-databases/abalone/abalone.data")
#read abalone data
abalone = pd.read_csv(target_url,header=None, prefix="V")
abalone.columns = ['Sex', 'Length', 'Diameter', 'Height',
                   'Whole Wt', 'Shucked Wt',
                   'Viscera Wt', 'Shell Wt', 'Rings']
#get summary to use for scaling
summary = abalone.describe()
minRings = summary.iloc[3,7]
maxRings = summary.iloc[7,7]
nrows = len(abalone.index)

for i in range(nrows):
    #plot rows of data as if they were series data
    dataRow = abalone.iloc[i,1:8]
    labelColor = (abalone.iloc[i,8] - minRings) / (maxRings - minRings)
    dataRow.plot(color=plot.cm.RdYlBu(labelColor), alpha=0.5)

plot.xlabel("Attribute Index")
plot.ylabel(("Attribute Values"))
plot.show()

#renormalize using mean and standard variation, then compress
# with logit function
meanRings = summary.iloc[1,7]
sdRings = summary.iloc[2,7]

for i in range(nrows):
    #plot rows of data as if they were series data
    dataRow = abalone.iloc[i,1:8]
    normTarget = (abalone.iloc[i,8] - meanRings)/sdRings
    labelColor = 1.0/(1.0 + exp(-normTarget))
    dataRow.plot(color=plot.cm.RdYlBu(labelColor), alpha=0.5)

plot.xlabel("Attribute Index")
plot.ylabel(("Attribute Values"))
plot.show()

The parallel coordinates plot in Figure 2-12 illustrates a direct relationship 
between abalone age (number of shell rings) and the attributes available for 
predicting age. The color scale used to produce this plot ranges from very dark 
reddish brown through lighter shades, yellow, light blue, and very dark blue. 
The box plot in Figure 2-11 shows that the maximum and minimum values are 
widely separated from the bulk of the data. This has the effect of compressing 
the scale so that most of the data are mid‐range on the color scale. Nonetheless, 

http://archive.ics.uci.edu/ml/machine-


58 Chapter 2 ■ Understand the problem by Understanding the Data

Figure 2-12 indicates significant correlation between each of the attributes and 
the number of rings measured for each of the examples. Similar shades of color 
are grouped together at similar values of several of the attributes. This correla-
tion suggests that you’ll be able to build an accurate predictive model. Contrary 
to the generally favorable correlation between attributes and target, some faint 
blue lines are mixed among the darker orange areas of the graph, indicating 
that there are some examples that will be difficult to correctly predict.

Figure 2-12:  Color‐coded parallel coordinate plot for abalone

3.0

2.5

2.0

1.5

At
tri

bu
te

 V
al

ue
s

1.0

0.5

0.0
Length Diameter Height Whole Wt Shucked Wt Viscera Wt Shell Wt

Attribute Index

Changing the color mapping can help you visualize relationships at differ-
ent levels of target values. The last section of the code in Listing 2-11 uses the 
normalization that you saw used in the box plot graphs. That normalization 
doesn’t make all the values fit between 0 and 1. For one thing, the resulting 
values take as many negative values as positive ones. The program in Listing 
2-11 employs the logit transform to get values in (0, 1). The logit transform is 
given by the expression shown in Equation 2-5. The plot for this function is 
given in Figure 2-13.

logit transform x
e x ( )

( )
= + −

1
1

equation 2-5: Using logit transform for soft range compression

The plot for this function is given in Figure 2-13. As you can see, the logit 
transform maps large negative values to 0 (almost) and large positive numbers 
to 1 (almost); it maps 0 to 0.5. You’ll see the logit function again in Chapter 4, 
where it plays a critical role relating a linear function to a probability.



 Chapter 2 ■ Understand the problem by Understanding the Data 59

Figure 2-14 shows the results of these steps. These transformations have 
resulted in better usage of the full range of colors available. Notice that there 
are several darker blue lines (corresponding to specimens with large numbers 
of rings) mixed in among lighter blue examples, and even yellow and light red 
specimens for the graphs in the area of Whole Weight and Shucked Weight. 

Figure 2-13:  Graph of the logit function

1.2

1.0

0.8

0.6

0.4

0.2

0.0

−0.2
−10 −5 0 5 10

Figure 2-14:  Parallel coordinate plot for the abalone data

3.0

2.5

2.0

1.5

At
tri

bu
te

 V
al

ue
s

1.0

0.5

0.0
Length Diameter Height Whole

weight
Shucked
weight

Viscera
weight

Shell
weight

Attribute Index



60 Chapter 2 ■ Understand the problem by Understanding the Data

That suggests that those attributes might not be enough to correctly predict the 
ages (number of rings) in the older specimens. Fortunately, some of the other 
attributes (Diameter and Shell Weight) do a better job of correctly ordering the 
dark blue lines. Those observations will prove helpful when you’re analyzing 
the prediction errors later.

How to Use Correlation Heat Map for Regression—Visualize 
Pair‐Wise Correlations for the Abalone Problem
The last step is to have a look at the correlations between the various attributes 
and between the attributes and the targets. Listing 2-12 shows the code for 
generating a correlation heat map and a correlation matrix for the abalone data. 
These calculations follow the same method outlined for the rocks versus mines 
data, but with one important difference: Because the abalone problem calls for 
making real number predictions, the correlation calculations can include the 
targets in the correlation matrix.

Listing 2-12: Correlation Calculations for Abalone Data—abaloneCorrHeat.py

__author__ = 'mike_bowles'
import pandas as pd
from pandas import DataFrame
import matplotlib.pyplot as plot

target_url = ("http://archive.ics.uci.edu/ml/machine-"
              "learning-databases/abalone/abalone.data")
#read abalone data
abalone = pd.read_csv(target_url,header=None, prefix="V")
abalone.columns = ['Sex', 'Length', 'Diameter', 'Height',
                   'Whole weight', 'Shucked weight',
                   'Viscera weight', 'Shell weight', 'Rings']

#calculate correlation matrix
corMat = DataFrame(abalone.iloc[:,1:9].corr())
#print correlation matrix
print(corMat)

#visualize correlations using heatmap
plot.pcolor(corMat)
plot.show()

                  Length  Diameter    Height  Whole Wt  Shucked Wt
Length          1.000000  0.986812  0.827554   0.925261   0.897914
Diameter        0.986812  1.000000  0.833684   0.925452   0.893162
Height          0.827554  0.833684  1.000000   0.819221   0.774972
Whole weight    0.925261  0.925452  0.819221   1.000000   0.969405
Shucked weight  0.897914  0.893162  0.774972   0.969405   1.000000
Viscera weight  0.903018  0.899724  0.798319   0.966375   0.931961

http://archive.ics.uci.edu/ml/machine-


 Chapter 2 ■ Understand the problem by Understanding the Data 61

Shell weight    0.897706  0.905330  0.817338   0.955355   0.882617
Rings           0.556720  0.574660  0.557467   0.540390   0.420884

                Viscera weight  Shell weight     Rings
Length                0.903018      0.897706  0.556720
Diameter              0.899724      0.905330  0.574660
Height                0.798319      0.817338  0.557467
Whole weight          0.966375      0.955355  0.540390
Shucked weight        0.931961      0.882617  0.420884
Viscera weight        1.000000      0.907656  0.503819
Shell weight          0.907656      1.000000  0.627574
Rings                 0.503819      0.627574  1.000000

Figure 2-15 shows the correlation heat map. In this map, red indicates high 
correlation, and blue represents weak correlation. The targets (the number of 
rings in the shell) are the last item, which is the top row of the heat map and the 
rightmost column. The blue values in those positions mean that the attributes 
are weakly correlated with the targets. The light blue corresponds to the cor-
relation between the target and the shell weight. That confirms what you saw 
in the parallel coordinates plot. The reddish values in the other off‐diagonal cell 
in Figure 2-15 indicate that the attributes are highly correlated with one another. 
This somewhat contradicts the picture given by the parallel coordinates map 
where visually the correspondence between the target and the attributes seemed 
fairly tight. Listing 2-12 shows the numeric values for correlation.

Figure 2-15:  Correlation heat map for the abalone data

8

7

6

5

4

3

2

1

0
876543210

In this section you’ve seen how to modify the tools described for a classi-
fication problem (rocks versus mines) to a regression problem (abalone). The 



62 Chapter 2 ■ Understand the problem by Understanding the Data

modifications all stemmed from the basic difference between the two problem 
types—labels that are real numbers for a regression problem versus labels that 
are two‐valued for a binary classification problem. The next section will conduct 
the same set of studies on a regression problem having all numeric attributes. 
Because it’s a regression problem, the same tools used in this section for the 
abalone problem can be used. Because it has all numeric attributes, all of the 
attributes can be included in the studies, like correlation and plotting along the 
real number line.

Real‐Valued Predictions Using Real‐Valued Attributes: 
Calculate How Your Wine Tastes

The wine taste data set contains data for approximately 1,500 red wines. For 
each wine there are a number of measurements of chemical composition, 
including things like alcohol content, volatile acidity, and sulphites. Each wine 
also has a taste score determined by averaging the scores given by three pro-
fessional wine tasters. The problem is to build a model that will incorporate 
the chemical measurements and predict taste scores to match those given by 
the human tasters.

Listing 2-13 shows the code for producing summaries of the wine data set. 
The code prints out a numeric summary of the data, which is included at the 
bottom of the listing. The code also generates a box plot of the normalized 
variables so that you can visualize the outliers in the data. Figure 2-16 shows 
the box plots. The numeric summaries and the box plots indicate numerous 
outlying values. This is something to keep in mind during training on this 
data set. When analyzing the performance of the trained models, these outly-
ing examples will be one place to look to understand the source of errors in 
your models.

Listing 2-13: Wine Data Summary—wineSummary.py

__author__ = 'mike_bowles'
import pandas as pd
from pandas import DataFrame
from pylab import *
import matplotlib.pyplot as plot

target_url = ("http://archive.ics.uci.edu/ml/machine-"
 "learning-databases/wine-quality/winequality-red.csv")
wine = pd.read_csv(target_url,header=0, sep=";")

print(wine.head())

#generate statistical summaries

http://archive.ics.uci.edu/ml/machine-


 Chapter 2 ■ Understand the problem by Understanding the Data 63

summary = wine.describe()
print(summary)

wineNormalized = wine
ncols = len(wineNormalized.columns)

for i in range(ncols):
    mean = summary.iloc[1, i]
    sd = summary.iloc[2, i]

wineNormalized.iloc[:,i:(i + 1)] = \
        (wineNormalized.iloc[:,i:(i + 1)] - mean) / sd
array = wineNormalized.values
boxplot(array)
plot.xlabel("Attribute Index")
plot.ylabel(("Quartile Ranges - Normalized "))
show()

Output - [filename - wineSummary.txt]
   fixed acidity  volatil acid  citric acid  resid sugar  chlorides
0            7.4          0.70         0.00          1.9      0.076
1            7.8          0.88         0.00          2.6      0.098
2            7.8          0.76         0.04          2.3      0.092
3           11.2          0.28         0.56          1.9      0.075
4            7.4          0.70         0.00          1.9      0.076

   free sulfur dioxide  tot sulfur dioxide  density    pH  sulphates
0                   11                  34   0.9978  3.51       0.56
1                   25                  67   0.9968  3.20       0.68
2                   15                  54   0.9970  3.26       0.65
3                   17                  60   0.9980  3.16       0.58
4                   11                  34   0.9978  3.51       0.56

   alcohol  quality
0      9.4        5
1      9.8        5
2      9.8        5
3      9.8        6
4      9.4        5
       fixed acidity  volatile acidity  citric acid  residual sugar
count    1599.000000       1599.000000  1599.000000     1599.000000
mean        8.319637          0.527821     0.270976        2.538806
std         1.741096          0.179060     0.194801        1.409928
min         4.600000          0.120000     0.000000        0.900000
25%         7.100000          0.390000     0.090000        1.900000
50%         7.900000          0.520000     0.260000        2.200000
75%         9.200000          0.640000     0.420000        2.600000
max        15.900000          1.580000     1.000000       15.500000

         chlorides  free sulfur dioxide tot sulfur dioxide   density

continues



64 Chapter 2 ■ Understand the problem by Understanding the Data

count  1599.000000          1599.000000      1599.000000 1599.000000
mean      0.087467            15.874922        46.467792    0.996747
std       0.047065            10.460157        32.895324    0.001887
min       0.012000             1.000000         6.000000    0.990070
25%       0.070000             7.000000        22.000000    0.995600
50%       0.079000            14.000000        38.000000    0.996750
75%       0.090000            21.000000        62.000000    0.997835
max       0.611000            72.000000       289.000000    1.003690

                pH    sulphates      alcohol      quality
count  1599.000000  1599.000000  1599.000000  1599.000000
mean      3.311113     0.658149    10.422983     5.636023
std       0.154386     0.169507     1.065668     0.807569
min       2.740000     0.330000     8.400000     3.000000
25%       3.210000     0.550000     9.500000     5.000000
50%       3.310000     0.620000    10.200000     6.000000
75%       3.400000     0.730000    11.100000     6.000000
max       4.010000     2.000000    14.900000     8.000000

Figure 2-16:  Attribute and target box plots of normalized wine data

12

10

8

6

4

2

0

−2

−4
876

Attribute Index

Qu
ar

til
e 

Ra
ng

es
 - 

No
rm

al
ize

d

54321 1211109

A color‐coded parallel coordinates plot for the wine data will give some idea 
of how well correlated the attributes are with the targets. Listing 2-14 shows 
the code for producing that plot. Figure 2-17 shows the resulting parallel coor-
dinates plot. The plot in Figure 2-17 suffers from compressing the graph along 
the variable directions that have smaller scale values.

To overcome this limitation, Listing 2-14 normalizes the wine data and re‐plots 
it. Figure 2-18 shows the resulting parallel coordinates plot.

continued



 Chapter 2 ■ Understand the problem by Understanding the Data 65

Listing 2-14: Producing a Parallel Coordinate Plot for Wine Data—wineParallelPlot.py

__author__ = 'mike_bowles'
import pandas as pd
from pandas import DataFrame
from pylab import *
import matplotlib.pyplot as plot
from math import exp

target_url = "http://archive.ics.uci.edu/ml/machine-learning-databases/
wine-quality/winequality-red.csv"
wine = pd.read_csv(target_url,header=0, sep=";")

#generate statistical summaries
summary = wine.describe()
nrows = len(wine.index)
tasteCol = len(summary.columns)
meanTaste = summary.iloc[1,tasteCol - 1]
sdTaste = summary.iloc[2,tasteCol - 1]
nDataCol = len(wine.columns) -1

for i in range(nrows):
    #plot rows of data as if they were series data
    dataRow = wine.iloc[i,1:nDataCol]
    normTarget = (wine.iloc[i,nDataCol] - meanTaste)/sdTaste
    labelColor = 1.0/(1.0 + exp(-normTarget))

Figure 2-17:  Parallel coordinate plot for wine data

At
tri

bu
te

 V
al

ue
s

0

50

100

150

200

250

300

volAcid citAcid resSugr chlor frSO2 totSO2 dens pH sulpha alcohol

Attribute Index

continues

http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv
http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv


66 Chapter 2 ■ Understand the problem by Understanding the Data

    dataRow.plot(color=plot.cm.RdYlBu(labelColor), alpha=0.5)

plot.xlabel("Attribute Index")
plot.ylabel(("Attribute Values"))
plot.show()

wineNormalized = wine
ncols = len(wineNormalized.columns)

for i in range(ncols):
    mean = summary.iloc[1, i]
    sd = summary.iloc[2, i]
    wineNormalized.iloc[:,i:(i + 1)] =
    (wineNormalized.iloc[:,i:(i + 1)] - mean) / sd

#Try again with normalized values
for i in range(nrows):
    #plot rows of data as if they were series data
    dataRow = wineNormalized.iloc[i,1:nDataCol]
    normTarget = wineNormalized.iloc[i,nDataCol]
    labelColor = 1.0/(1.0 + exp(-normTarget))
    dataRow.plot(color=plot.cm.RdYlBu(labelColor), alpha=0.5)

plot.xlabel("Attribute Index")
plot.ylabel(("Attribute Values"))
plot.show()

Figure 2-18:  Parallel coordinates plot for normalized wine data

At
tri

bu
te

 V
al

ue
s

12

10

8

6

4

2

0

−2

−4
volAcid citAcid resSugr chlor frSO2 totSO2 dens pH sulpha alcohol

Attribute Index

continued



 Chapter 2 ■ Understand the problem by Understanding the Data 67

The plot of the normalized wine data gives a better simultaneous view of 
the correlation with the targets along all the coordinate directions. Figure 2-18 
shows a clear correlation between several of the attributes. On the far right of 
the plot, dark blue lines (high taste scores) aggregate at high values of alcohol. 
On the far left, the dark red lines (low taste scores) aggregate at high values 
of volatile acidity. Those are the most obviously correlated attributes. The pre-
dictive models that you’ll see in Chapters 5 and 7 will rank attributes on the 
basis of their importance in generating predictions. You’ll see how these visual 
observations are supported by the predictive models.

Figure 2-19 shows the heat map of the correlations between attributes and 
other attributes and between the attributes and the target. In the heat map, hot 
colors correspond to high levels (the opposite of the color scale used in the par-
allel coordinates plots). The heat map for the wine data shows relatively high 
correlation between taste (the last column) and alcohol (the next‐to‐last column), 
and very low levels (high correlation but with negative sign) for several of the 
other attributes, including the first one (volatile acidity).

Figure 2-19:  Correlation heat map for the wine data

121086420

12

10

8

6

4

2

0

Exploration of the wine data set was accomplished with tools that have already 
been explained and used. The wine data set shows off what these tools can 
reveal. Both the parallel coordinates plot and the correlation heat map show 
that high levels of alcohol go with high taste scores, while high levels of volatile 
acidity go with low taste scores. You’ll see in Chapters 5 and 7 that the variable 
importance studies that come as part of predictive modeling will echo these 
findings. The wine data gives a good example of how far data exploration can 



68 Chapter 2 ■ Understand the problem by Understanding the Data

take you toward building and qualifying a predictive modeling. The next sec-
tion will explore data for a multiclass classification problem.

Multiclass Classification Problem: What Type of  
Glass Is That?

Multiclass classifications are similar to binary classifications, with the difference 
that there are several possible discrete outcomes instead of just two. Recall that 
the problem of detecting unexploded mines involved two possible outcomes: that 
the object being illuminated by the sonar was a rock or that it was a mine. The 
problem of determining wine taste from measurements of chemical composition 
had several possible outcomes (taste scores from 3 to 8). But with the wine prob-
lem, an order relationship existed among the scores. A wine that had a score of 5 
was better than one with a score of 3, but worse than one with a score of 8. With 
a multiclass problem, no sense of order exists among the outcomes. The glass 
problem described in this section provides an example of a multiclass problem.

In this section, the glass problem presents chemical compositions of various 
types of glass. The objective of the problem is to determine the use for the glass. 
The possible types of glass include glass from building windows, glass from 
vehicle windows, glass containers, and so on. The motivation for determining 
the type of glass is forensics. At the scene of an accident or a crime, there are 
fragments of glass, and determining their origin can help determine who is at 
fault or who committed the crime. Listing 2-15 shows the code for generating 
summaries of the glass data set. Figure 2-20 shows the box plot on the normal-
ized data. The box plot shows a fair number of extreme values.

Listing 2-15: Summary of Glass Data Set—glassSummary.py

__author__ = 'mike_bowles'
import pandas as pd
from pandas import DataFrame
from pylab import *
import matplotlib.pyplot as plot

target_url = ("https://archive.ics.uci.edu/ml/machine-"
              "learning-databases/glass/glass.data")

glass = pd.read_csv(target_url,header=None, prefix="V")
glass.columns = ['Id', 'RI', 'Na', 'Mg', 'Al', 'Si',
                 'K', 'Ca', 'Ba', 'Fe', 'Type']

print(glass.head())

#generate statistical summaries
summary = glass.describe()

https://archive.ics.uci.edu/ml/machine-


 Chapter 2 ■ Understand the problem by Understanding the Data 69

print(summary)
ncol1 = len(glass.columns)

glassNormalized = glass.iloc[:, 1:ncol1]
ncol2 = len(glassNormalized.columns)
summary2 = glassNormalized.describe()

for i in range(ncol2):
    mean = summary2.iloc[1, i]
    sd = summary2.iloc[2, i]

glassNormalized.iloc[:,i:(i + 1)] = \
        (glassNormalized.iloc[:,i:(i + 1)] - mean) / sd

array = glassNormalized.values
boxplot(array)
plot.xlabel("Attribute Index")
plot.ylabel(("Quartile Ranges - Normalized "))
show()

Output:  [filename - ]
print(glass.head())

   Id       RI     Na    Mg    Al     Si     K    Ca  Ba  Fe  Type
0   1  1.52101  13.64  4.49  1.10  71.78  0.06  8.75   0   0     1
1   2  1.51761  13.89  3.60  1.36  72.73  0.48  7.83   0   0     1
2   3  1.51618  13.53  3.55  1.54  72.99  0.39  7.78   0   0     1
3   4  1.51766  13.21  3.69  1.29  72.61  0.57  8.22   0   0     1
4   5  1.51742  13.27  3.62  1.24  73.08  0.55  8.07   0   0     1

print(summary) - Abridged
               Id          RI          Na          Mg          Al
count  214.000000  214.000000  214.000000  214.000000  214.000000
mean   107.500000    1.518365   13.407850    2.684533    1.444907
std     61.920648    0.003037    0.816604    1.442408    0.499270
min      1.000000    1.511150   10.730000    0.000000    0.290000
25%     54.250000    1.516523   12.907500    2.115000    1.190000
50%    107.500000    1.517680   13.300000    3.480000    1.360000
75%    160.750000    1.519157   13.825000    3.600000    1.630000
max    214.000000    1.533930   17.380000    4.490000    3.500000
                K          Ca          Ba          Fe        Type
count  214.000000  214.000000  214.000000  214.000000  214.000000
mean     0.497056    8.956963    0.175047    0.057009    2.780374
std      0.652192    1.423153    0.497219    0.097439    2.103739
min      0.000000    5.430000    0.000000    0.000000    1.000000
25%      0.122500    8.240000    0.000000    0.000000    1.000000
50%      0.555000    8.600000    0.000000    0.000000    2.000000
75%      0.610000    9.172500    0.000000    0.100000    3.000000
max      6.210000   16.190000    3.150000    0.510000    7.000000



70 Chapter 2 ■ Understand the problem by Understanding the Data

The box plot of the glass data attributes shows a remarkable number of outli-
ers—remarkable at least by comparison to some of the other example problems. 
The glass data have a couple of elements that may drive the outlier behavior. One 
is that the problem is a classification problem. There’s not necessarily any conti-
nuity in relationship between attribute values and class membership—no reason 
to expect proximity of attribute values across classes. Another unique feature 
of the glass data is that it is somewhat unbalanced. The number of examples of 
each class runs from 76 for the most populous class to 9 for the least populous. 
The average statistics can be dominated by the values for the most populous 
classes and there’s no reason to expect members of other classes to have similar 
attribute values. The radical behavior can be a good thing for distinguishing 
classes from one another, but it also means that a method for making predic-
tions has to be able to trace a fairly complicated boundary between the different 
classes. You’ll learn in Chapter 3 that ensemble methods are producing more 
complicated decision boundaries than penalized linear regression if they are 
given enough data, and you’ll see in Chapters 5 and 7 which family performs 
better on this data set.

The parallel coordinates plot might shed some more light on the behavior of 
these data. Figure 2-21 shows the parallel coordinates plot. The data is plotted 
using discrete colors for each possible output classification. Some of the variables 
in the plot show fairly distinct paths of color. For example, the dark blue lines 
group together fairly well and are well separated from the other classes along 
a number of the attributes. The dark blue lines are at the edges of the data for 
several attributes—in other words, outliers along those attributes. The light 
blue lines are less numerous than the dark blue ones and are at the edges for 

Figure 2-20:  Box plot of the glass data

10

8

6

4

2

0

−2

−4
876

Attribute Index

Qu
ar

til
e 

Ra
ng

es
 - 

No
rm

al
ize

d

54321 109



 Chapter 2 ■ Understand the problem by Understanding the Data 71

some of the same attributes as dark blue, but not for all of the same attributes. 
The middle brown lines also group together but toward the mid‐range in value.

Listing 2-16: Parallel Coordinate Plot for the Glass Data—glassParallelPlot.py

__author__ = 'mike_bowles'
import pandas as pd
from pandas import DataFrame
from pylab import *
import matplotlib.pyplot as plot

target_url = ("https://archive.ics.uci.edu/ml/machine-"
              "learning-databases/glass/glass.data")

glass = pd.read_csv(target_url,header=None, prefix="V")
glass.columns = ['Id', 'RI', 'Na', 'Mg', 'Al', 'Si',
                 'K', 'Ca', 'Ba', 'Fe', 'Type']

glassNormalized = glass
ncols = len(glassNormalized.columns)
nrows = len(glassNormalized.index)
summary = glassNormalized.describe()
nDataCol = ncols - 1

#normalize except for labels
for i in range(ncols - 1):
    mean = summary.iloc[1, i]
    sd = summary.iloc[2, i]

glassNormalized.iloc[:,i:(i + 1)] = \

Figure 2-21:  Parallel coordinate plot for the glass data

10

8

6

4

2

0

−2

−4

Attribute Index

At
tri

bu
te

 V
al

ue
s

Na Mg Al Si K Ca Ba Fe

continues

https://archive.ics.uci.edu/ml/machine-


72 Chapter 2 ■ Understand the problem by Understanding the Data

        (glassNormalized.iloc[:,i:(i + 1)] - mean) / sd

#Plot Parallel Coordinate Graph with normalized values
for i in range(nrows):
    #plot rows of data as if they were series data
    dataRow = glassNormalized.iloc[i,1:nDataCol]
    labelColor = glassNormalized.iloc[i,nDataCol]/7.0
    dataRow.plot(color=plot.cm.RdYlBu(labelColor), alpha=0.5)

plot.xlabel("Attribute Index")
plot.ylabel(("Attribute Values"))
plot.show()

Listing 2-16 shows the code to produce a parallel coordinates plot of the glass 
data. With the rocks versus mines problem, the lines in the parallel coordinates plot 
were two‐colored to account for the two different label values. In the regression 
problems (wine taste and abalone age), the labels could take any real value, and the 
lines in the plots were drawn in a spectrum of different colors. In this multiclass 
problem, each class gets its own color. There are six discrete colors. The labels run 
from 1 to 7; there are no 4s. The calculation of the color is similar to the calculation 
done in the regression problem—divide the numeric label by its maximum value. 
The resulting lines in the plots take six discrete colors. Figure 2-22 shows the cor-
relation heat map for the glass data. The plot shows mostly low correlation between 
attributes. That means the attributes are mostly independent of one another, which 
is a good thing. The targets are not included in the correlation map because the 
problem has targets that take on one of several discrete values. This robs the cor-
relation heat map of some explanatory power.

Figure 2-22:  Correlation heat map for the glass problem

9

6

7

5

8

4

3

2

1

0
96 75 843210

continued



 Chapter 2 ■ Understand the problem by Understanding the Data 73

Exploratory studies for the glass data have revealed a very interesting problem. 
In particular, the box plots, coupled with the parallel coordinates plot, suggest 
that a good choice of algorithm might be an ensemble method if there’s enough 
data to fit it. The sets of attributes corresponding to one class or another appar-
ently have a complicated boundary between them. What algorithm will give 
the best predictive performance remains to be seen. The exploratory methods 
you have learned have done their job. They have given a good understanding 
of the tradeoffs for this problem, leading to some guesses about what algorithm 
will give the best performance.

Summary

This chapter introduced you to several tools for delving into new data sets and 
coming away with an understanding of how to proceed to building predictive 
models. The tools began with simply learning the size and shape of the data set 
and determining the types of attributes and labels. These facts about your data 
set will help you set your course through preprocesing the data and training 
predictive models. The chapter also covered several different statistical studies 
that can help you understand your data set. These included simple descriptive 
statistics (mean, variance, and quantiles) and second order statistics like cor-
relations between attributes and correlations between attributes and labels. The 
correlation of attributes and binary labels required some techniques different 
from real number (regression labels). The chapter also introduced several visual-
ization techniques. One was a Q‐Q plot for visualizing outlier behavior in your 
data. Another was the parallel coordinates plot for visualizing the relationship 
between attributes and labels. All of these were applied to the problems that 
will be used in the rest of the book for demonstrating the algorithms covered 
and for comparing them.

reference

 1. Gorman, R. P., and Sejnowski, T. J. (1988). UCI Machine Learning Repository. 
https://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+%28Sonar,
+Mines+vs.+Rocks%29. Irvine, CA: University of California, School of 
Information and Computer Science.

https://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+%28Sonar,+Mines+vs.+Rocks%29
https://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+%28Sonar,+Mines+vs.+Rocks%29




75

This chapter discusses the factors affecting the performance of machine learning 
models. The chapter provides technical definitions of performance for different 
types of machine learning problems. In an e-commerce application, for example, 
good performance might mean returning correct search results or presenting 
ads that site visitors frequently click. In a genetic problem, it might mean iso-
lating a few genes responsible for a heritable condition. The chapter describes 
relevant performance measures for these different problems.

The goal of selecting and fitting a predictive algorithm is to achieve the best 
possible performance. Achieving performance goals involves three factors: 
complexity of the problem, complexity of the algorithmic model employed, 
and the amount and richness of the data available. The chapter includes some 
visual examples that demonstrate the relationship between problem and 
model complexity and then provides technical guidelines for use in design 
and development.

C h a p t e r 

3

predictive Model Building: 
Balancing performance, 

Complexity, and Big Data



76 Chapter 3 ■ predictive Model Building

The Basic Problem: Understanding Function 
Approximation

The algorithms covered in this book address a specific class of predictive prob-
lem. The problem statement for these problems has two types of variables:

 ■ The variable that you are attempting to predict (for example, whether a 
visitor to a website will click an ad)

 ■ Other variables (for example, the visitor’s demographics or past behavior 
on the site) that you can use to make the prediction

Problems of this type are referred to as function approximation problems because 
the goal is to construct a model generating predictions of the first of these as a 
function of the second.

In a function approximation problem, the designer starts with a collection of 
historical examples for which the correct answer is known. For example, his-
torical web log files will indicate whether a visitor clicked an ad when shown 
the ad. The data scientist next has to find other data that can be used to build 
a predictive model. For example, to predict whether a site visitor will click an 
ad, the data scientist might try using other pages that the visitor viewed before 
seeing the ad. If the user is registered with the site, data on past purchases or 
pages viewed might be available for making a prediction.

The variable being predicted is referred to by a number of different names, such 
as target, label, and outcome. The variables being used to make the predictions are 
variously called predictors, regressors, features, and attributes. These terms are used 
interchangeably in this text, as they are in general practice. Determining what 
attributes to use for making predictions is called feature engineering. Data cleaning 
and feature engineering take 80 percent to 90 percent of a data scientist’s time.

Feature engineering usually requires a manual, iterative process for select-
ing features, determining optimal potential, and experimenting with different 
combinations of features. The algorithms covered in this book assign numeric 
importance values to each attribute. These values indicate the relative impor-
tance of attributes in making predictions. That information helps speed up the 
feature engineering process.

Working with Training Data
The data scientist starts algorithm development with a training set. The training 
set consists of outcome examples and the assemblage of features chosen by the 
data scientist. The training set comprises two types of data:

 ■ The outcomes you want to predict

 ■ The features available for making the prediction



 Chapter 3 ■ predictive Model Building 77

Table 3-1 provides an example of a training set. The leftmost column contains 
outcomes (whether a site visitor clicked a link) and features to be used to make 
predictions about whether visitors will click the link in the future.

table 3-1: Example Training Set

OutCOMes: 
CliCkeD On link

Feature1: 
GenDer

Feature2: MOney 
spent On site

Feature3: 
GenDer

Yes M 0 25

No F 250 32

Yes F 12 17

The predictor values (a.k.a., features, attributes, and so on) can be arranged 
in the form of a matrix (see Equation 3-1). The notational convention used in 
this book is as follows. The table of predictors will be called X, and it has the 
following form:

X

x x x

x x x

x x x

n

n

m m mn

=

…
…

…

11 12 1

21 22 2

1 2

� � �

equation 3-1: Notation for set of predictors

Referring to the data set in Table 3-1, x11 would be M (gender), x12 would be 
0.00 (money spent on site), x21 would be F (gender), and so on.

Sometimes it will be convenient to refer to all the attribute values for a particular 
example. For that purpose, xi (with a single index) will refer to the ith row of X. For 
the data set in Table 3-1, x2 would be a row vector containing the values F, 250, 32.

Strictly speaking, the X is not a matrix because the predictors may not all be 
the same type of variable. (A proper matrix contains variables that are all the 
same type. Predictors, however come in different types.) Using the example of 
predicting ad clicks, the predictors might include demographic data about the 
site visitor. Those data could include marital status and yearly income, among 
other things. Yearly income is a real number, and marital status is a categorical 
variable. That means that marital status does not admit arithmetic operations 
such as adding or multiplication and that no order relation exists between single, 
married, and divorced. The entries in a column from X all have the same type, 
but the type may vary from one column to the next.

Attributes such as marital status, gender, or the state of residence go by several 
different designations. They may be called factor or categorical. Attributes like 
age or income that are represented by numbers are called numeric or real-valued. 



78 Chapter 3 ■ predictive Model Building

The distinction between these two types of attributes is important because some 
algorithms may not handle one type or the other. For example, linear methods, 
including the ones covered in this book, require numeric attributes. (Chapter 4, 
“Penalized Linear Regression,” which covers linear methods, shows methods 
for converting [or coding] categorical variables to numeric in order to apply 
linear methods to problems with categorical variables.)

The targets corresponding to each row in X are arranged in a column vector 
Y (see Equation 3-2), as follows:

Y

y

y

ym

=
1

2



equation 3-2: Notation for vector of targets

The target yi corresponds to xi —the predictors in the ith row of X. Referring 
to the data in Table 3-1, y1 is Yes, and y2 is No.

Targets may be of several different forms. For example, they may be real 
numbers, like if the objective were to predict how much a customer will spend. 
When the targets are real numbers, the problem is called a regression problem. 
Linear regression implies using a linear method to solve a regression problem. 
(This book covers both linear and nonlinear regression methods.)

If the targets are two-valued, as in Table 3-1, the problem is called a binary 
classification problem. Predicting whether a customer will click an advertisement 
is a binary classification problem. If the targets contain several discrete values, 
the problem is a multiclass classification problem. Predicting which of several ads 
a customer will click would be a multiclass classification problem.

The basic problem is to find a prediction function, pred(), that uses the attri-
butes to predict outcomes (see Equation 3-3):

y pred xt t~ ( )

equation 3-3: Basic equation for making predictions

The function pred() uses the attribute xi to predict yi . This book describes 
some of the very best current methods for producing the function pred().

Assessing Performance of Predictive Models
Good performance means using the attributes xi to generate a prediction that is 
close to yi, but close has different meanings for different problems. For a regression 
problem where yi is a real number, performance is measured in terms like the 
mean squared error (MSE) or the mean absolute error (MAE) (see Equation 3-4).



 Chapter 3 ■ predictive Model Building 79

Mean squarederror
m

y pred xi i
i

m

= 





− ( )( )
=
∑1 2

1

equation 3-4: Performance measure for a regression problem

In a regression problem, the target ( yi ) and the prediction, pred( xi ), are both 
real numbers, so it makes sense to describe the error as being the numeric dif-
ference between them. Equation 3-4 for MSE squares the errors and averages 
over the data set to produce a measure of the overall level of errors. MAE aver-
ages the absolute values of the errors (see Equation 3-5) instead of averaging 
the squares of the errors.

Mean absolute error
m

y pred xi i
i

m

= 





− ( )
=
∑1

1

equation 3-5: Another performance measure for regression

If the problem is a classification problem, you must use some other measure 
of performance. One of the most used is the misclassification error—that is, 
the fraction of examples that the function pred() predicts incorrectly. The sec-
tion “Performance Measures for Different Types of Problems” shows how to 
calculate misclassification.

For our function pred() to be useful for making predictions, there must be 
some way to predict what level of errors it will generate on new examples as 
they arrive. What is the performance on new data—data that were not involved 
in developing the function pred()? This chapter covers the best methods for 
estimating performance on new data.

This section introduced the basic type of prediction problem that will be 
addressed in this book and described how constructing these prediction mod-
els amounts to constructing a function that maps attributes (or features) into 
predicted outcomes. It also gave an overview of how the errors in these predic-
tions can be assessed. Performing these steps leads to several complications. The 
remaining sections of this chapter describe these complications, how to deal 
with them, and how to arrive at the best possible model given the constraints 
of the problem and the data available.

Factors Driving Algorithm Choices and Performance—
Complexity and Data

Several factors affect the overall performance of a predictive algorithm. Among 
these factors are the complexity of the problem, the complexity of the model 
used, and the amount of training data available. The following sections describe 
how these factors interrelate to determine performance.



80 Chapter 3 ■ predictive Model Building

Contrast Between a Simple Problem and a Complex Problem
The preceding section of this chapter described several ways to quantify perfor-
mance and highlighted the importance of performance on new data. The goal of 
designing a predictive model is to make accurate predictions on new examples 
(such as new visitors to your site). As a practicing data scientist, you will want 
an estimate of an algorithm’s performance so that you can set expectations 
with your customer and compare algorithms with one another. Best practice 
in predictive modeling requires that you hold out some data from the train-
ing set. These held-out examples have labels associated with them and can be 
compared to predictions produced by models training on the remaining data. 
Statisticians refer to this technique as out-of-sample error because it is an error on 
data not used in training. (The section “Measuring Performance of Predictive 
Models” later in this chapter goes into more detail about the mechanics of this 
process.) The important thing is that the only performance that counts is the 
performance of the model when it is run against new examples.

One of the factors affecting performance is the complexity of the problem 
being solved. Figure 3-1 shows a relatively simple classification problem in two 
dimensions. There are two groups of points: dark and light points. The dark 
points are randomly drawn from a 2D Gaussian distribution centered at (1,0) 
with unit variance in both dimensions. The light points are also drawn from 
a Gaussian distribution having the same variance but centered at (0,1). The 

4

2

0

−2

−4

x1

x2

−2 0 2 4

Figure 3-1: A simple classification problem



 Chapter 3 ■ predictive Model Building 81

attributes for the problem are the two axes in the plot: x1 and x2 . The classification 
task is to draw some boundaries in the x1 , x2 plane to separate the light points 
from the dark points. About the best that can be done in this circumstance is to 
draw a 45-degree line in the plot—that is the line where x1 equals x2 . In a precise 
probabilistic sense, that is the best possible classifier for this problem. Because a 
straight line separates the lights and darks as well as possible, a linear classifier 
will do as well as nonlinear classifier. The linear methods covered in this book 
will do a splendid job on this problem.

Figure 3-2 depicts a more complicated problem. The points shown in Figure 3-2 
are generated by drawing points at random. The main difference from the random 
draw that generated Figure 3-1 is that the points in Figure 3-2 are drawn from 
several distributions for the light points and several different ones for dark. This 
is called a mixture model. The general goal is basically the same: draw boundaries 
in the x1 , x2 plane to separate the light points from the dark points. In Figure 3-2, 
however, it is clear that a linear boundary will not separate the points as well 
as a curve. The ensemble methods covered in Chapter 6, “Ensemble Methods,” 
will work well on this problem.

However, complexity of the decision boundaries is not the only factor influ-
encing whether linear or nonlinear methods will deliver better performance. 
Another important factor is the size of the data set. Figure 3-3 illustrates this 
element of performance. The points plotted in Figure 3-3 are a 1 percent sub-
sample of data plotted in Figure 3-2.

4

3

2

1

0

−1

−2

−3

−2 0 2 4

x2

x1

Figure 3-2: A complicated classification problem



82 Chapter 3 ■ predictive Model Building

In Figure 3-2, there was enough data to visualize the curved boundaries delin-
eating the sets of light and dark points. Without as much data, the sets are not so 
easily discerned visually, and in this circumstance, a linear model may give equal 
or better performance than a nonlinear model. With less data, the boundaries are 
harder to visualize, and they are more difficult to compute. This gives a graphic 
demonstration of the value of having a large volume of data. If the underlying 
problem is complicated (for example, personalizing responses for individual 
shoppers), a complicated model with a lot of data can produce accurate results. 
However, if the model is not complicated, as in Figure 3-1, or there is not sufficient 
data, as in Figure 3-3, a linear model may produce the best answer.

Contrast Between a Simple Model and a Complex Model
The previous section showed visual comparisons between simple and complex 
problems. This section describes how the various models available to solve these 
problems differ from one another. Intuitively, it seems that a complex model 
should be fit to a complex problem, but the visual example from the last section 
demonstrates that data set size may dictate that a simple model fits a complex 
problem better than a complex model.

Another important concept is that modern machine learning algorithms 
generate families of models, not just single models. The algorithms covered 

Figure 3-3: A complicated classification problem without much data

3

2

0

1

−1

−2

x2

x1

−2 −1 0 1 2 3



 Chapter 3 ■ predictive Model Building 83

in this book each generate hundreds or even thousands of different models. 
Generally, the ensemble methods covered in Chapter 6 yield more complex 
models than linear methods covered in Chapter 4, but both of these methods 
generate multiple models of varying complexity. (This will become clearer in 
Chapters 4 and 6, which cover linear and ensemble techniques in detail.)

Figure 3-4 shows a linear model fit to the simple problem introduced in the 
previous section. The linear model shown in Figure 3-4 was generated using 
the glmnet algorithm (covered in Chapter 4). The linear model fit to these data 
divides the data roughly in half. The line in the figure is given by Equation 3-6.

x x2 10 01 0 99= − +. .

equation 3-6: Linear model fit to simple problem

This is very close to the line where x2 equals x1, which is the best possible 
boundary in a probabilistic sense. The boundary appears sensible from a visual 
intuitive standpoint. Fitting a more complicated model to this simple problem 
is not going to improve performance.

A more complicated problem with more complicated decision boundaries 
gives a complicated model an opportunity to outperform a simple linear model. 

Figure 3-4: Linear model fit to simple data

4

2

0

−2

−2 0
x1

2 4

−4

x2



84 Chapter 3 ■ predictive Model Building

Figure 3-5 shows a linear model fit to data indicating a nonlinear decision 
boundary. In this circumstance, the linear model misclassifies regions as dark 
when they should be light and vice versa.

Figure 3-6 shows how much better a complicated model can do with compli-
cated data. The model used to generate this decision boundary is an ensemble 
(collection) of 1,000 binary decision trees constructed using the gradient boost-
ing algorithm. (Gradient boosted decision trees are covered in detail in Chapter 
6 on ensemble methods.) The nonlinear decision boundary curves are used to 
better delineate regions where the dark points are denser and regions where 
the light points are denser.

It is tempting to draw the conclusion that the best approach is to use compli-
cated models for complicated problems and simple models for simple problems. 
But, you must consider one more dimension to the problem. As mentioned in 
the previous section, you must consider data set size. Figures 3-7 and 3-8 show 
1 percent of the data from a complicated problem. Figure 3-7 shows a linear 
model fit to the data, and Figure 3-8 shows an ensemble model fit to the data. 
Count the number of points that are misclassified. There are 100 points in the 
data set. The linear model in Figure 3-7 misclassifies 11 points, for a misclas-
sification error rate of 11 percent. The complex model misclassifies 8, for an 8 
percent error rate. Their performance is roughly equal.

Figure 3-5: Linear model fit to complex data

4

3

0

1

2

−1

−2

−3

x2

x1
−2 0 2 4



 Chapter 3 ■ predictive Model Building 85

4

3

2

0

1

−1

−2

−3

−2 0 2 4

x2

x1

Figure 3-6: Ensemble model fit to complex data

Figure 3-7: Linear model fit to small sample of complex data

3

2

0

1

−1

−2

320 1−1−2

x2

x1



86 Chapter 3 ■ predictive Model Building

Factors Driving Predictive Algorithm Performance
These results explain the excitement over large volumes of data. Accurate pre-
dictions for complicated problems require large volumes of data. But the size 
isn’t quite a precise enough measure. The shape of the data also matters.

Equation 3-1 portrayed predictor data as a matrix having a number of rows 
(height) and a number of columns (width). The number of entries in the matrix 
is the product of the number of rows and the number of columns. An important 
difference exists between the number of rows and the number of columns when 
the data are being used for predictive modeling. Adding a column means add-
ing a new attribute. Adding a new row means getting an additional historical 
example of the existing attributes. To understand how the effects of a new row 
differ from the effects of a new column, consider a linear model relating the 
attributes from Equation 3-1 to the labels of Equation 3-2.

Assume a model of the following form (see Equation 3-7):

y xi i~ *β
= + +…+x x x m mi i i1 21 2* * *β β β
equation 3-7: Linear relation between attributes and outcomes

Here, xi is a row of attributes, and β is a column vector of coefficients to be 
determined. Adding a column to the matrix of attributes adds another β coef-
ficient that needs to be determined. This added coefficient is also called degree 

Figure 3-8: Ensemble model fit to small sample of complex data

3

2

0

1

−1

−2

−2 −1 0

x1

1 2 3

x2



 Chapter 3 ■ predictive Model Building 87

of freedom. Adding another degree of freedom is making the model more com-
plicated. The preceding examples demonstrated that making the model more 
complicated required more data. For this reason, it is common to think in terms 
of the ratio of rows to columns—the aspect ratio.

Biological data sets and natural language processing data sets are examples 
that are quite large because they have a lot of columns, but they are sometimes 
not large enough to get good performance out of a complex modeling approach. 
In biology, genomic data sets can easily contain 10,000 to 50,000 attributes. Even 
with tens of thousands of individual experiments (rows of data), a genomic data 
set may not be enough to train a complex ensemble model. A linear model may 
give equivalent or better performance.

Genomic data are expensive. One of the experiments (rows) can cost upward of 
$5,000, making the full data set cost upward of $50 million. Text can be relatively 
inexpensive to collect and store, but can also be even wider than genomic data. In 
some natural language processing problems, the attributes are words, and rows 
are documents. Entries in the matrix of attributes are the number of times a word 
appears in a document. The number of columns is the vocabulary size for a docu-
ment collection. Depending on preprocessing (for example, removing common 
words like a, and, and of), the vocabulary can be from a few thousand to a few tens 
of thousands. The attribute matrix for text becomes very wide when n-grams are 
counted alongside words. N-grams are groups of two, three, or four words that 
appear next to one another (or close enough to be a phrase). When groups of two, 
three, or four words are also counted, the attribute space for natural language pro-
cessing can grow to more than a million attributes. Once again, a linear model may 
give equivalent or better performance than a more complicated ensemble model.

Choosing an Algorithm: Linear or Nonlinear?
The visual examples you have just seen give some idea of the performance tradeoffs 
between linear and nonlinear predictive models. Linear models are preferable 
when the data set has more columns than rows or when the underlying problem 
is simple. Nonlinear models are preferable for complex problems with many 
more rows than columns of data. An additional factor is training time. Fast linear 
techniques train much faster than nonlinear techniques. (You will have more of 
a basis for making this decision after you’ve covered the techniques described in 
Chapter 4 and Chapter 6 and have worked through some examples.)

Choosing a nonlinear model (say an ensemble method) entails training a number 
of different models of differing complexity. For example, the ensemble model that 
generated the decision boundary in Figure 3-6 was one of roughly a thousand dif-
ferent models generated during the training process. These models had a variety 
of different complexities. Some of them would have given a much cruder approxi-
mation to the boundaries that are visually apparent in Figure 3-6. The model that 
generated the decision boundary in Figure 3-6 was chosen because it performed the 
best on out-of-sample data. This process holds for many modern machine learning 



88 Chapter 3 ■ predictive Model Building

algorithms. Examples will be covered in covered in the section “Choosing a Model 
to Balance Problem Complexity, Model Complexity, and Data Set Size.”

This section has used data sets and classifier solutions that can be visualized 
in order to give you an intuitive grasp of the factors affecting the performance 
of the predictive models you build. Generally, you’ll use numeric measures 
of performance instead of relying on pictures. The next section describes the 
methods and considerations for producing numeric performance measures 
for predictive models and how to use these to estimate the performance your 
models will achieve when deployed.

Measuring the Performance of Predictive Models

This section covers two broad areas relating to performance measures for pre-
dictive models. The first one is the different metrics that you can use for dif-
ferent types of problems (for example, using MSE for a regression problem 
and misclassification error for a classification problem). In the literature (and 
in machine learning competitions), you will also see measures like receiver 
operating curves (ROC curves) and area under the curve (AUC). Besides that, 
these ideas are useful for optimizing performance.

The second broad area consists of techniques for gathering out-of-sample 
error estimates. Recall that out-of-sample errors are meant to simulate errors 
on new data. It’s an important part of design practice to use these techniques to 
compare different algorithms and to select the best model complexity for a given 
problem complexity and data set size. That process is discussed in detail later 
in this chapter and is then used in examples throughout the rest of the book.

Performance Measures for Different Types of Problems
Performance measures for regression problems are relatively straightforward. In 
a regression problem, both the target and the prediction are real numbers. Error 
is naturally defined as the difference between the target and the prediction. It 
is useful to generate statistical summaries of the errors for comparisons and for 
diagnostics. The most frequently used summaries are the mean squared error 
(MSE) and the mean absolute error (MAE). Listing 3-1 compares the calcula-
tion of the MSE, MAE, and root MSE (RMSE, which is the square root of MSE).

Listing 3-1: Comparison of MSE, MAE and RMSE—regressionErrorMeasures.py

__author__ = 'mike-bowles'

#here are some made-up numbers to start with
target = [1.5, 2.1, 3.3, -4.7, -2.3, 0.75]
prediction = [0.5, 1.5, 2.1, -2.2, 0.1, -0.5]



 Chapter 3 ■ predictive Model Building 89

error = []
for i in range(len(target)):
    error.append(target[i] - prediction[i])

#print the errors
print("Errors ",)
print(error)
#ans:  [1.0, 0.60000000000000009, 1.1999999999999997, -2.5,
#-2.3999999999999999, 1.25]

#calculate the squared errors and absolute value of errors
squaredError = []
absError = []
for val in error:
    squaredError.append(val*val)
    absError.append(abs(val))

#print squared errors and absolute value of errors
print("Squared Error")
print(squaredError)
#ans: [1.0, 0.3600000000000001, 1.4399999999999993, 6.25,
#5.7599999999999998, 1.5625]
print("Absolute Value of Error")
print(absError)
#ans: [1.0, 0.60000000000000009, 1.1999999999999997, 2.5,
#2.3999999999999999, 1.25]

#calculate and print mean squared error MSE
print("MSE = ", sum(squaredError)/len(squaredError))
#ans: 2.72875

from math import sqrt
#calculate and print square root of MSE (RMSE)
print("RMSE = ", sqrt(sum(squaredError)/len(squaredError)))
#ans: 1.65189285367

#calculate and print mean absolute error MAE
print("MAE = ", sum(absError)/len(absError))
#ans: 1.49166666667

#compare MSE to target variance
targetDeviation = []
targetMean = sum(target)/len(target)
for val in target:
    targetDeviation.append((val - targetMean)*(val - targetMean))

continues



90 Chapter 3 ■ predictive Model Building

#print the target variance
print("Target Variance = ", sum(targetDeviation)/len(targetDeviation))
#ans: 7.5703472222222219

#print the the target standard deviation (square root of variance)
print("Target Standard Deviation = ", sqrt(sum(targetDeviation)
   /len(targetDeviation)))
#ans: 2.7514263977475797

The example starts with some made-up numbers for the targets and the 
predictions. First, it calculates the errors by simple subtraction; then it shows 
the calculation of MSE, MAE, and RMSE. Notice that MSE comes out markedly 
different in magnitude than MAE and RMSE. That’s because MSE is in squared 
units. For that reason, the RMSE is usually a more usable number to calculate. 
At the bottom of the listing is a calculation of the variance (mean squared devia-
tion from the mean) and the standard deviation (square root of variance) of the 
targets. These quantities are useful to compare (respectively) to the MSE and 
RMSE of the prediction errors. For example, if the MSE of the prediction error 
is roughly the same as the target variance (or the RMSE is roughly the same as 
target standard deviation), the prediction algorithm is not performing well. You 
could replace the prediction algorithm with a simple calculation of the mean 
of the targets and perform as well. The errors in Listing 3-1 have RMSE that’s 
about half the standard deviation of the targets. That is fairly good performance.

Besides calculating summary statistics for the error, it may sometimes be 
useful for analyzing sources and magnitudes of error to look at things like 
histogram of the error or tail behavior (quantile or decile boundaries), degree 
of normality, and so forth. Sometimes those investigations will yield insights 
into error sources and potential performance improvements.

Classification problems require different treatment. The approaches to clas-
sification problems generally revolve around misclassification error rates—the 
fraction of examples that are incorrectly classified. Suppose, for instance, that the 
classification problem is to predict click or not-click on a link being considered 
for presentation to a site visitor. Generally, algorithms for doing classification 
can present predictions in the form of a probability instead of a hard click versus 
not-click decision. The algorithms considered in this book all output probabilities.

Here’s why that’s useful. If the prediction of click or not-click is given as a prob-
ability—say 80 percent chance of click (and correspondingly 20 percent chance 
of not-click)—the data scientist has the option to use 50 percent as a threshold 
for presenting the link or not presenting the link. In some cases, however, a 
higher or lower threshold value will give a better end result.

Suppose, for example, that the problem is fraud detection (for credit cards, 
automatic clearinghouses [checking], insurance claims, and so on). The actions 
that proceed from making a fraud-or-not decision are to have a call center rep-
resentative intervene in the transaction or to let it go. There are costs involved 

continued



 Chapter 3 ■ predictive Model Building 91

with either decision. If the call is made, there’s the call center cost and the cost 
of the customer’s reaction. If the call isn’t made, there’s the cost of the potential 
fraud. If the costs of taking the action are very low relative to the costs of not 
taking the action, the minimum total comes at a relatively low threshold. More 
transactions get flagged for intervention.

But where do you draw the line for interrupting your customer’s checkout 
and requiring the customer to call card services to proceed? Do you interrupt 
the transactions where your predictive algorithm indicates a 20 percent, 50 
percent, or 80 percent probability that the transaction is fraudulent? If you 
place the threshold for interruption at 20 percent, you’ll be intervening more 
frequently—preventing more fraudulent transactions—but also irritating more 
customers and keeping many call center reps busy. Maybe it is better to place 
the threshold higher (say 80 percent) and to accept more fraud.

A useful way to think about this is to arrange the possible outcomes into what 
is called a confusion matrix or contingency table (http://en.wikipedia.org/wiki/
Confusion_matrix). Figure 3-9 shows a toy example of a contingency matrix. 
The numbers in the contingency table represent the performance based on a 
choice for the threshold value discussed in the last paragraph. The contingency 
matrix in Figure 3-9 summarizes the results of making predictions for 135 test 
examples for a particular choice of the threshold probability. The matrix has two 
columns representing the possible predictions. It also has two rows represent-
ing the truth (label) for each example. So, each example in the test set can be 
assigned to one of the four cells in the table. The two classifications portrayed 
in Figure 3-9 are “click” and “not click,” appropriate for selecting an ad. These 
could also correspond to “fraud” and “not fraud”—or other pairs—depending 
on the specific problem being addressed.

The upper-left cell contains examples that are predicted as click and where 
that matches the label (truth). These are called true positive and are generally 
abbreviated as TP. The entries in the lower-left box correspond to examples 
where the prediction was positive (click) but the truth was negative (not-click). 

Figure 3-9: Confusion matrix example

Predicted Class

Actual Class Positive 
(Click)

Negative
(Not Click)

Positive
(Click)

True Positive
10

False Negative
7

Negative
(Not-click)

False Positive
22

True Negative
96

http://en.wikipedia.org/wiki/Confusion_matrix
http://en.wikipedia.org/wiki/Confusion_matrix


92 Chapter 3 ■ predictive Model Building

These are called false positive and abbreviated as FP. The right column of the 
matrix contains the examples that were predicted not-click. The examples in the 
upper right were click in truth and are called false negatives or FN. The lower-
right examples were predicted not-click and agree with the real outcome. They 
are called false negative or FN.

What happens when the probability threshold is changed? Consider the 
extreme values. If the probability threshold is set to 0.0, no matter what prob-
ability your model predicts, it will get designated as a click. All the examples 
wind up in the left column. There are only 0s in the right column. The number 
of TPs would go up to 17. The number of FPs would go up to 118. If there were 
no cost for an FP and no reward for a true negative (TN), that might be a good 
choice, but no predictive algorithm is required to assume click for every input 
example. Similarly, if there is no cost for an FN and no benefit for a TP, the 
threshold can be set at 1.0 so that all examples are classified as not-click. These 
extremes aid understanding, but they’re not useful in a deployed system. The 
following example shows how the process would work to build a classifier for 
the rocks-versus-mines data set.

The rocks-versus-mines data set presents the problem of building a classifier 
that uses sonar data to determine whether seabed objects are rocks or mines. 
(For a more thorough discussion and exploration of the data set, see Chapter 2, 
“Understand the Problem by Understanding the Data.”) Listing 3-2 shows the 
Python code for training a simple classifier on the rocks-versus-mines data set 
and then predicts performance for the classifier.

Listing 3-2: Measuring Performance for Classifier Trained on Rocks-Versus-Mines— 
classifierPerformance_RocksVMines.py

__author__ = 'mike-bowles'
#use scikit learn package to build classified on rocks-versus-mines data
#assess classifier performance

import urllib2
import numpy
import random
from sklearn import datasets, linear_model
from sklearn.metrics import roc_curve, auc
import pylab as pl

def confusionMatrix(predicted, actual, threshold):
    if len(predicted) != len(actual): return -1
    tp = 0.0
    fp = 0.0
    tn = 0.0
    fn = 0.0
    for i in range(len(actual)):
        if actual[i] > 0.5: #labels that are 1.0  (positive examples)



 Chapter 3 ■ predictive Model Building 93

            if predicted[i] > threshold:
                tp += 1.0 #correctly predicted positive
            else:
                fn += 1.0 #incorrectly predicted negative
        else:              #labels that are 0.0 (negative examples)
            if predicted[i] < threshold:
                tn += 1.0 #correctly predicted negative
            else:
                fp += 1.0 #incorrectly predicted positive
    rtn = [tp, fn, fp, tn]
    return rtn

#read in the rocks versus mines data set from uci.edu data repository
target_url = ("https://archive.ics.uci.edu/ml/machine-learning-" 
"databases/undocumented/connectionist-bench/sonar/sonar.all-data")
data = urllib2.urlopen(target_url)

#arrange data into list for labels and list of lists for attributes
xList = []
labels = []
for line in data:
    #split on comma
    row = line.strip().split(",")
    #assign label 1.0 for "M" and 0.0 for "R"
    if(row[-1] == 'M'):
        labels.append(1.0)
    else:
        labels.append(0.0)
    #remove lable from row
    row.pop()
    #convert row to floats
    floatRow = [float(num) for num in row]
    xList.append(floatRow)

#divide attribute matrix and label vector into training(2/3 of data)
#and test sets (1/3 of data)
indices = range(len(xList))
xListTest = [xList[i] for i in indices if i%3 == 0 ]
xListTrain = [xList[i] for i in indices if i%3 != 0 ]
labelsTest = [labels[i] for i in indices if i%3 == 0]
labelsTrain = [labels[i] for i in indices if i%3 != 0]

#form list of list input into numpy arrays to match input class
#for scikit-learn linear model
xTrain = numpy.array(xListTrain); yTrain = numpy.array(labelsTrain)
xTest = numpy.array(xListTest); yTest = numpy.array(labelsTest)

#check shapes to see what they look like
print("Shape of xTrain array", xTrain.shape)
print("Shape of yTrain array", yTrain.shape)

continues

https://archive.ics.uci.edu/ml/machine-learning-


94 Chapter 3 ■ predictive Model Building

print("Shape of xTest array", xTest.shape)
print("Shape of yTest array", yTest.shape)

#train linear regression model
rocksVMinesModel = linear_model.LinearRegression()
rocksVMinesModel.fit(xTrain,yTrain)

#generate predictions on in-sample error
trainingPredictions = rocksVMinesModel.predict(xTrain)
print("Some values predicted by model", trainingPredictions[0:5],
 trainingPredictions[-6:-1])

#generate confusion matrix for predictions on training set (in-sample
confusionMatTrain = confusionMatrix(trainingPredictions, yTrain, 0.5)
#pick threshold value and generate confusion matrix entries
tp = confusionMatTrain[0]; fn = confusionMatTrain[1]
fp = confusionMatTrain[2]; tn = confusionMatTrain[3]

print("tp = " + str(tp) + "\tfn = " + str(fn) + "\n" + "fp = " +
str(fp) + "\ttn = " + str(tn) + '\n')

#generate predictions on out-of-sample data
testPredictions = rocksVMinesModel.predict(xTest)

#generate confusion matrix from predictions on out-of-sample data
conMatTest = confusionMatrix(testPredictions, yTest, 0.5)
#pick threshold value and generate confusion matrix entries
tp = conMatTest[0]; fn = conMatTest[1]
fp = conMatTest[2]; tn = conMatTest[3]
print("tp = " + str(tp) + "\tfn = " + str(fn) + "\n" + "fp = " +
str(fp) + "\ttn = " + str(tn) + '\n')

#generate ROC curve for in-sample

fpr, tpr, thresholds = roc_curve(yTrain,trainingPredictions)
roc_auc = auc(fpr, tpr)
print( 'AUC for in-sample ROC curve: %f' % roc_auc)

# Plot ROC curve
pl.clf()
pl.plot(fpr, tpr, label='ROC curve (area = %0.2f)' % roc_auc)
pl.plot([0, 1], [0, 1], 'k–')
pl.xlim([0.0, 1.0])
pl.ylim([0.0, 1.0])
pl.xlabel('False Positive Rate')
pl.ylabel('True Positive Rate')
pl.title('In sample ROC rocks versus mines')
pl.legend(loc="lower right")
pl.show()

#generate ROC curve for out-of-sample
fpr, tpr, thresholds = roc_curve(yTest,testPredictions)

continued



 Chapter 3 ■ predictive Model Building 95

roc_auc = auc(fpr, tpr)
print( 'AUC for out-of-sample ROC curve: %f' % roc_auc)

# Plot ROC curve
pl.clf()
pl.plot(fpr, tpr, label='ROC curve (area = %0.2f)' % roc_auc)
pl.plot([0, 1], [0, 1], 'k–')
pl.xlim([0.0, 1.0])
pl.ylim([0.0, 1.0])
pl.xlabel('False Positive Rate')
pl.ylabel('True Positive Rate')
pl.title('Out-of-sample ROC rocks versus mines')
pl.legend(loc="lower right")
pl.show()

The first section of the code reads the input data from the University of 
California Irvine data repository and then formats it as a list for the labels and 
a list of lists for the attributes. The next step is to break the data (labels and 
attributes) into two subsets: a test set that contains one third of the data, and a 
training set that contains the other two thirds. The data labeled test will not be 
used in training the classifier, but will be reserved for assessing performance 
after the classifier is trained. This step simulates the behavior of the classifier 
on new data examples after it has been deployed. Later, this chapter discusses 
a variety of different methods for holding out data and making estimates of 
performance on new data.

The classifier is trained by converting the labels M (for mine) and R (for rock) 
in the original data set into numeric values—1.0 corresponding to mine, and 
0.0 corresponding to rock—and then using the ordinary least squares regres-
sion to fit a linear model. This is a fairly simple method to understand and 
to implement and will often generate very similar performance to the more 
sophisticated algorithms discussed later. The program in Listing 3-2 employs 
the linear regression class from scikit-learn to train the ordinary least squares 
model. Then the trained model is used to generate predictions on the training 
set and on the test set.

The code prints out some representative values for the predictions. The 
linear regression model generates numbers that are mostly in the interval 
between 0.0 and 1.0, but not entirely. The predictions aren’t quite probabilities. 
They can still be used to generate predicted classifications by comparing to 
a threshold value. The function confusionMatrix() produces the values for 
a confusion matrix, similar to Figure 3-9. It takes the predictions, the corre-
sponding actual values (labels), and a threshold value as input. It compares 
the predictions to the threshold to determine whether to assign each example 
to the “predicted positive” or “predicted negative” column in the confusion 
matrix. It uses the actual value to make the assignment to the appropriate row 
of the confusion matrix.



96 Chapter 3 ■ predictive Model Building

The error rates for each threshold value can be read out of the confusion 
matrix. The total number of errors is the sum of FPs and FNs. The example 
code produces confusion matrices for the in-sample data and the out-of-
sample data and prints them both out. The misclassification error rate on 
the in-sample data is about 8 percent, and about 26 percent on the out-of-
sample data. Generally, the out-of-sample performance will be worse than 
performance on in-sample data. It will also be more representative of the 
expected error on new examples.

The misclassification error changes when the thresholds are changed. Table 3-2 
shows how misclassification error rate changes as the threshold value changes. 
The numbers in the table are based on out-of-sample results. That will be gen-
erally true of numbers characterizing performance throughout the book. Any 
in-sample errors will have warning labels attached: “Warning: These are in-
sample errors.” If the goal is to minimize the misclassification error, the best 
threshold value is 0.25.

table 3-2: Dependence of Misclassification Error on Decision Threshold

DeCisiOn threshOlD MisClassiFiCatiOn errOr rate

0.0 28.6 percent

0.25 24.3 percent

0.5 25.7 percent

0.75 30.0 percent

1.0 38.6 percent

The best value for the threshold may be the one that minimizes the mis-
classification error. Sometimes, however, there’s more cost associated with 
one type of error than with another. Suppose, for instance, that for the rocks-
versus-mines problem it costs $100 to send a diver to do a visual inspection 
and that unexploded mines cost $1,000 in expected injuries and property 
damage if not removed. An FP costs $100, and an FN costs $1,000. Given these 
assumptions, Table 3-3 summarizes the dollar cost of mistakes for different 
threshold values. The higher cost of mistaking a mine for a rock (and leaving 
it in place to threaten health and safety) has pushed the decision threshold 
down to zero. That means more FNs, but they aren’t as expensive. A more 
thorough analysis could include the costs associated with TP and TN. For 
example, the TP might have costs associated with removing the mine and a 
benefit of +$1,000 associated with its removal. If these figures are available 
(or can be reasonably approximated) in your problem, it behooves you to use 
them to derive better threshold values.



 Chapter 3 ■ predictive Model Building 97

table 3-3: Cost of Mistakes for Different Decision Thresholds

DeCisiOn 
threshOlD

False 
neGative COst

False 
pOsitive COst

tOtal 
COst

0.0 1,000 1,900 2,900

0.25 3,000 1,400 4,400

0.5 9,000 900 9,900

0.75 18,000 300 18,300

1.00 26,000 100 26,100

Note that the relative cost of total FPs versus FNs depends on the proportion 
of positive and negative examples in the data set. The rocks-versus-mines data 
set has an equal number of positives and negatives (mines and rocks). That was 
presumably determined by an experimental protocol. The proportion of posi-
tives and negatives encountered in actual practice may differ. If the numbers 
are likely to be different when the system is deployed, you need to make some 
adjustments to account for the proportions in actual use.

The data scientist may not have the costs available but may still want a method 
to characterize the overall performance of the classifier instead of using the mis-
classification error rate for a particular decision threshold. A common technique 
for doing that is called the receiver operating characteristic or ROC curve (http://
en.wikipedia.org/wiki/Receiver_operating_characteristic).

ROC inherits its name from its original application—processing returns 
from a radar receiver to determine the presence or absence of hostile aircraft. 
The ROC curve yields a single plot that summarizes all of these different con-
tingency tables. The ROC curve plots the true positive rate (abbreviated TPR) 
versus the false positive rate (FPR). TPR is the proportion of positive examples 
that are correctly classified as positive (see Equation 3-8). FPR is the number 
of FPs relative to the total number of actual negatives (see Equation 3-9). In 
terms of the elements of the contingency table, these are given by the follow-
ing formulas:

TPR
TP

TP FN
=

+
equation 3-8: True positive rate

FPR
FP

TN FP
=

+
equation 3-9: False positive rate

As a simple thought experiment, consider using an extremely low value for 
the decision threshold. For a low value, every example is predicted as positive. 

http://en.wikipedia.org/wiki/Receiver_operating_characteristic
http://en.wikipedia.org/wiki/Receiver_operating_characteristic


98 Chapter 3 ■ predictive Model Building

That gives 1.0 for TPR. Because everything is classified as positive, there are 
no FNs (FN is 0.0). It also gives 1.0 for FPR because nothing gets classified as 
negative (TN is 0.0). However, when the decision threshold is set very high, TP 
is equal to zero, and so TPR is also zero and FP is also zero because nothing gets 
classified as positive. Therefore, FPR is also zero. The following two figures were 
drawn using the pylab roc_curve() and auc() functions. Figure 3-10 shows 
the ROC curve-based performance on in-sample data. Figure 3-11 shows the 
ROC curve based on out-of-sample data.

The ROC curve for the classifier that operates by randomly deciding rock or 
mine forms a diagonal line from the lower-left corner to the upper-right corner 
of the plot. That line is often drawn onto ROC curves as a reference point. For 
a perfect classifier, the ROC curve steps straight up from (0, 0) to (0, 1) and then 
goes straight across to (1, 1). Not surprisingly, Figure 3-10 (on in-sample data) 
comes closer to perfection than Figure 3-11 (on out-of-sample data). The closer 
that a classifier can come to hitting the upper-left corner, the better it is. If the 
ROC curve drops significantly below the diagonal line, it usually means that 
the data scientist has gotten a sign switched somewhere and should examine 
his code carefully.

Figures 3-10 and 3-11 also show the area under the curve (AUC) numbers. 
AUC, as the name suggests, is the area under the ROC curve. A perfect classifier 
has an AUC of 1.0, and random guessing has an AUC of 0.5. AUCs for Figures 
3-10 and 3-11 provide another demonstration that performance estimates based 

Figure 3-10: In-sample ROC for rocks-versus-mines classifier

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6

In sample ROC rocks versus mines

False Positive Rate

ROC cure (area = 0.98)

Tr
ue

 P
os

iti
ve

 R
at

e

0.8 1.0



 Chapter 3 ■ predictive Model Building 99

on the error on the training set (in-sample data) overestimate performance. The 
AUC on in-sample data is 0.98. The AUC on out-of-sample data is 0.85.

Some of the methods used for measuring binary classifier performance will 
also work for multiclass classifiers. Misclassification error still makes sense, 
and the confusion matrix also works. There are also multiclass generalizations 
of the ROC curve and AUC.1

Simulating Performance of Deployed Models
The examples from the preceding section demonstrated the need for testing 
performance on data not included in the training set to get a useful estimate of 
expected performance once a predictive model is deployed. The example broke 
the available labeled data into two subsets. One subset, called the training set, 
contained approximately two-thirds of the available data and was used to fit-
ting an ordinary least squares model. The second subset, which contained the 
remaining third of the available data, was called the test set and was used only 
for determining performance (not used during training of the model). This is 
a standard procedure in machine learning.

Test set sizes range from 25 percent to 35 percent of the data, although there 
aren’t any hard-and-fast rules about the sizes. One thing to keep in mind is 
that the performance of the trained model deteriorates as the size of the train-
ing data set shrinks. Taking out too much data from the training set can prove 
detrimental to end performance.

Figure 3-11: Out-of-sample ROC for rocks-versus-mines classifier

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

ROC cure (area = 0.85)

Tr
ue

 P
os

iti
ve

 R
at

e

Out-of-sample ROC rocks versus mines



100 Chapter 3 ■ predictive Model Building

Another approach to holding out data is called n-fold cross-validation. Figure 3-12 
shows schematically how a data set is divided up for training and testing with 
n-fold cross-validation. The set is divided into n disjointed sets of roughly equal 
sizes. In the figure, n is 5. Several training and testing passes are made through 
the data. In the first pass, the first block of data is held out for testing, and the 
remaining n-1 are used for training. In the second pass, the second block is held 
out for testing, and the other n-1 are used for training. This process is contin-
ued until all the data have been held out (five times for the five-fold example 
depicted in Figure 3-12).

The n-fold cross-validation process yields an estimate of the prediction error 
and has several samples of the error so that it can estimate error bounds on the 
error. It can keep more of the data in the training set, which generally gives 
lower generalization errors and better final performance. For example, if the 
10-fold cross-validation is chosen, then only 10 percent of the data is held out for 
each training pass. These features of n-fold cross-validation come at the expense 
of taking more training time. The approach of taking a fixed holdout set has 
the advantage of faster training, because it employs only one pass through the 
training data. Taking a fixed holdout set is probably a better choice when the 
training times are unbearable with n-fold cross-validation and when there’s so 
much training data available that some extra in the holdout set won’t adversely 
affect performance.

Another thing to keep in mind is that the sample should be representative of 
the whole data set. The sampling plan used in the example in the last section 
was not a random sample. It was a sample of every third data point. Spreading 
the samples uniformly through the data usually works fine. However, you do 
need to avoid sampling in a way that introduces a bias in training and test 
sets. For example, if you were given data that was sampled once per day and 
arranged in order of sampling date, then coding seven-fold cross-validation and 
sampling every seventh point should be avoided.

Sampling may need to be carefully controlled if the phenomenon being stud-
ied has unusual statistics. Care may have to be taken to preserve the statistical 
peculiarities in the test sample. Examples of this include predicting rare events 
like fraud or ad clicks. The events being modeled are so infrequent that random 
sampling may over- or under-represent them in the test set and lead to errone-
ous estimates of performance. Stratified sampling (http://en.wikipedia.org/
wiki/Stratified_sampling) divides the data into separate subsets that are 

Block 1  Block 2  Block 3  Block 4  Block 5  

Block 1  Block 2  Block 3  Block 4  Block 5  

Figure 3-12: N-fold cross-validation

http://en.wikipedia.org/wiki/Stratified_sampling
http://en.wikipedia.org/wiki/Stratified_sampling


 Chapter 3 ■ predictive Model Building 101

separately sampled and then recombined. When the labels are rare events, you 
might need to separately sample the fraudulent examples and the legitimate 
examples and then combine them for the test set to match the training set and, 
more importantly, the new data upon which the model will be used.

After a model has been trained and tested, it is good practice to recombine 
the training and test data into a single set and retrain the model on the larger 
data set. The out-of-sample testing procedure will have already given good 
estimates of the expected prediction errors. That was the purpose of holding 
out some of the data. The model will perform better and generalize better if 
trained on more data. The deployed model should be trained on all the data.

This section supplied you with tools to quantify the performance of your 
predictive model. The next section shows you how to replace the intuitive 
graphical comparisons of model and problem complexity that you saw in the 
section “Factors Driving Algorithm Choices and Performance” with numeri-
cal comparison. This replacement makes it possible to mechanize some of the 
selection process.

Achieving Harmony Between Model and Data

This section uses ordinary least squares (OLS) regression to illustrate several 
things. First, it illustrates how OLS can sometimes overfit a problem. Overfitting 
means that there’s a significant discrepancy between errors on the training 
data and errors on the test data, such as you saw in the previous section where 
OLS was used to solve the rocks-versus-mines classification problem. Second, 
it introduces two methods for overcoming the overfit problem with OLS. These 
methods will cultivate your intuition and set the stage for the penalized linear 
regression methods that are covered in more depth in Chapter 4. In addition, 
the methods for overcoming overfitting have a property that is common to most 
modern machine learning algorithms. Modern algorithms generate a number 
of models of varying complexity and then use out-of-sample performance 
to balance model complexity, problem complexity, and data set richness and 
thus determine which model to deploy. This process will be used repeatedly 
throughout the rest of the book.

Ordinary least squares regression serves as a good prototype for machine 
learning algorithms in general. It’s a supervised algorithm that has a training 
procedure and a deployment procedure. It can be overfit in some circumstances. 
It shares these features with other more modern function approximation algo-
rithms. OLS is missing an important feature of modern algorithms, however. 
In its original formulation (the most familiar formulation), there’s no means to 
throttle it back when it overfits. It’s like having a car that only runs at full throttle 
(great when there’s plenty of road, but tough to use in tight circumstances). 
Fortunately, there’s been a lot of work on ordinary least squares regression 



102 Chapter 3 ■ predictive Model Building

since its invention more than 200 years ago by Gauss and Legendre. This sec-
tion introduces two of the methods for adjusting the throttle on ordinary least 
squares regression. One is called forward stepwise regression; the other is called 
ridge regression.

Choosing a Model to Balance Problem Complexity,  
Model Complexity, and Data Set Size
A couple of examples will illustrate how modern machine learning techniques 
can be tuned to best fit a given problem and data set. The first example is a 
modification to ordinary least squares regression called forward stepwise 
regression. Here’s how it works. Recall Equations 3-1 and 3-2, which define the 
problem being solved (see Equations 3-10 and 3-11 here, which repeat those 
equations). The vector Y contains the labels. And the matrix X contains the 
attributes available to predict the labels.

Y

y

y

ym

=
1

2



equation 3-10: Vector of numeric labels

X

x x x

x x x

x x x

n

n

m m mn

=
…
…

…

11 12 1

21 22 2

1 2

� � �

equation 3-11: Matrix of numeric attributes

If this is a regression problem, then Y is a column vector of real numbers, 
and the linear problem is to find a column vector of weights β  and a scalar β 0 
(see Equation 3-12).

β
β
β

β

=
1

2



m

equation 3-12: Vector of coefficients for linear model

The values for β  are selected so that Y is well approximated (see Equation 3-13).



 Chapter 3 ■ predictive Model Building 103

Y X~ β
β
β

β

+
0

0

0



equation 3-13: Approximating labels as linear function of attributes

If the number of columns of X is the same as the number of rows of X and 
the columns of X are independent (not linear multiples of one another), then X 
can be inverted and the ~ can be replaced with =. A coefficient vector β  will 
make the linear fit the labels exactly. That’s too good to be true. The problem is 
one of overfitting (that is, getting terrific performance on the training data that 
cannot be replicated on new data). In real problems, this is not a good outcome. 
The source of overfitting is having too many columns of data in X. The answer 
might be to get rid of some of the columns of X. However, getting rid of some 
involves deciding how many to eliminate and which ones should be eliminated. 
The brute-force method is called best subset selection.

Using Forward Stepwise Regression to Control Overfitting
The following code provides an outline of the algorithm for best subset selection. 
The basic idea is to impose a constraint (say nCol) on the number of columns and 
then take all subsets of the columns of X that have that number of columns, per-
form ordinary least squares regression, identify the nCol subset that has the least 
out-of-sample error, increment nCol, and repeat. The process results in a list of the 
best choice of one-column subsets: two-column subsets up to the full matrix X (the 
all-column subset). It also yields the performance of each of these. Then the next 
step is to determine whether to deploy the one-column version, the two-column 
version, and so on. But that’s relatively easy; just pick the one with the least errors.

Initialize: Out_of_sample_error = NULL
   Break X and Y into test and training sets
for i in range(number of columns in X):
   for each subset of X having i+1 columns:
      fit ordinary least squares model
   Out_of_sample_error.append(least error amoung subsets containing
   i+1 columns)
Pick the subset corresponding to least overall error

The problem with best subset selection is that it requires too much calculation 
for even modest numbers of attributes (columns of X). For example, 10 attributes 
leads to 2 1 00010 = ,  subsets. There are several techniques that avoid this. The 
following code shows the procedure for forward stepwise regression. The idea 
with forward stepwise regression is to start with one-column subsets and then, 



104 Chapter 3 ■ predictive Model Building

given the best single column, to find the best second column to append instead 
of evaluating all possible two-column subsets. Pseudo-code for forward stepwise 
regression is given here.

Initialize: ColumnList = NULL
   Out-of-sample-error = NULL
   Break X and Y into test and training sets
For number of column in X:
   For each trialColumn (column not in ColumnList):
      Build submatrix of X using ColumnList + trialColumn
      Train OLS on submatrix and store RSS Error on test data
   ColumnList.append(trialColumn that minimizes RSS Error)
   Out-of-sample-error.append(minimum RSS Error)

Best subset selection and forward stepwise regression have similar processes. 
They train a series of models (several for one column, several for two columns, 
and so on). They result in a parameterized family of models (all linear regres-
sion parameterized on number of columns). The models vary in complexity, 
and the final model is selected from the family on the basis of performance on 
out-of-sample error.

Listing 3-3 shows Python code implementing forward stepwise regression 
on the wine data set.

Listing 3-3: Forward Stepwise Regression: Wine Quality Data—fwdStepwiseWine.py

import numpy
from sklearn import datasets, linear_model
from math import sqrt
import matplotlib.pyplot as plt

def xattrSelect(x, idxSet):
    #takes X matrix as list of list and returns subset containing
    #columns in idxSet
    xOut = []
    for row in x:
        xOut.append([row[i] for i in idxSet])
    return(xOut)

#read data into iterable
target_url = ("http://archive.ics.uci.edu/ml/machine-learning-
databases/"
"wine-quality/winequality-red.csv")
data = urllib2.urlopen(target_url)
xList = []
labels = []
names = []
firstLine = True
for line in data:

http://archive.ics.uci.edu/ml/machine-learning-databases/
http://archive.ics.uci.edu/ml/machine-learning-databases/


 Chapter 3 ■ predictive Model Building 105

    if firstLine:
        names = line.strip().split(";")
        firstLine = False
    else:
        #split on semi-colon
        row = line.strip().split(";")
        #put labels in separate array
        labels.append(float(row[-1]))
        #remove label from row
        row.pop()
        #convert row to floats
        floatRow = [float(num) for num in row]
        xList.append(floatRow)

#divide attributes and labels into training and test sets
indices = range(len(xList))
xListTest = [xList[i] for i in indices if i%3 == 0 ]
xListTrain = [xList[i] for i in indices if i%3 != 0 ]
labelsTest = [labels[i] for i in indices if i%3 == 0]
labelsTrain = [labels[i] for i in indices if i%3 != 0]

#build list of attributes one-at-a-time - starting with empty
attributeList = []
index = range(len(xList[1]))
indexSet = set(index)
indexSeq = []
oosError = []

for i in index:
    attSet = set(attributeList)
    #attributes not in list already
    attTrySet = indexSet - attSet
    #form into list
    attTry = [ii for ii in attTrySet]
    errorList = []
    attTemp = []
    #try each attribute not in set to see which
    #one gives least oos error
    for iTry in attTry:
        attTemp = [] + attributeList
        attTemp.append(iTry)
        #use attTemp to form training and testing sub matrices
        #as list of lists
        xTrainTemp = xattrSelect(xListTrain, attTemp)
        xTestTemp = xattrSelect(xListTest, attTemp)
        #form into numpy arrays
        xTrain = numpy.array(xTrainTemp)
        yTrain = numpy.array(labelsTrain)
        xTest = numpy.array(xTestTemp)
        yTest = numpy.array(labelsTest)

continues



106 Chapter 3 ■ predictive Model Building

        #use sci-kit learn linear regression
        wineQModel = linear_model.LinearRegression()
        wineQModel.fit(xTrain,yTrain)
        #use trained model to generate prediction and calculate rmsError
        rmsError = numpy.linalg.norm((yTest-wineQModel.predict(xTest)),
            2)/sqrt(len(yTest))
        errorList.append(rmsError)
        attTemp = []

    iBest = numpy.argmin(errorList)
    attributeList.append(attTry[iBest])
    oosError.append(errorList[iBest])

print("Out of sample error versus attribute set size" )
print(oosError)
print("\n" + "Best attribute indices")
print(attributeList)
namesList = [names[i] for i in attributeList]
print("\n" + "Best attribute names")
print(namesList)

#Plot error versus number of attributes
x = range(len(oosError))
plt.plot(x, oosError, 'k')
plt.xlabel('Number of Attributes')
plt.ylabel('Error (RMS)')
plt.show()

#Plot histogram of out of sample errors for best number of attributes
#Identify index corresponding to min value,
#retrain with the corresponding attributes
#Use resulting model to predict against out of sample data.
#Plot errors (aka residuals)
indexBest = oosError.index(min(oosError))
attributesBest = attributeList[1:(indexBest+1)]

#Define column-wise subsets of xListTrain and xListTest
#and convert to numpy
xTrainTemp = xattrSelect(xListTrain, attributesBest)
xTestTemp = xattrSelect(xListTest, attributesBest)
xTrain = numpy.array(xTrainTemp); xTest = numpy.array(xTestTemp)

#train and plot error histogram
wineQModel = linear_model.LinearRegression()
wineQModel.fit(xTrain,yTrain)
errorVector = yTest-wineQModel.predict(xTest)
plt.hist(errorVector)
plt.xlabel("Bin Boundaries")
plt.ylabel("Counts")
plt.show()

continued



 Chapter 3 ■ predictive Model Building 107

#scatter plot of actual versus predicted
plt.scatter(wineQModel.predict(xTest), yTest, s=100, alpha=0.10)
plt.xlabel('Predicted Taste Score')
plt.ylabel('Actual Taste Score')
plt.show()

The preceding listing includes a small function to extract selected columns 
from the X matrix (in the form of a list of lists). Then it breaks the X matrix and 
the vector of labels into training and test sets. After that, the code follows the 
preceding algorithm description. A pass through the algorithm begins with a 
subset of attributes that are included in the solution. For the first pass, this subset 
is empty. For subsequent passes, the subset includes the attributes selected one 
at a time during earlier passes. Each pass selects a single new attribute to add 
to the subset of attributes. The attribute to be added is chosen by testing each 
non-included attribute to see which one results in the best performance when 
added to the subset. In turn, each attribute is added to the attribute subset and 
ordinary least squares is used to fit a linear model with the resulting attribute 
subset. For each attribute tested, the out-of-sample performance is measured. 
The tested attribute which yields the best root sum of squares (RSS) error is 
added to the attribute set, and the associated RSS error is captured.

Figure 3-13 plots the RMSEs as a function of the number of attributes included 
in the regression. The error decreases until nine attributes are included and 
then increases somewhat.

Figure 3-13: Wine quality prediction error using forward stepwise regression

0.73

0.72

0.70

0.71

0.69

0.68

0.67

0.66

0.65
0 2 4 6

Number of Attributes
8 10

Er
ro

r (
RM

S)



108 Chapter 3 ■ predictive Model Building

Listing 3-4 shows numeric output for forward stepwise regression applied 
to wine quality data.

Listing 3-4: Forward Stepwise Regression Output—fwdStepwiseWineOutput.txt

Out of sample error versus attribute set size
[0.7234259255116281, 0.68609931528371915, 0.67343650334202809,
0.66770332138977984, 0.66225585685222743, 0.65900047541546247,
0.65727172061430772, 0.65709058062076986, 0.65699930964461406,
0.65758189400434675, 0.65739098690113373]

Best attribute indices
[10, 1, 9, 4, 6, 8, 5, 3, 2, 7, 0]

Best attribute names
['"alcohol"', '"volatile acidity"', '"sulphates"', '"chlorides"',
 '"total sulfur dioxide"', '"pH"', '"free sulfur dioxide"',
 '"residual sugar"', '"citric acid"', '"density"', '"fixed acidity"']

The first list shows the RSS error. The error decreases until the 10th element in 
the list, and then gets larger again. The associated column indices are shown in the 
next list. The last list gives the names (column headers) of the associated attributes.

Evaluating and Understanding Your Predictive Model
Several other plots are helpful in understanding the performance of a trained 
algorithm and can point the way to making improvements in its performance. 
Figure 3-14 shows a scatter plot of the true labels plotted versus the predicted 
labels for points in the test set. Ideally, all of the points in Figure 3-1 would lie 
on a 45-degree line—the line where the true labels and the predicted labels are 
equal. Because the real scores are integers, the scatter plot shows horizontal rows 
of points. When the true values take on a small number of values, it is useful 
to make the data points partially transparent so that the darkness can indicate 
the accumulation of many points in one area of the graph. Actual taste scores 
of 5 and 6 are reproduced fairly well. The more extreme values are not as well 
predicted by the system. Generally speaking, machine learning algorithms do 
worse at the edges of a data set.

Figure 3-15 shows a histogram of the prediction error for forward stepwise 
prediction predicting wine taste scores. Sometimes the error histogram will 
have two or more discrete peaks. Perhaps it will have a small peak on the far 
right or far left of the graph. In that case, it may be possible to find an explana-
tion for the different peaks in the error and to reduce the prediction error by 
adding a new attribute that explains the membership in one or the other of the 
groups of points.

You want to note several things about this output. First, let’s reiterate the 
process. The process is to train a family of models (in this case, ordinary linear 



 Chapter 3 ■ predictive Model Building 109

Figure 3-14: Actual taste scores versus predictions generated with forward 
stepwise regression

9

8

7

6

5

4

3

2
4.0 4.5 5.0 5.5 6.0

Predicted Taste Score

Ac
tu

al
 T

as
te

 S
co

re

6.5 7.0 7.5

Figure 3-15: Histogram of wine taste prediction error with forward stepwise 
regression

160

140

120

100

80

60

40

20

0
−3 −2 −1 0

Bin Boundaries

Co
un

ts

1 2 3



110 Chapter 3 ■ predictive Model Building

regression trained on column-wise subsets of X). The series of models is param-
eterized (in this case, by the number of attributes that are used in the linear 
model). The model to deploy is chosen to minimize the out-of-sample error. The 
number of attributes to be incorporated in the solution can be called a complexity 
parameter. Models with larger complexity parameters have more free parameters 
and are more likely to overfit the data than less-complex models.

Also note that the attributes have become ordered by their importance in 
predicting quality. In the list of column numbers and the associated list of 
attribute names, the first in the list is the first attribute chosen, the second was 
next, and so on. The attributes used come out in a nice ordered list. This is an 
important and desirable feature of a machine learning technique. Early stages 
of a machine learning task mostly involve hunting for (or constructing) the best 
set of attributes for making predictions. Having techniques to rank attributes 
in order of importance helps in that process. The other algorithms developed 
in this book will also have this property.

The last observation regards picking a model from the family that machine 
learning techniques generate. The more complicated the model, the less well it 
will generalize. It is better to err on the side of a less-complicated model. The 
earlier example indicates that there’s very little degradation in performance 
between the 9th (best) model and the 10th model (a change in the 4th significant 
digit). Best practice would be to remove those attributes even if they were better 
in the 4th significant digit in order to be conservative.

Control Overfitting by Penalizing Regression  
Coefficients—Ridge Regression
This section describes another method for modifying ordinary least squares 
regression to control model complexity and to avoid overfitting. This method 
serves as a first introduction to penalized linear regression. You’ll see more 
coverage of this in Chapter 4.

Ordinary least squares regression seeks to find scalar β 0 and vector β  that 
satisfy (see Equation 3-14).

β β β ββ β0 0

2

1
0

1* *, ,= − +( )( )







=
∑argmin

m
y xi i

i

m

equation 3-14: OLS minimization problem

The expression argmin means the “values of β0 and β  that minimize the 
expression.” The resulting coefficients β β0

* *, are the ordinary least squares solu-
tion. Best subset regression and forward stepwise regression throttle back ordi-
nary regression by limiting the number of attributes used. That’s equivalent to 



 Chapter 3 ■ predictive Model Building 111

imposing a constraint that some of the entries in the vector β  be equal to zero. 
Another approach is called coefficient penalized regression. Coefficient penalized 
regression accomplishes the same thing by making all the coefficients smaller 
instead of making some of them zero. One version of coefficient penalized linear 
regression is called ridge regression. Equation 3-15 shows the problem formula-
tion for ridge regression.

β β β β αβ ββ β0 0

2

1
0

1* *
,, = − +( )( ) +








=
∑argmin

m
y xi i

i

m
T

equation 3-15: Ridge regression minimization problem

The difference between Equation 3-15 and ordinary least squares (Equation 3-14) 
is the addition of the αβ βT term. The β βT term is the square of the Euclidean norm 
ofβ (the vector of coefficients). The variable β is a complexity parameter for this 
formulation of the problem. If α = 0, the problem becomes ordinary least squares 
regression. When α becomes large,β (the vector of coefficients) approaches zero, 
and only the constant term β0 is available to predict the labels yi . Ridge regres-
sion is available in scikit-learn. Listing 3-5 shows the code for solving the wine 
taste regression problem using ridge regression.

Listing 3-5: Predicting Wine Taste with Ridge Regression—ridgeWine.py

__author__ = 'mike-bowles'

import urllib2
import numpy
from sklearn import datasets, linear_model
from math import sqrt
import matplotlib.pyplot as plt

#read data into iterable
target_url = ("http://archive.ics.uci.edu/ml/machine-learning-
databases/"
"wine-quality/winequality-red.csv")
data = urllib2.urlopen(target_url)

xList = []
labels = []
names = []
firstLine = True
for line in data:
    if firstLine:
        names = line.strip().split(";")
        firstLine = False
    else:
        #split on semi-colon
        row = line.strip().split(";")

continues

http://archive.ics.uci.edu/ml/machine-learning-databases/
http://archive.ics.uci.edu/ml/machine-learning-databases/


112 Chapter 3 ■ predictive Model Building

        #put labels in separate array
        labels.append(float(row[-1]))
        #remove label from row
        row.pop()
        #convert row to floats
        floatRow = [float(num) for num in row]
        xList.append(floatRow)

#divide attributes and labels into training and test sets
indices = range(len(xList))
xListTest = [xList[i] for i in indices if i%3 == 0 ]
xListTrain = [xList[i] for i in indices if i%3 != 0 ]
labelsTest = [labels[i] for i in indices if i%3 == 0]
labelsTrain = [labels[i] for i in indices if i%3 != 0]

xTrain = numpy.array(xListTrain); yTrain = numpy.array(labelsTrain)
xTest = numpy.array(xListTest); yTest = numpy.array(labelsTest)

alphaList = [0.1**i for i in [0,1, 2, 3, 4, 5, 6]]

rmsError = []
for alph in alphaList:
    wineRidgeModel = linear_model.Ridge(alpha=alph)
    wineRidgeModel.fit(xTrain, yTrain)
    rmsError.append(numpy.linalg.norm((yTest-wineRidgeModel.predict(
       xTest)), 2)/sqrt(len(yTest)))

print("RMS Error             alpha")
for i in range(len(rmsError)):
    print(rmsError[i], alphaList[i])

#plot curve of out-of-sample error versus alpha
x = range(len(rmsError))
plt.plot(x, rmsError, 'k')
plt.xlabel('-log(alpha)')
plt.ylabel('Error (RMS)')
plt.show()

#Plot histogram of out of sample errors for best alpha value and
#scatter plot of actual versus predicted

#Identify index corresponding to min value, retrain with
#the corresponding value of alpha

#Use resulting model to predict against out of sample data.
#Plot errors (aka residuals)
indexBest = rmsError.index(min(rmsError))
alph = alphaList[indexBest]
wineRidgeModel = linear_model.Ridge(alpha=alph)
wineRidgeModel.fit(xTrain, yTrain)
errorVector = yTest-wineRidgeModel.predict(xTest)

continued



 Chapter 3 ■ predictive Model Building 113

plt.hist(errorVector)
plt.xlabel("Bin Boundaries")
plt.ylabel("Counts")
plt.show()

plt.scatter(wineRidgeModel.predict(xTest), yTest, s=100, alpha=0.10)
plt.xlabel('Predicted Taste Score')
plt.ylabel('Actual Taste Score')
plt.show()

Recall that the forward stepwise regression the algorithm produced a sequence 
of different models—the first with one attribute, the next with two attributes, 
and so on until the final model included all the attributes. The code for ridge 
regression also has a sequence of models. Instead of different numbers of attri-
butes, the sequence of ridge regression models have different values of α —the 
parameter that determines the severity of the penalty on the β’s . The construc-
tion of sequence of α ’s  decreases them by powers of 10. Generally speaking, 
you’ll want to make them decrease exponentially, not by a fixed increment. The 
range needs to be fairly wide and may take some experimentation to establish.

Figure 3-16 plots the RMSE as a function of the ridge complexity parameter 
α . The parameter is arranged from largest value on the left to smallest value 
on the right. It is conventional to show the least complex model on the left side 
of the plot and the most complex on the right side. The plot shows much the 
same character as with forward stepwise regression. The errors are roughly the 
same, but favor forward stepwise regression slightly.

Figure 3-16: Wine quality prediction error using ridge regression

0.6600

0.6595

0.6590

0.6585

0.6580

0.6575

0.6570
0 1 2 3

-log(alpha)

Er
ro

r (
RM

S)

4 5 6



114 Chapter 3 ■ predictive Model Building

Listing 3-6 shows the output from the ridge regression. The numbers show 
that ridge regression has roughly the same character as forward stepwise regres-
sion. The numbers slightly favor forward stepwise regression.

Listing 3-6: Ridge Regression Output—ridgeWineOutput.txt

RMS Error             alpha
(0.65957881763424564, 1.0)
(0.65786109188085928, 0.1)
(0.65761721446402455, 0.010000000000000002)
(0.65752164826417536, 0.0010000000000000002)
(0.65741906801092931, 0.00010000000000000002)
(0.65739416288512531, 1.0000000000000003e-05)
(0.65739130871558593, 1.0000000000000004e-06)

Figure 3-17 shows the scatter plot of actual taste score versus predicted taste 
score for the ridge regression predictor trained on wine taste data. Figure 3-18 
shows the histogram of prediction error.

You can apply the same general method to classification problems. The section 
“Measuring the Performance of Predictive Models” discussed several methods 
for quantifying classifier performance. The methods outlined included using 
misclassification error, associating economic costs to the various prediction out-
comes, and using the area under the ROC curve (AUC) to quantify performance. 

Figure 3-17: Actual taste scores versus predictions generated with ridge regression

9

8

7

6

5

4

3

2
4.0 4.5 5.0 5.5 6.0

Predicted Taste Score

Ac
tu

al
 T

as
te

 S
co

re

6.5 7.0 7.5



 Chapter 3 ■ predictive Model Building 115

That section built a classifier using ordinary least squares regression. Listing 3-7 
shows Python code that follows that same general plan. Instead of OLS, it uses 
ridge regression as a regression method (with a complexity tuning parameter) 
for building the rocks-versus-mines classifier and uses AUC as the performance 
measure for the classifier. The program in Listing 3-7 is similar to the wine taste 
prediction with ridge regression. The big difference is that the program uses the 
predictions on the test data and the test labels as input to the roc_curve program 
from the scikit-learn package. That makes it easy to calculate the AUC for each 
pass through the training. These are accumulated, and the printed values are 
shown in Listing 3-8.

Listing 3-7: Rocks Versus Mines Using Ridge Regression—classifierRidgeRocksVMines.py

__author__ = 'mike-bowles'
import urllib2
import numpy
from sklearn import datasets, linear_model
from sklearn.metrics import roc_curve, auc
import pylab as plt

#read data from uci data repository
target_url = ("https://archive.ics.uci.edu/ml/machine-earning-"
"databases/undocumented/connectionist-bench/sonar/sonar.all-data")
data = urllib2.urlopen(target_url)

Figure 3-18: Histogram of wine taste prediction error with ridge regression

180

160

140

120

100

80

60

40

20

0
−3 −2 −1 0 1 2 3

Bin Boundaries

Co
un

ts

continues

https://archive.ics.uci.edu/ml/machine-earning-


116 Chapter 3 ■ predictive Model Building

#arrange data into list for labels and list of lists for attributes
xList = []
labels = []
for line in data:
    #split on comma
    row = line.strip().split(",")
    #assign label 1.0 for "M" and 0.0 for "R"
    if(row[-1] == 'M'):
        labels.append(1.0)
    else:
        labels.append(0.0)
        #remove lable from row
    row.pop()
    #convert row to floats
    floatRow = [float(num) for num in row]
    xList.append(floatRow)

#divide attribute matrix and label vector into training(2/3 of data)
#and test sets (1/3 of data)
indices = range(len(xList))
xListTest = [xList[i] for i in indices if i%3 == 0 ]
xListTrain = [xList[i] for i in indices if i%3 != 0 ]
labelsTest = [labels[i] for i in indices if i%3 == 0]
labelsTrain = [labels[i] for i in indices if i%3 != 0]

#form list of list input into numpy arrays to match input class for
#scikit-learn linear model
xTrain = numpy.array(xListTrain); yTrain = numpy.array(labelsTrain)
xTest = numpy.array(xListTest); yTest = numpy.array(labelsTest)

alphaList = [0.1**i for i in [-3, -2, -1, 0,1, 2, 3, 4, 5]]

aucList = []
for alph in alphaList:
    rocksVMinesRidgeModel = linear_model.Ridge(alpha=alph)
    rocksVMinesRidgeModel.fit(xTrain, yTrain)
    fpr, tpr, thresholds = roc_curve(yTest,rocksVMinesRidgeModel.
      predict(xTest))
    roc_auc = auc(fpr, tpr)
    aucList.append(roc_auc)

print("AUC             alpha")
for i in range(len(aucList)):
    print(aucList[i], alphaList[i])

#plot auc values versus alpha values
x = [-3, -2, -1, 0,1, 2, 3, 4, 5]
plt.plot(x, aucList)
plt.xlabel('-log(alpha)')

continued



 Chapter 3 ■ predictive Model Building 117

plt.ylabel('AUC')
plt.show()

#visualize the performance of the best classifier
indexBest = aucList.index(max(aucList))
alph = alphaList[indexBest]
rocksVMinesRidgeModel = linear_model.Ridge(alpha=alph)
rocksVMinesRidgeModel.fit(xTrain, yTrain)

#scatter plot of actual vs predicted
plt.scatter(rocksVMinesRidgeModel.predict(xTest),
   yTest, s=100, alpha=0.25)
plt.xlabel("Predicted Value")
plt.ylabel("Actual Value")
plt.show()

Listing 3-8 shows the AUC and associated alpha (multiplier on the coefficient 
penalty).

Listing 3-8: Output from Classification Model for Rocks Versus Mines Using Ridge 
Regression—classifierRidgeRocksVMinesOutput.txt

AUC             alpha
(0.84111384111384113, 999.9999999999999)
(0.86404586404586403, 99.99999999999999)
(0.9074529074529073, 10.0)
(0.91809991809991809, 1.0)
(0.88288288288288286, 0.1)
(0.8615888615888615, 0.010000000000000002)
(0.85176085176085159, 0.0010000000000000002)
(0.85094185094185093, 0.00010000000000000002)
(0.84930384930384917, 1.0000000000000003e-05)

A value of AUC close to 1 means great performance. A value near 0.5 is not 
good. So the goal with AUC is to maximize it instead of minimizing it, as was 
done with MSE in the earlier examples. AUC shows a fairly sharp peak at α = 1 0. . 
The numbers and the plot show a fairly significant drop off in performance 
relative to α = 1 0. . Recall that as alpha gets smaller, the solution approaches the 
solution to the unconstrained linear regression problem. The drop-off in per-
formance for values of alpha smaller than 1.0 indicates that the unconstrained 
solution won’t perform as well as ridge regression does. In the earlier section 
“Measuring Performance of Predictive Models,” you saw the results for uncon-
strained ordinary least squares. The AUC on in-sample data was 0.98, and on 
out-of-sample data it was 0.85—very close to the AUC using ridge regression 
with a relatively small alpha (1E-5). Ridge regression results in a significant 
improvement in performance.



118 Chapter 3 ■ predictive Model Building

The issue here is that the attribute space for the rocks-versus-mines problem 
is 60 attributes wide while the full data set contains 208 rows of data. After the 
removal of 70 examples to be used as holdout data, 138 rows of data are available 
for training. That’s more than twice the number of attributes, but the unconstrained 
(ordinary least squares) solution still overfits the data. This situation might be a 
good candidate for trying 10-fold cross-validation. That would result in only 20 
examples (10 percent of the data set) being held out on each of the folds and might 
show some consequent improvement in performance. That approach comes up 
in Chapter 5, “Building Predictive Models Using Penalized Linear Methods.”

Figure 3-19 plots the AUC as a function of the alpha parameter. That gives a 
visual demonstration of the value of reducing the complexity of the ordinary 
least squares solution by imposing a constraint on the Euclidean length of the 
coefficient vector.

Figure 3-20 shows the scatter plot of actual classification versus prediction 
for this classifier. This plot has a similar character to the scatter plot for wine 
prediction. Because there are a discrete number of actual outcomes, the scatter 
plot is composed of two horizontal rows of points.

This section introduced and explored two extensions to ordinary least squares 
regression. These served as illustrations of the process of training and balanc-
ing a modern predictive model. In addition, these extensions help introduce the 
more general penalized regression methods that will be explained in Chapter 4 
and used to solve a variety of problem in Chapter 5.

0.92

0.91

0.90

0.89

0.88

AU
C

0.87

0.86

0.85

0.84
−3 −2 −1 0 1

-log(alpha)
2 3 4 5

Figure 3-19: AUC for the rocks-versus-mines classifier using ridge regression



 Chapter 3 ■ predictive Model Building 119

Summary

This chapter covered several topics that serve as a foundation for what comes later. 
First, the chapter provided visual demonstrations of problem complexity and model 
complexity and discussed how those factors and data set sizes conspire to deter-
mine classifier performance on a given problem. The discussion then turned to a 
number of different metrics for prediction performance associated with the different 
problem types (regression, classification, and multiclass classification) that arise as 
part of the function approximation problem. The chapter described two methods 
(holdout and n-fold cross-validation) for estimating performance on new data. The 
chapter introduced the conceptual framework that a machine learning technique 
produces a parameterized family of models and that one of these is selected for 
deployment on the basis of out-of-sample performance. Several examples based on 
modifications of ordinary least squares regression (forward stepwise regression 
and ridge regression) then instantiated that conceptual framework.

references

 1. David J. Hand and Robert J. Till (2001). A Simple Generalization of the 
Area Under the ROC Curve for Multiple Class Classification Problems. 
Machine Learning, 45(2), 171–186.

Figure 3-20: Plot of actual versus prediction for the rocks-versus-mines classifier using ridge 
regression

1.2

1.0

0.8

0.6

0.4

0.2

0.0

−0.2
−0.2 0.0 0.2 0.4 0.6

Predicted Value

Ac
tu

al
 V

al
ue

0.8 1.0 1.2 1.4





121

C h a p t e r 

4

penalized Linear regression

As you saw in Chapter 3, “Predictive Model Building: Balancing Performance, 
Complexity, and Big Data,” getting linear regression to work in practice requires 
some manipulation of the ordinary least squares algorithm. Ordinary least 
squares regression cannot temper its use of all the data available in an attempt to 
minimize the error on the training data. Chapter 3 illustrated that this situation 
can lead to models that perform much worse on new data than on the training 
data. Chapter 3 showed two extensions of ordinary least squares regression. Both 
of these involved judiciously reducing the amount of data available to ordinary 
least squares and using out-of-sample error measurement to determine how 
much data resulted in the best performance.

Stepwise regression began by letting ordinary least squares regression use 
exactly one of the attribute columns for making predictions and by picking the 
best one. It proceeded by adding new attributes to the existing model.

Ridge regression introduced a different type of constraint. Ridge regression 
imposed a penalty on the magnitude of the coefficients to constrict the solu-
tion. Both ridge regression and forward stepwise regression gave better than 
ordinary least squares (OLS) on example problems.

This chapter develops an extended family of methods for taming the overfit-
ting inherent in OLS. The methods discussed in this chapter are called penalized 
linear regression. Penalized linear regression covers several algorithms that operate 
similarly to the methods introduced in Chapter 3. Ridge regression is a specific 
example of a penalized linear regression algorithm. Ridge regression regulates 



122 Chapter 4 ■ penalized Linear regression

overfitting by penalizing the sum of the regression coefficients squared. Other 
penalized regression algorithms use different forms of penalty. This chapter 
explains how the penalty method determines the nature of the solution and 
the type of information that is available about the solution.

Why Penalized Linear Regression Methods Are So Useful

Several properties make penalized linear regression methods outstandingly 
useful, including the following:

 ■ Extremely fast model training

 ■ Variable importance information

 ■ Extremely fast evaluation when deployed

 ■ Reliable performance on a wide variety of problems—particularly on 
attribute matrices that are not very tall compared to their width or that 
are sparse. Sparse solutions (that is, a more parsimonious model)

 ■ May require linear model

Here’s what these properties mean to you as a designer of machine learning 
models.

Extremely Fast Coefficient Estimation
Training time matters for several reasons. One reason is that the process of 
building a model is iterative. You’ll find that you use training as part of your 
feature selection and feature engineering process. You’ll pick some features that 
seem reasonable, train a model, evaluate it on out-of-sample data, want more 
performance, make some changes, and try again. If the basic training gets done 
quickly, you don’t waste so much time getting coffee while waiting for answers 
(and reap the health benefit of lowering your caffeine intake). This makes the 
development process faster. Another reason why training times matter is that 
you might need to retrain your models to keep them working as conditions 
change. If you’re classifying tweets, you might need to stay on top of changes 
in vocabulary. If you’re training to trade in financial markets, the conditions are 
always changing. The time taken for training, even without feature reengineer-
ing, will dictate how rapidly you can respond to changing conditions.

Variable Importance Information
Both classes of algorithms covered in this book develop variable importance 
information. Variable importance information consists of a ranking for each of 
the attributes you’ve chosen to base your model on. The ranking tells you how 



 Chapter 4 ■ penalized Linear regression 123

much the model values each attribute compared to others. A highly ranked 
attribute contributes more to the model’s prediction than lesser-ranked attributes. 
This is crucial information for a variety of reasons. First, it helps you weed out 
variables during the feature engineering process. The good features will rise 
to the top of the list, and the not-so-good ones will sink to the bottom. Besides 
helping you with feature engineering, knowing what variables are driving the 
predictions helps you understand and explain your models to others (your 
boss, your customer, subject matter experts in the company, and so on). To the 
extent that the important attributes are what people expected it gives them 
confidence that the models make sense. If some of the rankings are surprises, 
you may gain new insights into your problem. Discussion about the relative 
importance can give your development group new ideas about where to look 
for performance improvements.

The two properties of rapid training and variable importance make penalized 
regression a good algorithm to try first on a new problem. These algorithms 
help you quickly get your arms around the problems and decide which features 
are going to be useful.

Extremely Fast Evaluation When Deployed
In some problem settings, fast evaluations are a critical performance parameter. 
In some electronic markets (for example, Internet ads and automated trading), 
whoever gets the answer first gets the business. In many other applications (for 
instance, spam filtering), time might be critical, although not a yes/no criterion. 
It is hard to beat a linear model for evaluation speed. The number of operations 
required for the prediction calculation is one multiply and one add for each attribute.

Reliable Performance
Reliable performance means that penalized linear methods will generate reason-
able answers to problems of all different shapes and sizes. On some problems, 
they will equal the best performance available. In some cases, they will out-
perform all contenders with a little coaxing. This chapter will talk about the 
sorts of coaxing available. Chapter 6, “Ensemble Methods,” revisits this topic 
and explains some ways to use penalized linear regression in conjunction with 
ensemble methods to improve performance.

Sparse Solutions
A sparse solution means that many of the coefficients in the model are zero. That 
means that not as many multiplications and sums are required. More important, 
a sparse model (one with few nonzero coefficients) is easier to interpret. It’s easier 
to see what attributes are driving the predictions that the model is generating.



124 Chapter 4 ■ penalized Linear regression

Problem May Require Linear Model
The last reason for using penalized linear regression is that a linear model might 
be a requirement of the solution. Calculations of insurance payouts represent 
one example where linear models are required, where a payout formula is often 
part of a contract that specifies variables and their coefficients. An ensemble 
model that involves a thousand trees, each with a thousand parameters, would 
be nearly impossible to write out in English. Drug testing is another arena where 
regulatory apparatus requires a linear form for statistical inference.

When to Use Ensemble Methods
The prime reason for not using penalized linear regression is that you might get 
better performance with another technique, such as an ensemble method. As out-
lined in Chapter 3, ensembles perform best in complicated problems (for example, 
highly irregular decision surfaces) with plenty of data to resolve the problem’s 
complexities. In addition, ensemble methods for measuring variable importance 
can yield more information about the relationship between attributes and predic-
tions. For example, ensembles will give second-order (and higher) information 
about what pairs of variables are more important together than the sum of their 
individual importance. That information can actually help squeeze more per-
formance out of penalized regression. You’ll read more about that in Chapter 6.

Penalized Linear Regression: Regulating Linear 
Regression for Optimum Performance

As discussed in Chapter 3, this book addresses a class of problems called function 
approximation. The starting point for training a model for a function approxima-
tion problem is a data set containing a number of examples or instances. Each 
instance has an outcome (also called a target, label, endpoint, and so forth) and a 
number of attributes that are used to predict the outcome. Chapter 3 gave a simple 
illustrative example. It is repeated here in slightly modified form as Table 4-1.

table 4-1: Example Training Set

OutCOmes Feature 1 Feature 2 Feature 3

$ Spent 2013 Gender $ Spent 2012 Age

100 M 0.0 25

225 F 250 32

75 F 12 17



 Chapter 4 ■ penalized Linear regression 125

In this table, the outcomes are real-valued—making this a regression prob-
lem. The gender attribute (Feature 1) is two-valued, making it a categorical (or 
factor) attribute. The other two attributes are numeric. The goal with a function 
approximation problem is to (1) build a function relating the attributes to the 
outcome and (2) to minimize the error in some sense. Chapter 3 discussed some 
of the alternative error characterizations that might be employed to quantify 
overall error.

Data sets of the type shown in Table 4-1 are often represented by a column 
vector containing the outcomes (the leftmost column) and a matrix contain-
ing the attributes (the three columns of features). Asserting that the feature 
columns fit into a matrix abuses mathematical language a little. Strictly speak-
ing, a matrix contains elements that are all defined over the same field. The 
contents of a matrix can all be real numbers, integers, complex numbers, binary 
numbers, and so on. They cannot, however, be a mixture of real numbers and 
categorical variables.

Here’s an important point. Linear methods work with numeric data only. 
The data in Table 4-1 has non-numeric data, and therefore linear methods will 
not work for the data as shown. Fortunately, it is relatively simple to convert 
(or code) the data in Table 4-1 as numeric data. You’ll learn the technique 
for coding categorical attributes as numeric attributes in the section titled 
“Incorporating Non-Numeric Attributes into Linear Methods.” Given that 
the attributes are all real numbers (either in the initial problem formulation 
or by coding categorical attributes as real numbers), the data for a linear 
regression problem can be represented by two objects: Y and X, where Y  
is a column vector of outcomes, and where X is a matrix of real-valued 
attributes.

Y

y

y

yn

=



















1

2



equation 4-1: Vector of outcomes

In the example given in Table 4-1, Y is the column labeled Outcomes.

X

x x x

x x x

x x x

m

m

n n nm

=

…
…

…



















11 12 1

21 22 2

1 2

� � �

equation 4-2: Matrix of attributes



126 Chapter 4 ■ penalized Linear regression

In the example given in Table 4-1, X is the set of columns that remains after 
excluding the Outcomes column.

The ith element from Y ( )yi is from the same instance as the ith row of X. 
The ith row of X will be denoted by xi with a single subscript and given by 
x x x xi i i im= …( , , , )1 2 . The ordinary least squares regression problem is to mini-
mize the error between the yi and a linear function xi, the ith row of attributes 
from X (that is, to find a vector of real numbers β).

β

β
β

β

=



















1

2


m

equation 4-3: β - Vector of model coefficients

and a scalar β0 so so that each element yi from Y is approximated by

Prediction of y xi i= +*β β0

= + + …+ +x x xi i im m1 1 2 2 0* * *β β β β
equation 4-4: Linear relation between X and prediction of Y

You might be able to find the values for the β’s by using your knowledge of 
the subject matter. In Table 4-1, for example, you might estimate that people 
will spend 10% more in 2013 than in 2012, that their purchases will increase by 
$10 per year of age, and that even newborns will purchase $50 of books. That 
gives you an equation to predict book spending that looks like Equation 4-5.

Predicted Spent$ $ . $ $2013 50 1 1 2012 10= + ( ) +* Spent * Age

equation 4-5: Predicting book spending

Equation 4-5 does not use the Gender variable because it’s a categorical vari-
able. (That gets covered in “Incorporating Non-Numeric Attributes into Linear 
Methods” and is ignored for now.) The predictions generated by Equation 4-5 
do not exactly match the Outcomes (actual number) in Table 4-1.

Training Linear Models: Minimizing Errors and More
Finding the values for the β’s by hand is not usually the best way, although it’s 
always a good sanity check if you can manage it. In many problems, the size of 



 Chapter 4 ■ penalized Linear regression 127

the problem or the interrelationships between the variables makes guessing the β’s 
impossible. So, the approach taken is to find the multipliers on the attributes (the 
β’s) by solving a minimization problem. The minimization problem is to find the 
values for the β’s that makes the average squared error the smallest (but not zero).

Making the two sides of Equation 4-4 exactly equal usually means the model 
is overfit. The right side of Equation 4-4 is the predictive model you’re going 
to train. Basically, it says that to make a prediction, you take each attribute, 
multiply by its corresponding beta, sum these products, and add a constant. 
Training the model means finding the numbers that make up the vector β and 
the constant, β0. Error is defined as the difference between the actual value of
yi and the prediction o of yi given by Equation 4-4. The average squared error 
is used to reduce the individual errors to a single number to be minimized. 
The square of the error is chosen because it’s positive regardless of whether the 
error is positive or negative and because the square function facilitates some 
of the math. The formulation of the ordinary least squares regression problem 
is then to find β β0

* *,  (the superscript * indicates that these are the best values 
for β’s) that satisfy

β β β ββ β0 0

2

1
0

1* * *, ( ),= − +( )( )
=
∑argmin

n
y xi i

i

n

equation 4-6: Minimization problem for OLS

The notation argmin means “the arguments that minimize the following 
expression.” The sum is over rows, where a row includes the attribute values 
and the corresponding labels. The expression inside the ()2  is the error between 
yi and the linear function that’s being used to approximate it. For the predicted 
$ spent on books in 2013, the expression inside the sum would be the values in 
the Outcome column minus the prediction calculated from Equation 4-4.

In English, Equation 4-6 says the vector beta star and the constant beta zero 
star are the values that minimize the expected prediction squared error—that is, 
the average squared error between yi and the row of attributes predicted yi over 
all data rows (i = 1, . . . , n). The minimization in Equation 4-5 yields the ordinary 
least squares values for this regression model. This machine learning model 
is a list of real numbers—the ones included in the vector β*and the number β0

*.

Adding a Coefficient Penalty to the OLS Formulation

The mathematical statement of the penalized linear regression problem is very 
similar to Equation 4-5. Ridge regression, which you saw in Chapter 3, gives an 
example of penalized linear regression. Ridge regression adds a penalty term 
to the basic ordinary least squares problem stated in Equation 4-5. The penalty 
term for ridge regression is shown in Equation 4-7.



128 Chapter 4 ■ penalized Linear regression

λβ β λ β β βT
n

2 2
1
2

2
2 2

=
+ +…+( )

equation 4-7: Penalty applied to coefficients (betas)

The OLS problem in Equation 4-6 was to choose β′s to minimize the sum of 
squared errors. The penalized regression problem adds the coefficient penalty 
in Equation 4-7 to the right-hand side of Equation 4-6. The minimization is then 
forced to balance the conflicting goals of minimizing the squared prediction 
error and the squared values of the coefficients. It is easy to minimize the sum 
of the squared coefficients by themselves. Just make the coefficient all zero. But 
that results in large prediction error. Similarly, the OLS solution minimizes the 
prediction errors by themselves but may result in a large coefficient penalty, 
depending on how large λ is.

Why does this make sense? To help develop some intuition for why this makes 
sense, think about the subset selection process that you saw in Chapter 3. Using 
subset selection eliminated overfitting by discarding some of the attributes, or 
equivalently by setting their coefficients to zero. Penalized regression does the 
same thing, but instead of reducing the coefficients of a few attributes all the 
way to zero like subset selection, penalized regression takes a little coefficient 
away from all of the attributes. Some limiting cases will also help visualize the 
approach.

The parameter λ can range anywhere between 0 and plus infinity. If λ=0, 
the penalty term goes away, and the problem reverts to being an ordinary least 
squares problem. If λ → ∞, the penalty on the β′s becomes so severe that it forces 
them all to zero. (Notice, however, that β0 is not included in the penalty so the 
prediction becomes a constant independent of the x’s.)

As you saw in the examples in Chapter 3, the ridge penalty can have a simi-
lar effect to leaving out some of the attributes. The process is to generate a 
whole family of solutions to the penalized version of the minimization problem 
shown in Equation 4-6. That meant solving the penalized minimization problem 
for a variety of different values of λ. Each of these solutions is then tested on 
out-of-sample data, and the solution that minimizes the out-of-sample error is 
used for making real-world predictions. Chapter 3 illustrated this sequence of 
steps using ridge regression.

Other Useful Coefficient Penalties—Manhattan and ElasticNet

The ridge penalty is not the only useful penalty that can be used for penalized 
regression. Any metric of vector length will work. You can gauge the length 
of a vector in a number of ways. Using different measures of length changes 
important properties of the solution. Ridge regression employed the metric of 



 Chapter 4 ■ penalized Linear regression 129

Euclidean geometry (that is, the sum of the squared β’s). Another useful algo-
rithm called Lasso regression employs the metric of taxicab geometry called the 
Manhattan length or L1 norm (that is, the sum of the absolute β’s). Lasso regression 
has some useful properties.

The difference between ridge regression and Lasso regression is the measure of 
length that each one uses for penalizing β, the vector of linear coefficients. Ridge 
uses squared Euclidean distance—the sum of the squares of the components 
of β. Lasso uses the sum of the absolute values of the components of β—called 
taxicab or Manhattan distance. The ridge penalty is the squared length of a 
straight line between zero and the vector space point β (distance as the crow 
flies). The Lasso penalty is like the distance that a taxicab would have to drive 
in a city where the streets constrain it to move north-south or east-west only. 
The lasso penalty is given by the following:

λ β λ β β β1 1 2= + +…+( )n

equation 4-8: Equation for Manhattan distance penalty

The double vertical bars are called norm bars. They are used to denote 
magnitude for things like vectors and operators. The subscript 1 on the 
right side of the norm bars denotes l1  norm, which means the sum of abso-
lute values. You’ll also see this written with a capital L1 . Norm bars with 
a subscript 2 mean square root of the sum of squared values—Euclidean 
distance. These different coefficient penalty functions cause some important 
and useful changes in the solutions. One of the main differences is that the 
Lasso coefficient vector β* is sparse, meaning that many of the coefficients 
are zero for large to moderate values of λ. By contrast, the ridge regression
β* is completely populated.

Why Lasso Penalty Leads to Sparse Coefficient Vectors

Figures 4-1 and 4-2 illustrate how this sparsity property stems directly from the 
form of the coefficient penalty function. These figures are for a problem that 
has two attributes: x1 and x2.

Both Figure 4-1 and 4-2 have two sets of curves. One set of curves is concentric 
ellipses that represent the ordinary least squares errors in Equation 4-6. The 
ellipses represent curves of constant sum squared error. You can think of them 
as being a topographic map of an elliptical depression in the ground. The error 
gets smaller for the more central ellipsis, just like the altitude of a depression in 
the ground gets smaller toward the bottom of the depression. The minimum 
point for the depression is marked with an x. The point x marks the ordinary 
least squares solution—where the solution lies if there is no coefficient penalty.



130 Chapter 4 ■ penalized Linear regression

The other sets of curves in Figures 4-1 and 4-2 represent the coefficient penal-
ties from Equations 4-7 and 4-9—the ridge and Lasso penalties, respectively. In 
Figure 4-1, the curves representing the coefficient penalty are circles centered at 
the origin. The set of points where the sum of the squares ofβ1 and β2 is constant 
defines a circle. The shape of the curves of constant penalty is determined by 
the nature of the distance measure being used—circles (called hypersphere or 
l2 ball in higher dimensions) for sum square penalty function and diamonds (or 
l2 ball) for sum of absolute values. Smaller circles (or diamonds) correspond to 

Figure 4-2: Optimum solutions with sum absolute value coefficient penalty.

x

Constant penalty 

Constant prediction error

Unpenalized minimum

β2

β1

Figure 4-1: Optimum solutions with sum squared coefficient penalty.

x

Constant penalty 

Constant prediction error

Unpenalized minimum

β2

β1



 Chapter 4 ■ penalized Linear regression 131

smaller value for the distance function. The shape is determined by the nature 
of the penalty function, but the value associated with each curve is determined 
by the non-negative parameter λ. Suppose that the two curves in Figures 4-1 
correspond to sum of squares of β1 and β2 equal to 1.0 and 2.0 for the inner 
and outer circles. Then if λ = 1 , the penalty associated with the two circles is 1 
and 2. If λ = 10 , the associated penalties are 10 and 20. The same is true of the 
diamonds in Figure 4-2. Increasing λ increases the penalty associated with the 
concentric diamonds in Figure 4-2.

The elliptical rings corresponding to the sum squares of the prediction error 
also get larger as the rings get farther from the unconstrained minimum, marked 
by an x in the figure. Minimizing the sum of these two functions, as indicated 
in Equation 4-6, requires a compromise somewhere in between the minimum 
for the prediction error and the coefficient penalty. Larger values of λ will pull 
the compromise closer to the minimum for the penalty (all zero coefficients). 
Smaller values of λ will pull the minimum closer to the unconstrained minimum 
prediction error (the x in Figures 4-1 and 4-2).

Here’s where the distinction between sum of squared coefficient penalties 
and sum of absolute value penalties becomes important. The overall minimum 
for Equations 4-6 or 4-8 will always be at a point where the curve of constant 
penalty is tangent to the curve of squared prediction error. Figures 4-1 and 4-2 
display two examples illustrating this tangency. The important point to make 
here is that in Figure 4-1 as λ changes and shifts the minimum point, the point 
of tangency for the sum of squares penalties (the circles) is generally a point that 
is not on either of the coordinate axes. Neither β1  nor β2  is zero. In Figure 4-2, 
by contrast, the point of tangency for the sum of absolute value stays stuck to 
the β2 -axis over a range of solutions. Along the β2-axis, β1 0= .

A sparse coefficient vector is the algorithm’s way of telling you that you can 
completely ignore some of the variables. When λ gets small enough, the best values 
of β2  and β1  will move off the β2  axis, and both will be nonzero. The fact that a 
smaller penalty is required to make β1  non-zero, gives an order to β2  and β1. In 
some sense, β2  is more important than β1  because it gets a nonzero coefficient 
for larger values of λ. Remember that these coefficients multiply attributes. If the 
coefficient corresponding to an attribute is zero, the algorithm is telling you that 
attribute is less important than the attributes that are getting nonzero coefficients. 
By scanning λ from large values to small ones, you can arrange all of the attributes 
in order of their importance. The next section shows this for a concrete problem 
and will show Python code that will make explicit the importance comparison 
between attributes as part of calculating solutions to Equation 4-8.

ElasticNet Penalty Includes Both Lasso and Ridge

Before seeing how to compute these coefficients, you need to know one more 
generalized statement of the penalized regression problem. This is called the 



132 Chapter 4 ■ penalized Linear regression

ElasticNet formulation. The ElasticNet formulation of the penalized regression 
problem is to use an adjustable blend of the ridge penalty and the Lasso penalty. 
ElasticNet introduces another parameter, α, that parameterizes the fraction of 
the total penalty that is the ridge penalty and the fraction that is Lasso penalty. 
The end point α = 1corresponds to all Lasso penalty and no ridge penalty.

With the ElasticNet formulation, both λ and α must be specified to solve for 
the coefficients for a linear model. Usually, the approach is to pick a value for α 
and solve for a range of λ′s. You’ll see the computational reasons for that later. 
In many cases, there’s not a big performance difference between α = 1and α = 0  
or some intermediate value of α. Sometimes it will make a big difference, and 
it behooves you to check to a few different values of α to make sure that you’re 
not sacrificing performance needlessly.

Solving the Penalized Linear Regression Problem

In the preceding section, you saw that determining a penalized linear regres-
sion model amounts to solving an optimization problem. A number of general-
purpose numeric optimization algorithms will solve the optimization problems 
in Equations 4-6, 4-8, and 4-11, but the importance of the penalized linear regres-
sion problem has motivated researchers to develop specialized algorithms that 
generate solutions very rapidly. This section covers the basics of these algorithms 
and runs the code so that you can understand the mechanics of each algorithm. 
The section goes through the mechanics of two algorithms least angle regression 
or LARS and Glmnet. These two are chosen because they can be related to 
one another and to some of the methods you have already seen, such as ridge 
regression and forward stepwise regression. In addition, they are both very 
fast algorithms to train and are available as part of Python packages. Chapter 5, 
“Building Predictive Models Using Penalized Linear Methods,” will use the 
Python packages incorporating these algorithms to explore example problems.

Understanding Least Angle Regression and Its Relationship to 
Forward Stepwise Regression
One very fast, very clever algorithm is the least-angle regression (LARS) algorithm 
developed by Bradley Efron, Trevor Hastie, Iain Johnstone and Robert Tibshirani 
(http://en.wikipedia.org/wiki/Least-angle_regression).1 The LARS algorithm 
can be understood as a refinement to the forward stepwise algorithm that you 
saw in Chapter 3. The forward stepwise algorithm is summarized here:

Forward Stepwise Regression Algorithm

 ■ Initialize all the β’s equal to zero.

http://en.wikipedia.org/wiki/Least-angle_regression


 Chapter 4 ■ penalized Linear regression 133

At each step

 ■ Find residuals (errors) after using variables already chosen.

 ■ Determine which unused variable best explains residuals and add it to 
the mix.

The LARS algorithm is very similar. The main difference with LARS is that 
instead of unreservedly incorporating each new attribute, it only partially 
incorporates them. The summary for the LARS algorithm is summarized here:

Least Angle Regression Algorithm

 ■ Initialize all β’s to zero.

At Each Step

 ■ Determine which attribute has the largest correlation with the residuals.

 ■ Increment that variable’s coefficient by a small amount if the correlation 
is positive or decrement by a small amount if negative.

The LARS algorithm solves a slightly different problem from those listed 
earlier. However, the solutions it generates are usually the same as Lasso, and 
when there are differences, the differences are relatively minor. The reason for 
looking closely at the LARS algorithm is that it is very closely related to Lasso 
and to forward stepwise regression, and the LARS algorithm is easy to outline 
and relatively compact to code. By looking at the code for LARS, you’ll get an 
understanding of what goes on inside more general ElasticNet solvers. More 
important, you’ll see the issues and workarounds that accompany penalized 
regression solvers. Code implementing the LARS algorithm is shown in Listing 4-1.

There are three major sections to the code, described briefly here and then 
discussed in more detail:

 1. Read in the data and headers and form it into a list of lists for the attributes 
and the labels.

 2. Normalize the attributes and the labels.

 3. Solve for the coefficients (β β0
* *, ) that comprise the solution.

Listing 4-1: LARS Algorithm for Predicting Wine Taste—larsWine2.py

__author__ = 'mike-bowles'

import urllib2
import numpy
from sklearn import datasets, linear_model
from math import sqrt
import matplotlib.pyplot as plot

continues



134 Chapter 4 ■ penalized Linear regression

#read data into iterable
target_url = ("http://archive.ics.uci.edu/ml/machine-learning-
databases/"
"wine-quality/winequality-red.csv")
data = urllib2.urlopen(target_url)

xList = []
labels = []
names = []
firstLine = True
for line in data:
    if firstLine:
        names = line.strip().split(";")
        firstLine = False
    else:
        #split on semi-colon
        row = line.strip().split(";")
        #put labels in separate array
        labels.append(float(row[-1]))
        #remove label from row
        row.pop()
        #convert row to floats
        floatRow = [float(num) for num in row]
        xList.append(floatRow)

#Normalize columns in x and labels

nrows = len(xList)
ncols = len(xList[0])

#calculate means and variances
xMeans = []
xSD = []
for i in range(ncols):
    col = [xList[j][i] for j in range(nrows)]
    mean = sum(col)/nrows
    xMeans.append(mean)
    colDiff = [(xList[j][i] - mean) for j in range(nrows)]
    sumSq = sum([colDiff[i] * colDiff[i] for i in range(nrows)])
    stdDev = sqrt(sumSq/nrows)
    xSD.append(stdDev)

#use calculate mean and standard deviation to normalize xList
xNormalized = []
for i in range(nrows):
    rowNormalized = [(xList[i][j] - xMeans[j])/xSD[j] \
         for j in range(ncols)]
    xNormalized.append(rowNormalized)

#Normalize labels

continued

http://archive.ics.uci.edu/ml/machine-learning-databases/
http://archive.ics.uci.edu/ml/machine-learning-databases/


 Chapter 4 ■ penalized Linear regression 135

meanLabel = sum(labels)/nrows
sdLabel = sqrt(sum([(labels[i] - meanLabel) * (labels[i] -
    meanLabel) for i in range(nrows)])/nrows)

labelNormalized = [(labels[i] - meanLabel)/sdLabel \
   for i in range(nrows)]

#initialize a vector of coefficients beta
beta = [0.0] * ncols

#initialize matrix of betas at each step
betaMat = []
betaMat.append(list(beta))

#number of steps to take
nSteps = 350
stepSize = 0.004

for i in range(nSteps):
    #calculate residuals
    residuals = [0.0] * nrows
    for j in range(nrows):
        labelsHat = sum([xNormalized[j][k] * beta[k]
           for k in range(ncols)])
        residuals[j] = labelNormalized[j] - labelsHat

    #calculate correlation between attribute columns from
    #normalized wine and residual
    corr = [0.0] * ncols

    for j in range(ncols):
        corr[j] = sum([xNormalized[k][j] * residuals[k] \
           for k in range(nrows)]) / nrows

    iStar = 0
    corrStar = corr[0]

    for j in range(1, (ncols)):
        if abs(corrStar) < abs(corr[j]):
            iStar = j; corrStar = corr[j]

    beta[iStar] += stepSize * corrStar / abs(corrStar)
    betaMat.append(list(beta))

for i in range(ncols):
    #plot range of beta values for each attribute
    coefCurve = [betaMat[k][i] for k in range(nSteps)]
    xaxis = range(nSteps)

continues



136 Chapter 4 ■ penalized Linear regression

    plot.plot(xaxis, coefCurve)

plot.xlabel("Steps Taken")
plot.ylabel(("Coefficient Values"))
plot.show()

The first section reads in the entire file, separates off the headers and splits on 
";" to form the headers into a list of attribute names, splits the remaining rows 
into lists of floats, and segregates the attributes into a list of lists and the labels 
into a list. Ordinary Python lists are used for these data structures because the 
algorithm is going to want to iterate through the rows and columns, and Pandas 
data frames seem slow for this purpose.

The second section uses the same normalization that you saw in Chapter 2, 
“Understand the Problem by Understanding the Data.” In Chapter 2, normaliza-
tion of the attributes was used to bring attributes into commensurate scales so that 
they’d plot conveniently and fully occupy the same scale. Normalization is usually 
done as the first step in penalized linear regression for much the same reason.

Each step in the LARS algorithm increments one of the β’s by a fixed amount. 
If the attributes have different scales, this fixed increment means different things 
to different attributes. Also, changing the scale on one of the attributes (say 
from miles to feet) makes the answers come out differently. For these reasons, 
penalized linear regression packages generally normalize using the common 
normalization that you saw in Chapter 2. They normalize to zero mean (by 
subtracting the mean) and unit standard deviation (by dividing the result by 
standard deviation). Packages will often give you the option of not normalizing, 
but I’ve never heard a good reason for not normalizing.

The third and final section solves for β β0
* *, . Because the algorithm is running 

on the normalized variables, there’s no need for the intercept β0
* . That would 

normally account for any difference between the labels and the weighted attri-
butes. Because all the attributes have been normalized to zero mean, there’s no 
offset between them and no purpose for β0

* . Notice that two beta-related lists 
are initialized. One is called beta and has the same number of elements as the 
number of attributes—one weight for each attribute. The other is a matrix-like 
list of lists that will house a list of betas for each step in the LARS algorithm. This 
gets into a key concept with penalized linear regression and modern machine 
learning algorithms in general.

How LARS Generates Hundreds of Models of Varying Complexity

Modern machine learning algorithms in general, and penalized linear regres-
sion in particular, generate families of solutions, not just single solutions. Look 
back at Equations 4-6, 4-8, and 4-11. On the left side of those equations are the 
,β-’.s, and on the right hand side are all numeric values that are fixed by the data 

continued



 Chapter 4 ■ penalized Linear regression 137

available for the problem with one exception. In Equations 4-6 and 4-8, there is 
a parameter λ that has to be determined some other way. As was pointed out in 
the discussion of those equations, when λ=0, the problems reduce to ordinary 
least squares regression, and when λ → ∞, β* → 0. So, the β’s depend on the 
parameter λ in the problems stated in Equations 4-6, 4-8, and 4-11.

The LARS algorithm doesn’t explicitly deal with λ values, but it has the same 
effect. The LARS algorithm starts with β’s equal to zero and then adds a small 
increment to whichever of the β’s will reduce the error the most. The small 
increment that’s added increases the sum of absolute values of the β’s by the 
amount of the increment. If the increment is small and if it’s spent on the best 
of the attributes, the process has the effect of solving the minimization problem 
in Equation 4-8. You can trace the evolution of this process in Listing 4-1.

The basic iteration is just a few lines of code at the beginning of the for-loop 
iterating for nSteps. The starting point for the iteration is a value for the β’s. On 
the first pass, those are all set to zero. On subsequent passes, they come from 
the result of the last pass. There are two steps in the iteration. First, the β’s are 
used to calculate residuals. The term residuals means the difference between 
observed outcome and predicted outcome. In this case the predictive method 
consists of multiplying each attribute times a corresponding element from β 
and then summing the products. The second step is to find the correlation 
between each of the attributes and the residuals to determine which attribute 
will contribute the most to reducing the residual (error). The correlation between 
two variables is the product of their variations from their means normalized 
by their individual standard deviations.

Variables that are scaled versions of one another will have correlations of plus 
one or minus one depending on whether the scaling between them is positive 
or negative. If two variables vary independently of one another, their correlation 
is zero. The Wikipedia page on correlation, http://en.wikipedia.org/wiki/
Correlation_and_dependence, gives good illustrations of variables having other 
degrees of correlation with one another. The list named corr contains the result 
of the calculation for each attribute. You may notice that strictly speaking the 
code omits calculation of the standard deviation of the mean, residuals, and 
normalized attributes. That works here because the attributes have been nor-
malized to all have standard deviation one and because the resulting values are 
going to be used to find the biggest correlation and multiplying all the values 
by a constant won’t change that order.

Once the correlations are calculated, it’s a simple matter to determine which 
attribute has the largest correlation with the residuals (largest in absolute value). 
The corresponding element from the list of β’s is incremented by a small amount. 
The increment is positive if the correlation is positive and negative otherwise. 
The new value of the β’s is then used to rerun the iteration.

The net result from the LARS algorithm are the coefficient curves shown in 
Figure 4-3. The way to view these is to imagine a point along the “steps taken” 

http://en.wikipedia.org/wiki/Correlation_and_dependence
http://en.wikipedia.org/wiki/Correlation_and_dependence


138 Chapter 4 ■ penalized Linear regression

axis in the graph. At that point, a vertical line will pass through all the coefficient 
curves. The values at which the vertical line intersects the coefficient curves 
are the coefficients at that step in the evolution of the LARS algorithm. If 350 
steps are used to generate the curves, there are 350 sets of coefficients. Each one 
optimizes Equation 4-8 for some value of λ. That raises the question of which 
one should you use. That question will be addressed shortly.

Figure 4-3: Coefficient curves for LARS regression on wine data.

0.4

0.3

0.2

0.1

0.0

−0.1

−0.2

−0.3
0 50 100 150 200

Steps Taken

Co
ef

fic
ie

nt
 V

al
ue

s

250 300 350

Notice that for the first 25 steps or so, only one of the coefficients is nonzero. 
This is the sparsity property that comes with Lasso regression. The coefficient 
that is the first to move off zero is alcohol; for a while, that’s the only variable 
being used by LARS regression. Then a second variable comes into play. This 
process continues until all the variables are being used in the solution. The order 
in which coefficients move off zero can be used as an indication of the rank order 
of importance of the variables. If you had to discard a variable, you’d want to 
discard one that came in last rather than the one that came in first.

the ImpOrtanCe OF ImpOrtanCe

This property of indicating the importance rank of the variables is an important fea-
ture of penalized regression methods. It makes them a handy tool to use early in your 
development process because they’ll help you make decisions about what variables to 
keep and which ones to discard—a process called feature engineering. You’ll see later 
that tree ensembles also yield measures of variable importance. Not all machine learn-
ing methods give this sort of information. You could always generate the ordering by 
trying all combinations of one variable, then two variables, and so on. But even with 
the mere 10 attributes in the wine data, it’s prohibitive to make the 10 factorial train-
ing passes required to try all possible subsets.



 Chapter 4 ■ penalized Linear regression 139

Choosing the Best Model from the Hundreds LARS Generates

Now you’ve got 350 possible solutions to the problem of predicting wine taste score 
from the chemical properties of the wine. How do you choose the best one? To 
choose which of the curves you’ll use, you need to determine how each of the 350 
choices performs. As discussed in Chapter 3, performance means performance on out 
of sample data. Chapter 3 outlined several methods for holding out data from the 
training process to use it to determine performance. Listing 4-2 shows the code for 
performing 10-fold cross-validation to determine the best set of coefficients to deploy.

Ten-fold cross-validation is the process of dividing the input data into 10 more 
or less equal groups, removing one of the groups from the data, training on the 
remainder, and then testing on the removed group. By cycling through all 10 
of the groups and removing them one at a time for testing, you can develop a 
good estimate of the error and of the estimate’s variability.

Listing 4-2: 10-Fold Cross-Validation to Determine Best Set of Coefficients—larsWineCV.py

__author__ = 'mike-bowles'

import urllib2
import numpy
from sklearn import datasets, linear_model
from math import sqrt
import matplotlib.pyplot as plot

#read data into iterable
target_url = ("http://archive.ics.uci.edu/ml/machine-learning-"
"databases/wine-quality/winequality-red.csv")
data = urllib2.urlopen(target_url)

xList = []
labels = []
names = []
firstLine = True
for line in data:
    if firstLine:
        names = line.strip().split(";")
        firstLine = False
    else:
        #split on semi-colon
        row = line.strip().split(";")
        #put labels in separate array
        labels.append(float(row[-1]))
        #remove label from row
        row.pop()
        #convert row to floats
        floatRow = [float(num) for num in row]
        xList.append(floatRow)

continues

http://archive.ics.uci.edu/ml/machine-learning-


140 Chapter 4 ■ penalized Linear regression

#Normalize columns in x and labels

nrows = len(xList)
ncols = len(xList[0])

#calculate means and variances
xMeans = []
xSD = []
for i in range(ncols):
    col = [xList[j][i] for j in range(nrows)]
    mean = sum(col)/nrows
    xMeans.append(mean)
    colDiff = [(xList[j][i] - mean) for j in range(nrows)]
    sumSq = sum([colDiff[i] * colDiff[i] for i in range(nrows)])
    stdDev = sqrt(sumSq/nrows)
    xSD.append(stdDev)

#use calculated mean and standard deviation to normalize xList
xNormalized = []
for i in range(nrows):
    rowNormalized = [(xList[i][j] - xMeans[j])/xSD[j] \
       for j in range(ncols)]
    xNormalized.append(rowNormalized)

#Normalize labels
meanLabel = sum(labels)/nrows
sdLabel = sqrt(sum([(labels[i] - meanLabel) * (labels[i] - meanLabel)
   for i in range(nrows)])/nrows)

labelNormalized = [(labels[i] - meanLabel)/sdLabel \
   for i in range(nrows)]

#Build cross-validation loop to determine best coefficient values.

#number of cross-validation folds
nxval = 10

#number of steps and step size
nSteps = 350
stepSize = 0.004

#initialize list for storing errors.
errors = []
for i in range(nSteps):
    b = []
    errors.append(b)

for ixval in range(nxval):
    #Define test and training index sets

continued



 Chapter 4 ■ penalized Linear regression 141

    idxTest = [a for a in range(nrows) if a%nxval == ixval*nxval]
    idxTrain = [a for a in range(nrows) if a%nxval != ixval*nxval]

    #Define test and training attribute and label sets
    xTrain = [xNormalized[r] for r in idxTrain]
    xTest = [xNormalized[r] for r in idxTest]
    labelTrain = [labelNormalized[r] for r in idxTrain]
    labelTest = [labelNormalized[r] for r in idxTest]

    #Train LARS regression on Training Data
    nrowsTrain = len(idxTrain)
    nrowsTest = len(idxTest)

    #initialize a vector of coefficients beta
    beta = [0.0] * ncols

    #initialize matrix of betas at each step
    betaMat = []
    betaMat.append(list(beta))

    for iStep in range(nSteps):
        #calculate residuals
        residuals = [0.0] * nrows
        for j in range(nrowsTrain):
            labelsHat = sum([xTrain[j][k] * beta[k]
               for k in range(ncols)])
            residuals[j] = labelTrain[j] - labelsHat

        #calculate correlation between attribute columns
        #from normalized wine and residual
        corr = [0.0] * ncols

        for j in range(ncols):
            corr[j] = sum([xTrain[k][j] * residuals[k] \
               for k in range(nrowsTrain)]) / nrowsTrain

        iStar = 0
        corrStar = corr[0]

        for j in range(1, (ncols)):
            if abs(corrStar) < abs(corr[j]):
                iStar = j; corrStar = corr[j]

        beta[iStar] += stepSize * corrStar / abs(corrStar)
        betaMat.append(list(beta))

        #Use beta just calculated to predict and accumulate out of
        #sample error - not being used in the calc of beta
        for j in range(nrowsTest):
            labelsHat = sum([xTest[j][k] * beta[k] for k in range

continues



142 Chapter 4 ■ penalized Linear regression

            (ncols)])
            err = labelTest[j] - labelsHat
            errors[iStep].append(err)

cvCurve = []
for errVect in errors:
    mse = sum([x*x for x in errVect])/len(errVect)
    cvCurve.append(mse)

minMse = min(cvCurve)
minPt = [i for i in range(len(cvCurve)) if cvCurve[i] == minMse ][0]
print("Minimum Mean Square Error", minMse)
print("Index of Minimum Mean Square Error", minPt)

xaxis = range(len(cvCurve))
plot.plot(xaxis, cvCurve)

plot.xlabel("Steps Taken")
plot.ylabel(("Mean Square Error"))
plot.show()

Printed Output:
('Minimum Mean Square Error', 0.5873018933136459)
('Index of Minimum Mean Square Error', 311)

mechanizing Cross-Validation for model selection in python Code

The code in Listing 4-2 begins similarly to the code in Listing 4-1. The differences 
become clear at the cross-validation loop that is looping nxval times. In this case 
nxval = 10, but it could be set to other values as well. The tradeoffs with how many 
folds to use are that smaller numbers of folds mean that you’re training on less of 
the data. If you take 5 folds, then you’re leaving out 20% each training pass. If you 
take 10 folds, you’re only leaving out 10%. As you saw in Chapter 3, training on less 
data causes deterioration in the accuracy your algorithm will achieve. However, 
taking more folds means making more passes through the training process. That 
can be cumbersome in terms of the clock or calendar time required for training.

Just ahead of the cross-validation loop, an error list gets initialized. This error list 
will consist of a list of errors for each step in the evolution of the LARS algorithm. 
It will accumulate the errors for each step over all 10 of the cross-validation folds. 
Just inside the cross-validation loop, you’ll see definition of training and test sets. 
I typically use a modulus function to define these sets unless there’s some reason 
not to. For example, sometimes you may need to do what’s called stratified sam-
pling. Suppose that you’re trying to build a classifier on data that are unbalanced, 
so there are very few of one of the classes. You want for the training sets to be 
representative of the full data set. You may need to segregate the data by classes 
so that the classes are represented in both in-sample and out-of-sample data.

continued



 Chapter 4 ■ penalized Linear regression 143

You may prefer to use a random function to define training and test sets. You 
do need to be aware of any patterning in the data set that would interact with 
the sampling process adversely (that is, if observations are not exchangeable). 
For example, if data were taken daily during the work week, then using the 
modulus function with five-fold cross-validation might result in one set having 
all the Mondays and another having all the Tuesdays, and so on.

accumulating errors on each Cross-Validation Fold and evaluating results

Once the training and test sets are defined along with a few constants, the itera-
tion of the LARS algorithm begins. This is very similar to the process defined in 
Listing 4-1, with a couple of important differences. First, the basic iteration of the 
algorithm is carried out on the training set instead of the full data set and second, 
at each step in the iteration and for each cross-validation fold the current values of 
the β’s are used along with the test attributes and test labels to ascertain the error 
on the test set for that step. You’ll see that calculation at the bottom of the cross-
validation loop. Each time β is updated, it is applied to the test data, and the error 
is accumulated in the appropriate list in “error.” It’s a simple matter to then square 
and average each of the lists in error. This produces a curve of the mean square 
error (MSE) at each iteration, averaged over all 10 of the cross-validation folds.

You might worry whether the test data is being used properly. It’s always 
important to be vigilant about letting the test data leak into the training process. 
There are numerous ways to trick oneself into violating this necessity. In this 
case, you’ll notice that the test data is not used in the calculation of the incre-
ments of β. Only the training data is being used there.

practical Considerations with model selection and training sequence

The curve of MSE versus number of steps in the LARS iteration is shown in 
Figure 4-4. This curve exhibits a fairly common pattern. It decreases more or 
less monotonically over its whole range. Strictly speaking, it does have a mini-
mum point at around 311, as indicated in the associated printed output from 
the program. But the graph shows that the minimum is fairly weak, not very 
sharp. In some cases, this curve will have a sharp minimum at some point and 
will increase markedly to the right and left of the minimum. You use the result 
of cross-validation to determine which of the 350 solutions generated by LARS 
should be used for making predictions. In this case, the minimum is at step 
311. The 311th set of β’s would be the coefficients to deploy. When there’s any 
ambiguity about the best solution to deploy, it’s usually best to deploy the more 
conservative solution. More conservative for penalized regression means the 
one with smaller coefficient values. By convention, out-of-sample performance is 
usually portrayed with the less-complex models on the left and the more-complex 
models on the right. Less-complex models have better generalization error; that 
is, they perform more predictably on new data. The more conservative model 
would be the one more to the left side of the out of sample performance graph.



144 Chapter 4 ■ penalized Linear regression

This description of the LARS algorithm and of the cross-validation process has 
gone through training the algorithm on the whole data set first, then running 
cross-validation second. In practice, you’ll probably first run cross-validation and 
then train the algorithm on the whole data set. The purpose of cross-validation is 
to determine what level of MSE (or other) performance you’ll be able to achieve and 
to learn how complicated a model your data set will sustain. If you recall, Chapter 
3 discussed the issues of data set size and model complexity. Cross-validation 
(or other process for setting aside data to get a sound estimate of performance) is 
how you determine the best model complexity for the model you will deploy. You 
determine the complexity but not the specific model (that is, not the specific set 
of β’s). As you can see in Listing 4-2, with 10-fold cross-validation, you’ve actually 
trained 10 models, and there’s no way to decide among the 10. Best practice is to 
train on the full data set and to use the cross-validation results to determine which 
of the models determine which of the models to deploy. In the example shown in 
Code Listing 4-2, cross-validation gives a minimum MSE of 0.59 at the 311th step 
in the training process. The coefficient curves in Figure 4-5 were trained on the 
full data set. The digression into cross-validation was motivated by not knowing 
which of the 350 sets of coefficients represented in Figure 4-5 should be deployed. 
Cross-validation has yielded a sound estimate of the MSE and tells us to deploy 
the 311th model from training on the full data set.

Using Glmnet: Very Fast and Very General
The glmnet algorithm was developed by Professor Jerome Friedman and his 
colleagues at Stanford.2 The glmnet algorithm solves the ElasticNet problem 
given by Equation 4-11. Recall that the ElasticNet problem incorporates a 

Figure 4-4: Cross-validated mean square error for LARS on wine data.

1.1

1.0

0.9

0.8

0.7

0.6

0.5
0 50 100 150 200

Steps Taken

M
ea

n 
Sq

ua
re

 E
rr

or

250 300 350



 Chapter 4 ■ penalized Linear regression 145

generalization of the penalty function that includes both the Lasso penalty 
(sum of absolute values) and the ridge penalty (sum of squares). ElasticNet 
has a parameter λ that determines how heavily the coefficient penalty is 
penalized compared to the fit error. It also has a parameter that determines 
how close the penalty is to ridge (α=0) or Lasso (α=1). The glmnet algorithm 
yields the full coefficient curves, similar to the LARS algorithm. Whereas 
the LARS algorithm accumulates quanta of coefficient into the β’s to drive 
the curves forward, the glmnet algorithm makes steady reductions in the λ′s 
to drive the coefficient curves forward. Equation 4-9 shows the key equation 
from Friedman’s paper—the key iterative equation for the coefficients that 
solve Equation 11—the ElasticNet equation.

β
β λα

λ αj

iji

m

i jS
m

x r
~

~ ,
←

+





+ −( )
=∑1

1 1

1

equation 4-9: Coordinate-wise update for glmnet

Equation 4-9 is a combination of Equations 5 and 8 in Friedman’s paper (for 
those of you who would like to follow the math). It looks complicated, but a little 
inspection will reveal some similarities and relationships to the LARS method 
that you saw in the last section.

Comparison of the Mechanics of Glmnet and LARS Algorithms

Equation 4-9 gives the basic update equation for the β’s. The update equation for 
LARS was “find the attribute with the largest magnitude correlation with the 
residual and increment (or decrement) its coefficient by a small fixed amount.” 
The updated Equation 4-9 is a little more involved. It has an arrow instead of 
an equals sign. The arrow means something like “gets mapped to.” Notice that
β j

~ appears on both sides of the arrow. On the right side of the arrow is the old 
value of β j

~, and on the left side (the direction the arrow points) is the new value 
ofβ j

~. After several passes through, the iteration inferred in 4-12, β j
~ stops chang-

ing. (More precisely, the change becomes insignificant.) Once β j
~ stops changing, 

the algorithm has arrived at a solution for the given values of λ and α. It’s time 
to move to the next point in the coefficient curve.

The first thing to notice is the expression x rij i inside the sum. The sum of x rij i  
over i (that is over rows of data) yields the correlation between the jth attribute 
and the residual. Recall that with LARS regression at each step through the 
algorithm each attribute was correlated against the residuals. In the LARS 
algorithm, those correlations were tested to see which attribute had the biggest 
correlation with the residual, and the coefficient corresponding to the attribute 
with the highest correlation was incremented. With the glmnet algorithm, the 
correlation is used somewhat differently.



146 Chapter 4 ■ penalized Linear regression

With glmnet, the correlation between the residuals is used to calculate how 
much each coefficient ought to be changed in magnitude. But the result passes 
through the function S() before resulting in a change in β j

~ . The function S() is 
the Lasso coefficient shrinkage function. It is plotted in Figure 4-5. As you can 
see in Figure 4-5, if the first input is smaller than the second, the output is zero. 
If the first input is larger than the second, the output is the first input reduced 
in magnitude by the second. This is called a soft limiter.

Figure 4-5: Plot of S() function

S(z,γ)

zγ

−γ

Listing 4-3 shows code for the glmnet algorithm. You can see in the code 
how Equation 4-12, for updating the β’s, is used to generate ElasticNet coeffi-
cient curves. The code in Listing 4-3 is annotated with equation number from 
Friedman’s paper. The paper is very accessible, and you can refer to it to get 
more mathematical details if you’re interested.

Initializing and Iterating the Glmnet Algorithm

The iteration starts with a large value of λ. It begins with a value for λ that is large 
enough to make all the β’s zero. You can see how to calculate the starting value 
for λ by reference to Equation 4-9. The function S() in Equation 4-12 gives zero 
for output if its first input (the correlation of x rij i ) is less than the second—λα. 
The iteration starts with all the β’s equal to zero, so the residual is equal to the 
raw labels. The code for determining the starting lambda calculates the corre-
lations for each of the attributes and the labels, finds the largest in magnitude, 
and then solves for the value of λ that makes the largest correlation just equal 
λα. That is the largest value of λ that results in all zero β’s.

Then the iteration begins by reducing λ. This is accomplished by multiplying 
λ by a number slightly less than one. Friedman suggests that the multiplier be 



 Chapter 4 ■ penalized Linear regression 147

selected so that λ100 0 001= . . That gives a value of roughly 0.93. If the algorithm 
runs for a long time without converging, then the multiplier on λ needs to be 
made closer to 1. In Friedman’s code, the mechanism for accomplishing this is 
to increase the number of steps from 100 to, say, 200 so that it takes 200 steps to 
reduce the starting λ to 0.001 of its starting value. In the Listing 4-3, you’ve got 
control of the multiplier directly. The coefficient curves are shown in Figure 4-8.

Listing 4-3: Glmnet Algorithm—glmnetWine.py

__author__ = 'mike-bowles'

import urllib2
import numpy
from sklearn import datasets, linear_model
from math import sqrt
import matplotlib.pyplot as plot
def S(z, gamma):
    if gamma >= abs(z):
        return 0.0
    return (z/abs(z))*(abs(z) - gamma)

#read data into iterable
target_url = ("http://archive.ics.uci.edu/ml/machine-learning-"
"databases/wine-quality/winequality-red.csv")
data = urllib2.urlopen(target_url)

xList = []
labels = []
names = []
firstLine = True
for line in data:
    if firstLine:
        names = line.strip().split(";")
        firstLine = False
    else:
        #split on semi-colon
        row = line.strip().split(";")
        #put labels in separate array
        labels.append(float(row[-1]))
        #remove label from row
        row.pop()
        #convert row to floats
        floatRow = [float(num) for num in row]
        xList.append(floatRow)

#Normalize columns in x and labels

nrows = len(xList)
ncols = len(xList[0])

#calculate means and variances
xMeans = [] continues

http://archive.ics.uci.edu/ml/machine-learning-


148 Chapter 4 ■ penalized Linear regression

xSD = []
for i in range(ncols):
    col = [xList[j][i] for j in range(nrows)]
    mean = sum(col)/nrows
    xMeans.append(mean)
    colDiff = [(xList[j][i] - mean) for j in range(nrows)]
    sumSq = sum([colDiff[i] * colDiff[i] for i in range(nrows)])
    stdDev = sqrt(sumSq/nrows)
    xSD.append(stdDev)

#use calculate mean and standard deviation to normalize xList
xNormalized = []
for i in range(nrows):
    rowNormalized = [(xList[i][j] - xMeans[j])/xSD[j]
                     for j in range(ncols)]
    xNormalized.append(rowNormalized)

#Normalize labels
meanLabel = sum(labels)/nrows
sdLabel = sqrt(sum([(labels[i] - meanLabel) * (labels[i] -
                meanLabel) for i in range(nrows)])/nrows)

labelNormalized = [(labels[i] - meanLabel)/sdLabel for i in
range(nrows)]

#select value for alpha parameter

alpha = 1.0

#make a pass through the data to determine value of lambda that
# just suppresses all coefficients.
#start with betas all equal to zero.

xy = [0.0]*ncols
for i in range(nrows):
    for j in range(ncols):
        xy[j] += xNormalized[i][j] * labelNormalized[i]

maxXY = 0.0
for i in range(ncols):
    val = abs(xy[i])/nrows
    if val > maxXY:
        maxXY = val

#calculate starting value for lambda
lam = maxXY/alpha

#this value of lambda corresponds to beta = list of 0's
#initialize a vector of coefficients beta
beta = [0.0] * ncols

#initialize matrix of betas at each step

continued



 Chapter 4 ■ penalized Linear regression 149

betaMat = []
betaMat.append(list(beta))

#begin iteration
nSteps = 100
lamMult = 0.93 #100 steps gives reduction by factor of 1000 in
               # lambda (recommended by authors)
nzList = []

for iStep in range(nSteps):
    #make lambda smaller so that some coefficient becomes non-zero
    lam = lam * lamMult

    deltaBeta = 100.0
    eps = 0.01
    iterStep = 0
    betaInner = list(beta)
    while deltaBeta > eps:
        iterStep += 1
        if iterStep > 100: break

        #cycle through attributes and update one-at-a-time
        #record starting value for comparison
        betaStart = list(betaInner)
        for iCol in range(ncols):

            xyj = 0.0
            for i in range(nrows):
                #calculate residual with current value of beta
                labelHat = sum([xNormalized[i][k]*betaInner[k]
                                for k in range(ncols)])
                residual = labelNormalized[i] - labelHat

                xyj += xNormalized[i][iCol] * residual

            uncBeta = xyj/nrows + betaInner[iCol]
            betaInner[iCol] = S(uncBeta, lam * alpha) / (1 +
                                            lam * (1 - alpha))

        sumDiff = sum([abs(betaInner[n] - betaStart[n])
                       for n in range(ncols)])
        sumBeta = sum([abs(betaInner[n]) for n in range(ncols)])
        deltaBeta = sumDiff/sumBeta
    print(iStep, iterStep)
    beta = betaInner

    #add newly determined beta to list
    betaMat.append(beta)

    #keep track of the order in which the betas become non-zero
    nzBeta = [index for index in range(ncols) if beta[index] != 0.0]
    for q in nzBeta:

continues



150 Chapter 4 ■ penalized Linear regression

        if (q in nzList) == False:
            nzList.append(q)

#print out the ordered list of betas
nameList = [names[nzList[i]] for i in range(len(nzList))]
print(nameList)

nPts = len(betaMat)
for i in range(ncols):
    #plot range of beta values for each attribute
    coefCurve = [betaMat[k][i] for k in range(nPts)]
    xaxis = range(nPts)
    plot.plot(xaxis, coefCurve)

plot.xlabel("Steps Taken")
plot.ylabel(("Coefficient Values"))
plot.show()

#Printed Output:
#['"alcohol"', '"volatile acidity"', '"sulphates"',
#'"total sulfur dioxide"', '"chlorides"', '"fixed acidity"', '"pH"',
#'"free sulfur dioxide"', '"residual sugar"', '"citric acid"',
#'"density"']

Figure 4-8 shows the coefficient curves generated by Listing 4-3. The curves look 
similar in character to those generated by LARS and shown in Figure 4-6—similar 
but not identical. LARS and Lasso often give the same curves, but sometimes give 
somewhat different results. The only way to tell which one is superior is to try them 
both against out-of-sample data and see which one gives the best performance.

Figure 4-6: Coefficient curves for glmnet models for predicting wine taste

0.4

0.3

0.2

0.1

0.0

−0.1

−0.2

−0.3
0 20 40 60

Steps Taken

Co
ef

fic
ie

nt
 V

al
ue

s

80 100

continued



 Chapter 4 ■ penalized Linear regression 151

The development process for a Lasso model is the same as for LARS. Use one 
of the methods described in Chapter 3 for testing on out-of-sample data (n-fold 
cross-validation, for example). Use the results on out-of-sample data to deter-
mine the optimum model complexity. Then train on the full data set to build 
coefficient curves and pick the step in the coefficient curves that out-of-sample 
testing shows to be the optimum.

This section has gone through two solution approaches for solving the mini-
mization problems that define penalized linear regression models. You’ve seen 
how these two methods work algorithmically, how they relate to one another 
and what the code looks like to implement them. This should give you a firm 
foundation for using the packages available in Python that implement these 
algorithms. It also puts you in a good position to understand various extensions 
to the models that will be covered in the next section and that will be used in 
the examples that you’ll see in Chapter 5.

Extensions to Linear Regression with Numeric Input

So far, the development has focused on regression problems—problems where 
the outcomes being predicted take real number values. How can the machinery 
discussed be applied to classification problems—problems where the outcomes 
take two (or more) discrete values like “click” or “not click”? There are several 
ways to extend what you’ve seen so far to cover classification problems.

Solving Classification Problems with Penalized Regression
For binary classification problems, you’ll often get good results by coding the 
binary values as real numbers. This simple procedure codes one of the two binary 
values as a 1 and the other as a 0 (or +1 and –1). With that simple arrangement, 
the list of labels becomes a list of real numbers, and the algorithms already 
discussed can be employed. This is often a good alternative even though there 
are more sophisticated approaches. This simple coding approach usually trains 
faster than more sophisticated approaches and that can be important.

Listing 4-4 gives an example of using the method of substituting numeric 
0 or 1 labels for class membership in the rocks versus mines data set. You’ll 
recall from Chapter 2 that the rocks versus mines data set presents a classifi-
cation problem. The data set comes from an experiment to determine if sonar 
can be used to detect unexploded mines left in the water. Various other objects 
besides mines will reflect the sonar’s sound waves. The prediction problem is 
to determine whether the reflected waves come from an unexploded mine or 
from rocks on the sea floor.

The sonar in the experiment uses what’s called a chirped waveform. A 
chirped waveform is one that rises (or falls) in frequency over the duration of 



152 Chapter 4 ■ penalized Linear regression

the transmitted sonar pulse. The 60 attributes in the rocks versus mines data 
set are the returned pulse sampled at 60 different times, which correspond to 
60 different frequencies in the chirped pulse.

Listing 4-4 demonstrates how to convert the classification labels R and M into 
0.0 and 1.0 to convert the problem into an ordinary regression problem. The code 
then uses the LARS algorithm to build a classifier. Listing 4-4 goes through a 
single pass on the full data set. As discussed in the last section, you’ll want to 
use cross-validation or some other holdout procedure to choose the optimal 
model complexity. Chapter 5 goes through those design steps and performance 
comparisons on this data set. The point here is for you to see how to apply the 
regression tools you’ve already seen to a classification problem.

Listing 4-4: Converting a Classification Problem to an Ordinary Regression Problem by 
Assigning Numeric Values to Binary Labels

__author__ = 'mike_bowles'
import urllib2
import sys
from math import sqrt
import matplotlib.pyplot as plot

#read data from uci data repository
target_url = "https://archive.ics.uci.edu/ml/machine-learning-"
"databases/undocumented/connectionist-bench/sonar/sonar.all-data")
data = urllib2.urlopen(target_url)

#arrange data into list for labels and list of lists for attributes
xList = []

for line in data:
    #split on comma
    row = line.strip().split(",")
    xList.append(row)

#separate labels from attributes, convert from attributes from
#string to numeric and convert "M" to 1 and "R" to 0

xNum = []
labels = []

for row in xList:
    lastCol = row.pop()
    if lastCol == "M":
        labels.append(1.0)
    else:
        labels.append(0.0)
    attrRow = [float(elt) for elt in row]
    xNum.append(attrRow)

https://archive.ics.uci.edu/ml/machine-learning-


 Chapter 4 ■ penalized Linear regression 153

#number of rows and columns in x matrix
nrow = len(xNum)
ncol = len(xNum[1])

#calculate means and variances
xMeans = []
xSD = []
for i in range(ncol):
    col = [xNum[j][i] for j in range(nrow)]
    mean = sum(col)/nrow
    xMeans.append(mean)
    colDiff = [(xNum[j][i] - mean) for j in range(nrow)]
    sumSq = sum([colDiff[i] * colDiff[i] for i in range(nrow)])
    stdDev = sqrt(sumSq/nrow)
    xSD.append(stdDev)

#use calculate mean and standard deviation to normalize xNum
xNormalized = []
for i in range(nrow):
    rowNormalized = [(xNum[i][j] - xMeans[j])/xSD[j] \
       for j in range(ncol)]
    xNormalized.append(rowNormalized)

#Normalize labels
meanLabel = sum(labels)/nrow
sdLabel = sqrt(sum([(labels[i] - meanLabel) * (labels[i] -
   meanLabel) for i in range(nrow)])/nrow)

labelNormalized = [(labels[i] - meanLabel)/sdLabel for i in range(nrow)]

#initialize a vector of coefficients beta
beta = [0.0] * ncol

#initialize matrix of betas at each step
betaMat = []
betaMat.append(list(beta))

#number of steps to take
nSteps = 350
stepSize = 0.004
nzList = []

for i in range(nSteps):
    #calculate residuals
    residuals = [0.0] * nrow
    for j in range(nrow):
        labelsHat = sum([xNormalized[j][k] * beta[k]
           for k in range(ncol)])
        residuals[j] = labelNormalized[j] - labelsHat

continues



154 Chapter 4 ■ penalized Linear regression

    #calculate correlation between attribute columns from
    #normalized X and residual
    corr = [0.0] * ncol

    for j in range(ncol):
        corr[j] = sum([xNormalized[k][j] * residuals[k]
           for k in range(nrow)]) / nrow

    iStar = 0
    corrStar = corr[0]

    for j in range(1, (ncol)):
        if abs(corrStar) < abs(corr[j]):
            iStar = j; corrStar = corr[j]

    beta[iStar] += stepSize * corrStar / abs(corrStar)
    betaMat.append(list(beta))

    nzBeta = [index for index in range(ncol) if beta[index] != 0.0]
    for q in nzBeta:
        if (q in nzList) == False:
            nzList.append(q)

#make up names for columns of xNum
names = ['V' + str(i) for i in range(ncol)]
nameList = [names[nzList[i]] for i in range(len(nzList))]

print(nameList)
for i in range(ncol):
    #plot range of beta values for each attribute
    coefCurve = [betaMat[k][i] for k in range(nSteps)]
    xaxis = range(nSteps)
    plot.plot(xaxis, coefCurve)

plot.xlabel("Steps Taken")
plot.ylabel(("Coefficient Values"))
plot.show()

#Printed Output:
#['V10', 'V48', 'V44', 'V11', 'V35', 'V51', 'V20', 'V3', 'V21', 'V15',
# 'V43', 'V0', 'V22', 'V45', 'V53', 'V27', 'V30', 'V50', 'V58', 'V46',
# 'V56', 'V28', 'V39']

Figure 4-7 shows the coefficient curves developed by the LARS algorithm. 
They are similar in character to the curves you saw for the wine taste predic-
tion problem. However, there are more curves because the rocks versus mines 
data set has more attributes. (The rock versus mines data has 60 attributes and 
208 rows of data.) From the discussion in Chapter 3, you might expect that the 

continued



 Chapter 4 ■ penalized Linear regression 155

optimum solution won’t use all the attributes. You’ll see how that tradeoff turns 
out in Chapter 5, which concentrates on solutions to this and other problems 
and comparisons between different approaches.

Figure 4-7: Coefficient curves for rocks versus mines classification problem solved by converting 
to labels

0.20

0.15

0.10

0.05

0.00

−0.05

−0.10

−0.15

−0.20

−0.25
0 50 100 150 200

Steps Taken

Co
ef

fic
ie

nt
 V

al
ue

s

250 300 350

Another approach is to formulate the problem in terms of the likelihoods of 
the two outcomes in the problem. That leads to what’s called logistic regression. 
The glmnet algorithm can be cast in that framework, and Friedman’s original 
paper goes through the development of the logistic regression version of glm-
net and of its extension to multiclass problems—problems with more than two 
discrete outcomes. You’ll see the use of the binary and multiclass versions of 
the algorithm in Chapter 5.

Working with Classification Problems Having More Than  
Two Outcomes
Some problems require deciding among several alternatives. For example, 
say you show a visitor to your website several links. The visitor may click 
on any one of the several links, click the back button, or exit the site entirely. 
There are several alternatives that aren’t ordered like the integer wine taste 
scores are. A taste score of 4 naturally fits between 3 and 5, and if changing 
an attribute (like alcohol) makes the score go from 3 to 4, changing it some 
more seems likely to move the score further in the same direction. Alternative 
actions a site visitor will take have no such order. This is called a multiclass 
classification problem.



156 Chapter 4 ■ penalized Linear regression

You can always handle a multiclass problem with an algorithm for binary 
classification. The technique is called one versus all or one versus the rest, and the 
names give you some idea of how the approach works. Basically you pose your 
multiclass problem as several binary problems. For the example, you could pre-
dict whether the visitor would leave the site or choose another option. Another 
binary classification problem is to predict whether the user would click the 
back button or take any of the rest of the options available. You’ll wind up with 
as many binary classification problems as you have alternative outcomes. The 
binary classifiers all give numeric values, like the LARS classifier in Listing 4-4. 
The outcome that has the largest one-versus-all value is the winner. Chapter 
5 implements this method for the glass data set, where there are six different 
possible outcomes.

Understanding Basis Expansion: Using Linear Methods on 
Nonlinear Problems
By their nature, linear methods assume classification and regression predictions 
can be expressed as a linear combination of the attributes that are available 
to the designer. What if you have reason to suspect that a linear model isn’t 
enough? You can get a linear model to work with strong nonlinearities by using 
what’s called basis expansion. The basic idea behind basis expansion is that 
the nonlinearities in your problem can be approximated as polynomials of the 
attributes (or sum of other nonlinear functions of the attributes); then you can 
add attributes that are powers of the original attributes and let a linear method 
determine the best set of coefficients for the polynomial.

To get a concrete idea of how this would work, look at the code in Listing 4-5. 
Listing 4-5 starts with the wine taste data set. If you recall, the linear models 
that were produced earlier in this chapter both found that alcohol was the most 
important attribute in determining wine taste. It occurs to you that the relation-
ship might not be a straight line, but might roll off for really high alcohol content 
and for really low alcohol content.

Listing 4-5 shows you how to test this notion.

Listing 4-5: Basis Expansion for Wine Taste Prediction

__author__ = 'mike-bowles'

import urllib2
import matplotlib.pyplot as plot
from math import sqrt, cos, log

#read data into iterable
target_url = ("http://archive.ics.uci.edu/ml/machine-learning-"
"databases/wine-quality/winequality-red.csv")
data = urllib2.urlopen(target_url)

http://archive.ics.uci.edu/ml/machine-learning-


 Chapter 4 ■ penalized Linear regression 157

xList = []
labels = []
names = []
firstLine = True
for line in data:
    if firstLine:
        names = line.strip().split(";")
        firstLine = False
    else:
        #split on semi-colon
        row = line.strip().split(";")
        #put labels in separate array
        labels.append(float(row[-1]))
        #remove label from row
        row.pop()
        #convert row to floats
        floatRow = [float(num) for num in row]
        xList.append(floatRow)

#extend the alcohol variable (the last column in that attribute matrix
xExtended = []
alchCol = len(xList[1])

for row in xList:
    newRow = list(row)
    alch = row[alchCol - 1]
    newRow.append((alch - 7) * (alch - 7)/10)
    newRow.append(5 * log(alch - 7))
    newRow.append(cos(alch))
    xExtended.append(newRow)

nrow = len(xList)
v1 = [xExtended[j][alchCol - 1] for j in range(nrow)]

for i in range(4):
    v2 = [xExtended[j][alchCol - 1 + i] for j in range(nrow)]
    plot.scatter(v1,v2)

plot.xlabel("Alcohol")
plot.ylabel(("Extension Functions of Alcohol"))
plot.show()

The code reads in the data as before. Right after reading in the data (and 
before it is normalized), the code runs through the rows of data that it’s read, 
adds a few new elements to the row, and then appends the new expanded row 
to a new set of attributes. The new elements that are appended are all func-
tions of the alcohol attribute in the original data. For example, the first new 
attribute is ((alch - 7) * (alch - 7)/10), where alch is the alcohol level in the row. 



158 Chapter 4 ■ penalized Linear regression

The constants 7 and 10 were introduced so that the resulting new attributes 
would all plot nicely on one plot. Basically, the new attribute is alcohol squared.

The next step in the process is to take the expanded set of attributes and 
build a linear model using the tools already developed in this chapter (or 
another of the methods available for building linear models). Whatever 
algorithm is used for building a linear model, the model will consist of mul-
tipliers (or coefficients) for each of the attributes, including the new ones. If 
the functions used in the expansion are all powers of the original variable, 
the linear model yields coefficients in a polynomial function of the original 
variable. By choosing different functions for the expansion, other function 
series can be constructed.

Figure 4-8 illustrates the functional dependence of the new attributes (and 
the original attribute) on the original attribute. You can see the squared, 
logarithmic, and sinusoidal behavior of the selection of functions in the 
expansion.

Figure 4-8: Functions generated to expand wine attribute session

16

14

12

10

8

Ex
te

ns
io

n 
Fu

nc
tio

ns
 o

f A
lc

oh
ol

Alcohol

6

4

2

0

8 9 10 11 12 13 14 15 16
−2

Incorporating Non-Numeric Attributes into Linear Methods
Penalized linear regression (and other linear methods) require numeric attri-
butes. What if your problem has some non-numeric attributes (also called 
categorical or factor attributes)? A familiar example would be a gender attri-
bute where the possibilities are male and female. The standard method for 
converting categorical variables to numeric is to code them into several new 
columns of attribute data. If an attribute has N possible values, it gets coded 
into N - 1 new columns of data as follows. Identify N - 1 columns of data 



 Chapter 4 ■ penalized Linear regression 159

with N - 1 of the N attributes. In each row enter a 1 in the ith column if the 
row takes the ith possible value of the categorical variable. Put zeros in the 
other columns. If the row takes the Nth value of the categorical variable, all 
the entries will be zero.

Listing 4-6 shows how this technique can be applied to the abalone data set. 
The task with the abalone data set is to predict the age of abalone from various 
physical measurements.

Listing 4-6: Coding Categorical Variable for Penalized Linear Regression - Abalone  
Data—larsAbalone.py

__author__ = 'mike_bowles'

import urllib2
from pylab import *
import matplotlib.pyplot as plot

target_url = ("http://archive.ics.uci.edu/ml/machine-learning-"
"databases/abalone/abalone.data")
#read abalone data
data = urllib2.urlopen(target_url)

xList = []
labels = []

for line in data:
    #split on semi-colon
    row = line.strip().split(",")

    #put labels in separate array and remove label from row
    labels.append(float(row.pop()))

    #form list of list of attributes (all strings)
    xList.append(row)

names = ['Sex', 'Length', 'Diameter', 'Height', 'Whole weight', \
    'Shucked weight', 'Viscera weight', 'Shell weight', 'Rings']

#code three-valued sex attribute as numeric
xCoded = []
for row in xList:
    #first code the three-valued sex variable
    codedSex = [0.0, 0.0]
    if row[0] == 'M': codedSex[0] = 1.0
    if row[0] == 'F': codedSex[1] = 1.0

    numRow = [float(row[i]) for i in range(1,len(row))]
    rowCoded = list(codedSex) + numRow
    xCoded.append(rowCoded)

continues

http://archive.ics.uci.edu/ml/machine-learning-


160 Chapter 4 ■ penalized Linear regression

namesCoded = ['Sex1', 'Sex2', 'Length', 'Diameter', 'Height', \
   'Whole weight', 'Shucked weight', 'Viscera weight', \
   'Shell weight', 'Rings']

nrows = len(xCoded)
ncols = len(xCoded[1])

xMeans = []
xSD = []
for i in range(ncols):
    col = [xCoded[j][i] for j in range(nrows)]
    mean = sum(col)/nrows
    xMeans.append(mean)
    colDiff = [(xCoded[j][i] - mean) for j in range(nrows)]
    sumSq = sum([colDiff[i] * colDiff[i] for i in range(nrows)])
    stdDev = sqrt(sumSq/nrows)
    xSD.append(stdDev)

#use calculate mean and standard deviation to normalize xCoded
xNormalized = []
for i in range(nrows):
    rowNormalized = [(xCoded[i][j] - xMeans[j])/xSD[j] \
       for j in range(ncols)]
    xNormalized.append(rowNormalized)

#Normalize labels
meanLabel = sum(labels)/nrows
sdLabel = sqrt(sum([(labels[i] - meanLabel) * (labels[i] -
   meanLabel) for i in range(nrows)])/nrows)

labelNormalized = [(labels[i] - meanLabel)/sdLabel \
   for i in range(nrows)]

#initialize a vector of coefficients beta
beta = [0.0] * ncols

#initialize matrix of betas at each step
betaMat = []
betaMat.append(list(beta))

#number of steps to take
nSteps = 350
stepSize = 0.004
nzList = []

for i in range(nSteps):
    #calculate residuals
    residuals = [0.0] * nrows
    for j in range(nrows):

continued



 Chapter 4 ■ penalized Linear regression 161

        labelsHat = sum([xNormalized[j][k] * beta[k]
           for k in range(ncols)])
        residuals[j] = labelNormalized[j] - labelsHat

    #calculate correlation between attribute columns from
    #normalized wine and residual
    corr = [0.0] * ncols

    for j in range(ncols):
        corr[j] = sum([xNormalized[k][j] * residuals[k]
           for k in range(nrows)]) / nrows

    iStar = 0
    corrStar = corr[0]

    for j in range(1, (ncols)):
        if abs(corrStar) < abs(corr[j]):
            iStar = j; corrStar = corr[j]

    beta[iStar] += stepSize * corrStar / abs(corrStar)
    betaMat.append(list(beta))

    nzBeta = [index for index in range(ncols) if beta[index] != 0.0]
    for q in nzBeta:
        if (q in nzList) == False:
            nzList.append(q)

nameList = [namesCoded[nzList[i]] for i in range(len(nzList))]

print(nameList)
for i in range(ncols):
    #plot range of beta values for each attribute
    coefCurve = [betaMat[k][i] for k in range(nSteps)]
    xaxis = range(nSteps)
    plot.plot(xaxis, coefCurve)

plot.xlabel("Steps Taken")
plot.ylabel(("Coefficient Values"))
plot.show()

Printed Output - [filename- larsAbaloneOutput.txt]
['Shell weight', 'Height', 'Sex2', 'Shucked weight', 'Diameter', 'Sex1']

The first attribute is the gender of the abalone, which takes three values. 
When abalone are infants, their sex is indeterminate so the entries in the first 
column are M, F, and I.

The variable names associated with the columns are shown in a Python list 
that gets named names. With the abalone data set, these names don’t come from 



162 Chapter 4 ■ penalized Linear regression

the first row of data, but from a separate file on the UC Irvine website. The first 
variable in the list is Sex—the sex of the animal. The last variable in the list is 
Rings. These are shell rings that are counted by slicing the shell and counting up 
the rings through a microscope. The number of rings is essentially the age of the 
abalone. The objective of the problem is to train a regression system to predict 
the Rings using easier, less time-consuming and less-expensive measurements.

Coding the Sex attribute is accomplished before the attribute matrix is nor-
malized. The process is to build two columns to represent the three possible 
values. The logic of the construction is that the first column has a 1 if the cor-
responding row is from a male (M) and zero otherwise. The second column is 
1 for female (F). Both columns are zero if the example is an infant (I). The new 
columns that replace Sex are given the names Sex1 and Sex2.

Once this coding is accomplished, then the attribute matrix contains all 
numeric values, and the example proceeds as in earlier examples. It normalizes 
the variables to zero mean and unit standard deviation, and then it applies the 
LARS algorithm introduced earlier to develop coefficient curves. The printed 
output shows the order in which variables enter into the solution of the penal-
ized linear regression solution. You’ll observe that both the two columns coding 
for Sex appear in the solution.

Figure 4-9 shows the coefficient curves that result from LARS applied to this 
problem. Chapter 5 delves more into performance, with different approaches 
to this problem.

Figure 4-9: Coefficient curves for LARS trained on abalone data with coded categorical variable

0.8

0.6

0.4

0.2

0.0

−0.2

−0.4
0 50 100 150 200

Steps Taken

Co
ef

fic
ie

nt
 V

al
ue

s

250 300 350

This section discussed several extensions to penalized regression that broaden 
its utility to cover a wide class of problems. The section described a simple and 



 Chapter 4 ■ penalized Linear regression 163

frequently effective method of converting a classification problem to an ordinary 
regression problem. It also discussed how to convert a binary classifier into a 
multiclass classifier. The section went on to discuss how to model nonlinear 
behaviors using linear regression by adding new attributes that are nonlinear 
functions of the old attributes. Finally, the section showed how to turn categori-
cal variables into real-valued variables so you can train linear algorithms on 
categorical variables. This method of converting categorical variables doesn’t 
just work for linear regression. It is also useful for other linear methods such 
as support vector machines.

Summary

The goal of this chapter was to lay the groundwork for you to confidently under-
stand and use the Python packages implementing the algorithms described 
here. The chapter described the nature of the input data set as a column vector 
of outcomes to be predicted and a table of attributes upon which to base the 
predictions. Chapter 3, the previous chapter, demonstrated that predictive mod-
els need to have their complexity tuned to get the best performance for a given 
problem complexity and data set size. Chapter 3 also showed some methods 
for introducing a tuning parameter into linear regression. This chapter built 
on that background and introduced several minimization problems where a 
tunable coefficient penalty was added to the error penalty from least squares 
regression. As was demonstrated, this tunable penalty on linear coefficient 
sizes results in suppression of the coefficients to a greater or lesser degree and 
thereby adds a complexity adjustment. You saw how to tune the complexity 
of the resulting models by using the error on out-of-sample data to achieve 
optimum performance.

The chapter described principles of operation for two modern algorithms 
for solving the penalized regression minimization problem and python code 
implementing the main features of the algorithms in order for you to have a 
concrete instantiation of the core of the algorithms to make the principals of 
operation clear. The plain regression problem (numeric features and numeric 
targets) served as the exemplar for in-depth coverage of algorithms. The 
chapter showed several extensions to broaden the use cases to include binary 
classification problems, multiclass classification problems, problems with 
nonlinear relationship between attributes and outcomes, and problems with 
non-numeric features.

The next chapter, Chapter 5, will use Python packages implementing these 
algorithms to run through a series of examples that were chosen to exercise a 
variety of different problem characteristics in order to cement these ideas. Based 
on what you’ve learned in this chapter, the various parameters and methods in 
the Python packages will make sense for you.



164 Chapter 4 ■ penalized Linear regression

References

 1. Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani (2004). 
“Least Angle Regression.” Annals of Statistics, 32(2), 407–499.

 2. Jerome H. Friedman, Trevor Hastie and Rob Tibshirani (2010). “Regularization 
Paths for Generalized Linear Models via Coordinate Descent.” Journal of 
Statistical Software, vol. 33, issue 1, Feb 2010.



165

Chapter 2 looked at a number of different data sets with an eye toward under-
standing the data sets, the relations between the various attributes and labels, 
and the nature of the problems being posed. This chapter picks those data sets up 
once again and runs through some case studies demonstrating the process of 
building predictive models by using the penalized linear methods that you saw 
in Chapter 4, “Penalized Linear Regression.” Generally, the model-building will 
be segmented into two or more parts.

You’ll recall from Chapter 4 that model building with penalized linear regression 
has two steps. One is to train on the whole data set to trace out coefficient curves. 
The other is to run cross-validation to determine the best achievable out-of-sample 
performance and to identify the model that achieves it. The step of determining the 
achievable performance encompasses the hard design work, and in many of the 
examples in this chapter, that’s the only step that will be presented. The purpose of 
training on the whole data set is to get the best estimates of the model coefficients. But 
it does not change your estimate of the errors, which are the gauge of performance.

This chapter runs through a variety of different types of problems: regres-
sion problems, classification problems, problems with categorical attributes, and 
problems with nonlinear dependence of the labels on the attributes. It looks 
at basis expansion to see whether it improves the prediction performance. In 
each case, the objective is to work through the steps you’d take to arrive at a 
deployable linear model and to consider some alternative paths so that you can 
ensure that you’re getting all the performance you can.

C h a p t e r 

5

Building predictive Models Using 
penalized Linear Methods 



166 Chapter 5 ■ Building predictive Models Using penalized Linear Methods

Python Packages for Penalized Linear Regression

The examples in Chapter 4 used Python versions of the training algorithms 
involved: LARS, and coordinate descent with the ElasticNet penalty. The pur-
pose for using the Python code in Chapter 4 was to expose the workings of the 
algorithms to further your understanding of them. Fortunately, you don’t have 
to code those algorithms each time you want to use them.

Scikit-learn has packages implementing Lasso, LARS, and ElasticNet regres-
sion. There are several advantages to using those packages. One advantage is 
that using them results in fewer lines of code that you have to write and debug. 
Another big advantage is that they are much faster than the code in Chapter 4. 
The scikit-learn packages take advantage of practices like not computing cor-
relations for attributes that aren’t being used in order to cut way down on 
the number of calculations. You’ll see when you run these packages that they 
execute very quickly.

The packages used in this chapter are found in sklearn.linear_model. The 
link http://scikit-learn.org/stable/modules/classes.html#module-
sklearn.linear_model shows a list including the models you’ll see used here. 
Notice that several of the models come in two flavors. For example, there’s a 
package titled linear_model.ElasticNet and one titled linear_model.ElasticNetCV. 
These two models correspond to the two tasks discussed at the beginning of 
this chapter. The Python package linear_model.ElasticNet is used to calculate 
coefficient curves on the whole data set, and linear_model.ElasticNetCV does 
the cross-validation run to produce out-of-sample estimates of performance. It’s 
handy to have these two forms.

The same basic input objects fuel both versions (two numpy arrays—one of 
attributes and one of labels). In some cases, you won’t be able to use the cross-
validation version because you’ll need very specific control of the contents of 
training and test sets for each fold:

 ■ If your problem has a categorical attribute that takes one of its values very 
infrequently, you may need to control sampling so that the attribute is 
represented evenly across the folds.

 ■ You may also need to have access to the separate fold data to compile error 
statistics for your problem, if you want a different error measure from the 
mean squared error (MSE) that the CV packages deliver. You might prefer 
mean absolute error (MAE) because it better matches the penalty that you’ll 
pay for errors in your real problem.

 ■ Another example of needing fold-by-fold access for error statistics is when 
you use linear regression to solve classification problems. As discussed in 
Chapter 3, “Predictive Model Building: Balancing Performance, Complexity, 
and Big Data,” standard error measures for classification problems are 

http://scikit-learn.org/stable/modules/classes.html#module-sklearn.linear_model
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.linear_model
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.linear_model


 Chapter 5 ■ Building predictive Models Using penalized Linear Methods  167

things such as misclassification error or area under the ROC curve (AUC). 
You’ll see that case specifically in the “rocks versus mines” and “glass 
classification” case studies in this chapter.

There are a couple of things for you to keep in mind as you look at these 
packages and begin thinking about using them. One is that some of them (but 
not all of them) automatically normalize the attributes before fitting a model. 
The second thing to be aware of is that the scikit-learn packages name variables 
differently from Chapter 4 and Friedman’s papers. Chapter 4 used the variable λ 
to represent the multiplier on the coefficient penalty and used the variable α to 
represent the proportion of Lasso penalty versus ridge penalty in the ElasticNet 
penalty. The scikit-learn packages use α instead of λ and l1_ratio instead of α. 
The text that follows switches to the notation used in the scikit-learn packages.

SoMe SCikit-Learn ChangeS

The scikit-learn documentation states an intention to bring all the penalized regres-
sion packages into conformance with one another by including normalization in all of 
them. That is in process at the time of writing this book.

Multivariable Regression: Predicting Wine Taste

As discussed in Chapter 2, “Understand the Problem by Understanding 
the Data,” the wine taste data set comes from the UC Irvine data repository 
(http://archive.ics.uci.edu/ml/datasets/Wine+Quality).1 The data set 
contains chemical analyses for 1,599 wines along with average taste scores 
given to each wine by a panel of wine tasters. The predictive problem is 
to predict the taste given the data on chemical composition. The chemical 
composition data consist of numeric measurements of 11 different chemical 
properties—alcohol content, pH and citric acid, and so on. Have a look at 
the exploration of these data in Chapter 2 or look at the UC Irvine page for 
the data set for more information.

Predicting the wine taste is a regression problem because the objective of the 
problem is to predict the quality score, which is an integer between 0 and 10. The 
data set only includes examples between 3 and 8. Because only integer scores are 
given, it is also possible to treat this problem as a multiclass classification problem. 
The multiclass problem would have six possible classifications (the integers from 
3 to 8). It would ignore the order relation that exists among the various scores. 
(For example, 5 is a worse score than 6 and a better score than 4.) Regression is a 
more natural way to pose the problem because it preserves the order relationship.

Another way to think about how to pose the problem is to consider the 
different error measures that come with a regression problem versus a mul-
ticlass classification problem. The regression error function is the average 

http://archive.ics.uci.edu/ml/datasets/Wine+Quality


168 Chapter 5 ■ Building predictive Models Using penalized Linear Methods

squared error. When the true taste is 3, predicting a 5 contributes more to 
the cumulative error than predicting a 4. The error measure for the multi-
class problem is the number of examples that get misclassified. With this 
error measure, if the true taste is 3, predicting a 5 or 4 contributes the same 
amount to the cumulative error. Regression seems more natural, but I don’t 
know of a way to prove that it will give superior performance. The only 
way to know whether this is the best approach is to try both. In the section 
titled “Multiclass Classification: Classifying Crime Scene Glass Samples,” 
you’ll see how to handle multiclass classification problems. You can then 
come back and try the multiclass approach and see whether it does better 
or worse. What error measure will you use?

Building and Testing a Model to Predict Wine Taste
The first step in the process of building a model is to generate some out-of-sample 
performance numbers to see whether they’re going to meet your performance 
requirements. Listing 5-1 shows the code to perform 10-fold cross-validation 
and plot the results. The first section of the code reads the data from the UCI 
website into a list of lists and then runs through normalization of the list of 
lists of attributes and the list of labels. Then the lists get converted to numpy 
arrays X (matrix of attributes) and Y (vector of labels). There are two versions of 
these definitions. In one version, the normalized lists are used. In the other, the 
un-normalized versions are used. You can comment out the second of the two 
definitions in either case and rerun the code to see what effect normalization 
the attributes or the labels has on the answers. A single line of code defines the 
number of cross-validation folds (10) and trains the model. Then the program 
plots the error versus α curves for each of the 10 folds and also plots the aver-
age of the 10. The three plots are shown in Figures 5-1, 5-2, and 5-3. In order, 
the three cases are as follows:

  1. Normalized X and un-normalized Y

 2. Normalized X and Y

 3. Un-normalized X and Y

Listing 5-1: Using Cross-Validation to Estimate Out-of-Sample Error with Lasso Modeling 
Wine Taste—wineLassoCV.py

__author__ = 'mike-bowles'

import urllib2
import numpy
from sklearn import datasets, linear_model
from sklearn.linear_model import LassoCV
from math import sqrt
import matplotlib.pyplot as plot



 Chapter 5 ■ Building predictive Models Using penalized Linear Methods  169

#read data into iterable
target_url = ("http://archive.ics.uci.edu/ml/machine-learning-"
"databases/wine-quality/winequality-red.csv")
data = urllib2.urlopen(target_url)

xList = []
labels = []
names = []
firstLine = True
for line in data:
    if firstLine:
        names = line.strip().split(";")
        firstLine = False
    else:
        #split on semi-colon
        row = line.strip().split(";")
        #put labels in separate array
        labels.append(float(row[-1]))
        #remove label from row
        row.pop()
        #convert row to floats
        floatRow = [float(num) for num in row]
        xList.append(floatRow)

#Normalize columns in x and labels
#Note: be careful about normalization.  Some penalized
#regression packages include it and some don't.
nrows = len(xList)
ncols = len(xList[0])

#calculate means and variances
xMeans = []
xSD = []
for i in range(ncols):
    col = [xList[j][i] for j in range(nrows)]
    mean = sum(col)/nrows
    xMeans.append(mean)
    colDiff = [(xList[j][i] - mean) for j in range(nrows)]
    sumSq = sum([colDiff[i] * colDiff[i] for i in range(nrows)])
    stdDev = sqrt(sumSq/nrows)
    xSD.append(stdDev)

#use calculate mean and standard deviation to normalize xList
xNormalized = []
for i in range(nrows):
    rowNormalized = [(xList[i][j] - xMeans[j])/xSD[j] \
        for j in range(ncols)]
    xNormalized.append(rowNormalized)

#Normalize labels
meanLabel = sum(labels)/nrows

continues

http://archive.ics.uci.edu/ml/machine-learning-


170 Chapter 5 ■ Building predictive Models Using penalized Linear Methods

sdLabel = sqrt(sum([(labels[i] - meanLabel) * (labels[i] -
        meanLabel) for i in range(nrows)])/nrows)

labelNormalized = [(labels[i] - meanLabel)/sdLabel \
        for i in range(nrows)]

#Convert list of list to np array for input to sklearn packages

#Unnormalized labels
Y = numpy.array(labels)

#normalized lables
Y = numpy.array(labelNormalized)

#Unnormalized X's
X = numpy.array(xList)

#Normalized Xss
X = numpy.array(xNormalized)

#Call LassoCV from sklearn.linear_model
wineModel = LassoCV(cv=10).fit(X, Y)

# Display results

plot.figure()
plot.plot(wineModel.alphas_, wineModel.mse_path_, ':')
plot.plot(wineModel.alphas_, wineModel.mse_path_.mean(axis=-1),
         label='Average MSE Across Folds', linewidth=2)
plot.axvline(wineModel.alpha_, linestyle='--',
            label='CV Estimate of Best alpha')
plot.semilogx()
plot.legend()
ax = plot.gca()
ax.invert_xaxis()
plot.xlabel('alpha')
plot.ylabel('Mean Square Error')
plot.axis('tight')
plot.show()

#print out the value of alpha that minimizes the Cv-error
print("alpha Value that Minimizes CV Error  ",wineModel.alpha_)
print("Minimum MSE  ", min(wineModel.mse_path_.mean(axis=-1)))

Printed Output: Normalized X, Un-normalized Y
('alpha Value that Minimizes CV Error  ', 0.010948337166040082)
('Minimum MSE  ', 0.433801987153697)

Printed Output: Normalized X and Y
('alpha Value that Minimizes CV Error  ', 0.013561387700964642)
('Minimum MSE  ', 0.66558492060028562)

continued



 Chapter 5 ■ Building predictive Models Using penalized Linear Methods  171

Printed Output: Un-normalized X and Y
('alpha Value that Minimizes CV Error  ', 0.0052692947038249062)
('Minimum MSE  ', 0.43936035436777832)

The printed output at the bottom of Listing 5-1 shows a significant increase in the 
MSE that comes with normalizing Y. In contrast, Figures 5-1 and 5-2 are remark-
ably similar in shape. The only difference between them is the scale on the Y-axis. 
Refer to Listing 2-13 to see that the standard deviation of the unscaled wine quality 
scores is roughly 0.81. That means that the normalization to a standard deviation of 
1.0 requires multiplying by roughly 1.2. That results in an increase of 1.2 squared 
in the MSE. The only issue with normalizing the labels is that the MSE loses its 
connection to the original data. It’s usually handier to be able to extract a square 
root of the MSE and then relate it directly to the units of the original labels. In this 
case, the MSE (with un-normalized Y) is 0.433. The square root is roughly 0.65. That 
means that the +/- 1-sigma errors lie in a band that’s 1.3 units of taste-score wide. 
So, normalizing Y doesn’t make a material difference in the results. What about 
normalizing X? Does normalizing X improve or worsen performance?

The last set of numbers in Listing 5-1 shows a very slight increase in the 
MSE if X is left un-normalized. However, the plot of CV error versus alpha in 
Figure 5-3 shows a radical difference from the plots in Figures 5-1 and 5-2. The 
plot has a scalloped character that’s caused by the mishmash of scales that comes 
from leaving the Xs unscaled. What happens is that the algorithm picks a large 
variable that requires a correspondingly small coefficient. That can happen if 
the variable has high correlation with Y or if the variable has low correlation 
with Y and a large scale. The algorithm uses a somewhat inferior variable for a 
few iterations until α (formerly known as λ) gets small enough to let in a better 
variable, at which time the error drops precipitously. The moral of the story is 
to normalize the Xs or be wary about not normalizing them.

Figure 5-1: Out-of-sample error with un-normalized Y – Lasso model on wine taste data

0.9
Average MSE across Folds
CV Estimate of Best alpha

0.8

0.7

M
ea

n 
Sq

ua
re

 E
rr

or

0.6

0.5

0.4

10−1 10−2

alpha
10−3



172 Chapter 5 ■ Building predictive Models Using penalized Linear Methods

Training on the Whole Data Set before Deployment
Listing 5-2 shows the code for training on the whole data set. As mentioned, the 
reason for training on the whole data set is to obtain the best set of coefficients 
for deployment. Cross-validation yields an estimate of the deployed model’s 
performance and gives you the α value that yields the best performance. After 
reading the wine data from the UC Irvine data repository and normalizing it, 

Figure 5-2: Out-of-sample error with normalized Y – Lasso model on wine taste data

1.4

1.3

1.2

1.0

0.9

0.8

1.1

0.7

0.6

10−1 10−2

alpha
10−3

Average MSE across Folds
CV Estimate of Best alpha

M
ea

n 
Sq

ua
re

 E
rr

or

Figure 5-3: Out-of-sample error with un-normalized X and Y – Lasso model on wine taste data

0.9

0.8

0.7

M
ea

n 
Sq

ua
re

 E
rr

or

0.6

0.5

0.4

100 10−1

alpha
10−2

Average MSE across Folds
CV Estimate of Best alpha



 Chapter 5 ■ Building predictive Models Using penalized Linear Methods  173

the program converts the data to numpy arrays and then invokes the lasso_path 
method to generate α values (that is, penalties) and the corresponding coeffi-
cients. Those coefficient trajectories are plotted in Figure 5-4.

Listing 5-2: Lasso Training on Full Data Set—wineLassoCoefCurves.py

__author__ = 'mike-bowles'

import urllib2
import numpy
from sklearn import datasets, linear_model
from sklearn.linear_model import LassoCV
from math import sqrt
import matplotlib.pyplot as plot

#read data into iterable
target_url = "http://archive.ics.uci.edu/ml/machine-learning-databases/
wine-quality/winequality-red.csv"
data = urllib2.urlopen(target_url)

xList = []
labels = []
names = []
firstLine = True
for line in data:
    if firstLine:
        names = line.strip().split(";")
        firstLine = False
    else:
        #split on semi-colon
        row = line.strip().split(";")
        #put labels in separate array
        labels.append(float(row[-1]))
        #remove label from row
        row.pop()
        #convert row to floats
        floatRow = [float(num) for num in row]
        xList.append(floatRow)

#Normalize columns in x and labels
#Note: be careful about normalization.  Some penalized regression
#packages include it and some don't.

nrows = len(xList)
ncols = len(xList[0])

#calculate means and variances
xMeans = []
xSD = []
for i in range(ncols):
    col = [xList[j][i] for j in range(nrows)]

continues

http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv
http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv


174 Chapter 5 ■ Building predictive Models Using penalized Linear Methods

    mean = sum(col)/nrows
    xMeans.append(mean)
    colDiff = [(xList[j][i] - mean) for j in range(nrows)]
    sumSq = sum([colDiff[i] * colDiff[i] for i in range(nrows)])
    stdDev = sqrt(sumSq/nrows)
    xSD.append(stdDev)

#use calculate mean and standard deviation to normalize xList
xNormalized = []
for i in range(nrows):
    rowNormalized = [(xList[i][j] - xMeans[j])/xSD[j] for j in
    range(ncols)]
    xNormalized.append(rowNormalized)

#Normalize labels
meanLabel = sum(labels)/nrows
sdLabel = sqrt(sum([(labels[i] - meanLabel) * (labels[i] - meanLabel)
for i in range(nrows)])/nrows)

labelNormalized = [(labels[i] - meanLabel)/sdLabel for i in
range(nrows)]

#Convert list of list to np array for input to sklearn packages

#Unnormalized labels
Y = numpy.array(labels)

#normalized lables
Y = numpy.array(labelNormalized)

#Unnormalized X's
X = numpy.array(xList)

#Normalized Xss
X = numpy.array(xNormalized)

alphas, coefs, _  = linear_model.lasso_path(X, Y,  return_models=False)

plot.plot(alphas,coefs.T)

plot.xlabel('alpha')
plot.ylabel('Coefficients')
plot.axis('tight')
plot.semilogx()
ax = plot.gca()
ax.invert_xaxis()
plot.show()

nattr, nalpha = coefs.shape

continued



 Chapter 5 ■ Building predictive Models Using penalized Linear Methods  175

#find coefficient ordering
nzList = []
for iAlpha in range(1,nalpha):
    coefList = list(coefs[: ,iAlpha])
    nzCoef = [index for index in range(nattr) if coefList[index] != 0.0]
    for q in nzCoef:
        if not(q in nzList):
            nzList.append(q)

nameList = [names[nzList[i]] for i in range(len(nzList))]
print("Attributes Ordered by How Early They Enter the Model", nameList)

#find coefficients corresponding to best alpha value. alpha value
# corresponding to normalized X and normalized Y is 0.013561387700964642

alphaStar = 0.013561387700964642
indexLTalphaStar = [index for index in range(100) if alphas[index] >
alphaStar]
indexStar = max(indexLTalphaStar)

#here's the set of coefficients to deploy
coefStar = list(coefs[:,indexStar])
print("Best Coefficient Values ", coefStar)

#The coefficients on normalized attributes give another slightly
#different ordering

absCoef = [abs(a) for a in coefStar]

#sort by magnitude
coefSorted = sorted(absCoef, reverse=True)

idxCoefSize = [absCoef.index(a) for a in coefSorted if not(a == 0.0)]

namesList2 = [names[idxCoefSize[i]] for i in range(len(idxCoefSize))]

print("Attributes Ordered by Coef Size at Optimum alpha", namesList2)

Printed Output w. Normalized X:
('Attributes Ordered by How Early They Enter the Model',
['"alcohol"', '"volatile acidity"', '"sulphates"',
'"total sulfur dioxide"', '"chlorides"', '"fixed acidity"', '"pH"',
'"free sulfur dioxide"', '"residual sugar"', '"citric acid"',
 '"density"'])

('Best Coefficient Values ',
[0.0, -0.22773815784738916, -0.0, 0.0, -0.094239023363375404,
0.022151948563542922, -0.099036391332770576, -0.0,

continues



176 Chapter 5 ■ Building predictive Models Using penalized Linear Methods

-0.067873612822590218, 0.16804102141830754, 0.37509573430881538])

('Attributes Ordered by Coef Size at Optimum alpha',
['"alcohol"', '"volatile acidity"', '"sulphates"',
'"total sulfur dioxide"', '"chlorides"', '"pH"',
'"free sulfur dioxide"'])

Printed Output w. Un-normalized X:
('Attributes Ordered by How Early They Enter the Model',
['"total sulfur dioxide"', '"free sulfur dioxide"', '"alcohol"',
'"fixed acidity"', '"volatile acidity"', '"sulphates"'])

('Best Coefficient Values ', [0.044339055570034182, -1.0154179864549988,
0.0, 0.0, -0.0, 0.0064112885435006822, -0.0038622920281433199, -0.0,
-0.0, 0.41982634135945091, 0.37812720947996975])

('Attributes Ordered by Coef Size at Optimum alpha',
['"volatile acidity"', '"sulphates"', '"alcohol"', '"fixed acidity"',
'"free sulfur dioxide"', '"total sulfur dioxide"'])

The program has hard-coded the α value that gave the best results in cross-
validation. The version in the code is the best alpha trained with normalized 
attributes and labels. Changing either of these to un-normalized will change 
the corresponding value of the best α. Changing Y to un-normalized changes 
it by the 1.2 factor that comes from normalizing the standard deviation to 1.0 
(as discussed earlier in the context of the MSE difference between normalized 
and un-normalized labels). The hard-coded value of α is used to identify the 
vector of coefficients corresponding to the best cross-validation results.

Listing 5-2 shows printed output for three cases: normalized attributes and 
un-normalized labels, both normalized, and both un-normalized. The printed 
output for each case includes a list of the attributes in the order that they enter 
the model as α is decreased. (The α in Python packages corresponds to the pen-
alty term λ in Chapter 4.) The printed output also shows the coefficients at the 
hard-coded value of α. The third element of the printed output is the order of the 
attributes as determined by the magnitude of the corresponding coefficient (at 
the hard-coded value of α). The magnitude of the coefficients is another way to 
determine the relative importance of attributes. This ranking only makes sense 
when the attributes are normalized. Observe that with normalized attributes, the 
two methods discussed for assigning importance to attributes (order in which 
they appear in the solutions and relative coefficient magnitudes) give essentially 
the same ordering on the attributes with some disagreement on less important 
attributes. With un-normalized attributes, this is far from true.

As mentioned earlier, the order in which variables come into the solution (as α 
decreases) is strongly modified by normalizing the attributes. If a variable isn’t nor-
malized, its scale factor determines its usage instead of its inherent value in predicting 

continued



 Chapter 5 ■ Building predictive Models Using penalized Linear Methods  177

the labels. This is obvious from comparing the variable ordering for normalized 
attributes (the first case in the printout) to the ordering for un-normalized variables.

Figures 5-4 and 5-5 show the Lasso coefficient curves for the case of normalized 
attributes and un-normalized attributes, respectively. The coefficient curves for 
un-normalized attributes are less orderly than they are for normalized attributes. 
Several of the early coefficients hover near zero relative to the magnitudes of 
coefficients that come into play later along the coefficient trajectories. This is 
compatible with the radically different ordering between the order that coef-
ficients enter the model and the magnitude of the coefficient at the best solution.

Figure 5-5: Coefficient curves for Lasso trained on un-normalized Xs

0.5

Co
ef

fic
ie

nt
s

0.0

−0.5

−1.0

100 10−1

alpha
10−2

Figure 5-4: Coefficient curves for Lasso trained to predict wine quality

0.3

0.2

0.1

Co
ef

fic
ie

nt
s

0.0

−0.1

−0.2

10−1 10−2

alpha
10−3



178 Chapter 5 ■ Building predictive Models Using penalized Linear Methods

Basis Expansion: Improving Performance by Creating New Variables from 
Old Ones

Chapter 4 discussed adding new attributes in the form of functions of the 
old attributes. The point of doing that is to see whether it results in improved 
performance. Listing 5-3 shows how to add two new attributes to the wine 
data.

Listing 5-3: Using Out-of-Sample Error to Evaluate New Attributes for Predicting Wine 
Quality—wineExpandedLassoCV.py

__author__ = 'mike-bowles'

import urllib2
import numpy
from sklearn import datasets, linear_model
from sklearn.linear_model import LassoCV
from math import sqrt
import matplotlib.pyplot as plot

#read data into iterable
target_url = ("http://archive.ics.uci.edu/ml/machine-learning-"
"databases/wine-quality/winequality-red.csv")
data = urllib2.urlopen(target_url)

xList = []
labels = []
names = []
firstLine = True
for line in data:
    if firstLine:
        names = line.strip().split(";")
        firstLine = False
    else:
        #split on semi-colon
        row = line.strip().split(";")
        #put labels in separate array
        labels.append(float(row[-1]))
        #remove label from row
        row.pop()
        #convert row to floats
        floatRow = [float(num) for num in row]
        xList.append(floatRow)

#append square of last term (alcohol)

for i in range(len(xList)):
    alcElt = xList[i][-1]
    volAcid = xList[i][1]
    temp = list(xList[i])
    temp.append(alcElt*alcElt)

http://archive.ics.uci.edu/ml/machine-learning-


 Chapter 5 ■ Building predictive Models Using penalized Linear Methods  179

    temp.append(alcElt*volAcid)
    xList[i] = list(temp)

#add new name to variable list
names[-1] = "alco^2"
names.append("alco*volAcid")

#Normalize columns in x and labels
#Note: be careful about normalization. Some penalized regression
packages include it and some don't.

nrows = len(xList)
ncols = len(xList[0])

#calculate means and variances
xMeans = []
xSD = []
for i in range(ncols):
    col = [xList[j][i] for j in range(nrows)]
    mean = sum(col)/nrows
    xMeans.append(mean)
    colDiff = [(xList[j][i] - mean) for j in range(nrows)]
    sumSq = sum([colDiff[i] * colDiff[i] for i in range(nrows)])
    stdDev = sqrt(sumSq/nrows)
    xSD.append(stdDev)

#use calculate mean and standard deviation to normalize xList
xNormalized = []
for i in range(nrows):
    rowNormalized = [(xList[i][j] - xMeans[j])/xSD[j] \
        for j in range(ncols)]
    xNormalized.append(rowNormalized)

#Normalize labels
meanLabel = sum(labels)/nrows
sdLabel = sqrt(sum([(labels[i] - meanLabel) * (labels[i] - meanLabel) \
        for i in range(nrows)])/nrows)

labelNormalized = [(labels[i] - meanLabel)/sdLabel \
        for i in range(nrows)]

#Convert list of list to np array for input to sklearn packages

#Unnormalized labels
Y = numpy.array(labels)

#normalized labels
#Y = numpy.array(labelNormalized)

#Unnormalized X's
X = numpy.array(xList)

continues



180 Chapter 5 ■ Building predictive Models Using penalized Linear Methods

#Normalized Xss
X = numpy.array(xNormalized)

#Call LassoCV from sklearn.linear_model
wineModel = LassoCV(cv=10).fit(X, Y)

# Display results

plot.figure()
plot.plot(wineModel.alphas_, wineModel.mse_path_, ':')
plot.plot(wineModel.alphas_, wineModel.mse_path_.mean(axis=-1),
         label='Average MSE Across Folds', linewidth=2)
plot.axvline(wineModel.alpha_, linestyle='--',
            label='CV Estimate of Best alpha')
plot.semilogx()
plot.legend()
ax = plot.gca()
ax.invert_xaxis()
plot.xlabel('alpha')
plot.ylabel('Mean Square Error')
plot.axis('tight')
plot.show()

#print out the value of alpha that minimizes the CV-error
print("alpha Value that Minimizes CV Error  ",wineModel.alpha_)
print("Minimum MSE  ", min(wineModel.mse_path_.mean(axis=-1)))

Printed Output: [filename - wineLassoExpandedCVPrintedOutput.txt]
('alpha Value that Minimizes CV Error  ', 0.016640498998569835)
('Minimum MSE  ', 0.43452874043020256)

The key step comes right after the attributes are read in and converted to 
floats. There are a dozen or so lines of code that take each row of attributes, pull 
out the two variables corresponding to measures of alcohol and volatile acid-
ity, and then append alcohol squared and the product alcohol times volatile acidity. 
These are chosen because it makes sense to start with variables that are more 
important in the solution. A thorough hunt for possible improvements might 
include several attempts with combinations of the top variables.

The results show that adding these new variables degrades performance slightly. 
A little hunting might turn up some variables that make a useful difference. 
You might run out coefficient curves for this example to see whether the new 
variables replaced any old ones that were important at the optimum solution. 
That information might lead you to remove the old variables in favor of these 
new synthetic ones.

Figure 5-6 shows the cross-validation error curves for Lasso trained using the 
expanded set of attributes. The character of the cross-validation curves doesn’t 
show substantial difference from the curves without basis expansion.

continued



 Chapter 5 ■ Building predictive Models Using penalized Linear Methods  181

Figure 5-6: Cross-validation error curves for Lasso trained on wine quality data with expanded 
feature set

0.9

0.8

0.7

M
ea

n 
Sq

ua
re

 E
rr

or

0.6

0.5

0.4

10−1 10−2

alpha
10−3

Average MSE across Folds
CV Estimate of Best alpha

This section has demonstrated the use of penalized regression methods on a 
problem with real number outcomes—a regression problem. The next section 
shows the use of penalized linear regression methods on a problem where the 
outcomes are two-valued. The code will look similar to what you have seen in 
this section, and some of the techniques, like basis expansion, can be used in 
classification problems. The main difference is how performance is scored for 
a classification problem.

Binary Classification: Using Penalized Linear Regression 
to Detect Unexploded Mines

Chapter 4 discussed how you can use penalized linear regression for classifica-
tion problems and set the process up for the rocks versus mines problem. This 
section gets into the details of how you would approach and solve a binary clas-
sification problem using penalized linear regression. The section incorporates 
the Python ElasticNet package. You’ll recall from Chapter 4 that ElasticNet 
incorporates a more general penalty function that includes the Lasso and ridge 
regression penalty functions as special cases. This makes it possible to see how 
performance of the classifier changes as you make alterations in the penalty 
function. These are the steps along the path to a solution:

 1. Cast the binary classification problem as a regression problem. Construct an 
outcome vector of real number labels by assigning 0.0 when the class outcome 
takes one of its two values and assigning 1.0 when it takes the other.



182 Chapter 5 ■ Building predictive Models Using penalized Linear Methods

 2. Perform cross-validation. The cross-validation becomes a little more 
complicated because you’ll need to calculate an error quantity for 
each fold. Scikit-learn has some handy utilities to streamline these 
calculations.

The first step (outlined in Chapter 4) is to cast the binary classification problem 
as a regression problem by replacing the classification labels with real number 
labels. The rocks versus mines problem is basically to build a system using sonar 
to detect unexploded mines on the seabed. You’ll recall from the data discovery 
in Chapter 2 that the data set contains digitized versions of the signals returned 
from rocks and from metal cylinders shaped like mines. The objective is to build 
a prediction system that can process the digitized signals to correctly identify 
whether the object is a rock or a mine. The data set consists of 208 experiments. 
Of the 208, 111 are mines and 97 are rocks. The data set is 61 columns wide. The 
first 60 columns contain the digitized sonar return. The last column contains 
an M or an R, depending on whether the object is in a rock or a mine. The  
60 columns of numbers are the attributes for the problem. A regression problem 
requires numeric labels too. An approach outlined in Chapter 4 is to build the 
column of numeric labels by assigning the number 1 to one of the two cases 
and 0 to the other. Listing 5-4 initializes an empty list called labels and appends 
a 1.0 for each M row and appends a 0.0 for each R row.

With numeric attributes and numeric labels, everything is in place to use 
the regression version of penalized linear regression. The next logical step is 
to perform cross-validation to get an estimate of out-of-sample performance 
and identify the best value of α, the penalty parameter. For this problem, doing 
cross-validation requires building a cross-validation loop to enclose training and 
testing. Why build a cross-validation loop instead of using the cross-validation 
package available in Python (like the one used in the wine quality example 
earlier in this chapter)?

The cross-validation for regression is based on MSE. That’s perfectly reasonable 
for a regression problem, but not for a classification problem. As discussed in 
Chapter 3, you characterize performance differently for a classification problem 
than for a regression problem. Chapter 3 discussed several ways to characterize 
performance. One natural way is to measure the percentage of examples that 
are misclassified. Another way is to measure the AUC. See Chapter 3 or the 
Wikipedia page http://en.wikipedia.org/wiki/Receiver_operating_char-
acteristic to refresh your memory on the AUC measure. To measure either of 
these requires that you have access to the predictions and labels in each of the 
cross-validation folds. You can’t judge misclassification error from a summary 
of the MSE for the fold.

The cross-validation loop breaks the data into training and test sets and then 
calls the Python enet_path method to accomplish training on the training por-
tion of the data. Two inputs to the routine are different from defaults. One is the 

http://en.wikipedia.org/wiki/Receiver_operating_characteristic


 Chapter 5 ■ Building predictive Models Using penalized Linear Methods  183

l1_ratio, which is set equal to 0.8. This parameter determines what fraction 
of the penalty is sum of absolute values of coefficients. The value 0.8 means 
that penalty function is 80 percent sum of absolute values and 20 percent sum 
of squares. The other nondefault parameter is fit_intercept, which is set to 
False. The code is using normalized labels and normalized attributes. Because 
all of these are zero mean, there’s no need to calculate an intercept term. The 
intercept is required only to adjust any constant offset between the attributes 
and the labels. Eliminating the need for the intercept term by using normalized 
labels makes the calculation of predictions a little cleaner. The only downside 
of normalizing the labels is that it makes the MSE calculation less meaningful 
relative to a regression problem, but for a classification problem, you’re not going 
to use that metric of performance anyway.

In each fold, after training is completed, the coefficients that are produced 
are used to generate predictions on the out-of-sample data for the fold. This is 
accomplished in the code by using the numpy dot function, the attributes for 
out-of-sample data for the fold, and the coefficients for the fold. This matrix-like 
multiplication of two numpy arrays leads to another two-dimensional array 
whose rows correspond to the rows in the out-of-sample test data for the fold and 
whose columns correspond to the sequence of models generated by enet_path 
(that is, the sequence of coefficient vectors and the corresponding sequence 
of α’s). These matrices of predictions for each fold are concatenated (visualize 
stacking them atop one another), as are the out-of-sample labels. Then, at the 
end of the run, these compendia of the fold-by-fold out-of-sample results can 
be processed easily and efficiently to yield performance data for each model 
and to select a model complexity (α) for deployment.

Listing 5-4 generates comparisons using two metrics. The first is misclas-
sification error. The second is area under the receiver operating curve (ROC). 
Each column from the matrix of predictions represents predictions generated 
for the totality of the out-of-sample data for one set of model coefficients. 
All the data are represented in each column since every row is held out in 
one (and only one) of the folds. The misclassification comparison considers 
the prediction data one column at a time and out-of-sample labels (called 
yOut in the code) accumulated fold by fold. Each prediction is compared to a 
fixed threshold (0.0 in this example) to determine a predicted classification. 
Then the predicted classification is compared to the corresponding entry in 
yOut to determine whether the predicted classification is correct. The plot in 
Figure 5-7 shows several points that achieve the same minimum. It’s good 
practice when you have a choice to choose the point farthest to the left on the 
graph of performance versus α. That’s because points to the right have more 
tendency to be overfit. It’s more conservative to choose a solution farther to 
the left. You’ll have a better chance that the errors in deployment will match 
those you see in cross-validation.



184 Chapter 5 ■ Building predictive Models Using penalized Linear Methods

Figure 5-7: Out-of-sample classifier misclassification performance

0.30

0.28

0.26

M
is

cl
as

si
fic

at
io

n 
Er

ro
r

10−1 10−2

alpha
10−3

0.24

Misclassification Error across Folds
CV Estimate of Best alpha

Another way to measure the performance of your classifier is AUC. AUC 
has the advantage that in maximizing the AUC you wind up getting the best 
performance independent of where you intend to operate the system—whether 
you want more or less equal rates of different types of errors or you’d prefer 
to bias the errors toward one type. Strictly speaking, maximizing AUC does 
not guarantee that you’ll get optimum performance at a particular error rate. 
Comparing the model chosen by AUC to the one chosen by minimizing overall 
error rate and observing the shapes of the curves help you get confidence in 
your solution and give you some idea about how much more performance is 
available with more thorough optimization.

The AUC calculations shown in Listing 5-4 use roc_curve and roc_auc_score 
programs from the sklearn. The process for generating the AUC versus α curve 
is similar to the process for the misclassification error, except the column of 
predictions and the true values are passed to the roc_auc_score program to 
generate the AUC number. Those then get plotted in Figure 5-8. The resulting 
curve looks roughly like the misclassification error curve upside down—upside 
down because larger is better for AUC, whereas smaller is better for misclassifi-
cation error. The printed output at the end of Listing 5-4 shows that the location 
of the optimum model based on misclassification error isn’t exactly the same 
as the optimum model for AUC, but they’re not far apart. Figure 5-9 shows the 
ROC plot for the classifier that maximizes AUC.

In your problem, some errors might be more expensive than others, causing 
you to want to bias the results away from the expensive errors in favor of the 
less expensive errors. For the rocks versus mines problem, there may be much 
higher expense for incorrectly classifying an unexploded mine as a rock than 
for classifying a rock as a mine.



 Chapter 5 ■ Building predictive Models Using penalized Linear Methods  185

One systematic way to deal with this is to use a confusion matrix, discussed in 
Chapter 3. It’s relatively easy to build from the output of the roc_curve program. 
The points on the ROC curve correspond to different values of threshold. The 
point (1,1) corresponds to the extreme where the threshold is set so low that all 
the points are classified as mines. That makes both the true positive rate and 
false positive rate equal one; the classifier gets all the positive points right, but 
it also gets all the negative points wrong. Setting the threshold higher than 
all the points gives the opposite corner of the plot. Getting the details on how 
points are shifting between the various boxes in the confusion matrix requires 

Figure 5-8: Out-of-sample classifier AUC performance

0.86

0.85

0.84

Ar
ea

 u
nd

er
 th

e 
RO

C 
Cu

rv
e

0.81

0.82

0.83

0.80

0.79

0.78
10−1 10−2

alpha
10−3

AUC across Folds
CV Estimate of Best alpha

Figure 5-9: Receiver operating characteristic for best performing classifier

1.0

0.8

0.6

Tr
ue

 P
os

iti
ve

 R
at

e

0.4

0.2

0.0
0.0 0.2 0.4 0.6

False Positive Rate
0.8 1.0



186 Chapter 5 ■ Building predictive Models Using penalized Linear Methods

picking some threshold values and printing out the results. Listing 5-4 shows 
three values of threshold chosen from the range of threshold values at inner 
quartiles of the threshold values (that is, excluding the end points). Setting the 
threshold high results in low false positives and high false negatives. Setting 
the threshold low has the opposite behavior. Setting the threshold in the middle 
more nearly balances the two types of errors.

You could get a best value of threshold by associating costs with each type 
of error and finding the value of the threshold that minimizes the total cost. 
The three confusion matrices in the printed output can serve as an example 
for how this would work. If false positive and false negative both cost $1, the 
middle table (corresponding to a threshold value of -0.0455) gives a total cost 
of $46, whereas the higher threshold gives $68 and the lower threshold gives 
$54. However, if the cost for false positive is $10 and the cost for false negative 
is $1, the higher threshold gives $113, the middle gives $226, and the lower 
gives $504. You might want to test more threshold values at finer granularity. 
For this approach to work properly, you’ll need to get the costs in a reasonable 
ballpark, and you’ll need to make sure that the percentages of positive cases and 
negative cases match those that you’ll see in real examples. The rocks versus 
mines examples were set up in a laboratory environment and probably don’t 
represent the actual numbers of rocks versus mines in a harbor. That’s easy 
enough to fix by oversampling one class or the other—that is, replicating some 
of the examples in one class or the other to get the proportions to match those 
you expect to see in deployment.

The data in the rocks versus mines training set are fairly well balanced. That 
is, there are roughly the same number of positive and negative examples. In 
some data sets, there may be many more examples of one class or the other. For 
example, clicks on Internet ads are a small fraction of 1 percent of the number of 
times the ads are seen. You may get better training results by over-representing 
the less numerous examples so that the proportions are closer to equal. You can 
accomplish this by replicating some of the less numerous cases or removing 
some of the more numerous ones.

Listing 5-4: Using ElasticNet Regression to Build a Binary (Two-Class) Classifier—
rocksVMinesENetRegCV.py

__author__ = 'mike_bowles'
import urllib2
from math import sqrt, fabs, exp
import matplotlib.pyplot as plot
from sklearn.linear_model import enet_path
from sklearn.metrics import roc_auc_score, roc_curve
import numpy

#read data from uci data repository
target_url = ("https://archive.ics.uci.edu/ml/machine-learning-"
"databases/undocumented/connectionist-bench/sonar/sonar.all-data")
data = urllib2.urlopen(target_url)

https://archive.ics.uci.edu/ml/machine-learning-


 Chapter 5 ■ Building predictive Models Using penalized Linear Methods  187

#arrange data into list for labels and list of lists for attributes
xList = []

for line in data:
    #split on comma
    row = line.strip().split(",")
    xList.append(row)

#separate labels from attributes, convert from attributes from string
#to numeric and convert "M" to 1 and "R" to 0

xNum = []
labels = []

for row in xList:
    lastCol = row.pop()
    if lastCol == "M":
        labels.append(1.0)
    else:
        labels.append(0.0)
    attrRow = [float(elt) for elt in row]
    xNum.append(attrRow)

#number of rows and columns in x matrix
nrow = len(xNum)
ncol = len(xNum[1])

alpha = 1.0

#calculate means and variances
xMeans = []
xSD = []
for i in range(ncol):
    col = [xNum[j][i] for j in range(nrow)]
    mean = sum(col)/nrow
    xMeans.append(mean)
    colDiff = [(xNum[j][i] - mean) for j in range(nrow)]
    sumSq = sum([colDiff[i] * colDiff[i] for i in range(nrow)])
    stdDev = sqrt(sumSq/nrow)
    xSD.append(stdDev)

#use calculate mean and standard deviation to normalize xNum
xNormalized = []
for i in range(nrow):
    rowNormalized = [(xNum[i][j] - xMeans[j])/xSD[j] \
        for j in range(ncol)]
    xNormalized.append(rowNormalized)

#normalize labels to center
#Normalize labels

continues



188 Chapter 5 ■ Building predictive Models Using penalized Linear Methods

meanLabel = sum(labels)/nrow
sdLabel = sqrt(sum([(labels[i] - meanLabel) * (labels[i] - meanLabel) \
        for i in range(nrow)])/nrow)

labelNormalized = [(labels[i] - meanLabel)/sdLabel for i in range(nrow)]

#number of cross-validation folds
nxval = 10

for ixval in range(nxval):
    #Define test and training index sets
    idxTest = [a for a in range(nrow) if a%nxval == ixval%nxval]
    idxTrain = [a for a in range(nrow) if a%nxval != ixval%nxval]

    #Define test and training attribute and label sets
    xTrain = numpy.array([xNormalized[r] for r in idxTrain])
    xTest = numpy.array([xNormalized[r] for r in idxTest])
    labelTrain = numpy.array([labelNormalized[r] for r in idxTrain])
    labelTest = numpy.array([labelNormalized[r] for r in idxTest])
    alphas, coefs, _ = enet_path(xTrain, labelTrain,l1_ratio=0.8,
        fit_intercept=False, return_models=False)

    #apply coefs to test data to produce predictions and accumulate
    if ixval == 0:
        pred = numpy.dot(xTest, coefs)
        yOut = labelTest
    else:
        #accumulate predictions
        yTemp = numpy.array(yOut)
        yOut = numpy.concatenate((yTemp, labelTest), axis=0)

        #accumulate predictions
        predTemp = numpy.array(pred)
        pred = numpy.concatenate((predTemp, numpy.dot(xTest, coefs)),
            axis = 0)

#calculate misclassification error
misClassRate = []
_,nPred = pred.shape
for iPred in range(1, nPred):
    predList = list(pred[:, iPred])
    errCnt = 0.0
    for irow in range(nrow):
        if (predList[irow] < 0.0) and (yOut[irow] >= 0.0):
            errCnt += 1.0
        elif (predList[irow] >= 0.0) and (yOut[irow] < 0.0):
            errCnt += 1.0
    misClassRate.append(errCnt/nrow)

continued



 Chapter 5 ■ Building predictive Models Using penalized Linear Methods  189

#find minimum point for plot and for print
minError = min(misClassRate)
idxMin = misClassRate.index(minError)
plotAlphas = list(alphas[1:len(alphas)])

plot.figure()
plot.plot(plotAlphas, misClassRate,
    label='Misclassification Error Across Folds', linewidth=2)
plot.axvline(plotAlphas[idxMin], linestyle='--',
            label='CV Estimate of Best alpha')
plot.legend()
plot.semilogx()
ax = plot.gca()
ax.invert_xaxis()
plot.xlabel('alpha')
plot.ylabel('Misclassification Error')
plot.axis('tight')
plot.show()

#calculate AUC.
idxPos = [i for i in range(nrow) if yOut[i] > 0.0]
yOutBin = [0] * nrow
for i in idxPos: yOutBin[i] = 1

auc = []
for iPred in range(1, nPred):
    predList = list(pred[:, iPred])
    aucCalc = roc_auc_score(yOutBin, predList)
    auc.append(aucCalc)

maxAUC = max(auc)
idxMax = auc.index(maxAUC)

plot.figure()
plot.plot(plotAlphas, auc, label='AUC Across Folds', linewidth=2)
plot.axvline(plotAlphas[idxMax], linestyle='--',
            label='CV Estimate of Best alpha')
plot.legend()
plot.semilogx()
ax = plot.gca()
ax.invert_xaxis()
plot.xlabel('alpha')
plot.ylabel('Area Under the ROC Curve')
plot.axis('tight')
plot.show()

#plot best version of ROC curve
fpr, tpr, thresh = roc_curve(yOutBin, list(pred[:, idxMax]))

continues



190 Chapter 5 ■ Building predictive Models Using penalized Linear Methods

ctClass = [i*0.01 for i in range(101)]

plot.plot(fpr, tpr, linewidth=2)
plot.plot(ctClass, ctClass, linestyle=':')
plot.xlabel('False Positive Rate')
plot.ylabel('True Positive Rate')
plot.show()

print('Best Value of Misclassification Error = ', misClassRate[idxMin])
print('Best alpha for Misclassification Error = ', plotAlphas[idxMin])
print('')
print('Best Value for AUC = ', auc[idxMax])
print('Best alpha for AUC   =  ', plotAlphas[idxMax])

print('')
print('Confusion Matrices for Different Threshold Values')

#pick some points along the curve to print. There are 208 points.
#The extremes aren't useful

#Sample at 52, 104 and 156. Use the calculated values of tpr and fpr
#along with definitions and threshold values.

#Some nomenclature (e.g. see wikipedia "receiver operating curve")

#P = Positive cases
P = len(idxPos)
#N = Negative cases
N = nrow - P
#TP = True positives = tpr * P
TP = tpr[52] * P
#FN = False negatives = P - TP
FN = P - TP
#FP = False positives = fpr * N
FP = fpr[52] * N
#TN = True negatives = N - FP
TN = N - FP

print('Threshold Value =   ', thresh[52])
print('TP = ', TP, 'FP = ', FP)
print('FN = ', FN, 'TN = ', TN)

TP = tpr[104] * P; FN = P - TP; FP = fpr[104] * N; TN = N - FP

print('Threshold Value =   ', thresh[104])
print('TP = ', TP, 'FP = ', FP)
print('FN = ', FN, 'TN = ', TN)

TP = tpr[156] * P; FN = P - TP; FP = fpr[156] * N; TN = N - FP

print('Threshold Value =   ', thresh[156])

continued



 Chapter 5 ■ Building predictive Models Using penalized Linear Methods  191

print('TP = ', TP, 'FP = ', FP)
print('FN = ', FN, 'TN = ', TN)

Printed Output: [filename - rocksVMinesENetRegCVPrintedOutput.txt]
('Best Value of Misclassification Error = ', 0.22115384615384615)
('Best alpha for Misclassification Error = ', 0.017686244720179375)

('Best Value for AUC = ', 0.86867279650784812)
('Best alpha for AUC   =  ', 0.020334883589342503)

Confusion Matrices for Different Threshold Values
('Threshold Value =   ', 0.37952298245219962)
('TP = ', 48.0, 'FP = ', 5.0)
('FN = ', 63.0, 'TN = ', 92.0)
('Threshold Value =   ', -0.045503481125357965)
('TP = ', 85.0, 'FP = ', 20.0)
('FN = ', 26.0, 'TN = ', 77.0)
('Threshold Value =   ', -0.4272522354395466)
('TP = ', 107.0, 'FP = ', 49.999999999999993)
('FN = ', 4.0, 'TN = ', 47.000000000000007)

Cross-validation gives you a solid estimate of the performance that you are 
going to see when you deploy this system. If the performance indicated by cross-
validation is not good enough, you will have to work to improve it. For example, 
you might try the basis expansion that was used in the section “Multivariable 
Regression: Predicting Wine Taste.” You might also have a look at the cases 
giving the worst errors and see if you can discern a pattern, whether they’re 
data-entry errors or if another variable can be added that would account for 
their being mistaken so badly. If the error satisfies the needs of your problem, 
you’ll want to train a model on the whole data set for deployment. The next 
section runs through that process.

Build a Rocks versus Mines Classifier for Deployment
As with the wine quality case study, the next step is to retrain the model 
on the full data set and pull out the coefficients corresponding to the best 
alpha—the one determined to minimize out-of-sample error, which is esti-
mated in this case study by cross-validation. Listing 5-5 shows the code for 
accomplishing this.

Listing 5-5: Coefficient Trajectories for ElasticNet Trained on Rocks versus Mines Data—
rocksVMinesCoefCurves.py

__author__ = 'mike_bowles'
import urllib2
from math import sqrt, fabs, exp
import matplotlib.pyplot as plot

continues



192 Chapter 5 ■ Building predictive Models Using penalized Linear Methods

from sklearn.linear_model import enet_pathsh
from sklearn.metrics import roc_auc_score, roc_curve
import numpy

#read data from uci data repository
target_url = ("https://archive.ics.uci.edu/ml/machine-learning-"
"databases/undocumented/connectionist-bench/sonar/sonar.all-data")
data = urllib2.urlopen(target_url)

#arrange data into list for labels and list of lists for attributes
xList = []

for line in data:
    #split on comma
    row = line.strip().split(",")
    xList.append(row)

#separate labels from attributes, convert attributes from
#string to numeric and convert "M" to 1 and "R" to 0

xNum = []
labels = []

for row in xList:
    lastCol = row.pop()
    if lastCol == "M":
        labels.append(1.0)
    else:
        labels.append(0.0)
    attrRow = [float(elt) for elt in row]
    xNum.append(attrRow)

#number of rows and columns in x matrix
nrow = len(xNum)
ncol = len(xNum[1])

alpha = 1.0

#calculate means and variances
xMeans = []
xSD = []
for i in range(ncol):
    col = [xNum[j][i] for j in range(nrow)]
    mean = sum(col)/nrow
    xMeans.append(mean)
    colDiff = [(xNum[j][i] - mean) for j in range(nrow)]
    sumSq = sum([colDiff[i] * colDiff[i] for i in range(nrow)])
    stdDev = sqrt(sumSq/nrow)
    xSD.append(stdDev)

continued

https://archive.ics.uci.edu/ml/machine-learning-


 Chapter 5 ■ Building predictive Models Using penalized Linear Methods  193

#use calculate mean and standard deviation to normalize xNum
xNormalized = []
for i in range(nrow):
    rowNormalized = [(xNum[i][j] - xMeans[j])/xSD[j] \
        for j in range(ncol)]
    xNormalized.append(rowNormalized)

#normalize labels to center

meanLabel = sum(labels)/nrow
sdLabel = sqrt(sum([(labels[i] - meanLabel) * (labels[i] - meanLabel) \
        for i in range(nrow)])/nrow)

labelNormalized = [(labels[i] - meanLabel)/sdLabel for i in range(nrow)]

#Convert normalized labels to numpy array
Y = numpy.array(labelNormalized)

#Convert normalized attributes to numpy array
X = numpy.array(xNormalized)

alphas, coefs, _ = enet_path(X, Y,l1_ratio=0.8, fit_intercept=False,
    return_models=False)

plot.plot(alphas,coefs.T)

plot.xlabel('alpha')
plot.ylabel('Coefficients')
plot.axis('tight')
plot.semilogx()
ax = plot.gca()
ax.invert_xaxis()
plot.show()

nattr, nalpha = coefs.shape

#find coefficient ordering
nzList = []
for iAlpha in range(1,nalpha):
    coefList = list(coefs[: ,iAlpha])
    nzCoef = [index for index in range(nattr) if coefList[index] != 0.0]
    for q in nzCoef:
        if not(q in nzList):
            nzList.append(q)

#make up names for columns of X
names = ['V' + str(i) for i in range(ncol)]
nameList = [names[nzList[i]] for i in range(len(nzList))]
print("Attributes Ordered by How Early They Enter the Model")

continues



194 Chapter 5 ■ Building predictive Models Using penalized Linear Methods

print(nameList)
print('')
#find coefficients corresponding to best alpha value. alpha value
corresponding to normalized X and normalized Y is 0.020334883589342503

alphaStar = 0.020334883589342503
indexLTalphaStar = [index for index in range(100) if \
    alphas[index] > alphaStar]
indexStar = max(indexLTalphaStar)

#here's the set of coefficients to deploy
coefStar = list(coefs[:,indexStar])
print("Best Coefficient Values ")
print(coefStar)
print('')
#The coefficients on normalized attributes give another slightly
#different ordering

absCoef = [abs(a) for a in coefStar]

#sort by magnitude
coefSorted = sorted(absCoef, reverse=True)

idxCoefSize = [absCoef.index(a) for a in coefSorted if not(a == 0.0)]

namesList2 = [names[idxCoefSize[i]] for i in range(len(idxCoefSize))]

print("Attributes Ordered by Coef Size at Optimum alpha")
print(namesList2)

Printed Output: [filename - rocksVMinesCoefCurvesPrintedOutput.txt]
Attributes Ordered by How Early They Enter the Model
['V10', 'V48', 'V11', 'V44', 'V35', 'V51', 'V20', 'V3', 'V21', 'V45',
'V43', 'V15', 'V0', 'V22', 'V27', 'V50', 'V53', 'V30', 'V58', 'V56',
'V28', 'V39', 'V46', 'V19', 'V54', 'V29', 'V57', 'V6', 'V8', 'V7',
'V49', 'V2', 'V23', 'V37', 'V55', 'V4', 'V13', 'V36', 'V38', 'V26',
'V31', 'V1', 'V34', 'V33', 'V24', 'V16', 'V17', 'V5', 'V52', 'V41',
'V40', 'V59', 'V12', 'V9', 'V18', 'V14', 'V47', 'V42']

Best Coefficient Values
[0.082258256813766639, 0.0020619887220043702, -0.11828642590855878,
0.16633956932499627, 0.0042854388193718004, -0.0, -0.04366252474594004,
 -0.07751510487942842, 0.10000054356323497, 0.0, 0.090617207036282038,
0.21210870399915693, -0.0, -0.010655386149821946, -0.0,
-0.13328659558143779, -0.0, 0.0, 0.0, 0.052814854501417867,
0.038531154796719078, 0.0035515348181877982, 0.090854714680378215,
0.030316113904025031, -0.0, 0.0, 0.0086195542357481014, 0.0, 0.0,
0.17497679257272536, -0.2215687804617206, 0.012614243827937584,
0.0, -0.0, 0.0, -0.17160601809439849, -0.080450013824209077,
0.078096790041518344, 0.022035287616766441, -0.072184409273692227,
0.0, -0.0, 0.0, 0.057018816876250704, 0.096478265685721556,
0.039917367637236176, 0.049158231541622875, 0.0, 0.22671917920123755,

continued



 Chapter 5 ■ Building predictive Models Using penalized Linear Methods  195

-0.096272735479951091, 0.0, 0.078886784332226484, 0.0,
0.062312821755756878, -0.082785510713295471, 0.014466967172068596,
-0.074326527525632721, 0.068096475974257331,
0.070488864435477847, 0.0]

Attributes Ordered by Coef Size at Optimum alpha
['V48', 'V30', 'V11', 'V29', 'V35', 'V3', 'V15', 'V2', 'V8', 'V44',
'V49', 'V22', 'V10', 'V54', 'V0', 'V36', 'V51', 'V37', 'V7', 'V56',
'V39', 'V58', 'V57', 'V53', 'V43', 'V19', 'V46', 'V6', 'V45', 'V20',
'V23', 'V38', 'V55', 'V31', 'V13', 'V26', 'V4', 'V21', 'V1']

The code in Listing 5-5 is structured similarly to the code in Listing 5-4, except 
that there’s no cross-validation loop. The value for alpha at which coefficients 
are sought is hard-coded and comes directly from the results generated by 
Listing 5-4. There were two values of alpha generated: one that minimized the 
misclassification error and one that maximized the AUC. The alpha that maxi-
mized AUC was slightly larger and slightly more conservative. It was slightly 
to the left of the value that minimized misclassification error and therefore 
slightly more conservative. The coefficients printed by the program are listed 
at the bottom of the code. Out of the 60 coefficients, 20-some-odd are 0. In this 
run (as in the cross-validation program), the l1_ratio variable was set to 0.8, 
which typically results in more coefficients than Lasso regression, which would 
correspond to l1_ratio at 1.0.

A couple of measures of variable importance are printed at the bottom of 
the listing. One is the order in which variables come into the solution as alpha 
is decremented downward. The other ordering is according to the magnitude 
of the coefficients at the optimum solution. As discussed in conjunction with 
the wine quality data, these orderings only make sense when the attributes 
are normalized. Some degree of agreement exists between these two different 
variable orderings, but they don’t agree completely. For example, the variables 
V48, V11, V35, V44, and V3 appear relatively high in both lists, but V10 appears 
at the top of the first list and is much further down in the ordering based on 
coefficient size. Apparently, V10 is important when the coefficient penalty is so 
large that the algorithm only permits a single attribute, but when the coefficient 
penalty has shrunk to the point that a multitude of attributes are included, the 
attribute V10 levels off and drops in importance somewhat as other attributes 
are added to the mix.

Typically, objects give the strongest reflections for waves whose wavelength 
is the same order of characteristic dimensions of the object. Mines (metal cylin-
ders) have length and diameter—relatively few and relatively long characteristic 
dimensions to reflect compared to rocks, which are more fractal in character 
and reflect a broader range of wavelengths. Because all the attribute values in 
the data set are positive (power levels), you might expect that the wavelengths 
corresponding to low frequencies would get positive coefficients and the wave-
lengths corresponding to high frequencies would get negative coefficients. 



196 Chapter 5 ■ Building predictive Models Using penalized Linear Methods

You can see how this differencing could easily lead to overfitting the data and 
building a model that did extremely well on this data set but didn’t generalize. 
The cross-validation process ensures that the model isn’t overfit as long as the 
training data is statistically similar to what the model will see in deployment. 
The errors seen in cross-validation will match those in deployment to the extent 
that the rocks and mines encountered in deployment match the nature and 
proportions of those in the training data.

Figure 5-10 plots the coefficient curves for the ElasticNet regression models 
trained on the full rocks versus mines data set. The curves emphasize the 
complexity and changing nature of the relative importance of the available 
attributes.

Figure 5-10: Coefficient curves for ElasticNet trained on rocks versus mines data

0.6

0.4

0.2

0.0

−0.2Co
ef

fic
ie

nt
s

−0.4

−0.6

−0.8
10−1 10−2

alpha
10−3

As mentioned in Chapter 4, an alternative to using penalized regression for 
classification is to use penalized logistic regression. Listing 5-5 shows code 
for an implementation of penalized logistic regression to build a classifier for 
the rocks versus mines data. The listing and the associated results highlight 
the similarities and differences between the two approaches. The algorithmic 
differences can be seen in the structure of the iteration. The logistic regression 
approach involves using linear functions of the attributes to calculate prob-
abilities and likelihoods of each of the training examples being a rock or a 
mine. (See http://en.wikipedia.org/wiki/Logistic_regression for more 
background on logistic regression and for careful derivations of the associated 
equations.) The algorithm for nonpenalized logistic regression is called iteratively 
reweighted least squares (IRLS). The name comes from the nature of the algorithm 
(see http://en.wikipedia.org/wiki/Iteratively_reweighted_least_squares). 
It derives weights based on probability estimates for each example in the training 

http://en.wikipedia.org/wiki/Logistic_regression
http://en.wikipedia.org/wiki/Iteratively_reweighted_least_squares


 Chapter 5 ■ Building predictive Models Using penalized Linear Methods  197

set. Given the weights, the problem becomes a weighted least squares regression 
problem. The process has to be iterated until the probabilities (and corresponding 
weights) stop changing. Basically, the IRLS for logistic regression adds another 
layer of iteration to the algorithm for (not logistic) penalized regression you 
saw in Chapter 4.

After reading in the variables and normalizing them, the program initializes 
weights and probabilities that are central to logistic regression and to the penal-
ized version of it. These probabilities and weights have to be estimated along 
with the coefficients (β’s) each time the penalty parameter decrements. You’ll 
see the letters IRLS added to some of the variables in the code to denote that 
they are associated with the IRLS layer of the iteration. The iteration to estimate 
the probabilities is inside the loop for decrementing the λ’s and wraps around 
the loop for iterating the coordinate descent on the β’s.

The details of the update are slightly more complicated than the algorithm 
for plain (not logistic) penalized regression. One complication is the weights 
that come with IRLS. The weights and probabilities get calculated one input 
example at a time. Those are denoted by p and w in the code. The effects of 
the weights on sums of products like attributes times residuals and squares 
of attributes also need to be collected. Those are denoted by variables like 
sumWxx, which is a list containing the sum of the weights times each of the 
attributes squared. The other complication is that the residuals are now a 
function of the labels, the probabilities, and (more familiarly) the attributes 
and their coefficients (β’s).

The code runs and produces variable ordering and coefficient curves to com-
pare with those generated using nonlogistic penalized regression. The logistic 
transformation makes direct comparison of the coefficients problematic because 
the logistic function causes a nonlinear scale change. Both plain and logistic 
regression (penalized and nonpenalized) generate vectors of coefficients and 
then multiply the (same) attributes by them and compare to a threshold. The 
threshold value is somewhat secondary since it can be determined subsequent 
to training, as was demonstrated. So the overall scale of the β’s doesn’t matter 
as much as the magnitudes of the components relative to one another. One way 
to judge the relative magnitudes is to look at the order in which the two meth-
ods bring in new variables. As you can see by comparing the printed output in 
Listing 5-5 to the printed output in Listing 5-4, the two methods agree completely 
on the ordering for the first eight attributes. Of the next eight variables, seven 
of the eight are common to both lists, although they are ordered somewhat dif-
ferently. Roughly the same is true of the next eight. There’s fairly good general 
agreement in the ordering between the two methods.

Another question is which one delivers better performance. Assessing that 
requires running cross-validation with penalized logistic regression. You have 
the tools and code to carry that out. The code in Listing 5-6 is not at all opti-
mized for speed, but it won’t take too long on the rocks versus mines problem.



198 Chapter 5 ■ Building predictive Models Using penalized Linear Methods

Listing 5-6: Penalized Logistic Regression Trained on Rocks versus Mines Data—
rocksVMinesGlmnet.py

__author__ = 'mike_bowles'
import urllib2
import sys
from math import sqrt, fabs, exp
import matplotlib.pyplot as plot

def S(z,gamma):
    if gamma >= fabs(z):
        return 0.0
    if z > 0.0:
        return z - gamma
    else:
        return z + gamma

def Pr(b0,b,x):
    n = len(x)
    sum = b0
    for i in range(n):
        sum += b[i]*x[i]
        if sum < -100: sum = -100
    return 1.0/(1.0 + exp(-sum))

#read data from uci data repository
target_url = ("https://archive.ics.uci.edu/ml/machine-learning-"
"databases/undocumented/connectionist-bench/sonar/sonar.all-data")
data = urllib2.urlopen(target_url)

#arrange data into list for labels and list of lists for attributes
xList = []

for line in data:
    #split on comma
    row = line.strip().split(",")
    xList.append(row)

#separate labels from attributes, convert from attributes from string
#to numeric and convert "M" to 1 and "R" to 0

xNum = []
labels = []

for row in xList:
    lastCol = row.pop()
    if lastCol == "M":
        labels.append(1.0)

https://archive.ics.uci.edu/ml/machine-learning-


 Chapter 5 ■ Building predictive Models Using penalized Linear Methods  199

    else:
        labels.append(0.0)
    attrRow = [float(elt) for elt in row]
    xNum.append(attrRow)

#number of rows and columns in x matrix
nrow = len(xNum)
ncol = len(xNum[1])

alpha = 0.8
#calculate means and variances
xMeans = []
xSD = []
for i in range(ncol):
    col = [xNum[j][i] for j in range(nrow)]
    mean = sum(col)/nrow
    xMeans.append(mean)
    colDiff = [(xNum[j][i] - mean) for j in range(nrow)]
    sumSq = sum([colDiff[i] * colDiff[i] for i in range(nrow)])
    stdDev = sqrt(sumSq/nrow)
    xSD.append(stdDev)

#use calculate mean and standard deviation to normalize xNum
xNormalized = []
for i in range(nrow):
    rowNormalized = [(xNum[i][j] - xMeans[j])/xSD[j] \
        for j in range(ncol)]
    xNormalized.append(rowNormalized)

#Do Not Normalize labels but do calculate averages
meanLabel = sum(labels)/nrow
sdLabel = sqrt(sum([(labels[i] - meanLabel) * (labels[i] - meanLabel) \
    for i in range(nrow)])/nrow)

#initialize probabilities and weights
sumWxr = [0.0] * ncol
sumWxx = [0.0] * ncol
sumWr = 0.0
sumW = 0.0

#calculate starting points for betas
for iRow in range(nrow):
    p = meanLabel
    w = p * (1.0 - p)
    #residual for logistic
    r = (labels[iRow] - p) / w
    x = xNormalized[iRow]
    sumWxr = [sumWxr[i] + w * x[i] * r for i in range(ncol)]
    sumWxx = [sumWxx[i] + w * x[i] * x[i] for i in range(ncol)]
    sumWr = sumWr + w * r
    sumW = sumW + w

continues



200 Chapter 5 ■ Building predictive Models Using penalized Linear Methods

avgWxr = [sumWxr[i]/nrow for i in range(ncol)]
avgWxx = [sumWxx[i]/nrow for i in range(ncol)]

maxWxr = 0.0
for i in range(ncol):
    val = abs(avgWxr[i])
    if val > maxWxr:
        maxWxr = val

#calculate starting value for lambda
lam = maxWxr/alpha

#this value of lambda corresponds to beta = list of 0's
#initialize a vector of coefficients beta
beta = [0.0] * ncol
beta0 = sumWr/sumW

#initialize matrix of betas at each step
betaMat = []
betaMat.append(list(beta))

beta0List = []
beta0List.append(beta0)

#begin iteration
nSteps = 100
lamMult = 0.93 #100 steps gives reduction by factor of 1000 in lambda
               #(recommended by authors)
nzList = []
for iStep in range(nSteps):
    #decrease lambda
    lam = lam * lamMult

    #Use incremental change in betas to control inner iteration

    #set middle loop values for betas = to outer values
    #values are used for calculating weights and probabilities
    #inner values are used for calculating penalized regression updates

    #take pass through data to calculate averages over data required
    #for iteration
    #initilize accumulators

    betaIRLS = list(beta)
    beta0IRLS = beta0
    distIRLS = 100.0
    #Middle loop to calculate new betas with fixed IRLS weights and
    #probabilities
    iterIRLS = 0

continued



 Chapter 5 ■ Building predictive Models Using penalized Linear Methods  201

    while distIRLS > 0.01:
        iterIRLS += 1
        iterInner = 0.0

        betaInner = list(betaIRLS)
        beta0Inner = beta0IRLS
        distInner = 100.0
        while distInner > 0.01:
            iterInner += 1
            if iterInner > 100: break

            #cycle through attributes and update one-at-a-time
            #record starting value for comparison
            betaStart = list(betaInner)
            for iCol in range(ncol):

                sumWxr = 0.0
                sumWxx = 0.0
                sumWr = 0.0
                sumW = 0.0

                for iRow in range(nrow):
                    x = list(xNormalized[iRow])
                    y = labels[iRow]
                    p = Pr(beta0IRLS, betaIRLS, x)
                    if abs(p) < 1e-5:
                        p = 0.0
                        w = 1e-5
                    elif abs(1.0 - p) < 1e-5:
                        p = 1.0
                        w = 1e-5
                    else:
                        w = p * (1.0 - p)

                    z = (y - p) / w + beta0IRLS + sum([x[i] *
                        betaIRLS[i] for i in range(ncol)])
                    r = z - beta0Inner - sum([x[i] * betaInner[i]
                        for i in range(ncol)])
                    sumWxr += w * x[iCol] * r
                    sumWxx += w * x[iCol] * x[iCol]
                    sumWr += w * r
                    sumW += w

                avgWxr = sumWxr / nrow
                avgWxx = sumWxx / nrow

                beta0Inner = beta0Inner + sumWr / sumW
                uncBeta = avgWxr + avgWxx * betaInner[iCol]
                betaInner[iCol] = S(uncBeta, lam * alpha) / (avgWxx +
                    lam * (1.0 - alpha))

continues



202 Chapter 5 ■ Building predictive Models Using penalized Linear Methods

            sumDiff = sum([abs(betaInner[n] - betaStart[n]) \
                for n in range(ncol)])
            sumBeta = sum([abs(betaInner[n]) for n in range(ncol)])
            distInner = sumDiff/sumBeta
        #print number of steps for inner and middle loop convergence
        #to monitor behavior
        #print(iStep, iterIRLS, iterInner)

        #if exit inner while loop, then set betaMiddle = betaMiddle
        #and run through middle loop again.

        #Check change in betaMiddle to see if IRLS is converged
        a = sum([abs(betaIRLS[i] - betaInner[i]) for i in range(ncol)])
        b = sum([abs(betaIRLS[i]) for i in range(ncol)])
        distIRLS = a / (b + 0.0001)
        dBeta = [betaInner[i] - betaIRLS[i] for i in range(ncol)]
        gradStep = 1.0
        temp = [betaIRLS[i] + gradStep * dBeta[i] for i in range(ncol)]
        betaIRLS = list(temp)

    beta = list(betaIRLS)
    beta0 = beta0IRLS
    betaMat.append(list(beta))
    beta0List.append(beta0)

    nzBeta = [index for index in range(ncol) if beta[index] != 0.0]
    for q in nzBeta:
        if not(q in nzList):
            nzList.append(q)

#make up names for columns of xNum
names = ['V' + str(i) for i in range(ncol)]
nameList = [names[nzList[i]] for i in range(len(nzList))]

print("Attributes Ordered by How Early They Enter the Model")
print(nameList)
for i in range(ncol):
    #plot range of beta values for each attribute
    coefCurve = [betaMat[k][i] for k in range(nSteps)]
    xaxis = range(nSteps)
    plot.plot(xaxis, coefCurve)

plot.xlabel("Steps Taken")
plot.ylabel("Coefficient Values")
plot.show()

Printed Output: [filename - rocksVMinesGlmnetPrintedOutput.txt]

Attributes Ordered by How Early They Enter the Model
['V10', 'V48', 'V11', 'V44', 'V35', 'V51', 'V20', 'V3', 'V50', 'V21',
'V43', 'V47', 'V15', 'V27', 'V0', 'V22', 'V36', 'V30', 'V53', 'V56',

continued



 Chapter 5 ■ Building predictive Models Using penalized Linear Methods  203

'V58', 'V6', 'V19', 'V28', 'V39', 'V49', 'V7', 'V23', 'V54', 'V8',
'V14', 'V2', 'V29', 'V38', 'V57', 'V45', 'V13', 'V32', 'V31', 'V42',
 'V16', 'V37', 'V59', 'V52', 'V25', 'V18', 'V1', 'V33', 'V4', 'V55',
'V17', 'V46', 'V26', 'V12', 'V40', 'V34', 'V5', 'V24', 'V41', 'V9']

Figure 5-11 shows the coefficient curves for rocks versus mines using penalized 
logistic regression. As noted, the scale of the coefficients is different from plain 
penalized regression because of the logistic function difference between the two 
methods. Ordinary regression attempts to fit a straight line to targets that are 0.0 
and 1.0. Logistic regression attempts to predict probabilities of class member-
ship by fitting a straight line to the “log odds ratio.” Suppose p is the predicted 
probability that an example corresponds to the mines class. Then the odds ratio 

is the ratio 
p

p1 −
. The log odds ratio is the natural log of the odds ratio. Whereas 

p ranges from 0 to 1, the log odds ratio of p ranges from minus infinity to plus 
infinity. The cases where the log odd is very large and positive corresponds to 
cases where the prediction is very certain that the case belongs to the mines class. 
Ones that are large negative numbers correspond to the rocks class.

Figure 5-11: Coefficient curves for ElasticNet penalized logistic regression trained on rocks 
versus mines data

4

2

0

Co
ef

fic
ie

nt
 V

al
ue

s

−2

−4

−6
0 20 40 60

Steps Taken
80 100

Because the two methods are predicting vastly different quantities, the scale 
on the predictions is much different and the coefficients are correspondingly 
different. But as the printed output from the two programs indicates, the order 
in which the variables appear in the solution is very similar, and the coefficient 
curves show that the signs are the same for the first several attributes that enter 
the solution.



204 Chapter 5 ■ Building predictive Models Using penalized Linear Methods

Multiclass Classification: Classifying Crime Scene Glass 
Samples

The rocks versus mines problem that you saw in the last section is called a 
binary classification problem because the labels and predictions take one of 
two possible values. (Did the sonar return being processed come from reflec-
tions off a rock or a mine?) If labels and predictions can take more than two 
values, the problem is called a multiclass classification problem. This section 
uses penalized linear regression for the problem of classifying glass samples. 
As described more fully in Chapter 2, the glass data set consists of 9 physical 
chemistry measurements (refractive index and measurements of chemical 
composition) on 214 samples of 6 different types of glass. The problem is to 
use the physical chemistry measurements to determine which of the six types 
a given sample represents. The application for this is forensic analysis of 
crime and accident scenes. The data set comes from the UCI data repository, 
and the web page for the data set references a paper that uses support vector 
machines to solve this same problem. After looking at the code for solving 
this problem, this section will compare performance with the support vector 
machine approach.

Listing 5-7 shows code for solving this problem.

Listing 5-7: Multiclass Classification with Penalized Linear Regression - Classifying Crime 
Scene Glass Samples—glassENetRegCV.py

import urllib2
from math import sqrt, fabs, exp
import matplotlib.pyplot as plot
from sklearn.linear_model import enet_path
from sklearn.metrics import roc_auc_score, roc_curve
import numpy

target_url = ("https://archive.ics.uci.edu/ml/machine-learning-"
"databases/glass/glass.data")
data = urllib2.urlopen(target_url)

#arrange data into list for labels and list of lists for attributes
xList = []
for line in data:
    #split on comma
    row = line.strip().split(",")
    xList.append(row)

names = ['RI', 'Na', 'Mg', 'Al', 'Si', 'K', 'Ca', 'Ba', 'Fe', 'Type']

#Separate attributes and labels
xNum = []

https://archive.ics.uci.edu/ml/machine-learning-


 Chapter 5 ■ Building predictive Models Using penalized Linear Methods  205

labels = []

for row in xList:
    labels.append(row.pop())
    l = len(row)
    #eliminate ID
    attrRow = [float(row[i]) for i in range(1, l)]
    xNum.append(attrRow)

#number of rows and columns in x matrix
nrow = len(xNum)
ncol = len(xNum[1])

#create one versus all label vectors
#get distinct glass types and assign index to each
yOneVAll = []
labelSet = set(labels)
labelList = list(labelSet)
labelList.sort()
nlabels = len(labelList)
for i in range(nrow):
    yRow = [0.0]*nlabels
    index = labelList.index(labels[i])
    yRow[index] = 1.0
    yOneVAll.append(yRow)

#calculate means and variances
xMeans = []
xSD = []
for i in range(ncol):
    col = [xNum[j][i] for j in range(nrow)]
    mean = sum(col)/nrow
    xMeans.append(mean)
    colDiff = [(xNum[j][i] - mean) for j in range(nrow)]
    sumSq = sum([colDiff[i] * colDiff[i] for i in range(nrow)])
    stdDev = sqrt(sumSq/nrow)
    xSD.append(stdDev)

#use calculate mean and standard deviation to normalize xNum
xNormalized = []
for i in range(nrow):
    rowNormalized = [(xNum[i][j] - xMeans[j])/xSD[j] \
        for j in range(ncol)]
    xNormalized.append(rowNormalized)

#normalize y's to center
yMeans = []
ySD = []
for i in range(nlabels):
    col = [yOneVAll[j][i] for j in range(nrow)]

continues



206 Chapter 5 ■ Building predictive Models Using penalized Linear Methods

    mean = sum(col)/nrow
    yMeans.append(mean)
    colDiff = [(yOneVAll[j][i] - mean) for j in range(nrow)]
    sumSq = sum([colDiff[i] * colDiff[i] for i in range(nrow)])
    stdDev = sqrt(sumSq/nrow)
    ySD.append(stdDev)

yNormalized = []
for i in range(nrow):
    rowNormalized = [(yOneVAll[i][j] - yMeans[j])/ySD[j] \
        for j in range(nlabels)]
    yNormalized.append(rowNormalized)

#number of cross-validation folds
nxval = 10
nAlphas=200
misClass = [0.0] * nAlphas

for ixval in range(nxval):
    #Define test and training index sets
    idxTest = [a for a in range(nrow) if a%nxval == ixval%nxval]
    idxTrain = [a for a in range(nrow) if a%nxval != ixval%nxval]

    #Define test and training attribute and label sets
    xTrain = numpy.array([xNormalized[r] for r in idxTrain])
    xTest = numpy.array([xNormalized[r] for r in idxTest])
    yTrain = [yNormalized[r] for r in idxTrain]
    yTest = [yNormalized[r] for r in idxTest]
    labelsTest = [labels[r] for r in idxTest]

    #build model for each column in yTrain
    models = []
    lenTrain = len(yTrain)
    lenTest = nrow - lenTrain
    for iModel in range(nlabels):
        yTemp = numpy.array([yTrain[j][iModel]
            for j in range(lenTrain)])
        models.append(enet_path(xTrain, yTemp,l1_ratio=1.0,
            fit_intercept=False, eps=0.5e-3, n_alphas=nAlphas ,
            return_models=False))

    for iStep in range(1,nAlphas):
        #Assemble the predictions for all the models, find largest
        #prediction and calc error
        allPredictions = []
        for iModel in range(nlabels):
            _, coefs, _ = models[iModel]
            predTemp = list(numpy.dot(xTest, coefs[:,iStep]))
            #un-normalize the prediction for comparison

continued



 Chapter 5 ■ Building predictive Models Using penalized Linear Methods  207

            predUnNorm = [(predTemp[j]*ySD[iModel] + yMeans[iModel]) \
                for j in range(len(predTemp))]
            allPredictions.append(predUnNorm)

        predictions = []
        for i in range(lenTest):
            listOfPredictions = [allPredictions[j][i] \
                for j in range(nlabels) ]
            idxMax = listOfPredictions.index(max(listOfPredictions))
            if labelList[idxMax] != labelsTest[i]:
                misClass[iStep] += 1.0

misClassPlot = [misClass[i]/nrow for i in range(1, nAlphas)]

plot.plot(misClassPlot)

plot.xlabel("Penalty Parameter Steps")
plot.ylabel(("Misclassification Error Rate"))
plot.show()

The first part of the code deals with reading the data from the UCI website 
and separating the labels from the attributes. The attributes get normalized in 
the usual way. The one-versus-all approach leads to some distinctive changes 
in the treatment of the labels. Instead of having a single set of labels, the one-
versus-all approach leads to as many vectors of labels as there are distinct labels. 
In the glass problem, there are six different labels. So, where the regression and 
binary classification problems had a single vector of labels, the glass problem 
has six vectors of labels. The intuition behind this is as follows: If you’ve got 
a problem of dividing a set of points into two groups, one plane will do it. If 
your problem is to divide a set of points into six groups, you’ll need more than 
a single plane.

One versus all trains as many different binary classifiers as there are distinct 
labels. The difference between these different classifiers is that they are trained 
to different labels. The code in Listing 5-7 shows how these labels are constructed 
from the original multiclass labels given by the problem. The approach is very 
similar to the approach you saw in Chapter 4 for converting categorical vari-
ables to numeric variables. The code listing extracts the distinct labels using 
a Python set, orders them from smallest to largest (not really necessary but 
helpful for keeping things straight), and then forms a column of labels where 
the first column has a 1 if the original labels take the first distinct label and has 
a 0 otherwise, the second column has a 1 if the original label takes the second 
distinct label, and so on. You can see why this is called one versus all. The labels 
in the first column will lead to a binary classifier predicting whether the sample 
takes the value of the first distinct label. Each of the six classifiers has a similar 
binary decision to make.



208 Chapter 5 ■ Building predictive Models Using penalized Linear Methods

The code goes on to build a cross-validation loop along familiar lines. One minor 
difference is that the raw labels are also sliced into a test set to facilitate measuring 
misclassification error later on. There’s a signal difference in the model training 
because on each cross-validation fold six models are trained and the trained 
models are stored in a list for later use. There are a couple of changes to the call 
to enet_path that are useful to discuss. One is that the eps parameter is spelled 
out and is exactly half the default value of 1e-3. This is one of the parameters 
that you have at your disposal to control the range of penalty parameter values 
that are covered in the training. Recall from the discussion (and code example) in 
Chapter 4 that the coordinate descent algorithm progresses by decrementing the 
penalty parameter. The eps parameter tells the algorithm where to stop decre-
menting. The input eps is the ratio of the stopping value of the penalty parameter 
divided by the starting value. The parameter n_alphas controls the number of 
steps. Be aware that taking steps that are too large my result in the algorithm not 
converging. It will give you a warning message if it fails to converge. You can then 
either make eps a little larger so the penalty parameter doesn’t get decremented 
by quite so much each step or you can take more steps by making n_alphas larger 
and thereby making each individual step smaller.

Another factor to consider is whether you’re seeing enough of the curve. 
The plot in Figure 5-12 shows a minimum that’s fairly close to the right edge 
of the graph. It would be useful to see a little more of the curve to be sure that 
the minimum isn’t further to the right. Decreasing eps will show portions of 
the curve to the right of where the curve currently ends.

Figure 5-12: Misclassification error rates using penalized linear regression for glass classification

0.65

0.60

0.55

M
is

cl
as

si
fic

at
io

n 
Er

ro
r R

at
e

0.50

0.45

0.40

0.35
0 20 40 60

Penalty Parameter Steps
80 100



 Chapter 5 ■ Building predictive Models Using penalized Linear Methods  209

After the six models are trained, they are used to make six predictions. The 
code checks to see which of the six predictions has the largest numerical value 
and chooses the corresponding value for the prediction. Then that is compared 
to the actual value and the error is accumulated.

Figure 5-12 shows a plot of the misclassification error rate versus the num-
ber of decrementing steps that the penalty parameter has undergone. The 
plot shows a marked improvement at the minimum from the simplest model 
at the left-hand edge of the plot. The minimum value for misclassification 
error is roughly 35 percent. This is a better value than reported for a linear 
kernel support vector machine. That paper does achieve misclassification 
errors of 35 percent for some choices of nonlinear kernels and gets errors as 
low as 30 percent for some nonlinear kernels. Using nonlinear kernels in a 
support vector machine is roughly equivalent to basis expansion that you 
saw used in the wine quality example earlier in this chapter. Basis expan-
sion didn’t prove effective in the wine quality problem, but the fact that 
nonlinear kernels gave marked performance improvement for support vec-
tor machines makes that a promising method for improving performance 
in the glass classification problem.

Summary

This chapter demonstrated the use of penalized regression along with a num-
ber of general tools for predictive modeling. The chapter showed several dif-
ferent types of problems that you’ll frequently encounter in real problems. 
These include regression, binary classification, and multiclass classification. 
The chapter used Python packages incarnating various different flavors of 
penalized regression for these tasks. In addition, the chapter illustrated the 
use of several tools that you may need in order to solve the modeling problems 
that you encounter. These include techniques for coding factor variables as 
numeric, for using a binary classifier to solve multiclass classification problems, 
and for extending linear methods to predict nonlinear relationships between 
attributes and outcomes.

The chapter also demonstrated a variety of ways to quantify performance for 
your predictive models. Regression problems are easiest to quantify because 
their errors can naturally be expressed in real number terms. Classification 
problems can be more involved. You saw classification performance quantified 
as misclassification error rates, area under the receiver operating curve, and 
economic costs. You should pick the method that comes closest to measuring 
performance in terms of your actual objectives (business objectives, science 
objectives, and so forth).



210 Chapter 5 ■ Building predictive Models Using penalized Linear Methods

references

 1. P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis. (2009). Modeling 
wine preferences by data mining from physicochemical properties. Decision 
Support Systems, Elsevier, 47(4):547–553.

 2. T. Hastie, R. Tibshirani, and J. Friedman. (2009). The Elements of Statistical 
Learning: Data Mining, Inference, and Prediction. 2nd ed. Springer-Verlag, 
New York.

 3. J. Friedman, T. Hastie, and R. Tibshirani. (2010). Regularization paths 
for generalized linear models via coordinate descent. Journal of Statistical 
Software, 33(1).

 4. K. Bache and M. Lichman. (2013). UCI Machine Learning Repository. 
Irvine, CA: University of California, School of Information and Computer 
Science. http://archive.ics.uci.edu/ml.

http://archive.ics.uci.edu/ml


211

Ensemble methods stem from the observation that multiple models give better 
performance than a single model if the models are somewhat independent of 
one another. A classifier that will give you the correct result 55% of the time 
is only mediocre, but if you’ve got 100 classifiers that are correct 55% of the 
time, the probability that the majority of them are right jumps to 82%. (Google 
“cumulative binomial probability” and try some numbers yourself.)

One way to get a variety of models that are somewhat independent from one 
another is to use different machine learning algorithms. For example, you can build 
models with support vector machine, linear regression, k nearest neighbors, binary 
decision tree, and so on. But it’s difficult to get a very long list of models that way. 
And, besides, it’s tedious because the different models all have different parameters 
that need to be tweaked separately and may have different requirements on the 
input data. So, the models need to be coded separately. That’s not going to work for 
generating hundreds or thousands of models (which you’ll be doing soon).

Therefore, the key with ensemble methods is to develop an algorithm approach 
to generate numerous somewhat independent models that will then be combined 
into an ensemble. In this chapter you learn how the most popular methods accom-
plish this. The chapter teaches you the mechanics of the most popular ensemble 
methods. It outlines the basic structure of the algorithms and demonstrates the 
algorithms in Python code to give you a firm understanding of their workings.

Ensemble methods employ a hierarchy of two algorithms. The low-level algo-
rithm is called a base learner. The base learner is a single machine learning algorithm 

C h a p t e r 

6

ensemble Methods 



212 Chapter 6 ■ ensemble Methods 

that gets used for all of the models that will get aggregated into an ensemble. This 
chapter will primarily use binary decision trees as base learners. The upper-level 
algorithm manipulates the inputs to the base learners so that the models they gen-
erate are somewhat independent. How can the same algorithm generate different 
models? There are several upper-level algorithms that are widely used. They go by 
the names bagging, boosting, and random forests. (Strictly speaking, random forests is 
a combination of an upper-level algorithm and particular modification to binary 
decision trees. You will see more detail on that in the section “Random Forests”).

A number of different algorithms could conceivably be used as base learners—
binary decision trees, support vector machine, and so on—but as a practical matter 
binary decision trees are the most widely used. They are the base learners in the 
open source and commercial packages that you’ll be able to use in your projects. 
The ensembles are collections of hundreds or thousands of binary decision trees, 
and many of the properties of these ensembles are ones they inherit from binary 
decision trees. So, this chapter begins with an introduction to binary decision trees.

Binary Decision Trees

Binary decision trees operate by subjecting attributes to a series of binary (yes/
no) decisions. Each decision leads to one of two possibilities. Each decision leads 
to another decision or it leads to prediction. An example of a trained tree will 
help cement the idea. You’ll learn how training works after understanding the 
result of training.

Listing 6-1 shows the code to use scikitlearn’s DecisionTreeRegressor package 
to build a binary decision tree for the wine quality data. Figure 6-1 depicts the 
trained tree produced by Listing 6-1.

Listing 6-1: Building a Decision Tree to Predict Wine Quality—wineTree.py

__author__ = 'mike-bowles'

import urllib2
import numpy
from sklearn import tree
from sklearn.tree import DecisionTreeRegressor
from sklearn.externals.six import StringIO
from math import sqrt
import matplotlib.pyplot as plot

#read data into iterable
target_url = ("http://archive.ics.uci.edu/ml/machine-learning-"
"databases/wine-quality/winequality-red.csv")
data = urllib2.urlopen(target_url)

xList = []

http://archive.ics.uci.edu/ml/machine-learning-


 Chapter 6 ■ ensemble Methods  213

labels = []
names = []
firstLine = True
for line in data:
    if firstLine:
        names = line.strip().split(";")
        firstLine = False
    else:
        #split on semi-colon
        row = line.strip().split(";")
        #put labels in separate array
        labels.append(float(row[-1]))
        #remove label from row
        row.pop()
        #convert row to floats
        floatRow = [float(num) for num in row]
        xList.append(floatRow)

nrows = len(xList)
ncols = len(xList[0])

wineTree = DecisionTreeRegressor(max_depth=3)

wineTree.fit(xList, labels)

with open("wineTree.dot", 'w') as f:
    f = tree.export_graphviz(wineTree, out_file=f)
#Note: The code above exports the trained tree info to a
#Graphviz "dot" file.
#Drawing the graph requires installing GraphViz and the running the
#following on the command line
#dot -Tpng wineTree.dot -o wineTree.png
# In Windows, you can also open the .dot file in the GraphViz
#gui (GVedit.exe)]

Figure 6-1 shows the series of decisions produced as an outcome of the training 
on the wine quality data. The block diagram of the trained tree shows a number 
of boxes, which are called nodes in decision tree parlance. There are two types of 
nodes: Nodes can either pose a yes/no question of the data, or they can be terminal 
nodes that assign a prediction to examples that end up in them. Terminal nodes are 
often referred to as leaf nodes. In Figure 6-1, the terminal nodes are the nodes at the 
bottom of the figure that have no branches or further decision nodes below them.

How a Binary Decision Tree Generates Predictions
When an observation or row is passed to a nonterminal node, the row answers 
the node’s question. If it answers yes, the row of attributes is passed to the leaf 
node below and to the left of the current node. If the row answers no, the row of 



214 Chapter 6 ■ ensemble Methods 

While in this tree the second decision regards the variable X[9] in both branches 
of the tree, the two decisions can be about different attributes. (For example, 
see the third layer of decisions.)

Look at the top node, known as the root node. That node poses the question 
X[10] <= 10.525. In binary decision trees, important variables are split on early 
(or near the top of the tree), so the decision tree deems variable X[10], or alcohol 
content, important. In this respect, it agrees with the penalized linear regression 
in Chapter 5, “Building Predictive Models Using Penalized Linear Methods,” 
which also deemed alcohol content most important in determining wine quality.

The tree in Figure 6-1 is said to have a depth of 3. The depth of a tree is defined 
as the number of decisions that have to be made down the longest path through 
the tree. The discussion of training in the section “Tree Training Equals Split 
Point Selection” will show you that there’s no reason that all the paths to the 
terminal nodes have to be the same length (as they are in Figure 6-1).

You now have an idea what a trained tree looks like and you have seen how to 
how to use a trained tree to make predictions. Now you’ll see how a tree gets trained.

How to Train a Binary Decision Tree
The easiest way to see how a tree gets trained is to look at a simple example. 
Listing 6-2 shows an example of predicting a real number label given a real 

Figure 6-1: Decision tree for determining wine quality

X[10] <= 10.5250
mse =

1042.16510319
samples = 1599

X[9] <= 0.5750
mse =

424.158697864
samples = 983

X[1] <= 04050
mse =

265.95777027
samples = 529

X[1] <= 0.7475
mse =

128.097186701
samples = 391

X[1] <= 1.0150
mse =

191.867647059
samples = 272

X[10] <= 11.5500
mse =

184.555232558
samples = 344

mse = 59.3043
samples = 138

value =
[6.65217391]

mse = 101.9660
samples = 206

value =
[6.12135922]

mse = 6.0000
samples = 10

value =
[4]

mse = 154.8702
samples = 262

value =
[5.79389313]

mse = 175.8728
samples = 448

value =
[5.40401786]

mse = 70.0000
samples = 144

value =
[5.83333333]

mse = 28.2222
samples = 63

value =
[4.88888889]

mse = 94.7195
samples = 328

value =
[5.20121951]

X[9] <= 0.6450
mse =

432.271103896
samples = 616

attributes is passed to the leaf node below and to the right of the current node. 
The process continues recursively until the row arrives at a terminal (that is, 
leaf) node where a prediction value is assigned to the row.  The value assigned 
by the leaf node is the mean of the outcomes of the all the training observations 
that wound up in the leaf node.



 Chapter 6 ■ ensemble Methods  215

number attribute. The data set for this is created in the code (so called synthetic 
data). The basic idea is that the single attribute x has 100 equally spaced values 
between -0.5 and +0.5. The labels y are equal to x, with some random noise 
added.

Listing 6-2: Training a Decision Tree for Simple Regression Problem—simpleTree.py

__author__ = 'mike-bowles'

import numpy
import matplotlib.pyplot as plot
from sklearn import tree
from sklearn.tree import DecisionTreeRegressor
from sklearn.externals.six import StringIO

#Build a simple data set with y = x + random
nPoints = 100

#x values for plotting
xPlot = [(float(i)/float(nPoints) - 0.5) for i in range(nPoints + 1)]

#x needs to be list of lists.
x = [[s] for s in xPlot]

#y (labels) has random noise added to x-value
#set seed
numpy.random.seed(1)
y = [s + numpy.random.normal(scale=0.1) for s in xPlot]

plot.plot(xPlot,y)
plot.axis('tight')
plot.xlabel('x')
plot.ylabel('y')
plot.show()

simpleTree = DecisionTreeRegressor(max_depth=1)
simpleTree.fit(x, y)

#draw the tree
with open("simpleTree.dot", 'w') as f:
    f = tree.export_graphviz(simpleTree, out_file=f)

#compare prediction from tree with true values

yHat  = simpleTree.predict(x)

plot.figure()
plot.plot(xPlot, y, label='True y')
plot.plot(xPlot, yHat, label='Tree Prediction ', linestyle='--')

continues



216 Chapter 6 ■ ensemble Methods 

plot.legend(bbox_to_anchor=(1,0.2))
plot.axis('tight')
plot.xlabel('x')
plot.ylabel('y')
plot.show()

simpleTree2 = DecisionTreeRegressor(max_depth=2)
simpleTree2.fit(x, y)

#draw the tree
with open("simpleTree2.dot", 'w') as f:
    f = tree.export_graphviz(simpleTree2, out_file=f)

#compare prediction from tree with true values

yHat  = simpleTree2.predict(x)

plot.figure()
plot.plot(xPlot, y, label='True y')
plot.plot(xPlot, yHat, label='Tree Prediction ', linestyle='--')
plot.legend(bbox_to_anchor=(1,0.2))
plot.axis('tight')
plot.xlabel('x')
plot.ylabel('y')
plot.show()

#split point calculations - try every possible split point to
#find the best one
sse = []
xMin = []
for i in range(1, len(xPlot)):
    #divide list into points on left and right of split point
    lhList = list(xPlot[0:i])
    rhList = list(xPlot[i:len(xPlot)])

    #calculate averages on each side
    lhAvg = sum(lhList) / len(lhList)
    rhAvg = sum(rhList) / len(rhList)

    #calculate sum square error on left, right and total
    lhSse = sum([(s - lhAvg) * (s - lhAvg) for s in lhList])
    rhSse = sum([(s - rhAvg) * (s - rhAvg) for s in rhList])

    #add sum of left and right to list of errors

    sse.append(lhSse + rhSse)
    xMin.append(max(lhList))

plot.plot(range(1, len(xPlot)), sse)
plot.xlabel('Split Point Index')

continued



 Chapter 6 ■ ensemble Methods  217

plot.ylabel('Sum Squared Error')
plot.show()

minSse = min(sse)
idxMin = sse.index(minSse)
print(xMin[idxMin])

#what happens if the depth is really high?
simpleTree6 = DecisionTreeRegressor(max_depth=6)
simpleTree6.fit(x, y)

#too many nodes to draw the tree
#with open("simpleTree2.dot", 'w') as f:
#    f = tree.export_graphviz(simpleTree6, out_file=f)

#compare prediction from tree with true values

yHat  = simpleTree6.predict(x)

plot.figure()
plot.plot(xPlot, y, label='True y')
plot.plot(xPlot, yHat, label='Tree Prediction ', linestyle='–')
plot.legend(bbox_to_anchor=(1,0.2))
plot.axis('tight')
plot.xlabel('x')
plot.ylabel('y')
plot.show()

Figure 6-2 plots the labels y versus the single attribute x. As you’d expect, y 
roughly follows x but with some randomness.

Figure 6-2: Label versus attribute for simple example

0.4

0.2

0.0

−0.2

−0.4

−0.4 −0.2 0.0
x

y

0.2 −0.4

−0.6



218 Chapter 6 ■ ensemble Methods 

Tree Training Equals Split Point Selection
The first step in Listing 6-2 is to run scikitlearn’s regression tree package with a 
depth of 1 specified. The results of that process are shown plotted in Figure 6-3. 
Figure 6-3 shows the block diagram for a depth 1 tree. Depth 1 trees are also called 
stumps. The single decision at the root node is to compare the attribute value with 
-0.075. This number is called the split point because it splits the data into two 
groups. The two boxes that emanate from the decision indicate that 43 of the 101 
input examples go down the left leg of the tree, and the remaining 58 examples 
go down the right leg. If the attribute is less than the split point, the prediction 
from the tree is what’s indicated as value in the block diagram—roughly –0.302.

Figure 6-3: Block diagram of depth 1 tree for simple problem

X[0] <= −0.0750
mse = 9.87720441723

samples = 101

mse = 1.7650
samples = 58

value = [0.23400293]

mse = 1.0025
samples = 43

value = [−0.30258266]

Figure 6-4: Comparison of predictions and actual values versus attribute for simple example

0.4

0.2

0.0

−0.2

−0.4

True y 
Tree Prediction 

y

−0.6

−0.4 −0.2 0.0
x

0.2 −0.4

How Split Point Selection Affects Predictions

Another way to view the trained tree is to see how its predictions compare with 
the true value of the labels. Because the simple synthetic problem has a single 
attribute only, the plot of the prediction generated by the trained tree alongside the 
actual values begins to give an idea about how the training of this simple tree was 
accomplished. The predicted values shown in Figure 6-4 follow a simple recipe. 
The prediction is a step function of the attribute. The step occurs at the split point.



 Chapter 6 ■ ensemble Methods  219

Algorithm for Selecting Split Points

Only three quantities are required to specify this simple tree: the split point value 
and the values assigned to the prediction if it falls into either of the two possible 
groups of points. Arriving at those quantities is accomplished during training 
of the tree. Here’s how that works. The tree is trained to minimize the squared 
error of its predictions. Suppose first that the split point is given. Once the split 
point is given, the values assigned to the two groups are also determined. The 
average of each group is the single quantity that minimizes the mean squared 
error. That only leaves the question of how the split point is determined. Listing 6-2 
has a small section of code that goes through the process of determining the split. 
The process is to try every possible split point. This is accomplished by dividing 
the data into two groups, approximating each group by its average, and then 
calculating the resulting sum squared error.

Figure 6-5 shows how the sum squared error varies as a function of the split 
point location. As you can see, there’s a well-defined minimum at roughly the 
midpoint of the data set. Training a decision tree entails exhaustively searching 
all possible split points to determine which one minimizes the sum squared 
error. That takes care of this simple example.

Multivariable Tree Training—Which Attribute to Split?

What if the problem has more than one attribute? Then the algorithm checks 
all possible split points for all of the attributes to see which split point gives 
the best sum squared error for each attribute and then which attributes gives 
the overall minimum.

Figure 6-5: Sum squared error resulting from every possible split point location

9

8

7

6

5

4

3

Split Point Index

Su
m

 S
qu

ar
ed

 E
rr

or

2
0 20 40 60 80 100



220 Chapter 6 ■ ensemble Methods 

This split point calculation is where all the computation cycles go in training 
a decision tree—and, by extension, where they go in training ensembles of trees. 
If the attribute being split doesn’t have any repeat values, there’s a split point to 
check for every data point (minus one).

As the data set gets larger, the number of split point calculations grows in 
direct proportion to the size of the data set. The split points that are checked 
can also get ridiculously close together. Algorithms designed to run on very 
large data sets allow split point checking to be considerably coarser than the 
raw granularity of the data. An approach to this is spelled out in “PLANET: 
Massively Parallel Learning of Tree Ensembles with MapReduce,”1 which outlines 
the approach taken by engineers at Google to build a decision tree algorithm 
on large data sets. As mentioned in the paper, they wanted the decision tree 
algorithm so that they could implement gradient boosting (one of the ensemble 
algorithms you’ll learn about later in this chapter).

Recursive Splitting for More Tree Depth

Listing 6-2 shows what happens to the prediction curve as the tree depth increases 
from 1 to 2. The resulting prediction curves are shown in Figure 6-6, and the 
block diagram for the tree is shown in Figure 6-7. Instead of having a single 
step, the prediction curve now has three steps. The second set of split points 
is determined in the same manner as the first one. Each node in the tree deals 
with the subset of points determined by the splits above it. The split point for 
each node is determined to minimize the sum squared error in the two nodes 
below. The curve in Figure 6-6 approximates the actual curve with a finer stair-
step function. More tree depth results in finer steps and higher fidelity to the 
training data. Will that continue indefinitely?

Figure 6-6: Prediction using depth 2 tree

0.4

0.2

0.0

−0.2

−0.4

y

−0.6

−0.4 −0.2 0.0
x

0.2

True y
Tree Predction

−0.4



 Chapter 6 ■ ensemble Methods  221

As splitting continues, the number of examples in the deepest nodes decreases. 
This can cause the splitting to terminate before the specified depth is reached. 
If there is only one example in a node, splitting certainly cannot continue. Tree 
training algorithms usually have a parameter to allow you to control how small 
a population will be split. Small populations in the nodes can lead to high vari-
ance in the resulting predictions.

Overfitting Binary Trees
The previous section showed how to train a binary decision tree of any depth. 
Is it possible to overfit a binary tree? This section discusses how to measure 
and regulate overfitting with binary trees. The mechanisms for overfit-
ting binary trees are different from what you saw in Chapter 4, “Penalized 
Linear Regression,” and Chapter 5, but you will see some similarities in the 
symptoms and how to measure overfitting. You will see that binary trees 
have parameters (tree depth and minimum leaf node size, for example) that 
can be used to regulate model complexity, similar to the process you saw in  
Chapters 4 and 5.

Measuring Overfit with Binary Trees

Figure 6-8 shows what happens when the tree depth is increased to 6. In 
Figure 6-8, it’s hard to see the difference between the true value and the 
prediction. The prediction follows almost every zig and zag. That begins to 
suggest that the model is overfitting the data. The way the data were gener-
ated indicates that the best possible prediction would be for the prediction 
to equal the attribute value. The noise that was added to the attribute is 
unpredictable, and yet the prediction is following the noise-driven deviations 
of the label from the attribute. Synthetic data afford the luxury of knowing 
the correct answer.

Figure 6-7: Block diagram for depth 2 tree

X[0] <= -0.0750
mse = 9.87720441723

samples = 101

X[0] <= −0.2950
mse = 1.00250144518

samples = 43

X[0] <= 0.2650
mse = 1.76497349706

samples = 58

mse = 0.2974
samples = 21

value = [−0.41794244]

mse = 0.1588
samples = 22

value = [−0.1924665]

mse = 0.5126
samples = 34

value = [0.11720893]

mse = 0.1315
samples = 24

value = [0.39946109]



222 Chapter 6 ■ ensemble Methods 

Another way to look at overfitting with a binary tree is to consider the number 
of terminal nodes in the tree compared to the amount of data available. The tree 
that generated the prediction shown in Figure 6-8 was depth 6. That means that 
it has 64 terminal nodes (26). There are 100 points in the dataset. That means a lot 
of the points are the sole occupants of a terminal node, so their predicted value 
exactly matches their observed value. No wonder the graph of the prediction 
is matching the wiggles due to noise.

Balancing Binary Tree Complexity for Best Performance

In real problems, cross-validation can be performed to control overfitting. Listing 
6-3 shows 10-fold cross-validation run on trees of a variety of depths for this 
simple problem. The code listing shows two loops. The outer one defines the 
tree depth for the inner cross-validation loop. The inner loop divides the data 
up and makes 10 passes to calculate out of sample errors. The mean squared 
error (MSE) results for each depth are plotted in Figure 6-9.

Listing 6-3: Cross-Validation at a Range of Tree Depths—simpleTreeCV.py

__author__ = 'mike-bowles'

import numpy
import matplotlib.pyplot as plot
from sklearn import tree
from sklearn.tree import DecisionTreeRegressor
from sklearn.externals.six import StringIO

#Build a simple data set with y = x + random

Figure 6-8: Prediction using depth 6 tree

0.4

0.2

0.0

−0.2

−0.4

y

−0.6

−0.4 −0.2 0.0
x

0.2 0.4

True y
Tree Prediction



 Chapter 6 ■ ensemble Methods  223

nPoints = 100

#x values for plotting
xPlot = [(float(i)/float(nPoints) - 0.5) for i in range(nPoints + 1)]

#x needs to be list of lists.
x = [[s] for s in xPlot]

#y (labels) has random noise added to x-value
#set seed
numpy.random.seed(1)
y = [s + numpy.random.normal(scale=0.1) for s in xPlot]

nrow = len(x)

#fit trees with several different values for depth and use
#x-validation to see which works best.

depthList = [1, 2, 3, 4, 5, 6, 7]
xvalMSE = []
nxval = 10

for iDepth in depthList:

    #build cross-validation loop to fit tree and evaluate on
    #out of sample data
    for ixval in range(nxval):

        #Define test and training index sets
        idxTest = [a for a in range(nrow) if a%nxval == ixval%nxval]
        idxTrain = [a for a in range(nrow) if a%nxval != ixval%nxval]

        #Define test and training attribute and label sets
        xTrain = [x[r] for r in idxTrain]
        xTest = [x[r] for r in idxTest]
        yTrain = [y[r] for r in idxTrain]
        yTest = [y[r] for r in idxTest]

        #train tree of appropriate depth and accumulate
        #out of sample (oos) errors
        treeModel = DecisionTreeRegressor(max_depth=iDepth)
        treeModel.fit(xTrain, yTrain)

        treePrediction = treeModel.predict(xTest)
        error = [yTest[r] - treePrediction[r] \
            for r in range(len(yTest))]

        #accumulate squared errors
        if ixval == 0:
            oosErrors = sum([e * e for e in error])
        else:

continues



224 Chapter 6 ■ ensemble Methods 

            #accumulate predictions
            oosErrors += sum([e * e for e in error])

    #average the squared errors and accumulate by tree depth

    mse = oosErrors/nrow
    xvalMSE.append(mse)

plot.plot(depthList, xvalMSE)
plot.axis('tight')
plot.xlabel('Tree Depth')
plot.ylabel('Mean Squared Error')
plot.show()

Figure 6-9: Out-of-sample error versus tree depth for simple problem 

0.030

0.025

0.020

0.015

Tree Depth

M
ea

n 
Sq

ua
re

d 
Er

ro
r

1 2 3 4 5 6 7

Tree depth is one way to regulate the complexity of a binary tree model. 
It has a similar effect to the coefficient penalty in the penalized regression 
model in Chapter 4 and Chapter 5. More tree depth makes it possible for 
the model to extract more complicated behaviors from the data at the cost 
of additional complexity. Figure 6-8 shows that depth 3 gives the best MSE 
performance for the synthetic problem from Listing 6-2. That depth makes 
the best trade off between reproducing the underlying relationships and 
overfitting the problem.

Recall from Chapter 3, “Predictive Model Building: Balancing Performance, 
Complexity, and Big Data,” that the optimum model complexity is a function of 
the data set size. This synthetic data problem offers an opportunity to demon-
strate how that works. Figure 6-10 shows how the optimum model complexity 
and performance change if the number of data points is increased to 1000.

continued



 Chapter 6 ■ ensemble Methods  225

You can run the plot for yourself by changing the variable nPoints in Listing 6-3 
to 1000. Two things happen as a result of adding more data. For one thing, the 
best tree depth increases from 3 to 4. The added data supports a more compli-
cated model. For another thing, the MSE drops slightly. The added depth permits 
finer steps in the stair-step approximation of the real model. The added fidelity 
of the model is what excites people about really large data sets.

Modifications for Classification and Categorical Features
For you to have a complete picture of how decision trees are trained, there are 
a couple of other details to discuss. One is this: How does this work for a clas-
sification problem? The earlier criteria used to judge splits, MSE, makes sense 
only for regression problems. As you’ve seen elsewhere in the book, classification 
problems have different figures of merit than regression problems. Several figures 
of merit can be used with classification problems to judge splits in place of MSE. 
One that you’re already familiar with is misclassification error. The other two 
commonly used measures are Gini impurity measure and information gain. For 
more information on these, see http://en.wikipedia.org/wiki/Decision_tree_
learning#Gini_impurity. These other two measures have somewhat different 
properties from misclassification error, but aren’t conceptually different.

The last detail is how trees can be trained on attributes that are categorical 
instead of being numeric. The (nonterminal) nodes in the tree pose a yes/no 
question. For numeric variables, the question is in the form of whether the given 
attribute is less than a parameter. Splitting a categorical variable into two subsets 
consists of trying all the possible divisions of the categories into two sets. If the 
categories are A, B, and C, the possible splits are A in the first group and B and 

Figure 6-10: Out-of-sample MSE versus tree depth with 1,000 data points

0.030

0.025

0.020

0.015

M
ea

n 
Sq

ua
re

d 
Er

ro
r

Tree Depth
1 2 3 4 5 6 7

http://en.wikipedia.org/wiki/Decision_tree_learning#Gini_impurity
http://en.wikipedia.org/wiki/Decision_tree_learning#Gini_impurity


226 Chapter 6 ■ ensemble Methods 

C in the second, B in the first group and A and C in the second, and so forth. 
There are some mathematical results that simplify this in some circumstances.

This section furnished some background on binary decision trees. On their own, 
binary decision trees are a legitimate prediction tool and worthy of study, but the 
main purpose of outlining them here is as background for ensemble methods, which 
incorporate hordes of binary decision trees. You will see that some of the issues 
that come up using an individual tree (multiple parameters to adjust, structural 
instability, and overfitting for large trees) will recede into the background when the 
hundreds or thousands of these trees are combined. That was the intent behind the 
development of ensemble methods which are remarkably robust, easy to train, and 
accurate. The next sections discuss the three main ensemble methods one at a time.

Bootstrap Aggregation: “Bagging”

Bootstrap aggregation was developed by Leo Breiman.2 This method starts with 
picking a base learner. The method will be implemented here using binary deci-
sion trees as the base learners. You’ll see as we go through the method that other 
machine learning algorithms could be used as base learners. Binary decision trees 
are a logical choice because they naturally model problems with complicated deci-
sion boundaries, but binary decision trees can exhibit excessive performance vari-
ance. Variance can be overcome by combining a multitude of tree-based models.

How Does the Bagging Algorithm Work?
The bootstrap aggregation algorithm uses what is called a bootstrap sample. The 
bootstrap sample is often used for generating sample statistics from a modest 
data set. A (nonparametric) bootstrap sample is a random selection of several 
elements from the data set with replacement (that is, a bootstrap sample can 
contain multiple copies of a row from the original data). Bootstrap aggregation 
takes a number of bootstrap samples from the training data set and then trains 
a base learner on each of these samples. The resulting models are averaged in 
regression problems. For classification problems, the models can either be aver-
aged or probabilities can be developed based on the percentages of different 
classes. Listing 6-4 shows code for the bagging algorithm applied to the synthetic 
problem introduced at the beginning of the chapter.

The code holds out 30% of the data for measuring out-of-sample performance 
instead of using cross-validation.  The parameter numTreesMax determines the 
maximum number of trees that will be included in the ensemble. The code builds 
models from the first tree, the first two trees, the first three trees, and so on, up 
to numTreesMax trees, to see how the accuracy depends on the number of trees 
included in the ensemble. The code stores the trained models in a list and stores 
the predictions on the data that were held out for out-of-sample error testing.



 Chapter 6 ■ ensemble Methods  227

The code produces two plots. One plots shows how the MSE changes as more 
trees are included in the ensemble. The second plot shows how the predictions 
from the first tree, the average of the first 10 trees and the average of the first 
20 trees, compare. The comparison plot is similar to the plot of the prediction 
curve relative to the actual labels as functions of the single attribute.

Listing 6-4: Bootstrap Aggregation Algorithm—simpleBagging.py

__author__ = 'mike-bowles'

import numpy
import matplotlib.pyplot as plot
from sklearn import tree
from sklearn.tree import DecisionTreeRegressor
from math import floor
import random

#Build a simple data set with y = x + random
nPoints = 1000

#x values for plotting
xPlot = [(float(i)/float(nPoints) - 0.5) for i in range(nPoints + 1)]

#x needs to be list of lists.
x = [[s] for s in xPlot]

#y (labels) has random noise added to x-value
#set seed
random.seed(1)
y = [s + random.normal(scale=0.1) for s in xPlot]

#take fixed test set 30% of sample
nSample = int(nPoints * 0.30)
idxTest = random.sample(range(nPoints), nSample)
idxTest.sort()
idxTrain = [idx for idx in range(nPoints) if not(idx in idxTest)]

#Define test and training attribute and label sets
xTrain = [x[r] for r in idxTrain]
xTest = [x[r] for r in idxTest]
yTrain = [y[r] for r in idxTrain]
yTest = [y[r] for r in idxTest]

#train a series of models on random subsets of the training data
#collect the models in a list and check error of composite as list grows

#maximum number of models to generate
numTreesMax = 20

continues



228 Chapter 6 ■ ensemble Methods 

#tree depth - typically at the high end
treeDepth = 1

#initialize a list to hold models
modelList = []
predList = []

#number of samples to draw for stochastic bagging
nBagSamples = int(len(xTrain) * 0.5)

for iTrees in range(numTreesMax):
    idxBag = random.sample(range(len(xTrain)), nBagSamples)
    xTrainBag = [xTrain[i] for i in idxBag]
    yTrainBag = [yTrain[i] for i in idxBag]

    modelList.append(DecisionTreeRegressor(max_depth=treeDepth))
    modelList[-1].fit(xTrainBag, yTrainBag)

    #make prediction with latest model and add to list of predictions
    latestPrediction = modelList[-1].predict(xTest)
    predList.append(list(latestPrediction))

#build cumulative prediction from first "n" models
mse = []
allPredictions = []
for iModels in range(len(modelList)):

    #average first "iModels" of the predictions
    prediction = []
    for iPred in range(len(xTest)):
        prediction.append(sum([predList[i][iPred] \
            for i in range(iModels + 1)])/(iModels + 1))

    allPredictions.append(prediction)
    errors = [(yTest[i] - prediction[i]) for i in range(len(yTest))]
    mse.append(sum([e * e for e in errors]) / len(yTest))

nModels = [i + 1 for i in range(len(modelList))]

plot.plot(nModels,mse)
plot.axis('tight')
plot.xlabel('Number of Models in Ensemble')
plot.ylabel('Mean Squared Error')
plot.ylim((0.0, max(mse)))
plot.show()

plotList = [0, 9, 19]
for iPlot in plotList:

continued



 Chapter 6 ■ ensemble Methods  229

    plot.plot(xTest, allPredictions[iPlot])
plot.plot(xTest, yTest, linestyle="--")
plot.axis('tight')
plot.xlabel('x value')
plot.ylabel('Predictions')
plot.show()

Figure 6-11 shows how the MSE varies as the number of trees is increased. 
The error more or less levels out at around 0.025. This isn’t really very good. 
The noise that was added had a standard deviation of 0.1. The very best MSE a 
predictive algorithm could generate is the square of that standard deviation or 
0.01. The single binary tree that was trained earlier in the chapter was getting 
close to 0.01. Why is this more sophisticated algorithm underperforming?

Figure 6-11: MSE versus number of trees in Bagging ensemble

0.030

0.025

0.020

0.015

0.010

0.005

0.000

M
ea

n 
Sq

ua
re

d 
Er

ro
r

Number of Models in Ensemble
5 10 15 20

Bagging Performance—Bias versus Variance

A look at Figure 6-12 gives some insight into the problem and raises a point that is 
important to illustrate because it’s relevant to other problems too. Figure 6-12  shows 
the single tree prediction, the 10-tree prediction, and the 20-tree prediction. The 
prediction from the single tree is easy to discern because there’s a single step. 
The 10- and 20-tree predictions superpose a number of slightly different trees 
so they have a series of finer steps that are in the neighborhood of the single 
step taken by the first tree. The steps of the multiple trees aren’t all in exactly 
the same spot because they are trained on different samples of the data and that 
leads to some randomness in the split points. But that randomness only jiggles 
the split points in a relatively small neighborhood near the center of the graph. 
So, the resulting ensemble doesn’t see much variety because all the trees in the 
ensemble roughly agree about where the single split point should go.



230 Chapter 6 ■ ensemble Methods 

There are two types of error: bias and variance. Consider trying to fit a wiggly 
curve with a straight line. Getting more data can reduce the effect of noise in 
the data being used for fitting, but more data will not make a straight line into 
a wiggly curve. Errors that do not get smaller as more data points are added 
are called bias errors. Fitting depth-1 trees to the synthetic problem suffers from 
a bias error. All the split points are chosen near the center of the data, and the 
model accuracy suffers at the edges of the data.

The bias error with depth 1 trees comes from the basic model being too simple 
and sharing a common limitation. Bagging reduces variance between models. 
But with depth 1 trees, it gets a bias error, which can’t be averaged. The way to 
overcome this problem is to use trees with more depth.

Figure 6-13 shows the curve of MSE versus number of trees in the ensemble 
for depth 5 trees. The MSE with depth 5 trees is somewhat smaller than 0.01 
(probably due to randomness in the noise data), clearly much better performance 
than with depth 1 trees.

Figure 6-14 shows plots for the prediction based on the first tree, the first 10 
trees, and the first 20 trees. The single tree prediction stands out from the oth-
ers because it has a number of sharp spikes where it’s making severe errors. In 
other words, it has a high variance. The other single trees undoubtedly show 
similar performance. But when they’re average, the variance is reduced; the 
curve representing the prediction from the bagging algorithm is much smoother 
and closer to the true answer.

0.4

0.2

0.0

−0.4

−0.6

−0.4 −0.2 0.0
x value

0.2 0.4

−0.2Pr
ed

ic
tio

ns

Figure 6-12: Comparison of prediction and actual label as functions of attribute



 Chapter 6 ■ ensemble Methods  231

How Bagging Behaves on Multivariable Problem

Listing 6-5 shows the application of the bagging algorithm for the task of predict-
ing wine quality. The wine example demonstrates some of the same principles as 
you saw with the synthetic data. These are best seen in Figures 6-15 through 6-17, 
which come from running Listing 6-4 with different parameter settings.

Figure 6-13: MSE versus number of trees with depth 5 trees

0.012

0.010

0.008

0.006

0.004

0.002

0.000

M
ea

n 
Sq

ua
re

d 
Er

ro
r

Number of Models in Ensemble
5 10 15 20

Figure 6-14: Comparison of prediction and actual labels with depth 5 trees

0.4

0.6

0.2

0.0

−0.2

−0.4

Pr
ed

ic
tio

ns

−0.6

−0.4 −0.2
x value
0.0 0.2 0.4



232 Chapter 6 ■ ensemble Methods 

Listing 6-5: Predicting Wine Quality with Bagging—wineBagging.py

__author__ = 'mike-bowles'

import urllib2
import numpy
from sklearn import tree
from sklearn.tree import DecisionTreeRegressor
import random
from math import sqrt
import matplotlib.pyplot as plot

#read data into iterable
target_url = ("http://archive.ics.uci.edu/ml/machine-learning-"
"databases/wine-quality/winequality-red.csv")
data = urllib2.urlopen(target_url)

xList = []
labels = []
names = []
firstLine = True
for line in data:
    if firstLine:
        names = line.strip().split(";")
        firstLine = False
    else:
        #split on semi-colon
        row = line.strip().split(";")
        #put labels in separate array
        labels.append(float(row[-1]))
        #remove label from row
        row.pop()
        #convert row to floats
        floatRow = [float(num) for num in row]
        xList.append(floatRow)

nrows = len(xList)
ncols = len(xList[0])

#take fixed test set 30% of sample
random.seed(1)
nSample = int(nrows * 0.30)
idxTest = random.sample(range(nrows), nSample)
idxTest.sort()
idxTrain = [idx for idx in range(nrows) if not(idx in idxTest)]

#Define test and training attribute and label sets
xTrain = [xList[r] for r in idxTrain]
xTest = [xList[r] for r in idxTest]
yTrain = [labels[r] for r in idxTrain]

http://archive.ics.uci.edu/ml/machine-learning-


 Chapter 6 ■ ensemble Methods  233

yTest = [labels[r] for r in idxTest]

#train a series of models on random subsets of the training data
#collect the models in a list and check error of composite as list grows

#maximum number of models to generate
numTreesMax = 30

#tree depth - typically at the high end
treeDepth = 1

#initialize a list to hold models
modelList = []
predList = []

#number of samples to draw for stochastic bagging
nBagSamples = int(len(xTrain) * 0.5)

for iTrees in range(numTreesMax):
    idxBag = []
    for i in range(nBagSamples):
        idxBag.append(random.choice(range(len(xTrain))))
    xTrainBag = [xTrain[i] for i in idxBag]
    yTrainBag = [yTrain[i] for i in idxBag]

    modelList.append(DecisionTreeRegressor(max_depth=treeDepth))
    modelList[-1].fit(xTrainBag, yTrainBag)

    #make prediction with latest model and add to list of predictions
    latestPrediction = modelList[-1].predict(xTest)
    predList.append(list(latestPrediction))

#build cumulative prediction from first "n" models
mse = []
allPredictions = []
for iModels in range(len(modelList)):

    #average first "iModels" of the predictions
    prediction = []
    for iPred in range(len(xTest)):
        prediction.append(sum([predList[i][iPred] \
            for i in range(iModels + 1)])/(iModels + 1))

    allPredictions.append(prediction)
    errors = [(yTest[i] - prediction[i]) for i in range(len(yTest))]
    mse.append(sum([e * e for e in errors]) / len(yTest))

nModels = [i + 1 for i in range(len(modelList))]

continues



234 Chapter 6 ■ ensemble Methods 

plot.plot(nModels,mse)
plot.axis('tight')
plot.xlabel('Number of Tree Models in Ensemble')
plot.ylabel('Mean Squared Error')
plot.ylim((0.0, max(mse)))
plot.show()

print('Minimum MSE')
print(min(mse))

#with treeDepth = 1
#Minimum MSE
#0.516236026081

#with treeDepth = 5
#Minimum MSE
#0.39815421341

#with treeDepth = 12 & numTreesMax = 100
#Minimum MSE
#0.350749027669

Figure 6-15 shows how MSE changes as more trees are included in the bag-
ging ensemble. The ensemble of stumps (depth 1 trees) on the wine quality data 
shows negligible improvement in MSE over the single tree. The lack of improve-
ment on the wine data is much more dramatic than with the synthetic data. 
This might be true for a couple of reasons. One possibility is that the errors at 
the edges of the data are more significant with the wine quality data than with 
the synthetic data. Another possibility is that interaction between variables is 
more important with the wine data.

Figure 6-15: Predicting wine quality with Bagging on depth 1 trees

continued



 Chapter 6 ■ ensemble Methods  235

The synthetic data had only one variable, so no interaction between vari-
ables was possible. The wine data has multiple attributes, and so it’s possible 
that the attributes in combination are more important than the sum of their 
individual contributions. If you stumble while walking, it won’t likely be 
important. If you walk along the edge of a cliff, it won’t likely be important. But 
if you stumble while walking along the edge of a cliff, it could be important. 
The two conditions have to be considered together. A depth 1 tree can only 
consider solitary attributes and therefore cannot account for strong interac-
tions between variables.

Bagging Needs Tree Depth for Performance

Figure 6-16 shows how the MSE depends on number of trees when the trees all 
have depth 5. The Bagging ensemble shows clear improvement as more trees 
are added. The resulting performance is much better than that achieved by 
Bagging depth 1 trees. The improvement suggests that perhaps even more tree 
depth would yield further improvement.

Figure 6-16: Predicting wine quality with Bagging on depth 5 trees

0.6

0.5

0.4

0.3

0.2

0.1

0.0
5 10

Number of Tree Models in Ensemble

M
ea

n 
Sq

ua
re

d 
Er

ro
r

15 20 25 30

Figure 6-17 shows MSE versus number of trees in the Bagging ensemble when 
the trees are depth 12. In addition to employing deeper trees, the ensemble 
runs 100 trees rather than 30 to get a better picture of how much performance 
improvement is available by training larger numbers of trees for the Bagging 
ensemble. Figure 6-17 shows the lowest MSE of the three runs.



236 Chapter 6 ■ ensemble Methods 

Summary of Bagging
Now you have seen a first example of an ensemble method. Bagging clearly 
demonstrates the two-level hierarchy common to ensemble methods. Properly 
speaking, bagging is the higher-level algorithm defining a series of subproblems 
to be solved by base learners and then averaging their predictions. The indi-
vidual problems making up a bagging ensemble are derived by taking random 
bootstrap samples of the original training data. Bagging reduces the variance 
exhibited by individual binary trees. For bagging to work properly, the trees in 
a bagging ensemble need to be grown to sufficient depth.

Bagging serves as a good introduction to ensemble methods because it is rela-
tively easy to understand and because it is relatively easy to demonstrate its vari-
ance reduction properties. The next two algorithms covered are gradient boosting 
and random forests. They take different approaches to building ensembles and 
exhibit some advantages over bagging. Most of the current practitioners I know use 
either gradient boosting or random forests first and do not regularly use bagging.

Gradient Boosting

Gradient boosting was developed by Stanford professor Jerome Friedman4,5, who 
also developed the coordinate descent algorithm used to solve the ElasticNet 
problem (in Chapters 4 and 5). Gradient boosting develops an ensemble of tree-
based models by training each of the trees in the ensemble on different labels 
and then combining the trees. For a regression problem where the objective is 

Figure 6-17: Predicting wine quality with Bagging on depth 12 trees

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

M
ea

n 
Sq

ua
re

d 
Er

ro
r

Number of Models in Ensemble
20 40 60 80 100



 Chapter 6 ■ ensemble Methods  237

to minimize MSE, each successive tree is trained on the errors left over by the 
collection of earlier trees. For the derivation of the algorithm see the References 
section at the end of this chapter. The easiest way to see how gradient boosting 
works is to look at some code implementing the algorithm.

Basic Principle of Gradient Boosting Algorithm
Listing 6-6 details the gradient boosting algorithm for the synthetic problem 
introduced earlier in this chapter. The early part of the code uses the process 
from earlier to build the synthetic data set.

Listing 6-6: Gradient Boosting for Simple Problem—simpleGBM.py

__author__ = 'mike-bowles'

import numpy
import matplotlib.pyplot as plot
from sklearn import tree
from sklearn.tree import DecisionTreeRegressor
from math import floor
import random

#Build a simple data set with y = x + random
nPoints = 1000

#x values for plotting
xPlot = [(float(i)/float(nPoints) - 0.5) for i in range(nPoints + 1)]

#x needs to be list of lists.
x = [[s] for s in xPlot]

#y (labels) has random noise added to x-value
#set seed
numpy.random.seed(1)
y = [s + numpy.random.normal(scale=0.1) for s in xPlot]

#take fixed test set 30% of sample
nSample = int(nPoints * 0.30)
idxTest = random.sample(range(nPoints), nSample)
idxTest.sort()
idxTrain = [idx for idx in range(nPoints) if not(idx in idxTest)]

#Define test and training attribute and label sets
xTrain = [x[r] for r in idxTrain]
xTest = [x[r] for r in idxTest]
yTrain = [y[r] for r in idxTrain]
yTest = [y[r] for r in idxTest]

#train a series of models on random subsets of the training data
#collect the models in a list and check error of composite as list grows

continues



238 Chapter 6 ■ ensemble Methods 

#maximum number of models to generate
numTreesMax = 30

#tree depth - typically at the high end
treeDepth = 5

#initialize a list to hold models
modelList = []
predList = []
eps = 0.3

#initialize residuals to be the labels y
residuals = list(yTrain)

for iTrees in range(numTreesMax):

    modelList.append(DecisionTreeRegressor(max_depth=treeDepth))
    modelList[-1].fit(xTrain, residuals)

    #make prediction with latest model and add to list of predictions
    latestInSamplePrediction = modelList[-1].predict(xTrain)

    #use new predictions to update residuals
    residuals = [residuals[i] - eps * latestInSamplePrediction[i] \
        for i in range(len(residuals))]

    latestOutSamplePrediction = modelList[-1].predict(xTest)
    predList.append(list(latestOutSamplePrediction))

#build cumulative prediction from first "n" models
mse = []
allPredictions = []
for iModels in range(len(modelList)):

    #add the first "iModels" of the predictions and multiply by eps
    prediction = []
    for iPred in range(len(xTest)):
        prediction.append(sum([predList[i][iPred]
            for i in range(iModels + 1)]) * eps)

    allPredictions.append(prediction)
    errors = [(yTest[i] - prediction[i]) for i in range(len(yTest))]
    mse.append(sum([e * e for e in errors]) / len(yTest))

nModels = [i + 1 for i in range(len(modelList))]

plot.plot(nModels,mse)
plot.axis('tight')

continued



 Chapter 6 ■ ensemble Methods  239

plot.xlabel('Number of Models in Ensemble')
plot.ylabel('Mean Squared Error')
plot.ylim((0.0, max(mse)))
plot.show()

plotList = [0, 14, 29]
lineType = [':', '-.', '--']
plot.figure()
for i in range(len(plotList)):
    iPlot = plotList[i]
    textLegend = 'Prediction with ' + str(iPlot) + ' Trees'
    plot.plot(xTest, allPredictions[iPlot], label = textLegend,
        linestyle = lineType[i])
plot.plot(xTest, yTest, label='True y Value', alpha=0.25)
plot.legend(bbox_to_anchor=(1,0.3))
plot.axis('tight')
plot.xlabel('x value')
plot.ylabel('Predictions')
plot.show()

Parameter Settings for Gradient Boosting

The first thing that looks unfamiliar is the comment about setting the depth 
parameter for the individual trees being trained in a gradient boosting ensemble. 
Gradient boosting differs from bagging and random forests in that it can 
reduce bias in addition to reducing variance. Gradient boosting has the useful 
property that it will often perform as well as low MSE values with stumps as 
with deeper trees. With gradient boosting, tree depth is only required to the 
extent that there’s a significant interaction between variables. Performance 
improvement from increasing tree depth serves as a gauge of variable inter-
action in your problem.

The next thing that looks a little different is the definition of a variable called 
eps. This variable is a step size control of the sort that you may be familiar with 
from optimization problems. Gradient boosting takes gradient descent steps 
and, as with other gradient descent processes, if the steps are too large the 
optimization can diverge instead of converging. If the step size is too small, the 
process can take too many iterations. After generating some results, the chapter 
will talk about how to tune eps, the step size.

The next unfamiliar element of the code is the definition of a variable called 
residuals. The term residuals is commonly used to denote prediction errors 
(that is, observed values minus predicted values). The gradient boosting algo-
rithm will make a series of refinements to its predictions of the labels. At each 
step along the way, the residuals will get recalculated. At the beginning of the 
process, gradient boosting initializes predictions to null (or zero) values so that 
the residuals are equal to the observed labels.



240 Chapter 6 ■ ensemble Methods 

How Gradient Boosting Iterates Toward a Predictive Model

The loop on iTrees begins by training a tree using the attributes, but training on 
the residuals instead of the labels. Only for the first pass are the raw labels used 
for training targets. Subsequent passes take the predictions generated by train-
ing and subtract eps of them from the residuals before training. As mentioned, 
the subtraction of the residuals amount to a gradient descent and the reason for 
multiplying by the step size control parameter eps is to make sure that the iterative 
process converges. The code uses a fixed holdout set to measure out-of-sample 
performance and then plots the MSE as a function of the number of trees trained 
and also plots the function showing predicted values versus the single attribute.

Getting the Best Performance from Gradient Boosting
The first pair of plots (see Figures 6-18 and 6-19) shows the MSE versus number 
of trees and the plot of the prediction functions with eps = 0.1 and treeDepth = 1. 
Figure 6-18 shows that the error decreases smoothly and reaches roughly 0.014 
after training 30 trees, and the MSE is heading down, indicating that it could 
be reduced further by training still more trees.

Figure 6-18: MSE versus number of trees for synthetic problem - eps = 0.1, treeDepth = 1

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.00

M
ea

n 
Sq

ua
re

d 
Er

ro
r

Number of Models in Ensemble
5 10 15 20 25 30

Figure 6-19 shows the prediction versus attribute value for three gradient 
boosting models—one that only trains one tree, one that trains 15 trees, and one 
that trains 30 trees. The model incorporating a single tree looks like a diminished 
version of the tree models that you saw in the introductory section about decision 
trees. As described, it is indeed a single depth 1 tree trained on the labels and 
then multiplied by 0.1—the value of eps. Things get more interesting with the 



 Chapter 6 ■ ensemble Methods  241

model built on 10 trees. That model makes a nice approximation to the correct 
answer—a straight line at 45 degrees on the graph. The model incorporating 10 
trees correctly predicts roughly half of the range right, and predicts the right 
and left sides as constant. The model incorporating 30 trees gets a little further 
toward good approximation all the way to the edges of the data. This is distinct 
from the behavior that bagging showed with using stumps.

Figure 6-19: Gradient boosting predictions versus attribute value problem - eps = 0.1, 
treeDepth = 1

0.4

0.6

0.2

0.0

−0.2

−0.4

Pr
ed

ic
tio

ns

−0.6

−0.4 −0.2 0.0
x value

Prediction with 0 Trees
Prediction with 14 Trees
Prediction with 29 Trees
True y Value

0.2 0.4

Bagging couldn’t get beyond the bias error inherent in using shallow trees 
to build predictions for a number of problems not much different from one 
another. Gradient boosting starts in the same manner, but as it begins to reduce 
the errors in the middle of the data, it begins to pay more attention to the areas 
where it’s making mistakes. That moves the split points out into the regions 
where there are mistakes. That process leads to a nice approximation without 
needing tree depth to get it.

What happens as the parameters controlling the training are changed? 
Figures 6-20 and 6-21 show how the picture changes if trees are of depth 5. 
The MSE plot in Figure 6-20 shows a similar smooth reduction in MSE as the 
number of trees increases. The MSE value gets very close to perfection (0.01) 
after training 30 depth 5 trees—lower than with depth 1 trees. What the plot 
doesn’t show is training time. Each level in a tree takes about the same time to 
train. At each layer, all the possible split points have to be compared for MSE. 
A depth 5 tree takes five times as long as five depth 1 trees. A fair comparison 
would be to see what error the depth 1 trees reached after 150 trees compared 
to depth 5 trees after 30.



242 Chapter 6 ■ ensemble Methods 

0.4

0.2

0.0

−0.2

−0.4

Pr
ed

ic
tio

ns

−0.6

−0.4 −0.2 0.0
x value

0.2 0.4

Prediction with 0 Trees
Prediction with 14 Trees
Prediction with 29 Trees
True y Value

Figure 6-21: Gradient boosting predictions versus attribute value problem - eps = 0.1, 
treeDepth = 5

Figure 6-20: MSE versus number of trees for synthetic problem - eps = 0.1, treeDepth = 5

0.07

0.06

0.05

0.04

0.02

0.03

0.01

0.00

M
ea

n 
Sq

ua
re

d 
Er

ro
r

5 10
Number of Tree Models in Ensemble

15 20 25 30

Figure 6-21 clearly reflects the deeper trees being used to build the gradient 
boosting ensemble. Even the first prediction based on a single tree shows some 
structure all across the range of the attribute. The models based on 15 trees and 
30 trees still exhibit higher levels of error at the edges of the data.

Figures 6-22 and 6-23 show what happens as the step size parameter eps is 
increased. Figure 6-22 shows behavior that’s characteristic of too large a step size 
parameter (named eps here). The graph of MSE versus the number of trees decreases 



 Chapter 6 ■ ensemble Methods  243

sharply but then increases again toward the right side. The minimum is on the left 
side of the graph, near the one-third point. You want to adjust eps so that the mini-
mum is at or near the right edge of the graph. That usually gives better performance.

Figure 6-22: MSE versus number of trees for synthetic problem - eps = 0.3, treeDepth = 5

0.03

0.04

0.02

0.01

0.00

Number of Models in Ensemble
5 10 15 20 25 30

M
ea

n 
Sq

ua
re

d 
Er

ro
r

Figure 6-23: Gradient Boosting predictions versus attribute value problem - eps = 0.3, 
treeDepth = 5

0.4

0.2

0.0

−0.2

−0.4

Pr
ed

ic
tio

ns

−0.6
−0.4 −0.2 0.0

x value
0.2 0.4

Prediction with 0 Trees
Prediction with 14 Trees
Prediction with 29 Trees
True y Value

The picture of the predictions as a function of the attribute shows more spiky 
diversions from the correct 45% line than either the versions using eps=0.1. 
Overall, the version with depth 1 trees is the best behaved. It looks like training 
more trees might improve the performance at the edges of the depth 1 model 
and lead to the best answer for gradient boosting.



244 Chapter 6 ■ ensemble Methods 

Gradient Boosting on a Multivariable Problem
Listing 6-7 shows application of gradient boosting to the task of predicting wine 
quality. With the exception using the wine data set for input, the code in Listing 
6-6 is very similar to the code used on the simple synthetic data set.

Listing 6-7: Gradient Boosting for Prediction Wine Quality—wineGBM.py

__author__ = 'mike-bowles'

import urllib2
import numpy
from sklearn import tree
from sklearn.tree import DecisionTreeRegressor
import random
from math import sqrt
import matplotlib.pyplot as plot

#read data into iterable
target_url = "http://archive.ics.uci.edu/ml/machine-learning-"
"databases/wine-quality/winequality-red.csv")
data = urllib2.urlopen(target_url)

xList = []
labels = []
names = []
firstLine = True
for line in data:
    if firstLine:
        names = line.strip().split(";")
        firstLine = False
    else:
        #split on semi-colon
        row = line.strip().split(";")
        #put labels in separate array
        labels.append(float(row[-1]))
        #remove label from row
        row.pop()
        #convert row to floats
        floatRow = [float(num) for num in row]
        xList.append(floatRow)

nrows = len(xList)
ncols = len(xList[0])

#take fixed test set 30% of sample
nSample = int(nrows * 0.30)
idxTest = random.sample(range(nrows), nSample)
idxTest.sort()
idxTrain = [idx for idx in range(nrows) if not(idx in idxTest)]

http://archive.ics.uci.edu/ml/machine-learning-


 Chapter 6 ■ ensemble Methods  245

#Define test and training attribute and label sets
xTrain = [xList[r] for r in idxTrain]
xTest = [xList[r] for r in idxTest]
yTrain = [labels[r] for r in idxTrain]
yTest = [labels[r] for r in idxTest]

#train a series of models on random subsets of the training data
#collect the models in a list and check error of composite as list grows

#maximum number of models to generate
numTreesMax = 30

#tree depth - typically at the high end
treeDepth = 5

#initialize a list to hold models
modelList = []
predList = []
eps = 0.1

#initialize residuals to be the labels y
residuals = list(yTrain)

for iTrees in range(numTreesMax):

    modelList.append(DecisionTreeRegressor(max_depth=treeDepth))
    modelList[-1].fit(xTrain, residuals)

    #make prediction with latest model and add to list of predictions
    latestInSamplePrediction = modelList[-1].predict(xTrain)

    #use new predictions to update residuals
    residuals = [residuals[i] - eps * latestInSamplePrediction[i] \
        for i in range(len(residuals))]

    latestOutSamplePrediction = modelList[-1].predict(xTest)
    predList.append(list(latestOutSamplePrediction))

#build cumulative prediction from first "n" models
mse = []
allPredictions = []
for iModels in range(len(modelList)):

    #add the first "iModels" of the predictions and multiply by eps
    prediction = []
    for iPred in range(len(xTest)):
        prediction.append(sum([predList[i][iPred]
            for i in range(iModels + 1)]) * eps)

    allPredictions.append(prediction)
continues



246 Chapter 6 ■ ensemble Methods 

    errors = [(yTest[i] - prediction[i]) for i in range(len(yTest))]
    mse.append(sum([e * e for e in errors]) / len(yTest))

nModels = [i + 1 for i in range(len(modelList))]

plot.plot(nModels,mse)
plot.axis('tight')
plot.xlabel('Number of Trees in Ensemble')
plot.ylabel('Mean Squared Error')
plot.ylim((0.0, max(mse)))
plot.show()

print('Minimum MSE')
print(min(mse))

#printed output
#Minimum MSE
#0.405031864814

The parameter selections shown in the code are for 30 depth 5 trees and eps=0.1. 
This parameter set yields MSE of roughly 0.4. That’s about 10% worse than the per-
formance bagging got on the same problem. Try adjusting the number of trees, eps, 
the step size parameter, and the tree depth to see whether you can get better results.

The curve of MSE versus number of trees looks fairly flat at the right edge (see 
Figure 6-24). It might still be possible to get some more performance by adding 
more trees to the ensemble. The other possible approaches to squeezing out a 
little more performance would be to tweak the tree depth or step size parameter.

Figure 6-24: MSE versus number of trees for Gradient Boosting model of wine quality

continued



 Chapter 6 ■ ensemble Methods  247

Summary for Gradient Boosting
This section has shown how gradient boosting operates and demonstrated how to 
control its behavior to get the best performance. The section talked about the effect 
of changing step size, tree depth, and number of trees. You’ve seen how gradi-
ent boosting avoids the bias errors that bagging experienced with shallow trees. 
The basic difference in principle between bagging and boosting is that boosting 
constantly monitors its cumulative error and uses that residual for subsequent 
training. That difference accounts for gradient boosting only needing tree depth 
when there’s significant interaction among the various attributes in the problem.

Random Forest

The random forests algorithm was developed by the late Berkeley professor Leo 
Breiman and Adele Cutler.3 Random forests generates its sequence of models by 
training them on subsets of the data. The subsets are drawn at random from the 
full training set. One way in which the subset is selected is to randomly sample 
rows with replacement in the same manner as Brieman’s bootstrap aggregation 
algorithm. The other random element is that the training sets for the individual 
trees in the random forests ensemble don’t incorporate all the attributes but take 
a random subset of the attributes also. Listing 6-8 approximates random forests 
using Python DecisionTreeRegression.

Listing 6-8: Bagging with Random Attribute Selection—wineRF.py

__author__ = 'mike-bowles'

import urllib2
import numpy
from sklearn import tree
from sklearn.tree import DecisionTreeRegressor
import random
from math import sqrt
import matplotlib.pyplot as plot

#read data into iterable
target_url = ("http://archive.ics.uci.edu/ml/machine-learning-"
"databases/wine-quality/winequality-red.csv")
data = urllib2.urlopen(target_url)

xList = []
labels = []
names = []
firstLine = True
for line in data:
    if firstLine:

continues

http://archive.ics.uci.edu/ml/machine-learning-


248 Chapter 6 ■ ensemble Methods 

        names = line.strip().split(";")
        firstLine = False
    else:
        #split on semi-colon
        row = line.strip().split(";")
        #put labels in separate array
        labels.append(float(row[-1]))
        #remove label from row
        row.pop()
        #convert row to floats
        floatRow = [float(num) for num in row]
        xList.append(floatRow)

nrows = len(xList)
ncols = len(xList[0])

#take fixed test set 30% of sample
random.seed(1)  #set seed so results are the same each run
nSample = int(nrows * 0.30)
idxTest = random.sample(range(nrows), nSample)
idxTest.sort()
idxTrain = [idx for idx in range(nrows) if not(idx in idxTest)]

#Define test and training attribute and label sets
xTrain = [xList[r] for r in idxTrain]
xTest = [xList[r] for r in idxTest]
yTrain = [labels[r] for r in idxTrain]
yTest = [labels[r] for r in idxTest]

#train a series of models on random subsets of the training data
#collect the models in a list and check error of composite as list grows

#maximum number of models to generate
numTreesMax = 30

#tree depth - typically at the high end
treeDepth = 12

#pick how many attributes will be used in each model.
# authors recommend 1/3 for regression problem
nAttr = 4

#initialize a list to hold models
modelList = []
indexList = []
predList = []
nTrainRows = len(yTrain)

for iTrees in range(numTreesMax):

    modelList.append(DecisionTreeRegressor(max_depth=treeDepth))

continued



 Chapter 6 ■ ensemble Methods  249

    #take random sample of attributes
    idxAttr = random.sample(range(ncols), nAttr)
    idxAttr.sort()
    indexList.append(idxAttr)

    #take a random sample of training rows
    idxRows = []
    for i in range(int(0.5 * nTrainRows)):
        idxRows.append(random.choice(range(len(xTrain))))
    idxRows.sort()

    #build training set
    xRfTrain = []
    yRfTrain = []

    for i in range(len(idxRows)):
        temp = [xTrain[idxRows[i]][j] for j in idxAttr]
        xRfTrain.append(temp)
        yRfTrain.append(yTrain[idxRows[i]])

    modelList[-1].fit(xRfTrain, yRfTrain)

    #restrict xTest to attributes selected for training
    xRfTest = []
    for xx in xTest:
        temp = [xx[i] for i in idxAttr]
        xRfTest.append(temp)

    latestOutSamplePrediction = modelList[-1].predict(xRfTest)
    predList.append(list(latestOutSamplePrediction))

#build cumulative prediction from first "n" models
mse = []
allPredictions = []
for iModels in range(len(modelList)):

    #add the first "iModels" of the predictions and multiply by eps
    prediction = []
    for iPred in range(len(xTest)):
        prediction.append(sum([predList[i][iPred]
            for i in range(iModels + 1)]) / (iModels + 1))

    allPredictions.append(prediction)
    errors = [(yTest[i] - prediction[i]) for i in range(len(yTest))]
    mse.append(sum([e * e for e in errors]) / len(yTest))

nModels = [i + 1 for i in range(len(modelList))]

plot.plot(nModels,mse)
continues



250 Chapter 6 ■ ensemble Methods 

plot.axis('tight')
plot.xlabel('Number of Trees in Ensemble')
plot.ylabel('Mean Squared Error')
plot.ylim((0.0, max(mse)))
plot.show()

print('Minimum MSE')
print(min(mse))

#printed output

#Depth 1
#Minimum MSE
#0.52666715461

#Depth 5
#Minimum MSE
#0.426116327584

#Depth 12
#Minimum MSE
#0.38508387863

Random Forests: Bagging Plus Random Attribute Subsets
The example shown in Listing 6-5 trains on the wine quality data set. The simple 
single-attribute example that was used earlier to illustrate bagging and gradient 
boosting algorithms won’t work with random forests. That example had only one 
attribute. It does not make sense to take a random draw of a single item. The code 
in Listing 6-5 looks a lot like the code for bagging. The only difference between the 
two that shows up before the loop on iTrees is the specification of a variable called 
nAttr. The random draw on the attributes needs to know how many attributes 
to select. The authors of the original paper recommend one third the number of 
attributes for a regression problem (and the square root of the number of attributes 
for a classification problem). Inside the iTrees loop, there’s a random sample on 
rows of the attribute matrix—just like with bagging. There’s also a random draw 
without replacement on the columns of the attribute matrix (or what would be 
rows and columns if the list of lists were converted to a numpy array). Then a tree 
gets trained and used to make a prediction on the out-of-sample data.

There is a difference between what’s implemented in Listing 6-5 and the ran-
dom forests algorithm. The algorithm in Listing 6-5 takes a random subset of 
the attributes and trains a tree with that subset. Breiman’s original version of the 
random forests algorithm takes a different random set of attributes for each node 
in the tree. To implement Breiman’s original version of the algorithm requires 
access to the innards of the tree growing algorithm. The example, nonetheless, 
gives a feel for how the algorithm operates. Some people argue that there’s not 
much advantage to make the random draw on attributes at every node.

continued



 Chapter 6 ■ ensemble Methods  251

Random Forests Performance Drivers
Figures 6-25 through 6-27 show how the addition of random attribute selection affect 
the curves of MSE versus the number of trees included in the ensemble. Figure 6-25 
shows the result when the individual trees are depth 1 trees. The picture is very 
similar to bagging in that the ensemble doesn’t improve performance very much. 
Depth 1 trees mostly cause bias error not variance error. Bias can’t be averaged away.

Figure 6-25: MSE versus number of trees for bagging + random attribute selection – Depth 1 trees

0.4

0.5

0.3

0.2

0.1

0.0

M
ea

n 
Sq

ua
re

d 
Er

ro
r

Number of Models in Ensemble
5 10 15 20 25 30

Figure 6-26: MSE versus number of trees for bagging + random attribute selection – Depth 5 trees

0.5

0.6

0.4

0.3

0.2

0.1

0.0

M
ea

n 
Sq

ua
re

d 
Er

ro
r

Number of Trees in Ensemble
5 10 15 20 25 30

Figure 6-26 shows the MSE curve using depth 5 trees. Now the variance 
reduction with bagging plus random attribute selection begins to show some 
performance. The improvement with this combination gets similar performance 
to other methods demonstrated.



252 Chapter 6 ■ ensemble Methods 

Figure 6-27 shows that a little more performance is available by using depth-
12 trees.

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

M
ea

n 
Sq

ua
re

d 
Er

ro
r

Number of Trees in Ensemble
5 10 15 20 25 30

Figure 6-27: MSE versus number of trees for bagging + random attribute selection – Depth 12 trees

Random Forests Summary
Random forests is a combination of bagging and a random attribute selection 
modification to the binary tree base learners. These differences may not seem 
substantial, but they give random forests different performance characteristics 
from bagging and gradient boosting. Some results suggest that random forests 
has an advantage with wide sparse attribute spaces such as occur in text mining 
problems. Random forests is a little easier to parallelize than gradient boost-
ing because the individual base learners can be trained independently of one 
another whereas with gradient boosting each base learner needs the results 
from the ones before it.

Differences like these mean that you may want to try both random forests 
in addition to gradient boosting, if you need to wring as much performance as 
possible from your data.

Summary

This chapter gave you some background on basic ensemble algorithms. It 
explained that ensemble methods consisted of a hierarchy of two algorithms. 
Ensemble methods train hundreds or thousands of the low-level algorithms 
called base learners. The higher-level algorithm controls the training of the base 
learners in order that their models turn out somewhat independent from one 



 Chapter 6 ■ ensemble Methods  253

another so that combining them will reduce the variance of the combination. 
For bagging, the higher-level algorithm is to take bootstrap samples of the 
training set and train base learners on these samples. For gradient boosting, 
the higher-level algorithm at each stage takes a sample of the input data and 
trains a base learner on it. With gradient boosting, the target used to train each 
base learner is the error from the accumulation of all the earlier base learners. 
Random forests is a combination of bagging as a higher-level algorithm and 
base learners that are modified versions of binary decision trees. The base learn-
ers with random forests are binary trees where, at each node, the split point 
decisions are restricted to a random sample of the available attributes instead 
of considering all the attributes in each split. The packages available for doing 
gradient boosting in Python permit you to use random forests base learners 
with gradient boosting. You will see that use in the next chapter, “Building 
Ensemble Methods with Python.”

The chapter coded each of the high-level algorithms and showed a facsimile 
of the random forests base learners. The purpose for coding these is for you to 
gain an understanding of the mechanisms at work in each of the algorithms. The 
idea behind that is that you will better understand the options, input variables, 
nominal starting values, and so on for the Python packages for these algorithms. 
The next chapter uses available Python packages to generate solutions to some 
of the problems you’ve seen solved by penalized linear regression.

references

 1. Panda  Biswanath, Joshua S. Herbach, Sugato Basu, and Roberto J. Bayardo. 
(2009). PLANET: Massively Parallel Learning of Tree Ensembles with 
MapReduce. Proceedings of the 35th International Conference on Very 
Large Data Bases. Retrieved from http://research.google.com/pubs/
pub36296.html.

 2. Leo Breiman. (September, 1994). Bagging Predictors. Technical Report 
No. 421. Department of Statistics, UC Berkeley. Retrieved from http://
statistics.berkeley.edu/sites/default/files/tech-reports/421.pdf.

 3. Leo Breiman. (2001). Random forests. Machine Learning, 45:5–32. Retrieved 
from http://oz.berkeley.edu/~breiman/randomforest2001.pdf.

 4. J.H. Friedman. (2001). Greedy Function Approximation: A Gradient Boosting 
Machine. Annals of Statistics, 29(5):1189–1232. Retrieved from http://
statweb.stanford.edu/~jhf/ftp/trebst.pdf.

 5. J.H. Friedman. (2002). Stochastic Gradient Boosting. Computational Statistics 
and Data Analysis, 38(4):367–378. Retrieved from http://statweb.stanford
.edu/~jhf/ftp/stobst.pdf.

http://research.google.com/pubs/pub36296.html
http://statistics.berkeley.edu/sites/default/files/tech-reports/421.pdf
http://statistics.berkeley.edu/sites/default/files/tech-reports/421.pdf
http://oz.berkeley.edu/~breiman/randomforest2001.pdf
http://statweb.stanford.edu/~jhf/ftp/trebst.pdf
http://statweb.stanford.edu/~jhf/ftp/trebst.pdf
http://statweb.stanford.edu/~jhf/ftp/stobst.pdf
http://research.google.com/pubs/pub36296.html
http://statweb.stanford.edu/~jhf/ftp/stobst.pdf




255

This chapter uses several available Python packages to build predictive models 
using the ensemble algorithms that you saw in Chapter 6, “Ensemble Methods.” 
The problems used to illustrate them were introduced in Chapter 2, “Understand 
the Problem by Understanding the Data.” You saw in Chapter 5, “Building 
Predictive Models Using Penalized Linear Methods,” how to build predictive 
models for them using penalized linear regression. This chapter uses ensemble 
methods to solve the same problems. That will enable you to compare the algo-
rithms and the available Python packages in terms of how easy the packages 
are to use, what kinds of accuracy is achievable with ensemble methods versus 
penalized linear regression, how the training times compare, and so on. The 
end of the chapter shows some summary comparisons of the various algorithms 
you’ve become familiar with.

Solving Regression Problems with Python  
Ensemble Packages

The next several sections demonstrate the application of available Python 
packages for building ensemble models. You will see the things you learned 
in Chapter 6 in action. The methods explained in Chapter 6 will be used on 
the series of problems explored in Chapter 2 and then used to demonstrate 
the application of penalized linear regression in Chapter 5. Using the same 
problems makes it possible to compare the algorithms covered here along sev-
eral dimensions, including raw performance, training time, and ease of use. 
The chapter also covers the available Python packages. The background given 
in Chapter 6 helps you understand why the Python packages are structured 

C h a p t e r 

7
Building ensemble  

Models with python



256 Chapter 7 ■ Building ensemble Models with python 

the way they are and helps you see how to get the most from these methods. 
This section goes through a variety of different problem types, beginning 
with regression problems.

Building a Random Forest Model to Predict  
Wine Taste
The wine quality data set provides an opportunity to predict wine taste 
scores based on the chemical composition of wine. As you know by now, 
this problem type is called a regression problem because the predictions 
take the form of real numbers. The Python scikit-learn ensemble module 
houses a Random Forest algorithm and a Gradient Boosting algorithm, 
both of which are for regression problems. First, this section explains the 
parameters required to instantiate a member of the RandomForestRegressor 
class. Then this section uses the RandomForestRegressor class to train a 
Random Forests model for the wine taste data and to explore the performance  
of the model.

Constructing a RandomForestRegressor Object1

Here is the class constructor for sklearn.ensemble.RandomForestRegressor:

sklearn.ensemble.RandomForestRegressor(n_estimators=10, criterion='mse',
max_depth=None, min_samples_split=2, min_samples_leaf=1, max_features=
'auto', max_leaf_nodes=None, bootstrap=True, oob_score=False, n_jobs=1,
random_state=None, verbose=0, min_density=None, compute_importances=
None)

The following description mirrors sklearn documentation, but covers only 
the parameter values that you’re most likely to want to alter.1 For those param-
eters, the list describes how to choose alternatives to the default values. To 
see descriptions of the parameters not covered here, see the sklearn package 
documentation. The following list describes the parameters:

 ■ n_estimators

integer, optional (default = 10)

This is the number of trees in the ensemble. The default is okay to use if 
you coded things correctly, but you’ll generally want more than 10 trees 
to gain the best performance. You can experiment with the number and 
get a feel for how many are required. As emphasized throughout this 
book, the appropriate model complexity (tree depth and number of trees) 
depends on the complexity of the underlying problem and the amount of 
data that you have. A good starting point is 100–500.



 Chapter 7 ■ Building ensemble Models with python  257

 ■ max_depth

integer or None, optional (default=None)

If this parameter is set to None, the tree will be grown until all the leaf nodes 
are either pure or they hold fewer than min_samples_split examples. As 
an alternative to specifying the tree depth, you can use max_leaf_nodes to 
specify the number of leaf nodes in the tree. If you specify max_leaf_nodes, 
max_depth is ignored. There might be a performance advantage to leaving 
max_depth set to auto and growing full-depth trees. This is also a training time 
cost associated with full-depth trees. You may want to experiment with the 
depth if you need several training runs to complete your modeling process.

 ■ min_samples_split

integer, optional (default=2)

Nodes will not be split that have fewer than min_samples_split examples. 
Splitting nodes that are small is a source of overfitting.

 ■ min_samples_leaf

integer, optional (default=1)

A split is not taken if the split leads to nodes that have fewer than min_sam-
ples_leaf. The default value for this parameter results in the parameter 
being ignored, which is often okay—particularly when you’re making the 
first few training runs on your data set. You can think about selecting a 
meaningful value for this parameter in a couple of ways. One is that the 
value assigned to a leaf is the average of the examples in the leaf and that 
you’ll get a lower variance average if there’s more than one sample in the 
leaf node. Another way to think about this parameter is as an alternative 
way to control tree depth.

 ■ max_features

integer, float or string, optional (default=None)

The number of features to consider when looking for the best split depends 
on the value set for max_features and on the number of features in the 
problem. Call the number of features in the problem nFeatures. Then:

 ■ If the type of max_features is int, consider max_features features at 
each split. Note: max_features gt; nFeatures throws an error.

 ■ If the type of max_features is float, max_features is the fraction of 
features to consider: int(max_features * nFeatures).

 ■ Possible string values include the following:

auto max_features=nFeatures

sqrt max_features=sqrt(nFeatures)

log2  max_features=log2(nFeatures)



258 Chapter 7 ■ Building ensemble Models with python 

 ■ If max_features=None, then max_features=nFeatures.

Brieman and Cutler2 recommend sqrt(nFeatures) for regression 
problems. The answers aren’t generally terribly sensitive to max_fea-
tures, but this parameter can have some effect, so you’ll want to test 
a few alternative values.

 ■ random_state

int, RandomState instance, or None (default=None)

 ■ If the type is integer, the integer is used as the seed for the random 
number generator.

 ■ If the random_state is an instance of RandomState, that instance is used 
as the random number generator.

 ■ If random_state is None, the random number generator is the instance 
of RandomState used by numpy.random.

RandomForestRegressor has several attributes, including the trained trees 
that make up the ensemble. There’s a predict method that will use the trained 
trees to make predictions, so you will not generally access those directly. You 
will want to access the variable importances. Here is a description:

 ■ feature_importances

This is an array whose length is equal to the number of features in the 
problem (called nFeatures earlier). The values in the array are positive 
floats indicating relative importance of the corresponding attribute. The 
importances are determined by a procedure Brieman invented in the origi-
nal paper on Random Forests.2 The basic idea is that, one at a time, values 
of each attribute are randomly permuted, and the change in the model’s 
prediction accuracy is determined. The more the prediction accuracy suf-
fers, the more important the attribute.

Here are descriptions of the methods used:

 ■ fit(XTrain, yTrain, sample_weight=None)

XTrain is an array of attribute values. It has nInstances rows and nFeature 
columns. yTrain is an array of targets. y also has nInstances rows. In 
the examples you’ll see in this chapter, yTrain will have a single column, 
but the method can fit several models having different targets. For that, 
y would have nTargets columns—one column for each set of outcomes. 
sample_weight makes it possible to assign different weights to each of the 
instances in the training data. It can take one of two forms. The default 
value of None results in equal weighting of all input instances. To apply 
different weights to each instance, sample_weight should be an array with 
nInstances rows and one column.



 Chapter 7 ■ Building ensemble Models with python  259

 ■ predict(XTest)

XTest is an array of attribute values for which predictions are produced. 
The array input to predict() has the same number of columns as the array 
used in fit() method for training, but can have a different number of 
rows, including perhaps a single row. The rows in the output from pre-
dict() have the same form as rows in the target array y used in training.

Modeling Wine Taste with RandomForestRegressor

Listing 7-1 shows how to use the sklearn version of the Random Forest algorithm 
to build an ensemble model to predict wine taste.

The code reads the wine data set from UCI data repository; does some manipu-
lation to get the attributes, labels, and attribute names into lists; and converts 
the lists to numpy arrays as required for input to RandomForestRegressor. A 
side benefit of having these input objects in the form of numpy arrays is that it 
enables the use of a sklearn utility train_test_split for building training and 
test versions of the inputs. The code sets random_state to a specified integer 
value instead of letting the random number generator pick an unrepeatable 
internal value. That’s so that you’ll get the same graphs and numeric values 
when you run the code as the results shown here. Setting random_state can also 
prove handy during development because randomness in the results can mask 
changes you're making. During real model training, you’ll probably want to set 
random_state to its default value, None. Fixing random_state fixes the holdout 
set and, as a result, repeated parameter adjustments and retraining may start 
to overtrain on your holdout set.

The next step in the code is to define a list of ensemble sizes to produce per-
formance graphs that show how the performance varies as the number of trees 
in the ensemble is changed. For producing detailed plots, the number chosen 
in Listing 7-2 results in roughly 45 separate runs. That many are useful here 
so that you can see the shape of the curve of error versus number of trees, but 
now that you’ve got that mental picture, you won’t want to run so many points 
in the curve. You might run two or three different numbers of trees early in 
the development process and then settle on a good number and only run for a 
single value most of the time.

Most of the parameters affecting training are set as part of the constructor 
that instantiates a RandomForestRegressor object. The call to the constructor is 
pretty simple in this case. The only parameter that is not left at default values is 
the max_features parameter. The default value (None) results in all the features 
being considered at each node of the tree, which means that it’s actually imple-
menting Bagging3 because no random selection of attributes is involved.4, 5, 6

After instantiating a RandomForestRegressor object, the next step is to invoke 
the fit() method the training sets as arguments. Once that is done, invoking 



260 Chapter 7 ■ Building ensemble Models with python 

the predict() method with the attributes from the test set generates predic-
tions that can be compared to the test set labels. The code in the listing uses the 
sklearn.metrics function mean_squared_error to calculate the prediction error. 
The resulting mean squared error numbers are collected in a list and then plot-
ted. Figure 7-1 shows the resulting plot.

Figure 7-1: Wine taste prediction performance with Random Forest: errors versus ensemble size

0.326

0.324

0.322

0.320

M
ea

n 
Sq

ua
re

d 
Er

ro
r

0.318

0.316

0.314

0.312
50 100 150 200 250

Number of Trees in Ensemble
300 350 400 450 500

The last value of mean squared error is also printed and copied at the bottom 
of Listing 7-1. Notice that the last value is printed as representative of the mean 
squared error, not the minimum value. Random Forest generates somewhat 
independent predictions and then averages them. Adding more trees to the aver-
age cannot lead to overfitting, so the minimum point in the curve of Figure 7-1 
represents deviation due to statistical fluctuation, not a reproducible minimum.

Listing 7-1: Using RandomForestRegressor to Build a Regression Model—wineRF.py

import urllib2
import numpy
from sklearn.cross_validation import train_test_split
from sklearn import ensemble
from sklearn.metrics import mean_squared_error
import pylab as plot

# Read wine quality data from UCI website
target_url = ("http://archive.ics.uci.edu/ml/machine-learning-"
databases/wine-quality/winequality-red.csv")

http://archive.ics.uci.edu/ml/machine-learning-


 Chapter 7 ■ Building ensemble Models with python  261

data = urllib2.urlopen(target_url)

xList = []
labels = []
names = []
firstLine = True
for line in data:
    if firstLine:
        names = line.strip().split(";")
        firstLine = False
    else:
        #split on semi-colon
        row = line.strip().split(";")
        #put labels in separate array
        labels.append(float(row[-1]))
        #remove label from row
        row.pop()
        #convert row to floats
        floatRow = [float(num) for num in row]
        xList.append(floatRow)

nrows = len(xList)
ncols = len(xList[0])

X = numpy.array(xList)
y = numpy.array(labels)
wineNames = numpy.array(names)

#take fixed holdout set 30% of data rows
xTrain, xTest, yTrain, yTest = train_test_split(X, y, test_size=0.30,
  random_state=531)

#train Random Forest at a range of ensemble sizes in order to
#see how the mse changes
mseOos = []
nTreeList = range(50, 500, 10)
for iTrees in nTreeList:
    depth = None
    maxFeat  = 4 #try tweaking
    wineRFModel = ensemble.RandomForestRegressor(n_estimators=iTrees,
        max_depth=depth, max_features=maxFeat,
        oob_score=False, random_state=531)

    wineRFModel.fit(xTrain,yTrain)

    #Accumulate mse on test set
    prediction = wineRFModel.predict(xTest)
    mseOos.append(mean_squared_error(yTest, prediction))

print("MSE" )
continues



262 Chapter 7 ■ Building ensemble Models with python 

print(mseOos[-1])

#plot training and test errors vs number of trees in ensemble
plot.plot(nTreeList, mseOos)
plot.xlabel('Number of Trees in Ensemble')
plot.ylabel('Mean Squared Error')
#plot.ylim([0.0, 1.1*max(mseOob)])
plot.show()

# Plot feature importance
featureImportance = wineRFModel.feature_importances_

#scale by max importance
featureImportance = featureImportance / featureImportance.max()
sorted_idx = numpy.argsort(featureImportance)
barPos = numpy.arange(sorted_idx.shape[0]) + .5
plot.barh(barPos, featureImportance[sorted_idx], align='center')
plot.yticks(barPos, wineNames[sorted_idx])
plot.xlabel('Variable Importance')
plot.show()

#printed output
#MSE
#0.314125711509

Visualizing the Performance of a Random Forests Regression Model

The curve in Figure 7-1 demonstrates the variance reduction properties of the 
Random Forest algorithm. The level of the error decreases as more trees are 
added, and the amount of statistical fluctuation in the curve also decreases.

NO te To get a feel for the behavior of the algorithm, try changing some of the 
parameters used in Listing 7-1 and see how the plots change. Try running more trees 
to see whether you can reduce the error further. Try something like nTreeList=
range(100,1000,100). Try altering the tree depth parameter to see how sensitive the 
answers are to tree depth. The wine quality data set has roughly 1,600 instances (rows), 
so a depth of 10 or 11 could result in almost every point having its own leaf node. A depth 
of 8 could ideally have 256 leaf nodes, so each one would have an average of about 6 
instances. Try some depths in that range to determine whether it affects performance.

Random Forest generates estimates of how important each variable is to the 
accuracy of predictions. Listing 7-1 extracts the data member feature_impor-
tance_, rescales importance values to between 0 and 1, orders the resulting 
importance values, and then plots them in a bar chart. Figure 7-2 shows that plot. 
The most important variable has scaled importance of 1.0 and is the top bar in 

continued



 Chapter 7 ■ Building ensemble Models with python  263

the bar chart. It shouldn’t be too surprising that alcohol is the most important 
variable in the Random Forest model. It was also the most important in the 
penalized linear regression models that you saw in Chapter 5.

Figure 7-2: Relative importance of variables for Random Forest predicting wine taste

“alcohol”

“sulphates”

“volatile acidity”

“citric acid”

“total sulfur dioxide”

“density”

“chlorides”

“fixed acidity”

“pH”

“free sulfur dioxide”

“residual sugar”

0.0 0.2 0.4 0.6
Variable Importance

0.8 1.0

Using Gradient Boosting to Predict Wine Taste
As you saw in Chapter 6, Gradient Boosting7, 8 takes an error-minimization approach 
to building an ensemble of trees, instead of the variance-reduction approach that 
Bagging and Random Forest take. Because Gradient Boosting incorporates binary 
trees as its base learners, it shares some tree-related parameters. However, because 
Gradient Boosting takes steps directed by the gradient, you’ll also see parameters 
such as step size. In addition, Gradient Boosting’s error-minimization approach will 
lead to different rationale and choices for setting tree depth. There’s also a surprise 
variable that allows you to build models that are a hybrid between Random Forest 
and Gradient Boosting. You can use Gradient Boosting error-minimization structure 
while employing the Random Forest random attribute selection for base learners. The 
sklearn ensemble module is the only place that I’ve seen that combination available.

Using the Class Constructor for GradientBoostingRegressor9

Here is the class constructor for sklearn.ensemble.GradientBoostingRegressor:

class sklearn.ensemble.GradientBoostingRegressor(loss='ls', learning_
rate=0.1, n_estimators=100, subsample=1.0, min_samples_split=2, min_
samples_leaf=1, max_depth=3, init=None, random_state=None, max_features=
None, alpha=0.9, verbose=0, max_leaf_nodes=None, warm_start=False)



264 Chapter 7 ■ Building ensemble Models with python 

The following lists describe the parameters and methods that you’ll want to 
be familiar with and give some comment on the choices and tradeoffs for them 
where appropriate. This list describes the parameters:

 ■ loss

string, optional (default=’ls’)

Gradient Boosting uses trees to approximate the gradient of an overall loss 
function. The most commonly used overall loss is sum squared error, as 
is the penalty from ordinary least squares regression. Least sum squared 
error is a handy choice because the squared error makes the math work out 
neatly. But other loss functions may better describe your real problem. As 
an example, I worked on algorithms for automated trading and noticed that 
using squared error penalty led to algorithms that would avoid large losses 
but that would accept small losses that in aggregate were more significant. 
Sum of absolute value of the errors gave much better overall performance; 
it better matched the real problem. Least mean absolute value is generally 
less sensitive to outliers. Gradient Boosting is one of the few algorithms 
that gives you wide flexibility in your choice of penalty functions.

Possible string values include the following:
 ■ ls Least mean squared error.

 ■ lad Least mean absolute value of error.

 ■ huber Huberized loss is a hybrid between squared error for small 
values and absolute value of error for large values.10,11

 ■ quantile Quantile regression. Predicts quantile (indicated by alpha 
parameter).

 ■ learning_rate

float, optional (default=0.1)

As mentioned, Gradient Boosting is based on a gradient descent algorithm. 
The learning rate is the size of the step taken in the gradient direction. If 
it is too large, you’ll see a rapid decline in the error and then a rapid rise 
in the error (as a function of the number of trees in the ensemble.) If it is 
too small, the errors will decrease very slowly, and it will require training 
more trees than necessary. The best value for learning_rate is problem 
dependent and also depends on the tree depth chosen. The default value 
of 0.1 is a relatively large value, but a good choice for a starting point. Try 
it. See whether it leads to instability and overfitting. Adjust if necessary.

 ■ n_estimators

int, optional (default=100)

This parameter is the number of trees in the ensemble. As you saw in 
Chapter 6, you can also think of this as the number of steps taken toward 



 Chapter 7 ■ Building ensemble Models with python  265

the minimum in a gradient descent sequence. It is also the number of 
terms in an additive approximation (that is, the sum of the trained models). 
Because each successive approximation (each successive tree) gets mul-
tiplied by the learning rate, a larger learning rate requires fewer trees to 
be trained to make the same progress toward the minimum. However (as 
discussed in the section on learning rate), if the learning rate is too high, 
it can lead to overfitting and may achieve the best performance. It usu-
ally takes a few tries to learn what parameter ranges work best on a new 
problem. The default value of 100 is a good starting point (particularly in 
conjunction with the default value for the learning rate).

 ■ subsample

float, optional (default=1.0)

Gradient Boosting becomes stochastic Gradient Boosting when the indi-
vidual trees are trained on a subsample of the data, similar to Random 
Forest. Friedman (algorithm inventor) recommends using subsample=0.5.12 
That’s a good starting point.

 ■ max_depth

integer, optional (default=3)

As with Random Forests, max_depth is the depth of the individual trees 
in the ensemble. As you saw in the simple example in Chapter 6, Random 
Forests needs some tree depth to generate a high-fidelity model, whereas 
Gradient Boosting, by continually focusing on the residual error, was able 
to get a high-fidelity approximation with trees of depth 1 (called stumps). 
Gradient Boosting’s need for deep trees is driven by the degree of interac-
tion between attributes. If they act independently, a depth of 1 will get as 
good a model as depth 2. Generally, you want to start with a tree depth 
equal to 1 to get the other parameters set and then try a tree depth of 2 
to see whether it gives you an improvement. I’ve never encountered a 
problem that needed depth 10.

 ■ max_features

int, float, string, or None, optional (default = None)

The number of features to consider when looking for the best split depends 
on the value set for max_features and on the number of features in the 
problem. Call the number of features in the problem nFeatures. Then:

 ■ If the type of max_features is int, consider max_features at each split.

 ■ If the type of max_features is float, then max_features is the fraction 
of features to consider: int(max_features * nFeatures).

 ■ Possible string values include the following:

auto max_features=nFeatures



266 Chapter 7 ■ Building ensemble Models with python 

sqrt  max_features=sqrt(nFeatures)

log2  max_features=log2(nFeatures)
 ■ If max_features=None, then max_features=nFeatures.

max_features in the Python implementation of Gradient Boosting plays 
the same role as in Random Forest. It determines how many attributes 
will be considered for splitting at each node in the trees. That gives 
the Python implementation of Gradient Boosting a unique capability. 
It can incorporate Random Forest base learners in the place of trees 
grown on the full attribute space.

 ■ warm_start

bool, optional(default=False)

If warm_start is set to True, subsequent applications of the fit() function 
start from last stopping point in training and continue to accumulate the 
results of adding further gradient steps.

Here are descriptions of the attributes used:

 ■ feature_importances

An array whose length is equal to the number of features in the problem 
(called nFeatures earlier). The values in the array are positive floats indi-
cating relative importance of the corresponding attribute. A large number 
corresponds to large influence.

 ■ train_score

An array whose length is equal to the number of trees in the ensemble. 
This contains the error on the training set at each stage in training the 
sequence of trees.

Here are descriptions of the methods used:

 ■ fit(XTrain, yTrain, monitor=None)

XTrain and yTrain have the same form as for Random Forest. XTrain is 
an (nInstances x nAttributes) numpy array, where nInstances is the 
number of rows in the training data set and nAttributes is the number 
of attributes. yTrain is an (nInstances x 1) numpy array of targets. The 
object “monitor” is a callable that can be used to stop training early.

 ■ predict(X)

predict(X) generates a prediction from an array of attributes X. X needs 
to have the same number of columns (attributes) as the training set. X can 
have any number of rows.

 ■ staged_predict(X)

This function acts like the predict() function except that it’s iterable and 
generates a sequence of predictions corresponding to the sequence of 



 Chapter 7 ■ Building ensemble Models with python  267

model produced by the Gradient Boosting algorithm. Each call generates 
a prediction incorporating one additional tree in the sequence generated 
by Gradient Boosting.

Getting the parameters set for Gradient Boosting can be a little bewildering 
for a new user. The following list suggests a sequence of parameter settings and 
adjustments for Gradient Boosting:

 1. Start with default settings, except set subsample=0.5. Train a model and 
look at the curve of out-of-sample (oos) performance versus the number 
of trees in the ensemble. After the first and subsequent runs, look at the 
shape of the oos performance curve.

 2. If the oos performance is improving rapidly at the right end of the graph 
either increase n_estimators or increase learning_rate.

 3. If the oos performance is deteriorating rapidly at the right end of the 
graph, decrease learning_rate.

 4. Once the oos performance curve improves over its whole length (or only 
deteriorates very slightly) and levels out at the right side of the graph, try 
altering max_depth and max_features.

Using GradientBoostingRegressor to Implement a Regression Model

Listing 7-2 shows what’s required to build a Gradient Boosting model for the 
wine quality data set.

Listing 7-2: Using Gradient Boosting to Build a Regression Model—wineGBM.py

import urllib2
import numpy
from sklearn.cross_validation import train_test_split
from sklearn import ensemble
from sklearn.metrics import mean_squared_error
import pylab as plot

# Read wine quality data from UCI website
target_url = ("http://archive.ics.uci.edu/ml/machine-learning-databases"
"/wine-quality/winequality-red.csv")
data = urllib2.urlopen(target_url)

xList = []
labels = []
names = []
firstLine = True
for line in data:
    if firstLine:
        names = line.strip().split(";")

continues

http://archive.ics.uci.edu/ml/machine-learning-databases


268 Chapter 7 ■ Building ensemble Models with python 

        firstLine = False
    else:
        #split on semi-colon
        row = line.strip().split(";")
        #put labels in separate array
        labels.append(float(row[-1]))
        #remove label from row
        row.pop()
        #convert row to floats
        floatRow = [float(num) for num in row]
        xList.append(floatRow)

nrows = len(xList)
ncols = len(xList[0])

X = numpy.array(xList)
y = numpy.array(labels)
wineNames = numpy.array(names)

#take fixed holdout set 30% of data rows
xTrain, xTest, yTrain, yTest = train_test_split(X, y, test_size=0.30,
    random_state=531)

# Train Gradient Boosting model to minimize mean squared error
nEst = 2000
depth = 7
learnRate = 0.01
subSamp = 0.5
wineGBMModel = ensemble.GradientBoostingRegressor(n_estimators=nEst,
                                 max_depth=depth,
                                 learning_rate=learnRate,
                                 subsample = subSamp,
                                 loss='ls')

wineGBMModel.fit(xTrain, yTrain)

# compute mse on test set
msError = []
predictions = wineGBMModel.staged_predict(xTest)
for p in predictions:
    msError.append(mean_squared_error(yTest, p))

print("MSE" )
print(min(msError))
print(msError.index(min(msError)))

#plot training and test errors vs number of trees in ensemble
plot.figure()
plot.plot(range(1, nEst + 1), wineGBMModel.train_score_,
    label='Training Set MSE')

continued



 Chapter 7 ■ Building ensemble Models with python  269

plot.plot(range(1, nEst + 1), msError, label='Test Set MSE')
plot.legend(loc='upper right')
plot.xlabel('Number of Trees in Ensemble')
plot.ylabel('Mean Squared Error')
plot.show()

# Plot feature importance
featureImportance = wineGBMModel.feature_importances_

# normalize by max importance
featureImportance = featureImportance / featureImportance.max()
idxSorted = numpy.argsort(featureImportance)
barPos = numpy.arange(idxSorted.shape[0]) + .5
plot.barh(barPos, featureImportance[idxSorted], align='center')
plot.yticks(barPos, wineNames[idxSorted])
plot.xlabel('Variable Importance')
plot.subplots_adjust(left=0.2, right=0.9, top=0.9, bottom=0.1)
plot.show()

# Printed Output:
# for:
#nEst = 2000
#depth = 7
#learnRate = 0.01
#subSamp = 0.5
#
# MSE
# 0.313361215728
# 840

The first section of code follows the same process as for Random Forest: 
read the data set, separate the attribute matrix from the targets, convert to 
numpy arrays, and then form train and test subsets. The training sequence 
is a little simpler for Gradient Boosting. The code for Random Forest used 
a loop to generate several models for different values of n_estimator to 
see how the oos error behaved as a function of the number of trees in the 
ensemble. The Python Gradient Boosting implementation has an iterable 
(staged_predict for regression problems and staged_decision_function 
for classification problems) that simplifies that process. Using these func-
tions, you can train a model incorporating n_estimator trees and then 
generate the oos performance curve for models of all sizes (not greater than 
n_estimator).

Assessing the Performance of a Gradient Boosting Model

Figure 7-3 and the printed output shown in Listing 7-2 show that Gradient 
Boosting gets about the same level of performance as Random Forest. This 
is usually the case. There are problems where one or the other will achieve 



270 Chapter 7 ■ Building ensemble Models with python 

significantly better performance, so you might want to try them both to make 
sure. The plot in Figure 7-3 shows an oos error that increases very slightly 
on the right side of the plot. To see that it is increasing requires looking at 
the numbers. The increase is not enough to warrant reducing learning_rate 
and retraining.

Figure 7-3: Wine taste prediction performance with Gradient Boosting: errors versus ensemble 
size

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
0 500 1000

Number of Trees in Ensemble

M
ea

n 
Sq

ua
re

d 
Er

ro
r

1500

Training Set MSE

Test Set MSE

2000

Figure 7-4 shows the variable importance determined as part of the Gradient 
Boosting implementation. Comparing with the variable importance generated 
by Random Forest reveals that the two are fairly similar but not identical. They 
agree that the most important variable is alcohol and have several of the same 
variables in the top four or five.

Coding Bagging to Predict Wine Taste

Listing 7-3 shows the code for generating a bootstrap sample from the wine 
data, training trees on it and then averaging the resulting models. This is called 
Bagging. It’s purely a variance reduction technique, and it’s useful to compare 
the performance that bagging achieves with the performance of Random Forest 
and Gradient Boosting.



 Chapter 7 ■ Building ensemble Models with python  271

Listing 7-3: Building a Regression Model for Wine Taste Using Bagging (Bootstrap 
Aggregation)—wineBagging.py

__author__ = 'mike-bowles'

import urllib2
import numpy
import matplotlib.pyplot as plot
from sklearn import tree
from sklearn.tree import DecisionTreeRegressor
from math import floor
import random

# Read wine quality data from UCI website
target_url = ("http://archive.ics.uci.edu/ml/machine-learning-databases"
"/wine-quality/winequality-red.csv")
data = urllib2.urlopen(target_url)

xList = []
labels = []
names = []
firstLine = True
for line in data:
    if firstLine:
        names = line.strip().split(";")
        firstLine = False
    else:
        #split on semi-colon

Figure 7-4: Relative importance of variables for Gradient Boosting predicting wine taste

“alcohol”

“sulphates”

“volatile acidity”

“citric acid”

“total sulfur dioxide”

“density”

“chlorides”

“fixed acidity”

“pH”

“free sulfur dioxide”

“residual sugar”
0.0 0.2 0.4 0.6

Variable Importance
0.8 1.0

continues

http://archive.ics.uci.edu/ml/machine-learning-databases


272 Chapter 7 ■ Building ensemble Models with python 

        row = line.strip().split(";")
        #put labels in separate array
        labels.append(float(row[-1]))
        #remove label from row
        row.pop()
        #convert row to floats
        floatRow = [float(num) for num in row]
        xList.append(floatRow)

nrows = len(xList)
ncols = len(xList[0])

#take fixed test set 30% of sample
nSample = int(nrows * 0.30)
idxTest = random.sample(range(nrows), nSample)
idxTest.sort()
idxTrain = [idx for idx in range(nrows) if not(idx in idxTest)]

#Define test and training attribute and label sets
xTrain = [xList[r] for r in idxTrain]
xTest = [xList[r] for r in idxTest]
yTrain = [labels[r] for r in idxTrain]
yTest = [labels[r] for r in idxTest]

#train a series of models on random subsets of the training data
#collect the models in a list and check error of composite as list grows

#maximum number of models to generate
numTreesMax = 100

#tree depth - typically at the high end
treeDepth = 5

#initialize a list to hold models
modelList = []
predList = []

#number of samples to draw for stochastic bagging
bagFract = 0.5
nBagSamples = int(len(xTrain) * bagFract)

for iTrees in range(numTreesMax):
    idxBag = []
    for i in range(nBagSamples):
        idxBag.append(random.choice(range(len(xTrain))))
    xTrainBag = [xTrain[i] for i in idxBag]
    yTrainBag = [yTrain[i] for i in idxBag]

    modelList.append(DecisionTreeRegressor(max_depth=treeDepth))

continued



 Chapter 7 ■ Building ensemble Models with python  273

    modelList[-1].fit(xTrainBag, yTrainBag)

    #make prediction with latest model and add to list of predictions
    latestPrediction = modelList[-1].predict(xTest)
    predList.append(list(latestPrediction))

#build cumulative prediction from first "n" models
mse = []
allPredictions = []
for iModels in range(len(modelList)):

    #average first "iModels" of the predictions
    prediction = []
    for iPred in range(len(xTest)):
        prediction.append(sum([predList[i][iPred] for i in
            range(iModels + 1)])/(iModels + 1))

    allPredictions.append(prediction)
    errors = [(yTest[i] - prediction[i]) for i in range(len(yTest))]
    mse.append(sum([e * e for e in errors]) / len(yTest))

nModels = [i + 1 for i in range(len(modelList))]

plot.plot(nModels,mse)
plot.axis('tight')
plot.xlabel('Number of Models in Ensemble')
plot.ylabel('Mean Squared Error')
plot.ylim((0.0, max(mse)))
plot.show()

print('Minimum MSE')
print(min(mse))

#With treeDepth = 5
#     bagFract = 0.5
#Minimum MSE
#0.429310223079

#With treeDepth = 8
#     bagFract = 0.5
#Minimum MSE
#0.395838627928

#With treeDepth = 10
#     bagFract = 1.0
#Minimum MSE
#0.313120547589



274 Chapter 7 ■ Building ensemble Models with python 

Listing 7-3 includes three parameters that can be tweaked. The first is 
numTreesMax, which determines the number of trees that will be built; the sec-
ond is treeDepth; the third is bagFract. As discussed in Chapter 6, Bagging 
operates by taking a bootstrap sample from the input data. The sample is taken 
with replacement so some of the data may be repeated. The variable bagFract 
determines how many samples are taken. The original paper on the algorithm 
recommended that the bootstrap samples be the same size as the original data 
set, which would correspond to bagFract = 1.0. The program in the listing 
generates numTreesMax models from the trees it builds. The first model is the 
first tree. The second model is the average of the first two trees. The third model 
is the average of the first three trees, etc. Then the program plots curves of the 
error versus the number of trees in the model.

Figures 7-5 and 7-6 plot the results for two different parameters settings. The 
ensemble for Bagging applied to the wine taste prediction data set. The printed 
results are shown at the bottom of the code listing. Figure 7-5 shows performance 
versus number of trees where the trees are depth 10 and are trained on boot-
strap sample sets as large as the original data set (bag fraction = 1.0). With 
these parameters, Bagging achieves the same level of performance as Random 
Forest and Gradient Boosting.

Figure 7-5: Wine taste error for Bagged regression trees (tree depth = 10, bag fraction = 1.0)

0.6

0.5

0.4

0.3

M
ea

n 
Sq

ua
re

d 
Er

ro
r

0.2

0.1

0.0
20

Number of Models in Ensemble
40 60 80 100

Figure 7-6 shows the performance for Bagging using trees of depth 8 and 
bootstrap data sets half as large as the original data (bag fraction = 0.5). As 
the plot and the printed results indicate, the performance is noticeably worse 
with this parameter selection.



 Chapter 7 ■ Building ensemble Models with python  275

Incorporating Non-Numeric Attributes in Python 
Ensemble Models

Non-numeric attributes are ones that take several discrete non-numeric values. 
A census record has myriad non-numeric attributes—married, single, divorced, 
for example; state in which the household is located is another. Non-numeric 
attributes can improve prediction accuracy, but Python ensemble methods need 
numeric input. In Chapters 4, “Penalized Linear Regression,” and 5, “Building 
Predictive Models Using Penalized Linear Methods,” you saw how to code factor 
variables so that they could be incorporated in penalized linear regression. The 
same technique will work here. The problem of estimating the age of abalone 
will serve as an example to illustrate the technique.

Coding the Sex of Abalone for Input to Random Forest 
Regression in Python
Suppose that your problem has an attribute that takes n values. The attribute 
“States in the US” takes 50 values, and “Marital Status” takes 3. To code the 
n-valued factor variable, you create n – 1 new dummy attributes. If the vari-
able takes its ith value, the ith dummy variable is 1 and all other dummies are 
0. If the factor variable takes its nth value, all the dummy variables are 0. The 
abalone data will illustrate.

Figure 7-6: Wine taste error for Bagged regression trees (tree depth = 8, bag fraction = 0.5)

0.7

0.8

0.6

0.5

0.4

0.3

M
ea

n 
Sq

ua
re

d 
Er

ro
r

0.2

0.1

0.0
20

Number of Models in Ensemble
40 60 80 100



276 Chapter 7 ■ Building ensemble Models with python 

Listing 7-4 shows the steps training a Random Forest model to predict abalone 
age from data on the abalone’s weight, shell size, and so forth. The objective in 
this problem is to predict the age of the abalone from various physical measure-
ments (weights of various parts of the abalone, dimensions, and so on). That 
makes this a regression problem amenable to the algorithms used for building 
models for predicting taste scores for wines in the previous two sections.

Listing 7-4: Predicting Abalone Age with Random Forest—abaloneRF.py

__author__ = 'mike_bowles'

import urllib2
from pylab import *
import matplotlib.pyplot as plot
import numpy
from sklearn.cross_validation import train_test_split
from sklearn import ensemble
from sklearn.metrics import mean_squared_error

target_url = ("http://archive.ics.uci.edu/ml/machine-learning-"
"databases/abalone/abalone.data")
#read abalone data
data = urllib2.urlopen(target_url)

xList = []
labels = []
for line in data:
    #split on semi-colon
    row = line.strip().split(",")

    #put labels in separate array and remove label from row
    labels.append(float(row.pop()))

    #form list of list of attributes (all strings)
    xList.append(row)

#code three-valued sex attribute as numeric
xCoded = []
for row in xList:
    #first code the three-valued sex variable
    codedSex = [0.0, 0.0]
    if row[0] == 'M': codedSex[0] = 1.0
    if row[0] == 'F': codedSex[1] = 1.0

    numRow = [float(row[i]) for i in range(1,len(row))]
    rowCoded = list(codedSex) + numRow
    xCoded.append(rowCoded)

http://archive.ics.uci.edu/ml/machine-learning-


 Chapter 7 ■ Building ensemble Models with python  277

#list of names for
abaloneNames = numpy.array(['Sex1', 'Sex2', 'Length', 'Diameter',
    'Height', 'Whole weight', 'Shucked weight', 'Viscera weight',
    'Shell weight', 'Rings'])

#number of rows and columns in x matrix
nrows = len(xCoded)
ncols = len(xCoded[1])

#form x and y into numpy arrays and make up column names
X = numpy.array(xCoded)
y = numpy.array(labels)

#break into training and test sets.
xTrain, xTest, yTrain, yTest = train_test_split(X, y, test_size=0.30,
    random_state=531)

#train Random Forest at a range of ensemble sizes in
#order to see how the mse changes
mseOos = []
nTreeList = range(50, 500, 10)
for iTrees in nTreeList:
    depth = None
    maxFeat  = 4 #try tweaking
    abaloneRFModel = ensemble.RandomForestRegressor(n_estimators=iTrees,
        max_depth=depth, max_features=maxFeat,
         oob_score=False, random_state=531)

    abaloneRFModel.fit(xTrain,yTrain)

    #Accumulate mse on test set
    prediction = abaloneRFModel.predict(xTest)
    mseOos.append(mean_squared_error(yTest, prediction))

print("MSE" )
print(mseOos[-1])

#plot training and test errors vs number of trees in ensemble
plot.plot(nTreeList, mseOos)
plot.xlabel('Number of Trees in Ensemble')
plot.ylabel('Mean Squared Error')
#plot.ylim([0.0, 1.1*max(mseOob)])
plot.show()

# Plot feature importance
featureImportance = abaloneRFModel.feature_importances_

# normalize by max importance
continues



278 Chapter 7 ■ Building ensemble Models with python 

featureImportance = featureImportance / featureImportance.max()
sortedIdx = numpy.argsort(featureImportance)
barPos = numpy.arange(sortedIdx.shape[0]) + .5
plot.barh(barPos, featureImportance[sortedIdx], align='center')
plot.yticks(barPos, abaloneNames[sortedIdx])
plot.xlabel('Variable Importance')
plot.subplots_adjust(left=0.2, right=0.9, top=0.9, bottom=0.1)
plot.show()

# Printed Output:
# MSE
# 4.30971555911

One of the attributes in the data set is the sex of the abalone. There are three 
possible values for an abalone’s gender: male, female, and infant (although the 
gender of an abalone is indeterminate in infancy). So, the gender attribute is a 
three-valued factor variable. In the data set, the gender attribute is one of three 
character variables: M, F, or I. The section of the program that codes this attri-
bute starts with a list filled with two float zeros. If the attribute value is M, the 
first list element is changed to a 1.0. If the attribute value is F, the second list 
element is changed to a 1.0. Otherwise, the list is left with two zeros (that is, if 
the attribute value is I). Then the new two-element list replaces the old character 
variable and the result is used to build a Random Forest model.

Assessing Performance and the Importance of  
Coded Variables
Figure 7-7 shows how the mean square prediction error decreases as the number 
of trees in the Random Forest ensemble is changed. The mean squared error in 
predicting the age of abalone was 4.31. Compare that to the summary statistics 
that you saw in Chapter 2. The standard deviation of the age (shell rings) was 
3.22, meaning that the mean squared variation in the age was 10.37. Therefore, 
Random Forest is able to predict about 58% of the squared variation in the age 
of the abalone in the population that was tested.

Figure 7-8 shows the relative variable importance for the Random Forest model. 
The gender-related variables that were created to deal with the non-numeric 
gender variable do not turn out to be very important in this model.

Coding the Sex of Abalone for Gradient Boosting Regression 
in Python
The process of doing the coding for the gender variable is the same for Gradient 
Boosting as it was for Random Forest. Listing 7-5 contains the code to train a 
Gradient Boosting model.

continued



 Chapter 7 ■ Building ensemble Models with python  279

Figure 7-7: Abalone age prediction error with Random Forest

4.44

4.42

4.40

4.38

M
ea

n 
Sq

ua
re

d 
Er

ro
r

4.36

4.34

4.32

4.30
50 100 150 200 250

Number of Trees in Ensemble
300 350 400 450 500

Figure 7-8: Variable importance for abalone age prediction with Random Forest

Sex1

Sex2

Length

Diameter

Shucked weight

Viscera weight

Whole weight

Height

Shell weight

0.0 0.2 0.4 0.6 0.8 1.0

Variable Importance

Listing 7-5: Predicting Abalone Age with Gradient Boosting—abaloneGBM.py

__author__ = 'mike_bowles'

import urllib2
continues



280 Chapter 7 ■ Building ensemble Models with python 

from pylab import *
import matplotlib.pyplot as plot
import numpy
from sklearn.cross_validation import train_test_split
from sklearn import ensemble
from sklearn.metrics import mean_squared_error

target_url = ("http://archive.ics.uci.edu/ml/machine-learning-"
"databases/abalone/abalone.data")
#read abalone data
data = urllib2.urlopen(target_url)

xList = []
labels = []
for line in data:
    #split on semi-colon
    row = line.strip().split(",")

    #put labels in separate array and remove label from row
    labels.append(float(row.pop()))

    #form list of list of attributes (all strings)
    xList.append(row)

#code three-valued sex attribute as numeric
xCoded = []
for row in xList:
    #first code the three-valued sex variable
    codedSex = [0.0, 0.0]
    if row[0] == 'M': codedSex[0] = 1.0
    if row[0] == 'F': codedSex[1] = 1.0

    numRow = [float(row[i]) for i in range(1,len(row))]
    rowCoded = list(codedSex) + numRow
    xCoded.append(rowCoded)

#list of names for
abaloneNames = numpy.array(['Sex1', 'Sex2', 'Length', 'Diameter',
    'Height', 'Whole weight', 'Shucked weight',
    'Viscera weight', 'Shell weight', 'Rings'])

#number of rows and columns in x matrix
nrows = len(xCoded)
ncols = len(xCoded[1])

#form x and y into numpy arrays and make up column names
X = numpy.array(xCoded)
y = numpy.array(labels)

#break into training and test sets.

continued

http://archive.ics.uci.edu/ml/machine-learning-


 Chapter 7 ■ Building ensemble Models with python  281

xTrain, xTest, yTrain, yTest = train_test_split(X, y, test_size=0.30,
    random_state=531)

#instantiate model

nEst = 2000
depth = 5
learnRate = 0.005
maxFeatures = 3
subsamp = 0.5
abaloneGBMModel = ensemble.GradientBoostingRegressor(n_estimators=nEst,
                       max_depth=depth, learning_rate=learnRate,
                        max_features=maxFeatures,subsample=subsamp,
                        loss='ls')

#train
abaloneGBMModel.fit(xTrain, yTrain)

# compute mse on test set
msError = []
predictions = abaloneGBMModel.staged_decision_function(xTest)
for p in predictions:
    msError.append(mean_squared_error(yTest, p))

print("MSE" )
print(min(msError))
print(msError.index(min(msError)))

#plot training and test errors vs number of trees in ensemble
plot.figure()
plot.plot(range(1, nEst + 1), abaloneGBMModel.train_score_,
    label='Training Set MSE', linestyle=":")
plot.plot(range(1, nEst + 1), msError, label='Test Set MSE')
plot.legend(loc='upper right')
plot.xlabel('Number of Trees in Ensemble')
plot.ylabel('Mean Squared Error')
plot.show()

# Plot feature importance
featureImportance = abaloneGBMModel.feature_importances_

# normalize by max importance

featureImportance = featureImportance / featureImportance.max()

idxSorted = numpy.argsort(featureImportance)

barPos = numpy.arange(idxSorted.shape[0]) + .5

plot.barh(barPos, featureImportance[idxSorted], align='center')

plot.yticks(barPos, abaloneNames[idxSorted])

plot.xlabel('Variable Importance')

plot.subplots_adjust(left=0.2, right=0.9, top=0.9, bottom=0.1)

plot.show()

continues



282 Chapter 7 ■ Building ensemble Models with python 

# Printed Output:

# for Gradient Boosting
# nEst = 2000
# depth = 5
# learnRate = 0.003
# maxFeatures = None
# subsamp = 0.5
#
# MSE
# 4.22969363284
# 1736

#for Gradient Boosting with RF base learners
# nEst = 2000
# depth = 5
# learnRate = 0.005
# maxFeatures = 3
# subsamp = 0.5
#
# MSE
# 4.27564515749
# 1687

Assessing Performance and the Importance of Coded 
Variables with Gradient Boosting
There are a couple of things to highlight in the training and results. One is to 
have a look at the variable importances that Gradient Boosting determines to 
see whether they agree that the coded gender variables are the least important.

The other thing to check is Python’s implementation to incorporate Random 
Forest base learners for gradient boosting. Will that help or hurt performance? 
The only thing required to make Gradient Boosting use Random Forest base 
learners is to change the max_features variable from None to an integer value 
less than the number of attributes or a float less than 1.0. When max_features 
is set to None, all nine of the features are considered when the Tree Growing 
algorithm is searching for the best attribute for splitting the data at each of the 
nodes. When max_features is set to an integer less than 9, the features are chosen 
from a set attributes of length max_features chosen at random for each node.

The printed output from the code in Listing 7-5 is shown at the bottom of the 
listing. The mean squared error numbers indicate that there’s not much perfor-
mance difference between Random Forest and Gradient Boosting for predicting 
abalone age. There’s also not much difference between using simple trees as 
base learners versus using Random Forest base learners in Gradient Boosting 
when they’re used to predict abalone age.

continued



 Chapter 7 ■ Building ensemble Models with python  283

The use of simple trees versus Random Forest similarly makes little difference 
in trajectories of prediction error versus ensemble size, as seen by comparing 
Figures 7-9 through 7-11.

Figure 7-9: Abalone age prediction error with Gradient

12

10

8

6

4

2
0 500 1000

Number of Trees in Ensemble

M
ea

n 
Sq

ua
re

d 
Er

ro
r

1500

Training Set MSE

Test Set MSE

2000

Figure 7-10: Variable importance for abalone age prediction with Gradient Boosting

Sex2

Sex1

Length

Diameter

Shucked weight

Viscera weight

Whole weight

Height

Shell weight

0.0 0.2 0.4 0.6 0.8 1.0

Variable Importance



284 Chapter 7 ■ Building ensemble Models with python 

Figures 7-10 and 7-12 show the variable importance for Gradient Boosting based 
on simple trees and based on Random Forest base learners, respectively. The only 
difference between the two lists is that viscera weight and height (fourth and fifth 
most important variables) are swapped in position between the two. Similarly, 
there is little difference between the order of the importance list generated by 
Random Forest and either of the two lists generated by Gradient Boosting.

There’s some belief that Random Forest has an advantage on wider attribute 
spaces, particularly for sparse ones such as in text-mining problems. The next 
section compares the two algorithms on a binary classification problem: classify-
ing rock versus mines using sonar output. That problem has 60 attributes—not 
as wide as a text-mining problem, but perhaps that will show some performance 
difference between Gradient Boosting using ordinary binary decision trees 
versus using Random Forest base learners.

Solving Binary Classification Problems with Python 
Ensemble Methods

This section covers two basic types of classification problems: binary classifica-
tion and multiclass classification. Binary classification problems are ones where 
there are two possible outcomes. Those outcomes might be “clicked on the ad” 

Figure 7-11: Abalone age prediction error with Gradient Boosting using Random Forest base 
learners

11

9

7

5

3

2

4

6

8

10

0 500 1000

Number of Trees in Ensemble

M
ea

n 
Sq

ua
re

d 
Er

ro
r

1500

Training Set MSE

Test Set MSE

2000



 Chapter 7 ■ Building ensemble Models with python  285

or “didn’t click on the ad,” for example. The example used here to illustrate the 
use of ensemble methods is the rocks versus mines problem, where the task 
is to use sonar returns to determine whether the object being scanned by the 
sonar is a rock or a mine.

Figure 7-12: Variable importance for abalone age prediction with Gradient Boosting using 
Random Forest base learners

Sex1

Sex2

Length

Diameter

Shucked weight

Viscera weight

Whole weight

Height

Shell weight

0.0 0.2 0.4 0.6 0.8 1.0

Variable Importance

Multiclass problems are ones where there are more than two possible out-
comes. Classifying glass samples according their chemical composition serves 
to illustrate the use of Python ensemble methods for this class of problems.

Detecting Unexploded Mines with Python Random Forest
The lists that follow show the constructor and its arguments for 
RandomForestClassifier.13 Most of the arguments for the RandomForestClassifier 
are the same as for RandomForestRegressor. The arguments for Random 
ForestRegressor were outlined and discussed in the section on using 
RandomForestRegressor for predicting wine quality. This section highlights 
only the elements of the RandomForestClassifier class that differ from their 
regression counterparts.

The first difference is the criterion used for judging the quality of splits. Recall 
from Chapter 6 that the process of training a tree involves trying all possible 
attributes and all possible split points for each attribute and then picking the 



286 Chapter 7 ■ Building ensemble Models with python 

attribute and split point that give the best split. For regression trees, the quality 
of the split was judged on the basis of sum squared error. Sum squared error 
does not work for classification problems. Something more like misclassifica-
tion error is required.

Here is the class constructor for sklearn.ensemble.RandomForestClassifier:

sklearn.ensemble.RandomForestClassifier(n_estimators=10, criterion=
'gini', max_depth=None, min_samples_split=2, min_samples_leaf=1,
max_features='auto', max_leaf_nodes=None, bootstrap=True, oob_score=
False, n_jobs=1, random_state=None, verbose=0, min_density=None,
compute_importances=None)

The following list describes the parameter:

 ■ criterion

string, optional (default=’gini’)

Possible values include the following:

gini Use gini impurity measure

entropy Use entropy-based information gain

For more information on these two measures of node impurity, see the 
Wikipedia page on binary decision trees at http://en.wikipedia.org/
wiki/Decision_tree_learning. As a practical matter, the choice does not 
make a lot of difference for ensemble performance.

Classification trees naturally produce probabilities of class membership based 
on the percentages of different classes from the training data that wind up in 
each of the leaf nodes. Depending on the application you have, for the answers 
you might prefer to work directly with those probabilities or you may want to 
have the value of the most numerous class returned as the prediction for those 
examples that wind up in the leaf node. If you’re going to adjust thresholds used 
in conjunction with the prediction, you’ll want to have the probabilities. For 
generating area under the curve (AUC), you’ll get better fidelity on the receiver 
operating curve (ROC) with probabilities. If you want to calculate misclassification 
errors, you’ll want the probabilities converted to a prediction of a specific class.

The following list describes the methods:

 ■ fit(X, y, sample_weight=None)

The description of the arguments for the classification version of Random 
Forest differs only in the nature of the labels y. For a classification prob-
lem, the labels are integers taking values from 0 to the number of differ-
ent classes minus 1. For binary classification the labels are 0 or 1. For a 
multiclass problem with nClass different classes they are integers from 
0 to nClass – 1.

http://en.wikipedia.org/wiki/Decision_tree_learning
http://en.wikipedia.org/wiki/Decision_tree_learning


 Chapter 7 ■ Building ensemble Models with python  287

 ■ predict(X)

For an attribute matrix (two-dimensional numpy array) X, this function 
produces a specific class prediction. It yields a single column array with 
the same number of rows as X. Each entry is a predicted class, whether 
the problem is a binary classification problem or a multiclass problem.

 ■ predict_proba(X)

This version of the prediction function produces a two-dimensional array. 
The number of rows matches the number of rows in X. The number of 
columns is equal to the number of classes being predicted  (two columns 
for a binary classification problem, for example). The entry in each row is 
the probability of the associated class.

 ■ predict_log_proba(X)

This version of the prediction function produces a two-dimensional array 
similar to the predict_proba. Instead of showing probabilities, this ver-
sion shows log of probability.

Constructing a Random Forests Model to Detect  
Unexploded Mines
Listing 7-8 shows how to build a Random Forest model for detecting unexploded 
mines using sonar. The overall structure of the data setup and training should 
be familiar from the other Random Forest examples earlier in this chapter and 
in Chapter 6. Differences stem from properties of classification problems. First 
you’ll notice that the labels are changed from M and R to 0 and 1. That’s an input 
requirement for RandomForestClassifier. The next differences show up after 
training when evaluating performance on the test set. For a binary classification 
problem, there is choice of using area under the ROC curve (AUC) or misclas-
sification error. I usually prefer AUC when it is available because it gives an 
overall measure of performance.

To calculate AUC, the predict_proba version of the predict() function is 
used. You cannot get a useful ROC curve with predictions that are already 
reduced to a specific class. (More correctly, the ROC curve you calculate only 
has three points on it: the two end points and one point in the middle.) The 
sklearn metric utilities make calculating the AUC simple, with just a couple of 
lines of code. Those get accumulated into a list to plot AUC performance as a 
function of the number of trees in the ensemble. The code in Listing 7-7 then 
plots the AUC versus number of trees, the feature importance for the 30 most 
important features, and the ROC curve for the largest ensemble of the ones 
that are generated. The last section of the code picks three different threshold 
levels and prints out the confusion matrix for each of these threshold levels. 
The threshold levels are chosen at the three quartile boundaries, and the results 



288 Chapter 7 ■ Building ensemble Models with python 

show how false positives and false negatives change as the threshold moves to 
favor one versus the others.

Listing 7-7: Classifying Sonar Returns as Rocks or Mines with Random Forest—rocksVMinesRF.py

__author__ = 'mike_bowles'

import urllib2
from math import sqrt, fabs, exp
import matplotlib.pyplot as plot
from sklearn.cross_validation import train_test_split
from sklearn import ensemble
from sklearn.metrics import roc_auc_score, roc_curve
import numpy

#read data from uci data repository
target_url = ("https://archive.ics.uci.edu/ml/machine-learning"
"databases/undocumented/connectionist-bench/sonar/sonar.all-data")
data = urllib2.urlopen(target_url)

#arrange data into list for labels and list of lists for attributes
xList = []

for line in data:
    #split on comma
    row = line.strip().split(",")
    xList.append(row)

#separate labels from attributes, convert from attributes from
#string to numeric and convert "M" to 1 and "R" to 0

xNum = []
labels = []

for row in xList:
    lastCol = row.pop()
    if lastCol == "M":
        labels.append(1)
    else:
        labels.append(0)
    attrRow = [float(elt) for elt in row]
    xNum.append(attrRow)

#number of rows and columns in x matrix
nrows = len(xNum)
ncols = len(xNum[1])

#form x and y into numpy arrays and make up column names
X = numpy.array(xNum)
y = numpy.array(labels)

https://archive.ics.uci.edu/ml/machine-learning


 Chapter 7 ■ Building ensemble Models with python  289

rocksVMinesNames = numpy.array(['V' + str(i) for i in range(ncols)])

#break into training and test sets.
xTrain, xTest, yTrain, yTest = train_test_split(X, y, test_size=0.30,
    random_state=531)

auc = []
nTreeList = range(50, 2000, 50)
for iTrees in nTreeList:
    depth = None
    maxFeat  = 8 #try tweaking
    rocksVMinesRFModel = ensemble.RandomForestClassifier(n_estimators=
                             iTrees, max_depth=depth, max_features=
                             maxFeat, oob_score=False, random_state=531)
                             rocksVMinesRFModel.fit(xTrain,yTrain)

    #Accumulate auc on test set
    prediction = rocksVMinesRFModel.predict_proba(xTest)
    aucCalc = roc_auc_score(yTest, prediction[:,1:2])
    auc.append(aucCalc)

print("AUC" )
print(auc[-1])

#plot training and test errors vs number of trees in ensemble
plot.plot(nTreeList, auc)
plot.xlabel('Number of Trees in Ensemble')
plot.ylabel('Area Under ROC Curve - AUC')
#plot.ylim([0.0, 1.1*max(mseOob)])
plot.show()

# Plot feature importance
featureImportance = rocksVMinesRFModel.feature_importances_

# normalize by max importance
featureImportance = featureImportance / featureImportance.max()

#plot importance of top 30
idxSorted = numpy.argsort(featureImportance)[30:60]
idxTemp = numpy.argsort(featureImportance)[::-1]
print(idxTemp)
barPos = numpy.arange(idxSorted.shape[0]) + .5
plot.barh(barPos, featureImportance[idxSorted], align='center')
plot.yticks(barPos, rocksVMinesNames[idxSorted])
plot.xlabel('Variable Importance')
plot.show()

#plot best version of ROC curve
fpr, tpr, thresh = roc_curve(yTest, list(prediction[:,1:2]))

continues



290 Chapter 7 ■ Building ensemble Models with python 

ctClass = [i*0.01 for i in range(101)]

plot.plot(fpr, tpr, linewidth=2)
plot.plot(ctClass, ctClass, linestyle=':')
plot.xlabel('False Positive Rate')
plot.ylabel('True Positive Rate')
plot.show()

#pick some threshold values and calc confusion matrix for
#best predictions

#notice that GBM predictions don't fall in range of (0, 1)
#pick threshold values at 25th, 50th and 75th percentiles
idx25 = int(len(thresh) * 0.25)
idx50 = int(len(thresh) * 0.50)
idx75 = int(len(thresh) * 0.75)

#calculate total points, total positives and total negatives
totalPts = len(yTest)
P = sum(yTest)
N = totalPts - P

print('')
print('Confusion Matrices for Different Threshold Values')

#25th
TP = tpr[idx25] * P; FN = P - TP; FP = fpr[idx25] * N; TN = N - FP
print('')
print('Threshold Value =   ', thresh[idx25])
print('TP = ', TP/totalPts, 'FP = ', FP/totalPts)
print('FN = ', FN/totalPts, 'TN = ', TN/totalPts)

#50th
TP = tpr[idx50] * P; FN = P - TP; FP = fpr[idx50] * N; TN = N - FP
print('')
print('Threshold Value =   ', thresh[idx50])
print('TP = ', TP/totalPts, 'FP = ', FP/totalPts)
print('FN = ', FN/totalPts, 'TN = ', TN/totalPts)

#75th
TP = tpr[idx75] * P; FN = P - TP; FP = fpr[idx75] * N; TN = N - FP
print('')
print('Threshold Value =   ', thresh[idx75])
print('TP = ', TP/totalPts, 'FP = ', FP/totalPts)
print('FN = ', FN/totalPts, 'TN = ', TN/totalPts)

# Printed Output:
#
# AUC

continued



 Chapter 7 ■ Building ensemble Models with python  291

# 0.950304259635
#
# Confusion Matrices for Different Threshold Values
#
# ('Threshold Value =   ', 0.76051282051282054)
# ('TP = ', 0.25396825396825395, 'FP = ', 0.0)
# ('FN = ', 0.2857142857142857, 'TN = ', 0.46031746031746029)
#
# ('Threshold Value =   ', 0.62461538461538457)
# ('TP = ', 0.46031746031746029, 'FP = ', 0.047619047619047616)
# ('FN = ', 0.079365079365079361, 'TN = ', 0.41269841269841268)
#
# ('Threshold Value =   ', 0.46564102564102566)
# ('TP = ', 0.53968253968253965, 'FP = ', 0.22222222222222221)
# ('FN = ', 0.0, 'TN = ', 0.23809523809523808)

Determining the Performance of a Random Forests Classifier
Figure 7-13 shows a plot of AUC versus number of trees. The plot appears upside 
down from the plots you’ve seen involving mean squared error or misclas-
sification error. For mean squared error and misclassification error, smaller is 
better. For AUC, 1.0 is perfect, and 0.5 is perfectly bad. So, with AUC, larger is 
better, and instead of looking for a valley in the plot, you’re looking for a peak. 
Figure 7-13 shows a peak toward the left side of the plot. However, because 
Random Forest only reduces variance and does not overfit, the peak can be 
attributed to random fluctuation. As was the case with some of the regression 
problem earlier in the chapter, the best choice of model is the one including all 
the trees whose performance is the rightmost point on the curve.

Figure 7-14 plots the variable importance for the most important 30 variables 
in the Random Forest mine detector. The different attributes in the mine detec-
tion problem correspond to different frequencies of sonar signal and therefore 
different wavelengths. If you were given the problem of designing the machine 
learning for this problem, your next step might be to determine the wavelengths 
corresponding to these variables and compare those wavelengths to the char-
acteristic dimensions of the rocks and mines in the test and training set. That 
could help you get some faith and understanding of the model.

The model is getting remarkably high AUC, and the ROC curve is corre-
spondingly good. It doesn’t quite square the corner in the upper left, but it 
comes pretty close.

Detecting Unexploded Mines with Python Gradient Boosting
Listing 7-7 shows the form of the constructor for Gradient Boosting in sci-kit 
learn. Most of the arguments and methods for GradientBoostingClassifier14 
are the same as for GradientBoostingRegressor, so the following descriptions 



292 Chapter 7 ■ Building ensemble Models with python 

are limited to the elements that are different with the classifier than with the 
regression version.

Figure 7-13: AUC versus ensemble size for Random Forest models for detecting mines using 
sonar

0.965

0.960

0.955

0.950

0.945

0.940

0.935
0 500 1000

Number of Trees in Ensemble

Ar
ea

 U
nd

er
 R

OC
 C

ur
ve

 - 
AU

C

1500 2000

Figure 7-14: Variable importance for Random Forest mine detection model

V10
V11
V8
V9

V20
V51
V19
V42
V48
V47
V0

V35
V12
V16
V3
V4

V45
V46
V44
V15
V36
V27
V50
V22
V43
V26
V5

V21
V53
V34

0.0 0.2 0.4 0.6

Variable Importance

0.8 1.0



 Chapter 7 ■ Building ensemble Models with python  293

Here is the class constructor for sklearn.ensemble.GradientBoostingClassifier:

sklearn.ensemble.GradientBoostingClassifier(loss='deviance', learning_
rate=0.1, n_estimators=100, subsample=1.0, min_samples_split=2,
min_samples_leaf=1, max_depth=3, init=None, random_state=None,
max_features=None, verbose=0, max_leaf_nodes=None, warm_start=False)

The following list describes the parameters:

 ■ loss

deviance is the default and the only option for classification.

The following list describes the methods:

 ■ fit(X, y, monitor=None)

The description of the arguments for the classification version of Random 
Forest differs only in the nature of the labels y. For a classification problem 
the labels are integers taking values from 0 to the number of different classes 
minus 1. For binary classification the labels are 0 or 1. For a multiclass prob-
lem with nClass different classes they are integers from 0 to nClass – 1.

 ■ decision_function(X)

Under the hood of a Gradient Boosting classifier is a sum of regression trees. 
These generate a real number estimate related to the probability of class 
membership. These real number estimates have to be passed through an 
inverse logistic function to turn them into probabilities. The real number 
values before being converted are available through the decision function 
and can be used just as easily as probabilities for ROC curve calculations.

 ■ predict(X)

This function predicts class membership.
 ■ predict_proba(X)

This function predicts class probabilities. It has a column of probabilities 
for each class. For a binary problem, there are two columns. For multiclass 
problems, there are nClass columns.

The staged versions of these functions are iterable and will generate as many 
values as there are trees in the ensemble (which is the same as the number of 
steps in the training).

 ■ staged_decision_function(X)

This is the staged version of the decision function.
 ■ staged_predict(X)

This is the staged version of the predict function.

 ■ staged_predict_proba(X)

This is the staged version of the predict_proba function.



294 Chapter 7 ■ Building ensemble Models with python 

The code in Listing 7-8 applies the sklearn GradientBoostingClassifier to 
the task of detecting mines.

Listing 7-8: Classifying Sonar Returns as Rocks or Mines with Gradient  
Boosting—rocksVMinesGBM.py

__author__ = 'mike_bowles'

import urllib2
from math import sqrt, fabs, exp
import matplotlib.pyplot as plot
from sklearn.cross_validation import train_test_split
from sklearn import ensemble
from sklearn.metrics import roc_auc_score, roc_curve
import numpy

#read data from uci data repository
target_url = ("https://archive.ics.uci.edu/ml/machine-learning-"
"databases/undocumented/connectionist-bench/sonar/sonar.all-data")
data = urllib2.urlopen(target_url)

#arrange data into list for labels and list of lists for attributes
xList = []

for line in data:
    #split on comma
    row = line.strip().split(",")
    xList.append(row)

#separate labels from attributes, convert from attributes from
#string to numeric and convert "M" to 1 and "R" to 0

xNum = []
labels = []

for row in xList:
    lastCol = row.pop()
    if lastCol == "M":
        labels.append(1)
    else:
        labels.append(0)
    attrRow = [float(elt) for elt in row]
    xNum.append(attrRow)

#number of rows and columns in x matrix
nrows = len(xNum)
ncols = len(xNum[1])

#form x and y into numpy arrays and make up column names

https://archive.ics.uci.edu/ml/machine-learning-


 Chapter 7 ■ Building ensemble Models with python  295

X = numpy.array(xNum)
y = numpy.array(labels)
rockVMinesNames = numpy.array(['V' + str(i) for i in range(ncols)])

#break into training and test sets.
xTrain, xTest, yTrain, yTest = train_test_split(X, y, test_size=0.30,
    random_state=531)

#instantiate model
nEst = 2000
depth = 3
learnRate = 0.007
maxFeatures = 20
rockVMinesGBMModel = ensemble.GradientBoostingClassifier(
                        n_estimators=nEst, max_depth=depth,
                        learning_rate=learnRate,
                        max_features=maxFeatures)
#train
rockVMinesGBMModel.fit(xTrain, yTrain)

# compute auc on test set as function of ensemble size
auc = []
aucBest = 0.0
predictions = rockVMinesGBMModel.staged_decision_function(xTest)
for p in predictions:
    aucCalc = roc_auc_score(yTest, p)
    auc.append(aucCalc)

    #capture best predictions
    if aucCalc > aucBest:
        aucBest = aucCalc
        pBest = p

idxBest = auc.index(max(auc))

#print best values
print("Best AUC" )
print(auc[idxBest])
print("Number of Trees for Best AUC")
print(idxBest)

#plot training deviance and test auc's vs number of trees in ensemble
plot.figure()
plot.plot(range(1, nEst + 1), rockVMinesGBMModel.train_score_,
    label='Training Set Deviance', linestyle=":")
plot.plot(range(1, nEst + 1), auc, label='Test Set AUC')
plot.legend(loc='upper right')
plot.xlabel('Number of Trees in Ensemble')
plot.ylabel('Deviance / AUC')
plot.show()

continues



296 Chapter 7 ■ Building ensemble Models with python 

# Plot feature importance
featureImportance = rockVMinesGBMModel.feature_importances_

# normalize by max importance
featureImportance = featureImportance / featureImportance.max()

#plot importance of top 30
idxSorted = numpy.argsort(featureImportance)[30:60]

barPos = numpy.arange(idxSorted.shape[0]) + .5
plot.barh(barPos, featureImportance[idxSorted], align='center')
plot.yticks(barPos, rockVMinesNames[idxSorted])
plot.xlabel('Variable Importance')
plot.show()

#pick threshold values and calc confusion matrix for best predictions
#notice that GBM predictions don't fall in range of (0, 1)

#plot best version of ROC curve
fpr, tpr, thresh = roc_curve(yTest, list(pBest))
ctClass = [i*0.01 for i in range(101)]

plot.plot(fpr, tpr, linewidth=2)
plot.plot(ctClass, ctClass, linestyle=':')
plot.xlabel('False Positive Rate')
plot.ylabel('True Positive Rate')
plot.show()

#pick threshold values and calc confusion matrix for best predictions
#notice that GBM predictions don't fall in range of (0, 1)
#pick threshold values at 25th, 50th and 75th percentiles
idx25 = int(len(thresh) * 0.25)
idx50 = int(len(thresh) * 0.50)
idx75 = int(len(thresh) * 0.75)

#calculate total points, total positives and total negatives
totalPts = len(yTest)
P = sum(yTest)
N = totalPts - P

print('')
print('Confusion Matrices for Different Threshold Values')

#25th
TP = tpr[idx25] * P; FN = P - TP; FP = fpr[idx25] * N; TN = N - FP
print('')
print('Threshold Value =   ', thresh[idx25])
print('TP = ', TP/totalPts, 'FP = ', FP/totalPts)
print('FN = ', FN/totalPts, 'TN = ', TN/totalPts)

#50th

continued



 Chapter 7 ■ Building ensemble Models with python  297

TP = tpr[idx50] * P; FN = P - TP; FP = fpr[idx50] * N; TN = N - FP
print('')
print('Threshold Value =   ', thresh[idx50])
print('TP = ', TP/totalPts, 'FP = ', FP/totalPts)
print('FN = ', FN/totalPts, 'TN = ', TN/totalPts)

#75th
TP = tpr[idx75] * P; FN = P - TP; FP = fpr[idx75] * N; TN = N - FP
print('')
print('Threshold Value =   ', thresh[idx75])
print('TP = ', TP/totalPts, 'FP = ', FP/totalPts)
print('FN = ', FN/totalPts, 'TN = ', TN/totalPts)

# Printed Output:
#
# Best AUC
# 0.936105476673
# Number of Trees for Best AUC
# 1989
#
# Confusion Matrices for Different Threshold Values
#
# ('Threshold Value =   ', 6.2941249291909935)
# ('TP = ', 0.23809523809523808, 'FP = ', 0.015873015873015872)
# ('FN = ', 0.30158730158730157, 'TN = ', 0.44444444444444442)
#
# ('Threshold Value =   ', 2.2710265370949441)
# ('TP = ', 0.44444444444444442, 'FP = ', 0.063492063492063489)
# ('FN = ', 0.095238095238095233, 'TN = ', 0.3968253968253968)
#
# ('Threshold Value =   ', -3.0947902666953317)
# ('TP = ', 0.53968253968253965, 'FP = ', 0.22222222222222221)
# ('FN = ', 0.0, 'TN = ', 0.23809523809523808)
#
#
# Printed Output with max_features = 20 (Random Forest base learners):
#
# Best AUC
# 0.956389452333
# Number of Trees for Best AUC
# 1426
#
# Confusion Matrices for Different Threshold Values
#
# ('Threshold Value =   ', 5.8332200248698536)
# ('TP = ', 0.23809523809523808, 'FP = ', 0.015873015873015872)
# ('FN = ', 0.30158730158730157, 'TN = ', 0.44444444444444442)
#
# ('Threshold Value =   ', 2.0281780133610567)
# ('TP = ', 0.47619047619047616, 'FP = ', 0.031746031746031744)

continues



298 Chapter 7 ■ Building ensemble Models with python 

# ('FN = ', 0.063492063492063489, 'TN = ', 0.42857142857142855)
#
# ('Threshold Value =   ', -1.2965629080181333)
# ('TP = ', 0.53968253968253965, 'FP = ', 0.22222222222222221)
# ('FN = ', 0.0, 'TN = ', 0.23809523809523808)

The code follows the same general progression as was followed for Random 
Forest. One difference is that Gradient Boosting can overfit, and so the program 
keeps track of the best value of AUC as it accumulates AUCs into a list to be plotted. 
The best version is then used for generating a ROC curve and the tables of false 
positives, false negatives, and so on. Another difference is that Gradient Boosting 
is run twice—once incorporating ordinary trees and once using Random Forest 
base learners. Both ways have very good classification performance. The version 
using Random Forest base learners achieved better performance, unlike the models 
for predicting abalone age, where the performance was not markedly changed.

Determining the Performance of a Gradient Boosting Classifier
Figure 7-16 plots two curves. One is the deviance on the training set. Deviance is 
related to how far the probability estimates are from correct but differs slightly 
from misclassification error. Deviance is plotted because that quantity is what 
gradient boosting is training to improve. It’s included in the plot to show the 
progress of training. The AUC (on oos data) is also plotted to show how the 
oos performance is changing as the number of trees increases (or equivalently 
more gradient steps are taken; each step results in training an additional tree).

Figure 7-17 plots the variable importance for the most important 30 variables 
in the Gradient Boosting mine detector. The variable importances in Figure 7-17 
have a somewhat different order than the ones for Random Forest (shown in 
Figure 7-14). There is some commonality; for example, variables V10, V11, V20 
and V51 are near the top of both lists although not in quite the same order.

Figure 7-19 shows model training progress for Gradient Boosting that is 
using Random Forest base learners. Gradient Boosting does get better results 
using Random Forest base learners, but the difference isn’t large enough to be 
obvious in the graph.

Using Random Forest base learners doesn’t change the variable importance 
very much, as you can see by comparing Figure 7-20 with Figure 7-17.

Figure 7-21 shows the ROC curve for the mine detector model built with 
Gradient Boosting using Random Forest base learners.

In this section you have seen how ensemble methods can be used to solve 
binary classification problems. In most respects, using the application of ensemble 
methods to binary classification problems is the same as for regression problems. 
As an illustration of the similarity, notice how many of the parameters required 
to instantiate a randomForestRegressor object are the same as the ones for a 

continued



 Chapter 7 ■ Building ensemble Models with python  299

randomForestClassification object. Based on what you saw in Chapter 6, you 
can understand the basis for this similarity.

Figure 7-15: ROC curve for Random Forest mine detection model

1.0

0.8

0.6

0.4

0.2

0.0
1.00.80.6

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

0.40.20.0

Figure 7-16: AUC versus ensemble size for Gradient Boosting models for detecting mines using 
sonar

0

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0
500 1000

Number of Trees in Ensemble

Training Set Deviance
Test Set AUC

De
vi

an
ce

 / 
AU

C

1500 2000



300 Chapter 7 ■ Building ensemble Models with python 

You also understand that many of the differences between building ensemble 
models for classification and regression stem from differences in measuring 
errors and otherwise characterizing errors between the two classes of problems.

Figure 7-17: Variable importance for Gradient Boosting mine detection model

V20
V10
V11
V51
V48
V42
V35
V16
V48
V4

V47
V46
V50
V30
V26
V5

V41
V0

V39
V25
V6

V36
V29
V44
V22
V3

V38
V15
V57
V19

0.0 0.2 0.4 0.6

Variable Importance

0.8 1.0

Figure 7-18: Mine detection ROC curve for Gradient Boosting

1.0

0.8

0.6

0.4

0.2

0.0
1.00.80.6

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

0.40.20.0



 Chapter 7 ■ Building ensemble Models with python  301

Figure 7-19: Mine detection AUC versus ensemble size for Gradient Boosting with Random 
Forest base learners

0

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0
500 1000

Number of Trees in Ensemble

Training Set Deviance
Test Set AUC

De
vi

an
ce

 / 
AU

C

1500 2000

Figure 7-20: Variable importance for Gradient Boosting with Random Forest base learners

V20
V10
V11
V51
V42
V48
V47
V35
V16
V50
V8
V5
V4

V46
V19
V15
V41
V0

V36
V30
V26
V39
V3

V29
V6
V5

V18
V22
V44
V53

0.0 0.2 0.4 0.6

Variable Importance

0.8 1.0

The next section shows how these methods can be used for multiclass problems.



302 Chapter 7 ■ Building ensemble Models with python 

Solving Multiclass Classification Problems with Python 
Ensemble Methods

The Random Forest and Gradient Boosting packages in Python will build both 
binary and multiclass classification models. The two types of models have a few 
natural differences between them. One is that the labels (y) take more values. 
The discussion of the Random Forest and Gradient Boosting packages described 
the manner in which the labels are specified. For a classification problem having 
nClass different classes, the labels take integer values from 0 to nClass – 1. 
Another manifestation of the number of classes is the output of the various 
predict methods. The predict methods that are predicting classes generate the 
same integer values that the labels take. The methods predicting probabilities 
yield probabilities for nClass possible classes.

The other area where there is a noticeable difference is in specifying perfor-
mance. Misclassification error still makes sense, and you’ll see that the example 
code uses that to measure oos performance. AUC is more complicated to use 
when there are more than two classes, and trading off different error types 
becomes more challenging.

Classifying Glass with Random Forests
Listing 7-9 follows a similar outline to the code used for detecting mines.

Figure 7-21: Mine detection ROC curve for Gradient Boosting using Random Forest base learners

1.0

0.8

0.6

0.4

0.2

0.0
1.00.80.6

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

0.40.20.0



 Chapter 7 ■ Building ensemble Models with python  303

Listing 7-9: Classifying Glass Types Using Random Forests—glassRF.py

__author__ = 'mike_bowles'

import urllib2
from math import sqrt, fabs, exp
import matplotlib.pyplot as plot
from sklearn.linear_model import enet_path
from sklearn.metrics import accuracy_score, confusion_matrix, roc_curve
from sklearn.cross_validation import train_test_split
from sklearn import ensemble
import numpy

target_url = ("https://archive.ics.uci.edu/ml/machine-learning-"
"databases/glass/glass.data")
data = urllib2.urlopen(target_url)

#arrange data into list for labels and list of lists for attributes
xList = []
for line in data:
    #split on comma
    row = line.strip().split(",")
    xList.append(row)

glassNames = numpy.array(['RI', 'Na', 'Mg', 'Al', 'Si', 'K', 'Ca',
    'Ba', 'Fe', 'Type'])

#Separate attributes and labels
xNum = []
labels = []

for row in xList:
    labels.append(row.pop())
    l = len(row)
    #eliminate ID
    attrRow = [float(row[i]) for i in range(1, l)]
    xNum.append(attrRow)

#number of rows and columns in x matrix
nrows = len(xNum)
ncols = len(xNum[1])

#Labels are integers from 1 to 7 with no examples of 4.
#gb requires consecutive integers starting at 0
newLabels = []
labelSet = set(labels)
labelList = list(labelSet)
labelList.sort()
nlabels = len(labelList)
for l in labels:
    index = labelList.index(l)

continues

https://archive.ics.uci.edu/ml/machine-learning-


304 Chapter 7 ■ Building ensemble Models with python 

    newLabels.append(index)

#Class populations:
#old label     new label     num of examples
#1              0               70
#2              1               76
#3              2               17
#5              3               13
#6              4               9
#7              5               29
#
#Drawing 30% test sample may not preserve population proportions

#stratified sampling by labels.
xTemp = [xNum[i] for i in range(nrows) if newLabels[i] == 0]
yTemp = [newLabels[i] for i in range(nrows) if newLabels[i] == 0]
xTrain, xTest, yTrain, yTest = train_test_split(xTemp, yTemp,
    test_size=0.30, random_state=531)
for iLabel in range(1, len(labelList)):
    #segregate x and y according to labels
    xTemp = [xNum[i] for i in range(nrows) if newLabels[i] == iLabel]
    yTemp = [newLabels[i] for i in range(nrows) if \
        newLabels[i] == iLabel]

    #form train and test sets on segregated subset of examples
    xTrainTemp, xTestTemp, yTrainTemp, yTestTemp = train_test_split(
        xTemp, yTemp, test_size=0.30, random_state=531)

    #accumulate
    xTrain = numpy.append(xTrain, xTrainTemp, axis=0)
    xTest = numpy.append(xTest, xTestTemp, axis=0)
    yTrain = numpy.append(yTrain, yTrainTemp, axis=0)
    yTest = numpy.append(yTest, yTestTemp, axis=0)

missCLassError = []
nTreeList = range(50, 2000, 50)
for iTrees in nTreeList:
    depth = None
    maxFeat  = 4 #try tweaking
    glassRFModel = ensemble.RandomForestClassifier(n_estimators=iTrees,
                      max_depth=depth, max_features=maxFeat,
                      oob_score=False, random_state=531)

    glassRFModel.fit(xTrain,yTrain)

    #Accumulate auc on test set
    prediction = glassRFModel.predict(xTest)
    correct = accuracy_score(yTest, prediction)

    missCLassError.append(1.0 - correct)

continued



 Chapter 7 ■ Building ensemble Models with python  305

print("Missclassification Error" )
print(missCLassError[-1])

#generate confusion matrix
pList = prediction.tolist()
confusionMat = confusion_matrix(yTest, pList)
print('')
print("Confusion Matrix")
print(confusionMat)

#plot training and test errors vs number of trees in ensemble
plot.plot(nTreeList, missCLassError)
plot.xlabel('Number of Trees in Ensemble')
plot.ylabel('Missclassification Error Rate')
#plot.ylim([0.0, 1.1*max(mseOob)])
plot.show()

# Plot feature importance
featureImportance = glassRFModel.feature_importances_

# normalize by max importance
featureImportance = featureImportance / featureImportance.max()

#plot variable importance
idxSorted = numpy.argsort(featureImportance)
barPos = numpy.arange(idxSorted.shape[0]) + .5
plot.barh(barPos, featureImportance[idxSorted], align='center')
plot.yticks(barPos, glassNames[idxSorted])
plot.xlabel('Variable Importance')
plot.show()

# Printed Output:
# Missclassification Error
# 0.227272727273
#
# Confusion Matrix
# [[17  1  2  0  0  1]
#  [ 2 18  1  2  0  0]
#  [ 3  0  3  0  0  0]
#  [ 0  0  0  4  0  0]
#  [ 0  1  0  0  2  0]
#  [ 0  2  0  0  0  7]]

Dealing with Class Imbalances
As stated, this listing follows a similar outline to the code used for detecting 
mines. There are a couple of key differences. In the code, you’ll see a list of the 
different glass types using the numbering system from the original data set and 



306 Chapter 7 ■ Building ensemble Models with python 

the corresponding integer used as labels to meet the specification required for 
Random Forest. The table also shows how many examples there are of each type 
of glass. Some of the types have relatively many examples (in the 70s). Some types 
of glass are not as well represented. One in particular only has nine examples.

Imbalanced classes can sometimes cause problems because random sampling 
of the underrepresented classes may result in wildly different proportions in 
the sample than in the original data. To avoid that, the code goes through a 
process called stratified sampling. What that means in this case is that the data 
are segregated according to labels (stratified), and then each of those groups is 
sampled to obtain training and test sets within each class. Then the class-specific 
training sets are combined into a training set that has proportions of different 
classes that exactly match the original data.

The code generates Random Forest models and plots the training progress 
and the variable importance. It also prints out a confusion matrix that shows 
for each true class how many of the class were predicted to be each class. If the 
classifier is perfect, there should be no off-diagonal entries in the matrix.

Figure 7-22 shows how the performance of Random Forests improves as more 
trees are included in the ensemble. The curve generally drops as more trees 
are added. The rate of improvement decreases as more trees are added. It has 
slowed considerably at the point where the graph stops.

Figure 7-22: The overall performance of Random Forests

0
0.19

0.20

0.21

0.22

0.23

0.24

0.25

500 1000

Number of Trees in Ensemble

M
is

sc
la

ss
ifi

ca
tio

n 
Er

ro
r R

at
e

1500 2000

Figure 7-23 is a bar chart showing the relative importance of the variables used 
by Random Forests. The chart shows that a number of the variables are roughly 



 Chapter 7 ■ Building ensemble Models with python  307

equal in performance. This is unusual behavior. In many cases the  variable 
importances drop off quickly after the first few variables. In this problem there 
are several equally important variables.

Figure 7-23: The relative importance of the variables used by Random Forest

0.0 0.2 0.4 0.6
Variable Importance

0.8 1.0

Fe

Si

K

Na

Rl

Ca

Ba

Al

Mg

Classifying Glass Using Gradient Boosting
Listing 7-10 runs through the same steps as the Random Forest glass classifier 
in the preceding section, with a couple of minor differences.

Listing 7-10: Classifying Glass with Gradient Boosting—glassGbm.py

__author__ = 'mike_bowles'

import urllib2
from math import sqrt, fabs, exp
import matplotlib.pyplot as plot
from sklearn.linear_model import enet_path
from sklearn.metrics import roc_auc_score, roc_curve, confusion_matrix
from sklearn.cross_validation import train_test_split
from sklearn import ensemble
import numpy

target_url = ("https://archive.ics.uci.edu/ml/machine-learning-"

continues

https://archive.ics.uci.edu/ml/machine-learning-


308 Chapter 7 ■ Building ensemble Models with python 

"databases/glass/glass.data")
data = urllib2.urlopen(target_url)

#arrange data into list for labels and list of lists for attributes
xList = []
for line in data:
    #split on comma
    row = line.strip().split(",")
    xList.append(row)

glassNames = numpy.array(['RI', 'Na', 'Mg', 'Al', 'Si', 'K', 'Ca',
    'Ba', 'Fe', 'Type'])

#Separate attributes and labels
xNum = []
labels = []

for row in xList:
    labels.append(row.pop())
    l = len(row)
    #eliminate ID
    attrRow = [float(row[i]) for i in range(1, l)]
    xNum.append(attrRow)

#number of rows and columns in x matrix
nrows = len(xNum)
ncols = len(xNum[1])

#Labels are integers from 1 to 7 with no examples of 4.
#gb requires consecutive integers starting at 0
newLabels = []
labelSet = set(labels)
labelList = list(labelSet)
labelList.sort()
nlabels = len(labelList)
for l in labels:
    index = labelList.index(l)
    newLabels.append(index)

#Class populations:
#old label     new label     num of examples
#1              0               70
#2              1               76
#3              2               17
#5              3               13
#6              4               9
#7              5               29
#
#Drawing 30% test sample may not preserve population proportions

#stratified sampling by labels.

continued



 Chapter 7 ■ Building ensemble Models with python  309

xTemp = [xNum[i] for i in range(nrows) if newLabels[i] == 0]
yTemp = [newLabels[i] for i in range(nrows) if newLabels[i] == 0]
xTrain, xTest, yTrain, yTest = train_test_split(xTemp, yTemp,
    test_size=0.30, random_state=531)
for iLabel in range(1, len(labelList)):
    #segregate x and y according to labels
    xTemp = [xNum[i] for i in range(nrows) if newLabels[i] == iLabel]
    yTemp = [newLabels[i] for i in range(nrows) if \
        newLabels[i] == iLabel]

    #form train and test sets on segregated subset of examples
    xTrainTemp, xTestTemp, yTrainTemp, yTestTemp = train_test_split(
        xTemp, yTemp, test_size=0.30, random_state=531)

    #accumulate
    xTrain = numpy.append(xTrain, xTrainTemp, axis=0)
    xTest = numpy.append(xTest, xTestTemp, axis=0)
    yTrain = numpy.append(yTrain, yTrainTemp, axis=0)
    yTest = numpy.append(yTest, yTestTemp, axis=0)

#instantiate model
nEst = 500
depth = 3
learnRate = 0.003
maxFeatures = 3
subSamp = 0.5
glassGBMModel = ensemble.GradientBoostingClassifier(n_estimators=nEst,
                    max_depth=depth,learning_rate=learnRate,
                    max_features=maxFeatures,subsample=subSamp)

#train
glassGBMModel.fit(xTrain, yTrain)

# compute auc on test set as function of ensemble size
missClassError = []
missClassBest = 1.0
predictions = glassGBMModel.staged_decision_function(xTest)
for p in predictions:
    missClass = 0
    for i in range(len(p)):
        listP = p[i].tolist()
        if listP.index(max(listP)) != yTest[i]:
            missClass += 1
    missClass = float(missClass)/len(p)

    missClassError.append(missClass)

    #capture best predictions
    if missClass < missClassBest:
        missClassBest = missClass
        pBest = p

continues



310 Chapter 7 ■ Building ensemble Models with python 

idxBest = missClassError.index(min(missClassError))

#print best values
print("Best Missclassification Error" )
print(missClassBest)
print("Number of Trees for Best Missclassification Error")
print(idxBest)

#plot training deviance and test auc's vs number of trees in ensemble
missClassError = [100*mce for mce in missClassError]
plot.figure()
plot.plot(range(1, nEst + 1), glassGBMModel.train_score_,
    label='Training Set Deviance', linestyle=":")
plot.plot(range(1, nEst + 1), missClassError, label='Test Set Error')
plot.legend(loc='upper right')
plot.xlabel('Number of Trees in Ensemble')
plot.ylabel('Deviance / Classification Error')
plot.show()

# Plot feature importance
featureImportance = glassGBMModel.feature_importances_

# normalize by max importance
featureImportance = featureImportance / featureImportance.max()

#plot variable importance
idxSorted = numpy.argsort(featureImportance)
barPos = numpy.arange(idxSorted.shape[0]) + .5
plot.barh(barPos, featureImportance[idxSorted], align='center')
plot.yticks(barPos, glassNames[idxSorted])
plot.xlabel('Variable Importance')
plot.show()

#generate confusion matrix for best prediction.
pBestList = pBest.tolist()
bestPrediction = [r.index(max(r)) for r in pBestList]
confusionMat = confusion_matrix(yTest, bestPrediction)
print('')
print("Confusion Matrix")
print(confusionMat)

# Printed Output:
#
# nEst = 500
# depth = 3
# learnRate = 0.003
# maxFeatures = None
# subSamp = 0.5
#

continued



 Chapter 7 ■ Building ensemble Models with python  311

#
# Best Missclassification Error
# 0.242424242424
# Number of Trees for Best Missclassification Error
# 113
#
# Confusion Matrix
# [[19  1  0  0  0  1]
#  [ 3 19  0  1  0  0]
#  [ 4  1  0  0  1  0]
#  [ 0  3  0  1  0  0]
#  [ 0  0  0  0  3  0]
#  [ 0  1  0  1  0  7]]
#

# For Gradient Boosting using Random Forest base learners
# nEst = 500
# depth = 3
# learnRate = 0.003
# maxFeatures = 3
# subSamp = 0.5
#
#
#
# Best Missclassification Error
# 0.227272727273
# Number of Trees for Best Missclassification Error
# 267
#
# Confusion Matrix
# [[20  1  0  0  0  0]
#  [ 3 20  0  0  0  0]
#  [ 3  3  0  0  0  0]
#  [ 0  4  0  0  0  0]
#  [ 0  0  0  0  3  0]
#  [ 0  2  0  0  0  7]]

As before, the Gradient Boosting version uses the “staged” methods available 
in the GradientBoostingClassifier class to generate predictions at each step 
in the Gradient Boosting training process.

Assessing the Advantage of Using Random Forest Base 
Learners with Gradient Boosting
At the end of the code, you’ll see results reported for both Gradient Boosting 
with max_features=None and for max_features=20. The first parameter setting 
trains ordinary trees as suggested in the original Gradient Boosting papers. 



312 Chapter 7 ■ Building ensemble Models with python 

The second parameter setting incorporates trees like the ones used in Random 
Forest, where not all the features are considered for splitting at each node. Instead 
of all the features being considered, max_features are selected at random for 
consideration as the splitting variable. This gives a sort of hybrid between the 
usual Gradient Boosting implementation and Random Forest.

Figure 7-24 plots the deviance on the training set and the misclassification 
error on the test set. The deviance indicates the progress of the training pro-
cess. Misclassification on the test set is used to determine whether the model 
is overfitting. The algorithm does not overfit, but it also does not improve past 
200 or so trees and could be terminated sooner.

Figure 7-24: Glass classifier built using Gradient Boosting: training performance

0
20

40

60

80

100

120

140

100 200 300 400

Number of Trees in Ensemble

Training Set Deviance
Test Set Error

De
vi

an
ce

 / 
Cl

as
si

fic
at

io
n 

Er
ro

r

500

Figure 7-25 plots the variable importance for Gradient Boosting. The variables 
show unusually equal importance. It’s more usual to have a few variables be 
very important and for the importances to drop off more rapidly.

Figure 7-26 plots the deviance and oos misclassification error max_features=20, 
which results in Random Forest base learners being used in the ensemble, as 
discussed earlier. This leads to an improvement of about 10% in the misclas-
sification error rate. That’s not really perceptible from the graph in Figure 7-26, 
and the slight improvement in the end number does not change the basic char-
acter of the plot.



 Chapter 7 ■ Building ensemble Models with python  313

Figure 7-27 shows the plot of variable importance for Gradient Boosting with 
Random Forest base learners. The order between this figure and Figure 7-25 is 

Figure 7-25: Glass classifier built using Gradient Boosting: variable importance

0.0 0.2 0.4 0.6
Variable Importance

0.8 1.0

Fe

Si

K

Na

Rl

Ca

Ba

Al

Mg

Figure 7-26: Glass classifier built using Gradient Boosting with Random Forest base learners: 
training performance.

0
20

40

60

80

100

120

140

100 200 300 400

Number of Trees in Ensemble

Training Set Deviance
Test Set Error

De
vi

an
ce

 / 
Cl

as
si

fic
at

io
n 

Er
ro

r

500



314 Chapter 7 ■ Building ensemble Models with python 

somewhat altered. Some of the same variables appear in the top five, but some 
other in the top five for one are in the bottom for the other. These plots both 
show a surprisingly uniform level of importance, and that may be the cause of 
the instability in the importance order between the two.

Figure 7-27: Glass classifier built using Gradient Boosting with Random Forest base learners: 
variable importance

0.0 0.2 0.4 0.6
Variable Importance

0.8 1.0

Fe

Si

K

Na

Rl

Ca

Ba

Al

Mg

Comparing Algorithms

Table 7-1 gives timing and performance comparisons for the algorithms pre-
sented here. The times shown are the training times for one complete pass 
through training. Some of the code for training Random Forest trained a series 
of different-sized models. In that case, only the last (and longest) training pass 
is counted. The others were done to illustrate the behavior as a function of the 
number of trees in the training set. Similarly, for penalized linear regression, 
many of the runs incorporated 10-fold cross-validation, whereas other examples 
used a single holdout set. The single holdout set requires one training pass, 
whereas 10-fold cross-validation requires 10 training passes. For examples that 
incorporated 10-fold cross-validation, the time for 1 of the 10 training passes 
is shown.

Except for the glass data set (a multiclass classification problem), the train-
ing times for penalized linear regression are an order of magnitude faster 



 Chapter 7 ■ Building ensemble Models with python  315

than Gradient Boosting and Random Forest. Generally, the performance with 
Random Forest and Gradient Boosting is superior to penalized linear regression. 
Penalized linear regression is somewhat close on some of the data sets. Getting 
close on the wine data required employing basis expansion. Basis expansion 
was not used on other data sets and might lead to some further improvement.

table 7-1: Performance and Training Time Comparisons

Data Set algOrithM traiN tiMe perFOrMaNCe perF MetriC

glass RF 2000 trees 2.354401 0.227272727273 class error

glass gbm 500 trees 3.879308 0.227272727273 class error

glass lasso 12.296948 0.373831775701 class error

rvmines rf 2000 trees 2.760755 0.950304259635 auc

rvmines gbm 2000 trees 4.201122 0.956389452333 auc

rvmines enet 0.519870* 0.868672796508 auc

abalone rf 500 trees 8.060850 4.30971555911 mse

abalone gbm 2000 trees 22.726849 4.22969363284 mse

wine rf 500 trees 2.665874 0.314125711509 mse

wine gbm 2000 trees 13.081342 0.313361215728 mse

wine lasso-expanded 0.646788* 0.434528740430 mse

*The times marked with an asterisk are time per cross-validation fold. These techniques were trained several 
times in repetition in accordance with the n-fold cross-validation technique whereas other methods were trained 
using a single holdout test set. Using the time per cross-validation fold puts the comparisons on the same 
 footing.

Random Forest and Gradient Boosting have very close performance to one 
another, although sometimes one or the other of them requires more trees than 
the other to achieve it. The training times for Random Forest and Gradient 
Boosting are roughly equivalent. In some of the cases where they differ, one of 
them is getting trained much longer than required. In the abalone data set, for 
example, the oos error has flattened by 1,000 steps (trees), but training continues 
until 2,000. Changing that would cut the training time for Gradient Boosting 
in half and bring the training times for that data set more into agreement. The 
same is true for the wine data set.

Summary

This chapter demonstrated ensemble methods available as Python packages. The 
examples show these methods at work building models on a variety of different 
types of problems. The chapter also covered regression, binary classification, 



316 Chapter 7 ■ Building ensemble Models with python 

and multiclass classification problems, and discussed variations on these themes 
such as the workings of coding categorical variables for input to Python ensemble 
methods and stratified sampling. These examples cover many of the problem 
types that you’re likely to encounter in practice.

The examples also demonstrate some of the important features of ensemble 
algorithms—the reasons why they are a first choice among data scien-
tists. Ensemble methods are relatively easy to use. They do not have many 
parameters to tune. They give variable importance data to help in the early 
stages of model development, and they very often give the best performance 
achievable.

The chapter demonstrated the use of available Python packages. The back-
ground given in Chapter 6 helps you to understand the parameters and adjust-
ments that you see in the Python packages. Seeing them exercised in the example 
code can help you get started using these packages.

The comparisons given at the end of the chapter demonstrate how these algo-
rithms compare. The ensemble methods frequently give the best performance. 
The penalized regression methods are blindingly much faster than ensemble 
methods and in some cases yield similar performance.

References

 1. sklearn documentation for RandomForestRegressor, http://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.

RandomForestRegressor.html

 2. Leo Breiman. (2001). “Random Forests.” Machine Learning, 45(1): 5–32. 
doi:10.1023/A:1010933404324

 3. J. H. Friedman. “Greedy Function Approximation: A Gradient Boosting 
Machine,” https://statweb.stanford.edu/~jhf/ftp/trebst.pdf

 4. sklearn documentation for RandomForestRegressor, http://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.

RandomForestRegressor.html

 5. L. Breiman, “Bagging predictors,” http://statistics.berkeley.edu/
sites/default/files/tech-reports/421.pdf

 6. Tin Ho. (1998). “The Random Subspace Method for Constructing Decision 
Forests.” IEEE Transactions on Pattern Analysis and Machine Intelligence, 
20(8): 832–844. doi:10.1109/34.709601

 7. J. H. Friedman. “Greedy Function Approximation: A Gradient Boosting 
Machine,” https://statweb.stanford.edu/~jhf/ftp/trebst.pdf

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://statweb.stanford.edu/~jhf/ftp/trebst.pdf
http://statistics.berkeley.edu/sites/default/files/tech-reports/421.pdf
https://statweb.stanford.edu/~jhf/ftp/trebst.pdf
http://scikitlearn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
http://statistics.berkeley.edu/sites/default/files/tech-reports/421.pdf


 Chapter 7 ■ Building ensemble Models with python  317

 8. J. H. Friedman. “Stochastic Gradient Boosting,” https://statweb.stanford
.edu/~jhf/ftp/stobst.pdf

 9. sklearn documentation for GradientBoostingRegressor, http://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.

GradientBoostingRegressor.html

 10. J. H. Friedman. “Greedy Function Approximation: A Gradient Boosting 
Machine,” https://statweb.stanford.edu/~jhf/ftp/trebst.pdf

 11. J. H. Friedman. “Stochastic Gradient Boosting,” https://statweb.stanford
.edu/~jhf/ftp/stobst.pdf

 12. J. H. Friedman. “Stochastic Gradient Boosting,” https://statweb.stanford
.edu/~jhf/ftp/stobst.pdf

 13. sklearn documentation for RandomForestClassifier, http://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.

RandomForestClassifier.html

 14. sklearn documentation for GradientBoostingClassifier, http://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.

GradientBoostingClassifier.html

https://statweb.stanford.edu/~jhf/ftp/stobst.pdf
http://scikitlearn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html
https://statweb.stanford.edu/~jhf/ftp/trebst.pdf
https://statweb.stanford.edu/~jhf/ftp/stobst.pdf
https://statweb.stanford.edu/~jhf/ftp/stobst.pdf
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
https://statweb.stanford.edu/~jhf/ftp/stobst.pdf
https://statweb.stanford.edu/~jhf/ftp/stobst.pdf
https://statweb.stanford.edu/~jhf/ftp/stobst.pdf




Index





321

Index

A
algorithms

bagged decision trees, 4
base learners, 211–212
boosted decision trees, 4
bootstrap aggregation, 226–236
choosing, 11–13
comparison, 6
ensemble methods, 1
linear, compared to nonlinear, 87–88
logistic regression, 4
multiclass classification problems, 

314–315
nonlinear, compared to linear, 87–88
penalized linear regression  

methods, 1
Random Forests, 4

ANNs (artificial neural nets), 4
argmin, 110–111
attributes. See also features; 

independent variables; inputs; 
predictors

categorical variables, 26, 77
statistical characterization, 37

cross plots, 42–43
factor variables, 26, 77

features, 25
function approximation and, 76
increase, 5
labels, relationship visualization, 

42–49
numeric variables, 26, 77
predictions and, 3
real-valued, 62–68, 77
squares of, 197
targets, correlation, 44–47
times residuals, 197

AUC (area under the curve), 88

B
bagging, 11, 212, 226–236, 270–275

bias versus variance, 229–231
decision trees, 235–236
multivariable problems and,  

231–235
random forests and, 247–250

base learners, 9, 211–212
basis expansion, 19

linear methods/nonlinear problems, 
156–158

best subset selection, 103
bias versus variance, 229–231



322 Index ■ C–E

binary classification problems, 78
ensemble methods, 284–302
penalized linear regression methods 

and, 181–191
binary decision trees, 9–10, 212–213

bagging, 11
categorical features, 225–226
classification features, 225–226
overfitting, 221–225
predictions and, 213–214
training, 214–217

tree training, 218–221
boosting, 212
bootstrap aggregating. See bagging
box and whisker plots, 54–55

normalization and, 55

C
categorical variables, 19, 26

binary decision trees, 225–226
classification problems, 27
statistical characterization, 37

chapter content and dependencies, 18–20
chirped signals, 28
chirped waveform, 151
class imbalances, 305–307
classification problems

algorithms and, 2–3
binary, penalized linear regression 

and, 181–191
binary decision trees, 225–226
categorical variables, 27
chirped signals, 28
class imbalances, 305–307
converting to regression, 152–154
multiclass, 68–73, 204–209

ensemble methods, 302–314
multiple outcomes, 155–156
penalized linear regression methods, 

151–155
coefficient estimation

Lasso penalty and, 129–131
penalized linear regression and, 122

coefficient penalized regression, 111

complex models, compared to simple 
models, 82–86

complexity
balancing, 102–103
simple problems versus complex 

problems, 80–82
complexity parameter, 110
confusion matrix, 91
contingency tables, 91
correlations

heat map and, 49–50
regression problems, 60–62

Pearson’s, 47–49
targets and attributes, 44–47

cross plots, 42–43
cross-validation

out-of-sample error, 168–172
regression, 182–183

D
data frames, 37–38
data sets

examples, 24
instances, 24
items to check, 27–28
labels, 25
observations, 24
points, 7–8
problems, 24–28
shape, 29–32
size, 29–32
statistical summaries, 32–35
unique ID, 25
user ID, 25

deciles, 34
decision trees, binary, 9–10

bagging, 11
degree of freedom, 86–87
dependencies, chapters in book, 18–20
dependent variables, 26

E
ElasticNet package, 128–129, 131–132, 

181–191



 Index ■ F–L 323

ensemble methods, 1, 20, 211–212
bagged decision trees, 4
base learners, 9–11
binary decision trees, 9–10

bagging, 11
boosted decision trees, 4
multiclass classification problems, 

302–314
penalized linear regression methods 

and, 124
penalized linear regression methods 

comparison, 11–13
Random Forests, 4
speed, 11

ensemble models
binary classification problems, 

284–302
non-numeric attributes

coded variables, 278, 282–284
gradient boosting regression, 

278–282
random forest regression,  

275–278
ensemble packages, 255–256

random forest model, 256–270
errors, out-of-sample, 80

F
factor variables, 26

predictions, 50–62
false negatives, 92
false positives, 92
feature engineering, 7, 17–18, 76
feature extraction, 17–18
feature selection, 7
features, 25

function approximation and, 76
forward stepwise regression, 102

LARS and, 132–144
overfitting and, 103–108

function approximation, 1, 76,  
124–125

performance, 78–79
training data, 76–78

G
Glmnet, 132, 144–145

initialization, 146–151
iterating, 146–151
LARS comparison, 145–146

gradient boosting, 236–239, 256–262, 
291–298

classifier performance, 298–302, 
307–311

multivariable problems and,  
244–246

parameter settings, 239
performance, 240–243
predictive models and, 240
random forest model base learners, 

311–314
GradientBoostingRegressor, 263–267

model performance, 269–270
regression model implementation, 

267–269

H
heat map, correlations, 49–50

regression problems, 60–62

I
importance, 138
independent variables, 26
inputs, 11, 26

K
KNNs (k nearest neighbors), 4

L
labels, 16. See also dependent variables; 

outcomes; responses; targets
attributes, relationship visualization, 

42–49
categorical, classification problems, 

27
data sets, 25
function approximation and, 76
numeric, regression problems, 27

LARS (least-angle regression), 132



324 Index ■ M–P

forward stepwise regression and, 
132–144

Glmnet comparison, 145–146
model selection, 139–142

cross-validation in Python Code, 
142–143

errors on cross-validation fold, 143
practical considerations, 143–144

Lasso penalty, 129–131
lasso training, data sets, 173–176
linear algorithms versus nonlinear, 

87–88
linear methods

nonlinear problems and, 156–158
non-numeric attributes, 158–163

linear models, penalized linear 
regression and, 124

linear regression, 1
model training, 126–132
numeric input and, classification 

problems, 151–155
penalized linear regression methods, 

1, 124–132
logistic regression, 1, 4, 155

M
MACD (moving average convergence 

divergence), 17
machine learning, problem 

formulation, 15–17
MAE (mean absolute error), 78–79, 88
mean, Pandas, 39
misclassification errors, 96
mixture model, 81
models

inputs, 11
LARS and, 136–138

MSE (mean squared error), 78–79, 88
multiclass classification problems, 

68–73, 78, 204–209
algorithm comparison, 314–315
class imbalances, 305–307
ensemble methods, 302–314

multivariable regression, 167–168

bagging and, 231–235
gradient boosting and, 244–246
model building, 168–172
testing model, 168–172

N
n-fold cross-validation, 100
nonlinear algorithms, versus linear, 

87–88
nonlinear problems, linear methods 

and, 156–158
non-numeric attributes, linear 

methods and, 158–163
normalization, box plots and, 55
notation, predictors, 77
numeric values, assigning to binary 

labels, 152–154
numeric variables, 26, 77

regression problems, 27

O
OLS (ordinary least squares), 7, 101, 

121
coefficient penalties, 127–128
L1 norm, 129
Manhatten length, 129

outcomes, 26
function approximation and, 76

outliers, quantile-quantile plot, 35–37
out-of-sample errors, 80

cross-validation and, 168–172
overfitting

binary decision trees, 221–225
forward stepwise regression and, 

103–108
ridge regression and, 110–119

P
packages

ElasticNet, 181–191
penalized linear regression methods, 

166–167
Pandas, 37–39



 Index ■ Q–R 325

parallel coordinates plots, 40–42, 
64–66

regression problems, 56–60
Pearson’s correlation, 47–49
penalized linear regression methods, 

1, 20, 121
binary classification, 181–191
classification problems, 151–155
coefficient estimation, 122
coefficient penalized regression, 111
ensemble methods and, 124
ensemble methods comparison, 

11–13
evaluation speed, 123
function approximation and, 124
Glmnet, 144–145

initialization, 146–151
iterating, 146–151
LARS comparison, 145–146

linear models and, 124
linear regression regulation, 124–132
multiclass classification, 204–209
OLS (ordinary least squares) and, 7
packages, 166–167
reliable performance, 123
sparse solution, 123
speed, 11
variable importance information, 

122–123
percentiles, 34
plots

box and whisker, 54–55
cross plots, 42–43
parallel coordinates, 40–42
quantile-quantile, 35–37
scatter plots, 42

points, data sets, 7–8
pred( ) function, 79
predictions

attributes and, 3
binary decision trees, 212–213
factor variables and, 50–62
real-valued, 62–68
wine taste, 168–172

predictive models
building, 13–18
feature engineering, 7, 17–18
feature extraction, 17–18
feature selection, 7
function approximation, 76

performance, 78–79
training data, 76–78

gradient boosting and, 240
labels, 16
mathematical description, 19
performance factors, 86–87
performance measures, 88–99
targets, 14
trained, 25

performance evaluation, 18
predictors, 25

function approximation and, 76
notation, 77

problem formulation, 15–17

Q
quantiles, Pandas, 39
quantil-quantile plot, 35–37
quartiles, 34
quintiles, 34

R
random forest model, 256–270

base learners, gradient boosting and, 
311–314

classification, 302–305
classifier performance, 291

random forests, 212
bagging and, 247–250
performance and, 251–252

RandomForestRegressor object, 256–262
real-valued attributes, 77
regression

penalized linear regression, 121
ridge regression, 121
step-wise, 121

regression problems
correlation heat map, 60–62



326 Index ■ S–V

numeric variables, 27
parallel coordinates, 56–60

regressors, function approximation 
and, 76

relationships
attributes/labels, visualization, 

42–49
variable, 56–60

reliable performance, 123
residuals, 137

attributes times residuals, 197
responses, 26
ridge regression, 102, 121

overfitting and, 110–119
RMSE (root MSE), 88
ROC (receiver operating curves), 88, 

183
RSI (relative strength index), 17

S
scatter plots, 42
scikit-learn packages, 166
simple models, compared to complex 

models, 82–86
sklearn.linear_model, 166
sparse solution, 123
squares of attributes, 197
statistics, data sets, 32–35
stepwise regression, 121
stratified sampling, 37, 306
summaries

data sets, 32–35
Pandas, 38–39

supervised learning, 1
SVMs (support vector machines), 4

T
targets, 14, 26

attributes, correlation, 44–47

binary classification problem, 78
function approximation and, 76
multiclass classification problem, 78

trained models, 25
linear, 126–132
performance evaluation, 18

training
binary decision trees, 214–217
tree training, 218–221

training data, 76–78
deployment and, 172–181

tree training, 218–221

U
user ID, 25

V
validation, cross-validation, out-of-

sample errors, 168–172
variable importance information, 

122–123
variables

categorical, 19, 26
classification problems, 27
statistical characterization, 37

creating from old, 178–181
factor, 26
numeric, 26

regression problems, 27
relationships, 56–60

variance
versus bias, 229–231
Pandas, 39

visualization
attributes/labels relationship,  

42–49
parallel coordinates plots, 40–42
variable relationships, 56–60



WILEY END USER LICENSE
AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook
EULA.

http://www.wiley.com/go/eula

	Machine Learning in Python®
	Contents
	Introduction
	Chapter 1 The Two Essential Algorithms for Making Predictions
	Why Are These Two Algorithms So Useful?
	What Are Penalized Regression Methods?
	What Are Ensemble Methods?
	How to Decide Which Algorithm to Use
	The Process Steps for Building a Predictive Model
	Framing a Machine Learning Problem
	Feature Extraction and Feature Engineering
	Determining Performance of a Trained Model

	Chapter Contents and Dependencies
	Summary

	Chapter 2 Understand the Problem by Understanding the Data
	The Anatomy of a New Problem
	Different Types of Attributes and Labels Drive Modeling Choices
	Things to Notice about Your New Data Set

	Classification Problems: Detecting Unexploded Mines Using Sonar
	Physical Characteristics of the Rocks Versus Mines Data Set
	Statistical Summaries of the Rocks versus Mines Data Set
	Visualization of Outliers Using Quantile-Quantile Plot
	Statistical Characterization of Categorical Attributes
	How to Use Python Pandas to Summarize the Rocks Versus Mines Data Set

	Visualizing Properties of the Rocks versus Mines Data Set
	Visualizing with Parallel Coordinates Plots
	Visualizing Interrelationships between Attributes and Labels
	Visualizing Attribute and Label Correlations Using a Heat Map
	Summarizing the Process for Understanding Rocks versus Mines Data Set

	Real-Valued Predictions with Factor Variables: How Old Is Your Abalone?
	Parallel Coordinates for Regression Problems—Visualize Variable Relationships for Abalone Problem
	How to Use Correlation Heat Map for Regression—Visualize Pair-Wise Correlations for the Abalone Problem

	Real-Valued Predictions Using Real-Valued Attributes: Calculate How Your Wine Tastes
	Multiclass Classification Problem: What Type of Glass Is That?
	Summary

	Chapter 3 Predictive Model Building: Balancing Performance, Complexity, and Big Data
	The Basic Problem: Understanding Function Approximation
	Working with Training Data
	Assessing Performance of Predictive Models

	Factors Driving Algorithm Choices and Performance—Complexity and Data
	Contrast Between a Simple Problem and a Complex Problem
	Contrast Between a Simple Model and a Complex Model
	Factors Driving Predictive Algorithm Performance
	Choosing an Algorithm: Linear or Nonlinear?

	Measuring the Performance of Predictive Models
	Performance Measures for Different Types of Problems
	Simulating Performance of Deployed Models

	Achieving Harmony Between Model and Data
	Choosing a Model to Balance Problem Complexity, Model Complexity, and Data Set Size
	Using Forward Stepwise Regression to Control Overfitting
	Evaluating and Understanding Your Predictive Model
	Control Overfitting by Penalizing Regression Coefficients—Ridge Regression

	Summary

	Chapter 4 Penalized Linear Regression
	Why Penalized Linear Regression Methods Are So Useful
	Extremely Fast Coefficient Estimation
	Variable Importance Information
	Extremely Fast Evaluation When Deployed
	Reliable Performance
	Sparse Solutions
	Problem May Require Linear Model
	When to Use Ensemble Methods

	Penalized Linear Regression: Regulating Linear Regression for Optimum Performance
	Training Linear Models: Minimizing Errors and More
	Adding a Coefficient Penalty to the OLS Formulation
	Other Useful Coefficient Penalties—Manhattan and ElasticNet
	Why Lasso Penalty Leads to Sparse Coefficient Vectors
	ElasticNet Penalty Includes Both Lasso and Ridge


	Solving the Penalized Linear Regression Problem
	Understanding Least Angle Regression and Its Relationship to Forward Stepwise Regression
	How LARS Generates Hundreds of Models of Varying Complexity
	Choosing the Best Model from The Hundreds LARS Generates

	Using Glmnet: Very Fast and Very General
	Comparison of the Mechanics of Glmnet and LARS Algorithms
	Initializing and Iterating the Glmnet Algorithm


	Extensions to Linear Regression with Numeric Input
	Solving Classification Problems with Penalized Regression
	Working with Classification Problems Having More Than Two Outcomes
	Understanding Basis Expansion: Using Linear Methods on Nonlinear Problems
	Incorporating Non-Numeric Attributes into Linear Methods

	Summary

	Chapter 5 Building Predictive Models Using Penalized Linear Methods
	Python Packages for Penalized Linear Regression
	Multivariable Regression: Predicting Wine Taste
	Building and Testing a Model to Predict Wine Taste
	Training on the Whole Data Set before Deployment
	Basis Expansion: Improving Performance by Creating New Variables from Old Ones


	Binary Classification: Using Penalized Linear Regression to Detect Unexploded Mines
	Build a Rocks versus Mines Classifier for Deployment

	Multiclass Classification: Classifying Crime Scene Glass Samples
	Summary

	Chapter 6 Ensemble Methods
	Binary Decision Trees
	How a Binary Decision Tree Generates Predictions
	How to Train a Binary Decision Tree
	Tree Training Equals Split Point Selection
	How Split Point Selection Affects Predictions
	Algorithm for Selecting Split Points
	Multivariable Tree Training—Which Attribute to Split?
	Recursive Splitting for More Tree Depth

	Overfitting Binary Trees
	Measuring Overfit with Binary Trees
	Balancing Binary Tree Complexity for Best Performance

	Modifications for Classification and Categorical Features

	Bootstrap Aggregation: “Bagging”
	How Does the Bagging Algorithm Work?
	Bagging Performance—Bias versus Variance
	How Bagging Behaves on Multivariable Problem
	Bagging Needs Tree Depth for Performance

	Summary of Bagging

	Gradient Boosting
	Basic Principle of Gradient Boosting Algorithm
	Parameter Settings for Gradient Boosting
	How Gradient Boosting Iterates Toward a Predictive Model

	Getting the Best Performance from Gradient Boosting
	Gradient Boosting on a Multivariable Problem
	Summary for Gradient Boosting

	Random Forest
	Random Forests: Bagging Plus Random Attribute Subsets
	Random Forests Performance Drivers
	Random Forests Summary

	Summary

	Chapter 7 Building Ensemble Models with Python
	Solving Regression Problems with Python Ensemble Packages
	Building a Random Forest Model to Predict Wine Taste
	Constructing a RandomForestRegressor Object
	Modeling Wine Taste with RandomForestRegressor
	Visualizing the Performance of a Random Forests Regression Model

	Using Gradient Boosting to Predict Wine Taste
	Using the Class Constructor for GradientBoostingRegressor
	Using GradientBoostingRegressor to Implement a Regression Model
	Assessing the Performance of a Gradient Boosting Model


	Coding Bagging to Predict Wine Taste
	Incorporating Non-Numeric Attributes in Python Ensemble Models
	Coding the Sex of Abalone for Input to Random Forest Regression in Python
	Assessing Performance and the Importance of Coded Variables
	Coding the Sex of Abalone for Gradient Boosting Regression in Python
	Assessing Performance and the Importance of Coded Variables with Gradient Boosting

	Solving Binary Classification Problems with Python Ensemble Methods
	Detecting Unexploded Mines with Python Random Forest
	Constructing a Random Forests Model to Detect Unexploded Mines
	Determining the Performance of a Random Forests Classifier
	Detecting Unexploded Mines with Python Gradient Boosting
	Determining the Performance of a Gradient Boosting Classifier

	Solving Multiclass Classification Problems with Python Ensemble Methods
	Classifying Glass with Random Forests
	Dealing with Class Imbalances
	Classifying Glass Using Gradient Boosting
	Assessing the Advantage of Using Random Forest Base Learners with Gradient Boosting

	Comparing Algorithms
	Summary

	Index
	EULA

