


Undergraduate	Topics	in	Computer	Science
Series	Editor

Ian	Mackie

Undergraduate	 Topics	 in	 Computer	 Science	 (UTiCS)	 delivers	 high-quality	 instructional
content	 for	 undergraduates	 studying	 in	 all	 areas	 of	 computing	 and	 information	 science.
From	 core	 foundational	 and	 theoretical	 material	 to	 final-year	 topics	 and	 applications,
UTiCS	books	 take	a	fresh,	concise,	and	modern	approach	and	are	 ideal	 for	self-study	or
for	a	one-	or	two-semester	course.	The	texts	are	all	authored	by	established	experts	in	their
fields,	reviewed	by	an	international	advisory	board,	and	contain	numerous	examples	and
problems.	Many	include	fully	worked	solutions.

More	information	about	this	series	at	http://www.springer.com/series/7592

http://www.springer.com/series/7592


Kent	D.	Lee

Python	Programming	Fundamentals
2nd	ed.	2014



Kent	D.	Lee

Luther	College,	Decorah,	IA,	USA

ISSN	1863-7310					e-ISSN	2197-1781

ISBN	978-1-4471-6641-2					e-ISBN	978-1-4471-6642-9

DOI	10.1007/978-1-4471-6642-9

Springer	London	Heidelberg	New	York	Dordrecht

Library	of	Congress	Control	Number:	2014956498

©	Springer-Verlag	London	2014

This	work	 is	 subject	 to	 copyright.	All	 rights	 are	 reserved	 by	 the	Publisher,	whether	 the
whole	or	part	of	the	material	is	concerned,	specifically	the	rights	of	translation,	reprinting,
reuse	of	illustrations,	recitation,	broadcasting,	reproduction	on	microfilms	or	in	any	other
physical	way,	and	transmission	or	information	storage	and	retrieval,	electronic	adaptation,
computer	 software,	 or	 by	 similar	 or	 dissimilar	 methodology	 now	 known	 or	 hereafter
developed.

The	use	of	general	descriptive	names,	registered	names,	trademarks,	service	marks,	etc.	in
this	 publication	 does	 not	 imply,	 even	 in	 the	 absence	 of	 a	 specific	 statement,	 that	 such
names	are	exempt	from	the	relevant	protective	laws	and	regulations	and	therefore	free	for
general	use.

The	 publisher,	 the	 authors	 and	 the	 editors	 are	 safe	 to	 assume	 that	 the	 advice	 and
information	 in	 this	book	are	believed	 to	be	 true	 and	accurate	 at	 the	date	of	publication.
Neither	 the	publisher	nor	 the	authors	or	 the	editors	give	a	warranty,	 express	or	 implied,
with	respect	to	the	material	contained	herein	or	for	any	errors	or	omissions	that	may	have
been	made.

Printed	on	acid-free	paper

Springer-Verlag	 London	 Ltd.	 is	 part	 of	 Springer	 Science+Business	 Media
(www.springer.com)



Preface
Computer	 Science	 is	 a	 creative,	 challenging,	 and	 rewarding	 discipline.	 Computer
programmers,	 sometimes	 called	 software	 engineers,	 solve	 problems	 involving	 data:
computing,	 moving,	 and	 handling	 large	 quantities	 of	 data	 are	 all	 tasks	 made	 easier	 or
possible	by	computer	programs.	Money	magazine	ranked	software	engineer	as	the	number
one	 job	 in	 America	 in	 terms	 of	 flexibility,	 creativity,	 low	 stress	 levels,	 ease	 of	 entry,
compensation,	and	job	growth	within	the	field	[4].

Learning	to	program	a	computer	is	a	skill	that	can	bring	you	great	enjoyment	because
of	the	creativity	involved	in	designing	and	implementing	a	solution	to	a	problem.	Python
is	a	good	first	language	to	learn	because	there	is	very	little	overhead	in	learning	to	write
simple	programs.	Python	also	has	many	libraries	available	that	make	it	easy	to	write	some
very	 interesting	 programs	 including	 programs	 in	 the	 areas	 of	 Computer	 Graphics	 and
Graphical	User	Interfaces:	two	topics	that	are	covered	in	this	text.

In	 this	 text,	 students	 are	 taught	 to	 program	 by	 giving	 them	 many	 examples	 and
practice	 exercises	 with	 solutions	 that	 they	 can	 work	 on	 in	 an	 interactive	 classroom
environment.	 The	 interaction	 can	 be	 accomplished	 using	 a	 computer	 or	 using	 pen	 and
paper.	By	making	the	classroom	experience	active,	students	reflect	on	and	apply	what	they
have	 read	 and	 heard	 in	 the	 classroom.	By	 using	 a	 skill	 or	 concept	 right	 away,	 students
quickly	discover	if	they	need	more	reinforcement	of	the	concept,	while	teachers	also	get
immediate	feedback.	There	is	a	big	difference	between	seeing	a	concept	demonstrated	and
using	 it	 yourself	 and	 this	 text	 encourages	 applying	 concepts	 immediately	 to	 test
understanding.	This	 is	vital	 in	Computer	Science	since	new	skills	and	concepts	build	on
what	we	have	already	learned.

In	several	places	within	this	book	there	are	examples	presented	that	highlight	patterns
of	programming.	These	patterns	appear	over	and	over	in	programs	we	write.	In	this	text,
patterns	like	the	Accumulator	Pattern	and	the	Guess	and	Check	Pattern	are	presented	and
exercises	 reinforce	 the	 recognition	 and	 application	 of	 these	 and	 other	 abstract	 patterns
used	 in	 problem-solving.	 Learning	 a	 language	 is	 certainly	 one	 important	 goal	 of	 an
introductory	 text,	 but	 acquiring	 the	 necessary	 problem-solving	 skills	 is	 even	 more
important.	 Students	 learn	 to	 solve	 problems	 on	 their	 own	 by	 recognizing	 when	 certain
patterns	are	relevant	and	then	applying	these	patterns	in	their	own	programs.

Recent	 studies	 in	Computer	 Science	 Education	 indicate	 the	 use	 of	 a	 debugger	 can
greatly	enhance	a	student’s	understanding	of	programming	[1].	A	debugger	is	a	tool	that
lets	the	programmer	inspect	the	state	of	a	program	at	any	point	while	it	is	executing.	There
is	something	about	actually	seeing	what	is	happening	as	a	program	is	executed	that	helps
make	 an	 abstract	 concept	 more	 concrete.	 This	 text	 introduces	 students	 to	 the	 use	 of	 a
debugger	and	includes	exercises	and	examples	that	show	students	how	to	use	a	debugger
to	discover	how	programs	work.

There	are	additional	resources	available	for	instructors	teaching	from	this	text.	They
include	 lecture	 slides	 and	 a	 sample	 schedule	 of	 lectures	 for	 a	 semester	 long	 course.
Solutions	 to	 all	 programming	 exercises	 are	 also	 available	 upon	 request.	 Visit	 http://cs.
luther.edu/~leekent/CS1	for	more	information.

http://cs.luther.edu/~leekent/CS1


Python	is	a	good	language	for	teaching	introductory	Computer	Science	because	it	is
very	 accessible	 and	 can	be	 incrementally	 taught	 so	 students	 can	 start	 to	write	 programs
before	having	 to	 learn	 the	whole	 language.	However,	at	 the	same	 time,	Python	 is	also	a
developing	 language.	 Python	 3.1	 was	 recently	 released	 to	 the	 public.	 This	 release	 of
Python	included	many	performance	enhancements	which	were	very	good	additions	to	the
language.	 There	were	 also	 some	 language	 issues	with	 version	 2.6	 and	 earlier	 that	were
cleaned	up	at	the	same	time	that	were	not	backwards	compatible.	The	result	is	that	not	all
Python	2	programs	are	compatible	with	Python	3	and	vice	versa.	Because	both	Python	2
and	 Python	 3	 are	 in	 use	 today,	 this	 text	will	 point	 out	 the	 differences	 between	 the	 two
versions	 where	 appropriate.	 These	 differences	 will	 be	 described	 by	 inset	 boxes	 titled	

	within	the	text	where	the	differences	are	first	encountered.

It	is	recommended	that	students	reading	this	text	use	Python	3.1	or	later	for	writing
and	 running	 their	 programs.	 All	 Python	 programs	 presented	 in	 the	 text	 are	 Python	 3
programs.	The	libraries	used	in	this	text	all	work	with	Python	3.	However,	there	may	be
some	libraries	that	have	not	been	ported	to	Python	3	that	a	particular	instructor	would	like
to	use.	In	terms	of	what	is	covered	in	this	text,	the	differences	between	Python	2	and	3	are
pretty	minor	and	either	language	implementation	will	work	to	use	with	the	text.



Acknowledgments
I	would	like	to	thank	Nathaniel	Lee,	who	not	only	let	his	dad	teach	him,	but	was	a	great
sounding	 board	 and	 test	 subject	 for	 this	 text.	 Thank	 you,	Nathan,	 for	 all	 your	 valuable
feedback	and	for	your	willingness	to	learn.	I’d	also	like	to	thank	my	wife,	Denise,	for	her
ongoing	support	while	I	have	written.	Thanks	Denise.	I	know	it	has	been	work	for	you	too.



Credits
At	times	in	this	text	Microsoft	Windows	is	referred	to	when	installing	software.	Windows
is	 a	 registered	 trademark	 of	 Microsoft	 Corporation	 in	 the	 United	 States	 and	 other
countries.	 Mac	 OS	 X	 is	 referred	 to	 at	 times	 within	 this	 text.	 Mac	 and	 Mac	 OS	 are
trademarks	of	Apple	Inc.,	registered	in	the	U.S.	and	other	countries.

This	 book	 also	 introduces	 readers	 to	 Wing	 IDE	 101,	 which	 is	 used	 in	 examples
throughout	the	text.	Wing	IDE	101	is	a	free	simplified	edition	of	Wing	IDE	Professional,	a
full-featured	 integrated	 development	 environment	 designed	 specifically	 for	 Python.	 For
more	information	on	Wing	IDE,	see	www.wingware.com	.	Wingware	and	Wing	IDE	are
trademarks	or	registered	trademarks	of	Wingware	in	the	United	States	and	other	countries.

http://www.wingware.com


Suggestions
I	 welcome	 suggestions	 for	 future	 printings	 of	 this	 text.	 If	 you	 like	 this	 text	 and	 have
suggestions	for	future	printings,	please	write	up	your	suggestion(s)	and	email	them	to	me.
The	more	complete	your	write	up,	the	more	likely	I	will	be	to	consider	your	suggestion.	If
I	 select	 your	 suggestion	 for	 a	 future	 printing	 I’ll	 be	 sure	 to	 include	 your	 name	 in	 the
preface	as	a	contributor	to	the	text.	Suggestions	can	be	emailed	to	kentdlee@luther.edu	or
kentdlee@gmail.com.



Contents
1	Introduction

1.1	The	Python	Programming	Language

1.2	Installing	Python	and	Wing	IDE	101

1.3	Writing	Your	First	Program

1.4	What	Is	a	Computer?

1.5	Binary	Number	Representation

1.6	What	Is	a	Programming	Language?

1.7	Hexadecimal	and	Octal	Representation

1.8	Writing	Your	Second	Program

1.9	Syntax	Errors

1.10	Types	of	Values

1.11	The	Reference	Type	and	Assignment	Statements

1.12	Integers	and	Real	Numbers

1.13	Strings

1.14	Integer	to	String	Conversion	and	Back	Again

1.15	Getting	Input

1.16	Formatting	Output

1.17	When	Things	Go	Wrong

1.18	Review	Questions

1.19	Exercises

1.20	Solutions	to	Practice	Problems

2	Decision	Making

2.1	Finding	the	Max	of	Three	Integers

2.2	The	Guess	and	Check	Pattern

2.3	Choosing	from	a	List	of	Alternatives

2.4	The	Boolean	Type

2.5	Short	Circuit	Logic

2.6	Comparing	Floats	for	Equality

2.7	Exception	Handling

2.8	Review	Questions

2.9	Exercises



2.10	Solutions	to	Practice	Problems

3	Repetitive	Tasks

3.1	Operators

3.2	Iterating	Over	a	Sequence

3.3	Lists

3.4	The	Guess	and	Check	Pattern	for	Lists

3.5	Mutability	of	Lists

3.6	The	Accumulator	Pattern

3.7	Reading	from	and	Writing	to	a	File

3.8	Reading	Records	from	a	File

3.9	Review	Questions

3.10	Exercises

3.11	Solutions	to	Practice	Problems

4	Using	Objects

4.1	Constructors

4.2	Accessor	Methods

4.3	Mutator	Methods

4.4	Immutable	Classes

4.5	Object-Oriented	Programming

4.6	Working	with	XML	Files

4.7	Extracting	Elements	from	an	XML	File

4.8	XML	Attributes	and	Dictionaries

4.9	Reading	an	XML	File	and	Building	Parallel	Lists

4.10	Using	Parallel	Lists	to	Draw	a	Picture

4.11	Review	Questions

4.12	Exercises

4.13	Solutions	to	Practice	Problems

5	Defining	Functions

5.1	Why	Write	Functions?

5.2	Passing	Arguments	and	Returning	a	Value

5.3	Scope	of	Variables

5.4	The	Run-Time	Stack



5.5	Mutable	Data	and	Functions

5.6	Predicate	Functions

5.7	Top-Down	Design

5.8	Bottom-Up	Design

5.9	Recursive	Functions

5.10	The	Main	Function

5.11	Keyword	Arguments

5.12	Default	Values

5.13	Functions	with	Variable	Number	of	Parameters

5.14	Dictionary	Parameter	Passing

5.15	Review	Questions

5.16	Exercises

5.17	Solutions	to	Practice	Problems

6	Event-Driven	Programming

6.1	The	Root	Window

6.2	Menus

6.3	Frames

6.4	The	Text	Widget

6.5	The	Button	Widget

6.6	Creating	a	Reminder!

6.7	Finishing	up	the	Reminder!	Application

6.8	Label	and	Entry	Widgets

6.9	Layout	Management

6.10	Message	Boxes

6.11	Review	Questions

6.12	Exercises

6.13	Solutions	to	Practice	Problems

7	Defining	Classes

7.1	Creating	an	Object

7.2	Inheritance

7.3	A	Bouncing	Ball	Example

7.4	Polymorphism



7.5	Getting	Hooked	on	Python

7.6	Review	Questions

7.7	Exercises

7.8	Solutions	to	Practice	Problems

8	Appendix	A:	Integer	Operators

9	Appendix	B:	Float	Operators

10	Appendix	C:	String	Operators	and	Methods

11	Appendix	D:	List	Operators	and	Methods

12	Appendix	E:	Dictionary	Operators	and	Methods

13	Appendix	F:	Turtle	Methods

14	Appendix	G:	TurtleScreen	Methods

15	Appendix	H:	The	Reminder!	Program

16	Appendix	I:	The	Bouncing	Ball	Program

Glossary

References

Index



©	Springer-Verlag	London	2014

Kent	D.	LeePython	Programming	FundamentalsUndergraduate	Topics	 in	Computer	Science10.1007/978-1-4471-6642-
9_1



1.	Introduction
Kent	D.	Lee1		

(1)		

Luther	College,	Decorah,	IA,	USA

	
	

Kent	D.	Lee
Email:	kentdlee@luther.edu

The	 intent	 of	 this	 text	 is	 to	 introduce	 you	 to	 computer	 programming	 using	 the	 Python
programming	language.	Learning	to	program	is	a	bit	like	learning	to	play	piano,	although
quite	a	bit	easier	since	we	won’t	have	to	program	while	keeping	time	according	to	a	time
signature.	 Programming	 is	 a	 creative	 process	 so	we’ll	 be	working	 on	 developing	 some
creative	skills.	At	the	same	time,	there	are	certain	patterns	that	can	be	used	over	and	over
again	in	this	creative	process.	The	goal	of	this	text	and	the	course	you	are	taking	is	to	get
you	familiar	with	these	patterns	and	show	you	how	they	can	be	used	in	programs.	After
working	through	this	text	and	studying	and	practicing	you	will	be	able	to	identify	which	of
these	patterns	are	needed	to	implement	a	program	for	a	particular	task	and	you	will	be	able
to	apply	these	patterns	to	solve	new	and	interesting	problems.

As	human	beings	our	intelligent	behavior	hinges	on	our	ability	to	match	patterns.	We
are	pattern-matchers	from	the	moment	we	are	born.	We	watch	and	listen	to	our	parents	and
siblings	to	learn	how	to	react	to	situations.	Babies	watch	us	to	learn	to	talk,	walk,	eat,	and
even	 to	 smile.	 All	 these	 behaviors	 are	 learned	 through	 pattern	 matching.	 Computer
Science	is	no	different.	Many	of	the	programs	we	create	in	Computer	Science	are	based	on
just	 a	 few	 patterns	 that	 we	 learn	 early	 in	 our	 education	 as	 programmers.	 Once	 we’ve
learned	the	patterns	we	become	effective	programmers	by	learning	to	apply	the	patterns	to
new	situations.	As	babies	we	are	wired	to	learn	quickly	with	a	little	practice.	As	we	grow
older	we	can	learn	to	use	patterns	that	are	more	abstract.	That	is	what	Computer	Science	is
all	about:	the	application	of	abstract	patterns	to	solve	new	and	interesting	problems.

PRACTICE	 is	 important.	There	 is	 a	huge	difference	between	 reading	 something	 in
this	text	or	understanding	what	is	said	during	a	lecture	and	being	able	to	do	it	yourself.	At
times	this	may	be	frustrating,	but	with	practice	you	will	get	better	at	 it.	As	you	read	the
text	make	 sure	you	 take	 time	 to	do	 the	practice	 exercises.	Practice	 exercises	 are	 clearly
labeled	with	a	gray	background	color.	These	exercises	are	your	chance	 to	use	a	concept
that	you	have	just	learned.	Answers	to	practice	exercises	are	included	at	the	end	of	each
chapter	so	you	can	check	your	answers.

mailto:kentdlee@luther.edu


1.1		The	Python	Programming	Language
Python	 is	 the	programming	 language	 this	 text	uses	 to	 introduce	computer	programming.
To	run	a	Python	program	you	need	an	interpreter.	The	Python	interpreter	is	a	program	that
reads	 a	 Python	 program	 and	 then	 executes	 the	 statements	 found	 in	 it,	 as	 depicted	 in
Fig.	 1.1.	 While	 studying	 this	 text	 you	 will	 write	 many	 Python	 programs.	 Once	 your
program	is	written	and	you	are	ready	to	try	it	you	will	tell	the	Python	interpreter	to	execute
your	Python	program	so	you	can	see	what	it	does.

Fig.	1.1		The	Python	Interpreter

For	 this	 process	 to	 work	 you	 must	 first	 have	 Python	 installed	 on	 your	 computer.
Python	 is	 free	 and	 available	 for	 download	 from	 the	 internet.	 The	 next	 section	 of	 this
chapter	 will	 take	 you	 through	 downloading	 and	 installing	 Python.	Within	 the	 last	 few
years	 there	were	 some	changes	 to	 the	Python	programming	 language	between	Python	2
and	Python	3.	The	 text	will	describe	differences	between	 the	 two	versions	of	Python	as
they	come	up.	In	terms	of	learning	to	program,	the	differences	between	the	two	versions	of
Python	are	pretty	minor.

To	write	Python	programs	you	need	an	editor	to	type	in	the	program.	It	is	convenient
to	 have	 an	 editor	 that	 is	 designed	 for	 writing	 Python	 programs.	 An	 editor	 that	 is
specifically	 designed	 for	writing	 programs	 is	 called	 an	 IDE	 or	 Integrated	Development
Environment.	An	IDE	is	more	than	just	an	editor.	It	provides	highlighting	and	indentation
that	can	help	as	you	write	a	program.	It	also	provides	a	way	to	run	your	program	straight
from	 the	 editor.	 Since	 you	will	 typically	 run	 your	 program	many	 times	 as	 you	write	 it,
having	a	way	to	run	it	quickly	is	handy.	This	text	uses	the	Wing	IDE	101	in	many	of	its
examples.	This	IDE	is	simple	to	install	and	is	free	for	educational	use.	Wing	IDE	101	is
available	for	Mac	OS	X,	Microsoft	Windows,	and	Linux.

When	 learning	 to	 program	 and	 even	 as	 a	 seasoned	 professional,	 it	 can	 be
advantageous	to	run	your	program	using	a	tool	called	a	debugger.	A	debugger	allows	you
to	run	your	program,	stop	it	at	any	point,	and	inspect	the	state	of	the	program	to	help	you
better	understand	what	is	happening	as	your	program	executes.	The	Wing	IDE	includes	an
integrated	debugger	 for	 that	purpose.	There	are	certainly	other	 IDEs	 that	might	be	used
and	 nothing	 presented	 in	 this	 text	 precludes	 you	 from	 using	 something	 else.	 Some
examples	 of	 IDEs	 for	 Python	 development	 include	Netbeans,	 Eclipse,	 Eric,	 and	 IDLE.
Eric’s	debugger	is	really	quite	nice	and	could	serve	as	an	alternative	to	Wing	should	Wing
IDE	101	not	be	an	option	for	some	reason.



1.2		Installing	Python	and	Wing	IDE	101
To	 begin	 writing	 Python	 programs	 on	 your	 own	 computer,	 you	 need	 to	 have	 Python
installed.	There	were	some	significant	changes	between	Python	2.7	and	Python	3	which
included	 a	 few	 changes	 that	 make	 programs	 written	 for	 version	 3	 incompatible	 with
programs	written	for	version	2.7	and	vice	versa.	If	you	are	using	this	book	as	part	of	an
introductory	 course,	 your	 instructor	 may	 prefer	 you	 install	 one	 version	 or	 the	 other.
Example	 programs	 in	 this	 text	 are	 written	 using	 Python	 3	 syntax	 but	 the	 differences
between	Python	2	and	3	are	few	enough	that	it	is	possible	to	use	either	Python	2	or	3	when
writing	programs	for	the	exercises	in	this	text.	Inset	boxes	titled	Python	2	 	3	will	highlight
the	differences	when	they	are	first	encountered	in	the	text.

Fig.	1.2		Installing	Python	on	Windows

If	you	are	running	Windows	you	will	likely	have	to	install	Python	yourself.	You	can
get	 the	 installation	 package	 from	 http://python.org.	 Click	 the	DOWNLOAD	 link	 on	 the
page.	Then	pick	the	appropriate	installer	package.	Most	will	want	to	download	the	latest
version	of	the	Python	3	Windows	x86	MSI	Installer	package.	Once	you	have	downloaded
it,	double-click	the	package	and	take	all	the	defaults	to	install	it	as	pictured	in	Fig.	1.2.

http://python.org


Fig.	1.3		Installing	Python	on	Mac	OS	X

If	you	have	a	Mac,	then	Python	is	already	installed	and	may	be	the	version	you	want
to	use,	depending	on	how	new	your	Mac	is.	You	can	find	out	which	version	of	Python	you
have	by	opening	a	terminal	window.	Go	to	the	Applications	folder	and	look	in	the	Utilities
sub-folder	 for	 the	Terminal	application.	Start	a	 terminal	and	 in	 the	window	type	python.
You	should	see	something	like	this:

Fig.	1.4		Installing	Wing	IDE	101	on	Windows



You	can	press	and	hold	the	control	key	(i.e.	the	ctrl	key)	and	press	‘d’	to	exit	Python
or	 just	 close	 the	 terminal	window.	 If	you	do	not	have	version	3.1	or	newer	 installed	on
your	Mac	 you	may	wish	 to	 download	 the	 latest	Python	 3	MacOS	 Installer	Disk	 Image
from	the	http://python.org	web	site.	Once	the	file	is	downloaded	you	can	double-click	the
disk	image	file	and	then	look	for	the	Python.mpkg	 file	and	double-click	it	as	pictured	in
Fig.	1.3.	You	will	need	an	administrator	password	to	install	it	which	in	most	cases	is	just
your	own	password.

While	 you	 don’t	 need	 an	 IDE	 like	 Wing	 to	 write	 and	 run	 Python	 programs,	 the
debugger	support	 that	an	 IDE	 like	Wing	provides	will	help	you	understand	how	Python
programs	work.	 It	 is	 also	 convenient	 to	write	 your	 programs	 in	 an	 IDE	 so	 you	 can	 run
them	quickly	and	easily.	To	install	Wing	IDE	101	you	need	to	go	to	the	http://wingware.
com	web	site.	Find	the	Download	link	at	the	top	of	the	web	page	and	select	Wing	IDE	101
to	download	the	installation	package.	Be	sure	to	pick	Wing	IDE	101	to	download	if	you
don’t	want	to	pay	for	a	license.	If	you	are	installing	on	a	Mac,	pick	the	Mac	version.	If	you
are	installing	on	Windows,	pick	the	Windows	version.	Download	and	run	the	installation
package	 if	 you	 are	 using	 Windows.	 Running	 the	 Windows	 installer	 should	 display	 an
installer	window	like	that	pictured	in	Fig.	1.4.	Take	all	the	defaults	to	install	it.

If	you	are	installing	Wing	IDE	101	on	a	Mac	then	you	need	to	mount	the	disk	image.
To	 do	 this	 you	 must	 double-click	 a	 file	 that	 looks	 like	wingide-101-3.2.2-1-i386.dmg.
After	 double-clicking	 that	 file	 you	will	 have	 a	mounted	 disk	 image	 of	 the	 same	 name,
minus	the	.dmg	extension).	If	you	open	a	Finder	window	for	that	disk	image	you	will	see	a
window	that	looks	like	Fig.	1.5.	Drag	the	Wing	IDE	icon	to	your	Applications	folder	and
you	can	add	it	to	your	dock	if	you	like.

Fig.	1.5		Installing	Wing	IDE	101	on	a	Mac

http://python.org
http://wingware.com


Fig.	1.6		Configuring	Wing’s	Python	Interpreter

1.2.1		Configuring	Wing
If	you	look	at	Fig.	1.8	you	will	see	that	the	Python	interpreter	shows	up	as	Python	3.1.1.
When	you	install	Wing,	you	should	open	it	and	take	a	look	at	your	Python	Shell	tab.	If	you
see	 the	 wrong	 version	 of	 Python	 then	 you	 need	 to	 configure	 Wing	 to	 use	 the	 correct
Python	Shell.	To	do	 this	you	must	open	Wing	and	go	 to	 the	Edit	menu.	Under	 the	Edit
menu,	select	Configure	Python	 	and	type	in	the	appropriate	interpreter.	If	you	are	using
a	Mac	and	wish	to	use	version	3.1	then	you	would	type	python3.1.	Figure	1.6	shows	you
what	this	dialog	box	looks	like	and	what	you	would	type	in	on	a	Mac.	In	Windows,	you
should	 click	 the	browse	button	 and	 find	python.exe.	This	will	 be	 in	 a	 directory	 like	 :

	if	you	chose	the	defaults	when	installing.

Fig.	1.7		Configuring	Indent	Guides

There	is	one	more	configuration	change	that	should	be	made.	The	logical	flow	of	a
Python	program	depends	on	the	program’s	indentation.	Since	indentation	is	so	important,
Wing	can	provide	a	visual	cue	to	the	indentation	in	your	program	called	an	indent	guide.



These	indent	guides	will	not	show	up	in	this	chapter,	but	they	will	in	subsequent	chapters.
Go	to	the	Edit	menu	again	and	select	Preferences.	Then	click	on	the	Indentation	selection
in	the	dialog	box	as	shown	in	Fig.	1.7.	Select	the	checkbox	that	says	Show	Indent	Guides.

That’s	it!	Whether	you	are	a	Mac	or	Windows	user	if	you’ve	followed	the	directions
in	this	section	you	should	have	Python	and	Wing	IDE	101	installed	and	ready	to	use.	The
next	section	shows	you	how	to	write	your	first	program	so	you	can	test	your	installation	of
Wing	IDE	101	and	Python.



1.3		Writing	Your	First	Program
To	try	out	the	installation	of	your	IDE	and	Python	you	should	write	a	program	and	run	it.
The	 traditional	 first	 program	 is	 the	Hello	 World	 program.	 This	 program	 simply	 prints
“Hello	World!”	 to	 the	 screen	 when	 it	 is	 run.	 This	 can	 be	 done	 with	 one	 statement	 in
Python.	Open	your	IDE	if	you	have	not	already	done	so.	If	you	are	using	Windows	you
can	select	 it	by	going	 to	 the	Start	menu	in	 the	bottom	left	hand	corner	and	selecting	All
Programs.	Look	for	Wing	IDE	101	under	the	Start	menu	and	select	it.	If	you	are	using	a
Mac,	go	to	the	Applications	folder	and	double-click	the	Wing	IDE	icon	or	click	on	it	 in
your	dock	if	you	installed	the	icon	on	your	dock.	Once	you’ve	done	this	you	will	have	a
window	that	looks	like	Fig.	1.8.

In	the	IDE	window	you	go	to	the	File	menu	and	select	New	to	get	a	new	edit	tab	within
the	IDE.	You	then	enter	one	statement,	the	print	statement	shown	in	Fig.	1.8	to	print	Hello
World!	 to	 the	screen.	After	entering	 the	one	 line	program	you	can	run	 it	by	clicking	 the
green	debug	button	(i.e.	 that	button	that	 looks	like	a	bug)	at	 the	top	of	the	window.	You
will	 be	 prompted	 to	 save	 the	 file.	 Click	 the	 Save	 Selected	 Files	 button	 and	 save	 it	 as
helloworld.py.	You	should	then	see	Hello	World!	printed	at	the	bottom	of	the	IDE	window
in	the	Debug	I/O	tab.



Fig.	1.8		The	Wing	IDE

The	print	statement	that	you	see	in	this	program	prints	the	string	“Hello	World!”	to
standard	output.	Text	printed	to	standard	output	appears	in	the	Debug	I/O	tab	in	the	Wing
IDE.	 That	 should	 do	 it.	 If	 it	 doesn’t	 you’ll	 need	 to	 re-read	 the	 installation	 instructions
either	here	or	on	the	websites	you	downloaded	Python	and	Wing	IDE	from	or	you	can	find
someone	 to	 help	 you	 install	 them	 properly.	 An	 IDE	 is	 used	 in	 examples	 and	 practice
exercises	throughout	this	text	so	you’ll	need	a	working	installation	of	an	IDE	and	Python
to	make	full	use	of	this	text.



1.4		What	Is	a	Computer?
So	you’ve	written	your	first	program	and	you’ve	been	using	a	computer	all	your	life.	But,
what	 is	 a	 computer,	 really?	 A	 computer	 is	 composed	 of	 a	 Central	 Processing	 Unit
(abbreviated	CPU),	memory,	and	 Input/Output	 (abbreviated	 I/O)	devices.	A	screen	 is	an
output	device.	A	mouse	is	an	input	device.	A	hard	drive	is	an	I/O	device.

The	CPU	is	the	brain	of	the	computer.	It	is	able	to	store	values	in	memory,	retrieve
values	from	memory,	add/subtract	two	numbers,	compare	two	numbers	and	do	one	of	two
things	 depending	 on	 the	 outcome	 of	 that	 comparison.	 The	CPU	 can	 also	 control	which
instruction	it	will	execute	next.	Normally	there	are	a	list	of	instructions,	one	after	another,
that	the	CPU	executes.	Sometimes	the	CPU	may	jump	to	a	different	location	within	that
list	of	instructions	depending	on	the	outcome	of	some	comparison.

That’s	 it.	 A	 CPU	 can’t	 do	 much	 more	 than	 what	 was	 described	 in	 the	 previous
paragraph.	 CPU’s	 aren’t	 intelligent	 by	 any	 leap	 of	 the	 imagination.	 In	 fact,	 given	 such
limited	power,	it’s	amazing	how	much	we	are	able	to	do	with	a	computer.	Everything	we
use	a	computer	for	is	built	on	the	work	of	many,	many	people	who	have	built	layers	and
layers	of	programs	that	make	our	life	easier.

The	memory	of	a	computer	is	a	place	where	values	can	be	stored	and	retrieved.	It	is	a
relatively	fast	storage	device,	but	it	loses	its	contents	as	soon	as	the	computer	is	turned	off.
It	 is	 called	volatile	 store.	The	memory	of	a	computer	 is	divided	 into	different	 locations.
Each	location	within	memory	has	an	address	and	can	hold	a	value.	Figure	1.9	shows	the
contents	of	memory	location	100	containing	the	number	48.

Fig.	1.9		Conceptual	view	of	a	computer

The	hard	drive	is	non-volatile	storage	or	sometimes	called	persistent	storage.	Values
can	be	stored	and	retrieved	from	the	hard	drive,	but	it	is	relatively	slow	compared	to	the
memory	and	CPU.	However,	it	retains	its	contents	even	when	the	power	is	off.

In	 a	 computer,	 everything	 is	 stored	 as	 a	 sequence	 of	 0’s	 and	 1’s.	 For	 instance,	 the
string	 01010011	 can	 be	 interpreted	 as	 the	 decimal	 number	 83.	 It	 can	 also	 represent	 the
capital	letter	‘S’.	How	we	interpret	these	strings	of	0’s	and	1’s	is	up	to	us.	We	can	tell	the
CPU	 how	 to	 interpret	 a	 location	 in	 memory	 by	 which	 instruction	 we	 tell	 the	 CPU	 to
execute.	Some	instructions	treat	01010011	as	the	number	83.	Other	instructions	treat	it	as
the	letter	‘S’.

One	digit	in	a	binary	number	is	called	a	bit.	Eight	bits	grouped	together	are	called	a
byte.	Four	bytes	grouped	 together	are	called	a	word.	 	 bytes	 are	 called	 a	kilobyte	 (i.e.
KB).	 	kilobytes	are	called	a	megabyte	 (i.e.	MB).	 	megabytes	are	called	a	gigabyte



(i.e.	GB).	 	gigabytes	are	called	a	terabyte	(i.e.	TB).	Currently	memories	on	computers
are	usually	in	the	1–8	GB	range.	Hard	Drives	on	computers	are	usually	in	the	500	GB	to
2	TB	range.



1.5		Binary	Number	Representation
Each	 digit	 in	 a	 decimal	 number	 represents	 a	 power	 of	 10.	 The	 right-most	 digit	 is	 the
number	of	ones,	 the	next	digit	 is	 the	number	of	10’s,	and	so	on.	To	 interpret	 integers	as
binary	numbers	we	use	powers	of	2	just	as	we	use	powers	of	10	when	interpreting	integers
as	 decimal	 numbers.	 The	 right-most	 digit	 of	 a	 binary	 number	 represents	 the	 number	 of
times	 	is	needed	in	the	representation	of	the	integer.	Our	choices	are	only	0	or	1	(i.e.
we	can	use	one	 	if	the	number	is	odd),	because	0	and	1	are	the	only	choices	for	digits	in
a	 binary	 number.	 The	 next	 right-most	 is	 	 and	 so	 on.	 So	 01010011	 is	

.	Any	 binary	 number	 can	 be
converted	to	its	decimal	representation	by	following	the	steps	given	above.	Any	decimal
number	can	be	converted	to	its	binary	representation	by	subtracting	the	largest	power	of
two	that	is	less	than	the	number,	marking	that	digit	as	a	1	in	the	binary	number	and	then
repeating	 the	 process	 with	 the	 remainder	 after	 subtracting	 that	 power	 of	 two	 from	 the
number.

Practice	1.1

What	is	the	decimal	equivalent	of	the	binary	number	

Example	1.1
There	 is	an	elegant	algorithm	for	converting	a	decimal	number	 to	a	binary	number.
You	need	to	carry	out	long	division	by	2	to	use	this	algorithm.	If	we	want	to	convert	

	to	binary	then	we	can	repeatedly	perform	long	division	by	2	on	the	quotient	of
each	 result	 until	 the	 quotient	 is	 zero.	 Then,	 the	 string	 of	 the	 remainders	 that	were
accumulated	while	dividing	make	up	the	binary	number.	For	example,

The	remainders	from	last	to	first	are	 	which	is	 .	This	set	of	steps	is	called
an	algorithm.	An	algorithm	is	like	a	recipe	for	doing	a	computation.	We	can	use	this
algorithm	any	time	we	want	to	convert	a	number	from	decimal	to	binary.

Practice	1.2

Use	the	conversion	algorithm	to	find	the	binary	representation	of	 .

To	 add	 two	 numbers	 in	 binary	we	 perform	 addition	 just	 the	way	we	would	 in	 base	 10



format.	So,	for	instance,	 .	In	decimal	format	this	is	 .	In	binary
format,	any	time	we	add	two	1’s,	the	result	is	0	and	1	is	carried.

To	represent	negative	numbers	in	a	computer	we	would	like	to	pick	a	format	so	that
when	a	binary	number	and	its	opposite	are	added	together	we	get	zero	as	 the	result.	For
this	 to	work	we	must	 have	 a	 specific	 number	 of	 bits	 that	we	 are	willing	 to	work	with.
Typically	thirty-two	or	sixty-four	bit	addition	is	used.	To	keep	things	simple	we’ll	do	some

eight	bit	addition	in	this	text.	Consider	 .

It	 turns	out	 that	 the	2’s	 complement	of	 a	number	 is	 the	negative	of	 that	number	 in

binary.	For	example,	the	numbers	 	and	 .	 	is	the	2’s
complement	of	 .	It	can	be	found	by	reversing	all	the	1’s	and	0’s	(which	is	called
the	1’s	complement)	and	then	adding	1	to	the	result.

Example	1.2
Adding	00000011	and	11111101	together	gives	us

This	only	works	if	we	limit	ourselves	to	8	bit	addition.	The	carried	1	is	in	the	ninth
digit	and	is	thrown	away.	The	result	is	0.

Practice	1.3

If	 ,	 then	 what	 does	 	 look	 like	 in	 binary?	 HINT:	 Take	 the	 2’s

complement	of	83	or	figure	out	what	to	add	to	 	to	get	0.



Fig.	1.10		The	ASCII	table

If	binary	 	does	that	mean	that	253	can’t	be	represented?	The	answer

is	 yes	 and	 no.	 It	 turns	 out	 that	 	 can	 represent	 	 or	 it	 can	 represent	
depending	 on	 whether	 we	 want	 to	 represent	 both	 negative	 and	 positive	 values	 or	 just
positive	 values.	 The	 CPU	 instructions	 we	 choose	 to	 operate	 on	 these	 values	 determine
what	 types	of	values	 they	are.	We	can	choose	 to	use	signed	 integers	 in	our	programs	or
unsigned	integers.	The	type	of	value	is	determined	by	us	when	we	write	the	program.

Typically,	4	bytes,	or	one	word,	are	used	to	represent	an	integer.	This	means	that	

different	 signed	 integers	 can	 be	 represented	 from	 	 to	 .	 In	 fact,	 Python	 can
handle	 more	 integers	 than	 this	 but	 it	 switches	 to	 a	 different	 representation	 to	 handle
integers	 outside	 this	 range.	 If	 we	 chose	 to	 use	 unsigned	 integers	 we	 could	 represent

numbers	from	0	to	 	using	one	word	of	memory.

Not	only	can	 	represent	 ,	it	can	also	represent	a	character	in	the	alphabet.

If	 	is	to	be	interpreted	as	a	character	almost	all	computers	use	a	convention	called
ASCII	which	 stands	 for	 the	American	Standard	Code	 for	 Information	 Interchange	 [12].
This	standard	equates	numbers	from	0	to	127	to	characters.	In	fact,	numbers	from	128	to



255	also	define	extended	ASCII	codes	which	are	used	for	some	character	graphics.	Each
ASCII	 character	 is	 contained	 in	 one	 byte.	 Figure	 1.10	 shows	 the	 characters	 and	 their
equivalent	integer	representations.

Practice	1.4
What	is	the	binary	and	decimal	equivalent	of	the	space	character?

Practice	1.5
What	 determines	 how	 the	 bytes	 in	 memory	 are	 interpreted?	 In	 other	 words,	 what
makes	4	bytes	an	integer	as	opposed	to	four	ASCII	characters?



1.6		What	Is	a	Programming	Language?
If	we	were	to	have	to	write	programs	as	sequences	of	numbers	we	wouldn’t	get	very	far.	It
would	be	so	tedious	to	program	that	no	one	would	want	to	be	a	programmer.	In	the	spring
of	2006	Money	Magazine	ranked	Software	Engineer	[4]	as	the	number	one	job	in	America
in	 terms	 of	 overall	 satisfaction	 which	 included	 things	 like	 compensation,	 growth,	 and
stress-levels.	So	it	must	not	be	all	that	tedious.

A	programming	language	is	really	a	set	of	tools	that	allow	us	to	program	at	a	much
higher	level	than	the	0’s	and	1’s	that	exist	at	the	lowest	levels	of	the	computer.	Python	and
the	Wing	IDE	provides	us	with	a	couple	of	tools.	The	lower	right	corner	of	the	Wing	IDE
has	a	tab	labeled	Python	Shell.	The	shell	allows	programmers	to	interact	with	the	Python
interpreter.	The	interpreter	is	a	program	that	interprets	the	programs	we	write.	If	you	have
a	 Mac	 or	 Linux	 computer	 you	 can	 also	 start	 the	 Python	 interpreter	 by	 opening	 up	 a
terminal	window.	If	you	use	Windows	you	can	start	a	Command	Prompt	by	looking	under
the	 Accessories	 program	 group.	 Typing	 python	 at	 a	 command	 prompt	 starts	 a	 Python
interpreter	as	shown	in	Fig.	1.11.

Fig.	1.11		The	Python	shell

Fig.	1.12		Overlapping	rectangles

Consider	computing	the	area	of	a	shape	constructed	of	overlapping	regular	polygons.
In	Fig.	1.12	all	angles	are	right	angles	and	all	distances	are	in	meters.	Our	job	is	to	figure
out	 the	 area	 in	 square	meters.	The	 lighter	 lines	 in	 the	middle	help	us	 figure	out	how	 to
compute	the	area.	We	can	compute	the	area	of	the	two	rectangles	and	then	subtract	one	of
the	overlapping	parts	since	otherwise	the	overlapping	part	would	be	counted	twice.

This	 can	 be	 computed	 on	 your	 calculator	 of	 course.	 The	 Python	 Shell	 is	 like	 a
calculator	and	Fig.	1.11	shows	how	it	can	be	used	to	compute	the	area	of	the	shape.	The



first	line	sets	a	variable	called	R1_width	to	the	value	of	10.	Then	R1_height	is	set	to	8.	We
can	store	a	value	in	memory	and	give	it	a	name.	This	is	called	an	assignment	statement.
Your	 calculator	 can	 store	 values.	 So	 can	 Python.	 In	 Python	 these	 values	 can	 be	 given
names	that	mean	something	in	our	program.	R1_height	is	the	name	we	gave	to	the	height
of	the	R1	rectangle.	Anytime	we	want	to	retrieve	that	value	we	can	just	write	R1_height
and	Python	will	retrieve	its	value	for	us.

Practice	1.6
Open	up	the	Wing	IDE	or	a	command	prompt	and	try	out	 the	assignment	and	print
statements	shown	in	Fig.	1.11.	Make	sure	to	type	the	statements	into	the	python	shell.

You	 DO	 NOT	 type	 the	 .	 That	 is	 the	 Python	 shell	 prompt	 and	 is	 printed	 by
Python.	Notice	 that	 you	 can’t	 fix	 a	 line	 once	 you	 have	 pressed	 enter.	 This	will	 be
remedied	soon.

Practice	1.7
Take	a	moment	and	answer	these	questions	from	the	material	you	just	read.

1.		
What	is	an	assignment	statement?

	
2.		
How	do	we	retrieve	a	value	from	memory?

	
3.		
Can	we	retrieve	a	value	before	it	has	been	stored?	What	happens	when	we	try	to	do
that?

	
Interacting	 directly	with	 the	 Python	 shell	 is	 a	 good	way	 to	 quickly	 see	 how	 something
works.	However,	 it	 is	also	painful	because	mistakes	can’t	be	undone.	In	the	next	section
we’ll	go	back	to	writing	programs	in	an	editor	so	they	can	be	changed	and	run	as	many
times	as	we	like.	In	fact,	this	is	how	most	Python	programming	is	done.	Write	a	little,	then
test	 it	by	running	it.	Then	write	a	 little	more	and	run	it	again.	This	 is	called	prototyping
and	 is	 an	 effective	 way	 to	 write	 programs.	 You	 should	 write	 all	 your	 programs	 using
prototyping	while	 reading	 this	 text.	Write	 a	 little,	 then	 try	 it.	That’s	 an	effective	way	 to
program	 and	 takes	 less	 time	 than	writing	 a	 lot	 and	 then	 trying	 to	 figure	 out	what	went
wrong.



1.7		Hexadecimal	and	Octal	Representation
Most	programmers	do	not	have	to	work	with	binary	number	representations.	Programming
languages	 let	programmers	write	numbers	 in	base	10	and	they	do	 the	conversion	for	us.
However,	 once	 in	 a	 while	 a	 programmer	 must	 be	 concerned	 about	 the	 binary
representation	of	a	number.	As	we’ve	seen,	converting	between	binary	and	decimal	isn’t
hard,	 but	 it	 is	 somewhat	 tedious.	 The	 difficulty	 arises	 because	 10	 is	 not	 a	 power	 of	 2.
Converting	between	base	10	and	base	2	would	be	 a	 lot	 easier	 if	 10	were	 a	power	of	2.
When	computer	programmers	have	to	work	with	binary	numbers	they	don’t	want	to	have
to	write	out	all	 the	zeroes	and	ones.	This	would	obviously	be	tedious	as	well.	Instead	of
converting	numbers	 to	base	10	or	writing	all	numbers	 in	binary,	computer	programmers
have	adopted	two	other	representations	for	binary	numbers,	base	16	(called	hexadecimal)
and	base	8	(called	octal).

In	 hexadecimal	 each	 digit	 of	 a	 number	 can	 represent	 16	 different	 binary	 numbers.
The	16	hexadecimal	digits	are	0–9,	and	A–F.	Since	16	is	a	power	of	2,	there	are	exactly

four	binary	digits	that	make	up	each	hexadecimal	digit.	So,	 	is	 	and	 	is	 .
So,	the	binary	number	 	is	 	in	hexadecimal	notation	and	 	in	octal	notation.	If
we	wish	to	convert	either	of	these	two	numbers	to	binary	format	the	conversion	is	just	as

easy.	 	is	 	for	instance.	Again,	these	conversions	can	be	done	quickly	because	there
are	four	binary	digits	in	each	hexadecimal	digit	and	three	binary	digits	in	each	octal	digit.

Example	1.3

To	 convert	 the	 binary	 number	 	 to	 hexadecimal	we	 have	 only	 to	 break	 the

number	into	two	four	digit	binary	numbers	 	and	 .	 	and	

.	So	the	hexadecimal	representation	of	 	is	 .
Python	has	built-in	 support	of	hexadecimal	numbers.	 If	you	want	 to	express	a

number	 in	 hexadecimal	 form	 you	 preface	 it	 with	 a	 	 to	 signify	 that	 it	 is	 a
hexadecimal	 number.	 For	 instance,	 here	 is	 how	 Python	 responds	 to	 	 being
entered	into	the	Python	shell.

Since	 ,	each	digit	of	an	octal	number	represents	three	binary	digits.	The	octal	digits

are	 0–7.	 The	 number	 .	 When	 converting	 a	 binary	 number	 to	 octal	 or
hexadecimal	we	must	be	sure	to	start	with	the	right-most	bits.	Since	there	are	only	8	bits	in



	the	left-most	octal	digit	corresponds	to	the	left-most	two	binary	digits.	The	other
two	 octal	 digits	 each	 have	 three	 binary	 digits.	 Again,	 Python	 has	 built-in	 support	 for
representing	octal	digits.	Writing	a	number	with	a	leading	zero	and	the	letter	o	means	that

it	is	in	octal	format.	So	 	is	the	Python	representation	of	 	and	it	is	equal	to	 .

Practice	1.8

Convert	the	number	 	to	binary	and	then	to	hexadecimal	and	octal.

Fig.	1.13		The	Wing	IDE



1.8		Writing	Your	Second	Program
Writing	programs	is	an	error-prone	activity.	Programmer’s	almost	never	write	a	non-trivial
program	 perfectly	 the	 first	 time.	 As	 programmers	 we	 need	 a	 tool	 like	 an	 Integrated
Development	Environment	(i.e.	IDE)	that	helps	us	find	and	fix	our	mistakes.	Going	to	the
File	menu	of	 the	Wing	 IDE	window	and	selecting	New	 opens	a	new	edit	pane.	An	edit
pane	 can	 be	 used	 to	write	 a	 program	but	 it	won’t	 execute	 each	 line	 as	 you	 press	 enter.
When	 writing	 a	 program	 we	 can	 write	 a	 little	 bit	 and	 then	 execute	 it	 in	 the	 Python
interpreter	by	pressing	F5	on	the	keyboard	or	by	clicking	the	debug	button.

When	we	write	a	program	we	will	almost	certainly	have	to	debug	it.	Debugging	is	the
word	we	use	when	we	have	 to	 find	errors	 in	our	program.	Errors	are	very	common	and
typically	you	will	find	a	lot	of	them	before	the	program	works	perfectly.	Debugging	refers
to	removing	bugs	from	a	program.	Bugs	are	another	name	for	errors.	The	use	of	the	words
bug	and	debugging	 in	Computer	Science	dates	back	 to	at	 least	1952	and	probably	much
earlier.	Wikipedia	 has	 an	 interesting	 discussion	 of	 the	 word	 debugging	 if	 you	 want	 to
know	more.	While	you	can	use	the	Python	Shell	for	some	limited	debugging,	a	debugger
is	a	program	that	assists	you	in	debugging	your	program.	Figure	1.13	has	a	picture	of	the
Wing	IDE	with	the	program	we’ve	been	working	on	typed	into	the	editor	part	of	the	IDE.
To	use	the	debugger	we	can	click	the	mouse	in	the	area	where	the	red	circle	appears	next
to	 the	 numbers.	 This	 is	 called	 setting	 a	 breakpoint.	 A	 breakpoint	 tells	 Python	 to	 stop
running	when	Python	reaches	that	statement	in	the	program.	The	program	is	not	finished
when	it	reaches	that	step,	but	it	stops	so	you	can	inspect	the	state	of	the	program.

The	state	of	the	program	is	contained	in	the	bottom	left	corner	of	the	IDE.	This	shows
you	the	Stack	Data	which	is	 just	another	name	for	 the	program’s	state.	You	can	see	 that
the	variables	that	were	defined	in	the	program	are	all	located	here	along	with	their	values
at	the	present	time.

Practice	1.9
Create	 an	 edit	 pane	 within	 the	Wing	 IDE	 and	 write	 the	 program	 as	 it	 appears	 in
Fig.	1.13.	Write	a	few	lines,	then	run	it	by	pressing	F5	on	the	keyboard	or	clicking	on
the	Debug	 button.	 The	 first	 time	 you	 press	F5	 you	 will	 be	 prompted	 to	 save	 the
program.	Make	sure	you	save	your	program	where	you	can	find	it	later.

Try	 setting	 a	 break	 point	 by	 clicking	 where	 the	 circle	 appears	 next	 to	 the
numbers	in	Fig.	1.13.	You	should	see	a	red	circle	appear	if	you	did	it	right.	Then	run
the	program	again	to	see	that	it	stops	at	the	breakpoint	as	it	appears	in	Fig.	1.13.	You
can	 stop	 a	 program	 at	 any	 point	 by	 setting	 a	 breakpoint	 on	 that	 line.	 When	 the
debugger	 stops	 at	 a	 breakpoint	 it	 stops	before	 the	 statement	 is	 executed.	You	must
click	the	Debug	button,	not	the	Run	button	to	get	it	to	stop	at	breakpoints.

Look	at	the	Stack	Data	to	inspect	the	state	of	the	program	just	before	the	word
Done	 is	 printed.	 Make	 sure	 it	 matches	 what	 you	 see	 here.	 Then	 continue	 the
execution	 by	 clicking	 the	 Debug	 button	 or	 pressing	F5	 again	 to	 see	 that	Done	 is
printed.



1.9		Syntax	Errors
Not	every	error	is	found	using	a	debugger.	Sometimes	errors	are	syntax	errors.	A	syntax
error	occurs	when	we	write	something	that	is	not	part	of	the	Python	language.	Many	times
a	 syntax	 error	 can	 occur	 if	 we	 forget	 to	 write	 something.	 For	 instance,	 if	 we	 forget	 a
parenthesis	or	a	double	quote	 is	 left	out	 it	will	not	be	a	correct	Python	program.	Syntax
errors	are	typically	easier	to	find	than	bugs	in	our	program	because	Python	can	flag	them
right	 away	 for	 us.	 These	 errors	 are	 usually	 highlighted	 right	 away	 by	 the	 IDE	 or
interpreter.	 Syntax	 errors	 are	 those	 errors	 that	 are	 reported	 before	 the	 program	 starts
executing.	You	 can	 tell	 its	 a	 syntax	 error	 in	Wing	 because	 there	will	 not	 be	 any	 Stack
Data.	Since	a	syntax	error	shows	up	before	the	program	runs,	the	program	is	not	currently
executing	 and	 therefore	 there	 is	 not	 state	 information	 in	 the	 stack	 data.	When	 a	 syntax
error	is	reported	the	editor	or	Python	will	typically	indicate	the	location	of	the	error	after	it
actually	occurs	so	the	best	way	to	find	syntax	errors	is	to	look	backwards	from	where	the
error	is	first	reported.

Fig.	1.14		A	syntax	error

Example	1.4
Forgetting	a	parenthesis	is	a	common	syntax	error.

This	is	not	valid	syntax	in	Python	since	the	right	parenthesis	is	missing.	If	we	were	to
try	to	run	a	Python	program	that	contains	this	line,	the	Python	interpreter	complains
that	this	is	not	valid	syntax.	Figure	1.14	shows	how	the	Wing	IDE	tells	us	about	this
syntax	error.	Notice	that	the	Wing	IDE	announces	that	the	syntax	error	occurs	on	the
line	after	where	it	actually	occurred.

There	are	other	types	of	errors	we	can	have	in	our	programs.	Syntax	errors	are	perhaps	the
easiest	errors	to	find.	All	other	errors	can	be	grouped	into	the	category	of	run-time	errors.
Syntax	errors	are	detected	before	the	program	runs.	Run-time	errors	are	detected	while	the
program	 is	 running.	 Unfortunately,	 run-time	 errors	 are	 sometimes	 much	 harder	 to	 find



than	syntax	errors.	Many	run-time	errors	are	caused	by	the	use	of	invalid	operations	being
applied	to	values	in	our	programs.	It	is	important	to	understand	what	types	of	values	we
can	use	in	our	programs	and	what	operations	are	valid	for	each	of	these	types.	That’s	the
topic	of	the	next	section.



1.10		Types	of	Values
Earlier	in	this	chapter	we	found	that	bytes	in	memory	can	be	interpreted	in	different	ways.
The	way	bytes	in	memory	are	interpreted	is	determined	by	the	type	of	the	value	or	object
and	the	operations	we	apply	to	these	values.	Each	value	in	Python	is	called	an	object.	Each
object	is	of	a	particular	type.	There	are	several	data	types	in	Python.	These	include	integer
(called	int	in	Python),	float,	boolean	(called	bool	in	Python),	string	(called	str	in	Python),
list,	tuple,	set,	dictionary	(called	dict	in	Python),	and	None.

In	 the	next	chapters	we’ll	cover	each	of	 these	 types	and	discuss	 the	operations	 that
apply	 to	 them.	 Each	 type	 of	 data	 and	 the	 operations	 it	 supports	 is	 covered	 when	 it	 is
needed	 to	 learn	 a	 new	programming	 skill.	The	 sections	on	 each	of	 these	 types	 can	 also
serve	 as	 a	 reference	 for	 you	 as	 you	 continue	 working	 through	 the	 text.	 You	 may	 find
yourself	coming	back	to	the	sections	describing	these	types	and	their	operations	over	and
over	 again.	 Reviewing	 types	 and	 their	 operations	 is	 a	 common	 practice	 among
programmers	as	they	design	and	write	new	programs.



1.11		The	Reference	Type	and	Assignment	Statements
There	 is	 one	 type	 in	 Python	 that	 is	 typically	 not	 seen,	 but	 nevertheless	 is	 important	 to
understand.	It	is	called	the	reference	type.	A	reference	is	a	pointer	that	points	to	an	object.
A	pointer	is	the	address	of	an	object.	Each	object	in	memory	is	stored	at	a	unique	address
and	a	reference	is	a	pointer	that	points	to	an	object.

An	assignment	statement	makes	a	reference	point	to	an	object.	The	general	form	of
an	assignment	statement	is:

An	 identifier	 is	 any	 letters,	 digits,	 or	 underscores	 written	 without	 spaces	 between
them.	The	identifier	must	begin	with	a	letter	or	underscore.	It	cannot	start	with	a	digit.	The
expression	 is	any	expression	that	when	evaluated	results	in	one	of	the	 types	described	in
Sect.	 1.10.	 The	 left	 hand	 side	 of	 the	 equals	 sign	 must	 be	 an	 identifier	 and	 only	 one
identifier.	The	right	hand	side	of	the	equals	sign	can	contain	any	expression	that	may	be
evaluated.

In	Fig.	1.15,	the	variable	R1_width	(orange	in	the	figure)	is	a	reference	that	points	at
the	 integer	 object	 10	 colored	 green	 in	 the	 figure.	 This	 is	 what	 happens	 in	 memory	 in
response	to	the	assignment	statement:

Fig.	1.15		A	reference

Fig.	1.16		Before

The	 	is	the	reference	value,	written	in	hexadecimal,	which	is	a	pointer	(i.e.	the
address)	 that	points	at	 the	 integer	object	10.	However,	 typically	you	don’t	 see	 reference
values	in	Python.	Instead,	you	see	what	a	reference	points	to.	So	if	you	type	R1_width	 in
the	Python	shell	after	executing	the	statement	above,	you	won’t	see	 	printed	 to	 the
screen,	you’ll	 see	10,	 the	value	 that	R1_width	 refers	 to.	When	you	 set	 a	breakpoint	 and
look	at	the	stack	data	in	the	debugger	you	will	also	see	what	the	reference	refers	to,	not	the
reference	itself	(see	Fig.	1.13).

Fig.	1.17		After

It	is	possible,	and	common,	in	Python	to	write	statements	like	this:



According	 to	what	we	 have	 just	 seen,	 Fig.	 1.16	 depicts	 the	 state	 of	memory	 after
executing	the	first	line	of	code	and	before	executing	the	second	line	of	code.	In	the	second
line	of	code,	writing	x	=	x	+	1	is	not	an	algebraic	statement.	It	is	an	assignment	statement
where	one	 is	added	 to	 the	value	 that	x	 refers	 to.	The	correct	way	 to	 read	an	assignment
statement	is	from	right	to	left.	The	expression	on	the	right	hand	side	of	the	equals	sign	is
evaluated	to	produce	an	object.	The	equals	sign	takes	the	reference	to	the	new	value	and
stores	it	in	the	reference	named	by	the	identifier	on	the	left	hand	side	of	the	equals	sign.
So,	to	properly	understand	how	an	assignment	statement	works,	it	must	be	read	from	right
to	 left.	After	 executing	 the	 second	 statement	 (the	 line	beginning	with	 a	 pound	 sign	 is	 a
comment	 and	 is	 not	 executed),	 the	 state	 of	memory	 looks	 like	Fig.	 1.17.	The	 reference
called	x	is	updated	to	point	to	the	new	value	that	results	from	adding	the	old	value	referred
to	by	x	and	the	1	together.

The	 space	 for	 the	 two	 left	 over	 objects	 containing	 the	 integers	 1	 in	 Fig.	 1.17	 is
reclaimed	by	the	garbage	collector.	You	can	think	of	the	garbage	collector	as	your	favorite
arcade	 game	 character	 running	 around	memory	 looking	 for	 unattached	 objects	 (objects
with	no	references	pointing	 to	 them—the	stuff	 in	 the	cloud	in	Fig.	1.17).	When	such	an
object	 is	 found	 the	 garbage	 collector	 reclaims	 that	memory	 for	 use	 later	much	 like	 the
video	game	character	eats	dots	and	fruit	as	it	runs	around.

The	 garbage	 collector	 reclaims	 the	 space	 in	 memory	 occupied	 by	 unreferenced
objects	 so	 the	 space	 can	 be	 used	 later.	Not	 all	 programming	 languages	 include	 garbage
collection	but	many	 languages	developed	 recently	 include	 it	 and	Python	 is	one	of	 these
languages.	This	 is	 a	nice	 feature	of	 a	 language	because	otherwise	we	would	have	 to	be
responsible	for	freeing	all	of	our	own	memory	ourselves.



1.12		Integers	and	Real	Numbers
In	most	programming	languages,	including	Python,	there	is	a	distinction	between	integers
and	real	numbers.	Integers,	given	the	type	name	int	in	Python,	are	written	as	a	sequence	of
digits,	 like	 83	 for	 instance.	 Real	 numbers,	 called	 float	 in	 Python,	 are	 written	 with	 a
decimal	point	as	in	83.0.	This	distinction	affects	how	the	numbers	are	stored	in	memory
and	what	type	of	value	you	will	get	as	a	result	of	some	operations.

In	 Fig.	 1.18	 the	 type	 of	 the	 result	 is	 a	 float	 if	 either	 operand	 is	 a	 float	 unless	 noted
otherwise	in	the	table.

Fig.	1.18		Numeric	operations

Dividing	the	integer	83	by	2	yields	41.5	if	it	is	written	 .	However,	if	it	is	written	

	 then	 the	 result	 is	 .	 This	 goes	 back	 to	 long	 division	 as	 we	 first	 learned	 in

elementary	 school.	 	 is	 	with	 a	 remainder	 of	 .	The	 result	 of	 floor	 division	 isn’t

always	an	int.	 	yields	 	so	be	careful.	While	floor	division	returns	an	integer,	it
doesn’t	necessarily	return	an	int.

We	can	insure	a	number	is	a	float	or	an	integer	by	writing	float	or	int	in	front	of	the



number.	So,	float(83)//2	also	yields	41.0.	Likewise,	int(83.0)//2	yields	41.

There	are	infinitely	many	real	numbers	but	only	a	finite	number	of	floats	that	can	be
represented	 by	 a	 computer.	 For	 instance,	 the	 number	 PI	 is	 approximately	 3.14159.
However,	 that	number	can’t	be	represented	in	some	implementations	of	Python.	Instead,
that	 number	 is	 approximated	 as	 3.1415899999999999	 in	 at	 least	 one	 Python
implementation.	 Writing	 3.14159	 in	 a	 Python	 program	 is	 valid,	 but	 it	 is	 still	 stored
internally	as	the	approximated	value.	This	is	not	a	limitation	of	Python.	It	is	a	limitation	of
computers	 in	general.	Computers	 can	only	approximate	values	when	 there	 are	 infinitely
many	possibilities	because	computers	are	finite	machines.

You	can	use	what	is	called	integer	conversion	to	transform	a	floating	point	number	to
its	integer	portion.	In	effect,	integer	conversion	truncates	the	digits	after	the	decimal	point
in	a	floating	point	number	to	get	just	the	whole	number	part.	To	do	this	you	write	 int	 in
front	of	the	floating	point	number	you	wish	to	convert.	This	does	not	convert	the	existing
number.	 It	 creates	 a	 new	 number	 using	 only	 the	 integer	 portion	 of	 the	 floating	 point
number.

Example	1.5
Assume	that	you	work	for	the	waste	water	treatment	plant.	Part	of	your	job	dictates
that	you	report	the	gallons	of	water	treated	at	the	plant.	However,	your	meter	reports
lbs	of	water	treated.	You	have	been	told	to	to	report	the	amount	of	treated	waste	water
in	gallons	and	ounces.	There	are	128	ounces	in	a	gallon	and	16	ounces	in	a	pound.
Here	is	a	short	program	that	performs	the	conversion.

In	 Example	 1.5	 the	 lbs	 were	 first	 converted	 to	 ounces.	 Then	 the	 whole	 gallons	 were
computed	 from	 the	ounces	by	converting	 to	an	 integer	 the	 result	of	dividing	 the	ounces
float	by	128.	On	line	4	the	remaining	ounces	were	computed	after	taking	out	the	number
of	ounces	contained	in	the	computed	gallons.

Several	of	the	operations	between	ints	and	floats	are	given	in	Fig.	1.18.	If	you	need	to
round	a	 float	 to	 the	nearest	 integer	 (instead	of	 truncating	 the	fractional	portion)	you	can
use	 the	 round	 function.	 Absolute	 value	 is	 taken	 using	 abs.	 There	 are	 other	 operations
between	 floats	 and	 ints	 that	 are	 not	 discussed	 in	 this	 chapter.	 A	 complete	 list	 of	 all
operations	supported	by	 integers	and	floats	are	given	in	Chaps.	 	8	and	9.	 If	you	need	 to
read	some	documentation	about	an	operator	you	can	use	the	appendices	or	you	can	search
for	 Python	 documentation	 on	 the	 internet	 or	 you	 can	 start	 a	 Python	 shell	 and	 type
help(float)	or	help(int).	This	help	facility	is	built	into	the	Python	programming	language.
There	is	extensive	documentation	for	every	type	within	Python.	Typing	help(type)	in	the
Python	shell	where	type	is	any	type	within	Python	will	provide	you	with	all	the	operations
that	are	available	on	that	type	of	value.

Practice	1.10
Write	a	short	program	that	computes	the	length	of	the	hypotenuse	of	a	right	triangle



given	 the	 two	 legs	as	pictured	 in	Fig.	1.23	on	p.	35.	The	program	should	use	 three
variables,	sideA,	sideB,	and	sideC.	The	Pythagorean	 theorem	states	 that	 the	 sum	of
the	 squares	of	 the	 two	 legs	of	 the	 triangle	 equals	 the	 square	of	 the	hypotenuse.	Be
sure	to	assign	all	three	variables	their	correct	values	and	print	the	length	of	sideC	at

the	end	of	the	program.	HINT:	Raising	a	value	to	the	 	power	is	the	same	thing	as
finding	the	square	root.	Try	values	6	and	8	for	sideA	and	sideB.



1.13		Strings
Strings	are	another	type	of	data	in	Python.	A	string	is	a	sequence	of	characters.

This	 is	a	 short	program	 that	 initializes	a	variable	called	name	 to	 the	string	‘Sophus
Lie’.	A	string	 literal	 is	an	actual	string	value	written	 in	your	program.	String	 literals	are
delimited	by	either	double	or	single	quotes.	Delimited	means	that	they	start	and	end	with
quotes.	In	the	code	above	the	string	literal	Sophus	Lie	 is	delimited	by	single	quotes.	The
string	A	famous	Norwegian	Mathematician	is	is	delimited	by	double	quotes.	If	you	use	a
single	quote	at	the	beginning	of	a	string	literal,	you	must	use	a	single	quote	at	the	end	of
the	string	literal.	Delimiters	must	come	in	matching	pairs.

Strings	 are	 one	 type	 of	 sequence	 in	Python.	There	 are	 other	 kinds	 of	 sequences	 in
Python	as	well,	such	as	lists	which	we’ll	look	at	in	a	couple	of	chapters.	Python	supports
operations	on	 sequences.	For	 instance,	you	can	get	 an	 individual	 item	 from	a	 sequence.
Writing,

will	 print	 the	 first	 character	 of	 the	 string	 that	 name	 references.	 The	 0	 is	 called	 an
index.	Each	subsequent	character	 is	 assigned	a	 subsequent	position	 in	 the	 string.	Notice
the	first	position	in	the	string	is	assigned	0	as	its	index.	The	second	character	is	assigned
index	1,	and	so	on.	Strings	and	their	operations	are	discussed	in	more	detail	in	Chap.	3.

Practice	1.11
Write	the	three	line	program	given	in	the	two	listings	on	p.	24.	Then,	without	writing
the	 string	 literal	 “house”,	modify	 it	 to	 print	 the	 string	 “house”	 to	 the	 screen	 using
string	indexing.	HINT:	You	can	add	strings	together	to	build	a	new	string.	So,

will	result	in	name	referring	to	the	string	“Sophus	Lie”.



1.14		Integer	to	String	Conversion	and	Back	Again
It	is	possible	in	Python	to	convert	an	integer	to	a	string.	For	instance,

This	program	converts	83	to	‘83’	and	back	again.	Integers	and	floats	can	be	converted
to	a	string	by	using	the	str	conversion	operator.	Likewise,	an	integer	or	a	float	contained	in
a	 string	 can	 be	 converted	 to	 its	 numeric	 equivalent	 by	 using	 the	 int	 or	 float	 conversion
operator.	 Conversion	 between	 numeric	 types	 and	 string	 types	 is	 frequently	 used	 in
programs	especially	when	producing	output	and	getting	input.

Conversion	 of	 numeric	 values	 to	 strings	 should	 not	 be	 confused	 with	 ASCII
conversion.	Integers	may	represent	ASCII	codes	for	characters.	If	you	want	to	convert	an
integer	 to	 its	 ASCII	 character	 equivalent	 you	 use	 the	 	 conversion	 operator.	 For
instance,	chr(83)	 is	 ‘S’.	Likewise,	 if	 you	want	 to	 convert	 a	 character	 to	 its	ASCII	 code
equivalent	you	use	the	 	conversion	operator.	So	ord(‘S’)	is	equal	to	83.

Practice	1.12
Change	the	program	above	to	convert	83	to	its	ASCII	character	equivalent.	Save	the
value	in	a	variable	and	print	the	following	to	the	screen	in	the	exact	format	you	see
here.

You	might	have	noticed	in	Fig.	1.19	there	is	an	operator	called	int	and	another	called	float.
Both	of	these	operators	are	also	numeric	operators	and	appear	in	Fig.	1.18.	This	is	called
an	overloaded	operator	because	int	and	float	are	operators	that	work	for	both	numeric	and
string	operands.	Python	supports	overloaded	operators	 like	 this.	This	 is	a	nice	feature	of
the	language	since	both	versions	of	int	and	float	do	similar	things.

Fig.	1.19		String	operations



1.15		Getting	Input
To	 get	 input	 from	 the	 user	 you	 can	 use	 the	 input	 function.	When	 the	 input	 function	 is
called	the	program	stops	running	the	program,	prompts	the	user	to	enter	something	at	the
keyboard	by	printing	a	string	called	the	prompt	to	the	screen,	and	then	waits	for	the	user	to
press	the	Enter	key.	The	user	types	a	string	of	characters	and	presses	enter.	Then	the	input
function	 returns	 that	 string	 and	Python	 continues	 running	 the	program	by	 executing	 the
next	statement	after	the	input	statement.

Example	1.6
Consider	this	short	program.

The	input	function	prints	the	prompt	“Please	enter	your	name:”	to	the	screen	and	waits	for
the	 user	 to	 enter	 input	 in	 the	 Python	 Shell	 window.	 The	 program	 does	 not	 continue
executing	 until	 you	 have	 provided	 the	 input	 requested.	 When	 the	 user	 enters	 some
characters	and	presses	enter,	Python	takes	what	they	typed	before	pressing	enter	and	stores
it	 in	 the	variable	called	name	 in	this	case.	The	type	of	value	read	by	Python	is	always	a
string.	If	we	want	to	convert	it	to	an	integer	or	some	other	type	of	value,	then	we	need	to
use	a	conversion	operator.	For	instance,	if	we	want	to	get	an	int	from	the	user,	we	must	use
the	int	conversion	operator.

Practice	1.13
Assume	that	we	want	to	pause	our	program	to	display	some	output	and	we	want	to	let
the	user	press	some	key	to	continue.	We	want	to	print	“press	any	key	to	continue ”
to	the	screen.	Can	we	use	the	input	function	to	implement	this?	If	so,	how	would	you
write	the	input	statement?	If	not,	why	can’t	you	use	input?

Example	1.7
This	code	prompts	the	user	to	enter	their	age.	The	string	that	was	returned	by	input	is
first	converted	to	an	integer	and	then	stored	in	the	variable	called	age.	Then	the	age
variable	 can	 be	 added	 to	 another	 integer.	 It	 is	 important	 to	 remember	 that	 input
always	returns	a	string.	If	some	other	type	of	data	is	desired,	then	the	appropriate	type
conversion	must	be	applied	to	the	string.





1.16		Formatting	Output
In	 this	 chapter	 just	 about	 every	 fragment	 of	 code	 prints	 something.	 When	 a	 value	 is
printed,	it	appears	on	the	console.	The	location	of	the	console	can	vary	depending	on	how
you	 run	 a	 program.	 If	 a	 program	 is	 run	 from	within	 the	Wing	 IDE,	 the	 console	 is	 the
Python	Shell	window	in	the	IDE.	If	the	program	is	debugged	from	within	Wing	IDE	101,
the	output	appears	in	the	Debug	I/O	window.

When	printing,	we	may	print	as	many	items	as	we	like	on	one	line	by	separating	each
item	by	a	comma.	Each	time	a	comma	appears	between	items	in	a	print	statement,	a	space
appears	in	the	output.

Example	1.8
Here	is	some	code	that	prints	a	few	values	to	the	screen.

The	output	from	this	is:

To	 print	 the	 contents	 of	 variables	 without	 spaces	 appearing	 between	 the	 items,	 the

variables	 must	 be	 converted	 to	 strings	 and	 string	 concatenation	 can	 be	 used.	 The	

operator	adds	numbers	together,	but	it	also	concatenates	strings.	For	the	correct	 	operator
to	 be	 called,	 each	 item	must	 first	 be	 converted	 to	 a	 string	 before	 concatenation	 can	 be
performed.

Example	1.9

Assume	that	we	ask	the	user	 to	enter	 two	floating	point	numbers,	 	and	 ,	and	we

wish	 to	print	 the	 result	of	 raising	 	 to	 the	 th	power.	We	would	 like	 the	output	 to
look	like	this.

Here	is	a	program	that	will	produce	that	output,	with	no	spaces	in	the	exponentiation
expression.	 NOTE:	 The	 caret	 symbol	 (i.e.ˆ)	 is	 not	 the	 Python	 symbol	 for
exponentiation.

In	Example	1.9,	line	4	of	the	program	prints	three	items	to	the	console.	The	last	two	items
are	 the	 =	 and	 the	 value	 that	 the	 answer	 variable	 references.	 The	 first	 item	 in	 the	 print
statement	 is	 the	 result	of	 concatenating	 str(base),	 the	caret,	 and	str(exp).	Both	base	and
exp	must	be	converted	to	strings	first,	then	string	concatenation	will	be	performed	by	the	



	operator	because	the	operands	on	either	side	of	the	 	are	both	strings.

Practice	1.14
The	sum	of	the	first	n	positive	integers	can	be	computed	by	the	formula

Write	a	short	Python	program	that	computes	the	sum	of	the	first	100	positive	integers
and	prints	it	to	the	screen	in	the	format	shown	below.	Use	variables	to	represent	the	1,
the	 100,	 and	 the	 result	 of	 the	 computation.	Your	 program	must	 compute	 the	 5050
value.	You	cannot	just	print	the	result	to	the	screen.	You	must	compute	it	first	from
the	100.

For	 advanced	 control	 of	 the	 format	 of	 printing	 we	 can	 use	 string	 formatting.	 String
formatting	was	first	used	in	the	C	language	printf	function	back	in	the	1970s.	It’s	an	idea
that	has	been	around	a	long	time,	but	is	still	useful.	The	idea	is	that	we	place	formatting
instructions	in	a	string	and	then	tell	Python	to	replace	the	formatting	instructions	with	the
actual	values.	This	is	best	described	with	an	example.

Example	1.10
Assume	 we	 wish	 to	 re-implement	 the	 program	 in	 Example	 1.9.	 However,	 in	 this
version	 of	 the	 program,	 if	 the	 user	 enters	more	 than	 two	 decimal	 places	 for	 either
number	 we	 wish	 to	 round	 the	 numbers	 to	 two	 digits	 of	 precision	 when	 they	 are
printed	to	the	console.	Assume	we	wish	to	round	the	answer	to	four	decimal	places
when	displayed.	The	following	code	will	do	this.

Running	this	program	produces	the	following	output.



Fig.	1.20		Format	specifiers

Line	 4	 in	 Example	 1.10	 prints	 the	 result	 of	 formatting	 a	 string.	 To	 use	 Python
formatting,	a	format	string	must	be	written	first,	followed	by	a	percent	sign,	followed	by
the	replacement	values.	If	there	is	more	than	one	replacement	value,	they	must	be	written
in	parentheses.	Each	time	a	%	appears	inside	the	format	string	it	is	replaced	by	one	of	the
values	that	appear	after	the	format	string.	How	a	value	is	formatted	when	it	is	placed	in	the
format	string	is	controlled	by	the	format	specifier.	Figure	1.20	contains	some	specifiers	for
common	 types	of	data	 in	Python.	Every	 format	 specifier	may	 include	an	optional	width
field.	 If	 specified,	 the	width	 field	 specifies	 the	 actual	width	 of	 the	 replaced	 data.	 If	 the
width	of	the	data	being	inserted	into	the	format	string	exceeds	the	allotted	width,	the	entire
field	 is	 included	 anyway,	 stretching	 the	width	of	 the	 formatted	 string.	String	 formatting
can	be	very	useful	when	generating	a	printed	report	of	some	data.

Practice	1.15
Re-do	 Practice	 Problem	 1.14	 using	 format	 specifiers	 when	 printing	 instead	 of
converting	each	item	to	a	string.	The	goal	is	for	the	output	to	look	exactly	the	same.



1.17		When	Things	Go	Wrong
As	 a	 programmer,	 you	 will	 soon	 discover	 that	 things	 can	 go	 wrong	 when	 writing	 a
program.	No	programmer	writes	every	program	correctly	the	first	time.	We	are	all	human
and	make	mistakes.	What	makes	a	programmer	a	 really	good	programmer	 is	when	 they
can	 find	 their	 mistakes	 and	 correct	 them.	 Debugging	 programs	 is	 a	 skill	 that	 can	 be
learned	 and	 therefore	 can	 be	 taught	 as	well.	 But,	 it	 takes	 lots	 of	 practice	 and	 patience.
Fortunately,	you	will	have	many	chances	 to	practice	as	you	work	your	way	through	this
book.

Sometimes,	 especially	when	 you	 are	 first	 learning	 to	 debug	 your	 programs,	 it	 can
help	 to	have	someone	 to	 talk	 to.	 Just	 the	act	of	 reading	your	code	 to	someone	else	may
cause	you	to	find	your	mistake.	Of	course,	if	you	are	using	this	text	as	part	of	a	course	you
may	not	want	to	read	your	code	to	another	class	member	as	that	may	violate	the	guidelines
your	instructor	has	set	forth.	But,	nevertheless,	you	might	find	that	reading	your	code	to
someone	 else	may	 help	 you	 discover	 problems.	 This	 is	 called	 a	 code	 walk-through	 by
programming	 professionals.	 It	 is	 a	 common	 practice	 and	 is	 frequently	 required	 when
writing	commercially	available	programs.

There	is	no	substitute	for	thorough	testing.	You	should	run	your	program	using	varied
values	 for	 input.	 Try	 to	 think	 of	 values	 that	 might	 cause	 your	 program	 to	 break.	 For
instance,	what	if	0	is	entered	for	an	integer?	What	if	a	non-integer	value	is	entered	when
an	 integer	was	 required?	What	 happens	 if	 the	 user	 enters	 a	 string	 of	 characters	when	 a
number	was	required?

Sometimes	the	problems	in	our	code	are	not	due	to	user	input.	They	are	just	plain	old
mistakes	 in	 programming	 caused	 either	 by	 temporarily	 forgetting	 something,	 or	 by	 our
misunderstanding	 how	 something	works.	 For	 instance,	 in	 this	 chapter	we	 learned	 about
assignment	 statements.	You	can	 store	 a	value	 in	 the	memory	of	 a	 computer	 and	point	 a
named	reference	at	the	value	so	you	can	retrieve	it	later.	But,	you	must	assign	a	name	to	a
value	 before	 you	 can	 retrieve	 it.	 If	 you	 don’t	 understand	 that	 concept,	 or	 if	 you	 forgot
where	you	assigned	a	value	a	name	in	your	program,	you	might	accidentally	write	some
code	 that	 tries	 to	use	 that	value	before	 it	 is	 assigned	a	name.	For	 instance,	 consider	 the
program	in	Fig.	1.21.	The	program	is	trying	to	use	the	gallons	variable	which	has	not	been
assigned	a	value.	The	error	message	is	on	the	right	side	of	the	window.	The	line	where	the
error	was	first	detected	by	Python	is	highlighted.

In	the	example	in	Fig.	1.21	the	actual	error	is	not	on	the	line	that	is	highlighted.	The
highlighted	line	 is	 the	 line	where	Python	first	detected	 the	error.	This	 is	a	very	common
occurrence	when	debugging.	Detection	of	an	error	frequently	occurs	after	the	location	of
the	actual	error.	To	become	a	good	programmer	you	must	learn	to	look	backwards	through
your	code	from	the	point	where	an	error	is	detected	to	find	the	location	where	it	occurred.
In	 this	 case,	 the	gallon	 variable	 should	 have	 been	written	 as	gallons	 on	 line	 3	 but	was
incorrectly	typed.



Fig.	1.21		A	run-time	error

Fig.	1.22		An	index	out	of	range	error

Another	common	error	is	the	index	out	of	range	error.	This	can	occur	when	trying	to
access	a	value	in	a	sequence	by	indexing	into	the	sequence.	If	the	index	is	for	an	item	that
is	outside	the	range	of	the	sequence,	an	index	out	of	range	error	will	occur.	For	instance,	if
you	 have	 a	 string	 called	 x	 that	 is	 one	 character	 long	 and	 you	 try	 to	 access	 the	 second
element	of	the	string,	your	program	will	abort	with	an	index	out	of	range	error.	Figure	1.22
shows	this	happening	in	a	snippet	of	code.

Once	 again,	 in	 the	 example	 in	Fig.	 1.22	 the	 error	 did	 not	 occur	 on	 the	 line	 that	 is
highlighted.	The	error	occurred	because	the	programmer	meant	to	take	the	str(83)	which
would	result	in	“83”	as	a	string	instead	of	the	chr(83)	which	results	in	the	string	“S”.	If	the
string	 had	 been	 “83”	 then	 line	 3	 would	 have	worked	 and	would	 have	 printed	 3	 to	 the
screen.

When	an	error	occurs	it	is	called	an	uncaught	exception.	Uncaught	exceptions	result
in	the	program	terminating.	They	cannot	be	recovered	from.	Because	uncaught	exceptions



result	 in	 the	 program	 terminating	 it	 is	 vital	 to	 test	 your	 code	 so	 that	 all	 variations	 of
running	the	program	are	tested	before	the	program	is	released	to	users.	Even	so,	there	are
times	when	a	user	may	encounter	an	error.	Perhaps	it	has	happened	to	you?	In	any	case,
thorough	testing	is	critical	to	your	success	as	a	programmer	and	learning	to	debug	and	test
your	 code	 is	 as	 important	 as	 learning	 to	 program	 in	 the	 first	 place.	 As	 new	 topics	 are
introduced	in	this	text,	debugging	techniques	will	also	be	introduced	to	provide	you	with
the	information	you	need	to	become	a	better	debugger.



1.18		Review	Questions
	

1.		

What	does	the	acronym	IDE	stand	for?	What	does	it	do?

	
2.		

What	does	the	acronym	CPU	stand	for?	What	does	it	do?

	
3.		

How	many	bytes	are	in	a	GB?	What	does	GB	stand	for?

	
4.		

What	is	the	decimal	equivalent	of	the	binary	number	01101100?

	
5.		

What	is	the	hexadecimal	equivalent	of	the	binary	number	01101100?

	
6.		

What	is	the	binary	equivalent	of	the	number	 62?

	
7.		

What	is	the	ASCII	equivalent	of	the	decimal	number	62?

	
8.		

What	is	a	type	in	Python?	Give	an	example.	Why	are	there	types	in	Python	programs?

	



9.		

How	can	you	tell	what	type	of	value	is	stored	in	4	contiguous	bytes	of	memory?

	
10.		

How	can	you	interactively	work	with	the	Python	interpreter?

	
11.		

What	is	prototyping	as	it	applies	to	computer	programming?

	
12.		

Name	 two	different	 types	of	errors	 that	you	can	get	when	writing	a	computer	program?
What	is	unique	about	each	type	of	error?

	
13.		

What	is	a	reference	in	a	Python	program?

	
14.		

Why	is	it	that	the	result	of	4.01 3.59	is	0.41999999999999993	when	using	at	least	some
implementations	of	Python	3?

	
15.		

What	would	you	have	to	write	 to	ask	the	user	 to	enter	an	integer	and	then	read	it	 into	a
variable	in	your	program?	Write	some	sample	code	to	do	this.

	
16.		

Assume	that	you	have	a	constant	defined	for	 .	You	wish	to	print	just	3.14	to	the

screen	using	the	 	variable.	How	would	you	print	the	 	variable	so	it	only	display	3.14?



	



1.19		Exercises
	

1.		

Write	a	program	that	asks	the	user	to	enter	their	name.	Then	it	should	print	out	the	ASCII
equivalent	of	each	of	the	first	four	characters	of	your	name.	For	instance,	here	is	a	sample
run	of	the	program	below.

	
2.		

Write	 a	 program	 that	 capitalizes	 the	 first	 four	 characters	 of	 a	 string	 by	 converting	 the
characters	to	their	ASCII	equivalent,	then	adding	the	necessary	amount	to	capitalize	them,
and	 converting	 the	 integers	 back	 to	 characters.	 Print	 the	 capitalized	 string.	 Here	 is	 a
sample	of	running	this	program.

	
3.		

You	can	keep	 track	of	your	car’s	miles	per	gallon	 if	you	keep	 track	of	how	many	miles
you	drive	your	car	on	a	 tank	of	gas	and	you	always	 fill	up	your	 tank	when	getting	gas.
Write	a	program	that	asks	the	user	to	enter	the	number	of	miles	you	drove	your	car	and	the
number	of	gallons	of	gas	you	put	in	your	car	and	then	prints	the	miles	per	gallon	you	got
on	that	tank	of	gas.	Here	is	a	sample	run	of	the	program.

	
4.		

Write	 a	 program	 that	 converts	 US	 Dollars	 to	 a	 Foreign	 Currency.	 You	 can	 do	 this	 by
finding	the	exchange	rate	on	the	internet	and	then	prompting	for	the	exchange	rate	in	your
program.	When	you	run	the	program	it	should	look	exactly	like	this:

	



5.		

Write	a	program	that	converts	centimeters	to	yards,	feet,	and	inches.	There	are	2.54	cm	in
an	 inch.	 You	 can	 solve	 this	 problem	 by	 doing	 division,	 multiplication,	 addition,	 and
subtraction.	Converting	a	 float	 to	an	 int	at	 the	appropriate	 time	will	help	 in	 solving	 this
problem.	When	you	run	the	program	it	should	look	exactly	like	this	(except	possibly	for
decimal	places	in	the	inches):

	
6.		

Write	a	program	that	computes	 the	minimum	number	of	bills	and	coins	needed	 to	make
change	for	a	person.	For	instance,	if	you	need	to	give	$34.36	in	change	you	would	need
one	twenty,	one	ten,	four	ones,	a	quarter,	a	dime,	and	a	penny.	You	don’t	have	to	compute
change	 for	bills	greater	 than	$20	dollar	bills	or	 for	 fifty	 cent	pieces.	You	can	 solve	 this
problem	by	doing	division,	multiplication,	subtraction,	and	converting	floats	to	ints	when
appropriate.	So,	when	you	run	the	program	it	should	look	exactly	like	this:

	
7.		

Write	 a	 program	 that	 converts	 a	 binary	 number	 to	 its	 decimal	 equivalent.	 The	 binary
number	will	be	entered	as	a	string.	Use	the	powers	of	2	to	convert	each	of	the	digits	in	the
binary	number	to	its	appropriate	power	of	2	and	then	add	up	the	powers	of	two	to	get	the
decimal	equivalent.	When	the	program	is	run,	it	should	have	output	identical	to	this:

	
8.		

Write	 a	 program	 that	 converts	 a	 decimal	 number	 to	 its	 binary	 equivalent.	 The	 decimal
number	should	be	read	from	the	user	and	converted	to	an	int.	Then	you	should	follow	the
algorithm	 presented	 in	 Example	 1.1	 to	 convert	 the	 decimal	 number	 to	 its	 binary
equivalent.	The	binary	equivalent	must	be	 a	 string	 to	get	 the	 correct	output.	The	output
from	the	program	must	be	identical	to	this:



You	may	 assume	 that	 the	 number	 that	 is	 entered	 is	 in	 the	 range	 0–255.	 If	 you	want	 to
check	 your	 work,	 you	 can	 use	 the	 bin	 function.	 The	 bin	 function	 will	 take	 a	 decimal
number	and	return	a	string	representation	of	that	binary	number.	However,	you	should	not
use	the	bin	function	in	your	solution	(Fig.	1.23).

	
9.		

Complete	the	program	started	in	Practice	Problem	1.10.	Write	a	program	that	asks	the	user
to	 enter	 the	 two	 legs	 of	 a	 right	 triangle.	 The	 program	 should	 print	 the	 length	 of	 the
hypotenuse.	If	sideA	and	sideB	are	the	lengths	of	the	two	legs	and	sideC	is	the	length	of
the	 third	 leg	 of	 a	 right	 triangle,	 then	 the	 Pythagorean	 theorem	 says	 that	

.	 Ask	 the	 user	 to	 enter	 	 and	 .	 Your	 program	 should
print	the	value	of	 .

	

Fig.	1.23		A	right	triangle



1.20		Solutions	to	Practice	Problems
These	are	solutions	to	the	Practice	Problems	in	this	chapter.	You	should	only	consult	these
answers	after	you	have	tried	each	of	them	for	yourself	first.	Practice	Problems	are	meant
to	help	reinforce	the	material	you	have	just	read	so	make	use	of	them.

1.20.1		Solution	to	Practice	Problem	1.1

The	decimal	equivalent	of	the	binary	number	 	is	85.

1.20.2		Solution	to	Practice	Problem	1.2

So	the	answer	is	 .

1.20.3		Solution	to	Practice	Problem	1.3

1.20.4		Solution	to	Practice	Problem	1.4

The	ASCII	code	for	space	is	32.	

1.20.5		Solution	to	Practice	Problem	1.5
We,	as	programmers,	 determine	how	bytes	 in	memory	 are	 interpreted	by	 the	 statements
that	we	write.	If	we	want	to	interpret	the	bits	 	as	a	character	we	write	‘S’	 in	our
program.	If	we	want	the	same	bits	to	represent	an	integer,	we	write	83	in	our	program.

1.20.6		Solution	to	Practice	Problem	1.6
There	is	no	solution	needed	for	this	exercise.	Try	it	out	and	if	you	have	problems,	talk	to
your	 instructor	 or	 someone	 who	 can	 help	 to	 make	 sure	 you	 get	 this	 working	 before
proceeding.

1.20.7		Solution	to	Practice	Problem	1.7
1.		

An	assignment	statement	is	written	as

where	a	variable	is	assigned	the	value	of	an	expression.

	
2.		



To	 retrieve	 a	 value	 from	memory	we	write	 the	 name	 of	 the	 variable	 that	 refers	 to	 that
value.

	
3.		

If	we	use	a	variable	before	it	has	been	assigned	a	value	Python	will	complain	of	a	name
error,	meaning	the	variable	has	not	been	assigned	a	value	yet.

	
1.20.8		Solution	to	Practice	Problem	1.8

The	 binary	 representation	 of	 58	 is	 00111010.	 The	 number	 is	 	 and	 .	 In	 Python
syntax	that	would	be	 	and	 .

1.20.9		Solution	to	Practice	Problem	1.9
There	is	no	solution	needed	for	this	since	it	is	in	the	text.	However,	you	should	make	sure
you	try	this	so	you	understand	the	mechanics	of	writing	a	program	using	the	IDE.	If	you
can’t	get	 it	 to	work	you	should	ask	someone	that	did	get	it	 to	work	for	help	or	ask	your
instructor.

1.20.10		Solution	to	Practice	Problem	1.10

1.20.11		Solution	to	Practice	Problem	1.11
Here	is	one	program	that	you	might	get	as	a	result.

1.20.12		Solution	to	Practice	Problem	1.12
Here	is	one	version	of	the	program.	Do	you	understand	why	+	was	used	at	the	end	of	the
print	statement?

1.20.13		Solution	to	Practice	Problem	1.13
You	cannot	use	input	to	implement	this	because	the	input	function	waits	for	the	enter	key
to	be	pressed,	not	 just	 any	key.	You	could	prompt	 the	user	 though	with	 “Press	Enter	 to
continue ”.

1.20.14		Solution	to	Practice	Problem	1.14
Here	 is	 a	 version	 of	 the	 program.	 It	 must	 have	 variables	 to	 1	 and	 100	 to	 be	 correct
according	to	the	directions.



1.20.15		Solution	to	Practice	Problem	1.15



©	Springer-Verlag	London	2014

Kent	D.	LeePython	Programming	FundamentalsUndergraduate	Topics	 in	Computer	Science10.1007/978-1-4471-6642-
9_2



2.	Decision	Making
Kent	D.	Lee1		

(1)		

Luther	College,	Decorah,	IA,	USA

	
	

Kent	D.	Lee
Email:	kentdlee@luther.edu

In	 this	 chapter	 we	 explore	 how	 to	 make	 choices	 in	 our	 programs.	 Decision	 making	 is
valuable	when	something	we	want	to	do	depends	on	some	user	input	or	some	other	value
that	 is	not	known	when	we	write	our	program.	This	 is	quite	often	 the	case	and	Python,
along	with	all	 interesting	programming	languages,	has	 the	ability	 to	compare	values	and
then	take	one	action	or	another	depending	on	that	outcome.

Fig.	2.1		If	statement

For	 instance,	 you	might	write	 a	 program	 that	 reads	 data	 from	 a	 file	 and	 takes	 one
action	or	another	based	on	the	data	it	read.	Or,	a	program	might	get	some	input	from	a	user
and	then	take	one	of	several	actions	based	on	that	input.

To	make	a	choice	in	Python	you	write	an	 if	statement.	An	if	statement	takes	one	of
two	forms.	 It	may	be	 just	an	 if	 statement.	 In	 this	case,	 if	 the	condition	evaluates	 to	 true
then	it	will	evaluate	the	then	statements.	If	the	condition	is	not	true	the	computer	will	skip
to	the	statements	after	the	if	statement.

mailto:kentdlee@luther.edu


Figure	 2.1	 depicts	 this	 graphically.	 An	 if	 statement	 evaluates	 the	 conditional
expression	 and	 then	 goes	 to	 one	 of	 two	 places	 depending	 on	 the	 outcome.	 Notice	 the
indentation	in	the	if	statement	above.	The	indentation	indicates	the	then	statements	are	part
of	 the	 if	 statement.	 Indentation	 is	 very	 important	 in	 Python.	 Indentation	 determines	 the
control	 flow	of	 the	program.	Figure	2.1	graphically	depicts	 this	as	well.	 If	 the	condition
evaluates	 to	 true,	 a	 detour	 is	 taken	 to	 execute	 the	 then	statements	 before	 continuing	 on
after	the	if	statement.

Generally,	we	want	to	know	if	some	value	in	our	program	is	equal	to,	greater,	or	less
than	another	value.	The	comparison	operators,	or	relational	operators,	in	Python	allow	us
to	compare	two	values.	Any	value	in	your	program,	usually	a	variable,	can	be	compared
with	another	value	to	see	how	the	two	values	relate	to	each	other.

Fig.	2.2		Relational	operators

Figure	 2.2	 lists	 the	 operators	 you	 can	 use	 to	 compare	 two	 values.	 Each	 of	 these
operators	 is	 written	 between	 the	 two	 values	 or	 variables	 you	 want	 to	 compare.	 They
evaluate	to	either	true	or	false	depending	on	the	two	values.	When	the	condition	evaluates
to	true,	the	then	statements	are	executed.	Otherwise,	the	then	statements	are	skipped.

Fig.	2.3		Stepping	into	and	over

Example	2.1
An	if	statement	is	best	described	by	giving	an	example.	Assume	we	want	to	see	if	a
number	 entered	 by	 a	 user	 is	 divisible	 by	 7.	We	 can	write	 the	 program	 pictured	 in
Fig.	2.3	 to	decide	 this.	The	program	gets	some	input	from	the	user.	Remember	 that



input	reads	a	string	from	the	user.	The	int	converts	the	string	to	an	integer.	Then,	the
num	variable	is	checked	to	see	if	 it	 is	divisible	by	7.	The	%	 is	called	the	modulo	or
just	the	mod	operator.	It	gives	us	the	remainder	after	dividing	by	the	divisor	(i.e.	7	in
this	case).	 If	 the	 remainder	after	dividing	by	7	 is	0	 then	 the	number	entered	by	 the
user	is	divisible	by	7.

An	 important	 feature	 of	 a	 debugger	 is	 the	 ability	 to	 step	 over	 our	 code	 and	watch	 the
computer	execute	each	statement.	This	is	called	stepping	over	or	stepping	 into	our	code.
Figure	 2.3	 depicts	 how	 this	 is	 done.	 For	 now	 stepping	 into	 and	 stepping	 over	 code	 do
relatively	 the	 same	 thing.	To	begin	 stepping	 through	 a	 program	you	press	 the	Step	 Into
button.	Once	the	program	is	started,	you	press	the	Step	Over	button	to	avoid	jumping	to
other	code	that	your	program	might	call.	Stepping	into	and	over	code	can	be	very	useful	in
understanding	exactly	what	your	program	is	doing.

Practice	2.1
Write	 a	 short	 program	 that	 asks	 the	user	 to	 enter	 the	name	of	 a	month.	 If	 the	user
enters	“December”	your	program	should	print	“Merry	Christmas!”.	No	matter	what
you	 enter,	 your	 program	 should	 print	 “Have	 a	 Happy	 New	Year!”	 just	 before	 the
program	terminates.	Then,	use	Step	Into	and	Step	Over	to	execute	each	statement	that
you	wrote.	Run	your	program	at	 least	 twice	 to	 see	how	 it	behaves	when	you	enter
“December”	and	how	it	behaves	when	you	enter	something	else.

Sometimes,	 you	 may	 want	 your	 program	 to	 do	 one	 thing	 if	 a	 condition	 is	 true	 and
something	 else	 if	 a	 condition	 is	 false.	Notice	 that	 the	 if	 statement	 does	 something	 only
when	the	condition	evaluates	to	true	and	does	not	do	anything	otherwise.	If	you	want	one
thing	 to	happen	when	a	condition	 is	 true	and	another	 to	happen	 if	 the	condition	 is	 false
then	you	need	to	use	an	if-else	statement.	An	if-else	statement	adds	a	keyword	of	else	to
do	something	when	the	condition	evaluates	to	false.	An	if-else	statement	looks	like	this.

If	 the	 condition	 evaluates	 to	 true,	 the	 then	statements	 are	 executed.	Otherwise,	 the
else	 statements	 are	 executed.	 Figure	 2.4	 depicts	 this	 graphically.	 The	 control	 of	 your
program	 branches	 to	 one	 of	 two	 locations,	 the	 then	 statements	 or	 the	 else	 statements
depending	on	the	outcome	of	the	condition.



Fig.	2.4		If-else	statement

Again,	 indentation	 is	 very	 important.	 The	 else	 keyword	 must	 line	 up	 with	 the	 if
statement	to	be	properly	paired	with	the	if	statement	by	Python.	If	you	don’t	line	up	the	if
and	the	else	in	exactly	the	same	columns,	Python	will	not	know	that	the	if	and	the	else	go
together.	In	addition,	the	else	is	only	paired	with	the	closest	if	that	is	in	the	same	column.
Both	the	then	statements	and	the	else	statements	must	be	 indented	and	must	be	 indented
the	same	amount.	Python	 is	very	picky	about	 indentation	because	 indentation	 in	Python
determines	the	flow	of	control	in	the	program.

In	the	case	of	the	if-else	statement,	either	the	 then	statements	or	 the	else	statements
will	be	executed.	This	is	in	contrast	to	the	if	statement	that	is	described	in	Fig.	2.1.	When
learning	about	if	statements	this	seems	to	be	where	some	folks	get	stuck.	The	statements
that	are	conditionally	executed	are	 those	statements	 that	are	 indented	under	 the	 if	or	 the
else.

In	either	case,	after	executing	 the	 if	or	 the	 if-else	 statement	 control	proceeds	 to	 the
next	statement	after	 the	 if	or	 if-else.	The	statement	after	 the	 if-else	 statement	 is	 the	next
line	of	the	program	that	is	indented	the	same	amount	as	the	if	and	the	else.

Example	2.2
Consider	a	program	that	finds	the	maximum	of	two	integers.	The	last	line	before	the
if-else	 statement	 is	 the	 y	 =	 assignment	 statement.	 The	 first	 line	 after	 the	 if-else
statement	is	the	print(“Done.”)	statement.

Practice	2.2
Modify	 the	 program	 from	 practice	 Problem	 2.1	 to	 print	 “Merry	Christmas!”	 if	 the



month	is	December	and	“You’ll	have	to	wait”	otherwise.	It	should	still	print	“Have	a
Happy	New	Year!”	in	either	case	as	the	last	line	of	output.	Then	run	the	program	at
least	 twice	 using	 step	 into	 and	 over	 to	 see	 how	 it	 behaves	 when	 “December”	 is
entered	and	how	the	program	behaves	when	anything	else	is	entered.

Fig.	2.5		Max	of	three	integers



2.1		Finding	the	Max	of	Three	Integers
Any	statement	may	be	placed	within	an	if	statement,	including	other	if	statements.	When
you	want	to	check	multiple	conditions	there	may	be	a	need	to	put	one	if	statement	inside
another.	It	can	happen,	but	not	very	often.	For	instance,	you	may	need	to	know	if	a	value
entered	by	a	user	is	between	two	numbers.	This	could	be	written	using	two	if	statements,
the	outer	if	statement	checking	to	see	if	the	value	entered	is	greater	than	some	minimum,
and	the	inner	if	statement	checking	to	see	of	the	value	entered	is	less	than	some	maximum.
There	are	other	ways	to	check	to	see	if	a	value	is	between	a	maximum	and	minimum,	but
nested	if	statements	can	be	used	in	this	kind	of	circumstance.

Let’s	 consider	 another	 possibility.	 Suppose	 you	 are	 asked	 to	 write	 a	 program	 that
finds	 the	 maximum	 of	 three	 integers.	 This	 can	 be	 accomplished	 by	 writing	 nested	 if
statements.	Figure	2.5	depicts	the	flow	of	control	for	such	a	program.

We	could	determine	which	of	the	three	integers,	x,	y	and	z,	was	the	greatest	by	first
comparing	two	of	them,	say	x	and	y.	Then,	depending	on	the	outcome	of	that	condition,
we	would	compare	two	more	integers.	By	nesting	if	statements	we	can	arrive	at	a	decision
about	 which	 is	 greatest.	 This	 code	 gets	 a	 bit	 complicated	 because	 we	 have	 three	 if
statements	to	deal	with,	two	of	which	are	nested	inside	the	third	statement.

Example	2.3
While	you	wouldn’t	normally	write	code	like	this,	it	is	provided	here	to	show	how	if
statements	may	be	nested.	The	code	prints	the	maximum	of	three	integers	entered	by
the	user.



2.2		The	Guess	and	Check	Pattern
There	 is	no	way	a	good	programmer	would	write	a	program	 that	 included	 the	code	 that
appeared	in	Example	2.3.	It	is	too	complicated.	Instead,	it	would	be	much	better	to	use	a
pattern	or	idiom	called	Guess	and	Check.	Using	this	pattern	involves	first	making	a	guess
as	to	a	correct	solution	and	storing	that	guess	in	a	variable.	Then,	you	use	one	or	more	if
statements	to	check	that	guess	to	see	if	it	was	correct	or	not.	If	it	was	not	a	correct	guess,
then	 the	 variable	 can	 be	 updated	 with	 a	 new	 guess.	 Finally,	 when	 the	 guess	 has	 been
thoroughly	checked,	it	should	equal	the	value	we	were	looking	for.

Example	2.4
Consider	the	max	of	three	program	in	Example	2.3.	This	could	be	rewritten	using	the
guess	and	check	pattern	if	we	first	make	a	guess	as	to	the	maximum	value	and	then
fix	it	if	needed.

The	code	 in	Examples	2.3	and	2.4	get	 the	 same	 input	 and	print	 exactly	 the	 same	 thing.
However,	 the	 code	 in	 Example	 2.4	 is	 much	 easier	 to	 understand,	 mainly	 because	 the
control	flow	is	simplified	by	not	having	nested	 if	statements.	Notice	that	no	else	clauses
were	needed	in	Example	2.4.	So,	the	code	is	simplified	by	having	two	if	statements	instead
of	three.	It	is	simplified	by	having	no	nested	if	statements.	Finally	it	is	simplified	because
there	are	no	use	of	else	clauses	in	either	of	the	if	statements.

Practice	2.3
Use	 the	 guess	 and	 check	 pattern	 to	 determine	 if	 a	 triangle	 is	 a	 perfect	 triangle.	A
perfect	triangle	has	side	lengths	that	are	multiples	of	3,	4	and	5.	Ask	the	user	to	enter
the	 shortest,	middle,	 and	 longest	 sides	 of	 a	 triangle	 and	 then	 print	 “It	 is	 a	 perfect
triangle	“if	it	is	and	“It	is	not	a	perfect	triangle”	if	it	isn’t.	You	may	assume	that	the
side	lengths	are	integers.	Let	your	guess	be	that	the	message	you	will	print	is	“It	is	a
perfect	triangle”.



2.3		Choosing	from	a	List	of	Alternatives
Sometimes	you	may	write	some	code	where	you	need	to	choose	from	a	list	of	alternatives.
For	instance,	consider	a	menu	driven	program.	You	may	want	to	print	a	list	of	choices	and
have	a	user	pick	from	that	list.	In	such	a	situation	you	may	want	to	use	an	if	statement	and
then	 nest	 an	 if	 statement	 inside	 of	 the	 else	 clause.	 An	 example	 will	 help	 clarify	 the
situation.

Example	2.5
Consider	 writing	 a	 program	where	 we	 want	 the	 user	 to	 enter	 two	 floats	 and	 then
choose	one	of	several	options.

Do	you	notice	 the	 stair	 step	pattern	 that	 appears	 in	 the	 code	 in	Example	2.5?	This	 stair
stepping	is	generally	considered	ugly	and	a	nuisance	by	programmers.	Depending	on	how
much	you	indent	each	line,	the	code	can	quickly	go	off	the	right	side	of	the	screen	or	page.
The	need	to	select	between	several	choices	presents	itself	often	enough	that	Python	has	a
special	form	of	the	if	statement	to	handle	this.	It	is	the	if-elif	statement.	In	this	statement,
one,	and	only	one,	alternative	is	chosen.	The	first	alternative	whose	condition	evaluates	to
True	is	the	code	that	will	be	executed.	All	other	alternatives	are	ignored.	The	general	form
of	the	if-elif	statement	is	given	here.

There	 can	 be	 as	 many	 alternatives	 as	 are	 needed.	 In	 addition,	 the	 else	 clause	 is
optional	so	may	or	may	not	appear	in	the	statement.	If	we	revise	our	example	using	this



form	of	the	if	statement	it	looks	a	lot	better.	Not	only	does	it	look	better,	it	is	easier	to	read
and	it	is	still	clear	which	choices	are	being	considered.	In	either	case,	if	the	conditions	are
not	mutually	exclusive	 then	priority	 is	given	 to	 the	 first	condition	 that	evaluates	 to	 true.
This	means	that	while	a	condition	may	be	true,	its	statements	may	not	be	executed	if	it	is
not	the	first	true	condition	in	the	if	statement.

Example	2.6
Here	is	a	revision	of	Example	2.5	that	looks	a	lot	nicer.

Practice	2.4
Write	 a	 short	 program	 that	 asks	 the	 user	 to	 enter	 a	 month	 and	 prints	 a	 message
depending	on	the	month	entered	according	to	the	messages	in	Fig.	2.6.	Then	use	the
step	into	and	over	ability	of	the	debugger	to	examine	the	code	to	see	what	happens.

Fig.	2.6		Messages



2.4		The	Boolean	Type
Conditions	in	if	statements	evaluate	to	True	or	False.	One	of	the	types	of	values	in	Python
is	called	bool	which	 is	 short	 for	Boolean.	George	Boole	was	 an	English	Mathematician
who	 lived	during	 the	1800s.	He	 invented	 the	Boolean	Algebra	and	 it	 is	 in	honor	of	him
that	true	and	false	are	called	Boolean	values	today	[13].

In	an	if	statement	the	condition	evaluates	to	true	or	false.	The	Boolean	value	of	the
condition	decides	which	branch	is	to	be	executed.	The	only	requirement	for	a	condition	in
an	if	statement	is	that	it	evaluates	to	true	or	false.	So	writing	if	True	 	would	mean	that
the	then	statements	would	always	be	executed.	Writing	such	an	if	statement	doesn’t	really
make	sense,	but	using	Boolean	values	in	if	statements	sometimes	does.

Example	2.7
Consider	 a	 program	 that	must	 decide	 if	 a	 value	 is	 between	 0	 and	 1.	 The	 program
below	uses	a	Boolean	expression	to	discover	if	that	is	the	case	or	not.

Because	 an	 if	 statement	 only	 requires	 that	 the	 condition	 evaluates	 to	 true	 or	 false,	 any
expression	may	be	used	as	 long	as	 the	result	of	evaluating	it	 is	 true	or	false.	Compound
Boolean	expressions	can	be	built	from	simple	expressions	by	using	the	logical	operators
and,	or,	and	not.	The	and	of	two	Boolean	values	is	true	when	both	Boolean	values	are	true
as	shown	in	Fig.	2.7.	The	or	of	two	Boolean	values	is	true	when	one	or	the	other	is	true,	or
when	both	are	 true	as	depicted	 in	Fig.	2.8.	The	not	of	a	Boolean	value	 is	 true	when	 the
original	value	was	false.	This	is	shown	in	Fig.	2.9.

Fig.	2.7		The	and	operator

Fig.	2.8		The	or	operator

Fig.	2.9		The	not	operator

The	three	figures	describe	the	truth-tables	for	each	of	the	Boolean	operators.	A	truth-
table	can	be	constructed	for	any	compound	Boolean	expression.	In	each	of	the	truth	tables,
	and	 	represent	any	Boolean	expression.	The	 tables	show	what	 the	Boolean	value	of

the	expression	A	and	B,	A	or	B,	and	not	A	would	be,	given	the	values	of	 	and	 	 in	 the



table.	The	and,	or,	and	not	logical	operators	can	be	strung	together	in	all	sorts	of	ways	to
produce	 complex	 Boolean	 expressions,	 but	 writing	 a	 program	 with	 complex	 Boolean
expressions	is	generally	a	bad	idea	since	it	is	difficult	to	understand	the	logic	of	complex
expressions.Keeping	 track	 of	 whether	 to	 use	 and	 or	 or	 when	 not	 is	 involved	 in	 the
expression	is	difficult	and	should	be	avoided	if	possible.

There	are	at	least	a	couple	of	ways	that	negation	(i.e.	the	use	of	the	not	operator)	can
be	avoided	in	if	statements.	The	statement	can	be	rewritten	to	test	the	opposite	of	what	you
first	considered.	Another	 technique	 is	 to	use	 the	guess	and	check	pattern.	The	following
two	examples	illustrate	how	this	can	be	done.

Example	2.8
Consider	a	club	where	you	must	be	under	18	and	over	15	to	join.	Here	is	a	first	try	at
a	program	that	tells	you	whether	you	can	join	or	not.

Does	this	program	do	the	job?	In	fact,	as	it	is	written	here	everyone	can	join	the
club.	The	problem	is	with	the	choice	of	and	in	the	Boolean	expression.	It	should	have
been	or.	The	correct	program	would	be	written	as	follows.

While	 the	program	above	 is	 correct,	 it	 is	 still	 difficult	 to	understand	why	 it	 is
correct.	The	problem	is	the	use	of	negation	with	the	or	operator.	A	much	better	way
to	write	it	would	be	to	remove	the	negation	in	the	expression.

Example	2.9
The	guess	and	check	pattern	can	be	applied	to	Boolean	values	as	well.	If	you	need	to
decide	a	yes	or	no	question,	you	can	make	a	guess	and	then	fix	it	if	needed.



The	 technique	 used	 in	 Example	 2.9	 is	 especially	 useful	 when	 there	 are	 a	 number	 of
conditions	that	must	be	checked	to	make	sure	that	the	yes	or	no	answer	is	correct.	In	fact,
when	the	exact	number	of	conditions	is	unknown,	this	technique	may	be	necessary.	How
the	exact	number	of	conditions	to	check	can	be	unknown	will	become	clearer	in	the	next
chapter.

Practice	2.5
Write	 a	 program	 that	 determines	 whether	 you	 can	 run	 for	 president.	 To	 run	 for
president	 the	 constitution	 states:	 No	 Person	 except	 a	 natural	 born	 Citizen,	 or	 a
Citizen	of	the	United	States,	at	the	time	of	the	Adoption	of	this	Constitution,	shall	be
eligible	to	the	Office	of	President;	neither	shall	any	Person	be	eligible	to	that	Office
who	shall	not	have	attained	to	the	Age	of	thirty	five	Years,	and	been	fourteen	Years	a
Resident	within	 the	United	 States	 [7].	Ask	 three	 questions	 of	 the	 user	 and	 use	 the
guess	and	check	pattern	to	determine	if	they	are	eligible	to	run	for	President.



2.5		Short	Circuit	Logic
Once	 in	a	while	using	 the	guess	and	check	pattern	may	not	produce	 the	desired	 results.
There	 are	 situations	 where	 you	 may	 want	 to	 evaluate	 one	 condition	 only	 if	 another
condition	is	true	or	false.	An	example	should	make	this	clear.

Example	2.10
Consider	a	program	that	checks	to	see	if	one	integer	evenly	divides	another.

Dividing	 top	 by	 bottom	 would	 result	 in	 a	 run-time	 error	 if	 bottom	 were	 0.	 However,
division	 by	 0	 will	 never	 happen	 in	 this	 code	 because	 Python,	 and	 most	 programming
languages,	uses	short-circuit	logic.	This	means	that	since	both	A	and	B	must	be	true	in	the
expression	A	and	B	for	the	expression	to	evaluate	to	true,	if	it	turns	out	that	A	evaluates	to
false	 then	 there	 is	 no	 point	 in	 evaluating	B	 and	 therefore	 it	 is	 skipped.	 In	 other	words,
Boolean	 expressions	 are	 evaluated	 from	 left	 to	 right	 until	 the	 truth	 or	 falsity	 of	 the
expression	 can	 be	 determined	 and	 the	 condition	 evaluation	 terminates.	 This	 is	 exactly
what	we	want	in	the	code	in	Example	2.10.

Practice	2.6
In	Minnesota	 you	 can	 fish	 if	 you	 are	 15	 years	 old	 or	 less	 and	 your	 parent	 has	 a
license.	If	you	are	16	years	old	or	more	you	need	to	have	your	own	license.	Write	a
program	 that	 uses	 short	 circuit	 logic	 to	 tell	 someone	 if	 they	 are	 legal	 to	 fish	 in
Minnesota.	First	ask	them	how	old	they	are,	whether	they	have	a	license	or	not,	and
whether	their	parent	has	a	license	or	not.



2.6		Comparing	Floats	for	Equality
In	Python,	 real	numbers	or	 floats	 are	 represented	using	eight	bytes.	That	means	 that	
different	real	numbers	can	be	represented.	This	is	a	lot	of	real	numbers,	but	not	enough.
Since	 there	 are	 infinitely	many	 real	 numbers	between	any	 two	 real	 numbers,	 computers
will	never	be	able	to	represent	all	of	them.

Because	floats	are	only	approximations	of	real	numbers,	there	is	some	round-off	error
expected	when	dealing	with	real	numbers	in	a	program.	Generally	this	round-off	error	is
small	 and	 is	 not	 much	 of	 a	 problem	 unless	 you	 are	 comparing	 two	 real	 numbers	 for
equality.	If	you	need	to	do	this	then	you	need	to	subtract	the	two	numbers	and	see	if	the
difference	is	insignificant	since	the	two	numbers	may	be	slightly	different.

So,	 to	 compare	 two	 floats	 for	 equality	 you	 can	 subtract	 the	 two	 and	 see	 if	 the
difference	is	small	relative	to	the	two	numbers.

Example	2.11
This	program	compares	a	guess	with	the	result	of	dividing	two	floats	and	tells	you	if
you	are	correct	or	not.

Notice	in	the	program	in	Example	2.11	that	the	abs	function	returns	the	absolute	value	of
the	float	given	to	it	so	it	doesn’t	matter	if	the	numbers	you	are	comparing	are	positive	or

negative.	 The	 code	 will	 work	 either	 way.	 In	 this	 example,	 0.001	 or	 1/10th	 of	
difference	was	deemed	close	enough.	Depending	on	your	application,	 that	value	may	be
different.

Practice	2.7
Use	the	guess	and	check	pattern	to	determine	if	a	 triangle	is	a	perfect	 triangle.	You
must	allow	the	user	to	enter	any	side	length	for	the	three	sides	of	the	triangle,	not	just
integers.	A	perfect	triangle	has	side	lengths	that	are	multiples	of	3,	4	and	5.	Ask	the
user	to	enter	the	three	side	lengths	and	then	print	“It	is	a	perfect	triangle”	if	it	is	and
“It	is	not	a	perfect	triangle”	if	it	isn’t.



2.7		Exception	Handling
Sometimes	things	go	wrong	in	a	program	and	it	is	out	of	your	control.	For	instance,	if	the
user	does	not	enter	the	proper	input	an	error	may	occur	in	your	program.	Python	includes
exception	 handling	 so	 programmers	 can	 handle	 errors	 like	 this.	 Generally,	 if	 there	 is	 a
possibility	something	could	go	wrong	you	should	probably	use	some	exception	handling.
To	use	exception	handling	you	write	a	try-except	statement.

A	try-except	block	may	monitor	for	any	exception	or	just	a	certain	exception.	There
are	many	possible	exceptions	that	might	be	caught.	For	instance,	a	ValueError	exception
occurs	 when	 you	 try	 to	 convert	 an	 invalid	 value	 to	 an	 integer.	 A	 ZeroDivisionError
exception	occurs	when	you	 try	 to	divide	by	zero.	 In	 the	general	 form	shown	above,	 the
Exception	 is	 optional.	 That’s	 what	 the	 square	 brackets	 (i.e.	 [	 	 	 	 	 	 ])	 mean.	 You	 don’t
actually	write	the	square	brackets.	They	mean	the	exception	is	optional	in	this	case.	If	the
exception	is	omitted	then	any	exception	is	caught.

Exception	handling	can	be	used	to	check	user	input	for	validity.	It	can	also	be	used
internally	in	the	program	to	catch	calculations	that	might	result	in	an	error	depending	on
the	values	 involved	 in	 the	 calculation.	When	 a	 try	 block	 is	 executed	 if	 a	 run-time	error
occurs	that	the	try-except	block	is	monitoring	then	program	control	immediately	skips	to
the	beginning	of	 the	except	block.	 If	no	error	occurs	while	executing	 the	 try	 block	 then
control	skips	 the	except	block	and	continues	with	 the	statement	 following	 the	 try-except
statement.	If	an	error	occurs	and	the	except	block	is	executed,	then	when	the	except	block
finishes	 executing	 control	 goes	 to	 the	 next	 statement	 after	 the	 try-except	 statement
(Fig.	2.10).

Example	2.12
Here	 is	 a	 bulletproof	 version	of	 the	program	 first	 presented	 in	Example	2.10.	 This
example	does	not	use	short-circuit	 logic.	 It	uses	exception	handling	 instead.	Notice
the	use	of	exit(0)	below.	This	is	a	Python	function	that	exits	the	program	immediately,
skipping	anything	that	comes	after	it.



Fig.	2.10		Try-except	statement

Try-except	 statements	 are	 useful	 when	 either	 reading	 input	 from	 the	 user	 or	 when
using	 data	 that	 was	 read	 earlier	 in	 the	 program.	 Example	 2.12	 uses	 three	 try-except
statements.	 The	 first	 two	 catch	 any	 non-integer	 input	 that	 might	 be	 provided.	 The	 last
catches	a	division	by	zero	error.

Practice	2.8
Add	 exception	 handling	 to	 the	 program	 in	 practice	 Problem	2.6	 so	 that	 if	 the	 user
answers	 something	 other	 than	 their	 age	 that	 the	 program	prints	 “You	did	 not	 enter
your	age	correctly”.



2.8		Review	Questions
1.		

What	is	the	difference	between	an	 if	statement	and	an	 if-else	 statement?	Be	sure	 to	state
what	 the	 difference	 in	 meaning	 is	 between	 the	 two,	 not	 just	 the	 addition	 of	 the	 else
keyword.

	
2.		

What	type	of	value	is	returned	by	the	relational	operators?

	
3.		

What	does	it	mean	to	Step	Over	code?	What	is	that	referring	to?

	
4.		

What	is	a	nested	if	statement?

	
5.		

How	can	nested	if	statements	be	avoided?

	
6.		

What	is	the	general	pattern	for	Guess	and	Check?

	
7.		

What	is	the	Mathematician	George	Boole	famous	for?

	
8.		

When	is	it	difficult	to	determine	whether	and	or	or	should	be	used	in	an	if	statement?

	



9.		

What	is	short	circuit	logic?	When	does	it	apply?	Give	an	example	of	when	it	would	apply.
Do	not	use	the	example	in	the	book.

	
10.		

What	is	the	problem	with	comparing	floats	for	equality?

	
11.		

If	an	exception	occurs	on	line	2	of	while	executing	this	code	give	the	line	numbers	of	this
program	in	the	order	that	they	are	executed.	What	is	the	output	from	the	program?

	



2.9		Exercises
1.		

Type	in	the	code	of	Example	2.6.	Execute	the	code	using	a	debugger	like	the	one	included
with	 the	Wing	 IDE	101.	Step	 into	 and	over	 the	 code	using	 the	debugger.	Enter	 a	menu
choice	 of	 1.	 Using	 the	 line	 numbers	 in	 Example	 2.6,	 which	 lines	 of	 the	 program	 are
executed	when	you	enter	a	1	for	the	menu	choice.	List	these	lines.	Do	the	same	for	each	of
the	other	menu	choice	values.	If	you	run	the	program	and	enter	a	menu	choice	of	5,	which
lines	of	the	program	are	executed.	If	you	use	the	debugger	to	answer	this	question	you	will
be	guaranteed	to	get	it	right	and	you’ll	learn	a	little	about	using	a	debugger.

	
2.		

Write	a	program	that	prints	a	user’s	grade	given	a	percent	of	points	achieved	in	the	class.
The	program	should	prompt	the	user	to	enter	his/her	percent	of	points.	It	should	then	print

a	letter	grade	A,	A ,	B ,	B,	B ,	C ,	C,	C ,	D ,	D,	D ,	F.	The	grading	scale	is	given
in	Fig.	2.11.	Use	exception	handling	to	check	the	input	from	the	user	to	be	sure	it	is	valid.
Running	the	program	should	look	like	this:

	
3.		

Write	a	program	that	converts	centimeters	to	yards,	feet,	and	inches.	There	are	2.54	cm	in
an	 inch.	 You	 can	 solve	 this	 problem	 by	 doing	 division,	 multiplication,	 addition,	 and
subtraction.	Converting	a	 float	 to	an	 int	at	 the	appropriate	 time	will	help	 in	 solving	 this
problem.	When	you	run	the	program	it	should	look	exactly	like	this	(except	possibly	for
decimal	places	in	the	inches):

This	is	a	modification	of	the	program	in	Exercise	5	of	Chap.	1.	In	 this	version	of	 it	you
should	print	“yard”	when	there	is	one	yard,	and	“yards”	when	there	is	more	than	one	yard.
If	there	are	zero	yards	then	it	should	not	print	“yard”	or	“yards”.	The	same	thing	applies	to
“feet”.	Use	an	if	statement	to	determine	the	label	to	print	and	if	the	label	should	be	printed
at	all.

	
4.		

Write	a	program	that	computes	 the	minimum	number	of	bills	and	coins	needed	 to	make
change	for	a	person.	For	instance,	if	you	need	to	give	$34.36	in	change	you	would	need
one	twenty,	one	ten,	four	ones,	a	quarter,	a	dime,	and	a	penny.	You	don’t	have	to	compute
change	 for	bills	greater	 than	$20	dollar	bills	or	 for	 fifty	 cent	pieces.	You	can	 solve	 this



problem	by	doing	division,	multiplication,	subtraction,	and	converting	floats	to	ints	when
appropriate.	So,	when	you	run	the	program	it	should	look	exactly	like	this:

This	is	a	modification	of	the	program	in	Exercise	6	of	Chap.	1.	In	this	version,	only	non-
zero	amounts	of	bills	and	change	should	be	printed.	In	addition,	when	only	one	bill	or	coin
is	needed	for	a	particular	denomination,	you	should	use	the	singular	version	of	the	word.
When	more	 than	 one	 bill	 or	 coin	 for	 a	 denomination	 is	 needed,	 the	 plural	 of	 the	 label
should	be	used.

	
5.		

Write	a	program	that	asks	the	user	to	enter	an	integer	less	than	50	and	then	prints	whether
or	not	that	integer	is	prime.	To	determine	if	a	number	less	than	50	is	prime	you	only	need
to	divide	by	all	prime	numbers	that	are	less	than	or	equal	to	the	square	root	of	50.	If	any	of
them	evenly	divide	 the	number	 then	 it	 is	not	prime.	Use	 the	guess	and	check	pattern	 to
solve	this	problem.	Use	exception	handling	to	check	the	input	from	the	user	to	be	sure	it	is
valid.	A	run	of	the	program	should	look	like	this:

	
6.		

Write	 a	 program	 that	 converts	 a	 decimal	 number	 to	 its	 binary	 equivalent.	 The	 decimal
number	should	be	read	from	the	user	and	converted	to	an	int.	Then	you	should	follow	the
algorithm	 presented	 in	 Example	 1.1	 to	 convert	 the	 decimal	 number	 to	 its	 binary
equivalent.	The	binary	equivalent	must	be	a	string	to	get	the	correct	output.	In	this	version
of	 the	 program	 you	 must	 handle	 all	 16-bit	 signed	 integers.	 That	 means	 that	 you	 must

handle	numbers	 from	 32768	 to	 32767.	 In	 this	 version	 of	 the	 program	you	 should	 not
print	any	leading	0’s.	Leading	0’s	should	be	omitted	from	the	output.

If	you	want	to	check	your	work,	you	can	use	the	bin	function.	The	bin	function	will
take	a	decimal	number	and	return	a	string	representation	of	that	binary	number.	However,
you	should	not	use	the	bin	function	in	your	solution.

The	output	from	the	program	must	be	identical	to	this:



	
7.		

Write	a	program	that	prompts	the	user	to	enter	a	16-bit	binary	number	(a	string	of	1’s	and
0’s).	 Then,	 the	 program	 should	 print	 the	 decimal	 equivalent.	 Be	 sure	 to	 handle	 both
negative	and	positive	binary	numbers	correctly.	If	 the	user	enters	less	than	16	digits	you
should	assume	that	the	digits	to	the	left	of	the	last	digit	are	zeroes.	When	run	the	output
should	look	like	this:

To	handle	negative	numbers	correctly	you	first	need	to	detect	if	it	is	a	negative	number.	A
16-digit	binary	number	is	negative	if	it	is	16	digits	long	and	the	left-most	digit	is	a	1.	To
convert	a	negative	number	 to	 its	 integer	equivalent,	 first	 take	 the	1’s	complement	of	 the
number.	 Then	 convert	 the	 1’s	 complement	 to	 an	 integer,	 then	 add	 1	 to	 the	 integer	 and
negate	the	result	to	get	the	2’s	complement.

The	conversion	from	bits	to	an	integer	can	be	carried	out	by	multiplying	each	bit	by
the	power	of	2	that	it	represents	as	described	in	Sect.	1.5	of	Chap.	1.

	
8.		

Converting	 numbers	 to	 any	 base	 can	 be	 accomplished	 using	 the	 algorithm	 from
Example	 1.1.	 For	 instance,	 an	 integer	 can	 be	 converted	 to	 hexadecimal	 using	 this
algorithm.	Hexadecimal	numbers	are	base	16.	That	means	there	are	16	possible	values	for
one	digit.	Counting	in	hexadecimal	starts	0,	1,	2,	3,	4,	5,	6,	7,	8,	9,	a,	b,	c,	d,	e,	f,	10,	11,	12
and	so	on.	The	algorithm	changes	so	that	instead	of	dividing	by	2	you	divide	by	16.	The
one	gotcha	is	that	if	the	remainder	after	dividing	is	greater	or	equal	to	10	(base	10)	then
you	should	not	append	the	base	10	value	to	the	string.	Instead	you	should	append	a,	b,	c,	d,
e,	 or	 f.	 You	 can	 use	 if	 statements	 to	 determine	 the	 correct	 value	 to	 append.	 Write	 a
program	 that	 prompts	 the	 user	 to	 enter	 an	 integer	 and	 then	 prints	 its	 hexadecimal
equivalent.

Traditionally,	hexadecimal	numbers	start	with	a	“0x”	to	identify	them	as	hex,	so	your
output	should	look	like	this:

Your	program	should	handle	any	base	10	integer	from	0	to	65535.	There	is	a	function
called	hex	 in	Python	that	converts	integers	to	their	hexadecimal	representation.	You	may
not	use	 this	 in	 implementing	 this	program,	but	you	may	use	 it	 to	see	 if	your	program	is
producing	the	correct	output.	For	instance,	calling	hex(255)	will	return	the	string	0xff.

You	 should	 check	 the	 input	 that	 the	user	 enters	 to	make	 sure	 that	 it	 is	 in	 the	valid
range	accepted	by	your	program.

	



Fig.	2.11		Grading	Scale



2.10		Solutions	to	Practice	Problems
These	are	solutions	to	the	practice	problems	in	this	chapter.	You	should	only	consult	these
answers	after	you	have	tried	each	of	them	for	yourself	first.	Practice	problems	are	meant
to	help	reinforce	the	material	you	have	just	read	so	make	use	of	them.

2.10.1		Solutions	to	Practice	Problem	2.1

2.10.2		Solutions	to	Practice	Problem	2.2

2.10.3		Solutions	to	Practice	Problem	2.3

2.10.4		Solutions	to	Practice	Problem	2.4



2.10.5		Solutions	to	Practice	Problem	2.5

2.10.6		Solutions	to	Practice	Problem	2.6

2.10.7		Solutions	to	Practice	Problem	2.7



2.10.8		Solutions	to	Practice	Problem	2.8



©	Springer-Verlag	London	2014

Kent	D.	LeePython	Programming	FundamentalsUndergraduate	Topics	 in	Computer	Science10.1007/978-1-4471-6642-
9_3



3.	Repetitive	Tasks
Kent	D.	Lee1		

(1)		

Luther	College,	Decorah,	IA,	USA

	
	

Kent	D.	Lee
Email:	kentdlee@luther.edu

When	my	 children	were	 very	 little	 I	 played	with	 them	 and	 read	 books	 to	 them.	 If	 they
were	particularly	entertained	I	would	get	the,	“Do	it	again!”,	command	from	them.	And,
of	course,	I	did	it	or	read	it	again.	Who	can	say	no	to	a	three	year-old	when	they	are	being
so	 cute.	 They	 never	 seemed	 to	 grow	 tired	 of	 repetition	 when	 they	 found	 something
entertaining.	Eventually,	 I	 grew	 tired	of	 it	myself	 and	would	give	 them	 the,	 “One	more
time	 ”,	warning.

Computers	are	very	good	at	doing	repetitive	tasks,	often	called	iteration	in	Computer
Science	lingo.	Computers	don’t	get	tired	and	they	don’t	get	bored.	Usually,	when	a	task	is
repeated,	it	is	repeated	for	the	same	type	of	data	over	and	over	again.	For	instance,	sending
out	paychecks	is	a	repetitive	job	since	each	employee’s	deductions	must	be	computed	and
then	a	paycheck	must	be	printed	or	electronically	deposited.	For	large	companies,	this	job
would	 require	 many	 people	 since	 each	 person	 would	 only	 be	 able	 to	 compute	 the
withholdings	 for	 a	 relatively	 small	 number	 of	 people.	 In	 fact,	 before	 the	 advent	 of
electronic	computers,	the	word	Computer	referred	to	people	whose	job	it	was	to	carry	out
these	kinds	of	calculations.	That	certainly	must	have	been	a	mundane	and	repetitive	job.
Electronic	computers	on	the	other	hand	don’t	get	tired,	can	work	around	the	clock,	and	can
work	 at	 lightning	 speed.Repeating	 a	 task	 in	 a	 programming	 language	 is	 often	 called
iteration	or	a	loop.	In	this	chapter	you	learn	about	loops	in	Python.	You	learn	how	to	write
various	 kinds	 of	 loops	 and	more	 importantly,	 you	 learn	when	 to	write	 various	 kinds	 of
loops.

When	doing	a	task	over	and	over	again	it	is	probably	the	case	that	the	data	that	the
computer	needs	to	do	its	job	is	located	in	some	sort	of	list	or	sequence.	Python	has	built-in
support	 for	 lists.	 In	 addition,	 Python	 also	 supports	 strings,	 which	 are	 sequences	 of
characters.	 Since	 so	much	 of	what	 computers	 do	 are	 repetitive	 tasks,	 it	 is	 important	 to
know	how	to	repeat	code	and	how	to	manipulate	strings	and	lists.	This	chapter	explores
the	use	of	strings	and	lists.	You	learn	that	strings	and	lists	are	types	of	objects	and	discover
what	you	can	do	with	these	objects.	In	Computer	Science	sequences	and	iteration	go	hand
in	hand.

So,	what	is	a	string?	In	the	first	chapter	a	string	literal	was	defined	as	any	sequence
of	 characters	 surrounded	 by	 either	 single	 or	 double	 quotes.	 A	 string	 literal	 is	 used	 to
represent	 a	 specific	 string	 object	 in	 Python.	 So	 a	 string	 literal	 is	 written	 in	 a	 Python
program	when	you	have	a	specific	string	object	that	you	want	to	use	in	your	program.

mailto:kentdlee@luther.edu


So	what	 is	an	object?	Every	value	 in	Python	 is	an	object.	Types	of	objects	 include
integers,	floats,	and	strings.	An	object	is	a	value	along	with	methods	that	can	either	change
the	value	of	the	object	or	give	us	more	information	about	its	value.

Example	3.1
Consider	 the	 string	 literal	 “How	 are	 you?”.	 The	 letters	 in	 quotes	 are	 written	 to
construct	 a	 string	 object.	 The	 string	 object	 has	 both	 a	 value,	 the	 string	 itself,	 and
methods	 that	 may	 operate	 on	 that	 value.	 If	 we	 write	 the	 code	 below	 we	 get	 the
reference	called	s	pointing	to	the	string	object	containing	“How	are	you?”	as	shown
in	Fig.	3.1.

We	can	interact	with	an	object	by	sending	messages	to	the	object.	We	send	a	message	by
writing	the	object	reference	or	variable	name,	followed	by	a	dot	(i.e.	a	period),	followed
by	 the	 method	 we	 want	 to	 call	 on	 the	 object.	 In	 parentheses	 we	 may	 pass	 some
information	to	the	method.	The	additional	information	are	called	arguments.	So,	calling	a
method	on	an	object	that	is	pointed	to	by	a	reference	with	zero	or	more	arguments	 looks
like	this:

Fig.	3.1		A	string	object

Sometimes	it	helps	us	to	think	about	this	interaction	as	sending	messages	to	the	object	and
getting	 the	 object	 to	 respond	 to	 these	messages.	 So	 sending	 a	message	 to	 an	 object	 or
calling	a	method	on	the	object	are	the	same	thing.	Whatever	we	decide	to	call	it,	the	result
is	the	same.	The	object’s	method	does	something	for	us.

Methods	can	either	 retrieve	 some	 information	about	 an	object	or	 they	can	alter	 the
object	in	some	way.	The	lower	and	upper	methods	of	the	string	class	return	a	new	copy	of
the	string	with	the	characters	converted	to	lower	or	upper	case.	The	strip	method	returns	a
copy	of	a	string	with	leading	and	trailing	blanks	removed.	All	the	methods	on	strings	are
provided	in	Chap.	10.

Example	3.2
When	the	following	code	is	executed,	t	refers	to	a	new	string	“how	are	you?”.	Notice
the	first	letter	of	the	string	that	t	refers	to	is	now	lower	case.	To	call	the	method	called
lower()	on	s	you	write	s.lower().



Practice	3.1
Write	a	short	program	that	asks	the	user	to	enter	a	sentence.	Then	print	the	sentence
back	to	the	screen	with	all	lower	case	letters	capitalized	and	all	upper	case	letters	in
lower	case.

Types	in	Python	are	sometimes	called	classes.	The	term	class	is	just	another	name	for	type
in	Object-Oriented	Programming	languages.	In	Object-Oriented	Programming	(i.e.	OOP)
terminology	a	type	 is	a	class	and	a	value	 is	an	object.	These	are	just	different	names	for
the	same	thing	in	Python	because	every	type	is	also	a	class	and	every	value	is	an	object.

Strings	have	many	methods	that	can	be	called	on	them.	To	find	out	what	methods	you
can	call	on	a	string	you	can	use	the	internet	and	search	for	python	string	class	or	you	can
go	 to	 the	Python	Shell	Window	in	 the	Wing	IDE	or	some	other	 IDE	and	 type	help(str).
Remember	that	str	is	the	name	of	the	string	class	in	Python.	Chapter	10	contains	a	table	of
most	of	the	available	string	operators	and	methods	as	well.

Practice	3.2
Use	Chap.	10	to	help	you	write	a	program	that	asks	the	user	to	enter	“yes”	or	“no”.	If
they	enter	a	 string	with	any	capital	 letters	 the	program	should	print	a	message	 that
says,	“Next	time	please	use	all	lower	case	letters”.



3.1		Operators
If	you	take	a	look	at	Chap.	10	to	peruse	the	string	methods	you	will	notice	there	are	two
kinds	of	methods	described	there.	At	the	beginning	of	the	appendix	there	are	operators	like

.	These	operators	are	just	special	methods	in	Python.	They	describe	methods	that	are

not	 written	 using	 the	 reference.method(arguments)	 format.	 Instead,	 the	 	 method
describes	an	infix	operation	that	can	be	performed	between	two	string	objects	to	see	if	one
string	is	less	than	or	equal	to	another	string	object.

Example	3.3
Consider	the	following	code.

The	code	in	Example	3.3	asks	the	user	to	enter	two	strings	and	compares	the	two	strings.
If	 your	 name	 would	 appear	 first	 alphabetically	 it	 prints	 the	 first	 message,	 otherwise	 it

prints	the	second	message.	The	comparison	of	 	on	the	third	line	of	code	is	possible
because	of	the	existence	of	the	_	_le_	_	method	for	strings.	This	is	a	special	method	that
you	will	see	if	you	type	help(str).

When	reading	Chap.	10	most	of	the	operators	are	really	methods	that	aren’t	called	in
the	 usual	 way.	 These	 methods	 are	 sometimes	 called	 hooks,	 syntactic	 sugar,	 or	 just
operators.	A	hook	in	Python	is	just	a	special	way	of	calling	a	method.	Most	methods	are
called	in	the	usual	way	by	writing	reference.method(arguments).	In	fact,	even	the	special
hook	methods	can	be	called	in	the	usual	way.	So,	comparing	two	strings,	s	and	t,	to	see	if
one	is	less	than	or	equal	to	the	other	could	be	written	s._	_le_	_(t).	Of	course,	it	is	more

convenient	and	descriptive	 to	use	 the	operator	 format	and	write	 	when	comparing
two	 strings.	 This	 is	 why	 it	 is	 called	 syntactic	 sugar.	 It	 is	 much	 nicer	 to	 write	 the

comparison	operator	 	than	to	write	s._	_le_	_(t).	Syntactic	sugar	refers	to	the	ability
to	write	 a	 part	 of	 a	 program	 in	 a	 pleasing	way	 as	 opposed	 to	 having	 to	 always	 stick	 to
writing	code	using	the	same	rules.

Operators	 are	 methods	 that	 are	 not	 called	 using	 the	 reference.method(arguments)
format.	Figure	3.2	has	examples	of	calling	several	of	the	string	operators	and	some	of	the
string	 methods.	 All	 the	 string	 methods	 can	 be	 found	 in	 Chap.	 10.	 Chapters	 8	 and	 9
describe	 operators	 on	 integers	 and	 floats	 that	 are	 similar	 to	 the	 string	 operators	 and	 are
called	in	a	similar	fashion.

Practice	3.3
Use	Fig.	 3.2	 and	Chap.	10	 to	 help	you	write	 a	 program	 that	 asks	 the	user	 to	 enter
“yes”	 or	 “no”.	 If	 they	 enter	 “yes”	 then	 you	 should	 print	 “You	 entered	 yes”.	 and
likewise	 if	 they	 enter	 “no”.	 However,	make	 sure	 you	 accept	 “Yes”,	 “yEs”,	 or	 any
other	combination	of	upper	and	lower	case	letters	for	“yes”	and	for	“no”.	Identify	the



syntactically	sugared	methods	that	you	are	calling	on	the	string	class	in	your	answer.

Fig.	3.2		String	operators	and	common	methods



3.2		Iterating	Over	a	Sequence
In	Python,	a	string	is	sometimes	thought	of	as	a	sequence	of	characters.	Sequences	have
special	status	in	Python.	You	can	iterate	over	sequences.	Iteration	refers	to	repeating	the
same	thing	over	and	over	again.	In	the	case	of	string	sequences,	you	can	write	code	that
will	 be	 executed	 for	 each	 character	 in	 the	 string.	 The	 same	 code	 is	 executed	 for	 each
character	 in	 a	 string.	 However,	 the	 result	 of	 executing	 the	 code	 might	 depend	 on	 the
current	character	in	the	string.	To	iterate	over	each	element	of	a	sequence	you	may	write	a
for	loop.	A	for	loop	looks	like	this:

In	this	code	the	 	variable	 	is	any	variable	name	you	choose.	The	variable	will	be
assigned	to	the	first	element	of	the	sequence	and	then	the	statements	in	the	body	of	the	for
loop	will	be	executed.	Then,	the	variable	is	assigned	to	the	second	element	of	the	sequence
and	the	body	of	 the	for	 loop	is	repeated.	This	continues	until	no	elements	are	 left	 in	 the
sequence.

If	you	write	a	for	loop	and	try	to	execute	it	on	an	empty	sequence,	the	body	of	the	for
loop	is	not	executed	even	once.	The	for	loop	means	just	what	is	says:	for	each	element	of	a
sequence.	If	the	sequence	is	zero	in	length	then	it	won’t	execute	the	body	at	all.	If	there	is
one	element	in	the	sequence,	then	the	body	is	executed	once,	and	so	on.

For	loops	are	useful	when	you	need	to	do	something	for	every	element	of	a	sequence.
Since	computers	are	useful	when	dealing	with	large	amounts	of	similar	data,	for	loops	are
often	at	the	center	of	the	programs	we	write.

Example	3.4
Consider	the	following	program.

If	the	user	enters	how	are	you?	the	output	is:

Figure	3.3	depicts	what	happens	when	executing	the	code	of	Example	3.4.	Each	character
of	 the	 sequence	 is	 printed	 on	 a	 separate	 line.	Notice	 that	 there	 are	 blank	 lines,	 or	what



appear	 to	 be	blank	 lines,	 between	 the	words.	This	 is	 because	 there	 are	 space	 characters
between	 each	 of	 the	words	 in	 the	 original	 string	 and	 the	 for	 loop	 is	 executed	 once	 for
every	 character	 of	 the	 string	 including	 the	 space	 characters.	 Each	 of	 these	 blank	 lines
really	contains	one	space	character.

Fig.	3.3		A	For	Loop

Practice	3.4
Type	in	the	code	in	Example	3.4.	Set	a	break	point	on	the	print(c)	 line.	Run	it	with
the	debugger	and	watch	it	as	it	runs.	Then	answer	these	questions:

1.		
Does	the	string	s	change	as	the	code	is	executed?

	
2.		
What	 happens	 if	 the	 user	 just	 presses	 enter	 when	 prompted	 instead	 of	 typing	 any
characters?

	

Practice	3.5
Modify	the	code	in	Example	3.4	to	print	the	characters	to	the	screen	as	capital	letters
whether	the	user	enters	capital	letters	or	not.	For	instance,	it	would	print	“HOW	ARE
YOU?”	to	the	screen,	with	one	letter	on	each	line	if	“how	are	you?”	were	entered	at
the	keyboard.



3.3		Lists
A	list	in	Python	is	any	sequence	of	values	surrounded	by	square	brackets	(i.e.	[	]).	So	for
instance	[0,	1,	2,	3]	is	a	list.	So	is	[‘a’,	1,‘b’,	4.2].	Lists	are	any	sequence	of	values	inside
square	brackets.	The	items	of	the	list	can	be	of	different	types,	although	it	is	quite	common
for	all	values	in	a	list	to	be	of	the	same	type.	The	list	type	is	called	list	in	Python	as	you
might	expect.

A	list	is	a	sequence	too.	A	list	can	be	iterated	over	using	a	for	loop	just	like	a	string.
Each	 element	 of	 the	 list	 is	 used	 to	 execute	 the	 body	 of	 the	 for	 loop	 once.	 Chapter	 11
contains	 a	 table	 that	 outlines	 the	 methods	 and	 operators	 that	 apply	 to	 lists.	 There	 are
several	operations	on	sequences	that	are	useful.	For	instance,	len(s)	returns	the	length	of	a
sequence	 (the	number	of	 elements	 in	 the	 sequence).	We	can	 concatenate	 two	 sequences

using	 .	So	writing	 s	 	 t	 returns	 a	new	 string	which	 is	 the	 juxtaposition	of	 the	 strings
referenced	by	s	and	t.	We	can	get	part	of	a	sequence	by	slicing	it.	A	slice	is	one	or	more
contiguous	 elements	 of	 a	 sequence.	 It	 is	 created	 by	 using	 brackets	 and	 a	 colon.	 For
instance,	if	s	refers	to	the	string	“how	are	you?”,	then	s[0:3]	is	the	string	“how”	and	s[4:7]

is	the	string	“are”.	You	can	even	get	a	slice	starting	at	the	end	of	a	sequence.	So,	s[ 	4:]
gives	you	the	last	four	items	of	a	sequence,	the	string	“you?”	in	this	case.	You	can	learn
more	about	slicing	 in	Chaps.	10	or	11.	The	 length	 function,	 concatenation	operator,	 and
slicing	apply	to	either	strings	or	lists	since	they	apply	to	all	types	of	sequences	in	Python.

Practice	3.6
Write	a	for	loop	that	prints	the	following	output.

The	list	of	integers	starting	from	0	and	going	to	n	 	1	is	so	useful	there	is	a	function	in
Python	that	we	can	use	to	generate	such	a	list.	It	is	called	range.	The	range	function	can	be

called	on	an	integer,	n,	and	it	will	generate	a	list	of	integers	from	0	to	n	 	1.	For	instance,
range(5)	generates	the	list	[0,	1,	2,	3,	4].

The	range	function	can	be	used	to	generate	other	ranges	of	integers,	 too.	In	general
the	 range	 function	 is	 called	 by	 writing	 range([start,]stop[,increment]).	 For	 example,
range(10,	110,	10)	generates	the	list	[10,	20,	30,	40,	50,	60,	70,	80,	90,	100]	and	range(10,

0,	 	1]	generates	the	list	[10,	9,	8,	7,	6,	5,	4,	3,	2,	1].	In	Sect.	1.13	we	learned	that	writing



s[0]	 referred	 to	 the	 first	 character	 in	 the	 string	 s.	 s[1]	 refers	 to	 the	 second	 character.

Writing	 s[ 1]	 returns	 the	 last	 element	 of	 s.	 The	 indexing	 operations	 apply	 to	 all
sequences,	 not	 just	 strings.	 Using	 indexing	 and	 a	 for	 loop	 together	 we	 can	write	 some
interesting	code.

Example	3.5
This	 example	 uses	 indexing	 to	 print	 each	 of	 the	 characters	 in	 a	 string	 on	 separate
lines.	 The	 output	 from	 this	 program	 is	 exactly	 the	 same	 as	 the	 output	 from
Example	3.4.	Contrast	this	code	to	the	code	that	appeared	in	Example	3.4.

Notice	the	use	of	the	len	function	inside	the	call	to	the	range	function.	When	we	wish	to
go	through	all	the	elements	of	a	list	and	we	need	an	index	into	that	list,	 the	len	 function
can	be	used	along	with	range	to	generate	the	proper	list	of	integers	for	the	indices	of	the
list.

Practice	3.7
Write	 a	 program	 that	 prints	 out	 the	 characters	 of	 a	 string	 in	 reverse	 order.	 So,	 if
“hello”	is	entered,	the	program	prints:

To	accomplish	this,	you	must	use	a	for	loop	over	the	indices	of	the	list	since	you
cannot	directly	go	backwards	through	a	sequence	with	a	for	loop.	However,	you	can
generate	a	list	with	the	indices	going	from	the	last	to	first	index.

Python	 includes	 a	 few	 methods	 that	 make	 it	 much	 easier	 to	 process	 strings	 in	 your
programs.	One	of	these	methods	is	called	split.	The	split	method	splits	a	string	into	words.
Each	word	is	defined	as	a	sequence	of	characters	separated	by	whitespace	in	your	string.
Whitespace	 are	 blanks,	 tabs,	 and	 newline	 characters	 in	 your	 strings.	 The	 split	 method
splits	a	string	into	a	list	of	strings.

Example	3.6
Contrast	the	code	found	here	with	the	code	in	Example	3.4.	Notice	that	the	for	loop
contains	s.split()	instead	of	just	s.

If	the	user	enters	“how	are	you?”	the	output	is:



Practice	3.8
You	 can	 see	 what	 the	 split	 method	 does	 by	 setting	 some	 variable	 to	 the	 result	 of
s.split().	For	instance,	the	second	line	could	be:

Modify	the	code	to	add	this	line	and	use	splitWords	in	the	for	loop.	Run	the	code	in
Example	3.6	using	the	debugger.	Step	into	and	over	the	code	and	watch	the	word	and
splitWords	 variables.	Run	 the	 program	 several	 times	with	 different	 input	 and	make
note	of	what	splitWords	ends	up	containing.

What	is	the	type	of	the	value	that	s.split()	returns?	What	does	the	for	loop	iterate
over?

Another	useful	operator	on	sequences	is	the	in	operator.	This	operator	makes	it	possible	to
check	 to	 see	 if	 an	 item	 is	 in	 a	 sequence.	 For	 a	 string,	 this	 means	 you	 can	 ask,	 “Is	 a
character	in	this	string?”.	For	a	list	it	means	you	can	ask	if	an	item	is	in	a	list.

Example	3.7
Consider	this	code	that	determines	if	you	like	something	similar	to	Sophus	Lie.	The
in	 operator	 let’s	 you	 find	 an	 item	 in	 a	 list	 and	 returns	 True	 if	 it	 does	 and	 False
otherwise.



3.4		The	Guess	and	Check	Pattern	for	Lists
While	the	in	operator	works	well	to	test	for	membership	in	a	sequence,	it	won’t	work	in	all
situations.	Sometimes	we	need	to	know	if	a	value	with	some	property	other	than	equality
is	in	a	sequence.	In	these	circumstances,	the	guess	and	check	pattern	may	be	appropriate.
The	guess	and	check	pattern	 that	we	 learned	about	 in	 the	 last	 chapter	can	be	applied	 to
sequences,	 too.	You	 still	make	a	guess	 at	 the	beginning	of	 the	pattern,	but	 then	you	 fix
your	 guess	while	 executing	 a	 loop	 over	 each	 element	 in	 the	 sequence	 you	 are	working
with.	An	example	will	make	things	clear.

Example	3.8
Assume	we	want	to	know	if	the	user	enters	an	even	number	in	a	list	of	numbers.	Here
is	some	code	that	will	decide	if	one	of	those	numbers	is	even.

The	code	shown	in	Example	3.8	works	by	making	a	guess	and	then	running	through	the
list	 of	 possible	 counter-examples	 to	 fix	 the	 guess	 if	 needed.	Notice	 the	 if	 containsEven
appears	 after	 the	 for	 loop.	 It	 is	 not	 indented	 under	 the	 for	 loop.	 This	 is	 very	 important
because	other	wise	you	would	be	checking	 if	 the	property	held	 for	 the	entire	 list	before
you	have	even	looked	at	the	entire	list.

Practice	3.9
Type	this	code	and	run	it	using	step	 into	and	over.	Make	sure	you	get	 the	expected
output.	What	would	 happen	 in	 Example	 3.8	 if	 the	 if	 containsEven	 statement	 were
indented	under	the	for	loop?

Practice	3.10
Imagine	 you	 work	 at	 a	 rehabilitation	 center	 for	 those	 that	 suffer	 from	 obsessive-
compulsive	 disorders.	You	 have	 to	write	 a	 program	 that	monitors	 your	 patients	 by
looking	for	key	words	in	their	daily	blogs	that	they	are	required	to	keep.	The	words
are	orderly,	shopping,	repeat,	again,	gamble,	and	bid.	If	any	of	these	words	appear	in
their	 blog	 entry	 then	 you	 should	 print	 “You	 really	 need	 to	 talk	 to	 someone	 about
this”.	Otherwise	you	can	print,	“Thanks	for	updating	your	blog”.	Here	is	one	possible



interaction	with	this	program.

Write	 this	program	using	 the	guess	and	check	pattern	 to	 see	 if	 any	of	 the	 sensored
words	appear	in	their	blog	entry.	Your	blog	entry	will	appear	on	the	first	line	only.	It
was	wrapped	around	to	fit	on	the	page	here.



3.5		Mutability	of	Lists
Section	 1.11	 on	 p.	 20	 introduced	 you	 to	 variables	 as	 references	 to	 objects.	 The	mental
picture	of	variables	pointing	at	objects	was	not	really	all	that	important	at	the	time.	Now,	it
becomes	more	crucial	that	you	have	this	mental	picture	formed	in	your	mind.	Up	until	this
moment,	the	objects	we’ve	looked	at	were	immutable.	This	means	that	once	an	object	was
created,	 it	could	not	be	modified.	For	 instance,	 if	x	 	6	 is	written	 in	a	Python	program,
you	cannot	modify	the	6	later	on.	You	can	modify	the	reference	x	to	point	to	a	new	integer,
but	the	6	itself	cannot	be	modified.	Integers	are	immutable	in	Python.	So	are	float,	bool,
and	string	objects.	They	are	all	immutable.	Lists,	however,	are	not	immutable.	A	list	object
can	be	changed.	This	is	because	of	the	way	list	objects	are	constructed.

Example	3.9
Consider	 the	 code	given	here.	The	 code	builds	 a	 list	 called	question.	The	question
object	is	pictured	in	Fig.	3.4.

What	we	learned	on	p.	20	says	that	question	is	a	reference	to	an	object.	However,	all	the
elements	of	 the	 list	are	also	objects.	The	way	a	 list	 is	 formed,	 the	elements	of	a	 list	are
actually	 references	 that	 point	 to	 the	 individual	 items	of	 the	 list.	A	 list	 is	 really	 a	 list	 of
references.	Unlike	strings,	individual	references	within	a	list	can	be	made	to	point	to	new
objects	using	indexed	assignment.	It	is	valid	to	write:

Fig.	3.4		A	list	object

Writing	this	changes	a	reference	within	the	list	object	to	point	to	a	new	object.	This
mutates	the	list	object.	A	list	object	is	mutable	because	of	indexed	assignment.	It	should	be
noted	that	indexed	assignment	is	not	valid	on	strings.	Strings	in	Python	are	immutable	and
therefore	attempting	to	use	indexed	assignment	on	a	string	will	result	in	an	error.

Example	3.10
Assume	we	want	to	change	the	sentence	contained	in	the	list	from	“are	you	awake	for
this”	to	“for	this	I	am	awake”.	But,	we	want	to	avoid	creating	any	more	string	objects
than	necessary.	The	code	below	does	this	and	prints	[‘for’,	‘this’,	‘I’,	‘am’,	‘awake’]
since	answer	is	a	list.	Figure	3.5	depicts	what	answer	looks	like	in	memory	after	the
code	below	has	been	executed.



Practice	3.11
Given	 what	 you	 now	 know	 about	 references,	 what	 would	 print	 if	 the	 question
variable	were	printed	after	executing	the	code	in	Example	3.10?	Run	this	code	with
the	debugger.

Fig.	3.5		A	mutated	list	object

Fig.	3.6		Using	wing	to	inspect	a	list



In	Example	3.10	the	answer	list	started	out	with	[‘are’,	‘you’,	‘awake’,	‘for’,	‘this’]
and	ended	up	containing	[‘for’,	‘this’,	‘I’,	‘am’,	‘awake’].	It’s	not	a	new	list.	The	existing
list	 was	 updated.	 In	 addition,	 as	 you	 just	 discovered,	 the	 variable	 question	 was	 also
mutated	 because	 both	 question	 and	 answer	 refer	 to	 the	 same	 list.	 This	 can	 be	 seen	 in
Fig.	3.6,	which	shows	the	code	in	Example	3.10	while	it	is	being	executed	and	just	before
answer	[4]	is	assigned	its	new	value.	In	Wing,	and	in	many	IDEs,	it	looks	as	if	there	are
two	separate	lists,	the	answer	and	the	question	lists.	However,	if	you	look	carefully,	both
lists	have	the	same	reference.	They	are	both	located	at	0x644bc0.	If	you	were	to	type	in
this	code	and	execute	it	you	would	see	that	 the	two	lists	 truly	update	in	synchronization
with	each	other.	When	one	is	updated,	the	other	simultaneously	updates.

Also	worth	noting	 is	 that	 sometimes	you	can	see	 the	 reference	value	when	using	a
debugger	 and	 other	 times	 you	 may	 not.	 For	 instance,	 in	 Fig.	 3.6	 you	 can	 see	 the	 two
references	to	the	question	and	answer	list.	However,	you	cannot	see	the	references	to	any
of	 the	 strings	 contained	 in	 the	 list.	 The	 creators	 of	 the	 Wing	 IDE	 chose	 not	 to	 show
references	 for	 strings	 for	 two	 reasons:	 Including	 all	 the	 references	would	 clutter	 up	 the
debugger	 and	make	 it	 harder	 to	 use	 and	 in	 the	 case	of	 strings,	 references	 are	 not	 really
necessary	since	strings	are	immutable.	Nevertheless,	it	does	not	mean	that	the	list	does	not
contain	references	to	the	individual	items.	It	does;	the	Wing	designers	have	just	chosen	not
to	show	them	in	this	case.

The	idea	that	variables	are	really	references	to	objects	is	important	when	objects	are
mutable,	like	lists.	Understanding	how	the	code	works	depends	on	you	having	the	correct
mental	picture.	Lists	are	 the	only	objects	we’ve	seen	so	 far	 that	are	mutable.	Objects	of
type	integer,	floats,	booleans,	and	strings	are	not	mutable.	There	are	other	types	of	objects
that	are	mutable	in	Python	including	dictionaries.



3.6		The	Accumulator	Pattern
Iterating	over	sequences	can	be	useful	when	we	want	 to	count	something.	Counting	is	a
common	occurrence	in	computer	programs.	We	may	want	to	count	the	number	of	people
who	are	taking	an	Introduction	to	Computer	Science,	we	may	want	to	add	up	the	amount
of	money	made	from	ticket	sales	 to	a	concert.	The	applications	of	counting	could	go	on
and	on.	To	count	we	can	use	what	is	called	the	Accumulator	Pattern.	This	pattern	works
by	initializing	a	variable	that	keeps	track	of	how	much	we	have	counted	so	far.	Then	we
can	write	a	for	loop	to	go	through	a	list	of	elements	in	a	sequence	and	add	each	element’s
value	to	the	accumulator.	The	pattern	looks	like	this:

This	pattern	is	pretty	abstract.	With	an	example	it	should	make	some	more	sense.

Example	3.11
Here	is	a	program	that	counts	the	number	of	elements	in	a	list.	Of	course,	we	could
use	 the	 len(lst)	 function	 to	 give	 us	 the	 number	 of	 elements	 in	 the	 list,	 but	 this
illustrates	the	accumulator	pattern	for	us.	This	code	counts	the	number	of	integers	in
a	list.	Actually,	it	counts	the	number	of	whitespace	separated	strings	in	the	list	since
the	code	never	converts	the	strings	to	integers.

The	Accumulator	pattern	can	be	used	in	a	multitude	of	ways.	It	can	be	used	to	count	by
adding	one	each	time	through	the	loop,	it	can	be	used	to	count	the	number	of	items	that
satisfy	some	constraint.	It	can	be	used	to	add	some	number	of	items	in	the	list	together.	It
can	be	used	to	compute	a	product	if	needed.

Practice	3.12
Modify	the	code	in	Example	3.11	to	count	the	number	of	even	integers	entered	by	the
user.

Practice	3.13
Write	a	program	that	asks	the	user	to	enter	an	integer	and	computes	the	factorial	of
that	 integer,	usually	written	 	 in	mathematics.	The	definition	of	factorial	says	that	

	 and	 for	 ,	 .	 You	 can	 write	 this	 program	 by	 using	 the
range	function	and	the	accumulator	pattern	to	multiply	all	the	numbers	from	1	to	
together.	If	you	need	to	review	how	to	use	the	range	function	you	can	refer	to	p.	69.

In	 the	 previous	 exercise	 it	 is	worth	mentioning	 that	 if	written	 correctly	 not	 only	will	 it

compute	 	when	 ,	but	 it	will	also	compute	 	correctly.	When	 	 is	computed,	 the



body	of	the	for	loop	is	not	executed	at	all.	Take	a	look	at	your	code	or	at	the	solution	to	the
practice	exercise	to	confirm	this.	This	sometimes	happens	when	writing	code	and	is	called
a	 boundary	 condition.	 A	 boundary	 condition	 happens	when	 there	 is	 a	 special	 case	 that
causes	the	program	control	to	take	a	slightly	different	path.	In	this	case,	computing	 	is	a
boundary	condition	and	the	body	of	the	for	loop	is	not	executed.	When	testing	code	you
have	written	it	is	important	that	you	consider	your	boundary	conditions	and	that	you	test
them	to	be	sure	that	your	program	handles	them	correctly.



3.7		Reading	from	and	Writing	to	a	File
A	file	is	a	grouping	of	related	data	that	can	be	read	by	a	computer	program.	Files	may	be
stored	 in	many	 different	 places	 including	 the	 hard	 drive,	 a	 thumb	 drive,	 on	 a	CD,	 at	 a
network	 location,	 really	any	place	where	a	program	could	have	access	 to	 it.	While	 files
occur	 in	many	forms	and	sizes,	a	 text	 file	 is	 a	bunch	of	 text	written	using	an	editor	and
usually	stored	on	a	hard	drive.	Files	can	be	read	and	written	from	Python	programs.	Files
are	another	type	of	sequence	as	far	as	Python	programs	are	concerned	and	we	can	iterate
over	 them	 just	as	we	would	any	sequence.	Files	are	 sequences	of	 strings,	one	string	 for
each	line	of	the	file.	To	read	from	a	file	we	open	it	and	then	iterate	over	the	lines	of	the
file.

Example	3.12
A	commonly	used	command	in	the	Linux	operating	system	is	called	cat	which	stands
for	 catalog	 but	 actually	 prints	 the	 contents	 of	 a	 file	 to	 the	 screen.	We	 can	write	 a
similar	 program	 in	Python.	Here	 is	 the	 code.	 For	 this	 to	work,	 you	must	 enter	 the
name	of	a	file	in	the	same	directory	or	folder	as	the	program	that	you	are	running.

Practice	3.14
If	you	run	the	program	in	Example	3.12	you	will	notice	an	extra	blank	line	between

the	 lines	of	 the	 file.	This	 is	because	 there	 is	a	 ‘ ’	newline	character	 at	 the	end	of
each	line	read	from	the	file.	You	can’t	see	the	newline	character,	but	it	is	there.	The
print	 statement	 prints	 another	 newline	 at	 the	 end	 of	 each	 line.	Modify	 the	 code	 in
Example	3.12	to	eliminate	the	extra	line.	Look	at	Chap.	10	for	a	method	that	will	help
you	eliminate	the	extra	newline	character	at	the	end	of	each	line.

The	program	in	Example	3.12	reads	one	line	at	a	time	from	the	file.	The	second	line	of	the
example	opens	the	file	for	reading.	To	write	a	file	it	may	be	opened	for	writing	by	using	a
“w”	instead	of	a	“r”.	You	can	also	open	a	file	with	“a”	for	append	to	add	to	the	end	of	an
existing	file.

Example	3.13
The	program	below	writes	 to	a	 file	named	by	 the	user.	The	 file	 is	opened	and	 it	 is
closed.	Closing	is	important	when	writing	a	file	so	you	know	when	the	file	as	been
completely	written.	Otherwise,	 in	 some	situations,	 the	data	may	still	be	 in	memory
and	waiting	to	be	written	out.	Closing	the	output	file	insures	that	the	data	has	actually
made	it	to	the	file.



When	writing	to	a	file	you	use	the	file.write	method.	Unlike	the	print	function,	you	cannot
write	multiple	 items	by	separating	them	with	commas.	The	write	method	takes	only	one
argument,	the	string	to	write.	To	write	multiple	items	to	a	line	of	a	file,	you	must	use	string

concatenation	 (i.e.	 the	 	 operator)	 to	 concatenate	 the	 items	 together	 as	 was	 done	 in
Example	 3.13.	When	 comma	 separated	 items	 in	 a	 print	 statement	 are	 printed,	 a	 space
character	is	automatically	added	between	comma	separated	items.	This	is	not	true	of	string
concatenation.	If	you	want	a	space	in	the	concatenated	strings,	you	must	add	it	yourself.

If	you	have	non-string	items	to	write	to	a	file,	they	must	be	converted	to	strings	using
the	str	function.	Otherwise,	you’ll	get	a	run-time	error	when	Python	tries	to	concatenate	a
string	to	a	non-string	item.	In	Example	3.13	the	age	variable	is	an	integer	because	of	the
int	conversion	on	the	third	line.	In	the	sixth	line,	one	is	added	to	the	age	and	then	the	sum

age	 	1	 is	converted	 to	a	string	so	 it	can	be	concatenated	 to	 the	string	 literals	and	 then
written	to	the	file.



3.8		Reading	Records	from	a	File
It	is	frequently	the	case	that	a	file	contains	more	than	one	line	that	relate	to	each	other	in
some	way.	For	example,	 consider	an	address	book	program.	Each	entry	 in	your	address
book	may	contain	 last	name,	 first	name,	 street,	city,	zip	code,	home	phone	number,	and
mobile	 number.	 Typically,	 each	 of	 these	 pieces	 of	 information	 would	 be	 stored	 on	 a
separate	line	in	a	file.	A	program	that	reads	such	a	file	would	need	to	read	all	these	lines
together	and	a	for	loop	will	not	suffice.	In	this	case	it	can	be	done	if	we	use	a	while	loop.
A	while	loop	looks	like	this:

Fig.	3.7		A	While	Loop

The	condition	of	the	while	loop	is	evaluated	first.	If	the	condition	evaluates	to	true,
then	 the	body	of	 the	while	 loop	 is	executed.	The	condition	 is	evaluated	again	and	 if	 the
condition	evaluates	to	true,	the	body	of	the	while	loop	is	performed	again.	The	body	of	the
while	loop	is	repeated	until	the	condition	evaluates	to	false.	It	is	possible	the	body	of	the
while	 loop	 will	 never	 be	 executed	 if	 the	 condition	 evaluates	 to	 false	 the	 first	 time	 as
graphically	depicted	in	Fig.	3.7.

A	while	loop	is	used	to	read	records	from	a	file	that	are	composed	of	multiple	lines.	A
for	loop	will	not	suffice	because	a	for	loop	only	reads	one	line	per	iteration.	Since	multiple
lines	must	be	read,	a	while	loop	gives	you	the	extra	control	you	need.	To	read	a	multi-line
record	from	a	file	we	can	use	this	pattern:

This	 pattern	 can	 be	 illustrated	 by	 looking	 at	 part	 of	 an	 address	 book	 application
where	each	address	book	record	resides	on	6	lines	of	a	file.

Example	3.14



Here	is	a	program	that	counts	the	number	of	entries	in	your	phonebook.	This	assumes
that	the	file	looks	something	like	the	following:

To	read	this	file	and	count	the	entries	the	code	would	look	like	this:

The	 code	 in	 Example	 3.14	 reads	 the	 first	 line	 of	 a	 record,	 or	 at	 least	 it	 tries	 to.	 Every
opened	file	has	a	current	position	 that	 is	set	 to	 the	beginning	of	 the	file	when	 the	file	 is
opened.	As	 lines	 are	 read	 from	 the	 file,	 the	 current	 position	 advances	 through	 the	 file.
When	 the	 current	 position	 is	 at	 the	 end	 of	 the	 file,	 the	 program	 in	 Example	 3.14	 will
attempt	to	read	one	more	line	on	either	line	4	or	line	19,	depending	on	whether	the	file	is
empty	or	not.	When	 the	current	position	 is	at	 the	end	and	 it	 attempts	 to	 read	a	 line,	 the
lastName	variable	will	be	a	reference	to	an	empty	string.	This	is	the	indication	in	Python
that	 the	 current	 position	 is	 at	 the	 end	 of	 file	 sometimes	 abbreviated	 EOF.	 When	 this
happens	 the	 code	 exits	 the	while	 loop	 and	prints	 the	output	 on	 line	21.	 If	 the	 lastName
variable	 is	 not	 empty,	 then	 the	 code	 assumes	 that	 because	 one	 line	was	 present,	 all	 six
lines	will	be	present	in	the	file.	The	code	depends	on	each	record	being	a	six	line	record	in
the	input	file	called	addressbook.txt.

When	you	read	a	line	from	a	file	using	the	readline	method	you	not	only	get	the	data
on	that	line,	but	you	also	get	the	newline	character	at	the	end	of	the	line	in	the	file.	The	use
of	the	rstrip	method	on	the	string	read	by	readline	strips	away	any	white	space	from	the
right	end	of	the	string.	If	you	need	to	look	at	the	data	at	all	you	probably	don’t	want	the
newline	character	on	the	end	of	each	line	of	the	record.

Whether	 you	 are	 writing	 code	 in	 Python	 or	 some	 other	 language,	 this	 Reading



Records	From	a	File	pattern	comes	up	over	and	over	again.	It	is	sometimes	called	the	loop
and	a	half	problem.	The	idea	is	that	you	must	attempt	to	read	a	line	from	the	file	before
you	know	whether	you	are	at	 the	end	of	 file	or	not.	This	can	also	be	done	 if	 a	boolean
variable	is	introduced	to	help	with	the	while	loop.	This	boolean	variable	is	the	condition
that	gets	you	out	of	 the	while	 loop	and	 the	 first	 time	 through	 it	must	be	 set	 to	get	your
code	to	execute	the	while	loop	at	least	one.

Example	3.15
As	with	nearly	every	program,	there	is	more	than	one	way	to	do	the	same	thing.	The
loop	and	a	half	code	can	be	written	differently	as	well.	Here	is	another	variation	that
while	slightly	different,	accomplishes	the	same	thing	as	Example	3.14.

Examples	3.14	and	3.15	do	exactly	the	same	thing.	They	each	perform	a	loop	and	a	half.
The	half	part	 is	one	half	of	 the	body	of	 the	 loop.	 In	Example	3.14	 this	was	 reading	 the
lastName	variable	before	 the	 loop	started.	 In	Example	3.15	 this	was	 the	 first	half	of	 the
body	of	 the	while	 loop.	Some	may	 feel	one	 is	 easier	 to	memorize	 than	 the	other.	Some
experienced	programmers	may	even	prefer	another	way	of	writing	the	loop	and	a	half.	The
important	thing	is	that	one	of	these	patterns	should	be	memorized.	You	can	use	it	any	time
you	need	to	read	multi-line	records	from	a	file.

William	 Edward	 Deming	 was	 a	 mathematician	 and	 consultant	 who	 is	 widely
recognized	as	an	important	contributor	 to	 the	rebuilding	of	Japan	after	 the	second	world
war	[15].	One	of	his	principles	emphasized	that	you	should	not	repeat	the	same	process	in
more	than	one	location.	In	Computer	Science	this	translates	to	“You	should	avoid	writing
the	same	code	in	more	than	one	location	in	your	program”.	If	you	write	code	more	than
once	 and	 have	 to	 make	 a	 change	 later,	 you	 have	 to	 remember	 to	 change	 it	 in	 every
location.	If	you’ve	only	written	the	code	once,	you	only	have	to	remember	to	change	it	in
that	one	 location.	Copying	code	within	your	program	increases	 the	 risk	of	 there	being	a
bug	 introduced	 by	 changing	 only	 some	 of	 the	 locations	 and	 not	 all	 of	 them	when	 new
function	 is	 being	 added	or	when	 a	bug	 is	 being	 fixed.	This	 guiding	principle	 should	be
followed	whenever	possible.	Example	3.14	appears	to	violate	this	principle	with	one	line
of	repeated	code.	That’s	the	tradeoff	for	not	having	to	include	an	extra	if	statement	in	the
body	of	the	while	loop	as	was	done	in	Example	3.15.



3.9		Review	Questions
1.		

Where	did	the	term	computer	originate?

	
2.		

What	is	a	sequence	in	Python?	Give	an	example.

	
3.		

How	do	you	call	a	method	on	an	object?	What	is	the	general	form?	Give	an	example	that’s
not	in	the	book.

	
4.		

What	is	a	class	in	Python?

	
5.		

What	is	a	type	in	Python?

	
6.		

Definite	iteration	is	when	the	number	of	iterations	is	known	before	the	loop	starts.	What
construct	in	Python	is	used	for	definite	iteration?

	
7.		

Indefinite	 iteration	 is	 what	 happens	 when	 the	 exact	 number	 of	 iterations	 is	 not	 known
before	the	loop	begins	(but	still	may	be	calculable	if	you	know	the	input).	What	construct
in	Python	is	used	for	indefinite	iteration?

	
8.		

How	can	you	get	at	the	last	element	of	a	list?	Give	two	examples	of	expressions	that	return
the	last	element	of	a	list.



	
9.		

If	you	wanted	to	print	all	the	items	of	a	list	in	reverse	order	using	a	while	loop,	how	would
you	do	it?	Write	some	example	code	that	demonstrates	how	this	might	be	accomplished.
Remember,	you	must	use	a	while	loop	in	your	answer.

	
10.		

How	would	you	use	the	Guess	and	Check	pattern	to	find	a	name	in	a	phonebook?	Write
some	code	that	searches	a	list	of	names	for	someone’s	name.	Is	there	a	more	efficient	way
of	finding	a	name	in	a	phonebook?

	
11.		

Lists	and	strings	are	similar	in	many	ways.	One	major	difference	is	that	lists	are	mutable
and	 strings	 are	 not.	What	 does	 that	 mean?	 Give	 an	 example	 of	 an	 operation	 that	 lists
support	but	strings	do	not.

	
12.		

Why	does	mutable	data	sometimes	lead	to	confusion	when	programming?

	
13.		

What	is	the	accumulator	pattern?	Give	an	example	of	how	it	might	be	used.

	
14.		

There	 are	 two	ways	 to	 read	 from	 a	 file	 that	 are	 presented	 in	 the	 text.	Describe	 both	 of
them.	When	is	one	more	appropriate	than	the	other?

	



3.10		Exercises
1.		

Write	 a	 program	 that	 prints	 all	 the	 prime	 numbers	 less	 than	 1,000.	 You	 can	 write	 this
program	by	creating	a	list	of	prime	numbers.	To	begin,	the	list	is	empty.	Then	you	write
two	nested	for	loops.	The	outer	for	loop	runs	through	all	the	numbers	from	2	to	999.	The
inner	for	loop	runs	through	the	list	of	prime	numbers.	If	the	next	number	in	the	outer	for
loop	is	not	divisible	by	any	of	the	prime	numbers,	then	it	is	prime	and	can	be	printed	as	a
prime	and	added	 to	 the	 list	of	primes.	To	add	an	element,	 e,	 to	a	 list,	 lst,	you	can	write
lst.append(e).	This	 program	uses	 both	 the	 guess	 and	 check	 pattern	 and	 the	 accumulator
pattern	to	build	the	list	of	prime	numbers.

	
2.		

Write	 a	 menu	 driven	 program	 that	 works	 with	 an	 address	 book	 file	 as	 described	 in
Example	3.14.	You	may	want	 to	consult	Example	2.6	 to	see	how	to	print	a	menu	 to	 the
user	 and	 get	 input	 from	 them.	Your	 program	 should	 have	 three	menu	 items,	 look	 up	 a
name,	add	a	contact,	and	quit.	Interacting	with	your	program	should	look	something	like
this:

You	 will	 want	 to	 create	 your	 own	 address	 book	 file	 for	 this	 problem.	 Call	 the	 file
“addressbook.txt”.	You	can	create	it	by	selecting	New	in	your	IDE	and	then	saving	it	in	the
same	directory	as	your	program.	You	should	call	 the	file	“addressbook.txt”.	Don’t	add	a
“.py”	to	the	end	of	this	text	file.	Be	sure	when	you	write	to	the	file	that	you	put	a	newline
character	 at	 the	end	of	 each	 line.	 If	you	create	your	own	 file	 there	 should	be	a	newline
character	at	the	end	of	each	line.	If	you	don’t	do	this	then	when	you	try	to	write	another
record	to	the	file	it	may	not	end	up	formatted	correctly.	You	can	always	open	the	text	file
with	Wing	to	take	a	look	at	it	and	see	if	it	looks	like	the	format	presented	in	Example	3.14.

	
3.		



Write	a	program	that	asks	the	user	to	enter	a	list	of	numbers	and	then	prints	the	count	of
the	 numbers	 in	 the	 list	 and	 the	 average	 of	 the	 numbers	 in	 the	 list.	 Do	 not	 use	 the	 len
function	 to	find	 the	 length	of	 the	 list.	Use	 the	accumulator	pattern	 instead.	The	program
would	print	this	when	run.

	
4.		

Write	a	program	that	asks	the	user	to	enter	a	list	of	numbers.	The	program	should	take	the
list	of	numbers	and	add	only	those	numbers	between	0	and	100	to	a	new	list.	It	should	then
print	the	contents	of	the	new	list.	Running	the	program	should	look	something	like	this:

	
5.		

Write	a	program	that	asks	the	user	 to	enter	a	 list	and	then	builds	a	new	list	which	is	 the
reverse	of	the	original	list.

	
6.		

Draw	a	picture	of	the	variable	references	and	values	that	result	from	running	the	code	in
Exercise	5.

	
7.		

Write	a	program	that	asks	the	user	to	enter	a	list	and	then	reverses	the	list	in	place	so	that
after	reversing,	the	original	list	has	been	reversed	instead	of	creating	a	new	list.

	
8.		

Draw	a	picture	of	the	variable	references	and	values	that	result	from	running	the	code	in
Exercise	7.

	
9.		

Write	a	program	that	asks	the	user	to	enter	a	list	of	integers	one	at	a	time.	It	should	allow

the	 user	 to	 terminate	 the	 list	 by	 entering	 a	 	 1.	 Running	 the	 program	 would	 look



something	like	this.

	
10.		

Write	a	program	that	computes	a	user’s	GPA	on	a	4	point	scale.	Each	grade	on	a	4	point
scale	is	multiplied	by	the	number	of	credits	for	that	class.	The	sum	of	all	the	credit,	grade
products	is	divided	by	the	total	number	of	credits	earned.	Assume	the	4	point	scale	assigns

values	of	4.0	for	an	A,	3.7	for	an	A ,	3.3	for	a	B ,	3.0	for	a	B,	2.7	for	a	B ,	2.3	for	a	C

,	2.0	for	a	C,	1.7	for	a	C ,	1.3	for	a	D ,	1.0	for	a	D,	0.7	for	a	D ,	and	0	for	an	F.	Ask
the	user	to	enter	their	credit	grade	pairs	using	the	following	format	until	the	enter	0	for	the
number	of	credits.

	
11.		

Example	1.1	on	p.	11	presented	a	nice	algorithm	for	converting	a	base	10	integer	to	binary.
It	 turns	out	 that	 this	 algorithm	works	 for	both	positive	 and	negative	 integers.	Write	 this
algorithm	one	more	time.	This	time,	use	a	loop	to	avoid	duplicating	any	code.	Write	the
algorithm	so	it	will	convert	any	32-bit	signed	integer	to	its	binary	equivalent.	Thirty-two

bit	signed	integers	are	integers	in	the	range	of	 	to	 .	That	would	be	integers	in

the	range	 2,	147,	483,	648	to	2,	147,	483,	647.	Be	sure	to	eliminate	any	leading	0s	from
the	 result	 before	 it	 is	 printed.	 Your	 loop	 should	 terminate	 when	 the	 number	 you	 are
converting	 has	 reached	 zero	 (according	 to	 the	 algorithm)	 or	 when	 you’ve	 reached	 the
requisite	32	bits	for	your	number.

	



3.11		Solutions	to	Practice	Problems
These	are	solutions	to	the	practice	problems	in	this	chapter.	You	should	only	consult	these
answers	after	you	have	tried	each	of	them	for	yourself	first.	Practice	problems	are	meant
to	help	reinforce	the	material	you	have	just	read	so	make	use	of	them.

3.11.1		Solutions	to	Practice	Problem	3.1

3.11.2		Solutions	to	Practice	Problem	3.2

3.11.3		Solutions	to	Practice	Problem	3.3
The	else	would	be	optional	for	this	exercise.

3.11.4		Solutions	to	Practice	Problem	3.4
1.		

Does	the	string	s	change	as	the	code	is	executed?

No	it	does	not.

	
2.		

What	 happens	 if	 the	 user	 just	 presses	 enter	 when	 prompted	 instead	 of	 typing	 any
characters?

The	body	of	the	for	loop	is	not	executed	at	all.

	
3.11.5		Solutions	to	Practice	Problem	3.5

3.11.6		Solutions	to	Practice	Problem	3.6

3.11.7		Solutions	to	Practice	Problem	3.7



3.11.8		Solutions	to	Practice	Problem	3.8
The	 split	method	 returns	 a	 list	 of	 strings.	 The	 for	 loop	 iterates	 over	 the	 list.	 Each	 time
through	the	loop	the	word	variable	is	referencing	the	next	string	in	the	list.

3.11.9		Solutions	to	Practice	Problem	3.9
If	 the	containsEven	 if	 statement	were	 indented,	 then	 the	 for	 loop	would	 check	 to	 see	 if
containsEven	were	true	or	false	each	time	through	the	loop.	The	program	would	print	that
the	list	did	not	contain	an	even	number	(even	though	it	might)	over	and	over	again	until	an
even	number	was	found.	Then	it	would	print	it	did	contain	an	even	number	over	and	over
again.	It	would	print	one	line	for	each	element	of	the	list.

3.11.10		Solutions	to	Practice	Problem	3.10

3.11.11		Solutions	to	Practice	Problem	3.11
If	the	question	variable	were	printed	it	would	be	the	same	as	if	the	answer	variable	were
printed.	Both	question	and	answer	refer	to	the	same	list.

3.11.12		Solutions	to	Practice	Problem	3.12

3.11.13		Solutions	to	Practice	Problem	3.13

3.11.14		Solutions	to	Practice	Problem	3.14



©	Springer-Verlag	London	2014

Kent	D.	LeePython	Programming	FundamentalsUndergraduate	Topics	 in	Computer	Science10.1007/978-1-4471-6642-
9_4



4.	Using	Objects
Kent	D.	Lee1		

(1)		

Luther	College,	Decorah,	IA,	USA

	
	

Kent	D.	Lee
Email:	kentdlee@luther.edu

In	this	chapter	we	explore	objects	and	code	re-use.	Python	is	an	object-oriented	language
and	 learning	 to	 use	 objects	 can	make	 programming	 fun	 and	 productive.	 In	 this	 chapter
we’ll	explore	object-oriented	programming	by	using	the	turtle	module.

If	we	had	to	write	every	program	from	scratch,	we	wouldn’t	be	able	to	get	very	much
done.	 Part	 of	 the	 fun	 of	 programming	 is	 using	 something	 someone	 else	 has	 written	 to
solve	a	problem	quickly.	Another	fun	aspect	of	programming	is	writing	code	 that	others
may	 want	 to	 use	 in	 their	 programs.	 In	 fact,	 programmers	 sometimes	 become	 famous
among	their	peers	by	writing	code	that	turns	out	to	be	very	valuable:	people	like	Yukihiro
Matsumoto	[2],	who	created	 the	Ruby	programming	 language,	or	Robin	Milner	 [6]	who
described	 the	 type	 inference	 system	 used	 by	 Standard	 ML,	 or	 Guido	 van	 Rossum	 the
creator	 of	 the	 Python	 Programming	 Language	 [10].	 There	 are	 many,	 many	 computer
scientists	that	could	be	named	here.

Python	makes	it	easy	for	programmers	who	want	to	share	code	with	others	to	do	just
that.	A	module	 is	a	 file	containing	Python	code.	When	a	programmer	needs	 to	use	code
another	programmer	wrote,	he	or	she	can	import	the	module	containing	the	code	they	want
to	use	into	their	program.	Modules	can	be	imported	into	other	modules	so	one	programmer
can	easily	use	code	that	another	programmer	wrote.	One	such	module	is	called	turtle.	The
turtle	 module	 includes	 code	 that	 helps	 us	 draw	 figures	 in	 the	 sand.	 A	 turtle	 can	 walk
around	a	beach	dragging	his	 or	 her	 tail	 in	 the	 sand	or	 raising	 that	 tail.	When	 the	 tail	 is
down,	 the	 turtle	 leaves	 a	 track.	When	 the	 tail	 is	 up	 the	 turtle	 leaves	 no	 trail.	With	 this
simple	analogy	we	can	draw	some	pretty	 interesting	pictures.	The	 idea	has	been	around
since	 at	 least	 the	 late	 1960s	 when	 Seymour	 Papert	 added	 turtle	 graphics	 to	 the	 Logo
programming	 language	 [4].	 Gregor	 Lingl,	 an	 Austrian	 high	 school	 teacher,	 has
implemented	 a	 version	 of	 turtle	 graphics	 for	 Python	 that	 now	 is	 part	 of	 the	 Python
programming	environment.

To	use	a	module	it	needs	to	be	imported	into	your	program.	There	are	two	ways	to
import	a	module.	The	decision	of	which	to	use	is	partly	based	on	convenience	and	partly
based	on	safety	of	your	program.	The	safe	way	to	import	a	module	is	to	write	import	module
where	module.py	is	the	name	of	a	module.	The	module	must	be	in	the	current	directory	or
in	one	of	the	directories	where	your	installation	of	Python	knows	to	look.	When	importing
a	module	in	this	way	you	must	prefix	any	use	of	code	within	the	module	with	the	module
name.	 If	 you	 want	 to	 call	 a	 function	 or	 use	 a	 type,	 t,	 that	 is	 defined	 in	 the	 imported

mailto:kentdlee@luther.edu


module,	you	must	write	module.t.	This	is	safe	because	there	will	never	be	the	possibility
of	using	 the	same	name	within	 two	different	modules	since	all	names	must	be	qualified
with	the	module	name.	Using	qualified	names	makes	importing	safe,	but	 is	not	 the	most
convenient	when	writing	code.

Fig.	4.1		A	turtle	object

Example	4.1
Here	is	a	program	that	imports	the	turtle	code	and	uses	it	to	draw	a	square.

If	 you	 are	 going	 to	 try	 this	 code,	DO	NOT	 call	 it	 turtle.py.	 If	 you	 name	 your	 own
program	 the	 same	 as	 a	 module	 name,	 then	 Python	 will	 no	 longer	 import	 the	 correct
module.	 If	 you	 already	 did	 this	 you	 must	 delete	 the	 turtle.pyc	 file	 in	 your	 folder	 and
rename	your	module	to	something	other	than	turtle.py.

Example	 4.1	 imports	 the	 turtle	 module	 using	 import	 turtle.	 Once	 the	 module	 is
imported,	 a	 Turtle	 object	 can	 be	 created.	 In	 this	 case,	 the	 programmer	 must	 write
turtle.Turtle()	to	create	an	object	of	type	Turtle.	Because	the	Turtle	type	or	class	resides	in
the	 turtle	module	 the	 fully	 qualified	 name	 of	 turtle.Turtle()	must	 be	written	 to	 create	 a
Turtle	 object.	 Figure	 4.1	 shows	 the	 turtle	 reference	 pointing	 to	 a	Turtle	 object	 just	 like
integer	variables	are	references	that	point	to	int	objects	and	string	variables	are	references
that	point	to	str	objects.	 Initializing	a	Turtle	object	and	making	a	 reference	point	 to	 it	 is
just	like	creating	any	other	object	in	Python.

Practice	4.1
Write	some	code	that	uses	a	for	loop	to	draw	a	square	using	the	turtle	module.

A	more	convenient	way	to	import	a	module	is	to	write	from	module	import	*.	In	this	case
we	could	import	the	turtle	module	by	writing	from	turtle	import	*.	This	imports	the	turtle
module	 as	before	but	merges	 all	 the	names	of	 functions,	 types,	 and	classes	 in	 the	 turtle
module	with	the	names	of	functions,	variables,	and	types	in	your	program.

Example	4.2
Here	is	a	program	that	draws	a	pentagon	using	the	other	form	of	import.



Example	4.2	imports	by	merging	the	namespace	of	the	turtle	module	and	the	program	in
the	example.	Both	Examples	4.1	and	4.2	demonstrate	how	to	call	a	method	on	an	object.
This	means	that	any	variables	defined	in	the	turtle	module	will	be	overridden	if	they	are
also	defined	in	the	code	in	Example	4.2.	For	example,	we	would	want	 to	be	careful	and
not	name	something	Turtle	in	our	code	since	that	would	mean	that	we	would	no	longer	be
able	to	create	a	Turtle	object	in	our	program.	Redefining	a	name	like	this	is	not	permanent
though.	The	 problem	only	 exists	within	 the	 program.	Once	 the	 program	 terminates,	 the
next	time	we	import	the	turtle	module,	the	Turtle	class	would	be	available	again.

Not	every	class	must	be	imported	from	a	module.	Python	already	makes	the	int,	float,
bool,	and	str	classes	available	without	importing	anything.	These	classes	are	called	built-
in	 classes	 in	 Python.	But,	 the	Turtle	 class	 is	 not	 built-in.	 It	must	 be	 imported	 from	 the
turtle	module.

In	both	examples	the	variable	t	is	a	reference	that	points	to	a	Turtle	object.	The	turtle
object	 can	be	 told	 to	do	 things.	Turtles	understand	certain	messages	or	methods.	We’ve
already	learned	how	to	call	methods	on	objects	in	Chap.	3.	For	instance,	we’ve	called	the
split	method	on	a	string	object.	Sending	a	message	to	a	Turtle	object	is	no	different.	For
instance	 in	 Example	 4.2	we	 sent	 the	 forward	message	 to	 the	 turtle	 t	 passing	 25	 as	 the
number	 of	 steps	 to	move	 forward.	 The	 forward	method,	 and	 other	methods	 that	 turtles
understand,	are	described	in	Chap.	13.	Methods	for	the	TurtleScreen	class	are	described	in
Chap.	14.

Practice	4.2
Write	a	short	program	that	prompts	the	user	to	enter	the	number	of	sides	of	a	regular
polygon.	 Then	 draw	 a	 regular	 polygon	 with	 that	 many	 sides.	 You	 can	 use	 the
textinput	method	described	in	Chap.	14	to	get	the	input	or	you	can	just	use	input	to
get	the	input	from	the	Debug	I/O	tab	of	Wing	IDE	101.

While	actual	turtles	are	slow	and	perhaps	not	very	interesting,	turtle	objects	can	be	fun.	A
turtle	object	can	be	used	in	a	lot	of	different	ways.	It	can	change	color	and	width.	It	can	be
used	to	draw	filled	in	shapes.	It	can	draw	circles	and	even	display	messages	on	the	screen.
Turtle	graphics	is	a	great	way	to	become	familiar	with	object-oriented	programming.	The
best	way	to	learn	about	object-oriented	programming	is	just	to	have	fun	with	it.	Refer	to
Chap.	13	and	use	it	to	write	some	programs	that	draw	some	interesting	pictures	with	color,
interesting	shapes,	filled	in	polygons,	etc.

Practice	4.3
Use	the	turtle	module	to	write	a	program	that	draws	a	4WD	truck	like	that	pictured	in



Fig.	4.2.	A	truck	consists	of	two	tires	and	a	top	of	some	sort.	You	should	use	some
color.	 You	 may	 use	 penup	 and	 pendown	 while	 drawing.	 However,	 don’t	 use	 goto
once	 you	 have	 started	 drawing.	 The	 reason	 for	 this	 will	 become	 evident	 in	 the
exercises	at	the	end	of	the	chapter.

You	may	want	to	change	color,	fill	in	shapes,	etc.	Be	creative	and	try	things	out.	Just	be
sure	 the	 last	 line	 of	 your	 program	 is	 screen.exitonclick().	 Without	 the	 call	 to
screen.exitonclick()	the	turtle	graphics	window	may	appear	to	freeze	up.

Fig.	4.2		A	4WD	truck



4.1		Constructors
To	create	an	object	of	a	certain	type	or	class	we	must	write

This	 creates	 an	 object	 of	 type	Class	 and	 then	 points	 the	 objectref	 variable	 at	 the
object	 that	 was	 just	 created.	 Figure	 4.1	 shows	 what	 happens	 in	 memory	 as	 a	 result	 of
executing	the	t=Turtle()	line	of	code	in	Examples	4.1	and	4.2.	Several	things	happen	when
we	 create	 an	object.	 Python	 first	 reserves	 enough	 space	 in	memory	 to	 hold	 the	object’s
data.	Then,	the	object	is	initialized	with	the	data	that	must	be	stored	in	it.	All	objects	have
some	data	associated	with	them.	For	instance,	a	Turtle	object	knows	its	current	location	on
the	screen,	its	direction,	and	its	color,	among	other	things.	When	a	Turtle	object	is	created,
all	 the	 information	 is	 stored	 in	 the	 object.	 This	 is	 called	 constructing	 an	 object	 and	 it
happens	when	we	call	 the	constructor.	So,	when	we	write	 the	 following	 line	of	 code	or
similar	lines	of	code	for	other	types	of	objects:

we	are	instructing	Python	to	create	a	Turtle	object	using	the	constructor	and	we	make
the	variable	t	point	to	the	turtle	object	that	was	just	created.	There	are	lots	of	constructors
that	are	available	to	us	for	creating	different	types	of	objects	in	Python.

Example	4.3
Here	are	some	examples	of	objects	being	created	using	constructors.	The	types	(i.e.
classes)	 str,	 int,	 float,	 Turtle,	 and	 list	 each	 have	 their	 own	 constructors.	 In	 fact,
sometimes	a	class	has	more	than	one	constructor.	Look	at	the	float	examples	below.
There	 are	 at	 least	 two	 ways	 to	 create	 a	 float	 object.	 You	 can	 either	 pass	 the
constructor	a	string	and	it	will	convert	the	float	in	the	string	to	a	float	object,	or	you
can	pass	an	integer	to	the	float	constructor.

Except	in	a	few	special	circumstances,	a	constructor	is	always	called	by	writing	the	name
of	the	class	then	a	left	paren,	then	any	arguments	to	pass	to	the	constructor,	followed	by	a
right	paren.	Calling	a	constructor	returns	an	instance	of	the	class,	called	an	object.	For	a
few	of	the	built-in	classes	there	is	some	syntactic	sugar	available	for	creating	objects.	In
Example	4.3,	the	variables	u	and	r	are	initialized	to	point	to	an	integer	object	and	a	string
object,	 respectively.	Syntactic	sugar	makes	 constructing	 objects	 for	 some	of	 the	 built-in
classes	more	convenient	and	it	is	necessary	in	some	cases.	Without	some	syntactic	sugar,
how	would	you	create	an	object	containing	the	integer	6?

Practice	4.4
Using	Wing,	or	some	other	IDE,	run	the	code	in	Example	4.2.	Set	a	breakpoint	at	the
line	where	screen	is	initialized.	Then,	look	at	the	Stack	Data	and	specifically	at	the	t
variable.	 Expand	 it	 out	 so	 you	 can	 see	 the	 state	 of	 the	 turtle	 and	 specifically	 the



_position	of	the	turtle.	This	is	the	(x,y)	location	of	the	turtle	on	the	screen.	When	the
turtle	is	at	the	peak	of	the	pentagon	from	Example	4.2	what	is	its	(x,y)	location?



4.2		Accessor	Methods
When	we	have	an	object	in	our	program,	we	may	wish	to	learn	something	about	the	state
of	that	object.	To	ask	for	information	about	an	object	you	must	call	an	accessor	method.
Accessor	methods	return	information	about	the	state	of	an	object.

Example	4.4
To	learn	the	heading	of	the	turtle	we	might	call	the	heading	method.

Calling	the	heading	method	on	the	turtle	means	writing	t	followed	by	a	dot	(i.e.	a	period)
followed	by	the	name	of	the	method,	in	this	case	heading.	The	accessor	method,	heading,
returns	 some	 information	 about	 the	 object,	 but	 does	 not	 change	 the	 object.	 Accessor
methods	do	not	change	the	object.	They	only	access	the	state	of	the	object.

Practice	4.5
Is	the	forward	method	an	accessor	method?	What	about	the	xcor	method?	You	might
have	to	consult	Chap.	13	to	figure	this	out.



4.3		Mutator	Methods
Mutator	methods,	as	the	name	suggests,	change	or	mutate	the	state	of	the	object.	Sect.	3.5
introduced	 the	 mutability	 of	 lists.	 Mutator	 methods	 are	 called	 the	 same	 as	 accessor
methods.	 Where	 an	 accessor	 method	 usually	 gives	 you	 information	 back,	 a	 mutator
method	may	require	you	to	provide	some	information	to	the	object.

Fig.	4.3		Two	references	to	one	object

Example	4.5
Here	are	some	calls	to	mutator	methods.

One	misconception	about	object-oriented	programming	is	that	assigning	one	reference	to
another	 creates	 two	 separate	 objects.	 This	 is	 not	 the	 case	 as	 is	 demonstrated	 by	 the
following	 code.	 This	 isn’t	 a	 problem	 if	 the	 object	 doesn’t	 change.	 However,	 when	 the
object	may	be	mutated	it	is	important	to	know	that	the	object	is	changing	and	this	means
that	it	changes	for	all	references	that	point	at	the	object.

Example	4.6
Here	is	an	example	of	one	turtle	with	two	different	references	to	it.	Both	t	and	r	refer
the	the	same	turtle.

In	Example	4.6	more	 than	one	 reference	points	 to	 the	 same	Turtle	object	 as	depicted	 in
Fig.	4.3.	Writing	r	 	t	does	not	create	a	second	Turtle.	It	only	points	both	references	to	the
same	 Turtle	 object.	 This	 is	 clear	 from	 Example	 4.6	when	 one	 Turtle	 seems	 to	 pick	 up
where	the	other	left	off.	In	fact,	they	are	the	same	turtle.

Practice	4.6
How	would	you	create	a	second	Turtle	object	for	r	if	that’s	really	what	you	wanted?



4.4		Immutable	Classes
Section	3.5	first	defined	immutable	classes.	An	immutable	class	is	a	type	with	no	mutator
methods.	If	an	object	has	no	mutator	methods	then	it	is	impossible	to	tell	if	two	references
point	to	the	same	object	or	if	they	point	to	different	objects.	In	fact	it	doesn’t	really	matter
since	neither	reference	can	be	used	to	change	the	object.	This	may	happen	frequently	 in
Python	 for	 objects	 of	 type	 int,	 float,	 string,	 and	bool.	 All	 these	 classes	 are	 immutable.
These	classes	of	objects	can	never	be	changed	once	 they	are	created	since	 they	have	no
mutator	methods!

Practice	4.7
If	strings	cannot	be	changed,	what	happens	in	the	following	code?	Draw	a	picture	to
show	what	happens	in	the	following	code.

While	 string	 objects	 can’t	 be	 changed,	 references	 can	 be.	 That’s	 what	 happens	 in	 the
exercise	above.	str	objects	never	change	once	they	are	created.	Immutable	classes	are	nice
to	 work	 with	 because	 we	 can	 forget	 about	 their	 being	 objects	 and	 references	 and	 just
concentrate	on	using	them	without	fear	of	changing	the	object	accidentally.



4.5		Object-Oriented	Programming
Turtles	are	fun	to	program	because	they	make	drawing	easy	by	remembering	many	of	the
details	of	generating	computer	graphics	for	us.	That’s	really	the	motivation	behind	object-
oriented	programming	and	using	objects.	What	we’ve	seen	in	this	short	chapter	are	all	the
mechanics	for	creating	and	using	objects.	Objects	make	our	lives	as	programmers	simpler.
Every	 object	maintains	 some	 state	 information,	 its	 data,	 and	 every	 object	 lets	 us	 either
access	that	data	through	an	accessor	function	or	it	allows	its	data	to	be	changed	by	calling
mutator	methods.	Many	objects	have	both	accessor	and	mutator	methods.

The	power	of	object-oriented	programming	is	in	the	ability	to	organize	the	data	in	our
programs	into	logical	entities	that	somehow	make	sense.	A	turtle	is	a	great	way	to	embody
many	of	the	elements	of	graphics	programming	while	giving	us	a	way	of	visualizing	how
the	turtle	works	by	thinking	about	how	a	real	turtle	might	leave	marks	in	the	sand.

Fig.	4.4		Flower	power	by	Denise	M.	Lee



4.6		Working	with	XML	Files
Now	that	you	know	how	to	use	objects	and	in	particular	how	to	use	turtle	graphics	you	can
put	it	to	use.	There	are	many	applications	for	Turtle	graphics.	It	can	be	used	to	create	more
advanced	drawing	applications	like	the	one	pictured	in	Fig.	4.4.

The	drawing	application	shown	in	Fig.	4.4	can	save	pictures	 in	a	 file	 format	called
XML.	 XML	 stands	 for	 eXtensible	Markup	 Language.	 Computer	 Scientists	 devised	 the
XML	format	so	data	could	be	stored	in	a	consistent	format.	Many	applications	store	their
data	 in	 XML	 format.	 Some	 that	 you	 might	 be	 familiar	 with	 include	 the	 Apple	 iTunes
application	 or	 the	 registry	 in	 Microsoft	 Windows.	 Mac	 OS	 X	 uses	 it	 as	 well	 in	 its
application	structure.	XML	is	popular	because	the	definition	of	XML	makes	it	possible	to
add	 additional	 elements	 to	 an	 XML	 file	 later	 without	 affecting	 code	 that	 was	 written
before	 the	 new	 fields	were	 added.	This	 ability	 to	 add	 to	 an	XML	 file	without	 breaking
existing	 code	means	 there	 is	 a	 huge	 advantage	 to	 using	XML	as	 the	 format	 for	 data	 in
practically	any	application.	Being	able	to	write	code	to	extract	data	from	an	XML	file	is	a
very	practical	skill.

XML	files	have	a	fairly	straight-forward	structure	but	also	contain	a	lot	of	formatting
information	that	is	not	really	part	of	the	data.	It	would	be	painful	to	have	to	write	code	that
reads	an	XML	file	and	extracts	 just	 the	 information	you	need.	Fortunately,	 it	 is	because
XML	 files	 contain	 this	 extra	 formatting	 information,	 often	 called	 meta-data,	 that	 it	 is
possible	for	someone	else	to	write	code	that	we	can	use	to	read	an	XML	file.	That	code	is
called	 an	 XML	 parser.	 Parsing	 refers	 to	 reading	 data	 and	 selecting	 out	 the	 individual
components	or	elements	of	that	data.

To	parse	an	XML	file	you	must	import	an	XML	parser.	We’ll	use	the	minidom	XML
parser	in	this	text.	The	import	statement	looks	like	this:

Once	you	have	imported	the	XML	parser	you	create	an	Document	object	by	 telling
minidom	to	parse	the	XML	file.

That’s	all	there	is	to	reading	an	entire	XML	file.	Looking	at	Fig.	4.4	it	should	be	clear
that	the	picture	is	fairly	complex.	There	are	many	colors	and	elements	to	the	drawing.	Just
how	is	all	that	data	organized?

An	XML	file	starts	with	a	line	at	the	top	that	helps	the	parser	identify	the	contents	of
the	file	as	an	XML	file.	The	parser	looks	for	a	line	that	looks	something	like	this.

The	rest	of	an	XML	file	is	composed	of	one	or	more	elements.	And,	elements	may	be
nested	inside	of	other	elements.	Elements	almost	always	consist	of	two	tags	with	text	or
other	elements	nested	between	the	tags.	A	tag	in	an	XML	file	is	a	string	of	characters	that
appears	within	angle	brackets	(i.e.	a	less	than/greater	than	sign	pair).	For	instance,	this	is
one	element	from	an	XML	file	with	a	start-tag	and	end-tag	and	the	text	“PenUp”	nested
inside	the	element.



Each	start-tag	has	a	matching	end-tag	that	ends	one	element	of	an	XML	file.	The	

Command	 	 is	 the	 start-tag	 of	 this	 element	 and	 the	 	 /Command	 	 is	 the	 end-tag.	 The
matching	end-tag	always	has	the	same	name	as	the	start-tag	but	is	preceeded	by	a	slash.
An	 XML	 element	 may	 also	 contain	 attributes.	 The	 attributes	 appear	 within	 the	 XML
element’s	start-tag	as	shown	here.

This	element	contains	the	attributes	x,	y,	width,	and	color.	Each	of	these	attributes	has
a	value	inside	the	quotes	associated	with	the	attribute.

Start-tags	and	end-tags	almost	always	occur	in	matching	pairs.	However,	there	is	one
other	 type	of	element	 that	 consists	of	 just	one	 tag.	An	element	with	no	nested	elements
may	be	written	like	this.

There	 are	 no	 occurrences	 of	 empty	 elements	 like	 this	 in	 the	 graphics	 file	 in	 the
following	example.	Most	of	the	time	XML	elements	consist	of	a	start-tag	and	end-tag	pair
with	possibly	nested	elements	or	text	between	the	tags.

Example	4.7
Here	is	an	example	of	a	file	saved	by	a	drawing	program.	This	file	contains	one	XML
element	 called	 GraphicsCommands.	 Within	 this	 single	 XML	 element	 are	 many
Command	 elements.	 These	 elements	 represent	 a	 subset	 of	 the	 drawing	 commands
used	to	produce	the	picture	in	Fig.	4.4.



4.7		Extracting	Elements	from	an	XML	File
Each	 element	 in	 an	XML	document	 has	 a	 name.	 To	 extract	 an	 element	 you	 ask	 for	 all
elements	that	match	a	given	name.	For	the	drawing	application’s	XML	document	format
we	start	by	getting	the	GraphicsCommands	element.

The	 code	 above	 returns	 a	 list	 of	 all	 elements	 at	 the	 top-level	 of	 the	 document	 that
match	the	tag	name	GraphicsCommands.	We	know	there	is	only	one	of	these	elements	in
the	file,	so	we	can	get	just	the	first	one	by	using	index	0	into	the	list.

The	graphicsCommand	variable	 is	 set	 to	 the	 first,	 and	only,	 of	 the	matching	DOM
elements	returned	by	the	minidom	parser.	DOM	stands	for	Document	Object	Model.	Now
that	we	have	 the	graphicsCommand	element	we	can	get	 sub-elements	 from	 it.	The	 sub-
elements	of	it	are	the	list	of	Command	elements.

Finally,	 if	 we	 wish	 to	 draw	 the	 picture	 stored	 in	 the	 file,	 we	 can	 traverse	 the
Command	elements	with	a	for	loop.



4.8		XML	Attributes	and	Dictionaries
In	the	XML	file	presented	in	Example	4.7	many	of	the	Command	elements	have	attributes.
For	instance,	the	BeginFill	command	has	a	color	attribute.	The	GoTo	command	on	 lines
4–5	has	attributes	x,	y,	width,	and	color.	These	attributes	provide	information	about	each
of	 their	graphics	commands.	The	attribute	names	of	x,	y,	width,	and	color	are	called	 the
attribute	keys	and	their	values	are	the	strings	to	which	each	key	is	assigned.

To	correctly	draw	the	picture	in	one	of	these	picture	XML	files,	we	must	be	able	to
access	the	attributes	of	a	graphics	command	and	use	them	when	drawing	the	picture.	It	is
possible	to	access	the	attributes	of	an	XML	element	through	an	attributes	dictionary.

A	dictionary	is	a	little	like	a	list.	You	can	use	indexing	to	look	up	values	within	the
dictionary	just	like	you	use	indexing	to	look	up	values	within	a	list.	The	difference	is	that
instead	 of	 using	 only	 integers	 as	 the	 index	 values,	 you	 can	 use	 any	 value	 you	 like.	 To
lookup	an	attribute	in	the	attributes	dictionary	we	use	its	key.

Example	4.8
A	list	and	a	dictionary	have	similarities.	Both	data	types	hold	a	collection	of	values.
The	difference	between	 a	 list	 and	 a	 dictionary	 are	 in	 the	 values	 used	 to	 index	 into
them.	 In	 a	 list,	 the	 index	 values	 must	 be	 non-negative	 integers	 and	 the	 locations
within	the	list	are	numbered	sequentially	starting	at	0.

Within	 a	 dictionary	 there	 is	 no	 ordering	 of	 the	 index	 values.	An	 index	 value,
called	a	key	when	working	with	dictionaries,	can	be	nearly	any	value.	A	dictionary	is
a	list	of	key,	value	pairs.	Each	key	is	mapped	to	a	value.	Keys	must	be	unique,	values
do	not	have	to	be	unique	in	the	dictionary.

Here	 is	 some	 code	 that	 creates	 both	 a	 list	 and	 a	 dictionary	 and	 demonstrates
similar	operations	on	the	two	datatypes.

The	output	when	this	code	is	executed	is	as	follows.



Chapter	12	contains	a	complete	listing	of	dictionary	operators	and	methods.



4.9		Reading	an	XML	File	and	Building	Parallel	Lists
Drawing	 a	 picture	 like	 the	 one	 in	Fig.	 4.4	 is	 possible	 if	 the	 corresponding	XML	 file	 is
parsed	and	the	graphics	commands	extracted	from	it.	Imagine	that	not	only	do	we	want	to
read	 such	 a	 picture,	we	would	 like	 to	 be	 able	 to	 scale	 the	 picture	 to	make	 it	 bigger	 or
smaller.	It	is	possible	to	do	this	if	we	store	all	the	graphics	commands	in	lists.	We’ll	store
each	 graphics	 command	 and	 its	 attributes	 in	 separate	 lists.	 One	 list	 will	 hold	 all	 the
graphic	command	names.	Another	will	hold	the	color	attribute	of	each	graphic	command.
Still	another	will	hold	the	x	attribute	of	each	command,	and	so	on.

This	 technique	 of	 using	multiple	 lists	 to	 hold	 data	 that	 are	 related	 to	 each	 other	 is
called	 parallel	 lists.	 The	 lists	 are	 in	 a	 sense	 parallel	 to	 each	 other	 because	 each	 list
contains	 information	 that	 is	 related	 to	 the	others	at	 the	same	 index	value	within	 the	 list.
Each	 index	 location	 within	 the	 six	 lists	 contains	 the	 six	 attributes	 of	 one	 graphics
command.	Since	we	will	need	to	go	through	the	data	more	than	once	if	we	are	scaling	the
picture,	it	makes	sense	to	store	this	information	in	parallel	lists	so	we	can	go	through	it	as
often	as	we	need.

If	a	particular	graphic	command,	like	BeginFill	does	not	have	an	attribute,	like	x	for
instance,	then	a	special	value	of	None	will	be	stored	at	that	location	in	the	list.	In	this	way
the	 parallel	 lists	 will	 all	 have	 the	 same	 length	 and	 all	 the	 related	 data	 for	 a	 graphics
command	will	be	stored	at	the	same	index	location	within	all	the	lists.	We’ll	name	these
parallel	 lists	 for	 their	 attribute	 names	 with	 a	 List	 attached	 to	 the	 end.	 So	 the	 list	 of	 x
attributes	 becomes	 xList	 for	 example.	 The	 graphic	 command	 list	 will	 just	 be	 called
commandList.

Example	4.9
Code	to	build	these	parallel	lists	is	relatively	simple.	There	are	five	attributes.	Each
of	 these	 attributes	 corresponds	 to	 one	 list.	 Line	 14	 of	 the	 code	 in	 this	 example
deserves	 some	 further	 explanation.	 In	 this	 line	 the	 expression
command.firstChild.data	 retrieves	 the	 text	appearing	between	 the	start-tag	and	end-
tag	of	an	XML	element.	For	instance,	when	examining	the	element	from	line	three	of
the	XML	file	in	Example	4.7	the	command.firstChild.data	would	be	“BeginFill”.	The
text	 in	between	 the	 tags	 tells	 the	code	 in	 this	example	which	graphics	command	 is
represented	in	each	of	the	XML	elements.



The	code	above	is	very	repetitive	on	lines	17–36	doing	the	same	thing	for	each	attribute.
All	 that	 changes	 is	 the	 attribute	name	and	 the	 list	 to	which	 the	value	 is	 appended.	This
code	could	be	rewritten	to	use	two	parallel	lists	of	its	own,	one	for	the	attribute	names,	and
another	for	the	attribute	lists.	So,	we	end	up	with	two	more	lists,	the	attrributeList	and	the
attributes	list.	This	shortens	the	code	considerably.	This	code	does	exactly	the	same	thing
as	the	code	above.

Notice	the	way	the	code	above	iterates	over	the	attributes.	Since	the	attributes	list	and



the	attributeList	 list	 are	 the	 same	 length	 the	 for	 i	 in	 range(len(attributes))	 generates	 the
index	i	into	both	parallel	lists.	When	working	with	parallel	lists	you	always	use	an	indexed
for	loop	like	this	or	while	loop	so	you	have	an	index	that	you	can	use	to	index	into	any	of
the	parallel	lists.



4.10		Using	Parallel	Lists	to	Draw	a	Picture
Drawing	the	picture	from	the	XML	file	means	traversing	the	parallel	lists	that	were	built
in	 Sect.	 4.9.	 Each	 location	 in	 the	 list	 contains	 a	 graphics	 command	 like	 “GoTo”	 or
“Circle”.	The	attributes	for	a	command	are	stored	at	the	same	index	in	a	parallel	list.	All
that’s	needed	is	to	iterate	over	these	parallel	lists	and	execute	the	turtle	commands	that	are
required	to	draw	the	picture.

Example	4.10
To	draw	the	picture	in	one	of	the	picture	XML	files	it	is	only	necessary	to	iterate	over
the	 parallel	 lists	 that	 were	 built	 in	 Sect.	 4.9.	 The	 code	 below	 uses	 the	 colormode
method.	Passing	255	to	this	method	means	that	colors	will	be	set	using	hexadecimal
numbers.	Color	 hexadecimal	 number	 have	6	 digits.	The	 first	 two	digits	 are	 for	 the
amount	of	red.	The	second	two	digits	are	the	amount	of	green.	The	third	two	digits
are	 the	 amount	 of	 blue.	 Two	 hexadecimal	 digits	 can	 range	 from	 00–FF,	 or	 0–255
when	converted	to	decimal	values.	With	256	different	shades	of	red,	green,	and	blue
there	are	 	different	possible	colors.

The	 use	 of	 screen.tracer(0)	 below	 means	 that	 the	 picture	 is	 drawn
instantaneously	without	any	screen	updates.	This	makes	the	picture	just	appear	when
the	screen.update()	method	is	called.	Update	must	be	called	to	force	the	update	of	the
screen	since	the	setting	tracer	to	0	means	no	updates	are	done	automatically.

Notice	the	use	of	the	for	i	in	range(len(commandList))	below.	The	parallel	lists
all	have	the	same	length.	The	only	way	to	traverse	all	the	lists	simultaneously	is	by
indexing	into	the	list.	So,	i	is	used	as	the	index	into	all	the	parallel	lists.





4.11		Review	Questions
1.		

What	are	the	two	ways	to	import	a	module?	How	do	they	differ?	What	are	the	advantages
of	each	method	of	importing?

	
2.		

How	 do	 you	 construct	 an	 object?	 In	 general,	 what	 do	 you	 have	 to	 write	 to	 call	 a
constructor?

	
3.		

What	happens	when	you	construct	an	object?

	
4.		

What	is	the	purpose	of	an	accessor	method?

	
5.		

What	is	the	purpose	of	a	mutator	method?

	
6.		

Does	every	class	contain	both	mutator	and	accessor	methods?	If	so,	why?	If	not,	give	an
example	when	this	is	not	true.

	
7.		

What	does	an	XML	file	contain?

	
8.		

How	do	you	read	an	XML	file	in	a	program?



	
9.		

What	is	an	attribute	in	an	XML	file?	Give	an	example.

	
10.		

What	type	of	value	does	the	method	getElementsByTagName	return	when	it	is	called?

	
11.		

What	is	a	dictionary?

	
12.		

What	are	parallel	lists?	Why	are	they	necessary	in	some	cases?

	

Fig.	4.5		The	plot	of	



4.12		Exercises
1.		

Write	a	program	that	plots	the	function

You	can	use	the	setworldcoordinates	method	to	plot	the	function	on	the	screen	from	 20

to	20	on	the	x-axis	and	 20	to	20	on	the	y-axis.	When	you	are	done,	 if	you	did	it	right,
you	should	have	a	screen	that	looks	like	Fig.	4.5.	To	plot	the	function	the	x	values	can	go

from	 20	to	20.	The	y	values	can	be	found	by	using	the	definition	of	the	function	 .	Be
sure	to	include	the	dots	for	the	units	on	the	graph.

	
2.		

Write	 the	 program	described	 starting	 in	 Sects.	 4.9	 and	4.10.	 Create	 a	 sample	XML	 file
using	the	draw	program	found	on	the	text’s	website.	Draw	a	picture	and	save	it.	The	file
will	be	in	XML	format.	Save	the	XML	file	in	the	same	directory	or	folder	where	you	save
your	 program.	 By	 saving	 the	 program	 and	 the	 XML	 file	 in	 the	 same	 directory	 your
program	will	find	the	XML	file	when	you	run	it.

	
3.		

Write	a	program	as	described	in	the	last	exercise	but	after	reading	the	XML	file,	prompt
the	 user	 for	 a	 scale	 factor	 and	 scale	 the	 entire	 picture	 by	 the	 scale	 factor.	 Each	 (x,y)
coordinate	must	be	multiplied	by	the	scale	parameter.	Draw	the	picture	with	its	new	scale.

	
4.		

Write	a	program	as	described	in	last	exercise.	Get	a	scale	factor	from	the	user.	However,
this	time	also	prompt	the	user	for	a	new	file	name.	Then	write	a	new	XML	file	with	the
new	scale	factor	integrated	into	it.	This	can	be	done	one	of	two	ways.	You	can	write	the
file	 with	 all	 new	 (x,y)	 coordinates,	 or	 you	 can	 add	 a	 scale	 attribute	 to	 the
GraphicsCommands	element.

	
5.		

On	the	website	for	the	text	there	are	three	files,	Toyota4Runner.csv,	NissanVersa.csv,	and
SuzukiS40.csv	 that	 all	 contain	 gas	mileage	 information	 for	 their	 corresponding	 vehicles.
Write	a	program	that	reads	this	data	and	plots	average	miles	per	gallon	in	one	dimension



and	 time	 in	 the	 other	 dimension.	 Since	 the	 first	 line	 of	 each	 file	 is	 not	 a	 record,	 but	 a
description	of	the	columns,	you	might	want	to	use	a	while	loop	to	read	the	data	so	you	can
throw	away	the	first	line	before	starting	the	while	loop.

HINT:	Since	each	field	of	the	records	is	in	double	quotes	you	can	read	the	line	from
the	file	and	put	square	brackets	around	it	as	follows.

The	call	to	the	eval	function	will	force	the	evaluation	of	the	string.	Calling	eval	like
this	returns	a	list	of	the	elements;	in	this	case	a	list	of	strings	as	the	fields	of	the	record.
Using	this	technique	will	make	parsing	the	input	extremely	easy.

You	will	want	to	create	datetime	objects	for	each	fill	up	date.	You	must	first	import
the	datetime	module	to	create	datetime	objects.	For	a	discussion	of	datetime	objects	or	you
can	read	about	them	on	the	web.	Search	for	“python	datetime”	to	read	about	the	datetime
module	 on	 the	 web.	 You	 can	 get	 the	 number	 of	 days	 from	 two	 datetime	 objects	 by
subtracting	them	and	then	using	the	difference	as	follows.

It	might	 first	 appear	 that	 the	 difference	 should	 be	 computed	 as	 lastDay	 -	 firstDay.
However,	 this	 yields	 a	 negative	 number	 of	 days	 so	 the	 example	 in	 the	 listing	 above	 is
correct	when	computing	days.

	
6.		

When	looking	at	average	EPA	MPG	for	gas	powered	vehicles	there	is	always	a	city	MPG
and	 a	 highway	MPG,	 with	 highway	MPG	 being	 greater.	 Since	 filling	 the	 car	 multiple
times	within	a	short	amount	of	time	would	seem	to	indicate	that	a	person	is	taking	a	trip,
there	should	be	a	correlation	between	filling	up	over	short	amounts	of	time	(i.e.	highway
miles)	and	the	observed	MPG.	Use	the	Toyota4Runner.cvs	or	the	NissanVersa.cvs	files	to
plot	days	since	last	fill	up	and	observed	MPG.	You	will	want	to	do	this	as	a	scatter	plot.	A
scatter	plot	is	simply	a	dot	for	each	data	point.	A	dot	can	be	made	using	the	dot	method	of
the	Turtle	class.	Observe	the	data	that	you	find	there	and	draw	a	regression	line	through
that	data.	A	regression	line	is	a	best	fit	line.	It	minimizes	the	total	distance	of	points	to	the
line.

To	 compute	 the	 days	 since	 last	 fill	 up	 you	will	 probably	want	 to	 use	 the	 datetime
module.	 See	 the	 previous	 exercise	 for	 a	 discussion	 of	datetime	 objects	 or	 you	 can	 read
about	them	on	the	web.	Search	for	“python	datetime”	to	read	about	the	datetime	module
on	the	web.

To	draw	a	regression	line	you	need	to	keep	track	of	a	few	things.

	
The	sum	of	all	the	x	values

The	sum	of	all	the	y	values

The	sum	of	all	the	 	values



The	sum	of	all	the	x*y	values

Decide	what	your	x	and	y	axis	represent.	Compute	the	values	given	above.	When	you
have	gathered	these	values	you	need	to	use	the	values	in	the	formula	below.

where

All	the	values	you	need	in	the	formulas	are	available	in	the	values	you	kept	track	of

above.	 	is	the	number	of	data	points.	 	is	the	average	of	the	 	values	and	likewise	for	 .
The	sum	of	all	the	 	values	is	the	sum	of	the	squares,	NOT	the	square	of	the	sum.

To	 plot	 the	 regression	 line	 you	 can	 choose	 two	 x	 values	 and	 then	 compute	 their

corresponding	y	values	given	the	formula	 .	This	will	give	you	the	two	end
points	of	the	regression	line.	Once	you	have	the	two	end	points	of	the	line,	use	the	turtle	to
draw	 the	 line	 between	 them.	 Plot	 this	 regression	 line	 to	 see	 the	 correlation	 between
highway	miles	 and	MPG.	While	 this	 program	will	 compute	 a	 linear	 regression	 line,	 it
should	 be	 noted	 that	 the	 correlation	 between	 number	 of	 highway	 miles	 and	 MPG	 is
definitely	NOT	a	linear	function	so	observed	results	should	be	understood	in	that	context.

	
7.		

In	practice	Problem	4.3	 you	drew	a	 truck	using	 a	 turtle.	You	 should	not	 have	used	 any
goto	 method	 calls	 in	 that	 practice	 problem.	 In	 this	 exercise	 you	 are	 to	 draw	 trucks	 of
random	size	at	 random	places	on	 the	screen.	To	generate	 random	numbers	 in	a	program
you	 need	 to	 import	 the	 random	 module.	 You	 create	 a	 random	 number	 generator	 as
follows:

Their	are	three	methods	that	Random	objects	support	that	you	may	want	to	use:

	
rand.randrange(start,	stop,	step)—start	default	 is	0,	step	default	 is	1.	 It	 returns	a
random	integer	in	the	range	[start,	stop)	that	is	on	one	of	the	steps.

rand.randint(start,	stop)—start	default	is	0.	It	returns	a	random	integer	in	the	range
[start,	stop).

rand.random()—Returns	a	random	floating	point	number	in	the	range	[0,1).

For	 this	exercise	you	should	 repeatedly	draw	 trucks	at	different	 locations	on	 the	screen.
You	can	use	the	goto	method	to	move	to	a	randomly	selected	location	on	the	screen.	By



default	 the	 screen	 goes	 from	 500	 to	 500	 in	 both	 directions	 so	 generating	 a	 screen

location	in	the	range	 400–400	in	both	directions	will	work	well.

Once	you	have	moved	to	a	random	location	on	the	screen,	draw	the	truck	as	you	did
in	practice	Problem	4.3.	However,	to	make	the	trucks	different	sizes,	randomly	generate	a
floating	point	number	between	0	and	1	using	the	random	method.	This	random	number	is
a	 scale	 for	 your	 truck.	 Multiply	 each	 forward	 or	 circle	 argument	 by	 the	 scale	 when
drawing	the	truck.	By	multiplying	the	forward	and	circle	arguments	by	a	number	between
0	and	1	you	are	creating	scaled	versions	of	your	truck	from	0	(no	truck	at	all)	to	1	(a	full-
size	truck).

NOTE:	Do	not	multiply	turns	times	the	scale.	All	angles	are	the	same	in	any	scaled
version	of	the	truck.

	



4.13		Solutions	to	Practice	Problems
These	are	solutions	to	the	practice	problems	in	this	chapter.	You	should	only	consult	these
answers	after	you	have	tried	each	of	them	for	yourself	first.	Practice	problems	are	meant
to	help	reinforce	the	material	you	have	just	read	so	make	use	of	them.

4.13.1		Solution	to	Practice	Problem	4.1

4.13.2		Solution	to	Practice	Problem	4.2

4.13.3		Solution	to	Practice	Problem	4.3



4.13.4		Solution	to	Practice	Problem	4.4
The	turtle’s	location	is	(12.0388,	38.18233)	at	the	peak	of	the	pentagon.

4.13.5		Solution	to	Practice	Problem	4.5
The	forward	method	is	not	an	accessor	method.	The	xcor	method	is	an	accessor	method.	It
accesses	the	x	coordinate	of	the	turtle.

Fig.	4.6		Concatenation	of	two	strings

4.13.6		Solution	to	Practice	Problem	4.6
You	create	a	second	turtle	the	same	way	you	created	the	first.



4.13.7		Solution	to	Practice	Problem	4.7
Figure	4.6	depicts	what	happens	when	the	following	code	is	executed.	This	is	pretty	much
identical	to	what	happens	with	the	integers	on	p.	22	in	Chap.	1.



©	Springer-Verlag	London	2014

Kent	D.	LeePython	Programming	FundamentalsUndergraduate	Topics	 in	Computer	Science10.1007/978-1-4471-6642-
9_5



5.	Defining	Functions
Kent	D.	Lee1		

(1)		

Luther	College,	Decorah,	IA,	USA

	
	

Kent	D.	Lee
Email:	kentdlee@luther.edu

Functions	 are	 something	most	 of	 us	 are	 familiar	with	 from	Mathematics.	A	 function	
might	be	defined	as

When	a	function	is	defined	this	way	we	can	then	call	 the	function	 	with	 the	value	6—

usually	written	 —to	discover	that	the	value	returned	by	the	function	would	be	 .	Of

course,	we	aren’t	only	 limited	 to	passing	 	 to	 .	We	could	pass	 	 to	 	 and	 	would

return	0.	We	could	pass	any	of	number	into	 	and	compute	its	result.

The	 identifier	 	 represents	 the	 definition	 of	 a	 function	 and	 calling	 a	 function	 by

writing	 	is	called	function	application	or	a	function	call.	These	two	concepts	are	part
of	 most	 programming	 languages	 including	 Python.	 In	 Python,	 functions	 can	 be	 both
defined	and	called.

Example	5.1

The	function	 	can	be	defined	in	Python	as	shown	below.	It	can

also	be	called	as	shown	here.	This	program	calls	 	and	prints	144.0	to	the	screen.

To	 call	 a	 function	 in	 Python	 we	 write	 	 for	 instance,	 just	 they	 way	 we	 do	 in

Mathematics.	 It	means	 the	same	thing,	 too.	Executing	 	means	calling	 the	function	
with	 the	value	6	 to	compute	 the	value	of	 the	 function	call.	A	function	 in	Python	can	do
more	than	a	function	in	Mathematics.	Functions	can	execute	statements	as	well	as	return	a
value.	 In	 Mathematics	 a	 value	 is	 computed	 and	 returned.	 There	 are	 no	 side-effects	 of
calling	the	function.	In	Python	(and	in	just	about	any	programming	language),	there	can	be
side-effects.	 A	 function	 can	 contain	 more	 than	 one	 statement	 just	 like	 our	 programs

mailto:kentdlee@luther.edu


contain	statements.

Example	5.2
Here	is	a	function	that	computes	and	prints	a	value	along	with	some	code	that	calls
the	 function.	 Running	 this	 program	 prints	 “You	 called	 computeAndPrint	 (6,5)”
followed	 by	 the	 value	 149.0	 to	 the	 screen.	 This	 function	 is	 passed	 two	 arguments
instead	of	just	one.



5.1		Why	Write	Functions?
The	ability	 to	define	our	own	 functions	helps	programmers	 in	 two	ways.	When	you	are
writing	 a	 program	 if	 you	 find	 yourself	 writing	 the	 same	 code	 more	 than	 once,	 it	 is
probably	 best	 to	 define	 a	 function	 with	 the	 repeated	 code	 in	 it.	 Then	 you	 can	 call	 the
function	as	many	times	as	needed	instead	of	rewriting	the	code	again	and	again.

It	is	important	that	we	avoid	writing	the	same	code	more	than	once	in	our	programs.
Writing	code	is	error-prone.	Programmers	often	make	mistakes.	If	we	write	the	same	code
more	than	once	and	make	a	mistake	in	it,	we	must	fix	that	mistake	every	place	we	copied
the	code.	When	writing	code	that	will	be	used	commercially,	mistakes	might	not	be	found
until	years	 later.	When	fixing	code	that	hasn’t	been	looked	at	for	a	while	 it	 is	extremely
easy	to	fix	the	code	in	one	place	and	to	forget	to	fix	it	everywhere.

If	we	make	a	mistake	in	coding	a	function,	and	then	fix	the	code	in	the	function,	we
have	automatically	 fixed	 the	code	 in	every	spot	 that	uses	 the	 function.	This	principle	of
modular	 programming	 is	 a	 very	 important	 concept	 that	 has	 been	 around	 since	 the	 early
days	 of	 computer	 programming.	 Writing	 code	 once	 leads	 to	 well-tested	 functions	 that
work	as	expected.	When	we	use	a	well-tested	function	we	can	be	fairly	confident	it	will
work	the	first	time.	It	also	leads	to	smaller	code	size,	although	that	is	not	as	much	of	an
issue	these	days.

Writing	functions	also	helps	make	our	code	easier	to	read.	When	we	use	good	names
for	variables	and	functions	in	our	programs	we	can	read	the	code	and	understand	what	we
have	written	not	only	as	we	write	it,	but	years	later	when	we	need	to	look	at	the	code	we
wrote	again.	Typically	programmers	work	with	a	group	of	three	to	eight	other	people.	It	is
important	 for	 others	 in	 the	 group	 to	 be	 able	 to	 read	 and	 understand	 the	 code	 we	 have
written.	 Writing	 functions	 can	 lead	 to	 nice	 modularized	 code	 that	 is	 much	 easier	 to
maintain	by	you	and	by	others	in	a	group.



5.2		Passing	Arguments	and	Returning	a	Value
When	we	write	a	function	we	must	decide	four	things:

1.		

What	 should	 our	 function	 be	 called?	We	 should	 give	 it	 a	 name	 that	 makes	 sense	 and
describes	what	the	function	does.	Since	a	function	does	something,	the	name	of	a	function
is	usually	a	verb	or	some	description	of	what	the	function	returns.	It	might	be	one	word	or
several	words	long.

	
2.		

What	should	we	give	to	our	function?	In	other	words,	what	arguments	will	we	pass	to	the
function?	When	thinking	about	arguments	to	pass	to	a	function	we	should	think	about	how
the	function	will	be	used	and	what	arguments	would	make	it	the	most	useful.

	
3.		

What	should	the	function	do?	What	 is	 its	purpose?	The	function	needs	to	have	a	clearly
defined	purpose.	Either	it	should	return	a	value	or	it	should	have	some	well-defined	side-
effect.

	
4.		

Finally,	what	should	our	function	return?	The	type	and	the	value	to	be	returned	should	be
considered.	If	the	function	is	going	to	return	a	value,	we	should	decide	what	type	of	value
it	should	return.

	
By	considering	these	questions	and	answering	them,	we	can	make	sure	that	our	functions
make	sense	before	writing	them.	It	does	us	no	good	to	define	functions	that	don’t	have	a
well-defined	purpose	in	our	program.

Example	5.3
Consider	a	program	where	we	are	asked	to	reverse	a	string.	What	should	the	function
be	called?	Probably	 reverse.	What	 should	we	give	 to	 the	 function?	A	 string	would
make	 sense.	 What	 does	 reverse	 compute?	 The	 reverse	 of	 the	 given	 string.	 What
should	it	return?	The	reversed	string.	Now	we	are	ready	to	write	the	function.



It	 is	 important	 to	decide	 the	 type	of	value	returned	 from	a	function	and	 the	 types	of	 the
arguments	given	to	a	function.	The	words	returned	and	given	are	words	that	give	us	a	clue
about	what	 the	 function	 should	 look	 like	 and	what	 it	might	 do.	When	presented	with	 a
specification	 for	 a	 function	 look	 for	 these	words	 to	help	you	 identify	what	 you	need	 to
write.

The	word	parameter	refers	to	the	identifier	used	to	represent	the	value	that	is	passed
as	 an	argument	 to	 the	 function.	 Sometimes	 the	 parameter	 is	 called	 a	 formal	 parameter.

When	a	 function	 is	 called,	 it	 is	passed	an	argument	as	 in	 	where	6	 is	 the	 argument.
When	the	function	is	applied	the	parameter	called	 	takes	on	the	value	of	6.	If	it	is	called

as	 	then	the	parameter	 	 takes	on	the	value	5.	In	this	way	we	can	write	the	function
once	 and	 it	 will	 work	 for	 any	 argument	 passed	 to	 the	 function.	 In	 Example	 5.3	 the
argument	is	 the	value	that	 t	 refers	 to,	 the	value	entered	by	 the	user	when	the	program	is
run.	The	parameter,	s,	takes	on	the	value	that	 	refers	to	when	the	function	is	called	in	the
print	 statement.	 The	 parameter	 passing	 mechanism	makes	 it	 possible	 for	 us	 to	 write	 a
function	 once	 and	 use	 it	 in	 many	 different	 places	 in	 our	 program	 with	 many	 different
values	passed	in.

Practice	5.1
Write	a	function	called	explode	that	given	a	string	returns	a	list	of	the	characters	of
the	string.

Practice	5.2
Write	 a	 function	called	 implode	 that	given	a	 list	 of	 characters,	 or	 strings,	 returns	 a
string	which	is	the	concatenation	of	those	characters,	or	strings.



5.3		Scope	of	Variables
When	writing	functions	it	is	important	to	understand	scope.	Scope	refers	to	the	area	in	a
program	 where	 a	 variable	 is	 defined.	 Normally,	 a	 variable	 is	 defined	 after	 it	 has	 been
assigned	a	value.	You	cannot	reference	a	variable	until	it	has	been	assigned	a	value.

Practice	5.3
The	following	program	has	an	run-time	error	 in	 it.	Where	does	 the	error	occur?	Be
very	specific.

When	we	 define	 functions	 there	 are	 several	 identifiers	we	write.	 First,	 the	 name	 of	 the
function	is	written.	Like	variables,	a	function	identifier	can	be	used	after	it	is	defined.	In
Example	5.3	you	will	notice	that	the	function	is	defined	at	the	top	of	the	program	and	the
function	is	called	on	the	last	line	of	the	program.	A	function	must	be	defined	before	it	is
used.

However,	 the	variables	 s,	c,	 and	 result	 are	 not	 available	where	 reverse(t)	 is	 called.
This	 is	what	we	want	 to	 happen	 and	 is	 due	 to	 something	 called	 scope.	The	 scope	 of	 a
variable	 refers	 to	 the	 area	 in	 a	 program	 where	 it	 is	 defined.	 There	 are	 several	 scopes
available	 in	 a	 Python	 program.	Mark	 Lutz	 describes	 the	 rules	 of	 scope	 in	 Python	with
what	he	calls	the	LEGB	rule	[3].	Memorizing	the	acronym	LEGB	will	help	you	memorize
the	scope	rules	of	Python.

The	LEGB	 rule	 refers	 to	Local	Scope,	Enclosing	Scope,	Global	Scope,	and	Built-in
Scope.	Local	scope	extends	for	the	body	of	a	function	and	refers	to	anything	indented	in
the	function	definition.	Variables,	including	the	parameter,	that	are	defined	in	the	body	of
a	function	are	local	to	that	function	and	cannot	be	accessed	outside	the	function.	They	are
local	variables.

The	enclosing	scope	refers	to	variables	that	are	defined	outside	a	function	definition.
If	 a	 function	 is	 defined	 within	 the	 scope	 of	 other	 variables,	 then	 those	 variables	 are
available	inside	the	function	definition.	The	variables	in	the	enclosing	scope	are	available
to	statements	within	a	function.

Example	5.4
While	 this	 is	 not	good	coding	practice,	 the	 following	code	 illustrates	 the	 enclosing
scope.	 The	 values	 variable	 keeps	 track	 of	 all	 the	 arguments	 passed	 to	 the	 reverse
function.



Accessing	a	variable	 in	 the	enclosing	scope	can	be	useful	 in	some	circumstances,	but	 is
not	usually	done	unless	the	variable	is	a	constant	that	does	not	change	in	a	program.	In	the
program	above	the	values	variable	is	accessed	by	the	reverse	function	on	the	first	line	of
its	body.	This	is	an	example	of	using	enclosing	scope.	However,	the	next	example,	while	it
does	almost	the	same	thing,	has	a	problem.

Example	5.5
Here	is	an	example	of	almost	the	same	program.	Instead	of	using	the	mutator	method

append	the	list	concatenation	(i.e.	the	 )	operator	is	used	to	append	the	value	s	to	the
list	of	values.

The	 code	 in	 Example	 5.5	 does	 not	 work	 because	 of	 a	 subtle	 issue	 in	 Python.	 A	 new
variable,	say	v,	is	defined	in	Python	anytime	v	 	…	is	written.	In	Example	5.5	the	first	line

of	the	reverse	function	is	values	 	values	 	[s].	As	soon	as	values	 	…	is	written,	there	is
a	new	local	variable	called	values	that	is	defined	in	the	scope	of	the	reverse	function.	That



means	 there	 are	 two	 variables	 called	 values:	 one	 defined	 in	 reverse	 and	 one	 defined

outside	of	reverse.	The	problem	occurs	when	the	right-hand	side	of	values	 	values	 	[s]
is	 evaluated.	Which	values	 is	 being	 concatenated	 to	 [s].	 Is	 it	 the	 local	 or	 the	 enclosing
values.	Clearly,	we	would	like	it	to	be	the	enclosing	values	variable.	But,	it	is	not.	Local
scope	overrides	enclosing	scope	and	the	program	in	Example	5.5	will	complain	that	values
does	not	yet	have	a	value	on	the	first	line	of	the	reverse	function’s	body.

The	problem	with	Example	5.5	can	be	 fixed	by	declaring	 the	values	 variable	 to	be
global.	When	applied	 to	a	variable,	global	 scope	means	 that	 there	 should	not	be	a	 local
copy	 of	 a	 variable	made,	 even	when	 it	 appears	 on	 the	 left	 hand	 side	 of	 an	 assignment
statement.

Example	5.6
The	string	concatenation	operator	can	still	be	used	if	the	values	variable	is	declared	to
be	global	in	the	reverse	function.

Example	 5.6	 demonstrates	 the	 use	 of	 the	 global	 scope.	 The	 use	 of	 the	 global	 keyword
forces	Python	to	use	the	variable	in	the	enclosing	scope	even	when	it	appears	on	the	left
hand	side	of	an	assignment	statement.

The	final	scope	rule	is	the	built-in	scope.	The	built-in	scope	refers	to	those	identifiers
that	 are	 built-in	 to	 Python.	 For	 instance,	 the	 len	 function	 can	 be	 used	 anywhere	 in	 a
program	to	find	the	length	of	a	sequence.

The	 one	 gotcha	 with	 scope	 is	 that	 local	 scope	 trumps	 the	 enclosing	 scope,	 which
trumps	 the	 global	 scope,	 which	 trumps	 the	 built-in	 scope.	 Hence	 the	 LEGB	 rule.	 First
local	scope	is	scanned	for	the	existence	of	an	identifier.	If	that	identifier	is	not	defined	in
the	local	scope,	then	the	enclosing	scope	is	consulted.	Again,	if	the	identifier	is	not	found
in	enclosing	scope	then	the	global	scope	is	consulted	and	finally	the	built-in	scope.	This
does	have	some	implications	in	our	programs.

Practice	5.4



The	following	code	does	not	work.	What	is	the	error	message?	Do	you	see	why?	Can
you	suggest	a	way	to	fix	it?



5.4		The	Run-Time	Stack
The	run-time	stack	is	a	data	structure	that	is	used	by	Python	to	execute	programs.	Python
needs	 this	 run-time	 stack	 to	maintain	 information	 about	 the	 state	 of	 your	 program	 as	 it
executes.	 A	 stack	 is	 a	 data	 structure	 that	 lets	 you	 push	 and	 pop	 elements.	 You	 push
elements	onto	the	top	of	the	stack	and	you	pop	elements	from	the	top	of	the	stack.	Think
of	a	stack	of	trays.	You	take	trays	off	the	top	of	the	stack	in	a	cafeteria.	You	put	clean	trays
back	on	 the	 top	of	 the	 stack.	A	 stack	 is	 a	 first	 in/first	 out	 data	 structure.	 Stacks	 can	 be
created	 to	hold	a	variety	of	different	 types	of	elements.	The	run-time	stack	 is	a	stack	of
activation	records.

An	activation	record	is	an	area	of	memory	that	holds	a	copy	of	each	variable	that	is
defined	 in	 the	 local	 scope	 of	 a	 function	 while	 it	 is	 executing.	 As	 we	 learned	 in
Example	5.5,	a	variable	is	defined	when	it	appears	on	the	left-hand	side	of	an	equals	sign.
Formal	parameters	of	a	function	are	also	in	the	local	scope	of	the	function.

Example	5.7
In	this	example	code	the	reverse	function	is	called	repeatedly	until	the	user	enters	an
empty	string	(just	presses	enter)	to	end	the	program.	Each	call	 to	reverse	pushes	an
activation	record	on	the	stack.

In	Example	5.7,	 each	 time	 the	 reverse	 function	 returns	 to	 the	main	 code	 the	 activation
record	is	popped.	Assuming	the	user	enters	the	string	“hello”,	snapshot	1	of	Fig.	5.1	shows
what	 the	 run-time	 stack	 would	 look	 like	 right	 before	 the	 result	 is	 returned	 from	 the
function	call.

Fig.	5.1		The	run-time	stack

In	 snapshot	 2,	 the	 activation	 record	 for	 reverse(“hello”)	 had	been	popped	 from	 the
stack	but	is	shown	grayed	out	in	snapshot	2	to	make	it	clear	that	the	top	activation	record



is	a	new	activation	record.	Snapshot	2	was	 taken	right	before	 the	return	result	 statement
was	executed	for	the	second	call	to	reverse.

Snapshot	3	shows	what	the	run-time	stack	looks	like	after	returning	from	the	second
call	 to	 reverse.	 Again,	 the	 grayed	 out	 activation	 record	 is	 not	 there,	 but	 is	 shown	 to
emphasize	 that	 it	 is	 popped	when	 the	 function	 returns.	 Finally,	 snapshot	 4	 shows	what
happens	when	the	main	code	exits,	causing	the	last	activation	record	to	be	popped.

Each	activation	record	holds	a	copy	of	the	local	variables	and	parameters	that	were
passed	to	the	function.	Local	variables	are	those	variables	that	appear	on	the	left-hand	side
of	 an	 equals	 sign	 in	 the	 body	 of	 the	 function	 or	 appear	 as	 parameters	 to	 the	 function.
Recall	that	variables	are	actually	references	in	Python,	so	the	references	or	variables	point
to	the	actual	values	which	are	not	stored	in	the	activation	records.

The	 run-time	 stack	 is	 absolutely	 critical	 to	 the	 implementation	 of	 modern
programming	 languages.	 Its	 existence	 makes	 it	 possible	 for	 a	 function	 to	 execute	 and
return	 independently	of	where	 it	 is	called.	This	 independence	between	functions	and	 the
code	that	calls	them	is	crucial	to	making	functions	useful	in	our	programs.

Practice	5.5
Trace	the	execution	of	the	code	in	Example	5.2	on	paper	showing	the	contents	of	the
run-time	stack	just	before	the	function	call	returns.

Fig.	5.2		The	run-time	stack	in	the	wing	IDE



The	run-time	stack	is	visible	in	most	debuggers	including	the	Wing	IDE.	To	view	the
activation	 records	 on	 the	 run-time	 stack	 you	 have	 to	 debug	 your	 program	 and	 set	 a
breakpoint	during	its	execution.	Figure	5.2	shows	the	Wing	IDE	running	the	program	from
Example	5.4.	A	breakpoint	was	set	just	before	the	reverse	function	returns:	the	same	point
at	snapshot	one	in	Fig.	5.1.	In	Wing	you	can	click	on	the	Stack	Data	tab	to	view	the	run-
time	 stack.	 The	 drop-down	 combobox	 directly	 below	 the	 Stack	Data	 tab	 contains	 one

entry	for	each	activation	record	currently	on	the	run-time	stack.	In	Fig.	5.2	the	 	module	
activation	record	is	selected	which	is	Wing’s	name	for	the	Main	activation	record.	When
an	 activation	 record	 is	 selected	 in	 the	 Stack	Data	 tab,	 its	 local	 variables	 are	 displayed
below.	In	Fig.	5.2	the	t	and	values	variables	are	displayed	from	the	Main	activation	record.
The	program	is	currently	stopped	at	line	10	but	the	reverse	function	was	called	from	line
18	so	that	line	is	highlighted	since	we	are	displaying	the	activation	record	corresponding
to	the	code	reverse	was	called	from.

Practice	5.6
Trace	 the	 execution	 of	 the	 code	 in	Example	 5.2	 using	 the	Wing	 IDE	 to	 verify	 the
contents	of	the	run-time	stack	just	before	the	function	call	returns	match	your	answer
in	practice	Problem	5.5.



5.5		Mutable	Data	and	Functions
If	 you	 consider	 Fig.	 5.1,	 it	 should	 help	 in	 understanding	 that	 a	 function	 that	mutates	 a
value	passed	to	it	will	cause	the	code	that	called	it	to	see	that	mutated	data.	The	program
presented	in	Example	5.7	does	not	mutate	any	of	the	data	passed	to	the	reverse	function.
In	 fact,	 since	 strings	 are	 immutable,	 it	 would	 be	 impossible	 for	 reverse	 to	 mutate	 the
parameter	 passed	 to	 it.	 However,	 Example	 5.4	 mutates	 the	 values	 list.	 The	 result	 of
appending	to	the	list	is	seen	in	the	code	that	called	it.	Lists	are	not	immutable.	They	can	be
changed	 in	 place.	 In	 Example	 5.4	 the	 reference	 to	 the	 values	 list	 is	 not	 changed.	 The
contents	 of	 the	values	 list	 is	 changed.	The	 changed	 contents	 are	 seen	by	 the	main	 code
after	the	function	returns.

As	another	example,	consider	a	reverse	function	that	doesn’t	return	a	value.	What	if	it
just	changed	the	list	that	was	given	to	it.	If	the	parameter	to	the	list	function	was	called	lst,
then	writing	lst[0]	 	“h”	will	change	the	first	element	of	the	list	lst	to	the	string	h.	That’s
what	is	meant	by	mutating	a	data.	A	new	list	is	not	created	in	this	case.	The	existing	list	is
modified.	If	a	list	is	passed	to	a	function	and	the	function	mutates	the	list,	the	caller	of	the
function	will	 see	 the	 reversed	 list.	 That’s	what	 the	append	method	 does.	 It	mutates	 the
existing	list	as	well.

When	a	function	is	called	that	mutates	one	or	more	of	its	parameters,	the	calling	code
will	see	 that	 the	data	has	been	mutated.	The	mutation	 is	not	somehow	undone	when	 the
function	returns.	Since	strings,	ints,	floats,	and	bools	are	all	immutable,	this	never	comes
up	when	passing	arguments	of	 these	 types.	But,	 again,	 lists	 are	mutable,	 and	a	 function
may	mutate	a	list	as	seen	in	the	next	example.

Example	5.8
Consider	the	following	code	that	reverses	a	list	in	place.	It	does	not	build	a	new	list.
It	reverses	the	existing	list.

Notice	 that	 the	 reverseInPlace	 function	 in	 Example	 5.8	 does	 not	 return	 anything.	 In
addition,	when	 reverseInPlace	 is	 called	 it	 is	 not	 set	 to	 some	 variable,	 nor	 is	 the	 return
value	printed.	It	is	just	called	on	a	line	by	itself.	That’s	because	it	modifies	the	list	passed
to	it	as	an	argument.

Practice	5.7
Why	would	it	be	very	uninteresting	to	call	reverseInPlace	like	this?	What	would	the
next	line	of	code	be?



In	practice	Problem	5.7	the	value	printed	to	the	screen	is	None.	None	is	a	special	value	in
Python.	It	is	returned	by	any	function	that	does	not	explicitly	return	a	value.	All	functions
return	a	value	 in	Python.	Those	 that	don’t	have	a	return	 statement	 in	 them	 to	 explicitly
return	 a	 value,	 return	None	 by	 default.	Obviously,	 printing	None	wouldn’t	 tell	 us	much
about	the	reverse	of	[1,	2,	3,	4,	5].

Practice	5.8
What	would	happen	if	you	tried	to	use	reverseInPlace	to	reverse	a	string?



5.6		Predicate	Functions
A	predicate	is	an	answer	to	a	question	with	respect	to	one	or	more	objects.	For	instance,
we	can	ask,	Is	x	even?.	 If	 the	value	 that	x	 refers	 to	 is	even,	 the	answer	would	be	Yes	or
True.	If	x	refers	to	something	that	is	not	even	then	the	answer	would	be	False.	In	Python,
if	we	write	a	function	that	returns	True	or	False	depending	on	its	parameters,	that	function	is
called	a	Predicate	function.	Predicate	functions	are	usually	implemented	using	the	Guess
and	Check	pattern.	However,	applying	this	pattern	to	a	function	can	look	a	little	different
than	the	pattern	we	learned	about	in	Chap.	2.

Example	5.9
Assume	we	want	to	write	a	predicate	function	that	returns	True	if	one	number	evenly
divides	another	and	false	otherwise.	Here	 is	one	version	of	 the	code	 that	 looks	 like
the	old	Guess	and	Check	pattern.

In	 Example	 5.9	 the	 guess	 and	 check	 pattern	 is	 applied	 to	 the	 function	 evenlyDivides.
Observing	that	the	function	returns	True	or	False	 it	could	be	rewritten	to	just	return	that
value	instead	of	using	a	variable	at	all	as	in	Example	5.10.

Example	5.10
In	 this	 example	 the	 value	 is	 just	 returned	 instead	 of	 storing	 it	 in	 a	 variable	 and
returning	 at	 the	 bottom.	 This	 is	 equivalent	 to	 the	 code	 in	 Example	 5.9	 because	 it
returns	 True	 and	 False	 in	 exactly	 the	 same	 instances	 as	 the	 other	 version	 of	 the

function.	NOTE:	If	 	 then	 the	return	True	 is	 executed.	This	 terminates	 the
function	immediately	and	it	never	gets	to	the	statement	return	False	in	that	case.	If	

	is	false,	then	the	code	skips	the	then	part	of	the	if	statement	and	executes
the	return	False.



Since	the	function	in	Examples	5.9	and	5.10	returns	True	when	 	and	False	when
it	 does	 not,	 there	 is	 one	more	 version	 of	 this	 function	 that	 is	 even	more	 concise	 in	 its
definition.	Any	time	you	have	an	if	statement	where	you	see	 if	c	is	true	then	return	true
else	return	false	it	can	be	replaced	by	return	c.	You	don’t	need	an	if	statement	if	all	you
want	to	do	is	return	true	or	false	based	on	one	condition.

Example	5.11
Here	is	the	same	program	one	more	time.	This	is	the	elegant	version.

While	the	third	version	of	the	evenlyDivides	function	is	the	most	elegant,	this	pattern	may
only	be	applied	 to	predicate	functions	where	only	one	condition	needs	 to	be	checked.	 If
we	 were	 trying	 to	 return	 write	 a	 predicate	 function	 that	 needed	 to	 check	 multiple
conditions,	then	the	second	or	first	form	of	evenlyDivides	would	be	required.

Practice	5.9
Write	a	function	called	evenlyDividesList	 that	 returns	 true	 if	every	element	of	a	 list
given	to	the	function	is	evenly	divided	by	an	integer	given	to	the	function.



5.7		Top-Down	Design
Functions	may	be	called	from	either	the	main	code	of	a	program	or	from	other	functions.
A	 function	 call	 is	 allowed	 any	 place	 an	 expression	 may	 be	 written	 in	 Python.	 One
technique	 for	 dealing	with	 the	 complexity	 of	writing	 a	 complex	 program	 is	 called	Top-
Down	 Design.	 In	 top-down	 design	 the	 programmer	 decides	 what	 major	 actions	 the
program	must	 take	 and	 then	 rather	 than	worry	 about	 the	 details	 of	 how	 it	 is	 done,	 the
programmer	just	defines	a	function	that	will	handle	that	later.

Example	5.12
Assume	we	want	 to	 implement	 a	 program	 that	will	 ask	 the	 users	 to	 enter	 a	 list	 of
integers	 and	 then	 will	 answer	 which	 pairs	 of	 integers	 are	 evenly	 divisible.	 For
instance,	assume	that	the	list	of	integers	1,	2,	3,	4,	5,	6,	8,	and	12	were	entered.	The
program	should	respond:

To	accomplish	this,	a	top	down	approach	would	start	with	getting	the	input	from
the	user.

Without	worrying	further	about	how	evenlyDivisible	works	we	can	just	assume	that	it	will
work	once	we	get	around	to	defining	it.	Of	course,	the	program	won’t	run	until	we	define
evenlyDivisible.	But	we	can	decide	that	evenlyDivisible	must	print	a	report	 to	 the	screen
the	way	 the	output	 is	 specified	 in	Example	5.12.	Later	we	can	write	 the	evenlyDivisible
function.	In	a	top-down	design,	when	we	write	the	evenlyDivisible	function	we	would	look
to	see	if	we	could	somehow	make	the	job	simpler	by	calling	another	function	to	help	with
the	 implementation.	 The	 evenlyDivides	 function	 could	 then	 be	 defined.	 In	 this	way	 the
main	code	calls	a	function	to	help	with	its	implementation.	Likewise,	the	evenlyDivisible
function	calls	a	function	to	aid	in	its	 implementation.	This	top-down	approach	continues
until	simple	functions	with	straightforward	implementations	are	all	that	is	left.



5.8		Bottom-Up	Design
In	a	Bottom-Up	Design	we	would	start	by	defining	a	simple	function	that	might	be	useful
in	solving	a	more	complex	problem.	For	instance,	the	evenlyDivides	function	that	checks
to	 see	 if	 one	 value	 evenly	 divides	 another,	 could	 be	 useful	 in	 solving	 the	 problem
presented	 in	Example	 5.12.	Using	 a	 bottom-up	 approach	 a	 programmer	would	 then	 see
that	evenlyDivides	solves	a	slightly	simpler	problem	and	would	look	for	a	way	to	apply	the
evenlyDivides	function	to	the	problem	we	are	solving.

Practice	5.10
Using	 the	 last	 version	 of	 the	 evenlyDivides	 function,	 write	 a	 function	 called
evenlyDivisibleElements	that	given	an	integer,	x,	and	a	list	of	integers,	returns	the	list
of	 integers	 from	 the	given	 list	 that	evenly	divide	x.	This	would	be	 the	next	 step	 in
either	 the	bottom-up	design	or	 the	 top-down	design	of	a	solution	 to	 the	problem	in
Example	5.12.

Practice	5.11
Write	 the	 function	 evenlyDivisible	 from	 Example	 5.12	 using	 the
evenlyDivisibleElements	 function	 to	 complete	 the	 program	 presented	 in
Example	5.12	and	practice	Problem	5.10.



5.9		Recursive	Functions
Sections	5.7	and	5.8	taught	us	that	functions	can	call	other	functions	and	that	sometimes
this	helps	make	a	complex	problem	more	manageable	 in	some	way.	It	 turns	out	 that	not
only	can	functions	call	other	functions,	they	can	also	call	themselves.	This	too	can	make	a
problem	 more	 manageable.	 If	 you’ve	 ever	 seen	 a	 proof	 by	 induction	 in	 Mathematics,
recursive	functions	are	somewhat	like	inductive	proofs.	In	an	inductive	proof	we	are	given
a	problem	and	told	we	know	it	is	solvable	for	a	smaller	sized	problem.	Induction	says	that
if	we	 can	use	 that	 smaller	 solution	 to	 arrive	 at	 a	 bigger	 solution,	 then	we	 can	 conclude
every	instance	of	that	problem	has	a	solution.	What	makes	an	inductive	proof	so	powerful
is	that	we	don’t	have	to	worry	about	the	existence	of	a	solution	to	the	smaller	problem.	It
is	guaranteed	to	exist	by	the	nature	of	the	proof.

Recursion	 in	functions	works	 the	same	way.	We	may	assume	that	our	function	will
work	if	we	call	our	function	on	a	smaller	value.	Let’s	consider	the	computation	of	factorial
from	Mathematics.	 	 by	 definition.	 This	 is	 called	 the	 base	 case.	 	 is	 defined	 as	

.	This	is	the	recursive	part	of	the	definition	of	factorial.

Example	5.13
Factorial	can	be	written	in	Python	much	the	same	way	it	is	defined	in	Mathematics.
The	if	statement	must	come	first	and	is	the	statement	of	the	base	case.	The	recursive
case	is	always	written	last.

Practice	5.12
What	 would	 happen	 if	 the	 base	 case	 and	 the	 recursive	 case	 were	 written	 in	 the
opposite	order	in	Example	5.13?	HINT:	What	happens	to	the	run-time	stack	when	a
function	is	called?

A	 function	 is	 recursive	 if	 it	 calls	 itself.	Recursion	works	 in	Python	and	other	 languages
because	of	the	run-time	stack.	To	fully	understand	how	the	factorial	function	works,	you
need	to	examine	the	run-time	stack	to	see	how	the	program	prints	120	to	the	screen.

Practice	5.13
Recalling	that	each	time	a	function	is	called	an	activation	record	is	pushed	on	the	run-
time	stack,	how	many	activation	records	will	be	pushed	on	the	run-time	stack	at	 its
deepest	point	when	computing	factorial	(5)?

Practice	5.14



Run	 the	 factorial	program	on	an	 input	of	5	using	Wing	or	your	 favorite	 IDE.	Set	a
breakpoint	in	the	factorial	function	on	the	two	return	statements.	Watch	the	run-time
stack	grow	and	shrink.	What	do	you	notice	about	the	parameter	n?

Many	problems	can	be	formulated	in	terms	of	recursion.	For	instance,	reversing	a	string
can	be	formulated	recursively.	To	reverse	a	string	we	only	need	to	reverse	a	shorter	string,
say	all	but	the	first	letter,	and	then	tack	the	first	letter	onto	the	other	end	of	the	reversed
string.	 Here	 is	 the	 beautiful	 part	 of	 recursion.	We	 can	 assume	 that	 reversing	 a	 shorter
string	already	works!!!

Example	5.14
Here	is	a	recursive	version	of	a	function	that	reverses	a	string.	Remember,	 the	base
case	must	always	come	first.	The	base	case	usually	defines	the	simplest	problem	we
could	come	up	with.	The	result	of	reversing	an	empty	string	is	pretty	easy	to	find.	It
is	just	the	empty	string.

Practice	5.15
Write	a	 recursive	 function	 that	computes	 the	 th	Fibonacci	number.	The	Fibonacci

numbers	are	defined	as	follows:	Fib(0)	 	1,	Fib(1)	 	1,	Fib(n)	 	Fib(n	 	1)	 	Fib(n

	 2).	Write	 this	 as	 a	 Python	 function	 and	 then	write	 some	 code	 to	 find	 the	 tenth
Fibonacci	number.



5.10		The	Main	Function
In	most	programming	 languages	one	 special	 function	 is	 identified	 as	 the	main	 function.
The	main	 function	 is	where	 everything	 gets	 started.	When	 a	 program	 in	 Java	 runs,	 the
main	 function	 is	 executed	 first	 and	 the	 code	 in	 the	main	 function	 determines	 what	 the

program	does.	The	same	is	true	in	C,	C ,	Pascal,	Fortran,	and	many	other	languages.	In
Python	this	is	not	required	by	the	language.	However,	it	is	good	programming	practice	to
have	a	main	function	anyway.

One	advantage	to	defining	a	main	function	is	when	you	wish	to	write	a	module	that
others	may	use.	When	importing	a	module	a	programmer	probably	does	not	want	the	main
function	in	the	imported	module	to	run	since	he	or	she	is	undoubtably	writing	their	own
main	function.	The	programmer	writing	the	module	that	is	imported	may	want	to	write	a
main	function	to	test	the	code	they	are	providing	in	the	module.	Python	has	some	special
handling	of	imported	modules	that	allow	both	the	provider	and	the	importer	of	a	module	to
get	the	behavior	they	desire.

By	writing	a	main	function,	all	variables	defined	in	the	main	function	are	no	longer
available	 to	 the	whole	program	module.	An	example	might	help	 in	 explaining	why	 this
might	be	important.

Example	5.15
This	code	works,	but	 it	 is	accessing	the	variable	 l	 in	the	drawSquare	 function	from
the	 enclosing	 scope.	 It	 is	 generally	 a	 bad	 idea	 to	 access	 the	 enclosing	 scope	 of	 a
function	 except	 in	 some	 specific	 circumstances.	 Of	 course,	 this	 was	 a	 mistake.	 It
should	have	been	length	that	was	used	in	the	drawSquare	function.

While	 the	 code	 in	 Example	 5.15	 works,	 it	 is	 not	 desirable	 because	 if	 a	 programmer
changes	 the	main	 code	 he	 or	 she	may	 affect	 the	 code	 in	 the	 drawSquare	 function.	 For
instance,	if	the	programmer	renames	l	to	length	at	some	future	time,	then	the	drawSquare
function	will	 cease	 to	work.	 In	 addition,	 if	 drawSquare	 is	moved	 to	 another	module	 at
some	point	 in	 the	future	 it	will	cease	 to	work.	A	function	should	be	as	self-contained	as
possible	to	make	it	independent	of	where	it	is	defined	and	where	it	is	used.

The	 problem	 in	 the	 code	 above	 is	 easy	 to	miss	 at	 first.	You	 could	 easily	 think	 the
program	is	fine	since	it	does	what	it	is	supposed	to	do.	The	problem	is	due	to	the	fact	that



up	to	this	point	we	have	not	used	a	main	function	in	our	programs.	Python	programmers
sometimes	write	 a	main	 function	 and	 sometimes	do	not.	However,	 it	 is	 safer	 to	write	 a
main	function	and	most	experienced	Python	programmers	will	stick	to	the	convention	of
writing	one.

Example	5.16
Here	 is	 the	 draw	 square	 program	 again,	 this	 time	with	 a	main	 function.	When	 the
Python	 interpreter	 scans	 this	 file,	 two	functions	are	defined,	drawSquare	and	main.
The	if	statement	at	the	end	of	the	program	is	the	first	statement	to	be	executed.

When	a	program	has	a	main	function	in	Python,	the	convention	is	to	write	an	if	statement
at	 the	 end	 of	 the	 program	 that	 starts	 everything	 executing.	 There	 is	 a	 special	 hook	 in
Python	that	controls	how	a	Python	program	is	started.	When	a	program	is	imported	as	a
module	the	special	variable	called	_	_name_	_	is	set	to	the	name	of	the	module.	When	a
program	is	NOT	imported,	but	run	as	the	main	module	of	a	Python	program,	the	special
variable	 _	 _name_	 _	 is	 set	 to	 the	 value	 “_	 _main_	 _”.	 When	 running	 the	 code	 in
Example	5.16	the	if	 statement’s	condition	 is	True	and	 therefore	main	 is	called	 to	get	 the
program	 started.	 However,	 this	 code	 implements	 a	 useful	 function,	 the	 drawSquare
function.	 It	might	 be	 the	 case	 that	 some	programmer	would	 like	 to	 use	 this	 function	 in
their	code.	If	this	code	resides	a	file	called	square.py	and	a	programmer	has	a	copy	of	this
module	 and	 writes	 import	 square	 in	 their	 code,	 then	 when	 this	 module	 loads	 the
_	_name_	_	variable	will	be	set	to	the	name	of	the	module	and	not	“_	_main_	_”.	If	you
run	this	code	as	a	program	then	the	main	function	gets	called.	If	you	import	this	module
into	some	other	program,	 then	 the	main	 function	does	not	get	called.	When	a	module	 is
written	 that	 is	 intended	 to	be	 imported	 into	other	code,	 the	main	function	often	contains
code	to	test	the	functions	provided	in	the	module.

In	 Example	 5.16,	 if	 the	 programmer	 were	 to	 mistakenly	 write	 turtle.forward(l)
instead	of	 turtle.forward(length),	Python	would	complain	 the	 first	 time	 the	draw	Square
function	was	called.	It	would	say	that	l	is	undefined.	This	is	much	more	desirable	since	we
would	like	to	catch	errors	like	that	right	away	as	opposed	to	some	later	time.

Example	5.17
Here	are	a	few	lines	from	the	turtle.py	module	that	would	be	executed	when	the	turtle



module	is	run	as	a	program	instead	of	being	imported.



5.11		Keyword	Arguments
Up	to	this	point	we	have	learned	that	arguments	passed	to	a	function	must	be	in	the	same
order	as	the	formal	parameters	in	the	function	definition.	For	instance,	in	Example	5.16,	to
call	 the	 drawSquare	 function	 we	 would	 write	 drawSquare(t,l)	 as	 is	 done	 in	 the	main
function	of	the	example.

It	 turns	 out	 that	 Python	 allows	 programmers	 to	 call	 functions	 using	 keyword
arguments	as	well	[5].	This	is	not	possible	in	every	language,	but	this	is	one	of	the	very
powerful	 features	 of	 Python.	A	 formal	 parameter	 in	 the	 function	 definition	 is	 the	 name
given	 to	 a	 value	 that	will	 be	 passed	 to	 the	 function.	 For	 instance,	 in	Example	 5.16	 the
formal	 parameters	 to	 drawSquare	 are	 turtle	 and	 length.	 These	 two	 names	 are	 also
keywords	 that	may	be	 used	when	 calling	 drawSquare.	The	 drawSquare	 function	 can	 be
called	by	writing	drawSquare(length	 	l,turtle	 	t)	using	the	keyword	style	of	parameter
passing.



5.12		Default	Values
When	the	keyword	style	of	parameter	passing	is	used,	some	keyword	values	may	or	may
not	be	 supplied	depending	on	what	 the	 function	does.	 In	 this	case,	 a	 function	definition
can	supply	a	default	value	for	a	parameter.

Example	5.18
Here	is	the	drawSquare	function	with	a	default	length	value	for	the	side	length	of	the
square.	This	means	that	the	following	calls	to	drawSquare	would	all	be	valid.



5.13		Functions	with	Variable	Number	of	Parameters
Python	functions	may	have	a	variable	number	of	parameters	passed	to	them.	To	deal	with
this	a	special	form	of	parameter	is	defined	in	Python	by	writing	an	asterisk	in	front	of	it.
Writing	*args	as	a	formal	parameter	defines	args	as	a	list	(see	[5]).	Every	argument	that	is
passed	starting	at	args	position	will	be	passed	in	a	list	that	args	will	refer	to.

Example	5.19
Consider	 a	 function	 called	 drawFigure	 that	 draws	 a	 figure	 by	 making	 a	 series	 of
forward	 and	 left	 moves	 with	 a	 turtle.	 Since	 there	 could	 be	 a	 variable	 number	 of
forward	and	left	turns,	they	are	represented	by	the	formal	parameter	*args	which	is	a
list	of	all	the	arguments	after	the	named	turtle	argument.



5.14		Dictionary	Parameter	Passing
Using	keyword/value	pairs	to	pass	values	to	functions	is	much	like	building	a	dictionary.
A	dictionary	is	a	set	of	keys	and	associated	values.	For	instance,	you	can	assign	width	 	20
and	 height	 	 40	 in	 a	 dictionary.	 Chapter	 12	 describes	 the	 operators	 and	 methods	 of
dictionaries.

Example	5.20
Here	is	a	dictionary	called	dimensions	with	keys	width	and	height.

As	an	added	convenience	 for	programmers,	a	dictionary	of	keyword/value	pairs	may	be
specified	as	a	parameter	to	a	function	[5].	The	dictionary	is	automatically	defined	as	the
set	 of	 all	 keyword/value	 pairs	 passed	 to	 the	 function.	 A	 keyword/value	 dictionary
parameter	is	defined	by	writing	two	asterisks	in	front	of	the	parameter	name.

Example	5.21
Here	 is	 a	drawRectangle	 function	 that	 gets	 its	 width	 and	 height	 as	 keyword/value
arguments.	The	function	definition	specifies	a	dimensions	keyword/value	dictionary
argument.	The	code	below	shows	how	it	can	be	used.



5.15		Review	Questions
1.		

What	 is	 the	 difference	 between	 defining	 a	 function	 and	 calling	 a	 function?	 Give	 an
example	of	each	and	describe	what	happens	when	a	function	is	both	defined	and	called.

	
2.		

What	are	two	reasons	to	write	functions	when	possible	in	your	code?

	
3.		

What	is	an	argument	and	what	is	a	formal	parameter?

	
4.		

What	is	scope	and	what	is	 the	name	of	the	rule	for	determining	the	scope	of	a	variable?
Describe	what	each	letter	means	in	the	acronym	for	determining	scope.

	
5.		

What	is	an	activation	record?	When	is	one	pushed	and	when	is	it	popped?

	
6.		

How	do	activation	records	and	scope	relate	to	each	other?

	
7.		

If	a	function	is	called	and	passed	a	string	it	can	make	all	the	changes	it	wants	to	the	string
but	when	the	function	returns	the	changes	will	be	lost.	This	isn’t	necessarily	the	case	if	a
function	is	passed	a	list.	Why?

	
8.		

What	 is	 a	 predicate	 function?	What	 programming	 pattern	 is	 a	 predicate	 function	 likely
going	to	use?



	
9.		

What	is	the	difference	between	top-down	and	bottom-up	design?

	
10.		

What	is	a	recursive	function?	What	two	things	must	a	recursive	function	contain?

	
11.		

Why	is	a	main	function	beneficial	in	a	program?	Give	two	reasons	a	main	function	might
help	in	the	implementation	of	a	module.

	
12.		

What	is	a	keyword	parameter/argument?	How	does	it	differ	from	a	regular	argument?

	
13.		

What	is	a	dictionary?	How	can	a	dictionary	be	used	in	parameter	passing?

	



5.16		Exercises
1.		

Write	a	program	that	contains	a	drawTruck	function	 that	given	an	x,y	coordinate	on	 the
screen	draws	a	truck	using	Turtle	graphics.	You	may	use	the	goto	method	on	the	first	line	of
the	function,	but	after	 that	use	only	left,	right,	forward,	and	back	to	draw	the	truck.	You
may	use	color	when	drawing	if	you	would	like	to.

	
2.		

Modify	 the	program	in	 the	previous	exercise	 to	add	a	scale	 parameter	 to	 the	drawTruck
function.	 You	 should	multiply	 the	 scale	 times	 each	 forward	 or	 back	method	 call	 while
drawing	the	 truck.	Then	use	 the	drawTruck	function	at	 least	 three	 times	in	a	program	to
draw	trucks	of	different	sizes.

	
3.		

Write	a	program	that	contains	a	function	called	drawRegularPolygon	where	you	give	it	a
Turtle,	the	number	of	sides	of	the	polygon,	and	the	side	length	and	it	draws	the	polygon
for	you.	NOTE:	This	function	won’t	return	a	value	since	it	has	a	side-effect	of	drawing	the
regular	polygon.	Then	write	some	code	that	uses	this	function	at	least	three	times	to	draw
polygons	of	different	sizes	and	shapes.

	
4.		

Write	a	predicate	function	called	isEven	that	returns	True	if	a	number	is	even	and	False	if
it	is	not.	Use	the	function	in	a	program	and	test	your	code	on	several	different	values.

	
5.		

Write	a	function	called	allEvens	that	given	a	list	of	integers,	returns	a	new	list	containing
only	 the	 even	 integers.	 Use	 the	 function	 in	 a	 program	 and	 test	 your	 code	 on	 several
different	values.

	
6.		

Write	 a	 function	 called	 isPalindrome	 that	 returns	 True	 if	 a	 string	 given	 to	 it	 is	 a
palindrome.	A	palindrome	is	a	string	that	is	the	same	spelled	backwards	or	forwards.	For
instance,	 radar	 is	 a	 palindrome.	 Use	 the	 function	 in	 a	 program	 and	 test	 your	 code	 on



several	different	values.

	
7.		

Write	a	 function	called	 isPrime	 that	 returns	True	 if	an	 integer	given	 to	 the	 function	 is	a
prime	 number.	 Use	 the	 function	 in	 a	 program	 and	 test	 your	 code	 on	 several	 different
values.

	
8.		

A	tuple	is	a	sequence	of	comma	separated	values	inside	of	parens.	For	instance	(5,6)	is	a
two-tuple.	Write	a	function	called	zip	that	is	given	two	lists	of	the	same	length	and	creates
a	new	list	of	two-tuples	where	each	two-tuple	is	the	tuple	of	the	corresponding	elements
from	the	two	lists.	For	example,	zip([1,	2,	3],[4,	5,	6])	would	return	[(1,	4),(2,	5),(3,	6)].
Use	the	function	in	a	program	and	test	your	code	on	several	different	values.

	
9.		

Write	a	function	called	unzip	that	returns	a	tuple	of	two	lists	that	result	from	unzipping	a
zipped	list	(see	the	previous	exercise).	So	unzip([(1,	4),(2,	5),(3,	6)])	would	return	([1,	2,
3],[4,	5,	6]).	Use	the	function	in	a	program	and	test	your	code	on	several	different	values.

	
10.		

Write	a	function	called	sumIt	which	is	given	a	list	of	numbers	and	returns	the	sum	of	those
numbers.	Use	the	function	in	a	program	and	test	your	code	on	several	different	values.

	
11.		

Write	a	recursive	function	called	recursiveSumIt	which	given	a	list	of	numbers,	returns	the
sum	 of	 those	 numbers.	 Use	 the	 function	 in	 a	 program	 and	 test	 your	 code	 on	 several
different	values.

	
12.		

Use	top-down	design	to	write	a	program	with	three	functions	that	capitalizes	the	first	letter
of	 each	word	 in	 a	 sentence.	 For	 instance,	 if	 the	 user	 enters	 “hi	 there	 how	 are	 you”	 the
program	should	print	back	to	the	screen	“Hi	There	How	Are	You”.	Don’t	forget	to	define
at	 least	 three	 functions	 using	 top-down	 design.	Write	 comments	 to	 show	what	 function



you	wrote	first,	followed	by	the	second	function	you	wrote,	followed	by	the	third	function
you	wrote	assuming	you	employed	a	top-down	design.

	
13.		

Use	 bottom-up	 design	 to	 write	 a	 program	with	 three	 functions	 that	 capitalizes	 the	 first
letter	of	each	word	in	a	sentence.	For	instance,	if	the	user	enters	“hi	there	how	are	you”	the
program	should	print	back	to	the	screen	“Hi	There	How	Are	You”.	Don’t	forget	to	define
at	 least	 three	 functions	using	bottom-up	design.	Write	comments	 to	 show	what	 function
you	wrote	first,	followed	by	the	second	function	you	wrote,	followed	by	the	third	function
you	wrote	assuming	you	employed	a	bottom-up	design.	HINT:	The	answer	to	this	problem
and	Exercise	12	should	only	differ	in	the	order	that	you	wrote	the	functions.	The	solutions
should	otherwise	be	identical.

	
14.		

Write	a	function	called	 factors	 that	given	an	integer	returns	the	list	of	 the	factors	of	that
integer.	For	instance,	factors(6)	would	return	[1,	2,	3,	6].

	
15.		

Write	a	function	called	sumFactors	that	given	an	integer	returns	the	sum	of	the	factors	of

that	integer.	For	instance,	sumFactors(6)	would	return	 	since	 .

	
16.		

Write	a	 function	called	 isPerfect	 that	 given	 an	 integer	 returns	True	 if	 the	number	 is	 the
sum	of	 its	 factors	 (not	 including	 itself)	 and	False	otherwise.	For	 instance,	6	 is	 a	perfect
number	because	its	factors,	1,	2,	and	3	add	up	to	6.

	
17.		

Write	 a	 function	 called	 sumRange	 that	 given	 two	 integers	 returns	 the	 sum	 of	 all	 the
integers	 between	 the	 two	 given	 integers	 inclusive.	 For	 instance,	 sumRange(3,6)	would
return	 18.	 Use	 a	 second	 function	 in	 the	 definition	 of	 sumRange	 to	 show	 that	 you	 can
employ	some	top-down	design	to	decompose	this	problem	into	a	simpler	problem	and	then
use	 that	 simpler	 solution	 to	 solve	 this	 problem.	 HINT:	 Look	 for	 a	 function	 in	 these
exercises	you	might	use	in	defining	sumRange.



	
18.		

Write	a	 function	called	reverseWords	 that	given	a	string	 representing	a	sentence,	 returns
the	same	sentence	but	with	each	word	reversed.	For	instance,	reverseWords(“hi	there	how
are	you”)	would	return	“ih	ereht	woh	era	uoy”.	Use	another	function	in	the	definition	of
this	function	to	make	the	task	of	writing	this	program	simpler.

	
19.		

Write	a	function	called	oddCharacters	that	given	a	string,	returns	a	string	containing	only
the	odd	characters	of	the	given	string.	The	first	element	of	a	string	(i.e.	index	0)	is	an	even
element.	oddCharacters(“hi	there”)	should	be	“itee”.

	
20.		

Write	a	function	called	oddElements	that	given	a	list,	returns	a	list	containing	only	the	odd
elements	 of	 the	 list.	 The	 first	 element	 of	 a	 list	 (i.e.	 index	 0)	 is	 an	 even	 element.
oddElements	([1,	2,	3,	4])	should	be	[2,	4].	What	do	you	notice	about	this	and	the	previous
problem?

	
21.		

Write	a	function	called	dotProduct	that	computes	the	dot	product	of	two	lists	of	numbers
given	to	the	function.	Use	the	zip	function	in	your	solution.

	
22.		

Review	Exercise	2	from	Chap.	3.	Use	top-down	design	to	write	at	least	two	functions	that
implement	an	addressbook	application	as	described	there.	When	you	write	it	this	time	use
the	 technique	 of	 parallel	 lists	 introduced	 in	 Chap.	 4.	 The	 program	 should	 read	 all	 the
records	from	the	file	and	place	the	contents	of	the	fields	of	each	record	in	parallel	lists	so
the	file	does	not	have	to	be	read	more	than	once	in	the	application.	But,	be	sure	to	write
the	contents	of	the	parallel	lists	to	the	file	when	the	user	chooses	to	quit.	Otherwise,	you
won’t	be	able	to	add	entries	to	the	address	book.

	
23.		

Write	a	program	that	computes	a	users	GPA	on	a	4	point	scale.	Each	grade	on	a	4	point



scale	is	multiplied	by	the	number	of	credits	for	that	class.	The	sum	of	all	the	credit,	grade
products	is	divided	by	the	total	number	of	credits	earned.	Assume	the	4	point	scale	assigns

values	of	4.0	for	an	A,	3.7	for	an	A ,	3.3	for	a	B ,	3.0	for	a	B,	2.7	for	a	B ,	2.3	for	a	C

,	2.0	for	a	C,	1.7	for	a	C ,	1.3	for	a	D ,	1.0	for	a	D,	0.7	for	a	D ,	and	0	for	an	F.	Ask
the	user	to	enter	their	credit	grade	pairs	using	the	following	format	until	the	enter	0	for	the
number	of	credits.

In	 this	 version	 of	 the	 program	 you	 should	 read	 the	 data	 from	 the	 user	 and	 build
parallel	 lists.	Then,	write	a	 function	called	computeWeightedAverage	 that	given	 the	 two
parallel	lists	computes	the	average	and	returns	it.	Use	this	function	in	your	program.

	



5.17		Solutions	to	Practice	Problems
These	are	solutions	to	the	practice	problems	in	this	chapter.	You	should	only	consult	these
answers	after	you	have	tried	each	of	them	for	yourself	first.	Practice	problems	are	meant
to	help	reinforce	the	material	you	have	just	read	so	make	use	of	them.

5.17.1		Solution	to	Practice	Problem	5.1

5.17.2		Solution	to	Practice	Problem	5.2

5.17.3		Solution	to	Practice	Problem	5.3
The	error	is	variable	referenced	before	assignment.	It	occurs	on	the	first	line,	the	second
occurrence	of	x.	At	this	point	x	has	no	value.

5.17.4		Solution	to	Practice	Problem	5.4
The	error	message	is	below.	The	problem	is	that	the	len	function’s	name	was	overridden	in
the	 local	scope	by	 the	 len	variable.	This	means	 that	within	 the	 local	scope	of	 the	 length
function,	 len	 cannot	 be	 called	 as	 a	 function.	 The	 error	 message	 says	 that	 an	 int	 is	 not
callable.

5.17.5		Solution	to	Practice	Problem	5.5
Figure	 5.3	 shows	 the	 contents	 of	 the	 run-time	 stack	 just	 before	 the	 return	 from	 the
function.	There	are	no	variables	in	the	main	activation	record.

5.17.6		Solution	to	Practice	Problem	5.6
Refer	to	Fig.	5.3	to	compare	to	what	you	see	using	your	IDE.

Fig.	5.3		The	run-time	stack	for	Example	5.2



5.17.7		Solution	to	Practice	Problem	5.7
None	 is	 returned	by	 the	 function	 since	 it	 does	 not	 explicitly	 return	 a	 value.	So	printing
None	is	not	very	interesting,	But,	more	importantly,	since	the	list	is	reversed	in	place	then
how	should	the	list	be	accessed?	There	is	no	reference	stored	to	the	list	once	the	function
returns	 so	 the	garbage	 collector	 comes	along	and	 reclaims	 the	 space	 throwing	away	 the
work	that	was	just	done.	The	correct	way	to	call	it	is	shown	in	Example	5.8.

5.17.8		Solution	to	Practice	Problem	5.8
The	reverseInPlace	function	cannot	be	used	to	reverse	a	string	since	indexed	assignment
is	not	possible	on	strings.	In	other	words,	strings	are	immutable.	The	line	of	code	lst[i]	
lst[len(lst)-1-i]	is	the	line	of	code	where	the	program	would	terminate	abnormally.

5.17.9		Solution	to	Practice	Problem	5.9

5.17.10		Solution	to	Practice	Problem	5.10

5.17.11		Solution	to	Practice	Problem	5.11

5.17.12		Solution	to	Practice	Problem	5.12
Each	 time	 a	 function	 call	 is	 made	 an	 activation	 record	 is	 pushed	 on	 the	 stack.	 Each
activation	 record	 takes	 some	 space.	 Without	 the	 base	 case	 first,	 the	 program	 would
repeatedly	call	 the	 factorial	 function	until	 the	 run-time	 stack	overflowed	 (i.e.	 ran	out	of
space).	This	is	called	infinite	recursion	even	though	it	will	not	continue	indefinitely.

5.17.13		Solution	to	Practice	Problem	5.13
There	 would	 be	 7	 activation	 records	 at	 its	 deepest	 point,	 one	 for	 the	main	 activation
record,	and	one	for	each	of	the	arguments	recursively	passed	to	factorial(5):	5,	4,	3,	2,	1,
0.

5.17.14		Solution	to	Practice	Problem	5.14



When	you	run	the	program	you	should	notice	that	 there	are	6	different	n	variables,	each
with	a	different	value	from	5	to	0.	This	is	why	it	is	important	to	understand	the	run-time
stack	 and	 how	 it	works	when	 dealing	with	 recursion.	 Recursive	 functions	 cannot	work
without	the	run-time	stack.

5.17.15		Solution	to	Practice	Problem	5.15
Here	is	the	solution.	However,	you	would	never,	ever,	write	such	a	program	and	use	it	in	a
commercial	 setting.	 It	 is	 too	 slow	 for	 anything	 but	 small	 values	 of	 n.	 There	 are	 much
better	solutions	to	finding	fibonacci	numbers	that	are	available.



©	Springer-Verlag	London	2014

Kent	D.	LeePython	Programming	FundamentalsUndergraduate	Topics	 in	Computer	Science10.1007/978-1-4471-6642-
9_6



6.	Event-Driven	Programming
Kent	D.	Lee1		

(1)		

Luther	College,	Decorah,	IA,	USA

	
	

Kent	D.	Lee
Email:	kentdlee@luther.edu

When	 a	 program	 runs	 in	 Python	 the	 Python	 interpreter	 scans	 the	 program	 from	 top	 to
bottom	executing	the	first	statement	that	is	not	part	of	a	function	definition.	The	program
proceeds	by	executing	the	next	statement	and	the	next.	Sequential	execution	is	redirected
by	 iteration	 (i.e.	 for	 and	 while	 loops)	 and	 function	 calls.	 Nevertheless,	 the	 program
sequentially	executes	until	Python	interprets	the	last	statement	at	which	point	the	program
terminates.

In	an	event-driven	program	sequential	execution	is	 in	response	to	events	happening
while	 the	 program	 is	 executing.	 Event-driven	 programs	 arise	 in	 many	 areas	 of
programming	 including	 Operating	 Systems,	 Internet	 Programming,	 Distributed
Computing,	 and	Graphical	User	 Interfaces,	 often	 abbreviated	GUI	 programs.	An	 event-
driven	application	begins	as	a	 sequential	program	executing	one	 statement	after	 another
until	 it	 enters	 a	 never-ending	 loop.	This	 loop,	 sometimes	 called	 the	 event	 dispatch	 loop
looks	 for	 an	 incoming	 event	 and	 then	 dispatches	 that	 event	 to	 an	 event	 handler.	Events
come	in	a	wide	variety	of	flavors	including:

	
An	interrupt	indicating	the	completion	of	a	disk	operation

A	network	packet	has	become	available

A	network	connection	has	become	unavailable

A	button	was	pressed	in	a	GUI	application

A	menu	item	was	selected	in	a	GUI	application

An	incoming	request	has	been	received	by	a	web	server.

In	an	event-driven	program,	the	event	dispatch	loop	looks	for	events	like	these.	Each
event	will	 generally	 have	 its	 own	 event	 handler.	An	 event	 handler	 is	 a	 function	 that	 is
called	to	process	the	event.	Each	time	an	event	is	found,	the	corresponding	event	handler
is	called	to	process	the	event.	Once	the	event	is	processed,	the	program	returns	from	the
event	handler	 to	 the	event	dispatch	 loop	 to	 look	for	 the	next	event.	This	process	repeats
forever	 or	 until	 some	 event	 is	 dispatched	 that	 causes	 the	 program	 to	 terminate.	 For
example,	 if	 a	user	chooses	 to	exit	 a	GUI	application,	 the	event	handler	may	 tell	 the	 the
event	dispatch	loop	to	quit	and	exit.

mailto:kentdlee@luther.edu


Tk	is	a	powerful	Application	Programming	Interface,	or	API,	designed	to	make	GUI
programming	easy	on	a	variety	of	operating	systems	including	Mac	OS	X,	Windows,	and
Linux	 [11].	An	API	 is	 a	 set	 of	 classes,	 or	 types,	 and	 functions	 that	 can	be	useful	when
implementing	a	program.	 In	 the	case	of	Python,	 the	Tkinter	API	was	designed	 to	allow
Python	programs	to	work	with	the	Tk	package	to	implement	GUI	programs	that	will	run
on	Windows,	Mac	OS	X,	or	Linux	 [5].	The	Tkinter	API	 is	 included	 in	a	module	called
tkinter.	The	module	is	included	with	most	distributions	of	Python	and	may	be	imported	to
use	in	your	Python	programs.

Tk	programs	use	widgets	to	build	a	GUI	application.	The	term	widget	has	been	used
at	least	since	the	1980s	to	refer	to	any	element	of	a	GUI	application	including	windows,
buttons,	menus,	text	entry	fields,	frames,	listboxes,	etc.	There	are	many	different	widgets
available	 in	 tkinter.	 Typically,	 any	 element	 you	 can	 see	 (and	 some	 you	 can’t	 see,	 like
frames)	in	a	GUI	application	is	a	widget.	The	next	sections	will	introduce	several	widgets
while	building	a	Reminder!	note	application.



6.1		The	Root	Window
To	begin	using	the	Tk	API	you	open	a	root	window.	Tk	applications	can	have	more	than
one	open	window,	but	the	main	window	is	called	the	root	window.	It	is	opened	by	calling
a	function	called	Tk().

Example	6.1
Here	is	code	to	open	a	Tk	window.

Fig.	6.1		A	Tk	root	window

The	code	in	Example	6.1	opens	a	window	as	pictured	in	Fig.	6.1.	The	call	to	the	title
method	 sets	 the	 title	 of	 the	 window.	 The	 call	 to	 resizable	 makes	 the	 window	 a	 non-
resizable	 window.	 The	 Tkinter.mainloop()	 calls	 the	 Tk	 event	 dispatch	 loop	 to	 process
events	from	the	windowing	application.	Even	with	a	simple	window	like	this,	the	call	to
mainloop	is	required	because	there	are	events	that	even	a	simple	window	must	respond	to.
For	example,	when	a	window	is	moved	on	the	screen	it	must	respond	to	its	redraw	event.
Redrawing	the	window	is	done	automatically	by	the	Tk	code	once	the	mainloop	function
is	called.



6.2		Menus
A	menu	can	be	added	to	 the	application	by	creating	a	Menu	widget	and	adding	it	 to	 the
root	window.	On	Windows	and	Linux	the	menu	will	appear	right	at	the	top	of	the	window.
On	a	Mac,	the	menu	appears	at	the	top	of	the	screen	on	the	menu	bar.	This	menu	contains
a	File->	Exit	menu	item	that	quits	the	application	when	selected.

Example	6.2
Here	 is	 the	 code	 that,	when	 added	 right	 before	 the	 call	 to	mainloop,	 creates	 a	File
menu	with	one	menu	item	to	exit.

When	 adding	 a	menu,	 you	 associate	 a	 command	 (i.e.	 a	 function)	with	 each	menu	 item
added	to	the	menu.	The	Exit	menu	item	is	associated	with	the	quit	function	which	calls	the
root’s	destroy	method.	Notice	the	quit	function	has	no	parameters.	Most	event	handlers	do
not	have	parameters	but	do	have	access	to	the	enclosing	scope.

Practice	6.1
Write	 a	 Tkinter	 program	 that	 creates	 a	main	window	with	 a	menu	 that	 says	Help.
Within	the	Help	menu	item	should	be	another	menu	item	that	says	About.	When	the
About	 menu	 is	 selected,	 your	 program	 should	 print	 “About	 was	 Selected”	 to	 the
screen.



6.3		Frames
A	Frame	is	an	invisible	widget	that	can	be	used	as	a	container	for	other	widgets.	Frames
are	 sometimes	 useful	 in	 laying	 out	 a	 GUI	 application.	 Layout	 refers	 to	 getting	 all	 the
widgets	in	the	right	place	and	making	them	stay	there	even	when	the	window	is	resized.
We	don’t	have	to	worry	about	resizing	the	window	in	the	Reminder!	application	so	layout
will	be	a	little	easier.

In	Fig.	 6.2	 there	 is	 a	 Frame	widget.	 The	 frame	 is	 invisible.	 The	 text	 entry	 area	 is
inside	 the	 frame	 and	 so	 is	 the	New	Reminder!	 button.	 Frames	 can	 be	 useful	 to	 group
widgets	together.	They	can	also	have	a	border	around	them.	The	border	around	this	frame
is	5	pixels	wide.	Adding	the	frame	with	a	border	gives	a	little	edge	to	the	window.

Example	6.3
This	is	the	code	that	creates	the	frame	for	the	Reminder!	application.

Fig.	6.2		The	main	Reminder!	window	[9]

When	the	frame	is	created	the	first	parameter	to	the	Frame	constructor	is	the	window	that
the	 frame	 is	 to	 be	 packed	 into.	This	 is	 true	 of	 every	widget.	 The	 first	 parameter	 to	 the
constructor	when	creating	a	widget	is	the	widget	it	belongs	to.	In	this	way,	widgets	can	be
nested	inside	of	widgets	to	form	the	GUI	application.	So,	the	mainFrame	frame	is	a	part	of
the	 root	 window.	 Recall	 that	 in	 Example	 6.1	 the	 variable	 root	 was	 set	 to	 the	 root	 Tk
window.

Packing	the	mainFrame	means	to	add	it	into	the	root	window	and	make	the	contents
of	 the	 frame	 visible.	While	 a	 frame	 itself	 is	 invisible,	 by	 packing	 it	 the	 contents	 of	 the
frame	 will	 be	 visible	 once	 the	 window	 is	 drawn.	 Packing	 is	 one	 method	 of	 making	 a
widget	visible.	Other	methods	of	making	widgets	visible	are	discussed	in	Sect.	6.9.

Practice	6.2
Create	a	frame	and	pack	it	in	a	root	window.



6.4		The	Text	Widget
The	 Text	widget	 is	 a	 powerful	multi-line	 editing	window	 that	 can	 embed	 graphics	 and
other	objects	within	it.	In	the	Reminder!	application	it	holds	the	message	to	be	posted.	The
Text	widget	in	this	application	is	added	to	the	mainFrame.	By	creating	a	Text	widget	and
packing	it	 into	the	main	frame	the	user	can	enter	 text	 into	it.	The	widget	handles	all	 the
text	entry	itself	without	any	intervention	by	the	programmer.

Example	6.4
Here	is	the	code	to	create	a	Text	widget	in	the	Reminder!	application.

Practice	6.3
Create	a	 text	widget	of	3	 rows	and	20	columns	and	place	 it	 in	your	practice	GUI’s
frame.



6.5		The	Button	Widget
The	Button	widget	 is	 used	 to	 get	 button	 press	 input	 from	 a	 user.	Buttons	 appear	 in	 the
native	button	format	of	the	operating	system	you	are	using	so	they	may	not	look	exactly
like	the	button	displayed	in	Fig.	6.2.	Since	a	button	must	respond	to	being	pressed,	when
you	create	a	button	you	specify	an	event	handler	 to	handle	 the	button	presses.	An	event
handler	is	added	to	the	button	in	the	same	way	a	command	was	added	to	a	menu	item	in
Sect.	6.2.

Example	6.5
Here	is	the	code	to	create	a	Button	and	its	associated	event	handler.

Example	6.5	shows	a	button	being	created,	being	added	to	the	main	frame,	and	then	being
packed	within	the	frame.	The	keyword	argument	text	specifies	the	text	to	go	on	the	button.
The	keyword	command	is	used	to	specify	a	parameterless	function	to	call	when	the	button
is	pressed.	The	function	post	is	a	parameterless	function	and	is	defined	in	the	same	scope
as	 the	Button.	Normally,	 a	 function	 is	not	defined	within	 the	 scope	of	 another	 function.
However,	in	Tk	programming	it	is	much	more	common.	Event	handlers	are	almost	always
nested	functions.	By	nesting	the	event	handler	in	the	main	function,	it	has	access	to	all	the
variables	 defined	 in	 the	main	 function.	 In	 this	 example	 the	post	 function	needs	 to	 have
access	to	the	root	variable	as	well	as	the	notes	and	reminders	variables.	By	defining	post
within	 the	 same	 scope	 as	 the	 root	 variable,	 the	 post	 function	 can	 use	 these	 values	 as
needed.	Since	 the	function	post	 cannot	have	any	parameters	as	dictated	by	Tkinter	API,
the	post	function	must	access	the	root	variable	from	the	enclosing	scope.	To	see	the	whole
program	in	context	refer	to	Chap.	15.

Fig.	6.3		A	Reminder!

The	 post	 function	 gets	 the	 contents	 of	 the	 text	 field,	 called	 note,	 by	 using	 the	get
method	on	the	note.	Calling	the	get	method	with	“1.0”	and	tkinter.END	gets	the	text	from
beginning	 to	 end.	 The	 winfo_rootx()	 and	 winfo_rooty()	 methods	 get	 the	 x	 and	 y
coordinates	for	the	upper	left	corner	of	the	root	window.	The	post	function	then	passes	that
information	along	with	a	couple	of	 lists	 called	notes	and	reminders	 to	 the	addReminder



function.	The	addReminder	function	adds	a	new	reminder	note	to	the	screen	as	appears	in
Fig.	6.3.

Notice	that	when	a	command	like	post	is	provided	to	a	button	it	is	not	written	post().
This	 is	 because	 we	 are	 not	 calling	 post	 when	 the	 button	 is	 created.	 Instead,	 we	 are
specifying	that	when	the	button	is	pressed	the	post	function	should	be	called.	By	providing
the	function	name	post	to	the	button	widget	it	can	remember	to	call	that	function	when	it	is
pressed.

Practice	6.4
Create	a	button	that	says	“Now!”	on	it.	Connect	it	to	a	command	that	prints	“Oh,	now
you’ve	done	it!”	to	the	screen.



6.6		Creating	a	Reminder!
To	create	a	Reminder!	window	another	top	level	window	is	created.	To	do	this,	the	button
calls	the	addReminder	function.	There	are	two	parts	to	a	reminder,	the	window	itself	and
the	 Text	widget	within	 the	window.	A	 list	 of	 reminder	windows	 is	maintained	 in	 a	 list
called	notes.	A	list	of	the	text	widgets	is	maintained	in	a	list	called	reminders.	These	lists
are	 parallel	 lists.	 This	 means	 that	 the	 first	 entry	 in	 both	 lists	 corresponds	 to	 the	 first
reminder,	the	second	element	in	both	lists	is	the	second	reminder	and	so	on.	Parallel	lists
were	 first	 introduced	 in	 Sect.	 4.9	 on	 p.	 103.	Both	 the	window	 and	 the	Text	widget	 are
needed	to	maintain	the	information	about	a	reminder	in	the	program.

Example	6.6
Here	is	the	code	that	adds	reminders	to	the	screen.	The	notes	and	reminders	lists	keep
track	of	the	windows	and	Text	widgets.

To	 add	 a	 reminder	 to	 the	 screen	 a	 toplevel	 window	 is	 created,	 the	 new	window	 is	 not
resizable	 and	 is	 positioned	 over	 the	 top	 of	 the	 existing	 window	 using	 the	 geometry
method.	Calling	geometry	on	a	window	with	a	string	like	“+10+10”	positions	the	window
at	 (10,10)	 pixels	 measured	 from	 the	 upper	 left	 corner	 of	 the	 screen.	 Since	 the	 root
window’s	 coordinates	 were	 passed	 to	 the	 function,	 the	 new	 window	 is	 positioned
approximately	on	top	of	the	root	window.

The	text	is	copied	into	the	reminder.	Then	the	window	and	the	Text	widget	are	copied
into	the	notes	and	reminders	lists,	respectively.	The	last	line	of	the	method	adds	an	event
handler	 for	 the	 window	 deletion	 event.	 If	 the	 reminder	 window	 is	 closed,	 the	 user	 is
getting	 rid	 of	 that	 reminder.	 In	 that	 case,	 the	 reminder	window	 and	 corresponding	Text
widget	are	 removed	 from	 the	notes	and	 reminders	 lists.	The	 remove	method	 looks	 for	a
matching	element	of	the	list	and	removes	it.	The	only	matching	element	of	a	window	or
Text	entry	widget	is	the	original	window	or	widget	added	to	the	list.

The	deleteWindowHandler	function	is	a	case	where	accessing	the	enclosing	scope	is
exactly	what	we	want.	We	 can’t	 pass	 parameters	 to	 the	deleteWindowHandler	 function,
but	 we	 can	 access	 the	 notes,	 reminders,	 reminder,	 and	 notewin	 variables	 from	 the
enclosing	scope	to	remove	the	window	from	the	program	when	it	is	closed.



6.7		Finishing	up	the	Reminder!	Application
There	 is	 only	 a	 little	more	 code	 needed	 to	 finish	 the	Reminder!	 application.	 It	 is	more
interesting	 if	 the	 reminders	 are	 saved	 to	 a	 file	 when	 the	 program	 is	 closed.	 Then	 the
reminder	windows	can	be	redisplayed	when	the	program	is	started	again.	The	application
saves	the	information	in	a	file	called	reminders.txt.	The	file	starts	with	the	X,Y	coordinate
of	 the	 root	 window	 on	 the	 screen.	 Then,	 each	 reminder	 record	 starts	 with	 an	 X,Y
coordinate	of	the	reminder	window	followed	by	some	text	on	multiple	lines	followed	by	a
line	of	 underscores	 and	periods	 in	 a	 pattern	 that	 should	never	be	 seen	by	 accident.	The
application	reads	from	the	file	until	this	special	line	is	found	and	then	makes	a	reminder
out	of	the	text	it	just	read.	Then	it	continues	reading	the	file	looking	for	the	next	reminder.

Example	6.7
Here	is	the	code	that	reads	and	writes	the	reminders.txt	file.

The	code	in	the	try…except	block	attempts	to	read	the	information	when	the	application
starts.	 This	 code	 is	 located	 in	 the	 main	 function	 of	 the	 application.	When	 the	 window
deletion	 event	 occurs	 for	 the	 main	 window,	 the	 appClosing	 handler	 is	 called.	 The



appClosing	 function	 writes	 the	 file,	 overwriting	 any	 file	 that	 was	 read	 when	 the
application	 started.	 The	 complete	 code	 for	 the	 Reminder!	 application	 can	 be	 found	 in
Chap.	15.



6.8		Label	and	Entry	Widgets
Assume	we	wish	to	enhance	the	Reminder!	application	by	allowing	the	user	to	set	the	title
of	each	reminder.	Instead	of	the	reminder	note	just	having	Reminder!	as	its	title,	it	could
have	 a	 user-defined	 title.	 So	 when	 the	 New	 Reminder!	 button	 was	 pressed	 for	 the
application	in	Fig.	6.4	a	new	window	would	appear	with	“Don’t	forget	trash!”	as	its	title.
This	can	be	done	by	adding	a	label	and	an	entry	widget	to	the	application.

Fig.	6.4		A	titled	Reminder!	application

The	Label	widget	is	 the	text	“Title:”	that	appears	in	the	figure.	The	Entry	widget	is
the	 one	 line	 text	 field.	While	 a	Text	widget	 can	 handle	multiple	 lines,	 an	Entry	widget
holds	just	one	line	of	text.

Example	6.8
Here	is	the	code	for	the	Entry	and	Text	widgets	in	this	application.

A	new	frame	is	created	because	it	will	need	to	contain	the	two	elements	on	one	line	in	the
application.	Without	 a	 new	 frame,	 the	 “Title:”	 label	 would	 be	 packed	 above	 the	 Entry
widget.	Within	the	titleFrame	frame,	the	titleLabel	and	titleText	widgets	are	added	using
the	grid	 layout	 instead	 of	 the	pack	 layout.	 In	 a	 grid	 layout	 you	 specify	which	 row	 and
column	of	 the	grid	 the	widget	 should	be	placed	 in.	The	columnspan	 argument	 specifies
that	the	titleText	widget	should	span	2	of	the	three	columns	of	the	row.

A	StringVar	 is	an	object	with	a	get	and	a	set	method.	The	 titleText	Entry	widget	 is
created	specifying	a	textvariable	called	noteTitle	which	is	required	to	be	of	type	StringVar.
To	retrieve	the	text	of	the	Entry	widget	we	can	write	noteTitle.get()	and	to	set	the	text	of
the	widget	we	can	write	noteTitle.set(“Whatever	Text	We	Want”).	StringVars	make	it	easy
to	set	and	retrieve	text	from	an	Entry	widget.

There	 is	a	 little	more	code	 to	write	 to	complete	 the	extension	of	 this	application	 to
include	the	title	information	in	the	reminders	and	in	the	text	file	that	stores	the	reminders.
This	code	is	left	as	an	exercise.



Practice	6.5
Add	a	label	that	says	“What	do	you	want?”	to	the	practice	Tk	application	from	this
chapter.



6.9		Layout	Management
When	 widgets	 are	 packed	 or	 gridded	 in	 an	 application,	 their	 appearance	 within	 the
application	 is	 called	 their	 layout.	 Sometimes,	 when	 widgets	 are	 placed	 within	 an
application	they	appear	in	the	right	place	when	the	application	starts,	but	if	the	window	is
resized,	 they	 don’t	 look	 right.	 Understanding	 something	 about	 layout	 management	 can
help	you	correctly	plan	your	application’s	layout	and	avoid	these	kinds	of	problems.

Packing	widgets	places	them	one	above	another	in	what	is	sometimes	called	a	flow
layout.	Each	widget	appears	above	the	next	when	packed.	The	Tk	packer	is	responsible	for
packer	layout	management.	There	are	some	options	that	can	affect	how	packing	is	done.
Normally	the	packer	places	one	widget	above	another	in	a	flow	layout.	But	these	options
let	the	programmer	have	some	control	about	how	that	flow	is	managed.

	
fill	=	You	can	specify	that	if	a	widget	can	use	the	extra	space,	then	it	should	fill	the
available	space.	Valid	values	for	fill	are	tkinter.X,	tkinter.Y,	or	tkinter.BOTH.	X	means
to	 fill	 in	 the	 horizontal	 direction,	 Y	 means	 to	 fill	 in	 the	 vertical	 direction,	 BOTH
means	 to	 fill	 in	 both	 directions.	 For	 a	 label	 to	 fill	 in	 the	 horizontal	 direction	 you
would	write:

The	bg	and	fg	parameters	set	the	background	and	foreground	color,	respectively.

side	 =	 This	 specifies	 which	 side	 to	 flow	 from.	 For	 example,	 writing
titleLabel.pack(side=tkinter.LEFT)	will	flow	from	the	left	rather	than	the	top.	Other
valid	values	are	TOP,	BOTTOM,	or	RIGHT.

The	 Tk	 gridder	 is	 responsible	 for	 grid	 layout	 management.	 Grid	 layout	 allows
widgets	to	be	placed	in	a	specific	column	and/or	row	of	a	container	widget.	As	we	have
seen,	 it	 is	possible	 for	one	widget	 to	 span	more	 than	one	column	or	 row	 in	a	grid.	The
rowspan	parameter	sets	the	number	of	rows	a	widget	should	span.	The	columnspan	option
was	used	in	Example	6.8.	It	is	also	possible	to	tell	the	gridder	how	it	should	use	the	space
within	a	row	and	column.	Normally	a	widget	is	centered	within	the	available	space.	But,	if
the	widget	can	use	it,	the	gridder	can	be	told	to	expand	the	widget	to	take	up	the	available
space.	The	sticky	option	 tells	 the	gridder	 to	stick	 the	widget	 to	one	or	more	sides	of	 the
available	 area.	The	 tkinter.E	 and	 tkinter.W	 constants	 stand	 for	 east	 and	west.	By	 adding
east	and	west	together	in	Example	6.8	the	entry	widget	will	expand	to	the	full	width	of	its
allowable	size.	In	that	example	it	has	no	affect	on	the	layout,	since	the	window	cannot	be
resized	anyway,	but	nonetheless	it	demonstrates	its	use.

While	packing	and	gridding	are	the	two	most	common	forms	of	layout	management,
there	 is	 also	 a	 placer.	 The	 placer	 places	widgets	 explicitly	within	 the	X,Y	 plane	 of	 the
application.	 The	 packer,	 gridder,	 and	 placer	 are	 the	 three	 layout	 managers	 for	 Tkinter.
Each	 of	 these	 layout	 managers	 have	 more	 options	 available	 for	 layout	 that	 are	 not
discussed	 here	 but	 can	 be	 found	 by	 searching	 for	 “tkinter	 layout	 management”	 on	 the
internet.



Practice	6.6
Make	the	entry	widget	and	the	button	widget	in	your	practice	application	appear	next
to	each	other	at	the	bottom	of	the	window.



6.10		Message	Boxes
Sometimes	it	is	necessary	to	pop	up	a	message	box	in	a	GUI	application	to	warn	the	user
of	some	invalid	operation	they	are	trying	to	perform.	Sometimes	the	application	just	needs
to	provide	some	quick	feedback,	like	“Job	Completed”	or	some	other	status.	Tk	provides	a
few	 message	 boxes	 for	 these	 occasions.	 To	 use	 the	 message	 boxes	 you	 must	 import
tkinter.messagebox.

Here	are	three	examples.

	
tkinter.messagebox.showinfo(“Invalid	Entry”,	“Type	a	reminder	first.”)

This	displays	an	informational	box	with	an	informational	icon.	You	can	change
the	icon	displayed	in	the	box	by	specifying	the	icon	=	parameter.	More	information	is
available	online.	The	dialog	box	appears	on	the	screen	and	the	application	waits	for
OK	to	be	pressed.

tkinter.messagebox.showwarning(“Invalid	Entry”,	“Type	a	reminder	first.”)

This	works	 the	 same	 as	 the	 showinfo	 dialog	 box	 but	 displays	 a	warning	 icon
instead	of	an	informational	icon.

answer	 =	 tkinter.messagebox.askyesno(“Really?”,	 “Are	 you	 sure	 you	 want	 to
create	a	blank	reminder?”)

This	displays	a	dialog	with	Yes	and	No	buttons.	 If	Yes	 is	pressed,	 the	 function
call	returns	True.	If	No	is	pressed,	the	function	returns	False.

There	are	other	dialogs	available	including	a	color	chooser	and	file	chooser.	There	are	also
several	other	options	that	are	possible	with	each	of	these	dialogs.	Again,	more	information
can	be	found	online.

Practice	6.7
When	the	button	of	your	practice	application	is	pressed,	 take	the	information	in	the
entry	widget	and	display	 it	 in	a	message	box	of	your	choice	with	some	appropriate
text	to	go	with	it.



6.11		Review	Questions
1.		

How	are	a	event-driven	program	and	simple	sequential	program	the	same?

	
2.		

What	distinguishes	an	event-driven	program	from	a	sequential	program?

	
3.		

What	is	an	API?

	
4.		

Name	 two	 APIs	 that	 are	 available	 in	 Python.	 What	 does	 each	 API	 do	 for	 you	 as	 a
programmer?

	
5.		

What	is	a	widget?

	
6.		

When	writing	a	Tkinter	application,	what	is	the	purpose	of	the	call	to	mainloop?

	
7.		

What	is	the	purpose	of	a	frame	in	Tkinter?

	
8.		

What	does	the	term	layout	refer	to	in	a	GUI	application?	Be	complete	in	your	answer.

	
9.		



What	is	the	purpose	of	the	StringVar	class	in	Tkinter	applications?

	
10.		

Why	are	event	handlers	generally	defined	within	the	scope	of	the	main	function?

	
11.		

What	 are	 two	 methods	 of	 arranging	 widgets	 in	 a	 Tkinter	 application?	 Describe	 the
differences	between	the	two	methods.

	



6.12		Exercises
1.		

Extend	the	Reminder!	application	so	that	each	Reminder!	is	given	the	title	assigned	in	the
main	 application	window.	 For	 example,	 if	 the	New	Reminder!	 button	 is	 pressed	 for	 the
application	 as	 it	 appears	 in	 Fig.	 6.4,	 the	 reminder	 window	 would	 appear	 as	 shown	 in
Fig.	6.5.	Be	sure	to	clear	both	the	text	and	the	title	from	the	root	application	window	after
the	New	Reminder!	button	is	pressed.

	
2.		

Implement	a	GUI	front-end	to	the	address	book	application.	The	GUI	should	be	similar	to
that	presented	in	Fig.	6.6.	Each	of	the	buttons	in	the	application	should	work	as	described
here.

(a)		

The	add	button	should	add	a	new	entry	to	the	phonebook.	This	must	append	an	entry	to
the	 phonebook.	 The	 event	 handler	 for	 this	 function	 should	 look	 something	 like	 this
(depending	on	how	you	write	the	rest	of	your	program).

Fig.	6.5		A	titled	Reminder!

Fig.	6.6		A	GUI	for	the	addressbook	application



	
(b)		

The	update	button	should	update	an	existing	entry	or	display	a	message	saying	the	entry
was	not	found.	Update	must	find	an	entry	that	matches	the	first	and	last	name	displayed	in
the	GUI.	If	found,	the	entry	in	the	file	is	updated	to	reflect	the	new	information	found	in
the	GUI.	You	 find	 an	 entry	 by	matching	 the	 first	 and	 last	 name	 in	 the	 address	 book	 so
updating	the	name	will	not	work.	In	that	case	a	new	entry	needs	to	be	added	and	the	old
one	deleted.	If	the	entry	is	not	found	a	warning	message	should	be	displayed.

Since	entries	cannot	be	deleted	from	files,	 to	update	an	entry	you	must	open	a	new
file	for	writing.	Then	you	copy	all	the	entries	to	the	new	file	that	don’t	match	the	entry	to
be	updated.	Once	you	find	the	entry	to	be	updated	you	write	the	GUI	information	to	the
new	file.	Finally,	you	must	write	the	rest	of	the	non-matching	entries	to	the	new	file.	After
you	are	done,	you	can	remove	the	old	file	and	rename	the	new	file	to	the	addressbook.txt
file	name.	The	following	 lines	of	code	will	delete	 the	addressbook.txt	 file	and	rename	a
file	called	__newbook.txt	to	addressbook.txt.

	
(c)		

The	delete	button	deletes	an	existing	entry.	To	delete	an	existing	entry	 the	 last	 and	 first
name	should	match	the	entry	being	deleted.	Since	you	cannot	delete	a	record	from	a	file,
you	must	 create	 a	 new	 file,	writing	 all	 records	 to	 the	 new	 file	 except	 for	 the	 one	 to	 be
deleted.	 Then	 remove	 the	 old	 file	 and	 rename	 the	 new	 file	 to	 addressbook.txt.	 See	 the
description	of	the	update	button	implementation	to	see	how	to	delete	and	rename	the	files.



	
(d)		

The	find	button	finds	the	entry	with	the	same	first	and	last	name	as	typed.	It	should	at	least
work	when	both	last	and	first	name	are	supplied	by	the	user.	However,	you	can	extend	this
by	making	 it	work	 if	 the	 last	 name	 is	 empty.	Then	 it	 should	match	 only	 on	 first	 name.
Likewise,	if	the	first	name	is	empty	then	it	should	only	match	on	last	name.	In	either	case
it	should	display	the	first	matching	entry	in	the	address	book.

	
(e)		

The	next	button	displays	the	next	address	after	the	current	entry	and	wraps	around	to	the
beginning	when	the	last	entry	was	displayed.

	
	
3.		

Implement	a	GUI	front-end	for	the	addressbook	application	as	described	in	Exercise	2,	but
use	parallel	lists	to	hold	the	fields	of	each	record	instead	of	reading	from	and	writing	to	the
file	immediately.	You	should	write	code	to	read	the	entire	file	when	the	application	starts
and	it	should	be	written	again	when	the	application	closes.

Each	of	 the	buttons	should	be	 implemented	but	 instead	of	reading	or	writing	 to	 the
file,	the	buttons	should	use	the	parallel	lists	as	the	source	of	the	addressbook	entries.

	
4.		

Using	the	Reminder!	application	code	from	Appendix	15	as	a	reference,	rewrite	the	code
so	 that	 the	 reminders	 are	 read	 from	 an	 XML	 file	 when	 the	 application	 starts	 and	 are
written	to	an	XML	file	when	the	application	terminates.	To	write	an	XML	file	you	open	a
text	file	for	writing	and	you	write	the	data	and	the	XML	tags	for	each	XML	element.

	
5.		

Implement	 a	 GUI	 front-end	 for	 the	 addressbook	 application	 but	 in	 this	 version	 of	 the
application	define	an	XML	file	format	to	hold	the	data.	Then,	write	 the	program	to	read
the	XML	 file	when	 the	 application	 starts	 and	write	 the	XML	 file	when	 the	 application
terminates.	 Use	 parallel	 lists	 to	 hold	 the	 fields	 of	 each	 record	 while	 the	 application	 is
running.	To	write	an	XML	file	you	open	a	text	file	for	writing	and	you	write	the	data	and
the	XML	tags	for	each	XML	element.



	



6.13		Solutions	to	Practice	Problems
These	are	solutions	to	the	practice	problems	in	this	chapter.	You	should	only	consult	these
answers	after	you	have	tried	each	of	them	for	yourself	first.	Practice	problems	are	meant
to	help	reinforce	the	material	you	have	just	read	so	make	use	of	them.

6.13.1		Solutions	to	Practice	Problem	6.1

6.13.2		Solutions	to	Practice	Problem	6.2
The	 window	will	 probably	 resize	 to	 a	 very	 tiny	 window	when	 run	 because	 there	 isn’t
anything	in	the	frame	yet.

6.13.3		Solutions	to	Practice	Problem	6.3

6.13.4		Solutions	to	Practice	Problem	6.4

6.13.5		Solutions	to	Practice	Problem	6.5

6.13.6		Solutions	to	Practice	Problem	6.6



6.13.7		Solutions	to	Practice	Problem	6.7



©	Springer-Verlag	London	2014

Kent	D.	LeePython	Programming	FundamentalsUndergraduate	Topics	 in	Computer	Science10.1007/978-1-4471-6642-
9_7



7.	Defining	Classes
Kent	D.	Lee1		

(1)		

Luther	College,	Decorah,	IA,	USA

	
	

Kent	D.	Lee
Email:	kentdlee@luther.edu

Python	 is	an	object-oriented	 language.	This	means,	not	only	can	we	use	objects,	but	we
can	define	our	own	classes	of	objects.	A	class	is	just	another	name	for	a	type	in	Python.
We	have	been	working	with	types	(i.e.	classes)	since	the	first	chapter	of	the	text.	Examples
of	classes	are	int,	str,	bool,	float	and	list.	While	these	classes	are	all	built	in	to	Python	so
we	 can	 solve	 problems	 involving	 these	 types,	 sometimes	 it	 is	 nice	 if	 we	 can	 solve	 a
problem	where	a	different	type	or	class	would	be	helpful.

Classes	 provide	 us	 with	 a	 powerful	 tool	 for	 abstraction.	 Abstraction	 is	 when	 we
forget	about	details	of	how	something	works	and	 just	concentrate	on	using	 it.	This	 idea
makes	 programming	 possible.	 There	 are	 many	 abstractions	 that	 are	 used	 in	 this	 text
without	 worrying	 about	 exactly	 how	 they	 are	 implemented.	 For	 example,	 a	 file	 is	 an
abstraction.	So	is	a	list.	In	fact,	integers	are	abstractions,	too.	A	turtle	is	an	abstraction	that
helps	us	implement	Turtle	graphics	programs.	Instead	of	worrying	about	how	a	line	gets
drawn	in	a	window,	we	can	just	move	the	turtle	along	the	line	with	its	pen	down	to	draw
the	 line.	How	is	 this	done?	It’s	not	 important	 to	us	when	we	are	using	a	Turtle.	We	just
know	it	works.

So,	classes	are	a	great	tool	for	programmers	because	when	a	programmer	uses	a	class
they	don’t	have	to	worry	about	the	details.	But,	sometimes	we	might	be	able	to	save	time
and	implement	a	class	that	could	be	useful	to	us	and	maybe	to	someone	else	as	well.	When
we	 use	 a	 class	 we	 don’t	 worry	 about	 the	 details	 of	 how	 an	 object	 works.	 When	 we
implement	a	class	we	must	 first	decide	what	 the	abstraction	 is	going	 to	 look	 like	 to	 the
user	of	it	and	then	we	must	think	about	how	to	provide	the	right	methods	to	implement	the
abstraction.	When	defining	or	implementing	a	class,	the	user	is	either	yourself	or	another
programmer	that	is	going	to	use	the	class	when	they	create	some	objects	of	the	class	you
defined.

Classes	provide	 the	definitions	for	objects.	The	 int	class	defines	what	 integers	 look
like	and	how	they	behave	in	Python.	The	Turtle	class	defines	what	a	turtle	looks	like	and
all	the	methods	that	control	its	behavior.	In	general,	a	class	defines	what	objects	of	its	type
look	like	and	how	they	behave.	We	all	know	what	an	integer	looks	like.	Its	behavior	is	the
operations	 we	 can	 perform	 on	 it.	 For	 instance	 we	 might	 want	 to	 be	 able	 to	 add	 two
integers	together,	print	an	integer,	and	so	on.	When	we	define	our	own	classes	we	do	two
things.

mailto:kentdlee@luther.edu


Fig.	7.1		A	Turtle	object

	

A	Class	defines	one	or	more	data	items	to	be	included	in	the	objects	or	instances	of
the	 class.	 These	 data	 items	 are	 sometimes	 called	 the	 member	 data	 or	 instance
variables	of	the	class.	Each	instance,	or	object,	will	contain	the	data	defined	by	the
class.

A	Class	defines	the	methods	that	operate	on	the	data	items	or	member	data	in	objects
of	the	class.	The	methods	are	functions	which	are	given	an	object.	A	method	defines
a	particular	behavior	for	an	object.

To	 understand	 how	objects	 are	 created	we	 can	 look	 at	 an	 example.	 In	Chap.	 4	we
learned	how	to	create	Turtle	objects	and	use	them	to	do	write	some	interesting	programs.

Example	7.1
When	we	execute	 the	code	below,	Python	creates	a	Turtle	object	pointed	 to	by	 the
reference	t	as	shown	in	Fig.	7.1.

We	 have	 already	 learned	 that	we	 could	make	 the	 turtle	 go	 forward	 50	 units	 by	writing
turtle.forward	(50).	The	 forward	 function	 is	a	method	on	a	Turtle.	 It	 is	part	of	 the	 turtle
object’s	behavior.	As	another	example,	consider	a	Circle	class.	A	circle	must	be	drawn	on
the	screen	at	a	particular	location.	It	must	be	given	a	radius.	It	might	have	a	fill	color	and	it
might	have	a	width	and	color	for	its	outline.



7.1		Creating	an	Object
When	an	object	is	created	there	are	two	things	that	must	happen:	the	space	or	memory	of
the	 object	 must	 be	 reserved,	 and	 the	 space	 must	 be	 initialized	 by	 storing	 some	 values
within	 the	 object	 that	 make	 sense	 for	 a	 newly	 created	 object.	 Python	 takes	 care	 of
reserving	the	appropriate	amount	of	space	for	us	when	we	create	an	object.	We	must	write
some	 code	 to	 initialize	 the	 space	 within	 the	 object	 with	 reasonable	 values.	 What	 are
reasonable	values?	This	depends	on	the	program	we	are	writing.

Fig.	7.2		A	circle	object

Example	7.2
To	create	a	circle	we	might	write	something	like	this.

Creating	 a	 circle	 called	 shape	 creates	 an	 object	 that	 contains	 the	 data	 that	we	 give	 the
constructor	when	the	circle	is	created.	The	constructor	is	called	when	we	write	the	class
name,	 followed	by	 the	 arguments	 to	pass	 to	 the	 constructor.	 In	 this	 case,	 the	 call	 to	 the
constructor	 is	 Circle	 (x,	 y,	 radius,	 width=3,	 color=“red”,	 outline=“gray”).	 The
constructor	 takes	 care	 of	 putting	 the	 given	 information	 in	 the	 object.	 Figure	 7.2	 shows
what	the	data	looks	like	in	the	object	after	calling	the	constructor.

The	data	in	an	object	doesn’t	get	filled	in	by	magic.	We	must	write	some	code	to	do
this.	When	programming	in	an	object-oriented	language	like	Python	we	can	write	a	class
definition	once	and	it	can	be	used	to	create	as	many	objects	of	that	class	as	we	want.	To
help	 us	 do	 this,	 Python	 creates	 a	 special	 reference	 called	 self	 that	 always	 points	 to	 the
object	we	are	currently	working	with.	In	this	way,	inside	the	class,	instead	of	writing	the
reference	shape	we	can	write	the	reference	self.	By	using	the	reference	self	when	writing
the	code	for	the	class,	the	code	will	work	with	any	object	we	create,	not	just	the	one	that
shape	refers	to.	We	are	not	stuck	just	creating	one	circle	object	because	Python	creates	the
special	self	reference	for	us.	We	can	create	a	shape	and	any	other	circle	we	care	to	create
by	writing	just	one	Circle	class.

Example	7.3
The	first	method	of	a	class	definition	is	called	the	constructor	and	is	named	__init__.
It	takes	care	of	filling	in	the	member	data	inside	the	object.	The	self	reference	is	the
extra	 reference,	 provided	by	Python,	 that	 points	 to	 the	 current	 object.	This	method
gets	called	in	response	to	creating	an	object	as	occurs	in	the	code	in	Example	7.2.



In	Example	7.3	 notice	 that	 the	 formal	 parameters	 nearly	match	 the	 arguments	 provided
when	the	circle	object	is	created	in	Example	7.2.	The	one	additional	parameter	is	the	extra
self	parameter	provided	by	Python.	When	the	constructor	is	called,	Python	makes	a	new
self	 local	 variable	 for	 the	 __init__	 function	 call.	 This	 self	 variable	 points	 at	 the	 newly
created	 space	 for	 the	 object.	 Figure	 7.3	 shows	 the	 run-time	 stack	with	 the	 self	 variable
pointing	 at	 the	 newly	 created	 object.	 The	 picture	 shows	 what	 memory	 looks	 like	 just
before	 returning	from	the	__init__	 constructor	method.	There	are	 two	activation	 records
on	 the	 run-time	 stack.	The	 first	 is	 the	 activation	 record	 for	 the	 function	 that	 creates	 the
shape	 by	 executing	 the	 code	 in	 Example	 7.2.	 The	 second	 activation	 record	 is	 for	 the
__init__	function	call	(i.e.	the	call	to	the	constructor).	When	the	program	returns	from	the
constructor	the	top	activation	record	will	be	popped	and	the	self	reference	will	go	away.

Fig.	7.3		A	circle	object

To	implement	a	class	we	must	write	the	word	class,	the	name	of	the	class,	and	then
the	methods	that	will	operate	on	the	objects	of	that	class.	By	convention,	the	first	method
is	always	the	constructor.	Generally	other	methods	follow	and	must	be	indented	under	the
class	definition.	The	class	definition	ends	when	the	indentation	under	it	ends.

Practice	7.1
Decide	what	 information	 you	would	 need	 to	 implement	 a	 Rational	 class.	 Rational
numbers	are	numbers	 that	can	be	expressed	as	a	fraction	with	an	integer	numerator
and	denominator.	Then	write	a	class	definition	for	 it	 including	a	constructor	so	you
can	create	Rational	objects.

Practice	7.2
Assume	 we	 want	 to	 implement	 a	 class	 for	 rectangles.	 A	 rectangle	 is	 created	 at	 a
particular	(x,	y)	location	specifying	the	lower	left	corner	of	the	rectangle.	A	rectangle
has	 a	 width	 and	 height.	Write	 a	 class	 definition	 for	 the	 Rectangle	 class	 so	 that	 a
rectangle	 can	 be	 created	 by	writing	box	=	Rectangle(100,	 100,	 50,	 30)	 to	 create	 a
rectangle	at	(100,	100)	with	a	width	of	50	and	a	height	of	30.

If	 we	 have	 a	 circle	 object,	 it	 would	 be	 nice	 to	 draw	 it	 on	 a	 turtle	 graphics	 screen.	 In
addition,	we	may	want	to	change	its	color,	width,	or	outline	color	at	some	point.	These	are



all	actions	that	we	want	to	perform	on	a	circle	object	and	because	they	change	the	object
in	some	way	they	will	become	mutator	methods	when	implemented.	In	addition,	we	may
want	to	access	the	x,	y,	and	radius	values.	These	are	implemented	with	accessor	methods.
The	mutator	and	accessor	methods	must	be	defined	in	the	class	definition.

Example	7.4
Here	is	the	complete	code	for	the	Circle	class.



When	a	method	is	called	on	an	object	the	variable	is	written	first,	followed	by	a	dot	(i.e.
period),	 followed	by	 the	method	name.	So,	 for	 instance,	 to	 call	 the	getX	method	on	 the
shape	you	would	write	shape.getX().	When	you	look	at	the	definition	of	getX	there	is	one
parameter,	the	self	parameter.	When	you	call	getX	 it	 looks	 like	 there	are	no	parameters.
Python	sets	self	to	point	to	the	same	object	that	appears	on	the	left	side	of	the	dot.	So,	in
this	example,	the	self	parameter	points	at	the	shape	object	because	shape	was	written	on
the	left	hand	side	of	the	dot.	The	picture	in	Fig.	7.3	applies	to	calling	the	getX	method	as
well.	When	getX	is	called,	an	activation	record	is	added	to	the	stack	with	the	self	variable
pointing	at	the	object.	This	is	true	of	all	classes	in	Python.	When	implementing	a	class	the
first	parameter	to	all	the	methods	is	always	self	and	the	object	that	is	on	the	left	hand	side
of	 the	dot	when	the	method	is	called	is	 the	object	 that	becomes	self	while	executing	the
method.

Practice	7.3
Complete	the	Rectangle	class	by	writing	a	draw	method	that	draws	the	rectangle	on
the	screen.	When	drawing	a	rectangle	allow	the	color	of	the	border	and	the	color	of
the	background	to	be	specified.	Specify	these	parameters	with	default	values	of	black
and	 transparent	 respectively.	 Make	 these	 parameters	 keyword	 parameters	 with	 the
names	outline	and	color	(for	background	color).



7.2		Inheritance
A	 class	 is	 an	 abstraction	 that	 helps	 programmers	 reuse	 code.	 Code	 reuse	 is	 important
because	it	frees	us	to	solve	interesting	problems	while	allowing	us	to	forget	the	details	of
the	 classes	we	 use	 to	 solve	 a	 problem.	Code	 reuse	 can	 be	 achieved	 between	 classes	 as
well.	When	objects	are	 similar	 in	most	 respects	but	one	 is	 a	 special	 case	of	another	 the
relationship	 between	 the	 classes	 can	 be	 modeled	 using	 inheritance.	 A	 subclass	 inherits
from	 a	 superclass	 .	 When	 using	 inheritance,	 the	 subclass	 gets	 everything	 that’s	 in	 the
superclass.	All	 data	 and	methods	 that	were	 a	 part	 of	 the	 superclass	 are	 available	 in	 the
subclass.	The	subclass	can	then	add	additional	data	or	methods	and	it	can	redefine	existing
methods	in	the	superclass.

Inheritance	 in	 Computer	 Science	 is	 like	 inheritance	 in	 genetics.	We	 inherit	 certain
physical	 characteristics	 of	 our	 birth	 parents.	 We	 may	 look	 different	 from	 them	 but
typically	there	are	some	similarities	in	hair	color,	eye	color,	height	and	so	on.	We	probably
also	inherit	behaviors	from	our	parents,	although	this	may	come	from	social	contact	with
our	parents	and	 isn’t	necessarily	genetic.	 Inheritance	when	applied	 to	Computer	Science
means	that	we	don’t	have	to	rewrite	all	the	code	of	the	superclass.	We	can	just	use	it	in	the
subclass.

Inheritance	comes	up	all	over	the	place	in	OOP.	For	instance,	the	Turtle	class	inherits
from	the	RawTurtle	class.	The	Turtle	class	is	essentially	a	RawTurtle	except	that	a	Turtle
creates	a	TurtleScreen	object	if	one	has	not	already	been	created.

Example	7.5
Here	is	the	entire	Turtle	class.

While	 the	 code	 in	Example	7.5	 is	 difficult	 to	 completely	understand	out	 of	 context,	 the
Turtle	class	only	consists	of	a	constructor,	the	minimum	amount	that	can	be	provided	in	a
derived	class.	The	constructor	creates	the	screen	if	needed	and	then	calls	the	RawTurtle’s
constructor.	 Every	 class,	whether	 a	 derived	 class	 or	 a	 base	 class,	must	 provide	 its	 own
constructor.	When	Python	creates	an	object	of	a	certain	class,	 it	needs	the	constructor	 to
determine	how	the	object	is	initialized.	So,	the	class	Turtle	in	Example	7.5	truly	contains
the	minimal	amount	of	methods	possible	for	a	derived	class.



Essentially	a	Turtle	and	a	RawTurtle	are	identical.	It	also	turns	out	that	Turtles	(and
RawTurtles)	are	based	on	Tkinter.	A	TurtleScreen	contains	a	ScolledCanvas	widget	from
Tkinter.	To	create	a	RawTurtle	object	we	must	provide	a	ScrolledCanvas	for	the	Turtle	to
draw	on.

Example	7.6
Here	is	the	constructor	definition	for	a	RawTurtle.

Because	turtle	graphics	is	based	on	Tkinter,	we	can	write	a	program	that	contains	widgets
including	 a	 canvas	 on	 which	 we	 can	 draw	 with	 turtle	 graphics!	 The	 constructor	 in
Example	7.6	shows	us	that	if	we	provide	a	canvas	the	RawTurtle	object	will	use	it.	So,	we
could	write	a	 little	drawing	program	that	draws	circles	and	rectangles	on	 the	screen	and
integrates	other	Tk	widgets,	like	buttons	for	instance.

To	begin	building	a	draw	application	we’ll	put	a	ScrolledCanvas	on	the	left	side	of	a
window	and	some	buttons	to	control	drawing	on	the	right	side.	Since	we’ve	been	looking
at	a	Circle	class,	we’ll	start	by	drawing	circles	on	the	screen.	It	would	be	nice	to	provide
the	radius	for	the	circle.	We	can	do	that	with	an	entry	field	and	a	StringVar	object	as	was
seen	in	the	last	chapter.

Fig.	7.4		A	drawing	application



Example	7.7
Here	is	some	code	that	creates	a	ScrolledCanvas	widget,	a	RawTurtle	that	draws	on
the	canvas,	and	a	Tkinter	application	that	 incorporates	both.	Figure	7.4	shows	what
the	 application	 window	 looks	 like	 when	 it	 is	 run.	 Notice	 the	 use	 of	 the	 class
definition	 for	DrawApp.	 Encapsulating	 all	 the	 tkinter	 application	 code	 in	 a	 class
means	that	self	can	be	used	to	store	variables	that	need	to	be	globally	available	to	the
application.	In	particular,	the	shapeSelection	variable	in	the	object	is	used	and	set	in
multiple	places	in	the	class.	The	main	function	simply	creates	a	DrawApp	object	and
then	calls	mainloop	to	make	the	tkinter	application	start	listening	for	events.



The	 program	 in	 Example	 7.7	 is	 missing	 the	 Circle	 class	 which	 was	 defined	 in
Example	7.4.	The	program	waits	for	the	Circle	button	to	be	pressed	once.	Then,	after	each
mouse	click,	a	circle	is	drawn	on	the	ScrolledCanvas	on	the	left	side	of	the	window.

Both	a	Circle	and	a	Rectangle	share	a	 lot	of	common	code.	 It	makes	sense	for	 that
common	code	to	be	in	one	base	class	that	both	classes	inherit	from.	If	a	Shape	class	were
defined	that	contained	the	shared	code,	then	it	would	only	have	to	be	written	once,	which
is	a	requirement	of	elegant	code.



Example	7.8
Here	 is	 a	 Shape	 class	 that	 defines	 the	 code	 that	 is	 common	 to	 both	 Circles	 and
Rectangles.

With	 the	 Shape	 base	 class	 defined	 in	 Example	 7.8	 the	 definition	 of	 Circle	 can	 be
simplified.

Example	7.9
Here	is	the	code	for	the	derived	Circle	class.	Notice	the	call	to	super()	below.	Super
refers	to	the	superclass,	in	this	case	the	Shape	class.	The	superclass	is	the	class	that	is
above	 it	 in	 the	 type	 hierarchy.	Using	 super()	when	 referring	 to	 the	 superclass	 is	 a
good	idea	because	the	code	still	works	even	if	the	type	hierarchy	is	changed	at	some
point	in	the	future.



The	Circle	class	still	is	the	only	class	that	will	know	how	to	draw	a	circle.	And,	of	course,
shapes	don’t	have	a	radius	in	general.	All	 the	other	code	that	 isn’t	circle	specific	is	now
moved	out	of	the	Circle	class.

Practice	7.4
Rewrite	the	Rectangle	class	so	it	inherits	from	the	Shape	class	and	use	it	in	the	draw
program	downloaded	from	the	text’s	website.



7.3		A	Bouncing	Ball	Example
A	RawTurtle	can	move	around	the	screen	either	with	its	pen	up	or	its	pen	down.	With	its
pen	 up,	 if	 we	 can	 imagine	 the	 turtle	 as	 something	 other	 than	 a	 little	 sprite,	 it	 can	 be
essentially	any	object	that	we	want	it	to	be	in	a	two	dimensional	world.	The	creators	of	the
turtle	graphics	for	Python	realized	this	and	added	code	so	that	we	could	change	the	turtle’s
picture	 to	 anything	we	would	 like.	 For	 instance,	we	might	want	 to	 animate	 a	 bouncing
ball.	We	can	replace	the	turtle’s	sprite	with	an	image	of	a	ball.

Turtle	graphics	can	do	animation	because	it	can	be	told	to	perform	an	action	after	an
interval	 of	 time.	 A	 timer	 can	 be	 set	 in	 turtle	 graphics.	 When	 the	 timer	 goes	 off,	 the
program	can	move	the	ball	a	little	bit.	If	the	interval	between	timer	going	off	and	moving
the	ball	can	be	small	enough	that	it	happens	several	times	a	second,	then	to	the	human	eye
it	will	appear	as	if	the	ball	is	flying	through	the	air.

A	ball	is	a	turtle.	However,	a	turtle	doesn’t	remember	in	which	direction	it	is	moving.
It	would	be	nice	to	have	the	ball	remember	the	direction	it	is	moving.	At	least	somewhere
in	the	program	the	ball’s	direction	must	be	remembered	and	it	makes	sense	for	the	ball	to
remember	its	own	direction	in	an	object-oriented	design	of	the	problem.	Figure	7.5	depicts
what	a	ball	object	should	look	like.	A	ball	is	a	turtle,	but	it	is	a	little	more	than	just	a	turtle.
Again,	this	is	an	example	of	inheritance.

With	 the	 ball	 inheriting	 from	 the	 RawTurtle	 class	 we’ll	 automatically	 get	 all	 the
functionality	of	a	turtle.	We	can	tell	a	ball	to	goto	a	location	on	the	screen.	We	can	access
the	 x	 and	 y	 coordinate	 of	 the	 ball	 by	 calling	 the	 xcor	 and	 ycor	methods.	We	 can	 even
change	its	shape	so	it	looks	like	a	ball.	As	we’ve	seen,	for	the	Ball	class	to	inherit	from	the
RawTurtle	class,	 the	derived	Ball	class	must	 implement	 its	own	constructor	and	call	 the
constructor	of	the	base	class.

Fig.	7.5		A	ball	object

Example	7.10
In	Chap.	16	the	Ball	class	inherits	from	the	RawTurtle	class.	To	create	a	Ball	object
we	could	write

This	creates	a	ball	object	as	shown	in	Fig.	7.5.	Here	is	the	Ball	class	code.



When	we	are	using	the	ball	object	in	Fig.	7.5	we	refer	to	it	using	the	ball	reference.	When
we	are	in	the	Ball	class	we	refer	to	the	object	using	the	self	reference	as	described	earlier
in	this	chapter.	In	Fig.	7.5	the	Turtle	part	of	the	object	is	greyed	out.	This	is	because	the
insides	of	 the	RawTurtle	 are	available	 to	us,	but	generally	 it	 is	 a	bad	 idea	 to	access	 the
RawTurtle	part	of	the	object	directly.	Instead,	we	can	use	methods	to	access	the	RawTurtle
part	of	the	object	when	needed.

The	constructor	needs	to	initialize	the	RawTurtle	part	of	the	object	as	well	as	the	Ball
part	of	the	object.	To	create	a	RawTurtle	we	could	write	turtle	=	RawTurtle(cv).	However,
writing	this	won’t	work	to	initialize	the	RawTurtle	part	of	the	object.	A	line	of	code	like
this	would	create	a	new	RawTurtle	object.	Remember,	a	Ball	is	a	RawTurtle	so	we	don’t
want	to	create	a	new	RawTurtle	object.	Instead,	we	want	to	initialize	the	RawTurtle	part	of
the	 Ball	 object.	 To	 do	 this,	 we	 explicitly	 call	 the	 RawTurtle	 constructor	 by	 writing
RawTurtle.__init__(self,cv).	This	calls	the	RawTurtle’s	constructor.	In	this	case	we	call	the
constructor	 by	 writing	 the	 class	 name	 followed	 by	 a	 dot	 followed	 by	 the	 constructor’s
name	 __init__.	 Since	 self	 is	 a	 Ball	 and	 a	 RawTurtle,	 we	 pass	 self	 as	 the	 parameter	 to
RawTurtle’s	 constructor.	 This	 line	 of	 code	 initializes	 the	 RawTurtle	 part	 of	 the	 object.
Then	the	Ball	specific	initialization	occurs	next.

The	Ball	class	contains	one	more	method,	 the	move	method.	This	 is	a	new	method
not	defined	in	the	RawTurtle	class.	A	Ball	can	move	on	the	screen	while	a	RawTurtle	can
not.	A	Ball	moves	by	(dx,dy)	each	time	the	move	method	is	called.	The	bouncing	balls	are
animated	 by	 repeatedly	 calling	 the	 move	 method	 on	 each	 of	 the	 balls	 in	 the	 ballList
defined	 in	 the	main	function	of	 the	program.	Chapter	16	contains	 the	complete	code	for
the	bouncing	ball	example.



7.4		Polymorphism
Polymorphism	is	a	term	used	in	object-oriented	programming	that	means	“many	versions”
or	more	than	one	version.	When	a	subclass	defines	its	own	version	of	a	method	then	the
right	version,	either	the	subclass	version	or	the	base	class	version	of	the	method,	will	be
called	depending	on	the	type	of	object	you	have	created.	To	best	understand	this	it	helps	to
look	at	an	example.

Let’s	assume	we	wanted	to	modify	the	bouncing	ball	example	so	some	balls	bounce
according	to	a	simulated	gravity	instead	of	simply	bouncing	in	space	forever.	It	turns	out
this	is	very	easy	to	do.	We	can	have	Ball	objects	bounce	in	space	forever	and	GravityBall
objects	bounce	according	to	a	simulated	gravity.	Since	GravityBalls	are	nearly	the	same	as
Balls	we’ll	use	inheritance	to	define	the	GravityBall	class.	The	only	real	difference	will	be
in	the	way	the	GravityBall	moves	when	it	is	told	to	move.

Example	7.11
This	 code	 uses	 the	 Ball	 class	 and	 relies	 on	 polymorphism	 to	 get	 GravityBalls	 to
bounce	the	right	way.

Practice	7.5
Take	the	bouncing	ball	example	and	add	the	GravityBall	class	to	it.	Then,	modify	the
program	 to	 create	 some	 GravityBalls	 and	 watch	 them	 bounce.	 The	 original	 Ball
objects	continue	to	bounce	around	as	if	they	were	in	space.	The	GravityBall	objects
behave	differently.	Polymorphism	makes	 this	work.	What	 is	 it	about	polymorphism
that	makes	this	work	the	way	we	want	it	to?



7.5		Getting	Hooked	on	Python
A	hook	is	a	means	by	which	one	program	allows	another	program	to	modify	its	behavior.
The	 Python	 interpreter	 is	 a	 program	 that	 allows	 its	 behavior	 to	 be	 altered	 by	means	 of
certain	 hooks	 it	makes	 available	 to	 programmers.	Consider	 the	Rational	 class	 described
earlier	in	this	chapter.	With	the	definition	you	came	up	with	(or	the	provided	solution	in
practice	Problem	7.1)	we	can	create	Rational	numbers.	However,	we	can’t	do	much	more
than	 create	 them	at	 the	moment.	Without	 some	more	 code,	 our	 rational	 implementation
doesn’t	really	do	us	much	good.

Example	7.12
Here	is	some	code	that	creates	a	Rational	number	and	prints	 it	 to	 the	screen.	When

run,	 this	 program	 prints	 something	 like	 	 It
prints	 the	 name	 of	 the	module	 and	 the	 class	 and	 the	 value	 of	 the	 reference	 when
printed	to	the	screen.

If	we	needed	rational	numbers	in	a	program,	it	would	be	nice	if	they	printed	nicely	when
they	 were	 printed	 to	 the	 screen.	 This	 can	 be	 done	 using	 a	 hook	 in	 Python	 for	 string
conversion.	When	an	object	is	converted	to	a	string,	Python	looks	for	the	existence	of	the
__str__	method	in	the	class.	If	this	method	exists,	Python	will	use	it	to	convert	the	object
to	 a	 string	 representation.	 If	 this	method	 exists	 in	 the	 class,	 then	 it	must	 return	 a	 string
representation	 of	 the	 object.	 The	 method	 must	 also	 have	 only	 one	 parameter,	 the	 self
parameter.

Example	7.13
If	 this	method	is	added	to	the	Rational	class	definition	in	Example	7.12,	 then	when

the	Rational	 	is	printed,	it	prints	as	 .

The	addition	of	the	__str__	to	the	Rational	class	makes	using	rational	numbers	a	bit	easier
because	we	can	quickly	convert	it	to	a	string	when	we	want	a	nice	representation	of	it.	You
can	force	the	__str__	method	to	be	called	by	calling	the	str	built-in	function	in	Python.	So,
writing	str(x)	will	force	a	string	version	of	x	to	be	constructed	using	the	__str__	method.
The	presence	of	 the	__str__	method	doesn’t	mean	 that	 rational	 numbers	will	always	be
converted	 to	a	 string	when	printed.	Sometimes,	 the	Python	 interpreter	 isn’t	 interested	 in
producing	 a	 strictly	 human-readable	 presentation	 of	 an	 object.	 Sometimes	 a	 Python
readable	representation	is	more	appropriate.



Example	7.14
Consider	 the	 following	 code.	When	Rational	 objects	 are	 in	 a	 list	 they	 do	 not	 print
using	 the	 __str__	 method.	 Running	 this	 code	 prints	

	 	 to	 the
screen.

In	 Example	 7.13	 the	 __str__	 was	 added	 and	 rational	 numbers	 printed	 nicely,	 but
Example	7.14	shows	that	the	Python	interpreter	does	not	use	__str__	when	printing	a	list
of	 rationals.	When	printing	a	 list,	Python	 is	producing	a	 string	 representation	of	 the	 list
that	would	be	suitable	for	Python	to	evaluate	later	to	rebuild	the	list.	If	Python	tried	to	read

a	 number	 like	 	 in	 the	 list,	 it	would	 not	 know	what	 to	 do	with	 it.	However,	 there	 is
another	hook	that	allows	the	programmer	to	determine	the	best	representation	of	an	object
for	Python’s	purposes.

Example	7.15
The	__repr__	method	is	a	Python	hook	for	producing	a	Python	representation	of	an
object.	 With	 the	 addition	 of	 the	 method	 below	 to	 the	 Rational	 class	 started	 in
Example	 7.12,	 Python	 will	 print	 [Rational(4,5),	 Rational(9,12)]	 when	 the	 code	 in
Example	7.14	is	executed.

So,	 what	 is	 the	 difference	 between	 converting	 to	 a	 string	 and	 converting	 to	 a	 Python
representation?	A	string	version	of	an	object	can	be	 in	whatever	format	 the	programmer
determines	is	best.	But,	a	Python	representation	should	be	in	a	format	so	that	if	the	built-in
Python	function	eval	is	called	on	it,	it	will	evaluate	to	its	original	value.	The	eval	function
is	given	an	expression	contained	 in	a	string	and	evaluates	 the	expression	 to	produce	 the
Python	value	contained	in	the	string.	The	appropriate	representation	for	most	programmer-
defined	classes	is	to	use	the	same	form	that	is	required	to	construct	the	object	in	the	first

place.	To	construct	 the	 rational	number	 	we	had	 to	write	Rational(4,5).	 For	 the	eval
function	 to	correctly	evaluate	a	string	containing	a	Rational,	 the	eval	 function	should	be
given	 a	 rational	 in	 the	 Rational(numerator,denominator)	 form,	 not	 the	

	form.

There	is	another	Python	hook	that	controls	how	sorting	is	performed	in	Python.	For
any	type	of	object	in	Python,	if	there	is	a	natural	ordering	to	those	objects,	Python	can	sort
a	list	of	them.

Example	7.16
Here	 is	 some	 code	 that	 sorts	 a	 list	 of	 names,	 alphabetically.	 This	 code,	when	 run,
prints	the	list	[‘Freeman’,	‘Gorman’,	‘Lee’,	‘Lie’,	‘Morgan’]	to	the	screen.



If	 we	 attempt	 to	 sort	 the	 list	 lst	 from	 Example	 7.14,	 Python	 will	 complain	 with	 the

following	error	message:	builtins.TypeError:	unorderable	 types:	Rational	 ().
While	we	have	an	understanding	of	rational	numbers,	Python	has	no	way	of	understanding
that	 the	 class	 of	 Rational	 numbers	 represents	 an	 ordered	 collection	 of	 values.	 To	 tell
Python	 that	 it	 is	 an	 ordered	 collection,	 we	 have	 to	 implement	 the	 __lt__	 method.	 To
compare	 any	 two	 rational	 numbers,	 we	 must	 first	 make	 sure	 they	 have	 a	 common
denominator.	Once	we	 have	 a	 common	 denominator,	 the	 numerator	 of	 the	 two	 rational
numbers	must	be	converted	 to	units	 for	 the	common	denominator.	 It	 turns	out	we	don’t
really	need	the	common	denominator	at	all.	We	just	need	the	converted	numerators.	The
__lt__	method	must	 return	True	 if	 the	 object	 self	 references	 is	 less	 than	 the	 object	 that
other	references	and	it	must	return	False	otherwise.

Example	7.17
The	following	__lt__	method,	when	added	to	the	class	in	Example	7.12	converts	the
two	numerators	to	their	common	denominator	form	so	they	can	be	compared.

Once	 the	 __lt__	 method	 of	 Example	 7.17	 is	 added	 to	 the	 Rational	 class,	 Python
understands	 how	 to	 sort	 them.	 The	 sort	 function	 sorts	 a	 list	 in	 place	 as	 shown	 in
Example	7.16.	If	sort	is	called	on	the	list	lst	from	Example	7.14,	Python	reorders	the	list
so	it	contains	[Rational(9,12),	Rational(4,5)].



7.6		Review	Questions
1.		

What	is	another	name	for	a	class	in	Python?

	
2.		

What	is	the	relationship	between	classes	and	objects?

	
3.		

What	is	the	purpose	of	the	__init__	method	in	a	class	definition?

	
4.		

Computer	 scientists	 say	 that	 objects	 have	 both	 state	 and	 behavior.	 What	 do	 state	 and
behavior	refer	to	in	a	class	definition?

	
5.		

How	do	you	create	an	object	in	Python?

	
6.		

In	a	class	definition,	when	you	see	the	word	self,	what	does	self	refer	to?

	
7.		

What	is	a	superclass?	Explain	what	the	term	means	and	give	an	example.

	
8.		

What	is	the	benefit	of	inheritance	in	Python?

	
9.		



What	does	it	mean	for	polymorphism	to	exist	in	a	program?	Why	would	you	want	this?

	
10.		

How	do	the	__str__	and	the	__repr__	methods	differ?	Why	are	they	both	needed?

	
11.		

To	be	able	to	sort	an	ordered	collection	of	your	favorite	type	of	objects,	what	method	must
be	implemented	on	the	objects?

	



7.7		Exercises
1.		

Go	 back	 to	 the	 original	Reminder!	 program	 and	 redo	 it	 so	 that	 the	Reminder!	 program
contains	a	class	called	Reminder	that	replaces	the	parallel	lists	of	reminders	and	notes	with
one	 list	of	 reminders.	This	 list	 should	be	a	 list	of	Reminder	objects.	A	Reminder	object
keeps	track	of	its	x,y	location	on	the	screen.	It	also	has	some	text	that	is	provided	when	it
is	created.	A	Reminder	must	take	care	of	creating	the	Text	and	Toplevel	objects	so	a	note
can	 be	 displayed.	 Finally,	 the	 methods	 defined	 on	 a	 Reminder	 include	 undraw	 (to
withdraw	the	window),	getX	to	return	the	X	value	of	the	window	location,	getY	similarly
gets	the	Y	value	of	the	window	location.	The	getText	method	should	return	the	text	field.
Finally,	 the	 setDeleteHandler	 should	 set	 the	 handler	 to	 be	 called	 when	 a	 reminder	 is
deleted.	Write	this	class	and	modify	the	Reminder!	application	to	use	this	new	class.

Here	is	an	outline	of	the	Reminder	class	definition.	You	need	to	finish	defining	it	and
alter	the	program	to	use	it.

Your	job	is	to	fill	in	the	function	definitions	and	then	use	the	class	in	the	Reminder!
application.

	
2.		

Modify	your	 address	book	program	 to	use	 a	 class	 for	 address	book	cards.	Call	 the	new
class	AddressCard.	An	address	card	contains	all	the	information	for	an	address	book	entry
including	last	and	first	name,	street,	city,	state,	zip,	phone,	and	mobile	phone	number.	To
use	the	AddressCard	class	you	need	to	modify	the	program	so	it	stores	all	AddressCards	in
a	list.	The	program	should	read	all	the	addresses	when	it	starts	and	make	one	AddressCard
object	for	each	address	in	the	file.	You	will	also	write	all	the	cards	in	the	list	to	a	file	when
the	program	terminates.	Look	at	the	code	in	Chap.	15	to	see	how	this	can	be	done.

You	will	want	to	include	three	hook	methods	in	your	AddressCard	class.	The	__str__
method	should	be	included	to	convert	an	AddressCard	to	a	string.	To	do	this	you	will	want
to	return	a	string	representation	of	the	object	as	discussed	in	the	chapter.	The	AddressCard
entry	should	convert	to	a	string	as	follows:



Your	__str__	method	should	return	a	string	that	looks	just	like	this.	When	you	print
your	 addresses	 to	 the	 file	 when	 the	 application	 closes,	 you	 can	 use	 the	 str	 function	 to
convert	each	AddressCard	object	to	a	string.	Don’t	forget	the	newline	characters	at	the	end
of	each	line.

The	 second	 special	 method	 is	 the	 __lt__	 method.	 This	 method	 compares	 two
AddressCard	objects	as	described	for	Rationals	in	the	chapter.	Your	__lt__	method	should
return	True	if	the	last	name,	first	name	of	self	is	less	than	the	last	name,	first	name	of	the
other	AddressCard.

A	 third	 special	 method	 is	 the	 __eq__	 method.	 This	 method	 compares	 two
AddressCard	objects	and	is	used	by	the	index	method	on	lists.	If	self	is	equal	to	other	then
True	should	be	returned.	If	self	is	not	equal	to	other	then	False	should	be	returned.	Here	is
how	you	might	write	this	function.

Each	 of	 the	 event	 handlers	must	 be	 rewritten	 to	 use	 the	 new	 list	 of	 addresses.	 For
instance,	here	is	how	the	Find	event	handler	might	be	written	to	use	the	index	method	on
lists	that	is	now	possible	with	the	definition	of	the	__eq__	method.



Finally,	 you	 should	 use	 the	 list	 sort	method	 to	 keep	 the	 address	 book	 sorted	 at	 all
times.

	
3.		

In	 this	 exercise	 you	 are	 to	 implement	 a	 game	 of	 Blackjack	 using	 the	 turtle	 package.
Blackjack	 is	 a	 simple	 game	 with	 simple	 rules.	 In	 this	 exercise	 you	 get	 practice	 using
Object-Oriented	Programming	to	implement	a	fairly	complex	program.

Rules	of	the	Game

Blackjack	is	played	by	dealing	two	cards	to	each	player	and	the	dealer.	The	player’s
cards	are	face	up.	The	dealer’s	first	card	is	face	down	and	the	second	is	face	up.

The	goal	is	to	get	to	21	points.	Each	face	card	is	worth	10	points.	The	Ace	is	worth	1
or	11	points	depending	on	which	is	better	for	your	hand.	All	other	cards	are	worth	 their
face	value.

The	player	bets	 first.	Then	he/she	 asks	 for	 cards	 (hits)	 until	 they	 are	 satisfied	with
their	score	or	they	go	over.	If	they	have	not	gone	over,	the	dealer	then	draws	cards	until
the	dealer	hand	is	17	or	over.	If	the	dealer	goes	over	21,	the	player	wins.	Otherwise,	the
player	wins	if	his/her	score	is	greater	than	the	dealer’s	score.

If	the	player	gets	a	blackjack	(21	with	only	two	cards)	then	the	player	gets	paid	at	a
3:2	ratio.	Otherwise	it	is	a	1:1	ratio	payback.

Writing	the	Game

You	should	write	this	game	incrementally.	That	means,	write	a	little	bit	and	test	that
little	bit	before	going	on.	You	don’t	want	to	debug	this	whole	program	after	writing	all	the
code.

You	will	need	to	implement	a	Card	class.	A	Card	object	can	inherit	from	RawTurtle.



When	you	create	a	Card	object	you	will	want	to	give	it	an	image	for	the	front	and	back.
The	 images	can	be	downloaded	 from	 the	 text	website.	Download	 the	cards.zip	 file,	 and
then	 unzip	 it	 in	 the	 same	 folder	 where	 you	 will	 write	 your	 program.	 The	 cards	 folder
should	be	a	subfolder	of	the	folder	where	you	write	your	program.

The	 card	 images	 are	 named	 1.gif,	 2.gif,	 and	 so	 on.	 The	 back	 image	 is	 labeled
back.gif.	Images	1,	2,	3,	4	are	the	Aces.	Images	5,	6,	7,	8	are	the	Kings	and	so	on.	To	get

the	correct	rank	for	a	card	you	can	use	the	formula	 	where	val	is	the	value	of	the
card	 name.	 If	 the	 formula	 determines	 the	 rank	 is	 14	 it	 should	 be	 changed	 to	 11.	Ranks
from	10–13	should	be	changed	to	10.

The	Card	class	will	have	at	least	four	methods.	You	may	want	to	define	more.	Here	is
a	suggestion	for	the	methods	you	should	write.

	
isFaceDown—This	method	returns	true	if	the	card	is	face	down.	It	returns	false	if	the
card	is	face	up.

setFaceDown—This	 method	 sets	 the	 Turtle	 shape	 to	 be	 the	 back	 of	 the	 card	 and
remembers	that	it	is	now	face	down.

setFaceUp—This	 method	 sets	 the	 Turtle	 shape	 to	 be	 the	 face	 of	 the	 card	 and
remembers	that	the	card	is	now	face	up.

getBlackJackRank—This	method	returns	the	Blackjack	rank	of	the	card.

The	 main	 part	 of	 the	 program	 is	 placing	 buttons	 on	 the	 screen	 and	 handling	 the
different	button	presses.	Figure	7.6	shows	what	the	application	might	look	like	during	the
playing	of	a	hand.	Figure	7.7	shows	what	the	application	might	display	at	the	end	of	that
hand.	Message	boxes	can	be	used	to	display	the	outcome	of	a	hand.

	
4.		

Complete	 the	Asteroids	 game	 available	 on	 the	 text	web	 site	 as	 shown	 in	 Fig.	 7.8.	 The
Asteroids	video	game	was	originally	designed	and	written	by	Atari.	It	was	released	to	the
public	in	1979.	In	the	game	the	player	controls	a	spaceship	that	navigates	space	and	blows
up	asteroids	by	shooting	at	them.

When	 an	 asteroid	 is	 hit,	 the	 player	 scores	 points	 and	 the	 asteroid	 splits	 into	 two
smaller	 asteroids.	 The	 largest	 asteroids	 are	 worth	 20	 points.	 Each	 medium	 asteroid	 is
worth	50	points.	The	 smallest	 asteroids	 are	worth	100	points	 each.	When	 the	 spaceship
hits	a	small	asteroid	it	is	obliterated	into	dust	and	it	disappears	completely	from	the	game.

If	an	asteroid	collides	with	the	spaceship,	the	spaceship	is	destroyed,	the	asteroid	that
collided	with	it	is	destroyed	(resulting	in	no	points)	and	the	player	gets	a	new	spaceship.
The	game	starts	with	four	spaceships	total	(the	original	game	started	with	only	three).

Code	is	available	on	the	text’s	web	site.	The	downloadable	code	makes	the	ship	turn
left	when	4	is	pressed.	The	ship	will	also	move	forward	when	5	is	pressed.	Complete	the



program	by	implementing	the	game	as	described	above.	Some	lessons	are	available	on	the
text’s	web	site	that	will	guide	you	through	many	of	the	additions	to	the	program	described
here.	 To	make	 the	 game	 a	 little	more	 interesting	 you	 should	 add	 one	 new	 level	 to	 this
program.	The	second	 level	 should	have	7	asteroids	 instead	of	5	and	you	should	get	one
more	life	if	you	have	less	than	4	when	level	2	starts.

	
5.		

In	Chap.	4,	XML	documents	were	introduced.	The	example	in	that	chapter	was	of	drawing
a	picture	contained	 in	an	XML	file.	To	do	 this,	several	parallel	 lists	were	constructed	 to
hold	the	data	of	the	XML	file.	However,	there	were	lots	of	None	values	placed	in	the	lists
because	not	all	attributes	applied	to	all	graphics	commands.

A	much	better	way	of	organizing	the	XML	data	would	be	to	create	a	class	for	each
different	kind	of	graphics	command.	So	a	BeginFillCommand	class	would	contain	just	the
color	attribute	needed	for	the	BeginFill	graphics	command.	Likewise,	the	class	associated
with	 each	 different	 type	 of	 command	 would	 hold	 the	 attributes	 needed	 just	 for	 that
command.	Then,	a	draw	method	could	be	written	for	each	class	that	draws	or	uses	a	turtle
for	 the	 desired	 side-effiect.	 Each	 draw	 method	 should	 be	 passed	 a	 turtle.	 The
BeginFillCommand’s	draw	method	would	use	the	turtle	to	set	the	fillcolor	and	then	would
invoke	the	begin_fill	turtle	method.

Rewrite	the	XML	drawing	program	from	Chap.	4	by	defining	a	class	for	each	type	of
graphics	command	along	with	a	draw	method	for	each	of	them	that	given	a	turtle	draws	or
otherwise	has	the	desired	side-effect.	Have	the	program	read	the	XML	file	and	create	one
list	 of	 these	 graphics	 command	 objects.	 Then	 use	 a	 loop	 to	 iterate	 through	 these
commands,	drawing	each	of	them	to	the	screen.	Once	completed	you	will	have	eliminated
all	 the	 parallel	 lists	 from	 the	 program	 and	written	 it	with	 a	much	more	 object-oriented
approach.

	



Fig.	7.6		A	Blackjack	hand

Fig.	7.7		The	end	of	a	Blackjack	hand



Fig.	7.8		Asteroids!



7.8		Solutions	to	Practice	Problems
These	are	solutions	to	the	practice	problems	in	this	chapter.	You	should	only	consult	these
answers	after	you	have	tried	each	of	them	for	yourself	first.	Practice	problems	are	meant
to	help	reinforce	the	material	you	have	just	read	so	make	use	of	them.

7.8.1		Solutions	to	Practice	Problem	7.1
A	numerator	and	denominator	are	needed.

7.8.2		Solutions	to	Practice	Problem	7.2

7.8.3		Solutions	to	Practice	Problem	7.3

7.8.4		Solutions	to	Practice	Problem	7.4
Download	code	and	 try	 it	out.	Here	 is	 the	Rectangle	class	 in	case	you	had	 trouble	with
defining	it.



7.8.5		Solutions	to	Practice	Problem	7.5
Create	some	GravityBall	objects	and	add	them	to	the	ballList.	That’s	all	that	needs	to	be
done	to	have	gravity	balls	and	regular	balls	bouncing	around	with	each	other.	The	object
on	the	left	hand	side	of	the	dot	in	the	ball	ball.move	is	where	polymorphism	is	at	work.	If
ball	 is	 pointing	 to	 a	 Ball	 object,	 it	 behaves	 as	 a	 Ball	 would.	 If	 ball	 is	 pointing	 to	 a
GravityBall	object,	then	ball.move	 is	the	GravityBall	move	method.	It’s	not	the	name	on
the	 left	 hand	 side	 of	 the	 dot,	 its	 the	 object	 that	 the	 name	 refers	 to	 that	 controls	 which
methods	are	called.



©	Springer-Verlag	London	2014

Kent	D.	LeePython	Programming	FundamentalsUndergraduate	Topics	 in	Computer	Science10.1007/978-1-4471-6642-
9_8



8.	Appendix	A:	Integer	Operators
Kent	D.	Lee1		

(1)		

Luther	College,	Decorah,	IA,	USA

	
	

Kent	D.	Lee
Email:	kentdlee@luther.edu

This	 documentation	was	 generated	 from	 the	 Python	 documentation	 available	 by	 typing
help(int)	 in	 the	 Python	 shell.	 In	 this	 documentation	 the	 variables	 x,	 y,	 and	 z	 refer	 to
integers	(Table	8.1).
Table	8.1		Integer	operators

Operator Returns Comments

x	 	y int Returns	the	sum	of	x	and	y

x	 	y int Returns	the	difference	of	x	and	y

x*y int Returns	the	product	of	x	and	y

x/y float Returns	the	quotient	of	x	divided	by	y

x//y int Returns	the	integer	quotient	of	x	divided	by	y

x	%	y int Returns	x	modulo	y.	This	is	the	remainder	of	dividing	x	by	y

x int Returns	the	negation	of	x

x&y int Returns	the	bit-wise	and	of	x	and	y

x	|	y int Returns	the	bit-wise	or	of	x	and	y

x	ˆ	y int Returns	the	bit-wise	exclusive	or	of	x	and	y

x	 	y int Returns	a	bit-wise	shift	left	of	x	by	y	bits.	Shifting	left	by	1	bit	multiplies	x	by	2

x	 	y int Returns	a	bit-wise	right	shift	of	x	by	y	bits

˜	x int Returns	an	integer	where	each	bit	in	the	x	has	been	inverted.	 	for
all	x

abs(x) int Returns	the	absolute	value	of	x

divmod(x,
y) (q,r) Returns	the	quotient	q	and	the	remainder	r	as	a	tuple

float(x) float Returns	the	float	representation	of	x

hex(x) str Returns	a	hexadecimal	representation	of	x	as	a	string

int(x) int Returns	x

mailto:kentdlee@luther.edu


oct(x) str Return	an	octal	representation	of	x	as	a	string

pow(x,	y[,
z]) int Returns	x	to	the	y	power	modulo	z.	If	z	is	not	specified	then	it	returns	x	to	the	y

power

repr(x) str Returns	a	string	representation	of	x

str(x) str Returns	a	string	representation	of	x



©	Springer-Verlag	London	2014

Kent	D.	LeePython	Programming	FundamentalsUndergraduate	Topics	 in	Computer	Science10.1007/978-1-4471-6642-
9_9



9.	Appendix	B:	Float	Operators
Kent	D.	Lee1		

(1)		

Luther	College,	Decorah,	IA,	USA

	
	

Kent	D.	Lee
Email:	kentdlee@luther.edu

This	 documentation	was	 generated	 from	 the	 Python	 documentation	 available	 by	 typing
help(float)	in	the	Python	shell.	In	this	documentation	at	least	one	of	the	variables	x	and	y
refer	to	floats	(Table	9.1).
Table	9.1		Float	operators

Operator Returns Comments

x	 	y float Returns	the	sum	of	x	and	y

x	 	y float Returns	the	difference	of	x	and	y

x*y float Returns	the	product	of	x	and	y

x/y float Returns	the	quotient	of	x	divided	by	y

x//y float Returns	the	quotient	of	integer	division	of	x	divided	by	y.	However,	the	result	is
still	a	float

x	%	y float Returns	x	modulo	y.	This	is	the	remainder	of	dividing	x	by	y

abs(x) int Returns	the	absolute	value	of	x

divmod(x,
y) (q,r)

Returns	the	quotient	q	and	the	remainder	r	as	a	tuple.	Both	q	and	r	are	floats,	but
integer	division	is	performed.	The	value	r	is	the	whole	and	fractional	part	of	any
remainder.	The	value	q	is	a	whole	number

float(x) float Returns	the	float	representation	of	x

int(x) int Returns	the	floor	of	x	as	an	integer

pow(x,	y) float Returns	x	to	the	y	power

repr(x) str Returns	a	string	representation	of	x

str(x) str Returns	a	string	representation	of	x

mailto:kentdlee@luther.edu


©	Springer-Verlag	London	2014

Kent	D.	LeePython	Programming	FundamentalsUndergraduate	Topics	 in	Computer	Science10.1007/978-1-4471-6642-
9_10



10.	Appendix	C:	String	Operators	and	Methods
Kent	D.	Lee1		

(1)		

Luther	College,	Decorah,	IA,	USA

	
	

Kent	D.	Lee
Email:	kentdlee@luther.edu

This	 documentation	was	 generated	 from	 the	 Python	 documentation	 available	 by	 typing
help(str)	 in	 the	Python	 shell.	 In	 the	 documentation	 found	here	 the	 variables	 s	 and	 t	 are
references	to	strings	(Table	10.1).
Table	10.1		String	operators	and	methods

Operator Returns Comments

s+t str Return	a	new	string	which	is	the	concatenation	of	s	and	t

s	in	t bool Returns	True	if	s	is	a	substring	of	t	and	False	otherwise

s==t bool Returns	True	if	s	and	t	refer	to	strings	with	the	same	sequence	of
characters

s>=t bool Returns	True	if	s	is	lexicographically	greater	than	or	equal	to	t

s<=t bool Returns	True	if	s	is	lexicographically	less	than	or	equal	to	t

s>t bool Returns	True	if	s	is	lexicographically	greater	than	t

s<t bool Returns	True	if	s	is	lexicographically	less	than	t

s!=t bool Returns	True	if	s	is	lexicographically	not	equal	to	t

s[i] str
Returns	the	character	at	index	i	in	the	string.	If	i	is	negative	then

it	returns	the	character	at	index	len(s) i

s[[i]:[j]] str

Returns	the	slice	of	characters	starting	at	index	i	and	extending	to

index	j 1	in	the	string.	If	i	is	omitted	then	the	slice	begins	at
index	0.	If	j	is	omitted	then	the	slice	extends	to	the	end	of	the	list.

If	i	is	negative	then	it	returns	the	slice	starting	at	index	len(s) i
(and	likewise	for	the	slice	ending	at	j)

s	 	i str Returns	a	new	string	with	s	repeated	i	times

i	 	s str Returns	a	new	string	with	s	repeated	i	times

chr(i) str Return	the	ASCII	character	equivalent	of	the	integer	i

float(s) float Returns	the	float	contained	in	the	string	s

int(s) int Returns	the	integer	contained	in	the	string	s

len(s) int Returns	the	number	of	characters	in	s

ord(s) int Returns	the	ASCII	decimal	equivalent	of	the	single	character

mailto:kentdlee@luther.edu


string	s

repr(s) 	 Returns	a	string	representation	of	s.	This	adds	an	extra	pair	of
quotes	to	s

str(s) str Returns	a	string	representation	of	s.	In	this	case	you	get	just	the
string	s

s.capitalize() str Returns	a	copy	of	the	string	s	with	the	first	character	upper	case

s.center(width[,
fillchar]) str Returns	s	centered	in	a	string	of	length	width.	Padding	is	done

using	the	specified	fill	character	(default	is	a	space)

s.count(sub[,	start[,
end]]) int

Returns	the	number	of	non-overlapping	occurrences	of	substring
sub	in	string	s[start:end].	Optional	arguments	start	and	end	are
interpreted	as	in	slice	notation

s.encode([encoding[,
errors]]) bytes

Encodes	s	using	the	codec	registered	for	encoding.	encoding
defaults	to	the	default	encoding.	errors	may	be	given	to	set	a
different	error	handling	scheme.	Default	is	‘strict’	meaning	that
encoding	errors	raise	a	UnicodeEncodeError.	Other	possible
values	are	‘ignore’,	‘replace’	and	‘xmlcharrefreplace’	as	well	as
any	other	name	registered	with	codecs.register_error	that	can
handle	UnicodeEncodeErrors

s.endswith(suffix[,
start[,	end]]) bool

Returns	True	if	s	ends	with	the	specified	suffix,	False	otherwise.
With	optional	start,	test	s	beginning	at	that	position.	With
optional	end,	stop	comparing	s	at	that	position.	suffix	can	also	be
a	tuple	of	strings	to	try

s.expandtabs([tabsize]) str
Returns	a	copy	of	s	where	all	tab	characters	are	expanded	using
spaces.	If	tabsize	is	not	given,	a	tab	size	of	8	characters	is
assumed

s.find(sub[,	start[,
end]]) int

Returns	the	lowest	index	in	s	where	substring	sub	is	found,	such
that	sub	is	contained	within	s[start:end].	Optional	arguments	start
and	end	are	interpreted	as	in	slice	notation.

	 	 Return	 1	on	failure

s.format(*args,
**kwargs) str 	

s.index(sub[,	start[,
end]]) int Like	s.find()	but	raise	ValueError	when	the	substring	is	not	found

s.isalnum() bool Returns	True	if	all	characters	in	s	are	alphanumeric	and	there	is	at
least	one	character	in	s,	False	otherwise

s.isalpha() bool Returns	True	if	all	characters	in	s	are	alphabetic	and	there	is	at
least	one	character	in	s,	False	otherwise

s.isdecimal() bool Returns	True	if	there	are	only	decimal	characters	in	s,	False
otherwise

s.isdigit() bool Returns	True	if	all	characters	in	s	are	digits	and	there	is	at	least
one	character	in	s,	False	otherwise

s.isidentifier() bool Returns	True	if	s	is	a	valid	identifier	according	to	the	language
definition

s.islower() bool Returns	True	if	all	cased	characters	in	s	are	lowercase	and	there	is
at	least	one	cased	character	in	s,	False	otherwise

s.isnumeric() bool Returns	True	if	there	are	only	numeric	characters	in	s,	False
otherwise

s.isprintable() bool Returns	True	if	all	characters	in	s	are	considered	printable	in
repr()	or	s	is	empty,	False	otherwise

Returns	True	if	all	characters	in	s	are	whitespace	and	there	is	at



s.isspace() bool least	one	character	in	s,	False	otherwise

s.istitle() bool

Returns	True	if	s	is	a	titlecased	string	and	there	is	at	least	one
character	in	s,	i.e.	upper-	and	titlecase	characters	may	only	follow
uncased	characters	and	lowercase	characters	only	cased	ones.
Return	False	otherwise

s.isupper() bool Returns	True	if	all	cased	characters	in	s	are	uppercase	and	there	is
at	least	one	cased	character	in	s,	False	otherwise

s.join(sequence) str Returns	a	string	which	is	the	concatenation	of	the	strings	in	the
sequence.	The	separator	between	elements	is	s

s.ljust(width[,
fillchar]) str

Returns	s	left-justified	in	a	Unicode	string	of	length	width.
Padding	is	done	using	the	specified	fill	character	(default	is	a
space)

s.lower() str Returns	a	copy	of	the	string	s	converted	to	lowercase

s.lstrip([chars]) str Returns	a	copy	of	the	string	s	with	leading	whitespace	removed.
If	chars	is	given	and	not	None,	remove	characters	in	chars	instead

s.partition(sep) (h,sep,t)
Searches	for	the	separator	sep	in	s,	and	returns	the	part	before	it,
the	separator	itself,	and	the	part	after	it.	If	the	separator	is	not
found,	returns	s	and	two	empty	strings

s.replace	(old,	new[,
count]) str

Returns	a	copy	of	s	with	all	occurrences	of	substring	old	replaced
by	new.	If	the	optional	argument	count	is	given,	only	the	first
count	occurrences	are	replaced

s.rfind(sub[,	start[,
end]]) int

Returns	the	highest	index	in	s	where	substring	sub	is	found,	such
that	sub	is	contained	within	s[start:end].	Optional	arguments	start
and	end	are	interpreted	as	in	slice	notation.

	 	 Returns	 1	on	failure

s.rindex(sub[,	start[,
end]]) int

Like	s.rfind()	but	raise	ValueError	when	the	substring	is	not
found

s.rjust(width[,
fillchar]) str Returns	s	right-justified	in	a	string	of	length	width.	Padding	is

done	using	the	specified	fill	character	(default	is	a	space)

s.rpartition(sep) (t,sep,h)
Searches	for	the	separator	sep	in	s,	starting	at	the	end	of	s,	and
returns	the	part	before	it,	the	separator	itself,	and	the	part	after	it.
If	the	separator	is	not	found,	returns	two	empty	strings	and	s

s.rsplit([sep[,
maxsplit]])

string
list

Returns	a	list	of	the	words	in	s,	using	sep	as	the	delimiter	string,
starting	at	the	end	of	the	string	and	working	to	the	front.	If
maxsplit	is	given,	at	most	maxsplit	splits	are	done.	If	sep	is	not
specified,	any	whitespace	string	is	a	separator

s.rstrip([chars]) str
Returns	a	copy	of	the	string	s	with	trailing	whitespace	removed.
If	chars	is	given	and	not	None,	removes	characters	in	chars
instead

s.split([sep[,
maxsplit]])

string
list

Returns	a	list	of	the	words	in	s,	using	sep	as	the	delimiter	string.
If	maxsplit	is	given,	at	most	maxsplit	splits	are	done.	If	sep	is	not
specified	or	is	None,	any	whitespace	string	is	a	separator	and
empty	strings	are	removed	from	the	result

s.splitlines([keepends]) string
list

Returns	a	list	of	the	lines	in	s,	breaking	at	line	boundaries.	Line
breaks	are	not	included	in	the	resulting	list	unless	keepends	is
given	and	true

s.startswith(prefix[,
start[,	end]]) bool

Returns	True	if	s	starts	with	the	specified	prefix,	False	otherwise.
With	optional	start,	test	s	beginning	at	that	position.	With
optional	end,	stop	comparing	s	at	that	position.	Prefix	can	also	be
a	tuple	of	strings	to	try



s.strip([chars]) str
Returns	a	copy	of	the	string	s	with	leading	and	trailing
whitespace	removed.	If	chars	is	given	and	not	None,	removes
characters	in	chars	instead.

s.swapcase() str Returns	a	copy	of	s	with	uppercase	characters	converted	to
lowercase	and	vice	versa

s.title() str Returns	a	titlecased	version	of	s,	i.e.	words	start	with	title	case
characters,	all	remaining	cased	characters	have	lower	case

s.translate(table) str

Returns	a	copy	of	the	string	s,	where	all	characters	have	been
mapped	through	the	given	translation	table,	which	must	be	a
mapping	of	Unicode	ordinals	to	Unicode	ordinals,	strings,	or
None.	Unmapped	characters	are	left	untouched.	Characters
mapped	to	None	are	deleted

s.upper() str Returns	a	copy	of	s	converted	to	uppercase

s.zfill(width) str Pad	a	numeric	string	s	with	zeros	on	the	left,	to	fill	a	field	of	the
specified	width.	The	string	s	is	never	truncated



©	Springer-Verlag	London	2014

Kent	D.	LeePython	Programming	FundamentalsUndergraduate	Topics	 in	Computer	Science10.1007/978-1-4471-6642-
9_11



11.	Appendix	D:	List	Operators	and	Methods
Kent	D.	Lee1		

(1)		

Luther	College,	Decorah,	IA,	USA

	
	

Kent	D.	Lee
Email:	kentdlee@luther.edu

This	 documentation	was	 generated	 from	 the	 Python	 documentation	 available	 by	 typing
help(list)	 in	 the	Python	shell.	 In	 the	documentation	 found	here	 the	variables	x	and	y	are
references	to	lists	(Table	11.1).
Table	11.1		List	operators	and	methods

Method Returns Comments

list() list Returns	a	new	empty	list.	You	can	also	use	[]	to	initialize	a	new	empty	list

list(sequence) list Returns	new	list	initialized	from	sequence’s	items

[	item
[,item]+	] list Writing	a	number	of	comma-separated	items	in	square	brackets	constructs

a	new	list	of	those	items

x+y list Returns	a	new	list	containing	the	concatenation	of	the	items	in	x	and	y

e	in	x bool Returns	True	if	the	item	e	is	in	x	and	False	otherwise

del	x[i] 	 Deletes	the	item	at	index	i	in	x.	This	is	not	an	expression	and	does	not
return	a	value

x==y bool Returns	True	if	x	and	y	contain	the	same	number	of	items	and	each	of	those
corresponding	items	are	pairwise	equal

x>=y bool

Returns	True	if	x	is	greater	than	or	equal	to	y	according	to	a
lexicographical	ordering	of	the	elements	in	x	and	y.	If	x	and	y	have
different	lengths	their	items	are	==	up	to	the	shortest	length,	then	this
returns	True	if	x	is	longer	than	y

x<=y bool Returns	True	if	x	is	lexicographically	before	y	or	equal	to	y	and	False
otherwise

x>y bool Returns	True	if	x	is	lexicographically	after	y	and	False	otherwise

x<y bool Returns	True	if	x	is	lexicographically	before	y	and	False	otherwise

x!=y bool Returns	True	if	x	and	y	are	of	different	length	or	if	some	item	of	x	is	not	==
to	some	item	of	y.	Otherwise	it	returns	False

x[i] item Returns	the	item	at	index	i	of	x

x[[i]:[j]] list

Returns	the	slice	of	items	starting	at	index	i	and	extending	to	index	j 1	in
the	string.	If	i	is	omitted	then	the	slice	begins	at	index	0.	If	j	is	omitted	then
the	slice	extends	to	the	end	of	the	list.	If	i	is	negative	then	it	returns	the

slice	starting	at	index	len(x) i	(and	likewise	for	the	slice	ending	at	j)

mailto:kentdlee@luther.edu


x[i]=e 	
Assigns	the	position	at	index	i	the	value	of	e	in	x.	The	list	x	must	already
have	an	item	at	index	i	before	this	assignment	occurs.	In	other	words,
assigning	an	item	to	a	list	in	this	way	will	not	extend	the	length	of	the	list
to	accommodate	it

x+=y 	 This	mutates	the	list	x	to	append	the	items	in	y

x*=i 	 This	mutates	the	list	x	to	be	i	copies	of	the	original	x

iter(x) iterator Returns	an	iterator	over	x

len(x) int Returns	the	number	of	items	in	x

x*i list Returns	a	new	list	with	the	items	of	x	repeated	i	times

i*x list Returns	a	new	list	with	the	items	of	x	repeated	i	times

repr(x) str Returns	a	string	representation	of	x

x.append(e) None This	mutates	the	value	of	x	to	add	e	as	its	last	element.	The	function	returns
None,	but	the	return	value	is	irrelevant	since	it	mutates	x

x.count(e) int Returns	the	number	of	occurrences	of	e	in	x	by	using	==	equality

x.extend(iter) None Mutates	x	by	appending	elements	from	the	iterable,	iter

x.index(e,[i,
[j]]) int

Returns	the	first	index	of	an	element	that	==	e	between	the	the	start	index,

i,	and	the	stop	index,	j 1.	It	raises	ValueError	if	the	value	is	not	present	in
the	specified	sequence.	If	j	is	omitted	then	it	searches	to	the	end	of	the	list.
If	i	is	omitted	then	it	searches	from	the	beginning	of	the	list

x.insert(i,	e) None Insert	e	before	index	i	in	x,	mutating	x

x.pop([index]) item

Remove	and	return	the	item	at	index.	If	index	is	omitted	then	the	item	at

len(x) 1	is	removed.	The	pop	method	returns	the	item	and	mutates	x.	It
raises	IndexError	if	list	is	empty	or	index	is	out	of	range

x.remove(e) None remove	first	occurrence	of	e	in	x,	mutating	x.	It	raises	ValueError	if	the
value	is	not	present

x.reverse() None Reverses	all	the	items	in	x,	mutating	x

x.sort() None

Sorts	all	the	items	of	x	according	to	their	natural	ordering	as	determined	by
the	item’s	_	_cmp_	_	method,	mutating	x.	Two	keyword	parameters	are
possible:	key	and	reverse.	If	reverse	 	True	is	specified,	then	the	result	of
sorting	will	have	the	list	in	reverse	of	the	natural	ordering.	If	key	 	f	is
specified	then	f	must	be	a	function	that	takes	an	item	of	x	and	returns	the
value	of	that	item	that	should	be	used	as	the	key	when	sorting



©	Springer-Verlag	London	2014

Kent	D.	LeePython	Programming	FundamentalsUndergraduate	Topics	 in	Computer	Science10.1007/978-1-4471-6642-
9_12



12.	Appendix	E:	Dictionary	Operators	and	Methods
Kent	D.	Lee1		

(1)		

Luther	College,	Decorah,	IA,	USA

	
	

Kent	D.	Lee
Email:	kentdlee@luther.edu

This	 documentation	was	 generated	 from	 the	 Python	 documentation	 available	 by	 typing
help(dict)	 in	 the	 Python	 shell.	 In	 the	 documentation	 found	 here	 the	 variable	 D	 is	 a
reference	to	a	dictionary.	A	few	methods	were	omitted	here	for	brevity	(Table	12.1).
Table	12.1		Dictionary	operators	and	methods

Method Returns Comments

dict() dict New	empty	dictionary

dict(mapping) dict New	dictionary	initialized	from	a	mapping	object’s	(key,	value)
pairs

dict(seq) dict New	dictionary	initialized	as	if	via
	 	 D	 	{}
	 	 for	k,	v	in	seq
	 	 D[k]	 	v

dict(**kwargs) dict New	dictionary	initialized	with	the	name	 	value	pairs	in	the
keyword	arg	list.	For	example:	dict(one	 	1,	two	 	2)

k	in	D bool True	if	D	has	key	k,	else	False

del	D[k] 	 Deletes	key	k	from	dictionary	D

D1 	2 bool Returns	True	if	dictionaries	D1	and	D2	have	same	keys	mapped	to
same	values

D[k] value
type

Returns	value	k	maps	to	in	D.	If	k	is	not	mapped,	it	raises	a
KeyError	exception

iter(D) iterator Returns	an	iterator	over	D

len(D) int Returns	the	number	of	keys	in	D

D1! D2 bool Returns	True	if	D1	and	D2	have	any	different	keys	or	keys	map	to
different	values

repr(D) str Returns	a	string	representation	of	D

D[k] e – Stores	the	key,value	pair	k,e	in	D

D.clear() None Remove	all	items	from	D

D.copy() dict A	shallow	copy	of	D

D.get(k[,e])
value
type D[k]	if	k	in	D,	else	e.	e	defaults	to	None

mailto:kentdlee@luther.edu


D.items() items A	set-like	object	providing	a	view	on	D’s	items

D.keys() keys A	set-like	object	providing	a	view	on	D’s	keys

D.pop(k[,e]) v Remove	specified	key	and	return	the	corresponding	value.	If	key	is
not	found,	e	is	returned	if	given,	otherwise	KeyError	is	raised

D.popitem() (k,	v) Remove	and	return	some	(key,	value)	pair	as	a	2-tuple;	but	raise
KeyError	if	D	is	empty

D.setdefault(k[,e]) D.get(k,e) Returns	D.get(k,e)	and	also	sets	d[k]	 	e	if	k	not	in	D

D.update(E,	**F) None Update	D	from	dict/iterable	E	and	F
	 	 If	E	has	a	.keys()	method,	does:	for	k	in	E:	D[k]	 	E[k]
	 	 If	E	lacks	.keys()	method,	does:	for	(k,	v)	in	E:	D[k]	 	v
	 	 In	either	case,	this	is	followed	by:	for	k	in	F:	D[k]	 	F[k]

D.values() values An	object	providing	a	view	on	D’s	values



©	Springer-Verlag	London	2014

Kent	D.	LeePython	Programming	FundamentalsUndergraduate	Topics	 in	Computer	Science10.1007/978-1-4471-6642-
9_13



13.	Appendix	F:	Turtle	Methods
Kent	D.	Lee1		

(1)		

Luther	College,	Decorah,	IA,	USA

	
	

Kent	D.	Lee
Email:	kentdlee@luther.edu

This	documentation	was	generated	from	the	Python	documentation	available	by	typing

in	the	Python	shell.	In	the	documentation	found	here	the	variable	turtle	is	a	reference
to	a	Turtle	object.	This	is	a	subset	of	that	documentation.	To	see	complete	documentation
use	the	Python	help	system	as	described	above.

mailto:kentdlee@luther.edu
























©	Springer-Verlag	London	2014

Kent	D.	LeePython	Programming	FundamentalsUndergraduate	Topics	 in	Computer	Science10.1007/978-1-4471-6642-
9_14



14.	Appendix	G:	TurtleScreen	Methods
Kent	D.	Lee1		

(1)		

Luther	College,	Decorah,	IA,	USA

	
	

Kent	D.	Lee
Email:	kentdlee@luther.edu

This	documentation	was	generated	from	the	Python	documentation	available	by	typing

in	the	Python	shell.	In	the	documentation	found	here	the	variable	turtle	is	a	reference	to	a
Turtle	object	and	screen	is	a	reference	to	the	TurtleScreen	object.	This	is	a	subset	of	that
documentation.	To	see	complete	documentation	use	the	Python	help	system	as	described
above.

mailto:kentdlee@luther.edu
















©	Springer-Verlag	London	2014

Kent	D.	LeePython	Programming	FundamentalsUndergraduate	Topics	 in	Computer	Science10.1007/978-1-4471-6642-
9_15



15.	Appendix	H:	The	Reminder!	Program
Kent	D.	Lee1		

(1)		

Luther	College,	Decorah,	IA,	USA

	
	

Kent	D.	Lee
Email:	kentdlee@luther.edu

mailto:kentdlee@luther.edu




©	Springer-Verlag	London	2014

Kent	D.	LeePython	Programming	FundamentalsUndergraduate	Topics	 in	Computer	Science10.1007/978-1-4471-6642-
9_16



16.	Appendix	I:	The	Bouncing	Ball	Program
Kent	D.	Lee1		

(1)		

Luther	College,	Decorah,	IA,	USA

	
	

Kent	D.	Lee
Email:	kentdlee@luther.edu

mailto:kentdlee@luther.edu




Glossary
			

API				

An	 abbreviation	 for	 Application	 Programming	 Interface.	 An	 API	 is	 a
collection	 of	 functions	 that	 provide	 some	 service	 or	 services	 to	 an
application.

ASCII				

Abbreviation	for	the	American	Standard	Code	for	Information	Interchange.
American	Standard	Code	for	Information	Interchange				

A	widely	 accepted	 standard	 for	 the	 representation	 of	 characters	 within	 a
computer.

CPU				

The	abbreviation	of	Central	Processing	Unit.
GUI				

An	abbreviation	for	Graphical	User	Interface.
I/O	device				

An	 Input/Output	 device.	 The	 device	 is	 capable	 of	 both	 storing	 and
retrieving	information.

IDE				

An	abbreviation	for	Integrated	Development	Environment.
Linux				

A	 freely	 available	 open	 source	 operating	 system	 originated	 by	 Linus
Torvalds.

Mac	OS	X				

An	operating	system	developed	and	supported	by	Apple,	Inc.
Microsoft	Windows				

An	operating	system	developed	and	supported	by	Microsoft	Corporation.
None				

A	special	value	which	is	the	only	value	of	its	type,	the	NoneType.
Python				

An	interpreted	programming	language.
Tk				

A	windowing	toolkit	or	API	available	for	a	variety	of	operating	systems.
Wing	IDE	101				

A	freely	available	IDE	for	educational	purposes	available	from	http://www.
wingware.com	.

XML				

A	meta-language	for	describing	hierarchically	organized	data.	XML	stands
for	eXtensible	Markup	Language.

XML	element				

One	node	in	an	XML	file	that	is	delimited	by	start	and	end	tags.
Accessor	method				

A	method	 that	accesses	 the	data	of	an	object	 (and	 returns	some	of	 it)	but
does	not	change	the	object.

http://www.wingware.com


Accumulator				

A	variable	that	is	used	to	count	something	in	a	program.
Accumulator	pattern				

An	idiom	for	counting	in	a	program.
Activation	record				

An	area	of	memory	that	holds	a	copy	of	each	variable	that	is	defined	in	the
local	scope	of	an	actively	executing	function.

Address				

The	 name	 of	 a	 byte	within	memory.	Addresses	 are	 sequentially	 assigned
starting	at	0	and	continuing	to	the	limit	of	the	CPU’s	addressable	space.

Arguments				

Values	passed	to	a	method	that	affect	the	action	that	the	method	performs.
Assignment	statement				

A	 fundamental	 operation	 of	 storing	 a	 value	 in	 a	 named	 location	 in	 a
program.

Binary				

A	counting	system	composed	of	0’s	and	1’s,	the	only	numbers	a	computer
can	store.

Bit				

A	memory	location	that	can	hold	a	0	or	1.
Bool				

The	name	of	the	type	for	True	and	False	representation	in	Python.
Bottom-up	design				

A	design	 process	where	 smaller	 tasks	 are	 implemented	 first	 and	 then	 the
solutions,	usually	in	the	form	of	functions	or	classes,	to	these	smaller	tasks
are	integrated	into	a	solution	for	a	bigger	problem.

Byte				

Eight	 bits	 grouped	 together.	 A	 byte	 is	 the	 smallest	 unit	 of	 addressable
memory	in	a	computer.

Central	processing	unit				

The	brain	of	a	computer.	Often	abbreviated	CPU.
Class				

A	collection	of	methods	that	all	work	with	the	data	of	a	particular	type	of
object.	A	class	and	a	type	are	synonymous	in	Python.

Computer				

An	electronic	device	that	can	be	programmed	to	complete	a	variety	of	data
processing	tasks.

Constructor				

A	part	of	a	class	that	is	responsible	for	initializing	the	data	of	an	object.
Debugger				

A	program	 that	 lets	 a	 programmer	 set	 breakpoints,	 look	 at	 variables,	 and
trace	the	execution	of	a	programmer	the	programmer	is	developing.

Delimiter				

A	special	character	or	characters,	usually	occurring	in	pairs	that	sets	some
text	off	from	surrounding	text.

Dict				



A	type	of	value	that	stores	key/value	pairs	in	Python.
Dictionary				

A	mapping	from	keys	to	values.	The	key	can	be	any	hashable	object.	The
value	can	be	any	object.	Keys	within	the	dictionary	must	be	unique.	Values
do	not	have	to	be	unique.

Event				

An	abstraction	used	to	describe	the	availability	of	some	input	to	a	program
that	 became	 available	 while	 the	 program	 was	 executing.	 Event-driven
programs	are	written	so	they	can	respond	to	events	when	the	occur.

Exception				

A	mechanism	for	handling	abnormal	conditions	during	 the	execution	of	a
program.

File				

A	grouping	of	 related	data	 that	 can	be	 read	by	a	 computer	program.	 It	 is
usually	stored	on	a	hard	drive,	but	may	be	stored	on	a	network	or	any	other
I/O	device.

Float				

The	name	of	the	type	for	real	number	representation	in	Python.
Formal	parameter				

A	name	given	to	an	argument	when	it	is	passed	to	a	function.
Function				

A	 sequence	 of	 code	 that	 is	 given	 a	 name	 and	 may	 be	 called	 when
appropriate	in	a	program.	A	Function	is	passed	arguments	so	it	can	perform
an	appropriate	action	for	the	current	state	of	the	program.

Garbage	collector				

A	 part	 of	 the	 Python	 interpreter	 that	 periodically	 looks	 for	 objects	 in
memory	that	no	longer	have	any	references	pointing	to	them.	When	such	an
object	is	found	the	garbage	collector	returns	the	storage	for	the	object	to	the
available	memory	for	creating	new	objects.

Gigabyte				

	megabytes.	Abbreviated	GB.
Guess	and	check				

A	pattern	 or	 idiom	 that	 can	 be	 used	 to	 discover	 a	 property	 of	 the	 data	 a
program	is	working	with.

Hard	drive				

An	 Input/Output	 device	 containing	 non-volatile	 storage.	 The	 contents	 of
the	hard	drive	are	not	erased	when	the	power	is	turned	off.

Hashable				

A	technical	term	that	means	that	the	object	can	be	quickly	converted	to	an
integer	through	some	encoding	of	the	data	within	the	object.

Hexadecimal				

A	counting	system	where	each	digit	has	sixteen	different	values	including
0–9	and	A–F.

Hook				

A	 means	 by	 which	 a	 program	 allows	 another	 program	 to	 modify	 its
behavior.	 The	 Python	 interpreter	 has	 several	 hooks	 that	 allow	 a



programmer.
Idiom				

When	used	 in	 the	 context	 of	 computer	 programming,	 an	 idiom	 is	 a	 short
sequence	of	code	that	can	be	used	in	certain	recurring	situations.

If-then	statement				

A	 statement	 where	 the	 evaluation	 of	 a	 condition	 determines	 which	 code
will	executed.

Immutable				

A	object	that	cannot	be	changed	once	it	is	created	is	said	to	be	immutable.
Strings,	 ints,	 floats,	and	bools	are	examples	of	 immutable	 types.	Lists	are
not	immutable.

Index				

An	integer	used	to	select	an	item	from	a	sequence.	Indices	start	at	0	for	the
first	item	in	a	sequence.

Inheritance				

The	reuse	of	code	in	object-oriented	programming.	The	reuse	makes	sense
when	there	is	an	is-a	relationship	between	two	class.	For	instance,	a	Circle
is-a	Shape.

Instruction				

A	simple	command	understood	by	the	CPU.	For	instance,	two	numbers	can
be	added	together	by	an	instruction.

Int				

The	name	of	the	integer	type	in	Python.
Integrated	development	environment				

A	program	that	includes	an	editor	and	debugger	for	editing	and	debugging
computer	programs.

Interpreter				

A	program	 that	 reads	another	program	and	executes	 the	 statements	 found
there.

Iteration				

Repeating	 the	 execution	 of	 several	 statements	 of	 a	 program,	 more	 than
once.	 The	 statement	 are	 written	 once,	 but	 a	 loop	 construct	 repeats	 the
execution	of	the	statements	when	the	program	executes.

Kilobyte				

	bytes.	Abbreviated	KB.
List				

The	name	of	the	type	for	list	representation	in	Python.
Loop				

See	iteration.
Megabyte				

	kilobytes.	Abbreviated	MB.
Memory				

A	random	access	device	that	stores	a	program	and	data	while	the	program
is	executing.	Frequently	memory	is	called	RAM,	which	stands	for	Random
Access	Memory.

Method				



A	sequence	of	code	that	accesses	or	updates	the	data	of	an	object.	A	method
is	an	action	we	take	on	an	object.

Module				

A	file	containing	code	 in	Python.	Files	or	modules	may	be	 imported	 into
other	modules	using	an	 import	 statement.	Modules	must	 end	 in	 .py	 to	 be
imported.

Mutator	method				

A	method	that	changes	or	mutates	the	data	of	an	object.
Object				

A	grouping	of	data	and	the	valid	operations	on	that	data.
Octal				

A	counting	system	where	each	digit	has	eight	possibilities	including	0–7.
Operator				

A	method	that	is	not	called	using	the	reference.	method	(arguments)	format.
Parallel	lists				

A	 set	 of	 two	 or	 more	 lists	 where	 corresponding	 locations	 within	 the
multiple	 lists	 contiain	 related	 information.	 Using	 parallel	 lists	 is	 a
programming	technique	for	maintaining	lists	of	information	when	there	are
many	values	that	correspond	to	one	record.

Polymorphism				

Literally	meaning	many	forms,	polymorphism	in	computer	science	refers	to
the	right	version	of	a	method	being	called	when	the	same	method	occurs	in
more	 than	 one	 type	 of	 object.	 Python	 supports	 polymorphism	 by
dynamically	 looking	 up	 the	 correct	 method	 each	 time	 it	 is	 called	 in	 the
object	it	is	called	on.

Predicate				

A	function	that	returns	True	or	False.
Python	shell				

An	interactive	session	with	the	Python	interpreter.
Record				

A	grouping	 of	 data	 in	 a	 file	 (for	 example	 several	 lines	 in	 a	 file)	 that	 are
related	to	one	entity	in	some	way.

Recursion				

When	 a	 function	 calls	 itself	 it	 is	 said	 to	 be	 recursive.	 Recursion	 occurs
when	the	function	is	executing	and	either	directly	or	indirectly	calls	itself.

Reference				

A	pointer	that	points	to	an	object.	A	reference	is	the	address	of	an	object	in
memory.

Run-time	error				

An	 error	 in	 a	 program	 discovered	 while	 the	 interpreter	 is	 executing	 the
program.

Run-time	stack				

A	data	structure	that	is	used	by	Python	to	execute	programs.	It	is	a	stack	of
activation	records.

Scope				

The	area	in	a	program	where	a	variable	is	defined.	Scope	becomes	a	factor



when	writing	functions	which	define	a	new	local	scope.	The	LEGB	rule	[3]
helps	us	remember	there	is	 local,	enclosing,	global,	and	built-in	scopes	in
Python.

Self				

A	reference	 that	points	at	 the	current	object	when	a	method	 is	 executing.
Python	makes	self	point	to	the	object	that	the	method	was	called	on.

Sequence				

A	 grouping	 of	 like	 data	 that	 can	 be	 iterated	 over.	 Lists	 and	 strings	 are
sequences.

Set				

A	container	type	in	Python.
Short-circuit	logic				

An	evaluation	strategy	where	a	boolean	expression	is	evaluated	from	left	to
right	 only	 until	 the	 truth	 or	 falsity	 of	 the	 expression	 is	 determined.	 Any
error	 condition	 that	may	 have	 occurred	 by	 evaluating	 further	 to	 the	 right
will	not	be	 found	 if	 the	expression’s	value	 is	known	before	 the	offending

part	 is	 encountered.	 For	 instance	 	 and	 	 would	 evaluate	 to
False,	and	would	not	raise	an	exception	using	short-circuit	logic.

Stack				

See	run-time	stack.
Statement				

The	smallest	executable	unit	in	the	Python	programming	language.
Step	into				

The	 term	used	when	 the	debugger	 stops	during	 the	 execution	of	 the	next
instruction	at	any	intermediate	computation	that	is	performed.

Step	over				

The	term	used	when	a	debugger	stops	after	the	next	statement	is	executed.
Stepping	over	does	not	stop	at	any	intermediate	computations.

Str				

The	name	of	the	type	for	string	representation	in	Python.
Subclass				

A	class	that	inherits	from	another	class	called	the	superclass.	A	subclass	is
also	called	a	derived	class.

Superclass				

A	 class	 that	was	 inherited	 from	 to	make	 a	 subclass.	A	 superclass	 is	 also
called	a	base	class.

Syntactic	sugar				

The	ability	to	write	the	same	thing	in	at	least	two	ways	in	a	language,	one
of	which	is	preferable	to	the	other.

Syntax	error				

An	 error	 in	 the	 format	 of	 a	 program.	 Syntax	 errors	 are	 found	 by	 the
interpreter	before	actually	running	a	program.

Tag				

A	delimiter	in	an	XML	file.
Terabyte				



	gigabytes.	Abbreviated	TB.
Top-down	design				

A	design	process	where	details	are	left	until	later	and	the	main	part	of	the
program	 is	written	 first	 calling	 functions	 that	will	 eventually	 take	care	of
the	details.

Tuple				

An	aggregate	type	in	Python.
Turtle				

A	module	in	Python	that	provides	an	abstraction	for	drawing	pictures.
Type				

An	 interpretation	 of	 a	 group	 of	 bytes	 in	memory.	 Certain	 operations	 are
valid	only	for	certain	types	of	values.

Volatile	store				

Refers	 to	 the	properties	of	a	device.	Volatile	store	 loses	 its	contents	when
the	power	is	turned	off.

While	loop				

A	 statement	 used	 for	 indefinite	 iteration.	 Indefinite	 means	 there	 is	 no
sequence	being	iterated	over	in	a	while	loop.	Instead	the	iteration	continues
until	a	condition	becomes	False.

Widget				

An	element	of	a	GUI	application.
Word				

Usually	four	bytes	group	together.	Typically	a	word	is	used	to	store	integers
in	a	computer.

	

References
1.		Cross	JH	II,	Dean	Hendrix	T,	Barowski	LA	(2002)	Using	the	debugger	as	an	integral	part	of	teaching	cs1.

2.		Flanagan	D,	Matsumoto	Y	(2008)	The	ruby	programming	language.	O’Reilly,	Sebastopol

3.		Lutz	M	(2003)	Learning	python.	O’Reilly	and	Associates	Inc,	Sebastopol

4.	 	 	Money	Magazine.	 Best	 jobs	 in	 america	 (2006).	 http://money.cnn.com/popups/2006/moneymag/bestjobs/frameset.
exclude.html.	Accessed	29	Jan	2010

5.		Martelli	A	(2006)	Python	in	a	nutshell.	A	desktop	quick	reference,	2nd	edn.	Nutshell	handbook.	O’Reilly,	Sebastopol.

6.		Milner	R	(1978)	A	theory	of	type	polymorphism	in	programming.	J	Comput	Syst	Sci	17:348–375

7.	 	 	The	US	Consitution	Online.	Steve	mount	 (2010).	http://www.usconstitution.net/const.html	#A2Sec1.	Accessed	29
Jan	2010

8.	 	 	Pilgrim	M	(2010)	Porting	code	to	python	3	with	2	to	3.	http://diveintopython3.org/porting-code-to-python-3-with-
2to3.html.	Accessed	29	Jan	2010

9.		Arild	S	(2002)	The	mathematician	Sophus	Lie.	Springer,	Berlin

10.			van	Rossum	G	(2010)	Guido’s	personal	home	page.	http://www.python.org/	guido/.	Accessed	29	Jan	2010

11.		Welch	Brent	B	(2000)	Practical	programming	in	Tcl	and	Tk,	3rd	edn.	Prentice	Hall	PTR,	Upper	Saddle	River

12.			Wikipedia.	Ascii	(2010).	http://en.wikipedia.org/wiki/ASCII.	Accessed	29	Jan	2010

13.			Wikipedia.	George	boole	(2010).	http://en.wikipedia.org/wiki/George_Boole.	Accessed	29	Jan	2010

http://money.cnn.com/popups/2006/moneymag/bestjobs/frameset.exclude.html.
http://www.usconstitution.net/const.html
http://diveintopython3.org/porting-code-to-python-3-with-2to3.html.
http://www.python.org/
http://en.wikipedia.org/wiki/ASCII.
http://en.wikipedia.org/wiki/George_Boole.


14.	 	 	Wikipedia.	 Logo	 (programming	 language)	 (2010).	 http://en.wikipedia.org/wiki/Logo_(programming_language)	 .
Accessed	29	Jan	2010

15.			Wikipedia.	W.	edwards	deming	(2010).	http://en.wikipedia.org/wiki/William_Deming.	Accessed	29	Jan	2010

Index
A
Accumulator	pattern

Activation	record

And

Application	programming	interface	(API)

Arguments

ASCII

B
Binary

conversion	to	decimal

Bit

Boolean

relational	operators

Bottom-up	design

Breakpoint

Bug

Byte

C
Central	processing	unit	(CPU)

Class

constructor
defining
immutable

Constructor

D
Data

mutable

Data	visualization

Debugger

http://en.wikipedia.org/wiki/Logo_(programming_language)
http://en.wikipedia.org/wiki/William_Deming.


setting	a	breakpoint
step	into
step	over

Debugging

Dictionary

Dispatch	loop

E
Element

XML

Event

Event-driven	programming

Exception

handling

F
File

records

Float

comparing	for	equality
operators

Formal	parameters

Functions

default	arguments
dictionary	parameter	passing
formal	parameters
keyword	arguments
the	main	function
variable	number	of	parameters
arguments
predicate

G
Garbage	collector

Graphical	user	interface	(GUI)

Guess	and	check	pattern

H
Hard	drive



Hexadecimal

Hook

I
IDE

Idiom

If-else

If-then	statement

Immutable

Inheritance

Input/Output	devices

Int

operators

Interpreter

Iteration

L
List

operators	and	methods
indexing
parallel	lists
slicing

Logo

Loop

M
Memory

Method

accessor
mutator

Module

importing

Mutable	data

N
Negative	numbers

binary	representation



Not

O
Object

creating

Object-oriented	programming

inheritance
self
subclass
superclass

Octal

Operators

float
int
list
logical
string

Or

P
Parallel	lists

Pattern

guess	and	check
reading	from	a	file
accumulator

Pointer

Polymorphism

Programming

object-oriented

Python

2.7
installing
3

Python	Shell

R
Random	numbers



generating

RawTurtle	class

Reading	from	a	file	pattern

Record

Recursion

Reference

Relational	operators

Ruby

Run-time	error

S
Scope

Screen

operators	and	methods

Self

Sequence

indexing
slicing

Short-circuit	logic

Stack

activation	record
run-time
data

Standard	ML

String

operators	and	methods
index

Subclass

Superclass

Syntactic	sugar

Syntax	error

T
Tag

XML



Tk

Tkinter

ScolledCanvas	widget
button	widget
entry	widget
label	widget
root	window
text	widget
frame
menu
messagebox

Tkinter	layout

gridder
packer

Top-down	design

Turtle

methods

Turtle	class

Turtle	screen

operators	and	methods

Type

boolean
float
int
list
string

V
Variables

scope

W
While	loop

Widget

Wing	IDE	101

installing

Word

X



XML

element
tag



Table	of	Contents
Frontmatter

1.	Introduction

2.	Decision	Making

3.	Repetitive	Tasks

4.	Using	Objects

5.	Defining	Functions

6.	Event-Driven	Programming

7.	Defining	Classes

8.	Appendix	A:	Integer	Operators

9.	Appendix	B:	Float	Operators

10.	Appendix	C:	String	Operators	and	Methods

11.	Appendix	D:	List	Operators	and	Methods

12.	Appendix	E:	Dictionary	Operators	and	Methods

13.	Appendix	F:	Turtle	Methods

14.	Appendix	G:	TurtleScreen	Methods

15.	Appendix	H:	The	Reminder!	Program

16.	Appendix	I:	The	Bouncing	Ball	Program

Backmatter


	Frontmatter
	1. Introduction
	2. Decision Making
	3. Repetitive Tasks
	4. Using Objects
	5. Defining Functions
	6. Event-Driven Programming
	7. Defining Classes
	8. Appendix A: Integer Operators
	9. Appendix B: Float Operators
	10. Appendix C: String Operators and Methods
	11. Appendix D: List Operators and Methods
	12. Appendix E: Dictionary Operators and Methods
	13. Appendix F: Turtle Methods
	14. Appendix G: TurtleScreen Methods
	15. Appendix H: The Reminder! Program
	16. Appendix I: The Bouncing Ball Program
	Backmatter

