Python Tools
for Visual Studio

Leverage the power of the Visual Studio IDE to develop better
and more efficient Python projects

Download from Join eBook (www.joinebook.corPAC KT

Python Tools for Visual Studio

Leverage the power of the Visual Studio IDE to develop
better and more efficient Python projects

Martino Sabia
Cathy Wang

open source

community experience distilled
PUBLISHING
BIRMINGHAM - MUMBAI

Download from Join eBook (www.joinebook.com)

Python Tools for Visual Studio

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2014
Production Reference: 1140414

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78328-868-7

www . packtpub.com

Cover Image by Cathy Wang (ms . cathywangegmail . com)

Download from Join eBook (www.joinebook.com)

Credits

Authors
Martino Sabia

Cathy Wang

Reviewers
Steve Dower

Fabio Lonegro

Chris Marinic

Commissioning Editor
Anthony Albuquerque

Acquisition Editor
Harsha Bharwani

Content Development Editor
Sriram Neelakantan

Technical Editor
Shashank Desai

Copy Editors
Roshni Banerjee

Gladson Monteiro

Project Coordinator
Melita Lobo

Proofreader
Paul Hindle

Indexers
Monica Ajmera Mehta

Priya Subramani

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

Download from Join eBook (www.joinebook.com)

About the Authors

Martino Sabia is a curious-minded developer with close to 30 years of coding
experience. Throughout his years of working with different platforms and languages,
he has always kept his mind fresh while finding creative ways of using different
technologies. Based in Italy, Martino has spent his career in various start-up
companies, working in numerous roles from junior developer to software architect.
Now he is the Project Lead for Deltatre; he works on consumer-facing, heavy-traffic
websites and media-streaming platforms in the sports industry.

Cathy Wang is an experienced designer who specializes in service design and
experience strategy. She has worked on many cross-channel projects and served as a
design lead for enterprise services around the globe in fields ranging from Telecom
to public sectors. Cathy has worked for world-class design agencies to help bring
visions to life. In her free time, she builds web projects and apps. She is infinitely
curious about new technologies and the experiences they can bring.

Download from Join eBook (www.joinebook.com)

About the Reviewers

Steve Dower works at Microsoft and is a developer of Python Tools for the Visual
Studio team.

Fabio Lonegro has spent many years doing research in theoretical physics (String
and Gauge theory) and collaborating with many divulgating projects, including the
translation of Peter Woit's book Not Even Wrong. He was always passionate about

web development and has spent the last 15 years working on web projects related to
e-learning and data visualization. He is now a developer at Deltatre spa, where his
work is focused on many fields, from the integration of complex data with multimedia
streams for both mobile and desktop experiences to custom solutions for web content
indexing and the development of Node.js. Currently, he uses Python for a variety of
applications that involve data which comes from Arduino and Raspberry Pi shields.
He is also a capoeira teacher, a passionate cyclist, and above all, a caring father.

Chris Marinic is an autodidact with decades of engineering experience.
Growing up, he excelled at computer science, often mentoring his fellow
students. He designed, developed, launched, and sold his own start-up while
working full-time as the Director of Engineering at Sabre Hospitality Solutions.

Download from Join eBook (www.joinebook.com)

www.PacktPub.com

Support files, eBooks, discount offers, and more

You might want to visit www . PacktPub . com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www . Packt Pub . com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

[a] PACKT

http://PacktLib.PacktPub.com

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
* Fully searchable across every book published by Packt
* Copy and paste, print and bookmark content

¢ On demand and accessible via web browser

Free access for Packt account holders

If you have an account with Packt at www . PacktPub . com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Download from Join eBook (www.joinebook.com)

Table of Contents

Preface 1
Chapter 1: Introduction to PTVS 7
Step-by-step installation and configuration 7
PTVS tools overview 12
The Python Environments window 13
Python Interactive 14
Visual Studio panels with PTVS 14
Summary 16
Chapter 2: Python Tools in Visual Studio 17
Mastering IntelliSense with Python 17
Using REPL in Visual Studio 21
Navigating code with ease 24
Object Browser 28
Summary 31
Chapter 3: Day-to-day Coding Tools 33
Project handling 33
Solution 33
Project 34
Specifying Python environments 37
Defining Search Paths 41
Refactoring 42
Debugging 46
Using breakpoints 47
Utilizing watch entries 48
Summary 49

Download from Join eBook (www.joinebook.com)

Table of Contents

Chapter 4: Django in PTVS 51
Django project template and tools 52
Installing a Python package 53
Running the application 55
IntelliSense in Django templates 57
Setting up and managing a database for a Django project 58
Setting up the admin interface 61
Creating a new Django application 63
Deploying a Django project on Microsoft Azure 65
Summary 71
Chapter 5: Advanced Django in PTVS 73
Library management 73
The Fabric library — the deployment and development task manager 75
South - the database deployment library 79
Why use South with Django 80
Installing South 80
Schema migration with South 83
Summary 87
Chapter 6: IPython and IronPython in PTVS 89
IPython in PTVS 89
IronPython 95
Using .NET classes in Python code with IronPython 95
Using the Python code in .NET with IronPython 100
Summary 105
Index 107

Lii]

Download from Join eBook (www.joinebook.com)

Preface

Like many other developers, Python developers have always had to find ways to
manage the development workflow between different tools. Most of the time, this
happens without using a comprehensive guide that is available in a complete IDE
which is specifically designed for Python development.

The rare, exceptional IDEs that offer complete guides are often expensive and don't
provide hands-on steps to help speed up the development process.

Visual Studio, as a matured and well-developed tool over the last few decades, has
dominated the market of compiled languages and languages that are strictly oriented
toward Windows and .NET. Packed with handy tools and functionalities to speed

up and facilitate the workflow of developers, it helps users to render repetitive

tasks, manage projects, and provide a detailed outlook into the structure of a project.
However, most importantly, it helps users gain a clear view into the inner structure
of the code.

In the last few years, Microsoft has started exploring how to integrate new languages
into Visual Studio; as a result, Python Tools for Visual Studio (PTVS) was developed.
It's a well-developed tool that is already on its second release and is commonly used
by professional developers as their new IDE of choice for Python projects.

PTVS has everything that a Python developer can dream of: consistent project
files management, interactive debugging and code completion features with the
rock solid Microsoft IntelliSense technology, project templates, a first-class Django
integration package, virtual environment management right in the IDE for REPL,
and a native code-based IDE that loads and reacts fast.

Download from Join eBook (www.joinebook.com)

Preface

This book will focus more on the integration of Python in Visual Studio than the
language itself. It will try to delve into the power offered by the tool and venture
into the feasibility of its day-to-day usage for a developer. We will show real
examples of how to use PTVS with Django and how to deal with occasional
difficulties when it comes to integrating well-known libraries into a Python
project on Microsoft Windows.

What this book covers

Chapter 1, Introduction to PTVS, provides a high-level overview of PTVS and
the interaction between Visual Studio and a Python interpreter.

Chapter 2, Python Tools in Visual Studio, provides an in-depth analysis of the tools,
type checking, inner functionalities, and automatisms (IntelliSense and REPL)
of PTVS.

Chapter 3, Day-to-day Coding Tools, talks about browsing through the code and the
flexible setting of Python environments. It also talks about refactoring and the
debugging process.

Chapter 4, Django in PTVS, shows how to harness the powerful Visual Studio IDE
and tooling to speed up Django development.

Chapter 5, Advanced Django in PTVS, provides an in-depth look at remote task
management and schema migrations using the third-party Python libraries
Fabric and South.

Chapter 6, IPython and IronPython, provides an overview of the IPython library and
how it's integrated in Visual Studio. It also provides an introduction to IronPython
and its integration with the .NET framework.

What you need for this book

You will need a basic understanding of Python, a computer with Windows installed,
and an Internet connection. To follow through the exercises and examples, we would
suggest that you have Visual Studio as well.

Who this book is for

This book is intended for developers who are aiming to enhance their productivity
in Python projects with automation tools that Visual Studio provides for the .NET
community. Some basic knowledge of Python programming is essential.

[2]

Download from Join eBook (www.joinebook.com)

Preface

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through
the use of the include directive."

A block of code is set as follows:

class foo:
mmnn

Documentation of the class.

It can be multiline and contain any amount of text
nmnn

@classmethod

def bar(self, first=0, second=0):
""" This is the documentation for the method"""
return first + second

print (foo.bar())
Any command-line input or output is written as follows:
python manage.py schemamigration south2ptvs --initial

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Clicking
on the Next button moves you to the next screen."

Warnings or important notes appear in a box like this.
v

a1

~Q Tips and tricks appear like this.

[31]

Download from Join eBook (www.joinebook.com)

Preface

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbacke@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the color images of this
book

We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from: https: //www.packtpub.com/sites/
default/files/downloads/86870S_ColoredImages.pdf

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes

do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http: //www.packtpub.com/support.

[4]

Download from Join eBook (www.joinebook.com)

Preface

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyrightepacktpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[51]

Download from Join eBook (www.joinebook.com)

Preface

Special thanks from the authors

Thanks to Packt Publishing for giving us the opportunity to publish this book for the
developer community, and the help they have provided during the entire process:
from the injection of the idea to the whole process of giving birth to it. It has been a
journey filled with surprises and discoveries.

We'd also like to appreciate our reviewers, Fabio Lonegro and Chris Marinic, who
have provided us with clear and unbiased feedback along the way, giving us great
insights on untangling the details of the book.

Last but not least, we would like to thank the Microsoft PTVS team, specifically Steve
Dower, who has contributed to the book personally and through providing technical
support on every detail. Thanks to Shahrokh Mortazavi for reaching out to us through
a tweet (https ://twitter. com/cathycracks/status/421336498748006400). Steve
and the rest of the team have given us lots of help, insights, and suggestions on how to
overcome some complex but very important parts of the book. They even invited us to
visit them in person to gain a greater insight into their work. We truly feel that PTVS is
developed by a group of passionate people who care for the community and are eager
to develop PTVS to be an even better and useful tool. The Microsoft PTVS team has
done a great job with the tool so far in our opinion, and we look forward to what's

yet to come.

We have enjoyed this journey so far, and we are very happy to be doing this together
to bring this book to life. It has been an intimate and difficult process filled with love
and with some very deep and long discussions into late nights. We hope that you
enjoy and gain knowledge from this book as much as we have learned from: it.

We hope that you will find this book interesting and that it will help you discover
the inner power of PTVS, as Scott Hanselman described PTVS in a post on his
blog, One of Microsoft's Best-Kept Secrets - Python Tools for Visual Studio
(PTVS), created on July 2, 2013 and found at http://www.hanselman.com/blog/
OneOfMicrosoftsBestKeptSecretsPythonToolsForVisualStudioPTVS. aspx.

[6]

Download from Join eBook (www.joinebook.com)

Introduction to PTVS

Python Tools in Visual Studio (PTVS) is an extremely powerful tool because of
the following reasons:

» It gives Python developers a powerful IDE with many helpful coding
features and integrations in one unique environment.

* PTVS provides developers on the Windows platform the opportunity
to use their favorite IDE — Visual Studio —to explore, learn, and manage
one of the most commonly used scripting languages.

In this chapter, we will have a high-level overview of PTVS, starting with a
step-by-step tutorial for installing and configuring it correctly followed by

a quick overview of the principle tools of Visual Studio to control the Python
environment and configuration. Understanding the Visual Studio windows
will greatly benefit your ability to explore and manage workflows of the source
code and the structure of your Python project.

Step-by-step installation and
configuration

There are various formats of PTVS available for installation depending on your
preexisting installed version of Visual Studio. PTVS is available for Visual Studio
2010, 2012, and 2013 (Pro edition or above).

If the previously mentioned versions of Visual Studio are not installed on your
computer, it's possible to install a standalone version of PTVS. Visual Studio permits
side-by-side installation, meaning it provides the ability to install multiple versions
on one system. The only prerequisite is that the older version must be installed
before the newer one.

Download from Join eBook (www.joinebook.com)

Introduction to PTVS

The different types of installations possible for PTVS are described on its CodePlex
website, http://go.microsoft.com/fwlink/?LinkID=390659.

Visual Python

Studio Interpreter

* VS Pro+ * Free * Free
* Not Free * 0SS * 0S5
* Not OS5

Python

PTVS Integrated

Interpreter

* Includes VS * Free * Completely Free
* Includes PTVS * 0SS * Perpetually Free

The preceding figure is taken from http://go.microsoft.com/
fwlink/?LinkID=3906509.

The most important prerequisite for Visual Studio 2013 is to have Windows 7
(32 or 64 bit) or above running as your operating system.

Once you have sorted out the prerequisites and installed the PTVS package of
your choice, you will need to decide on the type of Python interpreter. Choosing
the appropriate Python interpreter depends on your need for your project. Refer to
the PTVS CodePlex page at http://go.microsoft.com/fwlink/?LinkID=299429
to help your decision-making process. You can choose between CPython and
IronPython (32 or 64 bit). If you chose CPython, then you can choose between
Python Version 2.7 and 3.3. It is recommended to use CPython 3.3 32 bit for most
cases. For web development, the recommendation would be CPython 2.7 32 bit.

[8]

Download from Join eBook (www.joinebook.com)

Chapter 1

Make your choice based on what you intend to do and the framework that you

will be using with Python. For the scope of this book, we suggest to install the

32-bit CPython Version 2.7. For the latest complete list of downloadable Python
interpreters, please refer to the PTVS CodePlex page at http://go.microsoft.com/
fwlink/?LinkID=390659.

Once the interpreter is installed, you can fire up PTVS by opening the Visual Studio
2013 application from the Start menu. If everything works, this is what you are
going to see on your screen:

w Start Page - Microsoft Visual Studio (Administrator) Y2 | QuickLaunch (Ctrl+Q) Pla O x
FLE EDT VIEW DEBUG TOOLS WINDOW HELP
-o|H-o-w S C b Amach.. - | 2

Start Page + X

) J240|dx3 uoinjos

2013 Shell Discover what's new in 2013 Shell (Integrated)

([nteg rated) You can find information about new features and enhancements in 2013 Shell
(Integrated) by reviewing the following sections.

xoqoo] sauo|dig pnas (R

MaIp sse|

Learn about new features in 2013 Shell (Integrated)
Start See what's NET Framework 4.5.1
vin Team Foundation Service
New Project...

Open Project... Relocate the What's New information

What's new on Microsoft Platforms

Recent ext and Web

PythonApplicationl i Phone
soft Office

B sharePoint D evelopment

Output

Ready

Let's check whether the whole system works properly. Create a new project and
see if it runs as follows:

[o]

Download from Join eBook (www.joinebook.com)

Introduction to PTVS

1. To create a new project, navigate to the New Project menu under File to

launch the New Project dialog box.

Mew Project l T ||
b Recent | .NET Framework 4.5 ~| Sort by: [Default B Search Installed Templates (Ctrl+E) P~
4 Installed PY .

:\J From Existing Python code Python Type: Python
4 Templates A project for creating a comrmand-line
PY I~
: Python Application Python application
b Other Project Types
PY
Samples Django Project Python
b Online -PY
N J IronPython Application Python
Y .
FJ IronPython WPF Application Python
<
-PY
BJ IronPython Silverlight Web Page Python
PY
IronPython Windows Forms Application Python
Click here to go online and find templates.
Name: PythonApplication2
Location: |C:\Usars\martinn.sahia\Dn(uments\\n’isual Studio 2013\Projects v| [Browse... |
Solution name: PythonApplication2 Create directory for solution
e |

2. Select Python Application and click on OK. This will create a new project
and a basic Hello World Python application file.

[10]

Download from Join eBook (www.joinebook.com)

Chapter 1

w PythonApplication2 - Microsoft Visual Studio (Administrator) X2 QuickLaunch (Ctrl+Q) Pl o g x
FILE EDIT VIEW PROJECT BUILD DEBUG TOOLS WINDOW HELP

| | | m AN oo B-o-a X T
" PythonApplicationZ.py & X ~ | Solution Explorer *1x
@ o-ap &=
Search Solution Explorer (Ctrl+€) P~

"

-| P Start - -

print('Hello World")

| » |

] Solution 'PythonApplication2' (1 project]
4[] PythonApplication2

=0 Python Environments

=B References

=8 Search Paths

P PythonApplication2.py

Solution Explorer

Properties - 1x
PythonApplication2.py File Properties -
5| &

B Advanced =
CE comie []
Publish True

Fl Misr v

Build Action

~+ | How the file relates to the build and

deployment process

Output

Ready

3. Start the app by clicking on the Start button in the toolbar, or just hit F5.

NDOW HELP

-o|B-oD-aRE XA -0

b Start - _

~ | Solution Explorer

-6 o-am -

[11]

Download from Join eBook (www.joinebook.com)

Introduction to PTVS

4.

If you have any previous installations of Python on your system, you should
see the application response window with the Hello World message, as
shown in the following screenshot:

C:\Python2T\python.exe . |ﬂlﬁj

ey to continue .

PTVS tools overview

Now that you have PTVS up and running, let's take a closer look at the various tools
provided by Visual Studio that empower the Python development cycle. Let's start
with the windows, which are accessible through the View menu:

A
2]

Find Results 4
Other Windows * @ Command Window Ctrl+Alt+A
Toolbars b | B] Web Browser Chrl+Alt+R
Full Screen Shift+Alt+Enter £ Document Qutline Chrl+Al+T
i','_:l Resource View Ctrl+Shift+E
Python Environments Ctrl+K, o
Python 2.7 Interactive Alt+1

From the View menu, you can choose two windows that are more important
for Python:

Python Environments

Python Interactive

[12]

Download from Join eBook (www.joinebook.com)

Chapter 1

The Python Environments window

The Python Environments window shows all the Python interpreters' versions
(environments) installed on the system. For each of them, an interactive window
called read-eval-print loop (REPL) can be accessed, and it's possible to see the status
of the package analysis made on all the packages installed. This is used by Visual
Studio to carry out syntax and type analyses of all the classes and methods available
for a given Python environment.

Since the analysis of Python code is complex, it's possible that you will not see
progress in the Completion DB when you open it the first time. Even if Visual
Studio performs background analysis to not interfere with the user experience of the
IDE, the first analysis can take from one minute to an hour. This depends on different
factors such as the number of installed libraries in the Python environment and the
system resources available. Once the analysis of all the Python packages in Visual
Studio is complete, the message Completion DB is up to date will be shown on the
row of a given Python environment.

The Completion DB is automatically updated every time we open a new project
in PTVS or install a new Python library; in such cases, Visual Studio reruns the
background analysis on the new reachable code.

Sometimes, the automated background analysis process could be disabled or
blocked, and the lists of installed libraries are not shown automatically. If the newly
installed libraries and packages are not shown, we can manually trigger the analysis
process with the Refresh DB button. By clicking on the button, we re-enable it,
forcing a background analysis.

Python Environments > o x

Environment Options . .
Python 2.7 Interactive Window P Completion DB is up to date Refrech DB View in File Explorer

Interactive Options

Go online and help me find ancther environment

The Python Environments tool window with the list of installed Python environments and
the tool buttons to access most used functions

Clicking on the View in File Explorer link in the Python Environments window
will provide you with direct access to the Python installation folder.

[13]

Download from Join eBook (www.joinebook.com)

Introduction to PTVS

Python Interactive

The Python Interactive window gives you access to the standard REPL tool for
Python directly in the IDE along with the ability to access the modules that you are
developing. This is a great and quick way to debug and test some code snippets.

Python 27 Interactive v & X
EE
> |

| »

The Python Interactive tool window from where you can access the Python standard REPL tool

Besides the normal Python commands available in the standard Python REPL,
Microsoft has further added some commands that are reachable by the $ (dollar)
symbol. The list of available commands is available through $help.

Visual Studio panels with PTVS

Visual Studio offers lots of standard tool windows to control the structure and workflow
of your application. The main tool windows are Solution Explorer, Properties, Find
Symbol Results, and Object Browser, as shown in the following screenshot:

D¢ PythonApplication? - Microsoft Visual Studio (Administrator) Y2 | QuickLaunch (Ctrl+Q) Pl - B x
FLE EDT VIEW PROECT BUILD DEBUG TOOLS MWINDOW HELP
: |=3|=|m P06 @ -t %@ b s ok

' Object Browser & X_PythonApplication2py™ Ml Solution Explorer 3 x
3

Bl srowse | My salution e | @ O in| - @ e-@m| # =

g [<Searchs -l 2 Search Solution Explorer (Ctri+€) P-
B « 1 Pythonapplication ® _init_0 %7 Solution 'PythonApplication2 (1 project)
4 #v PythonApplicationZ.py © myMethod() 4[] PythonApplication2

g #z myClass =8 Python Environments

18 References
18 Search Paths

—TTrr—]

Solution Explorer

Properties > X

PythonApplication2.py File Properties +

def _init_0 1 ‘
B Advanced
Build Action Compile
Publish True
8 Misc
Find Symbol Resutts - 1 match found ~ 1 x | - PythonApplication?.py
gE &% Full Path CA\Users\martino.sabia
4 18 Definitions
@ CAUsers\martino.sabia\Documents\Visual Stuclio 2013\Projects\PythanApplication2\Pytt ication2\PythonApplication2.py - (2, 9): def myMethod(]
Build Action
« + [How the file relates to the build and
Command Window Output Find Results 1 |t duaalaed Python 27 Interactive Pythan Environments deployment process

[14]

Download from Join eBook (www.joinebook.com)

Chapter 1

To the right, we have the Solution Explorer window. It provides a glimpse of the
structure of the current solution. In Visual Studio, a solution is a bundle of projects.
In the Solution Explorer window, not only can you manage the different source files
of the projects, but also configure the Python environment and the packages used in
it (i.e. references and dependencies).

Besides the file structure of the project, the Solution Explorer window also provides
a class view, which shows an overview of all the classes and structures (i.e. fields,
properties, and methods). This is a quick view of the more complex window, Object
Browser, which is visible in the middle of the screenshot. This window is accessible
through the Object Browser menu item under View (or using the Ctrl + Alt + |
shortcut). The two tools together provide a manner to browse and navigate the object
structure of your code.

Under the Solution Explorer window, we can find the Properties window that
shows the properties related to various objects of your projects such as the single
source code files in it. It also shows more detailed information, for example,

the path, and how it has to be managed in the built system of the files.

The most important and powerful window we have in PTVS is the source code
window, which is where any programmer spends most of his/her time. It provides
multitab source code navigation; every pane is a single source code file:

%2 secondClass B P =
sclass secondClass(): @ innerMethod
- def innerMethod(a): =
return a

100 % -

In each pane there are two comboboxes. The left one provides the function to
navigate between classes in the file; the right one provides the function to navigate
between methods of the selected class. In the source code window, Visual Studio
unleashes much more powerful tools such as refactoring, IntelliSense, and code
traversing, which we will explore in depth in the next chapters.

[15]

Download from Join eBook (www.joinebook.com)

Introduction to PTVS

There are other windows that will become clearer during our exploration of PTVS
in the coming chapters, such as the Find Symbol Results window at the bottom
of the screenshot. That window shows the result of a search command or the list
of references of a given code element, like a method, class, or property.

Summary

In this chapter, we introduced a quick high-level overview of PTVS and the basis
of it. Now that you have PTVS up and running and have familiarized yourself
with the two windows, you are ready to dive into PTVS with more detailed project
knowledge in the following chapters.

In the next chapter, we'll go in to more detail and start to analyze the coding tools
that Visual Studio provides in PTVS that can tremendously help during the coding
process and also manage Python projects.

[16]

Download from Join eBook (www.joinebook.com)

Python Tools in Visual Studio

Now that we have our tools up and running, we can start to take a deeper look into
one of the most important features of PTVS: the intelligent code completion feature
or IntelliSense of Visual Studio.

In this chapter, we will dig deeper into the automatic syntax and hierarchic analysis
tools of Visual Studio that we can use with Python. Essentially, these are IntelliSense
and navigation tools, which are really helpful for a Python developer during the
coding process.

Furthermore, we will see how to maximize the capabilities of Visual Studio in
conjunction with the inner REPL tool for quick and useful code testing and debugging.

Mastering IntelliSense with Python

As shown in the Python Environments tab, Visual Studio analyzes the Python code
that is available in the current solution and the installed libraries to populate the
internal database. By doing so, we are able to gain a better understanding of the
available classes, methods, and field descriptions. This is done in a way that can
help the developer speed up the coding process.

Download from Join eBook (www.joinebook.com)

Python Tools in Visual Studio

The IntelliSense context-aware code completion feature can be recalled in line using
the Ctrl + Space bar or Ctrl + | shortcuts. The Ctrl + | shortcut displays the list even
when there's only one possibility. This is what happens when you call it in the
middle of a command:

=Ifor i in ran:
print %z DeprecationWarning -
%z FutureWarning
%z ImportWarning
%2 PendingDeprecationWarning
) range(stop) -= list of integers
@ raw_input range(start, stopl, step]) -> list of integers

#z RuntimeWarning) . i . . .
) Return a list containing an arithmetic progression of integers,
¥z Stoplteration range(i, j) returns [i, i+1, i+2, ..., j-1]; start {!) defaults to 0.
#z UnicodeTranslateError w 'When step is given, it specifies the increment (or decrement).
For example, range(4) returns [0, 1, 2, 3]. The end point is omitted!
These are exactly the valid indices for a list of 4 elements.

IntelliSense shows all the available methods, classes, and fields available in the current
code, ordered in alphabetical order. Besides showing them from the list of available
commands, it also provides you with a quick documentation. In our example, for the
range method, IntelliSense shows the list of its overloaded methods and its signature.

If you are aware of the method that you are searching for but want a little help with
the list of parameters available, just recall the IntelliSense window either through the
parameter parenthesis when you open it or with the Ctrl + Shift + Space bar shortcut.

for i in range(l,u

——— A 7 of 10 ¥ range(start, stop, step = Mone)
Return a list containing an arithrmetic progression of integers.
range(i, j returns [i, i+1, i+2, ..., j-11; start () defaults to 0.
When step is given, it specifies the increment (or decrement).
For example, range(d) returns [0, 1, 2, 3]. The end point is omitted!
These are exactly the valid indices for a list of 4 elements.

In this case, IntelliSense will show possible combinations of the parameters and a
quick documentation for each one, given by the position of the parameter in the list
as shown in preceding screenshot.

The automatic importing of modules is another interesting functionality that helps in
speeding up development. It also provides the functionality of automatic inclusion
when you use a class from another Python file.

[18]

Download from Join eBook (www.joinebook.com)

Chapter 2

As shown in the preceding screenshot, if you have a Paging class in one of your
Python files in your project, IntelliSense can recognize it as a class that is reachable

from your project; also, it will suggest further operations by showing a smart tag
under the first character of the classname:

a = Paging()

IntelliSense in action on a classname for importing. The little blue rectangle under
the classname means there are functions available from Visual Studio

When it's clicked, an action pop up is shown. You can choose the operation to execute
along with its ability to reference the source/originated file into the current code:

Paging
-

%} import Paging
%1 from Paging import Paging

If you click on one of the two options, an inclusion statement will be added as the
header of your code file:

from Paging import Paging

-|for 1 in range(@, 1lea, 28):
print(i)

a = Pagihg()

After selecting the "from Paging import Paging" option, the inclusion statement
is generated at the top of the code file

Once the class is visible in your code, Visual Studio is able to inspect the referenced

class. You will start seeing the class in the IntelliSense window when it's called, as
shown in the following screenshot:

a = Paging()

a

- bl

B |rer1u:|er_|::n:ux

[serve

IntelliSense showing the methods available in the Paging class

[19]

Download from Join eBook (www.joinebook.com)

Python Tools in Visual Studio

IntelliSense can be extended even further. In the following example, when the foo
class is defined with the bar method, IntelliSense will fetch the class structure to
display the helper to be used in the code:

-lclass mathClass(object):
fclassmethod
- def add(cls,first=8, second=8):
return first + second

PR Y

[Yslpye]

mathClass.L
o @ |add |

ol

ra

IntelliSense is able to provide us with an insight into the structure of the class and the
available elements of it, but without any documentation. To have the documentation
shown in the code, we can simply add it to the code of the class as follows:

-lclass mathClass(object):
Documentation of the class.
It can be multiline and contain any amount of text

[fclassmethod
- def add(cls,first=8, second=8):
""" This iz the documentation of the method ™™"
return first + second

mathclass

mathClass: class mathClass

Documentation of the class.
It can be multiline and contain any amount of text

IntelliSense showing the class or method documentation

It's really straightforward and simple. Any element in the Python project is
automatically analyzed and fed into the reference database of Visual Studio without
having to rework the code or execute external tools during the coding session.

[20]

Download from Join eBook (www.joinebook.com)

Chapter 2

IntelliSense can also help when the code is referenced, giving us an overview
of all the modules that are available, all the PythonPath-referenced modules,
the modules you are going to reference in your solution, and the modules that
are part of your project:

from ELJ

e = code -

codecs

codeop

commands

Fast implementation of the datetime type.

dizhash

decimal

difflib

dircache -

Furthermore, IntelliSense is useful not only to select the module, but also to select
the import part:

from Paging import Paging

NI

3

4 from datetime import

i o |* Import all members from the module
[=for i in range(@, 18@

- s #3 date
print(i) .

2 #2 datetime

q & datetime_CAPI
12 [Hclass myClass: @ MAXYEAR

1 o @ MINVEAR

12 Documentation of .

) T ¥ time

13 It can be multili i

a o #= timedelta

15 2 tzinfo

elements = [1,2,3,4,5,6,7,8,9,18]

Using REPL in Visual Studio

In this section, we will explore the usage of the standard read-eval-print loop
(REPL) tool for Python inside Visual Studio. As mentioned in the introduction,
PTVS has an enhanced version of REPL. Besides the standard Python commands in
the REPL version of PTVS — the Interactive Python window — there are some added
commands and functionalities that can help speed up the debugging process and
also enable simple testing of your code.

[21]

Download from Join eBook (www.joinebook.com)

Python Tools in Visual Studio

The enhanced commands are shown by typing shelp in REPL, as shown in the
following screenshot:

=0
»»>» Shelp
Shelp Show a list of REPL commands
$attach Attaches the Visual Studio debugger to the REPL window process to enable debugging
fcls Clears the contents of the REPL editor window
$echo Suppress or unsuppress output to the buffer
$load Loads commands from file and executes until complete
$mod Switches the current scope to the specified module name.
Sreset Reset to an empty execution engine, but keep REPL history
Fwait Wait for at least the specified number of milliseconds
x>

We'll go into detail on the most used and interesting commands. The $c1s command
cleans up the command line, while the $reset command cleans up the engine in a
way that you can restart with a clean REPL environment.

The most interesting functions are $1oad and $mod. The $1oad command permits
you to execute the content of a given Python file inside REPL:

»»> $load C:\Usershezu\DocumentsiVisual Studio 2813\Projects\PythonApplicationl\PythonApplicationl
\Pythonapplicationl.py
»»> from Paging import Paging
»»» for 1 in range(@, lee, 20):
print(i)

]
28
48
68
88
»3> class foo:

Documentation of the class.
It can be multiline and contain any amount of text

(iclassmethod

def bar(self, first=8, second=8):
"""This is the documentation for the method"™"
return first + second

>>> print(foo.bar())
]
>3 |

An example of the $load function in the REPL tool

These functions are useful as they provide an on-the-fly view of the execution cycle
of your code.

The $mod command gives you the opportunity to change the scope on which the
REPL tool is operating.

[22]

Download from Join eBook (www.joinebook.com)

Chapter 2

When REPL starts, it's automatically set on the main module of the opened project,
(__main_). Typing $mod followed by the name of the module allows you to switch
to another module of the same project, giving access to the module and its content.

[RUETL R E T U Python Environments Output

E 9 = |Paging -

»»» $mod Paging

Current module changed to Paging
»»» Paging.

(] |render_b %
D serve

As we can see in the preceding screenshot, the user interface of the REPL window
has a combobox at the top, which allows us to interactively switch the scope.
IntelliSense is also managed in REPL.

We can execute every piece of code in our project using the Send to Interactive
command in the context menu under the coding panel (or, use the Ctrl + E shortcut):

Pythondpplication] Refactor 5
Remove Imports b
from Pagin " Go To Definition F12
Find All References Shift+F12
for i in r -
print(Breakpoint b
k RunTo Cursor Ctrl+F10
— class foo: Run Flagged Threads To Cursor
. Send to Interactive Ctrl+E, Ctrl+E
Docume Send to Defining Module Ctrl+E, M
It can
o Start without Debugging
ficlassi Start with Debugging
- def ba
we| 3 Cut Ctrl+ X
rel [Copy Ctrl+C
print(foo. ﬁj Paste S
Outlining '
Paging. render—ooxTI)

[23]

Download from Join eBook (www.joinebook.com)

Python Tools in Visual Studio

We can also instruct the debugger to use REPL as the output of the application by
selecting the Execute Project in Python Interactive option from the DEBUG menu
(or by using the Shift + Alt + F5 shortcut).

It's also possible to tell the debugger to use REPL as the output of the application
instead of the standard console output; to do this, just click on the Execute Project in
Python Interactive entry in the DEBUG menu or use the Shift + Alt + F5 shortcut:

FILE EDIT VWIEW PROJECT BUILD | DEBUG | TOOLS WINDOW HELP
i@ B-o-2 W8 X Windows b «| [Any CPU «||

’;’f‘ PythonApplicationl.py™ # X Paging.p P StatDebugging 5 8 Python Environments Qutput
] J|| P Start Without Debugging Ctrl+F5 -
=] Execute Project in Python Interactive Shift+ Alt+F5 [ngine
5 Lo .
@ from Paging import Paging | & Attach to Process... u\Documents\Visual Studio 2013\Projects\Pythonipplicationl
\PythonApplicatienl.py
24 Sfor i in range(d, 180, 28) Debug Installed App Package... Pove hos exited
g print(i) Exceptions... Ctrl+AR+E
2
Ge Step Into Fi1

Siclass foo: G Step Over F10
Documentation of the ¢ T
Tt can be multiline an New Breakpoint v

flclassmethod

This is particularly useful when developing back-office modules in a web application
for which the debugging and testing of the code is particularly difficult if you wish
to do this directly in the browser. Using the REPL tool, you can achieve a much more
productive and quicker process.

Navigating code with ease

Visual Studio provides lots of features to speed up the process of code navigation;
at the same time, these features allow Visual Studio to have a streamlined coding
process with a more holistic view of the project. This is particularly useful when
you need to switch to a module to see the actual implementation or to update some
parts of it, even when it is located somewhere else in the project. Some of the most
important features for code navigation are reachable from the context menu in the
coding panel:

[24]

Download from Join eBook (www.joinebook.com)

Chapter 2

PythonApplication Refactor b
Remove Imports b '"
from Pagin | Go To Definition F12
Find All References Shift+F12
Sfor i in r Breakpoint >
print(reakpoin
&k Run To Cursor Ctrl+F10
— class foo: Run Flagged Threads To Cursor
e Send to Interactive Ctrl+E, Ctrl+E
Docume Send to Defining Module Ctrl+E, M
It can
o Start without Debugging
[iclass| Start with Debugging
- def ba
wo| ¥ Cut Ctrl+ X
rel] Copy Ctrl+C
print(foo. 1 Paste cuy
Outlining L
Paging.rendaer—poxrr)

As shown in the preceding screenshot, when the cursor is over a method and the
contextual menu is opened, the command Go To Definition can be found. The Go
To Definition command moves the view to the implemented code of the method
inside the referenced module.

Another useful debugging function is the Find All References command (the Shift +
F12 shortcut). It shows all the points inside the project where the method is used:

Find Symbaol Results - 2 matches found v 1 x
HE&s &
PR
@ ChUsershezu\Documents'Visual Studio 2013\Projects'\PythonApplication 1\PythonApplication1\Paging.py - (39, 9): def render_box(self, page,url=Mene, selected=False):
4 {7 References
@ C\Users\ezu\Documents\Visual Studio 2013\Projects\PythonApplication1\PythanApplication 1\Paging.py - (26, 37): paging_code += self.render_box(page, selected=Trug)
@ CiUsers\ezu\DocumentstVisual Studio 2013\Projects\PythonApplicationT\PythonApplication1\Paging.py - (28, 37): paging_code += self.render_box(i, url='%s/%d/" % (base_url, i}]
@ CiUsersiezu\DocumentsiVisual Studio 2013\Projects\PythonApplication\PythonApplication1\PythonApplication.py - (20, 8): Paging.render_box(1)

The result of the execution of the Find All References command will be shown in a
new tool window, Find Symbol Results. It shows both the definition of the method
and the actual references inside the project in which the method is actually used.

Furthermore, the code panel provides tools to quickly navigate to any given point
of the code. Because of the fact that Visual Studio dynamically analyzes the code
when a Python file is opened in the code editor panel, the IDE automatically creates
a hierarchal index of it. To navigate the index, use the two comboboxes with the
navigation bar that are located at the top of the window.

[25]

Download from Join eBook (www.joinebook.com)

Python Tools in Visual Studio

The first one shows all the global reachable elements in the file, while the second one
shows all the inner elements of the item selected in the first combobox. The selection
of an element in comboboxes controls the view of the code editor and jumps to the
referenced code.

In the following screenshot, we can see how navigation of the comboboxes works,
showing the hierarchal view by displaying all the inner components of the html2text
class in the second combobox:

[Tl eS N S PythonApplication].py™ Paging.py

J
W

%, _htmi2text

newlines = 2
else:
if not onlywhite(para):
result += para + "\n"
newlines = 1

close
handle_charref
handle_data
handle_endtag
handle_entityref
handle_starttag

else:
if newlines < 2:
result += "\n"

newlines += 1 handle_tag
return result -
o
—ldef hn(tag): outtextf
if tag[®@] == 'h' and len(tag) == 2: B
try: phr

n = int(tag[1])
if n in range(l, 18): return n
except ValueError: return @

previousindex

2 2 € 86088686

unknown_decl

—lclass _html2text(HTMLParser . HTMLParser):
= def _ init_ (self, out=None, baseurl=''"):
HTMLParser.HTMLParser._ init_ (self)

if out is Mone: self.out = self.outtextf

To easily go back and forward while navigating the code, especially when jumping
between modules, there are two useful buttons in the toolbar that allow you to
jump back to the starting point. Look for the two arrow-shaped buttons at the very
left-hand side of the toolbar. The arrow pointing to the left is to move backward,
which is accessible through the Ctrl + - shortcut; the arrow pointing to the right is
used to move forward, which is accessible through the Shift + Ctrl + - shortcut.

Dq PythonApplication1 - Microsoft Visual Studio
FILE EDIT VIEW PROJECT BUILD DEBUG TOOLS WINDOW HELP

ie-olB-h-2 W |9 | st~

l'g T EE A TRl PythonApplication.py™

Eﬂ “% _htmi2text -
o newlines = 2

3 else:

The navigation buttons in blue on the left side of the toolbar,
are a good way to quickly navigate through the code

[26]

Download from Join eBook (www.joinebook.com)

Chapter 2

The editor window provides a way to navigate the files that are already opened
through the file tabs located at the top of the window. As of the time of writing this
book, Visual Studio has refined the features available for this. So now, even for PTVS,
there are many possibilities to do so. You can close the tabs and move them around. A
single tab can be shown in an independent window or side-by-side with another one.

[r= - RN Y, S TR)

—lclass mathClass(object):

Documentation of the class.
It can be multiline and contain any amount of text

[lclassmethod
= def add(cls,first=@, second=a):
" This is the documentation of the method """
return first + second

mathClass
oyt ® X

Elfor i in range(®, 108, 20):
| print(i)

o oo~ oo

Elclass myClass:

Visual Studio offers a powerful window management, providing a full set of alignment option on every

window in the IDE by simply dragging them from the tab

Tabs can be pinned to the leftmost position of the tab bar so they can be easily
reached when many files are opened in the code editor. The tab itself has a
contextual menu with more commands for the file:

Save models.py Ctrl+S

Close Ctrl+F4
1 E Close All Documents

Close All But This

Close All But Pinned

Copy Full Path

Open Containing Folder

Float

Float All
T PinTab
Start without Debugging
Start with Debugging
MNew Haorizontal Tab Group
Mew Vertical Tab Group

H

[27]

Download from Join eBook (www.joinebook.com)

Python Tools in Visual Studio

From the tab contextual menu, you are able to manage the tabs or directly execute
the code inside the tabs. The Copy Full Path and Open Containing Folder options
are very handy during the coding process.

It is also possible to navigate through the files of the project through the Solution
Explorer window. Clicking on the file of interest will open the file in the code editor
window. A single click opens the file in a temporary state, which means that the

file will be opened in a tab at the right end of the tab bar. This is really useful when
going through various files without working with them.

Unlike a permanent tab, the temporary tab will remain open until you navigate to
another file through the Solution Explorer window. This trims down the amount
of tabs open in the code editor. As we all know, it will become difficult to manage
and navigate a huge number of open tabs.

Double-clicking on a file in the Solution Explorer window opens it in a permanent
tab in the code editor, which is indicated with a pin icon:

htmi2tert.py PythonApplicationl.py™ Paging.py # X LT R <olution Explorer
*2 Paging ~|=" render_box 4 @Rl e-am &=
W
B Search Solution Explorer (Ctrl+€)
Automatic paging html creation class. 7 Selution PythenApplication” (1 project)

4 PythonApplicationt
=8 Python Environments
=8 References
=8 Scarch Paths

class Paging():
fclassmethed
def serve(self, base_url, page, pages):
if pages < 8:

boxes for every page 4] uti
page_range = range(l,pages + 1) bl bunch
elif page < 4: b Wl migrations
#12345...n1n|@-=... P _init_py (util]
_ page_range = [1,2,3,4,5,6,pages-1,pages] & _init_pyc
elif page > pages - 2: pimbtetpy
#12 .n-4 n-3 n-2 n-1n & htmidted.oyc
page_range - [1,2,0,pages-4,pages-3,pages-2,pages-1,pages] - Py
else: PY models.py
#1...plpp+l ..o n & models.pyc
page_range = [1,0,page-2,page-1,page,page+l,page+2,8, pages] ¥ paging_handler.py

& paging_handler.pyc
paging_code = '
for i in page_range: ¢ PythonApplicationl.py

The "Solution Explorer" window, on the right, is a powerful tool to navigate through the files
of the projects. Open a file in temporary tab by clicking on it. Double-click opens a permanent
tab which is indicated with a pin icon

Object Browser

Another way to have a high-level clear view of the project and the elements that
compose it is to use the Object Browser tool. This tool gives you a more hierarchal
view of the entire project. There are two different ways to access the view; let's take
a look at both of them.

The first way is to open the full version of the Object Browser tool, which is accessible
from the VIEW menu through the main toolbar, or by using the Alt + Ctrl + | shortcut.

[28]

Download from Join eBook (www.joinebook.com)

Chapter 2

Using the shortcut will open a new tab in the code editor window, which will
present us with the following view:

replaceEntities(s)
SKIP_INTERMAL_LINKS
unescape(s)
UNICODE_SNOB
unifiable

unifiable_n

__version__
wrapwrite(text)

models.py * html2text.py Object Browser + X
Browse: ‘MySqution v| | (] | | i -~
|<Search> '| P
4 [F7] PythonApplicationl @ _author_
I PY 0001 initial.py @ BODY_WIDTH
I PY html2texdt.py @ charref(name)
- PY _init__py (util.bunch) @ _ contributors__
PY _init_py (util. migrations) @ _ copyright__
Y _init_py (util) @ entityref(c)
PY models.py @ has_key(x, y)
I P¥ Paging.py @ hn(tag)
- P¥ paging_handler.py @ htmi2text(html, baseurl = ")
Y PythonApplicationl.py @ html2text_file(html, out, baseurl = ")
PY test.py @ LINKS_EACH_PARAGRAPH
o
@ onlywhite(ling)
@ optwrap(text)
& r_unescape
@
L
@
L
@
L
L
@

def name2cp(k)

The Object Browser tool is a three-pane window. The top-left pane shows a list of all
the Python files that compose the project. The top-right pane shows a list of elements
that compose the selected file (methods, fields, and so on). The bottom pane shows the
element footprint and related documentation (if available) of the selected element.

Any of the elements in the Object Browser tool are clickable. A double-click will
open the code file and jump to the code that implements the clicked element.

[29]

Download from Join eBook (www.joinebook.com)

Python Tools in Visual Studio

It is also possible to filter the kind of elements to be shown using the Object Browser
settings icon in the toolbar at the top of the window. It is also possible to perform

an actual search using the top search bar, which will show all the references of the
searched text in the underlying panels:

models.py * html2text.py Object Browser = X

Browse: |My Solution '| | (<] | | fo

|Paging -l P E
3 @ render_box(self, page, url = Mone, selected)
#z Paging @ serve(self, base_url, page, pages)

I &= Paging.py
[= paging_handlerpy

Besides using the full Object Browser tool, we can traverse the project hierarchy
through the Class View window, which is normally located in the same window
as that of Solution Explorer. Switching to the Class View tab shows the reduced
Object Browser tool, which is practically the same but without the documentation
panel. The Class View tab is shown as follows:

Class View * X
mjoo|&-

|<Search> v| P

4 Pythonipplication1 a-

= PY 0007 _initial.py
B PY html2text.py
I PY _init__.py (util.bunch)
FY _init__py (util.migraticns)
Y _init__.py (util)
PY models.py
[PY Paging.py
- PY paging_handler.py
FY PythonApplication.py

_author__ -
BODY_WIDTH
charref(name)
__contributors__
__copyright__
entityref(c)
-

A
Class View

This tool gives the exact same functionalities as the full-fledged Object Browser tool,
including the search and filter capabilities. Double-clicking on the element will jump
to the code at the exact point of the implementation as well.

2e¢taeqe

[30]

Download from Join eBook (www.joinebook.com)

Chapter 2

Summary

In this chapter, we introduced a wide range of usage of IntelliSense with Python,
including working with classes between project files with simple importing and
referencing capabilities. We also learned how to use REPL for a more streamlined
debugging and testing process.

Now you are familiarized with the different code navigation functionalities that

can help you find code references using filtering as well as tabs. Combined with the
Object Browser tool, you are able to view your Python project with a high-level view
of all methods, classes, fields, elements, related documents, and so on.

In the next chapter, we will dive into the day-to-day coding tools to guide you
through the whole programming lifecycle.

[31]

Download from Join eBook (www.joinebook.com)

Download from Join eBook (www.joinebook.com)

Day-to-day Coding Tools

In this chapter, we will go through the coding tools that are essential during a
normal day of work for a Python programmer in Visual Studio.

First we will analyze how to handle projects and solutions in Visual Studio,
and then we will go through the refactoring of functionalities. Finally, we will
go through the debugger functions that are available.

Project handling

One of the most important and useful features of Visual Studio is the solution
and project handling. Since the whole workflow is integrated into the IDE, the
developer does not have the burden of dealing with files, working paths, and
libraries. All of these can be managed directly in the IDE with the powerful
Visual Studio user interface.

Before we dig into the tools in detail, we will first take a look at the Visual Studio
lingo relating to project handling. The two main concepts used in this chapter are
the solution and the project.

Solution

A solution is essentially a container of projects that are bundled together to cover

a unique scope. The projects can be referenced to each other and they can be of
different types. For example, in a solution, you can mix a Python project with a C++
project while referencing the output of the project in the Python solution to use it as
an external library. A solution also provides a way to group the whole code base of
work in a single file/folder structure. You can then insert and manage the grouping in
the versioning tool of your choice to share it quickly. A Visual Studio solution is also
capable of maintaining shared configurations for the inner projects, while handing
different commands and operations during different events (i.e. during the build of
the solution).

Download from Join eBook (www.joinebook.com)

Day-to-day Coding Tools

Project

A project is the classical definition of a bunch of files written in the same language
and which covers a single scope. The types of projects can range from a website to
a library or a console application.

Visual Studio projects for Python contain the environment definition: where to target
the code, the references to external libraries, and the search paths that the compiler
has to search in the libraries. The last one is particularly important since PTVS does
not use the computer's PythonPath environment variable.

The deliberate and useful feature of ignoring system-wide settings allows you

to reference different libraries in different projects for different Python versions.
Furthermore, the dependency list in the code brings the added bonus of an
easier debugging process and also provides an easy setup of a new development
environment on other computers.

PTVS offers preconfigured Python projects called project templates, as we have
seen in Chapter 1, Introduction to PTVS, which take care of creating the right project
structure so that the developer can focus on the code.

Let's take a look at the actual tools that will handle solutions and projects. The most

important and powerful one is the Solution Explorer window tool. This tool gives a
complete view of the solution composition and the files and configurations available
in each project.

[34]

Download from Join eBook (www.joinebook.com)

Chapter 3

Selution Explorer

B o-a| s =

Search Selution Explorer (Ctrl+g)

|ﬁ| Solution 'Pythonfpplication’ (1 project)
4 PythonApplication 1

=B Python Environments
u-B References
u-B Search Paths
b util

P¥ Paging.py
¥ PythonApplication1.py

To add something or to perform actions on a Solution or a Project, select the Solution
or Project node in the tree-view

By now, you should already know how to navigate through the code using this
tool, as we learned in Chapter 2, Python Tools in Visual Studio. The Solution Explorer
window tool also provides file handling capabilities, giving us the ability to add or
remove files directly in the project structure. Just select a folder item in the project
structure to insert a new file. To add something in the project root, select the project
item in Solution Explorer, right-click to open the contextual menu, and go into the
Add submenu as shown in the following screenshot:

Scope to This

Mew Solution Explorer View

Build Dependencies »
‘O MNew ltem... Ctrl+Shift+A Add r
*q Existing ltem... Shift+Alt+ A B Manage NuGet Packages...
5 New Folder L} Setas StartUp Project
Existing Folder... Debug »
Reference... 3{. Cut Ctrl+X

I [|f|n_'| Paste Chrl+V

[35]

Download from Join eBook (www.joinebook.com)

Day-to-day Coding Tools

Here, you can choose to add either New Item, Existing Item, or New Folder. If you
choose to add New Item, the Add New Item window will show up as follows:

Add New ltem - PythonApplication1 ?
4 |nstalled Sort by: == Search Installed Templates (Ctrl+E) 2~
i BY
Python Editor E Empty Python File Python Editor Type: Python Editor
b Online . An empty .py file
=] Pythonclass Python Editor
BY
=] PythonPackage Python Editor
BY
=] Python Unit Test Python Editor
Django 1.4 App Python Editor
Django HTML Template Python Editor
PY
FJ IronPython WPF Window Python Editor
>
JavaScript Python Editor
Style Sheet Python Editor
@ Text file Python Editor
Click here to go online and find templates.
Name: |foolpy

From here, you can create a new item from the various types that are available in
the project.

If instead you want to add an existing file to the selected folder, select the Add
existing item option from the contextual add menu. This will open a standard
Windows browse file window; from here, you can navigate through the filesystem
and select the file that you want to add to the selected folder. A copy of that file will
be added to the folder.

To delete a file, just select the item in the project list and select the Delete menu
item from the contextual menu.

[36]

Download from Join eBook (www.joinebook.com)

Chapter 3

I 4 fm foo
—_—
€ Open Paging.py
Open With...]
© View Code F7 :
bunch
Scope to This migrations
Mew Selution Explorer View _init__.py (util)
Exclude Frem Project —nit_pyc
htrnl2text.py
i Cut Ctrl+X him|Ztext.pyc
L Copy Ctrl+C models.py
XX Delete Del
Iz Rename

The file contextual menu in the Solution Explorer window offers lots of functions on file,
like "Delete", "Rename" and others

Now that we have more confidence in Solution Explorer, let's dig a little deeper into
the Python-specific options that Solution Explorer offers. In the following sections,
you will learn more about the configuration of a Python project: the environment,
the references, and the search path.

Specifying Python environments

It's possible to specifically define a Python environment version for a project instead
of using the default Python version installed on the machine. This is particularly
important for projects that we work on with other developers. By default, Visual
Studio uses the default Python version installed on the machine when starting a new
project. To link a project to a given Python version (environment), right-click on the
Python Environment item in Solution Explorer to see the contextual menu. This is
shown in the following screenshot:

Solution Explorer 1 x
Nooalo-an| s~
_: Search Solution Explorer (Ctrl+€) P~
& Solution 'Pythenspplication1' (1 project) =
4 PythonApplication1
Ll Bython Environments
Scope to This eferences
New Solution Explorer View earch Paths
il
Add/Remove Python Environments... 5 bunch
Add Virtual Environment... § migrations
Add Existing Virtual Environment... __init__.py (util)
K Properties Alt+Enter —init_pyc
x htrml2text. py

The Python Environments contextual menu in the Solution Explorer window

[37]

Download from Join eBook (www.joinebook.com)

Day-to-day Coding Tools

This contextual menu provides various functionalities such as adding or removing a
Python environment and linking the project to either a virtual Python environment
or an existing one. The last two options are very useful when you need to have a
project running in a completely isolated environment space on the machine. The
project can then be run with all of its dependencies and libraries in an isolated
place, without interfering with the existing Python installations and Python path
configurations on the machine.

Creating a virtual environment in Visual Studio is straightforward. Click on either
Add Virtual Environment or Add Existing Virtual Environment and follow a few
steps to complete the setup.

As an example, we will create a virtual environment for our project. Clicking on
Add Virtual Environment will show the following modal window:

Add Virtual Environment “

Location of the virtual environment

Specify the name or location of the virtual envirenment. If one already exists, we will
detect the base interpreter for you,

virtualEny|

Select an interpreter to create the virtual environment from.

Packages in your base interpreter will not be available in the virtual environment until
you install them,
Python 2.7 b

Actions we will perform:

+ Create a virtual environment

Create Cancel

[38]

Download from Join eBook (www.joinebook.com)

Chapter 3

You can define the name of the virtual environment and the targeted Python version
in this window. Once the Create button is pressed, Visual Studio will create the
virtual environment. As a nifty bonus, if the necessary Python libraries are not
installed on the machine —essentially pip, setuptools, and virtualEnv—PTVS
will take care of this by downloading and installing them. Like other generic Python
packages, they will be installed in the system-defined site-packages folder.

To link a project to a given Python version, just click on the Add Python Environment
option in the contextual menu and the following helper box will show up:

Python envircnments associated with my project

shown in Solution Explorer.

[] Python27

Go cnline and help me find ancther one

oK

Add/Remove Python Environments

Select the environments to associate with this project. These environments will be

Cancel

[39]

Download from Join eBook (www.joinebook.com)

Day-to-day Coding Tools

This helper box shows a list of the Python versions installed on the machine and
which are available for you to choose. Once a Python version is selected, the
reference will show up in Solution Explorer.

| 4 PythonApplication1

4 u-B Python Envirenments

u-B References
u-B Search Paths

The References item elements in a project provide the ability to tightly link a library in your project
or reference to packages compiled in the .pyd files

Right-click on the Reference option and then click on Add Reference to bring up the
following helper window:

oJ Select Component

Projects | MET | Browse | Web Platform Installer|

e

Project Name Project Directory

CihUsershezut DocumentsiVisual Studio 2013

oK | | Cancel

[40]

Download from Join eBook (www.joinebook.com)

Chapter 3

We will focus on the Projects tab, which shows all the other projects in your solution.
If you wish to use another library project to handle a subscope of the application, select
the desired project and click on OK. This creates a reference in your project. You can
find the list of references under the reference option in the Solution Explorer window:

Solution Explorer -
Acoslo-am -
1_ Search Solution Explorer (Ctrl+€) 4

fad Solution 'PythonApplication' (2 projects)
4 MyLibrary

5-B Python Environments

=B References

=0 Search Paths

¥ MyLibrary.py
4 PythonApplication1
4 =B Python Environments
=5 Python 2.7
4 @l References
O{] MyLibrary

u-B Search Paths

Defining Search Paths

The Search Paths functionality basically tells Visual Studio where to search for
additional libraries that will be used in the project. You can reference a folder in
the system or a . zip file that contains the libraries:

=0 Mylibrary
ol Search Paths

Scope to This
New Solution Explorer View

Cut Ctrl+X & Search Path Properties -

Copy Ctrl+C
Add Folder to Search Path...
Add Zip Archive to Search Path...

& Properties Alt+Enter
i

The Search Path contextual menu, with the "Add Folder" and "Add Zip Archive" options

[41]

Download from Join eBook (www.joinebook.com)

Day-to-day Coding Tools

Once the folder of the . zip file is selected, you can find the libraries in the window:

Solution Explorer
°o@ o-aB &~
Search Solution Explorer (Ctrl+g&)

4 [p7] PythonApplication1
4 =0 Python Environments
B =5 Python 2.7
4 | References
=B Mylibrary
4 w0 Search Paths
O \Python2 M Lib

II'"||"1

Refactoring

Refactoring is one of the biggest advancements in modern IDEs. It significantly

cuts down on time and reduces the margin of error by the way in which it handles
changes in the code and automated operations. Visual Studio comes with great
out-of-the-box refactoring functionalities such as renaming and the creating method
from a selected piece of code.

The renaming functionality can really help with potential errors in code, such as
when changing the name of an element. There might be instances in the codebase
where the old name is still used. Let's have a look at the following code:

class foo:

nmmnn

Documentation of the class.

It can be multiline and contain any amount of text

nmmnn

@classmethod

def bar(self, first=0, second=0):
""" This is the documentation for the method"""
return first + second

print (foo.bar())

[42]

Download from Join eBook (www.joinebook.com)

Chapter 3

In this code, there's a class, foo, that has a method called bar. If bar is renamed,
it will create an error by referencing to a nonexistent method.

Visual Studio's refactoring functionality helps the renaming process by taking
all the references of the element into account. Select the element that you wish to
demand and then access the refactoring function in the code contextual menu by
right-clicking on it:

fclassmethod
def baeis=lf Firmet—0B cocnn A—ah -
Refactor b | ¥ Rename.. Ctrl+R, Ctrl+R
re Remove Imports * | % Extract Method... Ctrl+R, Ctrl+M
% Go To Definitien Fi2

Access refactoring function by right clicking on the element

Select the Rename function to start the two-step process:

Rename

Mew name:

add|

Preview reference changes

QK Cancel

[43]

Download from Join eBook (www.joinebook.com)

Day-to-day Coding Tools

You are prompted to enter a new name for the element. There's also a checkbox
that permits you to preview the references of the element to be renamed. When the
checkbox is unchecked, all the references that are found will be renamed; you will
not be able to preview which references are going to be renamed.

- b
Rename variable b

Rename 'bar' to 'add’

PR o 8 PythonApplicationl.py

[v]®@ def bar(self, first=0, second=0]:
[v]®@ print(foo.bar())

Preview Code Changes:

rF9
from Paging import Paging
for i in range(@, 1@, 28):
print(i)
class foo:
Documentation of the class. -
e PR | - SIS [[Ep— e e s R - T
4 »

Apply Cancel

In a situation where you wish to preview the reference change, a preview window
will be shown. As shown in the preceding screenshot, in this window all references
of the old element name can be found at the top panel and the code preview will
be at the bottom. All the files of the project will be analyzed to refactor the element
correctly. A checkbox near each reference provides the option to activate the
refactoring of that reference. Clicking on the Apply button will rename the element
and all the selected references.

[44]

Download from Join eBook (www.joinebook.com)

Chapter 3

The other refactoring function is Extract Method. This comes in handy when you wish
to reuse a piece of code somewhere else as a function or a method. Visual Studio can
generate it as a function/method. As an example, refer to the following screenshot:

[lclassmethod

def doSomething(self, first=8, second=8):
"""Thiz is the documentation for the method"""
return first + second

In the code, the highlighted code aims to create a generic method that calculates

the sum of two elements. Select the code and then select Extract Method from the
Refactor submenu in the contextual menu. This brings up the Extract Method dialog
box, which is shown in the following screenshot:

! Extract Method
i
Mew method name: method_name |
Extract to: myClass =
Preview:
@classmethod

def method_name(self, first, second):
return first + second

Closure Variables:

| OK | ‘ Cancel ‘

In the Extract Method window, you can define the name of the method in the New
method name field and provide a path for the method to be created in the Extract to
field. A Preview panel also shows the generated code. Click on OK to create the new
method based on the selected code.

[45]

Download from Join eBook (www.joinebook.com)

Day-to-day Coding Tools

Debugging

Visual Studio offers a large set of debugging tools; PTVS inherits a lot of them, which
helps Python developers to debug code by using step-by-step execution, runtime
variable watch capabilities, breakpoints, and the ability to see where the code fails
during a debugging session.

The ability to see where the code breaks can significantly speed up the debugging
session. In the following screenshot, we can see an example of an untracked exception:

1 fclassmethod
= def doSomething(self, first=@, < ! ZeroDivisionError occurred x
"""This is the documenta
return first + second

@ 0 oo

integer divisien or module by zero

Troubleshooting tips:

fclassmethod
def codeWithError(s

[

) i Get general help for exceptions. | Py

| oo
€

7 fclassmethod Search for more Help Online...
] 1= def average(self, *arguments):

9 sum = @ Exception settings:

@

SO RD R ORI ORI BRI PRI ORI ORI R R

for arg in arguments:

31 sum += arg [] Break when this exception type is thrown

, Actions:
33 return sum/len(arguments)
34 Copy exception detail to the clipboard

350 print(myClass.doSomething()) Open exception settings

An example of error dialog box during debugging a Python application

When you run the code, Visual Studio will stop the execution because it detects the
raised exception of a problematic code. It highlights the exact point where the error
occurred while also suggesting ways to fix it—even if right now Visual Studio may
not suggest useful solutions for the problem.

The debugging process is not only about understanding where exceptions are
raised, but also to understand what happens in the code when it is not behaving
as expected. This is where step-by-step execution and breakpoints come in handy.

[46]

Download from Join eBook (www.joinebook.com)

Chapter 3

Using breakpoints

A breakpoint is a point that you can define in the code to stop the execution. Visual
Studio has made it very simple to set a breakpoint. It allows better visibility of the
content of variables and it follows the flow of the code. A breakpoint can be set by
clicking in the gutter of the code window, which will bring up a red circle. Select
Insert Breakpoint in the Breakpoint submenu in the code contextual menu.

Once the breakpoint is set, you can see it in the code window as shown in the
following screenshot:

fclassmethod
- def average(self, *arguments):
sum = @

(L=l e]

L]

for arg in arguments:
sum += arg

Ll R RD P

Now that the breakpoint is set, if you run the application, Visual Studio will stop
its execution precisely at the breakpoint while following the flow of the code:

fclassmethod
- def average(self, *arguments):
sum = @
for arg in arguments:
sum += arg

wooa

(]

RN I %)

Indicated that line 29 as the breakpoint

The IDE puts the caret on the first column of the line of code in which we set the
breakpoint. When hovering around the variables in that context, we can see the
current value of the variable.

[47]

Download from Join eBook (www.joinebook.com)

Day-to-day Coding Tools

Utilizing watch entries

We can also create a watch entry on a variable in order to see how the value of a
variable changes during the program flow. To watch a variable, right-click on it
during the debugging process and click on Add Watch in the contextual menu. The
variable will be added into the Watch window as shown in the following screenshot:

Value

<built-in function sum:

Besides the watch variable, it is also possible to see all the variables in the current
scope from the Locals tab:

Locals

Name Value

b
& sum '<undefined='
@ arg ‘cundefined>'

I @ self <class _main__myClass at 0x02422868>

Autos QISR Watch 1

Once a breakpoint has been hit, it's possible to use one of the following three
functions to move on in the program flow: Step Into, Step Over, and Step Out.
These functions are accessible through the Debug menu or the buttons available
in the toolbar. Alternatively, you can also use Run to Cursor (Ctrl + F10) to run
through the program until you reach where the cursor is:

[48]

Download from Join eBook (www.joinebook.com)

Chapter 3

Ge Stepinto F11
& Step Over F10
G Step Out Shift+F11

* step Into: This executes the next statement and stops. If the next statement
is a call to a function, the debugger will stop at the first line of the function
being called entering the function.

e step over: This executes the next statement. However, if the next statement
is a function, calling it will not go into it. It's useful when you are not willing
to follow the entire program flow of the function.

* step out: This executes the code until the end of the current function. It's
useful when you do not wish to go through the entire program flow of the
current function.

If you wish to just continue the execution of the program flow without going into a
single line of code at the time, just press the Continue button in the toolbar or F5. If
there are other breakpoints in your code, the execution will continue through all of
them until the last one.

Summary

In this chapter, we introduced the tools for day-to-day coding. You are now familiar
with browsing through the code with Solution Explorer and the flexible setting of
Python environments. You also learned about the more efficient refactoring and
debugging process and that setting up breakpoints and watching entries helps you
trace exactly where the code breaks.

In the next chapter, we will explore how to harness the powerful Visual Studio IDE
and the tools available to speed up Django development.

[49]

Download from Join eBook (www.joinebook.com)

Download from Join eBook (www.joinebook.com)

Django in PTVS

Django is a high-level Python Web framework based on the Model View Controller
(MVC) pattern; it provides a series of tools and helpers to create a rapid development
environment for the Web. There are plenty of successful websites that are based on
Django, such as Instagram, Pinterest, Disqus, and some parts of Dropbox. It has been
in development since 2006, making it a rock-solid choice for web projects, especially
when using Python as the language of choice. For more information about Django,
refer to its official project website at https://www.djangoproject.com/.

In this chapter, we will go deeper into Django framework integration in Visual
Studio. We will see how to start a Django project, taking advantage of Visual Studio
tools and setting up the development environment for it.

Once we have a basic working website, we will learn how to create a connection
to the database and set up the admin interface to create a new Django application
within Visual Studio.

Download from Join eBook (www.joinebook.com)

Django in PTVS

Django project template and tools

Let's take a look at Django-related tools and templates available in PTVS, starting
with the Django project template. Project templates in Visual Studio are boilerplate
helpers that create a project's outline based on the specific type of the project. To start
a new Django project, open the New Project window under the File menu. Once it's
open, select Python from the list on the left-hand side. This displays the installed
project types available in the system. Here is what the window looks like:

Samples
B Online
Name:
Location:
Solution:

Solution name:

New Project ?
P Recent ‘.NET Framework 4.5 v| Sort by: |Defau\t v| i = Search Installed Templates (Ctrl+E) P~
4 |nstalled PY)
" SJ Get Python Tools for Visual Studio Python Type: Python
b :’:""";9““'5 PY A project for creating a Django project
e
Cloud :\J From Existing Pythen code Python
Reportin PY
S\l\ljerllghgt SJ Python Application Python
Test PY;
WCF Djange Project Python
Workflow -PY
b Visual Co+] lrenPythen Application Python
b Visual F# e
SQL Server FJ IrenPython WPF Application Python
<
TypeScript -PY
b JavaScript h] IronPythen Silverlight Web Page Python
Python by
b Other Project Types | | IronPythen Windows Forms Application Python

Modeling Projects

DjangoProject]

Click here to go online and find templates.

[ci\users\ezutdocumentsivisual studio 2013\Projects -

|Creata new solution

DjangoProject]

Create directory for solution
[[] Create new Git repository

Click on the Django Project option in the right-hand panel to define the project
name in the bottom of the window. We perform this action while specifying where
the file should be saved. You can also define the solution name for the Visual Studio
solution for the project. Once these properties are defined, clicking on OK creates
the Django project.

[52]

Download from Join eBook (www.joinebook.com)

Chapter 4

Solution Explorer > I X
W o--am| s =

Search Solution Explorer (Ctrl+ &) P
afgd Solution 'Django Solution’ (1 project)
4 EzuWebsite
=8 Python Envirenments
b =-m References

=8 Search Paths
b @ EzuWebsite

FY¥ manage.py

Example default Django project structure shown in Solution Explorer

Installing a Python package

The basic Django project file structure is shown in the Solution Explorer window. With
the project structure in place, the next step is to install the Python package required. We
have to instruct our solution about either the Django framework's whereabouts or the
location where we need to install it. To begin, add a Python interpreter to the project—
we are going to use Python 2.7 — then install the Django packages by right-clicking on
the installed Python entry in the Python Environments node of the Solution Explorer
window, and finally select the Install Python Package entry:

Scope to This References
MNew Solution Explorer View earch Paths
Ezu\Website
X Remove Del
anage.py

Activate Environment
Install Python Package...
¢ Open Folder in File Explarer

*

Properties Alt+Enter

[53]

Download from Join eBook (www.joinebook.com)

Django in PTVS

The Install Python Package window will open; here, insert the name of the

pip Python package that is required to start referencing the framework in our
environment, which is django. You can even choose a specific version of the
framework by naming the version of the package in the django==x.x.x format.
The x.x.x indicates the complete version label. If no version number is supplied,
the latest available version of the package will be installed.

Install Python Package
Type the name of the package to install
We will download it from the Python Package Index using | pip M
| djangq| |

To install a specific version, type "SoemePackage==1.0.4",

I:' Fun as Administrator 0K

Click on OK to begin the Django package installation by downloading it from the
pip repository. Make sure to check your system settings on the system agreement
to give Visual Studio the privileges of a system administrator.

The Run as Administrator checkbox should only be checked when the
% previous installation has failed. It ensures that pip has the necessary
"~ privileges on the system to install the package.

Show output from: | General

Installing 'django’

Error List [elhi.I0d

The installation process can be viewed in the output window as shown in preceding
screenshot. If you are using Run as Administrator, the real-time download progress
is not available. In this scenario, Installing 'django’ is displayed in the output
window for a period of time, as this indicates that pip is still downloading.

[54]

Download from Join eBook (www.joinebook.com)

Chapter 4

ra

| &

Installing 'django’ -
Downloading/unpacking django
Running setup.py egg_info for package django

Show output from: | General '| | |

warning: no previously-included files matching '_ pycache_ ' found under directory '#'
warning: ne previously-included files matching '#*.py[ce]' found under directory '#'
Installing collected packages: django
Running setup.py install for django

warning: no previously-included files matching '__pycache__' found under directory '#'
warning: no previously-included files matching '*.py[co]' found under directory '*'
Successfully installed django
Cleaning up...
‘django’ was installed successfully.

Once the downloading process finishes, a more detailed view is available as shown

in preceding screenshot. It'll keep you informed about the installation process and
whether it is successful. If everything happens without a hitch, a 'django' was installed
successfully message is shown at the end of the pip log in the Output window.

Running the application

Now that the Django framework is successfully installed in the system and is
referenced in the project, let's make sure it works and all the workflows are running
correctly. Run the application by pressing F5 or by clicking on the Run icon in the
toolbar. Since Visual Studio understands that the current project is a website, it will
run the output in a browser instance. You can see the Run button followed by the
name of the default system browser that will be started. It's possible to select the
browser in which we'll run the project by clicking on the drop-down button that
shows all possible choices:

Dd Django Solution - Microsoft Visual Studio
FILE EDIT VIEW PROJECT BUILD DEBUG TEAM TOOLS TEST ARCHITECTURE ANALYZE WINDOW

‘@-0|B-2 M9 - -] » GoogleChrome - ¢ - [Debug || 5 '

2.

e

Ll manage.py + x

= | v Google Chrome v"

= 1 #!/usr/bin/env python Internet Explorer

= 2 import os

£ N ~P Page Inspector

-, 3 import sys

] 4 Browse With...

o 5 [Eif __name_ == "_ main More Emul

= 5 os.environ. setdefal D , "EzuWebsite.settings™)

[55]

Download from Join eBook (www.joinebook.com)

Django in PTVS

The following two things happen when you run the application:

* PTVS runs the Django manage . py command

* A browser instance with the output of the website is shown

The first one is shown in a command-prompt window that informs us about the
result of the execution. It indicates whether there was any problem in the settings.
It is the equivalent of launching the python manage.py runserver command
from the command line.

L CA\Python27\python.exe - B

alidating models...

errors found
February 87, 2814 - 15:21:28
Django version 1.6.2, wsing settings ’EzulWebsite.settings’
Ctarting development server at http:-/-127.8.8.1:1524~
Quit the server with CTRL-BREAK.
[@9/Febr 2814 15:21:311 "GET ~ HTITP-1.1" 288 1757

At the same time, a new instance of the browser is created with our website's home
page. In a new classical Django installation, you will see the following It worked! page:

— .

Welcome to Django x

C localhost: 1524 w =

It worked!
Congratulations on your first Django-powered page.

Of course, you haven't actually done any work yet. Next, start your first app by running python manage.py sStartapp [appname]

Youre seeing this message because you have DEBUZ = True in your Django settings file and you haven't configured any URLs. Get to work!

[56]

Download from Join eBook (www.joinebook.com)

Chapter 4

If you're able to see the preceding screen, it means that the setup of the Django
project has been successfully completed. Now we can continue with the
development of the website.

IntelliSense in Django templates

We have already talked about the power of IntelliSense in Visual Studio in Python
code. IntelliSense supports even the Django template editor, providing it with access
to all the template tags of Django; it also provides access to the context defined by the
calling view.

IntelliSense offers help with the HTML part as follows:

7 <body>

8 «<h

9 & fhr «poll.question }}</hl>

10 &1 /html poll.}}</h2>

11 (= sage %}

A fthead fr 11

12 e (S ong>{{ error_message }}</p>
13 {=n
14 =R h3 ction="{% url 'polls:vote’ poll.id %}" method="post">
15 [hd 1
16 & h3 - 11.choi 1

6 | .n poll.choice_set.all %)

Additionally, when in a Django block tag, ("{% .. %}"), it shows Django-specific
tags and view context objects. IntelliSense also helps with filters:

7 <body>
8 <h1l>{{ poll.question }}</hl>
9 <h2>{{ poll.}}</h2>
10 {% if error_nessage o IR -
11 <p>{ @ question 12></p>
12 {% endif %} @ save
. @ zave_base - " n n
13 <form action .o e L1.id %}" method="post">

14 [% csr‘F_token %} @ unigue_error_message

15 {% for choice in pol®@ validste unique

16 <input t@ -default manager ' id="choice{{ forloop.counter }}
17 <label % defered . ..__Iater }}">{{ choice.choice text 1}

[57]

Download from Join eBook (www.joinebook.com)

Django in PTVS

Setting up and managing a database for
a Django project

Once a working Django project is set up, we will need to attach a database in order
to have a place to store the website data and the overall configuration of the Django
admin console. For the purpose of this book, we are going to use a SQLite database,
which is easy to manage, to connect to the project. It's a file-based database and can
be easily managed by Django. For more information on SQLite, refer to its website
at http://www.sqglite.org/.

Attaching a database to Django is really easy. You just have to tell Django which
database to use and how to connect to it. This has to be done in the Django
settings.py file. To connect to and create a SQLite database, the database section
of code should look like the following:

'_.ZI # Database definition secticn|
DATABASES = |

28 ‘default': {

21 "ENGINE': 'django.db.backends.sqlite3', # Add 'postgresql psycopg2’, 'mysql’, 'sglite3’ or 'oracle’.
22 'NAME': path.join(PROJECT_ROOT, 'db.sqlite3'), # Or path to database file if using sqlite3.

23 'USER': "', # Not used with sqlite3.

24 "PASSWORD': "', # Not used with sqlite3.

25 'HOST': "', # Set to empty string for localhost. Not used with sqlite3.

26 'PORT': '', # Set to empty string for default. Not used with sqlite3.

Since SQLite is a file-based database, the Name property should be the path of
the database file. We are using a constant that contains the project's root path,
Project_Root, which has to be defined first with the following two lines of code:

12 # Adding path exploring library
13 from os import path

15 # Getting the project root path
16 PROJECT_ROOT = path.dirname(path.abspath(path.dirname(_ file_)))

The database is now connected to the Django project. To create the configuration
tables in the database, use the Django sync DB command. Visual Studio provides
a command, which starts this process from inside the IDE. To access the sync
command, right-click on the project node of the Solution Explorer window and
select the Django Sync DB entry to start the process:

[58]

Download from Join eBook (www.joinebook.com)

Chapter 4

Solution Explorer

@ e-edm & -

Search Solution Explorer (Ctrl+g)

e

sfad Solution 'Django Solution' (2 projects)

Open Djange Shell Django
Validate Django App... Publish to Windows Azure...
Djange Sync DB... & Publish...

Scope to This
Mew Solution Explorer View

Build Dependencies

Once you click on Django Sync DB, the synchronizing starts. The Django
Management Console option displays a detailed log of activities as follows:

Django Management Console - EzuWebsite

EQ 0 [min -

Executing manage.py syncdb
tables ...

Creating
Creating
Creating
Creating
Creating
Creating
Creating
Creating
Creating
Creating
Creating

You just

table
table
table
table
table
table
table
table
table
table

installed Django’'s auth system, which means you don't have any superusers defined.

auth_permission
auth_group_permissions
auth_group
auth_user_groups
auth_user_user_permissions
auth_user
django_content_type
django_session

django_site
django_admin_log

Would you like to create one now? (yes/no): yes

Username (leave blank to use 'ezu'):

Email address:

C:\Python27\1lib\getpass.py:92: GetPassWarning: Can not control echo on the terminal
return fallback_getpass(prompt, stream)

Warning: Password input may be echoed

Password:

@aa

Warning: Password input may be echoed.
Password (again): aaa

Superuser created successfully.
Installing custom SQL ...

Installing indexes ...

Installed @ object(s) from & fixture(s)
The Python REPL process has exited

ES

[59]

Download from Join eBook (www.joinebook.com)

Django in PTVS

When the command is first executed, Django creates the actual database and also
the authentication entries to be used for the Django administration console. The
preferred username and password are asked to be entered. Once the information
is provided, the process ends with the database created.

We can also see the result of the process in the Solution Explorer window since we
have instructed Django to use SQLite and indicated the location to create the database
file. To view this information, enable the View all files option in the solution folder by
clicking on the View all files command in the Solution Explorer toolbar.

Solution Explorer
W e-eanm| s =
Search Solution Explorer (Ctrl+g) P~

fa] Solution 'Django Solution' (1 project)
4 EzuWebsite

Find the "View all files" option in the toolbar

Once the view is active, the file db.sglite3 can be found in the solution folder.
It can be included in the solution files by right-clicking on it and selecting the
Include in Project command. The SQLite file is then included in the list of files
that are managed by Visual Studio.

gl Solution 'Djange Solution' (2 projects)
Pl EzuWebsite
[=B Python Environments
[=B References
=B Search Paths
EzuWebsite
i ohj

1 db.sqlite3
€ Open manage.py
Open With... web.config
& View Code - Website Azure
Roles
Scope to This £1 EzulWebsite
Mew Solution Explorer View ServiceConfiguration.Cloud.cscfg
. ServiceConfiguration.Local.cscfyg
Include In P t
e e ServiceDefinition.csdef
A Cut Ctrl+X
[60]

Download from Join eBook (www.joinebook.com)

Chapter 4

Setting up the admin interface

Now that a database is attached to the project, we can activate the administration
interface of Django in it. The process is really simple at this point; you just need
to uncomment a couple of lines of code in the project settings file and the main
URL manager.

First, activate the Django application django.contrib.admin in the Installed
Apps section of the settings file:

128

121 INSTALLED_APPS = (

122 ‘django.contrib.auth’,

123 ‘django.contrib.contenttypes’,

124 ‘django.contrib.sessions’,

125 ‘django.contrib.sites’,

126 "django.contrib.messages’,

127 ‘django.contrib.staticfiles’,

128 # Uncomment the next line to enable the admin:
129| ‘django.contrib.admin’,

138 # Uncomment the next line to enable admin documentation:
131 # 'django.contrib.admindocs’,

132)

133

Second, go to the urls.py file and uncomment the section that imports the admin
class and that enables the admin's discovery of the models inside the project. Besides
this, it is also necessary that we uncomment the last line of the URL pattern that
manages the /admin/ path:

Uncomment the next two lines to enable the admin:

2

4 from django.contrib import admin

5 hdmin.autudiscuver()

6

7 urlpatterns = patterns('’,

3 # Examples:

9 # url({r'~%', 'EzuWebsite.views.home', name="home'},
18 # url(r'*Ezulebsite/', include('Ezulebsite.EzuWebsite.urls')),
12 # Uncomment the admin/doc line below to enable admin documentation:
13 # url(r'*admin/doc/", include('django.contrib.admindocs.urls")}),
15 # Uncomment the next line to enable the admin:
_EI url{r'*admin/"', include(admin.site.urls)),

F
J
—r

[
00 =

[61]

Download from Join eBook (www.joinebook.com)

Django in PTVS

Now the Django administration application is activated in the project. If the
operation is successful, you will be presented with the admin login page. After

launching the application, navigate to the /admin/ page:

= =
/[Log i | Django site admir x '\
€& - C [} localhost:1693/admin/ o =
Django administration
Username:
ezZu
Password:
o
Log in
Insert the credentials created during the database setup to access the
administration section:
-
/ [Site administration | Djan: % _,
€& - C |[Y localhost:1693/admin/ ol =
Django administration Welcome, ezu. Change password / Log out
Site administration
Recent Actions
Groups deadd & Change My Actions
Users giadd ¢ Change None available
Sites. dadd o Change
[62]

Download from Join eBook (www.joinebook.com)

Chapter 4

Now we have a fully set up and working Django environment. Let's go ahead and
create a new Django application in Visual Studio.

Creating a new Django application

A Django application is a submodule of the project which is self-contained and
not intertwined with other applications. In theory, you could copy it and put it in
another project without much, or any, change.

Typically, to start a Django app, you have to run the manage.py startapp
command in the command line, which will create a new folder in your project
where you can find a view, a model, an admin, and a test Python file.

Visual Studio provides an easy way of creating a new Django app right in the IDE,
automating the whole process; furthermore, the command is also in the process of
creating a template folder. To create a new Django application, just right-click on the
project node in the Solution Explorer window and select the Django app command
in the Add menu:

Solution Explorer > I x
- @l o-edBp| &=
£5
_: Search Selution Explorer (Ctrl+g) P
afa] Solution 'Djange Solution' (2 projects)
i e 7uWebsite
Django * W Python Envirenments
Publish to Windows Azure... References
€r Publish... Search Paths
Scone o Thi " bin
copeto this EzuWebsite
New Solution Explorer View * obj
Build Dependencies » [dbsqglite3
Add * 'O New ltem... Ctrl+Shift+A
B Manage NuGet Packages.. *a Existing ltem... Shift+Alt+A
L} Setas StartUp Project 5 New Folder
Debug » Django app...
X cut Ctrl+X Existing Folder...
2 Remove Del Reference...
I Rename
Unlzad Project
¢® Open Folder in File Explorer
. e Project Properties
& Properties Alt+Enter
[63]

Download from Join eBook (www.joinebook.com)

Django in PTVS

This opens the Add Django App window in which you can assign the name of the
Django app to be created:

Add Django App..

Mew App Name: | polly

o |[|

By clicking on OK, the Django app is created in the project, and a list of added files
can be found in the Solution Explorer window:

u-B 5earch Paths
4 fml FEzuWebsite

P init__.py (EzuWebsite)

PY settings.py
PY urls.py
PY wsgi.py
4 | polls

il templates
Y _init__.py (polls)
Y models.py
Y tests.py
PY views.py

Now you can create the code for the app as we usually do for Django. Take into
account that even if Visual Studio automates the creation of the Django application, it
doesn't necessarily create the entry in the settings file. This has to be done manually
as usual, adding the reference into the Installed_Apps section; to do this, just open
the main settings.py file and add the newly created application in the Installed_

Apps section:

INSTALLED_APPS = (
"django.
'django.
"django.
"django.
'django.
"django.
Uncomment the
"django.
Uncomment the
'django.contrib.admindocs’,
'Ezukebsite.polls’,

contrib
contrib
contrib

contrib
contrib

contrib

.auth',
.contenttypes’,
.sessions’,
contrib.

sites’',

.Mmessages ',
.staticfiles',

next line te enable the admin:

.admin’,

next line te enable admin documentation:

[64]

Download from Join eBook (www.joinebook.com)

Deploying a Django project on Microsoft
Azure

Cloud platforms are complex systems that provide ways to scale web applications
across multiple server instances based on the traffic the application is receiving. They
also offer an abstraction of the server environment in a way that developers do not
need to deal with the hardware and software architecture of the system, but only
with the resources and services. This is an advantage because with this in place, the
developer does not actually need to configure and manage the server; however, at
the same time, it also proves to be a disadvantage, since not all software components
are able to work in such systems.

Azure is a cloud-hosting platform by Microsoft that enables developers to quickly
build, deploy, and manage applications across a global network of Microsoft-
managed data centers. It is tightly integrated in Visual Studio; also, the Python
language is covered by this service.

We are going to see how to deploy a Django project on Azure by using the tools
that Visual Studio provides.

To use Microsoft Windows Azure, first we need to create an Azure account via
http://www.windowsazure.com/.

After the account is created, you can access the Portal section that brings you to your
Azure services portal in which you can find all the services available on the left-hand
side menu. Now we'll create a website:

ER Windows Azure | v Subscriptions

web sites

@ o You have no web sites. Create one to get started!
CREATE A WEB SITE @

[65]

Download from Join eBook (www.joinebook.com)

Django in PTVS

To create a new website, click on the CREATE A WEB SITE link; this will open
the NEW tab at the bottom of the page:

URL

COMPUTE WEB SITE ‘QUICK CREATE
@ ’

DATA SERVICES El VIRTUAL MACHINE ib; CUSTOM CREATE

.azurewebsites.net

REGION

—] voms s [l mouassar

NETWORK SERVICES é CLOUD SERVICE SUBSCRIPTION

Pagamento in base al consumo (7f8b55be-238f-+ 3

STORE

CREATEWEBSITE

Just insert the name of the website that you want to create in the URL textbox; if the
name is available, click on the CREATE WEB SITE button to create the website.
This will initiate the website generation process, at the end of which you will see
the created website:

web sites
@ ;‘VI[B SITES NAME STATUS SUBSCRIPTION LOCATION MODE URL ,Q

Besides the website service, we also need to create a storage entry where the website
files can be uploaded to. To create a storage entry, click on the Storage item on the
left-hand side menu and click on NEW:

[66]

Download from Join eBook (www.joinebook.com)

Chapter 4

@ STORAGE
2

URL

COMPUTE @ SQL DATABASE ’ ‘QUICK CREATE
pt\'ssamp\eDz‘

DATA SERVICES. | ﬁ STORAGE *corewindows.net

LOCATION/AFFINITY GROUP

APP SERVICES %‘ HDINSIGHT East Asia

(Y = CACHE
*7 NETWORK SERVICES SUBSCRIFTION

55he-, v
STORE e Pagamento in base al consumo (7f3b35be-2381
REPLICATION

Geo-Redundant v

CREATE STORAGE ACCOUNT +/

As for the website service, we just need the name of the storage service in the URL
textbox; once you have this, click on the CREATE STORAGE ACCOUNT button to
create the storage service instance.

Now we have all the elements needed to deploy our Django project to Azure.
However, before going ahead, we need to ensure that our project is ready for it.
Azure needs all the files related to the project that reside in the project folder,
since it needs to ensure that all the Python libraries are present. To ensure that
these requirements are met, the Django project needs to be created in a virtual
environment. This will keep all the files to be included in the project folder;
otherwise, the libraries just reside in the site-packages folder of the system.

[67]

Download from Join eBook (www.joinebook.com)

Django in PTVS

A virtual environment is an isolated working copy of the Python environment,
which allows you to work on a specific project without worrying about affecting
other projects. At the same time, it keeps together all the dependencies in the same
folder structure. Creating a virtual environment is easy in PTVS; you can do this by
selecting the Add Virtual Environment command from the Python Environments
contextual menu, as shown in the following screenshot:

Solution Explorer 1 x
+
x @B e-ea@m|l &=
Search Solution Explorer (Ctrl+&) P -
] Solution 'tuterial' (2 projects)
Pl tutorial
b 00 Python Environments
Scope to This P =m References
MNew Solution Explorer View =B Search Paths
Add/Remove Python Environments... b polls.
)) b tutorial
Add Virtual Environment... | db.sqlite3
Add Existing Virtual Environment... FY manage.py
& Properties Alt+Enter b O tutorial Azure
|
This will open the Add Virtual Environment window:
Add Virtual Environment

Location of the virtual environment

Specify the narme or location of the virtual environment. If one already exists, we will
detect the base interpreter for you,

envl IZI

Select an interpreter to create the virtual envirenment from.

Packages in your base interpreter will not be available in the virtual environment until
you install them,

Python 2.7 v

Actions we will perform:

+ Create a virtual environment

Create Cancel

[68]

Download from Join eBook (www.joinebook.com)

Chapter 4

Once you enter the name of the virtual environment and click on the Create button,
the virtual environment is created in the project. Now, all the packages that you
include in the project will be copied into it, so all the dependencies will be available
inside the project folder, which doesn't rely on the system's site-packages folder:

Selution Explorer * 0 X
@ o-ed@m &=
Search Sclution Explorer (Ctrl+g) po it

fad Solution ‘tutorial' (2 projects)
] tutorial
4 =0 Python Environments
4] env (Python 2.7)
=0 Django (1.6.2)
=0 pip (1.5.2)

Once we have ensured that our project is contained in a virtual environment,
we can go ahead and configure Visual Studio in a way to be ready to deploy
our Django project to Azure.

The deployment procedure starts by invoking the Publish command from the
contextual menu of the Django website node in the Solution Explorer tree view:

Solution Explorer X
PUEY T

Search Solution Explorer (Ctrl+ &) P~

R Solution 'tutorial' (1 project)

Djange » | =B Python Environments
Convert y | "0 References
. =0 Search Paths
€ Publish.. & polls
Scope to This B tutorial
Mew Solution Explorer View || db.sglite3
[69]

Download from Join eBook (www.joinebook.com)

Django in PTVS
This will open the Publish Web wizard window, which will guide you through
the deployment process of the Django project:

R < |

Publish Web

& pubish web
m Select or import a publish profile
v

Connection ptvsample - Web Deploy
Settings Manage Profiles...
Preview

Publishing to Windows Azure Web Sites? Sign up for a free account

Find other hosting options at our web hosting gallery

<pev || Nets> || publish |[Close |

To link Visual Studio to the Azure website we created earlier, click on the Import
button; once you are certain about being able to log in with your Azure account,
select the name of the website you want the Django application to be deployed to:

Import Publish Settings

@ Import from a Windows Azure Web Site

) Signed in as martinosabia@hotmail.com
Sign Out o
Manage subscriptions

ptvsample

O Import from a publish profile file

[70]

Download from Join eBook (www.joinebook.com)

Chapter 4

At this point, follow the other wizard entries and click on Publish. With this, Visual
Studio will start the process of deploying all the files to the Azure platform; you can
follow the deployment process from the Output window:

Qutput & X

Show output from: [Build - e ||z

Build started: Project: tutorial, Configuration: Release Any CPU ------

- Publish started: Project: tutorial, Configuration: Release Any CPU ------
“C:\Users\ezu\Documents\Visual Studio 2813\Projects\tutorial\.\.\env\\Scripts\python.exe”
“C:\Users\ezu\Documents\Visual Studio 2813\Projects\tutorial\.\.\env\\Scripts\python.exe”
"C:\Users\ezu\Documents\Visual Studio 2813\Projects\tutorial\.\.\emv\\Scriptsipython.exe"

-c "from tutorial import settings; print(settings.STATIC_URL)" > "C:\Users\ezul/
-c "from tutorial import settings; from os import path; print(path.relpath(sett
"C:\Users\ezu\Documents\Visual Studio 2013\Projects\tutoriall.\manage.py” collec

@ static files copied to 'C:\Users\ezu\Documents\Visual Studio 2813\Projects\tutorialistatic', 71 unmodified.
Auto ConnectionString Transformed web.config into obj\Debug\CSAutoParameterize\transformed\web.config.
Copying all files to temporary location below for package/publish:
obi\Debug\Package\PackageTmp.

Start Web Deploy Publish the Application/package to https://waws-prod-blu-87.publish.azur
Aggiunta di ACL per il percorso (ptvsample)
Aggiunta di ACL per il percorso (ptvsample)
Aggiornamento del file (ptvsample\db.sqlite3).
Aggiornamento del file (ptvsample\enw\Lib\orig-prefix.txt).
Aggiornamento del file (ptvsample\ptws_virtualenv_proxy.py).
Aggiunta di ACL per il percorso (ptvsample)

Aggiunta di ACL per il percorso (ptvsample)

Publish Succeeded.

blished successfully http://ptvsample.azurew
Build: 1 succeeded or up-to-date, © failed,
Publish: 1 succeeded, ® failed, & skipped ==

ites.windows.net/msdeploy.axd?site=ptvsample ...

Once the deployment process finishes, Visual Studio will open in the default browser
of the deployed website on Azure:

- T ES
" [ptvsample.azurewebsites. x |
C [ptvsample.azurewebsites.net v =

Do you like Django?

For further documentation about Python on Windows Azure, refer to the Windows
Azure website at http://www.windowsazure.com/en-us/develop/python/.

Summary

In this chapter, we learned how to create a Django project in Visual Studio and

set up the environment. We also learned about deploying a Django project on
Microsoft Azure.

In the next chapter, we are going to learn how to manage Python libraries inside
Visual Studio. Also, we'll learn how to use some of the most powerful Python
libraries for the Django framework to manage deployments, the synchronization
of databases between environments, and a library that helps us use and manage
images successfully and dynamically in our website.

[71]

Download from Join eBook (www.joinebook.com)

Download from Join eBook (www.joinebook.com)

Advanced Django in PTVS

Once we look at how a Django development environment in Visual Studio with
PTVS is set up, we can start analyzing some powerful libraries for Django and how to
use them in Visual Studio. Over the years, lots of developers have created powerful
libraries and tools for Django that speed up various aspects of the development cycle.
We are going to take a closer look at some of them here to see how they integrate in
Visual Studio and PTVS.

In this chapter, we will analyze two libraries that are useful for a Django developer
in two different aspects: automatizing tasks using the Fabric library, and managing
model migrations on Django with South.

Library management

We have already learned how to install new packages in PTVS using the GUI tools
that it provides. Now, we will learn more about the criteria for choosing one package
index over another; in other words, when to choose easy install over pip.

Generally speaking, using pip is much better than using easy_install, and there
are major reasons for this. As Ian Bicking, the creator of pip, wrote in his own
introduction to pip, the advantages are as follows:

» All packages are downloaded before installation. As a result, partially
completed installation doesn't occur.
* Care is taken when presenting useful output on the console.

* The reasons for actions are being tracked. For instance, if a package is being
installed, pip keeps track of why that package was required.

* Error messages should be useful.

Download from Join eBook (www.joinebook.com)

Advanced Django in PTVS

* The code is relatively concise and cohesive, making it easier to use
programmatically.

* Packages don't have to be installed as egg archives; they can be installed flat
(while keeping the egg metadata).

* Native support is available for other version control systems
(8it, Mercurial, and Bazaar).

* Uninstallation of packages is easy.

* Itis simple to define, has fixed sets of requirements, and reliably reproduces
a set of packages.

It may seem that there are no reasons to choose easy install over pip. However,
this is where careful consideration is needed.

There is a caveat that makes the choice really hard for Windows environments: some
libraries or dependencies are written in Python C, which is a way for Python to call
libraries written in C/C++. To compile these libraries on your Windows machine,
you have to install the exact same version of the original compiler that has been used
to compile to the original interpreter. For example, you will need the C++ compiler
of Visual Studio 2008 if you use Python 2.7 or Visual Studio 2010 for Python 3.

This is due to a long tradition where Python extension modules must be built with
the same compiler version (more specifically, a CRT version) as Python itself, which
is mentioned at https://mail.python.org/pipermail /python-1list/2010-
April/573606.html.

Using the easy_install package installer, the precompiled packages are
downloaded and installed into the system's site-packages folder.

A rule of thumb: if the library you are trying to install on your
Windows machine has Python C extensions in it, it's far better to
choose easy install. For all other cases, pip is way better.

If you don't know what kind of library you are importing, you should go with pip.
If it encounters a problem during the compilation process of the installation, you
can uninstall the library and reinstall it using easy_install.

Generally, most libraries that have low-level capabilities (for example, cryptography,
graphics, and mathematical functions) and interaction with other software (for
example, drivers) use Python C extensions.

[74]

Download from Join eBook (www.joinebook.com)

Chapter 5

The Fabric library — the deployment and
development task manager

Fabric is a Python library and a command-line tool that allows execution in
application deployment and administration tasks. Essentially, Fabric is a tool that
allows the developer to execute arbitrary Python functions via the command line
and also a set of functions in order to execute shell commands on remote servers
via SSH. Combining these two things together offers developers a powerful way
to administrate the application workflow without having to remember the series
of commands that need to be executed on the command line.

The library documentation can be found at http://fabric.readthedocs.org/.

Installing the library in PTVS is straightforward. Like all other libraries, to insert
this library into a Django project, right-click on the Python 2.7 node in Python
Environments of the Solution Explorer window. Then, select the Install Python
Package entry.

_I 4 =B Python Environments
Scope to This -8 Django (1.6.2)
Mew Solution Explorer View B ecdsa (0.10)
-l i E.
X Remove Del I-B fabric (1.8.2)
-8 mysgl-python (1.2.5)
Activate Environment I8 paramiko (1.12.2)
Install Python Package... M pip (1.5.4)
-l b
€ Open Folder in File Explorer = pycrypto (261)
-8 South (0.8.4)
F& Properties Alt+Enter 1w virtualenv (1.10.1)

The Python environment contextual menu

[75]

Download from Join eBook (www.joinebook.com)

Advanced Django in PTVS

Clicking on it brings up the Install Python Package modal window as shown in the

following screenshot:

Install Python Package
Type the name of the package to install
We will download it from the Python Package Index using | easy_install v
fabric

To install a specific version, type "SomePackage==1.0.4",

, Packages installed with easy_install may not be displayed in Selution Explorer and
may not be uninstallable,

:Run as Administrator’ oK

It's important to use easy_install to download from the Python package index.

This will bring the precompiled versions of the library into the system instead of the

plain Python C libraries that have to be compiled on the system.

Once the package is installed in the system, you can start creating tasks that can be

executed outside your application from the command line. First, create a configuration

file, fabfile.py, for Fabric. This file contains the tasks that Fabric will execute.

bfile.py -+ Solution Explorer > X
@ hello - - Q|*@-a|§|‘|é'@|op_.
: from fabric.api import run f Search Solution Explorer (Ctrl+&) P~
3} Eldef hello(): fa] Solution 'Djange Selution' (1 project)
4 print('hello world") 4 EzuWebsite

B =B Python Environments
> u-B References

=B Search Paths
b EzuWebsite

AF fabfile.p

FY manage.py

The previous screenshot shows a really simple task: it prints out the string hello
world once it's executed. You can execute it from the command prompt by using
the Fabric command fab, as shown in the following screenshot:

[76]

Download from Join eBook (www.joinebook.com)

Chapter 5

Windows PowerShell

[

PS C:\Users\ezu\documents\Visual Studio 2013\Projects\Django Solution\EzuWebsite> fab hello
hello world

Done.
PS C:\Users\ezu\documents\Visual Studio 2813\Projects\Django Solution\EzuWebsite> _

Now that you know that the system is working fine, you can move on to the juicy
part where you can make some tasks that interact with a remote server through ssh.
Create a task that connects to a remote machine and find out the type of OS that runs
on it.

fabfilepy™ # X

@ host_type - -
1 from fabric.api import local, enwv, put, run =
2
3 env.hosts = ["root@le?.178.24,288"]
B env.password = "mypassword”

50 Hdef host_type():
run('uname -s')

98 Hdef hello():
B print("hello world")

The env object provides a way to add credentials to Fabric in a programmatic way

We have defined a Python function, host_type, that runs a POSIX command, uname
-s, on the remote. We also set up a couple of variables to tell Fabric which is the
remote machine we are connecting to, i.e. env.hosts, and the password that has to
be used to access that machine, i.e. env.password.

It's never a good idea to put plain passwords into the source code, as is
s shown in the preceding screenshot example.

Now, we can execute the host_type task in the command line as follows:

%] Windows PowerShell = =

PS C:\Users\ezu\documents\Visual Studic 2013\Projects\Django Solution\EzuWebsite> fab host_type
root@l@7.17e8 ing task 'host_type’

root@le7.170 run: uname -s

root@le7.17 out: Linux

root@l@7.17e.2 out:

Done.
Disconnecting from root@l®7.178.24.208... done.
PS C:\Users\ezu\documents\Visual Studio 2813\Projects\Django Solution\EzulWebsite>

[77]

Download from Join eBook (www.joinebook.com)

Advanced Django in PTVS

The Fabric library connects to the remote machine with the information provided
and executes the command on the server. Then, it brings back the result of the
command itself in the output part of the response.

We can also create tasks that accept parameters from the command line. Create
a task that echoes a message on the remote machine, starting with a parameter
as shown in the following screenshot:

12

—|def echo{who="warld"):
run('echo hello ¥s!' % who)

The following are two examples of how the task can be executed:

Windows PowerShell
> fab echo
cuting task "echo’
run: eche hello world!
out: hello world!

3] out:

nnecting from root@l®7.170.24.208... done.
\Users\ezu\documents\Visual Studio 2013\Projects\Djange Sclution\EzuWebsite> fab echo

Executing task "echo’

run: echo hello Python tools for Visual Studio!

out: hello Python tools for Visual Studio!
.208] out:

Disconnecting from root@l@7.170.24.208... done.

: "Python tools for Visual Stud)

We can also create a helper function that executes an arbitrary command on the
remote machine as follows:

def execute(cmd) :
run (cmd)

We are also able to upload a file into the remote server by using put:

-ldef deploy():
print "Deploying...”
put("manage.py”, "~ ptvs/manage.py”)
print "All Done...”

The first argument of put is the local file you want to upload and the second one
is the destination folder's filename. Let's see what happens:

[78]

Download from Join eBook (www.joinebook.com)

Chapter 5

=] Windows PowerShell S =
r cuments\Visual Studio 2013\Projects\Django Solution\EzuWebsite> fab deploy

[root@187.178.24.2088] Executing task 'deploy”

Deploying. ..

[root@187.178.24.288] put: manage.py -» /root/ptvs/manage.py

from root@l@7.170.24.2088... done.
\documents\Visual Studio 13\Projects\Django Solution\EzuWebsite> fab execute:'ls ptvs’®

] Executing task 'execute’
] run: 1s ptvs
] out: manage.py

Done.
Disconnecting from root@l@7.170.24.208... done.

Deploying process with Fabric

The possibilities of using Fabric are really endless, since the tasks can be written in
plain Python language. This provides the opportunity to automate many operations
and focus more on the development instead of focusing on how to deploy your code
to servers to maintain them.

South — the database deployment library

Developed by the Python community, South is a Django library that brings schema
migration to Django applications. The South library's main objective is to provide a
simple, stable, and database-independent migration layer to prevent all the hassles
of schema changes.

The key features of South are as follows:

* Automatic migration creation: South can detect what's changed in your
application model by analyzing your model . py files and automatically
creating the migration code —basically the SQL commands for the database
you are using — that matches the changes in the models.

* Database independence: South is database agnostic, supporting different
database backends. Currently, South supports PostgreSQL, MySQL, SQLite,
Microsoft SQL Server, Oracle, and Firebird (beta support).

* App-savvy: South knows and works with the concept of Django applications,
allowing developers to use migrations on only some of the applications and
not on the whole project.

* VCS-proof: South will notice when someone else commits migrations
to the same application and can check if there are conflicts.

[79]

Download from Join eBook (www.joinebook.com)

Advanced Django in PTVS

Why use South with Django

One of the most interesting parts of Django is its Object-relational mapping (ORM),
which creates a consistent abstraction of the database structure. This is a very
powerful tool that allows programmers to focus on the Python code. Django takes
good care of the database structure management only for new models (for example,
when creating them). It doesn't have an out-of-the-box solution to manage updates in
the models that can be applied to existing database schemas.

It's usually a painful operation to change the model during the application lifecycle.
Technically, when changing the schema of the model or when migrating the schema,
whether you are modifying a field or adding another one, the database structure needs
to be recreated. This means that all the data of that model is lost, or a manual migration
needs to be done to move the data from the old version of the tables to the new one on
the database. This is especially time consuming if you have to align that database from
a development server environment to a production server environment.

Installing South

Let's see how to bring South into PTVS. Like other Python libraries, we can install it
from the Solution Explorer window by right-clicking on the environment of your
choice (Python 2.7) and selecting Install Python Package to bring up the following
installation dialog box:

Install Python Package
Type the name of the package to install
We will download it from the Python Package Index using | easy_install v
south

Te install a specific version, type "SomePackage==1.0.4".

. Packages installed with easy_install may not be displayed in Selution Explorer and
may not be uninstallable,

Run as Administrator 0] 4 Cancel

[80]

Download from Join eBook (www.joinebook.com)

Chapter 5

As stated in the South documentation, you have to use the easy install Python
Package Index; be sure to select it.

Once the package is installed, it's important to make sure that it's activated in the
settings file. To do so, add south at the end of the code for Installed_Apps.

INSTALLED_APPS = (
‘django.contrib.auth’,
‘django.contrib.contenttypes’,
'django.contrib.sessions’,
‘django.contrib.sites’,
'django.contrib.messages’,
‘django.contrib.staticfiles’,
Uncomment the next line to enable the admin:
‘django.contrib.admin’, I
Uncomment the next line to enable admin documentation:
'django.contrib.admindocs’,
'EzuMebsite.polls’,

Be sure South is the last library in the section
'suuth'l

Be sure that the "south" library is the last in the "Installed_Apps" section in Settings.py

South needs to be the last package of the list due to the fact that when Django
executes the library, all the models of the Django project are already created and are
discoverable by South.

To test if everything is working, navigate to the Django shell and try to import

the library. Ordinary Python developers will go to the command line and run the
manage . py shell, but in PTVS, there's a panel for this. To open it, quickly right-click
on the Django project entry in the Solution Explorer window and select the Open
Django Shell option in Django:

Solution Explorer > I x

- @ o-eam| &=
f Search Solution Explorer (Ctrl+€) Pl
fa] Solution 'Djange Selution' {1 project) e
Open Django Shell Django »
Validate Django App... Convert 3

Djange Sync DB... € Publish...
I Scope to This
[81]

Download from Join eBook (www.joinebook.com)

Advanced Django in PTVS

This opens a new Django Management Console panel, which is basically a REPL
but with Django integration. From here, it's possible to see if the South library is
working correctly by trying to import the library:

Django Management Console - EzulWebsite

=5
>>> import soy
= C
=

= visualstudio_py_util

winsound

IntelliSense is active in the Django shell, so if you see south appear, then everything
is working fine.

To finish the initialization process, run sync_db for South to create the
migration-tracking tables. This can also be done from the Django contextual menu
as seen earlier: just select the Django Sync DB command in the Django menu.

Django Management Console - EzuWebsite

L Erea—

Executing manage.py syncdb

syncing...

Creating tables ...

Creating table south_migrationhistory
Installing custom SQL ...

Installing indexes ...

Installed @ object(s) from @ fixture(s)

Synced:

» django.contrib.auth
django.contrib.contenttypes
django.contrib.sessions
djange.contrib. sites|
django.contrib.messages
django.contrib.staticfiles
django.contrib.admin
EzuWebsite.polls
south

R)

Not synced (use migrations):

(use ./manage.py migrate to migrate these)

As shown in the preceding screenshot, this starts the synchronization process
of the current models in your application on South.

[82]

Download from Join eBook (www.joinebook.com)

Chapter 5

Schema migration with South

Now that we have south installed and working in our solution, let's try to create
something to test the migration. Create a new application in your project and call it
south2ptvs by using the Django app command in the Add menu, as shown in the
following screenshot:

u-0 Search Paths
=]
Publish EzuWebsite Alt+& Alt+P polls
Replace EzuWebsite from server Alt+g Alt+R FY _init_py (EzuWebsite)
Add * O Mew ltem.. Ctrl+ Shift+ A
Scope to This ‘O Existing ltem... Shift+Alt+A
MNew Selution Explorer View * Mew Folder
Exclude From Project Django app...
¥ cut Chrl+X Existing Folder...
0 Copy Ctrl+C
2 Delete Del lorer

Don't forget to register the new application in the settings.py file, and make sure
that south remains as the last entry of the Installed Apps section:

121 INSTALLED _APPS = (
122 'django.contrib.auth’,
123 ‘django.contrib. contenttypes’,
124 ‘django.contrib.sessions’,
125 ‘django.contrib.sites’,
126 'django.contrib.messages ',
127 ‘django.contrib.staticfiles’,
123 # Uncomment the next line to enable the admin:
129 ‘django.contrib.admin’,
138 # Uncomment the next line to enable admin documentation:
131 # 'django.contrib.admindocs’,
132 'Ezukebsite.polls’,
133 'south2pvts’,
134 # Be sure South is the last library in the section
135 "south’
36)

[83]

Download from Join eBook (www.joinebook.com)

Advanced Django in PTVS

Then, open the models.py file of the newly created application in which we are
going to define our testing model:

models.py A X

from django.db import models|

-lclass Knight(models.Model):
name = models.CharField(max_length=188)
of_the_round_table = models.BoocleanField()

[Y R N I

Instead of using the standard Django sync_db command to create the schema of the
model in the database, let's set up a migration for the model knight. This operation
will be the entry point for the entire migration history of the model.

Navigate to the command line and execute the initialization migration by executing
the following command:

python manage.py schemamigration south2ptvs --initial

This will execute South's schemamigration command on the south2pvts
application for the initialization process. Here is what is going to happen:

& Windows PowerShell = =

reating migrations directory at 'C:\Users\ezul\documents\Visual Studic 2013\Projects\Djangoe Solution\Ezulebsite\Ezulebsi]
te\south2ptvs\migrations'
Creating init_ .py in 'C:\Users\ezuldocuments\Visual Studio 2813\Projects\Django Solution\EzuWebsite\E:z bsite\south?]

ptvs\migrations'...

+ Added model south2ptvs.Knight

Created 00@1_initial.py. You can nmow apply this migration with: ./manage.py migrate south2ptws
PS C:\Users\ezu\documents\Visual Studio 2013\Projects\Django Solution\EzuWebsite>

We have successfully created the migration file but haven't applied it to db. Since
South works on one application at a time, the migration file in which the information
of the migration is stored is created inside the south2ptvs folder.

[84]

Download from Join eBook (www.joinebook.com)

Chapter 5

: 2 @lo-2a@@m o &=
L3 from south.v2 import SchemaMigration 0. .. -
5 from django.db import models [5earch Solution Explorer (Cirl+€) P-
6 | wiastcgipy =
7 4 | FzuWebsite
i -lclass Migration(SchemaMigration): b polls
10 = def forwards(self, orm): 4 SDUth.pr.s
11 # Adding model "Knight' 4 migrations
12 db.create_table(u'south2ptvs_knight', (—init__py (EzuWebsite.southZptvs.miy
13 (u'id', self.gf('django.db.models.Fi _init__.pyc
15 ('of_the_round_table', self.gf('djar [templates
16 1) Y _init__.py (EzuWebsite. south2ptvs)
17 db.send_create_signal(u'south2ptvs', [k _init_pyc

The content of the migrations folder in the Django app

The migration files are plain files written in Python. They can be edited, but you
should do it with caution and only do so when necessary.

The only thing left to do is to apply the migration to the database by calling the
South library's migrate command on the app with the following command:

python manage.py migrate south2ptvs

1% Windows PowerShell =

rations for south2ptvs:
forwards to 8001 initial.
> 19001 _initial
- Loading initial data for south2p

Installed @ object(s) from @ fixture(s)
PS C:\Usi zu\documents\Visual Studio 2013\Projects\Django Solution\EzuWebsite>

Execution of South's migration command

This will finalize the migration; now our model is ready to be modified. Future
updates to the model can be easily applied to the database by South using migrations.

Update the model by adding a new field as follows:

maodels.py + X
#3 Knight

”

from djange.db import models

—lclass Knight(models.Model):
name = models.CharField(max_length=18@)
of_the_round_table = models.BocleanField()
dances_whenever_able = models.BooleanField()

LB TR

[85]

Download from Join eBook (www.joinebook.com)

Advanced Django in PTVS

So, now we have to create a new migration file and then apply it to the database.

To create the migration file, use the schemamigration command again as shown in
the following command. However, instead of the --initial parameter, use --auto,
since a migration is already defined in the model.

python manage.py schemamigration south2ptvs —--auto

(%] Windows PowerShell

PS C:\Users\ezu\documents\Visual Studio 2013\Projects\Django Solution\EzulWebsite> python manage.py schemamigration south2ptvs --auto
+ Added field dances_whenever_able on south2ptvs.Knight
Created @802_auto__add_field knight dances_whenever_able.py. You can now apply this migration with: ./manage.py migrate south2ptvs

PS C:\Users\ezu\documents\Visual Studio 20813\Projects\Django Solution\EzuMWebsite> _

To obtain the result of the migration file creation state to apply the migration to db,
just run the following migrate command:

python manage.py migrate south2ptvs

[=] Windows PowerShell

zu\documents\Visual Studio 2013\Projects\Django Solution\EzuWebsite> python manage.py migrate south2ptw
tions for south2

- forwards to @002_auto__add_field_knight_dances_whenever_able.

> south2 B02_auto_ add_field k t_dances_whenever_able

- Loading initial data for south

Installed @ object(s) from @ fixtu

PS5 C:\Users\ezu\documents\Visual Studio 2013\Projects\Django Solution\EzuWebsite> _

If we register the model in the admin interface, we can go to the admin section of
our website and see if the new field appears in the model:

Django administration Welcome, ezu. Change password / Log out

Home » South2ptvs » Knights
Add knight

Name:
Of the round table

Dances whenever able

Save and add another Sawe and continue editing I:l

Since the migrations are stored on the files, you can apply the changes on the
remote server by just copying the migration files to the server and then applying
the migration on the remote system (maybe with Fabric).

For more details and insights into this powerful tool, visit the official documentation
website for South at http://south.readthedocs.org/.

[86]

Download from Join eBook (www.joinebook.com)

Chapter 5

Summary

In this chapter, we took a more in-depth look into how to deal with third-party
Python libraries in PTVS, the main differences between the pip and easy_install
package indexes, and how they deal with precompiled libraries written with Python
C extensions.

We also looked into two popular and powerful Django open source libraries,
Fabric and South, which add remote task management and schema migrations
to your Django projects.

In the next chapter, we will introduce IPython and its graphic power in Visual
Studio in order to cover the topic of IronPython and its integration with the
NET framework.

[87]

Download from Join eBook (www.joinebook.com)

Download from Join eBook (www.joinebook.com)

IPython and IronPython
in PTVS

In this chapter, we will see how PTVS interacts with two particularly useful Python
extensions: IPython and IronPython.

Despite their names, they are very different from each other. IPython is more
oriented toward extending the REPL interface in a way that can help you have

a more interactive approach to the code, providing you with features such as
on-the-fly graph plotting. IronPython provides .NET class access to your Python
code and integrates Python in .NET applications.

IPython in PTVS

[Python is a command shell for interactive computing for Python (also available
for other language integrations) that offers enhanced type introspection — the
possibility to examine the type or properties of an object at runtime —rich media,
and REPL extensions.

As an interactive shell tool used for data analysis and math graph plotting, IPython
comes from an academic-scientific computing background, but appeals to data
scientists through the power of graphing integration.

Download from Join eBook (www.joinebook.com)

IPython and IronPython in PTVS

An interesting feature of IPython is its ability to plot mathematical graphs of
expressions in an interactive way, much like MATLAB.

PTVS supports IPython libraries and provides the ability to integrate the graph
that is generated inside REPL.

We need to install [Python and its supporting dependencies such as matplotlib

from a distribution that has all the code already compiled for Windows OS. The
distribution of this package can be downloaded from http://www.1£d.uci.
edu/~gohlke/pythonlibs/#scipy-stack. This web page, from the University of
California in Irivine, contains an unofficial repository of Windows binaries for a large
number of Python packages. There are different packages that are available, which
depend on the version of the Python interpreter and the operating system you are
using. For our proposal, we are going to install Python 2.7 for Windows 32-bit.

. Asan alternative, you can use the Python (x, y) distribution
% that contains a whole range of Python libraries for scientific and
i engineering software. The installer can be downloaded from
https://code.google.com/p/pythonxy/.

Running the installer gives you the ability to choose the libraries it offers; for our
scope, ensure that you include the SciPy libraries and IPython.

Once you have the libraries from the source of your choice, we can test the whole
installation by executing the following command from the command prompt:

ipython --pylab

This command executes the IPython environment with the pylab extension. Also,
it permits you to use the matplotlib library to plot graphs; this is a Python-plotting
library that can be used with Python to plot graphs using mathematical functions.
As an example, let's try to plot a histogram out of 10,000 random numbers that are
clustered in 100 samples:

X = randn(10000)
hist(x, 100)

Typing the preceding code into the IPython shell will display the following result:

[90]

Download from Join eBook (www.joinebook.com)

Chapter 6

heme to ‘NoColor*

-- An enhanced Interactive Python.

Introduction and overview of IPython's features.

Quick reference.
Python's own help system.

Details about ‘obj *, use ‘object??’ for extra

randn(10000)

[2]: hist(x, 100)
2]:

15749706,

n cacca293

Windows PowerShell

Figure 1

For more details on what the matplotlib library can do, refer to the library website at

http://matplotlib.org/.

Now that IPython is up and working, let's instruct PTVS in a way that will allow
REPL to talk to IPython to extend it along with its plotting capabilities. First, we need
to find the Python interpreter's REPL options. You can quickly locate this from the
Python Environments window by clicking on the Interactive Options label in the
Python environment that is being used.

Python 2.7

Completion DB needs refresh 7 Refresh DB

[91]

Download from Join eBook (www.joinebook.com)

IPython and IronPython in PTVS

This will bring up the Options dialog box, as shown in the following screenshot:

Options ?
search Options (Ctri+E) it Show Settings For: Python 2.7 v
I IntelliTrace ~
I Performance Tools Startup Script:
I Database Tools | N .) s
- nterpreter Options: Interactive Mode: m W

I FETools .
b HTML Designer Arrow Keys use smart history [] Enable attaching to IPython w/o PyLab
l: E:;:de-r:::ager Use inline prompts [] Only use live compl._sj:.a_rlgm—__ |

General [Use user defined prompts

Debug Interactive Window -

Debugging

Environment Options Completion Mode [r—

Interactive Windows
() Never evaluate expressions

I+ SOL Server Tools

I Text Templating Mever evaluate expressions containing calls
> Web Performance Test Tools i

b Windows Forms Designer () Always evaluate expressions

I Workflow Designer =

In the Interactive Mode drop-down menu, the different modes of the PTVS REPL
tool are listed as follows:

e Standard: This mode offers the default REPL interactive window in which
we can execute the Python code

* IPython: This mode permits us to see the graphs directly inside REPL when
REPL interacts with the PyLab library directly

* IPython w/o PyLab: This mode permits us to see the graphs that are
rendered in an independent window

For our example, we are choosing the IPython mode. Now that we have set up
Interactive Window, let's see how Visual Studio acts. Instead of writing the code of
our previous example inside Interactive Window, you can write it in the code editor
and then execute it in REPL through the Send to Interactive Window option in the
contextual menu. As we have seen in Chapter 2, Python Tools in Visual Studio, the
following is the result to be expected:

[92]

Download from Join eBook (www.joinebook.com)

Chapter 6

plotpy + X
£z 9 __main_

b idb| o

1| k = randn(1eeee) 3.65512187e+600, .
2| hist(x, 10@) 3.73291022e+00]),
<a list of 1@@ Patch objects>)

350

300 -

250 -

200 -

150 -

100 -

jﬁﬁ'!< » Python 2.7 Interactive JI2

We can also execute the code in the file in a way through which we'll only see the
resulting graph in an external window. However, before we can do this, we need to
add some other code as follows:

plotpy + X
E
[from pylab impert =

X = randn(leeee)
hist(x, 188)

awn bk wmmeRE

show()

[93]

Download from Join eBook (www.joinebook.com)

IPython and IronPython in PTVS

The first line in the preceding screenshot will reference the pylab libraries, and the
last line will render the plot. To run the code in an external window, right-click

on the file node in the Solution Explorer window and select the Start without
debugging command as shown in the following screenshot:

¢ Open
Open With...
€ View Code F7

Scope to This
Mew Solutien Explorer View

Exclude From Project

¥ cut Ctrl+X
! Copy Ctrl+C
XX Delete Del

Iz Rename Class View
Start without Debugging

Start with Debugging i
perties -

& Properties Alt+Enter

This will execute the code in the console, and the resulting rendering window
will appear at the end of the execution:

b SolutionT - Microsoft Visual Studio | =2
FILE EDIT WVIFW PROJECT BUILD DFBUG TEAM TOOLS TEST ARCHITECTURE ANMALYZE WINDOW HELP .

B2 BP9 ke - [Damg]|, n

Gl Figure 1 = D—minnmplnm g%
| ol | b @l e-28iH| &=

| B T 1 (Chels & »-H
o —4 3 Seution ‘Sehution” {1 project]
4[] plot
4 =8 Python Environments

¥ oS Python 27
=& Refrrences
=8 Srarch Paths

i phatpy

Salution Fxplarer [LaPRI

Praperties
a plotpy File Properties
E T
O Advanced
Banld Actan

Puish True

Huild Action
] Herw the fide rulates 1 the build snd deplient
process

[94]

Download from Join eBook (www.joinebook.com)

Chapter 6

The matplotlib library also offers the possibility to save the resulting plot into a file
with just a line of code by adding the savefig command as follows:

- & @l e-2am &=

=

from pylab import * T search Solution Explorer (Ctrl+&) P

3] Solution 'Solution1’ (1 project)
X = randn(1eeee) 4 [plot
hist(x, 180) b =B Python Environments
savefig('plot.png')

Nouv bk wN R

show()

plot.sln

In this example, the resulting graph will be saved as a plot . png file in the root of the
project folder.

For more in-depth functionalities and to dig deeper into the plotting functionalities
offered by the IPython integration, please refer to the IPython website at http://
ipython.org/. You can also refer to the matplotlib website at http: //matplotlib.
org/, which contains great documentation on this subject that are correlated

with examples.

The only limitation of IPython is the fact that it cannot be used with the other
library, IronPython, that we are going to explore right now. IronPython currently
does not support IPython, despite the fact that you can select it on the Interactive
Options form.

IronPython

IronPython is an open source implementation of the Python language which is
tightly integrated with the Microsoft NET framework. This means that you can
use the .NET libraries through IronPython in your Python applications or use
Python scripts inside .NET languages.

Using .NET classes in Python code with
IronPython

To set up IronPython in PTVS, first we need to download the IronPython installer
from the official website, http://ironpython.net/.

[95]

Download from Join eBook (www.joinebook.com)

IPython and IronPython in PTVS

Once you download the version of the package for your operating system, install the
package by double-clicking on it. After the installation is complete, you will see that
a new interpreter is available in the Python Environments window as follows:

Python Envirenments

Environment Qptions
Interactive Window Make Default P Refresh DB View in File Explorer

Interactive Optiens

Environment Qptions
Interactive Window Make Default P Refresh DB View in File Explorer

Interactive Optiens

Environment Qptions .
Python 2.7 Interactive Window Make Default Interactive Optiins Completion DB is up to date Refresh DB | View in File Explorer

In the example shown in the preceding screenshot, there are actually two
interpreters. This is because the 64-bit version of IronPython is installed, which
results in the installation of both the 32-bit and 64-bit versions on the machine.

Let's try to create a new IronPython project to learn how to interact with the NET
libraries from Python. Navigate to File | New | Project to create a new project:

FILE | EDIT WIEW PROJECT BUILD DEBUG TEAM TOOLS TEST ARCHITECTURE AMALYZE

Mew PR Project. Ctrl+ Shift+ M
Open P i@ Web Site.. Shift+ Alt+ N
Add to Source Control m Team Project...

Add b | D File. Chrl+M
Close Project From Existing Code...

This will open the New Project dialog box. Select the IronPython Application
template and assign a project name to it:

[96]

Download from Join eBook (www.joinebook.com)

Chapter 6

MNew Project ?
P Recent |.NEF Framework 4.5 v| Sort by: ‘Defau\t Search Installed Ternplates (Ctrl+E) P~
4 |nstalled PY .
:\J Get Python Tools for Visual Studio Python Type: Python
4 Templates oy A project for creating a command-line
b Visual Basic :\J From Existing Python code Python IronPython application
E Visual CF
. PY
b Visual C++ SJ Python Application Python
b Visual F#
PY
SOL Server @ Django Project Python
TypeScript
. PY
b JavaScript : J IronPython Application Python
Python
; PY
b Other Project Types FJ IronPythan WPF Application Python
Modeling Projects o
Samples hit! "
i BJ IronPythan Silverlight Web Page Python
F Online oY
| I IronPythen Windows Ferms Application Python
Click here to go online and find templates.
Mame: [ironezu |
Location: |crusersiezudocumentsivisual studio 2013\Projects - Browse...
Solution name: ironezu Create directory for solution
[[] Create new Git repositary

This will create a normal Python project, except that the environment for the project
will be IronPython instead of Python.

Selution Explerer
@ o-2a &=
Search Solution Explorer (Ctrl+g) P~

=[] 4

E‘ Solutien 'irenezu’ (1 project)
P ironezu
4 =B Python Environments
55 lronPython 2.7
u-0 References
5B Search Paths

FY ironezu.py

You can find IronPython indicated as the environment in Solution Explorer

[97]

Download from Join eBook (www.joinebook.com)

IPython and IronPython in PTVS

Now you can access .NET libraries from inside the Python applications. The system's
.NET namespace is referenced by default, so we can start using the elements inside it
to see how to interact with the base classes in Python.

As an example, let's see how to create a Globally Unique Identifier (GUID), play
with the date function, and then print them out to the console; we're doing all of this
using Python by accessing the .NET classes.

1! from System import Console, Guid, DateTime
2

3l a = Guid.NewGuid()

41 b = DateTime.UtcNow

5 ¢ = b.AddDays(1e@)

6

7|1 Console.WritelLine(b)

8] Console.WritelLine(c)

9! Console.WriteLine("Generated guid: {e}",a)
10

11} Console.WriteLine("Press 'Enter' to close...")
12! Console.ReadlLine()

13

Example of using .NET classes inside Python

As shown, we imported the Console, Guid, and DateTime .NET objects and used
them in the code to create a new GUID object (line 3), get the current UTC date and
time (line 4), and add 100 days to it (line 5). After this, we used the .NET console
object to print out the result (line 7 to 11) and waited for the user to press the Enter
key to close the application. Obviously, we could have used the normal Python
print command instead of the Console object to print out the result. However, since
there is no distinction between Python and the .NET code with IronPython, we used
the console object for the sake of seeing different object integrations in action.

The execution of the code will provide us with the following result:

L CAProgram Files (x86)\lronPython 2.7\ipy.exe = =

[98]

Download from Join eBook (www.joinebook.com)

Chapter 6

We can also take advantage of other .NET namespaces outside of the Core System
assembly. For example, if we want to use the System.xml assembly, which is a .NET
core library that is installed in the Global Assembly Cache (GAC) of the system, all
we need to do is to load it in our code using the load functionality of the c1r module
as follows:

import clr
clr.AddReference ('System.Xml')

Now it can be referenced in the code, and the IntelliSense functionalities
become available:

import clr
clr.AddReference('System.Xml")

from System.Xml import xmldod

44 XmiDocument Represents an XM

#z XmlDocumentFragment

. #z XmlDocumentType XmiDecument()
from System import Consuie, wuiu, udielime *miDecument(nt:

NET types are exposed as Python classes, and you can do many of the same
operations on .NET types as with Python classes. In either case, you create an
instance by calling the type. Even for complex types, XmlDocument for example,
you don't need to instantiate it as you do in .NET; it will be done by the IronPython
runtime under the hood.

import clr
clr.AddReference('System.Xml")

1

2

3

4] from System.Xml import XmlDocument
5| from System import Console
6

7

8

9

xml = """
<doc>
<node>
1@ <subNode>content</subNode>
11 </node>
12} </doc>
13 e

14| doc = XmlDocument()
15] doc.LoadXml(xml)

16

17| Console.WriteLine(doc.FirstChild.QuterXml)

18] Console.WritelLine("Press 'Enter' to close...")
19! Console.Readline()

28

An example of using the XmlDocument class in Python

[99]

Download from Join eBook (www.joinebook.com)

IPython and IronPython in PTVS

Using the Python code in .NET with
IronPython

So far, we have learned how we can interact with .NET classes from the Python code;
now let's take a look at how to use Python inside our .NET code.

To start, let's create a new C# console application. To be able to run the Python code
from your .NET code, you need to reference two assemblies that are necessary to add
the integration functionality for our .NET application: IronPython and Microsoft.
Scripting. To add a reference to an assembly in a .NET application, right-click on
the Reference node of the Solution Explorer window and select the Add Reference
menu item:

Selution Explorer * 0 X ";_:
- @le-endi@m &= §
s =
1_ Search Solution Explorer (Ctri+&) b~ 2

fal Solution 'ironezu’ (2 projects)
4 ConsoleApplication1
- & Properties

b OO Re
'I"] Ap Add Reference...

L7 uoyiy

] o C* Prg Add Service Reference...
P Py B Manage NuGet Packages...
4[] ironez

4 wmPy Scope to This

Mew Sclution Explorer View

This will open the Reference Manager dialog window. The two assemblies that
we need are located in the Extensions list, which can be activated by clicking on
the tree view on the left-hand side:

[100]

Download from Join eBook (www.joinebook.com)

Chapter 6

Reference Manager - ConsoleApplication ?
4 Assemblies Targeting: .NET Framework 4.5 Search Assemblies (Ctrl+E) P ~
Framework Mame Version “ Name:
Extensions IronPython 2.7.0.40 ADODE
Recent Microsoft.Scripting 1.1.0.20 Created by:
Microsoft.ApplicationServer.Caching. AzureCli.. 1.0.0.0 Microsoft Corporation
b Solution stdole 7.0.3300.0 Version:
WebMatrix.Data 2000 7.0.3300.0
E COM Microsoft.VisualStudio.CompeonentModelHost 12000 File Version:
P VSLangProj20 2.0.0.0 7.10.6070
Microsoft. TeamFoundation.Build. Activities 12.0.0.0
VsLangProj 7.0.3300.0
Microsoft.VisualStudio VCCodeModel 12.0.00
UiaComWrapper 12.0.0.0
Microsoft.VisualStudio. TestTools U Test.Bxtens... 12.0.0.0
Microsoft.TeamFoundation.Diff 12.0.0.0
Microsoft.MSXML 2.0.0.0
Microsoft.VisualStudio.PerformanceTools.Aut,, 12.0.0.0
Systern.Windows.Interactivity 4.5.0.0
Microsoft.VisualStudio. TestTools.UITest.Com... 12.0.0.0
policy.4.3.F5harp.Core 43.0.0
Microsoft.TeamFoundation.VersionControl.Co... 12.0.0.0
Microsoft.ApplicationServer.Caching. Client 1.0.0.0
Microsoft.Expression.Controls 4.5.0.0
Microsoft.VisualStudio ViHelp0 8.0.0.0
Microsoft. TeamFoundation.DeleteTeamProject 12.0.0.0
Microsoft.VisualStudio VCProjectEngine 9.0.0.0
Microsoft.VisualStudio.Language NavigateTol.. 12.0.0.0
Microsoft.VisualStudio.QualityTools.WebTestF.. 10.0.0.0 -
| Browse... | | QK | | Cancel |

Once the two assemblies are selected from the list by placing a tick in the checkboxes
next to them, click on OK. The references to these assemblies are made in the project.

You will see them listed in the Reference list in the Solution Explorer window as
shown in the following screenshot:

N

Solution Explorer * 0 x
@ e-2RaB|l F=51
Search Solution Explorer (Ctrl+ &) L~

1B

LD

] Solution ‘ironezu’ (2 projects) o

4 ConsoleApplication1

b & Properties

4 =B References
O] IrenPython

=B Microsoft.CSharp

] Microsoft.Scripting

-0 Systermn

[101]

Download from Join eBook (www.joinebook.com)

IPython and IronPython in PTVS

Now let's create a new class in our project that contains the code for our
Python integration:

1} =using IronPython.Hosting;

2} |using Microsoft.Scripting.Hosting;
3

4] =class PythonExecute

50 4

6] = public static void Execute()

7 {

8 // Instantiate the Python|5cripting engine
9 ScriptEngine engine = Python.CreateEngine();
18

11 // Python script to execute
12 string theScript =

13] |@"

14| |def PrintMessage():

15 print 'This is a message!’

16

17] |PrintMessage()

18 "

19

20 // Execute the script

21 engine.Execute(theScript);
22)

230 [}

This code will create scripting engine for Python (line 8), define the string that
contains the Python code to be executed (lines 12-18), and then execute the Python
script. Pay special attention to the string that contains the Python code. It has to
be indented correctly; otherwise, the interpreter will return an indentation error.

To run the code and see the result in the console, add the following code into
the Program. cs file:

using System;

1
2
3 —hamespace ConsoleApplicationl
4

5 © Eiassnprcgram
ol {
7 E static void Main(string[] args)

8 {
9 PythonExecute.Execute();

11 Console.ReadLine();

[102]

Download from Join eBook (www.joinebook.com)

Chapter 6

This will execute our function defined earlier and expect the user to press Enter.
Run the application to see the following result:

his is

i file:y///c:/Users/ezu/Documents/Visual Studio 2013/Projects/ironezu/ConsoleAp.. ~ ':'

a me

You can also call variables and functions defined in .NET applications and use
them inside the Python code. To do this, we need to define a scope and pass it
as an argument to the Execute method in a way that the interpreter can pass
those elements to the Python code.

Extend our previous Execute method by adding a scope that contains an
Add function:

20

= public static void Execute()
{
// Instantiate the Python scripting engine
ScriptEngine engine = Python.CreateEngine();

// Adds a scope to the engine and adds a new function to it (Add)
dynamic scope = engine.CreateScope();
scope.Add = new Func<int, int, int>((x, y) => x + y);

// Python script to execute
string theScript =
@
def PrintMessage():
print 'This is a message!’

PrintMessage()
print(*Adding 2 and 3 makes: %d' % Add(2,3))

El

// Execute the script
engine.Execute(theScript,scope);

)

[103]

Download from Join eBook (www.joinebook.com)

IPython and IronPython in PTVS

We created a scope and the Add function with a lambda function (lines 13 and 14);
then, we added a new Python command (line 23) that invokes this function. Finally,
we executed the Python code and passed the scope variable to the script (line 27).
Executing the program will display the following result:

i filey/f/c/Users/ezu/Documents/Visual Studio 2013/Projects/ironezu/ConscleAp... — ':'

In our last example, we will see how to execute a code that comes from an external
file. Let's say that we have a Python file that contains the following code, which is
actually the code we had as a string in our last example:

[QEIET NV PythonExecute.cs Program.cs Ironezu.py
1} =def PrintMessage():
2 print 'This is a message!'’
PrintMessage()

[V N =R W V)

print('Adding 2 and 3 makes: %d' % Add(2,3))

This is how we can execute the file from inside our .NET application:

—

public static void ExecuteFromFile()

.r|
U

—

// Instantiate the Python scripting engine
ScriptEngine engine = Python.CreateEngine();

// Adds a scope to the engine and adds a new function to it (Add)
dynamic scope = engine.CreateScope();
scope.Add = new Func<int, int, int>((x, y) => x + y);

// Execute and store variables in scope
engine.ExecuteFile(@"C:\message.py", scope);

[104]

Download from Join eBook (www.joinebook.com)

Chapter 6

In the example, we define the scripting engine and the scope. Instead of defining
and executing the Python code from inside the .NET code, we are loading it from
an external file, passing the scope to the interpreter, and executing it (line 40).

The possibilities offered by integrating Python code into .NET applications are really
endless. Sharing the scope variables with the interpreter opens up a possibility to
use existent Python libraries from inside the .NET applications or use Python as a
scripting language inside our application.

Summary

In this chapter, we looked at two ways to extend PTVS and Python in Visual Studio
in general along with two powerful tools: IPython and IronPython. IPython is
more related to plain Python language and IronPython is more integrated with the
Microsoft .NET framework.

Both tools show new ways to use and interact with Python, providing new frontiers
to explore with this powerful language; all made possible from inside Visual Studio
and PTVS.

With this chapter, our voyage to explore the Python tools in Visual Studio ends.

We tried to show Python developers the power of Visual Studio and the amount of
automatism and help that the Microsoft IDE offers; we also explored and learned the
possibility of using Python as a language to create new powerful applications.

Besides the tools themselves, we also went through the possible problems and
workarounds of using Python libraries on the Microsoft Windows operating system.
We also looked at the topic of exploring Django in Visual Studio and also some of
the powerful libraries it offers to accelerate and manage the application's life cycle.

We have only scratched the surface, but we hope that this book has provided you
with a deep insight into PTVS and has sparked the curiosity for you to go deeper
and explore more.

Happy coding!

[105]

Download from Join eBook (www.joinebook.com)

Download from Join eBook (www.joinebook.com)

Symbols

$cls command 22
$load command 22
$mod command 22
$reset command 22
--initial parameter 86
NET

Python code used, with IronPython 100-105

.NET classes, using

in Python code, with IronPython 95-99

A

Add function 103

Add Virtual Environment command 68

admin interface
setting up 61-63

B

bar method 20
breakpoints 47

C

code

navigating 24-28
CodePlex

URL 8
coding tools 33
Create button 69

CREATE STORAGE ACCOUNT button 67

CREATE WEB SITE button 66

Index

D

database
managing, for Django project 58-60
setting up, for Django project 58-60
date function 98
debugging
about 46
breakpoints using 47
watch entries, utilizing 48, 49
Django
South, using with 80
Django app command 63, 83
Django project
database, managing for 58-60
database, setting up for 58-60
deploying, on Microsoft Azure 65-71
URL 51
Django project template
about 52
application, running 55-57
IntelliSense, using 57
Python package, installing 53-55

E

Execute method 103
Extract Method 45

F

Fabric library
about 75-78
URL 75
Find All References command 25

Download from Join eBook (www.joinebook.com)

G

Global Assembly Cache (GAC) 99
Globally Unique Identifier (GUID) 98
Go To Definition command 25

Import button 70
Include in Project command 60
installer

URL 90
IntelliSense

mastering, with Python 17-21
IPython

about 89

URL 95

used, in PTVS 89-95
IronPython

about 95

.NET classes used, in Python

code with 95-99

Python code used, in NET with 100-105

IronPython installer
URL 95

manage.py command 56
matplotlib library

URL 91
Microsoft Azure

Django project, deploying on 65-71
Microsoft Windows Azure

URL 65
migrate command 85, 86

N

Name property 58
new Django application
creating 63, 64

(0

Object Browser tool 28-30
Object-relational mapping (ORM) 80

P

package distribution
URL 90
pip
advantages 73, 74
print command 98
project handling
about 33-37
Python environments, specifying 37-41
Search Paths, defining 41, 42
solution 33
project templates 34
PTVS
about 34, 39
configuring 7-11
installing 7-11
IPython, using 89-95
Visual Studio panels, using with 14, 15
PTVS CodePlex
URL 8
PTVS tools
Python Environments window 13
Python Interactive window 14
Publish command 69
Python
IntelliSense, mastering with 17-21
Python code
.NET classes, using with IronPython 95-99
Python code, using
in .NET, with IronPython 100-105
Python documentation
on Windows Azure, URL 71
Python environments 37-41
Python Environments window 13
Python Interactive window 14
python manage.py runserver command 56
Python Tools in Visual Studio. See PTVS

R

range method 18
read-eval-print loop. See REPL
refactoring 42-45

Refresh DB button 13

[108]

Download from Join eBook (www.joinebook.com)

REPL

about 13

used, in Visual Studio 21-24
Run button 55

S

savefig command 95
schema migration
used, with South 83-86
schemamigration command 84
Search Paths
defining 41, 42
Send to Interactive command 23
Solution Explorer window tool 35
South
installing 80-82
key features 79
schema migration, using with 83-86
URL 86
using, with Django 80
SQLite
URL 58
Start button 11
Step Into 49
Step Out 49
Step Over 49
sync command 58
sync_db command 84

Vv

View all files command 60
Visual Studio
debugging tools 46
project handling 33
REPL, using 21-24
Visual Studio panels
used, with PTVS 14, 15

w

watch entries
utilizing 48, 49

[109]

Download from Join eBook (www.joinebook.com)

Download from Join eBook (www.joinebook.com)

open source

community experience distilled

PUBLISHING

Thank you for buying
Python Tools for Visual Studio

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www . packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to authorepacktpub . com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Download from Join eBook (www.joinebook.com)

open source

community experience distilled

PUBLISHING

Python Data Visualization
Cookbook

Python Data Visualization

Cookbook
ISBN: 978-1-78216-336-7 Paperback: 280 pages

Over 60 recipes that will enable you to learn how to
create attractive visualizations using Python's most
popular libraries

1. Learn how to set up an optimal Python
environment for data visualization.

2. Understand the topics such as importing
data for visualization and formatting data
for visualization.

3. Understand the underlying data and how to
use the right visualizations.

Python Testing
Cookbook

Python Testing Cookbook
ISBN: 978-1-84951-466-8 Paperback: 364 pages

Over 70 simple but incredibly effective recipes for
taking control of automated testing using powerful
Python testing tools

1. Learn to write tests at every level using a
variety of Python testing tools.

2. The first book to include detailed screenshots
and recipes for using Jenkins continuous
integration server (formerly known as Hudson).

3. Explore innovative ways to introduce
automated testing to legacy systems.

Please check www.PacktPub.com for information on our titles

Download from Join eBook (www.joinebook.com)

open source

community experience distilled

PUBLISHING

Django 1.0 Web Site Development

ISBN: 978-1-84719-678-1 Paperback: 272 pages
O \‘\\/’ Build powerful web applications, quickly and cleanly,
N _ with the Django application framework

1. Teaches everything you need to create a
complete Web 2.0-style web application

with Django 1.0.
Django 1.0 2. Learn rapid development and clean,
Web Site Development pragmatic design.

3. No knowledge of Django required.

4. Packed with examples and screenshots for
better understanding.

Python High Performance

Programming
ISBN: 978-1-78328-845-8 Paperback: 108 pages

Boost the performance of your Python programs
using advanced techniques

1. Identify the bottlenecks in your
applications and solve them using
the best profiling techniques.

Python High Performance
Programming 2. Write efficient numerical code in NumPy
and Cython.

3. Adapt your programs to run on multiple
PACKT = processors with parallel programming.

Please check www.PacktPub.com for information on our titles

Download from Join eBook (www.joinebook.com)

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to PTVS
	Step-by-step installation and configuration
	PTVS tools overview
	The Python Environments window
	Python Interactive

	Visual Studio panels with PTVS
	Summary

	Chapter 2: Python Tools in Visual Studio
	Mastering IntelliSense with Python
	Using REPL in Visual Studio
	Navigating code with ease
	Object Browser
	Summary

	Chapter 3: Day-to-day Coding Tools
	Project handling
	Solution
	Project
	Specifying Python environments
	Defining Search Paths

	Refactoring
	Debugging
	Using breakpoints
	Utilizing watch entries

	Summary

	Chapter 4: Django in PTVS
	Django project template and tools
	Installing a Python package
	Running the application
	IntelliSense in Django templates

	Setting up and managing a database for a Django project
	Setting up the admin interface
	Creating a new Django application
	Deploying a Django project on Microsoft Azure
	Summary

	Chapter 5: Advanced Django in PTVS
	Library management
	The Fabric library – the deployment and development task manager
	South – the database deployment library
	Why use South with Django
	Installing South
	Schema migration with South

	Summary

	Chapter 6: IPython and IronPython
in PTVS
	IPython in PTVS
	IronPython
	Using .NET classes in Python code with IronPython
	Using the Python code in .NET with IronPython

	Summary

	Index

