

Python Programming
for Arduino

Develop practical Internet of Things prototypes
and applications with Arduino and Python

Pratik Desai

BIRMINGHAM - MUMBAI

Python Programming for Arduino

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2015

Production reference: 1230215

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-593-8

www.packtpub.com

www.packtpub.com

Credits

Author
Pratik Desai

Reviewers
Juan Ramón González

Marco Schwartz

Josh VanderLinden

Commissioning Editor
Saleem Ahmed

Acquisition Editor
James Jones

Content Development Editor
Priyanka Shah

Technical Editor
Ankita Thakur

Copy Editors
Jasmine Nadar

Vikrant Phadke

Project Coordinator
Milton Dsouza

Proofreaders
Safis Editing

Maria Gould

Ameesha Green

Paul Hindle

Indexer
Mariammal Chettiyar

Graphics
Abhinash Sahu

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

About the Author

Pratik Desai, PhD, is the Principal Scientist and cofounder of a connected devices
start-up, Imbue Labs, where he develops scalable and interoperable architecture for
wearable devices and Internet of Things (IoT) platforms during the day. At night, he
leads the development of an open source IoT initiative, the Semantic Repository of
Things. Pratik has 8 years of research and design experience in various layers of the
IoT and its predecessor technologies such as wireless sensor networks, RFID, and
machine-to-machine (M2M) communication. His domains of expertise are the IoT,
Semantic Web, machine learning, robotics, and artificial intelligence.

Pratik completed his MS and PhD from Wright State University, Ohio, and
collaborated with the Ohio Center of Excellence in Knowledge-enabled Computing
(Kno.e.sis) during his doctoral research. His doctoral research was focused on
developing situation awareness frameworks for IoT devices, enabling semantic
web-based reasoning and handling the uncertainty associated with sensor data.

In his personal life, Pratik is an avid DIY junkie and likes to get hands-on experience
on upcoming technologies. He extensively expresses his views on technology and
shares interesting developments on Twitter (@chheplo).

I would like to dedicate the book to my parents, who were responsible
for building the foundation of what I am today. The book would not
have been possible without the patience, support, and encouragement
from my beloved wife, Sachi. I would also like to thank her for landing
her photography skills that were used in development of some of the
important images used in the book. I would also like to extend my
sincere gratitude to the editors for their valuable feedbacks.

About the Reviewers

Juan Ramón González is a technical engineer of computer systems and lives
in Seville (Andalusia, Spain). For the past 9 years, he has been working on free
software-based projects for the regional Ministry of Education by using Python,
C++, and JavaScript, among other programming languages.

He is one of the main members of the CGA project in Andalusia (Centro de Gestión
Avanzado or Advanced Management Center), which manages a network with more
than 4,000 servers with Debian and 500,000 client computers that run Guadalinex,
a customized Ubuntu-based operating system for Andalusian schools.

As a software developer who has a passion for electronics and astronomy, he started
one of the first projects to control a telescope with the Arduino microcontroller by
using a computer with the Stellarium software and a driver developed with Python
to communicate with the telescope. This project's sources are published on the
collaborative platform GitHub. You can see the whole code and the prototype at
https://github.com/juanrmn/Arduino-Telescope-Control.

https://github.com/juanrmn/Arduino-Telescope-Control

Marco Schwartz is an electrical engineer, entrepreneur, and blogger. He has
a master's degree in electrical engineering and computer science from Supélec,
France, and a master's degree in micro engineering from EPFL, Switzerland.

Marco has more than 5 years of experience working in the domain of electrical
engineering. His interests gravitate around electronics, home automation, the
Arduino and the Raspberry Pi platforms, open source hardware projects, and
3D printing.

He runs several websites around Arduino, including the Open Home Automation
website that is dedicated to building home automation systems using open
source hardware.

Marco has written a book on home automation and Arduino called Arduino Home
Automation Projects, Packt Publishing. He has also written a book on how to build
Internet of Things projects with Arduino called Internet of Things with the Arduino
Yun, Packt Publishing.

Josh VanderLinden is a lifelong technology enthusiast who has been programming
since the age of 10. He enjoys learning and becoming proficient with new technologies.
He has designed and built software, ranging from simple shell scripts to scalable
backend server software to interactive web and desktop user interfaces. Josh has been
writing software professionally using Python since 2007, and he has been building
personal Arduino-based projects since 2010.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

Table of Contents
Preface	 1
Chapter 1: Getting Started with Python and Arduino	 7

Introduction to Python	 7
Why we use Python	 8
When do we use other languages	 9

Installing Python and Setuptools	 10
Installing Python	 10
Linux	 10

Ubuntu	 11
Fedora and Red Hat	 11

Windows	 11
Mac OS X	 14
Installing Setuptools	 14

Linux	 15
Windows	 15
Mac OS X	 16

Installing pip	 16
Installing Python packages	 17

The fundamentals of Python programming	 18
Python operators and built-in types	 19

Operators	 20
Built-in types	 20

Data structures	 22
Lists	 22
Tuples	 24
Sets	 25
Dictionaries	 25

Controlling the flow of your program	 25
The if statement	 26
The for statement	 26
The while statement	 26

Table of Contents

[ii]

Built-in functions	 27
Conversions	 27

Introduction to Arduino	 29
History	 29
Why Arduino?	 29
Arduino variants	 30
The Arduino Uno board	 31
Installing the Arduino IDE	 32

Linux	 33
Mac OS X	 33
Windows	 33

Getting started with the Arduino IDE	 34
What is an Arduino sketch?	 34
Working with libraries	 36
Using Arduino examples	 37
Compiling and uploading sketches	 38
Using the Serial Monitor window	 40

Introduction to Arduino programming	 41
Comments	 41
Variables	 41
Constants	 42
Data types	 42
Conversions	 44
Functions and statements	 44

The setup() function	 45
The loop() function	 45
The pinMode() function	 45
Working with pins	 46
Statements	 46

Summary	 47
Chapter 2: Working with the Firmata Protocol and
the pySerial Library	 49

Connecting the Arduino board	 50
Linux	 50
Mac OS X	 51
Windows	 52
Troubleshooting	 52

Introducing the Firmata protocol	 53
What is Firmata?	 54
Uploading a Firmata sketch to the Arduino board	 54
Testing the Firmata protocol	 57

Table of Contents

[iii]

Getting started with pySerial	 62
Installing pySerial	 62
Playing with a pySerial example	 63

Bridging pySerial and Firmata	 65
Summary	 66

Chapter 3: The First Project – Motion-triggered LEDs	 67
Motion-triggered LEDs – the project description	 68
The project goal	 68

The list of components	 69
The software flow design	 70
The hardware system design	 71

Introducing Fritzing – a hardware prototyping software	 72
Working with the breadboard	 73
Designing the hardware prototype	 74

Testing hardware connections	 77
Method 1 – using a standalone Arduino sketch	 78

The project setup	 78
The Arduino sketch	 78

The setup() function	 80
The loop() function	 80

Working with custom Arduino functions	 80
Testing	 81
Troubleshooting	 82

Method 2 – using Python and Firmata	 82
The project setup	 82
Working with Python executable files	 83
The Python code	 84
Working with pyFirmata methods	 85
Working with Python functions	 86
Testing	 87
Troubleshooting	 87

Summary	 88
Chapter 4: Diving into Python-Arduino Prototyping	 89

Prototyping	 90
Working with pyFirmata methods	 91

Setting up the Arduino board	 91
Configuring Arduino pins	 93

The direct method	 94
Assigning pin modes	 95

Working with pins	 96
Reporting data	 96
Manual operations	 97

Table of Contents

[iv]

Additional functions	 98
Upcoming functions	 99

Prototyping templates using Firmata	 99
Potentiometer – continuous observation from an analog input	 99

Connections	 100
The Python code	 100

Buzzer – generating sound alarm pattern	 102
Connections	 102
The Python code	 103

DC motor – controlling motor speed using PWM	 105
Connections	 105
The Python code	 106

LED – controlling LED brightness using PWM	 107
Connections	 107
The Python code	 108

Servomotor – moving the motor to a certain angle	 109
Connections	 110
The Python code	 110

Prototyping with the I2C protocol	 112
Arduino examples for I2C interfacing	 114

Arduino coding for the TMP102 temperature sensor	 114
Arduino coding for the BH1750 light sensor	 117

PyMata for quick I2C prototyping	 119
Interfacing TMP102 using PyMata	 120
Interfacing BH1750 using PyMata	 121

Useful pySerial commands	 122
Connecting with the serial port	 122
Reading a line from the port	 123
Flushing the port to avoid buffer overflow	 123
Closing the port	 123

Summary	 123
Chapter 5: Working with the Python GUI	 125

Learning Tkinter for GUI design	 126
Your first Python GUI program	 127

The root widget Tk() and the top-level methods	 128
The Label() widget	 129
The Pack geometry manager	 129

The Button() widget – interfacing GUI with Arduino and LEDs	 130
The Entry() widget – providing manual user inputs	 133
The Scale() widget – adjusting the brightness of an LED	 135
The Grid geometry manager	 137
The Checkbutton() widget – selecting LEDs	 139
The Label() widget – monitoring I/O pins	 141

Table of Contents

[v]

Remaking your first Python-Arduino project with a GUI	 144
Summary	 146

Chapter 6: Storing and Plotting Arduino Data	 147
Working with files in Python	 148

The open() method	 148
The write() method	 149
The close() method	 149
The read() method	 149
The with statement – Python context manager	 150

Using CSV files to store data	 151
Storing Arduino data in a CSV file	 152
Getting started with matplotlib	 155

Configuring matplotlib on Windows	 156
Configuring matplotlib on Mac OS X	 156

Upgrading matplotlib	 157
Troubleshooting installation errors	 157

Setting up matplotlib on Ubuntu	 158
Plotting random numbers using matplotlib	 158
Plotting data from a CSV file	 160
Plotting real-time Arduino data	 163
Integrating plots in the Tkinter window	 166
Summary	 168

Chapter 7: The Midterm Project – a Portable DIY Thermostat	 169
Thermostat – the project description	 169

Project background	 170
Project goals and stages	 170
The list of required components	 171
Hardware design	 174
Software flow for user experience design	 176

Stage 1 – prototyping the thermostat	 178
The Arduino sketch for the thermostat	 178

Interfacing the temperature sensor	 179
Interfacing the humidity sensor	 179
Interfacing the light sensor	 180
Using Arduino interrupts	 180

Designing the GUI and plot in Python	 181
Using pySerial to stream sensor data in your Python program	 181
Designing the GUI using Tkinter	 182
Plotting percentage humidity using matplotlib	 184
Using button interrupts to control the parameters	 185

Troubleshooting	 186

Table of Contents

[vi]

Stage 2 – using a Raspberry Pi for the deployable thermostat	 187
What is a Raspberry Pi?	 188
Installing the operating system and configuring the Raspberry Pi	 189

What do you need to begin using the Raspberry Pi?	 189
Preparing an SD card	 190
The Raspberry Pi setup process	 192

Using a portable TFT LCD display with the Raspberry Pi	 194
Connecting the TFT LCD using GPIO	 195
Configuring the TFT LCD with the Raspberry Pi OS	 196

Optimizing the GUI for the TFT LCD screen	 197
Troubleshooting	 199

Summary	 200
Chapter 8: Introduction to Arduino Networking	 201

Arduino and the computer networking	 202
Networking fundamentals	 202
Obtaining the IP address of your computer	 203

Windows	 204
Mac OS X	 205
Linux	 206

Networking extensions for Arduino	 208
Arduino Ethernet Shield	 208
Arduino WiFi Shield	 209
Arduino Yún	 210

Arduino Ethernet library	 210
The Ethernet class	 211
The IPAddress class	 212
The Server class	 212
The Client class	 212

Exercise 1 – a web server, your first Arduino network program	 213
Developing web applications using Python	 219

Python web framework – web.py	 219
Installing web.py	 219
Your first Python web application	 220

Essential web.py concepts for developing complex web applications	 221
Handling URLs	 222
The GET and POST methods	 222
Templates	 223
Forms	 224

Exercise 2 – playing with web.py concepts using the Arduino
serial interface	 225

RESTful web applications with Arduino and Python	 230
Designing REST-based Arduino applications	 230
Working with the GET request from Arduino	 231

The Arduino code to generate the GET request	 231

Table of Contents

[vii]

The HTTP server using web.py to handle the GET request	 233
Working with the POST request from Arduino	 234

The Arduino code to generate the POST request	 234
The HTTP server using web.py to handle the POST request	 235

Exercise 3 – a RESTful Arduino web application	 236
The Arduino sketch for the exercise	 237
The web.py application to support REST requests	 238

Why do we need a resource-constrained messaging protocol?	 239
MQTT – A lightweight messaging protocol	 240

Introduction to MQTT	 241
Mosquitto – an open source MQTT broker	 242
Setting up Mosquitto	 242
Getting familiar with Mosquitto	 243

Getting started with MQTT on Arduino and Python	 244
MQTT on Arduino using the PubSubClient library	 244

Installing the PubSubClient library	 245
Developing the Arduino MQTT client	 245

MQTT on Python using paho-mqtt	 247
Installing paho-mqtt	 248
Using the paho-mqtt Python library	 248

Exercise 4 – MQTT Gateway for Arduino	 251
Developing Arduino as the MQTT client	 252
Developing the MQTT Gateway using Mosquitto	 254
Extending the MQTT Gateway using web.py	 255
Testing your Mosquitto Gateway	 256

Summary	 258
Chapter 9: Arduino and the Internet of Things	 261

Getting started with the IoT	 262
Architecture of IoT web applications	 263
Hardware design	 266

The IoT cloud platforms	 267
Xively – a cloud platform for the IoT	 268

Setting up an account on Xively	 268
Working with Xively	 270

Alternative IoT platforms	 273
ThingSpeak	 273
Carriots	 274

Developing cloud applications using Python and Xively	 274
Interfacing Arduino with Xively	 275

Uploading Arduino data to Xively	 275
Downloading data to Arduino from Xively	 277
Advanced code to upload and download data using Arduino	 280

Python – uploading data to Xively	 281
The basic method for sending data	 282

Table of Contents

[viii]

Uploading data using a web interface based on web.py	 283
Python – downloading data from Xively	 284

The basic method for retrieving data from Xively	 284
Retrieving data from the web.py web interface	 285
Triggers – custom notifications from Xively	 287

Your own cloud platform for the IoT	 288
Getting familiar with the Amazon AWS platform	 289

Setting up an account on AWS	 290
Creating a virtual instance on the AWS EC2 service	 292
Logging into your virtual instance	 294

Creating an IoT platform on the EC2 instance	 295
Installing the necessary packages on AWS	 296
Configuring the security of the virtual instance	 297
Testing your cloud platform	 299

Summary	 303
Chapter 10: The Final Project – a Remote Home
Monitoring System	 305

The design methodology for IoT projects	 306
Project overview	 307

The project goals	 307
The project requirements	 308
Designing system architecture	 309

The monitoring station	 311
The control center	 311
The cloud services	 311

Defining UX flow	 311
The list of required components	 313
Defining the project development stages	 315

Stage 1 – a monitoring station using Arduino	 315
Designing the monitoring station	 316
The Arduino sketch for the monitoring station	 319

Publishing sensor information	 319
Subscribing to actuator actions	 320
Programming an interrupt to handle the press of a button	 321

Testing	 321
Stage 2 – a control center using Python and the Raspberry Pi	 322

The control center architecture	 322
The Python code for the control center	 323

Creating the GUI using Tkinter	 324
Communicating with the Mosquitto broker	 325
Calculating the system's status and situation awareness	 326
Communicating with Xively	 327
Checking and updating the buzzer's status	 328

Table of Contents

[ix]

Testing the control center with the monitoring station	 329
Setting up the control center on the Raspberry Pi	 330

Stage 3 – a web application using Xively, Python, and
Amazon cloud service	 332

Architecture of the cloud services	 332
Python web application hosted on Amazon AWS	 333
Testing the web application	 335

Testing and troubleshooting	 336
Extending your remote home monitoring system	 338

Utilizing multiple monitoring stations	 339
Extending sensory capabilities	 339
Improving UX	 341
Expanding cloud-based features	 341
Improving intelligence for situation awareness	 342
Creating an enclosure for hardware components	 342

Summary	 343
Chapter 11: Tweet-a-PowerStrip	 345

Project overview	 345
Project requirements	 346
System architecture	 346
Required hardware components	 347

Relays	 348
PowerSwitch Tail	 349

User experience flow	 350
Development and deployment stages	 352

Stage 1 – a smart power strip with Arduino and relays	 353
Hardware design	 353
The Arduino code	 354

Stage 2 – the Python code to process tweets	 357
Python software flow	 357
Setting up the Twitter application	 359
The Python code	 361

Testing and troubleshooting	 363
Extending the project with additional features	 364
Summary	 365

Index	 367

Preface
In the era of the Internet of Things (IoT), it has become very important to rapidly
develop and test prototypes of your hardware products while also augmenting them
using software features. The Arduino movement has been the front-runner in this
hardware revolution, and through its simple board designs it has made it convenient
for anyone to develop DIY hardware projects. The great amount of support that
is available through the open source community has made the difficulties that are
associated with the development of a hardware prototype a thing of the past. On
the software front, Python has been the crown jewel of the open source software
community for a significant amount of time. Python is supported by a huge amount
of libraries to develop various features, such as graphical user interfaces, plots,
messaging, and cloud applications.

This book tries to bring you the best of both hardware and software worlds to help you
develop exciting projects using Arduino and Python. The main goal of the book is to
assist the reader to solve the difficult problem of interfacing Arduino hardware with
Python libraries. Meanwhile, as a secondary goal, the book also provides you with
exercises and projects that can be used as blueprints for your future IoT projects.

The book has been designed in such a way that every successive chapter has increasing
complexity in terms of material that is covered and also more practical value. The
book has three conceptual sections (getting started, implementing Python features,
and network connectivity) and each section concludes with a practical project that
integrates the concepts that you learned in that section.

The theoretical concepts and exercises covered in the book are meant to give you
hands-on experience with Python-Arduino programming, while the projects are
designed to teach you hardware prototyping methodologies for your future projects.
However, you will still need extensive expertise in each domain to develop a
commercial product. In the end, I hope to provide you with sufficient knowledge
to jump-start your journey in this novel domain of the IoT.

Preface

[2]

What this book covers
Chapter 1, Getting Started with Python and Arduino, introduces the fundamentals of
the Arduino and Python platforms. It also provides comprehensive installation and
configuration steps to set up the necessary software tools.

Chapter 2, Working with the Firmata Protocol and the pySerial Library, discusses the
interfacing of the Arduino hardware with the Python program by explaining the
Firmata protocol and the serial interfacing library.

Chapter 3, The First Project – Motion-triggered LEDs, provides comprehensive guidelines
to create your first Python-Arduino project, which controls different LEDs according to
the detected motion.

Chapter 4, Diving into Python-Arduino Prototyping, takes you beyond the basic
prototyping that we performed in the previous project and provides an in-depth
description of prototyping methods, with appropriate examples.

Chapter 5, Working with the Python GUI, begins our two-chapter journey into
developing graphical interfaces using Python. The chapter introduces the Tkinter
library, which provides the graphical frontend for the Arduino hardware.

Chapter 6, Storing and Plotting Arduino Data, covers Python libraries, CSV and
matplotlib that are used to store and plot the sensor data respectively.

Chapter 7, The Midterm Project – a Portable DIY Thermostat, contains a practical and
deployable project that utilizes the material that we covered in previous chapters
such as serial interfacing, a graphical frontend, and a plot of the sensor data.

Chapter 8, Introduction to Arduino Networking, introduces computer networking
for Arduino while utilizing various protocols to establish Ethernet communication
between the Python program and Arduino. This chapter also explores a messaging
protocol called MQTT, with basic examples. This protocol is specifically designed
for resource-constrained hardware devices such as Arduino.

Chapter 9, Arduino and the Internet of Things, discusses the domain of the IoT while
providing step-by-step guidelines to develop cloud-based IoT applications.

Chapter 10, The Final Project – a Remote Home Monitoring System, teaches a design
methodology for the hardware product, followed by a comprehensive project that
interfaces the cloud platform with Arduino and Python.

Chapter 11, Tweet-a-PowerStrip, contains another IoT project that is based on
everything that we learned in the book. The project explores a unique approach
to integrate a social network, Twitter, with the Python-Arduino application.

Preface

[3]

What you need for this book
To begin with, you will just need a computer with one of the supported operating
systems, Windows, Mac OS X, or Linux. The book requires various additional
hardware components and software tools to implement programming exercises
and projects. A list of required hardware components and locations to obtain these
components are included in each chapter.

In terms of software, the book itself provides step-by-step guidelines to install and
configure all the necessary software packages and dependent libraries that are utilized
throughout the book. Note that the exercises and projects included in the book are
designed for Python 2.7 and they have not been tested against Python 3+.

Who this book is for
If you are a student, a hobbyist, a developer, or a designer with little or no
programming and hardware prototyping experience and you want to develop
IoT applications, then this book is for you.

If you are a software developer and interested in gaining experience with hardware
domain, this book will help you to get started. If you are a hardware engineer who
wants to learn advance software features, this book can help you to begin with.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"While assigning the value to the weight variable, we didn't specify the data type,
but the Python interpreter assigned it as an integer type, int."

A block of code is set as follows:

/*
 Blink
 Turns on an LED on for one second, then off for one second,
repeatedly.

 This example code is in the public domain.
 */

Preface

[4]

// Pin 13 has an LED connected on most Arduino boards.
// give it a name:
int led = 13;

// the setup routine runs once when you press reset:
void setup() {
 // initialize the digital pin as an output.
 pinMode(led, OUTPUT);
}

// the loop routine runs over and over again forever:
void loop() {
 digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage
level)
 delay(1000); // wait for a second
 digitalWrite(led, LOW); // turn the LED off by making the voltage
LOW
 delay(1000); // wait for a second
}

Any command-line input or output is written as follows:

$ sudo easy_install pip

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "In the
System window, click on the Advanced system settings in the left navigation bar
to open a window called System Properties."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

Preface

[5]

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from: http://www.packtpub.
com/sites/default/files/downloads/5938OS_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the Errata Submission Form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website or added to any list of
existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/sites/default/files/downloads/5938OS_ColoredImages.pdf
http://www.packtpub.com/sites/default/files/downloads/5938OS_ColoredImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[6]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring
you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

Getting Started with
Python and Arduino

This chapter introduces the Python programming language and the open source
electronic prototyping platform Arduino. The first section of the chapter focuses
on Python and briefly describes the benefits of Python along with installation and
configuration steps. The remaining part of the chapter describes Arduino and
Arduino's development environment.

At the end of this chapter, you will have configured a programming environment
for both Python and Arduino for your favorite operating system. If you are a
beginner with either or both platforms (that is, Python and Arduino), it is advisable
that you follow the given steps in this chapter, as the later chapters will assume that
you have the exact configuration described here. If you have previous experience of
working with these platforms, you can skip to the next chapter.

Introduction to Python
Since its introduction by Guido van Rossum in 1991, Python has grown into one
of the most widely used general-purpose, high-level programming languages, and
is supported by one of the largest open source developer communities. Python is
an open source programming language that includes a lot of supporting libraries.
These libraries are the best feature of Python, making it one of the most extensible
platforms. Python is a dynamic programming language, and it uses an interpreter
to execute code at runtime rather than using a compiler to compile and create
executable byte codes.

Getting Started with Python and Arduino

[8]

The philosophy behind the development of Python was to create flexible, readable,
and clear code to easily express concepts. The emphasis on using whitespace
indentation in a unique way differentiates Python from other popular high-
level languages. Python supports functional, imperative, and object-oriented
programming with automatic memory management.

Why we use Python
Python is considered to be one of the easiest languages to learn for first-time
programmers. Compared to other popular object-oriented languages such as
C++ and Java, Python has the following major benefits for programmers:

•	 It is easy to read and understand
•	 It enables rapid prototyping and reduces development time
•	 It has a humongous amount of free library packages

Python has a huge open source community that drives forth the effort for continuous
improvement of Python as a programming language. The Python community is also
responsible for the development of a large amount of open library packages, which
can be used to build applications that span from dynamic websites to complex data
analysis applications, as well as the development of simple GUI-based applications
to plot charts from complex math functions. The majority of Python library packages
have systematically maintained the code that was obtained from the community
with regular updates. The de facto repository that indexes the largest number of
Python packages is PyPI (http://pypi.python.org). PyPI also provides simple
ways to install various packages on your operating system, which will be covered
in the upcoming section.

While working with the hardware platform, it is necessary to have some means
of communication between the hardware and the computer that you are using for
development. Among the common computer to hardware interfacing methods,
serial- port-based communication is the most popular, and it is really simple to
establish, especially for the Arduino platform. Python provides a library called
pySerial that is really easy to use and quick to implement to interface a serial port.
It is really simple to use similar libraries and Python's interactive programming
abilities to rapidly test and implement your project ideas.

http://pypi.python.org

Chapter 1

[9]

Nowadays, complex Internet of Things (IoT) applications not only require serial
communication support, but they also need additional high-level features such as
graphical user interfaces (GUIs) for operating systems, web interfaces for remote
access, plots for data visualization, tools for data analysis, interfaces for data
storage, and so on. Using any other programming language such as C++ or Java, the
development of these features would require a large amount of programming effort
due to the distributed and unorganized nature of the supporting tools. Thankfully,
Python has been very successful at providing support for these types of applications
for years. Python has a number of libraries to support the development of each of the
features mentioned here, which are available through PyPI. These libraries are open
source, easy to use, and widely supported by the community. This makes Python
a language of choice for IoT applications. Additionally, Python also has support
to create and ship your custom-built applications as libraries so that everyone else
can also utilize them in their projects. This is a helpful feature if you are developing
custom protocols, APIs, or algorithms for your own hardware products.

When do we use other languages
So, when should we not use Python for our projects? As mentioned earlier, Python is
a dynamic language that reduces development time, but it also makes the execution
of your code slower as compared to other static high-level languages such as C, C++,
and Java. These static languages use a compiler to compile the code and create binaries
that get executed during runtime, thereby increasing the runtime performance. When
the performance of the code is more important than a longer development time and
higher cost, you should consider these static languages. Some other drawbacks of
Python include being memory heavy, not having the proper support for threading,
and lacking data protection features. In short, we can say that even though Python
provides quicker and easier ways for quick prototyping, we should consider other
static high-level languages for development after we are done testing our prototype
and we are ready to ship our product. Nowadays, this scenario is changing rapidly
and companies have started utilizing Python for their industrial products.

You can obtain more Python-related information from the
official website at http://www.python.org.

http://www.python.org

Getting Started with Python and Arduino

[10]

Installing Python and Setuptools
Python comes in two versions: Python v2.x and Python v3.x. (Here, x represents an
appropriate version number.) While Python v2.x is a legacy branch and has better
library support, Python v3.x is the future of Python. Most Linux distributions and
Mac OS X operating systems are equipped with Python, and they have v2.x as their
preferred and default version of Python. We will be using Python v2.7 as the default
version of Python for the rest of the book due to the following reasons:

•	 It is the most current version of the Python v2.x branch
•	 It has large community support and solutions for its known issues are

available through support forums
•	 It is supported by most of the major Python libraries

Even though the code samples, exercises, and projects provided in this book should
work in any variant of Python 2.7.x, it's better to have the latest version.

Installing Python
Your fondness for an operating system is developed due to multiple factors, and you
can never ignore someone's bias towards a particular OS. Thus, this book provides
installation and configuration guidelines for three of the most popular operating
systems: Linux, Mac OS X, and Windows. Let's begin by configuring Python for a
Linux computer.

Linux
The majority of Linux distributions come with Python preinstalled. To check the latest
version of the installed Python, use the following command at the terminal window:

$ python -V

Make sure that you are using an uppercase V as the option for the previous
command. Once you execute it on the terminal, it will print the complete version
number of your current Python installation. If the version is 2.7.x, you are good to
go and your Linux is updated with the latest version of Python that is required for
this book. However, if you have any version that is less than or equal to 2.6.x, you
will need to first upgrade Python to the latest version. This process will require root
privileges, as Python will be installed as a system component that will replace the
previous versions.

Chapter 1

[11]

Ubuntu
If you are using Ubuntu 11.10 or later versions, you should already have Python
v2.7.x installed on your machine. You can still upgrade Python to the latest revision
of v2.7.x using the following command:

$ sudo apt-get update && sudo apt-get --only-upgrade install python

If you are running an older version of Ubuntu (such as 10.04 or older), you should
have 2.6 as the default version. In this case, you will need to run the following set
of commands to install version 2.7:

$ sudo add-apt-repository ppa:fkrull/deadsnakes
$ sudo apt-get update
$ sudo apt-get install python2.7

The first command will add an external Ubuntu repository, which will allow you
to install any version of Python. The next command will update and index the list of
available packages. The last command will install the latest version of Python 2.7.

Fedora and Red Hat
Fedora and Red Hat Linux also ships with Python as an in-built package. If you want
to upgrade the version of Python to the latest one, run the following command at the
terminal:

$ sudo yum upgrade python

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Windows
Installation and configuration of Python on Windows is not as straightforward
as it is for Linux. First of all, you'll need to download a copy of Python from
http://www.python.org/getit.

You need to be careful about the version of Python that you are downloading. From
the system properties of your Windows OS, check whether the operating system is of
32 bit or 64 bit. At the time this book was being written, the latest version of Python
was 2.7.6. So, download the latest available version of Python, but make sure that it
is 2.7.x and not 3.x.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.python.org/getit

Getting Started with Python and Arduino

[12]

For many third-party Python libraries, the installation binary files for Windows are
compiled for the 32-bit version. Due to this reason, we will recommend that you
install the 32-bit version of Python for your Windows OS.

If you are really familiar with Python and know your way around installing libraries,
you can install the 64-bit version of Python. Select and run the downloaded file to
install Python. Although you can install it to any custom location, it is advisable to use
the default installation location as the upcoming configuration steps use the default
location. Once the installation is complete, you can find the Python command-line
tool and IDLE (Python GUI) from the Start menu.

Although you can always open these tools from the Start menu for basic scripting,
we will modify the Windows system parameters to make Python accessible through
the Windows command prompt. To accomplish this, we will have to set up PATH in
environment variables for the location of the Python installation directory. Let's open
System Properties by right-clicking on My Computer and then selecting Properties.
Otherwise, you can also navigate to Start | Control Panel | System and Security |
System.

You will be able to see a window similar to the one that is displayed in the
following screenshot. The System window shows you the basic information
about your computer, including the type of Windows operating system that
you are using (such as the 32-bit or the 64-bit version):

Chapter 1

[13]

In the System window, click on Advanced system settings in the left navigation bar
to open a window called System Properties. Click on the Environment Variables…
button in the System Properties window, which is located at the bottom of the
window. This will open an interface similar to the one shown in the following
screenshot. In Environment Variables, you need to update the PATH system variable
to add Python to the default operating system's path.

Click on the PATH option as displayed in the following screenshot, which will pop up
an Edit System Variable window. Add C:\Python27 or the full path of your custom
Python installation directory at the end of your existing PATH variable. It is required
to put a semicolon (;) before the Python installation path. If you already see Python's
location in the Path variable, your system is set up for Python and you don't need to
perform any changes:

The main benefit of adding Python to the environment variables is to enable access
to the Python interpreter from the command prompt. In case you don't know, the
Windows command prompt can be accessed by navigating to Start | Programs |
Accessories | Command Prompt.

Getting Started with Python and Arduino

[14]

Mac OS X
Mac OS X ships with a preinstalled copy of Python, but due to the long release cycle
of the operating system, the frequency of updates for the default Python application
is slow. The latest version of Mac OS X, which is 10.9 Maverick, comes equipped
with Python 2.7.5, which is the latest version:

Tests-Mac:~ test$ python
Python 2.7.5 (default, Aug 25 2013, 00:04:04)
[GCC 4.2.1 Compatible Apple LLVM 5.0 (clang-500.0.68)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

Previous versions such as Mac OS X 10.8 Mountain Lion and Mac OS X 10.7 Lion
included Python 2.7.2 and Python 2.7.1 respectively, which are also compatible
versions for this book. If you are an experienced Python user or someone who wants
to work with the latest version of Python, you can download the latest version from
http://www.python.org/getit.

Older versions of Mac OS X such as Snow Leopard and later, which came with an
older version of Python, can be updated to the latest version by downloading and
installing it from http://www.python.org/getit.

Installing Setuptools
Setuptools is a library containing a collection of utilities for building and distributing
Python packages. The most important tool from this collection is called easy_install.
It allows a user to look into PyPI, the Python package repository that we mentioned
previously, and provides a simple interface to install any package by name. The easy_
install utility automatically downloads, builds, installs, and manages packages for
the user. This utility has been used in the later part of this book to install the necessary
packages required for the upcoming projects of Python and Arduino. Although easy_
install has been used as a simple way of installing Python packages, it misses out on
a few useful features such as tracking actions, support for uninstallation, and support
for other version control systems. In recent years, the Python community has started
adopting another tool called pip over easy_install that supports these features. As
both easy_install and pip utilize the same PyPI repository, going forward, you can
use any of these utilities to install the required Python packages.

Just to narrow down the scope, we will be focusing on methods to install Setuptools
and the default utilities that get installed with it, that is, easy_install. Later in this
section, we will also install pip, just in case you want to use it too. Let's first begin by
installing Setuptools for the various operating systems.

http://www.python.org/getit
http://www.python.org/getit

Chapter 1

[15]

Linux
In Ubuntu, Setuptools is available in the default repository and it can be installed
using the following command:

$ sudo apt-get install python-setuptools

For Fedora, it can be installed using the default software manager yum:

$ sudo yum install python-setuptools

For other Linux distributions, it can be downloaded and built using the following
single-line script:

$ wget https://bitbucket.org/pypa/setuptools/raw/bootstrap/ez_setup.py -O
- | sudo python

Once it is installed on your Linux distribution, easy_install can be directly
accessed from the terminal as a built-in command.

Windows
Installation of Setuptools is not that straightforward for Windows as compared to
Linux. It requires the user to download the ez_setup.py file from the Windows
section at https://pypi.python.org/pypi/setuptools.

Once this is downloaded, press Shift and right-click in the folder where you
downloaded the ez_setup.py file. Select Open command window here and
execute the following command:

> python ez_setup.py

This will install Setuptools in the Scripts folder of your default Python installation
folder. Using the same method that we used when we added Python to Environment
Variables, now include Setuptools by adding C:\Python27\Scripts to PATH,
followed by the semicolon (;).

This will enable the installation of various Python packages using easy_install
to your Python packages folder called Libs. Once you have added the package
manager to the environment variables, you need to close and reopen the command
prompt for these changes to take effect.

https://pypi.python.org/pypi/setuptools

Getting Started with Python and Arduino

[16]

Mac OS X
Setuptools can be installed in Mac OS X using any of the following methods. It is
advisable for beginners to use the first method, as the second method requires the
external package manager Homebrew.

If you have never worked with Homebrew before, you will need to follow these
steps to install Setuptools on your Mac:

1.	 Download ez_setup.py from the Unix/Mac section at
https://pypi.python.org/pypi/setuptools.

2.	 Open the terminal and navigate to the directory where you downloaded this
file. For most browsers, the file gets saved to the Download folder.

3.	 Run the following command in the terminal to build and set up Setuptools:
$ sudo python ez_setup.py

If you are familiar with Homebrew-based software installation, just follow these
quick steps to install Setuptools:

1.	 First, install wget from Homebrew if you don't have it already:
$ brew install wget

2.	 Once you have installed wget, run the following command in the terminal:

$ wget https://bitbucket.org/pypa/setuptools/raw/bootstrap/ez_
setup.py -O - | python

More information regarding the Homebrew utility can be obtained
from http://brew.sh.
You can install Homebrew on your Mac by running the following
simple script in the terminal:
ruby -e "$(curl -fsSL https://raw.githubusercontent.
com/Homebrew/install/master/install)"

Installing pip
As you have successfully installed Setuptools, let's use it to install pip. For Linux
or Mac OS X, you can run the following command in the terminal to install pip:

$ sudo easy_install pip

For Windows, open the command prompt and execute the following command:

> easy_install.exe pip

https://pypi.python.org/pypi/setuptools
http://brew.sh

Chapter 1

[17]

If you have already installed pip on your computer, please make sure that you
upgrade it to the latest version to overcome the few bugs that are associated with
the upgrade. You can upgrade pip using the following command at the terminal:

$ sudo easy_install --upgrade pip

Since you have already used easy_install to install a Python package, let's get
ourselves more familiar with Python package management.

Installing Python packages
With the installation of pip, you have two different options to install any third-
party Python package listed on the PyPi repository (http://pypi.python.org).
The following are the various procedures that you need to know to work with the
installation of Python packages. In the following examples, the term PackageName
is a pseudo name that is used for a Python package that you want to work with.
For your package of choice, identify the appropriate package name from the PyPi
website and put its name in place of PackageName. In some cases, you will need
root (super user) privileges to install or uninstall a package. You can use sudo
followed by an appropriate command for these cases.

To install a Python package, execute the following command at the terminal:

$ easy_install PackageName

Otherwise, you can also execute the following command:

$ pip install PackageName

If you want to install a specific version of a package, you can use the
following command:

$ easy_install "PackageName==version"

If you are not aware of the exact version number, you can also use comparison
operators such as >, <, >=, or <= to specify a range for the version number. Both
easy_install and pip will select the best matching version of the package from
the repository and install it:

$ easy_install "PackageName > version"

Meanwhile, for pip, you can use the following identical commands to perform
similar operations:

$ pip install PackageName==version
$ pip install "PackageName>=version"

http://pypi.python.org

Getting Started with Python and Arduino

[18]

As an example, if you want to install a version between 1.0 and 3.0, you will need to
use the following command:

$ pip install "PackageName>=0.1,<=0.3"

It is really easy to upgrade a package using either easy_install or pip. The command
options used by both are also very similar:

$ easy_install --upgrade PackageName

$ pip install --upgrade PackageName

Although easy_install doesn't support clean uninstallation of a package, you can
use the following command to make sure that Python stops searching for the specified
package. Later, carefully remove the package files from the installation directory:

$ easy_install -mxN PackageName

A much better way to perform a clean uninstallation of the majority of packages is to
use pip instead of easy_install:

$ pip uninstall PackageName

A detailed list of the Python packages supported by Setuptools can be found at the
PyPI website at https://pypi.python.org/.

The fundamentals of Python
programming
If you have previous experience of working with any other programming language,
Python is very easy to get started with. If you have never done programming before,
this section will walk you through some of the basics of Python. If you have already
worked with Python, you should skip this section and move on to the next one.

Assuming that the setup instructions are followed correctly, let's open the Python
interpreter by executing the Python command at the terminal or the command prompt.
You should get results similar to those displayed in the following screenshot. If you
have installed Python by downloading the setup files from the website, you should
have the Python integrated development environment (IDLE) installed as well. You
can also start the Python interpreter by opening its IDLE from the location where it
was installed.

https://pypi.python.org/

Chapter 1

[19]

As you can see, after printing some system information, the interpreter opens a
prompt with three greater-than signs (>>>), which is also known as the primary
prompt. The interpreter is now in the interactive mode and it is ready to execute
scripts from the prompt.

To close the interactive mode of the Python interpreter, run the either exit() or
quit(), at the primary prompt. Another method to exit from the interactive mode is
to use the keyboard shortcut Ctrl + D.

Note that Python's built-in functions are case sensitive.
This means the following:
exit() ≠ EXIT() ≠ Exit()

The official Python website provides comprehensive tutorials for beginners to get
started with Python programming. It is highly recommended that you visit the
official Python tutorials at https://docs.python.org/2/tutorial/index.html
if you are looking for detailed programming tutorials as compared to the upcoming
brief overviews.

Python operators and built-in types
Now that you have a brief idea regarding the Python prompt, let's get you familiar
with some of the basic Python commands. For these exercises, we will be using the
Python IDLE, which also opens with the Python interactive prompt. You will require
a method to describe the code segments, tasks, and comments when writing large
and complex code. Non-executable content is called comments in any programming
language, and in Python, they start with the hashtag character (#). Like comments,
you will be frequently required to check the output by printing on the prompt using
the print command:

>>> # Fundamental of Python
>>> # My first comment

https://docs.python.org/2/tutorial/index.html

Getting Started with Python and Arduino

[20]

>>> name = "John" # This is my name
>>> print name
John

Instead of IDLE, you can also access the Python interactive prompt
from the terminal. When using Python from the terminal, make sure
that you are taking care of the indentation properly.

Operators
Python supports the usage of basic mathematical operators such as +, -, *, and /,
directly from the interpreter. Using these operators, you can perform basic calculations
in the prompt, as shown in the following examples. Try these operations in your
prompt in order to start using the Python interpreter as a calculator:

>>> 2 + 2
4
>>> (2*3) + 1
7
>>> (2*3) / 5
1

When working with the Python interpreter, it is recommended
that you follow the Style Guide for Python Code, which is also
popularly known as PEP-8 or pep8. For more information about
PEP-8, visit https://www.python.org/dev/peps/pep-
0008/.

Built-in types
Python is a dynamically typed language, which means that you don't have to
explicitly declare the type of the variables when initializing them. When you
assign a value to a variable, the Python interpreter automatically deduces the
data type. For example, let's declare the following variables in the interactive
mode of the interpreter:

>>> weight = height = 5
>>> weight * height
25
>>> type(weight)
<type 'int'>

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/

Chapter 1

[21]

While assigning the value to the weight variable, we didn't specify the data type, but
the Python interpreter assigned it as an integer type, int. The interpreter assigned the
int type due to the reason that the numerical value didn't contain any decimal points.
Let's now declare a variable with a value containing a decimal point. The built-in
function type() that can be used to find out the data type of a specified variable:

>>> length = 6.0
>>> weight * height * length
150.0
>>> type(length)
<type 'float'>

As you can see, the interpreter assigns the data type as float. The interpreter can
also deduce the type of complex numbers, as shown in following examples. You can
access the real and imaginary value of a complex number using the dot (.) operator
followed by real and imag:

>>> val = 2.0 + 3.9j
>>> val.real
2.0
>>> val.imag
3.9

Just to play more with complex numbers, let's try the abs() and round() functions
as displayed in the following examples. They are built-in Python functions to obtain
the absolute value and the rounded number respectively:

>>> abs(val)
4.382921400162225
>>> round(val.imag)
4.0

Like numbers, the Python interpreter can also automatically identify the declaration
of string data types. In Python, string values are assigned using single or double
quotes around the value. When the interpreter sees any value enclosed within
quotes, it considers it to be a string. Python supports the usage of the + operator
to concatenate strings:

>>> s1 = "Hello"
>>> s2 = "World!"
>>> s1 + s2
'HelloWorld!'
>>> s1 + " " + s2
'Hello World!'

Getting Started with Python and Arduino

[22]

A character type is a string of size one and the individual characters of a string can
be accessed by using index numbers. The first character of a string is indexed as 0.
Play with the following scripts to understand indexing (subscripting) in Python:

>>> s1[0]
'H'
>>> s1[:2]
'He'
>>> s1 + s2[5:]
'Hello!'

Similar to the primary prompt with default notation >>>, the
Python interactive interpreter also has a secondary prompt that uses
three dots (…) when it is being used from the terminal. You won't
be able to see the three dots in IDLE when you use the secondary
prompt. The secondary prompt is used for a multiline construct,
which requires continuous lines. Execute the following commands
by manually typing them in the interpreter, and do not forget to
indent the next line after the if statement with a tab:
>>> age = 14
>>> if age > 10 or age < 20:
... print "teen"

teen

Data structures
Python supports four main data structures (list, tuple, set, and dictionary) and
there are a number of important built-in methods around these data structures.

Lists
Lists are used to group together values of single or multiple data types. The list
structure can be assigned by stating values in square brackets with a comma (,)
as a separator:

>>> myList = ['a', 2, 'b', 12.0, 5, 2]
>>> myList
['a', 2, 'b', 12.0, 5, 2]

Chapter 1

[23]

Like strings, values in a list can be accessed using index numbers, which starts from
0. A feature called slicing is used by Python to obtain a specific subset or element
of the data structure using the colon operator. In a standard format, slicing can
be specified using the myList[start:end:increment] notation. Here are a few
examples to better understand the notion of slicing:

•	 You can access a single element in a list as follows:
>>> myList[0]
'a'

•	 You can access all the elements in the list by having empty start and end
values:
>>> myList[:]
['a', 2, 'b', 12.0, 5, 2]

•	 You can provide start and end index values to obtain a specific subset of
the list:
>>> myList[1:5]
[2, 'b', 12.0, 5]

•	 Use of the minus symbol with an index number tells the interpreter to use
that index number backwards. In the following example, -1 backwards
actually represents the index number 5:
>>> myList[1:-1]
[2, 'b', 12.0, 5]

•	 You can obtain every other element of the list by providing the increment
value with start and end values:
>>> myList[0:5:2]
['a', 'b', 5]

•	 You can check the length of a list variable using the len() method. The usage
of this method will be handy in the upcoming projects:
>>> len(myList)
6

•	 You can also perform various operations to add or delete elements in the
existing list. For example, if you want to add an element at the end of the
list, use the append() method on the list:
>>> myList.append(10)
>>> myList
['a', 2, 'b', 12.0, 5, 2, 10]

Getting Started with Python and Arduino

[24]

•	 To add an element at a specific location, you can use the insert(i, x)
method, where i denotes the index value, while x is the actual value that
you want to add to the list:
>>> myList.insert(5,'hello')
>>> myList
['a', 2, 'b', 12.0, 5, 'hello', 2, 10]

•	 Similarly, you can use pop() to remove an element from the list. A simple
pop() function will remove the last element of the list, while an element at a
specific location can be removed using pop(i), where i is the index number:
>>> myList.pop()
10
>>> myList
['a', 2, 'b', 12.0, 5, 'hello', 2]
>>> myList.pop(5)
'hello'
>>> myList
['a', 2, 'b', 12.0, 5, 2]

Tuples
Tuples are immutable data structures supported by Python (different from the
mutable structures of lists). An immutable data structure means that you cannot add
or remove elements from the tuple data structure. Due to their immutable properties,
tuples are faster to access compared to lists and are mostly used to store a constant
set of values that never change.

The tuple data structure is declared like list, but by using parentheses or without
any brackets:

>>> tupleA = 1, 2, 3
>>> tupleA
(1, 2, 3)
>>> tupleB = (1, 'a', 3)
>>> tupleB
(1, 'a', 3)

Just like in a list data structure, values in tuple can be accessed using index numbers:

>>> tupleB[1]
'a'

Chapter 1

[25]

As tuples are immutable, list manipulation methods such as append(), insert(),
and pop() don't apply for tuples.

Sets
The set data structure in Python is implemented to support mathematical set
operations. The set data structure includes an unordered collection of elements
without duplicates. With its mathematical use cases, this data structure is mostly
used to find duplicates in lists, as conversion of a list to a set using the set()
function removes duplicates from the list:

>>> listA = [1, 2, 3, 1, 5, 2]
>>> setA = set(listA)
>>> setA
set([1, 2, 3, 5])

Dictionaries
The dict data structure is used to store key-value pairs indexed by keys, which
are also known in other languages as associative arrays, hashes, or hashmaps.
Unlike other data structures, dict values can be extracted using associated keys:

>>> boards = {'uno':328,'mega':2560,'lily':'128'}
>>> boards['lily']
'128'
>>> boards.keys()
['lily', 'mega', 'uno']

You can learn more about Python data structures and
associated methods at https://docs.python.org/2/
tutorial/datastructures.html.

Controlling the flow of your program
Just like any other language, Python supports controlling the program flow using
compound statements. In this section, we will briefly introduce these statements
to you. You can get detailed information about them from the official Python
documentation at https://docs.python.org/2/reference/compound_stmts.
html.

https://docs.python.org/2/tutorial/datastructures.html
https://docs.python.org/2/tutorial/datastructures.html
https://docs.python.org/2/reference/compound_stmts.html
https://docs.python.org/2/reference/compound_stmts.html

Getting Started with Python and Arduino

[26]

The if statement
The if statement is the most basic and standard statement used to set up conditional
flow. To better understand the if statement, execute the following code in the
Python interpreter with different values of the age variable:

>>> age = 14
>>> if age < 18 and age > 12:
 print "Teen"
elif age < 13:
 print "Child"
else:
 print "Adult"

This will result in Teen being printed on the interpreter.

The for statement
Python's for statement iterates over the elements of any sequence according to the
order of the elements in that sequence:

>>> celsius = [13, 21, 23, 8]
>>> for c in celsius:
 print " Fahrenheit: "+ str((c * 1.8) + 32)

This will result in the Python interpreter generating the following output that will
display the calculated Fahrenheit values from the given Celsius values:

Fahrenheit: 55.4
Fahrenheit: 69.8
Fahrenheit: 73.4
Fahrenheit: 46.4

The while statement
The while statement is used to create a continuous loop in a Python program.
A while loop keeps iterating over the code block until the condition is proved true:

>>> count = 5
>>> while (count > 0):
 print count
 count = count - 1

Chapter 1

[27]

The while statement will keep iterating and printing the value of the variable count
and also reduce its value by 1 until the condition, that is (count > 0), becomes true.
As soon as the value of count is lower than or equal to 0, the while loop will exit the
code block and stop iterating.

The other compound statements supported by Python are try/catch and with.
These statements will be explained in detail in the upcoming chapters. Python also
provides loop control statements such as break, continue, and pass that can be
used while a loop is being executed using the compound statements mentioned
earlier. You can learn more about these Python features from https://docs.
python.org/2/tutorial/controlflow.html.

Built-in functions
Python supports a number of useful built-in functions that do not require any
external libraries to be imported. We have described a few of these functions
as a collection of a respective category, according to their functionalities.

Conversions
Conversion methods such as int(), float(), and str() can convert other data
types into integer, float, or string data types respectively:

>>> a = 'a'
>>> int(a,base=16)
10
>>> i = 1
>>> str(i)
'1'

Similarly, list(), set(), and tuple() can be used to convert one data structure
into another.

Math operations
Python also supports built-in mathematical functions that can find the minimum
and/or maximum values from a list. Check out the following examples and play
around with the different data structures to understand these methods:

>>> list = [1.12, 2, 2.34, 4.78]
>>> min(list)
1.12
>>> max(list)
4.78

https://docs.python.org/2/tutorial/controlflow.html
https://docs.python.org/2/tutorial/controlflow.html

Getting Started with Python and Arduino

[28]

The pow(x,y) function returns the value of x to the power of y:

>>> pow(3.14159, 2)
9.869587728099999

String operations
Python provides easy access to string manipulation through built-in functions that
are optimized for performance. Let's take a look at the following examples:

•	 Code to replace occurrences of a string or substring with a different one:
>>> str = "Hello World!"
>>> str.replace("World", "Universe")
'Hello Universe!'

•	 Code to split a string with a separating character where the default character
is space:
>>> str = "Hello World!"
>>> str.split()
['Hello', 'World!']

•	 Code to split a string from a separating character for any other character:
>>> str2 = "John, Merry, Tom"
>>> str2.split(",")
['John', ' Merry', ' Tom']

•	 Code to convert an entire string value into uppercase or lowercase:
>>> str = "Hello World!"
>>> str.upper()
'HELLO WORLD!'
>>> str.lower()
'hello world!'

The Python documentation on the official website covers every
built-in function in detail with examples. For better understanding
of Python programming, visit https://docs.python.org/2/
library/functions.html.

https://docs.python.org/2/library/functions.html
https://docs.python.org/2/library/functions.html

Chapter 1

[29]

Introduction to Arduino
Any electronic product that needs computation or interfacing with other
computers first requires a quick prototyping of the concept using simple tools.
Arduino is an open source hardware prototyping platform designed around a
popular microcontroller family, and it includes a simple software development
environment. Besides prototyping, you can also use Arduino for the development
of your own do-it-yourself (DIY) projects. Arduino bridges the computational world
with the physical world by letting you simply connect the sensors and actuators
with a computer. Basically, you can write code to monitor and control various
electronic components in your daily life by using Arduino's input/output pins and
microcontroller. Examples of these components include motors, thermostats, lights,
switches, and many more.

History
In 2005, Massimo Banzi, the Italian cofounder of Arduino, developed the technology
for his students at Interaction Design Institute Ivrea (IDII). Since then, Arduino
has developed into one of the largest open source hardware platforms. All software
components and schematics of the Arduino design are open source, and you can
buy the hardware at a very low cost—approximately 30 dollars—or you can even
make it yourself.

Why Arduino?
The major goal of the Arduino community is to continuously improve the Arduino
platform with the following objectives in mind:

•	 The Arduino platform should be an affordable platform
•	 It should be easy to use and easy to code
•	 It should be an open source and extensible software platform
•	 It should be an open source and extensible hardware platform
•	 It should have community-supported DIY projects

Getting Started with Python and Arduino

[30]

These simple but powerful objectives have made Arduino a popular and widely
used prototyping platform. Arduino uses Atmel's ATmega series of microcontrollers
that are based on the popular hardware architecture of AVR. The huge support that
is available for AVR architecture also makes Arduino a hardware platform of choice.
The following image shows the basic version of the Arduino board, which is called
Arduino Uno (Uno means one in Italian):

Arduino variants
Like any other project, hardware requirements are driven by project specifications.
If you are developing a project that requires you to interface with a large number of
external components, you need a prototyping platform that has a sufficient number
of input/output (I/O) pins for interfacing. If you are working on a project that needs
to perform a huge amount of complex calculations, you require a platform with more
computation capability.

Fortunately, the Arduino board exists in 16 different official versions, and each
version of Arduino differs from the others in terms of form factor, computational
power, I/O pins, and other on-board features. Arduino Uno is the basic and most
popular version, which is sufficient enough for simple DIY projects. For the majority
of exercises in this book, we will be using the Arduino Uno board. You can also use
another popular variant called Arduino Mega, which is a larger board with extra
pins and a powerful microcontroller. The following table shows the comparison of
some of the more popular and active variants of the Arduino board:

Chapter 1

[31]

Name Processor Processor
frequency

Digital
I/O

Digital
I/O with
PWM

Analog
I/O

Arduino Uno ATmega328 16 MHz 14 6 6
Arduino
Leonardo

ATmega32u4 16 MHz 14 6 12

Arduino Mega ATmega2560 16 MHz 54 14 16
Arduino Nano ATmega328 16 MHz 14 6 8
Arduino Due AT91SAM3X8E 84 MHz 54 12 12
LilyPad
Arduino

ATmega168v or
ATmega328v

8 MHz 14 6 6

Any of these variants can be programmed using a common integrated development
environment called Arduino IDE, which is described in the upcoming section. You
can select any one of these Arduino boards according to your project requirements,
and the Arduino IDE should be able to compile and download the program to
the board.

The Arduino Uno board
As Uno is going to be the de facto board for the majority of the projects in this book,
let's get ourselves familiar with the board. The latest revision of the Uno board is
based on Atmel's ATmega328 microcontroller. The board extends the I/O pins of the
microcontroller to the peripheral, which can then be utilized to interface components
using wires. The board has a total of 20 pins to interface, out of which 14 are digital
I/O pins and 6 are analog input pins. From the 14 digital I/O pins, 6 pins also support
pulse-width modulation (PWM), which supports the controlled delivery of power to
connected components.

The board operates on 5V. The maximum current rating of the digital I/O pins is 40
mA, which is sufficient to drive most of the DIY electronic components, excluding
motors with high current requirements.

Getting Started with Python and Arduino

[32]

While the previous image provided an overview of the Uno board, the following
diagram describes the pins on the Uno board. As you can see, the digital pins are
located on one side of the board while the analog pins are on the opposite side.
The board also has a couple of power pins that can be used to provide 5V and
3.3V of power to external components. The board contains ground pins on both sides
of the board as well. We will be extensively using 5V of power and ground pins for
our projects. Digital pins D0 and D1 support serial interfacing through
the Tx (transmission) and Rx (receiver) interfaces respectively. The USB port on
the board can be used to connect Arduino with a computer.

Now that we are familiar with the Arduino hardware, let's move on to programming
the Arduino board.

Installing the Arduino IDE
The first step to start getting familiar with Arduino is to install the Arduino
integrated development environment (IDE). According to the operating system
that you selected at the beginning of the Python installation section, follow the
appropriate subsection to install the correct IDE.

Chapter 1

[33]

Linux
The installation of the Arduino IDE is really simple in Ubuntu. The Ubuntu
repository already includes the Arduino IDE with the required dependencies.

For Ubuntu 12.04 or a newer version, execute the following command in the terminal
to install Arduino:

$ sudo apt-get update && sudo apt-get install arduino arduino-core

The latest version of the Arduino IDE in the Ubuntu repository is 1.0.3. You can
obtain more information regarding other Ubuntu-related questions at http://
playground.arduino.cc/Linux/Ubuntu.

For Fedora 17 or a newer version of Red Hat Linux, execute the following script in
the terminal:

$ sudo yum install arduino

Answers to additional installation questions for Fedora can be obtained at
http://playground.arduino.cc/Linux/Fedora.

Mac OS X
To install the Arduino IDE on Mac OS X (10.7 or newer), perform the following steps:

1.	 From http://arduino.cc/en/Main/Software, download the latest version
of the Arduino IDE for Mac OS X, which was 1.0.5 when this book was being
written.

2.	 Unzip and drag Arduino to the application folder.

The Arduino IDE is built in Java and requires that your computer is equipped
with the appropriate version of Java. Open the IDE from your applications. If you
don't have Java installed on your Mac, the program will prompt you with a pop-up
window and ask you to install Java SE 6 runtime. Go ahead and install Java (as per
the request) as the OS X will automatically install it for you.

Windows
Installation of Arduino for Windows is very simple. Download the setup file from
http://arduino.cc/en/Main/Software. Select the most recent version of the
Arduino IDE, that is, 1.0.x or a newer version.

http://playground.arduino.cc/Linux/Ubuntu
http://playground.arduino.cc/Linux/Ubuntu
http://playground.arduino.cc/Linux/Fedora
http://arduino.cc/en/Main/Software
http://arduino.cc/en/Main/Software

Getting Started with Python and Arduino

[34]

Make sure you download the appropriate version of the Arduino IDE according to
your operating system, that is, 32 bit or 64 bit. Install the IDE to the default location
as specified in the installation wizard. Once installed, you can open the IDE by
navigating to Start | Programs.

Getting started with the Arduino IDE
The Arduino IDE is a cross-platform application developed in Java that can be used
to develop, compile, and upload programs to the Arduino board. On launching the
Arduino IDE, you will find an interface similar to the one displayed in the following
screenshot. The IDE contains a text editor for coding, a menu bar to access the IDE
components, a toolbar to easily access the most common functions, and a text console
to check the compiler outputs. A status bar at the bottom shows the selected Arduino
board and the port name that it is connected to, as shown here:

What is an Arduino sketch?
An Arduino program that is developed using the IDE is called a sketch. Sketches
are coded in Arduino language, which is based on a custom version of C/C++. Once
you are done with writing the code in the built-in text editor, you can save it using
the.ino extension. When you save these sketch files, the IDE automatically creates a
folder to store them. If you are using any other supporting files for a sketch, such as
header files or library files, they are all stored at this location (which is also called
a sketchbook).

Chapter 1

[35]

To open a new sketchbook, open the Arduino IDE and select New from the File
menu, as shown in the following screenshot:

You will be prompted with an empty text editor. The text editor supports standard
features (that is, copy/paste, select, find/replace, and so on). Before we go ahead
with an Arduino program, let's explore the other tools provided by the IDE.

The Arduino IDE version prior to 1.0 used the .pde extension to
save sketchbooks. Starting from 1.0, they are saved with the .ino
extension. You can still open files with the .pde extension in the
latest IDE. Later, the IDE will convert it to the .ino extension
when you save them.

Getting Started with Python and Arduino

[36]

Working with libraries
The Arduino IDE uses libraries to extend the functionalities of existing sketches.
Libraries are a set of functions combined to perform tasks around a specific component
or concept. The majority of the built-in Arduino libraries provide methods to start
working with external hardware components. You can import any library by
navigating to Sketch | Import Library…, as shown in the following screenshot:

You can also use a library for your sketch by just specifying the library with the
#include statement at the beginning of the sketch, that is, #include <Wire.h>.

The Arduino IDE also provides the capability to add an external library that supports
a specific hardware or provides additional features. In the upcoming chapters, we
will be dealing with some of these external libraries, and we will go through the
process of importing them at that time.

You can learn more about built-in Arduino libraries from http://arduino.cc/en/
Reference/Libraries.

http://arduino.cc/en/Reference/Libraries
http://arduino.cc/en/Reference/Libraries

Chapter 1

[37]

Using Arduino examples
The Arduino IDE contains a large number of built-in example sketches. These
examples are designed to get the user familiar with basic Arduino concepts and
built-in Arduino libraries. The examples are well maintained by the Arduino
community since they have comprehensive support for each example through the
Arduino website (http://arduino.cc/en/Tutorial/HomePage). In the Arduino
IDE, you can access these examples by navigating to File | Examples, as shown in
the following screenshot:

Let's start with a simple in-built example. Open the Blink example by navigating to
File | Examples | 01.Basics | Blink. The IDE will open a new window containing
code that is similar to the code in the following program:

/*
 Blink
 Turns on an LED on for one second, then off for one second,
repeatedly.

 This example code is in the public domain.
 */

// Pin 13 has an LED connected on most Arduino boards.
// give it a name:

http://arduino.cc/en/Tutorial/HomePage

Getting Started with Python and Arduino

[38]

int led = 13;

// the setup routine runs once when you press reset:
void setup() {
 // initialize the digital pin as an output.
 pinMode(led, OUTPUT);
}

// the loop routine runs over and over again forever:
void loop() {
 digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage
level)
 delay(1000); // wait for a second
 digitalWrite(led, LOW); // turn the LED off by making the voltage
LOW
 delay(1000); // wait for a second
}

This Arduino sketch is designed to blink an LED on digital pin 13. You must be
wondering why we didn't discuss or ask you to bring any hardware. That's because
the Arduino Uno board is equipped with an on-board LED that is connected to digital
pin 13. Now, instead of diving deeper into the Arduino code, we are going to focus on
the process of dealing with the Arduino board through the IDE.

Compiling and uploading sketches
Once you have your code opened in the IDE, the first thing you need to do is to
select the type of Arduino board on which you are going to upload your sketch. The
Arduino IDE needs to know the type of board in order to compile the program for the
appropriate microcontroller, as different Arduino boards can have different Atmel
microcontrollers. Therefore, you need to perform this step before you go ahead with
the compiling or uploading of the program to the board.

Chapter 1

[39]

You can select the Arduino board by navigating to Tools | Board, as displayed in the
following screenshot:

Select Arduino Uno from the list of boards, unless you are using a different Arduino
board. Once you have selected the board, you can go ahead and compile the sketch.
You can compile the sketch by navigating to Sketch | Verify / Compile from the
menu bar or by using the keyboard shortcut Ctrl + R. If everything is set up well, you
should be able to compile the code without any error.

Getting Started with Python and Arduino

[40]

After successfully compiling the sketch, it is time to upload the compiled code to the
Arduino board. To do this, you need to make sure that your Arduino IDE is properly
connected to your computer. If it is not already connected, connect your Arduino
board to your computer using a USB port. Now, it is time to let your IDE know the
serial port on which the board is connected. Navigate to Tools | Serial Ports and
select the appropriate serial port.

In the case of some Linux distributions, you may not be able to see
or upload the Arduino program to the board due to permission
restriction(s) on the serial port. Running the following command
on the terminal should solve that problem:
$ sudo usermod -a -G uucp, dialout, lock <username>

You can now upload the compiled sketch to your Arduino board by navigating to File
| Upload. This process will use the serial connection to burn the compiled firmware
in the microcontroller. Please wait for some time or until the LEDs (Tx and Rx LEDs)
on the board stop flashing. Now, you have your Arduino board ready with your first
sketch. You can observe the performance of the blinking LED near digital pin 13.

Using the Serial Monitor window
In the previous process, we used a Universal Serial Bus (USB) cable to connect
your Arduino board to a USB port of your computer. The USB port is an industrial
standard to provide an interface for connecting various electronic components to a
computer using the serial interface. When you connect an Arduino board using USB,
the computer actually interfaces it as a serial peripheral device. Throughout the book,
we are going to refer to the connections made using a USB as serial connections. The
Serial Monitor window is a built-in utility of the Arduino IDE. The Serial Monitor
window can be accessed by navigating to Tools | Serial Monitor or by using the
Ctrl + Shift + M keyboard shortcut. It can be configured to observe data that is being
sent or received on the serial port that is used to connect the Arduino board to the
computer. You can also set the baud rate for the serial communication using the
drop-down menu option. This utility is going to be very useful (further on in the
book) when testing your prototypes and their performances.

Chapter 1

[41]

Introduction to Arduino programming
The Arduino platform was introduced to simplify electronic hardware prototyping
for everyone. For this reason, Arduino programming was intended to be easy to
learn by nonprogrammers such as designers, artists, and students. The Arduino
language is implemented in C/C++, while the fundamentals of the sketch and
program structures are derived from an open source programming language called
Processing and an open source electronic prototyping language called Wiring.

Comments
Arduino follows a commenting format that is adopted from C and it is similar to
higher-level languages; however, it is different from the Python comment format
that we learned earlier in this chapter. There are various methods of commenting,
which are as follows:

•	 Block comment: This is done by covering the commented text between
/* and */:
/* This is a comment.
* Arduino will ignore any text till it finds until the ending
comment syntax, which is,
*/

•	 Single-line or inline comment: This is done by using // before the line:
// This syntax only applies to one line.
// You have to use it again for each next line of comment.
int pin = 13; //Selected pin 13

Usually, a block comment at the beginning of the sketch is mostly used to describe
the program as a whole. Single-line comments are used to describe specific functions
or to-do notes, such as the following one:

//TODO: explain variables next.

Variables
Like any other high-level language, a variable is used to store data with
three components: a name, a value, and a type. For example, consider the
following statement:

int pin = 10;

Getting Started with Python and Arduino

[42]

Here, pin is the variable name that is defined with the type int and holds the value
10. Later in the code, all occurrences of the pin variable will retrieve data from the
declaration that we just made here. You can use any combination of alpha-numeric
characters to select the variable name as long as the first character is not a number.

Constants
In the Arduino language, constants are predefined variables that are used to simplify
the program:

•	 HIGH, LOW: While working with digital pins on the Arduino board, only
two distinct voltage stages are possible at these pins. If a pin is being used
to obtain an input, any measure above 3V is considered a HIGH state. If you
are using a pin for output, then the HIGH state will set the pin voltage to 5V.
The opposite voltage levels are considered as LOW states.

•	 false, true: These are used to represent logical true and false levels. false
is defined as 0 and true is mostly defined as 1.

•	 INPUT, OUTPUT: These constants are used to define the roles of the Arduino
pins. If you set the mode of an Arduino pin as INPUT, the Arduino program
will prepare the pin to read sensors. Similarly, the OUTPUT setting prepares
the pins to provide a sufficient amount of current to the connected sensors.

We will utilize these constants later in the book and we will also explain them with
example code.

Data types
The declaration of each custom variable requires the user to specify the data type
that is associated with the variable. The Arduino language uses a standard set of
data types that are used in the C language. A list of these data types and their
descriptions are as follows:

•	 void: This is used in the function declaration to indicate that the function
is not going to return any value:
void setup() {
// actions
}

Chapter 1

[43]

•	 boolean: Variables defined with the data type boolean can only hold one of
two values, true or false:
boolean ledState = false;

•	 byte: This is used to store an 8-bit unsigned number, which is basically any
number from 0 to 255:
byte b = 0xFF;

•	 int: This is short for integers. It stores 16-bit (Arduino Uno) or 32-bit
(Arduino Due) numbers and it is one of the primary number storage data
types for the Arduino language. Although int will be used to declare
numbers throughout the book, the Arduino language also has long and
short number data types for special cases:
int varInt = 2147483647;
long varLong = varInt;
short varShort = -32768;

•	 float: This data type is used for numbers with decimal points. These are
also known as floating-point numbers. float is one of the more widely used
data types along with int to represent numbers in the Arduino language:
float varFloat = 1.111;

•	 char: This data type stores a character value and occupies 1 byte of memory.
When providing a value to char data types, character literals are declared
with single quotes:
char myCharacater = 'P';

•	 array: An array stores a collection of variables that is accessible by an
index number. If you are familiar with arrays in C/C++, it will be easier for
you to get started, as the Arduino language uses the same C/C++ arrays. The
following are some of the methods to initialize an array:
int myIntArray[] = {1, 2, 3, 4, 5};
int tempValues[5] = { 32, 55, 72, 75};
char msgArray[10] = "hello!";

An array can be accessed using an index number (where the index starts
from number 0):
myIntArray[0] == 1
msgArray[2] == 'e'

Getting Started with Python and Arduino

[44]

Conversions
Conversion functions are used to convert any data type value into the provided data
types. The Arduino language implements the following conversion functions that
can be utilized during programming:

•	 char(): This converts the value of any data type to the character data type
•	 byte(): This converts the value of any data type to the byte data type
•	 int(): This converts the value of any data type to the integer data type
•	 float(): This converts the value of any data type to the floating-point

number data type

As a demonstration of using these functions, check out the following example:

int myInt = 10;
float myfloat = float(myInt);

Implementation of the preceding code will create a floating-point variable, myFloat,
with value 10.0 using the integer value initialized by the myInt variable.

Functions and statements
Functions, also called subroutines or procedures, are a piece of code implemented to
do specific tasks. The Arduino language has some predefined functions and the user
can also write custom functions to implement certain program logic. These custom
functions can then be called from any part of the sketch to perform a specific task.
Functions help programmers to simplify debugging, to reduce chances for error, and
to organize coding concepts:

void blinkLED(){
// action A;
// action B;
}

The Arduino language has a set of library functions to simplify the programming
experience. Although not all of these library functions are required by an Arduino
sketch, setup() and loop() are mandatory functions and they are required to
successfully compile the sketch.

Chapter 1

[45]

The setup() function
When Arduino runs a sketch, it first looks for the setup() function. The setup()
function is used to execute important programming subroutines before the rest
of the program, such as declaring constants, setting up pins, initializing serial
communication, or initializing external libraries. When Arduino runs the program,
it executes the setup() functions only once. If you check out the Blink sketch that
we used in the previous section, you can see the initialization of the setup()
function, as displayed in the following code snippet:

void setup() {
 // initialize the digital pin as an output.
 pinMode(led, OUTPUT);
}

As you can see in our example, we used the pinMode() function to assign the role
of the LED pin in the setup() function.

The loop() function
Once Arduino has executed the setup() function, it starts iterating the loop()
function continuously. While setup() contains the initialization parameters, loop()
contains the logical parameters of your program:

void loop() {
 digitalWrite(led, HIGH);
 delay(1000);
 digitalWrite(led, LOW);
 delay(1000);
}

As you can see in the preceding code snippet from the Blink sketch, the loop()
function executes the main code that blinks the LED and repeats the process iteratively.

The pinMode() function
The pinMode() function is used to set the behavior of Arduino. As we saw in the
setup() function of the Blink sketch, the pinMode() function configures the LED
pin for OUTPUT:

pinMode(led, OUTPUT)

Here, the led variable is assigned to digital pin 13, whose mode will be changed by
the pinMode() function.

Getting Started with Python and Arduino

[46]

Working with pins
Once you are done configuring the pins that will be used by your program, you
also need help in reading the input from these pins or for sending signals to them.
Arduino provides a few specific functions to handle these scenarios:

•	 digitalWrite(): This was developed for digital I/O pins. This function sets
the pin to HIGH (5V) or LOW (0V), which are already configured as OUTPUT
using pinMode(). For example, the following line of code sets digital pin 13
to HIGH:
digitalWrite(13, HIGH);

•	 digitalRead(): Similar to digitalWrite(), this function helps you to read
the state of a digital pin that is configured as INPUT:
value = digitalRead(13);

•	 analogRead(): This function reads the value from a specific analog pin.
The value is linearly mapped between the integer value of 0 and 1023 to
represent the voltage from 0V to 5V:
value = analogRead(0);

•	 analogWrite(): This function is used to provide analog output results
at a digital pin. The technique is called PWM, and this will be explained
in Chapter 4, Diving into Python-Arduino Prototyping. It is still important to
note that this function is not designed for all digital pins, but it is only for
pins that are designated as PWM pins.

Statements
If you are familiar with any other object-oriented programming language, you must
have used statements extensively for your programs. The Arduino language uses
traditional C/C++ statements such as if/else, while, switch/case, and for to
control the flow of your program. Instead of diving deep into these statements
right now, they are described later in the book with practical examples.

Chapter 1

[47]

Summary
Alright! You have successfully completed the comparatively mundane tasks of
installing and configuring Python and the Arduino IDE. Your system, whether it is a
Mac OS X, Linux, or Windows system, is now ready for the upcoming chapters. In this
chapter, we went through the history and building blocks of Arduino. We also learned
the basics of Python programming and the Arduino language. Now, you are ready to
get your hands on real hardware and start exploring computer to hardware interfacing.
In the next chapter, we will go through the first step of interfacing, that is, connecting
Arduino to the computer using a serial interface.

Working with the
Firmata Protocol and the

pySerial Library
In the previous chapter, you learned the fundamentals of the Python programming
language and the Arduino hardware platform so that you could get started. If you
are reading this chapter directly without going through the previous chapter, it is
assumed that you have some level of expertise or working experience with these
technologies. This chapter describes two important components that are required
to bridge Arduino with Python:

•	 The Arduino Firmata protocol
•	 Python's serial library called pySerial

Although the Firmata protocol is useful to interface Arduino with Python, it can also
be used as an independent tool to develop a large variety of applications.

It is time to take your Arduino hardware out and start getting your hands dirty.
During the course of this chapter, you will require an LED, a breadboard, and a
1 kilo-ohm resistor as well as the components that you already used in the previous
chapter, that is, Arduino Uno and a USB cable.

If you are using any other variant of Arduino, you can obtain
further information about it from http://arduino.cc/en/
Guide/HomePage or the community-supported Arduino forum
that is located at http://forum.arduino.cc/.

http://arduino.cc/en/Guide/HomePage
http://arduino.cc/en/Guide/HomePage
http://forum.arduino.cc/

Working with the Firmata Protocol and the pySerial Library

[50]

Connecting the Arduino board
As mentioned in the previous chapter, this book supports all major operating systems,
and this section will provide you with steps to connect and configure the Arduino
board for these operating systems. In the previous chapter, we utilized example code
to get started with the Arduino IDE. If you were unable to successfully communicate
with Arduino by following the information given in the previous chapter, follow the
instructions provided in this section to establish a connection between your computer
and your Arduino. First, connect your Arduino board to your computer's USB port
using a USB cable and follow the steps according to your operating system.

Linux
If you are using the latest version of Ubuntu Linux, once you connect the Arduino
board and open the Arduino IDE, you will be asked to add your username to the
dailout group, as displayed in the following screenshot. Click on the Add button
and log out from the system. You don't need to restart the computer for the changes
to take effect. Log in with the same username and open the Arduino IDE.

If you don't see this dialog box, check whether you can see the Serial Port option
in the Tools menu of the Arduino IDE. It is possible that the installation of other
programs might have added your username to the dailout group already. If you
don't get the dialog box and don't have any options to select in Serial Port, execute
the following script in the terminal, where <username> is your Linux username:

$ sudo usermod -a -G dialout <username>

Chapter 2

[51]

This script will add your username to the dialout group, and it should also work for
other Linux versions. In Linux, the Arduino board mostly gets connected as /dev/
ttyACMx, where x is the integer value and depends on your physical port address.
If you are using any other distribution of Linux other than Ubuntu, you might want
to check out the proper groups associated with the Arduino serial port from the
Linux installation page (http://playground.arduino.cc/Learning/Linux) of the
Arduino website.

For the Fedora Linux distribution, add the uucp and lock
groups with the dialout group to control the serial port:
$ sudo usermod -a -G uucp,dialout,lock <username>

Mac OS X
In Mac OS X, when you connect your Arduino through a serial port, the OS configures
it as a network interface. In OS X Mavericks, once the Arduino board is connected,
open Network from System Preferences. A dialog box should appear that states that
a new network interface has been detected. Click on OK for Thunderbolt Bridge and
then click on Apply. The following screenshot displays the dialog box to add a new
network interface:

http://playground.arduino.cc/Learning/Linux

Working with the Firmata Protocol and the pySerial Library

[52]

For OS X Lion or later versions, on connecting the Arduino board, a dialog box will
appear that will ask you to add a new network interface. In this case, you will not
have to navigate to your network preferences. If you see the network interface with
the status Not connected and highlighted in red, don't worry about it as it should
work just fine.

Open the Arduino IDE and navigate to Serial Port from the Tools menu. You should
be able to see options similar to those displayed in the following screenshot. The
serial port on which the Arduino board is connected might vary according to your
OS X version and the physical port to which it is connected. Make sure that you
select a tty interface for a USB modem. As displayed in the following screenshot,
the Arduino board is connected to the serial port /dev/tty.usbmodemfd121:

Windows
The configuration of the Arduino serial port is very straightforward if you are using
Windows. When you connect your Arduino board the very first time, the operating
system will automatically install the necessary drivers by itself. Once this process is
complete, select an appropriate COM port from the Serial Port option in the menu
bar. From the main menu, navigate to Tools | Serial Port and select the COM port.

Troubleshooting
Even after following the steps mentioned earlier, if you still don't see the highlighted
Serial Port option as displayed in the following screenshot, then you have got a
problem. There can be two main reasons for this: the serial port is being used by
another program or the Arduino USB drivers are not installed properly.

If any program other than the Arduino IDE is using the specific serial port, terminate
that program and restart the Arduino IDE. Sometimes in Linux, the brltty library
conflicts with the Arduino serial interface. Remove this library, log out, and log
back in:

$ sudo apt-get remove brltty

Chapter 2

[53]

In Windows, reinstalling the Arduino IDE also works, as this process installs and
configures the Arduino USB driver again.

The Arduino board can be used by only one program at a time.
It is very import to make sure that any previously used program
or other services are not using the serial port or Arduino when
you try to use the Arduino IDE. This check will become very
important when we start using multiple programs to control
Arduino in the next section.

Assuming that you can now select the serial port in the Arduino IDE, we can go
ahead with compiling and uploading sketches to your Arduino board. The Arduino
IDE ships with preinstalled example sketches with which you can play around.
However, before we go ahead and start playing with complex examples, let's go
through the next section, which explains the Firmata protocol and also guides you
through step-by-step instructions to compile and upload a sketch.

Introducing the Firmata protocol
Before Arduino, the domain of microcontroller-based applications was limited to
hardware programmers. Arduino made it simple for developers that came from other
software fields and even for the non-coding community to develop microcontroller-
based hardware applications. Arduino consists of a simple hardware design with a
microcontroller and I/O pins to interface external devices. If one can write an Arduino
sketch that can transfer the control of the microcontroller and these pins to an external
software mechanism, then it will reduce one's efforts to upload Arduino sketches for
every modification. This process can be performed by developing such an Arduino
program that can then be controlled using a serial port. There exists a protocol called
Firmata, which does exactly that.

Working with the Firmata Protocol and the pySerial Library

[54]

What is Firmata?
Firmata is a generic protocol that allows communication between the microcontroller
and the software that is hosted on a computer. Any software from any computer host
that is capable of serial communication can communicate with the microcontroller
using Firmata. Firmata gives complete access of Arduino directly to the software
and eliminates the processes of modifying and uploading Arduino sketches.

To utilize the Firmata protocol, a developer can upload a sketch that supports
the protocol to the Arduino client as a onetime process. Afterwards, the developer
can write custom software on the host computer and perform complex tasks. This
software will provide commands via a serial port to the Arduino board that is
equipped with Firmata. He or she can keep altering the logic on the host computer
without interrupting the Arduino hardware.

The practice of writing custom Arduino sketches is still valid for standalone
applications where the Arduino board has to perform a task locally. We will
explore both these options in the upcoming chapters.

You can learn more about the Firmata protocol and its latest version
from the official website at http://www.firmata.org.

Uploading a Firmata sketch to the
Arduino board
The best way to start testing the Firmata protocol is to upload a standard Firmata
program to the Arduino board and use the testing software from the host. In this
section, we are going to demonstrate a method to upload an Arduino sketch, which
has this standard Firmata program, to the board. This is going to be the default
method to upload any sketch in the future.

Implementation of the Firmata protocol requires the latest version of the Firmata
firmware and you don't have to worry about writing it. The latest Arduino IDE
ships with a standard version of the Firmata firmware, and we recommend that
you use the latest IDE to avoid any conflict. Now, follow the following steps to
upload the program to your Arduino board:

1.	 As shown in the following screenshot, open the StandardFirmata sketch
by navigating to File | Examples | Firmata | StandardFirmata in the
Arduino IDE:

http://www.firmata.org

Chapter 2

[55]

2.	 This action will open another sketchbook in a new window with the
StandardFirmata sketch loaded in the editor. Do not modify anything
in the sketch and go ahead with the compiling process that is described
in the next step. It is important not to modify anything in the code as
the test software that we are going to use complies with the latest
unchanged firmware.

3.	 Once the StandardFirmata sketch is opened, the next step is to compile it
for your Arduino board. In the previous section, we already connected the
Arduino board to the computer and selected the proper serial port. However,
if the new sketchbook has a different configuration than that, follow the steps
from the previous section, that is, select the appropriate serial port and the
Arduino board type.

Working with the Firmata Protocol and the pySerial Library

[56]

4.	 To compile the current sketch, click on the Verify icon from the toolbar as
displayed in the following screenshot. You can also compile it by navigating
to Sketch | Verify / Compile or clicking on Ctrl + R (command + R if you are
using Mac OS X):

The compilation process should complete without any errors as we are using
default example code from the IDE itself. Now it's time to upload the sketch
to the board. Make sure that you have connected the board.

5.	 Press the upload icon in the toolbar as displayed in the following screenshot.
This action will upload the compiled code to your Arduino board:

Chapter 2

[57]

On completion, you should see the Done uploading. text in the IDE, as displayed in
the following screenshot:

Your Arduino board is now ready with the latest Firmata firmware and is waiting for
a request from your computer. Let's move on to the next section and start testing the
Firmata protocol.

Testing the Firmata protocol
In the previous chapter, we used an on-board LED at pin 13 to test the Blink program.
This time, we are going to use an external LED to get you started with the assembly
of hardware components using your Arduino board. As all the upcoming exercises
and projects will require you to interface hardware components such as sensors and
actuators to your Arduino board using a breadboard, we want you to start getting
hands-on experience with wiring these components.

Now is the time to use the LED that we asked you to get at the beginning of the
chapter. Before we start wiring the LED, let's first understand the physics of it. The
LED that you obtained should have two legs: a short one and a long one. The short
leg is connected to the cathode of the LED and it needs to be connected to the ground
via a resistor. As you can see in the following figure, we are using a 1 k-ohm resistor
to ground the cathode of the LED. The long leg, which is connected to the anode,
needs to connect to one of the digital pins of the Arduino board.

Working with the Firmata Protocol and the pySerial Library

[58]

As shown in the following figure, we have connected the anode to the digital pin
number 13. Look at the figure and wire the connection as displayed. Make sure
that you disconnect the Arduino board from the host computer to avoid any kind
of damage from static electricity.

In this example, we are going to use an LED to test some basic functionalities of
the Firmata protocol. We have already uploaded the Firmata code to the Arduino
board and we are ready to control the LED from the host computer.

The preceding wiring figure was created using an open source
tool called Fritzing. We are going to cover the Fritzing tool
comprehensively in the next chapter, as it will be our standard
software to create the wiring diagram before we perform the
actual physical wiring.

Chapter 2

[59]

There are multiple ways to communicate with the Arduino board from the host
computer using Firmata, such as writing your own program in Python using the
supported library or using the prebuilt testing software. Starting from the next
section, we are going to write our own programs to use Firmata, but at this stage,
let's use a freely available tool for testing purposes. The official Firmata website,
http://www.firmata.org, also provides test tools that you can download from the
Firmata Test Program section on the main page. The website includes a different
variant of the tool called firmata_test for different operating systems. Using the
following steps, you can test the implementation of the Firmata protocol:

1.	 Download the appropriate version of the firmata_test program to
your computer.

2.	 Now, connect your Arduino board with the LED to the host computer
using the USB cable and run the downloaded firmata_test program.
You will be able to see an empty window on the successful execution of
the program.

3.	 As displayed in the following screenshot, select the appropriate port from
the drop-down menu. Make sure to select the same port that you used to
upload the Arduino sketch.

At this point, make sure that your Arduino IDE is not connected
to the board using the same port number. As we mentioned
earlier, the serial interface grants exclusive access to only one
application at a time.

http://www.firmata.org

Working with the Firmata Protocol and the pySerial Library

[60]

4.	 Once you select the Arduino serial port, the program will load multiple
drop-down boxes and buttons with labels that contain the pin number.
You can see in the following screenshot that the program is loaded with
12 digital pins (from pin 2 to pin 13) and six analog pins (from pin 14 to
pin 19). As we are using the Arduino Uno board for our applications,
the test program only loads pins that are part of Arduino Uno. If you are
using Arduino Mega or any other board, the number of pins displayed in
the program will be according to the pins supported by that particular
variant of the Arduino board.

Chapter 2

[61]

Working with the firmata_test program on Linux
On a Linux platform, you might have to modify the property of the
downloaded file and make it executable. From the same directory,
run the following command in the terminal to make it executable:
$ chmod +x firmata_test

Once you have changed the permissions, use the following
command to run the program from the terminal:
$./firmata_test

5.	 As you can see in the program window, you have two other columns as
well as the column containing the labels. The second column in the program
lets you select the role for the appropriate pins. You can specify the role of
digital pins (in the case of Arduino Uno, from 2 to 13) as input or output. As
displayed in the following screenshot, you will see Low in the third column
as soon as you select the role of pins 2 and 3 as input pins. This is correct,
as we don't have any input connected to these pins. You can play with the
program by changing the roles and values of multiple pins.

As we have connected the LED to digital pin 13, we are not expecting
any physical changes on the board while you are playing around with
the other pins.

6.	 Now, select pin 13 as an output pin and press the Low button. This will
change the button's label to High and you will see that the LED is turned on.
By performing this action, we have changed the logic of the digital pin 13
to 1, that is, High, which translates to +5 volts at the pin. This potential will
be sufficient to light the LED. You can change the level of pin 13 back to 0
by clicking on the button again and turning it to Low. This will change the
potential back to 0 volts.

Working with the Firmata Protocol and the pySerial Library

[62]

The program that we used here is perfect to test the fundamentals, but it cannot
be used to write complex applications using the Firmata protocol. In real-world
applications, we really need to execute the Firmata methods using custom code,
which in addition to switching the LED status also includes the implementation
of smart logic and algorithms, interfacing other components, and so on. We are
going to use Python for these applications, starting from the next section.

Getting started with pySerial
You learned about the Firmata protocol in the previous section. This is an easy
and quick way to start working with Arduino. Although the Firmata protocol helps
you to develop complex applications from your computer without modifying the
Arduino sketch, we are not ready to start coding these applications.

The first step towards writing these complex applications is to provide an interface
between your programming environment and the Arduino via a serial port. In this
book, you will be required to establish a connection between the Python interpreter
and Arduino for every project that we develop.

Writing your own library, which includes implementation of functions and
specifications to enable communication on a serial protocol, is an inconvenient
and time consuming process. We are going to avoid that by using an open source,
well maintained Python library called pySerial.

The pySerial library enables communication with Arduino by encapsulating the
access for the serial port. This module provides access to the serial port settings
through Python properties and allows you to configure the serial port directly
through the interpreter. pySerial will be the bridge for any future communication
between the Python and Arduino. Let's start by installing pySerial.

Installing pySerial
We installed the package manager Setuptools in Chapter 1, Getting Started with Python
and Arduino. If you have skipped that chapter and are not sure about it, then please
go through that section. If you already know how to install and configure Python
library packages, skip these installation steps.

Chapter 2

[63]

From this stage, we are going to use only pip-based installation commands due to
their obvious advantages that were described in Chapter 1, Getting Started with Python
and Arduino:

1.	 Open a terminal or command prompt and execute the following command:
> pip install pyserial

The Windows operating system does not require administrator-level user
access to execute the command, but you should have root privileges to
install Python packages in Unix-based operating systems, as follows:
$ sudo pip install pyserial

If you want to install the pySerial library from source, download the
archive from http://pypi.python.org/pypi/pyserial, unpack it,
and from the pySerial directory, run the following command:

$ sudo python setup.py install

2.	 If Python and Setuptools are installed properly, you should see the
following output at the command line after the installation is complete:
.
.
Processing dependencies for pyserial
Finished processing dependencies for pyserial

This means that you have successfully installed the pySerial library
and you are good to go to the next section.

3.	 Now, to check whether or not pySerial is successfully installed,
start your Python interpreter and import the pySerial library using
the following command:
>>> import serial

Playing with a pySerial example
Your Arduino board has the Firmata sketch StandardFirmata from the previous
example. To play with pySerial, we are not going to use the Firmata protocol
anymore. Instead, we are going to use another simple Arduino sketch that
implements serial communication that can be captured on the Python interpreter.

http://pypi.python.org/pypi/pyserial

Working with the Firmata Protocol and the pySerial Library

[64]

Sticking with the promise of not performing any coding for the Arduino sketch,
let's select an example sketch from the Arduino IDE:

1.	 As displayed in the following screenshot, navigate to File | Examples | 01.
Basics | DigitalReadSerial.

2.	 Compile and upload the program to the Arduino board using the same
method that was described earlier. Select the appropriate serial port on
which your Arduino is connected and make a note of it. As you can see
in the sketch, this simple Arduino code transmits the status of digital
pin 2 that is on the serial port with a baud rate of 9600 bps.

3.	 Without disconnecting the Arduino board from your computer, open the
Python interpreter. Then, execute the following commands on the Python
interpreter. Make sure that you replace /dev/ttyACM0 with the port name
that you noted down earlier:
>>> import serial
>>> s = serial.Serial('/dev/ttyACM0',9600)
>>> while True:
 print s.readline()

4.	 On execution, you should get repeated 0 values in the Python interpreter.
Press Ctrl + C to terminate this code. As you can see, the Arduino code will
keep sending messages due to the loop function that was used in the sketch.
We don't have anything connected to pin 2, and because of this, we are
getting the status 0, that is, Low.

Chapter 2

[65]

5.	 If you know what you are doing, you can connect any digital sensor to pin 2
and run the script again to see the changed status.

In the preceding Python script, the serial.Serial method interfaces and opens
the specified serial port, while the readline() method reads each line from this
interface, terminated with \n, that is, the newline character.

The newline character is a special character that signifies the end
of a line of text. It is also known as End of Line (EOL) or Line
feed + Carriage Return (LF + CR). Learn more about the newline
character at http://en.wikipedia.org/wiki/Newline.

Bridging pySerial and Firmata
In the Firmata section, we already learned how useful it is to use the Firmata protocol
instead of constantly modifying the Arduino sketch and uploading it for simple
programs. pySerial is a simple library that provides a bridge between Arduino and
Python via a serial port, but it lacks any support for the Firmata protocol. As mentioned
earlier, the biggest benefit of Python can be described in one sentence, "There is a
library for that." So, there exists a Python library called pyFirmata that is built on
pySerial to support the Firmata protocol. There are a few other Python libraries
that also support Firmata, but we will only be focusing on pyFirmata in this chapter.
We will be extensively using this library for various upcoming projects as well:

1.	 Let's start by installing pyFirmata just like any other Python package by
using Setuptools:
$ sudo pin install pyfirmata

In the previous section, while testing pySerial, we uploaded the
DigitalSerialRead sketch to the Arduino board.

2.	 To communicate using the Firmata protocol, you need to upload the
StandardFirmata sketch again, just as we did in the Uploading a Firmata
sketch to the Arduino board section.

3.	 Once you have uploaded this sketch, open the Python interpreter and
execute the following script. This script imports the pyfirmata library
to the interpreter. It also defines the pin number and the port.
>>> import pyfirmata
>>> pin= 13
>>> port = '/dev/ttyACM0'

http://en.wikipedia.org/wiki/Newline

Working with the Firmata Protocol and the pySerial Library

[66]

4.	 After this, we need to associate the port with the microcontroller board type:
>>> board = pyfirmata.Arduino(port)

While executing the previous script, two LEDs on the Arduino will flicker
as the communication link between the Python interpreter and the board
gets established. In the Testing the Firmata protocol section, we used a prebuilt
program to turn an LED on and off. Once the Arduino board is associated
to the Python interpreter, these functions can be performed directly from
the prompt.

5.	 You can now start playing with Arduino pins. Turn on the LED by executing
the following command:
>>> board.digital[pin].write(1)

6.	 You can turn off the LED by executing the following command. Here, in
both commands, we set the state of digital pin 13 by passing values 1 (High)
or 0 (Low):
>>> board.digital[pin].write(0)

7.	 Similarly, you can also read the status of a pin from the prompt:
>>> board.digital[pin].read()

If we combined this script in an executable file with a .py extension, we can have
a Python program that can be run directly to control the LED rather than running
these individual scripts on a terminal. Later, this program can be extended to
perform complex functions without writing or changing the Arduino sketch.

Although we are running individual scripts at the Python prompt,
we will be going through the process of creating Python executable
files in the next chapter.

Summary
By introducing the Firmata library, we avoided writing any custom Arduino
sketches in this chapter. We will continue this practice during the remaining part of
this book and will only use or make custom sketches when required. In this chapter,
you interacted with the Arduino board by making the LED blink, which is the easiest
way to get started on a hardware project. Now it's time for your first project, where
we are also going to make some more LEDs blink. One might ask the question that if
we have already done it, then why do we need another project to make LEDs blink?
Let's find out.

The First Project – Motion-
triggered LEDs

In the preceding chapter, you learned the basics of Python-Arduino interfacing.
We went through some exercises to provide hands-on experience with a useful
Arduino protocol, Firmata, and the Python library. Now, it's time for your first
'Python + Arduino' project.

We will start this chapter by discussing the project goals and the required components
to design the software flow and the hardware layout for the project. Just like any
other microcontroller-based hardware project, you can use code and implement the
entire logic of your project on Arduino itself. However, the goal of this book is to help
you to utilize Python in such a way that you can simplify and extend your hardware
projects. Although we will be using a hybrid approach with a Python program
assisted by an Arduino sketch in the upcoming chapters, we would like you to get
familiar with both ways of programming. As this is your first experience of building a
hardware project, the chapter provides you with two different programming methods
for the project: just using an Arduino sketch and using a Python program with the
Firmata protocol on Arduino. The method with the Arduino sketch is included so that
you get the complete experience with the Arduino components such as I/O pins and
serial communication.

The First Project – Motion-triggered LEDs

[68]

Motion-triggered LEDs – the project
description
When you start learning any programming language, in most cases, you will be
writing code to print 'Hello World!'. Meanwhile, in hardware projects, the majority
of tutorials begin by helping a user to write the code to blink an LED. These exercises
or projects are useful for developers to get started with the language, but mostly,
they do not carry any importance towards real-world applications. However, we
don't want to overwhelm you with a complex and sophisticated project that might
require you to have a good amount of domain knowledge.

While working with the Firmata protocol in the previous chapter, we already blinked
an LED on the Arduino board. To keep the tradition alive (of having a blinking LED
as a first major project) and also build excitement towards the project, let's put a twist
in the blinking LED project. In this project, we will blink two different LEDs, but
instead of performing these actions in a random manner, we will do it for events that
are measured using a motion sensor. Although the difficultly level of the project is
simple since it is your first project, it carries real-world application value and can be
used as a simple application in your day-to-day life.

The project goal
The project goal can be described in one sentence as follows: "Generate an alert using
a red LED for any detected motion and display the normal condition using a green
LED." In comprehensive list of goals, you will have to perform the following tasks to
satisfy the mentioned project goal:

•	 Detect any motion in the environment as an event using a passive infrared
(PIR) sensor

•	 Perform a blink action using a red LED for this event
•	 Otherwise, perform a blink action using a green LED
•	 Keep the system in loop after the action has been performed and wait for the

next event

The project can be implemented as a DIY application or as part of other projects with
minor modifications. The following are some examples where the concepts from this
project can be utilized:

•	 As a DIY security system, to monitor movement in a room
(http://www.instructables.com/id/PIR-Sensor-Security/)

http://www.instructables.com/id/PIR-Sensor-Security/

Chapter 3

[69]

•	 In smart home applications, it can be used to automatically turn off lights
if no one is present (http://www.instructables.com/id/Arduino-Home-
Monitor-System/)

•	 It can be used in automatic garage door opener applications with the support
of additional hardware components and appropriate code

•	 In DIY wildlife recording projects, it can be used to trigger a camera instead
of an LED when any motion is detected (http://www.instructables.com/
id/Motion-triggered-camera/)

The list of components
In the previous chapter, we only used an LED for programming using Arduino,
an Arduino USB cable, and a computer. The major hardware component required
for this project is a PIR motion sensor. You will also need an additional LED.
We recommend that you have a different colored LED than the one that you
already have. The description of the necessary components is as follows:

•	 PIR sensors: These are widely used as motion detection sensors for
DIY projects. They are small, inexpensive, consume less power, and are
compatible with hardware platforms such as Arduino. A PIR sensor uses
a pair of pyroelectric sensors that detect infrared radiation. If there is no
motion, the output of these sensors cancels each other out. Any movement in
the environment will produce different levels of infrared radiation by these
pyroelectric sensors and the difference will trigger an output that is HIGH (+5
volts). We will be using the PIR sensor that is sold by SparkFun, and you can
obtain it from https://www.sparkfun.com/products/8630. The PIR sensor
comes equipped with the required printed circuit board (PCB). It has range
of up to 20 feet (6 meters), which is sufficient for the project. The following
image displays the PIR sensor available on the SparkFun website:

Source: Sparkfun Inc.

http://www.instructables.com/id/Arduino-Home-Monitor-System/
http://www.instructables.com/id/Arduino-Home-Monitor-System/
http://www.instructables.com/id/Motion-triggered-camera/
http://www.instructables.com/id/Motion-triggered-camera/
https://www.sparkfun.com/products/8630

The First Project – Motion-triggered LEDs

[70]

•	 LEDs: We recommend that you use green and red LEDs for the project. If they
are unavailable, you can use any two LEDs with different colors.

•	 Wires, resistors, and the breadboard: You will require a bunch of wires and
a breadboard to complete the connections. As a best practice, have at least
three different colors of wire connectors to represent power, ground, and
signal. You will also need two 220 ohm and one 10 kilo-ohm pull resistors.

•	 The Arduino board: The Arduino Uno board is sufficient for the project
requirements. You can also use Arduino Mega or any other Arduino board
for this project. The project requires only three I/O pins and any available
Arduino board is equipped with more than three I/O pins.

•	 A USB cable: You will need a USB cable to upload the Arduino code and
perform serial communication with the Arduino board.

•	 A computer: We have already configured a computer with Python and the
Arduino IDE for your favorite operating system in the previous chapters.
You will need this computer for the project. Make sure that you have
all the software components that we installed and configured in the
previous chapters.

The software flow design
The first step, before jumping to work on any hardware system, is to design the
project flow using logic. We recommend that you have your project sketched as a
flowchart to better understand the layout of the components and the flow of the
code. The following diagram shows the flow of the project where you can see that
the project runs in loops once motion is detected and the appropriate LED actions
are performed:

Chapter 3

[71]

As you can see, the program logic starts by detecting the state of the PIR sensor and
performs the appropriate actions accordingly. With a single Arduino instruction, you
can only turn the LED on or off. To perform the blinking operation, we will need to
repeatedly perform the turning-on and turning-off actions with a time delay between
the actions. We will also insert a delay between the execution of each successive loop
so that the PIR sensor output can settle down. Note that we will use the same flow
when writing the code for both the programming methods.

The hardware system design
Designing a diagram for your software flow helps you to write the program and
also assists you in identifying actions and events for the project. The process of
hardware system design includes circuit connections, schematic design, simulation,
verification, and testing. This design process provides a detailed understanding of
the project and the hardware components. It also helps in preliminary verification
and testing of the project architecture. Before we jump to the hardware design
process of this project, let's get ourselves familiar with the helpful tools.

The First Project – Motion-triggered LEDs

[72]

Introducing Fritzing – a hardware prototyping
software
You are not required to design the hardware system for this project. By and large,
in this book, the hardware system designs will be provided, as the primary focus
of the book is on programming rather than hardware design.

If you are interested in system design or rapid prototyping of the hardware
components, the open source software tool used for this purpose is called Fritzing.
The schematics for your projects can be designed using Fritzing and it can be
obtained from http://fritzing.org/download/.

Fritzing is a community-supported electronic design automation software initiative
for designers, artists, and hobbyists. It lets you convert your hardware sketch from
paper to software as a circuit diagram. Fritzing also provides you with a tool to
create PCB layouts from your designs. Fritzing extensively supports Arduino and
other popular open source DIY hardware platforms. You can explore Fritzing via
built-in example projects.

Install and run Fritzing. The following screenshot shows one of the default projects
that are displayed after opening Fritzing:

http://fritzing.org/download/

Chapter 3

[73]

As you can see, a toolbox containing virtual hardware components is located to
the right of the opened window. The main editing space, located in the center,
lets the user drag and drop components from the toolbox and also allows the
user to complete connections between these components. You can learn more
about the features provided by Fritzing and go through some hands-on tutorials
at http://fritzing.org/learning/.

Working with the breadboard
Once you are familiar with Fritzing, you have the flexibility to create your own
circuits, or you can always use the Fritzing files provided with the book. However,
there is another challenge, that is, porting your virtual circuit to a physical one.
One of the fundamental components used by electronics projects that let you
implement connections and build the physical circuit is the breadboard.

The breadboard contains intelligently organized metal rows hidden under an
assembly containing plastic holes. This assembly helps the user to connect wires
without going through any soldering work. It is really easy to insert and remove
wires or electronics components through the holes. The following figure shows
a small breadboard with a couple of components and a few wire connections:

Find out more about breadboards and the tutorials to use them at
http://learn.sparkfun.com/tutorials/how-to-use-a-
breadboard.

http://fritzing.org/learning/
http://learn.sparkfun.com/tutorials/how-to-use-a-breadboard
http://learn.sparkfun.com/tutorials/how-to-use-a-breadboard

The First Project – Motion-triggered LEDs

[74]

A breadboard mostly has two types of connection strips: terminal strips and power
rails. As displayed in the preceding figure, terminal strips are vertical columns with
electrically shorted holes. In simple words, once you connect any component to one
of the terminal strips, the component will be electrically connected to each hole in the
column. The columns of terminal strips are separated by the Dual in-line Package
(DIP) support gap. (DIP is a common housing for electronics components.) In the
same column, terminal strips above and below the DIP support gap are electrically
independent. Meanwhile, the power rails are shorted horizontally throughout the
entire row of the breadboard. The power rails are mostly used to connect positive
and ground connections from the power supply, so it can be distributed easily to
all components.

History of breadboards
In the early years of electronics, people used actual breadboards
(that were used to cut bread) to connect their large components with
just nails and wires. Once electronics components started getting
smaller, the board to assemble circuits also became better. The term
stuck through this evolution, and we still call the modern boards
breadboards. If you are interested, you can check out http://www.
instructables.com/id/Use-a-real-Bread-Board-for-
prototyping-your-circui/, which provides instructions to
assemble a circuit using the original breadboards.

Designing the hardware prototype
It's time to collect the hardware components mentioned earlier and start building
the system. The next figure shows the circuit for the project that has been developed
using Fritzing. If you have prior experience of working with circuit assembly,
go ahead and connect the components as displayed in the figure:

http://www.instructables.com/id/Use-a-real-Bread-Board-for-prototyping-your-circui/
http://www.instructables.com/id/Use-a-real-Bread-Board-for-prototyping-your-circui/
http://www.instructables.com/id/Use-a-real-Bread-Board-for-prototyping-your-circui/

Chapter 3

[75]

If this is your first experience of working with sensors and the breadboard, use the
following steps to complete the circuit assembly:

1.	 Connect VCC (+5V) and ground from the Arduino to the breadboard.
2.	 Connect the anode (long lead) of the red LED to digital pin 12 of the Arduino

board. Connect the cathode (short lead) of the red LED to ground with 220
ohm resistors.

3.	 Connect the anode (long lead) of the green LED to digital pin 13 of the
Arduino board. Connect the cathode (short lead) of the green LED to
ground with 220 ohm resistors.

4.	 Connect VDD of the PIR sensor to VCC on the breadboard. Use the same
wire color to represent the same category of connections. This will greatly
help in troubleshooting the circuit.

5.	 Connect the signal (middle pin) of the PIR sensor to Arduino digital pin 7
with a 10 kilo-ohm pull-up resistor.

The First Project – Motion-triggered LEDs

[76]

The majority of experts prefer a schematic diagram instead of the prototype
diagram that we used previously. Schematic diagrams are useful when you are
using compatible components instead of the exact components from the prototype
diagram. The following is a schematic diagram of the electronics circuit that we
designed earlier. This diagram is also obtained using Fritzing:

Your system is now ready to run the Arduino program. As we will be using the
same hardware for both the programming methods, you are almost done working
with electronics unless you encounter a problem. Just to make sure that everything
is connected perfectly, let's check out these connections in the next section.

Note that pull-up resistors are used to make sure that the output
signal from a PIR sensor settles at the expected logic level.

Chapter 3

[77]

Testing hardware connections
Once the circuit connections are complete, you can go directly to the programming
sections. As a best practice, we recommend that you verify the circuit connections
and check the sensor's status. We are assuming that your Arduino board is already
equipped with the StandardFirmata sketch that we discussed in the previous chapter.
Otherwise, refer to the previous chapter and upload the StandardFirmata sketch to
your Arduino board.

The best way to verify our circuit implementation is to use the Firmata test program
that we used in the previous chapter. According to the project setup, the PIR sensor
provides event inputs to Arduino pin 7. In the test program, change the type of pin
7 to Input and wave your hand over the sensor, and you should be able to see the
status of the pin as High, as displayed in the following screenshot:

The First Project – Motion-triggered LEDs

[78]

Check the LED connections by setting up pins 12 and 13 as output pins and toggling
the buttons to set the status of the pins. If you see the LEDs blinking while you are
toggling the button, then your connections are working perfectly.

If you cannot successfully perform these checks, verify and repeat the design steps.

Method 1 – using a standalone Arduino
sketch
As we discussed in the previous chapters, a project can be implemented by creating
project-specific native Arduino code or by using a Python-Arduino hybrid approach.

The native Arduino sketches are useful in applications where negligible or no
communication with a computer system is required. Although this type of standalone
project enables continuous operation in the absence of serial connectivity, it is difficult
to keep updating and uploading an Arduino sketch for minor modifications.

If you look at the various applications of this project, you will notice that only a
few of them require the project to be implemented as a standalone system that just
detects motion and blinks LEDs. This type of system can be easily implemented by
a simple Arduino sketch.

The project setup
Before we go ahead with the project, make sure that you have the following things
in place:

•	 The hardware components are set up and are functioning correctly
•	 Your Arduino is connected to the computer using a USB cable
•	 Your computer has the Arduino IDE and you can access the connected

Arduino board through the IDE

The Arduino sketch
This section describes the Arduino code for the project. Before we get into a
step-by-step description of the code, let's first follow these steps to run the project:

1.	 Open the Arduino IDE.
2.	 From the File menu, open a new sketchbook.

Chapter 3

[79]

3.	 Copy the following Arduino code to the sketch and save it:
int pirPin = 7; //Pin number for PIR sensor
int redLedPin = 12; //Pin number for Red LED
int greenLedPin = 13; //Pin number for Green LED

void setup(){
 Serial.begin(9600);
 pinMode(pirPin, INPUT);
 pinMode(redLedPin, OUTPUT);
 pinMode(greenLedPin, OUTPUT);
}
void loop(){
 int pirVal = digitalRead(pirPin);
 if(pirVal == LOW){ //was motion detected
 blinkLED(greenLedPin, "No motion detected.");
 } else {
 blinkLED(redLedPin, "Motion detected.");
 }
}
// Function which blinks LED at specified pin number
void blinkLED(int pin, String message){
 digitalWrite(pin,HIGH);
 Serial.println(message);
 delay(1000);
 digitalWrite(pin,LOW);
 delay(2000);
}

4.	 Compile and upload the sketch to the Arduino board.

Now, you have completed your project with the first programming method and
successfully deployed it to your hardware. It should be running the designed
algorithm to detect motion events and perform the blink action.

As your project is functioning properly, it's time to understand the code. Like any
other Arduino program, the code has two mandatory functions: setup() and
loop(). It also has a custom function, blinkLED(), for a specific action that will
be explained later.

The First Project – Motion-triggered LEDs

[80]

The setup() function
As you can see in the preceding code snippet, we assigned variables to the Arduino
pin at the beginning of the program. In the setup() function, we configured these
variables to be defined as input or output pins:

pinMode(pirPin, INPUT);
pinMode(redLedPin, OUTPUT);
pinMode(greenLedPin, OUTPUT);

Here, pirPin, redLedPin, and greenLedPin are digital pins 7, 12, and 13 respectively.
In the same function, we also configured the Arduino board to provide serial
connectively at the baud rate of 9600 bps:

Serial.begin(9600);

The loop() function
In the loop() function, we are repeatedly monitoring the input from the pirPin
digital pin to detect motion. The output of this pin is HIGH when motion is detected
and LOW otherwise. This logic is implemented using a simple if-else statement.
When this condition is satisfied, the function calls a user-defined function,
blinkLED(), to perform the appropriate action on the LEDs.

User-defined functions are a very important aspect of any programming language.
Let's spend some time learning how you can create your own Arduino functions to
perform various actions.

Working with custom Arduino functions
Functions are used when a segment of code is repeatedly executed to perform the
same action. A user can create a custom function to organize the code or perform
reoccurring actions. To successfully utilize a custom function, a user needs to call
them from mandatory Arduino functions such as loop(), setup(), or any other
function that leads to these mandatory functions:

return-type function_name (parameters){
 # Action to be performed
 Action_1;
 Action_2;
 Return expression;
}

Chapter 3

[81]

In the preceding Arduino function framework, return-type can be any Arduino
data type such as int, float, string, and so on, or void if the code is not returning
anything. The following is the custom function that we used in our project code:

void blinkLED(int pin, String message){
 digitalWrite(pin,HIGH);
 Serial.println(message);
 delay(1000);
 digitalWrite(pin,LOW);
 delay(2000);
}

In our project, the blinkLED() function is not retuning any value when it is called
from the loop() function. Hence, return-type is void. When calling the function,
we pass the pin number and a message as parameters:

blinkLED(greenLedPin, "No motion detected.");

These parameters are then utilized in the performed action (writing a message on a
serial port and setting up the LED status) by the blinkLED() function. This function
also introduces a delay to perform the blink action by using the delay() function.

Testing
We verified the designed system in the Testing hardware connection section using
manual inputs via the Firmata test program. As we have now implemented the
software design, we need to verify that the project is performing objective tasks
autonomously and repeatedly.

With the USB port connected to the computer, open the serial monitoring tool
from the Arduino IDE by navigating to Tools | Serial Monitor or by pressing
Ctrl + Shift + M. You should start seeing a message similar to the one displayed
in the following screenshot on the Serial Monitor window:

The First Project – Motion-triggered LEDs

[82]

While writing the blinkLED() function to perform actions, we included an action
to write a string via a serial port. Move your hand over the PIR sensor in such a way
that the PIR sensor can detect motion. This event should trigger the system to blink
the red LED and display a string, Motion detected, on the serial monitor. Once you
stay steady and avoid any motion for a while, you will be able to see the green LED
blinking until the next movement gets detected via the PIR sensor.

Troubleshooting
Troubleshooting is an important process if anything goes awry. These are a few
example problems and the troubleshooting steps for them:

•	 Serial output is correct, but there are no blinking LEDs:
°° Check the LED connections on the breadboard

•	 The LED blinks, but there is no serial output:
°° Check the port on which the serial monitor is configured
°° Check whether the baud rate in the serial monitor is correct (9600 bps)

•	 There is no serial output and no blinking LEDs:
°° Check the PIR sensor connection and make sure that you are getting

signal from the PIR sensor
°° Check your Arduino code
°° Check power and ground connections

Method 2 – using Python and Firmata
In the previous chapter, we discussed the benefits of using Python programming
that is assisted by Firmata over using native Arduino sketches. The Python-based
programming approach provides tangible experience when performing any
algorithmic or parametric changes. In this section, we are going to explore these
benefits and also learn important Python programming paradigms.

The project setup
Let's make sure that you have done the following before we go ahead with
Python programming:

•	 Made sure that the hardware components are set up, as described in the
system design

Chapter 3

[83]

•	 Connected the Arduino to your computer using a USB cable
•	 Uploaded the StandardFirmata sketch back to Arduino
•	 Made sure that you have Python and the Python packages

(pySerial and pyFirmata) installed on your computer
•	 Obtained a text editor to write Python codes

Working with Python executable files
In the previous chapters, we explored Python programming using the interactive
Python interpreter. However, when working with large projects, it is very difficult
to keep using the Python interactive interpreter for repetitive tasks. Like other
programming languages, the preferred method is to create Python executable files
and run them from the terminal.

Python executable files carry the .py extension and are formatted as plain text.
Any text editor can be used to create these files. The popular editors used to create
and edit Python files are Notepad++, nano, vi, and so on. This list also includes
the default editor that is shipped with the Python setup files called IDLE. You can
use the editor of your choice, but make sure that you save the files with the .py
extension. Let's copy the following lines of code in a new file and save it as test.py:

#!/usr/bin/python
a = "Python"
b = "Programming"
print a + " "+ b

To run this file, execute the following command on the terminal where the test.py
file is saved:

$ python test.py

You should be able to see the text Python Programming printed on the terminal.
As you can see, the file starts with #!/usr/bin/python, which is the default Python
installation location. By adding this line in your Python code, you can directly execute
a Python file from the terminal. In Unix-based operating systems, you need to make
the test.py file executable through the following command:

$ chmod +x test.py

Now, as your file is executable, you can directly run the file using the
following command:

$./test.py

The First Project – Motion-triggered LEDs

[84]

For Unix-based operating systems, an alternative way to provide
the Python interpreter location is to use the following line of code
instead of the one that we used:

#!/usr/bin/env python

In Windows operating systems, Python files automatically
become executable because of the .py extension. You can just
run the program files by double-clicking and opening them.

The Python code
As you now know how to create and run Python code, let's create a new Python
file with the following code snippet and run it. Make sure to change the value
of the port variable according to your operating system, as described in the
previous chapter:

#!/usr/bin/python

Import required libraries
import pyfirmata
from time import sleep

Define custom function to perform Blink action
def blinkLED(pin, message):
 print message
 board.digital[pin].write(1)
 sleep(1)
 board.digital[pin].write(0)
 sleep(1)

Associate port and board with pyFirmata
port = '/dev/ttyACM0'
board = pyfirmata.Arduino(port)

Use iterator thread to avoid buffer overflow
it = pyfirmata.util.Iterator(board)
it.start()

Define pins
pirPin = board.get_pin('d:7:i')
redPin = 12
greenPin = 13

Chapter 3

[85]

Check for PIR sensor input
while True:
 # Ignore case when receiving None value from pin
 value = pirPin.read()
 while value is None:
 pass

 if value is True:
 # Perform Blink using custom function
 blinkLED(redPin, "Motion Detected")

 else:
 # Perform Blink using custom function
 blinkLED(greenPin, "No motion Detected")

Release the board
board.exit()

You have successfully created and executed your first Arduino project using Python.
There are two main programming components in this code: pyFirmata methods and
the Python function to perform the blinking action. The program repeatedly detects
the motion events and performs the blinking action. In the previous section, this
problem was solved by using the default Arduino function loop(). In this method,
we have implemented the while statement to keep the program in loop until the code
is manually terminated by the user. You can terminate the code using the keyboard
combination Ctrl + C.

Working with pyFirmata methods
As part of working with the Arduino board and the Firmata protocol, you have to
start by initializing the Arduino board as a variable. The pyFirmata method that
lets a user assign the board to a Python variable is as follows:

board = pyfirmata.Arduino(port)

Once the value of the variable is assigned, you can perform various actions such as
reading a pin or sending a signal to the pin using that variable. To assign a role to
a pin, the get_pin() method is used. In the following line of code, d represents the
digital pin, 7 is the pin number, and i represents that the type of pin is an input pin:

pirPin = board.get_pin('d:7:i')

The First Project – Motion-triggered LEDs

[86]

Once a pin and its role are assigned to a variable, that variable can be used to read or
write values on the pin:

Value = pirPin.read()

One can directly write data to a specific pin, as described in following code:

board.digital[pin].write(1)

Here, the write(1) method sends a HIGH signal to the pin. We will be learning
additional pyFirmata methods in the upcoming chapters.

Working with Python functions
A Python function begins with the def keyword followed by the function name and
the input parameters or arguments. The function definition ends with a colon (:) and
it is indented afterwards. The return statement terminates the function. It also passes
the expression to the place where the function is called. If the return statement is kept
without an expression, it is considered to pass the return value None:

def function_name(parameters):
 action_1
 action_2
 return [expression]

The preceding framework can be used to create custom functions to perform
recurring tasks. In our project, we have the blinkLED(pin, message) function to
perform the blinking LED action. This function sends 1 (HIGH) and 0 (LOW) value
to the specified digital pin while also printing message on the terminal. It also
introduces delay to simulate the blinking action:

def blinkLED(pin, message):
 print message
 board.digital[pin].write(1)
 sleep(1)
 board.digital[pin].write(0)
 sleep(1)

Chapter 3

[87]

Testing
You can start testing the project as soon as you run the Python code on the terminal.
If everything goes according to design, you should be able to see the following output
in the terminal:

You should be able to see the Motion Detected string on the terminal when any
motion is detected by the PIR sensor. If you find any abnormal behavior in the
output, then please check the Python code.

A benefit of using Python is that minor modifications such as changing the blinking
speed or swapping roles of the LEDs can be performed by just changing the Python
code, without dealing with the Arduino or the electrical circuit.

Troubleshooting
When you run the project, you might require troubleshooting for the following
probable problems:

•	 Serial output is correct, but there are no blinking LEDs:
°° Check the LED connections on the breadboard

•	 The LED blinks, but there is no serial output:
°° Check whether you have successfully installed the standard

Firmata sketch to the board

The First Project – Motion-triggered LEDs

[88]

•	 There is no serial output and no blinking LEDs:
°° Check whether any program other than Python is using the serial

port. Close any program that might be using that serial port,
including the Arduino IDE.

°° Verify all the circuit connections.
°° Make sure that the port name specified in the Python code is correct.

Summary
Between the two programming methods that you learned in this chapter, the
method that uses just an Arduino sketch represents the traditional paradigm of
programming a microcontroller. While this method is simple to implement, it lacks
the extensiveness that is achieved by Python-Arduino interfacing. Although we will
use extensive Arduino coding in all the projects beginning from now, exercises and
projects will have Python-Arduino interfacing as the primary way of programming.

Starting from the next chapter, we are going to explore the additional aspects of
Python programming that can extend the usability of an Arduino-based hardware
project while keeping the programming difficulty levels to a minimum. We will
begin with Python-Arduino prototyping and then create graphical interfaces for
user interaction, before stopping for the second project that utilizes these concepts.

Diving into Python-Arduino
Prototyping

On the completion of the first project, you successfully started Python-Arduino
interfacing. We also interfaced multiple hardware components, that is, motion
sensor and LEDs with Arduino via digital pins. During the project, you learned
more about the Firmata protocol while utilizing simple Python methods that
helped you to establish a connection between your Arduino board and the Python
program. When you are working on complex projects, you need more than basic
methods to implement the different features that are required by the projects and
their associated electronics components. This chapter is designed to give you a
comprehensive experience of interfacing so that you can start working on hard
problems from the next chapter onwards. We have described various interfacing
protocols at the Python-Arduino and Arduino-to-components levels. This chapter
also includes practical examples for these protocols with appropriate code and
circuit diagrams. In this chapter, we are going to cover the following main topics:

•	 Introduction to Prototyping
•	 Detailed description of various pyFirmata methods to port Arduino

functionalities into Python
•	 Python-Arduino interfacing examples using Firmata for basic electronic

components such as the potentiometer, the buzzer, the DC motor, and
the servomotor

•	 Introduction to the inter-integrated circuit (I2C) protocol and prototyping
examples for the I2C components such as the temperature sensor (TMP102)
and the light sensor (BH1750)

Diving into Python-Arduino Prototyping

[90]

Prototyping
Just for a moment, let's step back and look at the project that we built in the previous
chapter. The project had a very simple goal and we were able to develop it quite
comfortably. However, the project is certainly not ready to be a consumer product
since it doesn't have significant functionalities and most importantly, it is not a
robust product that can be repeatedly produced as it is. What you can tell about your
current project is that it is a DIY project for personal use or just a model that can be
developed further to be a great product.

Now, if you are looking to develop a commercial product or just a DIY project that
is really robust and scalable, you must consider starting it by making a model first.
At this stage, you need to envision the product with the required features that need
to be developed and the number of components that are required to deploy these
features. Prototyping is basically a rapid way to create a working model of your
envisioned idea before developing it into a fully functional project or product. The
proof of concept prototype that is developed during this prototyping process lets
you to identify the feasibility of your idea, and in some cases, it helps you to explore
the potential of your project. The prototyping or functional model-making process is
essential for any industry and not just for electronics.

In the electronics domain, prototyping can be used at the very first stage of
interfacing components to a computer, instead of directly spending a significant
amount of resources for the schematic design, PCB manufacturing, and developing
the complete code base. This stage helps you to identify major flaws in your circuit
design and check the mutual compatibility of the selected components.

Fortunately, Arduino and the existing software support around Arduino have really
simplified electronics' prototyping. In the upcoming sections, we will go through
various helper functions and interfacing exercises to help you proceed with your
own projects. These examples or templates are designed in such a fashion that they
can be used as a blueprint for larger projects.

Before diving into these prototyping examples, let's understand two different
abstractions of interfacing that we are going to explore in this chapter:

•	 Interfacing Arduino with Python: We have learned the easiest method of
Python-Arduino interfacing using the Firmata protocol. On the Arduino board,
the Firmata protocol is implemented using the StandardFirmata firmware,
while on the Python end, we used the Firmata libraries, pyFirmata or pyMata,
for Python. Another Python-Arduino interfacing method includes the use of
simple but nonstandard serial commands using the custom Arduino sketch
and the pySerial library in the Python program. It is also possible to use a
computer network to establish communication between Python and Arduino,
which is covered later in the book.

Chapter 4

[91]

•	 Interfacing electronic components with Arduino: The second interfacing
abstraction is associated with Arduino and the physical components. As we
already did, various electronics components can be simply interfaced with
the Arduino board using digital or analog pins. These components deal with
either digital or analog signals. A few digital pins on the Arduino board
support PWM communication for specific hardware devices. The other
alternative interfacing methods include I2C and serial peripheral interface
(SPI) communication. The I2C method is comprehensively explained in the
final section of this chapter.

Working with pyFirmata methods
The pyFirmata package provides useful methods to bridge the gap between Python
and Arduino's Firmata protocol. Although these methods are described with specific
examples, you can use them in various different ways. This section also provides a
detailed description of a few additional methods that were not used in the previous
project and lists the missing features.

Setting up the Arduino board
To set up your Arduino board in a Python program using pyFirmata, you need to
specifically follow the steps that we have covered. We have distributed the entire
code that is required for the setup process into small code snippets in each step.
While writing your code, you will have to carefully use the code snippets that are
appropriate for your application. You can always refer to the example Python files
containing the complete code. Before we go ahead, let's first make sure that your
Arduino board is equipped with the latest version of the StandardFirmata program
and is connected to your computer:

1.	 Depending upon the Arduino board that is being utilized, start by importing
the appropriate pyFirmata classes to the Python code. Currently, the inbuilt
pyFirmata classes only support the Arduino Uno and Arduino Mega boards:
from pyfirmata import Arduino

In the case of Arduino Mega, use the following line of code:
from pyfirmata import ArduinoMega

Diving into Python-Arduino Prototyping

[92]

2.	 Before we start executing any methods that are associated with handling
pins, you need to properly set up the Arduino board. To perform this
task, we have to first identify the USB port to which the Arduino board is
connected and assign this location to a variable in the form of a string object.
For Mac OS X, the port string should approximately look like this:
port = '/dev/cu.usbmodemfa1331'

For Windows, use the following string structure:
port = 'COM3'

In the case of the Linux operating system, use the following line of code:
port = '/dev/ttyACM0'

The port's location might be different according to your computer
configuration. You can identify the correct location of your Arduino USB
port by using the Arduino IDE, as described in Chapter 2, Working with the
Firmata Protocol and the pySerial Library.

3.	 Once you have imported the Arduino class and assigned the port to a
variable object, it's time to engage Arduino with pyFirmata and associate
this relationship to another variable:
board = Arduino(port)

Similarly, for Arduino Mega, use this:
board = ArduinoMega(port)

4.	 The synchronization between the Arduino board and pyFirmata requires
some time. Adding sleep time between the preceding assignment and the
next set of instructions can help to avoid any issues that are related to serial
port buffering. The easiest way to add sleep time is to use the inbuilt Python
method, sleep(time):

from time import sleep
sleep(1)

The sleep() method takes seconds as the parameter and a floating-point
number can be used to provide the specific sleep time. For example, for 200
milliseconds, it will be sleep(0.2).

At this point, you have successfully synchronized your Arduino Uno or Arduino
Mega board to the computer using pyFirmata. What if you want to use a different
variant (other than Arduino Uno or ArduinoMega) of the Arduino board?

Chapter 4

[93]

•	 Any board layout in pyFirmata is defined as a dictionary object. The
following is a sample of the dictionary object for the Arduino board:
arduino = {
 'digital' : tuple(x for x in range(14)),
 'analog' : tuple(x for x in range(6)),
 'pwm' : (3, 5, 6, 9, 10, 11),
 'use_ports' : True,
 'disabled' : (0, 1) # Rx, Tx, Crystal
}

•	 For your variant of the Arduino board, you have to first create a custom
dictionary object. To create this object, you need to know the hardware layout
of your board. For example, an Arduino Nano board has a layout similar to a
regular Arduino board, but it has eight instead of six analog ports. Therefore,
the preceding dictionary object can be customized as follows:
nano = {
 'digital' : tuple(x for x in range(14)),
 'analog' : tuple(x for x in range(8)),
 'pwm' : (3, 5, 6, 9, 10, 11),
 'use_ports' : True,
 'disabled' : (0, 1) # Rx, Tx, Crystal
}

•	 As you have already synchronized the Arduino board earlier, modify the
layout of the board using the setup_layout(layout) method:
board.setup_layout(nano)

This command will modify the default layout of the synchronized Arduino
board to the Arduino Nano layout or any other variant for which you have
customized the dictionary object.

Configuring Arduino pins
Once your Arduino board is synchronized, it is time to configure the digital and
analog pins that are going to be used as part of your program. Arduino board
has digital I/O pins and analog input pins that can be utilized to perform various
operations. As we already know, some of these digital pins are also capable of PWM.

Diving into Python-Arduino Prototyping

[94]

The direct method
Now before we start writing or reading any data to these pins, we have to first
assign modes to these pins. In the Arduino sketch-based approach that we used in
the previous chapter, we used the pinMode function, that is, pinMode(11, INPUT)
for this operation. Similarly, in pyFirmata, this assignment operation is performed
using the mode method on the board object as shown in the following code snippet:

from pyfirmata import Arduino
from pyfirmata import INPUT, OUTPUT, PWM

Setting up Arduino board
port = '/dev/cu.usbmodemfa1331'
board = Arduino(port)

Assigning modes to digital pins
board.digital[13].mode = OUTPUT
board.analog[0].mode = INPUT

The pyFirmata library includes classes for the INPUT and OUTPUT modes, which are
required to be imported before you utilized them. The preceding example shows the
delegation of digital pin 13 as an output and the analog pin 0 as an input. The mode
method is performed on the variable assigned to the configured Arduino board
using the digital[] and analog[] array index assignment.

The pyFirmata library also supports additional modes such as PWM and SERVO. The
PWM mode is used to get analog results from digital pins, while the SERVO mode helps
a digital pin to set the angle of the shaft between 0 to 180 degrees. The PWM and SERVO
modes are explained with detailed examples later in this chapter. If you are using
any of these modes, import their appropriate classes from the pyFirmata library.
Once these classes are imported from the pyFirmata package, the modes for the
appropriate pins can be assigned using the following lines of code:

board.digital[3].mode = PWM
board.digital[10].mode = SERVO

Chapter 4

[95]

In electronics, PWM is a signal modulation technique that is greatly used
to provide controlled amount of power to components. While dealing
with digital signals, the PWM technique is used to obtain analog results
by utilizing square waves and controlling the width of the signal.
As we already know, the digital pins of the Arduino board can only
have two states, 5V (HIGH) and 0V (LOW). One can generate square
pulses by controlling the switching pattern between HIGH and LOW
and thus generate the pulse. By changing the width of these pulses,
you can simulate any voltage between 0V and 5V. As you can see in the
following diagram, we have a square wave with 25 percent width of
the duty cycle. It means that we are simulating 0.25 * 5V = 1.25V for the
period of that duty cycle:

The Arduino language supports PWM using the analogWrite()
function, where the voltage range between 0V and 5V is linearly scaled
for values between 0 and 255. For example, 50 percent duty cycle
(simulation of 2.5V) translates to a value of 127, which can be coded in
Arduino as analogWrite(13,127). Here, the number 13 represents
the digital pin that supports PWM on the Arduino Uno board. Similarly,
a 20 percent duty cycle (1V) translates to analogWrite(13,64).

Assigning pin modes
The direct method of configuring pins is mostly used for a single line of execution
calls. In a project containing a large code and complex logic, it is convenient to assign
a pin with its role to a variable object. With an assignment like this, you can later
utilize the assigned variable throughout the program for various actions, instead of
calling the direct method every time you need to use that pin. In pyFirmata, this
assignment can be performed using the get_pin(pin_def) method:

from pyfirmata import Arduino
port = '/dev/cu.usbmodemfa1311'

Diving into Python-Arduino Prototyping

[96]

board = Arduino(port)

pin mode assignment
ledPin = board.get_pin('d:13:o')

The get_pin() method lets you assign pin modes using the pin_def string
parameter, 'd:13:o'. The three components of pin_def are pin type, pin number,
and pin mode separated by a colon (:) operator. The pin types (analog and digital)
are denoted with a and d respectively. The get_pin() method supports three
modes, i for input, o for output, and p for PWM. In the previous code sample,
'd:13:o' specifies the digital pin 13 as an output. In another example, if you want
to set up the analog pin 1 as an input, the parameter string will be 'a:1:i'.

Working with pins
Now you have configured your Arduino pins, it's time to start performing actions
using them. Two different types of methods are supported while working with pins:
reporting methods and I/O operation methods.

Reporting data
When pins get configured in a program as analog input pins, they start sending
input values to the serial port. If the program does not utilize this incoming data, the
data starts getting buffered at the serial port and quickly overflows. The pyFirmata
library provides the reporting and iterator methods to deal with this phenomenon.

The enable_reporting() method is used to set the input pin to start reporting. This
method needs to be utilized before performing a reading operation on the pin:

board.analog[3].enable_reporting()

Once the reading operation is complete, the pin can be set to disable reporting:

board.analog[3].disable_reporting()

In the preceding example, we assumed that you had already set up the Arduino
board and configured the mode of the analog pin 3 as INPUT.

The pyFirmata library also provides the Iterator() class to read and handle data
over the serial port. While working with analog pins, we recommend that you
start an iterator thread in the main loop to update the pin value to the latest one. If
the iterator method is not used, the buffered data might overflow your serial port.
This class is defined in the util module of the pyFirmata package and needs to be
imported before it is utilized in the code:

Chapter 4

[97]

from pyfirmata import Arduino, util
Setting up the Arduino board
port = 'COM3'
board = Arduino(port)
sleep(5)

Start Iterator to avoid serial overflow
it = util.Iterator(board)
it.start()

Manual operations
As we have configured the Arduino pins to suitable modes and their reporting
characteristic, we can start monitoring them. The pyFirmata library provides
the write() and read() methods for the configured pins.

The write() method
The write() method is used to write a value to the pin. If the pin's mode is set to
OUTPUT, the value parameter is a Boolean, that is, 0 or 1:

board.digital[pin].mode = OUTPUT
board.digital[pin].write(1)

If you have used an alternative method of assigning the pin's mode, you can use the
write() method as follows:

ledPin = board.get_pin('d:13:o')
ledPin.write(1)

In the case of the PWM signal, the Arduino accepts a value between 0 and 255 that
represents the length of the duty cycle between 0 and 100 percent. The pyFirmata
library provides a simplified method to deal with the PWM values as instead of
values between 0 and 255, you can just provide a float value between 0 and 1.0.
For example, if you want a 50 percent duty cycle (2.5V analog value), you can
specify 0.5 with the write() method. The pyFirmata library will take care of the
translation and send the appropriate value, that is, 127, to the Arduino board via
the Firmata protocol:

board.digital[pin].mode = PWM
board.digital[pin].write(0.5)

Similarly, for the indirect method of assignment, you can use some code similar to
the following snippet:

pwmPin = board.get_pin('d:13:p')
pwmPin.write(0.5)

Diving into Python-Arduino Prototyping

[98]

If you are using the SERVO mode, you need to provide the value in degrees between
0 and 180. Unfortunately, the SERVO mode is only applicable for direct assignment of
the pins and will be available in future for indirect assignments:

board.digital[pin].mode = SERVO
board.digital[pin].write(90)

The read() method
The read() method provides an output value at the specified Arduino pin. When
the Iterator() class is being used, the value received using this method is the latest
updated value at the serial port. When you read a digital pin, you can get only one of
the two inputs, HIGH or LOW, which will translate to 1 or 0 in Python:

board.digital[pin].read()

The analog pins of Arduino linearly translate the input voltages between 0 and +5V
to 0 and 1023. However, in pyFirmata, the values between 0 and +5V are linearly
translated into the float values of 0 and 1.0. For example, if the voltage at the analog
pin is 1V, an Arduino program will measure a value somewhere around 204, but you
will receive the float value as 0.2 while using pyFirmata's read() method in Python.

Additional functions
Besides the method that has already been described, the pyFirmata library also
provides some utility functions for additional customization, which are as follows:

•	 servo_config(pin,min_pulse=544,max_pulse=2400,angle=0): This
method helps to set up the SERVO mode with further customization such as
the minimum pulse value, maximum pulse value, and starting angle. One
can set the initial angle of the servomotor using the angle parameter.

•	 pass_time(seconds): This method provides a functionality similar to that
found in the default Python's default method sleep() that is provided by
the time module. However, the pass_time function provides a non-blocking
timeout in seconds.

•	 get_firmata_version(): This function returns a tuple that contains the
version of the Firmata protocol from the Arduino board:
board.get_firmata_version()

•	 exit(): We recommend that you disconnect the Arduino board from
pyFirmata once you have completed running your code. This will free the
serial port, which can be then utilized by other programs:
board.exit()

Chapter 4

[99]

Upcoming functions
The pyFirmata library is currently under development and it continuously receives
updates to add and improve various methods. Although most of the native Arduino
methods are available in the pyFirmata library via the Firmata protocol, there are
few functions that are still missing or under development and they are as follows:

•	 pulseIn/pulseOut: These native Arduino functions wait for the Arduino
pin to achieve the specified value. The waiting period is returned in
microseconds. This method is widely used by Ping (ultrasonic distance
measurement) sensors. Implementation of this method using pyFirmata
requires major changes to the standard Firmata protocol.

•	 shiftIn/shiftOut: These functions shift a byte of data in or out, one bit at
a time. The pyFirmata library lacks supports for these functions and can be
implemented using the various Python programming tricks.

Prototyping templates using Firmata
The goal of this section is to provide prototyping templates while also explaining
various Python methods and programming techniques. It tries to cover some of the
most popular sensors with coding examples that are used by DIY Arduino projects.
This section is designed to utilize the Firmata protocol to implement these Python
programs. It also includes various Python programming paradigms such as working
with indefinite loops, creating custom functions, working with random numbers,
acquiring manual inputs from prompt, and so on. These prototyping templates are
designed in such a way that they can be easily included in large projects or they can
be blueprints for a larger project that can be developed around them. You learned
about the pyFirmata package comprehensively in the previous section and we will
only utilize those pyFirmata functions in the upcoming examples. An alternative
Python library that supports the Firmata protocol is covered later in the chapter.

Potentiometer – continuous observation from
an analog input
A potentiometer is a variable resistor that can be controlled using a knob. It has
three terminals out of which two of them are Vref and ground, while the third one
provides a variable output. The output of the potentiometer varies between the
supplied voltages, according to the position of the knob. In Arduino, you can connect
the potentiometer with +5V and the ground pins of the board to provide the supply
voltage. When the variable terminal is interfaced with the Arduino analog input, this
voltage values translates between 0 and 1023 respectively. In the case of pyFirmata,
the value of the analog observation translates between 0 and 1.

Diving into Python-Arduino Prototyping

[100]

This coding template containing the potentiometer can be applied to projects in
which external manual control to a system is required. The potentiometer output that
translates to the analog input of Arduino can be used to control an actuator such as a
motor or an LED. In some cases, the input can also be used to control the flow of the
program by applying its values to a variable.

Connections
Connect the output of the potentiometer to analog pin A0 as shown in the following
diagram. Complete the circuit by connecting Vref and the ground terminals of the
potentiometers to +5V and the ground of the Arduino board respectively:

The Python code
Assuming that you already have the StandardFirmata firmware uploaded to the
Arduino board, you are required to run a Python code on your computer to complete
its interfacing with the potentiometer. A Python code template with the name
potentiometer.py to help you get started with this example is located in the code
bundle of this book, which can be downloaded from https://www.packtpub.com/
books/content/support/1961. Let's open this file to understand the program. As
you can see, we are using the pyFirmata library with other Python modules such as
time and os:

https://www.packtpub.com/books/content/support/1961
https://www.packtpub.com/books/content/support/1961

Chapter 4

[101]

from pyfirmata import Arduino, util
from time import sleep
import os

In the second step of the program, we are initializing the Arduino board and starting
the Iterator() function over it:

port = 'COM3'
board = Arduino(port)
sleep(5)
it = util.Iterator(board)
it.start()

Once the board has been initialized, we need to assign a role to the analog pin, 0, as
it is going to be used as an input pin. We are using the get_pin() method to assign a
role to the analog pin, 0:

a0 = board.get_pin('a:0:i')

Now, as part of the main program, we need to continuously monitor the output
of the potentiometer at the pin, a0, that we just defined. We are using the while
statement to create an indefinite loop for the script that will read and print the analog
input. The problem with this indefinite while loop is that the program will not close
properly when it is interrupted and it will not release the board by executing the
board.exit() method. To avoid this, we will use another control statement from the
Python programming paradigm, called try/except:

try:
 while True:
 p = a0.read()
 print p
except KeyboardInterrupt:
 board.exit()
 os._exit()

Using this statement, the program will keep running the while loop until the
keyboard interruption occurs, which is Ctrl + C, and the program will execute the
script under the except statement. This includes releasing the board using board.
exit() and existing the program using the os._exit() method. In summary, the
program will keep printing the output of the potentiometer until someone presses
Ctrl + C to interrupt the program.

Diving into Python-Arduino Prototyping

[102]

The try/except statement provides a very efficient way to capture
exceptions in Python. It is advisable to utilize this statement throughout
the development process to cleverly debug your programs. You can
learn about Python errors and exceptions from the following links:

•	 https://docs.python.org/2/reference/compound_
stmts.html#try

•	 https://docs.python.org/2/tutorial/errors.html

Buzzer – generating sound alarm pattern
Digital buzzer sensors are used in various applications that require alarm
notifications. These sensors produce sound when they are supplied with a digital
HIGH value (that is, +5V), which can be provided by using Arduino digital pins.
Similar to the LED example in the previous chapter, they are very easy to interface
with Arduino. However, rather than performing a simple digital output, we are
implementing Python programming tricks to generate different sound patterns and
produce various sound effects. The same code template can be also used to produce
different LED blink patterns.

An analog digital buzzer can be found at http://www.amazon.
com/Arduino-Compatible-Speaker-arduino-sensors/dp/
B0090X0634.

Connections
As displayed in the following circuit diagram, connect the VCC and the ground
of the sensor board to 5V and the ground pin of the Arduino board respectively.
Connect the signal pin of the sensor to the digital pin 2 via the 220-ohm resistor.
You can use any digital pin to connect the buzzer. Just make sure that you update
the Python code to reflect the pin that you have selected.

https://docs.python.org/2/reference/compound_stmts.html#try
https://docs.python.org/2/reference/compound_stmts.html#try
https://docs.python.org/2/tutorial/errors.html
http://www.amazon.com/Arduino-Compatible-Speaker-arduino-sensors/dp/B0090X0634
http://www.amazon.com/Arduino-Compatible-Speaker-arduino-sensors/dp/B0090X0634
http://www.amazon.com/Arduino-Compatible-Speaker-arduino-sensors/dp/B0090X0634

Chapter 4

[103]

The Python code
In the code example, two different sound patterns are generated using arrays of time
delays. To perform these actions, we are going to implement a custom Python function
that will take the pin number, the recurrence time, and the pattern number as input.
Before we jump to explain the code, let's open the program file, buzzerPattern.py,
from the code folder. In the beginning of the code, you can find the Python function,
buzzerPattern() that will be called from the main program with appropriate
options. As this function is the core of the entire program, let's try to understand it.
The function contains two hardcoded pattern arrays, pattern1 and pattern2. Each
contains the on and off time for the buzzer for a second, which is the duty cycle of the
pattern. For example, in pattern1, 0.8 represents the time the buzzer needs to be
on and 0.2 represents the opposite. The function will repeat this buzzer pattern for
recurrence times that is specified by the function argument. Once the for loop with
the value of recurrence is started, the function will check for the pattern number
from the function argument and execute the pattern. We are using the flag variable to
alternatively use elements of the pattern array to control the buzzer. Once the entire
recurrence loop is complete, we will turn off the buzzer completely again, if it is on,
and safely disengage the board using the exit() method:

def buzzerPattern(pin, recurrence, pattern):
 pattern1 = [0.8, 0.2]
 pattern2 = [0.2, 0.8]
 flag = True

Diving into Python-Arduino Prototyping

[104]

 for i in range(recurrence):
 if pattern == 1:
 p = pattern1
 elif pattern == 2:
 p = pattern2
 else:
 print "Please enter valid pattern. 1 or 2."
 exit
 for delay in p:
 if flag is True:
 board.digital[pin].write(1)
 flag = False
 sleep(delay)
 else:
 board.digital[pin].write(0)
 flag = True
 sleep(delay)
 board.digital[pin].write(0)
 board.exit()

If you want to change the time delays or implement a totally different
pattern, you can play around with the pattern arrays.

The remaining part of the program is relatively simple as it contains code for importing
libraries and initializing the Arduino board. Once the board is initialized, we will
execute the buzzerPattern() function with the input argument, (2, 10, 1). This
argument will ask the function to play pattern1 10 times on the pin number 2:

from pyfirmata import Arduino
from time import sleep

port = '/dev/cu.usbmodemfa1331'
board = Arduino(port)
sleep(5)

buzzerPattern(2, 10, 1)

Chapter 4

[105]

DC motor – controlling motor speed using
PWM
DC motors are widely used in robotics applications. They are available in a wide
range of voltage specifications, depending upon the application. In this example, we
are utilizing a 5V DC motor because we want to supply the power using the Arduino
board itself. As the Arduino digital pin can only have two states, that is, HIGH (+5V) or
LOW (0V), it is impossible to control the speed of the motor using just the OUTPUT mode.
As a solution, we are going to implement the PWM mode via digital pins that are capable
of supporting PWM. While using pyFirmata, pins configured with the PWM mode take
any float input values between 0 and 1.0, which represent 0V and 5V respectively.

Connections
Depending upon the load, DC motors can sometimes draw large amounts of current
and harm the Arduino board. To avoid any damage to the Arduino board due to any
large accidental current draw, we will use a transistor as a switch, which only uses a
small amount of current to control the large amount of current in the DC motor. To
complete the circuit connection as displayed in the following diagram, you will need
an NPN transistor (TIP120, N2222, or a similar one), one diode (1N4001 or similar
one) and a 220-ohm resistor with your DC motor. Connect the base of the transistor
to the digital pin 3 that also supports the PWM mode. Connect the remaining
components as displayed in the diagram:

Diving into Python-Arduino Prototyping

[106]

To find out more about transistor terminals (collector, emitter, and
base) and to associate transistor pins with their respective terminals,
you can refer to their datasheets or the following websites:

•	 http://en.wikipedia.org/wiki/Transistor

•	 http://www.onsemi.com/pub/Collateral/
TIP120-D.PDF

•	 http://www.mouser.com/ds/2/68/PN2221-
2222A-11964.pdf

The Python code
The Python recipe with the name dcMotorPWM.py for a DC motor is located in the
code bundle of this book, which can be downloaded from https://www.packtpub.
com/books/content/support/1961. Open the Python file to further understand
the usage of PWM to control the speed of the DC motor. The custom function,
dcMotorControl(), takes motor speed and time duration as input parameters as
described in the following code snippet:

def dcMotorControl(r, deltaT):
 pwmPin.write(r/100.00)
 sleep(deltaT)
 pwmPin.write(0)

Just like the previous examples, we are using a similar code to import the necessary
library and initialize the Arduino board. After initialization, we are assigning the
mode of the digital pin 3 as PWM, which can be seen from the utilization of the get_
pin('d:3:p') method. This code reflects the indirect mode of pin mode assignment
that we learned in the previous section:

Set mode of pin 3 as PWM
pwmPin = board.get_pin('d:3:p')

As part of collecting manual inputs from the user, we are running a combination of
the try/except statement (to release the board on exit) and the while statement (to
obtain continuous inputs from the user). The code template introduces the input()
method to obtain custom values (motor speed and duration to run the motor) from
Python's interactive terminal. Once these values are obtained from the user, the
program calls the dcMotorControl() function to perform the motor action:

try:
 while True:
 r = input("Enter value to set motor speed: ")
 if (r > 100) or (r <= 0):
 print "Enter appropriate value."
 board.exit()

http://en.wikipedia.org/wiki/Transistor
http://www.onsemi.com/pub/Collateral/TIP120-D.PDF
http://www.onsemi.com/pub/Collateral/TIP120-D.PDF
http://www.mouser.com/ds/2/68/PN2221-2222A-11964.pdf
http://www.mouser.com/ds/2/68/PN2221-2222A-11964.pdf
https://www.packtpub.com/books/content/support/1961
https://www.packtpub.com/books/content/support/1961

Chapter 4

[107]

 break
 t = input("How long? (seconds)")
 dcMotorControl(r, t)
except KeyboardInterrupt:
 board.exit()
 os._exit

LED – controlling LED brightness using PWM
In the previous template, we controlled the speed of DC motor using PWM. One
can also control the brightness of the LED using the same method. Instead of asking
the user to input brightness, we are going to use the Python module random in this
template. We will use this module to generate a random number between 1 and 100,
which will be later used to write that value on the pin and randomly change the
brightness of the LED. This randint() function is a really useful feature provided
by the random module and it is widely used in testing prototypes by rapidly sending
random signals.

The randint() function takes the randint(startValue,
endValue) syntax and returns the random integer between
the range established by startValue and endValue.

Connections
Like we used in the previous chapter's project, we will need a pull-up resistor to
connect the LED with the Arduino pin. As displayed in the following diagram,
simply connect the anode of the LED (longer leg) to the digital pin 11 via one
220-ohm resistor and connect the cathode (shorter leg) to the ground:

Diving into Python-Arduino Prototyping

[108]

It is important to note that the digital pin 11 on Arduino Uno is also capable of
performing PWM along with digital pins 3, 5, 6, 9, and 10.

The Python code
The Python code with the title ledBrightnessPWM.py for this exercise is
located in the code bundle of this book, which can be downloaded from
https://www.packtpub.com/books/content/support/1961. Open the file to
explore the code. As you can see in this code template, a float value between 0
and 1.0 is randomly selected before passing it to the PWM pin. This method
generates random LED brightness for a given amount of time. This practice can
be used to generate random input samples for various other testing projects.

As you can see, the first few lines of the code import the necessary libraries and
initialize the board. Although the board variable, /dev/cu.usbmodemfa1311, is
selected for Mac OS X, you can use your operating system's specific variable name
in the following code snippet. You can obtain more information about choosing
this variable name from the Setting up the Arduino board section at the beginning
of this chapter.

from pyfirmata import Arduino, INPUT, PWM
from time import sleep
import random

port = '/dev/cu.usbmodemfa1311'
board = Arduino(port)
sleep(5)

In this example, we are utilizing the direct method of pin mode assignment.
As you can see in the following code snippet, the digital pin 11 is being assigned
to the PWM mode:

pin = 11
board.digital[pin].mode = PWM

Once the pin mode is assigned, the program will run a loop using the for statement
while randomly generating an integer number between 0 and 100, and then send
the appropriate PWM value to the pin according to the generated number. With the
execution of this, you will be able to see the LED randomly changing its brightness
for approximately 10 seconds:

for i in range(0, 99):
 r = random.randint(1, 100)
 board.digital[pin].write(r / 100.00)
 sleep(0.1)

https://www.packtpub.com/books/content/support/1961

Chapter 4

[109]

Once you are done with the loop, you need to safely disengage the Arduino board
after turning off the LED one last time. It is a good practice to turn off the LED or any
connected sensor at the end of the program before exiting the board, to prevent any
sensor from running accidentally:

board.digital[pin].write(0)
board.exit()

If you want to homogenously glow the LED instead of randomly
changing its brightness, replace the code in the for loop with the
following code snippet. Here, we are changing the PWM input to
the incrementing variable, i, instead of the random variable, r:

for i in range(0, 99):

 board.digital[pin].write(i / 100.00)

 sleep(0.1)

Servomotor – moving the motor to a
certain angle
Servomotors are widely used electronic components in applications such as pan-tilt
camera control, robotic arms, mobile robot movements, and so on where precise
movement of the motor shaft is required. This precise control of the motor shaft is
possible because of the position sensing decoder, which is an integral part of the
servomotor assembly. A standard servomotor allows the angle of the shaft to be set
between 0 and 180 degrees. The pyFirmata library provides the SERVO mode that can
be implemented on every digital pin. This prototyping exercise provides a template
and guidelines to interface a servomotor with Python.

Diving into Python-Arduino Prototyping

[110]

Connections
Typically, a servomotor has wires that are color-coded red, black, and yellow
respectively to connect with the power, ground, and signal of the Arduino board.
Connect the power and the ground of the servomotor to 5V and the ground of the
Arduino board. As displayed in the following diagram, connect the yellow signal
wire to the digital pin 13:

If you want to use any other digital pin, make sure that you change the pin number
in the Python program in the next section. Once you have made the appropriate
connections, let's move on to the Python program.

The Python code
The Python file consisting of this code is named servoCustomAngle.py and
is located in the code bundle of this book, which can be downloaded from
https://www.packtpub.com/books/content/support/19610. Open this file
in your Python editor. Like other examples, the starting section of the program
contains the code to import the libraries and set up the Arduino board:

from pyfirmata import Arduino, SERVO
from time import sleep

Setting up the Arduino board
port = 'COM5'
board = Arduino(port)

https://www.packtpub.com/books/content/support/19610

Chapter 4

[111]

Need to give some time to pyFirmata and Arduino to synchronize
sleep(5)

Now that you have Python ready to communicate with the Arduino board, let's
configure the digital pin that is going to be used to connect the servomotor to the
Arduino board. We will complete this task by setting the mode of pin 13 to SERVO:

Set mode of the pin 13 as SERVO
pin = 13
board.digital[pin].mode = SERVO

The setServoAngle(pin,angle) custom function takes the pins on which the
servomotor is connected and the custom angle as input parameters. This function
can be used as a part of various large projects that involve servos:

Custom angle to set Servo motor angle
def setServoAngle(pin, angle):
 board.digital[pin].write(angle)
 sleep(0.015)

In the main logic of this template, we want to incrementally move the motor shaft
in one direction until it achieves the maximum achievable angle (180 degrees) and
then move it back to the original position with the same incremental speed. In the
while loop, we will ask the user to provide input to continue this routine, which will
be captured using the raw_input() function. The user can enter the character y to
continue this routine or enter any other character to abort the loop:

Testing the function by rotating motor in both direction
while True:
 for i in range(0, 180):
 setServoAngle(pin, i)
 for i in range(180, 1, -1):
 setServoAngle(pin, i)

 # Continue or break the testing process
 i = raw_input("Enter 'y' to continue or Enter to quit): ")
 if i == 'y':
 pass
 else:
 board.exit()
 break

While working with all these prototyping examples, we used the direct communication
method by using digital and analog pins to connect the sensors with Arduino. Now,
let's get familiar with another widely used communication method between Arduino
and the sensors, which is called I2C communication.

Diving into Python-Arduino Prototyping

[112]

Prototyping with the I2C protocol
In the previous section, sensors or actuators were directly communicating with
Arduino via digital, analog, or PWM pins. These methods are utilized by a large
number of basic, low-level sensors and you will be widely using them in your
future Arduino projects. Beside these methods, there is a wide variety of popular
sensors that are based on integrated circuit (IC), which require different ways of
communication. These IC-based advanced sensors utilize I2C- or SPI bus-based
methods to communicate with the microcontroller. As we are going to use I2C-based
sensors in the upcoming projects, the section will only cover the I2C protocol and
practical example to understand the protocol in a better way. Once you understand
the fundamentals of the I2C protocol, you can learn the SPI protocol very quickly.

You can learn more about SPI protocol and the supported Arduino
SPI library from the following links:

•	 http://arduino.cc/en/Reference/SPI

•	 http://www.instructables.com/id/Using-an-
Arduino-to-Control-or-Test-an-SPI-electro/

In 1982, the Philips company needed to find out a simple and efficient way to
establish communication between a microcontroller and the peripheral chips on
TV sets, which led to the development of the I2C communication protocol. The I2C
protocol connects the microcontroller or the CPU to a large number of low-speed
peripheral devices using just two wires. Examples of such peripheral devices or
sensors include I/O devices, A/D converters, D/A converters, EEPROM, and
many similar devices. I2C uses the concept of master-slave devices, where the
microcontroller is the master and the peripherals are the slave devices.
The following diagram shows an example of the I2C communication bus:

http://arduino.cc/en/Reference/SPI
http://www.instructables.com/id/Using-an-Arduino-to-Control-or-Test-an-SPI-electro/
http://www.instructables.com/id/Using-an-Arduino-to-Control-or-Test-an-SPI-electro/

Chapter 4

[113]

As displayed in the preceding diagram, the master device contains two bidirectional
lines: Serial Data Line (SDA) and Serial Clock Line (SCL). In the case of Arduino
Uno, the analog pins 4 and 5 provide interfaces for SDA and SCL. It is important to
note that these pin configurations will change with different variants of the Arduino
board. The peripheral sensors that are working as slaves connect to these lines,
which are also supported by the pull resistors. The master device is responsible
for generating the clock signal on the SCL and initializing communication with the
slaves. The slave devices receive the clock and respond to the commands sent by the
master device.

The order of the slave devices is not important as the master device communicates
with the slaves using their part address. To initialize the communication, the master
sends one of the following types of message on the bus with the specific part address:

•	 A single message in which data is written on the slave
•	 A single message in which data is read from the slave
•	 Multiple messages in which first data is requested from the slave and then

the received data is read

To support I2C protocol in Arduino programming, the Arduino IDE comes equipped
with a default library called Wire. This library can be imported to your Arduino
sketch by adding the following line of code at the beginning of your program:

#include <Wire.h>

Diving into Python-Arduino Prototyping

[114]

To initialize I2C communication, the Wire library uses a combination of the
following functions to write data on the slave device:

Wire.beginTransmission(0x48);
Wire.write(0);
Wire.endTransmission();

These slave devices are differentiated using unique part addresses. As you can see in
the preceding example, 0x48 is the part address of a connected slave device.

The Wire library also provides the Wire.read() and Wire.requestFrom() functions
to read and request data from the slave devices. These functions are explained in
detail in the next section.

You can learn more about the I2C protocol and the Wire
library from the following links:

•	 http://www.instructables.com/id/I2C-
between-Arduinos/

•	 http://arduino.cc/en/reference/wire

Arduino examples for I2C interfacing
In order to practice prototyping exercises for the I2C protocol, let's utilize two popular
I2C sensors that detect temperature and ambient light in the environment. As the first
step towards understanding I2C messaging, we will work with Arduino sketches for
I2C interfacing, and later, we will develop similar functionalities using Python.

Arduino coding for the TMP102 temperature sensor
TMP102 is one of the widely used digital sensors to measure ambient temperature.
TMP102 provides better resolution and accuracy compared to traditional analog
temperature sensors such as LM35 or TMP36. The following is an image of TMP102:

http://www.instructables.com/id/I2C-between-Arduinos/
http://www.instructables.com/id/I2C-between-Arduinos/
http://arduino.cc/en/reference/wire

Chapter 4

[115]

The previous image shows a breakout board with the available pins for the TMP102
sensor. Please keep in mind that the TMP102 sensor that you obtain might have
a different pin layout compared to the one displayed in the image. It is always
advisable to check the datasheet of your sensor breakout board before making any
connections. As you can see in the image, the TMP102 sensor supports the I2C
protocol and is equipped with SDA and SCL pins. Connect analog pins 4 and 5 of
your Arduino Uno board to the SDA and SCL pins of the TMP102 sensor. Also,
connect +5V and the ground as displayed in the following diagram. In this example,
we are using the Arduino Uno board as the master and TMP102 as the slave
peripheral, where the part address of TMP102 is 0x48 in hex:

You can obtain the TMP102 sensor breakout board from SparkFun
Electronics at https://www.sparkfun.com/products/11931.
The datasheet of this board can be obtained at
https://www.sparkfun.com/datasheets/Sensors/
Temperature/tmp102.pdf.

https://www.sparkfun.com/products/11931
https://www.sparkfun.com/datasheets/Sensors/Temperature/tmp102.pdf
https://www.sparkfun.com/datasheets/Sensors/Temperature/tmp102.pdf

Diving into Python-Arduino Prototyping

[116]

Now, connect your Arduino board to your computer using a USB cable and create
a new sketch in the Arduino IDE using the following code snippet. Once you have
selected the appropriate serial port and type of board in the Arduino IDE, upload
and run the code. If all the steps are performed as described, on execution, you
will be able to see the temperature reading in Celsius and Fahrenheit in the Serial
Monitor window:

#include <Wire.h>
int partAddress = 0x48;

void setup(){
 Serial.begin(9600);
 Wire.begin();
}

void loop(){

 Wire.requestFrom(partAddress,2);
 byte MSB = Wire.read();
 byte LSB = Wire.read();

 int TemperatureData = ((MSB << 8) | LSB) >> 4;

 float celsius = TemperatureData*0.0625;
 Serial.print("Celsius: ");
 Serial.println(celsius);

 float fahrenheit = (1.8 * celsius) + 32;
 Serial.print("Fahrenheit: ");
 Serial.println(fahrenheit);

 delay(500);
}

In the preceding code snippet, the Wire.requestFrom(partAddress,2) function
requests two bytes from the slave TMP102. The slave sends data bytes to the master,
which get captured by the Wire.read() function and are stored as two different bits:
most significant bit (MSB) and least significant bit (LSB). These bytes are converted
into an integer value, which is then converted into the actual Celsius reading by
multiplying the incremental fraction of the TMP102 sensor that is obtained from the
datasheet. TMP102 is one of the easiest I2C sensors to interface with Arduino as the
sensor values can be obtained via a simple I2C request method.

Chapter 4

[117]

Arduino coding for the BH1750 light sensor
BH1750 is a digital light sensor that measures the amount of visible light in a given
area. Although various DIY projects utilize simple photocells as a cheap alternative,
the BH1750 sensor is known for higher resolution and accuracy in a wide range of
applications. The ambient light, also called luminous flux or lux, is measured in unit
lumen. The BH1750 sensor supports I2C communication with part address 0x23,
with 0x5C as the secondary address if you are using multiple BH1750 sensors. The
following is an image of a typical breakout board consisting of BH1750:

Connect the SDA and SCL pins of the BH1750 breakout board to analog pins 4 and
5 of the Arduino Uno board, as displayed in the following circuit diagram. Also,
complete the +5V and ground connections as displayed in the following diagram:

Diving into Python-Arduino Prototyping

[118]

In the previous example, we used functions from the Wire library to complete the
I2C communication. Although BH1750 is a simple and convenient I2C sensor, in the
case of a sensor with multiple measurement capabilities, it is not convenient to code
directly using the Wire library. In this situation, you can use sensor-specific Arduino
libraries that are developed by the manufacturer or the open source community.
For BH1750, we will demonstrate the use of such a library to assist the I2C coding.
Before we can use this library, we will have to import it to the Arduino IDE. It is
really important to know the process of importing libraries to your Arduino IDE
as you will be repeating this process to install other libraries in future. Execute the
following steps to import the BH1750 library to your Arduino IDE:

1.	 Download and extract Chapter 7, The Midterm Project – a Portable DIY
Thermostat, code examples in a folder.

2.	 Open the Arduino IDE and navigate to Sketch | Import Library… |
Add Library….

3.	 When you are asked for a directory, go to the BH1750 folder in the
downloaded file and click on Select.

4.	 To check if your library is installed, navigate to Sketch | Import Library…
and look for BH1750 in the drop-down list.

5.	 Finally, restart the Arduino IDE.

If you are using an Arduino IDE with version 1.0.4 or an older
version, you might not be able to find the Import Library… option
from the menu. In this case, you need to follow the tutorial at
http://arduino.cc/en/Guide/Libraries.

The BH1750 library has a method to directly obtain ambient light values. Let's test
this library using a built-in code example.

After restarting your Arduino IDE, navigate to File | Examples | BH1750 and open
the BH1750test Arduino sketch. This should open the following code snippet in the
Arduino IDE. Set up an appropriate serial port and upload the code to your Arduino
board. Once the code is executed, you will be able to check the luminous flux (lux)
values using the serial monitor of the Arduino IDE. Make sure that the serial monitor
is configured to 9600 baud:

#include <Wire.h>
#include <BH1750.h>

BH1750 lightMeter;

void setup(){

http://arduino.cc/en/Guide/Libraries

Chapter 4

[119]

 Serial.begin(9600);
 lightMeter.begin();
 Serial.println("Running...");
}

void loop() {
 uint16_t lux = lightMeter.readLightLevel();
 Serial.print("Light: ");
 Serial.print(lux);
 Serial.println(" lx");
 delay(1000);
}

As you can see from the preceding code snippet, we have imported the BH1750 library
by including BH1750.h file with Wire.h. This library provides the readLightLevel()
function, which will fetch the ambient light value from the sensor and provide it as an
integer. As the Arduino code runs in a loop with a delay of 1000 milliseconds, the lux
values will be fetched from the sensor and sent to the serial port every second. You can
observe these values in the Serial Monitor window.

PyMata for quick I2C prototyping
We have been using pyFirmata as our default Python library to interface the Firmata
protocol. The pyFirmata library is a very useful Python library to get started with
the Firmata protocol, as it provides many simple and effective methods to define the
Firmata ports and their roles. Due to these reasons, we extensively used pyFirmata
for rapid prototyping in the previous section. Although pyFirmata supports analog,
digital, PWM, and SERVO modes with easy-to-use methods, it provides limited
support to the I2C protocol.

In this section, we are going to use a different Python Firmata library called PyMata
to get familiar with Python-based prototyping of I2C sensors. The PyMata library
supports regular Firmata methods and also provides full support for the I2C
messaging protocol.

PyMata can be easily installed using Setuptools, which we used in the previous
chapters to install other Python libraries. We are assuming that you already have
Setuptools and pip on your computer. Let's start performing the following steps:

1.	 To install PyMata on a Windows computer, execute the following command
in the command prompt:
C:\> easy_install.exe pymata

Diving into Python-Arduino Prototyping

[120]

2.	 If you are using Linux or Mac OS X, use the following command in the
terminal to install the PyMata library:
$ sudo pip install pymata

3.	 If everything is set up properly, this process will complete without any
error. You can confirm PyMata by opening Python's interactive prompt
and importing PyMata:
>>> import PyMata

4.	 If the execution of the preceding command fails, you need to check
the installation process for any error. Resolve the error and repeat
the installation process.

Interfacing TMP102 using PyMata
In order to utilize PyMata functionalities, you will need your Arduino board to be
equipped with the standard firmata firmware just like the pyFirmata library. Before
we proceed to explain the PyMata functions, let's first run the following code snippet.
Connect your TMP102 temperature sensor as explained in the previous section.
Using the Arduino IDE, navigate to File | Examples | Firmata and upload the
standard Firmata sketch from there to your Arduino board. Now, create a Python
executable file using the following code snippet. Change the value of port (COM5), if
needed, to an appropriate port name as required by your operating system. Finally,
run the program:

import time
from PyMata.pymata import PyMata

#Initialize Arduino using port name
port = PyMata("COM5")

#Configure I2C pin
port.i2c_config(0, port.ANALOG, 4, 5)

One shot read asking peripheral to send 2 bytes
port.i2c_read(0x48, 0, 2, port.I2C_READ)
Wait for peripheral to send the data
time.sleep(3)

Read from the peripheral
data = port.i2c_get_read_data(0x48)

Obtain temperature from received data
TemperatureSum = (data[1] << 8 | data[2]) >> 4

celsius = TemperatureSum * 0.0625

Chapter 4

[121]

print celsius

fahrenheit = (1.8 * celsius) + 32
print fahrenheit

firmata.close()

On the execution of the preceding code snippet, you will be able to see the
temperature reading in Fahrenheit and Celsius. As you can see from the inline
comments in the code, the first step to utilize Arduino using PyMata is to initialize
the port using the PyMata constructor. PyMata supports the configuration of I2C
pins via the i2c_config() function. PyMata also supports simultaneous reading
and writing operations via the i2c_read() and i2c_write() functions.

Interfacing BH1750 using PyMata
In the case of BH1750, the previous PyMata code snippet can be utilized with minor
modifications to obtain ambient light sensor data. As the first change, you want to
replace the part address of TMP102 (0x48) with the one of BH1750 (0x23) in the
following code snippet. You will also have to convert the raw values received from
the sensor into the lux value using the given formula. After these modifications, run
the following program from the terminal:

import time
from PyMata.pymata import PyMata

port = PyMata("COM5")
port.i2c_config(0, port.ANALOG, 4, 5)

Request BH1750 to send 2 bytes
port.i2c_read(0x23, 0, 2, port.I2C_READ)
Wait for BH1750 to send the data
time.sleep(3)

Read data from BH1750
data = port.i2c_get_read_data(0x23)

Obtain lux values from received data
LuxSum = (data[1] << 8 | data[2]) >> 4

lux = LuxSum/1.2
print str(lux) + ' lux'

firmata.close()

Diving into Python-Arduino Prototyping

[122]

On running the preceding code snippet, you will be able to see the ambient light
sensor reading in lux at the terminal. This process can be used in a large number
of I2C devices to read the registered information. In complex I2C devices, you
will have to follow their datasheet or examples to organize the read and write
commands of the I2C.

Useful pySerial commands
The standard Firmata protocol and Python's Firmata libraries are very useful
for testing or quick prototyping of the I2C sensors. Although they have many
advantages, Firmata-based projects face the following disadvantages:

•	 Delay in real-time execution: Firmata-based approaches require a series
of serial communication messages to receive and send data, which adds
additional delay and reduces the speed of execution.

•	 Unwanted space: The Firmata protocol contains a large amount of additional
code to support various other Arduino functions. In a well-defined project,
you don't really need the complete set of functions.

•	 Limited support: Although a version of Firmata includes I2C support, it is
quite difficult to implement complex I2C functions without adding delay.

In summary, you can always use Firmata-based approaches to quickly prototype
your projects, but when you are working on production-level or advanced projects,
you can use alternative methods. In these scenarios, you can use custom Arduino
code that is supported by Python's serial library, pySerial, to enable communication
for very specific functionalities. In this section, we are going to cover a few helpful
pySerial methods that you can use if you have to utilize the library directly.

Connecting with the serial port
Once you have connected your Arduino to a USB port of your computer, you can open
the port in your Python code using the Serial class as displayed in the following
code example:

import serial
port = serial.Serial('COM5',9600, timeout=1)

In addition to port name and baud rate, you can also specify a number of serial
port parameters such as timeout, bytesize, parity, stopbits, and so on using
Serial(). It is necessary to initialize the serial port before executing any other
command from the pySerial library.

Chapter 4

[123]

Reading a line from the port
Once the serial port is opened, you can start reading the port using readline().
The readline() function requires the timeout to be specified while initializing
the port, otherwise the code can terminate with an exception:

line = port.readline()

The readline() function will process each line from the port that is terminated
with the end line character \n.

Flushing the port to avoid buffer overflow
While working with pySerial, it is necessary to flush the input buffer to avoid
buffer overflow and maintain real-time operations:

port.flushInput()

If the port's baud rate is high and the processing of the input data is slow,
buffer overflow may occur, reducing the speed of execution and making the
experience sluggish.

Closing the port
It is a good coding practice to close the serial port once the process is complete. This
practice can eliminate the port-blocking problem once the Python code is terminated:

port.close()

Summary
In this chapter, you learned important methods that are required to successfully
interface the Arduino board with Python. You were also introduced to various
prototyping code templates with practical applications. These prototyping templates
helped us to learn new Python programing paradigms and Firmata methods.
Later in the chapter, we dived further into prototyping by learning more about the
different ways of establishing communication between sensors and the Arduino
board. Although we covered a vast amount of programming concepts with these
prototyping examples, the goal of the chapter was to make you familiar with the
interfacing problems and provide quick recipes for your projects.

We are assuming that by now you are comfortable testing your sensors or project
prototypes using Python and Arduino. It's time to start working towards creating
your applications that have complex Python features such as user controls, charts,
and plots. In the next chapter, we are going to develop custom graphical user
interfaces (GUIs) for your Python-Arduino projects.

Working with the Python GUI
In the first four chapters, we used the Python interactive prompt or Arduino serial
monitor to observe the results. The method of using text-based output on prompt
may be useful for basic and quick prototyping, but when it comes to an advanced
level of prototyping and demonstrating your prototype or final product, you need
to have a nice looking and user-friendly interface. GUI helps users to understand
various components of your hardware project and easily interact with it. It can also
help you to validate the results from your project.

Python has a number of widely used GUI frameworks such as Tkinter, wxPython,
PyQt, PySide, and PyGTK. Each of these frameworks possesses an almost complete
set of features that are required to create professional applications. Due to the
complexity involved, these frameworks have different levels of learning curves
for first-time Python programmers. Now, as this book is dedicated to Python
programming for Arduino-based projects, we can't spend a large amount of time
learning the nitty-gritty of a specific framework. Instead, we will choose our interface
library based on the following criteria:

•	 Ease to install and get started
•	 Ease to implement with negligible learning efforts
•	 Use of minimum computational resources

Working with the Python GUI

[126]

The framework that satisfies all these requirements is Tkinter (https://wiki.
python.org/moin/TkInter). Tkinter is also the default standard GUI library
deployed with all Python installations.

Although Tkinter is the de-facto GUI package for Python, you
can learn more about other GUI frameworks that were mentioned
earlier from their official websites, which are as follows:

•	 wxPython: http://www.wxpython.org/
•	 PyGTK: http://www.pygtk.org/
•	 PySide: http://qt-project.org/wiki/PySide
•	 PyQt: http://sourceforge.net/projects/pyqt/

Learning Tkinter for GUI design
Tkinter, short for Tk interface, is a cross-platform Python interface for the Tk GUI
toolkit. Tkinter provides a thin layer on Python while Tk provides the graphical
widgets. Tkinter is a cross-platform library and gets deployed as part of Python
installation packages for major operating systems. For Mac OS X 10.9, Tkinter
is installed with the default Python framework. For Windows, when you install
Python from the installation file, Tkinter gets installed with it.

Tkinter is designed to take minimal programming efforts for developing graphical
applications, while also being powerful enough to provide support for the majority
of GUI application features. If required, Tkinter can also be extended with plugins.
Tkinter via Tk offers an operating system's natural look and feel after the release of
Tk Version 8.0.

To test your current version of the Tk toolkit, use the following commands on the
Python prompt:

>>> import Tkinter
>>> Tkinter._test()

You will be prompted with an image similar to that displayed in the following
screenshot that contains information about your Tk version:

https://wiki.python.org/moin/TkInter
https://wiki.python.org/moin/TkInter
http://www.wxpython.org/
http://www.pygtk.org/
http://qt-project.org/wiki/PySide
http://sourceforge.net/projects/pyqt/

Chapter 5

[127]

If you face any problem in getting this window, check your Python installation and
reinstall it, as you won't be able to move further ahead in this chapter without the
Tkinter library and the Tk toolkit.

The Tkinter interface supports various widgets to develop GUIs. The following
table describes a few of the important widgets that we will be using in this chapter:

Widget Description
Tk() This is the root widget that is required by each program
Label() This shows a text or an image
Button() This is a simple button that can be used to execute actions
Entry() This is a text field to provide inputs to the program
Scale() This provides a numeric value by dragging the slider
Checkbox() This enables you to toggle between two values by checking the box

A detailed description of the Tkinter functions and methods to
implement the majority of functionalities provided by the Tk toolkit
can be obtained from https://docs.python.org/2/library/
tk.html.

Your first Python GUI program
As we discussed in an earlier chapter, the first program while learning any
programming language includes printing Hello World!. Now, as we are starting
Python programming for GUI, let's start by printing the same string in a GUI
window instead of a prompt.

Just to start with GUI programming, we are going to execute a Python program and
then jump into explaining the structure and the details of the code. Let's create a
Python executable file using the following lines of code, name it helloGUI.py, and
then run it. The execution process should complete without any dependency errors:

import Tkinter

Initialize main windows with title and size
top = Tkinter.Tk()
top.title("Hello GUI")
top.minsize(200,30)

Label widget
helloLabel = Tkinter.Label(top, text = "Hello World!")

https://docs.python.org/2/library/tk.html
https://docs.python.org/2/library/tk.html

Working with the Python GUI

[128]

helloLabel.pack()

Start and open the window
top.mainloop()

You should be prompted with the following window on the successful execution
of the preceding code snippet. As you can see, the Hello World! string has been
printed inside the window and has Hello GUI as the title of the window:

So, what exactly happened? As you can see from the code snippet, we instantiated
various Tkinter widgets one by one to obtain this result. These widgets are the
building blocks for any Python GUI application that is developed using Tkinter.
Let's start with the first and the most important widget, Tk().

The root widget Tk() and the top-level
methods
The Tk() widget initializes a main empty window with a title bar. This is a root
widget and it is required by each program only once. The main window gets its
decoration and styles from the operating system's environment. Therefore, when you
run the same Tkinter code on different operating systems, you will get the same
window and title bar but in a different style.

Once you create a root widget, you can perform some top-level methods to decorate,
describe, or resize this window. In code, we are using the title() method to set the
title of the main window. This title() method takes a string as an input argument:

Top = Tkinter.Tk()
top.title("Hello GUI")

Next, we call the minsize() method on the main window to set the minimum size of
the window with the argument (width, height):

top.minsize(200,30)

Similarly, you can also use the maxsize() method to specify the maximum size
that the main window should have. In the minsize() and maxsize() methods, the
values of width and height are provided in the number of pixels.

Chapter 5

[129]

Once the entire program has been instantiated, the mainloop() function is required
to start the event loop:

top.mainloop()

You won't be able to see any other widgets, including the main window, if the code
does not enter in the main event loop. The event loop will be alive until the window
is manually closed or the quit method is called.

You might have various questions about updating the window, programmatically
closing it, arranging widgets in the grid, and so on. There are definitely a lot more
top-level methods than the ones specified earlier.

The Label() widget
The other widget used in the code beside Tk() is Label(). The Tkinter widgets are
part of the widget hierarchy, where Label() is the child of the root widget, Tk().
This widget cannot be called without specifying the root widget or the main window
on which the label needs to be displayed. The major use of this widget is to display
text or image in the main window. In the following line of code, we use it to display
the Hello World! string:

helloLabel = Tkinter.Label(top, text = "Hello World!")

Here, we created and initialized a label object called helloLabel, which has two
input parameters: the top variable that specifies the root widget and a text string.
The Label() widget is highly customizable and accepts various configuration
parameters for adjusting the width, border, background, and justification as options.
Examples involving these customizations are covered in the upcoming sections.
You can learn more about the supported input arguments at http://effbot.org/
tkinterbook/label.htm.

The Pack geometry manager
The Pack geometry manager organizes widgets in rows and columns. To use this,
Tkinter requires the pack() method to be called for each widget to make the widget
visible on the main window:

helloLabel.pack()

http://effbot.org/tkinterbook/label.htm
http://effbot.org/tkinterbook/label.htm

Working with the Python GUI

[130]

The Pack geometry manager can be used by all Tkinter widgets, except root,
to organize the widget in the root window. In the case of multiple widgets, if the
positions for the widgets are not specified, the Pack manager arranges them in the
same root window. The Pack manager is simple to implement, but it has a limitation in
terms of its degree of customization. An alternative geometry manager that is helpful
to create a complex layout is called Grid, which is explained in the upcoming sections.

We will cover additional widgets and their associated methods in the upcoming
coding exercises. In these exercises, we will explain each individual widget with
practical applications to give you a better understanding of the use cases.

The Button() widget – interfacing GUI
with Arduino and LEDs
Now that you have had your first hands-on experience in creating a Python
graphical interface, let's integrate Arduino with it. Python makes it easy to interface
various heterogeneous packages within each other and that is what you are going
to do. In the next coding exercise, we will use Tkinter and pyFirmata to make the
GUI work with Arduino. In this exercise, we are going to use the Button() widget to
control the LEDs interfaced with the Arduino board.

Before we jump to the exercises, let's build the circuit that we will need for all
upcoming programs. The following is a Fritzing diagram of the circuit where we use
two different colored LEDs with pull up resistors. Connect these LEDs to digital pins
10 and 11 on your Arduino Uno board, as displayed in the following diagram:

Chapter 5

[131]

While working with the programs provided in this and upcoming
sections, you will have to replace the Arduino port that is used to
define the board variable according to your operating system. To
find out which port your Arduino board is connected to, follow the
detailed instructions provided in Chapter 2, Working with the Firmata
Protocol and the pySerial Library. Also, make sure that you provide the
correct pin number in the code if you are planning to use any pins
other than 10 and 11. For some exercises, you will have to use the
PWM pins, so make sure that you have correct pins.

In the previous exercise, we asked you to use the entire code snippet as a Python file
and run it. This might not be possible in the upcoming exercises due to the length
of the program and the complexity involved. Therefore, we have assembled these
exercises in the program files that can be accessed from the code folder of Chapter 4,
Diving into Python-Arduino Prototyping, which can be downloaded from https://
www.packtpub.com/books/content/support/1961. For the Button() widget
exercise, open the exampleButton.py file from the code folder of Chapter 4, Diving
into Python-Arduino Prototyping. The code contains three main components:

•	 The pyFirmata library and Arduino configurations
•	 The Tkinter widget definitions for a button
•	 The LED blink function that gets executed when you press the button

As you can see in the following code snippet, we have first imported libraries and
initialized the Arduino board using pyFirmata methods. For this exercise, we are
only going to work with one LED and we have initialized only the ledPin variable
for it:

import Tkinter
import pyfirmata
from time import sleep
port = '/dev/cu.usbmodemfa1331'
board = pyfirmata.Arduino(port)
sleep(5)
ledPin = board.get_pin('d:11:o')

As we are using the pyFirmata library for all the exercises in this
chapter, make sure that you have uploaded the latest version of the
standard Firmata sketch on your Arduino board.

https://www.packtpub.com/books/content/support/1961
https://www.packtpub.com/books/content/support/1961

Working with the Python GUI

[132]

In the second part of the code, we have initialized the root Tkinter widget as top
and provided a title string. We have also fixed the size of this window using the
minsize() method. In order to get more familiar with the root widget, you can
play around with the minimum and maximum size of the window:

top = Tkinter.Tk()
top.title("Blink LED using button")
top.minsize(300,30)

The Button() widget is a standard Tkinter widget that is mostly used to obtain
the manual, external input stimulus from the user. Like the Label() widget,
the Button() widget can be used to display text or images. Unlike the Label()
widget, it can be associated with actions or methods when it is pressed. When the
button is pressed, Tkinter executes the methods or commands specified by the
command option:

startButton = Tkinter.Button(top,
 text="Start",
 command=onStartButtonPress)
startButton.pack()

In this initialization, the function associated with the button is onStartButtonPress
and the "Start" string is displayed as the title of the button. Similarly, the top object
specifies the parent or the root widget. Once the button is instantiated, you will need
to use the pack() method to make it available in the main window.

In the preceding lines of code, the onStartButonPress() function includes the
scripts that are required to blink the LEDs and change the state of the button.
A button state can have the state as NORMAL, ACTIVE, or DISABLED. If it is not
specified, the default state of any button is NORMAL. The ACTIVE and DISABLED
states are useful in applications when repeated pressing of the button needs to
be avoided. After turning the LED on using the write(1) method, we will add a
time delay of 5 seconds using the sleep(5) function before turning it off with the
write(0) method:

def onStartButtonPress():
 startButton.config(state=Tkinter.DISABLED)
 ledPin.write(1)
 # LED is on for fix amount of time specified below
 sleep(5)
 ledPin.write(0)
 startButton.config(state=Tkinter.ACTIVE)

At the end of the program, we will execute the mainloop() method to initiate the
Tkinter loop. Until this function is executed, the main window won't appear.

Chapter 5

[133]

To run the code, make appropriate changes to the Arduino board variable and
execute the program. The following screenshot with a button and title bar will
appear as the output of the program. Clicking on the Start button will turn on the
LED on the Arduino board for the specified time delay. Meanwhile, when the LED
is on, you will not be able to click on the Start button again. Now, in this particular
program, we haven't provided sufficient code to safely disengage the Arduino board
and it will be covered in upcoming exercises.

The Entry() widget – providing manual
user inputs
In the previous exercise, you used a button to blink the LED on the Arduino board
for a fixed amount of time. Let's say that you want to change this fixed time delay and
specify a value according to your application's requirement. To perform this operation,
you will need a widget that accepts custom values that can then be converted into the
delay. Just like any other GUI framework, Tkinter provides the interface for a similar
widget called Entry() and we will utilize this in the next exercise.

Keep the same Arduino and LED configurations that you used for the previous
exercise and open the exampleEntry.py file. In the beginning of the code, you
will find the same configuration for the Arduino board and the LED pin that we
used in the previous exercise. Moving on to the next stage, you will be able to see
the following code snippet that defines the root widget. In this code snippet, we
have changed the title of the main window to reflect the premise of the exercise.
The use of unique strings for the title of the window will help you to differentiate
these windows according to their properties, when you are dealing with multiple
windows in one application:

top = Tkinter.Tk()
top.title("Specify time using Entry")

Although the Entry() widget can be easily initialized by specifying the parent
widget as the only parameter, it also supports a large number of parameters to
customize the widget. For example, in our exercise, we are using the bd parameter to
specify the width of the widget border and width to provide the expected width of
the widget. You can learn more about the available options at http://effbot.org/
tkinterbook/entry.htm:

timePeriodEntry = Tkinter.Entry(top,
 bd=5,

http://effbot.org/tkinterbook/entry.htm
http://effbot.org/tkinterbook/entry.htm

Working with the Python GUI

[134]

 width=25)
timePeriodEntry.pack()
timePeriodEntry.focus_set()
startButton = Tkinter.Button(top,
 text="Start",
 command=onStartButtonPress)
startButton.pack()

In the preceding lines of code, we have initialized two widget objects in our main
window: timePeriodEntry for the Entry() widget and startButton that we used
in the previous exercise for the Button() widget. The Pack geometry manager
always sets the graphical pointer to the last widget that has been added to the
main window. We can manually shift the focus of the graphical pointer to the
timePeriodEntry widget using the focus_set() method.

Contrary to the onStartButtonPress() function in the previous exercise, this
function doesn't use the time delay fix. It, instead, obtains the value from the
timePeriodEntry object. You can use the get() method to obtain the entered value
from the timePeriodEntry object and convert it into a floating value using the
float() function. As you can see in the following code snippet, we use this float
value as the time delay between switching the LED off from the on state:

def onStartButtonPress():
 # Value for delay is obtained from the Entry widget input
 timePeriod = timePeriodEntry.get()
 timePeriod = float(timePeriod)
 startButton.config(state=Tkinter.DISABLED)
 ledPin.write(1)
 sleep(timePeriod)
 ledPin.write(0)
 startButton.config(state=Tkinter.ACTIVE)

Once you have understood the process of initializing the Entry() widget and the
method to obtain a custom value from it, let's execute the code.

When you run this exercise, you should be able to see a window similar to the one
displayed in the following screenshot. Enter a time delay value in seconds and click
on Start to see the results on the LED. Basically, when the button is pressed, the
program will call the onStartButtonPress() function and it will utilize this value
to produce the time delay.

Chapter 5

[135]

The Scale() widget – adjusting the
brightness of an LED
In this section, we will develop some code to change an LED's brightness using the
Python GUI. Previously, we learned that you can use a digital pin of Arduino to
produce an analog output using PWM. Although you can use the Entry() widget
to provide one time value for the PWM signal, it will be useful to have a widget
that can dynamically provide this value. As brightness can be fluctuated between
0 and 100 percent, it makes sense to use a slider that varies between 0 and 100. The
Tkinter library provides this kind of sliding interface using the Scale() widget.

As we are working to change the brightness of the LED and supply analog input, we
will be using a digital pin with the PWM support. In the previous exercise, we used
digital pin 11, which already supports PWM. If you are using a custom version of the
circuit different to the one provided earlier, we recommend that you change it to a
pin that supports PWM. Now it is time to open the program file, exampleScale.py,
for this exercise.

The first stage of the program that involves importing the necessary libraries and
initializing the Arduino board using pyFirmata is almost the same as in the previous
exercise. Change the string that is used to specify the appropriate value for the port
variable according to the operating system and the port that you are using. We will
also instantiate the root window with the unique title for this exercise, as we did in
the previous exercises. This part of the program will often reoccur for a large number
of exercises and you can refer to the previous exercise for more information.

In the next stage, we will continue building the code that we developed earlier to
provide a manual time delay for the LED. We will also use the same Entry() widget
to obtain the time interval as an input:

timePeriodEntry = Tkinter.Entry(top,
 bd=5,
 width=25)
timePeriodEntry.pack()
timePeriodEntry.focus_set()

The Scale() widget offers a slider knob that can be moved over a fixed scale to
provide a numeric value as an output. The starting and the ending values for this
scale are provided using the from_ and to options. The orientation of this slider
can also be configured using the orient option, where the acceptable values for
the orientation are HORIZONTAL and VERTICAL. However, you will have to import
HORIZONTAL and VERTICAL constants from the Tkinter library before utilizing
them here.

Working with the Python GUI

[136]

If no options are provided, the default widget uses the scale from 0 to 100 and the
vertical orientation. In our program, we have used the horizontal orientation as
a demonstration of the orient option. Once you have defined the widget object,
brightnessScale, you will have to add it to the Pack geometry manager using
pack():

brightnessScale = Tkinter.Scale(top,
 from_=0, to=100,
 orient=Tkinter.HORIZONTAL)
brightnessScale.pack()

In order to start the process and reuse the previous code, we have kept the
instantiation of the startButton widget and the onStartButtonPress function
as it is. However, the property of the function is changed to accommodate the
Scale() widget:

startButton = Tkinter.Button(top,
 text="Start",
 command=onStartButtonPress)
startButton.pack()

In this version of the onStartButtonPress() function, we will obtain the
ledBrightness value by using the get() method on the brightnessScale widget
object, where the get() method will return the value of the current location of the
slider. As the PWM input requires values between 0 and 1, and the obtained slider
value is between 0 and 100, we will convert the slider value into the appropriate
PWM input by dividing it with 100. This new value will then be used with the
write() method and this will ultimately turn on the LED with the applied
brightness for the time period that is provided by the timePeriodEntry value:

def onStartButtonPress():
 timePeriod = timePeriodEntry.get()
 timePeriod = float(timePeriod)
 ledBrightness = brightnessScale.get()
 ledBrightness = float(ledBrightness)
 startButton.config(state=Tkinter.DISABLED)
 ledPin.write(ledBrightness/100.0)
 sleep(timePeriod)
 ledPin.write(0)
 startButton.config(state=Tkinter.ACTIVE)

For information about the Scale() widget, you can refer to http://effbot.org/
tkinterbook/scale.htm. Now, run the exampleScale.py file. You will be able to see
the following screenshot with the Entry() and Scale() widgets. Enter the time delay,
drag the slider to the brightness that you want, and then click on the Start button:

http://effbot.org/tkinterbook/scale.htm
http://effbot.org/tkinterbook/scale.htm

Chapter 5

[137]

You will be able to see the LED light up with the brightness set by the Scale()
widget. Once the LED is turned off after the given time delay, you can reset the
slider to another position to dynamically vary the value for the brightness.

The Grid geometry manager
In the previous exercise, we added three different widgets to the root window using
the Pack geometry manager and the pack() method. We didn't actively organize
these widgets but the Pack manager automatically arranged them in the vertical
position. While designing a meaningful interface, you need to arrange these widgets
in the appropriate order. If you look at the previous output window, it is really
difficult to identify the function of each widget or their association with others. In
order to design an intuitive GUI, you also need to describe these widgets using the
appropriate labels. As a solution, Tkinter provides an alternative way to organize
your widgets that is called Grid geometry manager.

The Grid geometry manager provides a two-dimensional (2D) table interface to
arrange widgets. Every cell that results from the row and column of the 2D table
can be used as a place for the widgets. You will learn the various options that are
provided by the grid() class to organize widgets in the next programming exercise.
Open the exampleGridManager.py file from the code folder of this chapter. In terms
of functionalities, this file contains the same program that we built in the previous
exercise. However, we have added more Label() widgets and organized them using
the Grid geometry manager to simplify the GUI and make it more useful.

As you can observe in the code, the timePeriodEntry object (an Entry() widget)
now uses the grid() method instead of the pack() method. The grid() method is
initialized with the column and row options. The values supplied for these options
determine the position of the cell where the timePeriodEntry object will be placed.

Working with the Python GUI

[138]

On the other hand, we have also created a label object using the Label() widget and
placed it beside the Entry() widget in the same row. The label contains a description
string that is specified using the text option. After placing it in a cell using the
grid() method, widgets are arranged in the center in that cell. To change this
alignment, you can use the sticky option with one or more values from N, E, S,
and W, that is, north, east, south, and west:

timePeriodEntry = Tkinter.Entry(top, bd=5)
timePeriodEntry.grid(column=1, row=1)
timePeriodEntry.focus_set()
Tkinter.Label(top, text="Time (seconds)").grid(column=2, row=1)

We have repeated this practice of placing the widget in a cell and describing it using
a Label() widget for the objects of the Scale() and Button() widgets as well:

brightnessScale = Tkinter.Scale(top, from_=0, to=100, orient=Tkinter.
HORIZONTAL)
brightnessScale.grid(column=1, row=2)
Tkinter.Label(top, text="Brightness (%)").grid(column=2, row=2)

startButton = Tkinter.Button(top, text="Start",
command=onStartButtonPress)
startButton.grid(column=1, row=3)

As you can see in the preceding code snippet, we are using different row values for
the widgets while having similar column values. As a result, our widgets will be
organized in the same column and they will have their description labels in the next
column of the same row. You can skip to the output window if you want to check
this organization pattern.

So far, we were relying on the user to manually close the main window. However,
you can create another Button() widget and through that, call the method to close
this window. In this coding exercise, we have an additional button compared to
the previous exercise that is called exitButton. The command parameter associated
with this button is quit, which ends the loop started by the Tkinter method top.
mainloop() and closes the GUI:

exitButton = Tkinter.Button(top,
 text="Exit",
 command=top.quit)
exitButton.grid(column=2, row=3)

In this code sample, the quit method is initialized as a command option and it can be
also be called as a method:

top.quit()

Chapter 5

[139]

Before we go ahead to the next step, perform the appropriate changes in the code
and run the program. You will be prompted with a window similar to the one
displayed in the following screenshot:

The red dotted lines are inserted later to help you identify the grid and they won't
appear in the window that is opened by running the program. You can now clearly
identify the role of each widget due to the presence of the description label beside
them. In the opened window, play around with the time and brightness values while
using the Start and Exit buttons to perform the associated actions. From the next
exercise, we will start using the grid() method regularly to arrange the widgets.

The Checkbutton() widget – selecting
LEDs
While developing complex projects, you will encounter scenarios where you have
to depend on the user to select single or multiple options from a given set of values.
For example, when you have multiple numbers of LEDs interfaced with the Arduino
board and you want the user to select an LED or LEDs that need to be turned on.
This level of customization makes your interface more interactive and useful. The
Tkinter library provides an interface for a standard widget called Checkbutton()
that enables the manual selection process from the given options.

In this exercise, we are going to work with both the LEDs, green and red, that you
connected to the Arduino board at the beginning. The entire Python program for
this exercise is located in the code folder with the name exampleCheckbutton.py.
Open the file with the same editor that you have been using all along. This program
implements the Checkbutton() widget for users to select the red and/or green LED
when the Start button is clicked.

To understand the entire program logic, let's start from the initialization and
importing of the libraries. As you can see, now we have two pin assignments
for digital pins 10 and 11 as redPin and greenPin respectively. The code for the
initialization of the Arduino board is unchanged:

port = '/dev/cu.usbmodemfa1331'
board = pyfirmata.Arduino(port)

Working with the Python GUI

[140]

sleep(5)
redPin = board.get_pin('d:10:o')
greenPin = board.get_pin('d:11:o')

In our utilization of the Checkbutton() widget, we are using a very useful Tkinter
variable class that is called IntVar().The Tkinter variable can tell the system when
the value of the variable is changed. To better understand the Tkinter variable class
and its specific utilization in our exercise, take a look at the following code snippet
from the program:

redVar = Tkinter.IntVar()
redCheckBox = Tkinter.Checkbutton(top,
 text="Red LED",
 variable=redVar)
redCheckBox.grid(column=1, row=1)

The Checkbutton() widget lets a user select between two different values. These
values are usually 1 (on) or 0 (off), making the Checkbutton() widget a switch.
To capture this selection, the variable option is required in the widget definition.
A variable can be initialized using one of the Tkinter variable class, IntVar().

As you can see, the redVar variable object that is instantiated using the IntVar()
class is used for the variable option while defining the Checkbutton() widget,
redCheckButton. Therefore, any operation on the redCheckButton object will
be translated to the redVar variable object. As IntVar() is a Tkinter class,
it automatically takes care of any changes in the variable values through the
Checkbutton() widget. Therefore, it is advisable to use the Tkinter variable
class for the Checkbutton() widget instead of the default Python variables.
After defining the Checkbutton() widget for the red LED, we have repeated
this process for the green LED, as shown in the following code snippet:

greenVar = Tkinter.IntVar()
greenCheckBox = Tkinter.Checkbutton(top,
 text="Green LED",
 variable=greenVar)
greenCheckBox.grid(column=2, row=1)

This program also contains the Start and Exit buttons and their respective association
with the onStartButtonPress and top.quit() functions, similar to how we used
them in the previous exercise. When called, the onStartButtonPress function will
obtain the values of the IntVar() variables, redVar and greenVar, using the get()
method. In this case, the variable value of the Checkbutton() widget will be 1 when
it is checked and 0 otherwise. This will enable the program to send the value 1 or 0
to the Arduino pin using the write() method by checking or unchecking the widget
and ultimately, turn the LED on or off:

Chapter 5

[141]

def onStartButtonPress():
 redPin.write(redVar.get())
 greenPin.write(greenVar.get())

As you can see, the code also implements an additional Stop button to turn off the
LEDs that were turned on using the Start button:

stopButton = Tkinter.Button(top,
 text="Stop",
 command=onStopButtonPress)
stopButton.grid(column=2, row=2)

The onStopButtonPrerss() function associated with this button turns off both the
LEDs by using write(0) on both the pins:

def onStopButtonPress():
 redPin.write(0)
 greenPin.write(0)

Since you have now learned about the Tkinter variables and the Checkbutton()
widget, let's run the Python program, exampleCheckbutton.py. As you can see in
the next screenshot, the GUI has two Checkbutton() widgets each for the red and
green LEDs. As there is a separate initialization of the Checkbutton() widgets, a
user can check both the red and green LEDs. Tkinter also provides similar widgets
such as Radiobutton() and Listbox() for cases where you want to select only a
single value from the given options.

You can learn more about the Radiobutton() and Listbox()
widgets from the following web pages:

•	 http://effbot.org/tkinterbook/radiobutton.htm

•	 http://effbot.org/tkinterbook/listbox.htm

The Label() widget – monitoring I/O pins
Arduino projects often deal with real-time systems and are required to continuously
monitor input values from digital and analog pins. Therefore, if these values are
being displayed on a graphical interface, they need to be updated periodically or
when the state of a pin changes.

http://effbot.org/tkinterbook/radiobutton.htm
http://effbot.org/tkinterbook/listbox.htm

Working with the Python GUI

[142]

If you observe the previous GUI exercises, you will notice that we initialized the root
window using mainloop() at the end of the code, which started the Tkinter loop
and initialized all the widgets with the updated values. Once the mainloop() was
initialized, we did not use any other Tkinter class or method to periodically update
the widgets with the latest values.

In this exercise, we will use a potentiometer to provide variable input to the analog
pin 0, which will be reflected by Tkinter's Label() widget. To update the label and
display the values of the analog input, we are going to implement a few Python and
Tkinter tricks. As we are using a potentiometer to provide input, you will need
to change the circuit as displayed in the following diagram, before jumping to the
Python program:

The Python file for this exercise is located in the code folder as the
workingWithLabels.py file. For this exercise, let's run the code first to understand
the premise of the exercise. Make sure that you have the appropriate string for the
Arduino board when you define the port variable. On successful execution, the
program will display the following screenshot and you can click on the Start button
to initiate the continuous update of the potentiometer's input value:

Chapter 5

[143]

So, how did we do this? This code contains complex logic and a different program
flow compared to what we have done so far. As you can see from the code, we are
using a variable called flag to track the state of the Exit button while continuously
running the while loop that monitors and updates the value. To understand the
program properly, let's first get familiar with the following new Tkinter classes
and methods:

•	 BooleanVar(): Just like the IntVar() variable class that we used to track the
integer values, BooleanVar() is a Tkinter variable class that tracks changes
in Boolean:
flag = Tkinter.BooleanVar(top)
flag.set(True)

In the preceding code snippet, we have created a variable object, flag,
using the BooleanVar() class and set the value of the object as True. Being
a Boolean object, flag can only have two values, True or False. Tkinter
also provides classes for string and double type with the StringVar() and
DoubleVar() classes respectively.
Due to this, when the Start button is clicked, the system starts updating the
analog read value. The Exit button sets the flag variable to false, breaks
the while loop, and stops the monitoring process.

•	 update_idletasks: While using the Tkinter library in Python, you can
link a Python code to any changes that happen in a Tk() widget. This linked
Python code is called a callback. The update_idletasks method calls all
idle tasks without processing any callbacks. This method also redraws the
geometry widgets, if required:
AnalogReadLabel.update_idletasks()

In our exercise, this method can be used to continuously update the label
with the latest potentiometer value.

•	 update: This top-level method processes all the pending events and callbacks
and also redraws any widget, if it is necessary:

top.update()

We are using this method with the root window so that it can perform the
callback for the Start button.

Working with the Python GUI

[144]

Now let's go back to the opened Python program. As you can see, besides assigning
an analog pin through the get_pin() method and initializing the Iterator() class
over the Arduino board, the code contains similar programming patterns that we
used in the exercises for the other Tkinter widgets. In this code, we are performing
the read operation for the analog pin inside the onStartButtonPress() function
This function checks the status of the flag variable while performing the read()
operation on the pin and subsequently updates the value of the analogReadLabel()
widget if the value of the flag variable is True. If the value of the flag variable is
found to be False, the function will exit after disengaging the Arduino board and
closing the root window. Due to the use of the while statement, this process will
continuously check the flag value until it is broken by the onExitButtonPress()
function by changing the flag value to False:

def onStartButtonPress():
 while True:
 if flag.get():
 analogReadLabel.config(text=str(a0.read()))
 analogReadLabel.update_idletasks()
 top.update()
 else:
 break
 board.exit()
 top.destroy()

The onExitButtonPress() function is called from the Exit button and it simply
resets the flag variable to False using the set() method:

def onExitButtonPress():
 flag.set(False)

Remaking your first Python-Arduino
project with a GUI
Just to refresh your memory, I would like to remind you that we created a motion
detection system that generated alerts by blinking the red LED when a motion was
detected. While working with the project, we were printing the state of the proximity
sensor onto the Python prompt. In this exercise, we are going to use the concepts that
you learned in the previous exercises and we will create an interface for our project.

Chapter 5

[145]

As part of this exercise, you have to connect the same circuit that we used in
Chapter 3, The First Project – Motion-triggered LEDs. Make sure you have the exact
same circuit with the PIR sensor and the LEDs before you move ahead. Once you
are ready with your hardware, open the firstProjectWithGUI.py file from the
code folder of this chapter. In the code, change the appropriate port values and
run the GUI for the project.

As you can see in the pin assignments, we now have three digital pins—two of
them as outputs and one as an input. The output pins are assigned to the red and
green LEDs while the input pin is assigned to the PIR motion sensor. If the PIR
sensor is in idle mode, we will perform a onetime read() operation to wake up
the sensor:

pirPin = board.get_pin('d:8:i')
redPin = board.get_pin('d:10:o')
greenPin = board.get_pin('d:11:o')
pirPin.read()

One of the important functions that is implemented by the code is blinkLED().
This function updates the Label() widget that is assigned to describe the status of
the motion sensor. It also blinks the physical LEDs using the write() method and
the inserted time delay. As input parameters, the blinkLED() function accepts the
pin object and a message string from the function call, where the pin objects, that is,
redPin or greenPin, should be one of the pin assignment for the LEDs:

def blinkLED(pin, message):
 MotionLabel.config(text=message)
 MotionLabel.update_idletasks()
 top.update()
 pin.write(1)
 sleep(1)
 pin.write(0)
 sleep(1)

The other two Tkinter related functions, onStartButtonPress() and
onExitButtonPress(), are basically derived from the previous exercise. In this
version of onStartButtonPress(), we call the blinkLED() function if the flag
variable is True and the motion is detected using pinPir.read():

def onStartButtonPress():
 while True:
 if flag.get():
 if pirPin.read() is True:

Working with the Python GUI

[146]

 blinkLED(redPin, "Motion Detected")
 else:
 blinkLED(greenPin, "No motion Detected")
 else:
 break
 board.exit()
 top.destroy()

The program also instantiates two buttons, Start and Exit, and one label using the
methods similar to those we used in the previous exercises.

As you can observe from the code, the logic behind the motion detection system is
still the same. We are only adding a layer of graphical interface to display the state
of the detected motion continuously using a Label() widget. We have also added
the Start and Exit buttons to control the project execution cycle. Once you run the
code, you will be able to see a window similar to the one displayed in the following
screenshot. Click on the Start button and wave in front of the motion sensor. If the
sensor detects the motion, the label will change from No motion detected to
Motion detected.

Summary
Now you have hands-on experience of building a basic GUI to handle Arduino
projects. With minor modifications to the included exercises, you can use them to
create a GUI for a large variety of Arduino prototyping projects. In the previous
two exercises, we displayed the sensor outputs as strings in label widgets. It will
be more meaningful if these numerical values are plotted as a graph and stored
for further analysis. This is what you are going to perform in the next chapter.

Storing and Plotting
Arduino Data

Sensors that are connected to Arduino produce lots of analog and digital data.
Analog sensors produce data points as numerical information while digital sensors
produce Boolean values, that is, 1 (on) or 0 (off). Until now, we printed this data
as a string on the command prompt or displayed it in a GUI. The data was being
printed in real time and it was not being saved for any further analysis. Instead of
using the string format, if the data is printed as a plot or graph, it will provide useful
information for us to rapidly understand it and derive conclusions. Plots are even
more useful for real-time applications as they can provide information regarding the
system's behavior for better understanding of the data.

This chapter is organized around two major sections: storing the Arduino sensor
data and plotting this data. We will start by creating and manipulating files using
Python. After that, we will work with methods for storing Arduino data in the CSV
file format. In the second section, you will be introduced to the Python plotting
library, matplotlib. Then, we will work with examples that deal with plotting data
from a saved file and also from real-time sensor readings. In the end, we will try
to integrate the matplotlib plots with the Tkinter window that we created in the
previous chapter.

In terms of hardware components, we will be working with familiar sensors such as
a potentiometer and the PIR motion sensor, which we used in the previous chapters,
so, you will not have to learn or buy any additional sensors for this chapter.

Storing and Plotting Arduino Data

[148]

Working with files in Python
Python provides built-in methods to create and modify files. File-related Python
operations are useful in a large number of programming exercises. These methods
are provided by standard Python modules and do not require installation of
additional packages.

The open() method
The open() method is a default method that is available in Python and it is one of
the most widely used functions to manipulate files. Now, the first step of dealing
with a file is to open it:

>>> f = open('test.txt', 'w')

This command will create a test.txt file in the same folder in which you started
the Python interpreter or the location from where the code is being executed. The
preceding command uses the w mode that opens a file for writing or creates a new
one if it doesn't exist. The other modes that can be used with the open() function
are displayed in the following table:

Mode Description
w This opens or creates a file for writing only. It overwrites an existing file.
w+ This opens or creates a file for writing and reading. It overwrites an

existing file.
r This opens a file for reading only.
r+ This opens a file for reading and writing.
a This opens a file for appending. It starts appending from the end of the

document.
a+ This opens a file for appending and reading. It starts appending from the

end of the document.

Make sure that you have the proper read and write permissions for the
files if you are utilizing these modes in a Unix or Linux environment.

Chapter 6

[149]

The write() method
Once the file is open in one of the writing or appending modes, you can start
writing to the file object using this method. The write() method only takes a
string as an input argument. Any other data format needs to be converted into
a string before it is written:

>>> f.write("Hello World!\n")

In this example, we are writing the Hello World! string that ends with a new line
character, \n. This new line character has been explained in the previous chapter
and you can obtain more information about it at http://en.wikipedia.org/wiki/
Newline.

You can also use the writelines() method if you want to write a sequence of
strings to the file:

>>> sq = ["Python programming for Arduino\n", "Bye\n"]

>>> f.writelines(sq)

The close() method
The close() method closes the file and free system resources that are occupied
by the file. Once they are closed, you can't use the file object as it has been flushed
already. It is a good practice to close the file once you are done working with a file:

>>> f.close()

The read() method
This read() method reads the content of an opened file from the beginning to
the end. To use this method, you need to open the file with one of the reading
compatible modes such as w+, r, r+, or a+:

>>> f = open('test.txt', 'r')

>>> f.read()

'Hello World!\nPython programming for Arduino\nBye\n'

>>> f.close()

http://en.wikipedia.org/wiki/Newline
http://en.wikipedia.org/wiki/Newline

Storing and Plotting Arduino Data

[150]

As the read() method grabs the entire contents of the file into memory, you can use
it with the optional size parameter to avoid any memory congestion while working
with large files. As an alternative method, you can use the readlines() method to
read the content of an opened file line by line:

>>> f = open('test.txt', 'r')

>>> l = f.readlines()

>>> print l

['Hello World!\n', 'Python programming for Arduino\n', 'Bye\n']

>>> f.close()

As you can see in the preceding example, each string is printed as an element of a
list that you can access individually. You can play around with these methods to
get familiar with creating and modifying files. These exercises will be handy for the
upcoming coding exercises.

The with statement – Python context manager
Although the with statement can be used to cover the execution of a code block
that is defined by a context manager, it is widely used in Python to deal with files.
Execute the following command on the Python interactive prompt, assuming that
you have already executed the previous commands and have the test.txt file with
some data:

>>> with open('test.txt', 'r') as f:

 lines = f.readlines()

 for l in lines:

 print l

On execution, you will be able to see each line of the file printed on the command
prompt. The with statement while used with the open() method creates a context
manager, which executes the wrapped code while automatically taking care of
closing the file. This is the recommended method to work with files in Python and
we will be utilizing it in all of our exercises. You can learn more about the Python
context manager on the following websites:

•	 https://docs.python.org/2/reference/compound_stmts.html#with

•	 http://preshing.com/20110920/the-python-with-statement-by-
example/

https://docs.python.org/2/reference/compound_stmts.html#with
http://preshing.com/20110920/the-python-with-statement-by-example/
http://preshing.com/20110920/the-python-with-statement-by-example/

Chapter 6

[151]

Using CSV files to store data
Now you know methods to open, manipulate, and close files using Python. In the
previous examples, we used the Python interpreter and string data to get familiar
with these methods. But when it comes to saving a large number of numerical values
from sensor data, the comma separated values (CSV) file format is one of the most
widely used file formats other than text. As the name states, values are separated and
stored using commas or other delimiters such as a space or tab. Python has a built-in
module to deal with CSV files.

To begin with, use the following code snippet to create a Python file and run your
first CSV program:

import csv
data = [[1, 2, 3], ['a', 'b', 'c'], ['Python', 'Arduino',
'Programming']]

with open('example.csv', 'w') as f:
 w = csv.writer(f)
 for row in data:
 w.writerow(row)

You can also open the csvWriter.py file from this chapter's code folder, which
contains the same code. After executing the code, you will be able to find a file
named example.csv in the same location as this file, which will contain the data
separated with commas.

As you can see in the code, the CSV module offers the writer() function on the
opened file that initializes a writer object. The writer object takes a sequence or
array of data (integer, float, string, and so on) as input and joins the values of this
array using the delimiter character:

w = csv.writer(f)

In the preceding example, since we are not using a delimiter option, the program
will take the default character comma as the delimiter. If you want to use space as
the delimiter character, you can use the following writer() option:

w = csv.writer(f, delimiter=' ')

To write each element of a list to a new line of this writer object, we use the
writerow() method.

Storing and Plotting Arduino Data

[152]

Similarly, Python CSV module also provides the reader() function to read a CSV
file. Check out the following example to learn more about this function, or you can
open the csvReader.py file from the next chapter's code folder:

import csv
with open('example.csv', 'r') as file:
 r = csv.reader(file)
 for row in r:
 print row

The reader() function creates a reader object to iterate over lines in the opened
CSV file. The reader object retrieves each element of a row by splitting it using the
delimiter. You can access each line of the file by iterating over the object using the
for loop as displayed in the preceding code snippet, or use the next() method every
time you want to access the next line. On execution of the previous code, you will be
able to see three separate array lists that are printed with three individual elements.

To open the CSV files externally, you can use a spreadsheet program
such as Microsoft Excel, OpenOffice Calc, or Apple Numbers.

Storing Arduino data in a CSV file
In the previous two sections, you learned methods to store values in a CSV file.
Although the data required for the file was already initialized in the code, the same
code could be modified to store Arduino input data.

To begin with storing Arduino data, let's create a circuit that produces these values
for us. We used a motion sensor in the project of Chapter 3, The First Project – Motion-
triggered LEDs, and a potentiometer in the exercise of Chapter 4, Diving into Python-
Arduino Prototyping. We will be using these two sensors to provide us with digital
and analog input values respectively. To develop the circuit required for this
exercise, connect the potentiometer to the analog pin 0 and the PIR motion
sensor to digital pin 11, as displayed in the following diagram:

Chapter 6

[153]

Connect other Arduino pins such as 5V and the ground, as shown in the preceding
Fritzing diagram. As we are going to use pyFirmata to interface Python with
the Arduino board, you will have to upload the StandardFirmata sketch to the
Arduino board using the method described in Chapter 3, The First Project – Motion-
triggered LEDs.

When you are working with prototyping, you really don't need
large, powerful, and computation-intensive databases to deal
with information. The easiest and quickest way to work with
sensor data in this phase is by using CSV files.

Once you have your Arduino board ready with the appropriate connections, use
the following code snippet to create a Python file and run it. You can also open the
csvArduinoStore.py file from this chapter's code folder:

import csv
import pyfirmata
from time import sleep

Storing and Plotting Arduino Data

[154]

port = '/dev/cu.usbmodemfa1331'
board = pyfirmata.Arduino(port)

it = pyfirmata.util.Iterator(board)
it.start()

pirPin = board.get_pin('d:11:i')
a0 = board.get_pin('a:0:i')

with open('SensorDataStore.csv', 'w') as f:
 w = csv.writer(f)
 w.writerow(["Number", "Potentiometer", "Motion sensor"])
 i = 0
 pirData = pirPin.read()
 potData = a0.read()
 while i < 25:
 sleep(1)
 if pirData is not None:
 i += 1
 row = [i, potData, pirData]
 w.writerow(row)
 print "Done. CSV file is ready!"

board.exit()

While the code is running, rotate the knob of the potentiometer and wave your hand
in front of the motion sensors. This action will help you to generate and measure
distinct values from these sensors. Meanwhile, the program will log this data in
the SensorDataStore.csv file. When complete, open the SensorDataStore.csv
file using any text viewer or spreadsheet program and you will be able to see these
sensor values stored in the file. Now, let's try to understand the program.

As you can observe from the code, we are not utilizing a new module to interface
the Arduino board or store sensor values to the file. Instead, we have utilized the
same methods that we used in the previous exercises. The code has two distinct
components: Python-Arduino interfacing and storing data to a CSV file. By skipping
the explanation of pyFirmata methods to interface the Arduino board, let's focus
on the code that is associated with storing the sensor data. The first line that we will
write to the CSV file using writerow() is the header line that explains the content of
the columns:

w.writerow(["Number", "Potentiometer", "Motion sensor"])

Chapter 6

[155]

Later, we will obtain the readings from the sensors and write them to the CSV file, as
shown in the following code snippet. We will repeat this process 25 times as defined
by the variable, i. You can change the value of i according to your requirements.

while i < 25:
 sleep(1)
 if pirData is not None:
 i += 1
 row = [i, potData, pirData]
 w.writerow(row)

The next question is how can you utilize this coding exercise in your custom
projects? The program has three main sections that can be customized to accomplish
your project requirements, which are as follows:

•	 Arduino pins: You can change the Arduino pin numbers and the number of
pins to be utilized. You can do this by adding additional sensor values to the
row object.

•	 The CSV file: The name of the file and its location can be changed from
SensorDataStore.csv to the one that is specific to your application.

•	 The number of data points: We have collected 25 different pairs of data
points while running the while loop for 25 iterations. You can change this
value. You can also change the time delay between each successive point
from one second, as used in the program, to the value that you need.

Getting started with matplotlib
The matplotlib library is one of the most popular and widely supported Python
plotting libraries. Although matplotlib is inspired by MATLAB, it is independent
of MATLAB. Similar to other Python libraries that we have been using, it is an
open source Python library. The matplotlib library assists in creating 2D plots
from simple lines of code from easy to use built-in functions and methods. The
matplotlib library is extensively used in Python-based applications for data
visualization and analysis. It utilizes NumPy (the short form of numerical Python)
and SciPy (short form of scientific Python) packages for mathematical calculations
for the analysis. These packages are major dependencies for matplotlib including
freetype and pyparsing. Make sure that you have these packages preinstalled
on your system if you are using any other installation methods besides the
ones mentioned in the next section. You can obtain more information about the
matplotlib library from its official website (http://matplotlib.org/).

http://matplotlib.org/

Storing and Plotting Arduino Data

[156]

Configuring matplotlib on Windows
Before we install matplotlib on Windows, make sure that you have your Windows
operating system with the latest version of Python 2.x distribution. In Chapter 1,
Getting Started with Python and Arduino, we installed Setuptools to download and
install additional Python packages. Make sure that you have Setuptools installed and
configured properly. Before we advance further, we will have to install dependencies
for matplotlib. Open the command prompt and use the following command to install
the dateutil and pyparsing packages:

> easy_install.exe python_dateutil

> easy_install.exe pyparsing

Once you have successfully installed these packages, download and install the
precompiled NumPy package from http://sourceforge.net/projects/numpy/.
Make sure that you choose the appropriate installation files for Python 2.7 and the
type of your Windows operating system.

Now, your computer should have satisfied all the prerequisites for matplotlib.
Download and install the precompiled matplotlib package from http://
matplotlib.org/downloads.html.

In this installation process, we have avoided the usage of Setuptools for NumPy and
matplotlib because of some known issues related to matplotlib in the Windows
operating system. If you can figure out ways to install these packages using
Setuptools, then you can skip the preceding manual steps.

Configuring matplotlib on Mac OS X
Installation of matplotlib on Mac OS X can be difficult depending upon the version
of Mac OS X and the availability of dependencies. Make sure that you have Setuptools
installed as described in Chapter 1, Getting Started with Python and Arduino. Assuming
that you already have Setuptools and pip, run the following command on the terminal:

$ sudo pip install matplotlib

Executing this command will lead to one of the following three possibilities:

•	 Successful installation of the latest matplotlib version
•	 Notification that the requirements are already satisfied but the installed

version is older than the current version, which is 1.3 at the moment
•	 Error while installing the matplotlib package

http://sourceforge.net/projects/numpy/
http://matplotlib.org/downloads.html
http://matplotlib.org/downloads.html

Chapter 6

[157]

If you encounter the first possibility, then you can advance to the next section;
otherwise follow the troubleshooting instructions. You can check your matplotlib
version using the following commands on the Python interactive prompt:

>>> import matplotlib

>>> matplotlib.__version__

Upgrading matplotlib
If you encounter the second possibility, which states that the existing version of
the matplotlib is older than the current version, use the following command to
upgrade the matplotlib package:

$ sudo pip install –-upgrade matplotlib

Go through the next section in case you end up with errors during this upgrade.

Troubleshooting installation errors
If you encounter any errors during the matplotlib installation via pip, it is most
likely that you are missing some dependency packages. Follow these steps one by
one to troubleshoot the errors.

After every step, use one of the following commands to check
whether the error is resolved:
$ sudo pip install matplotlib

$ sudo pip install –-upgrade matplotlib

1.	 Install Xcode from Apple's App Store. Open Xcode and navigate to the
Download tab in Preferences…. Download and install Command Line Tools
from Preferences…. This step should solve any compilation-related errors.

2.	 Install homebrew using the following command in the terminal:
$ ruby -e "$("$(curl -fsSL https://raw.github.com/Homebrew/
homebrew/go/install)")"

3.	 Install the following packages using homebrew:

$ brew install freetype

$ brew install pkg-config

Storing and Plotting Arduino Data

[158]

If you still receive an error with the freetype package, try to create a link for
freetype using the following command:
$ brew link freetype

$ ln -s /usr/local/opt/freetype/include/freetype2 /usr/local/
include/freetype

If you receive any further errors after performing the preceding steps, go to
the matplotlib forums at http://matplotlib.1069221.n5.nabble.com/
for those specific errors.

If you use matplotlib in Mac OS X, you need to set up
the appropriate drawing backend as shown in the following
code snippet:

import matplotlib
matplotlib.use('TkAgg''')

You can learn more about drawing backends for
matplotlib at http://matplotlib.org/faq/usage_
faq.html#what-is-a-backend.

Setting up matplotlib on Ubuntu
The installation of matplotlib and the required dependencies is a very
straightforward process on Ubuntu. We can perform this operation without
using Setuptools and with the help of the Ubuntu package manager.
The following simple command should do the trick for you:

$ sudo apt-get install python-matplotlib

When prompted to select dependencies, click on Yes to install them all. You should
be able to find the matplotlib package in other popular Linux distributions too.

Plotting random numbers using matplotlib
The matplotlib library provides a collection of basic plotting-related functions
and methods via the pyplot framework. The pyplot framework contains functions
for creating figures, drawing plots, setting up titles, setting up axes, and many
additional plotting methods. One of the import functions provided by pyplot is
figure(). This initializes an empty figure canvas that can be selected for your plot
or a set of plots:

fig1 = pyplot.figure(1)

http://matplotlib.1069221.n5.nabble.com/
http://matplotlib.org/faq/usage_faq.html#what-is-a-backend
http://matplotlib.org/faq/usage_faq.html#what-is-a-backend

Chapter 6

[159]

You can similarly create multiple figures by specifying a number as the parameter,
that is, figure(2). If a figure with this number already exists, the method activates
the existing figure that can then be further used for plotting.

The matplotlib library provides the plot() method to create line charts. The
plot() method takes a list or an array data structure that is made up of integer or
floating point numbers as input. If two arrays are used as inputs, plot() utilizes
them as values for the x axis and the y axis. If only one list or array is provided,
plot() assumes it to be the sequence values for the y axis and uses auto-generated
incremental values for the x axis:

pyplot.plot(x, y)

The third optional parameter that is supported by the plot() method is for the
format string. These parameters help users to change the style of line and markers
with different colors. In our example, we are using the solid line style. So, the plot()
function for our plot looks like this:

pyplot.plot(x, y, '-')

The plot() function provides a selection from a large collection of styles and colors.
To find more information about these parameters, use Python's help() function on
the plot() function of matplotlib:

>>> import matplotlib
>>> help(matplotlib.pyplot.plot)

This help() function will provide the necessary information to create plotting styles
with different markers, line styles, and colors. You can exit this help menu by typing
q at the prompt.

Now, as we have explored plotting sufficiently, let's create your first Python plot
using the following code snippet. The program containing this code is also located
in this chapter's code folder with the name plotBasic.py:

from matplotlib import pyplot
import random

x = range(0,25)
y = [random.randint(0,100) for r in range(0,25)]

fig1 = pyplot.figure()
pyplot.plot(x, y, '-')
pyplot.title('First Plot - Random integers')
pyplot.xlabel('X Axis')
pyplot.ylabel('Y Axis')

pyplot.show()

Storing and Plotting Arduino Data

[160]

In the previous exercise, we randomly generated a dataset for the y axis using the
randint() method. You can see a plot depicting this data with the solid line style in
an opened window after running the program. As you can see in the code snippet,
we used the additional pyplot methods such as title(), xlabel(), ylabel(), and
plot(). These methods are self-explanatory and they are largely used to make your
plots more informative and meaningful.

At end of the example, we used one of the most important pyplot methods called
show(). The show() method displays the generated plots in a figure. This method is
not mandatory to display figures when running from Python's interactive prompt.
The following screenshot illustrates the plot of randomly generated values using
matplotlib:

Plotting data from a CSV file
At the beginning of the chapter, we created a CSV file from Arduino data. We will
be using that SensorDataStore.csv file for this section. If you recall, we used two
different sensors to log the data. Hence, we have two arrays of values, one from a
digital sensor and another from the analog one. Now, in the previous example, we
just plotted one set of values for the y axis. So, how are we going to plot two arrays
separately and in a meaningful way?

Chapter 6

[161]

Let's start by creating a new Python program using the following lines of code or by
opening the plotCSV.py file from this chapter's code folder:

import csv
from matplotlib import pyplot

i = []
mValues = []
pValues = []

with open('SensorDataStore.csv', 'r') as f:
 reader = csv.reader(f)
 header = next(reader, None)
 for row in reader:
 i.append(int(row[0]))
 pValues.append(float(row[1]))
 if row[2] == 'True':
 mValues.append(1)
 else:
 mValues.append(0)

pyplot.subplot(2, 1, 1)
pyplot.plot(i, pValues, '-')
pyplot.title('Line plot - ' + header[1])
pyplot.xlim([1, 25])
pyplot.xlabel('X Axis')
pyplot.ylabel('Y Axis')

pyplot.subplot(2, 1, 2)
pyplot.bar(i, mValues)
pyplot.title('Bar chart - ' + header[2])
pyplot.xlim([1, 25])
pyplot.xlabel('X Axis')
pyplot.ylabel('Y Axis')

pyplot.tight_layout()

pyplot.show()

In this program, we have created two arrays of sensor values—pValues and
mValues—by reading the SensorDataStore.csv file row by row. Here, pValues
and mValues represent the sensor data for the potentiometer and the motion
sensor respectively. Once we had these two lists, we plotted them using the
matplotlib methods.

Storing and Plotting Arduino Data

[162]

The matplotlib library provides various ways to plot different arrays of values.
You can individually plot them in two different figures using figure(), that is,
figure(1) and figure(2), or plot both in a single plot in which they overlay each
other. The pyplot method also offers a third meaningful alternative by allowing
multiple plots in a single figure via the subplot() method:

pyplot.subplot(2,1,1)

This method is structured as subplot(nrows, ncols, plot_number), which
creates grids on the figure canvas using row and column numbers, that is, nrows and
ncols respectively. This method places the plot on the specific cell that is provided
by the plot_number parameter. For example, through subplot(2, 1, 1), we
created a table of two rows and one column and placed the first subplot in the first
cell of the table. Similarly, the next set of values was used for the second subplot and
was placed in the second cell, that is, row 2 and column 1:

pyplot.subplot(2, 1, 2)

In the first subplot, we have used the plot() method to create a plot using the
analog value from the potentiometer, that is, pValues. While in the second subplot,
we created a bar chart instead of a line chart to display the digital values from the
motion sensor. The bar chart functionality was provided by the bar() method.

As you can see in the code snippet, we have utilized an additional pyplot() method
called xlim(). The xlim([x_minimum, x_maximum]) or ylim([y_minimum, y_
maximum]) methods are used to confine the plot between the given maximum and
minimum values of the particular axes.

Before we displayed these subplots in the figure using the show() method, we used
the tight_layout() function to organize the title and label texts in the figure. The
tight_layout() function is a very important matplotlib module that nicely fit
the subplot parameters in one figure. You can check the effects of this module by
commenting that line and running the code again. The following screenshot shows
these subplots with labels and a title in one figure object:

Chapter 6

[163]

Plotting real-time Arduino data
In the previous chapter, while dealing with GUI and Arduino data, you must have
noticed that the code was updating the interface with every new value that was
obtained from the Arduino sensors. Similarly, in this exercise, we will be redrawing
the plot every time we receive new values from Arduino. Basically, we will be
plotting and updating a real-time chart instead of plotting the entire set of sensor
values as we did in the previous exercise.

We will be using the same Arduino circuit that you built in the previous exercises.
Here, we will utilize only the potentiometer section of the circuit to obtain the analog
sensor values. Now, before we explain the new methods used in this exercise, let's
first open the program file for this exercise. You can find the program file from
this chapter's folder; it is named plotLive.py. In the code, change the appropriate
parameters for the Arduino board and execute the code. While the code is running,
rotate the knob of the potentiometer to observe the real-time changes in the plot.

Storing and Plotting Arduino Data

[164]

On running the program, you will get a screen similar to the following screenshot
that shows a plot from real-time Arduino data.

One can make various conclusions about the potentiometer's knob rotation or some
other sensor behavior by just looking at the plot. These types of plots are widely
used in the graphical dashboard for real-time monitoring applications. Now, let's
try to understand the methods that are used in the following code snippet to make
this possible.

import sys, csv
from matplotlib import pyplot
import pyfirmata
from time import sleep
import numpy as np

Associate port and board with pyFirmata
port = '/dev/cu.usbmodemfa1321''
board = pyfirmata.Arduino(port)

Using iterator thread to avoid buffer overflow
it = pyfirmata.util.Iterator(board)
it.start()

Chapter 6

[165]

Assign a role and variable to analog pin 0
a0 = board.get_pin(''a:0:i'')

Initialize interactive mode
pyplot.ion()

pData = [0] * 25
fig = pyplot.figure()
pyplot.title(''Real-time Potentiometer reading'')
ax1 = pyplot.axes()
l1, = pyplot.plot(pData)
pyplot.ylim([0,1])

real-time plotting loop
while True:
 try:
 sleep(1)
 pData.append(float(a0.read()))
 pyplot.ylim([0, 1])
 del pData[0]
 l1.set_xdata([i for i in xrange(25)])
 l1.set_ydata(pData) # update the data
 pyplot.draw() # update the plot
 except KeyboardInterrupt:
 board.exit()
 break

The real-time plotting in this exercise is achieved by using a combination of the
pyplot functions ion(), draw(), set_xdata(), and set_data(). The ion() method
initializes the interactive mode of pyplot. The interactive mode helps to dynamically
change the x and y values of the plots in the figure:

pyplot.ion()

Once the interactive mode is set to True, the plot will only be drawn when the
draw() method is called.

Just like the previous Arduino interfacing exercises, at the beginning of the code,
we initialized the Arduino board using pyFirmata and the setup pins to obtain
the sensor values. As you can see in the following line of code, after setting up the
Arduino board and pyplot interactive mode, we initialized the plot with a set of
blank data, 0 in our case:

pData = [0] * 25

Storing and Plotting Arduino Data

[166]

This array for y values, pData, is then used to append values from the sensor in
the while loop. The while loop keeps appending the newest values to this data
array and redraws the plot with these updated arrays for the x and y values. In
this example, we are appending new sensor values at the end of the array while
simultaneously removing the first element of the array to limit the size of the array:

pData.append(float(a0.read()))
del pData[0]

The set_xdata() and set_ydata() methods are used to update the x and y axes
data from these arrays. These updated values are plotted using the draw() method
on each iteration of the while loop:

l1.set_xdata([i for i in xrange(25)])
l1.set_ydata(pData) # update the data
pyplot.draw() # update the plot

You will also notice that we are utilizing an xrange() function to generate a range of
values according to the provided length, which is 25 in our case. The code snippet,
[i for i in xrange(25)], will generate a list of 25 integer numbers that start
incrementally at 0 and end at 24.

Integrating plots in the Tkinter window
Due to the powerful integration capabilities of Python, it is very convenient to
interface the plots generated by the matplotlib library with the Tkinter graphical
interface. In the last exercise of the previous chapter, we integrated Tkinter with
pyFirmata to implement the project of Chapter 3, The First Project – Motion-triggered
LEDs, with the GUI. In this exercise, we will extend this integration further by
utilizing matplotlib. We will perform this action by utilizing the same Arduino
circuit that we have been using in this chapter and expand the code that we used
in the previous exercise. Meanwhile, we are not introducing any new methods in
this exercise; instead we will be utilizing what you learned until now. Open the
plotTkinter.py file from this chapter's code folder.

As mentioned earlier, the program utilizes three major Python libraries and
interfaces them with each other to develop an excellent Python-Arduino application.
The first interfacing point is between Tkinter and matplotlib. As you can see in
the following lines of code, we have initialized three button objects, startButton,
pauseButton, and exitButton, for the Start, Pause, and Exit buttons respectively:

startButton = Tkinter.Button(top,
 text="Start",
 command=onStartButtonPress)

Chapter 6

[167]

startButton.grid(column=1, row=2)
pauseButton = Tkinter.Button(top,
 text="Pause",
 command=onPauseButtonPress)
pauseButton.grid(column=2, row=2)
exitButton = Tkinter.Button(top,
 text="Exit",
 command=onExitButtonPress)
exitButton.grid(column=3, row=2)

The Start and Exit buttons provide control points for matplotlib operations
such as updating the plot and closing the plot through their respective
onStartButtonPress() and onExitButtonPress() functions. The
onStartButtonPress() function also consists of the interfacing point between
the matplotlib and pyFirmata libraries. As you can observe from the following
code snippet, we will start updating the plot using the draw() method and the
Tkinter window using the update() method for each observation from the
analog pin a0, which is obtained using the read() method:

def onStartButtonPress():
 while True:
 if flag.get():
 sleep(1)
 pData.append(float(a0.read()))
 pyplot.ylim([0, 1])
 del pData[0]
 l1.set_xdata([i for i in xrange(25)])
 l1.set_ydata(pData) # update the data
 pyplot.draw() # update the plot
 top.update()
 else:
 flag.set(True)
 break

The onExitButtonPress() function implements the exit function as described
by the name itself. It closes the pyplot figure and the Tkinter window before
disengaging the Arduino board from the serial port.

Now, execute the program after making the appropriate changes to the Arduino
port parameter. You should be able to see a window on your screen that is similar to
the one displayed in the following screenshot. With this code, you can now control
your real-time plots using the Start and Pause buttons. Click on the Start button and
start rotating the potentiometer knob. When you click on the Pause button, you can
observe that the program has stopped plotting new values. While Pause is pressed,
even rotating the knob will not result in any updates to the plot.

Storing and Plotting Arduino Data

[168]

As soon as you click on the Start button again, you will again see the plot get
updated with real-time values, discarding the values generated while paused.
Click on the Exit button to safely close the program:

Summary
In this chapter, we introduced two major Python programming paradigms: creating,
reading, and writing files using Python while also storing data into these files and
plotting sensor values and updating plots in real time. We also explored methods
to store and plot real-time Arduino sensor data. Besides helping you in your
Arduino projects, these methods can also be used in your everyday Python projects.
Throughout the chapter, using simple exercises, we interfaced the newly learned
CSV and matplotlib modules with the Tkinter and pyFirmata modules that we
learned in the previous chapters. In the next chapter, you will be introduced to your
second project—a portable unit that measures and displays environmental data such
as temperature, humidity, and ambient light. We will be utilizing the concepts that
we have learned so far to build this project.

The Midterm Project – a
Portable DIY Thermostat

After the first Python-Arduino project, you learned the process of prototyping
various sensors, developing user interfaces, and plotting sensor data. The concepts
that you learned in the previous chapters can be utilized to create a wide variety
of Arduino-based hardware projects. The inception of a good application concept
always begins with a real-world necessity and ends up as a practical project if it is
executed properly. In this chapter, we will demonstrate this project-building process
with an example of a portable sensor unit. As you can estimate from the chapter
title, we will be building a simple and portable DIY thermostat that can be deployed
without a desktop computer or a laptop.

To begin with, we will describe the proposed thermostat with specific goals and
processes to achieve them. Once the strategy to achieve these goals has been laid
down, you will be introduced to the two successive programming stages to develop
the deployable and portable unit. In the first stage, we will utilize a traditional
computer to successfully develop the program to interface Arduino with Python.
In the second stage, we will replace this computer with a Raspberry Pi to make it
portable and deployable.

Thermostat – the project description
From the multiple projects that we can build using the things that you learned, a
project that helps you to monitor your surrounding environment really stands out
as an important real-world application. From the various environment-monitoring
projects such as weather station, thermostat, and plant monitoring system, we will
be developing the thermostat as it focuses on indoor environment and can be part
of your daily routine.

The Midterm Project – a Portable DIY Thermostat

[170]

The thermostat is one of the most important components of any remote home
monitoring system and home automation system. A popular commercial example
of a connected thermostat is the Nest Thermostat (https://www.nest.com), which
provides intelligent remote monitoring and scheduling features for your existing
home's heating and cooling system. Before we think about a full-stack product
such as Nest, we need first need to build a DIY thermostat with the basic set of
features. Later, we can build upon this project by adding features to improve the
DIY thermostat experience. Let's first outline the features that we are planning to
implement in this version of the thermostat project.

Project background
Temperature, humidity, and ambient light are the three main physical characteristics
that we want to monitor using the thermostat. In terms of user experience, we
want to have an elegant user interface to display the measured sensor data. The
user experience can be more resourceful if any of this sensor data is plotted as a
line graph. In the case of a thermostat, the visual representation of the sensor data
provides a more meaningful comprehension of the environment than just displaying
plain numerical values.

One of the major objectives of the project is to make the thermostat portable and
deployable so that it can be used in your day-to-day life. To satisfy this requirement,
the thermostat display needs to be changed from a regular monitor to something
small and more portable. To ensure its real-world and meaningful application, the
thermostat should demonstrate real-time operation.

It is important to note that the thermostat will not be interfacing with any actuators
such as home cooling and heating systems. As the interfacing of these systems with
the thermostat project requires high-level understanding and experience of working
with heating and cooling systems, it will deviate the flow of the chapter from its
original goal of teaching you Arduino and Python programming.

Project goals and stages
In order to describe the features that we want to have in the thermostat, let's first
identify the goals and milestones to achieve these objectives. The major goals for
the project can be determined as follows:

•	 Identify the necessary sensors and hardware components for the project
•	 Design and assemble the circuit for the thermostat using these sensors and

the Arduino board

https://www.nest.com

Chapter 7

[171]

•	 Design an effective user experience and develop software to accommodate
the user experience

•	 Develop and implement code to interface the designed hardware with the
software components

The code development process of the thermostat project is divided into two major
stages. The objectives of the first stage include sensor interfacing, the development
of the Arduino sketch, and the development of the Python code on your regular
computer that you have been using all along. The coding milestone for the first stage
can be further distributed as follows:

•	 Develop the Arduino sketch to interface sensors and buttons while providing
output of the sensor data to the Python program via the serial port

•	 Develop the Python code to obtain sensor data from the serial port using the
pySerial library and display the data using GUI that is designed in Tkinter

•	 Create a plot to demonstrate the real-time humidity readings using the
matplotlib library

In the second stage, we will attach the Arduino hardware to a single-board computer
and a miniature display to make it mobile and deployable. The milestone to achieve
objective of the second stage are as follows:

•	 Install and configure a single-board computer, Raspberry Pi, to run the
Python code from the first stage

•	 Interface and configure the miniature screen with the Raspberry Pi
•	 Optimize the GUI and plot window to adjust to this small screen's resolution

In the following subsection of this section, you will be notified about the list of
required components for both the stages, followed by the hardware circuit design
and the software flow design. The programming exercises for these stages are
explained in the next two sections of the chapter.

The list of required components
Instead of going through the process of identifying the required components, we
have already selected the components for this project based on their utilization in the
previous exercises, ease of use, and availability. You can replace these components
according to their availability at the time you are building this project or your
familiarity with other sensors. Just make sure that you take care of modifications in
the circuit connections and code, if these new components are not compatible with
the ones that we are using.

The Midterm Project – a Portable DIY Thermostat

[172]

In the first stage of prototyping, we will need components to develop the electronic
circuit for the thermostat unit. As we mentioned earlier, we are going to measure
temperature, humidity, and ambient light through our unit. We already learned
about the temperature sensor TMP102 and the ambient light sensor BH1750 in
Chapter 4, Diving into Python-Arduino Prototyping. We will be using these sensors for
this project with the humidity sensor HIH-4030. The project will utilize the same
Arduino Uno board that you have been using throughout the previous chapters
with the necessary cables. We will also need two push buttons to provide manual
inputs to the unit. The summary of the required components for the first stage is
provided in the following table:

Component (first stage) Quantity Website
Arduino Uno 1 https://www.sparkfun.com/

products/11021

USB cable for Arduino 1 https://www.sparkfun.com/
products/512

Breadboard 1 https://www.sparkfun.com/
products/9567

TMP102 temperature
sensor

1 https://www.sparkfun.com/
products/11931

HIH-4030 humidity sensor 1 https://www.sparkfun.com/
products/9569

BH1750 ambient light
sensor

1 http://www.robotshop.com/en/
dfrobot-light-sensor-bh1750.html

Push button switch 2 https://www.sparkfun.com/
products/97

1 kilo-ohm resistor 2
10 kilo-ohm resistor 2
Connection wires As required

Although the table provides links for few specific website, you can obtain these
components from your preferred providers. The two major components HIH-
4030 humidity sensor and push button switch that we haven't used previously are
described as follows:

•	 HIH-4030 humidity sensor: This measures and provides relative humidity
results as an analog output. The output of the sensor can be directly connected
to any analog pin of Arduino. The following image shows the breakout board
with the HIH-4030 sensor that is sold by SparkFun Electronics. You can learn
more about the HIH-4030 sensor from its datasheet, which can be obtained
from https://www.sparkfun.com/datasheets/Sensors/Weather/SEN-
09569-HIH-4030-datasheet.pdf:

https://www.sparkfun.com/products/11021
https://www.sparkfun.com/products/11021
https://www.sparkfun.com/products/512
https://www.sparkfun.com/products/512
https://www.sparkfun.com/products/9567
https://www.sparkfun.com/products/9567
https://www.sparkfun.com/products/11931
https://www.sparkfun.com/products/11931
https://www.sparkfun.com/products/9569
https://www.sparkfun.com/products/9569
http://www.robotshop.com/en/dfrobot-light-sensor-bh1750.html
http://www.robotshop.com/en/dfrobot-light-sensor-bh1750.html
https://www.sparkfun.com/products/97
https://www.sparkfun.com/products/97
https://www.sparkfun.com/datasheets/Sensors/Weather/SEN-09569-HIH-4030-datasheet.pdf
https://www.sparkfun.com/datasheets/Sensors/Weather/SEN-09569-HIH-4030-datasheet.pdf

Chapter 7

[173]

•	 Push button switch: Push button switches are small switches that can be
used on a breadboard. When pressed, the switch output changes its status
to HIGH, which is LOW otherwise.

In the second stage, we are going to make the sensor unit mobile by replacing your
computer with a Raspberry Pi. For that, you will need the following components to
get started:

Component (second stage) Quantity Image
Raspberry Pi 1 https://www.sparkfun.com/

products/11546

Micro USB cable with a
power adapter

1 http://www.amazon.com/
CanaKit-Raspberry-Supply-
Adapter-Charger/dp/
B00GF9T3I0/

8 GB SD card 1 https://www.sparkfun.com/
products/12998

TFT LCD screen 1 http://www.amazon.com/gp/
product/B00GASHVDU/

A USB hub Optional

Further explanations of these components are provided later in the chapter.

https://www.sparkfun.com/products/11546
https://www.sparkfun.com/products/11546
http://www.amazon.com/CanaKit-Raspberry-Supply-Adapter-Charger/dp/B00GF9T3I0/
http://www.amazon.com/CanaKit-Raspberry-Supply-Adapter-Charger/dp/B00GF9T3I0/
http://www.amazon.com/CanaKit-Raspberry-Supply-Adapter-Charger/dp/B00GF9T3I0/
http://www.amazon.com/CanaKit-Raspberry-Supply-Adapter-Charger/dp/B00GF9T3I0/
https://www.sparkfun.com/products/12998
https://www.sparkfun.com/products/12998
http://www.amazon.com/gp/product/B00GASHVDU/
http://www.amazon.com/gp/product/B00GASHVDU/

The Midterm Project – a Portable DIY Thermostat

[174]

Hardware design
The entire hardware architecture of the thermostat can be divided into two units,
a physical world interfacing unit and a computation unit. The physical world
interfacing unit, as its name indicates, monitors phenomenon of the physical world
such as temperature, humidity, and ambient light using sensors connected to the
Arduino board. The physical world interfacing unit is interchangeably mentioned
as the thermostat sensor unit throughout the chapter. The computational unit is
responsible for displaying the sensor information via the GUI and plots.

The following diagram shows the hardware components for the first stage where
the thermostat sensor unit is connected to a computer using the USB port. In the
thermostat sensor unit, various sensor components are connected to the Arduino
board using I2C, analog, and digital pins:

In the second programming stage where we are going make our thermostat into a
mobile and deployable unit, you will be using a single-board computer, Raspberry
Pi, as the computational device. In this stage, we will use a miniature thin-film
transistor liquid-crystal display (TFT LCD) screen that is connected to a Raspberry
Pi via general-purpose input/output (GPIO) pins and is used as a display unit
to replace the traditional monitor or laptop screen. The following diagram shows
this new thermostat computational unit, which truly reduces the overall size of the
thermostat and makes it portable and mobile. Circuit connections for the Arduino
board are unchanged for this stage and we will use the same hardware without any
major modifications.

Chapter 7

[175]

As the common unit for both stages of the project, the Arduino-centric thermostat
sensor unit requires slightly more complex circuit connections compared to other
exercises that you have been through. In this section, we are going to interface the
necessary sensors and push buttons to their respective pins on the Arduino board
and you will need a breadboard to make these connections. If you are familiar
with PCB prototyping, you can create your own PCB board by soldering these
components and avoid the breadboard. PCB boards are more robust compared to
breadboards and less prone to loose connections. Use the following instructions
and the Fritzing diagram to complete the circuit connections:

1.	 As you can see in the following diagram, connect the SDA and SCL pins of
TMP102 and BH1750 to analog pins 4 and 5 of the Arduino board and create
an I2C bus. To make these connections, you can use multiple color-coded
wires to simplify the debugging process.

2.	 Use two 10 kilo-ohm pull-up resistors with the SDA and SCL lines.
3.	 Contrary to these I2C sensors, the HIH-4030 humidity sensor is a simple

analog sensor and can be directly connected to the analog pin. Connect the
HIH-4030 to the analog pin A0.

4.	 Connect VCC and the ground of TMP102, BH1750, and HIH-4030 to +5V
and the ground of the Arduino board using power strips of the breadboard,
as displayed in the diagram. We recommend that you use red and black
wires to represent the +5V and ground lines respectively.

5.	 The push button provides the output as HIGH or LOW state and interfaced
using digital pins. As displayed in the circuit, connect these push buttons to
digital pins 2 and 3 using two 1 kilo-ohm resistors.

The Midterm Project – a Portable DIY Thermostat

[176]

6.	 Complete the remaining connections as displayed in the following diagram.
Make sure that you have firmly connected all the wires before powering up
the Arduino board:

Make sure that you always disconnect your Arduino board from the
power source or a USB port before making any connections. This will
prevent any damage to the board due to short circuiting.

Complete all the connections for the thermostat sensor unit before heading to the
next section. As this unit is being used in both the programming stages, you won't
be performing any further changes to the thermostat sensor unit.

Software flow for user experience design
One of the critical components of any project is its usability or accessibility. When
you are working on making your project prototype into a product, it is necessary to
have an intuitive and resourceful user interface so that the user can easily interact
with your product. Hence, it is necessary to define the user experience and software
flow of a project before you start coding. The software flow includes the flow
chart and the logical components of the program that are derived from the project
requirements. According to the goals that we have defined for the thermostat project,
the software flow can be demonstrated in the following diagram:

Chapter 7

[177]

In the implementation, the software flow of the project begins by measuring the
temperature, humidity, and ambient light from Arduino and printing them on a
serial port line by line. The Python program obtains the sensor data from Arduino
via the serial port before presenting the data on the screen. Meanwhile, the Python
program keeps looking for a new line of data.

A user can interact with the thermostat using a push button, which will let the user
change the unit for the temperature data. Once the button is pressed, the flag gets
changed to HIGH and the temperature unit is changed to Celsius from its default
unit, Fahrenheit. If the button is pressed again, the opposite process will happen and
the unit will be changed back to its default value. Similarly, another user interaction
point is the second push button that allows a user to open a plot for real-time humidity
values. The second push button also utilizes a similar method of using flags to capture
the input and opens a new plot window. If the same button is pushed sequentially, the
program will close the plot window.

The Midterm Project – a Portable DIY Thermostat

[178]

Stage 1 – prototyping the thermostat
In this prototyping stage, we will develop the Arduino and Python code for
our thermostat, which will be later used in the second stage with minor changes.
Before you start the coding exercise, make sure that you have the thermostat sensor
unit ready with the Arduino board and the connected sensors, as described in the
previous section. For this stage, you will be using your regular computer which is
equipped with the Arduino IDE and the Python programming environment. The
prototyping stage requires two levels of programming, the Arduino sketch for the
thermostat sensor unit and the Python code for the computational unit. Let's get
started with coding for our thermostat.

The Arduino sketch for the thermostat
The goal of this Arduino program is to interface sensors, get measurements from
the sensors, and print them on the serial port. As we discussed earlier, rather than
using the standard Firmata sketch that we used in the previous project, we are
going to develop a custom Arduino sketch in this project. To get started, open the
Thermostat_Arduino.ino sketch from this chapter's code folder, which is part of
the source code that you received for the book.

Connect the USB port of the Arduino board, which is now part of the thermostat
sensor unit, to your computer. Select the appropriate board and port names in the
Arduino IDE and verify the code. Upload the code to your Arduino board and open
the Serial Monitor window once the code is successfully uploaded. You should be
able to see text similar to that displayed in the following screenshot:

Chapter 7

[179]

The Arduino code structure and basic declarations are already explained in various
sections throughout the book. Instead of explaining the entire code line by line, we will
focus here on the main components of the software flow that we described earlier.

Interfacing the temperature sensor
In the Arduino sketch, the temperature data is obtained from the TMP102 sensor
using the getTemperature() function. The function implements the Wire library
on the I2C address of TMP102 to read the sensor data. This is then converted into
proper temperature values:

 float getTemperature(){
 Wire.requestFrom(tmp102Address, 2);

 byte MSB = Wire.read();
 byte LSB = Wire.read();

 //it's a 12bit int, using two's compliment for negative
 int TemperatureSum = ((MSB << 8) | LSB) >> 4;

 float celsius = TemperatureSum*0.0625;
 return celsius;
}

The getTemperature() function returns the temperature values in Celsius, which is
then sent to the serial port.

Interfacing the humidity sensor
Although the humidity sensor provides the analog output, it is not straightforward
to obtain relative humidity since it also depends upon the temperature. The
getHumidity() function calculates the relative humidity from the analog output
provided by the HIH-4030 sensor. The formulas to calculate the relative humidity
are obtained from the datasheet and reference examples of the sensor. If you are
using a different humidity sensor, please make sure that you change the formulas
accordingly, as they may change the results significantly:

float getHumidity(float degreesCelsius){
//caculate relative humidity
float supplyVolt = 5.0;

// Get the sensor value:
int HIH4030_Value = analogRead(HIH4030_Pin);
// convert to voltage value
float voltage = HIH4030_Value/1023. * supplyVolt;

The Midterm Project – a Portable DIY Thermostat

[180]

// convert the voltage to a relative humidity
float sensorRH = 161.0 * voltage / supplyVolt - 25.8;
float trueRH = sensorRH / (1.0546 - 0.0026 * degreesCelsius);

 return trueRH;
}

As we are calculating relative humidity, the returned humidity values are sent to the
serial port with percentage as the unit.

Interfacing the light sensor
To interface the BH1750 light sensor, we will use the BH1750 Arduino library, which
we used earlier. Using this library, the ambient light value can be directly obtained
using the following line of code:

uint16_t lux = lightMeter.readLightLevel();

This line provides the luminance values in the unit of lux. These values are also sent
to the serial port so the Python program can utilize it further.

Using Arduino interrupts
Until now you used the Arduino program to read the physical state of an I/O
pin using the DigitalRead() or AnalogRead() functions. How would you
automatically obtain the state change instead of periodically reading the pins and
waiting for the state to change? Arduino interrupts provide a very convenient way
of capturing signals for the Arduino board. Interrupts are a very powerful way of
automatically controlling various things in Arduino. Arduino supports interrupts
using the attachInterrupt() method. In terms of the physical pins, Arduino Uno
provides two interrupts: interrupt 0 (on digital pin 2) and interrupt 1 (on digital pin
3). Various Arduino boards have different specifications for interrupt pins. If you are
using any board other than Uno, please refer to Arduino's website to find out about
the interrupt pin for your board.

The attachInterrupt() function takes three input arguments (pin, ISR, and mode).
In these input arguments, pin refers to the number of the interrupt pin, ISR (which
stands for Interrupt Service Routine) refers to the function that gets called when
the interrupt occurs, and mode defines the condition when the interrupt should be
triggered. We have utilized this function in our Arduino program, as described in
the following code snippet:

 attachInterrupt(0, button1Press, RISING);
 attachInterrupt(1, button2Press, RISING);

Chapter 7

[181]

The supported mode for attachInterrupt() are LOW, CHANGE, RISING, and
FALLING. In our case, the interrupts are triggered when the mode is RISING, that
is, the pin goes from low to high. For interrupts declared at 0 and 1, we call the
button1Press and button2Press functions that will change flagTemperature
and flagPlot respectively. When flagTemperature is set to HIGH, Arduino sends
the temperature in Celsius, otherwise it sends the temperature in Fahrenheit. When
flagPlot is HIGH, Arduino will print the flag on the serial port, which will be used
by the Python program later to open the plot window. You can learn more about
Arduino interrupts from the tutorial at http://arduino.cc/en/Reference/
attachInterrupt.

Designing the GUI and plot in Python
Once your thermostat sensor unit starts sending sensor data to the serial port, it
is time to execute the second part of this stage, the Python code for the GUI and
the plot. From this chapter's code folder, open the Python file called Thermostat_
Stage1.py. In the file, go to the line that contains the Serial() function where the
serial port is declared. Change the serial port name from COM5 to the appropriate one.
You can find this information from the Arduino IDE. Save the change and exit the
editor. From the same folder, run the following command on the terminal:

$ python Thermostat_Stage1.py

This will execute the Python code and you will be able to see the GUI window on
the screen.

Using pySerial to stream sensor data in your
Python program
As described in the software flow, the program receives the sensor data from the
Arduino using the pySerial library. The code that declares the serial port in the
Python code is as follows:

Import serial
port = serial.Serial('COM5',9600, timeout=1)

It is very important to specify the timeout parameter while using the pySerial
library, as the code may have an error if timeout is not specified.

http://arduino.cc/en/Reference/attachInterrupt
http://arduino.cc/en/Reference/attachInterrupt

The Midterm Project – a Portable DIY Thermostat

[182]

Designing the GUI using Tkinter
The GUI for this project is designed using the Tkinter library that we used earlier.
As a GUI-building exercise, three columns of labels (labels to display the sensor type,
the observation values, and observation units) are programmed as shown in the
following code snippet:

Labels for sensor name
Tkinter.Label(top, text = "Temperature").grid(column = 1, row = 1)
Tkinter.Label(top, text = "Humidity").grid(column = 1, row = 2)
Tkinter.Label(top, text = "Light").grid(column = 1, row = 3)

Labels for observation values
TempLabel = Tkinter.Label(top, text = " ")
TempLabel.grid(column = 2, row = 1)
HumdLabel = Tkinter.Label(top, text = " ")
HumdLabel.grid(column = 2, row = 2)
LighLabel = Tkinter.Label(top, text = " ")
LighLabel.grid(column = 2, row = 3)

Labels for observation unit
TempUnitLabel = Tkinter.Label(top, text = " ")
TempUnitLabel.grid(column = 3, row = 1)
HumdUnitLabel = Tkinter.Label(top, text = "%")
HumdUnitLabel.grid(column = 3, row = 2)
LighUnitLabel = Tkinter.Label(top, text = "lx")
LighUnitLabel.grid(column = 3, row = 3)

Once you initialize the code and before you click on the Start button, you will be
able to see the following window. The observation labels are populated without
any values at this stage:

Once the Start button is clicked, the program will engage the thermostat sensor
unit and start reading the sensor values from the serial port. Using the lines that are
obtained from the serial port, the program will populate the observation labels with
the obtained values. The following code snippet updates the temperature values in
the observation label and also updates the temperature unit:

Chapter 7

[183]

TempLabel.config(text = cleanText(reading[1]))
TempUnitLabel.config(text = "C")
TempUnitLabel.update_idletasks()

In the program, we are using similar methods for humidity and ambient light to
update their labels respectively. As you can see in the following screenshot, the GUI
now has the values for the temperature, humidity, and ambient light readings:

The Start and Exit buttons are programmed to call the onStartButtonPress()
and onExitButtonPress() functions when they are clicked by the user. The
onStartButtonPress() function executes the code necessary to create the user
interface, while the onExitButtonPress() function closes all the opened windows,
disconnects the thermostat sensor unit, and exits the code:

StartButton = Tkinter.Button(top,
 text="Start",
 command=onStartButtonPress)
StartButton.grid(column=1, row=4)
ExitButton = Tkinter.Button(top,
 text="Exit",
 command=onExitButtonPress)
ExitButton.grid(column=2, row=4)

You can play with the Start and Exit buttons to explore the Python code. To observe
the changes in the sensor readings, try to blow air or place an obstacle over the
thermostat sensor unit. If the program doesn't behave appropriately, check the
terminal for error messages.

The Midterm Project – a Portable DIY Thermostat

[184]

Plotting percentage humidity using matplotlib
We will use the matplotlib library to plot the relative humidity values in real
time. We will plot the relative humidity values in this project, as the range of the
data is fixed between 0 and 100 percent. Using a similar method, you can also
plot temperature and ambient light sensor values. While developing the code to
plot temperature and ambient light sensor data, make sure that you are using
appropriate ranges to cover the sensor data in the same plot. Now, as we have
specified in the onStartButtonPress() function, a window similar to the
following screenshot will pop up once you press the push button for the plot:

The following code snippet is responsible for plotting the line chart using the
humidity sensor values. The values are limited between 0 and 100 on the y axis,
where the y axis represents the relative humidity range. The plot is updated every
time the program receives a new humidity value:

pyplot.figure()
pyplot.title('Humidity')
ax1 = pyplot.axes()
l1, = pyplot.plot(pData)
pyplot.ylim([0,100])

Chapter 7

[185]

Using button interrupts to control the parameters
The push button interrupts are a critical part of the user experience, as the user can
control the temperature unit and the plot using these interrupts. The Python features
implemented using the push button interrupts are as follows.

Changing the temperature unit by pressing a button
The Arduino sketch contains the logic to handle interrupts from push buttons and
use them to change the temperature unit. When an interrupt occurs, instead of
printing the temperature in Fahrenheit, it sends the temperature in Celsius to the
serial port. As you can see in the following screenshot, the Python code just prints
the obtained numeric value of the temperature observation and the associated unit
of measurement with it:

As you can see in the following code snippet, if the Python code receives the
Temperature(C) string, it prints the temperature in Celsius, and if it receives
the Temperature(F) string, it prints the temperature in Fahrenheit:

if (reading[0] == "Temperature(C)"):
 TempLabel.config(text=cleanText(reading[1]))
 TempUnitLabel.config(text="C")
 TempUnitLabel.update_idletasks()
if (reading[0] == "Temperature(F)"):
 TempLabel.config(text=cleanText(reading[1]))
 TempUnitLabel.config(text="F")
 TempUnitLabel.update_idletasks()

The Midterm Project – a Portable DIY Thermostat

[186]

Swapping between the GUI and the plot by pressing a
button
If the Python code receives the value of the flag from the serial port as 1 (HIGH), it
creates a new plot and draws the humidity values as a line chart. However, it closes
any open plots if it receives 0 (LOW) as the value of the flag. As you can see in the
following code snippet, the program will always try to update the plot with the latest
values for humidity readings. If the program can't find an opened plot to draw this
value from, it will create a new plot:

if (reading[0] == "Flag"):
 print reading[1]
 if (int(reading[1]) == 1):
 try:
 l1.set_xdata(np.arange(len(pData)))
 l1.set_ydata(pData) # update the data
 pyplot.ylim([0, 100])
 pyplot.draw() # update the plot
 except:
 pyplot.figure()
 pyplot.title('Humidity')
 ax1 = pyplot.axes()
 l1, = pyplot.plot(pData)
 pyplot.ylim([0, 100])
 if (int(reading[1]) == 0):
 try:
 pyplot.close('all')
 l1 = None
 except:

By now, you should have a complete idea about the programs that are required by the
thermostat sensor unit and the computation unit. Due to the complexity involved, you
may face a few known problems during the execution of these programs. You can refer
to the Troubleshooting section in case you run into any trouble.

Troubleshooting
Here are some of the errors that you may find, and their fixes:

•	 I2C sensor returns the error string:
°° Check the connections to the SDA and SCL pins.
°° Confirm that you are providing enough delay between the

reading cycles of the sensor. Check the datasheet for the delay
and message sequence.

Chapter 7

[187]

•	 The plot window flickers instead of staying on when the button is pressed:

°° Don't try to press it multiple times. Hold and let go quickly.
Make sure that your button is connected properly.

°° Adjust the delay in the Arduino sketch.

Stage 2 – using a Raspberry Pi for the
deployable thermostat
We have now created a thermostat that exists as an Arduino prototype while the
Python program runs from your computer. This prototype is still nowhere near a
deployable or mobile state due to the connected computer, and the display monitor
if you are using a desktop computer. A real-world thermostat device should have
a small footprint, portable size, and miniature display to show limited information.
The popular and practical way to achieve this goal is to use a small single-board
computer that is capable of hosting an operating system and hence providing the
essential Python programming interface. For this stage of the project, we will be
utilizing a single-board computer—a Raspberry Pi—with a small LCD display.

Note that this stage of the project is optional unless you want to
extend the previous stage of the project to a device that can be
used on a regular basis. If you are referring to the project to just
learn Python programming, you can skip this entire section.

The following is an image of the Raspberry Pi Model B:

The Midterm Project – a Portable DIY Thermostat

[188]

If you haven't worked with a single-board computer before, you may have a lot
of unanswered questions, such as "What exactly does a Raspberry Pi consists of?",
"What are the benefits of using a Raspberry Pi in our project?", and "Can't we just use
Arduino for that?". These are legitimate questions and we will try to answer them in
the following section.

What is a Raspberry Pi?
The Raspberry Pi is a small (almost the size of a credit card) single-board computer
that was developed with the initial aim of helping students learn the basics of
computer science. Today, the Raspberry Pi movement, guided by the Raspberry
Pi Foundation, has turned into a DIY phenomenon and captured the attention of
enthusiasts and developers around the world. The capabilities and features shipped
with a Raspberry Pi at a nominal cost ($35) have boosted the popularity of the device.

The term single-board computer is used for devices that have all the necessary
components to run an operating system on one board, such as a processor, RAM,
graphics processor, storage device, and basic adaptors for expansion. This makes a
single-board computer an appropriate candidate for portable applications, as they
can be part of the portable hardware device that we are trying to create. Although
there were a number of single-board computers in the market before the introduction
of the Raspberry Pi, the open source nature of the hardware and the economical price
are the main reasons behind the popularity and rapid adoption of the Raspberry Pi.
The following figure shows the Raspberry Pi Model B with its major components:

Chapter 7

[189]

The computational capabilities of the Raspberry Pi are adequate for running a
trimmed down version of Linux OS. Although people had tried to use many types of
operating systems on a Raspberry Pi, we will be using the default and recommended
operating system called Raspbian. Raspbian is a Debian distribution-based open
source Linux OS, which is optimized for the Raspberry Pi. The Raspberry Pi uses
an SD card as the storage device, which will be used to store your OS and program
files. In Raspbian, you can avoid running the unnecessary OS components that are
shipped with traditional OSes. These include the Internet browser, communication
application, and in some cases even the graphical interface.

After its introduction, the Raspberry Pi has gone through a few major upgrades.
The earlier version, called Model A, did not include the Ethernet port and only
had a memory of 256 MB. In our project, we are using the Raspberry Pi's Model B
that has a dedicated Ethernet port, 512 MB memory, and dual USB ports. The latest
versions of Raspberry Pi, Model B+, can be also used as it is also equipped with an
Ethernet port.

Installing the operating system and
configuring the Raspberry Pi
Although the Raspberry Pi is a computer, it is different than traditional desktop
computers when it comes to interfacing peripheral devices. Instead of supporting
traditional VGA or DVI display ports, the Raspberry Pi provides a RCA video port for
TVs and an HDMI port for the latest generation of monitors and TVs. In addition, the
Raspberry Pi has only two USB ports that need to be utilized for connecting various
peripheral devices such as the mouse, the keyboard, the USB wireless adapter, and
the USB memory stick. Let's get started by collecting components and cables to start
working with a Raspberry Pi.

What do you need to begin using the Raspberry Pi?
The hardware components required to get started with a Raspberry Pi are as follows:

•	 A Raspberry Pi: For this stage of the project, you will need a Raspberry
Pi version Model B or latest. You can buy the Raspberry Pi from
http://www.raspberrypi.org/buy.

•	 A power cable: The Raspberry Pi runs on 5V DC and requires at least 750
mA current. The power is applied through the micro USB port that is located
on the board. In this project, you will need a micro USB power supply.
Optionally, you can use a micro USB-based phone charger to supply power
to the Raspberry Pi.

http://www.raspberrypi.org/buy

The Midterm Project – a Portable DIY Thermostat

[190]

•	 A display cable: If you have an HDMI monitor or a TV, you can use an
HDMI cable to connect it to your Raspberry Pi. If you want to use your
VGA or DVI-based monitor, you will need a VGA to HDMI or DVI to
HDMI adapter converter. You can buy these adapter converters from
Amazon or Best Buy.

•	 An SD card: You are required to have at least an 8 GB SD card to get started.
It is preferable to use an SD card that has a quality of class 4 or better. You can
also buy an SD card with the preinstalled OS at http://swag.raspberrypi.
org/collections/frontpage/products/noobs-8gb-sd-card.

The Raspberry Pi Model B+ requires a microSD card instead
of a regular SD card.

•	 A mouse and keyboard: You will need a standard USB keyboard and a USB
mouse to work with the Raspberry Pi.

•	 A USB hub (optional): Since the Model B has just two USB ports, you will
have to remove existing devices from the USB ports to make space for
another device if you want to connect a Wi-Fi adapter or memory stick to it.
A USB hub can be handy to attach multiple peripheral components to your
Raspberry Pi. We recommend that you use a USB hub with external power
supply, as the Raspberry Pi can drive a limited number of peripheral devices
through the USB ports due to power limitations.

Preparing an SD card
To install and configure software components such as Python and the required
libraries, first we need an operating system for the Raspberry Pi. A Raspberry
Pi officially supports Linux-based open source operating systems that are
preconfigured for custom Raspberry Pi hardware components. Various versions
of these operating systems are available on Raspberry Pi's website (http://www.
raspberrypi.org/downloads).

Raspberry Pi's website provides a variety of OSes for users who range from newbies
to experts. It is difficult for a first-time user to identify the appropriate OS and its
installation process. If this is your first attempt with a Raspberry Pi, we recommend
that you use the New Out Of Box Software (NOOBS) package. Download the latest
version of NOOBS from the previous link. The NOOBS package includes few different
operating systems such as Raspbian, Pidora, Archlinux, and RaspBMC. NOOBS
streamlines the entire installation process and helps you to install and configure
your preferred version of the OS easily. It is important to note that NOOBS is just
an installation package and you will be left with only the Raspbian OS once you
complete the given installation steps.

http://www.raspberrypi.org/downloads
http://www.raspberrypi.org/downloads

Chapter 7

[191]

Raspberry Pi uses the SD card to host the operating system and you need to
prepare the SD card from your computer before placing it into the SD card slot
of the Raspberry Pi. Insert your SD card into your computer and make sure that
you have a backup of any important information that is on the SD card. During the
installation process, you will lose all the data stored on the SD card. Let's start by
preparing your SD card.

Follow these steps to prepare an SD card from Windows:

1.	 You will require a software tool to format and prepare the SD card for
Windows. You can download the freely available formatting tool from
https://www.sdcard.org/downloads/formatter_4/eula_windows/.

2.	 Download and install the formatting tool on your Windows computer.
3.	 Insert your SD card and start the formatting tool.
4.	 In the formatting tool, open the Options menu and set FORMAT SIZE

ADJUSTMENT to ON.
5.	 Select the appropriate SD card and click on Format.
6.	 Then, wait for the formatting tool to finish formatting the SD card. Once this

is done, extract the downloaded NOOBS ZIP file to the SD card. Make sure that
you extract the content of the ZIP folder to the root location of the SD card.

Follow these directions to prepare SD card from Mac OS X:

1.	 You will require a software tool to format and prepare the SD card for
Mac OS X. You can download the freely available formatting tool from
https://www.sdcard.org/downloads/formatter_4/eula_mac/.

2.	 Download and install the formatting tool on your machine.
3.	 Insert your SD card and run the formatting tool.
4.	 In the formatting tool, select Overwrite Format.
5.	 Select the appropriate SD card and click on Format.
6.	 Then, wait for the formatting tool to finish formatting the SD card. Once this

is done, extract the downloaded NOOBS ZIP file to the SD card. Make sure that
you extract the content of the ZIP folder to the root location of the SD card.

Follow these steps to prepare the SD card from Ubuntu Linux:

1.	 To format the SD card on Ubuntu, you can use a formatting tool called
gparted. Install gparted using the following command on the terminal:
$ sudo apt-get install gparted

https://www.sdcard.org/downloads/formatter_4/eula_windows/
https://www.sdcard.org/downloads/formatter_4/eula_mac/

The Midterm Project – a Portable DIY Thermostat

[192]

2.	 Insert your SD card and run gparted.
3.	 In the gparted window, select the entire SD card and format it using FAT32.
4.	 Once the format process is complete, extract the downloaded NOOBS ZIP file

to the SD card. Make sure that you extract the content of the ZIP folder to the
root location of the SD card.

If you have any trouble following these steps, you can refer to the
official documentation for preparing the SD card for a Raspberry
Pi at http://www.raspberrypi.org/documentation/
installation/installing-images/.

The Raspberry Pi setup process
Once you have prepared your SD card with NOOBS, insert it into the SD card slot of
the Raspberry Pi. Connect your monitor, mouse, and keyboard before connecting
the micro USB cable for the power adapter. Once you connect the power adapter, the
Raspberry Pi will turn on automatically and you will be able to see the installation
process on the monitor. If you are not able to see any progress on the monitor after
connecting the power adapter, refer to the troubleshooting section that is available
later in this chapter.

Once the Raspberry Pi boots up, it will repartition the SD card and show you the
following installation screen so that you can get started:

http://www.raspberrypi.org/documentation/installation/installing-images/
http://www.raspberrypi.org/documentation/installation/installing-images/

Chapter 7

[193]

The preceding screenshot is taken from raspberry_
pi_F01_02_5a.jpg by Simon Monk and is licensed
under Attribution Creative Commons license
(https://learn.adafruit.com/assets/11384).

1.	 As a first-time user, select Raspbian [RECOMMENDED] as the recommended
operating system and click on the Install OS button. Raspbian is a Debian-
based OS that is optimized for the Raspberry Pi and it supports useful Linux
commands that we have already learned in the previous chapters. The process
will take about 10 to 20 minutes to complete.

2.	 On successful completion, you will be able to see a screen similar to the one
displayed in the following screenshot. The screenshot displays the raspi-
config tool that will let you set up the initial parameters. We will skip this
process to complete the installation. Select <Finish> and press Enter:

3.	 You can go back to this screen again, in case you want to change any
parameter, by typing the following command in the terminal:
$ sudo raspi-config

4.	 Raspberry Pi will now reboot and you will be prompted to the default login
screen. Log in using the default username pi and password raspberry.

5.	 You can start the graphical desktop of the Raspberry Pi by typing the
following command in the terminal:
$ startx

https://learn.adafruit.com/assets/11384

The Midterm Project – a Portable DIY Thermostat

[194]

6.	 To run the Python code that we developed in the first stage, you will need
to set up required Python libraries on the Raspberry Pi. You will have to
connect your Raspberry Pi to the Internet using the Ethernet cable to install
the packages. Install the required Python packages on the Raspberry Pi
terminal using the following command:
$ sudo apt-get install python-setuptools, python-matplotlib,
python-numpy

7.	 Install pySerial using Setuptools:

$ sudo easy_install pyserial

Now, your Raspberry Pi is ready with an operating system and the necessary
components to support Python-Arduino programming.

Using a portable TFT LCD display with the
Raspberry Pi
TFT LCD is a great way to expand the Raspberry Pi's functionalities and avoid the
use of large display devices. These TFT LCD displays can be interfaced directly
with GPIO pins. TFT LCD screens are available in various shapes and size, but for
the Raspberry Pi we recommend that you use a screen with a size smaller than or
equal to 3.2 inches due to interfacing convenience. Most of these small screens do not
require additional power supply and can be directly powered using the GPIO pins.
In a few cases, touch screen versions are also available to extend the functionality of
the Raspberry Pi.

In this project, we are using a Tontec 2.4 inch TFT LCD screen that can be directly
interfaced with the Raspberry Pi via GPIO. Although you can use any available
TFT LCD screen, this book only cover the setup and configuration process for this
particular screen. In most cases, manufacturers of these screens provide detailed
configuration tutorials on their websites. Raspberry Pi forums and blogs are
another good places to look for help if you are using a different type of the TFT
LCD screen. The following image shows the back of the Tontec 2.4 inch TFT LCD
screen with the location of the GPIO pins. Let's get started and use this screen with
your Raspberry Pi:

Chapter 7

[195]

Connecting the TFT LCD using GPIO
Before we can use the screen, we will have to connect it to the Raspberry Pi. Let's
disconnect the micro USB power adapter from the Raspberry Pi and locate the
GPIO male pins near the RCA video port on the Raspberry Pi. Get your TFT screen
and connect the GPIO pins as such you can see Raspberry Pi and the screen as
displayed in the following image. In handful cases, the notations on the screen will
be misleading, and therefore we suggest that you follow the guidelines from the
manufacturer to make the connections:

The Midterm Project – a Portable DIY Thermostat

[196]

Once your screen is connected to the Raspberry Pi, power it up using the micro
USB cable. Do not disconnect your HDMI cable yet, as your screen is still not
ready. Before we go ahead with any of the configuration steps, let's first connect the
Raspberry Pi to the Internet. Connect the Ethernet port of the Raspberry Pi to your
home or office network using an Ethernet cable. Now, let's configure the TFT LCD
screen in the Raspbian OS to make it work properly.

Configuring the TFT LCD with the Raspberry Pi OS
Once your Raspberry Pi is powered up, log in using your username and password.
Complete the following steps to configure the screen with your Raspberry Pi:

1.	 Download the supporting files and manual using the following command on
the terminal:
$ wget https://s3.amazonaws.com/tontec/24usingmanual.zip

2.	 Unzip the file. The following command will extract the files into the same
directory:
$ unzip 24usingmanual.zip

3.	 Navigate to the src directory:
$ cd cd mztx-ext-2.4/src/

4.	 Enter following command to compile the source files:
$ make

5.	 Open the boot configuration files:
$ sudo pico /boot/config.txt

6.	 In the config.txt file, locate and uncomment the following lines of code:
framebuffer_width=320
framebuffer_height=240

7.	 Save and exit the file.
8.	 Now, every time the Raspberry Pi restarts we need to execute a command

to start the TFT LCD screen. To do this, open the rc.local file using the
following command:
$ sudo pico /etc/rc.local

9.	 Add the following line of code to the file that starts the screen:
sudo /home/pi/mztx-ext-2.4/src/mztx06a &

Chapter 7

[197]

10.	 Save and exit the file. Then, reboot the Raspberry Pi using the following
command:
$ sudo reboot

You can remove your HDMI monitor now and start working with your TFT LCD
screen. One thing that you will have to keep in mind is that the screen resolution is
very small and it is not optimized for coding. We prefer to use the HDMI monitor
to perform the major code modifications that are required in the next section. The
utilization of the TFT LCD screen in this project is to accommodate the mobility and
portability requirements of the thermostat.

Optimizing the GUI for the TFT LCD screen
The resolution of the TFT LCD screen that we configured in the previous section is
only 320 x 240 pixels, but the windows that we created in first programming stage
are quite large. Therefore, before we copy and run our Python code on the Raspberry
Pi, we need to adjust a few parameters in the code.

In your regular computer where you have this chapter's folder from the book's
source code, open the Thermostat_Stage2.py file. This file contains the details of
the modification required to obtain the optimum size with minor cosmetic changes.
You will be using this file, instead of the one that we used in the previous stage, on
your Raspberry Pi. These adjustments in the code are explained in the following
lines of code.

The first major alteration is in the port name. For the Raspberry Pi, you need to change
the name of the Arduino port from that you were using in the first stage to /dev/
ttyACM0, which is the address assigned to Arduino in the majority of the cases:

port = serial.Serial('/dev/ttyACM0',9600, timeout=1)

In this program file, the size of the Tkinter main window and the matplotlib
figure are also adjusted to fit the screen size. If you are using a different-sized
screen, change the following lines of code appropriately:

top.minsize(320,160)
pyplot.figure(figsize=(4,3))

The Midterm Project – a Portable DIY Thermostat

[198]

Now, with the preceding changes, the GUI window should be able to fit within
Raspberry Pi's screen. As the Raspberry Pi's screen will be used as the dedicated
screen for the thermostat application, we need to adjust the text size on the screen to
fit the window properly. Add the font=("Helvetica", 20) text in the declaration
of the labels to increase the font size. The following line of code shows changes that
are performed on the labels to contain the sensor names:

Tkinter.Label(top,
 text="Humidity",
 font=("Helvetica", 20)).grid(column=1, row=2)

Similarly, the font option is added to the observation labels:

HumdUnitLabel = Tkinter.Label(top,
 text="%",
 font=("Helvetica", 20))

The labels for the observation unit also carry similar modifications:

HumdLabel.config(text=cleanText(reading[1]),
 font=("Helvetica", 20))

The Thermostat_ Stage2.py file already includes the preceding modifications
and is ready to run on your Raspberry Pi. Before you run the file, first we need to
copy the file to the Raspberry Pi. At this stage, the USB hub will be very handy to
copy the files. If you don't have a USB hub, you can utilize two available USB ports
simultaneously to attach the USB pen drive, mouse, and keyboard. With the use of
the USB hub, connect the USB pen drive containing the Python files and copy them
to the home folder. Attach the USB port of the Arduino board to one of the ends
of the USB hub. From the start menu of the Raspberry Pi, open the LXTerminal
program by navigating to Accessories | LXterminal. Run the Python code from
the home folder and you will be able to see the optimized user interface window
that opens on the Raspberry Pi's screen. If every step mentioned in the chapter is
performed correctly, you will be able to see the sensor observation being printed
when you click on the Start button:

Chapter 7

[199]

At the end of the chapter, you must be wondering what a mobile unit with sensors,
Arduino, Raspberry Pi, and TFT screen might look like. The following image shows
a sample thermostat that was developed using the instructions given in this chapter.
We used an acrylic sheet to hold the Raspberry Pi and the Arduino board together
and created a compact form factor:

Troubleshooting
There are a few known problems that you may face in this stage of the project.
The following section describes these problems and their quick fixes:

•	 The Raspberry Pi is not booting up:
°° Make sure that the SD card is formatted properly with the specified

tools. The Raspberry Pi won't boot if the SD card is not prepared
properly.

°° Check the HDMI cable and the monitor to see whether they are
working fine.

°° Make sure that the power adapter is compatible with the Raspberry Pi.

•	 The TFT LCD screen doesn't turn on:
°° Make sure that the screen is properly connected to the GPIO pins of

the Raspberry Pi.

The Midterm Project – a Portable DIY Thermostat

[200]

°° If you are using any other TFT LCD screen, make sure from its
datasheet that your screen doesn't require additional power.

°° Check whether the screen is properly configured using the steps
described in the Optimizing the GUI for the TFT LCD screen section.

•	 There is a slow refresh rate of the sensor data on the Raspberry Pi:

°° Try decreasing the delay between each serial message that is sent
by Arduino.

°° Terminate any other application that is running in the background.

Summary
With this project, we successfully created a portable and deployable thermostat using
Arduino, which monitors temperature, humidity, and ambient light. During this
process, we assembled the thermostat sensor unit using the necessary components
and developed custom Arduino program to support them. We also utilized Python
programming methods including GUI development and plots using Tkinter and
matplotlib libraries respectively. Later in the chapter, we utilized the Raspberry
Pi to convert a mere project prototype into a practical application. Henceforth, you
should be able to develop similar projects that require you to observe and visualize
real-time sensor information.

Going forward, we will be expanding this project to accommodate upcoming topics
such as Arduino networking, cloud communication, and remote monitoring. In the
next level of the thermostat project, we will integrate these advanced features and
make it a really resourceful DIY project that can be used in everyday life. In the next
chapter, we are going to start the next stage of our journey from making simple
Python-Arduino projects to Internet-connected and remotely accessible IoT projects.

Introduction to Arduino
Networking

So far, we used a hardwired serial connection to interact with Arduino, a serial
monitor to observe the Arduino serial data, and a Python serial library (pySerial)
to transfer data between the Arduino and Python applications. During this
entire exchange, the range of communication was limited due to the hardwired
serial connection. As a solution, you can use a wireless protocol such as ZigBee,
Bluetooth, or other RF channels to establish a communication channel for a remote
serial interface. These wireless protocols are extensively used in remote hardware
applications, and they use the serial interface to transfer data. Due to their use
of serial communication, these protocols require very little to no additional
programming changes on the Arduino or Python side. You may require additional
hardware to enable these protocols, however. The major benefit of these protocols
is that they are really easy to implement. However, they are restricted with only a
small geographical coverage area and limited data bandwidth.

Besides serial communication methods, the other way to remotely access your
Arduino device is to use a computer network. Today, computer networks are the
most prolific way of communicating between computing units. In the next two
chapters, we will explore various networking techniques using Arduino and Python,
which range from establishing very basic Ethernet connectivity to developing
complex, cloud-based web applications.

In this chapter, we will cover the following topics:

•	 The fundamentals of networking and hardware extensions that enable
networking for Arduino

•	 Python frameworks used to develop Hypertext Transfer Protocol (HTTP)
web servers on your computer

•	 Interfacing Arduino-based HTTP clients with the Python web server

Introduction to Arduino Networking

[202]

•	 IoT messaging protocol MQTT (we will install a middleware tool called
Mosquitto to enable MQTT on our computer)

•	 Utilizing the publisher/subscriber paradigm, used by MQTT, to develop
Arduino-Python web applications

Arduino and the computer networking
Computer networking is a huge domain, and covering every aspect of networking
is not the main objective of this book. We will, however, try to explain a few
fundamentals of computer networking wherever this knowledge will need to be
applied. Unlike the serial interface approach, where a point-to-point connection is
required between devices, the network-based approach provides distributed access
to resources. Specifically in hardware applications where a single hardware unit is
required to be accessed by multiple endpoints (for example, in a personal computer,
mobile phone, or remote server), the computer network stands superior.

In this section, we will cover the basics of networking and hardware components
that enable networking in Arduino. Later in this chapter, we will use the Arduino
library and a built-in example to demonstrate how remote access to Arduino using
your local network works.

Networking fundamentals
Whenever you see a computer or mobile device, you are also looking at some type of
computer network being used to connect those devices with other devices. In simple
terms, a computer network is a group of interconnected computational devices (also
called network nodes) that allow the exchange of data between these devices. These
network nodes include various devices such as your personal computers, mobile
phones, servers, tablets, routers, and other pieces of networking hardware.

A computer network can be classified into numerous types according to parameters
such as geographical location, network topology, and organizational scope. In terms
of geographical scale, a network can be categorized into local area network (LAN),
home area network (HAN), wide area network (WAN), and so on. When you are
utilizing your home router to connect to the Internet, you are using the LAN created
by your router. With regards to the organization that handles the network, LAN can
be configured as Intranet, Extranet, and Internet. The Internet is the largest example
of any computer network, as it interconnects all types of networks deployed globally.
In your implementation of various projects throughout this book, you will mostly be
using your LAN and the Internet for the exchange of data between an Arduino, your
computer, the Raspberry Pi, and the cloud services.

Chapter 8

[203]

To standardize communication between network nodes, various governing bodies
and organizations have created a set of rules called protocols. In the large list of
standard protocols, there are a few protocols that your computer uses on a daily
basis. The examples of those protocols associated with the local area network include
Ethernet and Wi-Fi. In the IEEE 802 family of standards, the IEEE 802.3 standard
describes different types of wired connectivity between nodes in a local area
network, also called Ethernet. Similarly, Wireless LAN (also referred to as Wi-Fi),
is part of the IEEE 802.11 standard, where a communication channel uses wireless
frequency bands to exchange data.

Most network nodes deployed with IEEE 802 standards (that is, Ethernet, Wi-Fi, and
so on) have a unique identifier assigned to the network interface hardware, called a
media access control (MAC) address. This address is assigned by the manufacturer
and is mostly fixed for each network interface. While using Arduino for network
connectivity, we will need the MAC address to enable networking. A MAC address
is a 48-bit address, and in human-friendly form it contains six groups of two
hexadecimal digits. For example, 01:23:45:67:89:ab is the human-readable form of a
48-bit MAC address.

While the MAC address is associated with the hardware-level (that is, "physical")
protocols, the Internet Protocol (IP) is a communication protocol that is widely
used at the Internet level to enable internetworking between networked nodes. In
the implementation of version 4 of the IP protocol suite (IPv4), each network node
is assigned a 32-bit number called the IP address (for example, 192.168.0.1). When
you connect a computer, phone, or any other device to your local home network,
an IP address is assigned to that device by your router. One of the most popular IP
addresses is 127.0.0.1, which is also called the localhost IP address. Apart from the IP
address assigned to a computer by the network, each computer also has the localhost
IP address associated with it. The localhost IP address is very useful when you want
to internally access or call your computer from the same device. In the case of a
remote-access application, you need to know the IP address assigned by the network.

Obtaining the IP address of your computer
Arduino is a resource-constrained device, and therefore it can only demonstrate a
limited amount of network capability. While working with Arduino-based projects
that include the utilization of a computer network, you will require a server or
Gateway interface. These interfaces include, but are not limited to, a desktop
computer, a laptop, the Raspberry Pi, and other remote computing instances. If
you are using these interfaces as part of your hardware project, you will need their
IP addresses. Ensure that they are under the same network as your Arduino. The
following are the techniques to obtain IP addresses in major operating systems.

Introduction to Arduino Networking

[204]

Windows
In most versions of the Windows OS, you can obtain the IP address from the
Network Connection utility in Control Panel. Navigate to Control Panel | Network
and Internet | Network Connections and open the Local Area Connection Status
window. Click on the Details button to see the details of the Network Connection
Details window. As you can see in this screenshot, the IP address of the network
interface is listed as IPv4 Address in the opened window:

You can also obtain the IP address of your computer using the built-in ipconfig
utility. Open the Command Prompt and enter the following command:

> ipconfig

As you can see in the following screenshot, the IP address of your computer is listed
under the Ethernet adapter. If you are using a wireless connection to connect to your
network, the Ethernet adapter will be replaced by the wireless Ethernet adapter.

Chapter 8

[205]

Mac OS X
If you are using Mac OS X, you can obtain the IP address from the network settings.
Open System Preferences and click on the Network icon. You will see a window
similar to what is shown in the next screenshot. In the left sidebar, click on the
interface you are looking to obtain the IP address of.

Introduction to Arduino Networking

[206]

If you want to get the IP address using the terminal, you can use the following
command. This command will require you to enter the system name of the interface,
en0:

$ ipconfig getifaddr en0

If you are connected to multiple networks and are not aware of the network name,
you can find the list of IP addresses associated with your computer, using the
command shown here:

$ ifconfig | grep inet

As you can see in this screenshot, you will get all the network addresses associated
with your Mac computer and other network parameters:

Linux
On the Ubuntu OS, you can obtain the IP address of your computer from the
Network Settings utility. To open it, navigate to System Settings | Network
and click on the adapter through which the computer is connected to your
home network. You can select an appropriate adapter to obtain the IP address,
as displayed in the following screenshot:

Chapter 8

[207]

In a Linux-based system, there are multiple ways of obtaining the IP address from
the command line. You can use the same command (ifconfig) that we used in Mac
OS X in the Linux environment to obtain the IP address of your computer:

$ ifconfig

You can obtain the IP address from the inet addr field of the appropriate adapter,
as displayed in this screenshot:

If supported by your operating system, another command that can be utilized to
obtain the IP address is hostname:

$ hostname –I

Be careful when using this utility to obtain the IP address, as you may end up getting
the IP address of a different adapter if you are not familiar with the supported
command options of the utility.

If you are going to connect your Arduino to the same local area network
as your computer, make sure you are choosing the proper IP address
that is covered by the same domain as that of your computer. Also
ensure that no other network device is using the same IP address that
you have selected for your Arduino. This practice will help you avoid
IP address conflicts within the network.

Introduction to Arduino Networking

[208]

Networking extensions for Arduino
There are various hardware devices available in the Arduino community that enable
networking for the Arduino platform. Among these devices, a few can be used as
extensions for your existing Arduino board, while others exist as standalone Arduino
modules with networking capabilities. The most popular extensions used to enable
networking are the Arduino Ethernet Shield and Arduino WiFi Shield. Similarly,
Arduino Yún is an example of a standalone Arduino platform that includes built-in
networking capabilities. In this book, we are going to develop various networking
applications around the Arduino Ethernet Shield. There are also a few other extensions
(Arduino GSM Shield) and standalone Arduino platforms (Arduino Ethernet, Arduino
Tre, and so on), but we are not going to cover them in detail. Let's get familiar with the
following Arduino extensions and board.

Arduino Ethernet Shield
The Arduino Ethernet Shield is an officially supported and open source network
extension designed to work with Arduino Uno. The Ethernet Shield is equipped with
an RJ45 connector to enable Ethernet networking. The Ethernet Shield is designed to
mount on top of Arduino Uno and it extends the layout of the pins from your Arduino
Uno to the top of the board. The Ethernet Shield is also equipped with a microSD card
slot to store important files over the network. Just like most of these shield extensions,
the Ethernet Shield is powered by the Arduino board it is attached to.

Source: http://arduino.cc/en/uploads/Main/ArduinoEthernetShield_R3_Front.jpg

http://arduino.cc/en/uploads/Main/ArduinoEthernetShield_R3_Front.jpg

Chapter 8

[209]

Every Ethernet Shield board is equipped with a unique hardware (MAC) address.
You can see it on the back of the board. You may want to note down this hardware
address, as it will be required frequently in the upcoming exercises. Also make sure
that you get familiar with mounting the Arduino Ethernet Shield for those exercises.
Buy an Arduino Ethernet Shield module from SparkFun or Amazon before your start
working on any exercises. You can obtain additional information about this Shield at
http://arduino.cc/en/Main/ArduinoEthernetShield.

Arduino WiFi Shield
The Arduino WiFi Shield has a layout similar to that of the Arduino Ethernet
Shield as far as mounting on top of the Arduino board is concerned. Instead of the
Ethernet RJ45 connector, the WiFi Shield contains components to enable wireless
networking. Using the WiFi Shield, you can connect to the IEEE 802.11 (Wi-Fi)
wireless networks, which is one of the most popular ways of connecting computers
to the home network nowadays.

Source: http://arduino.cc/en/uploads/Main/A000058_front.jpg

The Arduino WiFi Shield requires additional power through a USB connector. It also
contains a microSD slot to save files. Just like the Ethernet Shield, you can view the
MAC address on the back of the board. More information about the Arduino WiFi
Shield can be found at http://arduino.cc/en/Main/ArduinoWi-FiShield.

 http://arduino.cc/en/Main/ArduinoEthernetShield
 http://arduino.cc/en/Main/ArduinoEthernetShield
http://arduino.cc/en/uploads/Main/A000058_front.jpg
 http://arduino.cc/en/Main/ArduinoWi-FiShield

Introduction to Arduino Networking

[210]

Arduino Yún
Unlike the Ethernet Shield and the WiFi Shield, the Arduino Yún is a standalone
variant of the Arduino board. It includes both Ethernet- and Wi-Fi-based network
connectivity, in addition to the basic Arduino component—the microcontroller. Yún
is equipped with the latest and more powerful processing units compared to Uno.
Instead of the traditional way of using Arduino code, Yún supports a lightweight
version of the Linux operating system, providing functionality similar to a single-
board computer such as the Raspberry Pi. You can use your Arduino IDE to program
Yún even while running Unix shell scripts.

Source: http://arduino.cc/en/uploads/Main/ArduinoYunFront_2.jpg

You can find more information about Yún at the Arduino official website,
at http://arduino.cc/en/Main/ArduinoBoardYun.

Arduino Ethernet library
The Arduino Ethernet library provides support for the Ethernet protocol, and hence
provides support for Ethernet extensions of Arduino, such as the Ethernet Shield.
This is a standard Arduino library and it gets deployed with the Arduino IDE.

http://arduino.cc/en/uploads/Main/ArduinoYunFront_2.jpg
http://arduino.cc/en/Main/ArduinoBoardYun

Chapter 8

[211]

The library is designed to accept incoming connection requests when deployed
as a server and while making outgoing connections to other servers when being
utilized as a client. The library concurrently supports up to four connections due
to the limited computation capability of the Arduino board. To use the Ethernet
library in your Arduino program, the first step you have to take is to import it in
to your Arduino sketch:

#include <Ethernet.h>

The Ethernet library implements various functionalities through specific classes,
which are described as follows.

We are going to describe only the important methods provided by these
classes. You can obtain more information regarding this library and its
classes from http://arduino.cc/en/Reference/Ethernet.

The Ethernet class
The Ethernet class is a core class of the Ethernet library, and it provides methods
to initialize this library and the network settings. This is an essential class for any
program that wants to use the Ethernet library to establish connections through the
Ethernet Shield. The primary information required to establish this connection is
the MAC address of the device. You'll need to create a variable that has the MAC
address as an array of 6 bytes, as described here:

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };

The Ethernet library supports the Dynamic Host Control Protocol (DHCP), which
is responsible for dynamically assigning IP addresses to new network nodes. If
your home network is configured to support DHCP, you can establish the Ethernet
connection using the begin(mac) method from the Ethernet class:

Ethernet.begin(mac);

Keep in mind that when you are initializing an Ethernet connection using this class,
you are only initializing the Ethernet connection and setting up the IP address. This
means that you still need to configure Arduino as a server or a client in order to
enable further communication.

http://arduino.cc/en/Reference/Ethernet

Introduction to Arduino Networking

[212]

The IPAddress class
In applications where you have to manually assign the IP address to your Arduino
device, you will have to use the IPAddress class of the Ethernet library. This class
provides methods to specify the IP address, which can be either local or remote
depending upon the application:

IPAddress ip(192,168,1,177);

The IP address created using this method can be used in the initialization of the
network connection that we performed in the previous section. If you want to assign
a manual IP address to your Arduino, you can use the begin(mac, ip) method with
the MAC and IP addresses:

Ethernet.begin(mac, ip);

The Server class
The Server class is designed to create a server using the Ethernet library on
Arduino, which listens to incoming connection requests for a specific port. The
EthernetServer() method, when specified with in integer value of the port
number, initializes the server on Arduino:

EthernetServer server = EthernetServer(80);

By specifying port 80 in the previous line of code (which represents the HTTP
protocol on the TCP/IP suite), we have specifically created a web server using the
Ethernet library. To start listening to the incoming connection requests, you have to
use the begin() method on the server object:

server.begin();

Once the connection is established, you can respond to a request using various
methods supported by the server class, such as write(), print(), and println().

The Client class
The Client class provides methods to create an Ethernet client to connect and
communicate with servers. The EthernetClient() method initializes a client that
can be connected to a specific server using its IP address and port number. The
connect(ip, port) method on the client object will establish a connection with
the server on the mentioned IP address:

EthernetClient client;
client.connect(server, 80);

Chapter 8

[213]

The Client class also has the connected() method, which provides the status
of the current connection in binary. This status can be true (connected) or
false (disconnected). This method is useful for the periodic monitoring of the
connection status:

client.connected()

Other important client methods include read() and write(). These methods help
the Ethernet client to read the request from the server and to send messages to the
server respectively.

Exercise 1 – a web server, your first Arduino
network program
The best way to test the Arduino Ethernet library and the Ethernet Shield is by
using the built-in examples that are deployed with the Arduino IDE. If you are
using version 1.x of the Arduino IDE, you can find a bunch of Ethernet examples
by navigating to File | Examples | Ethernet. By utilizing one of these examples,
we are going to build a web server that delivers the sensor values when requested
by a web browser. As Arduino will be connected to your home network through
the Ethernet, you will be able to access it from any other computer connected to
your network. The major goals for this exercise are listed here:

•	 Use the Arduino Ethernet library with the Arduino Ethernet Shield extension
to create a web server

•	 Remotely access Arduino using your home computer network
•	 Utilize a default Arduino example to provide humidity and motion sensor

values using a web server

To achieve these goals, the exercise is divided into the following stages:

•	 Design and build hardware for the exercise using your Arduino and the
Ethernet Shield

•	 Run a default example from the Arduino IDE as the starting point of
the exercise

•	 Modify the example to accommodate your hardware design and redeploy
the code

Introduction to Arduino Networking

[214]

The following is a Fritzing diagram of the circuit required for this exercise. The first
thing you should do is mount the Ethernet Shield on top of your Arduino Uno.
Ensure that all the pins of the Ethernet Shield are aligned with the corresponding
pins of the Arduino Uno. Then you need to connect the previously used humidity
sensor, HIH-4030, and the PIR motion sensor.

While deploying the Arduino hardware for remote connectivity
without USB, you will have to provide external power for the
board, as you no longer have a USB connection to power the board.

Now connect your Arduino Uno to a computer using a USB cable. You will also need
to connect Arduino to your local home network using an Ethernet cable. To do that,
use a straight CAT5 or CAT6 cable and connect one end of the cable to your home
router. This router should be the same device that provides network access to the
computer you are using. Connect the other end of the Ethernet cable to the Ethernet
port of the Arduino Ethernet Shield board. If the physical-level connection has been
established correctly, you should see a green light on the port.

Chapter 8

[215]

Now it's time to start coding your first Ethernet example. Open the WebServer
example by navigating to File | Examples | Ethernet | WebServer in your Arduino
IDE. As you can see, the Ethernet library is included with the other required libraries
and the supported code. In the code, you will need to change the MAC and IP
addresses to make it work for your configuration. While you can obtain the MAC
address of the Ethernet Shield from the back of the board, you will have to select an IP
address according to your home network configuration. As you have already obtained
the IP address of the computer you are working with, select another address in the
range. Ensure that no other network node is using this IP address. Use these MAC and
IP addresses to update the following values in your code. You will need to repeat these
steps for every exercise when you are dealing with Arduino Ethernet:

byte mac[] = {0x90, 0xA2, 0xDA, 0x0D, 0x3F, 0x62};
IPAddress ip(10,0,0,75);

In the IP network, the visible range of IP addresses for your network
is a function of another address called subnetwork or subnet. The
subnet of your LAN IP network can help you select the appropriate
IP address for the Ethernet Shield in the range of the IP address
of your computer. You can learn about the basics of the subnet at
http://en.wikipedia.org/wiki/Subnetwork.

http://en.wikipedia.org/wiki/Subnetwork

Introduction to Arduino Networking

[216]

Before venturing further into the code, compile the code with these modifications
and upload it to your Arduino. Once the uploading process is completed
successfully, open a web browser and enter the IP address that you had specified in
the Arduino sketch. If everything goes fine, you should see text displaying the values
of the analog pins.

To better understand what happened here, let's go back to the code. As you can see,
at the beginning of the code we initialize the Ethernet server library on port 80 using
the EthernetServer method from the Ethernet library:

EthernetServer server(80);

During the execution of setup(), the program initializes the Ethernet connection
through the Ethernet Shield using the Ethernet.being() method with the mac and
ip variables that you defined earlier. The server.begin() method will start the
server from here. Both of these steps are mandatory to start a server if you are using
the Ethernet library for server code:

Ethernet.begin(mac, ip);
server.begin();

In the loop() function, we initialize a client object to listen to incoming client
requests using the EthernetClient method. This object will respond to any request
coming from connected clients that try to access the Ethernet server through port 80:

EthernetClient client = server.available();

On receiving the request, the program will wait for the request payload to end.
Then it will reply to the client with formatted HTML data using the client.print()
method:

while (client.connected()) {
 if (client.available()) {
 char c = client.read();
 Serial.write(c);
 # Response code
}

If you try to access the Arduino server from the browser, you will see that the web
server replies to the clients with the analog pin readings. Now, to obtain the proper
values of the humidity and PIR sensors that we connected in the hardware design,
you will have to perform the following modification to the code. You will notice here
that we are replying to the clients with the calculated values of relative humidity,
instead of raw readings from all the analog pins. We have also modified the text that
will be printed in the web browser to match the proper sensor title:

if (c == '\n' && currentLineIsBlank) {

Chapter 8

[217]

 // send a standard http response header
 client.println("HTTP/1.1 200 OK");
 client.println("Content-Type: text/html");
 client.println("Connection: close");
 client.println("Refresh: 5");
 client.println();
 client.println("<!DOCTYPE HTML>");
 client.println("<html>");
 float sensorReading = getHumidity(analogChannel,
temperature);
 client.print("Relative Humidity from HIH4030 is ");
 client.print(sensorReading);
 client.println(" %
");
 client.println("</html>");
 break;
 }

In this process, we also added an Arduino function, getHumidity(), that will
calculate the relative humidity from the values observed from the analog pins. We
have already used a similar function to calculate relative humidity in one of the
previous projects:

float getHumidity(int analogChannel, float temperature){
 float supplyVolt = 5.0;
 int HIH4030_Value = analogRead(analogChannel);
 float analogReading = HIH4030_Value/1023.0 * supplyVolt;
 float sensorReading = 161.0 * analogReading / supplyVolt - 25.8;
 float humidityReading = sensorReading / (1.0546 - 0.0026 *
temperature);
 return humidityReading;
}

You can implement these changes to the WebServer Arduino example for the testing
phase, or just open the WebServer_Custom.ino sketch from the Exercise 1 - Web
Server folder of your code directory. As you can see in the opened sketch file, we have
already modified the code to reflect the changes, but you will still have to change the
MAC and IP addresses to the appropriate addresses. Once you are done with these
minor changes, compile and upload the sketch to Arduino.

Introduction to Arduino Networking

[218]

If everything goes as planned, you should be able to access the web server using
your web browser. Open the IP address of your recently prepared Arduino in the
web browser. You should be able to receive a similar response as displayed in the
following screenshot. Although we are only displaying humidity values through
this sketch, you can easily attach motion sensor values using additional
client.print() methods.

Just like the mechanism we implemented in this exercise, a web server responds to
the request made by a web browser and delivers the web pages you are looking for.
Although this method is very popular and universally used to deliver web pages,
the payload contains a lot of additional metadata compared to the actual size of the
sensor information. Also, the server implementation using the Ethernet server library
occupies a lot of the Arduino's resources. Arduino, being a resource-constrained
device, is not suitable for running a server application, as the Arduino's resources
should be prioritized to handle the sensors rather than communication. Moreover,
the web server created using the Ethernet library supports a very limited amount of
connections at a time, making it unusable for large-scale applications and multiuser
systems.

The best approach to overcome this problem is by using Arduino as a client device,
or by using lightweight communication protocols that are designed to work with
resource-constrained hardware devices. In the next few sections, you are going to
learn and implement these approaches for Arduino communication on the Ethernet.

Chapter 8

[219]

Developing web applications using
Python
By implementing the previous program, you have enabled networking on Arduino.
In the preceding example, we created an HTTP web server using methods available
from the Ethernet library. By creating an Arduino web server, we made the Arduino
resources available on the network. Similarly, Python also provides extensibility
by way of various libraries to create web server interfaces. By running the Python-
based web server on your computer or other devices such as the Raspberry Pi, you
can avoid using Arduino to host the web server. Web applications created using
high-level languages such as Python can also provide additional capabilities and
extensibility compared to Arduino.

In this section, we will use the Python library, web.py, to create a Python web server.
We will also use this library to create interactive web applications that will enable the
transfer of data between an Arduino client and a web browser. After you have learned
the basics of web.py, we will interface Arduino with web.py using serial ports to make
Arduino accessible through the Python web server. Then we will upgrade the Arduino
communication method from the serial interface to HTTP-based messaging.

Python web framework – web.py
A web server can be developed in Python using various web frameworks such as
Django, bottle, Pylon, and web.py. We have selected web.py as the preferred web
framework due to its simple yet powerful functionalities.

The web.py library was initially developed by the late Aaron Swartz with the goal of
developing an easy and straightforward approach to create web applications using
Python. This library provides two main methods, GET and POST, to support the HTTP
Representation State Transfer (REST) architecture. This architecture is designed to
support the HTTP protocol by sending and receiving data between clients and the
server. Today, the REST architecture is implemented by a huge number of websites
to transfer data over HTTP.

Installing web.py
To get started with web.py, you need to install the web.py library using Setuptools.
We installed Setuptools for various operating systems in Chapter 1, Getting Started
with Python and Arduino. On Linux and Mac OS X, execute either of these commands
on the terminal to install web.py:

$ sudo easy_install web.py
$ sudo pip install web.py

Introduction to Arduino Networking

[220]

On Windows, open the Command Prompt and execute the following command:

> easy_install.exe web.py

If Setuptools is set up correctly, you should be able to install the library without
any difficulty. To verify the installation of the library, open the Python interactive
prompt and run this command to see whether you have imported the library without
any errors:

>>> import web

Your first Python web application
Implementing a web server using web.py is a very simple and straightforward
process. The web.py library requires the declaration of a mandatory method, GET,
to successfully start the web server. When a client tries to access the server using
a web browser or another client, web.py receives a GET request and returns data
as specified by the method. To create a simple web application using the web.py
library, create a Python file using the following lines of code and execute the file
using Python. You can also run the webPyBasicExample.py file from the code
folder of this chapter:

import web
urls = (
 '/', 'index'
)
class index:
 def GET(self):
 return "Hello, world!"
if __name__ == "__main__":
 app = web.application(urls, globals())
 app.run()

On execution, you will see that the server is now running and accessible through the
http://0.0.0.0:8080 address. As the server program is running on the 0.0.0.0 IP
address, you can access it using the same computer, localhost, or any other computer
from the same network.

To check out the server, open a web browser and go to http://0.0.0.0:8080.
When you are trying to access the server from the same computer, you can also use
http://127.0.0.1:8080 or http://localhost:8080. The 127.0.0.1 IP address
actually stands for localhost, that is, the network address of the same computer on
which the program is running. You will be able to see the response of the server
displayed in the browser, as shown in the following screenshot:

Chapter 8

[221]

To understand how this simple code works, check out the GET method in the
previous code snippet. As you can see, when the web browser requests the URL,
the GET method returns the Hello, world! string to the browser. Meanwhile,
you can also observe two other mandatory web.py components in your code: the
urls and web.application() methods. The web.py library requires initialization
of the response location in the declaration of the urls variable. Every web.py-
based web application requires the application(urls, global()) method to be
called to initialize the web server. By default, the web.py applications run on port
number 8080, which can be changed to another port number by specifying it during
execution. For example, if you want to run your web.py application on port 8888,
execute the following command:

$ python webPyBasicExample.py 8888

Although this only returns simple text, you have now successfully created your first
web application using Python. We will take it forward from here and create more
complex web applications in the upcoming chapters using the web.py library. To
develop these complex applications, we will require more than just the GET method.
Let's start exploring advance concepts to further enhance your familiarity with the
web.py library.

Essential web.py concepts for developing
complex web applications
The web.py library has been designed to provide convenient and simple methods
to develop dynamic websites and web applications using Python. Using web.py,
it is really easy to build complex websites by utilizing just a few additional Python
concepts along with what you already know. Due to this limited learning curve
and easy-to-implement methods, web.py is one of the quickest ways to create web
applications in any programming language. Let's begin with understanding these
web.py concepts in detail.

Introduction to Arduino Networking

[222]

Handling URLs
You might have noticed that in our first web.py program, we defined a variable
called urls that points to the root location (/) of the Index class:

urls = (
 '/', 'index'
)

In the preceding declaration, the first part, '/', is a regular expression used to match
the actual URL requests. You can use regular expressions to handle complex queries
coming to your web.py server and point them to the appropriate class. In web.py,
you can associate different landing page locations with appropriate classes. For
example, if you want to redirect the /data location to the data class in addition to
the Index class, you can change the urls variable as follows:

urls = (
 '/', 'index',
 '/data', 'data',
)

With this provision, when a client sends a request to access the http://<ip-
address>:8080/data address, the request will be directed towards the data class
and then the GET or POST method of that class.

The GET and POST methods
In exercise 1, where we created an Arduino-based web server running on port 80,
we used a web browser to access the web server. Web browsers are one of the most
popular types of web clients used to access a web server; cURL, Wget, and web
crawlers are the other types. A web browser uses HTTP to communicate with any
web servers, including the Arduino web server that we used. GET and POST are two
fundamental methods supported by the HTTP protocol to address server requests
coming from a web browser.

Whenever you are trying to open a website in your browser or any other HTTP
client, you are actually requesting the GET function from the web server; for example,
when you open a website URL, http://www.example.com/, you are requesting that
the web server that hosts this website serves you the GET request for the '/' location.
In the Handling URLs section, you learned how to associate the web.py classes with
URL landing locations. Using the GET method provided by the web.py library, you
can associate the GET request with individual classes. Once you have captured the
GET request, you need to return appropriate values as the response to the client. The
following code snippet shows how the GET() function will be called when anyone
makes a GET request to the '/' location:

Chapter 8

[223]

def GET(self):
 f = self.submit_form()
 f.validates()
 t = 75
 return render.test(f,t);

The POST function of the HTTP protocol is mainly used to submit a form or any
other data to the web server. In most cases, POST is embedded in a web page, and
a request to the server is generated when a user submits the component carrying
the POST function. The web.py library also provides the POST() function, which is
called when a web client tries to contact the web.py server using the POST method.
In most implementations of the POST() function, the request includes some kind
of data submitted through forms. You can retrieve individual form elements using
f['Celsius'].value which will give you a value associated with the form element
called Celsius. Once the POST() function has performed the provided actions, you
can return appropriate information to the client in response to the POST request:

 def POST(self):
 f = self.submit_form()
 f.validates()
 c = f['Celsius'].value
 t = c*(9.0/5.0) + 32
 return render.test(f,t)

Templates
Now you know how to redirect an HTTP request to an appropriate URL, and also
how to implement methods to respond to these HTTP requests (that is, GET and
POST). But what about the web page that needs to be rendered once the request is
received? To understand the rendering process, let's start with creating a folder
called templates in the same directory where our web.py program is going to
be placed. This folder will store the templates that will be used to render the web
pages when requested. You have to specify the location of this template folder in
the program using the template.render() function, as displayed in the following
line of code:

render = web.template.render('templates')

Once you have instantiated the rendering folder, it is time to create template files
for your program. According to the requirements of your program, you can create
as many template files as you want. A language called Templetor is used to create
these template files in web.py. You can learn more about it at http://webpy.org/
templetor. Each template file created using Templetor needs to be stored in the
HTML format with the .html extension.

http://webpy.org/templetor
http://webpy.org/templetor

Introduction to Arduino Networking

[224]

Let's create a file called test.html in the templates folder using a text editor and
paste the following code snippet in to the file:

$def with(form, i)
<form method="POST">
 $:form.render()
</form>
<p>Value is: $:i </p>

As you can see in the preceding code snippet, the template file begins with the $def
with() expression, where you need to specify the input arguments as variables
within the brackets. Once the template is rendered, these will be the only variables
you can utilize for the web page; for example, in the previous code snippet, we
passed two variables (form and i) as input variables. We utilized the form object
using $:form.render() to render it inside the web page. When you need to render
the form object, you can directly pass the other variable by simply declaring it (that
is, $:i). Templetor will render the HTML code of the template file as it is, while
utilizing the variables in the instances where they are being used.

Now you have a template file, test.html, ready to be used in your web.py program.
Whenever a GET() or POST() function is executed, you are required to return
a value to the requesting client. Although you can return any variable for these
requests, including None, you will have to render a template file where the response
is associated with loading a web page. You can return the template file using the
render() function, followed by the filename of the template file and input arguments:

return render.test(f, i);

As you can see in the preceding line of code, we are returning the rendered test.
html page by specifying the render.test() function, where test() is just the
filename without the .html extension. The function also includes a form object, f,
and variable, i, that will be passed as input arguments.

Forms
The web.py library provides simple ways of creating form elements using the Form
module. This module includes the capability to create HTML form elements, obtain
inputs from users, and validate these inputs before utilizing them in the Python
program. In the following code snippet, we are creating two form elements, Textbox
and Button, using the Form library:

 submit_form = form.Form(
 form.Textbox('Celsius', description = 'Celsius'),
 form.Button('submit', type="submit", description='submit')
)

Chapter 8

[225]

Besides Textbox (which obtains text input from users) and Button (which submits
the form), the Form module also provides a few other form elements, such as
Password to obtain hidden text input, Dropbox to obtain a mutually exclusive input
from a drop-down list, Radio to obtain mutually exclusive inputs from multiple
options, and Checkbox to select a binary input from the given options. While all of
these elements are very easy to implement, you should select form elements only
according to your program requirements.

In the web.py implementation of Form, the web page needs to execute the POST
method every time the form is submitted. As you can in see in the following
implementation of the form in the template file, we are explicitly declaring the
form submission method as POST:

$def with(form, i)
<form method="POST">
 $:form.render()
</form>

Exercise 2 – playing with web.py concepts
using the Arduino serial interface
Now you have a general idea of the basic web.py concepts used to build a web
application. In this exercise, we will utilize the concepts you learned to create an
application to provide the Arduino with sensor information. As the goal of this
exercise is to demonstrate the web.py server for Arduino data, we are not going to
utilize the Ethernet Shield for communication. Instead, we will capture the Arduino
data using the serial interface, while using the web.py server to respond to the
requests coming from different clients.

Introduction to Arduino Networking

[226]

As you can see in the following diagram, we are using the same hardware that you
designed for exercise 1, but without utilizing the Ethernet connection to our home
router. Your computer running the web.py server, which is also a part of your home
network, will serve the client requests.

In the first step, we are going to code Arduino to periodically send the
humidity sensor value to the serial interface. For the Arduino code, open the
WebPySerialExample_Arduino.ino sketch from the Exercise 2 folder of your
code directory. As you can see in the following code snippet of the Arduino
sketch, we are sending raw values from the analog port to the serial interface. Now
compile and upload the sketch to your Arduino board. Open the Serial Monitor
window from the Arduino IDE to confirm that you are receiving the raw humidity
observations. Once you have confirmed it, close the Serial Monitor window. You
won't be able to run the Python code if the Serial Monitor window is using the port:

 void loop() {
 int analogChannel = 0;
 int HIH4030_Value = analogRead(analogChannel);
 Serial.println(HIH4030_Value);
 delay(200);
}

Once the Arduino code is running properly, it is time to execute the Python program,
which contains the web.py server. The Python program for this exercise is located
in the WebPySerialExample_Python directory. Open the webPySerialExample.py
file in your code editor. The Python program is organized in two sections: capturing
sensor data from the serial interface using the pySerial library, and using the web.
py server-based server to respond to the requests from the clients.

Chapter 8

[227]

In the first stage of the code, we are interfacing the serial port using the Serial()
method from the pySerial library. Don't forget to change the serial port name
as it may be different for your computer, depending on the operating system and
physical port that you are using:

import serial
port = serial.Serial('/dev/tty.usbmodemfa1331', 9600, timeout=1)

Once the port object for the serial port is created, the program starts reading the
text coming from the physical port, using the readline() method. Using the
relativeHumidity() function, we convert the raw humidity data to appropriate
relative humidity observations:

line = port.readline()
if line:
 data = float(line)
 humidity = relativeHumidity(line, 25)

On the web server side, we will be using all the major web.py components
you learned in the previous section to complete this goal. As part of it, we are
implementing an input form for the temperature value. We will capture this user
input and utilize it with the raw sensor data to calculate relative humidity. Therefore,
we need to define the render object to use the template directory. In this exercise,
we are only using the default landing page location ('/') for the web server, which
is directed towards the Index class:

render = web.template.render('templates')

As you can see in the WebPySerialExample_Python folder, we have a directory
called templates. This directory contains a template with the base.html filename.
As this is an HTML file, it is likely that if you just click on the file, it opens in a web
browser. Make sure that you open the file in a text editor. In the opened file, you'll
see that we are initializing the template file with $def with(form, humidity).
In this initialization, form and humidity are input variables that are required by
the template during the rendering process. The template declares the actual <form>
element with the $:form.render() method, while displaying the humidity value
using the $humidity variable:

<form method="POST">
 $:form.render()
</form>
<h3>Relative Humidity is:</h3>
<p name="temp">$humidity </p>

Introduction to Arduino Networking

[228]

Although the template file renders the form variable, we have to define this variable
in the Python program first. As you can see in the following code snippet, we have
declared a variable called submit_form using the form.Form() method of the web.
py library. The submit_form variable includes a Textbox element to capture the
temperature value and a Button element to enable the submit action:

submit_form = form.Form(
 form.Textbox('Temperature', description = 'Temperature'),
 form.Button('submit', type="submit", description='submit')
)

When you want to access the current submitted values of the submit_form variable,
you will have to validate the form using the validates() method:

f = self.submit_form()
f.validates()

Now we have the user-facing web page and input components designed for the
exercise. It is time to define the two main methods, GET and POST, to respond to
the request coming from the web page. When you launch or refresh the web page,
the web.py server generates the GET request, which is then handled by the GET
function of the Index class. So during the execution of the GET method, the program
obtains the latest raw humidity value from the serial port and calculates the relative
humidity using the relativeHumidity() method.

In the process of dealing with the GET request, we are not
submitting any form with the user input. For this reason, in
the GET method, we will use the default value of temperature
(25) for the relativeHumidity() method.

Once the humidity value is derived, the program will render the base template using
the render.base() function, as displayed in the following code snippet, where
base() refers to the base template:

def GET(self):
 f = self.submit_form()
 f.validates()
 line = port.readline()
 if line:
 data = float(line)
 humidity = relativeHumidity(line, 25)
 return render.base(f,humidity);
 else:
 return render.base(f, "Not valid data");

Chapter 8

[229]

Contrary to the GET method, the POST method is invoked when the form is submitted
to the web page. The submitted form includes the temperature value provided by
the user, which will be used to obtain the value of the relative humidity. Like the
GET() function, the POST() function also renders the base template with the recent
humidity value once the humidity is calculated:

def POST(self):
 f = self.submit_form()
 f.validates()
 temperature = f['Temperature'].value
 line = port.readline()
 if line:
 data = float(line)
 humidity = relativeHumidity(line, float(temperature))
 return render.base(f, humidity);
 else:
 return render.base(f, "Not valid data");

Now it is time to run the web.py-based web server. In the Python program,
make the necessary changes to accommodate the serial port name and any other
appropriate values. If everything is configured correctly, you will be able to execute
the program from the terminal without any errors. You can access the web server,
which is running on port 8080, from a web browser on the same computer, that is,
http://localhost:8080. Now the goal of the exercise is to demonstrate the remote
accessibility of the web server from your home network, and you can do this by
opening the website from another computer in your network, that is, http://<ip-
address>:8080, where <ip-address> refers to the IP address of the computer that
is running the web.py service.

Introduction to Arduino Networking

[230]

The preceding screenshot shows how the web application will look when opened
in a web browser. When you load the website, you will be able to see a relative
humidity value obtained using the GET method. Now you can enter an appropriate
temperature value and press the submit button to invoke the POST method. On
successful execution, you will be able to see the latest relative humidity value, which
is calculated based on the temperature value that you submitted.

RESTful web applications with Arduino
and Python
In the previous exercise, we implemented the GET and POST requests using the web.
py library. These requests are actually part of the most popular communication
architecture of the World Wide Web (WWW) called REST. The REST architecture
implements a client-server paradigm using the HTTP protocol for operations such
as POST, READ, and DELETE. The GET() and POST() functions, implemented using
web.py, are functional subsets of these standard HTTP REST operations, that is,
GET, POST, UPDATE, and DELETE. The REST architecture is designed for network
applications, websites, and web services to establish communication through HTTP-
based calls. Rather than being just a set of standard rules, the REST architecture
utilizes existing web technologies and protocols, making it a core component of
the majority of the websites we use today. Due to this reason, the WWW can be
considered to be the largest implementation of REST-based architecture.

Designing REST-based Arduino applications
The REST architecture uses a client-server model, where the server acts as a
centralized node in the network. It responds to the requests made by the distributed
network nodes (called clients) that query it. In this paradigm, the client initiates a
request for the state directed towards the server, while the server responds to the
state request without storing the client context. This communication is always one-
directional and always initiated from the client side.

Chapter 8

[231]

To further explain the state transfer for the GET and POST requests, check out the
previous diagram. When a client sends a GET request to a server using a URL, the
server responds with raw data as the HTTP response. Similarly, in the POST request,
the client sends data as payload to the server, while the server responds with simply
a "received confirmation" message.

REST methods are relatively simple to implement and develop using simple HTTP
calls. We are going to start developing Arduino networking applications using
REST-based requests, as they are easy to implement and understand and are directly
available through examples. We will begin by individually implementing REST-
based Arduino clients for HTTP-based GET and POST methods. Later in this chapter,
we will go through an exercise to combine the GET and POST methods through the
same Arduino REST client, while developing the HTTP server using web.py.

Working with the GET request from Arduino
In this exercise, we will implement the HTTP GET client on Arduino, while using an
HTTP server that was developed using web.py. The premise of this programming
exercise is to use the Ethernet Shield extension and the Ethernet library to develop a
physical Arduino HTTP client that supports the GET request.

The Arduino code to generate the GET request
The Arduino IDE ships with a few basic examples that utilize the Ethernet library.
One of these examples is WebClient, which can be found by navigating to File |
Examples | Ethernet | WebClient. It is designed to demonstrate the GET request
by implementing the HTTP client on Arduino. Open this sketch in the Arduino
IDE, as we are going to use this sketch and modify it to accommodate the Arduino
hardware we created.

Introduction to Arduino Networking

[232]

The first thing you need to change in the opened sketch is the IP address and the
MAC address of your Arduino Ethernet Shield. Replace the following variables
with the variables appropriate for your system. The following code snippet shows
the IP address and the MAC address for our hardware, and you need to change it to
accommodate yours:

byte mac[] = { 0x90, 0xA2, 0xDA, 0x00, 0x47, 0x28 };
IPAddress ip(10,0,0,75);

As you can see, the example uses Google as a server to get a response. You need to
change this address to reflect the IP address of your computer, which will host the
web.py server:

char server[] = "10.0.0.20";

In the setup() function, you will have to change the server IP address again. Also
change the default HTTP port (80) to the port used by web.py (8080):

 if (client.connect(server, 8080)) {
 Serial.println("connected");
 // Make a HTTP request:
 client.println("GET /data HTTP/1.1");
 client.println("Host: 10.0.0.20");
 client.println("Connection: close");
 client.println();
 }

Once you have made all of these changes, go to the Arduino_GET_Webpy\ArduinoGET
folder and open the ArduinoGET.ino sketch. Compare your modified sketch with
this sketch and perform the appropriate changes. Now you can save your sketch and
compile your code for any errors.

At this stage, we are assuming that you have the Arduino Ethernet Shield mounted
on your Arduino Uno. Connect the Ethernet Shield to your local network using an
Ethernet cable, and connect Uno with your computer using a USB cable. Upload
the sketch to the Arduino board and open the Serial Monitor window to check the
activity. At this stage, Arduino would not be able to connect to the server because
your web.py server is still not running. You can close the serial monitor for now.

Chapter 8

[233]

The HTTP server using web.py to handle the GET
request
In your first web.py application, you developed a server that returned Hello, world!
when requested from a web browser. Despite all the additional tasks it can perform,
your web browser is an HTTP client at its core. This means that if your first web.py
server code was able to respond to the GET request made by the web browser, it should
also be able to respond to the Arduino web client. To check this out, open your first
web.py program, webPyBasicExample.py, and change the return string from Hello
World! to test. We are performing this string change to differentiate it from the other
instances of this program. Execute the Python program from the terminal and open the
Serial Monitor window in the Arduino IDE again. This time, you will be able to see
that your Arduino client is receiving a response for the GET request it sent to the web.
py server. As you can see in the following screenshot, you will be able to see the test
string printed in the Serial Monitor window, which is returned by the web.py server
for the GET request:

Although in this example we are returning a simple string for the GET request, you can
extend this method to obtain different user-specified parameters from the web server.
This GET implementation can be used in a large number of applications where Arduino
requires repeated input from the user or other programs. But what if the web server
requires input from the Arduino? In that case, we will have to use the POST request.
Let's develop an Arduino program to accommodate the HTTP POST request.

Introduction to Arduino Networking

[234]

Working with the POST request from Arduino
Since we have now implemented the GET request, we can use a similar approach
to exercise the POST request. Instead of asking the server to provide a response
for a state request, we will send sensor data as payload from Arduino in the
implementation of the POST request. Similarly, on the server side, we will utilize
web.py to accept the POST request and display it through a web browser.

The Arduino code to generate the POST request
Open the Arduino sketch ArduinoPOST.ino from the Arduino_POST_Webpy\
ArduinoPOST folder of the code repository. As in the previous exercise, you will
first have to provide the IP address and the MAC address of your Arduino.

Once you have completed these basic changes, observe the following code snippet
for the implementation of the POST request. You might notice that we are creating
payload for the POST request as the variable data from the values obtained from
analog pin 0:

 String data;
 data+="";
 data+="Humidity ";
 data+=analogRead(analogChannel);

In the following Arduino code, we'll first create a client object using the Ethernet
library. In the recurring loop() function, we'll use this client object to connect
to the web.py server running on our computer. You will have to replace the IP
address in the connect() method with the IP address of your web.py server. Once
connected, we'll create a custom POST message with the payload data we calculated
previously. The Arduino loop() function will periodically send the updated sensor
value generated by this code sample to the web.py server:

 if (client.connect("10.0.0.20",8080)) {
 Serial.println("connected");
 client.println("POST /data HTTP/1.1");
 client.println("Host: 10.0.0.20");
 client.println("Content-Type: application/x-www-form-urlencoded");
 client.println("Connection: close");
 client.print("Content-Length: ");
 client.println(data.length());
 client.println();
 client.print(data);
 client.println();
 Serial.println("Data sent.");
 }

Chapter 8

[235]

Once you have performed the changes, compile and upload this sketch to the
Arduino board. As the web.py server is yet not implemented, the POST request that
originated from Arduino will not be able to reach its destination successfully, so let's
create the web.py server to accept POST requests.

The HTTP server using web.py to handle the POST
request
In this implementation of the POST method, we require two web.py classes, index and
data, to individually serve requests from the web browser and Arduino respectively.
As we are going to use two separate classes to update common sensor values (that is,
humidity and temperature), we are going to declare them as global variables:

global temperature, humidity
temperature = 25

As you may have noticed in the Arduino code (client.println("POST /data
HTTP/1.1")), we were sending the POST request to the URL located at /data.
Similarly, we will use the default root location, '/', to land any request coming
from the web browser. These requests for the root location will be handled by
the index class, just as we covered in exercise 2:

urls = (
 '/', 'index',
 '/data','data',
)

The data class takes care of any POST request originating from the /data location. In
this case, these POST requests contain payload that has sensor information attached
by the Arduino POST client. On receiving the message, the method splits the payload
string into sensor-type and value, updating the global value of the humidity variable
in this process:

class data:
 def POST(self):
 global humidity
 i = web.input()
 data = web.data()
 data = data.split()[1]
 humidity = relativeHumidity(data,temperature)
 return humidity

Introduction to Arduino Networking

[236]

Each POST request received from Arduino updates the raw humidity value, which
is represented by the data variable. We are using the same code from exercise 2
to obtain manual temperature values from the user. The relative humidity value,
humidity, is updated according to the temperature value you updated using the
web browser and the raw humidity value is obtained from your Arduino.

To check out the Python code, open the WebPyEthernetPOST.py file from the
code repository. After making the appropriate changes, execute the code from the
terminal. If you don't start getting any updates from the Arduino on the terminal,
you should restart Arduino to reestablish the connection with the web.py server.
Once you start seeing periodic updates from the Arduino POST requests at the
terminal, open the location of the web application in your browser. You will be
able to see something similar to the preceding screenshot. Here, you can submit the
manual temperature value using the form, while the browser will reload with the
updated relative humidity according to the temperature value entered.

Exercise 3 – a RESTful Arduino web
application
The goal of this exercise is to simply combine the GET and POST methods you learned
in the previous two sections in order to create a complete REST experience using
Arduino and Python. The architecture for this exercise can be described as follows:

•	 The Arduino client periodically uses the GET request to obtain the sensor type
from the server. It uses this sensor type to select a sensor for observation. In
our case, it is either a humidity or motion sensor.

Chapter 8

[237]

•	 The web server responds to the GET request by returning the current sensor
type of the sensor selected by the user. The user provides this selection
through a web application.

•	 After receiving the sensor type, the Arduino client utilizes POST to send
sensor observation to the server.

•	 The web server receives the POST data and updates the sensor observation for
that particular sensor type.

•	 On the user side, the web server obtains the current sensor type through the
web browser.

•	 When the submit button in the browser is pressed, the server updates the
sensor value in the browser with the latest value.

The Arduino sketch for the exercise
Using the same Arduino hardware we built, open the Arduino sketch named
WebPyEthernetArduinoGETPOST.ino from the Exercise 3 - RESTful
application Arduino and webpy code folder. As we described in the exercise's
architecture earlier, the Arduino client should periodically send GET requests to the
server and get the corresponding value of the sensor type in the response. After
comparing the sensor type, the Arduino client fetches the current sensor observation
from the Arduino pins and sends that observation back to the server using POST:

if (client.connected()) {
 if (client.find("Humidity")){
 # Fetch humidity sensor value
 if (client.connect("10.0.0.20",8080)) {
 # Post humidity values
 }
 }
 else{
 # Fetch motion sensor value
 if (client.connect("10.0.0.20",8080)) {
 # Post motion values
 }
 }
 # Add delay
}

After changing the appropriate server's IP address in the code, compile and upload it
to the Arduino. Open the Serial Monitor window, where you will find unsuccessful
connection attempts, as your web.py server is not yet running. Close any other
instance or program of the web.py server running on your computer.

Introduction to Arduino Networking

[238]

The web.py application to support REST requests
Open the WebPyEthernetGETPOST.py file from the Exercise 3 - RESTful
application Arduino and webpy code folder. As you can see, the web.py based
web server implements two separate classes, index and data, to support the REST
architecture for the web browser and the Arduino client, respectively. We are
introducing a new concept for the Form element, called Dropdown(). Using this Form
method, you can implement the drop-down selection menu and ask the user to select
one option from the list of options:

form.Dropdown('dropdown',
 [('Humidity','Humidity'),('Motion','Motion')]),
form.Button('submit',
 type="submit", description='submit'))

In the previous web.py program, we implemented the GET and POST methods for
the index class and only the POST method for the data class. Moving forward in
this exercise, we'll also add the GET method to the data class. This method returns
the value of the sensorType variable when the GET request is made for the /data
location. From the user side, the value of the sensorType variable is updated when
the form gets submitted with an option. This action sends a selected value to the
POST method of the index class, ultimately updating the sensorType value:

class data:
 def GET(self):
 return sensorType
 def POST(self):
 global humidity, motion
 i = web.input()
 data = web.data()
 data = data.split()[1]
 if sensorType == "Humidity":
 humidity = relativeHumidity(data,temperature)
 return humidity
 else:
 motion = data
 return motion

Before you run this Python program, make sure you have checked every component
of the code and updated the values where needed. Then execute the code from the
terminal. Your web server will now run on your local computer on the port number
8080. Power-cycle your Arduino device in case the connection attempt from Arduino
fails. To test your system, open the web application from your web browser. You will
see a web page open in your browser, as displayed in the following screenshot:

Chapter 8

[239]

You can choose the sensor type from the dropdown menu (Humidity or Motion)
before pressing the Submit button. On submission, you will be able to see the page
updated with the appropriate sensor type and its current value.

Why do we need a resource-constrained
messaging protocol?
In the previous section, you learned how to use the HTTP REST architecture to send
and receive data between your Arduino and the host server. The HTTP protocol
was originally designed to serve textual data through web pages on the Internet.
The data delivery mechanism used by HTTP requires a comparatively large amount
of computation and network resources, which may be sufficient for a computer
system but not for resource-constrained hardware platforms such as Arduino. As
we discussed earlier, the client-server paradigm implemented by the HTTP REST
architecture creates a tightly coupled system. In this paradigm, both sides (the client
and the server) need to be constantly active, or live, to respond. Also, the REST
architecture only allows unidirectional communication from client to server, where
requests are always initialized by the client and the server responds to the client.
This request-response-based architecture is not suitable for constrained hardware
devices because of (but not limited to) the following reasons:

•	 These devices should avoid active communication mode to save power
•	 The communication should have less data overhaul to save network

resources

Introduction to Arduino Networking

[240]

•	 They usually do not have enough computational resources to enable
bidirectional REST communication, that is, implementing both client and
server mechanisms on each side

•	 The code should have a smaller footprint due to storage constraints

The REST-based architecture can still be useful when the application
specifically requires a request-response architecture, but most sensor-
based hardware applications are limited due to the preceding points.

Among other data delivery paradigms that solve the preceding problems, the
architecture based on publisher/subscriber (pub/sub) stands tall. The pub/sub
architecture enables bidirectional communication capabilities between the node that
generates the data (Publisher) and the node that consumes the data (Subscriber).
We are going to use MQTT as the protocol that uses the pub/sub model of message
transportation. Let's begin by covering the pub/sub architecture and MQTT in detail.

MQTT – A lightweight messaging protocol
Just like REST, pub/sub is one of the most popular messaging patterns, mostly
deployed to transfer short messages between nodes. Instead of deploying
client-server-based architecture, the pub/sub paradigm implements messaging
middleware called a broker to receive, queue, and relay messages between the
subscriber and publisher clients:

Chapter 8

[241]

The pub/sub architecture utilizes a topic-based system to select and process
messages, where each message is labeled with a specific topic name. Instead of
sending a message directly to the subscriber, the publisher sends it first to the broker
with a topic name. In a totally independent process, the subscriber registers its
subscription for particular topics with the broker. In the event of receiving a message
from the publisher, the broker performs topic-based filtering on that message before
forwarding it to the subscribers registered for that topic. As publishers are loosely
coupled to subscribers in this architecture, the publishers do not need to know the
whereabouts of the subscribers and can work uninterrupted without worrying about
their status.

While discussing the limitations of the REST architecture, we noticed that it requires
the implementation of both the HTTP client and server on the Arduino end to enable
bidirectional communication with Arduino. With the broker-based architecture
demonstrated by pub/sub, you only need to implement lightweight code for the
publisher or subscriber client on Arduino, while the broker can be implemented on
a device with more computation resources. Henceforth, you will have bidirectional
communication enabled on Arduino without using significant resources.

Introduction to MQTT
Message Queue Telemetry Transport (MQTT) is a very simple, easy, and open
implementation of the pub/sub paradigm. IBM has been working on standardizing
and supporting the MQTT protocol. The documentation for the latest specification of
the MQTT protocol, v3.1, can be obtained from the official MQTT website at http://
www.mqtt.org.

As a standard for machine messaging, MQTT is designed to be extremely
lightweight and with a smaller footprint for code, while also using a lower
network bandwidth for communication. MQTT is very specifically designed
to work on embedded systems—like hardware platforms such as Arduino and
other appliances—that carry limited processor and memory resources. While
MQTT is a transport layer messaging protocol, it uses TCP/IP for network-level
connectivity. As MQTT is designed to support the pub/sub messaging paradigm,
the implementation of MQTT on your hardware application provides support for
one-to-many distributed messaging, eliminating the limitation of unidirectional
communication demonstrated by HTTP REST. As MQTT is agnostic of the content
of the payload, there is no restriction on the type of message you can pass using
this protocol.

http://www.mqtt.org
http://www.mqtt.org

Introduction to Arduino Networking

[242]

Due to all the benefits associated with the pub/sub paradigm and its implementation
in the MQTT protocol, we will be using the MQTT protocol for the rest of the
exercises to have messages communicated between Arduino and its networked
computer. To achieve this, we will be using the MQTT broker to provide the ground
work for message communication and host topics, while deploying the MQTT
publisher and subscriber clients at the Arduino and Python ends.

Mosquitto – an open source MQTT broker
As we described, MQTT is just a protocol standard, and it still requires software
tools so that it can be implemented in actual applications. Mosquitto is an open
source implementation of the message broker, which supports the latest version
of the MQTT protocol standard. The Mosquitto broker enables the pub/sub
paradigm implemented by the MQTT protocol, while providing a lightweight
mechanism to enable messaging between machines. Development of Mosquitto
is supported through community efforts. Mosquitto is one of the most popular
MQTT implementations, freely available and widely supported on the Internet.
You can obtain further information regarding the actual tool and community
from its website, at http://www.mosquitto.org.

Setting up Mosquitto
The installation and configuration of Mosquitto are very straightforward processes.
At the time of writing this book, the latest version of Mosquitto is 1.3.4. You can
also obtain the latest updates and installation information regarding Mosquitto
at http://www.mosquitto.org/download/.

On Windows, you can simply download the latest version of the installation files
for Windows, which is made for Win32 or Win64 systems. Download and run the
executable file to install the Mosquitto broker. To run Mosquitto from the command
prompt, you will have to add the Mosquitto directory to the PATH variables in the
environment variables of the system properties. In Chapter 1, Getting Started with
Python and Arduino, we comprehensively described the process of adding a PATH
variable to install Python. Using the same method, add the path of the Mosquitto
installation directory at the end of the PATH value. If you are using a 64-bit operating
system, you should use C:\Program Files (x86)\mosquitto. For a 32-bit
operating system, you should use C:\Program Files\mosquitto as the path. Once
you are done with adding this value at the end of the PATH value, close any existing
command prompt windows and open a new Command Prompt window. You can
validate the installation by typing the following command in the newly opened
window. If everything is installed and configured correctly, the following command
should execute without any errors:
C:\> mosquitto

http://www.mosquitto.org
http://www.mosquitto.org/download/

Chapter 8

[243]

For Mac OS X, the best way to install Mosquitto is to use the Homebrew tool.
We already went through the process of installing and configuring Homebrew
in Chapter 1, Getting Started with Python and Arduino. Install the Mosquitto broker
by simply executing the following script on the terminal. This script will install
Mosquitto with the Mosquitto utilities and also configure them to run from the
terminal as commands:

$ brew install mosquitto

On Ubuntu, the default repository already has the installation package for
Mosquitto. Depending on the version of Ubuntu you are using, this Mosquitto
version could be older than the current version. In that case, you must add this
repository first:

$ sudo apt-add-repository ppa:mosquitto-dev/mosquitto-ppa

$ sudo apt-get update

Now you can install the Mosquitto packages by simply running the following
command:

$ sudo apt-get install mosquitto mosquitto-clients

Getting familiar with Mosquitto
Due to the multiple installation methods involved for different operating systems,
the initialization of Mosquitto may be different for your instance. In some cases,
Mosquitto might already be running on your computer. For a Unix-based operating
system, you can check whether Mosquitto is running or not with this command:

$ ps aux | grep mosquitto

Unless you find a running instance of the broker, you can start Mosquitto by
executing the following command in the terminal. After executing it, you should be
able to see the broker running while printing the initialization parameters and other
requests coming to it:

$ mosquitto

When you installed the Mosquitto broker, the installation process would also have
installed a few Mosquitto utilities, which include the MQTT clients for the publisher
and the subscriber. These client utilities can be used to communicate with any
Mosquitto broker.

Introduction to Arduino Networking

[244]

To use the subscriber client utility, mosquitto_sub, use the following command at
the terminal with the IP address of the Mosquitto broker. As we are communicating
to the Mosquitto broker running on the same computer, you can avoid the –h
<Broker-IP> option. The subscriber utility uses the –t option to specify the name of
the topic that you are planning to subscribe. As you can see, we are subscribing to
the test topic:

$ mosquitto_sub -h <Broker-IP> -t test

Similar to the subscriber client, the publisher client (mosquitto_pub) can be
used to publish a message to the broker for a specific topic. As described in the
following command, you are required to use the –m option followed by a message to
successfully publish it. In this command, we are publishing a Hello message for the
test topic:

$ mosquitto_pub -h <Broker-IP> -t test -m Hello

Other important Mosquitto utilities include mosquitto_password and mosquitto.
conf, which can be used to manage the Mosquitto password files and the setup
broker configuration, respectively.

Getting started with MQTT on Arduino
and Python
Now that you have the Mosquitto broker installed on your computer, it means that
you have a working broker that implements the MQTT protocol. Our next goal is
to develop the MQTT clients in Arduino and also in Python so that they will work
as publishers and subscribers. After implementing the MQTT clients, we will have
a fully-functional MQTT system, where these clients communicate through the
Mosquitto broker. Let's begin with deploying MQTT on the Arduino platform.

MQTT on Arduino using the PubSubClient
library
As MQTT is a network-based messaging protocol, you will always need an Ethernet
Shield to communicate with your network. For the following exercise, we will
continue using the same hardware that we have been using throughout this chapter.

Chapter 8

[245]

Installing the PubSubClient library
To use Arduino for pub/sub and enable simple MQTT messaging, you need the
Arduino client library for MQTT, also known as the PubSubClient library. The
PubSubClient library helps you develop Arduino as an MQTT client, which can
then communicate with the MQTT server (Mosquitto broker in our case) running
on your computer. As the library provides methods to create only an MQTT client
and not a broker, the footprint of the Arduino code is quite small compared to other
messaging paradigms. The PubSubClient library extensively utilizes the default
Arduino Ethernet library and implements the MQTT client as a subclass of the
Ethernet client.

To get started with the PubSubClient library, you'll first need to import the library
to your Arduino IDE. Download the latest version of the PubSubClient Arduino
library from https://github.com/knolleary/pubsubclient/. Once you have the
file downloaded, import it to your Arduino IDE.

We will be using one of the examples installed with the PubSubClient library to get
started. The goal of the exercise is to utilize a basic example to create an Arduino
MQTT client, while performing minor modifications to accommodate the local
network parameters. We will then use the Mosquitto commands you learned in
the previous section to test the Arduino MQTT client. Meanwhile, ensure that your
Mosquitto broker is running in the background.

Developing the Arduino MQTT client
Let's start with opening the mqtt_basic example by navigating to File | Examples
| PubSubClient in our Arduino IDE menu. In the opened program, change the
MAC and IP address values for Arduino by updating the mac[] and ip[] variables,
respectively. In the previous section, you successfully installed and tested the
Mosquitto broker. Use the IP address of the computer running Mosquitto to update
the server[] variable:

byte mac[] = { 0x90, 0xA2, 0xDA, 0x0D, 0x3F, 0x62 };
byte server[] = { 10, 0, 0, 20 };
byte ip[] = { 10, 0, 0, 75 };

As you can see in the code, we are initializing the client using the IP address of the
server, Mosquitto port number, and Ethernet client. Before using any other method
for the PubSubClient library, you will always have to initialize the MQTT client
using a similar method:

EthernetClient ethClient;
PubSubClient client(server, 1883, callback, ethClient);

https://github.com/knolleary/pubsubclient/

Introduction to Arduino Networking

[246]

Further on in the code, we are using the publish() and subscribe() methods
on the client class to publish a message for the outTopic topic and subscribe
to the inTopic topic. You can specify the name of the client using the client.
connect() method. As you can see in the following code snippet, we are declaring
arduinoClient as the name for this client:

 Ethernet.begin(mac, ip);
 if (client.connect("arduinoClient")) {
 client.publish("outTopic","hello world");
 client.subscribe("inTopic");
 }

As we are using this code in the setup() function, the client will only publish
the hello world message once—during the initialization of the code—while the
subscribe method will keep looking for new messages for inTopic due to the use
of the client.loop() method in the Arduino loop() function:

 client.loop();

Now, while running Mosquitto in the background, open another terminal window.
In this terminal window, run the following command. This command will use a
computer-based Mosquitto client to subscribe to the outTopic topic:

$ mosquitto_sub -t "outTopic"

Compile your Arduino sketch and upload it. As soon as the upload process is
complete, you will be able to see the hello world string printed. Basically, as soon
as the Arduino code starts running, the Arduino MQTT client will publish the hello
world string to the Mosquitto broker for the outTopic topic. On the other side, that
is, on the side of the Mosquitto client, you've started using the mosquitto_sub utility
and will receive this message, as it is subscribed to outTopic.

Although you ran the modified Arduino example, mqtt_basic, you can also find the
code for this exercise from this chapter's code folder. In this exercise, the Arduino
client is also subscribed to inTopic to receive any message that originates for this
topic. Unfortunately, the program doesn't display or deal with messages it obtains as
a subscriber. To test the subscriber functionalities of the Arduino MQTT client, let's
open the mqtt_advance Arduino sketch from this chapter's code folder.

As you can see in the following code snippet, we have added code to display the
received message in the callback() method. The callback() method will be
called when the client receives any message from the subscribed topics. Therefore,
you can implement all types of functionality on the received message from the
callback() method:

void callback(char* topic, byte* payload, unsigned int length) {
 // handle message arrived

Chapter 8

[247]

 Serial.print(topic);
 Serial.print(':');
 Serial.write(payload,length);
 Serial.println();
}

In this mqtt_advance Arduino sketch, we have also moved the publishing statement
of outTopic from setup() to the loop() function. This action will help us to
periodically publish the value for outTopic. In future, we will expand this method to
use sensor information as messages so that the other devices can obtain those sensor
values by subscribing to these sensor topics:

void loop()
{
 client.publish("outTopic","From Arduino");
 delay(1000);
 client.loop();
}

After updating the mqtt_advance sketch with the appropriate network addresses,
compile and upload the sketch to your Arduino hardware. To test the Arduino
client, use the same mosquitto_sub command to subscribe to outTopic. This time,
you will periodically get updates for outTopic on the terminal. To check out the
subscriber functionality of your Arduino client, open your Serial Monitor window
in your Arduino IDE. Once the Serial Monitor window begins running, execute the
following command in the terminal:

$ mosquitto_pub – t "inTopic" –m "Test"

You can see in the Serial Monitor window that the Test text is printed with the topic
name as inTopic. Henceforth, your Arduino will serve as both an MQTT publisher
and an MQTT subscriber. Now let's develop a Python program to implement the
MQTT clients.

MQTT on Python using paho-mqtt
In the previous exercise, we tested the Arduino MQTT client using command-line
utilities. Unless the published and subscribed messages are captured in Python,
we cannot utilize them to develop all the other applications we've built so far. To
transfer messages between the Mosquitto broker and the Python interpreter, we use
a Python library called paho-mqtt. This library used to be called mosquitto-python
before it was donated to the Paho project. Identical to the Arduino MQTT client
library, the paho-mqtt library provides similar methods to develop the MQTT
pub/sub client using Python.

Introduction to Arduino Networking

[248]

Installing paho-mqtt
Like all other Python libraries we used, paho-mqtt can also be installed using
Setuptools. To install the library, run this command in the terminal:

$ sudo pip install paho-mqtt

For the Windows operating system, use easy_install.exe to install the library.
Once it is installed, you can check the successful installation of the library using
the following command in the Python interactive terminal:

>>> import paho.mqtt.client

Using the paho-mqtt Python library
The paho-mqtt Python library provides very simple methods to connect to your
Mosquitto broker. Let's open the mqttPython.py file from this chapter's code folder.
As you can see, we have initialized the code by importing the paho.mqtt.client
library method:

import paho.mqtt.client as mq

Just like the Arduino MQTT library, the paho-mqtt library also provides methods
to connect to the Mosquitto broker. As you can see, we have named our client
mosquittoPython by simply using the Client() method. The library also provides
methods for activities, for example, when the client receives a message, on_message,
and publishes a message, on_publish. Once you have initialized these methods, you
can connect your client to the Mosquitto server by specifying the server IP address
and the port number.

To subscribe to or publish for a topic, you simply need to implement the
subscribe() and publish() methods on the client, respectively, as displayed in the
following code snippet. In this exercise, we are using the loop_forever() method
for the client to periodically check the broker for any new messages. As you can see
in the code, we are executing the publishTest() function before the control enters
the loop:

cli = mq.Client('mosquittoPython')
cli.on_message = onMessage
cli.on_publish = onPublish
cli.connect("10.0.0.20", 1883, 15)
cli.subscribe("outTopic", 0)
publishTest()
cli.loop_forever()

Chapter 8

[249]

It is very important to run all the required functions or pieces of code before you
enter the loop, as the program will enter the loop with the Mosquitto server once
loop_forever() is executed. During this period, the client will only execute the
on_publish and on_message methods for any update on the subscribed or
published topics.

To overcome this situation, we are implementing the multithreading paradigm of
the Python programming language. Although we are not going to dive deep into
multithreading, the following example will teach you enough to implement basic
programming logic. To understand more about the Python threading library and
supported methods, visit https://docs.python.org/2/library/threading.html.

To better understand our implementation of the threading method, check out the
following code snippet. As you can see in the code, we are implementing recursion
for the publishTest() function every 5 seconds, using the Timer() threading
method. Using this method, the program will start a new thread that is separate
from the main program thread that contains the loop for Mosquitto. Every 5 seconds,
the publishTest() function will be executed, recursively running the publish()
method, and ultimately publishing a message for inTopic:

import threading
def publishTest():
 cli.publish("inTopic","From Python")
 threading.Timer(5, publishTest).start()

Now, in the main thread, when the client gets a new message from the subscribed
topics, the thread invokes the onMessage() function. In the current implementation
of this function, we are just printing the topic and message for demonstration
purposes. In real applications, this function can be used to implement any kind of
operation on the received message, for example, writing a message to a database,
running an Arduino command, selecting an input, calling other functions, and so
on. In short, this function is the entry point of any input you receive through the
Mosquitto broker from your subscribed topics:

def onMessage(mosq, obj, msg):
 print msg.topic+":"+msg.payload

Similarly, every time you publish a message from the second thread, the onPublish()
function is executed by the program. Just like the previous function, you can
implement various operations within this function, while the function behaves as the
exit point of any message published using this Python MQTT client. In the current
implementation of onPublish(), we are not performing any operations:

def onPublish(mosq, obj, mid):
 pass

https://docs.python.org/2/library/threading.html

Introduction to Arduino Networking

[250]

In the opened Python file, mqttPython.py, you will only need to change the IP
address of the server running the Mosquitto broker. If you are running the Mosquitto
broker on the same computer, you can use 127.0.0.1 as the IP address of the
localhost. Before you execute this Python file, ensure that your Arduino is running
with the MQTT client we created in the previous exercise. Once you run this code,
you can start seeing the messages being sent from your Arduino in the Python
terminal, as displayed in the following screenshot. Whenever a new message is
received, the Python program prints the outTopic topic name followed by the From
Arduino message. This confirms that the Python client is receiving messages for
outTopic, to which it is subscribed. If you look back at the Arduino code, you will
notice that it is the same message that we were publishing from the Arduino client.

Now, to confirm the publishing operation of the Python MQTT client, let's open
the Serial Monitor window from your Arduino IDE. As you can see in the Serial
Monitor window, text that contains the inTopic topic name and the From Python
message is being printed every 5 seconds. This validates the Python publisher, as
we are publishing the same message for the same topic every 5 seconds through the
publishTest() function.

Chapter 8

[251]

Exercise 4 – MQTT Gateway for Arduino
In exercise 3, we used the REST architecture to transfer motion and humidity sensor
data between our Arduino and the web browser. In this exercise, we will develop an
MQTT Gateway using the Mosquitto broker and the MQTT clients to transfer sensor
information from our Arduino to the web browser. The goal of the exercise is to
replicate the same components that we implemented in the REST exercise, but with
the MQTT protocol.

As you can see in the architectural sketch of the system, we have Arduino with the
Ethernet Shield connected to our home network, while the computer is running the
Mosquitto broker and the Python applications on the same network. We are using
the same sensors (that is, a motion sensor and a humidity sensor) and the same
hardware design that we used in the previous exercises in this chapter.

In the software architecture, we have the Arduino code that interfaces with the
humidity and motion sensors using analog pin 0 and digital pin 3, respectively.
Using the PubSubClient library, the Arduino publishes sensor information to the
Mosquitto broker. On the MQTT Gateway, we have two different Python programs
running on the computer. The first program uses the paho-mqtt library to subscribe
and retrieve sensor information from the Mosquitto broker and then post it to
the web application. The second Python program, which is based on web.py,
implements the web applications while obtaining sensor values from the first Python
program. This program provides a user interface front for the MQTT Gateway.

Introduction to Arduino Networking

[252]

Although both of the preceding Python programs can be part of a single application,
we are delegating the tasks of communicating with Mosquitto and serving information
using the web application to separate applications for the following reasons:

•	 We want to demonstrate the functions of both libraries, paho-mqtt and
web.py, in separate applications

•	 If you want to run routines based on paho-mqtt and web.py in the same
application, you will have to implement multithreading, as both of these
routines need to be run independently

•	 We also want to demonstrate the transfer of information between the two
Python programs using Python-based REST methods with the help of the
httplib library

In this exercise, we are labeling humidity and motion sensor information with the
topic labels Arduino/humidity and Arduino/motion, respectively. The Arduino-
based MQTT publisher and the Python-based MQTT subscriber will be utilizing
these topic names if they want to transfer information through the Mosquitto broker.
Before we begin with implementing the MQTT client on our Arduino, let's start the
Mosquitto broker on our computer.

Developing Arduino as the MQTT client
The goal of the Arduino MQTT client is to periodically publish the humidity and
motion data to the Mosquitto broker running on your computer. Open the Step1_
Arduino.ino sketch from the Exercise 4 - MQTT gateway folder in your code
repository. Like all the other exercises, you first need to change the MAC address
and the server address value, and assign an IP address for your Arduino client. Once
you are done with these modifications, you can see the setup() function that we are
publishing as a one-time connection message to the Mosquitto broker to check the
connection. You can implement a similar function on a periodic basis if you have a
problem with keeping your Mosquitto connection alive:

Chapter 8

[253]

if (client.connect("Arduino")) {
 client.publish("Arduino/connection","Connected.");
 }

In the loop() method, we are executing the publishData() function every 5 seconds.
It contains the code to publish sensor information. The client.loop() method also
helps us keep the Mosquitto connection alive and avoids the connection timeout from
the Mosquitto broker.

void loop()
{
 publishData();
 delay(5000);
 client.loop();
}

As you can see in the following code snippet, the publishData() function obtains
the sensor values and publishes them using the appropriate topic labels. You might
have noticed that we are using the dtostrf() function in this function to change
the data format before publishing. The dtostrf() function is a function provided
by the default Arduino library that converts a double value into an ASCII string
representation. We are also adding a delay of another 5 seconds between the
successive publishing of sensor data to avoid any data buffering issues:

void publishData()
{
 float humidity = getHumidity(22.0);
 humidityC = dtostrf(humidity, 5, 2, message_buff2);
 client.publish("Arduino/humidity", humidityC);
 delay(5000);
 int motion = digitalRead(MotionPin);
 motionC = dtostrf(motion, 5, 2, message_buff2);
 client.publish("Arduino/motion", motionC);
}

Complete any other modification you want to implement, and then compile your
code. If your code is compiled successfully, you can upload it to your Arduino board.
If your Mosquitto is running, you will be able see that a new client is connected as
Arduino, which is the client name you specified in the preceding Arduino code.

Introduction to Arduino Networking

[254]

Developing the MQTT Gateway using Mosquitto
You can have the Mosquitto broker running on the same computer as the Mosquitto
Gateway, or on any other node in your local network. For this exercise, let's run it
on the same computer. Open the program file named mosquittoGateway.py for
this stage from the Step2_Gateway_mosquitto folder, which is inside the Exercise
4 - MQTT gateway folder. The first stage of the Gateway application includes the
paho-mqtt based Python program, which subscribes to the Mosquitto broker for the
Arduino/humidity and Arduino/motion topics:

cli.subscribe("Arduino/humidity", 0)
cli.subscribe("Arduino/motion", 0)

When this MQTT subscriber program receives a message from the broker, it calls the
onMessage() function, as we've already described in the previous coding exercise.
This method then identifies the appropriate sensor type and sends the data to the
web.py program using the POST method. We are using the default Python library,
httplib, to implement the POST method in this program. While using the httplib
library, you have to use the HTTPConnection() method to connect to the web
application running on port number 8080.

Although this program requires that your web application
(second stage) must run in parallel, we are going to implement
this web application in the upcoming section. Make sure that
you first run the web application from the next section before
executing this program; otherwise you will end up with errors.

The implementation of this library requires that you first import the library into
your program. Being a built-in library, httplib does not require an additional
setup process:

import httplib

Once the connection is established with the web application, you have to prepare
the data that needs to be sent in the POST method. The httplib method uses the
request() method on the opened connection to post the data. You can also use the
same method in other applications to implement the GET function. Once you are
done with sending the data, you can close the connection using the close() method.
In the current implementation of the httplib library, we are creating and closing
the connection on each message. You can also declare the connection outside the
onMessage() function and close it when you terminate the program:

def onMessage(mosq, obj, msg):
 print msg.topic
 connection = httplib.HTTPConnection('10.0.0.20:8080')

Chapter 8

[255]

 if msg.topic == "Arduino/motion":
 data = "motion:" + msg.payload
 connection.request('POST', '/data', data)
 postResult = connection.getresponse()
 print postResult
 elif msg.topic == "Arduino/humidity":
 data = "humidity:" + msg.payload
 connection.request('POST', '/data', data)
 postResult = connection.getresponse()
 print postResult
 else:
 pass
 connection.close()

Once you have performed the appropriate modifications, such as changing the IP
address of the Mosquitto broker and the web.py application, go to the next exercise
before running the code.

Extending the MQTT Gateway using web.py
The MQTT Gateway code provides the user interface with the sensor information
using the web.py based web application. The code is quite similar to what you
implemented in exercise 3. The program file is named GatewayWebApplication.py
and located in your Exercise 4 - MQTT gateway code folder. In this application,
we have removed the sensor selection process by simply implementing a button,
displayed as Refresh. This application waits for the POST message from the previous
program, which will be received on the http://<ip-address>:8080/data URL,
ultimately triggering the data class. The POST method in this class will split the
received string to identify and update the value of the humidity and motion global
sensor variables:

class data:
 def POST(self):
 global motion, humidity
 i = web.input()
 data = web.data()
 data = data.split(":")
 if data[0] == "humidity":
 humidity = data[1]
 elif data[0] == "motion":
 motion = data[1]
 else:
 pass
 return "Ok"

Introduction to Arduino Networking

[256]

The default URL, http://<ip-address>:8080/, displays the base template with the
Refresh button, populated using the Form() method. As displayed in the following
code snippet, the default index class renders the template with the updated (current)
humidity and motion values when it receives the GET or POST request:

class index:
 submit_form = form.Form(
 form.Button('Refresh',
 type="submit",
 description='refresh')
)
 # GET function
 def GET(self):
 f = self.submit_form()
 return render.base(f, humidity, motion)

 # POST function
 def POST(self):
 f = self.submit_form()
 return render.base(f, humidity, motion)

Run the program from the command line. Make sure that you are running both
programs from separate terminal windows.

Testing your Mosquitto Gateway
You have to follow these steps in the specified order to successfully execute and test
all the components of this exercise:

1.	 Run the Mosquitto broker.
2.	 Run the Arduino client. If it is running already, restart the program by

powering off the Arduino client and powering it on again.
3.	 Execute the web application in your terminal or from the Command Prompt.
4.	 Run the paho-mqtt Gateway program.

If you follow this sequence, all of your programs will start without any errors. If
you get any errors while executing, make sure that you follow all the instructions
correctly, while also confirming the IP addresses in your programs. To check out
your Arduino MQTT client, open the Serial Monitor window in your Arduino
IDE. You will be able to see the periodic publication of the sensor information, as
displayed in this screenshot:

Chapter 8

[257]

Now open a web browser on your computer and go to the URL of your web
application. You should be able to see a window that looks like what is shown
in the following screenshot. You can click on the Refresh button to check out
the updated sensor values.

We have set a delay of 5 seconds between successive sensor updates.
Henceforth, you won't be able to see the updated values if you rapidly
press the Refresh button.

Introduction to Arduino Networking

[258]

On the Gateway program terminal, you will be able to see the label of the topic every
time the program receives a new message from Mosquitto. If the delay between
successive sensor updates is not sufficient and httplib doesn't have enough time
to get the response back from the web.py application, the program will generate an
error message with the httplib function. Although we require an additional delay
for httplib to successively send the data and receive the response, we will be able to
avoid this delay when we implement the core Python code with threading, avoiding
the entire notion of POST in between the programs:

With this exercise, you have implemented two different types of messaging
architecture to transfer data between your Arduino and your computer or web
applications using your home network. Although we recommend the use of
hardware-centric and lightweight MQTT messaging paradigms over REST
architecture, you can use either of these communication methods according
to the application's requirements.

Summary
Connectivity to computer networks can really open up limitless possibilities
for future application development using Arduino. We started the chapter by
explaining important computer network fundamentals, while also covering
hardware extensions that enable computer networking for Arduino. Regarding the
various methods of enabling networking, we began the chapter by establishing a
web server for Arduino. We concluded that the web server on Arduino is not the
best way for network communication due to the limited number of connections
offered by the web server. Then we demonstrated the use of Arduino as a web
client to enable HTTP-based GET and POST requests. Although this method is useful
for request-based communication and requires fewer resources compared to a web
server, it is still not the best way for sensor communication due to the additional
data overhead. In the later part of the chapter, we described a lightweight
messaging protocol, MQTT, designed specifically for sensor communication. We
demonstrated its superiority to HTTP-based protocols using a few exercises.

Chapter 8

[259]

With the help of each method of Arduino Ethernet communication, you learned
about compatible Python libraries used to support these communication methods.
We used the web.py library to develop a web server using Python, and demonstrated
the use of the library with multiple examples. To support the MQTT protocol, we
explored an MQTT broker, Mosquitto, and employed the Python library, paho_mqtt,
to serve the MQTT requests.

Overall, we covered every major aspect of Arduino and Python communication
methods throughout this chapter, and demonstrated them with simple exercises.
In the upcoming chapters, we will build upon the basics you learned in this chapter,
in order to develop advanced Arduino-Python projects that will enable remote
access to our Arduino hardware through the Internet.

Arduino and the Internet
of Things

In the previous chapter, we learned how to access Arduino using Ethernet from
a remote location. The main objective was to get you started with developing
Arduino-based network applications using Python. We were able to accomplish this
using various tools such as the web.py Python library, Mosquitto MQTT broker,
and the Arduino Ethernet library. Remote access to sensor data via a Python-
like extensible language can open up limitless possibilities for sensor-based web
applications. In recent years, the rapid growth of these applications has enabled the
development of a domain called the Internet of Things (IoT).

In the last chapter, we worked on Arduino networking. However, it was limited
to LAN and the premise of the exercises was limited to your home or office. We
didn't even involve the Internet to enable global access in our exercises. Traditional
IoT applications require Arduino to be accessed remotely from any part of the
world via the Internet. In this chapter, we will extend the Arduino networking
concepts by interfacing Arduino with cloud-based platforms. We will also develop
web applications to access the sensor data from these cloud platforms. Later in the
chapter, we will go through the process of setting up your cloud-based messaging
platform to serve sensor data. At the end of this chapter, you should be able to
design and develop full-stack IoT applications, using Arduino, Python, and the
cloud.

Arduino and the Internet of Things

[262]

Getting started with the IoT
Long before the Internet, sensor- and actuator-based electronic control systems
existed in high-tech automation systems. In those systems, sensors were interfaced
to the microcontroller via hard-wired connections. Due to extensibility limitations,
the coverage area of these systems was geographically restricted. Examples of these
high-tech systems included factory automation, satellite systems, weapon systems,
and so on. In most cases, the sensors used in these systems were huge and the
microcontrollers were also limited by their low computational capabilities.

With recent advancements in technology, especially in the semiconductor industry,
the physical size of sensors and microcontrollers has significantly reduced. It has
also been made possible to manufacture low-cost and highly efficient electronic
components, hence today it is relatively inexpensive to develop small and efficient
sensor-based hardware products. Arduino and Raspberry Pi are great examples of
these achievements. These sensor-and actuator-based hardware systems interface
with the physical world that we live in. The sensors measure various elements
from the physical environment, while the actuators manipulate the physical
environment. These types of hardware-based electronic systems are also known as
physical systems.

On the other front, advancements in the semiconductor industry also enabled the
development of highly efficient computation units, empowering personal computer
and networking industries. This movement led to the worldwide network of
connected computers called CyberWorld or the Internet. Every day, petabytes of
data get generated and transferred across the Internet.

The domain of IoT stands at the crossroads of these progresses in physical and cyber
systems, where ancient hardwired sensor-based systems are ready to get upgraded
to more powerful and efficient systems that are also highly connected through the
Internet. Due to the large number of sensors involved, these systems generate and
send an avalanche of data. The data generated by these sensors has already eclipsed
the data generated by humans.

The IoT has started to become a significant domain in recent years after a large
number of consumer IoT products have started entering the market. These products
include applications in home automation, health care, activity tracking, smart
energy, and so on. One of the major reasons behind the rapid growth of the IoT
domain is the introduction of these visible solutions. In a large number of cases, this
was made possible due to fast and inexpensive prototyping that was enabled by
Arduino and other open source hardware platforms.

Chapter 9

[263]

Up to this point in the book, we have learned various methods of interfacing sensors
and then developing applications using these connected sensors. In this chapter, we
will learn the last step in the development of a full-stack IoT application—enabling
access for your Python-Arduino application through the Internet. Now, let's try to
first understand the architecture of the IoT.

Architecture of IoT web applications
In this book, we have covered three major concepts in the first eight chapters:

•	 Physical layer: We used various sensors and actuators with the Arduino
board to deal with the physical environment. The sensors such as the
temperature sensor, humidity sensor, and motion sensor were used
measured the physical phenomenon, while the actuators such as LEDs were
utilized to alter or produce physical elements.

•	 Computation layer: We used Arduino sketches and Python programs to
convert these physical elements into numerical data. We also utilized these
high-level languages to perform various computations such as calculating
relative humidity, developing user interfaces, plotting data, and providing
web interfaces.

•	 Interfacing layer: Throughout the material that we covered, we also utilized
various interfacing methods to establish communication between Arduino
and Python. For interfacing part of the interfacing layer between the physical
and computation layers, we used serial port libraries, established network-
based communication using the REST and MQTT protocol, and developed
web applications.

As you can see, we have developed applications with tightly-coupled physical,
computation, and interfacing layers. In the research domain, these types of
applications are also known as cyber-physical systems. One of the widely used
and popular terms for the domain of cyber-physical system is the IoT. Although
the cyber-physical domain is thoroughly defined compared to the IoT, the IoT
has recently gained more popularity due to the large number of subdomains—
industrial Internet, wearable devices, connected devices, smart grid, and so
on—that are covered under this umbrella term. In simple terms, an application
can qualify as an IoT application if it consists of hardware devices that deal with
the physical world and have sufficient computational capabilities with Internet
connectivity. Let's try to understand the architecture of the IoT from the material
that we have already covered.

Arduino and the Internet of Things

[264]

On the physical side, the following figure shows the hardware components that
we utilized to deal with the physical environment. The sensors and actuators that
interface with the actual physical world can be connected to Arduino using multiple
low-level protocols. These components can be connected using GPIO pins and using
the I2C or SPI protocols. The data acquired from these components gets processed
on the Arduino board using the code that is uploaded by the user. Although the
Arduino code can be made self-reliant to execute tasks without any external inputs,
these inputs from users or other applications are required in advanced applications.

As part of the communication layer, Arduino can be connected locally to other
computers using USB. One can extend the coverage range by utilizing Ethernet,
Wi-Fi, or any other radio communication method.

As illustrated in the following figure, the sensor data is collected using computation
units for advance processing. These computation units are powerful enough to host
operating systems and programming platforms. In this book, we utilized Python
to develop various features at the computation layer. At this level, we performed
high-level computation tasks such as developing graphical user interfaces using the
Tkinter library, plotting charts using the matplotlib library, and developing web
applications using the web.py library.

Chapter 9

[265]

In all the coding exercises that we performed previously, the physical coverage areas
of the projects were limited because of hardwired serial interfaces or local Ethernet
network, as displayed in the following figure:

To develop full-stack IoT applications, we need to remotely access Arduino or host
the computation layer on the Internet. In this chapter, we are going to work on this
missing link and develop various applications to provide Internet connectivity to
the exercises. To perform this operation, we are going to utilize a commercial cloud
platform in the first section and develop our customized platform in the later section.

Arduino and the Internet of Things

[266]

As the focus of this chapter is going to be on cloud connectivity, we are not
going to develop a hardware circuit for each exercise. We will go through the
hardware design exercise only once and keep using the same hardware for all the
programming exercises. Similarly, we will also reuse the web.py programs that we
developed in the previous chapter to focus on code snippets that are associated
with Python libraries to develop cloud applications.

Hardware design
Let's begin by developing standard hardware for all the upcoming exercises. We will
need the Arduino board that is attached to the Ethernet Shield to use the Ethernet
protocol for network connectivity. In terms of components, you will be using simple
sensors and actuators that you already used in the previous coding exercises. We
will use the PIR motion sensor and the HIH-4030 humidity sensor to provide digital
and analog outputs, respectively. We will also have an LED as part of the hardware
design and this will be used in coding exercises as an actuator. For more information
regarding the properties and detailed explanations of these sensors, you can refer to
previous chapters.

To begin assembly of the hardware components, first attach the Ethernet Shield on
top of the Arduino board. Connect the sensors and actuators to the appropriate pins,
as displayed in the following figure. Once you have the hardware assembled, you
can connect the Ethernet Shield to your home router using the Ethernet cable. You
will need to power the board using the USB cable to upload the Arduino code from
your computer. In case you want to deploy the Arduino board to a remote location,
you will need an external 5V supply to power Arduino.

Chapter 9

[267]

The IoT cloud platforms
The term IoT cloud platform is used for the cloud platforms that provide very
specific services, protocol support, and web-based tools for IoT applications.
In more informal terms, these cloud IoT platforms can be used to upload your
sensor data and access them from anywhere using the Internet. With these basic
features, they also provide tools to access, visualize, and process your sensor data
on various platforms such as computers and smartphones. Examples of similar
IoT cloud platforms include Xively (http://www.xively.com), 2lemetry
(http://www.2lemetry.com), Carriots (http://www.carriots.com), ThingSpeak
(http://thingspeak.com), and so on.

The following figure shows the architecture of an IoT system with an Arduino-based
sensor system that is sending data to a cloud platform, while a computation unit is
accessing the data remotely from the cloud:

Xively, being the oldest and most popular IoT platform, has a large amount of
community-based online help that is available for beginners. This is one of the major
reasons why we have chosen Xively as our platform of choice for the upcoming
exercises. Recently, Xively has changed their policy of creating free developer
accounts and a user has to request access to this free account instead of obtaining
one freely. In case you want to use another platform other than Xively, we have
briefly covered a few similar platforms at the end of this section.

http://www.xively.com
http://www.2lemetry.com
http://www.carriots.com
http://thingspeak.com

Arduino and the Internet of Things

[268]

Xively – a cloud platform for the IoT
Xively is one of the very first IoT-specific cloud platforms that was founded in 2007
as Pachube. It went through multiple name changes, as it was called Cosm, but it
is currently known as Xively. Xively provides an IoT cloud platform with tools and
services to develop connected devices, products, and solutions. As mentioned on its
website, Xively is the public cloud that is specifically built for the IoT.

Setting up an account on Xively
Now, we can go ahead and set up a new user account for the Xively platform. To set
up an account, you need to execute following steps in the given order:

1.	 To begin the sign up process on Xively.com, open https://xively.com/
signup in a web browser.

2.	 On the sign up page, you will be prompted to select the username and the
password, as displayed in the following screenshot:

3.	 On the next page, you will be asked to enter some additional information that
includes your full name, organization's name, country, zip code, time zone,
and so on. Fill out the form appropriately and click on the Sign Up button:

Xively.com
https://xively.com/signup
https://xively.com/signup

Chapter 9

[269]

4.	 Xively will send an activation e-mail to the e-mail account that you
specified in the form. Open the e-mail and click on the activation link.
Check your spam folder if you don't see the e-mail in your inbox.

5.	 Once you click on the activation link, you will be redirected to the
welcome page on Xively's website. We advise you to go through the
tutorials provided on the welcome page, as it will help you to get
familiar with the Xively platform.

6.	 After completing the tutorials, you can come back to the main user screen
from the page using the https://xively.com/login link.
If you are not already logged in, you will require your e-mail address as
the username and an appropriate password to log into the Xively platform.

https://xively.com/login

Arduino and the Internet of Things

[270]

Working with Xively
The Xively platform lets you create cloud device instances that can be connected to
the actual hardware device, app, or service. Perform the following steps in order to
work with Xively:

1.	 To begin working with the Xively platform, add a device from the main page,
as displayed in the following screenshot:

2.	 Once you click on the Add Device button, it will prompt you to the following
window where you will be asked to provide the device name, description,
and privacy status of the device that you are going to assign. In the form,
select a device name that you want your development device to be called,
provide a brief description, and select Private Device as the privacy status:

Chapter 9

[271]

3.	 Once you click the Add Device button, Xively will create a device
instance with automatically-generated parameters and prompt you to the
development workbench environment. On the page of the device that you
just added, you can see various identification and security parameters such
as Product ID, Serial Number, Feed ID, Feed URL, and API Endpoint. From
among these parameters, you will frequently need the Feed ID information
for the upcoming exercises:

Arduino and the Internet of Things

[272]

4.	 A unique and secure API key of the newly created device is also located in
the right-hand side bar of the page. This API key is very important and needs
to be secured just like your password, as anyone with the API key can access
the device.

5.	 Now, to remotely access this device, open the terminal and use the cURL
command to send data to it. In the following command, change the <Your_
Feed_ID> and <Your_API_key> values with the ones available for your device:
$ curl --request PUT --data "0,10" --header "X-ApiKey: <Your_API_
key" https://api.xively.com/v2/feeds/<Your_Feed_ID>.csv

6.	 As you can see, the previous command sent the value of 10 on channel 0
of your device on Xively. After executing the previous command, you will
notice that the Xively workbench is updated with the information that you
just sent using cURL:

7.	 Try sending multiple values on channel 0 using the previous command.
On the Xively workbench, you will be able to see a plot being generated
by these values in real time. Access the plot by clicking on channel 0 in
the workbench:

Chapter 9

[273]

Using the method that we used in this example, we can also configure Arduino to
send sensor values automatically to the Xively platform. This will enable the storage
and visualization of Arduino data on Xively.

Alternative IoT platforms
In this section, we have provided important links for the ThingSpeak and Carriots
platforms. As we are not covering these platforms in detail, these links will help
you to find similar examples to interface Arduino and Python with ThingSpeak
and Carriots.

ThingSpeak
The tutorials in the following links will help you to get familiar with the ThingSpeak
platform if you chose to use it instead of Xively:

•	 The official website: https://thingspeak.com/
•	 Using Arduino and Ethernet to update a ThingSpeak channel: http://

community.thingspeak.com/tutorials/arduino/using-an-arduino-
ethernet-shield-to-update-a-thingspeak-channel/

•	 Arduino examples for ThingSpeak: https://github.com/iobridge/
ThingSpeak-Arduino-Examples

•	 Communicating with ThingSpeak using Python: http://www.
australianrobotics.com.au/news/how-to-talk-to-thingspeak-with-
python-a-memory-cpu-monitor

https://thingspeak.com/
http://community.thingspeak.com/tutorials/arduino/using-an-arduino-ethernet-shield-to-update-a-thingspeak-channel/
http://community.thingspeak.com/tutorials/arduino/using-an-arduino-ethernet-shield-to-update-a-thingspeak-channel/
http://community.thingspeak.com/tutorials/arduino/using-an-arduino-ethernet-shield-to-update-a-thingspeak-channel/
https://github.com/iobridge/ThingSpeak-Arduino-Examples
https://github.com/iobridge/ThingSpeak-Arduino-Examples
 http://www.australianrobotics.com.au/news/how-to-talk-to-thingspeak-with-python-a-memory-cpu-monitor
 http://www.australianrobotics.com.au/news/how-to-talk-to-thingspeak-with-python-a-memory-cpu-monitor
 http://www.australianrobotics.com.au/news/how-to-talk-to-thingspeak-with-python-a-memory-cpu-monitor

Arduino and the Internet of Things

[274]

•	 Using Arduino and Python to talk to a ThingSpeak channel:
http://vimeo.com/19064691

•	 Series of ThingSpeak tutorials: http://community.thingspeak.com/
tutorials/

ThingSpeak is an open source platform and you can create your own customized
version of ThingSpeak using the files provided. You can obtain these files and the
associated guideline from https://github.com/iobridge/ThingSpeak.

Carriots
Carriots also provides a free, basic account for developers. If you want to use Carriots
as an alternative to Xively, use the tutorials in the following links to get started:

•	 The official website: https://www.carriots.com/
•	 Setting up an account on Carriots: https://learn.adafruit.com/

wireless-gardening-arduino-cc3000-wifi-modules/setting-up-your-
carriots-account

•	 The Carriots library for Arduino: https://github.com/carriots/
arduino_library

•	 A Carriots example for Arduino: https://github.com/carriots/
arduino_examples

•	 Connect Carriots to the Python web application: http://www.
instructables.com/id/Connect-your-Carriots-Device-to-Panics-
Status-Boa/

Developing cloud applications using
Python and Xively
Now, you have a basic idea about the available commercial IoT platforms and you
can select one according to your comfort level and requirements. It will be very
difficult to comprehensively explain every cloud platform with practical examples,
as the objective of this chapter is to make you familiar with integrating the cloud
platform with Python and Arduino. For this reason, we are going to use Xively
as the de facto IoT cloud platform for the rest of the integration exercises.

Now that you know how to create an account on Xively and work with the Xively
platform, it is time to start interfacing real hardware with the Xively platform. In this
section, we will go through methods to upload and download data from Xively. We
will combine the Arduino hardware that we built with the Python programs to show
you basic methods of communicating with Xively.

http://vimeo.com/19064691
http://community.thingspeak.com/tutorials/
http://community.thingspeak.com/tutorials/
https://github.com/iobridge/ThingSpeak
https://www.carriots.com/
https://learn.adafruit.com/wireless-gardening-arduino-cc3000-wifi-modules/setting-up-your-carriots-account
https://learn.adafruit.com/wireless-gardening-arduino-cc3000-wifi-modules/setting-up-your-carriots-account
https://learn.adafruit.com/wireless-gardening-arduino-cc3000-wifi-modules/setting-up-your-carriots-account
 https://github.com/carriots/arduino_library
 https://github.com/carriots/arduino_library
https://github.com/carriots/arduino_examples
https://github.com/carriots/arduino_examples
http://www.instructables.com/id/Connect-your-Carriots-Device-to-Panics-Status-Boa/
http://www.instructables.com/id/Connect-your-Carriots-Device-to-Panics-Status-Boa/
http://www.instructables.com/id/Connect-your-Carriots-Device-to-Panics-Status-Boa/

Chapter 9

[275]

Interfacing Arduino with Xively
The first stage to establish communication with Xively includes interfacing the
Arduino board with the Xively platform via standalone Arduino code. We have
already built the necessary hardware using the Arduino Uno, Ethernet Shield, and
a few sensors. Let's connect it to your computer using the USB port. You also need
to connect the Ethernet Shield to your home router using the Ethernet cable.

Uploading Arduino data to Xively
The Arduino IDE has a built-in example that can be used to communicate with
the Xively service. This is known as PachubeClient (Pachube was Xively's
previous name).

It is important to note that the reason behind using this default example
is to give you a jump-start in the interfacing exercises. This particular
sketch is rather old and may get dropped as a default exercise in the
upcoming releases of the Arduino IDE. In that case, you can directly
jump to the next exercise or develop your custom sketch to perform the
same exercise.

Perform the following steps to upload Arduino data to Xively:

1.	 Open the Arduino IDE and then open the PachubeClient example by
navigating to File | Examples | Ethernet | PachubeClient.

2.	 To establish communication with Xively, you will need the feed ID and the
API key of your Xively device, which you obtained in the last section.

3.	 In the opened Arduino sketch, perform the following changes using the
obtained feed ID and API key. You can specify any project name for the
USERAGENT parameter:
#define APIKEY "<Your-API-key>"
#define FEEDID <Your-feed-ID>
#define USERAGENT "<Your-project-name>"

4.	 In the Arduino sketch, you will also have to change the MAC address and
the IP address of your Ethernet Shield. You should be familiar with obtaining
these addresses from the exercise that you performed in the previous chapter.
Use these values and modify the following lines of code appropriately:
byte mac[] = {0x90, 0xA2, 0xDA, 0x0D, 0x3F, 0x62};
IPAddress ip(10,0,0,75);

Arduino and the Internet of Things

[276]

5.	 As the opened Arduino example was created for the Pachube, you need to
update the server address to api.xively.com as specified in the following
code snippet. Comment the IP address line as we will not need it anymore
and add the server[] parameter:
//IPAddress server(216,52,233,122);
char server[] = "api.xively.com";

6.	 In the sendData() function, change the channel name to HumidityRaw as we have
our HIH-4030 humidity sensor connected to the analog port. We are not
performing any relative humidity calculations at this stage and are going to
upload just the raw data from the sensor:
// here's the actual content of the PUT request:
client.print("HumidityRaw,");
client.println(thisData);

7.	 Once you have performed these changes, open the XivelyClientBasic.ino
file from the folder containing codes for this chapter. Compare them with
your current sketch and compile/upload the sketch to the Arduino board if
everything seems satisfactory. Once you have uploaded the code, open the
Serial Monitor window in the Arduino IDE to observe the following output:

8.	 If you see an output in the Serial Monitor window that is similar to the one
displayed in the previous screenshot, your Arduino is successfully connected
to Xively and is uploading data on the HumidityRaw channel.

Chapter 9

[277]

9.	 Open your device in Xively's website and you will be able to see an output
that is similar to the following screenshot on the web page. This confirms
that you have successfully uploaded data to an IoT cloud platform using
your remotely-located Arduino:

Downloading data to Arduino from Xively
In the previous coding exercise, we used a default Arduino example to communicate
with Xively. However, Xively also provides a very efficient Arduino library with
built-in functions for rapid programming. In the next exercise, we will use an
alternative method to communicate with the Xively platform using the Xively-
Arduino library. Although you can use either of these methods, we recommend
that you use the Xively-Arduino library as it is officially maintained by Xively.

In this exercise, we will download digital values from a channel called LED. Later,
we will use these digital values, 0 and 1, to switch an LED that is connected to our
Arduino board. As an input to this channel, we will alter the current value of the
channel on the Xively platform's website while letting the Arduino download that
value and perform the appropriate task.

Let's begin by importing the Xively-Arduino library and its dependencies. As you
already know how to import libraries in the Arduino IDE, visit https://github.
com/amcewen/HttpClient to download and import the HttpClient library. This
is a dependency that is required by the Xively-Arduino library to function.

Once you have imported the HttpClient library, download the Xively-Arduino
library from https://github.com/xively/xively_arduino and repeat the
import process.

https://github.com/amcewen/HttpClient
https://github.com/amcewen/HttpClient
https://github.com/xively/xively_arduino

Arduino and the Internet of Things

[278]

The Xively-Arduino library ships with few examples so that you can get started.
We will use their example as base code for downloading data for our exercise.

1.	 In the Arduino IDE, navigate to File | Examples | Xively_arduino |
DatastreamDownload and open the DatastreamDownload example.
Change the default API key to your own API key that was obtained from
the device that you created. As displayed in the following code snippet,
you need to also identify your channel name, which is LED in this case:
char xivelyKey[] = "<Your-API-key>";
char ledId[] = "LED";

2.	 The Xively-Arduino library requires you to define the XivelyDatastream
variable as an array. You can also specify multiple data streams according
to your application:
XivelyDatastream datastreams[] = {
 XivelyDatastream(ledId, strlen(ledId), DATASTREAM_FLOAT),
};

3.	 You also need to declare a variable called feed using the XivelyFeed function.
As displayed in the following line of code, replace the default feed ID with
the appropriate one. In the initialization of the feed variable, the value 1
represents the number of datastreams in the XivelyDatastream array:
XivelyFeed feed(<Your-feed-ID>, datastreams, 1);

4.	 In our exercise, we want to periodically retrieve the value of the LED channel
and turn the actual LED on or off accordingly. In the following code snippet,
we obtain the float value from feed[0], where 0 specifies the data stream
located at the 0 position in the datastreams array:
Serial.print("LED value is: ");
Serial.println(feed[0].getFloat());

if (feed[0].getFloat() >= 1){
 digitalWrite(ledPin, HIGH);
}
 else{
 digitalWrite(ledPin, LOW);
}

Chapter 9

[279]

5.	 As you now know that the parameters need to be changed for this exercise,
open the XivelyLibBasicRetrieveData.ino Arduino sketch from the
code folder. This sketch contains the exact code that you need to use for the
exercise. Although this sketch includes the necessary modifications, you will
still have to change the values for account-specific parameters, that is, the
API key, feed ID, and so on. Before you go ahead and upload this sketch,
go to the Xively platform and create a channel called LED with Current
Value as 1, as displayed in the following screenshot:

6.	 Now, compile and upload the code to your Arduino.
7.	 Once you have uploaded the compiled code to your Arduino, open the Serial

Monitor window and wait for an output that is similar to the one displayed
in following screenshot. You will notice that the LED on the Arduino
hardware is turned on:

8.	 You can go back to the Xively LED channel and change the Current Value
field to 0. Within a few seconds, you will notice that the LED on the Arduino
hardware is turned off. With this exercise, you have successfully established
two-way communication between Arduino and the Xively platform.

Arduino and the Internet of Things

[280]

Advanced code to upload and download data using
Arduino
In the previous two Arduino exercises, we individually performed the uploading
and downloading tasks. In this exercise, we want to create an Arduino program
where we can upload data from the connected sensors (the PIR motion sensor
and the HIH-4030 humidity sensor) while retrieving the value to control the LED.
Open the Arduino sketch, XivelyLibAdvance.ino, which contains the code
that demonstrates both the functionalities. As you can see in the following code
snippet, we have defined three separate channels for each component while having
independent XivelyDatastream objects for upload (datastreaU[]) and download
(datastreamD[]). Similarly, we have also created two different feeds, feedU and
feedD. The main reason behind delegating the upload and download tasks to
different objects is to independently update the value of the LED channel while
uploading the data stream for channels, HumidityRaw and MotionRaw:

char ledId[] = "LED";
char humidityId[] = "HumidityRaw";
char pirId[] = "MotionRaw";

int ledPin = 2;
int pirPin = 3;

XivelyDatastream datastreamU[] = {
 XivelyDatastream(humidityId, strlen(humidityId), DATASTREAM_FLOAT),
 XivelyDatastream(pirId, strlen(pirId), DATASTREAM_FLOAT),
};

XivelyDatastream datastreamD[] = {
 XivelyDatastream(ledId, strlen(ledId), DATASTREAM_FLOAT),
};

XivelyFeed feedU(<Your-feed-ID>, datastreamU, 2);
XivelyFeed feedD(<Your-feed-ID>, datastreamD, 1);

In the loop() function of the Arduino code, we periodically fetch the current value
of the LED channel from feedD and then perform the LED action:

int retD = xivelyclient.get(feedD, xivelyKey);
Serial.print("xivelyclient.get returned ");

In the second stage of the periodic function, we obtain the raw sensor values from
the analog and digital pins of the Arduino board and then upload those values
using feedU:

Chapter 9

[281]

int humidityValue = analogRead(A0);
datastreamU[0].setFloat(humidityValue);
int pirValue = digitalRead(pirPin);
datastreamU[1].setFloat(pirValue);

int retU = xivelyclient.put(feedU, xivelyKey);
Serial.print("xivelyclient.put returned ");

Make the appropriate changes in the code to accommodate feed ID and API key
and then upload the sketch to the Arduino board. Once you upload this Arduino
sketch to your platform, you should be able to see the following output on the Serial
Monitor window. You can now disconnect your Arduino from the USB port and
connect the external power supply. Now that you have connected your Arduino
assembly to your local network using an Ethernet cable, you can place the Arduino
assembly at any location in your workplace.

Python – uploading data to Xively
Similar to how we interfaced Arduino to Xively, we will now explore methods to
connect the Xively platform via Python and thus complete the loop. In this section,
we will focus on different ways of uploading data to Xively using Python. We will
start with a basic method of communicating with Xively and extend it further with
web.py to implement the interface using a web application.

To begin with, let's first install Xively's Python library, xively-python, on your
computer using the following command:

$ sudo pip install xively-python

Arduino and the Internet of Things

[282]

The basic method for sending data
Once again, you will need the API key and feed ID of your virtual device that you
created on the Xively platform. Python, assisted by the xively-python library,
provides very simple methods to establish a communication channel with the
Xively platform. From your code folder, open the uploadBasicXively.py file.
As specified in the code, replace the FEED_ID and API_KEY variables with the
appropriate feed ID and API key:

FEED_ID = "<Your-feed-ID>"
API_KEY = "<Your-API-key>"

Using the XivelyAPIClient method, create an api instance and create the feed
variable by using the api.feeds.get() method:

api = xively.XivelyAPIClient(API_KEY)
feed = api.feeds.get(FEED_ID)

Just as we did in the Arduino exercises, you will need to create data streams for each
channel from the feeds. As specified in the following code snippet, try to get the
specified channel from the feed or create one if it is not present on the Xively virtual
device. You can also specify tags and other variables while creating a new channel:

try:
 datastream = feed.datastreams.get("Random")
except HTTPError as e:
 print "HTTPError({0}): {1}".format(e.errno, e.strerror)
 datastream = feed.datastreams.create("Random", tags="python")
 print "Creating 'Random' datastream"

Once you have opened the data stream for a channel, you can specify the current
value using the datastream.cuurent_value method and update the value, which
will upload this value to the specified channel:

datastream.current_value = randomValue
datastream.at = datetime.datetime.utcnow()
datastream.update()

Once you have performed the specified modifications to the uploadBasicXively.py
file, execute it using the following command:

$ python uploadBasicXively.py

Chapter 9

[283]

Open your virtual device on the Xively website to find the Random channel populated
with the data that you uploaded. It will look similar to the following screenshot:

Uploading data using a web interface based on
web.py
In the previous chapter, we worked with the web.py library while developing
templates and web applications. In this exercise, we will utilize one of the programs
in which we created the web.py forms with the Xively code that we developed in the
previous exercise. The goal of this exercise is to send data to the LED channel using a
web application while observing the LED's behavior on the Arduino hardware.

You can find the Python program for this exercise in this chapter's folder with the
name uploadWebpyXively.py. As you can see in the code, we are using the web.py
forms to obtain two inputs, Channel and Value. We will use these inputs to modify
the current value of the LED channel:

submit_form = form.Form(
 form.Textbox('Channel', description = 'Channel'),
 form.Textbox('Value', description = 'Value'),
 form.Button('submit', type="submit", description='submit')
)

Arduino and the Internet of Things

[284]

The template file, base.html, is also modified to accommodate minor changes that
are required by this exercise. As you can see in the opened Python file, we are using
the same code that we used to interface with Xively in the previous exercise. The
only major modification is done to the datastream.update() method, which is
now placed in the POST() function. This method will be executed when you submit
the form. Once you change the API key and feed ID in this file, execute the Python
code and open http://localhost:8080 in your web browser. You can see the web
application running, as displayed in the following screenshot. Enter the value as
displayed in the figure to turn on the LED on the Arduino board. You can change
the Value parameter to 0 to turn off the LED.

Python – downloading data from Xively
The process of downloading data from Xively includes requesting the Current Value
parameter for the specified channel. In the next exercise, we will develop a reference
code that will be used in the next downloading exercise. In that exercise, we will
develop an advanced web application to retrieve data from a specific Xively channel.

As we are using functions based on the REST protocol to communicate with Xively,
Xively will not simply notify you about any new, available update, instead you will
have to request it. At this point, it is important to note that we will have to periodically
request data from Xively. However, Xively provides an alternative method called
triggers to overcome this problem, which is explained later in this section.

The basic method for retrieving data from Xively
Just like the uploading exercises, the downloading exercises also require a similar
code to instantiate the XivelyAPIClient() and api.feeds.get() methods.
As we are retrieving the data instead of sending it, we will only use the feed.
datastreams.get() method and avoid the feed.datastreams.create() method.
The download process requires the channel to be already present and this is the
main reason why we only have to use the get() method:

Chapter 9

[285]

try:
 datastream = feed.datastreams.get("Random")
except HTTPError as e:
 print "HTTPError({0}): {1}".format(e.errno, e.strerror)
 print "Requested channel doesn't exist"

Once the datastream object is initialized, the latest available value from the channel
can be obtained using the datastream.current_value method:

latestValue = datastream.current_value

To enable the complete code to perform this exercise, open the
downloadXivelyBasic.py code and change the values for the feed ID and
API key to the appropriate ones. In this exercise, we are working with the
Random channel that we created in the uploading exercise. Before you execute
this Python code, you need to execute the uploadXivelyBasic.py file that
will continuously provide random data to the Random channel. Now, you can
execute the downloadXivelyBasic.py file that will fetch the current value of
the Random channel periodically (with a delay specified by the sleep() function).
As you can see in the following screenshot, we are getting a new value for the
Random channel every 10 seconds:

Retrieving data from the web.py web interface
This is an advanced exercise where we will upload data to one Xively channel after
fetching data from another Xively channel, and process it by using the data entered
via the web form. As you know, the analog pin on which the HIH-4030 sensor
is connected provides you with raw sensor value, whereas the relative humidity
depends upon the value of the current temperature. In this exercise, we will develop
a web application so that the user can manually enter the temperature value and we
will use this to calculate relative humidity from the raw sensor data.

Arduino and the Internet of Things

[286]

Before we begin with the details of the code, let's first open the uploadWebpyXively.
py file, change the appropriate parameters, and execute the file. Now, in a web
browser, open the http://localhost:8080 location. You will be able to see
following web application, asking you to provide it with the current temperature
value. Meanwhile, upload the XivelyLibAdvance.ino sketch to the Arduino board
after making the appropriate changes. With this program, Arduino will start sending
raw motion and humidity values to the MotionRaw and HumidityRaw channels. In
the web application that is running, submit the form with the custom temperature
value and you will be able to see the web application load the current relative
humidity in percentage units. Internally, when you submitted the form, the web
application retrieved the current raw humidity value from the HumidityRaw channel,
executed the relativeHumidity(data, temperature) function, uploaded the
calculated humidity value to a new channel called Humidity, and then displayed
that value in the web application.

If you open your Xively platform page on a web browser, you will be able to see
a newly created Humidity channel with the current value for relative humidity.
You can submit multiple values for temperature in the web application to see
the results reflected on the graph of the Humidity channel, as displayed in the
following screenshot. Although this exercise demonstrates a single use case, this
web application can be extended in multiple ways to create complex applications.

Chapter 9

[287]

Triggers – custom notifications from Xively
The Xively platform primarily deploys services based on the REST protocol, which
doesn't have a provision to automatically publish data when it is updated with a
new value. In order to overcome this limitation, Xively implements the concept of
triggers, which provide additional functionality beyond just publishing data when
it is changed. Through this, you can basically create a trigger for any channel to
perform the POST operation on the specified location when conditions that are set
for that trigger get satisfied by the incoming data. For example, you can set a trigger
on the Humidity channel to send you a notification when the value of humidity
changes, that is, increases above or decrease below a given threshold. You can create
a trigger in your Xively platform account by just clicking on the Add Trigger button,
as displayed in the following screenshot:

Arduino and the Internet of Things

[288]

While creating a trigger, you can specify the channel you want to monitor and the
condition to trigger a notification on the specified HTTP POST URL. As shown in the
following screenshot, complete the information for Channel, Condition, and HTTP
POST URL before saving the trigger. The major drawback with this approach is that
Xively requires an actual URL to send the POST notification. If your current computer
doesn't have a static IP address or a DNS address, the trigger won't be able to send
you the notification:

Your own cloud platform for the IoT
In the previous section, we worked with a commercial IoT platform that also
provides restricted, free access to basic functionalities. We also learned various
ways to communicate with Xively that is based on the REST protocol. For any small
projects or prototypes, Xively and other similar IoT platforms provide a sufficient
solution and are therefore recommended by us. However, the limited free service
provided by Xively may not satisfy all of your requirements to develop a full-stack
IoT product. The following are a few cases where you may want to configure or
develop your own IoT platform:

•	 Develop your own commercial IoT platform
•	 Develop custom features that are exclusive to your product
•	 Add more control features and communication protocols while also

securing your data
•	 Require an inexpensive solution for large-scale projects

Chapter 9

[289]

This section will guide you through the step-by-step process of creating an
elementary small-level IoT cloud platform. The goal of the section is to make you
familiar with the requirements and the process of creating an IoT platform. To
develop a large-scale, diverse, and feature-rich platform such as Xively, you will
need a significant amount of knowledge and experience in the domains of cloud and
distributed computing. Unfortunately, cloud and distributed computing are out of
scope of this book and we will stick with the implementation of the basic features.

To develop a cloud platform that is accessible through the Internet, you will at least
require a computational unit with Internet connection and a static IP or DNS address.
Today, the majority of consumer-oriented Internet Service Providers (ISPs) do not
provide static IPs with their Internet service, making it difficult to host a server at
home. However, various companies such as Amazon, Google, and Microsoft, provide
free or cost-effective cloud computing services, which make it easier to host your
cloud on their platforms. These services are highly scalable and they are equipped
with a large amount of features to satisfy the majority of consumer requirements.
In the following section, you will be creating your first cloud computing instance on
Amazon Web Services (AWS). Later in this chapter, we will install and configure the
appropriate software tools such as Python, Mosquitto broker, and so on, to utilize this
Amazon instance as an IoT cloud platform.

The major reason behind developing or configuring a personal cloud
platform is to have access to your IoT hardware through the Internet.
Due to the lack of a static IP address for your home network, you may
not be able to access you prototypes or projects from a remote location.
A cloud platform can be used as the de facto computation unit for your
network-based projects.

Getting familiar with the Amazon AWS
platform
AWS is a collection of various cloud services offered by Amazon, which together
make up a cloud computing platform. One of the original and most popular services
offered by AWS is its Elastic Computer Cloud (EC2) service. The EC2 service
lets a user create instances of a virtual machine with different combinations of
computation power and operating systems from their large cloud infrastructure. It is
also really easy to change the computational properties of these virtual instances at
any time, making them highly scalable. When you are trying to create your own IoT
platform using EC2, this scalability feature greatly helps you as you can expand or
compress the size of your instances according to demand. If you are not familiar with
the concept of cloud computing or AWS as a particular product, you can learn more
about them from http://aws.amazon.com.

http://aws.amazon.com

Arduino and the Internet of Things

[290]

The EC2 cloud platform is different from Xively as it provides general-purpose
cloud instances, virtual machines, with computation power and storage that
can be converted to any feature-specific platform by installing and configuring
platform-specific software. It is important to note that you really do not have to
be an expert in cloud computing to further advance in this chapter. The upcoming
sections provide an intuitive guide to perform basic tasks, such as setting up an
account, creating and configuring your virtual machines, and installing software
tools to create IoT platforms.

Setting up an account on AWS
Amazon provides one year of free access to the basic instance of the cloud-based
virtual machine. This instance includes 750 hours of free usage time per month and
this is greater than the number of hours in any month, thereby making it free for
the entire month. The data storage capacity and bandwidth of the AWS account are
sufficient for basic IoT or Arudino projects. To create a free account for a year on
Amazon's AWS cloud platform, perform the following steps:

1.	 Open http://aws.amazon.com and click on the button that asks you to try
AWS for free or some other similar text.

2.	 This action will lead you to a Sign In or Create an AWS Account page as
displayed in the following screenshot. Enter the e-mail address that you want
to use for this account when you select the I am a new user. option and click
on the Sign in using our secure server button. If you already have an AWS
account and you know how to create an account on Amazon AWS, you can
use those credentials and skip to the next section:

http://aws.amazon.com

Chapter 9

[291]

Amazon only allows one free instance for each account. If you are an
existing AWS user and your free instance is already occupied with
another application, you can use the same instance to accommodate
the MQTT broker or buy another instance.

3.	 On the next page, you will be prompted to enter your name, e-mail
address, and a password, as displayed in the following screenshot.
Fill in the information to continue with the sign up process:

4.	 You will be asked to enter your credit card information during the sign up
process. However, you won't be charged for using the services included
in the free account. Your credit card will be only used if you exceed any
limitations or buy any additional services.

5.	 The next stage includes the verification of your account using your phone
number. Follow the instructions that are displayed in the following
screenshot to complete the identity verification process:

Arduino and the Internet of Things

[292]

6.	 Once you have verified your identity, you will be redirected to the page
that lists the available Amazon AWS plans. Select the appropriate plan that
you want to subscribe to and continue. If you are not sure, you can select
the Basic (Free) plan option, which we recommend for our purpose. The
Amazon Management Console page will let you select other plans if you
want to upgrade the current one.

7.	 Launch the Amazon management console.

As you have an Amazon AWS account now, let's create your virtual instance on it.

Creating a virtual instance on the AWS EC2 service
In order to create a virtual instance on Amazon's EC2 platform, first log in to AWS
using your credentials and open the management console. Next, click on the EC2 tab
and execute the following instructions step by step:

1.	 On the EC2 Console page, go to Create Instance and click on the Launch
Instance button. This will open a wizard to create an instance that will guide
you through the setup process:

2.	 On the first page of the wizard, you will be prompted to select an operating
system for your virtual instance. Select Ubuntu Server 14.04 LTS as displayed
in the next screenshot, which is eligible for the free tier. To avoid any charges
for using an advanced instance, make sure that the option you select is eligible
for the free tier:

3.	 In next window, you will be prompted with a list of options that have
different configurations of computational capacity. From the General
purpose family, select the t2.micro type, which is eligible for the free tier.
The computational capabilities provided by the t2.micro tier are sufficient
for the exercises that we are going to perform in the book and for most of
the DIY projects. Make sure that you do not select any other tier unless you
are confident of your selection.

Chapter 9

[293]

4.	 Once you have selected the specified tier, click on the Review and Launch
button to review the final configuration of the instance.

5.	 Review the configuration and make sure that you have selected the
appropriate options, as mentioned earlier. You can now click on the
Launch button to proceed further.

6.	 This will open a pop-up window that will prompt you to create a new key
pair that will be used for authentication in the upcoming steps:

7.	 As shown in the previous screenshot, select Create a new key pair from the
first drop-down menu while providing a name for the key pair. Click on
the Download Key Pair button to download the key. The downloaded key
will have the name that you provided in the previous option with the .pem
extension. If you already have an existing key, you can select the appropriate
options from the first drop-down menu. You will need this key every time
you want to log in to this instance. Save this key in a safe place.

Arduino and the Internet of Things

[294]

8.	 Once again, click on the Launch Instances button to finally start the instance.
Your virtual instance is launched on AWS now and it is running in the EC2.

9.	 Now, click on the View Instance button that will take you back to the EC2
console window. You will be able to see your recently created t2.micro
instance in the list.

10.	 To find out more details about your virtual instance, select it from the
list. As soon as you select your instance, you will be able to see additional
information in the bottom tab. This information includes the public DNS,
private DNS, public IP address, and so on.

11.	 Save this information, as you will need it to log in to your instance.

Now, you have successfully created and turned on a virtual cloud instance using
Amazon AWS. However, this instance is running in the Amazon EC2 and you will
have to remotely authenticate into this instance to access its resources.

Logging into your virtual instance
In reality, your virtual instance is a virtual computer on a cloud with computation
resources that are similar to your regular computer. You now need to log in to the
running virtual instance to access files, run scripts, and install additional packages.
To establish a secure authentication and access procedure, you need to use the
Secure Shell (SSH) protocol and there are multiple ways to use SSH from your
computer. If you are using Mac OS X or Ubuntu, an SSH client program already
exists within your operating system. For Windows, you can download the PuTTY
SSH client from http://www.putty.org/.

From the EC2 management window, retrieve the public IP address of your instance.
To use the default SSH client in the Linux or Mac environment, open the terminal
and navigate to the folder where you have saved your key file with the .pem
extension. In the terminal window, execute the following command to make your
key accessible:

$ chmod 400 test.pem

http://www.putty.org/

Chapter 9

[295]

Once you have changed permission for your key file, run the following command
to log in to the virtual instance. In the command, you will have to replace <key-
name> with the file name of your key and <public-IP> with the public IP that you
retrieved from the management console:

$ ssh –i <key-name>.pem ubuntu@<public-IP>

Once you execute this command, you will be asked to continue with the connection
process if you are authenticating the instance for the very first time. At the prompt,
write yes and press Enter to continue. On successful authentication, you will be able
to see the command prompt of your virtual instance in the same terminal window.

In case you are using the Windows operating system and are not sure about the status
of your SSH client, select your instance in the EC2 window and click on the Connect
button in the top navigation bar, which is displayed in the following screenshot:

This action will open a pop-up window with a short tutorial that explains the
connection process. This tutorial is also linked to the step-by-step authentication
guide for PuTTY.

Creating an IoT platform on the EC2 instance
As you have successfully set up an Amazon EC2 instance, you have a virtual
computer that is running in the cloud and has a static IP address to enable remote
access. However, this instance cannot be categorized as an IoT platform, as it only
contains a plain operating system (Ubuntu Linux in our case) and lacks the necessary
software packages and configurations.

There are two distinct ways of setting up a custom IoT cloud platform on your
virtual instance:

•	 Setting up an open source IoT platform such as ThingSpeak
•	 Separately installing and configuring the required software tools

Arduino and the Internet of Things

[296]

Keep the following points in mind when setting up an open source IoT platform:

•	 ThingSpeak is one of the open source IoT platforms that provides supporting
files to create and host your own replica of the ThingSpeak platform.

•	 Setting up this platform on your AWS instance is quite simple and you can
obtain the necessary files and guidelines to install it via https://github.
com/iobridge/ThingSpeak.

•	 Although this personalized version of the ThingSpeak platform will provide
sufficient tools to start developing IoT applications, the functionalities of
the platform will be confined to the supplied feature set. To have complete
control over customization, you may have to use the next option.

If you want to separately install and configure the necessary software tools, here's
what you need to remember:

•	 This option includes furnishing project-specific software tools such as Python
and the Mosquitto broker with the required Python libraries such as web.py
and paho_mqtt.

•	 We have already worked with exercises that implemented applications
which were based on the Mosquitto broker and web.py. This version of the
custom IoT cloud platform can reduce the complexity of installing
additional open source platform tools and still provide the necessary
support to host applications.

•	 The Arduino program can directly communicate with this custom platform
using REST or MQTT protocols. It can also behave as the remote computation
unit to communicate with Xively or other third-party IoT cloud platforms.

In the next section, we will begin the platform deployment process by installing the
Mosquitto broker and the necessary packages on your virtual instance. This will be
followed by the configuration of the virtual instance to support the MQTT protocol.
Once your IoT cloud platform is up and running, you can just run the Python-based
Mosquitto code from the last chapter from the instance with minor or no modifications.
In future, this IoT platform that contains the Mosquitto broker and the Python project
can be extended to accommodate additional features, protocols, and extra security.

Installing the necessary packages on AWS
Using the SSH protocol and the key pair, log into your virtual instance. Once you
are at the Command Prompt, the first task that you need to perform is to update
all the outdated packages in Ubuntu, the operating system of your virtual instance.
Successively execute the following commands:

https://github.com/iobridge/ThingSpeak
https://github.com/iobridge/ThingSpeak

Chapter 9

[297]

$ sudo apt-get update

$ sudo apt-get upgrade

Ubuntu already comes with the latest version of Python. However, you will still
need to install Setuptools to install the additional Python packages:

$ sudo apt-get install python-setuptools

Ubuntu's package repository also hosts Mosquitto and it can be directly installed
using the following command. With this command, we will install the Mosquitto
broker, Mosquitto client, and all other dependencies together. During the
installation, you will be asked to confirm the installation of additional packages.
Enter Yes at the terminal and proceed with the installation:

$ sudo apt-get install mosquitto*

Now you have installed the Mosquitto broker on your virtual instance and you can
run it by executing the Mosquitto command. To develop Python-based Mosquitto
applications, we need the Python Mosquitto library on our instance. Let's install the
library using Setuptools, through the following commands:

$ sudo easy_install pip

$ sudo pip install paho_mqtt

In the previous chapter, we developed a web application based on web.py that
utilizes the paho_mqtt library to support the MQTT protocol. As with the first
project, we are going to deploy the same web application on the EC2-based virtual
instance to demonstrate your custom IoT cloud platform. As a dependency of this
project, you first need the web.py Python library, which you can install using the
following command:

$ sudo pip install web.py

Now you have all the necessary software packages to run the IoT application.
To make your web application accessible via the Internet, you need to configure
the security of you virtual instance.

Configuring the security of the virtual instance
First, we will configure the virtual instance to securely host the Mosquitto broker.
Later, we will go through the methods to set up basic security to prevent the abuse
of your Mosquitto server by automated bots or spamming attempts.

Arduino and the Internet of Things

[298]

To change any parameters on your virtual instance, you will have to use the
Security Groups tools from the Network & Security section of your AWS
Management Console page. Open the Security Groups section, as displayed
in the following screenshot:

Each virtual instance has a default security group that is generated automatically to
allow access to your instance through the SSH port 22. This security configuration is
responsible for letting you access your virtual instance through the SSH client from
your computer. The Mosquitto broker uses the TCP port number 1883 to establish
communication with publishers and subscriber clients. To allow incoming access
from this Mosquitto port, you will have to edit the current inbound rules and add
an entry for port 1883:

Chapter 9

[299]

Once you click on the Edit button, the website will open a pop-up window to add
new rules and edit the existing rules. Click on the Add Rule button to create an
additional rule to accommodate the Mosquitto broker:

As displayed in the following screenshot, enter the TCP port's number as 1883 and
complete the other information in the form. Once you have completed the form with
the given values, save the rules and exit the window:

Now, with this configuration, port 1883 is accessible by other devices and enables
remote communication with the Mosquitto broker. You can use the same method
to add a rule for port 8080 to allow access to Python's web applications that were
developed using web.py. In future, you can add any additional ports to allow access
to various services. Although it is very easy to change the security rules on your
virtual instance, make sure that you refrain from opening excessive ports to avoid
any security risk.

Testing your cloud platform
In this testing section, we will first perform checks for the Mosquitto broker from
your computer and then set up authentication parameters for the Mosquitto broker.
Later, we will upload files and folders containing the Python code to our virtual
instance using the SSH file transfer protocol.

Arduino and the Internet of Things

[300]

Testing the Mosquitto service
The first thing that we are going to check on our IoT platform is the accessibility
of the Mosquitto broker. Open the terminal on your computer and execute the
following command, after replacing <Public-IP> with the public IP or public DNS
address of your virtual instance:

$ mosquitto_pub -h <Public-IP> -t test -m 3

This command will publish the message value 3 for the test topic for the Mosquitto
broker that is specified at the given IP address; in our case, this is the virtual instance.
Now, open a separate terminal window and execute the following command to
subscribe to the test topic on our broker:

$ mosquitto_sub -h <Public-IP> -t test

On the execution of this command, you will be able to see the latest value that
is published for this topic. Use the mosquitto_pub command to post multiple
messages and you can see the output of these messages in the other terminal
window that is running the mosquitto_sub command.

Configuring and testing basic security
As you saw in the previous example, the publishing and subscribing commands
just used the IP address to send and receive data without using any authentication
parameters. This is a major security loophole, as anyone on the Internet can send
data to your Mosquitto broker. To avoid unauthorized access to your broker, you
have to establish authentication credentials. You can specify these parameters by
following these steps in the given order:

1.	 If you have not already logged into your instance through SSH, open a
terminal window and log in using SSH. Once you are logged in, navigate
to the Mosquitto directory and create a new file called passwd using the
following set of commands. We will use this file to store the usernames
and passwords:
$ cd /etc/mosquitto

$ sudo nano passwd

2.	 In the file, enter the username and password information separated by
using the colon operator (:). For testing purposes, we will use the following
credentials, which can be changed any time once you are more familiar
with the Mosquitto configuration:
user:password

Chapter 9

[301]

3.	 Press Ctrl + X to save and exit the file from the nano editor. When you are
prompted to confirm the save operation, select Y and press Enter.

4.	 In the same folder, open the Mosquitto configuration file using the
 nano editor:
$ sudo nano mosquitto.conf

5.	 In the opened file, scroll down the text content until you reach the security
section. In this section, find the #allow_anonymous true line of the code and
replace it with allow_anonymous false. Make sure that you have removed
the # symbol. With this operation, we have disabled the anonymous access
to the Mosquitto broker and only those clients with proper credentials can
access it.

6.	 After performing the previous changes, scroll further down in the file,
uncomment the line #password_file, and replace it with this:
password_file /etc/mosquitto/passwd

7.	 Now that you have configured the basic security parameters for your
broker, you must restart the Mosquitto service for the changes to take effect.
In Ubuntu, Mosquitto is installed as part of the background service and you
can restart it using the following command:
$ sudo service mosquitto restart

8.	 To test these authentication configurations, open another terminal window
in your computer and execute the following command with the public IP
address of your instance. If you are able to successfully publish your message
without any errors, your Mosquitto broker now has a security configuration:
$ mosquitto_pub -u user -P password -h <Public-Ip> -t test -m 3

9.	 Also, check your Mosquitto subscriber using the following command:
$ mosquitto_sub -u user -P password -h <Public-Ip> -t test

Uploading and testing a project on the instance
As we discussed in the previous chapters, you can always use your computer for
development purposes. Once you are ready for deployment, you can utilize this
newly configured virtual instance as the deployment unit. You can copy your
files from your local computer to the virtual instance using a utility called PuTTY
(https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/putty.html) or
using the SCP (SSH copy) command.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/putty.html

Arduino and the Internet of Things

[302]

Now it is time to upload the project files from the final coding exercise of the
previous chapter, which implemented the MQTT protocol using Python and the
Mosquitto library. As a reminder, the final exercise is located in the folder named
Exercise 4 - MQTT gateway of the previous chapter's code repository. We will
be using the SCP utility to upload these files to your virtual instance. Before we
use this utility, let's first create a directory on your virtual instance. Log in to your
virtual instance and go to the user directory of the virtual instance by using the
following command:

$ ssh –i <key-name>.pem ubuntu@<public-ip>

$ cd ~

Using the character tilde (~) with the cd command will change the current directory
to the home directory, unless you are planning to use any other location on your
virtual instance. At this location, create a new empty directory named project by
using following command:

$ mkdir project

Now, on the computer you are working on (Mac OS X or Linux), open another
terminal window and use the following command to copy the entire directory
to the remote instance:

$ scp -v -i test.pem -r <project-folder-path> ubuntu@<your-ec2-static-
ip>:~/project

Once you have successfully copied the files to this location, you can go back to the
terminal that is logged in to your virtual instance and change the directory to project:

$ cd project

Before running any commands, make sure that you have changed the appropriate IP
addresses in the Arduino sketch and the Python programs. You will have to replace
the previous IP address with the one of your virtual instance. Now that you have
made these changes, you can execute the Python code containing the Mosquitto
Gateway and web application to start the program. Open your web browser from
the http://<Public-Ip>:8080 location to see you web application running on the
custom IoT platform. From now on, you should be able to access this application
from any remote location through the Internet.

Do not forget to change the IP address of the Mosquitto broker in the
Arduino sketch and upload the sketch to the Arduino board again.
You may not be able to obtain the sensor data if the appropriate IP
address changes are not applied.

Chapter 9

[303]

Summary
At the end of this chapter, and hence the end of the contextual part of the book, you
should be able to develop your own Internet of Things projects. In this chapter, we
used a commercial IoT cloud platform to handle your sensor data. We also deployed
a cloud instance to host open source IoT tools and created our own version of
the customized IoT cloud platform. Certainly, the content that you learned is not
sufficient to develop scalable and fully-stacked commercial products, but it is really
helpful to get you started with them. In a large number of cases, this material is
sufficient to develop DIY projects and product prototypes that will ultimately lead
you to the final product. In the next two chapters, we will put the material that we
learned to the test and develop two complete IoT hardware projects. We are also
going to learn a project development methodology that is specific to hardware-based
IoT products, which can be applied to convert your prototypes into real products.

The Final Project – a Remote
Home Monitoring System

It is now time to combine every topic that we learned in the previous chapters into
a project that combines Arduino programming, Python GUI development, MQTT
messaging protocol, and a Python-based cloud application. As you might have
already figured out from the chapter title, we are going to develop a remote home
monitoring system using these components.

The first section of the chapter covers the project design process, including goals,
requirements, architecture, and UX. Once we are done with the design process, we will
jump into the actual development of the project, which is divided into three separate
stages. Next, we will cover common troubleshooting topics that are usually faced
while working with large projects. In our efforts to develop utilizable DIY projects,
the later section covers tips and features to extend the project. As this is quite a large
project compared to other projects in the book, we are not going to jump straight into
the actual development process without having any strategy. Let's start by getting
ourselves familiar with the standard design methodology for hardware projects.

The Final Project – a Remote Home Monitoring System

[306]

The design methodology for IoT projects
The process of developing a complex product that tightly couples hardware devices
with high-level software services requires an additional level of planning. For this
project, we will exercise a proper product development approach to help you get
familiar with the process of creating real-world hardware projects. This method
can then be used to plan your own projects and take them to the next level. The
following diagram describes a typical prototype development process, which always
begins by defining the major goals that you want to achieve with your product:

Once you have defined the set of major goals, you need to break them down into
project requirements that include every detail of the tasks that your prototype should
execute to achieve these goals. Using the project requirements, you need to sketch out
the overall architecture of the system. The next step includes the process of defining
the UX flow that will help you to lay out the user interaction points for your system.
At this stage, you will be able to identify any changes that are required in the system
architecture and the hardware and software components to start the development.

Chapter 10

[307]

As you have defined the interaction points, now you need to distribute the entire
project development process into multiple stages and delegate the tasks between
these stages. Once you have completed the development of these stages, you will
have to interface these stages with each other according to your architecture and
debug the components if it is needed. At the end, you will have to test your project
as a whole system and troubleshoot minor problems. In hardware projects, it is
very difficult to work on your electric circuits again after the completion of complex
development processes, as the changes can have recurring effects on all other
components. This process will help you to minimize any hardware rework and
subsequent software modifications.

Now that you have learned about the methodology, let's begin with the actual
development process for our remote home monitoring system.

Project overview
The smart home is one of the most well-defined and popular subdomains of the IoT.
The most important feature of any smart home is its capability to monitor the physical
environment. Fortunately, the exercises and projects that we covered in the previous
chapters include components and features that can be used for the same purpose. In
this chapter, we are going to define a project that will utilize these existing components
and programming exercises. In the midterm project of Chapter 7, The Midterm Project – a
Portable DIY Thermostat, we created a deployable thermostat with the ability to measure
temperature, humidity, and ambient light. If we want to utilize this midterm project,
the nearest IoT project that we can build on top of it is the remote home monitoring
system. The project will have Arduino as the main point of interaction between
the physical environment and the software-based services. We will have a Python
program as the middle layer, which will bridge the sensor information coming from
Arduino with the user-facing graphical interface. Let's start by defining the goals that
we want to achieve and the project requirements to satisfy these goals.

The project goals
The Nest thermostat provides an idea of the type of features that a properly designed
remote monitoring system with professional features should have. Achieving this
level of system capabilities requires a lot of development effort from a large team.
Although it will be difficult to include each of the features that are supported by
a commercial system in our project, we will still try to implement the common
features that can be incorporated by a prototype project.

The Final Project – a Remote Home Monitoring System

[308]

The top-level features that we are planning to incorporate in this project can be
described by the following goals.

•	 Observe the physical environment and make it accessible remotely
•	 Provide basic level controls to the user to interact with the system
•	 Demonstrate a primitive level of built-in situational awareness

The project requirements
Now that we have defined the major goals, let's convert them into detailed system
requirements. On the completion of the project, the system should be able to satisfy
the following requirements:

•	 It must be able to observe physical phenomenon such as temperature,
humidity, motion, and ambient light.

•	 It should provide local access to sensor information and control over
actuators such as a buzzer, a button switch, and an LED.

•	 The monitoring should be done by a unit that is developed using the open
source hardware platform, Arduino.

•	 The monitoring unit should be limited to collect sensor information and
communicate it to the control unit.

•	 The control unit should not comprise of a desktop computer or laptop.
Instead, it should be made deployable using a platform such as a Raspberry
Pi.

•	 The control unit should demonstrate a primitive level of situation awareness
capability by utilizing the collected sensor information.

•	 The control unit should have a graphical interface to provide the sensor's
observation and the current state of the system.

•	 The system must be accessible via the Internet using cloud-based services.
•	 The web application that provides remote access should have the capability

to display the sensor's observations through a web browser.
•	 The system should also provide basic control of the actuators to complete

the remote access experience by using the web application.
•	 As the monitoring unit can be constrained by computation resources,

the system should use hardware-oriented messaging protocols to
transfer information.

Chapter 10

[309]

Although there are many other minor requirements that can be part of our project,
they have been skipped in this book. If you have any additional plans for your
remote home monitoring system, this is the time that you must define these
requirements before you jump into designing the architecture. Any future changes to
the requirements can significantly affect the development stage and make hardware
and software modification difficult. In the last section of the chapter, we have laid
down a number of additional features that you may want to consider implementing
for your future projects.

Designing system architecture
Continuing from project goals, first, you need to sketch out a high-level architecture
of the system. This architectural sketch should include major components that enable
the system to pass on information between the sensors and the remote users. The
following figure shows an architectural sketch for our project:

According to the goals, the user should be able to access the system using the Internet;
this means that we need cloud components in the architecture. The system also needs
to monitor the physical environment using a resource-constrained device, and this can
be executed using Arduino. The middle layer, which connects the cloud service and
the sensor system, can be built using a Raspberry Pi. In the last project, we connected
Arduino and the Raspberry Pi using a serial connection, but we want to move away
from serial connections and start using our home's Ethernet network to make the
system deployable. Hence, the Arduino-based unit is connected to the network using
Ethernet while the Raspberry Pi uses Wi-Fi to connect to the same network.

The Final Project – a Remote Home Monitoring System

[310]

In order to lay out the overall system architecture, let's utilize the sketch that we
designed, which can be seen in the preceding figure. As you can see in the next
figure, we have converted the overall system into three main architectural units:

•	 Monitoring station
•	 Control center
•	 Cloud service

In this figure, we have addressed each and every major component that we are going
to utilize in the project along with their association to each other. In the following
sections, we are going to define these three main units briefly. The comprehensive
description and implementation steps for these units are provided later in the
chapter under separate sections.

Chapter 10

[311]

The monitoring station
We need a resource-constrained and robust unit that will communicate with the
physical environment periodically. This monitoring unit can be built using Arduino
since low-level microcontroller programming can provide uninterrupted stream of
sensor data. The usage of Arduino at this stage will also help us to avoid the direct
interfacing of basic low-level sensors with computers that are running on complex
operating systems. The sensors and the actuators are connected to Arduino using
digital, analog, PWM, and I2C interfaces.

The control center
The control center behaves as the main user interaction point between the sensor
information and the user. It is also responsible for conveying the sensor information
from the monitoring station to the cloud services. The control center can be developed
using your regular computer or a single-board computer such as a Raspberry Pi. We
are going to utilize a Raspberry Pi since it can be easily deployed as a hardware unit
and it is also capable enough at hosting Python programs. We will replace a computer
screen with a small TFT LCD screen for the Raspberry Pi to display the GUI.

The cloud services
The main purpose of the cloud services is to provide an Internet-based interface
for the control center so that the user can access it remotely. Before we host a web
application to perform this operation, we will need an intermediate data relay. This
sensor data relay works as a host between the cloud-based web application and the
control center. In this project, we will be using Xively as the platform to collect this
sensor data. The web application can be hosted on an Internet server; in our case,
we are going to use Amazon AWS due to our familiarity with it.

Defining UX flow
Now, although we know what the architecture of the overall system looks like, we
haven't defined how the user is going to interact with it. This process of designing
user interaction for our system will also help us to figure out data flow between
major components.

The Final Project – a Remote Home Monitoring System

[312]

Let's begin with the components that are operating locally at your house, that is, the
monitoring station and the control center. As you can see from the following figure,
we have our first user interaction point at the control center. The user can observe
the information or act upon it if the system's status is an alert. The user action to
dismiss the alert prompts multiple operations to take place at the control center and
the monitoring station. We recommend you thoroughly examine the figure to better
understand the flow of the system.

Similarly, the second user interaction point is located at the web application. The
web application displays the observations and system's status that we calculated at
the control center and provides an interface to dismiss the alert. In this scenario, the
dismiss action will travel through Xively to the control center where the appropriate
actions for the control center will remain the same as in the previous scenario.
However, in the web application, the user has to load the web browser every time
to request the data, which was happening automatically at the control center. Take
a look at the following figure to understand the UX flow for the web application:

Chapter 10

[313]

The list of required components
The necessary components for the project are derived using three main criteria:

•	 Ease of availability
•	 Compatibility with the Arduino board
•	 Familiarity with the components due to previous utilization in this book

This is the list of the components that you will need to start working on the project. If
you have completed the previous exercises and projects, you should already have most
of the components. If you don't want to disassemble the projects, you can obtain them
from the websites of SparkFun, Adafruit, or Amazon, whose links are provide in the
next table.

The Final Project – a Remote Home Monitoring System

[314]

The hardware components for the monitoring station are as follows:

Component (first
stage)

Quantity Link

Arduino Uno 1 https://www.sparkfun.com/products/11021

Arduino Ethernet
Shield

1 https://www.sparkfun.com/products/9026

Breadboard 1 https://www.sparkfun.com/products/9567

TMP102 temperature
sensor

1 https://www.sparkfun.com/products/11931

HIH-4030 humidity
sensor

1 https://www.sparkfun.com/products/9569

Mini photocell 1 https://www.sparkfun.com/products/9088

PIR motion sensor 1 https://www.sparkfun.com/products/8630

Super-flux RGB LED,
common anode

1 http://www.adafruit.com/product/314

Buzzer 1 http://www.adafruit.com/products/160

Push button switch 1 https://www.sparkfun.com/products/97

USB cable for Arduino
(for development
stage)

1 https://www.sparkfun.com/products/512

Arduino power supply
(for deployment stage)

1 http://www.amazon.com/Arduino-9V-1A-
Power-Adapter/dp/B00CP1QLSC/

Resistors As
required

220 ohm, 1 kilo-ohm, and 10 kilo-ohm

Connection wires As
required

The hardware components for the control center are as follows:

Component (first
stage)

Quantity Link

Raspberry Pi 1 https://www.sparkfun.com/products/11546

TFT LCD screen 1 http://www.amazon.com/gp/product/
B00GASHVDU/

SD card (8 GB) 1 https://www.sparkfun.com/products/12998

Wi-Fi dongle 1 http://www.amazon.com/Edimax-EW-7811Un-
150Mbps-Raspberry-Supports/dp/B003MTTJOY

https://www.sparkfun.com/products/11021
https://www.sparkfun.com/products/9026
https://www.sparkfun.com/products/9567
https://www.sparkfun.com/products/11931
https://www.sparkfun.com/products/9569
https://www.sparkfun.com/products/9088
https://www.sparkfun.com/products/8630
http://www.adafruit.com/product/314
http://www.adafruit.com/products/160
https://www.sparkfun.com/products/97
https://www.sparkfun.com/products/512
http://www.amazon.com/Arduino-9V-1A-Power-Adapter/dp/B00CP1QLSC/
http://www.amazon.com/Arduino-9V-1A-Power-Adapter/dp/B00CP1QLSC/
https://www.sparkfun.com/products/11546
http://www.amazon.com/gp/product/B00GASHVDU/
http://www.amazon.com/gp/product/B00GASHVDU/
https://www.sparkfun.com/products/12998
http://www.amazon.com/Edimax-EW-7811Un-150Mbps-Raspberry-Supports/dp/B003MTTJOY
http://www.amazon.com/Edimax-EW-7811Un-150Mbps-Raspberry-Supports/dp/B003MTTJOY

Chapter 10

[315]

Component (first
stage)

Quantity Link

Raspberry Pi power
supply

1 http://www.amazon.com/CanaKit-Raspberry-
Supply-Adapter-Charger/dp/B00GF9T3I0

Keyboard, mouse,
USB hub, and
monitor

As
required

Requried for development and debugging stages

Defining the project development stages
As per the system architecture, we have three main units that collaboratively
create the remote home monitoring project. The overall hardware and software
development process is also aligned with these three units and can be distributed
as follows:

•	 Monitoring station development stage
•	 Control center development stage
•	 Web application development stage

The software development for the monitoring station stage includes developing the
Arduino code to monitor sensors and perform actuator actions on one side, while
publishing this information to the control center on the other side. The middle layer
of the development stage, that is, the Raspberry Pi-based control center, hosts the
Mosquitto broker. This stage also contains the Python program that contains the
GUI, situation awareness logic, and subroutines to communicate with the Xively
cloud service. The last stage, the cloud services, includes two distinct components,
sensor data relay and a web application. We will be using the Xively platform as
our sensor data relay and the web application will be developed in Python on the
Amazon AWS cloud instance. Now, let's jump into the actual development process
and our first stop will be the Arduino-based monitoring station.

Stage 1 – a monitoring station
using Arduino
As we discussed, the main tasks of the monitoring systems are to interface sensor
components and communicate the information generated by these sensors to the
observers. You will be using Arduino Uno as the central microcontroller component
to integrate these sensors and actuators. We also need a means of communication
between the Arduino Uno and the control center and we will be utilizing the Arduino
Ethernet Shield for this purpose. Let's discuss the hardware architecture of the
monitoring station and its components.

http://www.amazon.com/CanaKit-Raspberry-Supply-Adapter-Charger/dp/B00GF9T3I0
http://www.amazon.com/CanaKit-Raspberry-Supply-Adapter-Charger/dp/B00GF9T3I0

The Final Project – a Remote Home Monitoring System

[316]

Designing the monitoring station
We already designed units based on Arduino and the Ethernet Shield in various
exercises in Chapter 8, Introduction to Arduino Networking, and Chapter 9, Arduino
and the Internet of Things. Therefore, we have assumed that you are familiar with
interfacing the Ethernet Shield with the Arduino board. We will connect various
sensors and actuators with the Arduino board, as displayed in the following
diagram. As you can see in this diagram, the sensors will provide the data to the
Arduino board while the actuators will seek the data from the Arduino board.
Although we are automatically collecting environment data for these sensors,
the data from the button will be collected from manual user inputs.

Check out the following Fritzing diagram for the detailed connections in the
monitoring station. As you can see in our hardware design, the temperature sensor
TMP102 is connected through the I2C interface, which means that we will need the
SDA and SCL lines. We will be using analog pins 5 and 6 of the Arduino board to
interface SDA and SCL respectively. The humidity (HIH-4030) and ambient light
sensors also provide analog output and are connected to the analog pins of the
Arduino board. Meanwhile, the buzzer, the button switch, and the PIR motion sensor
are connected through the digital I/O pins. The super-flux RGB LED is a common
anode LED; this means that it is always powered using the common anode pins and
the R, G, and B pins are controlled by using the PWM pins.

Chapter 10

[317]

Make sure that you properly connect all the components to the pins that are specified
in the following diagram:

You can learn more about the interfacing of RGB LED with
Arduino from the tutorial at https://learn.adafruit.
com/all-about-leds.

If you are using an Arduino board other than Arduino Uno, you will have to adjust
the appropriate pin numbers in the Arduino code. In addition, make sure that this
Arduino board is compatible with the Ethernet Shield.

https://learn.adafruit.com/all-about-leds
https://learn.adafruit.com/all-about-leds

The Final Project – a Remote Home Monitoring System

[318]

In terms of circuit connections, you can use a breadboard as shown in the
previous diagram, or if you are comfortable, you can use a PCB prototype board
and solder the components. In our setup, we first tested the components on the
breadboard and once they were tested, we soldered the components, as shown in
the following figure. If you venture to solder the PCB board, make sure that you
have the necessary components for the job. The PCB prototype will yield a robust
performance compared to the breadboard, but it will also make it difficult for you
to debug and change the components afterwards.

If you are ready with your circuit connection, connect your Arduino to your
computer using the USB cable. Also, connect the Ethernet Shield to your home
router using an Ethernet cable.

Chapter 10

[319]

The Arduino sketch for the monitoring station
Before jumping into the coding stage, make sure that you have collected the prebuilt
Arduino code for the project. You can find it in the code folder of this chapter
with the filename Arduino_monitoring_station.ino. The code implements the
necessary logic to support the overall UX flow at the monitoring station, which we
discussed in the previous section. In the following sections, we will go through the
major areas of the program so that you can better understand these code snippets.
Now, open this sketch in the Arduino IDE. You are already familiar with setting up
the IP address for Arduino. You also learned how to use the Arduino MQTT library
PubSubClient in the previous chapter, which means that your Arduino IDE should
already have the PubSubClient library installed on it. At the beginning of the code,
we have also declared few constants, such as the IP addresses of the MQTT server
and Arduino and the pin numbers of various sensor and actuators.

You will have to change the IP address of the monitoring station
and the control center according to your network setup. Make
sure that you perform these modifications before uploading the
Arduino code.

In the code structure, we have two mandatory Arduino functions, setup() and
loop(). In the setup() function, we will set up the Arduino pin types and the MQTT
subscriber channels. In the same function, we will also attach an interrupt for the press
of the button while setting up the timer for the publishData() function.

Publishing sensor information
The publishData() function reads the sensor inputs and publishes this data
to the Mosquitto broker that is located on the control center. As you can see in
the following code snippet, we are measuring sensors values one by one and
publishing them to the broker using the client.publish() method:

void publishData (){
 Wire.requestFrom(partAddress,2);
 byte MSB = Wire.read();
 byte LSB = Wire.read();

 int TemperatureData = ((MSB << 8) | LSB) >> 4;

 float celsius = TemperatureData*0.0625;
 temperatureC = dtostrf(celsius, 5, 2, message_buff2);
 client.publish("MonitoringStation/temperature", temperatureC);

The Final Project – a Remote Home Monitoring System

[320]

 float humidity = getHumidity(celsius);
 humidityC = dtostrf(humidity, 5, 2, message_buff2);
 client.publish("MonitoringStation/humidity", humidityC);

 int motion = digitalRead(MotionPin);
 motionC = dtostrf(motion, 5, 2, message_buff2);
 client.publish("MonitoringStation/motion", motionC);

 int light = analogRead(LightPin);
 lightC = dtostrf(light, 5, 2, message_buff2);
 client.publish("MonitoringStation/light", lightC);
}

If you check out the setup() function, you will notice that we have used a library
called SimpleTimer to set up a timer method for this function. This method executes the
publishData() function periodically without interrupting and blocking the actual flow
of the Arduino execution cycle. In the following code snippet, the number 300000
represents the time delay in milliseconds, that is, 5 minutes:

timer.setInterval(300000, publishData);

You will need to download and import the SimpleTimer library to
compile and run the code successfully. You can download the library
from https://github.com/infomaniac50/SimpleTimer.

Subscribing to actuator actions
You can see in the setup() function that we are initializing the code by subscribing
to the MonitoringStation/led and MonitoringStation/buzzer channels. The
client.subscribe() method will make sure that whenever the Mosquitto broker gets
any updates for these channels, the Arduino-based monitoring system gets notified:

if (client.connect("MonitoringStation")) {
 client.subscribe("MonitoringStation/led");
 client.subscribe("MonitoringStation/buzzer");
 }

https://github.com/infomaniac50/SimpleTimer

Chapter 10

[321]

Programming an interrupt to handle the press of
a button
We have taken care of the publishing and subscribing functions of the monitoring
station. Now, we will need to integrate the button switch that is controlled by inputs
from the user. In the Arduino programming routines, we run a periodic loop to check
the status of the pins. However, this may not be useful if the button is pressed since
it requires immediate action. This action of pressing the button is handled using the
Arduino interrupts, as shown in the following line of code:

attachInterrupt(0, buttonPress, RISING);

The preceding line of code associates an interrupt at pin 0 (digital pin 2) with the
buttonPress() function. This function sets off the buzzers whenever the state of
the interrupt is changed. In other words, when the button is pressed by the user,
the buzzer will be instantaneously turned off irrespective of the current status of
the buzzer:

void buttonPress(){
 digitalWrite(BUZZER, LOW);
 Serial.println("Set buzzer off");
}

Testing
The current Arduino code communicates with the control center for publishing and
subscribing the data, but we haven't yet set up the Mosquitto broker to handle these
requests. You can still go ahead and upload the Arduino sketch to your monitoring
station using the USB cable. This will not result in any fruitful actions from the
monitoring station and you will only be able to use the Serial.prinln() command to
print various sensor measurements. Therefore, we will develop the control center next
so that we can start addressing communication requests from the monitoring station.

The Final Project – a Remote Home Monitoring System

[322]

Stage 2 – a control center using Python
and the Raspberry Pi
In order to deliver the status of the system and other sensor observations to the
user, the control center needs to perform various operations that include obtaining
raw sensor data from the monitoring station, calculating the status of the system,
reporting this data to the cloud services, and displaying observation using GUI.
While the control center includes two major hardware components (the Raspberry
Pi and TFT LCD screen), it is also comprised of two major software components
(the Mosquitto broker and Python code) to handle the control center logic.

We are using a Raspberry Pi instead of a regular computer as we
want the control center to be a deployable and portable unit that
can be mounted on a wall.
You can still use your own computer to edit and test the Python
code for development purposes instead of using a Raspberry Pi
directly. However, we recommend that you switch back to the
Raspberry Pi once you are ready for deployment.

The control center architecture
The Raspberry Pi is the main computation unit of the control center and works as
the brain of the entire system. Since the Raspberry Pi is used as a replacement for
a regular computer, the architecture of the control center can interchangeably use
a computer in place of the Raspberry Pi. As you can see in the following diagram,
the control center is connected to the home network using Wi-Fi and this will make
it accessible to the monitoring station. The control center includes the Mosquitto
broker; this is used as the communication point between the monitoring station and
the Python program for the control center. The Python program utilizes the Tkinter
library for GUI and the paho_mqtt library to communicate with the Mosquitto
broker. By utilizing these two libraries, we can convey sensor information from
the monitoring station to the user. However, we will need a separate arrangement
to establish communication between the control center and cloud services. In our
overall system architecture, the control center is designed to communicate with the
intermediate data relay, Xively. The Python code uses the xively-python library to
enable this communication.

Chapter 10

[323]

In Chapter 8, Introduction to Arduino Networking, we already provided you with
methods to install the Mosquitto broker, the Python-mosquitto library, and the
xively-python library. We also learned the process of setting up the TFT LCD
screen with the Raspberry Pi in Chapter 7, The Midterm Project – a Portable DIY
Thermostat. Please refer to those tutorials in case you haven't completed those
exercises yet. Assuming that you have configured the Mosquitto broker and the
required Python libraries, you can move on to the next section, which includes
the actual Python programming.

The Python code for the control center
Before you start interfacing these libraries in the Python code, start your Mosquitto
broker first from the command line using this simple command:

$ mosquitto

Make sure that you restart your monitoring station every time you start or restart the
Mosquitto broker. This action will make sure that your monitoring station is connected
to the Mosquitto broker, since the process of establishing the connection only gets
executed once in our Arduino code, that is, at the beginning of the setup process.

The Final Project – a Remote Home Monitoring System

[324]

The Python code for the current project is located in the code folder of this chapter
with the name controlCenter.py. Open this file using your Python IDE and modify
the values of the appropriate parameters before executing it. These parameters
include the IP address of the Mosquitto broker along with the feed ID and the API
key of the Xively virtual device. You should already have the feed ID and the API
key of your Xively virtual device from the previous chapter:

cli.connect("10.0.0.18", 1883, 15)
FEED_ID = "<feed-id>"
API_KEY = "<api-key"

If you are using a local instance of the Mosquitto broker, you can replace the
IP address with 127.0.0.1. Otherwise, replace the 10.0.0.18 address with the
appropriate IP address of the computer that is hosting the Mosquitto broker.
Let's try to understand the code now.

Sometimes on Mac OS X, you won't be able to run Tkinter window and
Python threads in parallel due to an unknown bug. You should be able to
execute the program successfully in Windows and Linux environments.
This program has been tested with the Raspberry Pi, which means you
won't encounter the same bug while deploying the control center.

Creating the GUI using Tkinter
In the previous exercises, we always used a single Python thread to run the program.
This practice will not help us to perform multiple tasks in parallel such as obtaining
sensor observation from the monitoring station and simultaneously updating the
GUI with that information. As a solution, we have introduced multithreading in
this exercise. As we need two separate loops, one each for Tkinter and paho-mqtt,
we will be running them independently in separate threads. The main thread will
run methods that are related to Mosquitto and the cloud services, while the second
thread will handle the Tkinter GUI. In the following code snippet, you can see
that we have initialized the controlCenterWindow() class with the threading.
thread parameter. Therefore, when we execute window = controlCenterWindow()
in the main program, it will create another thread for this class. Basically, this class
creates the GUI window while populating labels and other GUI components. The
labels need to be updated when new sensor observations arrive, are declared as class
variables, and are accessible from the class instant. As you can see in the following
code snippet, we have declared the labels for temperature, humidity, light, and
motion as class variables:

class controlCenterWindow(threading.Thread):
 def __init__(self):

Chapter 10

[325]

 # Tkinter canvas
 threading.Thread.__init__(self)
 self.start()
 def callback(self):
 self.top.quit()
 def run(self):
 self.top = Tkinter.Tk()
 self.top.protocol("WM_DELETE_WINDOW", self.callback)
 self.top.title("Control Center")
 self.statusValue = Tkinter.StringVar()
 self.statusValue.set("Normal")
 self.tempValue = Tkinter.StringVar()
 self.tempValue.set('-')
 self.humdValue = Tkinter.StringVar()
 self.humdValue.set('-')
 self.lightValue = Tkinter.StringVar()
 self.lightValue.set('-')
 self.motionValue = Tkinter.StringVar()
 self.motionValue.set('No')

 # Begin code subsection
 # Declares Tkinter components
 # Included in the code sample of the chapter
 # End code subsection

 self.top.mainloop()

The previous code snippet doesn't contain the portion where we declared the Tkinter
components, as it is similar to what we coded in the midterm project. If you have
questions regarding Tkinter-related issues, please refer to Chapter 6, Storing and
Plotting Arduino Data, and Chapter 7, The Midterm Project – a Portable DIY Thermostat.

Communicating with the Mosquitto broker
At the control center level, we subscribe to topics that are published from the
monitoring station, that is, MonitoringStation/temperature, MonitoringStation/
humidity, and so on. If you have performed any modification to the Arduino code
to change the MQTT topics, you need to reflect those changes in this section. If the
topics published by the monitoring station do not match the topics in the control
center's code, you will not get any updates. As you can see in the Python code, we are
associating the on_message and on_publish methods with very important function.
Whenever a message arrives from the subscriber, the client will call the functions
associated with the on_message method. However, every time a message gets
published from the Python code, the onPublish() function will get called:

cli = mq.Client('ControlCenter')
cli.on_message = onMessage

The Final Project – a Remote Home Monitoring System

[326]

cli.on_publish = onPublish

cli.connect("10.0.0.18", 1883, 15)

cli.subscribe("MonitoringStation/temperature", 0)
cli.subscribe("MonitoringStation/humidity", 0)
cli.subscribe("MonitoringStation/motion", 0)
cli.subscribe("MonitoringStation/light", 0)
cli.subscribe("MonitoringStation/buzzer", 0)
cli.subscribe("MonitoringStation/led", 0)

Calculating the system's status and situation
awareness
The control center is assigned with the task of calculating the status of the overall
system. The control center calculates the status of the system as Alert, Caution, or Normal
using the current values of temperature and humidity. To calculate the status, the
control center executes the calculateStatus() function every time it gets an update for
the temperature or humidity from the monitoring station. According to the current
situation awareness logic, if the temperature is measured above 45 degree Celsius or
below 5 degree Celsius, we call the system's status as Alert. Similarly, you can identify
the range of temperature and humidity values for Caution and Normal statuses from the
following code snippet:

def calculateStatus():
 if (tempG > 45):
 if (humdG > 80):
 status = "High Temperature, High Humidity"
 elif (humdG < 20):
 status = "High Temperature, Low Humidity"
 else:
 status = "High Temperature"
 setAlert(status)

 elif (tempG < 5):
 if (humdG > 80):
 status = "Low Temperature, High Humidity"
 elif (humdG < 20):
 status = "Low Temperature, Low Humidity"
 else:
 status = "Low Temperature"
 setAlert(status)
 else:

Chapter 10

[327]

 if (humdG > 80):
 status = "High Humidity"
 setCaution(status)
 elif (humdG < 20):
 status = "Low Humidity"
 setCaution(status)
 else:
 status = "Normal"
 setNormal(status)

Communicating with Xively
The control center is also required to communicate with Xively when it receives
a message from the subscribed topics. We are already familiar with the process of
setting up virtual devices and data streams on Xively. Open your Xively account
and create a virtual device called ControlCenter. Note down the feed ID and API
key for this device and replace them in the current code. Once you have these values,
create the Temperature, Humidity, Light, Motion, Buzzer, and Status channels in
this virtual device.

Looking at the Python code, you can see that we have declared the individual data
stream for each topic and associated them with the appropriate Xively channel. The
following code snippet shows the data stream for just the temperature observation,
but the code also contains a similar configuration for all the other sensor observations:

try:
 datastreamTemp = feed.datastreams.get("Temperature")
except HTTPError as e:
 print "HTTPError({0}): {1}".format(e.errno, e.strerror)
 datastreamTemp = feed.datastreams.create("Temperature", tags="C")
 print "Creating new channel 'Temperature'"

Once the control center receives a message from the monitoring station, it updates
the data stream with the latest values and pushes these changes to Xively. At the
same time, we will also update the appropriate label in the Tkinter GUI using the
onMessage() function. We will use the same code snippet for all the subscribed
channels:

if msg.topic == "MonitoringStation/temperature":
 tempG = float(msg.payload)
 window.tempValue.set(tempG)
 datastreamTemp.current_value = tempG
 try:
 datastreamTemp.update()

The Final Project – a Remote Home Monitoring System

[328]

 except HTTPError as e:
 print "HTTPError({0}): {1}".format(e.errno, e.strerror)

The control center also implements the function to set the system's status across
the system, once it is calculated using the calculateStatus() function. There are three
different functions to perform this task using a method that is similar to what we
described in the previous code snippet. These functions include setAlert(), setCaution(),
and setNormal() and these are associated with Alert, Caution, and Normal respectively.
While updating the system's status, these functions also perform buzzer and LED
actions by publishing the LED and buzzer values to the Mosquitto broker:

def setAlert(status):
 window.statusValue.set(status)
 datastreamStatus.current_value = "Alert"
 try:
 datastreamStatus.update()
 except HTTPError as e:
 print "HTTPError({0}): {1}".format(e.errno, e.strerror)
 cli.publish("MonitoringStation/led", 'red')
 cli.publish("MonitoringStation/buzzer", 'ON')

Checking and updating the buzzer's status
In the control center, we set the buzzer's status to ON if the system's status is
determined as Alert. If you look back at the UX flow, you will notice that
we also want to include a feature for the user to manually turn off the buzzer.
The checkBuzzerFromXively() function keeps track of the buzzer's status from
Xively and if the user manually turns off the buzzer using the web application,
this function sets off the buzzer.

To continue this process independently from the GUI and situation awareness
threads, we will need to create another thread for this function. The timer on this
thread will automatically execute the function every 30 seconds:

def checkBuzzerFromXively():
 try:
 datastreamBuzzer = feed.datastreams.get("Buzzer")
 buzzerValue = datastreamBuzzer.current_value
 buzzerValue = str(buzzerValue)
 cli.publish("MonitoringStation/buzzer", buzzerValue)
 except HTTPError as e:
 print "HTTPError({0}): {1}".format(e.errno, e.strerror)
 print "Requested channel doesn't exist"
 threading.Timer(30, checkBuzzerFromXively).start()

Chapter 10

[329]

With this function running in a separate thread every 30 seconds, the control center
will check the status of the Xively channel and stop the buzzer if the status is set to
OFF. We will explain how the user can update the Xively channel for the buzzer in
the next section.

Testing the control center with the monitoring
station
Assuming your Mosquitto broker is running, execute the controlCenter.py
code with the changed parameters. Then, start the monitoring station. After a few
moments, you will see on the terminal that the control center has already started
getting messages from the publishers that are initialized on the monitoring station.
The update interval for the messages from the publisher at the control center
depends upon the configured publishing interval at the monitoring station.

The Arduino code executes the process of connecting to the
Mosquitto broker only once after powering on. If you start your
Mosquitto broker after that, it won't be able to communicate with
the broker. So, you need to make sure that you start the Mosquitto
broker before powering on the monitoring station.
If you need to restart the Mosquitto broker for any reason, remove
and restart the monitoring station first.

The Final Project – a Remote Home Monitoring System

[330]

On execution of the program, you will be able to see a small GUI window, as
shown in the following screenshot. This window displays the sensor's values for
temperature, humidity, ambient light, and motion. Along with these values, the GUI
also displays the status of the system, which is Normal in this screenshot. You can
also observe that every time the control center gets updates from the monitoring
station, the system's status and sensor observations change in real time:

If this setup is working correctly on your computer, let's move on to deploy the
control center on the Raspberry Pi.

Setting up the control center on the
Raspberry Pi
The process of installing the Raspbian operating system is explained in Chapter 7,
The Midterm Project – a Portable DIY Thermostat. You can use the same module that you
used in the Midterm project or set up a new one. Once you have installed Raspbian
and configured the TFT screen, connect the Wi-Fi dongle through a USB port. At this
stage, we assume that your Raspberry Pi is connected with a monitor, a keyboard,
and a mouse to perform the basic changes. Although we won't recommend it, you can
also use the TFT screen for the following operations, if you are comfortable with it:

1.	 Start your Raspberry Pi and log in. At the command prompt, execute the
following command to enter the visual desktop mode:
$ startx

2.	 Once your graphical desktop starts, you will be able to see the icon of
the WiFi config utility. Double-click on this icon and open the WiFi config
utility. Scan for wireless networks and connect to the Wi-Fi network that has
the monitoring station. When asked, enter the password of your network in
the form window called PSK, and connect to your network.

Chapter 10

[331]

3.	 Now, your Raspberry Pi is connected to the local home network and to the
Internet through it. It's time to update the existing packages and install the
required ones. To update the Raspberry Pi's existing system, execute the
following commands in the terminal:
$ sudo apt-get update
$ sudo apt-get upgrade

4.	 Once your system is updated with the latest version, it's time to install the
Mosquitto broker on your Raspberry Pi. The Raspbian OS has Mosquitto in
the default repository, but it doesn't have the current version that we need.
To install the latest version of Mosquitto, execute following commands in
the terminal:
$ curl -O http://repo.mosquitto.org/debian/mosquitto-repo.gpg.key
$ sudo apt-key add mosquitto-repo.gpg.key
$ rm mosquitto-repo.gpg.key
$ cd /etc/apt/sources.list.d/
$ sudo curl -O http://repo.mosquitto.org/debian/mosquitto-repo.
list
$ sudo apt-get update
$ sudo apt-get install mosquitto, mosquitto-clients

5.	 To install other Python dependencies, let's first install the Setuptools package
using apt-get:
$ sudo apt-get install python-setuptools

6.	 Using Setuptools, we can now install all the required Python libraries such as
paho_mqtt, xively-python, and web.py:
$ sudo easy_install pip
$ sudo pip install xively-python web.py paho_mqtt

Now that we have installed all the necessary software tools that are required to run
our control center on the Raspberry Pi, it is time to configure the Raspberry Pi so that
it can provide uninterrupted operation for a critical system such as a remote home
monitoring system:

1.	 In the current configuration of the Raspberry Pi, the screen of the Raspberry Pi
will go to sleep after some time and the Wi-Fi connection will be terminated
when this happens. To avoid this problem and force the screen to remain
active, you will need to perform the following changes. Open the lightdm.
conf file using the following command:
$ sudo nano /etc/lightdm/lightdm.conf

The Final Project – a Remote Home Monitoring System

[332]

2.	 In the file, navigate to the SetDefaults section and edit the following line:
xserver-command-X –s 0 dpms

3.	 Now that your Raspberry Pi is set up, it is time to copy the program file from
your computer to the Raspberry Pi. You can use SCP, PuTTY, or just a USB
drive to transfer the necessary file to the Raspberry Pi.

If you install and configure everything as specified, your program should run
without any errors. You can run the Python program constantly in the background
using the following command:

$ nohup python controlCenter.py &

The last thing that we want to set up on the Raspberry Pi is the TFT LCD screen.
The installation and configuration processes of the TFT LCD screen are described
in Chapter 7, The Midterm Project – a Portable DIY Thermostat. Please follow the steps
in the given order to set up the screen. The control center module along with the
Raspberry Pi and the TFT screen can now be deployed in any part of your house.

Stage 3 – a web application using Xively,
Python, and Amazon cloud service
The cloud services module of the overall system enables remote access to your
monitoring station through the Internet. The unit interacts with the user via a web
application as an extended version of the control center. With the use of this web
application, the user can observe the sensor information from the monitoring station
and the system's status calculated by the control center while having remote control
to turn off the buzzer. So, what does the architecture of the cloud services look like?

Architecture of the cloud services
The architecture of the cloud services module with its associated components is
displayed in the following diagram. In the cloud services architecture, we are using
Xively as the intermediate data relay between the web application and the control
center. The control center pushes the observations obtained from the monitoring
station to the Xively channels. Xively stores and relays the data to the web application
that is hosted on the Amazon AWS. The server instance on the Amazon AWS is used
to make the web application accessible through the Internet. The server instance runs
the Ubuntu operating system and the web application that is developed using the
web.py library in Python.

Chapter 10

[333]

In the previous stage, we already covered the process of setting up Xively and the
channels to accommodate sensor data. In the control center code, we also explained
how we can push the updated observations to the appropriate Xively channels.
Therefore, we really do not have any ground to cover for the Xively platform at
this stage and we can move on to the web application.

Python web application hosted on
Amazon AWS
In the previous chapter, we set up an Amazon AWS cloud instance to host a web
application. You can use the same instance to host the web application for the
remote home monitoring system too. However, make sure that you have installed
the web.py library on your server.

1.	 In your computer, open the Web_Application folder and then the
RemoteMonitoringApplication.py file in your editor.

2.	 In the code, you will be able to see that we just expand the web application
program that we created in Chapter 9, Arduino and the Internet of Things. We
use the templates based on web.py and the GET() and POST() functions to
enable the web application.

The Final Project – a Remote Home Monitoring System

[334]

3.	 In the application, we fetch information from each Xively channel and
process it via a separate function. For example, the fetchTempXively()
function obtains the temperature information from Xively. Every time the
POST() function is executed, the fetchTempXively() function fetches
the latest value of temperature reading from Xively. This also means that
the web application does not populate and refresh the latest information
automatically and waits for POST() to execute the appropriate functions:
def fetchTempXively():
 try:
 datastreamTemp = feed.datastreams.get("Temperature")
 except HTTPError as e:
 print "HTTPError({0}): {1}".format(e.errno, e.strerror)
 print "Requested channel doesn't exist"
 return datastreamTemp.current_value

4.	 The web application also provides access to control the buzzer from the user
interface. The following code snippet adds the Buzzer Off button with other
Form components. When the form is submitted after this button is pressed,
the web application executes the setBuzzer() function:
inputData = web.input()
if inputData.btn == "buzzerOff":
 setBuzzer("OFF")

5.	 The setBuzzer() function access the Xively channel, Buzzer, and sends the
off value if the Buzzer Off button is pressed. The current web application
doesn't include the Buzzer On button, but you can easily implement this
functionality by reusing the code that we developed for the Buzzer Off
button. This function provides the reference code for other control points,
which you can reuse with minor modifications:
def setBuzzer(statusTemp):
 try:
 datastream = feed.datastreams.get("Buzzer")
 except HTTPError as e:
 print "HTTPError({0}): {1}".format(e.errno, e.strerror)
 datastream = feed.datastreams.create("Buzzer",
 tags="buzzer")
 print "Creating new Channel 'Buzzer"
 datastream.current_value = statusTemp
 try:
 datastream.update()
 except HTTPError as e:
 print "HTTPError({0}): {1}".format(e.errno, e.strerror)

Chapter 10

[335]

6.	 In the code, you will also have to modify the Xively feed ID and the API
key and replace them with the values that your obtained from your virtual
device. Once you have performed this modification, run the following
command. If everything goes as planned, you will be able to open the web
application in your web browser.
$ python RemoteMonitoringApplication.py

If you are running the Python code on your computer, you can open http://127.0.0.1:8080
to access the application. If you are running the application on the cloud server,
you need to enter the IP address or domain name of your server to access the web
application, http://<AWS-IP-address>:8080. If the web application is running from the
cloud, it can be accessed from anywhere using the Internet, which was one of the
original project requirements. With this last step, you have successfully completed the
development of the remote home monitoring system that is based on Arduino and
Python.

Testing the web application
When you open the web application in a browser, you will be able to see a similar
output as shown in the following screenshot. As you can see, the web application
displays the temperature, humidity, light, and motion values. The Refresh button
fetches the sensor data from Xively again and loads the application once more. The
Buzzer Off button sets the value of the Xively's Buzzer channel to OFF, which then get
picked up by the control center, and it turns off the buzzer at the monitoring station
subsequently:

The Final Project – a Remote Home Monitoring System

[336]

Testing and troubleshooting
Due to the number of components involved and complex programming associated
with them, the overall project is a complex system to test and debug. Before you
jump into troubleshooting, make sure that you have properly followed the steps that
were described in the previous sections in order. The following are a few solutions to
possible problems that can occur during the execution of the project:

•	 Troubleshoot individual sensor performance:
°° If your sensor measurements are way off the expected values, the

first thing that you want to evaluate is the connection of the sensor
pins to the Arduino board. Make sure that you have connected the
digital, analog, and PWM pins correctly.

°° Check whether your Ethernet Shield board is properly connected
to Arduino Uno.

°° Evaluate the connections of the 5V power supply and ground for
each component.

•	 Avoid Xively's update limit
°° Xively imposes a limit on the maximum number of transactions that

you can perform in a limited amount of time. While running your
control center code, if you encounter an error for exceeding the limit,
wait for 5 minutes before your access limit gets lifted.

°° Increase the delay between consecutive Xively updates at the control
center level:
threading.Timer(120, checkBuzzerFromXively).start()

°° Reduce the frequency of published messages at the monitoring station:
timer.setInterval(600000, publishData);

°° You can also combine various Xively channels by formatting data
into JSON or XML.

•	 Working with the maximum current draw limitation of Arudino:
°° The +5V power pin and digital pin of Arduino can provide a

maximum current of 200 mA and 40 mA respectively. When running
sensors directly from the Arduino board, make sure that you do not
exceed these limits.

°° Make sure the combined current requirement of all the sensors is less
than 200 mA. Otherwise, the components won't be able to get enough
power to run and this will translate into faulty sensor information.

Chapter 10

[337]

°° You can provide external power to the components that require large
amounts of current and control this power mechanism via Arduino
itself. You will need a transistor that is acting as a switch that can
then be controlled using the digital pins of Arduino. The tutorial at
https://learn.adafruit.com/adafruit-arduino-lesson-13-
dc-motors/transistors shows a similar example for a DC motor.

•	 Solve network problems:
°° In some scenarios, your monitoring station won't be able to

communicate with the control center due to network problems.
°° This problem can be solved by using manual IP addresses for both,

Arduino and the Raspberry Pi. In our project, we use a manual IP
address for the Arduino, but the Raspberry Pi is connected using the
Wi-Fi network. In most cases, when you are using your home Wi-Fi
network, Wi-Fi routers are set up to provide dynamic IP addresses
to the device every time they reconnect to the router.

°° You can solve this by configuring your Wi-Fi router to a fixed IP
address for the Raspberry Pi. As the type and model of the Wi-Fi
router is different for every scenario, you will have to use its user
manual or online help forums for setting it up.

•	 Working with buzzer-related issues:
°° Sometimes the buzzer sound can be too loud or too quiet, depending

upon the sensor that you are using. You can use PWM to configure
the intensity of the buzzer. In our project, we used the Arduino
digital pin 9 to connect the buzzer. This pin also supports PWM.
In your Arduino code, modify the line to reflect changes for the
PWM pin. Replace the digitalWrite(BUZZER, HIGH); line with
analogWrite(BUZZER, 127);.

°° This routine will reduce the intensity of the buzzer by half from the
original level. You can also change the PWM value from 0 to 255
and set the intensity of the buzzer sound from lowest to highest.

•	 Control center GUI calibration:
°° Depending upon the size of the TFT LCD screen that you are using,

you will have to adjust the size of the main window of Tkinter.
°° First, run the current code on your Raspberry Pi and if you see that

the GUI window does not match the screen, add the following line
of code after initializing the main window:
top.minsize(320,200)

https://learn.adafruit.com/adafruit-arduino-lesson-13-dc-motors/transistors
https://learn.adafruit.com/adafruit-arduino-lesson-13-dc-motors/transistors

The Final Project – a Remote Home Monitoring System

[338]

°° This code will fix the problem with the size for a 2.8 inch TFT LCD
screen. In the previous code snippet, 320 and 200 represent the pixel
sizes for width and length respectively. For other screen sizes, change
the pixel size accordingly.

•	 Test the LED:
°° In current code configuration, the LED is turned on only when the

system changes to Alert or Caution. That means you won't be able to
test the LEDs unless these situations occur. To check whether
they are working correctly, execute the following command at the
control center:
$ mosquitto_pub –t "MonitoringStation/led" –m "red"

°° This command will light up the LED in red. To turn off the LED,
just use off instead of red in the previous code.

°° If nothing lights up, you should check the connection wires of the
LEDs. In addition, check for network-related issues as the Mosquitto
itself might not be working.

°° If you see any color other than red, this means that you haven't
connected the LED correctly and you need to interchange the pin
configuration of your LED. If you are using an LED different than
super-flux RGB, you should check out the pin layout in the datasheet
and reorganize the connections.

Extending your remote home monitoring
system
To successfully create commercial products from DIY project prototypes, you will
need an additional layer of features on top of basic functionalities. These features
actually make things convenient for a user when they interact with the system. The
other distinguishable feature is the tangibility of the system, which makes large-scale
production and support possible. Although there are plenty of features that you can
implement, we recommend the following major improvements to elevate the level of
the current project.

Chapter 10

[339]

Utilizing multiple monitoring stations
In this project, we developed a monitoring station as a prototype with a range of
functionality that is demonstrated by a remote home monitoring system. A remote
monitoring system can have multiple numbers of monitoring stations to cover
various geographical locations, such as different rooms inside a house, or different
office cubicles. Basically, a large number of monitoring stations can cover an
extended area and provide efficient surveillance of the domain that you are trying
to monitor. If you want to extend the current project with an array of monitoring
stations, you will require some of the following modifications:

•	 Each monitoring station can have its own control center or a centralized
control center for all of them, depending upon the application requirements.

•	 You will have to update the Python code for the control center to
accommodate the changes. Examples of these changes include modifying
topic titles for MQTT, coordinating between these monitoring stations,
updating data models for Xively updates, and so on.

•	 The free Xively account may not be able to handle the large amounts of data
coming from the monitoring stations. In this case, you can either optimize the
update rate and/or payload size or upgrade your Xively account to comply
with the requirements. You can also resort to other free services such as
ThingSpeak, Dweet.io, and Carriots, but you will have to make substantial
modifications to the existing code structure.

•	 You can also update the web application to provide you with a selection
menu for the monitoring stations or display all of them at once. You will
also have to change the code to yield the modified data models.

Extending sensory capabilities
In term of sensors, we are only interfacing temperature, humidity, ambient light, and
motion sensors. However, the actuation is limited to the buzzer and LED. You can
implement the following changes to improve the sensory capabilities of the project.

•	 In a real scenario, a remote home monitoring system should be able
to interface with other existing sensors such as the security system,
monitoring cameras, refrigerator sensors, door sensors, and garage
sensors throughout a home.

•	 You can also interface this project with other appliances such as the air
conditioner, heater, and security alarm, which can help you to control the
environment that you are already monitoring. As a trial, these components
can be interfaced using a set of relays and switches.

The Final Project – a Remote Home Monitoring System

[340]

•	 You can upgrade the current sensors at the monitoring station with more
powerful, efficient, and accurate sensors. However, the monitoring station
with the upgraded sensors may require a more powerful version of Arduino
with more I/O pins and computation capabilities.

•	 You can also use additional sensors other than those used in this project at
the monitoring station. There are large amount of heterogeneous, Arduino-
supported DIY sensors that you can buy off the shelf. Examples of these
sensors include the Alcohol Gas Sensor (MQ-3), LPG Gas Sensor (MQ-6),
Carbon Monoxide Sensor (MQ-7), Methane Gas Sensor (MQ-4), and so on.
These sensors can be simply interfaced with the Arduino just like the other
sensors that we connected earlier.

•	 To accommodate these changes, you will be required to change the control
center logic and algorithms. If you are interfacing a third-party component,
you may also have to revisit the system architecture and adjust it.

•	 Similarly, you will also have to run frequent updates to Xively for
the additional number of sensors, making the free version inadequate.
To resolve this, you can pay for the commercial version of a Xively account
or use a limited number of requests using a JSON file format similar to the
one displayed in the following code snippet:
{
 "version": "1.0.0",
 "datastreams": [
 {
 "id": "example",
 "current_value": "333"
 },
 {
 "id": "key",
 "current_value": "value"
 },
 {
 "id": "datastream",
 "current_value": "1337"
 }
]
}

Chapter 10

[341]

Improving UX
When we designed the user experience for this project, our goal was to demonstrate
the usefulness of a UX design in developing the software flow. In the current UX
design, the control center and the web application have limited control and features
for a user. The following are a few changes that you need to implement to improve
the UX of the project:

•	 Add tooltips and proper naming conventions for the various descriptions.
Implement a proper layout to differentiate between the various information
categories.

•	 Add buttons for the buzzer and the LED control on the control center GUI.
•	 In the web application, use a JavaScript and Ajax-based interface to

automatically refresh the changes in sensor values.
•	 Provide a UI mechanism so that the user can change the update interval at

the control center and the web application. Once these changes are made,
propagate them through each program so that the monitoring station can
start publishing messages at the new interval.

Expanding cloud-based features
In the current setup, we are using two stages to provide cloud-based capabilities and
enable remote monitoring. We have Xively as a data relay and Amazon AWS to host
the web application. If you are working on a commercial-grade product and want to
reduce the complexity of the architecture, you can implement the following changes:

•	 You can develop your own data relay on your cloud instance using open
source tools such as ThingSpeak. Your control center will then communicate
directly to your server and eliminate dependency on third-party IoT services.

•	 If Xively is your platform, you can also use additional features, such as
graphs on your smart phone, which are provided by Xively. Once your
phone is paired with Xively, you can access this feature directly.

•	 Alternatively, you can use other cloud services such as Microsoft Azure
and Google App engine instead of Amazon AWS. You can also set up your
own cloud server, depending upon your familiarity with cloud computing.
Although having your own cloud will give you complete control of the
server, third-party services such as Amazon can be more cost effective and
require less maintenance compared to self-hosted servers.

The Final Project – a Remote Home Monitoring System

[342]

•	 If you are planning to develop a large-scale system that is based on the
current architecture, you can increase the computing capability of your
existing cloud instance. You can also implement a distributed server
system to accommodate the large number of remote monitoring systems
that can be accessed by an even greater number of users.

Improving intelligence for situation
awareness
In this project, we have used four different sensors to monitor the physical
environment—each sensor obtains user inputs with two types of actuators for
notification. Although we are using a good amount of information sources, our
situation awareness algorithm is limited to identifying out-of-range temperature
and humidity values. You can implement a few extended features to make your
system more versatile and useful:

•	 Implement different logic for day and night scenarios, which can help you to
avoid unwarranted false alarms at night.

•	 Implement an intruder detection algorithm using the motion sensor for when
you are not at home.

•	 Utilize a combination of ambient light sensor values with motion sensors
to identify energy wastage. For example, a scenario in which more light is
recorded during the night when the motions are significantly low explains
that you may have forgotten to turn off the lights during the night.

Creating an enclosure for hardware
components
Just like software-based features, the hardware components also require a major
revamp if you develop a commercial-grade product. Nowadays, 3D printers have
become viable and it is really easy to design and print plastic 3D components. You
can also use professional 3D printing services such as Shapeways (http://www.
shapeways.com), Sculpteo (http://www.sculpteo.com), or makexyz (http://www.
makexyz.com) for your enclosures. You can even use a laser cutter or other means
of model making to create the hardware enclosures. These are a few hardware
improvements that you can implement:

•	 The sensor and actuators that are assembled on a prototype board can be
organized on a PCB and permanently fixed for stable and robust operation.

http://www.shapeways.com
http://www.shapeways.com
http://www.sculpteo.com
http://www.makexyz.com
http://www.makexyz.com

Chapter 10

[343]

•	 A hardware enclosure for the monitoring station can make it portable and
easily deployable in any environment. When designing this enclosure, you
should also consider the proper placement of the motion sensor and the
ambient light sensor, along with a button to make them accessible to the user.

•	 The Raspberry Pi and TFT LCD screen, which make up the control center
hardware, can also be enclosed in a mountable package.

•	 Adding touch screen capabilities to the TFT LCD screen can enable
additional control over the system, expanding the UX use cases.

Summary
In this chapter, we developed a working prototype of a remote home monitoring
system and also learned the process of hardware product development
simultaneously. In the project, we utilized most of the hardware components and
software tools that we used throughout the book. We began by designing the
system architecture so that we could coordinate the utilization of these tools. Later,
we ventured into the actual development stages, which included designing the
hardware units and developing programs to run these units. In the end, we provided
a list of improvements to make this prototype into a real commercial product. You
are welcome to use this methodology to develop your future projects and products,
as you now have experience working with this one.

In the last chapter, we are going to utilize the same project development methodology
to create an interesting project that utilizes your messages from a social network
website to give you control over your hardware.

Tweet-a-PowerStrip
Smart power management units or strips are part of some of the most popular IoT
subdomains, smart homes and smart grids. Nowadays, smart power strips are
commercially available and provide a large number of features, such as remote
access, smart power usage, and power management. In this project, we are going to
create a smart DIY power strip that can be controlled remotely using status messages
posted on Twitter, the popular social media website (http://www.twitter.
com). These messages are also known as tweets. Basically, just like you can control
sensors remotely using a web browser, you can control them by sending a tweet.
We've already worked with low-power sensors in the previous project, so let's
work with AC appliances in this project. We will be implementing the same project
development methods that we utilized in the previous project. This chapter avoids
additional explanations about the process and sticks only to the details associated
with the project.

Project overview
This project requires the development of a smart power strip using Arduino and
Python, while the control inputs to the strips are tweets. Although we are only
enabling remote access to the power strip, there are a large number of additional
features that can be implemented in future to elevate this DIY project to a
commercial product.

The major goals we want to achieve in this project are as follows:

•	 The user should be able to turn the individual power ports on and off using
customized tweets

•	 The user should be able to check the status of the power ports using Twitter

http://www.twitter.com
http://www.twitter.com

Tweet-a-PowerStrip

[346]

Project requirements
Here are the initial project requirements, derived from the goals:

•	 The system should have 110V (or 220V) AC power ports interfaced with relays.
•	 An Arduino-based unit should be able to control these relays, ultimately

controlling the appliance connected through the power ports.
•	 The system should be able to decode the tweets sent by the user and convert

them into appropriate control messages for Arduino.
•	 The Python-based program that processes the tweets should then publish

these messages so that Arduino can complete those actions using the relays.
•	 To sum up, the relays should be controlled in a near real-time manner using

the tweets sent by the user.
•	 The system should also understand keywords to check the status of the

relays and automatically tweet the status. The system should process a tweet
only once and should be able to remember the last tweet processed.

110V versus 220V AC power
Depending on the country, your AC power supply may have voltage
ratings of 110/120V or 220/240V. Although the circuit diagram used by
this project mentions a 110V AC power supply, the same circuit should
also work for a 220V power supply. If you are using a 220V supply,
check out the following notes before moving forward:

•	 Ensure that the appliances you are trying to operate, such as
fans, lights, and so on, are rated for similar AC power

•	 You have to ensure that the relays used by the project are
compatible with your AC power supply

•	 Arduino works on a DC power supply, and it is not affected by
any variation in AC power

System architecture
From the preceding requirements, let's sketch the architecture of the Tweet-a-
PowerStrip system. The system architecture tries to utilize the hardware components
and software tools you learned in the previous chapters, while having a relay
component as the only exceptional component. As you can see in the architecture
in the following diagram, we are employing the relay to control various home
appliances. These appliances are usually powered by a common 110V AC power
supply available in each home. Instead of controlling a single appliance, we are
implementing a four-channel relay to control at least four appliances, such as a
lamp, a fan, a toaster, and a coffee machine.

Chapter 11

[347]

The relay is controlled using the digital pins of the Arduino Uno board, which
utilizes the Ethernet Shield to connect to your home network. A computation
unit that may consist of a computer, a Raspberry Pi, or a server, uses Python and
its supporting libraries to access tweets. The computation unit also deploys a
Mosquitto broker. This broker handles the topics from the Python program and
Arduino to control the relays. The user can post tweets containing keywords from
any platform, such as a phone or a browser, and the tweets are ultimately captured
by the computation unit.

Required hardware components
This project will require the following hardware components throughout the
development and the deployment stages:

Component Amount Website/note
Arduino Uno 1 https://www.sparkfun.com/products/11021

Arduino
Ethernet
Shield

1 https://www.sparkfun.com/products/9026

Relay
(four-channel,
Arduino-
compatible)

1 http://www.amazon.com/JBtek-Channel-
Module-Arduino-Raspberry/dp/B00KTEN3TM/

PowerSwitch
Tail

4 http://www.powerswitchtail.com/

Alternative to relay

https://www.sparkfun.com/products/11021
https://www.sparkfun.com/products/9026
http://www.amazon.com/JBtek-Channel-Module-Arduino-Raspberry/dp/B00KTEN3TM/
http://www.amazon.com/JBtek-Channel-Module-Arduino-Raspberry/dp/B00KTEN3TM/
http://www.powerswitchtail.com/

Tweet-a-PowerStrip

[348]

Component Amount Website/note
Power strip Optional
Breadboard 1 For development stage
USB cable for
Arduino

1 For development stage

Arduino
power supply

1 For deployment stage

Electric tape As per
requirements

Connection
wires

As per
requirements

Relays
As you can see in the following image, we are introducing a new hardware
component that was not utilized in any of the previous chapters—a relay:

This is an electromagnetic device that uses electricity to be operated as a switch.
A typical relay contains three contacts on the high-power side, normally connected
(NC), common (C), and normally open (NO). The other side (the control side) of the
relay requires an activation voltage to toggle the connection from common-NC to
common-NO. This action demonstrates the switch functionalities for the connection
on the high-power side. We'll use Arduino-compatible relays from manufacturers
such as Keyes or SainSmart. These relays are available in single-, two- or four-channel
configurations. On the high-power side, the relays support up to 250V, 10A AC power
or 30V, 10A DC power. The relays are controlled using 5V DC on the low-power side,
which is provided using the digital I/O pins of the Arduino board.

Chapter 11

[349]

PowerSwitch Tail
Working with AC power can be hazardous if you haven't dealt with it previously or
if you are not familiar with the necessary precautions and measurements. If you are
not comfortable with working with open relays or connecting AC power to them,
there is another device that you can use to replace the relay—the PowerSwitch Tail,
a safely enclosed box that contains optically isolated solid-state relays and provides
a convenient way to interface your AC appliance with the Arduino board. The
following is an image of the PowerSwitch Tail, which can be obtained from its official
website (http://www.powerswitchtail.com/):

If you are dealing with a 220V/240V power supply, the PowerSwitch
Tail website also provides an assembly kit for 200V to 240V power
supply, at http://www.powerswitchtail.com/Pages/
PowerSwitchTail240vackit.aspx.
It is really easy to assemble the kit from the guidelines provided at
http://www.powerswitchtail.com/Documents/PSSRTK%20
Instructions.pdf.

http://www.powerswitchtail.com/
http://www.powerswitchtail.com/Pages/PowerSwitchTail240vackit.aspx
http://www.powerswitchtail.com/Pages/PowerSwitchTail240vackit.aspx
http://www.powerswitchtail.com/Documents/PSSRTK%20Instructions.pdf
http://www.powerswitchtail.com/Documents/PSSRTK%20Instructions.pdf

Tweet-a-PowerStrip

[350]

For this project, you will need four of these devices to replace the four-channel relay
that we are going to use. As you can see in the following diagram, one end of the Tail
goes into the regular power port, while you need to connect your appliance to the
other port. Meanwhile, you can use the three control inputs to control the relay. We
are using one of the digital I/O pins of the Arduino board to send the control signal
to the Tail. When going ahead with the Tails instead of the relays, make sure that you
make necessary amendments to the upcoming hardware design.

User experience flow
From the system architecture we have created, what should the user experience
(UX) flow while working with the Tweet-a-PowerStrip be? We have divided the UX
into two separate sections: controlling the power to the appliances, and checking the
status of the power strip.

In the first UX flow design, as displayed in the following diagram, the user begins
by sending a tweet containing the name of the appliance (#fan, #lamp, #toaster, or
#coffee) and the control command (#on or #off). The system should be able to handle
the tweet from the point of parsing until the appliance has behaved as asked for.
The system should also provide a hassle-free experience for the user, where the user
doesn't have to perform any further actions than simply sending tweets.

Chapter 11

[351]

Similarly, the user should be able to post #status #check tweets and simply obtain
the status report posted back by the system. The system should handle checking the
status of the power ports, publishing it to the computation unit, and posting a tweet
with the message without any additional input from the user.

Tweet-a-PowerStrip

[352]

The following diagram shows the UX flow for checking the system status:

Development and deployment stages
According to the architecture, we require two main development stages to complete
the project. The first stage, which interacts with the appliance through the relays,
is developed using Arduino. This unit subscribes to the topics associated with the
appliances, and once it receives an appropriate message, it executes the action on the
relay level. In the second stage, we deal with the individual tweets, where we parse
the tweets from the Twitter account, check for duplicates, decode actions from the
messages, and also post tweets with status reports. During these development stages,
we are going to use a breadboard and jumper wires to test the Arduino and Python
programs. At this stage, the project is still not ready to deploy as a portable unit for
daily usage.

The deployment stage contains tasks of creating a PCB for the breadboard
connections and insulating wires to avoid any electric hazard. You can also buy or
create an enclosure box to isolate the open hardware from physical contact. As the
development stage contains everything that is required to convert the project into
its working state, we are not going to dive deep into the deployment stage. You can
perform addition deployment tasks according to your personal requirements.

Chapter 11

[353]

Let's start from the hardware design stage and develop the physical section of the
smart power strip using Arduino.

Stage 1 – a smart power strip with
Arduino and relays
The hardware of Tweet-a-PowerStrip contains Arduino as the main controller
unit that interfaces with the relays and the Ethernet Shield to communicate with
the computation unit. The Arduino code implements the MQTT client, using the
PubSubClient library to publish and subscribe to the topics. Although we are
using some example appliances to control the use of the relay, you can select any
other appliance you own. You can also use a commercial power strip instead of an
individual power plug.

Hardware design
While assembling the hardware components, as displayed in the following diagram,
make sure you are precise in connecting the appliances with the AC power plugs.
One wire of the AC plug is directly connected to the appliance, while the other is
connected between the C and NO ports of the relay. We have connected the control
side of the relay to the digital pin of our Arduino. As we are using a four-channel
relay, we will have to utilize four digital IO pins from the Arduino board. Complete
the remaining connections as shown here:

Tweet-a-PowerStrip

[354]

Connecting the hardware unit is fairly simple, but requires a lot of precision because
it involves high-power AC connections.

You should cover the open 110V AC power cords going to the relay and
the appliance with electric tape to avoid any type of electrical hazard.
Keeping these live wires open can be really dangerous due to the large
amount of current being carried by them. In the deployment stage,
a plastic cover or a box around the relay unit can also be helpful in
covering the live power wires.

Once you are ready with the connections, connect the Arduino board to your
computer using a USB port, as shown in the following image:

The Arduino code
The Arduino sketch for this section is located in the folder containing the chapter
code with the Arduino_powerstrip.ino filename. You can open the file in the
Arduino IDE to explore the code. As usual, you will have to change the IP addresses
of the device and the Mosquitto server to the appropriate IP addresses, while also
changing the MAC address of the Ethernet Shield. The following code snippet shows
the declaration of the Arduino pins and their roles in the main function, setup().
Make sure that you are using the same pin numbers that you have used to connect
the relay. Alternatively, you can change the appliance name to that of the appliance
you are using. Also, make sure whatever changes you make in the variable names
should be reflected in the entire code to avoid any compilation errors:

Chapter 11

[355]

 pinMode(FAN, OUTPUT);
 pinMode(LAMP, OUTPUT);
 pinMode(TOASTER, OUTPUT);
 pinMode(COFFEEMAKER, OUTPUT);
 fanStatus = false;
 lampStatus = false;
 toasterStatus = false;
 coffeemakerStatus = false;
 digitalWrite(FAN, LOW);
 digitalWrite(LAMP,LOW);
 digitalWrite(TOASTER, LOW);
 digitalWrite(COFFEEMAKER, LOW);

In the setup() function, the code also subscribes to the appropriate MQTT channels
so that it can receive messages from the Mosquitto broker as soon as they are
available. As you can see, we are also subscribing to the PowerStrip/statuscheck
channel to deal with the status report:

 if (client.connect("PowerStrip")) {
 client.subscribe("PowerStrip/fan");
 client.subscribe("PowerStrip/lamp");
 client.subscribe("PowerStrip/toaster");
 client.subscribe("PowerStrip/coffeemaker");
 client.subscribe("PowerStrip/statuscheck");
 }

In the callback() function, we use the if statement to match the topic with the
appropriate digitalWrite() action. As you can see, we are setting up HIGH and
LOW statuses for the digital pin when the program receives on and off messages,
respectively (for that appliance). With this action, we are also changing the state
of the Boolean variable associated with the appliance, which will be helpful in
retrieving the status of the port. The same process is then repeated for all appliances:

 if(topicS == "PowerStrip/fan"){
 if (payloadS.equalsIgnoreCase("on")) {
 digitalWrite(FAN, HIGH);
 fanStatus = true;
 }
 if (payloadS.equalsIgnoreCase("off")){
 digitalWrite(FAN, LOW);
 fanStatus = false;
 }
 }

Tweet-a-PowerStrip

[356]

When the system receives a get message that is associated with the status check, the
program creates a message using the Boolean variables that we toggled earlier. The
program then publishes the status to the PowerStrip/statusreport channel:

if(topicS.equals("PowerStrip/statuscheck")){
 if (payloadS.equalsIgnoreCase("get")) {
 String report = "";
 if (fanStatus) report += "Fan:on,";
 else report += "Fan:off,";

 if (lampStatus) report += "Lamp:on,";
 else report += "Lamp:off,";

 if (toasterStatus) report += "Toaster:on,";
 else report += "Toaster:off,";

 if (coffeemakerStatus) report += "Coffeemaker:on";
 else report += "Coffeemaker:off";

 report.toCharArray(reportChar, 100);
 client.publish("PowerStrip/statusreport", reportChar);
 }
 }

Just as we did in the previous project, you can set up the code to periodically send
keep alive messages to avoid the termination of the connection with the Mosquitto
broker. Once you are ready with the code, connect the Ethernet cable, compile the
code, and then upload it to your Arduino. Your Arduino should be in receiving
mode now, and it will wait for the message from the subscribed channels. As we
discussed in the previous the project, you need to ensure that your Mosquitto broker
is running on the server IP address you specified in the Arduino code.

Chapter 11

[357]

Stage 2 – the Python code to process
tweets
As the user is interacting with the system at the level of the Twitter application,
we do not require a deployable computation or control unit for this project. Due to
this, we can just use any computer capable of hosting Python and Mosquitto as the
computation unit. You still need to ensure that the unit is always on and connected
to the Internet, otherwise the system will not work as expected. For simplicity, you
can deploy the system on the Raspberry-Pi-based control center that you developed
in the previous project, or even on the Amazon AWS server. For the development
stage, let's start with the regular computer that you have been using all along. We
are assuming that this computer has the Mosquitto broker installed and running.
Note down the IP address of this unit, as you will need it in the Arduino code that
you developed in the previous section.

Python software flow
The Python code deals with two services during execution, the Twitter API to get
or post tweets and the Mosquitto broker to relay messages to the hardware unit.
The program begins by parsing the latest tweet from the user account and checking
whether it has been utilized in the previous action or not. This avoids any command
duplication, as the frequency of new tweets is significantly lower than the frequency
of the program loop. Once the code finds a new tweet with the appropriate keywords
to perform operations on the appliance (or appliances), it publishes the message to
the Mosquitto broker. If the tweet contains a message to check the status, the code
requests the status from your Arduino and posts a new tweet with the status after
receiving it.

Tweet-a-PowerStrip

[358]

The following diagram shows the detailed program flow of the computation unit:

You can change the program flow to accommodate any other feature you want to
add at the Python level. The logic behind identifying and toggling the appliance can
be improvised to accommodate more complex tweet text.

Chapter 11

[359]

Setting up the Twitter application
We are assuming that you have a Twitter account by now. If you don't, you can
create a new account just for this project to avoid changes to your own profile. With
the introduction of the latest APIs, Twitter requires you to authenticate using OAuth
before accessing any information from your account. To do that, you will have to
create a Twitter app using your account. Execute the following steps in order to
create a new Twitter app for this project:

1.	 Log in to your Twitter account and open the https://apps.twitter.com
address in your web browser.

2.	 Click on the Create New App icon on the page, and you will be directed
to a page asking for your application details, as displayed in the following
screenshot:

3.	 Fill in all the required details (marked with red asterisks) and continue to the
next page. Ensure that your application name is unique, as Twitter asks for a
unique application name.

https://apps.twitter.com

Tweet-a-PowerStrip

[360]

4.	 Once your application is created, you can click on the API Keys tab and find
the consumer key (API key) and consumer secret (API secret) for your app.
Save this information in a safe place, as you will need them to authenticate
with the Twitter API.

5.	 As the UX of the Tweet-a-PowerStrip project requires the system to
automatically send the system status, we need read-and-write access to our
application. Go to the Permissions tab, select the Read and Write option, and
save it for the changes to take effect.

6.	 Once you are done with setting up the permissions for the application,
go back to the API keys tab and click on the Create Access Token icon to
generate a new access token for this application. After a while, you should be
able to see the access token on the same page, as displayed in this screenshot:

Chapter 11

[361]

7.	 Save the Access token and Access token secret information. Your application
is now ready for use and can help you to authenticate with the Twitter API.

Now let's move on to the Python code.

The Python code
Before you jump into the code, you are required to install the Twitter library
for Python. Use the Setuptools or pip to install the library using the following
command. We are assuming that you already have the latest paho_mqtt library
installed on your computer:

$ sudo pip install python-twitter

The Python code for this section is located in the code folder with the
PythonTweetAPowerStrip.py filename. Open the code in your IDE and start
exploring it. The code contains two parallel threads to handle the tweets and
the Mosquitto library separately.

As you can see in the following code snippet, we are using the Api class from
the python-twitter library to establish a connection with the Twitter API.
We are using the consumer key, consumer secret, access token key, and
access token secret values for this authentication. Once the authentication
is established, the Api class can be used to get the latest status from the timeline
using the GetHomeTimeline() function call, and to post the new status using the
PostUpdate() function call. The GetHomeTimeline() function gives an array
of statuses from the user; we need the latest status, which can be fetched using
statuses[0] (the first element of the array):

api = twitter.Api(consumer_key='<consumer-key>',
 consumer_secret='<consumer-secret>',
 access_token_key='<access-token-key>',
 access_token_secret='access-token-secret>')

Tweet-a-PowerStrip

[362]

Once we have retrieved the latest tweet, we need to make sure that we haven't used
that tweet already. So we save the latest tweet ID in a global variable, as well as in a
file in case we need to run the code again:

with open('lastTweetID.txt', 'w+') as fh:
 lastTweetId = fh.readline()
 print "Initializing with ID: " + lastTweetId

We retrieve the ID of the previous tweet from the lastTweetID.txt file to match
with the latest ID. If it doesn't match, we update the lastTweetID.txt file with the
latest ID for the next loop:

if lastTweetId != str(currentStatus.id):
 lastTweetId = str(currentStatus.id)
 print "Updated file with ID: " + lastTweetId
 with open('lastTweetID.txt', 'w+') as fh:
 fh.write(lastTweetId)
 currentStatusText = currentStatus.text
 print currentStatusText

Once we have identified the latest unique tweet, we use the Python string operation to
decode the keywords for the appliance and power commands. As you can see in the
following code snippet, the keyword we are looking for in the tweeted text to access
the fan is #fan. Once we have identified that the message is directed to the fan, we
check for action keywords such as #on and #off, and then take the associated action
of publishing the message to the Mosquitto broker. We repeat this action for all the
appliances connected to the system. Your Arduino takes an action using the published
message, and completes the UX flow for the controlled appliances:

if "#fan" in currentStatusText.lower():
 if "#on" in currentStatusText.lower():
 cli.publish("PowerStrip/fan", "on")
 if "#off" in currentStatusText.lower():
 cli.publish("PowerStrip/fan", "off")

Similarly, when the code receives an update from the PowerStrip/statusreport
topic, it obtains the status from the message payload and posts it as a new tweet to
the user timeline of that Twitter account. This completes the UX flow for the status
check using Twitter:

def onMessage(mosq, obj, msg):
 if msg.topic == "PowerStrip/statusreport":
 print msg.payload
 api.PostUpdate(msg.payload)

Chapter 11

[363]

Testing and troubleshooting
Testing can simply be performed by posting the #fan #on status to the Twitter
account used in this project. You should be able to see the fan turning on by using
the command shown here:

Similarly, send the #fan #off status to turn off the fan. You may find some lagging,
as the loop used to retrieve the tweets is set with a delay of a minute.

To access the status of the system, post the #status #get status to the account,
and you will be able to see the system status automatically posted by the
computation unit.

The tweet shown in the following screenshot is generated using the Tweet-a-
PowerStrip unit. It displays the status of all the connected appliances.

Tweet-a-PowerStrip

[364]

While working with the system, you will want to either avoid the following scenarios
or troubleshoot them:

•	 'Twitter rate limit exceed' error: Twitter imposes a limit on the
number of requests you can make to their public API. If you are requesting
the API too often (this often occurs when you reduce the sleep time between
consecutive queries), your application will exit with an exception. To avoid
this, set a longer sleep time in the Python program loop before requesting
the API again. There is a trade-off between the frequency of requests and
the response time of your appliances. You can learn about this limitation at
http://dev.twitter.com/rest/public/rate-limiting and adjust your
request interval accordingly. Once you have received this error, you will
have to wait for some time (approximately 10 to 15 minutes) before making
requests to the Twitter API again.

•	 'Read-only application cannot post' error: This error will only
occur if you forgot to change the permissions on your application to Read
and Write from Read only. Make sure that you have performed this change.
Also, Twitter takes some time for the changes to take effect.

Extending the project with additional
features
The current system can be expanded to include multiple features:

•	 You can start saving the time duration in which a particular appliance was
on or off, and then provide a detailed analysis to the user. You can also use
this information to calculate the energy being expended by these appliances.

•	 You can utilize the current measurement sensors to calculate the power load
at each port. Combining it with the time the device was on, you can calculate
very comprehensive power usage to further improve power management.

•	 You can use the system clock with the motion sensor to intelligently turn off
the appliance during nights and periods of no activity.

•	 The Tweet-a-PowerStrip project can be interfaced with the remote home
monitoring system that we developed in the previous project, in order to
obtain useful information from other sensors being used in the same house.

http://dev.twitter.com/rest/public/rate-limiting

Chapter 11

[365]

•	 One of the modifications you can easily implement is to utilize Twitter's
private messages instead of its tweets to control the appliances. This will
extend the access permissions of your system to other trusted Twitter
accounts. For security reasons, you should tighten the access level and only
let approved people post such messages to your account.

Summary
You have now successfully completed two different IoT projects using just two base
technologies, Arduino and Python. With the current project, it is obvious that it is
very easy to interface any other technology, tool, or API with Arduino and Python.
The project development methodology we used in these two projects will also help
you with your DIY projects and other future products. Happy prototyping! And
happy coding!

Index
A
Amazon AWS platform

about 289
account, setting up 290-292
URL 289

analog digital buzzer
URL 102

architecture, IoT web applications
about 263-266
computation layer 263
interfacing layer 263
physical layer 263

Arduino
about 29
computer networking 202
history 29
interfacing, with Python 90
objectives 29, 30
reference link 49
Uno board 31, 32
URL, for installation on Linux 51
variants 30

Arduino board connection
establishing 50
establishing, on Linux 50, 51
establishing, on Mac OS X 51, 52
establishing, on Windows 52
troubleshooting 52, 53

Arduino data
plotting, from CSV file 160-162
storing, in CSV file 152-155

Arduino Ethernet library
about 210, 211
Client class 212, 213
Ethernet class 211

IPAddress class 212
Server class 212
URL 211

Arduino Ethernet Shield
about 208, 209
URL 209

Arduino IDE
about 31, 34
examples, using 37
installing 32
installing, on Linux 33
installing, on Mac OS X 33
installing, on Windows 33
libraries 36
serial monitor, using 40
sketch 34, 35
sketch, compiling 38, 39
sketch, uploading 38, 39
URL, for built-in examples 37
URL, for installation on Fedora 33
URL, for installation on Ubuntu 33
URL, for setup file 33

Arduino, interfacing with Xively
about 275
advanced code, for data upload and

download 280, 281
Arduino data, uploading 275-277
data, downloading to Arduino 277-279

Arduino interrupts
about 180
reference link 181
using 180, 181

Arduino pins
configuring 93
configuring, with direct method 94, 95
data, reporting 96

[368]

monitoring 97
pin modes, assigning 95, 96
read() method, using 98
working with 96
write() method, using 97, 98

Arduino programming
about 41
comments 41
constants 42
conversion functions 44
data types 42, 43
functions 44
statements 44
variables 41

Arduino sketch, monitoring station
about 319
actuator actions, subscribing to 320
interrupt, programming 321
sensor information, publishing 319, 320

Arduino WiFi Shield
about 209
URL 209

Arduino Yún
about 210
URL 210

array data type 43

B
BH1750 light sensor

interfacing, Arduino used 117-119
interfacing, PyMata library used 121, 122

Bluetooth 201
boolean data type 43
breadboard

history 74
reference link 74
URL 73
using 73, 74

broker 240
built-in functions

about 27
conversion methods 27
math operations 27
string operations 28
URL 28

built-in types
about 19-22
data structures 22

Button() widget
about 127, 130
using 130-133

buzzer
connections 102
Python code 103, 104
using 102

byte data type 43

C
callback 143
Carriots 274
char data type 43
Checkbox() widget 127
Checkbutton() widget

about 139
used, for selecting LEDs 139-141

Client class 212, 213
close() method

used, for closing file 149
comma separated values file. See CSV file
comments

about 41
block comment 41
single-line or inline comment 41

computer networking
about 202
Arduino Ethernet library 210, 211
IP address, obtaining 203
networking extensions, for Arduino 208
web server, building with Arduino 213-218

constants 42
control center, remote home

monitoring system
about 322
architecture 322, 323
buzzer status, checking 328, 329
buzzer status, updating 328, 329
GUI, creating with Tkinter 324, 325
Mosquitto broker, communicating with 325
Python code 323, 324
setting up, on Raspberry Pi 330-332

[369]

system status, calculating 326
testing, with monitoring station 329, 330
Xively, communicating with 327, 328

conversion functions
about 44
byte() 44
char() 44
float() 44
int() 44

CSV file
about 151
Arduino data, storing 152-155
data, plotting 160-162
used, for storing data 151, 152

custom cloud platform, IoT
Amazon AWS platform 289
configuring 288, 289

cyber-physical systems 263

D
data structures

about 22
dictionaries 25
list 22-24
sets 25
tuples 24
URL 25

data types
about 42
array 43
boolean 43
byte 43
char 43
float 43
int 43
void 42

DC motors
connections 105, 106
Python code 106
using 105

do-it-yourself (DIY) projects 29
Dual in-line Package (DIP) 74
Dynamic Host Control Protocol (DHCP) 211

E
Elastic Computer Cloud service

(EC2 service) 289
electronic components

interfacing, with Arduino 91
End of Line (EOL) 65
Entry() widget

about 127, 133
used, for providing manual

user inputs 133, 134
Ethernet class 211
ez_setup.py file

URL, for downloading 15, 16

F
Fedora/Red Hat Linux

Python, installing 11
files

closing, close() method used 149
manipulating, with open() method 148
read() method, using 149, 150
with statement, using 150
working with 148
write() method, using 149

Firmata
about 53
and pySerial library, bridging 65, 66
disadvantages 122
StandardFirmata sketch, uploading to

Arduino board 54-57
testing 57-62
URL 54, 59

float data type 43
formatting tool, SD card

URL, for downloading 191
for statement 26
Fritzing

about 58
URL 72, 73
using 72, 73

functions
about 44
loop() function 45

[370]

pinMode() function 45
setup() function 45

functions, pins
analogRead() function 46
analogWrite() function 46
digitalRead() function 46
digitalWrite() function 46

G
general-purpose input/output

(GPIO) pins 174
graphical user interfaces (GUIs) 9
Grid 130
Grid geometry manager 137-139
GUI, thermostat

button interrupts, used for changing
temperature unit 185

button interrupts, used for swapping
between GUI and plot 186

button interrupts, using 185
designing, Tkinter used 181-183
percentage humidity, plotting with

matplotlib 184
pySerial, used for streaming

sensor data 181

H
hardware components, Raspberry Pi

display cable 190
keyboard 190
mouse 190
power cable 189
Raspberry Pi 189
SD card 190
USB hub (optional) 190

hardware components, Tweet-a-PowerStrip
about 347
PowerSwitch Tail 349, 350
relays 348

hardware system design, motion-triggered
LEDs

breadboard, using 73, 74
Fritzing, using 72, 73
hardware prototype, designing 74-76

help() function 159

HIH-4030 humidity sensor
using 172

home area network (HAN) 202
Homebrew

installing 16
URL 16

Hypertext Transfer Protocol (HTTP) 201

I
I2C

about 89
reference link 114

if statement 26
input/output (I/O) pins 30
installation, Arduino IDE

on Linux 33
on Mac OS X 33
on Windows 33

installation, paho-mqtt library 248
installation, pip 16
installation, PubSubClient library 245
installation, pySerial library 62
installation, Python

about 10
on Fedora/Red Hat Linux 11
on Linux 10
on Mac OS X 14
on Ubuntu 11
on Windows 11-13

installation, Python packages 17
installation, Setuptools

about 14
on Linux 15
on Mac OS X 16
on Windows 15

installation, web.py 219, 220
int data type 43
integrated circuit (IC) 112
integrated development environment

(IDE) 18, 32
inter-integrated circuit. See I2C
Internet Protocol (IP) 203
Internet of Things (IoT)

about 261
cloud applications, developing with

Python and Xively 274

[371]

custom cloud platform 288
getting started process 262, 263
hardware design 266, 267

IoT cloud platform, on EC2 instance
basic security, configuring 300, 301
basic security, testing 300, 301
creating 295, 296
Mosquitto service, testing 300
necessary packages, installing

on AWS 296, 297
project, testing on instance 301, 302
project, uploading on instance 301, 302
testing 299
virtual instance security,

configuring 297-299
IoT cloud platforms

2lemetry 267
Carriots 267, 274
ThingSpeak 267, 273
Xively 267, 268

IP address
about 203
obtaining 203
obtaining, for Linux 206, 207
obtaining, for Mac OS X 205, 206
obtaining, for Windows 204

IPAddress class 212

L
Label() widget

about 127-129, 141
used, for monitoring I/O pins 141-144

least significant bit (LSB) 116
LED

brightness, controlling with PWM 107
connections 107, 108
Python code 108, 109

libraries, Arduino IDE
about 36
URL 36

Line feed + Carriage Return (LF + CR) 65
Linux

Arduino board connection,
establishing 50, 51

Arduino IDE, installing 33
IP address, obtaining 206, 207

Python, installing 10
Setuptools, installing 15

Listbox() widget
about 141
URL 141

local area network (LAN) 202
localhost IP address 203
loop() function

about 45
using 80

M
Mac OS X

Arduino board connection,
establishing 51, 52

Arduino IDE, installing 33
IP address, obtaining 205, 206
matplotlib, configuring 156, 157
Python, installing 14
SD card, preparing 191
Setuptools, installing 16

matplotlib
about 155
configuring, on Mac OS X 156, 157
configuring, on Windows 156
installation errors, troubleshooting 157, 158
reference link 158
setting up, on Ubuntu 158
upgrading 157
URL 155, 156
used, for plotting random numbers 158-160

media access control (MAC) address 203
Message Queue Telemetry Transport.

See MQTT
monitoring station, remote home

monitoring system
Arduino sketch 319
defining 315-318

Mosquitto
about 202, 242
initialization 243, 244
setting up 242, 243
URL 242

most significant bit (MSB) 116
motion-triggered LEDs

developing 68

[372]

examples 68
hardware connections, testing 77, 78
hardware system design 71
online resources 68
project goals 68
software flow design 70, 71

motion-triggered LEDs, components
Arduino board 70
breadboard 70
computer 70
LEDs 70
PIR sensors 69
resistors 70
USB cable 70
wires 70

motion-triggered LEDs, using Arduino
sketch

coding 78, 79
custom Arduino functions, using 80, 81
developing 78
loop() function, using 80
project setup 78
setup() function, using 80
testing 81, 82
troubleshooting 82

motion-triggered LEDs, using Python
and Firmata

coding 84, 85
developing 82
project setup 82
pyFirmata methods, using 85, 86
Python executable files, using 83
Python functions, using 86
testing 87
troubleshooting 87, 88

MQTT
about 240, 241
Mosquitto 242
URL 241

MQTT Gateway
Arduino MQTT client, developing 252, 253
developing, for Arduino 251, 252
developing, Mosquitto used 254, 255
extending, web.py used 255, 256
testing 256-258

MQTT, on Arduino
Arduino MQTT client, developing 245-247

PubSubClient library, using 244
MQTT, on Python

paho-mqtt library, using 247-250

N
Nest Thermostat

URL 170
networking

fundamentals 202
home area network (HAN) 202
Internet Protocol (IP) 203
IP address 203
local area network (LAN) 202
localhost IP address 203
media access control (MAC) address 203
protocols 203
wide area network (WAN) 202

networking extensions, for Arduino
about 208
Arduino Ethernet Shield 208, 209
Arduino WiFi Shield 209
Arduino Yún 210

newline character
about 65
URL 65

New Out Of Box Software (NOOBS) 190
NumPy package

URL 156

O
open() method

modes 148
used, for manipulating files 148

operators 19, 20

P
Pack geometry manager 129, 130
paho-mqtt library

about 247
installing 248
using 248-250

passive infrared (PIR) sensor
about 68
URL 69
using 69

[373]

PEP-8
URL 20

physical systems 262
pinMode() function 45
pip

installing 16
plot() function 159
portable TFT LCD display

configuring, with Raspberry Pi OS 196, 197
connecting, GPIO used 195, 196
GUI, optimizing 197-199
using 194

potentiometer
connections 100
Python code 100-102

PowerSwitch Tail
URL 349

Processing 41
protocols 203
prototyping 90
prototyping templates, using Firmata

about 99
buzzer, using 102
DC motor, using 105
LED 107
potentiometer 99, 100
servomotors, using 109

prototyping, thermostat
about 178
Arduino sketch 178, 179
humidity sensor, interfacing 179, 180
light sensor, interfacing 180
temperature sensor, interfacing 179
troubleshooting 186, 187

prototyping, with I2C protocol
about 112-114
Arduino examples 114
BH1750 light sensor, using

Arduino 117-119
BH1750 light sensor, using PyMata

library 121, 122
PyMata library, using 119, 120
pySerial commands, using 122
TMP102 temperature sensor,

using Arduino 114-116
TMP102 temperature sensor, using

PyMata library 120, 121

PubSubClient library
installing 245
URL 245
using 244

pulse-width modulation (PWM) 31
push button switch

using 173
pyFirmata methods

exit() 98
get_firmata_version() 98
pass_time(seconds) 98
pulseIn/pulseOut 99
servo_config(pin,min_pulse=544,max_

pulse=2400,angle=0) 98
shiftIn/shiftOut 99
used, for configuring Arduino pins 93
used, for setting up Arduino board 91-93
used, for working with Arduino pins 96
working with 91

PyGTK
URL 126

PyPI
about 8
URL 8

pyplot framework
about 158
figure() function 158
show() method 160

PyQt
URL 126

pySerial commands
used, for closing port 123
used, for connecting with serial port 122
used, for flushing port to avoid buffer

overflow 123
used, for reading port 123
using 122

pySerial library
about 62
and Firmata, bridging 65, 66
example 63, 64
installing 62
URL 63

PySide
URL 126

[374]

Python
about 7
benefits 8, 9
installing 10
installing, on Fedora/Red Hat Linux 11
installing, on Linux 10
installing, on Mac OS X 14
installing, on Ubuntu 11
installing, on Windows 11-13
packages, installing 17, 18
pip, installing 16
URL 9
usage considerations 9

Python context manager
reference link 150

Python data, downloading to Xively
about 284
basic method, for retrieving data 284, 285
custom notifications, from Xively 287, 288
data retrieving, from web.py web

interface 285, 286
triggers 287

Python data, uploading to Xively
about 281
basic method, for sending data 282, 283
web interface used 283, 284

Python executable files
using 83

Python functions
def keyword 86
using 86

Python GUI
first program 127, 128
Python-Arduino project,

remaking 144-146
Tkinter 126, 127
working with 125, 126

Python programming
built-in types 19-22
comments 19
for statement 26
fundamentals 18, 19
if statement 26
operators 19, 20
program flow, controlling 25
while statement 26, 27

R
Radiobutton() widget

about 141
URL 141

Raspberry Pi
about 188, 189
configuring 189
hardware components 189
operating system, installing 189
Raspbian 189
SD card, preparing 190-192
setup process 192-194
URL 189, 190
versions 189

read() method
using 149, 150

real-time Arduino data
plotting 163-166

remote home monitoring system
about 305
cloud-based features, expanding 341, 342
control center, using 322
design methodology 306, 307
development stages, defining 315
extending 338
hardware components 313, 314
hardware enclosures, creating 342, 343
improved intelligence, for situation

awareness 342
monitoring station, Arduino used 315
multiple monitoring stations, utilizing 339
project goals 307
project overview 307
project requirements 308, 309
sensory capabilities, extending 339, 340
system architecture, designing 309, 310
testing 321, 336
troubleshooting 336-338
UX flow, defining 311, 312
UX, improving 341
web application 332

Representation State Transfer (REST) 219
RESTful web applications

architecture 236, 237
Arduino sketch 237

[375]

designing 230, 231
developing, with Arduino and Python 230
GET request, generating 231, 232
GET request, handling with web.py 233
GET request, implementing 231
POST request, generating 234, 235
POST request, handling with

web.py 235, 236
POST request, implementing 234
resource-constrained messaging protocol,

using 239, 240
web.py web application 238, 239

S
Scale() widget

about 127, 135
used, for adjusting brightness

of LED 135-137
SD card

preparing 190
preparing, from Mac OS X 191
preparing, from Ubuntu Linux 191, 192
preparing, from Windows 191
reference link 190, 192

Secure Shell (SSH) protocol 294
Serial Clock Line (SCL) 113
Serial Data Line (SDA) 113
Serial Monitor window

using 40
serial peripheral interface (SPI) 91
Server class 212
servomotors

connections 110
Python code 110, 111
using 109

setup() function 80
Setuptools

about 14
installing 14
installing, on Linux 15
installing, on Mac OS X 16
installing, on Windows 15

sketch
about 34, 35
compiling 38-40
uploading 38-40

sketchbook 34
slicing 23
StandardFirmata firmware 90
statements 44, 46
subnetwork/subnet

about 215
reference link 215

subroutines/procedures. See functions
system architecture, remote home

monitoring system
cloud services 311
control center 311
designing 309, 310
monitoring station 311

T
Templetor

about 223
URL 223

thermostat
building 169
deploying, Raspberry Pi used 187, 188
GUI, designing 181
hardware design 174-176
plot, designing 181
project background 170
project description 169, 170
project goals 170, 171
project stages 170, 171
prototyping 178
required components,

identifying 171-173
software flow, for user experience

design 176, 177
thermostat, prototyping

Arduino interrupts, using 180, 181
thermostat, using Raspberry Pi

deploying 187, 188
GUI, optimizing for TFT LCD

screen 197-199
portable TFT LCD display, using 194
TFT LCD, configuring 196, 197
TFT LCD connection, using GPIO 195, 196
troubleshooting 199, 200

thin-film transistor liquid-crystal display
(TFT LCD) 174

[376]

ThingSpeak 273
Tkinter

about 126, 127
Button() widget 127
Checkbox() widget 127
Entry() widget 127
Grid geometry manager 137-139
Label() widget 127
Pack geometry manager 129, 130
plots, integrating 166-168
Scale() widget 127
Tk() widget 127
URL 126

Tkinter class
about 143
BooleanVar() method 143
update_idletasks method 143
update method 143

Tk() widget 128, 129
TMP102 temperature sensor

interfacing, Arduino used 114-116
interfacing, PyMata library used 120, 121

transistor terminals
reference link 106

troubleshooting, Arduino board
connection 52, 53

Tweet-a-PowerStrip
about 345
Arduino code 354-356
deployment stage 352
development stage 352
hardware components 347
hardware design 353
multiple features, adding 364, 365
project overview 345
project requirements 346
Python code 357-362
Python software flow 357
smart power strip with Arduino 353
system architecture 346, 347
testing 363
troubleshooting 363
Twitter application, setting up 359-361
user experience flow 350, 351

tweets
about 345
URL 345

U
Ubuntu

matplotlib, setting up 158
Python, installing 11
SD card, preparing 191, 192

Universal Serial Bus (USB) 40
Uno board 31, 32

V
variables 41
virtual instance, on AWS EC2 service

creating 292-294
logging into 294, 295

void data type 42

W
web application, remote home

monitoring system
about 332
architecture 332, 333
Python web application, hosted on

Amazon AWS 333-335
testing 335-338

web.py
basic concepts 221
forms 224, 225
GET methods 222, 223
installing 219, 220
POST methods 222, 223
templates 223, 224
URLs, handling 222
used, for developing web applications 219
used, for implementing web

applications 220, 221
with Arduino serial interface 225-230

while statement 26, 27
wide area network (WAN) 202
Windows

Arduino board connection, establishing 52
Arduino IDE, installing 34
IP address, obtaining 204
matplotlib, configuring 156
Python, installing 11-13
SD card, preparing 191
Setuptools, installing 15

[377]

Wire library
about 114
URL 114

Wiring 41
with statement 150
World Wide Web (WWW) 230
write() method

used, for working with files 149
wxPython

URL 126

X
Xively 332
Xively, IoT cloud platforms

about 268
account, setting up 268, 269
Arduino, interfacing with 275
working with 270-273

Z
ZigBee 201

Thank you for buying
Python Programming for Arduino

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

C Programming for Arduino
ISBN: 978-1-84951-758-4 Paperback: 512 pages

Learn how to program and use Arduino boards
with a series of engaging examples, illustrating
each core concept

1.	 Use Arduino boards in your own electronic
hardware and software projects.

2.	 Sense the world by using several sensory
components with your Arduino boards.

3.	 Create tangible and reactive interfaces
with your computer.

IPython Interactive Computing
and Visualization Cookbook
ISBN: 978-1-78328-481-8 Paperback: 512 pages

Over 100 hands-on recipes to sharpen your skills in
high-performance numerical computing and data
science with Python

1.	 Leverage the new features of the IPython
Notebook for interactive web-based big data
analysis and visualization.

2.	 Become an expert in high-performance
computing and visualization for data
analysis and scientific modeling.

3.	 A comprehensive coverage of scientific
computing through many hands-on,
example-driven recipes with detailed,
step-by-step explanations.

Please check www.PacktPub.com for information on our titles

Raspberry Pi Home Automation
with Arduino
ISBN: 978-1-84969-586-2 Paperback: 176 pages

Automate your home with a set of exciting projects
for the Raspberry Pi

1.	 Learn how to dynamically adjust
your living environment with detailed
step-by-step examples.

2.	 Discover how you can utilize the combined
power of the Raspberry Pi and Arduino for
your own projects.

3.	 Revolutionize the way you interact with
your home on a daily basis.

BeagleBone Robotic Projects
ISBN: 978-1-78355-932-9 Paperback: 244 pages

Create complex and exciting robotic projects with the
BeagleBone Black

1.	 Get to grips with robotic systems.

2.	 Communicate with your robot and teach
it to detect and respond to its environment.

3.	 Develop walking, rolling, swimming,
and flying robots.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with
Python and Arduino
	Introduction to Python
	Why we use Python
	When do we use other languages

	Installing Python and Setuptools
	Installing Python
	Linux
	Ubuntu
	Fedora and Red Hat

	Windows
	Mac OS X
	Installing Setuptools
	Linux
	Windows
	Mac OS X

	Installing pip
	Installing Python packages

	The fundamentals of Python programming
	Python operators and built-in types
	Operators
	Built-in types
	Data structures
	Lists
	Tuples
	Sets
	Dictionaries

	Controlling the flow of your program
	The if statement
	The for statement
	The while statement

	Built-in functions
	Conversions

	Introduction to Arduino
	History
	Why Arduino?
	Arduino variants
	The Arduino Uno board
	Installing the Arduino IDE
	Linux
	Mac OS X
	Windows

	Getting started with the Arduino IDE
	What is an Arduino sketch?
	Working with libraries
	Using Arduino examples
	Compiling and uploading sketches
	Using the Serial Monitor window

	Introduction to Arduino programming
	Comments
	Variables
	Constants
	Data types
	Conversions
	Functions and statements
	The setup() function
	The loop() function
	The pinMode() function
	Working with pins
	Statements

	Summary

	Chapter 2: Working with the
Firmata Protocol and the pySerial Library
	Connecting the Arduino board
	Linux
	Mac OS X
	Windows
	Troubleshooting

	Introducing the Firmata protocol
	What is Firmata?
	Uploading a Firmata sketch to the
Arduino board
	Testing the Firmata protocol

	Getting started with pySerial
	Installing pySerial
	Playing with a pySerial example

	Bridging pySerial and Firmata
	Summary

	Chapter 3: The First Project – Motion-triggered LEDs
	Motion-triggered LEDs – the project description
	The project goal
	The list of components
	The software flow design
	The hardware system design
	Introducing Fritzing – a hardware prototyping software
	Working with the breadboard
	Designing the hardware prototype

	Testing hardware connections

	Method 1 – using a standalone Arduino sketch
	Project setup
	The Arduino sketch
	The setup() function
	The loop() function

	Working with custom Arduino functions
	Testing
	Troubleshooting

	Method 2 – using Python and Firmata
	The project setup
	Working with Python executable files
	The Python code
	Working with the pyFirmata methods
	Working with the Python functions
	Testing
	Troubleshooting

	Summary

	Chapter 4: Diving into Python-Arduino Prototyping
	Prototyping
	Working with pyFirmata methods
	Setting up the Arduino board
	Configuring Arduino pins
	The direct method
	Assigning pin modes

	Working with pins
	Reporting data
	Manual operations

	Additional functions
	Upcoming functions

	Prototyping templates using Firmata
	Potentiometer – continuous observation from an analog input
	Connections
	The Python code

	Buzzer – generating sound alarm pattern
	Connections
	The Python code

	DC motor – controlling motor speed using PWM
	Connections
	The Python code

	LED – controlling LED brightness using PWM
	Connections
	The Python code

	Servomotor – moving the motor to certain angle
	Connections
	The Python code

	Prototyping with the I2C protocol
	Arduino examples for I2C interfacing
	Arduino coding for the TMP102 temperature sensor
	Arduino coding for the BH1750 light sensor

	PyMata for quick I2C prototyping
	Interfacing TMP102 using PyMata
	Interfacing BH1750 using PyMata

	Useful pySerial commands
	Connecting with the serial port
	Reading a line from the port
	Flushing the port to avoid buffer overflow
	Closing the port

	Summary

	Chapter 5: Working with the Python GUI
	Learning Tkinter for GUI design
	Your first Python GUI program
	The root widget Tk() and the top-level methods
	The Label() widget
	The Pack geometry manager

	The Button() widget – interfacing GUI with Arduino and LEDs
	The Entry() widget – providing manual user inputs
	The Scale() widget – adjusting the brightness of an LED
	The Grid geometry manager
	The Checkbutton() widget – selecting LEDs
	The Label() widget – monitoring I/O pins
	Remaking your first Python-Arduino project with a GUI
	Summary

	Chapter 6: Storing and Plotting
Arduino Data
	Working with files in Python
	The open() method
	The write() method
	The close() method
	The read() method
	The with statement – Python context manager

	Using CSV files to store data
	Storing Arduino data in a CSV file
	Getting started with matplotlib
	Configuring matplotlib on Windows
	Configuring matplotlib on Mac OS X
	Upgrading matplotlib
	Troubleshooting installation errors

	Setting up matplotlib on Ubuntu

	Plotting random numbers using matplotlib
	Plotting data from a CSV file
	Plotting real-time Arduino data
	Integrating plots in the Tkinter window
	Summary

	Chapter 7: The Midterm Project – a Portable DIY Thermostat
	Thermostat – the project description
	Project background
	Project goals and stages
	The list of required components
	Hardware design
	Software flow for user experience design

	Stage 1 – prototyping the thermostat
	The Arduino sketch for the thermostat
	Interfacing the temperature sensor
	Interfacing the humidity sensor
	Interfacing the light sensor
	Using Arduino interrupts

	Designing the GUI and plot in Python
	Using pySerial to stream sensor data in your Python program
	Designing the GUI using Tkinter
	Plotting percentage humidity using matplotlib
	Using button interrupts to control the parameters

	Troubleshooting

	Stage 2 – using Raspberry Pi for the deployable thermostat
	What is a Raspberry Pi?
	Installing the operating system and configuring Raspberry Pi
	What do you need to begin using the Raspberry Pi?
	Preparing an SD card
	The Raspberry Pi setup process

	Using a portable TFT LCD display with Raspberry Pi
	Connecting the TFT LCD using GPIO
	Configuring the TFT LCD with the Raspberry Pi OS

	Optimizing the GUI for the TFT LCD screen
	Troubleshooting

	Summary

	Chapter 8: Introduction to Arduino Networking
	Arduino and the computer networking
	Networking fundamentals
	Obtaining the IP address of your computer
	Windows
	Mac OS X
	Linux

	Networking extensions for Arduino
	Arduino Ethernet Shield
	Arduino WiFi Shield
	Arduino Yún

	Arduino Ethernet library
	The Ethernet class
	The IPAddress class
	The Server class
	The Client class

	Exercise 1 – a web server, your first Arduino network program

	Developing web applications using Python
	Python web framework – web.py
	Installing web.py
	Your first Python web application

	Essential web.py concepts for developing complex web applications
	URL handling
	The GET and POST methods
	Templates
	Forms

	Exercise 2 – playing with web.py concepts using the Arduino serial interface

	RESTful web applications with Arduino and Python
	Designing REST-based Arduino applications
	Working with the GET request from Arduino
	The Arduino code to generate the GET request
	The HTTP server using web.py to handle the GET request

	Working with the POST request from Arduino
	The Arduino code to generate the POST request
	The HTTP server using web.py to handle the POST request

	Exercise 3 – a RESTful Arduino web application
	The Arduino sketch for the exercise
	The web.py application to support REST requests

	Why do we need a resource-constrained messaging protocol?

	MQTT – A lightweight messaging protocol
	Introduction to MQTT
	Mosquitto – an open source MQTT broker
	Setting up Mosquitto
	Getting familiar with Mosquitto

	Getting started with MQTT on Arduino and Python
	MQTT on Arduino using the PubSubClient library
	Installing the PubSubClient library
	Developing the Arduino MQTT client

	MQTT on Python using paho-mqtt
	Installing paho-mqtt
	Using the paho-mqtt Python library

	Exercise 4 – MQTT Gateway for Arduino
	Developing Arduino as the MQTT client
	Developing the MQTT Gateway using Mosquitto
	Extending the MQTT Gateway using web.py
	Testing your Mosquitto Gateway

	Summary

	Chapter 9: Arduino and the Internet
of Things
	Getting started with the IoT
	Architecture of IoT web applications
	Hardware design

	The IoT cloud platforms
	Xively – a cloud platform for the IoT
	Setting up an account on Xively
	Working with Xively

	Alternative IoT platforms
	ThingSpeak
	Carriots

	Developing cloud applications using Python and Xively
	Interfacing Arduino with Xively
	Uploading Arduino data to Xively
	Downloading data to Arduino from Xively
	Advanced code to upload and download data using Arduino

	Python – uploading data to Xively
	The basic method for sending data
	Uploading data using a web interface based on
web.py

	Python – downloading data from Xively
	The basic method for retrieving data from Xively
	Retrieving data from the web.py web interface
	Triggers – custom notifications from Xively

	Your own cloud platform for the IoT
	Getting familiar with the Amazon AWS platform
	Setting up an account on AWS
	Creating a virtual instance on the AWS EC2 service
	Logging in to your virtual instance

	Creating an IoT platform on the EC2 instance
	Installing the necessary packages on AWS
	Configuring the security of the virtual instance
	Testing your cloud platform

	Summary

	Chapter 10: The Final Project – a Remote Home Monitoring System
	The design methodology for IoT projects
	Project overview
	The project goals
	The project requirements
	Designing system architecture
	The monitoring station
	The control center
	The cloud services

	Defining UX flow
	The list of required components
	Defining the project development stages

	Stage 1 – a monitoring station
using Arduino
	Designing the monitoring station
	The Arduino sketch for the monitoring station
	Publishing sensor information
	Subscribing to actuator actions
	Programming an interrupt to handle the press of
a button

	Testing

	Stage 2 – a control center using Python and the Raspberry Pi
	The control center architecture
	The Python code for the control center
	Creating the GUI using Tkinter
	Communicating with the Mosquitto broker
	Calculating the system's status and situation awareness
	Communicating with Xively
	Checking and updating the buzzer's status

	Testing the control center with the monitoring station
	Setting up the control center on the Raspberry Pi

	Stage 3 – a web application using Xively, Python, and Amazon cloud service
	Architecture of the cloud services
	Python web application hosted on
Amazon AWS
	Testing the web application

	Testing and troubleshooting
	Extending your remote home monitoring system
	Utilizing multiple monitoring stations
	Extending sensory capabilities
	Improving UX
	Expanding cloud-based features
	Improved intelligence for situation awareness
	Creating an enclosure for hardware components

	Summary

	Chapter 11: Tweet-a-PowerStrip
	Project overview
	Project requirements
	System architecture
	Required hardware components
	Relays
	PowerSwitch Tail

	User experience flow
	Development and deployment stages

	Stage 1 – a smart power strip with Arduino and relays
	Hardware design
	The Arduino code

	Stage 2 – the Python code to process tweets
	Python software flow
	Setting up the Twitter application
	The Python code

	Testing and troubleshooting
	Extending the project with additional features
	Summary

	Index

