

Python High Performance
Programming

Boost the performance of your Python programs
using advanced techniques

Gabriele Lanaro

 BIRMINGHAM - MUMBAI

Python High Performance Programming

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2013

Production Reference: 1171213

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-845-8

www.packtpub.com

Cover Image by Gagandeep Sharma (er.gagansharma@gmail.com)

Credits

Author
Gabriele Lanaro

Reviewers
Daniel Arbuckle

Mike Driscoll

Albert Lukaszewski

Acquisition Editors
Owen Roberts

Harsha Bharwani

Commissioning Editor
Shaon Basu

Technical Editors
Akashdeep Kundu

Faisal Siddiqui

Project Coordinator
Sherin Padayatty

Proofreader
Linda Morris

Indexer
Rekha Nair

Production Coordinators
Pooja Chiplunkar

Manu Joseph

Cover Work
Pooja Chiplunkar

About the Author

Gabriele Lanaro is a PhD student in Chemistry at the University of British
Columbia, in the field of Molecular Simulation. He writes high performance
Python code to analyze chemical systems in large-scale simulations. He is the
creator of Chemlab—a high performance visualization software in Python—and
emacs-for-python—a collection of emacs extensions that facilitate working with
Python code in the emacs text editor. This book builds on his experience in
writing scientific Python code for his research and personal projects.

I want to thank my parents for their huge, unconditional love and
support. My gratitude cannot be expressed by words but I hope
that I made them proud of me with this project.

I would also thank the Python community for producing and
maintaining a massive quantity of high-quality resources made
available for free. Their extraordinary supportive and compassionate
attitude really fed my passion for this amazing technology.

A special thanks goes to Hessam Mehr for reviewing my drafts,
testing the code and providing extremely valuable feedback. I would
also like to thank my roommate Kaveh for being such an awesome
friend and Na for bringing me chocolate bars during rough times.

About the Reviewers

Dr. Daniel Arbuckle is a published researcher in the fields of robotics and
nanotechnology, as well as a professional Python programmer. He is the author
of Python Testing: Beginner's Guide from Packt Publishing and one of the authors
of Morphogenetic Engineering from Springer-Verlag.

Mike Driscoll has been programming in Python since Spring 2006. He enjoys
writing about Python on his blog at http://www.blog.pythonlibrary.org/.
Mike also occasionally writes for the Python Software Foundation, i-Programmer,
and Developer Zone. He enjoys photography and reading a good book. Mike has
also been a technical reviewer for Python 3 Object Oriented Programming, Python
2.6 Graphics Cookbook, and Tkinter GUI Application Development Hotshot.

I would like to thank my beautiful wife, Evangeline, for always
supporting me. I would also like to thank friends and family for
all that they do to help me. And I would like to thank Jesus Christ
for saving me.

Albert Lukaszewski is a software consultant and the author of MySQL for
Python. He has programmed computers for nearly 30 years. He specializes in
high-performance Python implementations of network and database services.
He has designed and developed Python solutions for a wide array of industries
including media, mobile, publishing, and cinema. He lives with his family in
southeast Scotland.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents
Preface 1
Chapter 1: Benchmarking and Profiling 7

Designing your application 7
Writing tests and benchmarks 13

Timing your benchmark 15
Finding bottlenecks with cProfile 17
Profile line by line with line_profiler 21
Optimizing our code 23
The dis module 25
Profiling memory usage with memory_profiler 26
Performance tuning tips for pure Python code 28
Summary 30

Chapter 2: Fast Array Operations with NumPy 31
Getting started with NumPy 31

Creating arrays 32
Accessing arrays 34
Broadcasting 37
Mathematical operations 40
Calculating the Norm 41

Rewriting the particle simulator in NumPy 41
Reaching optimal performance with numexpr 45
Summary 47

Table of Contents

[ii]

Chapter 3: C Performance with Cython 49
Compiling Cython extensions 49
Adding static types 52

Variables 52
Functions 54
Classes 55

Sharing declarations 56
Working with arrays 58

C arrays and pointers 58
NumPy arrays 60
Typed memoryviews 61

Particle simulator in Cython 63
Profiling Cython 67
Summary 70

Chapter 4: Parallel Processing 71
Introduction to parallel programming 72
The multiprocessing module 74

The Process and Pool classes 74
Monte Carlo approximation of pi 77
Synchronization and locks 80

IPython parallel 82
Direct interface 83
Task-based interface 87

Parallel Cython with OpenMP 88
Summary 91

Index 93

Preface
Python is a programming language renowned for its simplicity, elegance, and
the support of an outstanding community. Thanks to the impressive amount
of high-quality third-party libraries, Python is used in many domains.

Low-level languages such as C, C++, and Fortran are usually preferred in
performance-critical applications. Programs written in those languages
perform extremely well, but are hard to write and maintain.

Python is an easier language to deal with and it can be used to quickly write
complex applications. Thanks to its tight integration with C, Python is able to
avoid the performance drop associated with dynamic languages. You can use
blazing fast C extensions for performance-critical code and retain all the
convenience of Python for the rest of your application.

In this book, you will learn, in a step-by-step method how to find and speedup
the slow parts of your programs using basic and advanced techniques.

The style of the book is practical; every concept is explained and illustrated with
examples. This book also addresses common mistakes and teaches how to avoid
them. The tools used in this book are quite popular and battle-tested; you can be
sure that they will stay relevant and well-supported in the future.

This book starts from the basics and builds on them, therefore, I suggest you
to move through the chapters in order.

And don't forget to have fun!

Preface

[2]

What this book covers
Chapter 1, Benchmarking and Profiling shows you how to find the parts of your
program that need optimization. We will use tools for different use cases and
explain how to analyze and interpret profiling statistics.

Chapter 2, Fast Array Operations with NumPy is a guide to the NumPy package.
NumPy is a framework for array calculations in Python. It comes with a clean
and concise API, and efficient array operations.

Chapter 3, C Performance with Cython is a tutorial on Cython: a language that acts
as a bridge between Python and C. Cython can be used to write code using a
superset of the Python syntax and to compile it to obtain efficient C extensions.

Chapter 4, Parallel Processing is an introduction to parallel programming. In
this chapter, you will learn how parallel programming is different from serial
programming and how to parallelize simple problems. We will also explain
how to use multiprocessing, IPython.parallel and cython.parallel to
write code for multiple cores.

What you need for this book
This book requires a Python installation. The examples work for both Python 2.7
and Python 3.3 unless indicated otherwise.

In this book, we will make use of some popular Python packages:

• NumPy (Version 1.7.1 or later): This package is downloadable from the
official website (http://www.scipy.org/scipylib/download.html)
and available in most of the Linux distributions

• Cython (Version 0.19.1 or later): Installation instructions are present in the
official website (http://docs.cython.org/src/quickstart/install.
html); notice that you also need a C compiler, such as GCC (GNU Compiler
Collection), to compile your C extensions

• IPython (Version 0.13.2 or later): Installation instructions are present in the
official website (http://ipython.org/install.html)

The book was written and tested on Ubuntu 13.10. The examples will likely run on
Mac OS X with little or no changes.

My suggestion for Windows users is to install the Anaconda Python distribution
(https://store.continuum.io/cshop/anaconda/), which comes with a complete
environment suitable for scientific programming.

Preface

[3]

A convenient alternative is to use the free service wakari.io: a cloud-based Linux
and Python environment that includes the required packages with their tools and
utilities. No setup is required.

In Chapter 1, Benchmarking and Profiling, we will use KCachegrind (http://
sourceforge.net/projects/kcachegrind/), which is available for Linux.
KCachegrind has also a port for Windows—QcacheGrind—which is also installable
from source on Mac OS X.

Who this book is for
This book is for intermediate to advanced Python programmers who develop
performance-critical applications. As most of the examples are taken from scientific
applications, the book is a perfect match for scientists and engineers looking to
speed up their numerical codes.

However, the scope of this book is broad and the concepts can be applied to any
domain. Since the book addresses both basic and advanced topics, it contains
useful information for programmers with different Python proficiency levels.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The plot function included in matplotlib can display our particles as points
on a Cartesian grid and the FuncAnimation class can animate the evolution of
our particles over time."

A block of code is set as follows:

from matplotlib import pyplot as plt
from matplotlib import animation

def visualize(simulator):

 X = [p.x for p in simulator.particles]
 Y = [p.y for p in simulator.particles]

Preface

[4]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

In [1]: import purepy
In [2]: %timeit purepy.loop()
100 loops, best of 3: 8.26 ms per loop
In [3]: %timeit purepy.comprehension()
100 loops, best of 3: 5.39 ms per loop
In [4]: %timeit purepy.generator()
100 loops, best of 3: 5.07 ms per loop

Any command-line input or output is written as follows:

$ time python simul.py # Performance Tuned

real 0m0.756s

user 0m0.714s

sys 0m0.036s

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes, for example, appear in the text like this: "You
can navigate to the Call Graph or the Caller Map tabs by double-clicking on the
rectangles."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[5]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Benchmarking and Profiling
Recognizing the slow parts of your program is the single most important task when it
comes to speeding up your code. In most cases, the bottlenecks account for a very small
fraction of the program. By specifically addressing those critical spots you can focus on
the parts that need improvement without wasting time in micro-optimizations.

Profiling is the technique that allows us to pinpoint the bottlenecks. A profiler
is a program that runs the code and observes how long each function takes to
run, detecting the slow parts of the program. Python provides several tools to
help us find those bottlenecks and navigate the performance metrics. In this
chapter, we will learn how to use the standard cProfile module, line_profiler
and memory_profiler. We will also learn how to interpret the profiling results
using the program KCachegrind.

You may also want to assess the total execution time of your program and see how
it is affected by your changes. We will learn how to write benchmarks and how to
accurately time your programs.

Designing your application
When you are designing a performance-intensive program, the very first step is to
write your code without having optimization in mind; quoting Donald Knuth:

Premature optimization is the root of all evil.

In the early development stages, the design of the program can change quickly,
requiring you to rewrite and reorganize big chunks of code. By testing different
prototypes without bothering about optimizations, you learn more about your
program, and this will help you make better design decisions.

Benchmarking and Profiling

[8]

The mantras that you should remember when optimizing your code, are as follows:

• Make it run: We have to get the software in a working state, and be sure that
it produces the correct results. This phase serves to explore the problem that
we are trying to solve and to spot major design issues in the early stages.

• Make it right: We want to make sure that the design of the program is solid.
Refactoring should be done before attempting any performance optimization.
This really helps separate the application into independent and cohesive
units that are easier to maintain.

• Make it fast: Once our program is working and has a good design we want
to optimize the parts of the program that are not fast enough. We may also
want to optimize memory usage if that constitutes an issue.

In this section we will profile a test application—a particle simulator. The simulator
is a program that takes some particles and evolves them over time according to a
set of laws that we will establish. Those particles can either be abstract entities or
correspond to physical objects. They can be, for example, billiard balls moving on
a table, molecules in gas, stars moving through space, smoke particles, fluids in a
chamber, and so on.

Those simulations are useful in fields such as Physics, Chemistry, and Astronomy,
and the programs used to simulate physical systems are typically performance-
intensive. In order to study realistic systems it's often necessary to simulate the
highest possible number of bodies.

In our first example, we will simulate a system containing particles that constantly
rotate around a central point at various speeds, like the hands of a clock.

The necessary information to run our simulation will be the starting positions of
the particles, the speed, and the rotation direction. From these elements, we have
to calculate the position of the particle in the next instant of time.

Chapter 1

[9]

(vx, vy)

(x, y)

(0, 0)

The basic feature of a circular motion is that the particles always move
perpendicularly to the direction connecting the particle and the center, as shown in
the preceding image. To move the particle we simply change the position by taking a
series of very small steps in the direction of motion, as shown in the following figure:

Benchmarking and Profiling

[10]

We will start by designing the application in an object-oriented way. According to
our requirements, it is natural to have a generic Particle class that simply stores
the particle position (x, y) and its angular speed:

class Particle:
 def __init__(self, x, y, ang_speed):
 self.x = x
 self.y = y
 self.ang_speed = ang_speed

Another class, called ParticleSimulator will encapsulate our laws of motion and
will be responsible for changing the positions of the particles over time. The __
init__ method will store a list of Particle instances and the evolve method will
change the particle positions according to our laws.

We want the particles to rotate around the point (x, y), which, here, is equal to (0, 0),
at constant speed. The direction of the particles will always be perpendicular to the
direction from the center (refer to the first figure of this chapter). To find this vector

v= v ,v()
x y

 (corresponding to the Python variables v_x and v_y) it is sufficient to use these
formulae:

v =-y
x

/ x +y
2 2

v =x
y

/ x +y
2 2

If we let one of our particles move, after a certain time dt, it will follow a circular path,
reaching another position. To let the particle follow that trajectory we have to divide
the time interval dt into very small time steps where the particle moves tangentially
to the circle. The final result, is just an approximation of a circular motion and, in fact,
it's similar to a polygon. The time steps should be very small, otherwise the particle
trajectory will diverge quickly, as shown in the following figure:

Chapter 1

[11]

In a more schematic way, to calculate the particle position at time dt we have to carry
out the following steps:

1. Calculate the direction of motion: v_x, v_y.
2. Calculate the displacement (d_x, d_y) which is the product of time and speed

and follows the direction of motion.
3. Repeat steps 1 and 2 for enough time steps to cover the total time dt.

The following code shows the full ParticleSimulator implementation:

class ParticleSimulator:

 def __init__(self, particles):
 self.particles = particles

 def evolve(self, dt):
 timestep = 0.00001
 nsteps = int(dt/timestep)

 for i in range(nsteps):
 for p in self.particles:

 # 1. calculate the direction
 norm = (p.x**2 + p.y**2)**0.5
 v_x = (-p.y)/norm
 v_y = p.x/norm

 # 2. calculate the displacement
 d_x = timestep * p.ang_speed * v_x
 d_y = timestep * p.ang_speed * v_y

 p.x += d_x
 p.y += d_y
 # 3. repeat for all the time steps

Benchmarking and Profiling

[12]

We can use the matplotlib library to visualize our particles. This library is not
included in the Python standard library. To install it, you can follow the instructions
included in the official documentation at:

http://matplotlib.org/users/installing.html

Alternatively, you can use the Anaconda Python distribution
(https://store.continuum.io/cshop/anaconda/)
that includes matplotlib and most of the other third-party
packages used in this book. Anaconda is free and available for
Linux, Windows, and Mac.

The plot function included in matplotlib can display our particles as points on
a Cartesian grid and the FuncAnimation class can animate the evolution of our
particles over time.

The visualize function accomplishes this by taking the particle simulator and
displaying the trajectory in an animated plot.

The visualize function is structured as follows:

• Setup the axes and display the particles as points using the plot function
• Write an initialization function (init) and an update function

(animate) that changes the x, y coordinates of the data points using the
line.set_data method

• Create a FuncAnimation instance passing the functions and some parameters
• Run the animation with plt.show()

The complete implementation of the visualize function is as follows:
from matplotlib import pyplot as plt
from matplotlib import animation

def visualize(simulator):

 X = [p.x for p in simulator.particles]
 Y = [p.y for p in simulator.particles]

 fig = plt.figure()
 ax = plt.subplot(111, aspect='equal')
 line, = ax.plot(X, Y, 'ro')

 # Axis limits
 plt.xlim(-1, 1)
 plt.ylim(-1, 1)

Chapter 1

[13]

 # It will be run when the animation starts
 def init():
 line.set_data([], [])
 return line,

 def animate(i):
 # We let the particle evolve for 0.1 time units
 simulator.evolve(0.01)
 X = [p.x for p in simulator.particles]
 Y = [p.y for p in simulator.particles]

 line.set_data(X, Y)
 return line,

 # Call the animate function each 10 ms
 anim = animation.FuncAnimation(fig, animate,
 init_func=init, blit=True,# Efficient animation
 interval=10)
 plt.show()

Finally, we define a small test function—test_visualize—that animates a
system of three particles rotating in different directions. Note that the third particle
completes a round three times faster than the others:

def test_visualize():
 particles = [Particle(0.3, 0.5, +1),
 Particle(0.0, -0.5, -1),
 Particle(-0.1, -0.4, +3)]

 simulator = ParticleSimulator(particles)
 visualize(simulator)

if __name__ == '__main__':
 test_visualize()

Writing tests and benchmarks
Now that we have a working simulator, we can start measuring our performance
and tuning-up our code, so that our simulator can handle as many particles
as possible. The first step in this process is to write a test and a benchmark.

We need a test that checks whether the results produced by the simulation are
correct or not. In the optimization process we will rewrite the code to try different
solutions; by doing so we may easily introduce bugs. Maintaining a solid test suite
is essential to avoid wasting time on broken code.

Benchmarking and Profiling

[14]

Our test will take three particle and let the system evolve for 0.1 time units. We
then compare our results, up to a certain precision, with those from a reference
implementation:

def test():
 particles = [Particle(0.3, 0.5, +1),
 Particle(0.0, -0.5, -1),
 Particle(-0.1, -0.4, +3)]

 simulator = ParticleSimulator(particles)

 simulator.evolve(0.1)

 p0, p1, p2 = particles

 def fequal(a, b):
 return abs(a - b) < 1e-5

 assert fequal(p0.x, 0.2102698450356825)
 assert fequal(p0.y, 0.5438635787296997)

 assert fequal(p1.x, -0.0993347660567358)
 assert fequal(p1.y, -0.4900342888538049)

 assert fequal(p2.x, 0.1913585038252641)
 assert fequal(p2.y, -0.3652272210744360)

if __name__ == '__main__':
 test()

We also want to write a benchmark that can measure the performance of our
application. This will provide an indication of how much we have improved
over the previous implementation.

In our benchmark we instantiate 100 Particle objects with random coordinates
and angular velocity, and feed them to a ParticleSimulator class. We then let
the system evolve for 0.1 time units:

from random import uniform

def benchmark():
 particles = [Particle(uniform(-1.0, 1.0),
 uniform(-1.0, 1.0),
 uniform(-1.0, 1.0))
 for i in range(1000)]

 simulator = ParticleSimulator(particles)
 simulator.evolve(0.1)

if __name__ == '__main__':
 benchmark()

Chapter 1

[15]

Timing your benchmark
You can easily measure the execution time of any process from the command line by
using the Unix time command:

$ time python simul.py

real 0m1.051s

user 0m1.022s

sys 0m0.028s

The time command is not available for Windows, but can be found
in the cygwin shell that you can download from the official website
http://www.cygwin.com/.

By default, time shows three metrics:

• real: The actual time spent in running the process from start to finish, as if it
was measured by a human with a stopwatch

• user: The cumulative time spent by all the CPUs during the computation
• sys: The cumulative time spent by all the CPUs during system-related tasks

such as memory allocation

Notice that sometimes user + sys might be greater than real, as multiple processors
may work in parallel.

time also offers several formatting options; for an overview you can
explore its manual (by using the man time command). If you want a
summary of all the metrics available, you can use the -v option.

The Unix time command is a good way to benchmark your program. To achieve
a more accurate measurement, the benchmark should run long enough (in the
order of seconds) so that the setup and tear-down of the process become small,
compared to the execution time. The user metric is suitable as a monitor for the
CPU performance, as the real metric includes also the time spent in other
processes or waiting for I/O operations.

Another useful program to time Python scripts is the timeit module. This module
runs a snippet of code in a loop for n times and measures the time taken. Then, it
repeats this operation r times (by default the value of r is 3) and takes the best of
those runs. Because of this procedure, timeit is suitable to accurately time small
statements in isolation.

Benchmarking and Profiling

[16]

The timeit module can be used as a Python module, from the command line, or
from IPython.

IPython is a Python shell designed for interactive usage. It boosts tab completion and
many utilities to time, profile, and debug your code. We will make use of this shell to
try out snippets throughout the book. The IPython shell accepts magic commands—
statements that start with a % symbol—that enhance the shell with special behaviors.
Commands that start with %% are called cell magics, and these commands can be
applied on multi-line snippets (called cells).

IPython is available on most Linux distributions and is included in Anaconda.
You can follow the installation instructions in the official documentation at:

http://ipython.org/install.html

You can use IPython as a regular Python shell (ipython) but it is
also available in a Qt-based version (ipython qtconsole) and
as a powerful browser-based interface (ipython notebook).

In IPython and command line interfaces it is possible to specify the number of
loops or repetitions with the options -n and -r, otherwise they will be determined
automatically. When invoking timeit from the command line, you can also give a
setup code that will run before executing the statement in a loop.

In the following code we show how to use timeit from IPython, from the command
line and as a Python module:

IPython Interface
$ ipython
In [1]: from simul import benchmark
In [2]: %timeit benchmark()
1 loops, best of 3: 782 ms per loop

Command Line Interface
$ python -m timeit -s 'from simul import benchmark' 'benchmark()'
10 loops, best of 3: 826 msec per loop

Python Interface
put this function into the simul.py script

import timeit
result = timeit.timeit('benchmark()',
 setup='from __main__ import
 benchmark', number=10)
result is the time (in seconds) to run the whole loop

Chapter 1

[17]

result = timeit.repeat('benchmark()', setup='from __main__ import
 benchmark', number=10, repeat=3)
result is a list containing the time of each repetition
 (repeat=3 in this case)

Notice that while the command line and IPython interfaces are automatically
determining a reasonable value for n, the Python interface requires you to explicitly
pass it as the number argument.

Finding bottlenecks with cProfile
After assessing the execution time of the program we are ready to identify the parts
of the code that need performance tuning. Those parts are typically quite small,
compared to the size of the program.

Historically, there are three different profiling modules in Python's standard library:

• The profile module: This module is written in pure Python and adds a
significant overhead to the program execution. Its presence in the standard
library is due mainly to its extendibility.

• The hotshot module: A C module designed to minimize the profiling
overhead. Its use is not recommended by the Python community and it is not
available in Python 3.

• The cProfile module: The main profiling module, with an interface similar
to profile. It has a small overhead and it is suitable as a general purpose
profiler.

We will see how to use the cProfile module in two different ways:

• From the command line
• From IPython

In order to use cProfile, no change in the code is required, it can be executed
directly on an existing Python script or function.
You can use cProfile from the command line in this way:
$ python -m cProfile simul.py

This will print a long output containing several profiling metrics. You can use the
option -s to sort the output by a certain metric:
$ python -m cProfile -s tottime simul.py

You can save an output file in a format readable by the stats module and other tools
by passing the -o option:
$ python -m cProfile -o prof.out simul.py

Benchmarking and Profiling

[18]

You can also profile interactively from IPython. The %prun magic command lets you
profile a function using cProfile:

In [1]: from simul import benchmark
In [2]: %prun benchmark()
 707 function calls in 0.793 seconds

 Ordered by: internal time

 ncalls tottime percall cumtime percall
filename:lineno(function)
 1 0.792 0.792 0.792 0.792 simul.py:12(evolve)
 1 0.000 0.000 0.000 0.000
 simul.py:100(<listcomp>)
 300 0.000 0.000 0.000 0.000
 random.py:331(uniform)
 100 0.000 0.000 0.000 0.000 simul.py:2(__init__)
 1 0.000 0.000 0.793 0.793 {built-in method
 exec}
 300 0.000 0.000 0.000 0.000 {method 'random' of
 '_random.Random' objects}
 1 0.000 0.000 0.793 0.793
 simul.py:99(benchmark)
 1 0.000 0.000 0.793 0.793 <string>:1(<module>)
 1 0.000 0.000 0.000 0.000 simul.py:9(__init__)
 1 0.000 0.000 0.000 0.000 {method 'disable' of
'_lsprof.Profiler' objects}

The cProfile output is divided into five columns:

• ncalls: The number of times the function was called.
• tottime: The total time spent in the function without taking into account the

calls to other functions.
• cumtime: The time spent in the function including other function calls.
• percall: The time spent for a single call of the function—it can be obtained

by dividing the total or cumulative time by the number of calls.
• filename:lineno: The filename and corresponding line number. This

information is not present when calling C extensions modules.

The most important metric is tottime, the actual time spent in the function body
excluding sub-calls. In our case, the largest portion of time is spent in the evolve
function. We can imagine that the loop is the section of the code that needs
performance tuning.

Chapter 1

[19]

Analyzing data in a textual way can be daunting for big programs with a lot of calls
and sub-calls. Some graphic tools aid the task by improving the navigation with an
interactive interface.

KCachegrind is a GUI (Graphical User Interface) useful to analyze the profiling
output of different programs.

KCachegrind is available in Ubuntu 13.10 official repositories. The Qt
port, QCacheGrind can be downloaded for Windows from the following
web page:
http://sourceforge.net/projects/qcachegrindwin/

Mac users can compile QCacheGrind using Mac Ports (http://www.
macports.org/) by following the instructions present in the blog post
at this link:
http://blogs.perl.org/users/rurban/2013/04/install-
kachegrind-on-macosx-with-ports.html

KCachegrind can't read directly the output files produced by cProfile.
Luckily, the pyprof2calltree third-party Python module is able to
convert the cProfile output file into a format readable by KCachegrind.
You can install pyprof2calltree from source (https://pypi.
python.org/pypi/pyprof2calltree/) or from the Python Package
Index (https://pypi.python.org/).

To best show the KCachegrind features we will use another example with a more
diversified structure. We define a recursive function factorial, and two other
functions that use factorial, and they are taylor_exp and taylor_sin. They
represent the polynomial coefficients of the Taylor approximations of exp(x) and
sin(x):

def factorial(n):
 if n == 0:
 return 1.0
 else:
 return float(n) * factorial(n-1)

def taylor_exp(n):
 return [1.0/factorial(i) for i in range(n)]

def taylor_sin(n):
 res = []
 for i in range(n):
 if i % 2 == 1:

Benchmarking and Profiling

[20]

 res.append((-1)**((i-1)/2)/float(factorial(i)))
 else:
 res.append(0.0)
 return res

def benchmark():
 taylor_exp(500)
 taylor_sin(500)

if __name__ == '__main__':
 benchmark()

We need to first generate the cProfile output file:

$ python -m cProfile -o prof.out taylor.py

Then, we can convert the output file with pyprof2calltree and launch
KCachegrind:

$ pyprof2calltree -i prof.out -o prof.calltree

$ kcachegrind prof.calltree # or qcachegrind prof.calltree

Chapter 1

[21]

The preceding image is a screenshot of the KCachegrind user interface. On the left
we have an output fairly similar to cProfile. The actual column names are slightly
different: Incl. translates to cProfile module's cumtime; Self translates to tottime.
The values are given in percentages by clicking on the Relative button on the menu
bar. By clicking on the column headers you can sort by the corresponding property.

On the top right, a click on the Callee Map tab contains a diagram of the function
costs. In the diagram, each function is represented by a rectangle and the time
percentage spent by the function is proportional to the area of the rectangle.
Rectangles can contain sub-rectangles that represent sub-calls to other functions. In
this case, we can easily see that there are two rectangles for the factorial function.
The one on the left corresponds to the calls made by taylor_exp and the one on the
right to the calls made by taylor_sin.

On the bottom right, you can display another diagram—the call graph—by clicking
on the Call Graph tab. A call graph is a graphical representation of the calling
relationship between the functions: each square represents a function and the
arrows imply a calling relationship. For example, taylor_exp calls <listcomp> (a
list comprehension) which calls factorial 500 times taylor_sin calls factorial 250
times. KCachegrind also detects recursive calls: factorial calls itself 187250 times.

You can navigate to the Call Graph or the Caller Map tabs by double-clicking on the
rectangles; the interface will update accordingly showing that the timing properties
are relative to the selected function. For example, double-clicking on taylor_exp
will cause the graph to change, showing only the taylor_exp contribution to the
total cost.

Gprof2Dot (https://code.google.com/p/jrfonseca/wiki/
Gprof2Dot) is another popular tool used to produce call graphs. Starting
from output files produced by one of the supported profilers, it will
generate a .dot diagram representing the call graph.

Profile line by line with line_profiler
Now that we know which function we have to optimize, we can use the line_
profiler module that shows us how time is spent in a line-by-line fashion. This is
very useful in situations where it's difficult to determine which statements are costly.
The line_profiler module is a third-party module that is available on the Python
Package Index and can be installed by following the instructions on its website:

http://pythonhosted.org/line_profiler/

Benchmarking and Profiling

[22]

In order to use line_profiler, we need to apply a @profile decorator to the
functions we intend to monitor. Notice that you don't have to import the profile
function from another module, as it gets injected in the global namespace when
running the profiling script kernprof.py. To produce profiling output for our
program we need to add the @profile decorator to the evolve function:

@profile
def evolve:
 # code

The script kernprof.py will produce an output file and will print on standard
output the result of the profiling. We should run the script with two options:

• -l to use the line_profiler function
• -v to immediately print the results on screen

$ kernprof.py -l -v simul.py

It is also possible to run the profiler in an IPython shell for interactive editing. You
should first load the line_profiler extension that will provide the magic command
lprun. By using that command you can avoid adding the @profile decorator.

In [1]: %load_ext line_profiler
In [2]: from simul import benchmark, ParticleSimulator
In [3]: %lprun -f ParticleSimulator.evolve benchmark()

Timer unit: 1e-06 s

File: simul.py
Function: evolve at line 12
Total time: 5.31684 s

Line # Hits Time Per Hit % Time Line Contents
==
 12 def
evolve(self, dt):
 13 1 9 9.0 0.0 timestep
= 0.00001
 14 1 4 4.0 0.0 nsteps =
int(dt/timestep)
 15
 16 10001 5837 0.6 0.1 for i in
range(nsteps):
 17 1010000 517504 0.5 9.7 for p

Chapter 1

[23]

in self.particles:
 18
 19 1000000 963498 1.0 18.1
norm = (p.x**2 + p.y**2)**0.5
 20 1000000 621063 0.6 11.7
v_x = (-p.y)/norm
 21 1000000 577882 0.6 10.9
v_y = p.x/norm
 22
 23 1000000 672811 0.7 12.7
d_x = timestep * p.ang_speed * v_x
 24 1000000 685092 0.7 12.9
d_y = timestep * p.ang_speed * v_y
 25
 26 1000000 650802 0.7 12.2
p.x += d_x
 27 1000000 622337 0.6 11.7
p.y += d_y

The output is quite intuitive and is divided into columns:

• Line number: The number of the line that was run
• Hits: The number of times that line was run
• Time: The execution time of the line in microseconds (Time)
• Per Hit: Time divided by hits
• % Time: Fraction of the total time spent executing that line
• Line Contents: the source of the corresponding line

By looking at the percentage column we can have a pretty good idea of where the
time is spent. In this case, there are a few statements in the for loop body with a
cost of around 10-20 percent each.

Optimizing our code
Now that we have identified exactly how the time is spent, we can modify the code
and assess the change in performance.

There are a few different ways to tune up our pure Python code. The way that
usually produces the most remarkable results is to change the algorithm. In this case,
instead of calculating the velocity and adding small steps, it would be more efficient
(and correct, as it is not an approximation) to express the equations of motion in
terms of radius r and angle alpha (instead of x and y), and then calculate the points
on a circle using the equation:

x = r * cos(alpha)
y = r * sin(alpha)

Benchmarking and Profiling

[24]

Another way lies in minimizing the number of instructions. For example, we can
pre-calculate the factor timestep * p.ang_speed that doesn't change with time.
We can exchange the loop order (first we iterate on particles, then we iterate on time
steps) and put the calculation of the factor outside of the loop on the particles.

The line by line profiling showed also that even simple assignment operations can
take a considerable amount of time. For example, the following statement takes more
than 10 percent of the total time:

 v_x = (-p.y)/norm

Therefore, a way to optimize the loop is reducing the number of assignment
operations. To do that, we can avoid intermediate variables by sacrificing
readability and rewriting the expression in a single and slightly more complex
statement (notice that the right-hand side gets evaluated completely before being
assigned to the variables):

p.x, p.y = p.x - t_x_ang*p.y/norm, p.y + t_x_ang * p.x/norm

This leads to the following code:

 def evolve_fast(self, dt):
 timestep = 0.00001
 nsteps = int(dt/timestep)

 # Loop order is changed
 for p in self.particles:
 t_x_ang = timestep * p.ang_speed
 for i in range(nsteps):
 norm = (p.x**2 + p.y**2)**0.5
 p.x, p.y = (p.x - t_x_ang * p.y/norm,
 p.y + t_x_ang * p.x/norm)

After applying the changes we should make sure that the result is still the same, by
running our test. We can then compare the execution times using our benchmark:

$ time python simul.py # Performance Tuned
real 0m0.756s
user 0m0.714s
sys 0m0.036s

$ time python simul.py # Original
real 0m0.863s
user 0m0.831s
sys 0m0.028s

By acting on pure Python we obtained just a modest increment in speed.

Chapter 1

[25]

The dis module
Sometimes, it's not easy to evaluate how many operations a Python statement will
take. In this section, we will explore Python internals to estimate the performance of
Python statements. Python code gets converted to an intermediate representation—
called bytecode—that gets executed by the Python virtual machine.

To help inspect how the code gets converted into bytecode we can use the Python
module dis (disassemble). Its usage is really simple, it is sufficient to call the
function dis.dis on the ParticleSimulator.evolve method:

import dis
from simul import ParticleSimulator
dis.dis(ParticleSimulator.evolve)

This will generate, for each line, a list of bytecode instructions. For example, the
statement v_x = (-p.y)/norm is expanded in the following set of instructions:

20 85 LOAD_FAST 5 (p)
 88 LOAD_ATTR 4 (y)
 91 UNARY_NEGATIVE
 92 LOAD_FAST 6 (norm)
 95 BINARY_TRUE_DIVIDE

 96 STORE_FAST 7 (v_x)

LOAD_FAST loads a reference of the variable p onto the stack, LOAD_ATTR loads the
y attribute of the item present on top of the stack. The other instructions (UNARY_
NEGATIVE and BINARY_TRUE_DIVIDE) simply do arithmetic operations on top-of-
stack items. Finally, the result is stored in v_x (STORE_FAST).

By analyzing the complete dis output we can see that the first version of the
loop produces 51 bytecode instructions, while the second gets converted into 35
instructions.

The dis module helps discover how the statements get converted and serve mainly
as an exploration and learning tool of the Python bytecode representation.

To improve our performance even further, we could keep trying to figure out other
approaches to reduce the amount of instructions. It's clear however, that this approach
has some limits and it is probably not the right tool for the job. In the next chapter,
we will see how to speed up those kinds of calculations with the help of NumPy.

Benchmarking and Profiling

[26]

Profiling memory usage with
memory_profiler
In some cases, memory usage constitutes an issue. For example, if we want to handle
a huge number of particles we will have a memory overhead due to the creation of
many Particle instances.

The module memory_profiler summarizes, in a way similar to line_profiler, the
memory usage of the process.

The memory_profiler package is also available on the
Python Package Index. You should also install the psutil
module (https://code.google.com/p/psutil/) as an
optional dependency, it will make memory_profiler run
considerably faster.

Just like line_profiler, memory_profiler also requires the instrumentation of the
source code, by putting a @profile decorator on the function we intend to monitor.
In our case, we want to analyze the function benchmark.

We can slightly change benchmark to instantiate a considerable amount (100000) of
Particle instances and decrease the simulation time:

def benchmark_memory():
 particles = [Particle(uniform(-1.0, 1.0),
 uniform(-1.0, 1.0),
 uniform(-1.0, 1.0))
 for i in range(100000)]

 simulator = ParticleSimulator(particles)
 simulator.evolve(0.001)

We can use memory_profiler from an IPython shell through the magic
command %mprun:

In [1]: %load_ext memory_profiler
In [2]: from simul import benchmark_memory
In [3]: %mprun -f benchmark_memory benchmark_memory()

Chapter 1

[27]

Line # Mem usage Increment Line Contents
==
 135 45.5 MiB 0.0 MiB def benchmark_memory():
 136 45.5 MiB 0.0 MiB particles =
[Particle(uniform(-1.0, 1.0),
 137
uniform(-1.0, 1.0),
 138
uniform(-1.0, 1.0))
 139 71.2 MiB 25.7 MiB for i in
range(100000)]
 140
 141 71.2 MiB 0.0 MiB simulator =
ParticleSimulator(particles)
 142 71.3 MiB 0.1 MiB simulator.evolve(0.001)

It is possible to run memory_profiler from the shell using the mprof
run command after adding the @profile decorator.

From the output we can see that 100000 Particle objects take 25.7 MiB of memory.

1 MiB (mebibyte) is equivalent to 10242 = 1,048,576 bytes.
It is different from 1 MB (megabyte), which is equivalent to
10002 = 1,000,000 bytes.

We can use __slots__ on the Particle class to reduce its memory footprint. This
feature saves some memory by avoiding storing the variables of the instance in an
internal dictionary. This optimization has a drawback: it prevents the addition of
attributes other than the ones specified in __slots__ (to use this feature in Python 2
you should make sure that you are using new-style classes):

class Particle:
class Particle(object): # New-style class for Python 2

 __slots__ = ('x', 'y', 'ang_speed')

 def __init__(self, x, y, ang_speed):
 self.x = x
 self.y = y
 self.ang_speed = ang_speedWe can now re-run our benchmark:
In [1]: %load_ext memory_profiler
In [2]: from simul import benchmark_memory
In [3]: %mprun -f benchmark_memory benchmark_memory()

Benchmarking and Profiling

[28]

Line # Mem usage Increment Line Contents
==
 138 45.5 MiB 0.0 MiB def benchmark_memory():
 139 45.5 MiB 0.0 MiB particles =
[Particle(uniform(-1.0, 1.0),
 140
uniform(-1.0, 1.0),
 141
uniform(-1.0, 1.0))
 142 60.2 MiB 14.7 MiB for i in
range(100000)]
 143
 144 60.2 MiB 0.0 MiB simulator =
ParticleSimulator(particles)
 145 60.3 MiB 0.1 MiB simulator.evolve(0.001)

By rewriting the Particle class using __slots__ we can save 11 MiB of memory.

Performance tuning tips for pure
Python code
As a rule of thumb, when optimizing pure Python code, you should look at what
is available in the standard library. The standard library contains clever algorithms
for the most common data structures such as lists, dicts, and sets. Furthermore, a lot
of standard library modules are implemented in C and have fast processing times.
However, it's important to always time the different solutions—the outcomes are
often unpredictable.

The collections module provides extra data containers that can efficiently
handle some common operations. For example, you can use deque in place of a
list when you need to pop items from the start and append new items at the end.
The collections module also includes a Counter class that can be used to count
repeated elements in an iterable object. Beware, that Counter can be slower than
the equivalent code written with a standard loop over a dictionary:

def counter_1():
 items = [random.randint(0, 10) for i in range(10000)]
 return Counter(items)

def counter_2():
 items = [random.randint(0, 10) for i in range(10000)]
 counter = {}
 for item in items:
 if item not in counter:

Chapter 1

[29]

 counter[item] = 0
 else:
 counter[item] += 1
 return counter

You can put the code in a file named purepy.py and time it through IPython:

In [1]: import purepy
In [2]: %timeit purepy.counter_1()
100 loops, best of 3: 10.1 ms per loop
In [3]: %timeit purepy.counter_2()
100 loops, best of 3: 9.11 ms per loop

In general, list comprehension and generators should be preferred in place of explicit
loops. Even if the speedup over a standard loop is modest, this is a good practice
because it improves readability. We can see in the following example, that both list
comprehension and generator expressions are faster than an explicit loop when
combined with the function sum:

def loop():
 res = []
 for i in range(100000):
 res.append(i * i)
 return sum(res)

def comprehension():
 return sum([i * i for i in range(100000)])

def generator():
 return sum(i * i for i in range(100000))

We can add those functions to purepy.py and test with IPython:

In [1]: import purepy
In [2]: %timeit purepy.loop()
100 loops, best of 3: 8.26 ms per loop
In [3]: %timeit purepy.comprehension()
100 loops, best of 3: 5.39 ms per loop
In [4]: %timeit purepy.generator()
100 loops, best of 3: 5.07 ms per loop

The bisect module can help with fast insertion and retrieval of elements, while
maintaining a sorted list.

Raw optimization of pure Python code is not very effective, unless there is a
substantial algorithmic advantage. The second-best way to speed up your code is
to use external libraries specifically designed for the purpose, such as numpy, or to
write extensions modules in a more "down to the metal" language such as C with
the help of Cython.

Benchmarking and Profiling

[30]

Summary
In this chapter, we introduced the basic principles of optimization and we applied
those principles to our test application. The most important thing is identifying the
bottlenecks in the application before editing the code. We saw how to write and
time a benchmark using the time Unix command and the Python timeit module.
We learned how to profile our application using cProfile, line_profiler, and
memory_profiler, and how to analyze and navigate graphically the profiling data
with KCachegrind. We surveyed some of the strategies to optimize pure Python
code by leveraging the tools available in the standard library.

In the next chapter, we will see how to use numpy to dramatically speedup
computations in an easy and convenient way.

Fast Array Operations
with NumPy

NumPy is the de facto standard for scientific computing in Python. It extends Python
with a flexible multidimensional array that allows fast mathematical calculations.

NumPy works as a framework that allows coding complex operations using a
concise syntax. The multidimensional array (numpy.ndarray) is internally based on
C arrays: in this way, the developer can easily interface NumPy with existing C and
FORTRAN code. NumPy constitutes a bridge between Python and the legacy code
written using those languages.

In this chapter, we will learn how to create and manipulate NumPy arrays. We will
also explore the NumPy broadcasting feature to rewrite complex mathematical
expressions in an efficient and succinct manner.

In the last few years a number of packages were developed to further increase the
speed of NumPy. We will explore one of these packages, numexpr, that optimizes
array expressions and takes advantage of multi-core architectures.

Getting started with NumPy
NumPy is founded around its multidimensional array object, numpy.ndarray.
NumPy arrays are a collection of elements of the same data type; this fundamental
restriction allows NumPy to pack the data in an efficient way. By storing the data in
this way NumPy can handle arithmetic and mathematical operations at high speed.

Fast Array Operations with NumPy

[32]

Creating arrays
You can create NumPy arrays using the numpy.array function. It takes a list-like
object (or another array) as input and, optionally, a string expressing its data type.
You can interactively test the array creation using an IPython shell as follows:

In [1]: import numpy as np
In [2]: a = np.array([0, 1, 2])

Every NumPy array has a data type that can be accessed by the dtype attribute, as
shown in the following code. In the following code example, dtype is a 64-bit integer:

In [3]: a.dtype
Out[3]: dtype('int64')

If we want those numbers to be treated as a float type of variable, we can either
pass the dtype argument in the np.array function or cast the array to another data
type using the astype method, as shown in the following code:

In [4]: a = np.array([1, 2, 3], dtype='float32')
In [5]: a.astype('float32')
Out[5]: array([0., 1., 2.], dtype=float32)

To create an array with two dimensions (an array of arrays) we can initialize the
array using a nested sequence, shown as follows:

In [6]: a = np.array([[0, 1, 2], [3, 4, 5]])
In [7]: print(a)
Out[7]: [[0 1 2]
 [3 4 5]]

The array created in this way has two dimensions—axes in NumPy's jargon. Such an
array is like a table that contains two rows and three columns. We can access the axes
structure using the ndarray.shape attribute:

In [7]: a.shape
Out[7]: (2, 3)

Chapter 2

[33]

Arrays can also be reshaped, only as long as the product of the shape dimensions
is equal to the total number of elements in the array. For example, we can reshape
an array containing 16 elements in the following ways: (2, 8), (4, 4), or (2, 2, 4). To
reshape an array, we can either use the ndarray.reshape method or directly change
the ndarray.shape attribute. The following code illustrates the use of the ndarray.
reshape method:

In [7]: a = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8,
 9, 10, 11, 12, 13, 14, 15])
In [7]: a.shape
Out[7]: (16,)
In [8]: a.reshape(4, 4) # Equivalent: a.shape = (4, 4)
Out[8]:
array([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11],
 [12, 13, 14, 15]])

Thanks to this property you are also free to add dimensions of size one. You can
reshape an array with 16 elements to (16, 1), (1, 16), (16, 1, 1), and so on.

NumPy provides convenience functions, shown in the following code, to create
arrays filled with zeros, filled with ones, or without an initialization value (empty—
their actual value is meaningless and depends on the memory state). Those functions
take the array shape as a tuple and optionally its dtype:

In [8]: np.zeros((3, 3))
In [9]: np.empty((3, 3))
In [10]: np.ones((3, 3), dtype='float32')

In our examples, we will use the numpy.random module to generate random floating
point numbers in the (0, 1) interval. In the following code we use the np.random.
rand function to generate an array of random numbers of shape (3, 3):

In [11]: np.random.rand(3, 3)

Sometimes, it is convenient to initialize arrays that have a similar shape to other
arrays. Again, NumPy provides some handy functions for that purpose such as
zeros_like, empty_like, and ones_like. These functions are as follows:

In [12]: np.zeros_like(a)
In [13]: np.empty_like(a)
In [14]: np.ones_like(a)

Fast Array Operations with NumPy

[34]

Accessing arrays
The NumPy array interface is, on a shallow level, similar to Python lists. They can
be indexed using integers, and can also be iterated using a for loop. The following
code shows how to index and iterate an array:

In [15]: A = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8])
In [16]: A[0]
Out[16]: 0
In [17]: [a for a in A]
Out[17]: [0, 1, 2, 3, 4, 5, 6, 7, 8]

It is also possible to index an array in multiple dimensions. If we take a (3, 3) array
(an array containing 3 triplets) and we index the first element, we obtain the first
triplet shown as follows:

In [18]: A = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
In [19]: A[0]
Out[19]: array([0, 1, 2])

We can index the triplet again by adding the other index separated by a comma.
To get the second element of the first triplet we can index using [0, 1], as shown
in the following code:

In [20]: A[0, 1]
Out[20]: 1

NumPy allows you to slice arrays in single and multiple dimensions. If we index
on the first dimension we will get a collection of triplets shown as follows:

In [21]: A[0:2]
Out[21]: array([[0, 1, 2],
 [3, 4, 5]])

If we slice the array with [0:2]. for every selected triplet we extract the first two
elements, resulting in a (2, 2) array shown in the following code:

In [22]: A[0:2, 0:2]
Out[22]: array([[0, 1],
 [3, 4]])

Intuitively, you can update values in the array by using both numerical indexes
and slices. The syntax is as follows:

In [23]: A[0, 1] = 8
In [24]: A[0:2, 0:2] = [[1, 1], [1, 1]]

Chapter 2

[35]

Indexing with the slicing syntax is fast because it doesn't make copies of
the array. In NumPy terminology it returns a view over the same memory
area. If we take a slice of the original array and then change one of its
values; the original array will be updated as well. The following code
illustrates an example of the same:

In [25]: a = np.array([1, 1, 1, 1])
In [26]: a_view = a[0:2]
In [27]: a_view[0] = 2
In [28]: print(a)
Out[28]: [2 1 1 1]

We can take a look at another example that shows how the slicing syntax can be used
in a real-world scenario. We define an array r_i, shown in the following line of code,
which contains a set of 10 coordinates (x, y); its shape will be (10, 2):

In [29]: r_i = np.random.rand(10, 2)

A typical operation is extracting the x component of each coordinate. In other words,
you want to extract the items [0, 0], [1, 0], [2, 0], and so on, resulting in an array with
shape (10,). It is helpful to think that the first index is moving while the second one is
fixed (at 0). With this in mind, we will slice every index on the first axis (the moving
one) and take the first element (the fixed one) on the second axis, as shown in the
following line of code:

In [30]: x_i = r_i[:, 0]

On the other hand, the following expression of code will keep the first index fixed
and the second index moving, giving the first (x, y) coordinate:

In [31]: r_0 = r_i[0, :]

Slicing all the indexes over the last axis is optional; using r_i[0] has the same effect
as r_i[0, :].

NumPy allows to index an array by using another NumPy array made of either
integer or Boolean values—a feature called fancy indexing.

If you index with an array of integers, NumPy will interpret the integers as indexes
and will return an array containing their corresponding values. If we index an array
containing 10 elements with [0, 2, 3], we obtain an array of size 3 containing the
elements at positions 0, 2 and 3. The following code gives us an illustration of this
concept:

In [32]: a = np.array([9, 8, 7, 6, 5, 4, 3, 2, 1, 0])
In [33]: idx = np.array([0, 2, 3])
In [34]: a[idx]
Out[34]: array([9, 7, 6])

Fast Array Operations with NumPy

[36]

You can use fancy indexing on multiple dimensions by passing an array for each
dimension. If we want to extract the elements [0, 2] and [1, 3] we have to pack all the
indexes acting on the first axis in one array, and the ones acting on the second axis in
another. This can be seen in the following code:

In [35]: a = np.array([[0, 1, 2], [3, 4, 5],
 [6, 7, 8], [9, 10, 11]])
In [36]: idx1 = np.array([0, 1])
In [37]: idx2 = np.array([2, 3])
In [38]: a[idx1, idx2]

You can also use normal lists as index arrays, but not tuples. For
example the following two statements are equivalent:

>>> a[np.array([0, 1])] # is equivalent to
>>> a[[0, 1]]

However, if you use a tuple, NumPy will interpret the following
statement as an index on multiple dimensions:

>>> a[(0, 1)] # is equivalent to
>>> a[0, 1]

The index arrays are not required to be one-dimensional; we can extract elements
from the original array in any shape. For example we can select elements from the
original array to form a (2, 2) array shown as follows:

In [39]: idx1 = [[0, 1], [3, 2]]
In [40]: idx2 = [[0, 2], [1, 1]]
In [41]: a[idx1, idx2]
Out[41]: array([[0, 5],
 [10, 7]])

The array slicing and fancy indexing features can be combined. For example, this is
useful if we want to swap the x and y columns in a coordinate array. In the following
code, the first index will be running over all the elements (a slice), and for each of
those we extract the element in position 1 (the y) first and then the one in position 0
(the x):

In [42]: r_i = np.random(10, 2)
In [43]: r_i[:, [0, 1]] = r_i[:, [1, 0]]

Chapter 2

[37]

When the index array is a boolean there are slightly different rules. The Boolean
array will act like a mask; every element corresponding to True will be extracted and
put in the output array. This procedure is shown as follows:

In [44]: a = np.array([0, 1, 2, 3, 4, 5])
In [45]: mask = np.array([True, False, True, False, False, False])
In [46]: a[mask]
Out[46]: array([0, 2])

The same rules apply when dealing with multiple dimensions. Furthermore, if the
index array has the same shape as the original array, the elements corresponding to
True will be selected and put in the resulting array.

Indexing in NumPy is a reasonably fast operation. Anyway, when speed is critical,
you can use the slightly faster numpy.take and numpy.compress functions to
squeeze out a little more speed. The first argument of numpy.take is the array we
want to operate on, and the second is the list of indexes we want to extract. The
last argument is axis; if not provided, the indexes will act on the flattened array,
otherwise they will act along the specified axis. The following code shows the use of
np.take and its execution time compared to fancy indexing:

In [47]: r_i = np.random(100, 2)
In [48]: idx = np.arange(50) # integers 0 to 50
In [49]: %timeit np.take(r_i, idx, axis=0)
1000000 loops, best of 3: 962 ns per loop
In [50]: %timeit r_i[idx]
100000 loops, best of 3: 3.09 us per loop

The similar, but a faster way to index using Boolean arrays is numpy.compress
which works in the same way as numpy.take. The use of numpy.compress is shown
as follows:

In [51]: idx = np.ones(100, dtype='bool') # all True values
In [52]: %timeit np.compress(idx, r_i, axis=0)
1000000 loops, best of 3: 1.65 us per loop
In [53]: %timeit r_i[idx]
100000 loops, best of 3: 5.47 us per loop

Broadcasting
The true power of NumPy lies in its fast mathematical operations. The approach
used by NumPy is to avoid stepping into Python by performing an element-wise
calculation between matching arrays.

Fast Array Operations with NumPy

[38]

Whenever you do an arithmetic operation on two arrays (like a product), if the two
operands have the same shape, the operation will be applied in an element-wise
fashion. For example, upon multiplying two (2, 2) arrays, the operation will be done
between pairs of corresponding elements, producing another (2, 2) array, as shown
in the following code:

In [54]: A = np.array([[1, 2], [3, 4]])
In [55]: B = np.array([[5, 6], [7, 8]])
In [56]: A * B
Out[56]: array([[5, 12],
 [21, 32]])

If the shapes of the operand don't match, NumPy will attempt to match them using
certain rules—a feature called broadcasting. If one of the operands is a single value,
it will be applied to every element of the array, as shown in the following code:

In [57]: A * 2
Out[58]: array([[2, 4],
 [6, 8]])

If the operand is another array, NumPy will try to match the shapes starting from
the last axis. For example, if we want to combine an array of shape (3, 2) with one
of shape (2,), the second array is repeated three times to generate a (3, 2) array.
The array is broadcasted to match the shape of the other operand, as shown in
the following figure:

a1 a2

a3 a4

a5 a6

b1 b2 copiesb1 b2

b1 b2

If the shapes mismatch, for example by combining an array (3, 2) with an array (2, 2),
NumPy will throw an exception.

If one of the axes size is 1, the array will be repeated over this axis until the shapes
match. To illustrate that point, if we have an array of the following shape:

5, 10, 2

and we want to broadcast it with an array (5, 1, 2), the array will be repeated on the
second axis for 10 times which is shown as follows:

5, 10, 2
5, 1, 2 → repeated
- - - -
5, 10, 2

Chapter 2

[39]

We have seen earlier, that we can freely reshape arrays to add axes of size 1. Using
the numpy.newaxis constant while indexing will introduce an extra dimension. For
instance, if we have a (5, 2) array and we want to combine it with one of shape (5,
10, 2), we could add an extra axis in the middle, as shown in the following code, to
obtain a compatible (5, 1, 2) array:

In [59]: A = np.random.rand(5, 10, 2)
In [60]: B = np.random.rand(5, 2)
In [61]: A * B[:, np.newaxis, :]

This feature can be used, for example, to operate on all possible combinations of the
two arrays. One of these applications is the outer product. If we have the following
two arrays:

a = [a1, a2, a3]
b = [b1, b2, b3]

The outer product is a matrix containing the product of all the possible combinations
(i, j) of the two array elements, as shown in the following code:

a x b = a1*b1, a1*b2, a1*b3
 a2*b1, a2*b2, a2*b3
 a3*b1, a3*b2, a3*b3

To calculate this using NumPy we will repeat the elements [a1, a2, a3] in one
dimension, the elements [b1, b2, b3] in another dimension, and then take their
product, as shown in the following figure:.

b1a1 a2 a3 b1 b2

b2

b3

a1 a2 a3

a1 a2 a3

b2

b3

b2

b2

b3

a1

b2a1

b3a1

b1a2

b2a2

b3a2

b1a3

b2a3

b3a3

(1, 3) (3, 1) (3, 3)

Our strategy will be to transform the array a from shape (3,) to shape (3, 1), and the
array b from shape (3,) to shape (1, 3). The two arrays are broadcasted in the two
dimensions and get multiplied together using the following code:

AB = a[:, np.newaxis] * b[np.newaxis, :]

This operation is very fast and extremely effective as it avoids Python loops and is
able to process a high number of elements.

Fast Array Operations with NumPy

[40]

Mathematical operations
NumPy includes the most common mathematical operations available for
broadcasting, by default, ranging from simple algebra to trigonometry, rounding,
and logic. For instance, to take the square root of every element in the array we
can use the numpy.sqrt function, as shown in the following code:

In [59]: np.sqrt(np.array([4, 9, 16]))
Out[59]: array([2., 3., 4.])

The comparison operators are extremely useful when trying to filter certain elements
based on a condition. Imagine that we have an array of random numbers in the range
[0, 1] and we want to extract the numbers greater than 0.5. We can use the > operator
on the array; The result will be a boolean array, shown as follows:

In [60]: a = np.random.rand(5, 3)
In [61]: a > 0.5
Out[61]: array([[True, False, True],
 [True, True, True],
 [False, True, True],
 [True, True, False],
 [True, True, False]], dtype=bool)

The resulting boolean array can then be reused as an index to retrieve the elements
greater than 0.5, as shown in the following code:

In [62]: a[a > 0.5]
In [63]: print(a[a>0.5])
[0.9755 0.5977 0.8287 0.6214 0.5669 0.9553 0.5894
 0.7196 0.9200 0.5781 0.8281]

NumPy also implements methods such as ndarray.sum, which takes the sum of
all the elements on an axis. If we have an array (5, 3), we can use the ndarray.sum
method, as follows, to add elements on the first axis, the second axis, or over all the
elements of the array:

In [64]: a = np.random.rand(5, 3)
In [65]: a.sum(axis=0)
Out[65]: array([2.7454, 2.5517, 2.0303])
In [66]: a.sum(axis=1)
Out[66]: array([1.7498, 1.2491, 1.8151, 1.9320, 0.5814])
In [67]: a.sum() # With no argument operates on flattened array
Out[67]: 7.3275

Notice that by summing the elements over an axis we eliminate that axis. From the
previous example, the sum on the axis 0 produces a (3,) array while the sum on the
axis 1 produces a (5,) array.

Chapter 2

[41]

Calculating the Norm
We can review the basic concepts illustrated in this section by calculating the Norm
of a set of coordinates. For a two-dimensional vector the norm is defined as:

norm = sqrt(x^2 + y^2)

Given an array of 10 coordinates (x, y) we want to find the Norm of each coordinate.
We can calculate the norm by taking these steps:

1. Square the coordinates: obtaining an array which contains (x**2, y**2)
elements.

2. Sum those using numpy.sum over the last axis.
3. Take the square root, element-wise, using numpy.sqrt.

The final expression can be compressed in a single line:

In [68]: r_i = np.random.rand(10, 2)
In [69]: norm = np.sqrt((r_i ** 2).sum(axis=1))
In [70]: print(norm)
[0.7314 0.9050 0.5063 0.2553 0.0778 0.9143
 1.3245 0.9486 1.010 1.0212]

Rewriting the particle simulator in NumPy
In this section, we will optimize our particle simulator by rewriting some
parts of it in NumPy. From the profiling we did in Chapter 1, Benchmarking and
Profiling, the slowest part of our program is the following loop contained in the
ParticleSimulator.evolve method:

for i in range(nsteps):
 for p in self.particles:

 norm = (p.x**2 + p.y**2)**0.5
 v_x = (-p.y)/norm
 v_y = p.x/norm

 d_x = timestep * p.ang_speed * v_x
 d_y = timestep * p.ang_speed * v_y

 p.x += d_x
 p.y += d_y

Fast Array Operations with NumPy

[42]

We may notice that the body of the loop acts solely on the current particle. If we had
an array containing the particle positions and angular speed, we could rewrite the
loop using a broadcasted operation. In contrast, the loop over the time steps depends
on the previous step and cannot be treated in a parallel fashion.

It's natural then, to store all the array coordinates in an array of shape (nparticles, 2)
and the angular speed in an array of shape (nparticles,). We'll call those arrays r_i
and ang_speed_i and initialize them using the following code:

r_i = np.array([[p.x, p.y] for p in self.particles])
ang_speed_i = np.array([p.ang_speed for p in self.particles])

The velocity direction, perpendicular to the vector (x, y), was defined as:

v_x = -y / norm
v_y = x / norm

The Norm can be calculated using the strategy illustrated in the Calculating the Norm
section under the Getting Started with NumPy heading. The final expression is shown
in the following line of code:

norm_i = ((r_i ** 2).sum(axis=1))**0.5

For the components (-y, x) we need first to swap the x and y columns in r_i and then
multiply the first column by -1, as shown in the following code:

v_i = r_i[:, [1, 0]] / norm_i
v_i[:, 0] *= -1

To calculate the displacement we need to compute the product of v_i, ang_speed_i,
and timestep. Since ang_speed_i is of shape (nparticles,) it needs a new axis in order
to operate with v_i of shape (nparticles, 2). We will do that using numpy.newaxis
constant as follows:

d_i = timestep * ang_speed_i[:, np.newaxis] * v_i
r_i += d_i

Outside the loop, we have to update the particle instances with the new coordinates
x and y as follows:

for i, p in enumerate(self.particles):
 p.x, p.y = r_i[i]

Chapter 2

[43]

To summarize, we will implement a method called ParticleSimulator.
evolve_numpy and benchmark it against the pure Python version, renamed
as ParticleSimulator.evolve_python. The complete ParticleSimulator.
evolve_numpy method is shown in the following code:

def evolve_numpy(self, dt):
 timestep = 0.00001
 nsteps = int(dt/timestep)

 r_i = np.array([[p.x, p.y] for p in self.particles])
 ang_speed_i = np.array([p.ang_speed for p in self.particles])

 for i in range(nsteps):

 norm_i = np.sqrt((r_i ** 2).sum(axis=1))
 v_i = r_i[:, [1, 0]]
 v_i[:, 0] *= -1
 v_i /= norm_i[:, np.newaxis]
 d_i = timestep * ang_speed_i[:, np.newaxis] * v_i
 r_i += d_i

 for i, p in enumerate(self.particles):
 p.x, p.y = r_i[i]

We also update the benchmark to conveniently change the number of particles and
the simulation method as follows:

def benchmark(npart=100, method='python'):
 particles = [Particle(uniform(-1.0, 1.0),
 uniform(-1.0, 1.0),
 uniform(-1.0, 1.0))
 for i in range(npart)]

 simulator = ParticleSimulator(particles)

 if method=='python':
 simulator.evolve_python(0.1)

 elif method == 'numpy':
 simulator.evolve_numpy(0.1)

Fast Array Operations with NumPy

[44]

We can run the updated benchmark in an IPython session as follows:

In [1]: from simul import benchmark
In [2]: %timeit benchmark(100, 'python')
1 loops, best of 3: 614 ms per loop
In [3]: %timeit benchmark(100, 'numpy')
1 loops, best of 3: 415 ms per loop

We have some improvement but it doesn't look like a huge speed boost. The power of
NumPy is revealed when handling big arrays. If we increase the number of particles,
we will notice a more significant performance boost. We can re-run the benchmark
with a higher number of particles using the following code:

In [4]: %timeit benchmark(1000, 'python')
1 loops, best of 3: 6.13 s per loop
In [5]: %timeit benchmark(1000, 'numpy')
1 loops, best of 3: 852 ms per loop

The plot in the following figure was produced by running the benchmark with
different particle numbers:

600

500

400

200

100

0

0 20000 40000 60000 80000 100000
Particles

Ti
m

e
(s

)

300

The plot shows that both implementations scale linearly with the particle size, but
the runtime in the pure Python version (denoted with diamonds) grows much faster
than the NumPy version (denoted with circles); at greater sizes we have a greater
NumPy advantage. In general, when using NumPy you should try to pack things
into large arrays and group the calculations by using the broadcasting feature.

Chapter 2

[45]

Reaching optimal performance with
numexpr
When handling complex expressions, NumPy stores intermediate results in the
memory. David M. Cooke wrote a package called numexpr which optimizes and
compiles array expressions on-the-fly. It works by optimizing the usage of the CPU
cache and by taking advantage of multiple processors.

Its usage is generally straightforward and is based on a single function—numexpr.
evaluate. The function takes a string containing an array expression as its first
argument. The syntax is basically identical to that of NumPy. For example, we can
calculate a simple a + b * c expression in the following way:

a = np.random.rand(10000)
b = np.random.rand(10000)
c = np.random.rand(10000)
d = ne.evaluate('a + b * c')

The numexpr package increases the performances in almost all cases, but to achieve
a substantial advantage you should use it with large arrays. An application that
involves a large array is the calculation of a distance matrix. In a particle system, a
distance matrix contains all the possible distances between the particles. To calculate
it, we should first calculate all the vectors connecting any two particles (i, j) defined
as follows:

x_ij = x_j - x_i
y_ij = y_i - y_j

Then, we calculate the length of this vector by taking its Norm, as in the
following code:

d_ij = sqrt(x_ij**2 + y_ij**2)

We can write this in NumPy by employing the usual broadcasting rules (the
operation is similar to the outer product):

r = np.random.rand(10000, 2)
r_i = r[:, np.newaxis]
r_j = r[np.newaxis, :]
r_ij = r_j – r_i

Finally, we calculate the Norm over the last axis using the following line of code:

d_ij = np.sqrt((r_ij ** 2).sum(axis=2))

Fast Array Operations with NumPy

[46]

Rewriting the same expression using the numexpr syntax is extremely easy.
The numexpr package doesn't support slicing in its array expression, therefore we
first need to prepare the operands for broadcasting by adding an extra dimension
as follows:

r = np.random(10000, 2)
r_i = r[:, np.newaxis]
r_j = r[np.newaxis, :]

At that point, we should try to pack as many operations as possible in a single
expression to allow a significant optimization.

Most of the NumPy mathematical functions are also available in numexpr; however,
there is a limitation. The reduction operations—the ones which reduce an axis, such as
sum—have to happen last. So, we have to first calculate the sum, step out of numexpr,
and calculate the square root in another expression. The numexpr code for those
operations is as follows:

d_ij = ne.evaluate('sum((r_j – r_i)**2, 2)')
d_ij = ne.evaluate('sqrt(d_ij)')

The numexpr compiler will optimize memory usage by avoiding the storage
of intermediate results and by taking advantage of multiple processors. In the
distance_matrix.py file you will find two functions that implement the two
versions of the distance matrix calculation: distance_matrix_numpy and
distance_matrix_numexpr. We can import and benchmark them as follows:

from distance_matrix import (distance_matrix_numpy,
 distance_matrix_numexpr)
%timeit distance_matrix_numpy(10000)
1 loops, best of 3: 3.56 s per loop
%timeit distance_matrix_numexpr(10000)
1 loops, best of 3: 858 ms per loop

By simply copying the expressions using numexpr we were able to obtain a
4.5x increase in performance in a real-world scenario over standard NumPy.
The numexpr package can be used every time you need to optimize a NumPy
expression that involves large arrays and complex operations, and you can do
so with minimal changes in the code.

Chapter 2

[47]

Summary
In this chapter, we learned how to manipulate NumPy arrays and how to write
fast mathematical expressions using array broadcasting. This knowledge will help
you to design better programs while obtaining massive performance gains. We also
introduced the numexpr library to further increase the speed of our calculations with
a minimal amount of effort.

NumPy works very well when handling independent sets of inputs, but it's not
suitable when the expressions grow complex and cannot be split in element-wise
operations. In such cases, we can leverage Python capabilities as a glue language
by interfacing it with C using the Cython package.

C Performance with Cython
Cython is a language that extends Python by adding static typing to functions,
variables, and classes. Cython combines the simplicity of Python and the efficiency
of C. After rewriting your scripts in Cython you can compile them to C or C++,
generating efficient code in a straightforward way.

Cython also acts as a bridge between Python and C, as it can be used to create
interfaces to external C code. By creating bindings, you can reuse fast C routines
in your scripts, effectively using Python as a glue language.

In this chapter we will learn:

• Cython syntax basics
• How to compile Cython programs
• How to use static typing to generate fast code
• How to efficiently manipulate arrays by making use of typed memoryviews.

Finally, we will apply our new Cython skills to profile and optimize the
particle simulator.

While a minimum knowledge of C is helpful, this chapter focuses only on Cython in
the context of Python optimization. Therefore, it doesn't require any C background.

Compiling Cython extensions
By design, the Cython syntax is a superset of Python. Cython can typically compile
a Python module without requiring any change. Cython source files have the
extension .pyx and they can be compiled to C using the cython command.

C Performance with Cython

[50]

Our first Cython script will contain a simple function that prints Hello, World! to the
output. Create a new file hello.pyx containing the following code:

def hello():
 print('Hello, World!')

The cython command will read hello.pyx and generate the hello.c file:

$ cython hello.pyx

To compile hello.c to a Python extension module we will use the gcc compiler. We
need to add some Python-specific compilation options that depend on the operating
system. On Ubuntu 13.10, with the default Python installation, you can use the
following options to compile:

$ gcc -shared -pthread -fPIC -fwrapv -O2 -Wall -fno-strict-aliasing -
 lm -I/usr/include/python3.3/ -o hello.so hello.c

This will produce a file called hello.so: a C extension module importable
from Python.

>>> import hello
>>> hello.hello()
Hello, World!

Cython accepts both Python 2 and Python 3 as input and output
languages. In other words, you can compile a Python 3 hello.pyx file
using the -3 option:
$ cython -3 hello.pyx

The generated hello.c can be compiled without any changes to Python
2 and Python 3 by including the corresponding headers with the -I
option in gcc as follows:
$ gcc -I/usr/include/python3.3 # ... other options

$ gcc -I/usr/include/python2.7 # ... other options

A Cython program can be compiled in a more straightforward way by using
distutils—the standard Python packaging tool. By writing a setup.py script we
can compile the .pyx file directly to an extension module. To compile our hello.pyx
example we need to write a setup.py containing the following code:

from distutils.core import setup
from Cython.Build import cythonize

setup(
 name='Hello',
 ext_modules = cythonize('hello.pyx'),
)

Chapter 3

[51]

In the first two lines of the previous code, we import the setup function and the
cythonize helper. The setup function contains a few key-value pairs that tell
distutils the name of the application and which extensions need to be built.

The cythonize helper takes either a string or a list of strings containing the
Cython modules we want to compile. You can also use glob patterns using the
following code:

cythonize(['hello.pyx', 'world.pyx', '*.pyx'])

To compile our extension module using distutils you can execute the setup.py
script using the following code:

$ python setup.py build_ext --inplace

The build_ext option tells the script to build the extension modules indicated in
ext_modules, and the --inplace option places the output hello.so file in the same
location as the source file (instead of a build directory).

Cython modules can automatically be compiled using pyximport. By adding
pyximport.install() at the beginning of your script (or issuing the command in
your interpreter) you can import .pyx files directly; pyximport will transparently
compile the corresponding Cython modules.

>>> import pyximport
>>> pyximport.install()
>>> import hello # This will compile hello.pyx

Unfortunately, pyximport will not work for all kinds of configurations (for example
when they involve a combination of C and Cython files), but it comes in handy for
testing simple scripts.

Since version 0.13, IPython includes the cythonmagic extension to interactively write
and test a series of Cython statements. You can load the extensions in an IPython
shell using load_ext:

In [1]: %load_ext cythonmagic

Once the extension is loaded you can use the %%cython cell magic to write a multi-line
Cython snippet. In the following example, we define a hello_snippet function that
will be compiled and added to the session namespace:

In [2]: %%cython
 : def hello_snippet():
 : print("Hello, Cython!")
 :
In [3]: hello_snippet()
Hello, Cython!

C Performance with Cython

[52]

Adding static types
In Python, variables have an associated type that can change during the execution.
While this feature is desirable, as it makes the language more flexible, the interpreter
needs to do type-checks and method look-ups to correctly handle operations
between variables—an extra step that introduces a significant overhead. Cython
extends the Python language with static type declarations; in this way it can generate
efficient C code by avoiding the Python interpreter.

The main way to declare data types in Cython is by using cdef statements.
The cdef keyword can be used in multiple contexts: to declare variables, functions,
and extension types (cdef classes).

Variables
In Cython you can declare the type of a variable by prepending the variable with
cdef and its respective type. For example, we can declare the variable i as a 16 bit
integer in the following way:

cdef int i

The cdef statement supports multiple variable names on the same line, along with
optional initialization values, as seen in the following line of code:

cdef double a, b = 2.0, c = 3.0

Typed variables are treated differently in comparison to standard variables.
In Python, variables are often regarded as labels referring to objects in memory.
At any point in the program, we can assign a string to a variable as follows:

a = 'hello'

The string hello will be bound to the variable a. At a different place in the program,
we can assign to the same variable another value, for example an integer:

a = 1

Python will assign the integer object 1 to the variable a without any problem.

Chapter 3

[53]

Typed variables can be considered more like data containers; we store the value in
the variable and only values of the same type are allowed to get in. For example, if
we declare the variable a as an int type variable, and then we try to assign it to a
double, Cython will trigger an error, as shown in the following code:

In [4]: %%cython
 : cdef int i
 : i = 3.0
 :
Output has been cut
...cf4b.pyx:2:4 Cannot assign type 'double' to 'int'

Static typing allows useful optimizations. If we declare indexes to be used in a loop
as integers, Cython will rewrite the loops in pure C without stepping into the Python
interpreter. In the following example, we do an iteration 100 times and each time we
increment the int variable j:

In [5]: %%cython
 : def example():
 : cdef int i, j=0
 : for i in range(100):
 : j += 1
 : return j
 :
In [6]: example()
Out[6]: 100

To understand how big the improvement is, we will compare the speed with an
analogous, pure Python loop:

In [7]: def example_python():
 : j=0
 : for i in range(100):
 : j += 1
 : return j
 :
In [8]: %timeit example()
10000000 loops, best of 3: 25 ns per loop
In [9]: %timeit example_python()
100000 loops, best of 3: 2.74 us per loop

The speedup obtained by writing the loop with typing information is a whopping
100x! This works because the Cython loop has first been converted to pure C and then
to efficient machine code, while the Python loop still relies on the slow interpreter.

C Performance with Cython

[54]

We can declare a variable of any available C type, and we can also define custom types
by using C structs, enums, and typedefs. An interesting example is that if we declare a
variable to be of object type, the variable will accept any kind of Python object:

cdef object a_py
both 'hello' and 1 are Python objects
a_py = 'hello'
a_py = 1

Sometimes, certain types of variables are compatible (such as float and int numbers)
but not exactly the same. In Cython it is possible to convert (cast) between types
by surrounding the destination type with < and > pointy brackets, as shown in the
following code snippet:

cdef int a = 0
cdef double b
b = <double> a

Functions
You can add type information to the arguments of a Python function by specifying
the type in front of the argument name. Such functions will work and perform like
a regular Python function but its arguments will be type-checked. We can write a
max_python function, which returns the greater value between two integers in the
following way:

def max_python(int a, int b):
 return a if a > b else b

That function doesn't provide much benefit except for type-checking. To take
advantage of Cython optimizations we have to declare the function using a cdef
statement and an optional return type, as in the following code:

cdef int max_cython(int a, int b):
 return a if a > b else b

Functions declared in this way are translated to native C functions, which are
not callable from Python. They have much less overhead compared to Python
functions, and using them results in a substantial increase in performance. Their
scope is restricted to the same Cython file, unless they're exposed in a definition
file (refer to the Sharing Declarations section).

Chapter 3

[55]

Cython allows you to define functions that are both callable from Python and
translatable to native C functions. If you declare a function with the keyword cpdef,
Cython will generate two versions of the function—a Python version available to the
interpreter, and a fast C function usable from Cython—achieving both convenience
and speed. The cpdef syntax is equivalent to cdef, shown as follows:

 cpdef int max_hybrid(int a, int b):
 return a if a > b else b

Sometimes, the call overhead can be a performance issue even with C functions,
especially when the same function is called many times in a critical loop. When the
function body is small, it is convenient to add the inline keyword in front of the
function definition; the function call will be removed and replaced by the function
body. For instance, our following max function is a good candidate for inlining:

cdef inline int max_inline(int a, int b):
 return a if a > b else b

Classes
The cdef keyword can also be put in front of a class definition to create an extension
type. An extension type is similar to a Python class but its attributes must have a type
and are stored in an efficient C struct.

We can define an extension type by using the cdef class statement and declaring
its attributes in the class body. For example, we can create an extension type Point,
as shown in the following code, which stores two coordinates (x, y) of type double:

cdef class Point:
 cdef double x
 cdef double y

 def __init__(self, double x,double y):
 self.x = x
 self.y = y

Accessing the declared attributes in the class methods allows Cython to avoid the
Python attribute look-up by replacing it with direct access to the struct fields. In
this way, attribute access becomes an extremely fast operation.

C Performance with Cython

[56]

To take advantage of the struct access, Cython needs to know that the variable is an
extension type at the time of compilation. You can use the extension type name (such
as Point) in any context where you would use a standard one (such as double, float,
int). For example, if we want a Cython function that calculates the norm of a Point,
we have to declare the input variable as Point, as shown in the following code:

cdef double norm(Point p):
 return p.x**2 + p.y**2

By default, access to the attributes is restricted to Cython code. If you try to access
an extension type attribute from Python, you will get an AttributeError shown
as follows:

>>> a = Point(0.0, 0.0)
>>> a.x
AttributeError: 'Point' object has no attribute 'x'

In order to access attributes from Python code you have to use the public (for
read-write access) or readonly specifiers in the attribute declaration, as shown
in the following code:

cdef class Point:
 cdef public double x

Extension types do not support the addition of extra attributes. A workaround for
this problem is subclassing the extension type, creating a derived Python class.

Sharing declarations
When writing your Cython modules, you may want to encapsulate generic functions
and types in a separate file. Cython allows you to reuse those components with the
cimport statement by writing a definition file.

Let's say we have a module with the functions max and min, and we want to reuse
those functions in multiple Cython programs. If we simply write a .pyx file—also
called implementation file—the functions declared are confined in the same module.

Definition files are also used to interface Cython with
an external C code. The idea is to copy the types and
function prototypes in the definition file and leave the
implementation to the external C code.

Chapter 3

[57]

To share those functions we need to write a definition file, with a .pxd extension.
Such a file only contains the types and function prototypes that we want share to
other modules—a public interface. We can write the prototypes of our max and min
functions in a file named mathlib.pxd as follows:

cdef int max(int a, int b)
cdef int min(int a, int b)

As you can see, we only write the function name and arguments, without
implementing the function body.

The function implementation goes into the implementation file with the same base
name but .pyx extension—mathlib.pyx:

cdef int max(int a, int b):
 return a if a > b else b

cdef int min(int a, int b):
 return a if a < b else b

The mathlib module is now importable from another Cython module.

To test our Cython module we will create a file named distance.pyx containing
a function named chebyshev. The function will calculate the Chebyshev distance
between two points, as shown in the following code. The Chebyshev distance
between two coordinates (x1, y1) and (x2, y2) is defined as the maximum value
of the difference between each coordinate.

max(abs(x1 – x2), abs(y1 – y2))

To implement the chebyshev function we will use the max function, declared in
mathlib.pxd by importing it with the cimport statement, as shown in the following
code snippet:

from mathlib cimport max

def chebyshev(int x1,int y1,int x2,int y2):
 return max(abs(x1 - x2), abs(y1 - y2))

The cimport statement will read hello.pxd and the max definition will be used to
generate the distance.c file.

C Performance with Cython

[58]

Working with arrays
Numerical and high performance calculations often make use of arrays. Cython
provides an easy way to interact with them, from the low-level approach of C arrays,
to the more general typed memoryviews.

C arrays and pointers
C arrays are a collection of items of the same size stored contiguously in memory.
Before digging into the details, it is helpful to understand (or review) how memory is
managed in C.

Variables in C are like containers. When creating a variable, a space in memory
is reserved to store its value. For example, if we create a variable containing a
64 bit floating point number (double), the program will allocate 64 bit (16 bytes)
of memory. This portion of memory can be accessed through an address to that
memory location.

To obtain the address of a variable we can use the address operator, denoted with the &
symbol. We can also use the printf function, as follows, available in the libc.stdio
Cython module to print the address of this variable:

In [1]: %%cython
 ...: cdef double a
 ...: from libc.stdio cimport printf
 ...: printf("%p", &a)
 ...:
0x7fc8bb611210

Memory addresses can be stored in special variables—pointers—declared by putting
a * prefix on the variable name as follows:

from libc.stdio cimport printf
cdef double a
cdef double *a_pointer
a_pointer = &a # They are of the same data type

If we have a pointer and we want to grab the value contained in the address it's
pointing at, we can use the dereference operator, denoted with the * symbol, as shown
in the following code. Be careful, the * used in this context has a different meaning
from the * used in the variable declaration.

cdef double a
cdef double *a_pointer
a_pointer = &a
a = 3.0
print(*a_pointer) # prints 3.0

Chapter 3

[59]

When declaring a C array, the program allocates enough space to contain several
elements of the specified size. For instance, to create an array that has 10 double
values (8 bytes each), the program will reserve 8 * 10 = 80 bytes of contiguous space in
memory. In Cython we can declare such an array using the following syntax:

cdef double arr[10]

We can also declare a multidimensional array, like an array with 5 rows and 2
columns using the following syntax:

cdef double arr[5][2]

The memory will be allocated in a single block of memory, row after row. This
order is commonly referred to as row-major and is represented in the following
figure. Arrays can also be ordered column-mayor, as it happens in the FORTRAN
programming language.

0

0 1 2 3 4 5 6 7 8 9

2

4

6

8

1

3

5

7

9

Memory arrangement

Array ordering has important consequences. When iterating a C array
over the last dimension, we access contiguous memory blocks (in our
example 0, 1, 2, 3 …)while when we iterate on the first dimension, we
skip a few positions (0, 2, 4, 6, 8, 1 …). You should always try to access
memory contiguously as this optimizes cache usage.

We can store and retrieve elements from the array by using standard indexing, C
arrays don't support fancy indexing or slices:

arr[0] = 1.0

C Performance with Cython

[60]

C arrays can also be used as pointers. The arr variable, in fact, is a pointer to the first
element of the array. We can verify that the address of the first element of the array is
the same as the address contained in the variable arr:

In [1]: %%cython
 ...: from libc.stdio cimport printf
 ...: cdef double arr[10]
 ...: printf("%p\n", arr)
 ...: printf("%p\n", &arr[0])
 ...:
0x7ff6de204220
0x7ff6de204220

You should use C arrays and pointers when interfacing with existing C libraries or
when you need a fine control over the memory. For more common use-cases you can
employ NumPy arrays or typed memoryviews.

NumPy arrays
NumPy arrays can be used in Cython as normal Python objects, by using their
already optimized broadcasted operations.

The problem comes when we want to efficiently iterate over the array. When we
do an indexing operation on a NumPy array, a few other operations take place at
the interpreter level causing a major overhead. Cython can optimize those indexing
operations by acting directly on the underlying memory area used by NumPy arrays,
allowing us to treat them just like C arrays.

NumPy array support comes in the form of a ndarray data type. We first have to
cimport the numpy module. We assign it to the name c_np to differentiate it from the
regular numpy Python module as follows:

cimport numpy as c_np

We can now declare a NumPy array by specifying the type of the array elements and
the number of dimensions, with a special syntax called buffer syntax. To declare a
two-dimensional array of type double we can use the following code:

cdef c_np.ndarray[double, ndim=2] arr

An array defined in this way will be indexed by acting directly on the underlying
memory area; the operation will avoid the Python interpreter giving us a tremendous
speed boost.

Chapter 3

[61]

In the next example, we will show the usage of the buffer syntax and compare it with
the normal Python version.

We first write the numpy_bench_py function that increments each element of py_arr
by 1000. We declared the index i as integer so that we avoid the for loop overhead:

In [1]: %%cython
 ...: import numpy as np
 ...: def numpy_bench_py():
 ...: py_arr = np.random.rand(1000)
 ...: cdef int i
 ...: for i in range(1000):
 ...: py_arr[i] += 1

Then we write the same function using the buffer syntax. Notice that after we define
the c_arr variable using c_np.ndarray, we can assign to it an array from the numpy
Python module:

In [2]: %%cython
 ...: import numpy as np
 ...: cimport numpy as c_np
 ...: def numpy_bench_c():
 ...: cdef c_np.ndarray[double, ndim=1] c_arr
 ...: c_arr = np.random.rand(1000)
 ...: cdef int i
 ...:
 ...: for i in range(1000):
 ...: c_arr[i] += 1

We can time the results using timeit, obtaining an impressive 50x speedup:

In [10]: %timeit numpy_bench_c()
100000 loops, best of 3: 11.5 us per loop
In [11]: %timeit numpy_bench_py()
1000 loops, best of 3: 603 us per loop

Typed memoryviews
C and NumPy arrays are both objects that act on a memory area. Cython provides a
universal object—the typed memoryview—to access arrays and other data structures
that expose the so called buffer interface, such as the built-ins bytes, bytearray, and
array.array.

C Performance with Cython

[62]

A memoryview is an object that maintains a reference on a certain memory area. It
doesn't actually own the memory, but it can read and change its content (it is a view).
By using typed memoryviews we can interact with both C and NumPy arrays in the
same way.

Memoryviews can be defined using a special syntax. We can define a memoryview
of int and a 2D memoryview of double in the following way:

cdef int[:] a
cdef double[:, :] b

The same syntax applies to function definitions, class attributes, and so on. Any object
that exposes a buffer interface will automatically be bound to the memoryview. We
can bind the memoryview to an array by the following simple assignment:

import numpy as np

cdef int[:] arr
arr_np = np.zeros(10, dtype='int32')
arr = arr_np # We bind the array to the memoryview

The new memoryview will share the data with the NumPy array. Changes in the
array elements will be shared between the two data structures:

arr[2] = 1 # Changing memoryview
print(arr_np)
[0 0 1 0 0 0 0 0 0 0]

In a certain sense, the memoryview is a generalization of a NumPy array. As we
have seen in Chapter 2, Fast Array Operations with Numpy, slicing a NumPy array
does not copy the data but returns a view on the same memory area.

Memoryviews also support array slicing with the following standard NumPy syntax:

cdef int[:, :, :] a
arr[0, :, :] # Is a 2-dimensional memoryview
arr[0, 0, :] # Is a 1-dimensional memoryview
arr[0, 0, 0] # Is an int

Chapter 3

[63]

To copy data between a memoryview and another, you can use a syntax similar to
the slice assignment, as shown in the following code:

import numpy as np

cdef double[:, :] b
cdef double[:] r
b = np.random.rand(10, 3)
r = np.zeros(3, dtype='float64')

b[0, :] = r # Copy the value of r in the first row of b

In the next section, we will use the typed memoryviews to handle the arrays in our
particle simulator application.

Particle simulator in Cython
Now that we have a basic understanding on how Cython works we can rewrite the
ParticleSimulator.evolve method. Thanks to Cython, we can convert our loops
in C, thus removing the overhead introduced by the Python interpreter.

In Chapter 2, Fast Array Operations with Numpy, we wrote a fairly efficient version of
the evolve method using NumPy. We can rename the old version as evolve_numpy
to differentiate it from the new version:

 def evolve_numpy(self, dt):
 timestep = 0.00001
 nsteps = int(dt/timestep)

 r_i = np.array([[p.x, p.y] for p in self.particles])
 ang_speed_i = np.array([p.ang_speed for p
 in self.particles])
 v_i = np.empty_like(r_i)

 for i in range(nsteps):
 norm_i = np.sqrt((r_i ** 2).sum(axis=1))

 v_i = r_i[:, [1, 0]]
 v_i[:, 0] *= -1
 v_i /= norm_i[:, np.newaxis]

 d_i = timestep * ang_speed_i[:, np.newaxis] * v_i

 r_i += d_i

 for i, p in enumerate(self.particles):
 p.x, p.y = r_i[i]

C Performance with Cython

[64]

We want to convert this code to Cython. Our strategy will be to take advantage
of the fast indexing operations by removing the NumPy array broadcasting, thus
reverting to an indexing-based algorithm. Since Cython generates efficient C code,
we are free to use as many loops as we like without any performance penalty.

As a design choice, we can decide to encapsulate the loop in a function that we will
rewrite in a Cython module called cevolve.pyx. The module will contain a single
Python function c_evolve that will take the particle positions, the angular velocities,
the timestep, and the number of steps as input.

At first, we are not adding typing information; we just want to isolate the function
and make sure that we can compile our module without errors.

file: simul.py
... other code
 def evolve_cython(self, dt):
 timestep = 0.00001
 nsteps = int(dt/timestep)

 r_i = np.array([[p.x, p.y] for p in self.particles])
 ang_speed_i = np.array([p.ang_speed for
 p in self.particles])

 c_evolve(r_i, ang_speed_i, timestep, nsteps)

 for i, p in enumerate(self.particles):
 p.x, p.y = r_i[i]

file: cevolve.pyx
import numpy as np

def c_evolve(r_i, ang_speed_i, timestep, nsteps):
 v_i = np.empty_like(r_i)

 for i in range(nsteps):
 norm_i = np.sqrt((r_i ** 2).sum(axis=1))

 v_i = r_i[:, [1, 0]]
 v_i[:, 0] *= -1
 v_i /= norm_i[:, np.newaxis]

 d_i = timestep * ang_speed_i[:, np.newaxis] * v_i

 r_i += d_i

Notice that we don't need a return value for c_evolve, as values are updated in the
r_i array in-place. We can benchmark the untyped Cython version against the old
NumPy version by slightly changing our benchmark function, as follows:

Chapter 3

[65]

def benchmark(npart=100, method='python'):
 particles = [Particle(uniform(-1.0, 1.0),
 uniform(-1.0, 1.0),
 uniform(-1.0, 1.0))
 for i in range(npart)]

 simulator = ParticleSimulator(particles)
 if method=='python':
 simulator.evolve_python(0.1)

 if method == 'cython':
 simulator.evolve_cython(0.1)

 elif method == 'numpy':
 simulator.evolve_numpy(0.1)

We can time the different versions in an IPython shell:

In [4]: %timeit benchmark(100, 'cython')
1 loops, best of 3: 401 ms per loop
In [5]: %timeit benchmark(100, 'numpy')
1 loops, best of 3: 413 ms per loop

The two versions have the same speed. Compiling the Cython module without static
typing doesn't have any advantage over pure Python. The next step, is to declare the
type of all the important variables so that Cython can perform its optimizations.

We can start by adding types to the function arguments. We will declare the arrays
as typed memoryviews containing double values. It is worth mentioning that if we
pass an array of int or float32 type, the casting won't happen automatically and
we would get an error.

def c_evolve(double[:, :] r_i, double[:] ang_speed_i,
 double timestep, int nsteps):

At that point, we want to rewrite the loops over the particles and time steps. We can
declare the iteration variables i, j and the particle number nparticles as int:

 cdef int i, j
 cdef int nparticles = r_i.shape[0]

At this point the algorithm is very similar to the pure Python version; we iterate over
the particles and time steps and we compute the velocity and displacement vectors
for each particle coordinate, using the following code:

 for i in range(nsteps):
 for j in range(nparticles):
 x = r_i[j, 0]
 y = r_i[j, 1]

C Performance with Cython

[66]

 ang_speed = ang_speed_i[j]

 norm = sqrt(x ** 2 + y ** 2)

 vx = (-y)/norm
 vy = x/norm

 dx = timestep * ang_speed * vx
 dy = timestep * ang_speed * vy

 r_i[j, 0] += dx
 r_i[j, 1] += dy

In the previous code, we added the x, y, ang_speed, norm, vx, vy, dx, and dy
variables. To avoid the Python interpreter overhead we have to declare them
with their corresponding types at the beginning of the function as follows:

cdef double norm, x, y, vx, vy, dx, dy, ang_speed

We also used a function called sqrt to calculate the norm. If we use the sqrt present
in the math module or the one in numpy, we would again include a slow Python
function in our critical loop, thus killing our performance. A fast sqrt is available
in the standard C library, already wrapped in the libc.math Cython module:

from libc.math cimport sqrt

After recompiling, we can re-run our benchmark to assess our improvements, as
follows:

In [4]: %timeit benchmark(100, 'cython')
100 loops, best of 3: 13.4 ms per loop
In [5]: %timeit benchmark(100, 'numpy')
1 loops, best of 3: 429 ms per loop

For small particle numbers the speed-up is massive, we obtained a 40x performance
improvement over the previous version. However, we should also try with a larger
number of particles to test the performance scaling, as in the following code:

In [2]: %timeit benchmark(1000, 'cython')
10 loops, best of 3: 134 ms per loop
In [3]: %timeit benchmark(1000, 'numpy')
1 loops, best of 3: 877 ms per loop

As we increase the number of particles, the two versions get closer in speed. By
increasing the particle size to 1000 we already decreased our speed-up to a more
modest 6x. This is likely due to the fact that as we increase the number of particles
the Python for-loop overhead gets less and less significant compared to the speed of
the other operations.

Chapter 3

[67]

Profiling Cython
Cython gives us a wonderful tool to quickly find the slow spots due to the Python
interpreter—a feature called annotated view. We can turn on this feature by compiling
a Cython file with the -a option, using the following command line. Cython will
generate a HTML file containing our code annotated with some useful information:

$ cython -a cevolve.pyx

$ google-chrome cevolve.html

The HTML file displayed in the following screenshot shows our Cython file
line-by-line:

C Performance with Cython

[68]

Each line has a background color in different shades of yellow; an intense color
means that the code has a lot of interpreter-related calls, while white lines gets
translated to pure C. Since interpreter calls are typically slow, the objective is to make
the function body as white as possible. By clicking on any of the lines we can see
the C code generated by the Cython compiler. For example, the line v_y = x/norm
checks that the norm is not 0, raising a ZeroDivisionError otherwise. The line x =
r_i[j, 0] shows that Cython checks that the indexes are within the bounds of the
array. You may notice that the last line is of a very intense color, by inspecting the
code we can see that this is actually a glitch; the code refers to a boilerplate related to
the end of the function.

Cython can shut down those checks to improve speed using its compiler directives.
There are three different ways to add compiler directives:

• Using a decorator or a context manager
• Using a comment at the beginning of the file
• Using the Cython command line options

For a complete list of the Cython compiler directives you can refer
to the official documentation at http://docs.cython.org/src/
reference/compilation.html#compiler-directives

For example, to disable the "bounds" checking of arrays, it is sufficient to decorate a
function with cython.boundscheck in the following way:

cimport cython

@cython.boundscheck(False)
def myfunction:
 # Code here

We can use cython.boundscheck to wrap a block of code into a context manager,
as follows:

with cython.boundscheck(False):
 # Code here

If we want to disable bounds checking for a whole module we can add the following
line of code at the beginning of the file:

cython: boundscheck=False

To alter the directives with the command line options you can use -X as follows:

$ cython -X boundscheck=True

Chapter 3

[69]

We can now try to avoid the extra checks in our function by disabling the
boundscheck directive and enabling cdivision (this disables the checks for
ZeroDivisionError) as in the following code:

cimport cython

@cython.boundscheck(False)
@cython.cdivision(True)
def c_evolve(double[:, :] r_i,double[:] ang_speed_i,
 double timestep,int nsteps):

If we look at the annotated view again, the loop body is completely white; we
removed all traces of the interpreter from the loop. In the following case however,
we didn't obtain a performance improvement:

In [3]: %timeit benchmark(100, 'cython')
100 loops, best of 3: 13.4 ms per loop

We can profile Cython code with cProfile by including the profile=True directive
in our files. To show its usage we can write a function that calculates the Chebyshev
distance between two arrays of coordinates. Create a file cheb.py:

import numpy as np
from distance import chebyshev

def benchmark():
 a = np.random.rand(100, 2)
 b = np.random.rand(100, 2)
 for x1, y1 in a:
 for x2, y2 in b:
 chebyshev(x1, x2, y1, y2)

If we try profiling this script as-is, we won't get any statistics regarding the functions
that we implemented in Cython. If we want to know the profile metrics for the max
and min functions we have to add the profile=True option to the mathlib.pyx file,
as shown in the following code:

cython: profile=True

cdef int max(int a, int b):
 # Code here

C Performance with Cython

[70]

We can now profile our script with %prun using IPython, as follows:

In [2]: import cheb
In [3]: %prun cheb.benchmark()
 2000005 function calls in 2.066 seconds

 Ordered by: internal time

 ncalls tottime percall cumtime percall filename:lineno(function)
 1 1.664 1.664 2.066 2.066 cheb.py:4(benchmark)
 1000000 0.351 0.000 0.401 0.000 {distance.chebyshev}
 1000000 0.050 0.000 0.050 0.000 mathlib.pyx:2(max)
 2 0.000 0.000 0.000 0.000 {method 'rand' of
 'mtrand.RandomState' objects}
 1 0.000 0.000 2.066 2.066 <string>:1(<module>)
 1 0.000 0.000 0.000 0.000 {method 'disable' of
 '_lsprof.Profiler' objects}

From the output, we can see that the max function is present and is not a bottleneck.
The problem seems to be lying in the benchmark function; the issue is likely to be the
Python for-loop overhead. In this case, the best strategy would be rewriting the loop
in NumPy or port the code to Cython.

Summary
Cython will bring the speed of your programs to another level. Cython programs
are much easier to maintain in comparison to C, thanks to the tight integration with
Python and the availability of profiling tools.

In this chapter, we introduced the basics of the Cython language and how to make
our programs faster by adding static types. We also learned how to work with C
arrays, NumPy arrays, and memoryviews.

We optimized our particle simulator by rewriting the critical evolve function,
obtaining a tremendous speed gain. Finally, we learned how to use the annotated
view to quickly spot interpreter related calls and how to enable cProfile for
Cython scripts.

In the next chapter, we will learn the parallel processing basics and see how to write
Python programs that take advantage of multiple processors so that you can write
faster programs and solve larger problems.

Parallel Processing
With parallel processing you can increase the amount of calculations your program
can do in a given time without needing a faster processor. The main idea is to
divide a task into many sub-units and employ multiple processors to solve them
independently.

CPUs containing several cores (2, 4, 6, 8, ...) have become a common trend in
technology. Increasing the speed of a single processor is costly and problematic;
while leveraging the parallel capabilities of cheaper multi-core processors is a
feasible route to increase performance.

Parallel processing lets you tackle large scale problems. Scientists and engineers
commonly run parallel code on supercomputers—huge networks of standard
processors—to simulate massive systems. Parallel techniques can also take
advantage of graphics chips (a hardware optimized for parallelization).

Python can be used in all of these domains, allowing us to apply parallel
processing to all sorts of problems with simplicity and elegance, opening
the door to infinite possibilities.

In this chapter, we will:

• Briefly introduce the fundamentals of parallel processing
• Illustrate how to parallelize simple problems with the multiprocessing

Python library
• Learn how to write programs with the IPython parallel framework
• Further optimize our program using multithreading with Cython

and OpenMP

Parallel Processing

[72]

Introduction to parallel programming
In order to parallelize a program, we need to divide the problem into sub-units
that can run independently (or almost independently) from each other.

A problem where the sub-units are totally independent from each other is called
embarrassingly parallel. An element-wise operation on an array is a typical example—
the operation needs only to know the element it is handling at the moment. Another
example, is our particle simulator—since there are no interactions, each particle can
evolve in time independently from the others. Embarrassingly parallel problems are
very easy to implement and they perform optimally on parallel architectures.

Other problems may be divided into sub-units but have to share some data to
perform their calculations. In those cases, the implementation is less straightforward
and can lead to performance issues because of the communication costs.

We will illustrate the concept with an example. Imagine you have a particle
simulator, but this time the particles attract other particles within a certain
distance (as shown in the following figure). To parallelize this problem we divide
the simulation box in regions and assign each region to a different processor. If
we evolve the system for one step, some particles will interact with particles in a
neighboring region. To perform the next iteration, the new particle positions of the
neighboring region are required:

Chapter 4

[73]

Communication between processes is costly and can seriously hinder the
performance of parallel programs. There exists two main ways to handle data
communication in parallel programs:

• Shared memory
• Distributed memory

In shared memory, the sub-units have access to the same memory space.
The advantage of this approach, is that you don't have to explicitly handle the
communication as it is sufficient to write or read from the shared memory. However,
problems arise when multiple processes try to access and change the same memory
location at the same time. Care should be taken to avoid such conflict using
synchronization techniques.

In the distributed memory model each process is completely separated from
the others and possesses its own memory space. In this case, communication
is handled explicitly between the processes. The communication overhead is
typically costlier compared to shared memory, as data can potentially travel
through a network interface.

One common way to achieve parallelism with the shared memory model is
threads. Threads are independent sub-tasks that originate from a process
and share resources such as memory.

Python can spawn and handle threads, but they can't be used to increase
performance due to the Python interpreter design—only one Python instruction
is allowed to run at a time. This mechanism is called Global Interpreter Lock
(GIL). What happens is that, each time a thread executes a Python statement, a
lock is acquired which prevents other threads to run until it is released. The GIL
avoids conflicts between threads, simplifying the implementation of the CPython
interpreter. Despite this limitation, threads can still be used to provide concurrency
in situations where the lock can be released, such as in time-consuming I/O
operations or in C extensions.

Parallel Processing

[74]

The GIL can be completely avoided by using processes instead of threads.
Processes don't share the same memory area and are independent from each
other—each process has its own interpreter. By using processes, we'll have very
few disadvantages: inter-process communication is less efficient than shared
memory, but it is more flexible and explicit.

The multiprocessing module
The standard multiprocessing module can be used to quickly parallelize simple
tasks by spawning several processes. Its interface is easy-to-use and includes several
utilities to handle task submission and synchronization.

The Process and Pool classes
You can create a process that runs independently by subclassing multiprocessing.
Process. You can extend the __init__ method to initialize resources and you can
write the portion of the code destined to the subprocess by implementing a Process.
run method. In the following code, we define a process that will wait for one second
and print its assigned id:

import multiprocessing
import time

class Process(multiprocessing.Process):
 def __init__(self, id):

Chapter 4

[75]

 super(Process, self).__init__()
 self.id = id

 def run(self):
 time.sleep(1)
 print("I'm the process with id: {}".format(self.id))

To spawn the process, we have to initialize our Process object and call the Process.
start method. Notice that you don't directly call Process.run: the call to Process.
start will create a new process and, in turn, call the Process.run method. We can
add the following lines at the end of the script to initialize and start the new process:

if __name__ == '__main__':
 p = Process(0)
 p.start()

The instructions after Process.start will be executed immediately without waiting
for the process p to finish. To wait for the task completion you can use the method
Process.join, as follows:

 if __name__ == '__main__':
 p = Process(0)
 p.start()
 p.join()

We can launch in the same way four different processes that will run in parallel.
In a serial program, the total required time would be four seconds. Since we run it
parallelly, each process will run at the same time, resulting in a 1-second wallclock
time. In the following code, we create four processes and start them parallelly:

if __name__ == '__main__':
 processes = Process(1), Process(2), Process(3), Process(4)
 [p.start() for p in processes]

Notice that the order of the execution of parallel processes is unpredictable, it
ultimately depends on how the operating system schedules the process execution.
You can verify this behavior by running the program multiple times—the order will
be different at each run.

The multiprocessing module exposes a convenient interface that makes it easy to
assign and distribute tasks to a set of processes, the multiprocessing.Pool class.

Parallel Processing

[76]

The multiprocessing.Pool class spawns a set of processes—called workers—and
lets submit tasks through the methods apply/apply_async and map/map_async.

The Pool.map method applies a function to each element of a list and returns the list
of results. Its usage is equivalent to the built-in (serial) map.

To use a parallel map, you should first initialize a multiprocessing.Pool
object. It takes the number of workers as its first argument; if not provided, that
number will be equal to the number of cores in the system. You can initialize a
multiprocessing.Pool object in the following way:

pool = multiprocessing.Pool()
pool = multiprocessing.Pool(processes=4)

Let's see Pool.map in action. If you have a function that computes the square of a
number, you can map the function to the list by calling Pool.map and passing the
function and the list of inputs as arguments, as follows:

def square(x):
 return x * x

inputs = [0, 1, 2, 3, 4]
outputs = pool.map(square, inputs)

The Pool.map_async method is just like Pool.map but returns an AsyncResult
object instead of the actual result. When we call the normal map, the execution of
the main program is stopped until all the workers are finished processing the result.
With map_async, the AsyncResult object is returned immediately without blocking
the main program and the calculations are done in the background. We can then
retrieve the result by using the AsyncResult.get method at any time, as shown
in the following lines:

outputs_async = pool.map_async(square, inputs)
outputs = outputs_async.get()

Pool.apply_async assigns a task consisting of a single function to one of the
workers. It takes the function and its arguments and returns an AsyncResult
object. We can obtain an effect similar to map by using apply_async, as shown
in the following code:

results_async = [pool.apply_async(square, i) for i in range(100))]
results = [r.get() for r in results_async]

As an example, we will implement a canonical, embarassingly parallel program:
the Monte Carlo approximation of pi.

Chapter 4

[77]

Monte Carlo approximation of pi
Imagine we have a square with a side length of 2 units; its area will be 4 units. Now,
we inscribe a circle with a radius 1 unit in this square, the area of the circle will be
pi * r^2. By substituting the value of r in the previous equation we get that the
numerical value for the area of the circle is pi * (1)^2 = pi. You can refer to the
following figure for a graphical representation.

If we shoot a lot of random points on this figure, some points will fall into the
circle—we'll call them hits—while the remaining points—misses—will be outside
the circle. The idea of the Monte Carlo method is that the area of the circle will be
proportional to the number of hits, while the area of the square will be proportional
to the total number of shots. To get the value of pi, it is sufficient to divide the area
of the circle (equal to pi) by the area of the square (equal to 4) and solve for pi:

hits/total = area_circle/area_square = pi/4
pi = 4 * hits/total

The strategy we will employ in our program will be:

• Generate a lot of sample (x, y) numbers in the range (-1, 1)
• Test if those numbers lie inside the circle by checking if x**2 + y**2 == 1

Parallel Processing

[78]

We first write a serial version and check if it works. Then, we can write the parallel
version. The implementation of the serial program is as follows:

import random

samples = 1000000
hits = 0

for i in range(samples):
 x = random.uniform(-1.0, 1.0)
 y = random.uniform(-1.0, 1.0)

 if x**2 + y**2 <= 1:
 hits += 1

pi = 4.0 * hits/samples

The accuracy of our approximation will improve as we increase the number
of samples. You can notice that each loop iteration is independent from the
other—this problem is embarassingly parallel.

To parallelize this code, we can write a function called sample that corresponds
to a single hit-miss check. If the sample hits the circle, the function will return
1; otherwise it will return 0. By running sample multiple times and summing
the results, we'll get the total number of hits. We can run sample over multiple
processors with apply_async and get the results in the following way:

def sample():
 x = random.uniform(-1.0, 1.0)
 y = random.uniform(-1.0, 1.0)

 if x**2 + y**2 <= 1:
 return 1
 else:
 return 0

pool = multiprocessing.Pool()
results_async = [pool.apply_async(sample) for i in range(samples)]
hits = sum(r.get() for r in results_async)

Chapter 4

[79]

We can wrap the two versions in the functions pi_serial and pi_apply_async
(you can find their implementation in the pi.py file) and benchmark the execution
speed as follows:

$ time python -c 'import pi; pi.pi_serial()'

real 0m0.734s

user 0m0.731s

sys 0m0.004s

$ time python -c 'import pi; pi.pi_apply_async()'

real 1m36.989s

user 1m55.984s

sys 0m50.386

As shown in the previous benchmark, our first parallel version literally cripples our
code. The reason is that the time spent doing the actual calculation is small compared
to the overhead required to send and distribute the tasks to the workers.

To solve the issue, we have to make the overhead negligible compared to the
calculation time. For example, we can ask each worker to handle more than one
sample at a time, thus reducing the task communication overhead. We can write
a function sample_multiple that processes more than one hit and modifies our
parallel version by splitting our problem in 10, more intensive tasks as shown in the
following code:

def sample_multiple(samples_partial):
 return sum(sample() for i in range(samples_partial))

ntasks = 10
chunk_size = int(samples/ntasks)
pool = multiprocessing.Pool()
results_async = [pool.apply_async(sample_multiple, chunk_size)
 for i in range(ntasks)]
hits = sum(r.get() for r in results_async)

We can wrap this in a function called pi_apply_async_chunked and run
it as follows:

$ time python -c 'import pi; pi.pi_apply_async_chunked()'

real 0m0.325s

user 0m0.816s

sys 0m0.008s

Parallel Processing

[80]

The results are much better; we more than doubled the speed of our program. You
can also notice that the user metric is larger than real: the total CPU time is larger
than the total time because more than one CPU worked at the same time. If you
increase the number of samples, you will notice that the ratio of communication to
calculation decreases, giving even better speedups.

Everything is nice and simple when dealing with embarassingly parallel problems.
But sometimes, you have to share data between processes.

Synchronization and locks
Even if multiprocessing uses processes (with their own independent memory),
it lets you define certain variables and arrays as shared memory. You can define a
shared variable by using multiprocessing.Value passing its data type as a string
(i integer, d double, f float, and so on). You can update the content of the variable
through the value attribute, as shown in the following code snippet:

shared_variable = multiprocessing.Value('f')
shared_variable.value = 0

When using shared memory, you should be aware of concurrent accesses. Imagine
you have a shared integer variable and each process increments its value multiple
times. You would define a process class as follows:

class Process(multiprocessing.Process):

 def __init__(self, counter):
 super(Process, self).__init__()
 self.counter = counter

 def run(self):
 for i in range(1000):
 self.counter.value += 1

You can initialize the shared variable in the main program and pass it to 4 processes,
as shown in the following code:

def main():
 counter = multiprocessing.Value('i', lock=True)
 counter.value = 0

 processes = [Process(counter) for i in range(4)]
 [p.start() for p in processes]
 [p.join() for p in processes] # processes are done
 print(counter.value)
main()

Chapter 4

[81]

If you run this program (shared.py in the code directory) you will notice that the
final value of counter is not 4000, but it has random values (on my machine they are
between 2000 and 2500). If we assume that the arithmetic is correct, we can conclude
that there's a problem with the parallelization.

What happens is that multiple processes are trying to access the same shared
variable at the same time. The situation is best explained by looking at the following
figure. In a serial execution, the first process reads (the number 0), increments it, and
writes the new value (1); the second process reads the new value (1), increments it,
and writes it again (2). In the parallel execution, the two processes read the value (0),
increment it, and write it (1) at the same time, leading to a wrong answer.

To solve this problem, we need to synchronize the access to this variable so that
only one process at a time can access, increment, and write the value on the shared
variable. This feature is provided by the multiprocessing.Lock class. A lock can
be acquired and released through the acquire and release methods, or by using
the lock as a context manager. When a process acquires a lock, other processes are
prevented to acquire it until the lock is released.

We can define a global lock, and use it as a context manager to restrict the access to
the counter, as shown in the following code snippet:

lock = multiprocessing.Lock()

class Process(multiprocessing.Process):

Parallel Processing

[82]

 def __init__(self, counter):
 super(Process, self).__init__()
 self.counter = counter

 def run(self):
 for i in range(1000):
 with lock: # acquire the lock
 self.counter.value += 1
 # release the lock

Synchronization primitives such as locks are essential to solve many problems but
you should avoid overusing them because they can decrease the performance of
your program.

multiprocessing includes other communication and
synchronization tools, you can refer to the official documentation
for a complete reference:
http://docs.python.org/3/library/multiprocessing.html

IPython parallel
IPython's power is not limited to its advanced shell. Its parallel package includes a
framework to setup and run calculations on single and multi-core machines, as well
as on multiple nodes connected to a network. IPython is great because it gives an
interactive twist to parallel computing and provides a common interface to different
communication protocols.

To use IPython.parallel, you have to start a set of workers—Engines—that are
managed by a Controller (an entity that mediates the communication between the
client and the engines). The approach is totally different from multiprocessing; you
start the worker processes separately, and they will wait indefinitely, listening for
commands from the client.

To start the controller and a set of engines (by default, one engine per processing
unit) you can use the ipcluster shell command, as follows:

$ ipcluster start

With ipcluster you can also set up multiple nodes to distribute your calculations
over a network by writing a custom profile. You can refer to the official
documentation for specific instructions at the following website:
http://ipython.org/ipython-doc/dev/parallel/parallel_process.html

After starting the controller and the engines, we can use an IPython shell to perform
calculations in parallel. IPython provides two basic interfaces (or views): direct and
task-based.

Chapter 4

[83]

Direct interface
The direct interface lets you issue commands explicitly to each of the computing
units. The interface is intuitive, flexible, and easy-to-use, especially when used in
an interactive session.

After starting the engines, you have to start an IPython session in a separate shell
to interact with them. By creating a client, you can establish a connection to the
controller. In the following code, we import the Client class and create an instance:

In [1]: from IPython.parallel import Client
In [2]: rc = Client()

The attribute Client.ids will give you a list of integers representing the available
engines, as shown in the following code snippet:

In [3]: rc.ids
Out[4]: [0, 1, 2, 3]

We can issue commands to the engines by obtaining a DirectView instance. You
can get a DirectView instance by either indexing the Client instance or by calling
the DirectView.direct_view method. The following code shows different ways to
obtain a DirectView instance from the previously created Client:

In [5]: dview = rc[0] # Select the first engine
In [6]: dview = rc[::2] # Select every other engine
In [7]: dview = rc[:] # Selects all the engines
In [8]: dview = rc.direct_view('all') # Alternative

You can treat the engines like fresh IPython sessions. At the finest level, you can
execute commands remotely by using the DirectView.execute method:

In [9]: dview.execute('a = 1')

The command will be sent and executed individually by each engine. The return
value will be an AsyncResult object and the actual return value can be retrieved
using the get method.

As shown in the following code, you can retrieve the data contained in a remote
variable by using the DirectView.pull method and send the data to a remote
variable with the DirectView.push method. The DirectView class also supports
a convenient dictionary-like interface:

In [10]: dview.pull('a').get() # equivalent: dview['a']
Out[10]: [1, 1, 1, 1]
In [11]: dview.push({'a': 2}) # equivalent: dview['a'] = 2

Parallel Processing

[84]

It is possible to send and retrieve every object that can be serialized using the pickle
module. On top of that, special handling is reserved for data structures such as
NumPy arrays to increase the efficiency.

If you issue a statement that causes an exception, you will receive a summary of the
exceptions in each engine:

In [12]: res = dview.execute('a = *__*') # Invalid
In [13]: res.get()
[0:execute]:
 File "<ipython-input-3-945a473d5cbb>", line 1
 a = *__*
 ^
SyntaxError: invalid syntax

[1:execute]:
 File "<ipython-input-3-945a473d5cbb>", line 1
 a = *__*
 ^
SyntaxError: invalid syntax
[2: execute]:
...

Engines should be treated as independent IPython sessions, and imports and
custom-defined functions must be synchronized over the network. To import some
libraries, both locally and in the engines, you can use the DirectView.sync_imports
context manager:

with dview.sync_imports():
 import numpy

 # The syntax import _ as _ is not supported

To submit calculations to the engines, DirectView provides some utilities for
common use cases such as map and apply. The DirectView.map method works
similarly to Pool.map_async, as shown in the following code snippet. You map
a function to a sequence, returning an AsyncResult object

In [14]: a = range(100)
In [15]: def square(x): return x * x
In [16]: result_async = dview.map(square, a)
In [17]: result = result_async.get()

Chapter 4

[85]

IPython provides a more convenient map implementation through the DirectView.
parallel decorator. If you apply the decorator on a function, the function will now
have a map method that can be applied to a sequence. In the following code, we apply
the parallel decorator to the square function and map it over a series of numbers:

In [18]: @dview.parallel()
 ...: def square(x):
 ...: return x * x
In [19]: square.map(range(100))

To get the non-blocking version of map, you can either use the
DirectView.map_sync method or pass the block=True
option to the DirectView.parallel decorator.

The DirectView.apply method behaves in a different way than Pool.apply_async.
The function gets executed on every engine. For example, if we have selected four
engines and we apply the square function, the function gets executed once per
engine and it returns four results, as shown in the following code snippet:

In [20]: def square(x):
 return x * x
In [21]: result_async = dview.apply(square, 2)
In [22]: result_async.get()
Out[22]: [4, 4, 4, 4]

The DirectiView.remote decorator lets you create a function that will run directly
on each engine. Its usage is as follows:

In [23]: @dview.remote()
 ...: def square(x):
 ...: return x * x
 ...:
In [24]: square(2)
Out[24]: [4, 4, 4, 4]

The DirectView also provides two other kinds of communication scheme: scatter
and gather.

Scatter distributes a list of inputs to the engines. Imagine you have four inputs and
four engines; you can distribute those inputs in a remote variable with DirectView.
scatter, as follows:

In [25]: dview.scatter('a', [0, 1, 2, 3])
In [26]: dview['a']
Out[26]: [[0], [1], [2], [3]]

Parallel Processing

[86]

Scatter will try to distribute the inputs as equally as possible even when the number
of inputs is not a multiple of the number of engines. The following code shows how
a list of 11 computations gets processed in three batches of three items per batch and
one batch of two items:

In [13]: dview.scatter('a', [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
In [14]: dview['a']
Out[14]: [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10]]

The gather function simply retrieves the scattered values and merges them back.
In the following snippet, we merge back the scattered results:

In [17]: dview.gather('a').get()
Out[17]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

We can use the scatter and gather functions to parallelize one of our simulations.
In our system, each particle is independent from the other, therefore, we can use
scatter and gather to divide the particles equally between the available engines,
evolve them, and get the particles back from the engines.

At first, we have to set up the engines. The ParticleSimulator class should be
made available to all the engines.

Remember that the engines have started in a separate process and the simul
module should be importable by them. You can achieve this in two ways:

• By launching ipcluster in the directory, where simul.py is located
• By adding that directory to PYTHONPATH

If you're using the code examples, don't forget to compile the Cython extensions
using setup.py.

In the following code, we create the particles and obtain a DirectView instance:

from random import uniform
from simul import Particle
from IPython.parallel import Client

particles = [Particle(uniform(-1.0, 1.0),
 uniform(-1.0, 1.0),
 uniform(-1.0, 1.0)) for i in range(10000)]
rc = Client()
dview = rc[:]

Chapter 4

[87]

Now, we can scatter the particles to a remote variable particle_chunk, perform the
particle evolution using DirectView.execute and retrieve the particles. We do this
using scatter, execute, and gather, as shown in the following code:

dview.scatter('particle_chunk', particles, block=True)

dview.execute('from simul import ParticleSimulator')
dview.execute('simulator = ParticleSimulator(particle_chunk)')
dview.execute('simulator.evolve_cython(0.1)')

particles = dview.gather('particle_chunk', block=True)

We can now wrap the parallel version and benchmark it against the serial one
(refer to the file simul_parallel.py) in the following way:

In [1]: from simul import benchmark
In [2]: from simul_parallel import scatter_gather
In [5]: %timeit benchmark(10000, 'cython')
1 loops, best of 3: 1.34 s per loop
In [6]: %timeit scatter_gather(10000)
1 loops, best of 3: 720 ms per loop

The code is extremely simple and gives us a 2x speedup, scalable on any number
of engines.

Task-based interface
IPython has an interface that can handle computing tasks in a smart way. While this
implies a less flexible interface from the user point of view, it can improve performance
by balancing the load on the engines and by re-submitting failed jobs. In this section,
we will introduce the map and apply functions in the task-based interface.

The task interface is provided by the LoadBalancedView class, which can be
obtained from a client using the load_balanced_view method, as follows:

In [1]: from IPython.parallel import Client
In [2]: rc = Client()
In [3]: tview = rc.load_balanced_view()

At this point we can run some tasks using map and apply. The LoadBalancedView
class works similarly to multiprocessing.Pool, the tasks are submitted and
handled by a scheduler; in the case of LoadBalancedView, the task assignment is
based on how much load is present on an engine at a given time, ensuring that all the
engines are working without downtimes.

Parallel Processing

[88]

It's helpful to explain an important difference between apply in DirectView and
LoadBalancedView. A call to DirectView.apply will run on every selected engine,
while a call to LoadBalancedView.apply will schedule a single task to one of the
engines. In the first case, the result will be a list, and in the latter, it will be a single
value, as shown in the following code snippet:

In [4]: dview = rc[:]
In [5]: tview = rc.load_balanced_view()
In [6]: def square(x):
 ...: return x * x
 ...:
In [7]: dview.apply(square, 2).get()
Out[7]: [4, 4, 4, 4]
In [8]: tview.apply(square, 2).get()
Out[8]: 4

LoadBalancedView is also able to handle failures and run tasks on engines when
certain conditions are met. This feature is provided through a dependency system.
We will not cover this aspect in this book, but interested readers can refer to the
official documentation at the following link:

http://ipython.org/ipython-doc/rel-1.1.0/parallel/parallel_task.html

Parallel Cython with OpenMP
Cython provides a convenient interface to perform shared-memory parallel
processing through OpenMP. This lets you write extremely efficient parallel code
directly in Cython without having to create a C wrapper.

OpenMP is a specification to write multithreaded programs, and includes series of
C preprocessor directives to manage threads; these include communication patterns,
load balancing, and synchronization features. Several C/C++ and Fortran compilers
(including GCC) implement the OpenMP API.

Let's introduce Cython parallel features with a small example. Cython provides
a simple API based on OpenMP in the cython.parallel module. The simplest
construct is prange: a construct that automatically distributes loop operations in
multiple threads.

First of all, we can write a serial version of a program that computes the square
of each element of a NumPy array in the hello_parallel.pyx file. We get a
buffer as input and we create an output array by populating it with the squares of
the input array elements.

Chapter 4

[89]

The serial version, square_serial, is shown in the following code snippet:

import numpy as np

def square_serial(double[:] inp):
 cdef int i, size
 cdef double[:] out
 size = inp.shape[0]
 out_np = np.empty(size, 'double')
 out = out_np

 for i in range(size):
 out[i] = inp[i]*inp[i]

 return out_np

Now, we can change the loop in a parallel version by substituting the range call
with prange. There's a caveat, you need to make sure that the body of the loop is
interpreter-free. As already explained, to make use of threads we need to release
the GIL, since interpreter calls acquire and release the GIL, we should avoid them.
Failure in doing so will result in compilation errors.

In Cython, you can release the GIL by using nogil, as follows:

with nogil:
 for i in prange(size):
 out[i] = inp[i]*inp[i]

Alternatively, you can use the convenient option nogil=True of prange that will
automatically wrap the loop in a nogil block:

for i in prange(size, nogil=True):
 out[i] = inp[i]*inp[i]

Attempts to call Python code in a prange block results in an
error. This includes assignment operations, function calls, objects
initialization, and so on. To include such operations in a prange
block (you may want to do so for debugging purposes) you have
to re-enable the GIL using the with gil statement:

for i in prange(size, nogil=True):

 out[i] = inp[i]*inp[i]

 with gil:

 x = 0 # Python assignment

Parallel Processing

[90]

At this point, we need to recompile our extension. We need to change setup.py to
enable OpenMP support. You have to specify the GCC option -fopenmp using the
Extension class in distutils and pass it to the cythonize function. The following
code shows the complete setup.py file:

from distutils.core import setup
from distutils.extension import Extension
from Cython.Build import cythonize

hello_parallel = Extension('hello_parallel',
 ['hello_parallel.pyx'],
 extra_compile_args=['-fopenmp'],
 extra_link_args=['-fopenmp'])

setup(
 name='Hello',
 ext_modules = cythonize(['cevolve.pyx', hello_parallel]),
)

Now that we know how to use prange, we can quickly parallelize the Cython
version of our ParticleSimulator.

In the following code, we can take a look at the c_evolve function contained
in the Cython module cevolve.pyx that we wrote in Chapter 2, Fast Array
Operations with NumPy:

def c_evolve(double[:, :] r_i,double[:] ang_speed_i,
 double timestep,int nsteps):

 # cdef declarations

 for i in range(nsteps):
 for j in range(nparticles):
 # loop body

The first thing we have to do is invert the order of the loops; we want the outermost
loop to be the parallel one, where each iteration is independent from the other. Since
the particles don't interact with each other, we can change the order of iteration
safely, as shown in the following code snippet:

 for j in range(nparticles):
 for i in range(nsteps):

 # loop body

Chapter 4

[91]

At that point we can parallelize the loop using prange, we already removed the
interpreter-related calls when we added static typing, so the nogil block can be
applied safely, as follows:

for j in prange(nparticles, nogil=True)

We can now wrap the two different versions into separate functions and we can
time them, as follows:

In [3]: %timeit benchmark(10000, 'openmp')
1 loops, best of 3: 599 ms per loop
In [4]: %timeit benchmark(10000, 'cython')
1 loops, best of 3: 1.35 s per loop

With OpenMP, we are able to obtain a significant speedup compared to the serial
Cython version by changing a single line of code.

Summary
Parallel processing is an effective way to increase the speed of your programs or
to handle large amounts of data. Embarassingly parallel problems are excellent
candidates for parallelization and lead to a straightforward implementation and
optimal scaling.

In this chapter, we illustrated the basics of parallel programming in Python. We
learned how to use multiprocessing to easily parallelize programs with the tools
already included in Python. Another more powerful tool for parallel processing
is IPython parallel. This package allows you to interactively prototype parallel
programs and manage a network of computing nodes effectively. Finally, we
explored the easy-to-use multithreading capabilities of Cython and OpenMP.

During the course of this book, we learned the most effective techniques to
design, benchmark, profile, and optimize Python applications. NumPy can be
used to elegantly rewrite Python loops, and if it is not enough, you can use Cython
to generate efficient C code. At the last stage, you can easily parallelize your program
using the tools presented in this chapter.

Index
Symbols
-v option 15

A
application

code optimization, steps 8
designing 7-13

arrays
accessing 34-37
C arrays 58-60
creating 32, 33
NumPy arrays 60, 61
pointers 58-60
typed memoryviews 61-63
woking with 58

AsyncResult object 76
axes 32

B
benchmarks

timing 15, 17
writing 13, 14

bisect module 29
bottlenecks

searching, cProfile used 17-21
bytecode 25

C
call graph 21
C arrays 58
cdef keyword 52, 55
cell magics 16
cells 16
chebyshev function 57

classes 55, 56
code

optimizing 23, 24
collections module 28
column-mayor 59
Controller 82
cProfile module

about 17
used, for bottlenecks detecting 17-21

CPython interpreter 73
Cython

about 29, 49
extensions, compiling 49-51
particle simulator 63
profiling 67-70
with OpenMP 88-91

cython command 50
Cython extensions

compiling 49-51
cython.parallel module 88

D
declarations

sharing 56, 57
direct interface, IPython parallel

DirectiView.remote decorator 85
DirectView.apply function 85
DirectView.direct_view method 83
DirectView.execute 87
DirectView.map method 84
DirectView.parallel decorator 85
DirectView.pull method 83
DirectView.sync_imports 84
gather function 86
ParticleSimulator class 86
scatter 85

[94]

DirectiView.remote decorator 85
DirectView.apply function 85, 88
DirectView.direct_view method 83
DirectView.map method 84
DirectView.parallel decorator 85
DirectView.pull method 83
DirectView.push. DirectView method 83
DirectView.sync_imports 84
dis module 25
distributed memory 73

E
embarassingly parallel 72
Engines 82
Extension class 90

F
FuncAnimation class 12
functions 54, 55

G
gather 86
Global Interpreter Lock (GIL) 73
Gprof2Dot 21

H
hello_snippet function 51
hotshot module 17

I
IPython 16
IPython parallel

about 82
direct interface 83-87
interfaces 82
task-based interface 87, 88

K
KCachegrind 7, 19

L
line_profiler module

used, for line by line display 21-23
LoadBalancedView 87, 88
load_balanced_view method 87

M
magic commands 16
mathlib module 57
max_python function 54
memory_profiler package

about 26
used, for memory profiling 26-28

memory usage
profiling, with memory_profiler 26-28

memoryview 62
Monte Carlo method 77-80
multiprocessing.Lock class 81
multiprocessing module

about 74, 75
Monte Carlo method 77-80
process and Pool classes 74-76
synchronization and locks 80-82
URL 82

multiprocessing.Pool class 75, 76
multiprocessing.Pool object 76

N
ndarray.reshape method 33
nogil block 89
numexpr

optimal performance, reaching with 45, 46
NumPy

about 31
arrays, accessing 34-37
arrays, creating 32, 33
broadcasting 37-39
getting started 31
mathematical operations 40
Norm, calculating 41
particle simulator, rewriting in 41-44

NumPy arrays 60, 61
numpy_bench_py function 61

[95]

O
OpenMP 88-91
optimal performance

reaching, with numexpr 45, 46

P
parallel processing 71
parallel programming

about 72
communication, handling 73
distributed memory 73
shared memory 73

particle simulator
about 8
rewriting, in NumPy 41-44

ParticleSimulator class 86
pointers 58
Pool.apply_async 76
Pool.map_async function 76
Pool.map method 76
printf function 58
Process.run method 74, 75
Process.start method 75
profile function 22
profile module 17
profiler 7
profiling 7
pure Python code

performance tuning tips 28, 29

R
row-major 59

S
scatter 85
shared memory 73
static types

adding 52
classes 55, 56
functions 54, 55
variables 52-54

T
task-based interface, IPython parallel

about 87
DirectView.apply 88
LoadBalancedView 87, 88
load_balanced_view method 87

tests
writing 13, 14

threads 73
throughput 71
time command 15

V
variables 52, 53, 54
visualize function 12

W
workers 76

Thank you for buying
Python High Performance Programming

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licenses, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Python Data Visualization
Cookbook
ISBN: 978-1-782163-36-7 Paperback: 280 pages

Over 60 recipes that will enable you to learn how to
create attractive visualizations using Python's most
popular libraries

1. Learn how to set up an optimal Python
environment for data visualization

2. Understand the topics such as importing
data for visualization and formatting data
for visualization

3. Understand the underlying data and how to
use the right visualizations

Python Geospatial Development -
Second Edition
ISBN: 978-1-782161-52-3 Paperback: 508 pages

Learn to build sophisticated mapping applications
from scratch using Python tools for geospatical
development

1. Build your own complete and sophisticated
mapping applications in Python.

2. Walks you through the process of building
your own online system for viewing and
editing geospatial data

3. Practical, hands-on tutorial that teaches you all
about geospatial development in Python

Please check www.PacktPub.com for information on our titles

OpenCV Computer Vision
with Python
ISBN: 978-1-782163-92-3 Paperback: 122 pages

Learn to capture videos, manipulate images, and
track objects with Python using the OpenCV Library

1. Set up OpenCV, its Python bindings, and
optional Kinect drivers on Windows, Mac or
Ubuntu

2. Create an application that tracks and
manipulates faces

3. Identify face regions using normal color images
and depth images

Getting Started with Python
Pandas
ISBN: 978-1-782171-24-9 Paperback: 120 pages

An in-depth guide to core the concepts of the Pandas
library, including best practices for data analysis in
Python

1. Understand the core concepts, data structures,
and algorithms implemented in the Pandas
library

2. Learn how to acquire, clean, transform, and
present your data in a scientific manner

3. Experience how easy data analysis is using
Python and Pandas

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Benchmarking and Profiling
	Designing your application
	Writing tests and benchmarks
	Timing your benchmark

	Finding bottlenecks with cProfile
	Profile line by line with line_profiler
	Optimizing our code
	The dis module
	Profiling memory usage with
memory_profiler
	Performance tuning tips for pure
Python code
	Summary

	Chapter 2: Fast Array Operations with NumPy
	Getting started with NumPy
	Creating arrays
	Accessing arrays
	Broadcasting
	Mathematical operations
	Calculating the Norm

	Rewriting the particle simulator in NumPy
	Reaching optimal performance with numexpr
	Summary

	Chapter 3: C Performance with Cython
	Compiling Cython extensions
	Adding static types
	Variables
	Functions
	Classes

	Sharing declarations
	Working with arrays
	C arrays and pointers
	NumPy arrays
	Typed memoryviews

	Particle simulator in Cython
	Profiling Cython
	Summary

	Chapter 4: Parallel Processing
	Introduction to parallel programming
	The multiprocessing module
	The Process and Pool classes
	Monte Carlo approximation of pi
	Synchronization and locks

	IPython parallel
	Direct interface
	Task-based interface

	Parallel Cython with OpenMP
	Summary

	Index

