

Python for Google App Engine

Master the full range of development features provided
by Google App Engine to build and run scalable web
applications in Python

Massimiliano Pippi

BIRMINGHAM - MUMBAI

Python for Google App Engine

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book
is sold without warranty, either express or implied. Neither the author nor
Packt Publishing, and its dealers and distributors will be held liable for any
damages caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2015

Production reference: 1210115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-819-4

www.packtpub.com

www.packtpub.com

Credits

Author
Massimiliano Pippi

Reviewers
Dom Derrien

Samuel Goebert

Marcos Placona

Commissioning Editor
Taron Pereira

Acquisition Editor
Richard Brookes-Bland

Content Development Editor
Vaibhav Pawar

Technical Editor
Tanmayee Patil

Copy Editors
Deepa Nambiar

Vikrant Phadke

Stuti Srivastava

Project Coordinator
Kranti Berde

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Paul Hindle

Indexer
Priya Sane

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

About the Author

Massimiliano Pippi has been a software developer for over 10 years, more
than half of which he spent working with scientific visualization and backend
software for a private company, using C++ and Qt technologies. He started using
Python in 2008 and currently works at Evonove, a small company where he has
been leading a number of Python software projects, most of which are based on the
Django web framework. He is also an open source advocate and active contributor,
documentation fanatic, and speaker at conferences. He writes about Python and
other development-related topics at http://dev.pippi.im.

http://dev.pippi.im

About the Reviewers

Dom Derrien is a full-stack web developer who has been defining application
environments with a focus on high availability and scalability. He's been in the
development field for more than 15 years and has worked for big and small
companies and also as an entrepreneur.

He's currently working for the game company Ubisoft Inc., where he defines the
next generation services platform for its successful AAA games. To extend the
gamer experience on the Web and on mobiles, he provides technical means that
are transparent, efficient, and highly flexible.

On receiving the invitation to review this book, after a comparable work for the
books Google App Engine Java and GWT Application Development, Packt Publishing,
he was pleased to share his knowledge about Google App Engine again.

I want to thank my wife, Sophie, and our sons, Erwan and Goulven,
with whom I enjoy a peaceful life in Montréal, Québec, Canada.

Samuel Goebert is a computer science PhD student at Plymouth University, UK.
Samuel has over 12 years of experience in software development and associated
technologies. For further details about him, check out his LinkedIn profile at
www.linkedin.com/in/samuelgoebert.

www.linkedin.com/in/samuelgoebert

Marcos Placona grew up in Sao Paulo, Brazil, and started tinkering with web
development when 14.400 kbs modems were the coolest thing.

He then eagerly pursued a computer science degree and soon after an opportunity
arose on the other side of the Atlantic. In his 20s, he decided to move to England
where he worked as a software engineer at a software house. He also started
blogging on www.placona.co.uk.

Marcos has published and printed articles in several web portals, magazines,
and books.

He is currently working as a developer evangelist at Twilio; he actively works
with developers and communities to equip and inspire them while making their
applications better.

www.placona.co.uk

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/

To Azzurra and Valerio, thanks for being patient with me. But I also have been
patient with you, so I think we're even.

Table of Contents
Preface 1
Chapter 1: Getting Started 7

The cloud computing stack – SaaS, PaaS, and IaaS 8
Google Cloud Platform 9

Hosting + Compute 9
Storage 9
BigQuery 10
Services 10

What Google App Engine does 11
The runtime environment 11
The services 12

Making our first Python application 14
Download and installation 15

Installing on Windows 15
Installing on Mac OS X 16
Installing on Linux 16

App Engine Launcher 16
Creating the application 19

The app.yaml configuration file 19
The main.py application script 21

Running the development server 22
Uploading the application to App Engine 24

Google Developer Console 26
Development Console 27

Summary 27

Table of Contents

[ii]

Chapter 2: A More Complex Application 29
Experimenting on the Notes application 29
Authenticating users 30
HTML templates with Jinja2 31
Handling forms 34
Persisting data in Datastore 36

Defining the models 36
Basic querying 38
Transactions 40

Using static files 43
Summary 48

Chapter 3: Storing and Processing Users' Data 49
Uploading files to Google Cloud Storage 50

Installing Cloud Storage Client Library 50
Adding a form to upload images 51
Serving files from Cloud Storage 54
Serving files through Google's Content Delivery Network 56

Serving images 56
Serving other types of files 59

Transforming images with the Images service 60
Processing long jobs with the task queue 63
Scheduling tasks with Cron 65
Sending notification e-mails 66
Receiving users' data as e-mail messages 67
Summary 71

Chapter 4: Improving Application Performance 73
Advanced use of Datastore 73

More on properties – arrange composite data with StructuredProperty 74
More on queries – save space with projections and optimize
iterations with mapping 77

Projection queries 77
Mapping 78

NDB asynchronous operations 79
Caching 81
Backup and restore functionalities 82
Indexing 83

Using Memcache 85
Breaking our application into modules 87
Summary 91

Table of Contents

[iii]

Chapter 5: Storing Data in Google Cloud SQL 93
Creating a Cloud SQL instance 93

Configuring access 95
Setting the root password 97

Connecting to the instance with the MySQL console 97
Creating the notes database 97
Creating a dedicated user 98
Creating tables 99

Connecting to the instance from our application 100
Loading and saving data 104
Using the local MySQL installation for development 107
Summary 108

Chapter 6: Using Channels to Implement a
Real-time Application 109

Understanding how the Channel API works 110
Making our application real time 112
Implementing the server 112

The JavaScript code for clients 115
Tracking connections and disconnections 124
Summary 125

Chapter 7: Building an Application with Django 127
Setting up the local environment 128

Configuring a virtual environment 128
Installing dependencies 130

Rewriting our application using Django 1.7 130
Using Google Cloud SQL as a database backend 132
Creating a reusable application in Django 135
Views and templates 136
Authenticating users with Django 140
Using the ORM and migrations system 143
Processing forms with the Forms API 146
Uploading files to Google Cloud Storage 150

Summary 154

Table of Contents

[iv]

Chapter 8: Exposing a REST API with Google Cloud Endpoints 155
Reasons to use a REST API 156
Designing and building the API 156

Resources, URLs, HTTP verbs, and response code 156
Defining resource representations 158

Implementing API endpoints 161
Testing the API with API Explorer 168
Protecting an endpoint with OAuth2 170
Summary 173

Index 175

Preface
In April 2008, 10,000 developers from all around the world were lucky enough to
get an account to access the preview release of Google App Engine, which is a tool
designed to let users run their web applications on the same infrastructure Google
uses for its own services. Announced during Google's Campfire One event, App
Engine was described as something easy to use, easy to scale and free to get started;
three design goals that perfectly matched the requirements of a typical tech start-up
trying to reduce the time to market.

While other big companies at that time were already offering to lease part of their
own infrastructure, selling reliability and scalability in an affordable, pay-per-use
fashion, Google set App Engine one step ahead by providing developers with
application-building blocks instead of simple access to hardware; it is a hosting
model followed by many others later on. The goal of this model is to let developers
focus on the code and forget about failing machines, network issues, scalability
problems, and performance tuning; the choice of Python as the first programming
language supported by App Engine was a natural choice for a tool whose aim is to
make writing and running web applications easier.

During the Google I/O event in 2012, Google announced that several other building
blocks from its own infrastructure would be made available under the name of
Google Cloud Platform, first as a partner program and then as a general availability
product. Currently, App Engine is not only a notable member of the Cloud Platform
family but also a mature and well-maintained platform, widely adopted and with a
huge list of customers' success stories.

This book will teach you how to write and run web applications in Python with
App Engine, getting the most out of Google Cloud Platform. Starting with a simple
application, you will add more and more features to it, each time with the help
of the components and services provided by Google's infrastructure.

Preface

[2]

What this book covers
Chapter 1, Getting Started, will help you get your hands dirty with a very simple
functional Python application running on a production server. The chapter begins
with making a survey of Google's cloud infrastructure, showing where App Engine is
placed and how it compares to other well-known cloud services. It then walks readers
through downloading and installing the runtime for Linux, Windows, and OS X,
coding a Hello, World! application and deploying it on App Engine. The last part
introduces administration consoles both for the development and production servers.

Chapter 2, A More Complex Application, teaches you how to implement a complex web
application running on App Engine. It begins with an introduction to the bundled
webapp2 framework and possible alternatives; then, you will get in touch with user
authentication and form handling and then an introduction to Google's Datastore
nonrelational database. The last part shows you how to make HTML pages through
templates rendering and how to serve all the static files needed to style the page.

Chapter 3, Storing and Processing Users' Data, will show you how to add more
functionalities to the app from the previous chapter. The chapter begins by showing
you how to let users upload files using Google Cloud Storage and how to manipulate
such files when they contain image data with the Image API. It then introduces you
to the task queues used to execute long jobs (such as image manipulation) outside
the request process and how to schedule batches of such jobs. The last part shows
you how to send and receive e-mails through the Mail API.

Chapter 4, Improving Application Performance, begins by showing how to improve
application performance using advanced features of Datastore. It then shows you
how to use the cache provided by App Engine and how to break the application into
smaller services using Modules.

Chapter 5, Storing Data in Google Cloud SQL, is dedicated to the Google Cloud
SQL service. It shows you how to create and manage a database instance and
how to connect and perform queries. It then demonstrates how an App Engine
application can save and retrieve data and how to use a local MySQL installation
during development.

Chapter 6, Using Channels to Implement a Real-time Application, shows you how to make
our application real time, in other words, how to update what clients see without
reloading the page in the browser. The first part shows how the Channel API works,
what happens when a client connects, and what roundtrip of a message is from
the server to the client. Then, it shows you how to add a real-time feature to our
application from previous chapters.

Preface

[3]

Chapter 7, Building an Application with Django, teaches you how to build an App
Engine application using the Django web framework instead of webapp2. The
first part shows you how to configure the local environment for development, and
then the application from previous chapters is rewritten using some of the features
provided by Django. The last part shows you how to deploy the application on a
production server.

Chapter 8, Exposing a REST API with Google Cloud Endpoints, shows you how to
rewrite part of our application to expose data through a REST API. The first part
explores all the operations needed to set up and configure a project and how to
implement a couple of endpoints for our API. The last part shows explores how to
add OAuth protection to the API endpoints.

What you need for this book
In order to run the code demonstrated in this book, you need a Python interpreter
for version 2.7.x and the App Engine Python SDK as described in the Download and
installation section from Chapter 1, Getting Started.

Additionally, to access the example application once it runs on App Engine, you
need a recent version of a web browser such as Google Chrome, Mozilla Firefox,
Apple Safari, or Microsoft Internet Explorer.

Who this book is for
If you are a Python programmer who wants to apply your skills to write web
applications using Google App Engine and Google Cloud Platform tools and
services, this is the book for you. Solid Python programming knowledge is required
as well as a basic understanding of the anatomy of a web application. Prior
knowledge of Google App Engine is not assumed, nor is any experience with a
similar tool required.

By reading this book, you will become familiar with the functionalities provided
by Google Cloud Platform with particular reference to Google App Engine, Google
Cloud Storage, Google Cloud SQL, and Google Cloud Endpoints at the latest
versions available at the time of writing this book.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Preface

[4]

Code words in text are shown as follows: "If a user is already logged in,
the get_current_user() method returns a User object, otherwise it returns
None parameter".

A block of code is set as follows:

import webapp2

class HomePage(webapp2.RequestHandler):
 def get(self):
 self.response.headers['Content-Type'] = 'text/plain'
 self.response.out.write('Hello, World!')

app = webapp2.WSGIApplication([('/', HomePage)], debug=True)

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"To create a new application, click the Create an Application button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of. To send us general feedback,
simply send an e-mail to feedback@packtpub.com, and mention the book title via
the subject of your message. If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, see our author guide on
www.packtpub.com/authors.

http://www.packtpub.com/authors

Preface

[5]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from: https://www.packtpub.
com/sites/default/files/downloads/B03710_8194OS_Graphics.pdf

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/B03710_8194OS_Graphics.pdf
https://www.packtpub.com/sites/default/files/downloads/B03710_8194OS_Graphics.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[6]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy. Please contact us at copyright@packtpub.com with a link to the
suspected pirated material. We appreciate your help in protecting our authors, and
our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Getting Started
Any software available over the Internet, usually accessed with a web browser, can
be addressed as a web application. Social networks, e-commerce sites, e-mail clients,
online games are just a few examples of a trend known as web 2.0, which was started
in the late 1990s and emerged in the past few years. Today, if we want to provide a
service for multiple clients and multiple users, we will likely end in with writing a
web application.

Web applications come with an endless list of benefits from a developer's point
of view but there is one major drawback to face every time we want to make our
software available to other users: we need a remote server connected to the Internet
to host the application. This server must be constantly available and respond to
clients in a reasonable amount of time, irrespective of the number of clients, or the
application won't be usable.

A noteworthy solution to the hosting problem is cloud computing, which is a rather
generic term that usually refers to the opportunity to run applications and services
on someone else's infrastructure at a reasonable cost and in a way that is simple and
quick for the needed resources to be provisioned and released.

In this first chapter we will define in detail the term cloud computing and then
introduce the model provided by Google, focusing on the elements that are
important to us, as developers, and use them to run our first application
using the Google Cloud Platform and Google App Engine.

In this chapter we will cover the following topics:

• A detailed introduction to Google Cloud Platform and Google App Engine
• Setting up an App Engine code environment
• Writing a simple application
• Loading and running the application on a remote server
• Using the administration console

Getting Started

[8]

The cloud computing stack – SaaS,
PaaS, and IaaS
We can choose to outsource our applications and the hardware they run on, still
being responsible for the whole software stack, including the operating system;
or, we can simply use existing applications available from another vendor.

We can represent cloud computing as a stack of three different categories:
Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure
as a Service (IaaS) as follows:

In the first case, the cloud computing model is defined as IaaS and we basically
outsource hardware and every inherent service such as power supply, cooling,
networking, and storage systems. We decide how to allocate resources, how many
web applications, or database servers we need, whether or not we need to use a
load balancer, how to manage backups and so on; the installation, monitoring, and
maintenance are under our responsibilities. A notable example of IaaS services are
EC2 from Amazon and Rackspace Cloud Hosting.

In the second case, the cloud computing model is defined as SaaS and is the opposite
of IaaS since we simply use a turnkey software provided by a third-party vendor,
who has no technical knowledge of the infrastructure it runs on; the vendor is
responsible for the reliability and security of the product. Notable examples of SaaS
are Gmail from Google and Salesforce.

Between IaaS and SaaS we find the PaaS model, which seems to be the most
interesting solution from a developer's point of view. A PaaS system provides a
platform with which we can build and run our application without worrying about
the underlying levels, both hardware and software.

Chapter 1

[9]

Google Cloud Platform
Google Cloud Platform is designed to offer developers tools and services needed
to build and run web applications on Google's reliable and highly scalable
infrastructure. The platform consists of several cloud computing products that can
be composed and used according to our needs, so it's important to know what these
building blocks can do for us, as developers, and how they do so.

As we can learn from the main documentation page at https://cloud.google.com,
Google classifies Google Cloud Platform's components into four groups:
Hosting + Compute, Storage, Big Data, and services.

Hosting + Compute
There are two options if we want to host an application on Google Cloud Platform:

• Google App Engine: This is Google's PaaS and it will be covered in detail
later in this chapter.

• Google Compute Engine: This is Google's IaaS and lets users run virtual
machines on Google's infrastructure with a variety of hardware and
software configurations.

Storage
Google Cloud Platform provides several options to store and access users' data:

Google Cloud Storage: This is a highly available and scalable file storage service
with versioning and caching. We will learn how to use Cloud Storage in Chapter 3,
Storing and Processing User's Data.

Google Cloud SQL: This is a fully managed MySQL relational database; replication,
security and availability are Google's responsibilities. Chapter 5, Storing Data in Google
Cloud SQL, is entirely dedicated to this service.

Google Cloud Datastore: This is a managed schemaless database that stores
nonrelational data objects called entities; it scales automatically, supports
transactions, and can be queried with SQL-like syntax. We will start using it
in Chapter 2, A More Complex Application, and learn how to get the most out of it
in Chapter 4, Improving Application Performance.

https://cloud.google.com

Getting Started

[10]

BigQuery
BigQuery is a tool provided by Google Cloud Platform that allows to perform
queries using an SQL-like syntax against a huge amount of data in a matter of
seconds. Before it can be analyzed, data must be streamed into BigQuery through
its API or uploaded to Google Cloud Storage.

Services
Instead of writing code from scratch, we can easily add functionalities to our
applications using some of Google's services through APIs that are very well
integrated within Google Cloud Platform:

• The Translate API: This can translate text between dozens of languages
programmatically, from within our applications.

• The Prediction API: This predicts future trends using Google's machine
learning algorithms and can be used from within our applications or
through a Representational State Transfer (REST) API. REST is a stateless
architecture style that describes how a system can communicate with another
through a network; we will delve into more details on REST in Chapter 8,
Exposing a REST API with Google Cloud Endpoints.

• Google Cloud Endpoints: Using this tool, it's easy to create applications that
expose REST services, providing also Denial-of-Service (DoS) protection
and OAuth2 authentication. We will learn how to use them in Chapter 8,
Exposing a REST API with Google Cloud Endpoints.

• Google Cloud DNS: This is global Domain Name System (DNS) service
that runs on Google's infrastructure and provides high volume serving that is
programmable from within our applications.

• Google Cloud Pub/Sub: This is middleware that provides many-to-many,
asynchronous messaging between services that either run on Google Cloud
Platform or externally.

All the tools and services provided by Google Cloud Platform are billed with a
pay-per-use model so that applications can scale up or down as needed and we only
pay for resources we actually use. A handy calculator is provided to have a precise
idea of the costs depending on the services and resources we think we will need.
Google Cloud Platform offers a certain amount of resources we can use without
paying anything; usually, these free quotas are well suited to host web applications
with low traffic at no cost.

Chapter 1

[11]

What Google App Engine does
As mentioned earlier, App Engine is a PaaS, which means that we have the benefits
of SaaS products but with an augmented flexibility as we have complete control
over the code. We also have the benefits of an IaaS solution but without the hassle of
maintaining and configuring the software environment needed to run applications
on a raw hardware system.

Developers are the favored users of a PaaS product such as App Engine because the
platform helps them in two ways: it provides an easy way to deploy, scale, tune, and
monitor web applications without the need for a system administrator and it offers
a set of tools and services that speed up the software development process. Let's
explore these two aspects in detail.

The runtime environment
App Engine runs on computing units that are completely managed called instances.
We can (and should) ignore which operating system is running on an instance
because we interact solely with the runtime environment, which is an abstraction of
the operating system that provides resource allocation, computation management,
request handling, scaling, and load balancing.

Developers can choose among four different programming
languages to write applications on App Engine: Python, Java,
Hypertext Preprocessor (PHP), and Go but we will focus on the
Python environment.

Every time a client contacts an application that runs on App Engine, a component of
the runtime environment called scheduler selects an instance that can provide a fast
response, initializes it with application data if needed, and executes the application
with a Python interpreter in a safe, sandboxed environment. The application receives
the HTTP request, performs its work, and sends an HTTP response back to the
environment. Communication between the runtime environment and the application
is performed using the Web Server Gateway Interface (WSGI) protocol; this means
that developers can use any WSGI-compatible web framework in their application.

WSGI is a specification that describes how a web server
communicates with web applications written in Python. It was
originally described in PEP-0333 and later updated in PEP-3333,
mainly to improve usability under the Python 3.0 release.

Getting Started

[12]

The runtime environment is sandboxed to improve security and provide isolation
between applications running on the same instance. The interpreter can execute
any Python code, import other modules, and access the standard library, provided
that it doesn't violate sandbox restrictions. In particular, the interpreter will raise an
exception whenever it tries to write to the filesystem, perform network connections,
or import extension modules written in the C language. Another isolation
mechanism we must be aware of that is provided by sandboxing, prevents an
application from overusing an instance by raising an exception whenever the entire
request/response cycle lasts more than 60 seconds.

Thanks to sandboxing, the runtime can decide at any given time whether to run an
application on one instance or many instances, with requests being spread across all
of them depending on the traffic. This capability, together with load balancing and
scheduler settings is what makes App Engine really scalable.

Users can easily tune an application's performance by increasing its responsiveness
or optimizing costs with a simple and interactive administrative console. We can
specify instance performance in terms of memory and CPU limits, the number of idle
instances always ready to satisfy a request, and the number of instances dynamically
started when the traffic increases. We can also specify the maximum amount of time
in milliseconds we tolerate for a pending request and let App Engine adjust the
settings automatically.

The services
At first sight, restrictions imposed by the runtime environment might seem too
restrictive. In the end, how can developers make something useful without being
able to write data on disk, receive incoming network connections, fetch resources
from external web applications, or start utility services such as a cache? This is
why App Engine provides a set of higher-level APIs/services that can be used by
developers to store and cache data or communicate over the Internet.

Some of these services are provided by the Google Cloud Platform as standalone
products and are smoothly integrated into App Engine, while some others are only
available from within the runtime environment.

Chapter 1

[13]

The list of available services changes quite often as Google releases new APIs and
tools; the following is a subset of tools we will use later in the book in addition to the
Datastore, Google Cloud Endpoints, Google Cloud SQL, and Google Cloud Storage
services we introduced earlier:

• Channel: This API allows applications to create persistent connections with
the clients and push data through such connections in real time instead of
using polling strategies. Clients must use some JavaScript code to interact
with the server. We will learn how to use Channels in
Chapter 6, Using Channels to Implement a Real-time Application.

• Datastore backup/restore: At any given time, it's possible to perform a backup
of the entities contained in the Datastore or restore them from a previous
backup; management operations are very easy as they can be performed
interactively from the administrative console. We will see backup and restore
procedures in detail in Chapter 4, Improving Application Performance.

• Images: This API lets developers access and manipulate image data
provided by the application or loaded from Google Cloud Storage. We can
get information about the format, size, and colors and perform operations
such as resizing, rotating, and cropping and we can convert images between
different formats and apply some basic filters provided by the API. We will
use some of the features provided by the Images API in Chapter 3, Storing and
Processing Users' Data.

• Mail: This service allows applications to send e-mails on behalf of the
administrators or users who are logged in with a Google Account and
to receive e-mail messages sent to certain addresses and routed to the
application. We will use both these features provided by the service in
Chapter 3, Storing and Processing Users' Data.

• Memcache: This is a general-purpose, distributed memory caching
system that can be used to dramatically improve application performance,
serving frequently accessed data way faster than accessing a database or
an API. We will see how to use Memcache in Chapter 4, Improving
Application Performance.

• Modules: These are used to split applications into logical components
that can communicate and share their state with each other. They can
be extremely useful as each of them can have different versions and
performance and scaling settings, which provide developers with a great
level of flexibility when tuning an application. We will see how to use
Modules in Chapter 4, Improving Application Performance.

Getting Started

[14]

• Scheduled tasks: This is how App Engine implements the cron jobs.
Developers can schedule a job to be executed at a defined date or at regular
intervals. Schedules are defined in an English-like format: for example,
every Friday 20:00 is a valid schedule we can use to send weekly reports
to our users. We will see how to use scheduled tasks in Chapter 3, Storing and
Processing Users' Data.

• Task Queue: As mentioned earlier, the entire request/response cycle of an
application running on App Engine must last at most 60 seconds, making
it impossible to perform long operations. This is why the Task Queue API
exists––it can perform work outside the user request so that long operations
can be executed later in background with 10 minutes to finish. We will see
how to use a task queue in Chapter 3, Storing and Processing Users' Data.

• URL Fetch: As we already know, the runtime environment prevents our
application from performing any kind of network connection but accessing
external resources through HTTP requests is a common requirement for a
web application. This limitation can be overcome using the URL Fetch API
to issue HTTP or HTTPS requests and retrieve a response in a scalable and
efficient manner.

• Users: We can authenticate users within our applications using Google
Accounts, accounts in a Google Apps domain, or through OpenID identifiers.
Using the Users API our application can determine whether a user is logged
in and redirect them to the login page or access their e-mail otherwise. Using
this API, developers can delegate to Google or to the OpenID provider the
responsibility of creating accounts and verifying the user's data.

For more information on the tools and services provided by Google that we can use
from within the App Engine environment, refer to https://developers.google.
com/appengine/features/.

Making our first Python application
We have now have an idea of the features Google Cloud Platform can provide us
with and we are ready to put App Engine in action, but before we can start writing
some code, we need to set up our workstation.

https://developers.google.com/appengine/features/
https://developers.google.com/appengine/features/

Chapter 1

[15]

Download and installation
To get started, we need to install the Google App Engine SDK for Python for the
platform of our choice. The SDK contains all the libraries needed to develop an
application and a set of tools to run and test the application in the local environment
and deploy it in the production servers. On some platforms, administrative tasks can
be performed through a GUI, the Google App Engine Launcher, on other platforms
we can use a comprehensive set of command line tools. We will see Google App
Engine Launcher in detail later in this chapter.

Before installing the SDK, we have to check whether a working installation of Python
2.7 (version 2.7.8 is the latest at the time of writing this book) is available on our
system; we need this specific version of Python because, with 2.5 deprecated now,
it is the only version supported by the App Engine platform. If we are using Linux
or Mac OS X, we can check the Python version from the terminal that issues the
command (notice the capital letter V):

python -V

The output should look like this:

Python 2.7.8

If we are on Windows, we can just ensure the right version of Python is listed in the
Programs section within the Control Panel.

The official App Engine download page contains links for all the available SDKs.
The following link points directly to the Python version: https://developers.
google.com/appengine/downloads#Google_App_Engine_SDK_for_Python.

We have to choose the right package for our platform, download the installer,
and proceed with the installation.

Installing on Windows
To install the SDK on Windows we have to download the .msi file from the App
Engine download page, double-click it to launch the installation wizard, and follow
the instructions on the screen. Once the install is complete, a shortcut to Google App
Engine Launcher will be placed on the desktop as well as an item within the Start
menu. The Windows version of the SDK does not provide any command-line tool,
so we will always use Launcher to manage our applications.

 https://developers.google.com/appengine/downloads#Google_App_Engine_SDK_for_Python
 https://developers.google.com/appengine/downloads#Google_App_Engine_SDK_for_Python

Getting Started

[16]

Installing on Mac OS X
To install the SDK on Mac OS X, we have to download the .dmg file from the
App Engine download page, double-click it to open the disk image, and drag the
App Engine icon into the Applications folder. It is convenient to keep a shortcut
to Launcher in our Dock; to do so, we just have to just drag the App Engine icon
again from the Applications folder to the dock. The command-line tools will
also be installed and during the first execution of Launcher, a pop-up dialog will
prompt us as to whether we want to create the symlinks needed to make the tools
available system-wide, so they can be executed from any terminal window without
further configuration.

Installing on Linux
To install the SDK on Linux and more generally on POSIX-compliant systems,
we have to download the .zip file from the App Engine download page and
extract its contents in a directory of our choice. The archive contains a folder named
google_appengine that contains the runtime and the command-line tools, and we
have to add it to our shell's PATH environment variable to make the tools available
from within any terminal. The Linux version of the SDK does not include Launcher.

App Engine Launcher
The Windows and OS X versions of the SDK ships with a graphical user interface
tool called Launcher that we can use to perform administrative tasks such as creating
and managing multiple applications.

Launcher is a very handy tool but bear in mind that while every
single task we can accomplish through Launcher can be performed by
command-line tools as well, the contrary isn't true. There are tasks that
can be performed only from the command line using the proper tools
as we will see later in the book.

Chapter 1

[17]

The following screenshot shows the Launcher window in OS X:

We can see the Launcher in Windows in the following screenshot:

Getting Started

[18]

Before we start using the Launcher it's important to check whether it is using the
right Python version. This is very important if we have more than one Python
installation in our system. To check the Python version used by Launcher and to
change it, we can open the Preferences... dialog by clicking the appropriate menu
depending on our platform and set the Python path value. In the same dialog we
can specify which text editor Launcher will open by default when we need to edit
application files.

To create a new application we can click New Application in the File menu or click
the button with a plus sign icon in the bottom-left corner of the Launcher window.
Launcher will prompt for the application name and the path to the folder that will
contain all the project files; once created, the application will be listed in the main
window of Launcher.

We can start the local development server by clicking the Run button on the
Launcher toolbar or clicking Run in the Control menu. Once the server is started,
we can stop it by clicking on the Stop button or the Stop entry in the Control menu.
Clicking the Browse button or the Browse entry in the Control menu opens the
default browser at the home page of the selected application. To browse the logs
produced by the development server, we can open the Log Console window by
clicking the Logs button on the toolbar or the Logs entry in the Control menu. The
SDK Console button on the toolbar and the SDK Console action on the Control
menu will open the default browser at the URL that serves the Developer Console,
a built-in application to interact with the local development server, which we will
explore in detail later in this chapter.

The Edit button will open the configuration file for the selected application in an
external text editor, maybe the one we specified in the Preferences... dialog; the
same happens when we click the Open in External Editor action in the Edit menu.

To deploy and upload the selected application to App Engine we can click the
Deploy button on the toolbar or click the Deploy action in the Control menu. The
Dashboard button on the toolbar and the Dashboard action in the Control menu
will open the default browser at the URL of App Engine Administrative Console.

Using Launcher we can set additional flags for the local development server and
customize some parameters such as the TCP port number to which listens. To do
so we have to click the Application Settings... entry in the Edit menu and make the
desired adjustments in the settings dialog.

Launcher can also handle existing applications created from scratch through the
command line or checked out from an external repository. To add an existing
application to the Launcher, we can click the Add Existing Application... entry in
the File menu and specify the application path.

Chapter 1

[19]

Creating the application
The first step to create an application is pick a name for it. According to the tradition
we're going to write an application that will print "Hello, World!" so we can choose
helloword as the application name. We already know how to create an application
from Launcher, the alternative is to do it manually from the command line.

At the simplest, a working Python application consists of a folder called application
root that contains an app.yaml configuration file and a Python module with the code
needed to handle HTTP requests. When we create an application within Launcher,
it takes care of generating those files and the root folder for us, but let's see how can
we can accomplish the same result from the command line.

The app.yaml configuration file
When we start creating the root folder, it doesn't matter how we name it but to be
consistent with Launcher we can use the application's name:

mkdir helloworld && cd helloworld

We then create an app.yaml file that contains the following YAML code:

application: helloworld
version: 1
runtime: python27
api_version: 1
threadsafe: yes

handlers:
- url: .*
 script: main.app

libraries:
- name: webapp2
 version: "2.5.2"

YAML (a recursive acronym for YAML Ain't Markup Language)
is a human-readable serialization format that is suitable for
configuration files that have to be accessed and manipulated both
from users and programmatically.

Getting Started

[20]

The first section of the previous code defines some setup parameters for
the application:

• The application parameter: This is the application name; later in the
chapter, we'll see how important it is.

• The version parameter: This is a string that specifies the version of the
application. App Engine retains a copy of each version deployed and we
can run them selectively, a very useful feature for testing an application
before making it public.

• The runtime parameter: At the time of writing this book, Python 27 is the
only runtime available for newly created applications as Python 25 was
deprecated.

• The api_version parameter: This is the version of the API for the current
runtime environment. At the time writing this, 1 is the only API version
available for the Python 27 runtime.

• The threadsafe parameter: This specifies whether our application can
handle requests concurrently in separate threads or not.

The next section of the app.yaml file lists the URLs we want to match in the form
of a regular expression; the script property specifies the handler for each URL.
A handler is a procedure App Engine invokes to provide a response when an
application receives a request. There are two types of handlers:

• The script handlers: These handlers run the Python code provided by
the application

• The static file handlers: These handlers return the content of a static
resource such as an image or a file that contain the JavaScript code

In this case, we are using a script handler, a Python callable addressed with a dot
notation import string: App Engine will match any URL and invoke the app object
contained in the main module.

The final section lists the name and version of third-party modules provided by App
Engine we want to use from our application, and in this case we only need the latest
version of the webapp2 web framework. We might wonder why we need something
complex such as a web framework to simply print a "Hello, World!" message, but as
we already know, our handler must implement a WSGI-compliant interface and this
is exactly one of the features provided by webapp2. We will see how to use it in the
next section.

Chapter 1

[21]

The main.py application script
Now that the application is configured, we need to provide logic, so we create a file
named main.py in the application root folder that will contain the following:

import webapp2

class MainHandler(webapp2.RequestHandler):
 def get(self):
 self.response.write('Hello world!')

app = webapp2.WSGIApplication([
 ('/', MainHandler)
], debug=True)

In the first line of the previous code we import the webapp2 package into our code,
and then we proceed to define a class named MainHandler that is derived from the
RequestHandler class provided by the framework. The base class implements a
behavior that makes it very easy to implement a handler for HTTP requests; all we
have to do is to define a method named after the HTTP action we want to handle.
In this case, we implement the get() method that will be automatically invoked
whenever the application receives a request of the type GET. The RequestHandler
class also provides a self.response property we can use to access the response
object that will be returned to the application server. This property is a file-like object
that supports a write() method we can use to add content to the body of the HTTP
response; in this case we write a string inside the response body with the default
content type text/html so that it will be shown inside the browser.

Right after the MainHandler class definition we create the app object, which is an
instance of the WSGIApplication class provided by webapp2 that implements the
WSGI-compliant callable entry point we specified in app.yaml with the import string
main.app. We pass two parameters to the class constructor, a list of URL patterns,
and a Boolean flag stating whether the application should run in debug mode or not.
URL patterns are tuples that contain two elements: a regular expression that matches
requested URLs and a class object derived from webapp2.RequestHandler class that
will be instantiated to handle requests. URL patterns are processed one by one in the
order they are in the list until one matches and the corresponding handler is called.

As we may notice, URL mappings take place twice—firstly in the app.yaml file,
where a URL is routed to a WSGI compatible application in our code and then in the
WSGIApplication class instance, where an URL is routed to a request handler object.
We can freely choose how to use these mappings, that is either route all URLs in the
app.yaml file to a single webapp2 application where they are dispatched to handlers
or to different URLs to different, smaller webapp2 applications.

Getting Started

[22]

Running the development server
The App Engine SDK provides an extremely useful tool called development server
that runs on our local system emulating the runtime environment we will find in
production. This way, we can test our applications locally as we write them. We
already know how to start the development server from Launcher. To launch it from
the command line instead, we run the dev_appserver.py command tool passing
the root folder of the application we want to execute as an argument. For example,
if we're already inside the root folder of our helloworld application, to start the
server, we can run this command:

dev_appserver.py .

The development server will print some status information on the shell and will then
start listen at the local host to the default TCP ports 8000 and 8080, serving the admin
console and the application respectively.

While the server is running, we can open a browser, point it at
http://localhost:8080 and see our first web application serving content.

The following screenshot shows the output:

Chapter 1

[23]

If we are using Launcher, we can simply press the Browse button and the browser
will be opened automatically at the right URL.

The development server automatically restarts application instances whenever it
detects that some content on the application root folder has changed. For example,
while the server is running we can try to change the Python code that alters the
string we write in the response body:

import webapp2

class MainHandler(webapp2.RequestHandler):
 def get(self):
 self.response.write('<H1>Hello world!</H1>')
 self.response.write("<p>I'm using App Engine!</p>")

app = webapp2.WSGIApplication([
 ('/', MainHandler)
], debug=True)

After saving the file, we can refresh the browser and immediately see the changes
without reloading the server, as shown in the following screenshot:

We can now move our application to a production server on App Engine and make it
available through the Internet.

Getting Started

[24]

Uploading the application to App Engine
Every application running on App Engine is uniquely identified by its name
within the Google Cloud Platform. That is why sometimes we find parts of the
documentation and tools referring to that as application ID. When working on a
local system, we can safely pick any name we want for an application as the local
server does not enforce any control on the application ID; but, if we want to deploy
an application in production, the application ID must be validated and registered
through App Engine Admin Console.

Admin Console can be accessed at https://appengine.google.com/ and log in
with a valid Google user account or a Google apps account for custom domains.
If we are using Application Launcher, clicking the Dashboard button will open
the browser at the right address for us. Once logged in, we can click the Create
Application button to access the application creation page. We have to provide an
application ID (the console will tell us whether it is valid and available) and a title
for the application and we're done. For now, we can accept the default values for
the remaining options; clicking on Create Application again will finally register the
application's ID for us.

Now we have to change the dummy application ID we provided for our application
with the one registered on App Engine. Open the app.yaml configuration file and
change the application property accordingly:

application: the_registered_application_ID
version: 1
runtime: python27
api_version: 1
threadsafe: yes

handlers:
- url: .*
 script: main.app

libraries:
- name: webapp2
 version: "2.5.2"

https://appengine.google.com/

Chapter 1

[25]

We are now ready to deploy the application on App Engine. If we are using
Application Launcher, all we have to do is click on the Deploy button in the toolbar.
Launcher will ask for our Google credentials and then the log window will open
showing the deployment status. If everything went fine the last line shown should be
something like this:

*** appcfg.py has finished with exit code 0 ***

Deploying from the command line is just as easy; from the application root directory,
we issue the command:

appcfg.py update .

We will be prompted for our Google account credentials, and then the deployment
will proceed automatically.

Every App Engine application running in production can be accessed via
http://the_registered_application_ID.appspot.com/, so we can
tell whether the application is actually working by accessing this URL from a
browser and checking whether the output is the same as that produced by the
local development server.

Google App Engine allow us to serve content over HTTPS (HTTP Secure)
connections on top of the Secure Sockets Layer (SSL) protocol, which means that
data transferred from and to the server is encrypted. When using the appspot.com
domain, this option is free of charge. To enable secure connections between clients
and the App Engine server, all we have to do is add the secure option to the URLs
listed in the app.yaml file:

handlers:
- url: .*
 script: main.app
 secure: always

On the local development server we will still use regular HTTP connections, but in
production we will access https://the_registered_application_ID.appspot.
com/ in a secure manner over HTTPS connections.

If we want to access the application over HTTPS through a custom domain instead,
such as example.com, we have to configure App Engine so that the platform can
use our certificates by following the instructions at https://cloud.google.com/
appengine/docs/ssl. This service has a fee and we will be charged monthly.

https://cloud.google.com/appengine/docs/ssl
https://cloud.google.com/appengine/docs/ssl
https://cloud.google.com/appengine/docs/ssl

Getting Started

[26]

Google Developer Console
Before Google Cloud Platform was released, Admin Console was the only tool
available to developers to perform administrative and monitoring tasks on App
Engine applications. Admin Console provides a lot of functionalities and it's still
powerful enough to manage App Engine applications of any size. However, it's not
the right tool if we extensively use the new range of services offered by the Google
Cloud Platform, especially if we store data on Google Cloud Storage or our database
server is Google Cloud SQL; in this case, to collect information such as billing data
and usage history we have to interact with other tools.

Recently Google released Developer Console, a comprehensive tool to manage and
monitor services, resources, authentication, and billing information for Google Cloud
Platform, including App Engine applications. We can access the Developer Console
at https://console.developers.google.com/ and log in with a valid Google user
account or a Google apps account for custom domains.

To emphasize the concept that developers can combine various pieces coming from
Google's cloud infrastructure to build complex applications, Developer Console
introduces the notion of cloud projects. A project is a set of functionally grouped cloud
products that share the same team and billing information. At the core of a project
there is always an App Engine application: every time we create a project, an App
Engine application pops up in Admin Console. Simultaneously, when we register
an application in Admin Console, a corresponding project is created and listed in
Developer Console. Every project is identified by a descriptive name, which is a unique
identifier called project ID that is also the ID of the related App Engine application and
another unique identifier that is automatically generated called project number.

Beside creating and deleting projects, the developer console also let us do
the following:

• Manage project members: When we create a project we become the
owner of that project. As owners, we can add or remove members and
set their permissions.

• Manage APIs: We can add or remove API services provided by
Google Cloud Platform, set up billing, and monitor data.

• Manage applications identity: We can tie requests to specific projects so
that we can monitor specific traffic and billing and enforce quotas if needed.

• Manage applications security: We can set up OAuth2 for our applications
or provide API keys to authorize requests.

• Filter and cap services: We can allow requests coming only from authorized
hosts or IP addresses and limit the amount of requests allowed for each user
every second or every day for all the users.

https://console.developers.google.com/

Chapter 1

[27]

For every service of Google Cloud Platform, Developer Console provides us with
handy tools to perform maintenance operations through the web interface. For
example, we can add or remove Google Cloud SQL instances, perform queries on
Google Cloud Datastore, browse and manipulate the content of Google Cloud
Storage, and manage virtual machines running on Google Compute Engine.
We will use several parts of Developer Console later in the book.

Development Console
When we are on the local development server we can still access a tool to browse
and manage Datastore, task queues, cron jobs, and other App Engine emulated
components running locally. This tool is called Development Console and is
accessible at http://localhost:8000 when the local server is active.

Summary
In this chapter we have learned what Google Cloud Platform is, the tools and
services it provides, and how we can use them to develop and run fast and
scalable web applications written in Python.

We explored what tools we need to start developing with Python for the App
Engine platform, how to run an application locally with the development server,
and how fast and easy it is to upload it in a production server, ready to be served
through the Internet.

The simple example we used in the chapter, although a fully functional App Engine
application, is quite simple and it doesn't make use of anything provided by the
platform besides the runtime environment. In the next chapter, we will start from
scratch with a new, more useful application, exploring the webapp2 framework
and taking advantage of Cloud Datastore.

A More Complex Application
Web applications commonly provide a set of features such as user authentication
and data storage. As we know from the previous chapter, App Engine provides the
services and tools needed to implement such features and the best way to learn how
to use them is by writing a web application and seeing the platform in action.

In this chapter, we will cover the following topics:

• Further details of the webapp2 framework
• How to authenticate users
• Storing data on Google Cloud Datastore
• Building HTML pages using templates
• Serving static files

Experimenting on the Notes application
To better explore App Engine and Cloud Platform capabilities, we need a
real-world application to experiment on; something that's not trivial to write,
with a reasonable list of requirements so that it can fit in this book. A good
candidate is a note-taking application; we will name it Notes.

Notes enable the users to add, remove, and modify a list of notes; a note has a title
and a body of text. Users can only see their personal notes, so they must authenticate
before using the application.

The main page of the application will show the list of notes for logged-in users and a
form to add new ones.

A More Complex Application

[30]

The code from the helloworld example in the previous chapter is a good starting
point. We can simply change the name of the root folder and the application field
in the app.yaml file to match the new name we chose for the application, or we can
start a new project from scratch named notes.

Authenticating users
The first requirement for our Notes application is showing the home page only
to users who are logged in and redirect others to the login form; the users service
provided by App Engine is exactly what we need and adding it to our MainHandler
class is quite simple:

import webapp2

from google.appengine.api import users

class MainHandler(webapp2.RequestHandler):
 def get(self):
 user = users.get_current_user()
 if user is not None:
 self.response.write('Hello Notes!')
 else:
 login_url = users.create_login_url(self.request.uri)
 self.redirect(login_url)
app = webapp2.WSGIApplication([
 ('/', MainHandler)
], debug=True)

The user package we import on the second line of the previous code provides access
to users' service functionalities. Inside the get() method of the MainHandler class,
we first check whether the user visiting the page has logged in or not. If they have,
the get_current_user() method returns an instance of the user class provided
by App Engine and representing an authenticated user; otherwise, it returns None
as output. If the user is valid, we provide the response as we did before; otherwise,
we redirect them to the Google login form. The URL of the login form is returned
using the create_login_url() method, and we call it, passing as a parameter the
URL we want to redirect users to after a successful authentication. In this case, we
want to redirect users to the same URL they are visiting, provided by webapp2 in the
self.request.uri property. The webapp2 framework also provides handlers with
a redirect() method we can use to conveniently set the right status and location
properties of the response object so that the client browsers will be redirected to the
login page.

Chapter 2

[31]

HTML templates with Jinja2
Web applications provide rich and complex HTML user interfaces, and Notes is no
exception but, so far, response objects in our applications contained just small pieces
of text. We could include HTML tags as strings in our Python modules and write
them in the response body but we can imagine how easily it could become messy
and hard to maintain the code. We need to completely separate the Python code
from HTML pages and that's exactly what a template engine does. A template is
a piece of HTML code living in its own file and possibly containing additional,
special tags; with the help of a template engine, from the Python script, we can
load this file, properly parse special tags, if any, and return valid HTML code in
the response body. App Engine includes in the Python runtime a well-known
template engine: the Jinja2 library.

To make the Jinja2 library available to our application, we need to add this code to
the app.yaml file under the libraries section:

libraries:
- name: webapp2
 version: "2.5.2"
- name: jinja2
 version: latest

We can put the HTML code for the main page in a file called main.html inside the
application root. We start with a very simple page:

<!DOCTYPE html>
<html>
<head lang="en">
 <meta charset="UTF-8">
 <title>Notes</title>
</head>
<body>
 <div class="container">

 <h1>Welcome to Notes!</h1>

 <p>
 Hello, {{user}} - Logout
 </p>

 </div>
</body>
</html>

A More Complex Application

[32]

Most of the content is static, which means that it will be rendered as standard HTML
as we see it but there is a part that is dynamic and whose content depend on which
data will be passed at runtime to the rendering process. This data is commonly
referred to as template context.

What has to be dynamic is the username of the current user and the link used to log
out from the application. The HTML code contains two special elements written in
the Jinja2 template syntax, {{user}} and {{logout_url}}, that will be substituted
before the final output occurs.

Back to the Python script; we need to add the code to initialize the template engine
before the MainHandler class definition:

import os
import jinja2

jinja_env = jinja2.Environment(
 loader=jinja2.FileSystemLoader(os.path.dirname(__file__)))

The environment instance stores engine configuration and global objects, and it's
used to load templates instances; in our case, instances are loaded from HTML files
on the filesystem in the same directory as the Python script.

To load and render our template, we add the following code to the MainHandler.
get() method:

class MainHandler(webapp2.RequestHandler):
 def get(self):
 user = users.get_current_user()
 if user is not None:
 logout_url = users.create_logout_url(self.request.uri)
 template_context = {
 'user': user.nickname(),
 'logout_url': logout_url,
 }
 template = jinja_env.get_template('main.html')
 self.response.out.write(
 template.render(template_context))
 else:
 login_url = users.create_login_url(self.request.uri)
 self.redirect(login_url)

Chapter 2

[33]

Similar to how we get the login URL, the create_logout_url() method provided
by the user service returns the absolute URI to the logout procedure that we assign to
the logout_url variable.

We then create the template_context dictionary that contains the context values
we want to pass to the template engine for the rendering process. We assign the
nickname of the current user to the user key in the dictionary and the logout URL
string to the logout_url key.

The get_template() method from the jinja_env instance takes the name of the
file that contains the HTML code and returns a Jinja2 template object. To obtain
the final output, we call the render() method on the template object passing in
the template_context dictionary whose values will be accessed, specifying their
respective keys in the HTML file with the template syntax elements {{user}} and
{{logout_url}}.

This is the result of the template rendering:

A More Complex Application

[34]

Handling forms
The main page of the application is supposed to list all the notes that belong
to the current user but there isn't any way to create such notes at the moment.
We need to display a web form on the main page so that users can submit details
and create a note.

To display a form to collect data and create notes, we put the following HTML code
right below the username and the logout link in the main.html template file:

{% if note_title %}
<p>Title: {{note_title}}</p>
<p>Content: {{note_content}}</p>
{% endif %}

<h4>Add a new note</h4>
<form action="" method="post">
 <div class="form-group">
 <label for="title">Title:</label>
 <input type="text" id="title" name="title" />
 </div>
 <div class="form-group">
 <label for="content">Content:</label>
 <textarea id="content" name="content"></textarea>
 </div>
 <div class="form-group">
 <button type="submit">Save note</button>
 </div>
</form>

Before showing the form, a message is displayed only when the template context
contains a variable named note_title. To do this, we use an if statement, executed
between the {% if note_title %} and {% endif %} delimiters; similar delimiters
are used to perform for loops or assign values inside a template.

The action property of the form tag is empty; this means that upon form
submission, the browser will perform a POST request to the same URL, which in
this case is the home page URL. As our WSGI application maps the home page to
the MainHandler class, we need to add a method to this class so that it can handle
POST requests:

class MainHandler(webapp2.RequestHandler):
 def get(self):
 user = users.get_current_user()

Chapter 2

[35]

 if user is not None:
 logout_url = users.create_logout_url(self.request.uri)
 template_context = {
 'user': user.nickname(),
 'logout_url': logout_url,
 }
 template = jinja_env.get_template('main.html')
 self.response.out.write(
 template.render(template_context))
 else:
 login_url = users.create_login_url(self.request.uri)
 self.redirect(login_url)

 def post(self):
 user = users.get_current_user()
 if user is None:
 self.error(401)

 logout_url = users.create_logout_url(self.request.uri)
 template_context = {
 'user': user.nickname(),
 'logout_url': logout_url,
 'note_title': self.request.get('title'),
 'note_content': self.request.get('content'),
 }
 template = jinja_env.get_template('main.html')
 self.response.out.write(
 template.render(template_context))

When the form is submitted, the handler is invoked and the post() method is
called. We first check whether a valid user is logged in; if not, we raise an HTTP
401: Unauthorized error without serving any content in the response body. Since
the HTML template is the same served by the get() method, we still need to add
the logout URL and the user name to the context. In this case, we also store the data
coming from the HTML form in the context. To access the form data, we call the
get() method on the self.request object. The last three lines are boilerplate code
to load and render the home page template. We can move this code in a separate
method to avoid duplication:

def _render_template(self, template_name, context=None):
 if context is None:
 context = {}
 template = jinja_env.get_template(template_name)
 return template.render(context)

A More Complex Application

[36]

In the handler class, we will then use something like this to output the template
rendering result:

self.response.out.write(
 self._render_template('main.html', template_context))

We can try to submit the form and check whether the note title and content are
actually displayed above the form.

Persisting data in Datastore
Even if users can log in and submit a note, our application isn't very useful until
notes are stored somewhere. Google Cloud Datastore is the perfect place to store our
notes. As part of App Engine's infrastructure, it takes care of data distribution and
replication, so all we have to do is define store and retrieve our entities using the
Python NDB (Next DB) Datastore API.

There are currently two APIs available in the Python runtime to interact
with Datastore: the DB Datastore API, also known as ext.db, and
the NDB Datastore API. Even if both the APIs store exactly the same
data in Datastore, in this book, we will only use NDB; it is more recent,
provides more features, and its API is slightly more robust.

An entity has one or more properties that in turn have a name and a type; each entity
has a unique key that identifies it, and instead of storing different data in different
tables as in a relational database, every entity in Datastore is categorized by a kind.
In the Python world, a kind is determined by its model class that we need to define
in our application.

Defining the models
To represent a kind, Datastore models must derive from the ndb.Model class
provided by the NDB API. We define our models in a Python module called
models.py that contains the following code:

from google.appengine.ext import ndb

class Note(ndb.Model):
 title = ndb.StringProperty()
 content = ndb.TextProperty(required=True)
 date_created = ndb.DateTimeProperty(auto_now_add=True)

Chapter 2

[37]

The Note class has a property named title that contains small text (up to 500
characters), another one named content that contains text of unlimited length,
and a property named date_created that contains a date and a time. Entities of
this kind must contain at least a value for the user and content properties, and
if not provided, the date_created property value will store the date and time at
the moment the entity was created. We can now add new entities of the type Note
class to the Datastore when users submit the form in the main page of the Notes
application. In the main.py module, we first need to import the Note class from the
models module:

from models import Note

Then, we modify the post() method as follows:

def post(self):
 user = users.get_current_user()
 if user is None:
 self.error(401)

 note = Note(title=self.request.get('title'),
 content=self.request.get('content'))
 note.put()

 logout_url = users.create_logout_url(self.request.uri)
 template_context = {
 'user': user.nickname(),
 'logout_url': logout_url,
 }
 self.response.out.write(
 self._render_template('main.html', template_context))

From now on, each time a user submits the form in the main page, an instance
of the Note class is created and an entity is persisted in the Datastore right after the
put() method is called. As we have not modified the template_context dictionary,
the storing process won't do anything apparently. To verify that data is actually
stored, we can use the local Development Console by opening the browser at
http://localhost:8000 and checking out Datastore Viewer.

A More Complex Application

[38]

Basic querying
An entity can optionally specify another entity as its parent and an entity without
a parent is a root entity; entities in Datastore form a hierarchically structured
space similar to the directory structure in a filesystem. An entity together with
all its descendants form an entity group and the key of the common ancestor is
defined as the parent key.

It's important to understand entities' relationship because of the intrinsic distributed
nature of the Datastore. Without digging too much into the details, what we have
to know is that queries across multiple entity groups cannot guarantee consistent
results and the result of such queries can sometimes fail to reflect recent changes to
the data.

We have an alternative though; to get strongly consistent results, we can perform a
so-called ancestor query, which is a query that limits the results to a particular entity
group. To use ancestor queries in our code, the first thing to do is add a parent to our
note entities when we create the model instance:

note = Note(parent=ndb.Key("User", user.nickname()),
 title=self.request.get('title'),
 content=self.request.get('content'))
note.put()

As every note belongs to the user who creates it, we can use the same logic to
structure our data; we use the currently logged-in user as the parent key for an entity
group that contains all the notes belonging to that user. This is why we specify the
parent keyword when calling the Note constructor in the previous code. To obtain
the key of the currently logged-in user, we use the ndb.Key class constructor, passing
in the kind and the identifier of the corresponding entity.

What we need to do now is retrieve our notes from Datastore and show them to our
users. As we will use ancestor queries, before proceeding, we add a utility method to
the Note model class:

class Note(ndb.Model):
 title = ndb.StringProperty()
 content = ndb.TextProperty(required=True)
 date_created = ndb.DateTimeProperty(auto_now_add=True)

 @classmethod
 def owner_query(cls, parent_key):
 return cls.query(ancestor=parent_key).order(
 -cls.date_created)

Chapter 2

[39]

The owner_query() method returns a query object already filtered and containing the
group entities for the parent key specified with the parent_key function parameter.

To load all notes belonging to the current user, we then write the following:

user = users.get_current_user()
ancestor_key = ndb.Key("User", user.nickname())
qry = Note.owner_query(ancestor_key)
notes = qry.fetch()

As we want to show the notes in the main page in the case of the GET and POST
requests, we can load the entities inside the _render_template() method,
which is called by the handler in both cases:

def _render_template(self, template_name, context=None):
 if context is None:
 context = {}

 user = users.get_current_user()
 ancestor_key = ndb.Key("User", user.nickname())
 qry = Note.owner_query(ancestor_key)
 context['notes'] = qry.fetch()

 template = jinja_env.get_template(template_name)
 return template.render(context)

We add the list of the notes as a value for the notes key in the context dictionary
so that we can use them in the HTML template by writing the following right below
the form:

{% for note in notes %}
<div class="note">
 <h4>{{ note.title }}</h4>
 <p class="note-content">{{ note.content }}</p>
</div>
{% endfor %}

A div element will be printed out for each note in the query result and nothing
will be printed out if the query returned an empty list. Even if the title property
is optional for entities of the kind Note, we can safely access it. If it's not present,
an empty string will be returned.

A More Complex Application

[40]

Transactions
It's very common for web applications to define and use Datastore models that
depend on each other so that when we update an entity, we will likely need to
update dependent entities as well. However, what happens if, during a series of
Datastore operations, some of them fail? In such cases, we can encapsulate these
operations in a transaction so that either all of them succeed or all of them fail.

To see a use case for transactions, we add a small feature to our Note model:
a checklist. A checklist is a list of items that provide a Boolean property that
determines their checked state. We first need to define a Datastore model for
a single checklist item:

class CheckListItem(ndb.Model):
 title = ndb.StringProperty()
 checked = ndb.BooleanProperty(default=False)

The entity has two properties, the title property for the string that will be
displayed and the checked property to store whether the item is checked or not.

We then add a property to the Node model class referencing item entities:

class Note(ndb.Model):
 title = ndb.StringProperty()
 content = ndb.TextProperty(required=True)
 date_created = ndb.DateTimeProperty(auto_now_add=True)
 checklist_items = ndb.KeyProperty("CheckListItem",
 repeated=True)

 @classmethod
 def owner_query(cls, parent_key):
 return cls.query(ancestor=parent_key).order(
 -cls.date_created)

The checklist_items property stores key values of the CheckListItem kind; the
repeated=True parameter is needed to define that the property can hold more
than one value.

Users can create checklist items for a note filling the creation form with a
comma-separated list of values, so we add the following to the HTML template:

 <form action="" method="post">
 <div class="form-group">
 <label for="title">Title:</label>

Chapter 2

[41]

 <input type="text" id="title" name="title"/>
 </div>
 <div class="form-group">
 <label for="content">Content:</label>
 <textarea id="content" name="content"></textarea>
 </div>
 <div class="form-group">
 <label for="checklist_items">Checklist items:</label>
 <input type="text" id="checklist_items" name="checklist_items"
placeholder="comma,separated,values"/>
 </div>
 <div class="form-group">
 <button type="submit">Save note</button>
 </div>
 </form>

Now, we have to handle the comma-separated list in the MainHandler class:

note = Note(parent=ndb.Key("User", user.nickname()),
 title=self.request.get('title'),
 content=self.request.get('content'))
note.put()

item_titles = self.request.get('checklist_items').split(',')
for item_title in item_titles:
 item = CheckListItem(parent=note.key, title=item_title)
 item.put()
 note.checklist_items.append(item.key)

note.put()

We first retrieve the comma-separated values representing checklist items from the
request. Then, for each of them, we create a CheckListItem instance. Until a model
instance is not persisted, Datastore does not assign any key to it. So, we need to first
store each item by calling the put() method before accessing the key property and
retrieving a Key instance for that entity. Once we have a valid key, we append it to
the list of items of the Note instance. We pass the key of the note as parent for the
items so that all these entities will be part of the same entity group. The last step is
to call the put() method and update the Node entity and store the new data for the
checklist_items property.

A More Complex Application

[42]

Now what happens if the note.put() method fails? We have a bunch of entities of
CheckListItem type that are not tied to any note, and this is a consistency problem.
Transactions can help us refactor the creation of a note so that it can either succeed or
fail, without leaving behind any dangling data. We encapsulate the creation of note
objects in a separate _create_node() method in the handler class:

@ndb.transactional
def _create_note(self, user):
 note = Note(parent=ndb.Key("User", user.nickname()),
 title=self.request.get('title'),
 content=self.request.get('content'))
 note.put()

 item_titles = self.request.get('checklist_items').split(',')
 for item_title in item_titles:
 item = CheckListItem(parent=note.key, title=item_title)
 item.put()
 note.checklist_items.append(item.key)

 note.put()

The @ndb.transactional decorator is all the Python code we need. Datastore
will then ensure that any operation in the decorated method happens within a
transaction. In this way, either we create a note entity along with all the checklist
items entities or we get an error without touching the underlying data. To complete
the code, we have to call the _create_node() method inside the post() method:

def post(self):
 user = users.get_current_user()
 if user is None:
 self.error(401)

 self._create_note(user)

 logout_url = users.create_logout_url(self.request.uri)
 template_context = {
 'user': user.nickname(),
 'logout_url': logout_url,
 }
 self.response.out.write(
 self._render_template('main.html', template_context))

Chapter 2

[43]

To show the list of items in a checklist for our notes, we must add the code needed in
the HTML template:

{% for note in notes %}
<div class="note">
 <h4>{{ note.title }}</h4>
 <p class="note-content">{{ note.content }}</p>
 {% if note.checklist_items %}

 {% for item in note.checklist_items %}
 <li class="{%if item.get().checked%}checked{%endif%}">{{item.
get().title}}
 {% endfor %}

 {% endif %}
</div>
{% endfor %}

We add an unordered list if the checklist_items property is not empty. We then
iterate the list of items, adding a class attribute containing the checked parameter
whenever an item has its checked property set to the true value: later in this
chapter, we'll learn how to add a CSS (Cascading Style Sheets) rule so that when
this class is present, the item is shown with a horizontal line through its center.

Using static files
Usually web applications make use of CSS and JavaScript resources to provide a
better user experience. For efficiency reasons, such content is not dynamically served
by the WSGI application and are delivered by App Engine as static files instead.

We know from the previous chapter that App Engine provides two types of
handlers, script handlers and static file handlers. We add a static file handler
to our app.yaml configuration file like this:

handlers:
- url: /static
 static_dir: static

- url: .*
 script: main.app

A More Complex Application

[44]

The syntax is almost the same as for script handlers. We specify a URL to map as
a regular expression but instead of providing a Python script to handle requests,
we specify a filesystem path relative to the application root where the files and
directories that need to be served as static resources are located.

We are now going to provide a minimal style for our HTML pages
by manually coding some CSS rules. While it is acceptable for the
scope of the book to get our hands dirty learning how to build a
custom design from scratch, in the real world, we might prefer to use
frontend frameworks such as Bootstrap (http://getbootstrap.
com/) or Foundation (http://foundation.zurb.com/) to easily
provide state-of-the-art aesthetics, cross-browser capabilities, and
responsive layouts for mobile devices.

To provide a CSS for our application, we then create the static/css folder into
our application root:

mkdir -p static/css

This folder should contain a file called notes.css that will contain the style sheet
for our application:

body {
 font-family: "helvetica", sans-serif;
 background: #e8e8e8;
 color: rgba(39,65,90,.9);
 text-align: center;
}

div.container {
 width: 600px;
 display: inline-block;
}

The first part is for global layout elements; we will put the form and the notes one
below another in a centered container. We then style the form:

form {
 background: white;
 padding-bottom: 0.5em;
 margin-bottom: 30px;
}
h4,legend {
 margin-bottom: 10px;
 font-size: 21px;
 font-weight: 400;
}

http://getbootstrap.com/
http://getbootstrap.com/
http://foundation.zurb.com/

Chapter 2

[45]

The form will be contained in a white box and the legend will look like a note title.
Form elements will be styled as follows:

 div.form-group {
 margin-bottom: 1em;
}

label {
 display: inline-block;
 width: 120px;
 text-align: right;
 padding-right: 15px;
}

input, textarea {
 width: 250px;
 height: 35px;
 -moz-box-sizing: border-box;
 box-sizing: border-box;
 border: 1px solid #999;
 font-size: 14px;
 border-radius: 4px;
 padding: 6px;
}

textarea {
 vertical-align: top;
 height: 5em;
 resize: vertical;
}

We then proceed with styling the white boxes that contain the Notes data:

div.note {
 background: white;
 vertical-align: baseline;
 display: block;
 margin: 0 auto 30px auto;
}

legend, div.note > h4 {
 padding: 18px 0 15px;
 margin: 0 0 10px;
 background: #00a1ff;
 color: white;
}

A More Complex Application

[46]

The last part of the style sheet is dedicated to notes checklists. We provide a style for
unordered lists contained in div elements with a note class and a style for list items
in checked state:

div.note > ul {
 margin: 0;
 padding: 0;
 list-style: none;
 border-top: 2px solid #e7f2f0;
}

div.note > ul > li {
 font-size: 21px;
 padding: 18px 0 18px 18px;
 border-bottom: 2px solid #e7f2f0;
 text-align: left;
}
div.note-content {
 text-align: left;
 padding: 0.5em;
}

.checked {
 text-decoration: line-through;
}

To use the style sheet, we add this in our HTML template, inside the <meta> tag:

<link rel="stylesheet" type="text/css" href="static/css/notes.css">

Chapter 2

[47]

This is how the application should appear once the style sheet is applied:

A More Complex Application

[48]

Summary
Thanks to App Engine, we have already implemented a rich set of features
with a relatively small effort so far.

In this chapter, we have discovered some more details about the webapp2
framework and its capabilities, implementing a nontrivial request handler.
We have learned how to use the App Engine users service to provide users
authentication. We have delved into some fundamental details of Datastore
and now we know how to structure data in grouped entities and how to effectively
retrieve data with ancestor queries. In addition, we have created an HTML user
interface with the help of the Jinja2 template library, learning how to serve static
content such as CSS files.

In the next chapter, we will keep on adding more and more features to the
Notes application, learning how to store uploaded files on Google Cloud Storage,
manipulate images, and deal with long operations and scheduled tasks. We will
also make the application capable of sending and receiving e-mails.

Storing and Processing
Users' Data

There are several pieces of data that need to be persisted and that don't fit very
well into the Datastore or similar storage systems, such as images and media files
in general; these are usually big and their size impacts application costs and how
they should be uploaded, stored, and served back when requested. In addition,
sometimes we need to modify these contents on the server side and the operation
can take a long time.

We will add some features to the Notes application that will raise these kinds of
problems, and we will see how App Engine provides everything we need to face
them effectively.

In this chapter, we will cover the following topics:

• Adding a form to our application to let users upload images
• Serving the files uploaded back to the clients
• Transforming images with the Images service
• Performing long jobs with the task queue
• Scheduling tasks
• Handling e-mail messages from our application

Storing and Processing Users' Data

[50]

Uploading files to Google Cloud Storage
It's extremely common for a web application to deal with image files or PDF
documents, and Notes is not an exception. It could be very useful for users to
attach an image or a document to one or more notes in addition to the title and
the description text.

Storing big chunks of binary data in the Datastore would be inefficient and rather
expensive, so we need to use a different, dedicated system: Google Cloud Storage.
Cloud Storage lets us store large files in locations called buckets. An application
can read and write from multiple buckets and we can set up an Access Control List
(ACL) to determine who can access a certain bucket and with what permissions.
Every App Engine application has its default bucket associated but we can create,
manage, and browse any number of them through the Developer Console.

Installing Cloud Storage Client Library
To better interact with Cloud Storage, we need an external piece of software that is not
included in the App Engine runtime environment, which is the GCS Client Library.
This Python library implements functions to easily read and write files inside buckets,
handling errors and retries. The following is the detailed list of these functions:

• The open() method: This allows us to operate with a file-like buffer on
bucket contents

• The listbucket() method: This retrieves the contents of a bucket
• The stat() method: This gets metadata for a file in a bucket
• The delete() method: This removes files from buckets

To install GCS Client Library, we can use pip:

pip install GoogleAppEngineCloudStorageClient -t <app_root>

It's important to specify the destination directory for the package with the -t
option, as it is the only way to install third-party packages that are not provided
by App Engine on the production server. When we deploy the application, all
content in the application root will be copied on the remote server, including the
cloudstorage package.

It's also possible to clone the Subversion (SVN) executable and check out the latest
version of the source code, provided that we have the svn repository installed on
our system:

svn checkout http://appengine-gcs-
client.googlecode.com/svn/trunk/python gcs-client

Chapter 3

[51]

To check whether the library is working, we can issue the following from the
command line and verify that no errors are printed out:

python -c"import cloudstorage"

An alternative way to interact with Google Cloud Storage is the Blobstore
API, bundled with the App Engine Environment. Blobstore was the first
App Engine service to provide cheap and effective storage for big files,
and it's still available even though Cloud Storage is more recent and more
actively developed. Even if we do not store any data in Blobstore, we will
use the Blobstore API with Cloud Storage later in this chapter.

Adding a form to upload images
We start adding a field in the HTML form that we use to create notes so that the user
can specify a file to upload. Before the submit button, we insert an input tag:

<div class="form-group">
 <label for="uploaded_file">Attached file:</label>
 <input type="file" id="uploaded_file" name="uploaded_file">
</div>

We will store all the files for every user in the default bucket under a folder named
after the user ID; our application is the only way to access that file if we do not
alter the default access control list, so we can enforce security and privacy at the
application level. In order to access the uploaded file from the webapp2 request
object, we need to rewrite the post method for the MainHandler class, but first,
we need these import statements at the top of the main.py module:

from google.appengine.api import app_identity
import cloudstorage
import mimetypes

We will see in a moment where to use these modules; this is the code that will be
added to the MainHandler class:

def post(self):
 user = users.get_current_user()
 if user is None:
 self.error(401)

 bucket_name = app_identity.get_default_gcs_bucket_name()
 uploaded_file = self.request.POST.get('uploaded_file')
 file_name = getattr(uploaded_file, 'filename', None)

Storing and Processing Users' Data

[52]

 file_content = getattr(uploaded_file, 'file', None)
 real_path = ''
 if file_name and file_content:
 content_t = mimetypes.guess_type(file_name)[0]
 real_path = os.path.join('/', bucket_name, user.user_id(),
 file_name)

 with cloudstorage.open(real_path, 'w',
 content_type=content_t) as f:
 f.write(file_content.read())

 self._create_note(user, file_name)

 logout_url = users.create_logout_url(self.request.uri)
 template_context = {
 'user': user.nickname(),
 'logout_url': logout_url,
 }
 self.response.out.write(
 self._render_template('main.html', template_context))

We first retrieve the name of the default bucket for our application through the
app_identity service by calling its get_default_gcs_bucket_name()method.
Then, we access the request object to get the value of the uploaded_file field.
When users specify a file to upload, self.request.POST.get('uploaded_file')
returns an instance of the FileStorage class defined in the cgi module of the
Python standard library. The FieldStorage object has two fields, filename and
file, that contain the name and the content of the uploaded file, respectively. If
users don't specify a file to be uploaded, the value of the uploaded_file field
becomes an empty string.

When dealing with an uploaded file, we try to guess its type with the help of the
mimetypes module from the Python standard library, and then we build the full path
of the file according to the /<bucket_name>/<user_id>/<filename> scheme. The
last part involves the GCS Client Library; in fact, it lets us open a file for writing on
Cloud Storage as we would do on a regular filesystem. We write the content of the
uploaded file by calling the read method on the file_name object. We finally call the
_create_note method, passing the name of the file as well, so it will be stored inside
a Note instance.

Chapter 3

[53]

If users upload a file with the same name as another file that's already
present in Cloud Storage, the latter will be overwritten with the new
data. If we want to handle this issue, some logic should be added,
such as either renaming the new file or asking users how to proceed.

Before refactoring the _create_note() method to accept and handle the name of the
file attached to a note, we need to add a property to our Note model class to store the
name of the files attached. The model becomes as follows:

class Note(ndb.Model):
 title = ndb.StringProperty()
 content = ndb.TextProperty(required=True)
 date_created = ndb.DateTimeProperty(auto_now_add=True)
 checklist_items = ndb.KeyProperty("CheckListItem",
 repeated=True)
 files = ndb.StringProperty(repeated=True)

 @classmethod
 def owner_query(cls, parent_key):
 return cls.query(ancestor=parent_key).order(
 -cls.date_created)

Even if we only support the addition of a single file during the note creation, we
store a list of filenames so that we already provide support for multiple attachments
in a single note.

Back in the main.py module, we refactor the _create_note() method as follows:

@ndb.transactional
def _create_note(self, user, file_name):
 note = Note(parent=ndb.Key("User", user.nickname()),
 title=self.request.get('title'),
 content=self.request.get('content'))
 note.put()

 item_titles = self.request.get('checklist_items').split(',')
 for item_title in item_titles:
 item = CheckListItem(parent=note.key, title=item_title)
 item.put()
 note.checklist_items.append(item.key)

 if file_name:
 note.files.append(file_name)

 note.put()

Storing and Processing Users' Data

[54]

When the file_name parameter is not set to the None value, we add the name of
the file and update the Note entity. We can now run the code and try to upload a
file when creating a note. The code we wrote so far only stores the uploaded file
without any feedback, so to check whether everything is working, we need to use the
Blobstore viewer on the local Development Console. If we're running the application
on production servers, we can use the Cloud Storage interface on Google Developer
Console to list the contents of the default bucket.

At the time of writing this, the local development server
emulates Cloud Storage in the very same way as it emulates
Blobstore, and this is why we will only find a Blobstore viewer
in the Development Console.

Serving files from Cloud Storage
As we didn't specify an Access Control List for the default bucket, it is only
accessible from the Developer Console upon authentication or through the Notes
application. This is fine as long as we want to keep files private to the user who
performed the upload but we need to provide a URL for our application where
these files can be retrieved. For example, if a user wants to retrieve the file named
example.png, the URL could be /media/example.png. We need to provide a request
handler for such URLs, checking whether the currently logged-in user has uploaded
the requested file or not and provide a response accordingly. In the main.py module,
we add the following class:

class MediaHandler(webapp2.RequestHandler):
 def get(self, file_name):
 user = users.get_current_user()
 bucket_name = app_identity.get_default_gcs_bucket_name()
 content_t = mimetypes.guess_type(file_name)[0]
 real_path = os.path.join('/', bucket_name, user.user_id(),
 file_name)

 try:
 with cloudstorage.open(real_path, 'r') as f:
 self.response.headers.add_header('Content-Type',
 content_t)
 self.response.out.write(f.read())
 except cloudstorage.errors.NotFoundError:
 self.abort(404)

Chapter 3

[55]

After determining the currently logged-in user, we build the full path to the
requested file using the same scheme we used to store the /<bucket_name>/<user_
id>/<filename> file. If the file does not exist, GCS Client Library raises a
NotFoundError error and we serve a 404: Not Found courtesy page using the abort()
method of the request handler. If the file is actually in Cloud Storage, we open it to
read with the usual file-like interface provided by GCS Client Library, and we write its
content in the response body after setting the right Content-Type HTTP header. This
way, we cannot access any file uploaded by other users even if we know the name of
the file, because our user ID will be used to determine the full path of the file.

To use the MediaHandler class, we add a tuple to the WSGIApplication constructor:

app = webapp2.WSGIApplication([
 (r'/', MainHandler),
 (r'/media/(?P<file_name>[\w.]{0,256})', MediaHandler),
], debug=True)

The regular expression tries to match any URL that starts with the /media/ path
followed by a filename. When matching, the regular expression group named
file_name is passed to the get() method of the MediaHandler class as a parameter.

The last step is to add a link for each file attached to a note in the main page so that
users can download them. We simply add a for iteration on the main.html template
right before the iteration of the checklist items:

{% if note.files %}

 {% for file in note.files %}
 <li class="file">{{ file }}
 {% endfor %}

{% endif %}

We finally add the CSS file class to li elements to distinguish files from checklist
items; we add the corresponding styles to the note.css file:

div.note > ul > li.file {
 border: 0;
 background: #0070B3;
}

li.file > a {
 color: white;
 text-decoration: none;
}

With this updated style sheet, the background for file items has a different color from
checklist items and the link text color is white.

Storing and Processing Users' Data

[56]

Serving files through Google's Content
Delivery Network
We are currently serving files attached to the notes with our WSGI application through
the MediaHandler request handler class, and this is very convenient because we can
perform security checks and ensure that users only get files they have previously
updated. This approach has several drawbacks, though: the application is less efficient
compared to a regular web server and we consume resources such as memory and
bandwidth, which could potentially cost us a lot of money.

There is an alternative, however; if we relax the requirements for our Notes
application and allow the contents to be publicly available, we can deliver such files
with low latency from a highly optimized and cookie-less infrastructure: the Google
Content Delivery Network (CDN). How to do this depends on which kind of files
we have to deliver: images or any other MIME type.

Serving images
If we are dealing with an image file, we can use the Images service to generate a
URL, which is public but not guessable, to reach content stored in Cloud Storage.
First, we need to compute an encoded key representing the file in Cloud Storage that
we want to serve; to do this, we use the create_gs_key() method provided by the
Blobstore API. We then use the get_serving_url() method provided by the Images
service to generate a serving URL for the encoded key. If we need to serve the same
image with different sizes—for example, to provide a thumbnail—there is no need to
store the same file multiple times; in fact, we can specify a size for the image we want
to deliver and the CDN will take care of it. We need to import the packages needed
at the top of the main.py module:

from google.appengine.api import images
from google.appengine.ext import blobstore

For convenience, we add a _get_urls_for() method to the MainHandler class we
can call whenever we want to get serving URLs for a file in Cloud Storage:

def _get_urls_for(self, file_name):
 user = users.get_current_user()
 if user is None:
 return

 bucket_name = app_identity.get_default_gcs_bucket_name()
 path = os.path.join('/', bucket_name, user.user_id(),

Chapter 3

[57]

 file_name)
 real_path = '/gs' + path
 key = blobstore.create_gs_key(real_path)
 url = images.get_serving_url(key, size=0)
 thumbnail_url = images.get_serving_url(key, size=150,
 crop=True)
 return url, thumbnail_url

The method takes the filename as a parameter and builds the full path to Cloud
Storage with the slightly different /gs/<bucket_name>/<user_id>/<filename>
scheme (notice the /gs string that we need to prefix only when generating the
encoded key). The real path to the file is then passed to the create_gs_key()
function, which generates an encoded key, and then we call the get_serving_url()
method twice: once to generate the URL for the full-sized image and then to generate
the URL for a cropped thumbnail with a size of 150 pixels. Finally, both the URLs
are returned. These URLs will be permanently available unless we call the delete_
serving_url() method from the Images service passing the same key. If we don't
specify the size parameter, the CDN will serve an optimized version of the image
that is smaller in size by default; explicitly passing the size=0 parameter to the first
call to the get_serving_url() function will make the CDN serve the original image.

We can improve the data model by providing a new kind that describes a file
attached to a note. In the models.py module, we add the following:

class NoteFile(ndb.Model):
 name = ndb.StringProperty()
 url = ndb.StringProperty()
 thumbnail_url = ndb.StringProperty()
 full_path = ndb.StringProperty()

We store the name, the two URLs, and the full path in Cloud Storage for each file.
We then reference a NoteFile instance instead of the plain filename from the
Note model:

class Note(ndb.Model):
 title = ndb.StringProperty()
 content = ndb.TextProperty(required=True)
 date_created = ndb.DateTimeProperty(auto_now_add=True)
 checklist_items = ndb.KeyProperty("CheckListItem",
 repeated=True)
 files = ndb.KeyProperty("NoteFile",
 repeated=True)

Storing and Processing Users' Data

[58]

 @classmethod
 def owner_query(cls, parent_key):
 return cls.query(ancestor=parent_key).order(
 -cls.date_created)

To store data according to the new model, we refactor the _create_note() method:

@ndb.transactional
def _create_note(self, user, file_name, file_path):
 note = Note(parent=ndb.Key("User", user.nickname()),
 title=self.request.get('title'),
 content=self.request.get('content'))
 note.put()

 item_titles = self.request.get('checklist_items').split(',')
 for item_title in item_titles:
 item = CheckListItem(parent=note.key, title=item_title)
 item.put()
 note.checklist_items.append(item.key)

 if file_name and file_path:
 url, thumbnail_url = self._get_urls_for(file_name)

 f = NoteFile(parent=note.key, name=file_name,
 url=url, thumbnail_url=thumbnail_url,
 full_path=file_path)
 f.put()
 note.files.append(f.key)

 note.put()

We generate the URLs and create the NoteFile instance, adding it to the Note entity
group. In the post() method of the MainHandler class, we now call the _create_
note() method as follows:

self._create_note(user, file_name, real_path)

In the HTML template, we add this code:

{% if note.files %}

 {% for file in note.files %}
 <li class="file">

Chapter 3

[59]

 {% endfor %}

{% endif %}

Instead of the name of the file, we show the thumbnail inside a link pointing to the
full-sized version of the image.

Serving other types of files
We cannot use the Images service on file types that are not images, so we need to
follow a different strategy in this case. Files stored in Cloud Storage that are publicly
accessible can be reached by composing the URL of Google CDN with their full path.

The first thing to do, then, is to change the default ACL when we save the files in the
post() method of the MainHandler class:

with cloudstorage.open(real_path, 'w', content_type=content_t,
 options={'x-goog-acl': 'public-read'}) as f:
 f.write(file_content.read())

The options parameter for the open() method of GCS Client Library lets us specify
a dictionary of strings containing additional headers to pass to the Cloud Storage
service: in this case, we set the x-goog-acl header to the public-read value so that
the file will be publicly available. From now on, we could reach that file with a URL
of the http://storage.googleapis.com/<bucket_name>/<file_path> type, so
let's add the code to compose and store such URLs for files that are not images.

In the _get_urls_for() method, we catch errors of the TransformationError or
NotImageError type assuming that if the Images service failed to handle a certain
file, that file is not an image:

def _get_urls_for(self, file_name):
 user = users.get_current_user()
 if user is None:
 return

 bucket_name = app_identity.get_default_gcs_bucket_name()
 path = os.path.join('/', bucket_name, user.user_id(),
 file_name)
 real_path = '/gs' + path
 key = blobstore.create_gs_key(real_path)
 try:

Storing and Processing Users' Data

[60]

 url = images.get_serving_url(key, size=0)
 thumbnail_url = images.get_serving_url(key, size=150,
 crop=True)
 except images.TransformationError, images.NotImageError:
 url = "http://storage.googleapis.com{}".format(path)
 thumbnail_url = None

 return url, thumbnail_url

If the file type is not supported by the Images service, we compose the url parameter
as stated before and set the thumbnail_url variable to the None value.

In the HTML template, we will show the filename instead of the thumbnail for files
that are not images:

{% if note.files %}

 {% for file in note.files %}
 {% if file.get().thumbnail_url %}
 <li class="file">

 {% else %}
 <li class="file">
 {{ file.get().name }}

 {% endif %}
 {% endfor %}

{% endif %}

Transforming images with the Images
service
We already used the App Engine Images service to serve images through Google's
CDN, but there's a lot more it can do. It can resize, rotate, flip, crop images, and
composite multiple images into a single file. It can enhance pictures using a
predefined algorithm. It can convert an image from and to several formats. The
service can also provide information about an image, such as its format, width,
height, and a histogram of color values.

Chapter 3

[61]

To use the Images service on the local development server, we need
to download and install the Python Imaging Library (PIL) package
or, alternatively, the pillow package.

We can pass the image data to the service directly from our application or specifying
a resource stored in Cloud Storage. To see how this works, we add a function to
our Notes application that users can trigger to shrink all the images attached to
any note in order to save space in Cloud Storage. To do this, we add a dedicated
request handler to the main.py module, which will be invoked when users hit
the /shrink URL:

class ShrinkHandler(webapp2.RequestHandler):
 def _shrink_note(self, note):
 for file_key in note.files:
 file = file_key.get()
 try:
 with cloudstorage.open(file.full_path) as f:
 image = images.Image(f.read())
 image.resize(640)
 new_image_data = image.execute_transforms()

 content_t = images_formats.get(str(image.format))
 with cloudstorage.open(file.full_path, 'w',
 content_type=content_t) as f:
 f.write(new_image_data)

 except images.NotImageError:
 pass

 def get(self):
 user = users.get_current_user()
 if user is None:
 login_url = users.create_login_url(self.request.uri)
 return self.redirect(login_url)

 ancestor_key = ndb.Key("User", user.nickname())
 notes = Note.owner_query(ancestor_key).fetch()

 for note in notes:
 self._shrink_note(note)

 self.response.write('Done.')

Storing and Processing Users' Data

[62]

In the get() method, we load all the notes belonging to the current logged in user
from the Datastore, and then we invoke the _shrink_note() method on each of
them. For each file attached to a note, we check whether it is an image; if not, we
catch the error and pass to the next one. If the file is actually an image, we open the
file with GCS Client Library and pass the image data to the Image class constructor.
Image objects wrap image data and provide an interface to manipulate and get
information for the wrapped image. Transformations are not applied immediately;
they are added to a queue that is processed when we invoke the execute_
transforms() method on the Image instance. In our case, we apply just one
transformation, resizing the image to 640 pixel width. The execute_transforms()
method returns the transformed image data we use to overwrite the original file.
When writing the new image data on Cloud Storage, we need to specify the content
type for the file again: we derive the right content type from the format property
of the image object. This value is an integer that has to be mapped to a content type
string; we do this by adding this dictionary at the top of the main.py module:

images_formats = {
 '0': 'image/png',
 '1': 'image/jpeg',
 '2': 'image/webp',
 '-1': 'image/bmp',
 '-2': 'image/gif',
 '-3': 'image/ico',
 '-4': 'image/tiff',
}

We cast the image.format value to the string and access the right string to pass to
the open() method from GCS Client Library.

We add the mapping for the /shrink URL in the main.py module:

app = webapp2.WSGIApplication([
 (r'/', MainHandler),
 (r'/media/(?P<file_name>[\w.]{0,256})', MediaHandler),
 (r'/shrink', ShrinkHandler),
], debug=True)

To let users access this functionality, we add a hyperlink on the main page. We take
the opportunity to provide a main menu for our application, changing the main.
html template as follows:

<h1>Welcome to Notes!</h1>

<ul class="menu">

Chapter 3

[63]

 Hello, {{ user }}
 Logout
 Shrink images

<form action="" method="post" enctype="multipart/form-data">

To make the menu lay out horizontally, we add these lines to the notes.css file:

ul.menu > li {
 display: inline;
 padding: 5px;
 border-left: 1px solid;
}

ul.menu > li > a {
 text-decoration: none;
}

Users can now shrink the space taken by images attached to their notes clicking the
corresponding action in the menu on the main page.

Processing long jobs with the task queue
App Engine provides a mechanism called request timer to ensure that requests
from a client have a finite lifespan, avoiding infinite loops and preventing an overly
aggressive use of the resources from an application. In particular, the request timer
raises a DeadlineExceededError error whenever a request takes more than 60
seconds to complete. We have to take this into consideration if our application
provides functionalities that involve complex queries, I/O operations, or image
processing. This is the case of the ShrinkHandler class from the previous paragraph:
the number of notes to be loaded and the attached images to be processed could be big
enough to make the request last more than 60 seconds. In such cases, we can use the
task queue, which is a service provided by App Engine that lets us execute operations
outside the request / response cycle with a wider time limit of 10 minutes.

There are two types of task queue: push queues, which are used for tasks that are
automatically processed by the App Engine infrastructure, and pull queues, which
let developers build their own task-consuming strategy either with another App
Engine application or externally from another infrastructure. We will use push
queues so that we have a turnkey solution from App Engine without worrying about
the setup and scalability of external components.

Storing and Processing Users' Data

[64]

We will run the shrink images functionality inside a task queue, and to do so,
we need to refactor the ShrinkHandler class: in the get() method, we will start
the task, moving the execution of the query and the image processing to the
post() method. The post() method will be invoked by the task queue consumer
infrastructure to process the task.

We first need to import the taskqueue package to use the task queue Python API:

from google.appengine.api import taskqueue

Then, we add the post() method to the ShrinkHandler class:

def post(self):
 if not 'X-AppEngine-TaskName' in self.request.headers:
 self.error(403)

 user_email = self.request.get('user_email')
 user = users.User(user_email)

 ancestor_key = ndb.Key("User", user.nickname())
 notes = Note.owner_query(ancestor_key).fetch()

 for note in notes:
 self._shrink_note(note)

To ensure that we have received a task queue request, we check whether the
X-AppEngine-TaskName HTTP header was set; App Engine strips these kinds
of headers if requests come from outside the platform, so we can trust the client.
If this header is missing, we set the HTTP 403: Forbidden response code.

The request contains a user_email parameter containing the e-mail of the user
who added this task to the queue (we'll see where this parameter has to be set in a
moment); we instance a User object by passing the e-mail address to match a valid
user and proceed with image processing.

The get() method of the ShrinkHandler class has to be refactored as follows:

def get(self):
 user = users.get_current_user()
 if user is None:
 login_url = users.create_login_url(self.request.uri)
 return self.redirect(login_url)

 taskqueue.add(url='/shrink',
 params={'user_email': user.email()})
 self.response.write('Task successfully added to the queue.')

Chapter 3

[65]

After checking whether the user is logged in, we add a task to the queue using the
task queue API. We pass the URL mapped to the handler that will perform the job
as a parameter and a dictionary containing the parameters we want to pass to the
handler. In this case, we set the user_email parameter we use in the post() method
to load a valid User instance. After the task is added to the queue, a response is
immediately returned, and when executed, the actual shrinking operation could last
up to 10 minutes.

Scheduling tasks with Cron
We have designed the shrink operation as an optional functionality triggered by
users, but we could run it at a determined time interval for every user in order to
lower the costs of Cloud Storage. App Engine supports the scheduled execution
of jobs with the Cron service; every application has a limited number of Cron jobs
available, depending on our billing plan. Cron jobs have the same restrictions as
tasks in a task queue, so the request can last up to 10 minutes.

We first prepare a request handler that will implement the job:

class ShrinkCronJob(ShrinkHandler):
 def post(self):
 self.abort(405, headers=[('Allow', 'GET')])

 def get(self):
 if 'X-AppEngine-Cron' not in self.request.headers:
 self.error(403)

 notes = Note.query().fetch()
 for note in notes:
 self._shrink_note(note)

We derive the ShrinkCronJob class from the ShrinkHandler class to inherit the
_shrink_note() method. The cron service performs an HTTP request of type GET,
so we should override the post() method, simply returning a HTTP 405: Method
not allowed error, thus avoiding someone hitting our handler with an HTTP POST
request. All the logic is implemented in the get() method of the handler class. To
ensure the handler was triggered by the Cron service and not by an external client,
we first check whether the request contains the X-AppEngine-Cron header that is
normally stripped by App Engine; if this is not the case, we return a HTTP 403:
Unauthorized error. Then, we load all the Note entities from the Datastore and
invoke the _shrink_note() method on each of them.

Storing and Processing Users' Data

[66]

We then map the ShrinkCronJob handler to the /shrink_all URL:

app = webapp2.WSGIApplication([
 (r'/', MainHandler),
 (r'/media/(?P<file_name>[\w.]{0,256})', MediaHandler),
 (r'/shrink', ShrinkHandler),
 (r'/shrink_all', ShrinkCronJob),
], debug=True)

Cron jobs are listed in a YAML file in the application root, so we create the cron.yaml
file with the following content:

cron:
- description: shrink images in the GCS
 url: /shrink_all
 schedule: every day 00:00

The file contains a list of job definitions with some properties: for each job, we
must specify the URL and schedule properties, containing the URL mapped to the
handler implementing the job and the time interval at which the job is executed,
respectively, every day at midnight. We also add the optional description property
containing a string to detail the job.

The list of scheduled Cron jobs is updated every time we deploy the application;
we can check for jobs' details and status by accessing the Developer Console or the
local Development Console.

Sending notification e-mails
It's very common for web applications to send notifications to the users, and e-mails
are a cheap and effective channel for delivering. The Notes application could benefit
from a notification system as well: early in this chapter, we modified the shrink
image function so that it runs in a task queue. Users receive a response immediately,
but the actual job is put in a queue and they don't know if and when shrink
operations complete successfully.

As we can send e-mail messages from an App Engine application on behalf of the
administrators or users with Google Accounts, we send a message to the user as soon
as the shrink operation is completed.

We first import the mail package in the main.py module:

from google.appengine.api import mail

Chapter 3

[67]

Then we append the following code to the end of the post() method in the
ShrinkHandler class:

sender_address = "Notes Team <notes@example.com>"
subject = "Shrink complete!"
body = "We shrunk all the images attached to your notes!"
mail.send_mail(sender_address, user_email, subject, body)

All we have to do is invoke the send_mail() method, passing in the sender address,
the destination address, the subject of the e-mail, and the body of the message.

If we are running the application on the production server, the sender_address
parameter must contain the registered address on App Engine of one of the
administrators, or the message won't be delivered.

If the application is running on the local development server, App Engine will not
send out real e-mails and will show a detailed message on the console instead.

Receiving users' data as e-mail
messages
A less common but useful feature for a web application is the ability to receive e-mail
messages from its users: for example, a Customer Relationship Management (CRM)
application could open a support ticket after receiving an e-mail sent out from a user
to a certain address, say, support@example.com.

To show how this works on App Engine, we add the ability for our users to create
notes by sending e-mail messages to the Notes application: the e-mail subject will be
used for the title, the message body for the note content, and every file attached to the
e-mail message will be stored on Cloud Storage and be attached to the note as well.

App Engine applications can receive e-mail messages at any address of the
<string>@<appid>.appspotmail.com form; messages are then transformed to
HTTP requests to the /_ah/mail/<address> URL, where a request handler will
process the data.

Before we start, we need to enable the incoming e-mail service, which is disabled by
default, so we add the following in our app.yaml file:

inbound_services:
- mail

Storing and Processing Users' Data

[68]

Then, we need to implement a handler for the e-mail messages, deriving from a
specialized InboundMailHandler request handler class provided by App Engine. Our
subclass must override the receive() method that takes a parameter containing an
instance of the InboundEmailMessage class that we can use to access all the details
from the e-mail message we received. We add this new handler to the main.py module
but before proceeding, we need to import the modules and packages required:

from google.appengine.ext.webapp import mail_handlers
import re

Then, we start implementing our CreateNoteHandler class; this is the first part of
the code:

class CreateNoteHandler(mail_handlers.InboundMailHandler):
 def receive(self, mail_message):
 email_pattern = re.compile(
 r'([\w\-\.]+@(\w[\w\-]+\.)+[\w\-]+)')
 match = email_pattern.findall(mail_message.sender)
 email_addr = match[0][0] if match else ''

 try:
 user = users.User(email_addr)
 user = self._reload_user(user)
 except users.UserNotFoundError:
 return self.error(403)

 title = mail_message.subject
 content = ''
 for content_t, body in mail_message.bodies('text/plain'):
 content += body.decode()

 attachments = getattr(mail_message, 'attachments', None)

 self._create_note(user, title, content, attachments)

The first part of the code implements a simple security check: we actually create a
note for a certain user only if the e-mail message comes from the same address users
registered for their account. We first extract the e-mail address from the sender field
of the InboundEmailMessage instance contained in the mail_message parameter
with a regular expression. We then instance a User object representing the owner
of the e-mail address that sent the message. If the sender does not correspond to a
registered user, App Engine raises a UserNotFoundError error and we return a 403:
Forbidden HTTP response code, otherwise we call the _reload_user() method.

Chapter 3

[69]

If users want to attach a file to their notes, the Notes application needs to know the
user ID of the note owner to build the path when storing files on Cloud Storage; the
problem is that when we programmatically instance a User class without calling the
get_current_user() method from the users API, the user_id() method of the
instance always returns the None value. At the time of writing this, App Engine does
not provide a clean method to determine the user ID from an instance of the User
class, so we implement a workaround by following these steps:

1. Assign the User instance to a field of a Datastore entity, which is called the
UserLoader entity.

2. Store the UserLoader entity in the Datastore.
3. Immediately after, load the entity again.

This way, we force the Users service to fill in all the user data; by accessing the
field containing the User instance in the UserLoader entity, we will get all the user
properties, including the id property. We perform this operation in a utility method
of the handler class:

def _reload_user(self, user_instance):
 key = UserLoader(user=user_instance).put()
 key.delete(use_datastore=False)
 u_loader = UserLoader.query(
 UserLoader.user == user_instance).get()
 return UserLoader.user

To force a clean reload of the entity from the Datastore, we first need to purge the
NDB cache, and we do this by calling the delete() method on the key passing the
use_datastore=False parameter. We then reload the entity from the Datastore
and return the user property, now containing all the data we need. We add the
UserLoader model class to our models.py module:

class UserLoader(ndb.Model):
 user = ndb.UserProperty()

Back in the receive() method, we proceed to extract all the data we need from the
e-mail message after reloading the User instance; in order to extract all the data, we
need to create a note: the message subject is a simple string that we will use as the
note title. Accessing the body is a little bit more complex because e-mail messages
might have multiple bodies with different content types, typically plain text or
HTML; in this case, we extract only the plain text body and use it as the note content.

Storing and Processing Users' Data

[70]

In the case, the e-mail messages have attachments, and the mail_message instance
provides the attachments attribute: we pass it as a parameter to the method dedicated
to note creation, that is the _create_note() method. The _create_note() method
runs in a transaction and encapsulates all the logic needed to create a Note entity:

@ndb.transactional
def _create_note(self, user, title, content, attachments):

 note = Note(parent=ndb.Key("User", user.nickname()),
 title=title,
 content=content)
 note.put()

 if attachments:
 bucket_name = app_identity.get_default_gcs_bucket_name()
 for file_name, file_content in attachments:
 content_t = mimetypes.guess_type(file_name)[0]
 real_path = os.path.join('/', bucket_name,
 user.user_id(), file_name)

 with cloudstorage.open(real_path, 'w',
 content_type=content_t,
 options={'x-goog-acl': 'public-read'}) as f:
 f.write(file_content.decode())

 key = blobstore.create_gs_key('/gs' + real_path)
 try:
 url = images.get_serving_url(key, size=0)
 thumbnail_url = images.get_serving_url(key,
 size=150, crop=True)
 except images.TransformationError,
 images.NotImageError:
 url = "http://storage.googleapis.com{}".format(
 real_path)
 thumbnail_url = None

 f = NoteFile(parent=note.key, name=file_name,
 url=url, thumbnail_url=thumbnail_url,
 full_path=real_path)
 f.put()
 note.files.append(f.key)

 note.put()

Chapter 3

[71]

The method is quite similar to the method that has the same name in the
MainHandler class; the main difference is the way in which we access data from the
files attached to the e-mail message. The attachments parameter is a list of tuples
of two elements: one is a string containing the file name and the other is an instance
of a wrapper class containing the message payload. We use the filename to build the
full path to the file in Cloud Storage, and we use the decode() method to access the
payload data and store it in a file.

Finally, we map the URL to the handler:

app = webapp2.WSGIApplication([
 (r'/', MainHandler),
 (r'/media/(?P<file_name>[\w.]{0,256})', MediaHandler),
 (r'/shrink', ShrinkHandler),
 (r'/shrink_all', ShrinkCronJob),
 (r'/_ah/mail/<appid>\.appspotmail\.com', CreateNoteHandler),
], debug=True)

When testing the application on the local development server, we can use
the development console to simulate e-mail sending from a web interface; this
function is available from the bar on the left-hand side by clicking on the Inbound
Mail menu item.

Summary
In this chapter, we pushed a lot of features in our Notes application, and we should
now be able to leverage the Cloud Storage and use it to store and serve static
contents from our applications. We saw the Images API in action, and we should
now know how to deal with requests that take a long time, and we also learned how
to schedule recurrent tasks. In the last part, we delved into the Mail API capabilities
and we learned how App Engine provides a turnkey solution to send and receive
e-mail messages.

In the next chapter, we will take a look at the performance of our application and
see where and how we can improve, using advanced features of components we
are already using together with more services provided by App Engine.

Improving Application
Performance

Even if our Notes application lacks many details, at this point, we are using a
number of key components of the Cloud Platform, and so it can be considered a
fully fledged web application. This is a good opportunity to stop adding major
features and trying to delve into some implementation details involving Datastore,
Memcache, and the Modules service in order to optimize application performance.

While going through this chapter, we have to take into consideration how optimizing
a web application running on a pay-per-use service such as App Engine is crucial
both to maximize performance and lower costs.

In this chapter, we will cover the following topics:

• Gain a deeper knowledge of Datastore: properties, queries, caching, indexing
and administration

• How to store transient data into Memcache
• How to structure our application with the help of the Modules service

Advanced use of Datastore
We have already learned a lot about Datastore so far, including how to define entity
kinds with model classes, the property concept, and how to make simple queries.

There is a lot more we can do with the NDB Python API to optimize an application,
as we will see shortly.

Improving Application Performance

[74]

More on properties – arrange composite data
with StructuredProperty
In our Notes application, we defined the CheckListItem model class to represent
checkable items, and then we added a property to the Note model named
checklist_items that references a list of that kind of entities. This is what we
usually call a one-to-many relationship between notes and checklist items, and it is a
common way to structure application data. By following this strategy, though, every
time we add an item to a note, we have to create and store a new entity on Datastore.
This is not a bad practice at all, but we have to take into consideration that we are
charged for the use of Datastore depending on the number of operations we make;
so, if we have a lot of data, keeping a low rate of write operations can potentially
save a lot of money.

The Python NDB API provides a property type called StructuredProperty we
can use to include one kind of model inside another; instead of referencing the
CheckListItem model from a property of the type KeyProperty in the Note model,
we store it in a property of the type StructuredProperty. In our models.py
module, we change the Note model as follows:

class Note(ndb.Model):
 title = ndb.StringProperty()
 content = ndb.TextProperty(required=True)
 date_created = ndb.DateTimeProperty(auto_now_add=True)
 checklist_items = ndb.StructuredProperty(CheckListItem,
 repeated=True)
 files = ndb.KeyProperty("NoteFile", repeated=True)

In the main.py module, we need to adjust the code to store checklist items when we
create a new note, so we refactor the create_note method in this way:

@ndb.transactional
def _create_note(self, user, file_name, file_path):
 note = Note(parent=ndb.Key("User", user.nickname()),
 title=self.request.get('title'),
 content=self.request.get('content'))

 item_titles = self.request.get('checklist_items').split(',')
 for item_title in item_titles:
 if not item_title:
 continue
 item = CheckListItem(title=item_title)

Chapter 4

[75]

 note.checklist_items.append(item)
 note.put()

 if file_name and file_path:
 url, thumbnail_url = self._get_urls_for(file_name)

 f = NoteFile(parent=note.key, name=file_name,
 url=url, thumbnail_url=thumbnail_url,
 full_path=file_path)
 f.put()
 note.files.append(f.key)
 note.put()

First of all, we move the call to the note.put() method right below the note creation;
we don't need to provide a valid key to the parent parameter in the CheckListItem
constructor, so we can persist the Note instance later, at the end of the method. We
then instance a CheckListItem object for every item we want to add to the note as
before, but without actually creating any entity in Datastore; these objects will be
transparently serialized by the NDB API within the Note entity.

We need to adjust the HTML template as well, as the checklist_items
property in notes entities does not contain a list of keys anymore; it contains a
list of CheckListItem objects instead. In the main.html file, we change the code
accordingly, removing the get() method calls:

{% if note.checklist_items %}

 {% for item in note.checklist_items %}
 <li class="{%if item.checked%}checked{%endif%}">
 {{item.title}}

 {% endfor %}

{% endif %}

To see how it's easy to work with structured properties, we add a very small feature
to the app: a link to toggle the checked status for items in checklists. To toggle the
status of an item, we have to provide the request handler with the key of the note
containing the item and the index of the item itself inside the checklist_items list,
so we build a URL with the scheme /toggle/<note_key>/<item_index>. In the
main.html file, we add this:

{% if note.checklist_items %}

 {% for item in note.checklist_items %}

Improving Application Performance

[76]

 <li class="{%if item.checked%}checked{%endif%}">

 {{item.title}}

 {% endfor %}

{% endif %}

Instances of the Key class have a urlsafe() method that serializes key objects into
a string that can be safely used as part of URLs. To retrieve the current index inside
a loop, we use the loop.index expression provided by Jinja2. We can also add a
simple CSS rule to the notes.css file to make the items look a little better:

div.note > ul > li > a {
 text-decoration: none;
 color: inherit;
}

To implement the toggling logic, we add the ToggleHandler class in the
main.py module:

class ToggleHandler(webapp2.RequestHandler):
 def get(self, note_key, item_index):
 item_index = int(item_index) - 1
 note = ndb.Key(urlsafe=note_key).get()
 item = note.checklist_items[item_index]
 item.checked = not item.checked
 note.put()
 self.redirect('/')

We normalize the item index so that it is zero-based, and then we load a note entity
from Datastore using its key. We instantiate a Key object passing the string generated
with the urlsafe() method to the constructor with the urlsafe keyword parameter,
then we retrieve the entity with the get() method. After toggling the state of the item
at the requested index, we update the note content in Datastore calling the put()
method. We finally redirect users to the main page of the application.

Eventually, we add the URL mapping to the application constructor with a regular
expression matching our URL scheme, /toggle/<note_key>/<item_index>:

app = webapp2.WSGIApplication([
 (r'/', MainHandler),
 (r'/media/(?P<file_name>[\w.]{0,256})', MediaHandler),
 (r'/shrink', ShrinkHandler),
 (r'/shrink_all', ShrinkCronJob),

Chapter 4

[77]

 (r'/toggle/(?P<note_key>[\w\-]+)/(?P<item_index>\d+)',
ToggleHandler),
 (r'/_ah/mail/create@book-123456\.appspotmail\.com',
CreateNoteHandler),
], debug=True)

Working with structured properties is straightforward; we simply access properties
and fields of the objects contained in the checklist_items property as they were
actual entities.

The only drawback of this approach is that CheckListItem entities are not actually
stored in Datastore; they don't have a key and we cannot load them independently
from the Note entity they belong to, but this is perfectly fine for our use case. Instead
of loading the CheckListItem entity we want to update, we load the Note entity
and we use the index to access the item. In exchange, during notes creation, we
save a put() method call for the note and a put() method call for each item in the
checklist and when retrieving a note, we save a get() method call for each item in
the checklist. Needless to say, this kind of optimization can impact favorably on
application costs.

More on queries – save space with projections
and optimize iterations with mapping
Queries are used within an application to search Datastore for entities that match a
search criteria we can define through filters. We have already used Datastore queries
to retrieve entities with a filter; for example, every time we perform an ancestor
query, we are actually filtering out these entities that have a different parent from the
one we provided to the NDB API query() function.

There is much more we can do with query filters though, and in this section, we will
see, in detail, two features provided by the NDB API that can be used to optimize
application performance: projection queries and mapping.

Projection queries
When we retrieve an entity with a query, we get all the properties and data for that
entity as expected; sometimes though, after retrieving an entity, we use a small
subset of its data. For example, take the post() method in our ShrinkHandler class;
we perform an ancestor query to retrieve only the notes belonging to the currently
logged in user, then we invoke the _shrink_note() method on each of them. The
_shrink_note() method only accesses the files property from note entities, so
we are keeping in memory and passing around a rather large object even if we only
need a very small part of it.

Improving Application Performance

[78]

With the NDB API, we can pass a projection parameter to the fetch() method
that contains a list of properties we want to be set for the entities retrieved.
For example, in the post() method of the ShrinkHandler class, we can modify
the code in this way:

notes = Note.owner_query(ancestor_key).fetch(
 projection=[Note.files])

This is a so-called projection query and the entities fetched in this way will have
only the files property set. The fetch is much more efficient because it retrieves and
serializes less data and entities use less space while in memory. If we try to access
any other property than files on such entities, an UnprojectedPropertyError
error will be raised.

Projections have some limitations we must be aware of. First of all, as we can expect,
entities fetched with a projection cannot be saved back on Datastore because they
are only partially populated. Another limitation is regarding indexes; in fact, we can
only specify indexed properties in a projection and this makes it impossible to project
properties with unindexed types such as the TextProperty type.

Mapping
Sometimes, we need to call the same function on a set of entities returned by a query.
For example, in the post() method of the ShrinkHandler class, we need to call the
_shrink_note() method on all the note entities for the current user:

ancestor_key = ndb.Key("User", user.nickname())
notes = Note.owner_query(ancestor_key).fetch()
for note in notes:
 self._shrink_note(note)

We first fetch all the entities matching the query in the notes list, then we call the
same function for every item in the list. We can rewrite that code replacing the for
iteration with a single call to the map() method provided by the NDB API:

ancestor_key = ndb.Key("User", user.nickname())
Note.owner_query(ancestor_key).map(self._shrink_note)

We call the map() method passing the callback function we want to be called on each
result of the query; the callback function receives an entity object of kind Note as
its only parameter, unless we invoke the map() method with the keys_only=True
parameter. In this case, the callback will receive a Key instance when invoked.

Chapter 4

[79]

Since the map() method accepts the standard set of query options (that's why we
can pass the keys_only parameter), we can perform the mapping for a projection
query too:

Note.owner_query(ancestor_key).map(
 self._shrink_note, projection=[Note.files])

Besides the projection, this version of the code is slightly more efficient because the
Datastore can apply some concurrency while loading entities and the results are
retrieved in batches instead of fetching the entire dataset in memory. If we want to
get information regarding the current batch inside the callback function, we need
to pass the pass_batch_into_callback=True parameter when calling the map()
method. In this case, the callback will receive three parameters: a Batch object
provided by App Engine that wraps a lot of information about the current batch,
the index of the current item inside the current batch, and the entity object
(or the entity key if the keys_only parameter was used) fetched from Datastore.

NDB asynchronous operations
As we can expect, Datastore is a key component when considering application
performance; adjusting queries and using the right idioms can dramatically
improve efficiency and lower costs but there's more. Thanks to the NDB API,
we can speed up our applications by performing Datastore actions in parallel
with other jobs, or performing a number of Datastore actions concurrently.

Several functions provided by the NDB API have an _async counterpart that takes
exactly the same arguments, such as the put and put_async functions. Every async
function returns a future, an object that represents an operation that was started but
possibly not completed. We get the result of an async operation from the future itself
calling the get_result() method.

In our Notes application, we can use asynchronous operations in the
_render_template() method of the MainHandler class:

def _render_template(self, template_name, context=None):
 if context is None:
 context = {}

 user = users.get_current_user()
 ancestor_key = ndb.Key("User", user.nickname())
 qry = Note.owner_query(ancestor_key)
 context['notes'] = qry.fetch()

 template = jinja_env.get_template(template_name)
 return template.render(context)

Improving Application Performance

[80]

Currently, we wait for the notes to be fetched before loading the template but we can
load the template while Datastore is working:

def _render_template(self, template_name, context=None):
 if context is None:
 context = {}

 user = users.get_current_user()
 ancestor_key = ndb.Key("User", user.nickname())
 qry = Note.owner_query(ancestor_key)
 future = qry.fetch_async()

 template = jinja_env.get_template(template_name)

 context['notes'] = future.get_result()
 return template.render(context)

In this way, the application doesn't block on fetching data because the
fetch_async() method returns immediately; we then proceed loading the
template while the Datastore is working. When it's time to fill the context variable,
we call the get_result() method on the future object. At this point, either the result
is available and we proceed with rendering operations, or the get_result() method
blocks, waiting for Datastore to be ready. In both cases, we managed to perform two
tasks in parallel, thereby increasing the performance.

With the NDB API, we can also implement asynchronous tasks called tasklets that
return a future while performing other work. For example, earlier in this chapter,
we used the map() method in the ShrinkHandler class to call the same function on a
set of entities retrieved from Datastore. We know that code is slightly more efficient
than the version with the explicit for iteration, but it's not much faster actually;
the callback function blocks on a synchronous get() method, so every step of the
mapping waits for the previous to finish.

If we turn the callback function into a tasklet, App Engine can run the mapping
in parallel, dramatically speeding up application performance. Writing tasklets is
simple, thanks to the NDB API; for example the _shrink_note() method of the
ShrinkHandler class can be transformed in a tasklet with just two lines of code,
as follows:

@ndb.tasklet
def _shrink_note(self, note):
 for file_key in note.files:
 file = yield file_key.get_async()
 try:

Chapter 4

[81]

 with cloudstorage.open(file.full_path) as f:
 image = images.Image(f.read())
 image.resize(640)
 new_image_data = image.execute_transforms()

 content_t = images_formats.get(str(image.format))
 with cloudstorage.open(file.full_path, 'w',
 content_type=content_t) as f:
 f.write(new_image_data)

 except images.NotImageError:
 pass

We first apply the ndb.tasklet decorator to the function we want to turn into a
tasklet; the decorator provides all the logic to support the future mechanism with the
get_result() method. We then use the yield statement to tell App Engine that we
will suspend at that point of the execution, waiting for the result of the get_async()
method. While we suspend, the map() method can execute another tasklet with a
different entity instead of waiting for us to finish.

Caching
Caching is a critical component on a system such as App Engine because it impacts
on application performance and Datastore roundtrips and thus on application costs.
The NDB API automatically manages the cache for us and provides a set of tools to
configure the caching system. It's important to understand how NDB cache works if
we want to take advantage of such features.

NDB uses two caching levels: the in-context cache that runs in process memory and
a gateway to the App Engine Memcache service. The in-context cache stores data
only for the duration of a single HTTP request and is local to the code that processes
the request, so it is extremely fast. When we use a NDB function to write data on
the Datastore, it first populates the in-context cache. Symmetrically, when we use a
NDB function to fetch an entity from Datastore, it first searches for it in the in-context
cache without even accessing Datastore in the best-case scenario.

Memcache is slower than the in-context cache but still way faster than Datastore.
By default, every Datastore operation performed outside a transaction is cached on
Memcache and App Engine ensures that data resides on the same server to maximize
performance. The NDB ignores Memcache when it operates inside a transaction but
when a transaction is committed, it will attempt to remove all the entities involved
from Memcache, and we must take into account that some of these deletions can fail.

Improving Application Performance

[82]

Both the caches are managed by a so-called context, represented by an instance of
the class Context provided by App Engine. Each incoming HTTP request and each
transaction is executed in a new context, and we can access the current context using
the get_context() method provided by the NDB API.

In our Notes application, we've already experienced one of these rare situations
where NDB automatic caching is actually an issue; in the _reload_user() method
in CreateNoteHandler class, we had to force a reload of the UserLoader entity from
Datastore as a workaround to populate a User object. Between the put() method
and the get() method of the UserLoader entity, we wrote this instruction to remove
the entity from any location except Datastore:

UserLoader(user=user_instance).put()
key.delete(use_datastore=False)
u_loader = UserLoader.query(
 UserLoader.user == user_instance).get()

Without this instruction, the NDB caching system would not have fetched the entity
from Datastore from scratch as we needed. Now that we know how NDB caching
works, we can rewrite that method in an equivalent way, thus being more explicit
about cache management, using the Context instance:

ctx = ndb.get_context()
ctx.set_cache_policy(lambda key: key.kind() != 'UserLoader')
UserLoader(user=user_instance).put()
u_loader = UserLoader.query(
 UserLoader.user == user_instance).get()

The set_cache_policy() method exposed by the context object accepts a key
object and returns a Boolean result. When the method returns the False parameter,
the entity identified by that key won't be saved in any cache; in our case, we return
the False parameter only when the entity is of the kind UserLoader.

Backup and restore functionalities
In order to use the backup and restore functionalities provided by App Engine for
Datastore, we first need to enable Datastore Admin, which is disabled by default.
Datastore Admin is a web application that provides a set of tools very useful for
administrative tasks. At the time writing this, the only way to enable and access
Datastore Admin is via the old Admin Console available at https://appengine.
google.com.

https://appengine.google.com
https://appengine.google.com

Chapter 4

[83]

We access the console for our project and then we have to perform the
following steps:

1. Click on the Datastore Admin menu under the Data section on the left
of the page.

2. Click on the button to enable the admin.
3. Select one or more entity kinds we want to backup or restore.

To perform a complete backup, we first have to put our application in read-only
mode. From the console, we need to perform the following steps:

1. Click on Application Settings under the Administration menu on the left.
2. At the bottom of the page, click on the Disable Writes... button under the

Disable Datastore Writes option.
3. Return to the Datastore Admin section and select all the entity kinds we

want to backup.
4. Click on the Backup Entities button.
5. Select the destination of the backup and choose between blobstore and

Cloud Storage. Specify a name for the backup file.
6. Click on the Backup Entities button.
7. The backup runs in the background; once finished, it is listed in

Datastore Admin.
8. Re-enable writings for our application.

From Datastore Admin, we can select a backup and perform a restore. After starting
a restore operation, Datastore Admin will ask us which entity kinds we want to
restore, and then it'll proceed in background.

Indexing
Indexes are tables that list Datastore entities in a sequence determined by certain
properties of the index and optionally by entities' ancestors. Every time we write
on Datastore, indexes are updated to reflect the changes to their respective entities;
when we read from Datastore, results are fetched accessing indexes. This is basically
the reason why reading from Datastore is way much faster than writing.

Our Notes application performs several queries, which means that some index must
be in place, but we have never directly managed or created indexes. This is because
of two reasons. The first reason is that when we run the local development server,
it scans our source code, searching for queries and automatically generates the code
to create all the indexes needed. The other reason is that Datastore automatically
generates basic indexes called predefined indexes for each property of every kind,
functional for simple queries.

Improving Application Performance

[84]

Indexes are declared in the index.yaml file at the application root with the
following syntax:

- kind: Note
 ancestor: yes
 properties:
 - name: date_created
 direction: desc
 - name: NoteFile

These are the properties needed to define and create the index that allows us to
perform queries against Note entities that belong to the currently logged-in user and
sort them in reverse by date. When we deploy the application, the index.yaml file is
uploaded and App Engine starts to build the indexes.

If our application exercises every possible kind of query, including every sorting
combination, then the entries generated by the development server will represent a
complete set of indexes. This is why, in the vast majority of the cases, we don't need
to declare indexes or customize existing ones unless we have a very special case to
deal with. Anyway, in order to optimize our application, we can disable indexing
for properties we know we will never make a query on. Predefined indexes are not
listed in the index.yaml file but we can use the properties' constructors inside the
models.py module to disable them. For example, if we know in advance that we will
never search for NoteFile entities directly with a query, we can disable indexing for
all its properties:

class NoteFile(ndb.Model):
 name = ndb.StringProperty(indexed=False)
 url = ndb.StringProperty(indexed=False)
 thumbnail_url = ndb.StringProperty(indexed=False)
 full_path = ndb.StringProperty(indexed=False)

By passing the indexed=False parameter to constructors, we avoid App Engine to
create indexes for those properties so that every time we store a NoteFile entity,
there will be less indexes to update, speeding up writing operations. The NoteFile
entities can be still retrieved from the files property within the Note entity because
App Engine will keep on creating the predefined index to retrieve entities by
kind and key.

Chapter 4

[85]

Using Memcache
We already know that Memcache is the distributed in-memory data cache provided
by App Engine. A typical use case would be to use it as a cache for rapid data
retrieval from persistent storage such as Datastore, but we already know that the
NDB API does this for us, so there's no need to explicitly cache entities.

Data stored in Memcache can be evicted at any time, so we should cache only
data that we can safely lose without affecting integrity. For example, in our Notes
application, we can cache the total number of notes globally stored for every user
and display this nice kind of metric on the home page. We can perform a Datastore
query counting Note entities every time a user visits the main page but this would
be cumbersome, possibly nullifying every optimization we made so far. A better
strategy would be to keep a counter in the Memcache and increment that counter
every time a note is created within the application; if Memcache data expires, we
make the counting query again without losing any data and start over incrementing
the in-memory counter.

We implement two functions to wrap Memcache operations: one to get the value of
the counter and another to increment it. We first create a new Python module in the
utils.py file that contains the following code:

from google.appengine.api import memcache
from models import Note
def get_note_counter():
 data = memcache.get('note_count')
 if data is None:
 data = Note.query().count()
 memcache.set('note_count', data)

 return data

We first try to access counter value from Memcache calling the get() method asking
for the note_count key. If the return value is None, we assume the key is not in
cache and we proceed querying Datastore. We then store the result of the query in
Memcache and return that value.

Improving Application Performance

[86]

We want to display the counter on the main page, so we add it to the template
context in the _render_template() method of the MainHandler class:

def _render_template(self, template_name, context=None):
 if context is None:
 context = {}
 user = users.get_current_user()
 ancestor_key = ndb.Key("User", user.nickname())
 qry = Note.owner_query(ancestor_key)
 future = qry.fetch_async()

 template = jinja_env.get_template(template_name)

 context['notes'] = future.get_result()
 context['note_count'] = get_note_counter()

 return template.render(context)

Before using the function to get the counter, we need to import it from the main
module:

from utils import get_note_counter

We have to modify the HTML template as well:

<body>
 <div class="container">

 <h1>Welcome to Notes!</h1>
 <h5>{{ note_count }} notes stored so far!</h5>

We can then refresh the main page of the Notes application to see the counter in
action. Now it's time to write the code that increments the counter, but there's
something we should be aware of before proceeding.

Multiple requests can try to increment the value in Memcache concurrently,
potentially causing race conditions. To avoid this scenario, Memcache provides two
functions, incr() and decr(), which atomically increment and decrement a 64-bit
integer value. These would be perfectly suitable for our counter but we can provide a
more general solution that works also for cache values that are not integers using the
compare and set feature of the App Engine Python API.

Chapter 4

[87]

In the utils.py module, we add the following function:

def inc_note_counter():
 client = memcache.Client()
 retry = 0
 while retry < 10:
 data = client.gets('note_count')
 if client.cas('note_count', data+1):
 break
 retry += 1

We use an instance of the Client class because the compare and set functionalities
are not provided as functions in the memcache module. After getting a Client
instance, we enter the so-called retry loop that we reiterate up to 10 times if we
detect a rare condition. We then try to get the value for the note_count key using the
gets method of the client. This method alters the internal state of the client storing
a timestamp value provided by the Memcache service. We then try to increment the
value corresponding to the same key calling the cas() method on the client object;
the method transmits the new value for the key to Memcache, plus the previously
mentioned timestamp. If the timestamp matches, the value is updated and the cas()
method returns the True parameter causing the retry loop to exit; otherwise, it
returns the False parameter and we try again.

After importing the inc_note_counter() function in the main module, we can call
it to increment the counter wherever we create a new note: within the _create_
note of the MainHandler class and within the _create_note method in the
CreateNoteHandler class.

Breaking our application into modules
At the moment, our Notes application provides some frontend functionalities such
as serving the main page, together with backend functionalities such as handling
cron jobs. This is fine for most use cases but if the application architecture is complex
and we have a lot of traffic, having several backend jobs around that steal resources
from the frontend cannot be always acceptable. To face this kind of problems, App
Engine provides an extremely flexible way to lay out a web application with the use
of modules.

Improving Application Performance

[88]

Every App Engine application is made up of at least on module; even if we
didn't already know it, so far we have worked on the default module of our
Notes application. A module is identified by a name, consists of source code and
configuration files, and can reside in the application root or in a subfolder. Every
module has a version and we can deploy multiple versions of the same module;
each version will spawn one or more App Engine instances depending on how we
configured it for scaling. The ability to deploy multiple versions of the same module,
in particular, is very useful for testing new components or deploying progressive
upgrades. Modules that are part of the same application share services such as
Memcache, Datastore, and task queues, and can communicate in a secure fashion
using the modules of the Python API.

To delve into some other detail, we can refactor our Notes application by adding a
new module solely dedicated to handle cron jobs. We don't need to add any feature;
we just break up and refactor existing code. As the architecture of our application
is very simple, we can add the module directly in the application root. First of all,
we need to configure this new module, we will name backend inside a new file,
backend.yaml, which contains the following:

application: notes
module: backend
version: 1
runtime: python27
api_version: 1
threadsafe: yes

handlers:
- url: .*
 script: backend.app

This is quite similar to any application configuration file, but the main difference is
the module property that contains the name of the module. When this property is
not in the configuration file, or it contains the default string as value, App Engine
assumes this is the default module for the application. We then tell App Engine we
want the app application from the backend_main file Python module handle every
request the module will receive. When we do not specify any scaling option in the
configuration file, automatic scaling will be assumed.

We write a brand new Python module with a dedicated WSGI-compliant application
in the backend_main.py file:

app = webapp2.WSGIApplication([
 (r'/shrink_all', ShrinkCronJob),
], debug=True)

Chapter 4

[89]

As we see from the mapping, this application will only handle requests for the
shrink cron job. We take the handler code from the main module, and to avoid
depending on it, we rewrite the ShrinkCronJob class so that it doesn't need to
derive from the ShrinkHandler class anymore. Again, in the backend_main.py
module, we add the following:

class ShrinkCronJob(webapp2.RequestHandler):
 @ndb.tasklet
 def _shrink_note(self, note):
 for file_key in note.files:
 file = yield file_key.get_async()
 try:
 with cloudstorage.open(file.full_path) as f:
 image = images.Image(f.read())
 image.resize(640)
 new_image_data = image.execute_transforms()

 content_t = images_formats.get(str(image.format))
 with cloudstorage.open(file.full_path, 'w',
 content_type=content_t) as f:
 f.write(new_image_data)

 except images.NotImageError:
 pass

 def get(self):
 if 'X-AppEngine-Cron' not in self.request.headers:
 self.error(403)

 notes = Note.query().fetch()
 for note in notes:
 self._shrink_note(note)

For convenience, we can move the image_formats dictionary into the utils.py
module so that we can reuse it from here and from the main.py module.

Now that we have two modules, we need to route the requests coming to our
application to the right module, and we can do this by creating a file called
dispatch.yaml in the application root that contains the following:

dispatch:

 - url: "*/shrink_all"
 module: backend

 - url: "*/*"
 module: default

Improving Application Performance

[90]

Basically, this is the highest level URL mapping we can have on App Engine.
We can use wildcards instead of a regular expression to route URLs of incoming
requests to the right module; in this case, we route requests to the /shrink_all
URL to the backend module, leaving all the rest to the default module.

Ideally, we could have moved to the backend module also the code
implementing notes creation by e-mail but unfortunately App Engine
only allows inbound services on default modules.

Working with modules, both on the local development environment and on
production, adds some complications because we cannot use the App Engine
Launcher graphical interface to start and stop the development server or deploy
the application; we must use the command-line tools instead.

For example, we can check out how modules works in the local environment, but we
have to start the development server passing the YAML files for each module together
with the dispatch.yaml file as arguments. In our case, we issue the following on the
command line:

dev_appserver.py app.yaml backend.yaml dispatch.yaml

To deploy the application on App Engine, we use the appcfg command-line tool
passing the YAML files of the modules we want to deploy, making sure that the
configuration file of the default module is the first of the list during the very first
deploy, for example we can use the YAML files as follows:

appcfg.py update app.yaml backend.yaml

When the application restarts, we should be able to see an instance running for the
additional backend module using Development Console or Admin Console.

Since working with modules on a small application such as Notes is
less practical and provides no benefits for the purpose of the book, we
can switch back to the layout with only one module.

Chapter 4

[91]

Summary
In this chapter, we delved into several details of most of the Cloud Platform
components we have used so far. As mentioned before, when using a pay-per-use
service such as the Cloud Platform, mastering the details and the best practices
provides benefits for performance as well as costs. The majority of this chapter was
dedicated to Cloud Datastore, confirming that this is a critical component for almost
any web application; knowing how to lay out data or perform queries can determine
the success of our application.

We also learned how to safely use Memcache from a Python application, avoiding
race conditions and strange behaviors that are difficult to debug. In the last part of
the chapter, we covered the modules features of App Engine; even if we have to
work on a complex application to completely appreciate the benefits of a modular
architecture, knowing what modules are and what they can do for us is an important
piece of information if we want to deploy our applications on App Engine.

The next chapter is completely dedicated to the Google Cloud SQL service. We will
learn how to create and manage database instances and how to make connections
and perform queries.

Storing Data in
Google Cloud SQL

Google Cloud SQL is a MySQL database server instance that lives in the Google
cloud infrastructure; it can be used from outside Google Cloud Platform within
applications that don't run on the App Engine platform. We will learn how to use it
both ways: by adding code to our Notes application and creating a standalone script
that runs on our workstation.

Google offers two billing plans for Cloud SQL, Packages and Per Use, without
providing any free tier. This means we have to pay to execute the code in this
chapter, though choosing the Per Use plan and running the instance for the sole
purpose of going through the chapter should be extremely cheap.

In this chapter, we will cover the following topics:

• How to create, configure, and run a Cloud SQL instance
• How to manage a running instance
• How to use Cloud SQL from App Engine
• How to use Cloud SQL from outside App Engine

Creating a Cloud SQL instance
We will make heavy use of Developer Console throughout this chapter, and we
start by creating an instance of a Cloud SQL database. As we already know from
Chapter 1, Getting Started, even if we created our Notes application from App Engine
Admin Console, we should have a corresponding project on Developer Console.

Storing Data in Google Cloud SQL

[94]

At this point, we must have enabled the billing feature for our
project to access all the Cloud-SQL-related functionalities from
within Developer Console.

From Developer Console, once our project is selected, we have to perform
the following:

1. Click the Cloud SQL item under the Storage section on the left-hand
side menu.

2. Push the Create an instance button.
3. Provide a name for the database instance, for example, myfirst; the name

of the instance must be unique within a project and will be always combined
with the project name.

4. Select REGION, the same as the location of the App Engine application
(most likely United States).

5. Select a tier for the instance; we can safely use the cheapest tier for the
purpose of this chapter, the one labeled D0.

6. Click on the Save button.

The following screenshot shows Developer Console:

Chapter 5

[95]

The creation process for our Cloud SQL instance will immediately start. In a few
minutes, the status of the instance will become runnable, which means that we
can start the instance whenever we need it. We're not charged of any fee while the
instance is in the runnable state.

Configuring access
Before using our database instance, we should configure access permissions and
credentials to control who can perform connections to the database and how. There
are two levels of access control, one at the Cloud Platform level and another at the
database level. The first level authorizes access to the Cloud SQL instance from client
applications, either from the App Engine infrastructure by checking the application
ID, or from a remote node on the Internet by checking the source IP address. The
second level is the MySQL privilege system that is responsible for authentication of
users and associate them with privileges on databases, such as the ability to perform
the SELECT, INSERT, UPDATE or DELETE operation.

If we created the Cloud SQL instance from within our project settings in Developer
Console, our App Engine application is already authorized to connect to the
database. To double-check, on Developer Console we have to:

1. Click on Cloud SQL menu item.
2. Click on the instance ID.
3. Open the Access Control tab.

Under the Authorized App Engine Applications label, we can see whether our
application ID is listed.

While we are on that page, we can set up the access for our local machine; this is
needed to perform administrative tasks such as adding users and databases using any
MySQL client. We first need to assign an IP address for our instance so that we can
reach it from outside the Cloud Platform infrastructure; click the Add new link, next to
the IP Addresses label and wait for the address to be assigned to our instance.

When we request an IP address for Cloud SQL instances, we should be
aware that we will be charged for the time we use this address while
instances are not running. To lower costs, we can release the IP address
as soon as we don't need it.

Storing Data in Google Cloud SQL

[96]

When we connect from our local machine to the Cloud SQL instance, we are
obviously outside the App Engine infrastructure, so we have to add our public IP
address to the list of the hosts allowed to access from the Internet. For this, we need
to perform the following:

1. Get our public IP address; we can use Google for this by hitting this
https://www.google.com/#q=my-ip URL.

2. Click on the Add new link next to the Authorized Networks label.
3. Fill out the form with our public IP address.
4. Click on the Add button.

The following screenshot shows Developer Console:

From now on, we can connect to our Cloud SQL instance using the MySQL command
line client, for instance, from our laptop. For the first level of the access control system,
that's enough for now; we can proceed to configuring the second level.

https://www.google.com/#q=my-ip

Chapter 5

[97]

Setting the root password
The first step to take full control of our Cloud SQL instance is setting a password for
the MySQL root user; to do this, perform the following:

1. On Developer Console, we go to the ACCESS CONTROL tab page.
2. Fill the field under the Set Root Password section with the desired password.
3. Click on the Set button.

In the next paragraph, we will see how to connect to the instance as a root user and
perform the administrative tasks we need to complete before using the instance from
within our Notes application.

Connecting to the instance with the
MySQL console
To interact with our Cloud SQL instance, we will use the MySQL command line
client, which is available for all the platforms supported by App Engine, even if
we can use any client we feel more comfortable with. The client is usually shipped
together with most MySQL server installation packages; besides having the MySQL
client tool installed, it is advisable to install MySQL and have a local server running
so that we can work with it instead of the production instance while developing
applications. We will get back to this soon in this chapter.

Creating the notes database
The first task we need to perform is creating a new database on the Cloud SQL
instance; we will use this to store data from our Notes application. To connect
to the instance, we issue the following from the command line:

mysql –host=<your instance IP> --user=root –password

After inserting the password for the root user, we should get into the MySQL
monitor and see an output similar to the following:

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 1

Server version: 5.5.38 (Google)

Copyright (c) 2000, 2014, Oracle and/or its affiliates. All rights
reserved.

Storing Data in Google Cloud SQL

[98]

Oracle is a registered trademark of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective

owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input
statement.

mysql>

If we successfully managed to get to the prompt, we can create a database named
notes by issuing the following instructions:

mysql> CREATE DATABASE notes;

Query OK, 1 row affected (1.62 sec)

The output of the command should be very similar to the previous command in the
case of success; we can now proceed to creating a dedicated database user we will
use to perform connections from our Notes application.

Creating a dedicated user
The root user in a MySQL installation has unlimited privileges and it is a good
security practice to avoid connecting to the server with the superuser credentials.
For this reason, we create a dedicated user that we will use to make connections from
our Notes application and that is able to operate exclusively on the notes database.
Before proceeding, we remove the anonymous localhost access provided by default
in Cloud SQL instances; this is a good security practice and avoids the anonymous
user to shadow regular users when MySQL checks for user permissions. From the
client, we issue the statement:

mysql> DROP USER ''@localhost;

Query OK, 0 rows affected (0.17 sec)

We then proceed creating a regular user:

mysql> CREATE USER 'notes'@'%' IDENTIFIED BY 'notes_password';

Query OK, 0 rows affected (1.47 sec)

Of course, we should pick up a stronger password; anyway, we have just created
a new user named notes who will be able to perform connections from any host
(notice the % character that is a wildcard matching any host). For convenience,
we grant to the notes user any privilege on the notes database:

mysql> GRANT ALL PRIVILEGES ON notes.* TO 'notes'@'%';

Query OK, 0 rows affected (0.49 sec)

Chapter 5

[99]

We finally make MySQL server reload all the updated privileges with the
following statement:

mysql> FLUSH PRIVILEGES;

Query OK, 0 rows affected (0.17 sec)

We can now disconnect from the server, ending the current session with the
\q command and try to reconnect using the notes user:

mysql> \q

Bye

mysql –host=<your instance IP> --user=notes –password

We should establish a connection with the MySQL monitor without errors,
and then we can check whether we can actually access the notes database:

mysql> use notes;

Database changed

We can now proceed with creating tables for storing data in our Notes application.

Creating tables
Suppose we want to log users activities and store this information on a database
so that we can use them later for, let's say, business intelligence analysis. Using
Datastore for this purpose is not a good idea for at least two reasons:

• We will likely end with writing a lot of data, thus we cannot use too many
indexes and we might have to refrain from using grouped entities.

• We will require another App Engine application to retrieve and analyze data
because we cannot access Datastore from outside the platform.

Cloud SQL can solve both the issues above, respectively:

• Writing limits for Cloud SQL are far more loose than Datastore.
• We can connect to the Cloud SQL instance from an external application and

access data.

Storing Data in Google Cloud SQL

[100]

We can now start defining the data we want to log; for a simple usage analysis, we
can save the user identifier, the type of operation performed, and the date and time
of such an operation. Once connected to the server with the MySQL client, we can
issue the CREATE statement:

CREATE TABLE 'notes'.'ops'
(
 'id' INT NOT NULL auto_increment,
 'user_id' VARCHAR(128) NOT NULL,
 'operation' VARCHAR(16) NOT NULL,
 'date' DATETIME NOT NULL,
 PRIMARY KEY ('id')
);

If the query succeeded, we should see something like this output:

Query OK, 0 rows affected (0.55 sec)

The SQL statement creates a relation or table named ops inside the notes database.
The table has 4 columns:

• The id column This contains integer values that increment automatically
every time a new row is inserted; this is the primary key.

• The user_id column: This holds the user identifier provided by App Engine,
which is usually 56 characters long; we set 128 as the length so that we have
room if the length grows.

• The operation column: This is to store the type of operation logged; 16
characters should be more than enough.

• The date column: This holds the date and time when operation was logged.

Connecting to the instance from our
application
To connect with Cloud SQL instances from our Python code, we use the MySQLdb
package, which is a MySQL driver that implements the Python Database API as
described in the PEP 249 document. To install the package, we can use pip; from
the command line, we issue the following command:

pip install MySQL-python

Chapter 5

[101]

We don't specify the -t option as we did when installing GCS Client Library in
Chapter 3, Storing and Processing Users' Data because the MySQLdb package is included
in App Engine Python Runtime Environment on the production servers and we don't
need to upload it during deployment. Instead, we list the package in the libraries
section of the app.yaml file:

libraries:
- name: webapp2
 version: "2.5.2"

- name: jinja2
 version: latest

- name: MySQLdb
 version: latest

A simple test to check if the database connection is working correctly consists of
retrieving and logging the Cloud SQL version number. We add a function to the
utils.py module to retrieve a connection to the database. We first need to import
the MySQLdb package at the top of our utils.py module along with the os module:

import os
import MySQLdb

Then, we add the following function:

def get_cloudsql_db():
 db_ip = os.getenv('CLOUD_SQL_IP')
 db_user = os.getenv('CLOUD_SQL_USER')
 db_pass = os.getenv('CLOUD_SQL_PASS')
 return MySQLdb.connect(host=db_ip, db='notes',
 user=db_user, passwd=db_pass)

The function returns a connection to the database. We retrieve all the information to
perform the connection accessing some environment variables so that they are easily
available from any point in our codebase. To define environment variables, we just
have to add this at the bottom of our app.yaml file:

env_variables:
 CLOUD_SQL_IP: '<your_instance_ip>'
 CLOUD_SQL_USER: 'notes'
 CLOUD_SQL_PASS: 'notes_password'

Storing Data in Google Cloud SQL

[102]

We can use the database connection to get the MySQL version in the get() method
of the MainHandler class in the main.py module. We first import the get_cloudsql_
db() method and the logging module:

from utils import get_cloudsql_db
import logging

We modify the get() method as follows:

def get(self):
 user = users.get_current_user()
 if user is not None:
 db = get_cloudsql_db()
 ver = db.get_server_info()
 logging.info("Cloud SQL version: {}".format(ver))
 logout_url = users.create_logout_url(self.request.uri)
 template_context = {
 'user': user.nickname(),
 'logout_url': logout_url,
 }
 self.response.out.write(
 self._render_template('main.html', template_context))
 else:
 login_url = users.create_login_url(self.request.uri)
 self.redirect(login_url)

We can run the Notes application with the local development server and access the
main page with our browser; if everything is okay, we should see a message in the
log console (or in your shell if you launched the dev_appserver.py server from
there) similar to this:

INFO 2014-09-28 12:40:41,796 main.py:109] Cloud SQL version: 5.5.38

So far so good, but if we try to deploy the application on App Engine, the result will
be an error page with this error:

OperationalError: (2004, "Can't create TCP/IP socket (-1)")

This is because we are trying to access the Cloud SQL instance using a TCP/IP
socket, which is perfectly fine if we connect from outside App Engine; due to the
runtime environment networking restriction though, if we connect from an App
Engine application, we have to use a Unix socket instead.

Chapter 5

[103]

We can change the connection string in the utils.py module as follows:

def get_cloudsql_db():
 db_user = os.getenv('CLOUD_SQL_USER')
 db_pass = os.getenv('CLOUD_SQL_PASS')
 instance_id = os.getenv('CLOUD_SQL_INSTANCE_ID')
 unix_socket = '/cloudsql/{}'.format(instance_id)
 return MySQLdb.connect(unix_socket=unix_socket, db='notes',
 user=db_user, passwd=db_pass)

We need to define an additional environment variable named CLOUD_SQL_
INSTANCE_ID in our app.yaml file:

env_variables:
 CLOUD_SQL_IP: '<your_instance_ip>'
 CLOUD_SQL_USER: 'notes'
 CLOUD_SQL_PASS: 'notes_password'
 CLOUD_SQL_INSTANCE_ID: '<your_instance_id>'

If we try to deploy this version of the application, we'll notice this actually works on
App Engine but it won't work on the local environment server anymore. To avoid
changing the code in the get_cloudsql_db() function every time we switch from
development to production, we can provide a method that detects automatically
whether an application is running locally or on the App Engine servers. In the
utils.py module, we add the following:

def on_appengine():
 return os.getenv('SERVER_SOFTWARE', '').startswith('Google App
Engine')

This function simply returns the True parameter if the application is running on
App Engine and the False parameter otherwise. We can use the function in the
get_cloudsql_db() function in this manner:

def get_cloudsql_db():
 db_user = os.getenv('CLOUD_SQL_USER')
 db_pass = os.getenv('CLOUD_SQL_PASS')

 if on_appengine():
 instance_id = os.getenv('CLOUD_SQL_INSTANCE_ID')
 sock = '/cloudsql/{}'.format(instance_id)
 return MySQLdb.connect(unix_socket=sock, db='notes',
 user=db_user, passwd=db_pass)

Storing Data in Google Cloud SQL

[104]

 else:
 db_ip = os.getenv('CLOUD_SQL_IP')
 return MySQLdb.connect(host=db_ip, db='notes',
 user=db_user, passwd=db_pass)

The function will always return the right database connection for the environment
our application is running on.

Loading and saving data
Now that we know how to connect to a Cloud SQL instance from our App
Engine application, it's time to learn how to write and read data from the database.
We already created a table called ops, and we will use it to store information about
user operations. We will log the following events:

• A user has created a note
• A user has added a file
• A user has performed a shrink operation

We have to assign a text code to each of the operation types we want to log.
To do so, we can use a simple Python class that works as an enumeration.
In the utils.py module, we add the following code:

class OpTypes(object):
 NOTE_CREATED = 'NCREATED'
 FILE_ADDED = 'FADDED'
 SHRINK_PERFORMED = 'SHRINKED'

We will see how to use it in a moment. We now provide a log_operation()
method in the utils.py module that we will use to log operations in the Cloud SQL
database. We will call this function within the Notes code passing along the user
who actually performed the operation, the appropriate operation type, and the date
and time of the operation. The code is the following:

def log_operation(user, operation_type, opdate):
 db = get_cloudsql_db()
 cursor = db.cursor()
 cursor.execute('INSERT INTO ops (user_id, operation, date)'
 ' VALUES (%s, %s, %s)',
 (user.user_id(), operation_type, opdate))
 db.commit()
 db.close()

Chapter 5

[105]

We first retrieve a valid database connection, and then we get a cursor object by
calling the cursor() method on the connection object. By calling the execute()
method on the cursor object, we can issue SQL statements contained in the string
we pass as a parameter. In this case, we insert a new row in the ops table, persisting
the user identifier, the string corresponding to the operation type, and the date and
time when the operation was performed. We finally commit the transaction and
close the connection.

We can call the log_operation() method from the main.py module at various
points in the code:

• In the post() method of the MainHandler class:
if file_name and file_content:
 content_t = mimetypes.guess_type(file_name)[0]
 real_path = os.path.join('/', bucket_name, user.user_id(),
file_name)

 with cloudstorage.open(real_path, 'w', content_type=content_t,
 options={'x-goog-acl': 'public-read'})
as f:
 f.write(file_content.read())
 log_operation(user, OpTypes.FILE_ADDED,
 datetime.datetime.now())
self._create_note(user, file_name, real_path)
log_operation(user, OpTypes.NOTE_CREATED,
 datetime.datetime.now())

• In the get() method of the ShrinkHandler class:
taskqueue.add(url='/shrink',
 params={'user_email': user.email()})
log_operation(user, OpTypes.SHRINK_PERFORMED,
 datetime.datetime.now())
self.response.write('Task added to the queue.')

• In the receive() method of the CreateNoteHandler class:

attachments = getattr(mail_message, 'attachments', None)

self._create_note(user, title, content, attachments)
log_operation(user, OpTypes.NOTE_CREATED,
 datetime.datetime.now())

Storing Data in Google Cloud SQL

[106]

Notice that by passing the date and time to the log_operation() method, we can
record the actual time at which the user performs the operation instead of the time at
which the function code was executed; this can be useful if we need to be punctual
but the function is added to a task queue and executed at a later time.

From now on, when someone uses our Notes application, we will collect usage
information about that user. We can access this information from the Notes
application itself or another application on App Engine that is authorized to access
the same Cloud SQL instance; otherwise, we can use a pure Python application
that runs on our workstation or another remote server to access and process data
whenever needed. For example, we create an application in an analyze.py module
outside the App Engine project root (so that we can avoid uploading the file during
deployment). The code is as follows:

-*- coding: utf-8 -*-
import sys
import MySQLdb

CLOUD_SQL_IP = '<your_instance_ip>'
CLOUD_SQL_USER = 'notes'
CLOUD_SQL_PASS = 'notes_password'

def main():
 db = MySQLdb.connect(host=CLOUD_SQL_IP, db='notes',
 user=CLOUD_SQL_USER,
 passwd=CLOUD_SQL_PASS)
 cursor = db.cursor()

 cursor.execute('SELECT COUNT(DISTINCT user_id) FROM ops '
 'WHERE date > (DATE_SUB(CURDATE(), '
 'INTERVAL 1 MONTH));')
 users = cursor.fetchone()[0]
 sys.stdout.write("Active users: {}\n".format(users))

 cursor.execute('SELECT COUNT(*) FROM ops WHERE date > '
 '(DATE_SUB(CURDATE(), INTERVAL 1 HOUR))')
 ops = cursor.fetchone()[0]
 sys.stdout.write("Ops in the last hour: {}\n".format(ops))

 cursor.execute('SELECT COUNT(*) FROM ops WHERE '
 'operation = "SHRINKED"')
 ops = cursor.fetchone()[0]
 sys.stdout.write("Total shrinking ops: {}\n".format(ops))

Chapter 5

[107]

 return 0

if __name__ == '__main__':
 sys.exit(main())

We can run the script from the command line at any time using the following line
of command:

python analyze.py

Back to the code; in the main() method, we first get a connection to the database
through a TCP/IP socket using the public IP of the instance. Then, we get a cursor
object and perform the first query that counts the number of users we consider
active, namely users who performed at least one kind of operation in the past month.
As this is a count query, we expect only one row as result. In this case, we can call the
fetchone() method of the cursor object; this method returns a tuple that contains
one value that we get by index and store it in the users variable that we print on
the standard output. With the same strategy, we retrieve and print to the standard
output the number of operations globally performed in the last hour and the total
number of shrinking operations.

This is just a simple example but it shows how easy it can be to get usage metrics for
our web applications extracting data from a Cloud SQL instance with any Python
program running outside App Engine.

Using the local MySQL installation for
development
There are several reasons why we wouldn't want to work with a Cloud SQL instance
while running our application locally in the development server. We might notice
major slowdowns because every time we connect to a Cloud SQL instance, we
perform a socket connection to a remote host that can be very far from us. Moreover,
regardless of the Cloud SQL tier we choose, we always pay something for using
the service and we might not want to use it while experimenting on the local
development server.

Fortunately, we can leverage the fact that, in the end, a Cloud SQL instance is
nothing more than a MySQL database when our code talks to it. We can then install a
local instance of a MySQL server and work with this.

Storing Data in Google Cloud SQL

[108]

We install and start the local server and perform the same operations we did on the
Cloud SQL instance:

1. Connect with the MySQL client.
2. Create the notes database.
3. Create the notes users and give them privileges on the notes database.
4. Reload database privileges.
5. Create the ops table.

At this point, all we have to do is change the CLOUD_SQL_IP environment variable in
our app.yaml file so that it points to localhost variable:

env_variables:
 CLOUD_SQL_IP: 'localhost'
 CLOUD_SQL_USER: 'notes'
 CLOUD_SQL_PASS: 'notes_password'

We can now start using the local instance, avoiding network lags and costs.

Summary
In this chapter, we put into action Cloud SQL, the scalable database service offered
by Google Cloud Platform. Cloud SQL is more than a MySQL instance; it is a flexible
and scalable relational database server that we can use to store and retrieve data
from our App Engine applications as well as from external services and applications.

Even if Cloud Datastore is the go-to solution when we have to deal with lot of data in
our highly trafficked web applications, in this chapter, you learned how convenient
it can be to have a relational database to store some data without hitting on the limits
Datastore imposes to write operations. Being able to access that data from outside
App Engine is a big plus and we have seen a simple yet effective use case, which we
couldn't have implemented using Datastore.

In the next chapter, we will add new features to our Notes application; we will
make the application real time using Channel API to push data from the server
to the clients connected.

Using Channels to Implement
a Real-time Application

Web applications use the request/response message exchange pattern to
communicate with the server. The communication flow always starts from the
client (usually a web browser), initiating a request and a server that provides a
response and closes the connection immediately after. This means that if we need to
get information from a server as soon as they are available, our client has to actively
and repeatedly request for them using a polling strategy, which is a simple but
often ineffective solution. In fact, if the poll interval is short, we need to perform a
lot of requests, which consumes time and bandwidth and overloads the server; on
the other hand, if the poll interval is long, we cannot consider the delivery of the
information as real time anymore.

Real-time interaction between clients and servers is a requirement for a large set of
web applications such as collaborative editors, online multiplayer games, or instant
messaging software. In general, anytime a client needs to get information that is not
systematic or predictable, similar to how it is when interacting with human users,
we better go real time.

If our application runs on App Engine, we can use the Channel API to create an
apparently persistent connection between the browsers that access the application
and Google servers; this connection can be used at any time to send messages to the
connected clients nearly in real time, without having to take care of the underlying
communication mechanisms.

Using Channels to Implement a Real-time Application

[110]

In this chapter, we will cover the following topics:

• The technology behind the Channel API
• How to implement the server part of a real-time application
• How to implement the client part of a real-time application with JavaScript
• How to deal with a client's disconnection

Understanding how the Channel API
works
The Channel API basically consists of the following elements:

• Channel: This is a one-way communication path between the server and a
JavaScript client. There is exactly one channel for each client and the server
uses it to dispatch messages.

• Client ID: This is a string that identifies individual JavaScript clients on the
server. We can specify any string as the Client ID, for example, the identifier
of the current user.

• JavaScript client: The client is responsible for connecting to a specific
channel, listening to updates on the channel itself, and sending messages to
the server via HTTP requests.

• Server: The server is responsible for creating channels for each JavaScript
client connected, providing access tokens to authenticate connections,
receiving messages from the client via HTTP requests, and sending updates
through the channels.

The first step for using the Channel API is delivering the JavaScript client to our
users and building the code into the web pages served by the application. After the
browser receives and executes the client code, the following occurs:

1. The JavaScript client asks the server with an HTTP request for a token to
open a channel providing its own Client ID.

2. The server creates a channel and assigns a token to it; the token is sent back
to the client.

3. The JavaScript client uses the token to connect to the channel.

Chapter 6

[111]

Once the client is connected to the channel, the server can push messages through
the channel with the JavaScript client handling them in real time, as shown in the
following screenshot:

We have to keep in mind two important limitations when we design an application
that makes use of the Channel API:

• Only one client at a time can connect to a channel using a given Client ID;
we cannot share the same channel among multiple clients.

• A JavaScript client can connect only to one channel for each page; if we want
to send and receive multiple types of data from the server (for example, data
regarding different parts of the page), we need to multiplex them so that all
the information can flow through the same channel.

Using Channels to Implement a Real-time Application

[112]

Making our application real time
To show how to use the Channel API, we will add a small feature to our Notes
application. If we open the main page in a browser, there is no way for us to realize
that a new note was created until we refresh the page. As a note can be created using
the inbound e-mail service, it'd be nice to immediately see the change in our browser.

We are going to implement this feature using the Channel API: when we visit the
main page, our application will open a channel, which will wait for new notes to
be created. We will keep things as simple as possible for the scope of this book, and
to avoid writing too much JavaScript code, we won't modify the Document Object
Model (DOM) of the page; we will only show a dialog that suggests to refresh the
page to see new content as soon as new notes are added.

Implementing the server
We will start by adding the Python code needed to handle channels on the server
side. We expect the JavaScript client will make an HTTP GET request to request a
channel, so we add a request handler that will create a channel and return a token
in the JSON format to access it. We first import the modules needed at the top of
our main.py module:

from google.appengine.api import channel
from utils import get_notification_client_id
import json

Then, we add the code for the request handler:

class GetTokenHandler(webapp2.RequestHandler):
 def get(self):
 user = users.get_current_user()
 if user is None:
 self.abort(401)

 client_id = get_notification_client_id(user)
 token = channel.create_channel(client_id, 60)

 self.response.headers['Content-Type'] = 'application/json'
 self.response.write(json.dumps({'token': token}))

Chapter 6

[113]

We first check that the user is logged in and return an HTTP 401: Unauthorized
error page if this is not the case. Then, we create a Client ID for the current JavaScript
client using a get_notification_client_id() method that generates a string
that composes the identifier of the user instance we pass to it together with an
arbitrary prefix:

def get_notification_client_id(user):
 return 'notify-' + user.user_id()

We can add the preceding code to the utils.py module for convenience.

Back to the GetTokenHandler code; after we get a Client ID for the client, we can
proceed to creating the channel by calling the create_channel() method and
passing the identifier as the first argument. The second parameter we pass to the
function is the timeout for the channel expressed in minutes; when a channel expires,
an error is raised to the JavaScript client and the channel is closed. The default value
when we do not specify that parameter is 2 hours, after which the client can ask
for a new channel. We then set the Content-Type header for the response to the
application/json parameter and finally write the token in the response body.

We finally map the GetTokenHandler handler to the /notify_token URL in our
main.py module:

app = webapp2.WSGIApplication([
 (r'/', MainHandler),
 (r'/media/(?P<file_name>[\w.]{0,256})', MediaHandler),
 (r'/shrink', ShrinkHandler),
 (r'/shrink_all', ShrinkCronJob),
 (r'/toggle/(?P<note_key>[\w\-]+)/(?P<item_index>\d+)',
ToggleHandler),
 (r'/_ah/mail/create@book-123456\.appspotmail\.com',
CreateNoteHandler),
 (r'/notify_token', GetTokenHandler),
], debug=True)

Using Channels to Implement a Real-time Application

[114]

We can check whether the endpoint is working properly by visiting the
http://localhost:8080/notify_token URL with the local development
server running. We should see something like this in the browser window:

The last part of the work we need to do on the server side is actually using the
channels we create to send messages to our users. In particular, we want to notify
a user as soon as a new note is created using the inbound e-mail service. So, we are
going to add some code to the CreateNoteHandler handler, modifying the code of
the receive() method as follows:

def receive(self, mail_message):
 email_pattern = re.compile(r'([\w\-\.]+@(\w[\w\-]+\.)+[\w\-]+)')
 match = email_pattern.findall(mail_message.sender)
 email_addr = match[0][0] if match else ''

Chapter 6

[115]

 try:
 user = users.User(email_addr)
 user = self._reload_user(user)
 except users.UserNotFoundError:
 return self.error(403)

 title = mail_message.subject
 content = ''
 for content_t, body in mail_message.bodies('text/plain'):
 content += body.decode()

 attachments = getattr(mail_message, 'attachments', None)

 self._create_note(user, title, content, attachments)
 channel.send_message(get_notification_client_id(user),
 json.dumps("A new note was created! "
 "Refresh the page to see it."))

After a note is actually created, we use the send_message() method from the
channel module to send a message to a particular client. To get the Client ID of the
recipient, we use the get_notification_client_id() method as we did before
during channel creation. The second parameter we pass to the send_message()
method is the string that represents the message we want to send to our client;
in this case, we will show some simple text on a dialog in the browser as soon as
the message is delivered. In a real-world scenario, we would use a more complex
message than a plain string, adding some more data to let JavaScript clients identify
the type and the destination of the message; this is very useful if we have to
multiplex the channel to carry different information for different consumers.

We have now completed all the required work on the server, so we can move to the
client side and write the JavaScript code we need to interact with the Channel API.

The JavaScript code for clients
App Engine provides a small JavaScript library that simplifies some operations
needed to manage the socket connection for a channel, so the first thing we need to
do before proceeding is include this code in our HTML pages. The JavaScript code
must be included within the <body></body> tags, and we will put it just before the
closing tag so that its execution will not slow down the page-rendering process.

Using Channels to Implement a Real-time Application

[116]

In our main.html template file, we add the following:

 <!-- Javascript here -->
 <script type="text/javascript" src="/_ah/channel/jsapi"></script>
</body>
</html>

The JavaScript code will be served by App Engine, both in the local development
environment and in production, at the /_ah/channel/jsapi URL.

The code required to provide the logic for the JavaScript client will be added in
a file called client.js that we will store in the static/js/ path relative to the
application root folder. In this manner, the file will be uploaded to App Engine
servers together with the other static assets during the deployment process.

We will write our JavaScript code inside a type of closure known
as an Immediately-Invoked Function Expression (IIFE), which is
nothing more than a self-invoked anonymous function executed in the
context of the window parameter as follows:
(function(window){

 "use strict";

 var a = 'foo';

 function private(){

 // do something

 }

})(this);

This is a common JavaScript expression most useful when attempting
to preserve the global namespace; in fact, any variable declared
within the function's body will be local to the closure but will still live
throughout runtime.

Once we have created our client.js file, we need to include it within the HTML
pages served by our Notes application. In the main.html file, we add the following:

 <!-- Javascript here -->
 <script type="text/javascript" src="/_ah/channel/jsapi"></script>
 <script type="text/javascript" src="static/js/client.js"></script>
</body>
</html>

Chapter 6

[117]

The order of the <script> tags is important because the JavaScript client must be
available before executing our code.

Thanks to the functionalities provided by the JavaScript client library, we do not
need to write much code. First of all, we need to retrieve the channel token from
our backend, so we add the following to the client.js file:

(function (window) {
 "use strict";

 // get channel token from the backend and connect
 var init = function() {
 var tokenReq = new XMLHttpRequest();
 tokenReq.onload = function () {

 var token = JSON.parse(this.responseText).token;
 console.log(token);

 };
 tokenReq.open("get", "/notify_token", true);
 tokenReq.send();
 };

 init();

}(this));

Here, we declare a function named init that will perform an XMLHttpRequest
(XHR) request to our backend in order to retrieve the token and will then print its
value on JavaScript Console.

Logging information on JavaScript Console is nonstandard, and it
won't work for every user; this largely depends on the browser in
use. For example, to enable JavaScript Console on Google Chrome,
we need to perform the following steps:

1. Go to the View menu.
2. Select Developer.
3. Click on JavaScript Console.

Using Channels to Implement a Real-time Application

[118]

The first instruction on the function body creates an XMLHttpRequest object that we
will use to perform an HTTP GET request to our backend. Before firing the request,
we set the onload callback to an anonymous function that will be executed once the
response is correctly retrieved with no errors from the server. The callback function
parses the text in the response body into a json object and logs it on JavaScript
Console immediately after. After defining the callback, we initialize the request that
calls the open() method on the XMLHttpRequest object and specify the HTTP method
we want to use, the URL we want to reach, and a Boolean flag that represents whether
we want to perform the request asynchronously or not. Later, we actually perform the
request that calls the send() method. We then call the init() function itself so that it
is executed the first time we visit the page and the script is loaded.

To check whether everything is working fine, we can start the local development
server and point the browser to the main page after enabling JavaScript Console in
our browser. If the request completed successfully, we should see the log message
that contains the token on the console, as shown in the following screenshot:

Chapter 6

[119]

We can now use the token retrieved from the backend to open a channel. In the
client.js file, we modify the code as follows:

(function (window) {
 "use strict";

 // create a channel and connect the socket
 var setupChannel = function(token) {
 var channel = new goog.appengine.Channel(token);
 var socket = channel.open();

 socket.onopen = function() {
 console.log('Channel opened!');
 };

 socket.onclose = function() {
 console.log('goodbye');
 };
 };

 // get channel token from the backend and connect
 var init = function() {
 var tokenReq = new XMLHttpRequest();
 tokenReq.onload = function () {

 var token = JSON.parse(this.responseText).token;
 setupChannel(token);

 };
 tokenReq.open("get", "/notify_token", true);
 tokenReq.send();
 };

 init();

}(this));

We first add a function called setupChannel() that takes a valid token as its only
parameter. Using the JavaScript client code from App Engine, we then create a
goog.appengine.Channel object passing the token to the constructor. We then call
the open method that returns a goog.appengine.Socket object for the channel.
The socket object keeps track of the connection status and exposes several callback
functions with which we can perform operations in response to channel activities.
For the moment, we only provide callbacks for the onopen and onclose socket
events, logging a message on JavaScript Console. Notice that we changed the init()
function so that it now calls the setupChannel() function instead of simply logging
a message into JavaScript Console.

Using Channels to Implement a Real-time Application

[120]

To test whether the callbacks work properly or not, we can set a very short timeout
for the channels when we create them in the backend so that we can see what
happens when a channel expires in a reasonable amount of time. In the main.py
module, we change the call to the create_channel() function in the get() method
of the GetTokenHandler class in this way:

token = channel.create_channel(client_id, 1)

Now, if we open the main page of the Notes application in the browser with
JavaScript Console open, we should see something similar to the following
screenshot after 1 minute:

As we can see, the channel is opened and after 1 minute it expires, causing an error
in the JavaScript client and finally calling the callback we set to be called for the
onclose event of the socket object.

Chapter 6

[121]

To deal with expiring channels, we can add a callback for the onerror event of the
socket object. In our client.js file, we add the following:

 socket.onopen = function() {
 console.log('Channel opened!');
 };

 socket.onerror = function(err) {
 // reconnect on timeout
 if (err.code == 401) {
 init();
 }
 };

 socket.onclose = function() {
 console.log('goodbye');
 };

The callback we added is executed when an error occurs in the channel management.
The callback receives an object as a parameter that contains the error message and
the error code. If we receive an HTTP 401 error page, we assume that the channel
expired and we call the init function to create and set up a new channel. This
time, if we hit the main page and wait for 1 minute, we can see something like the
following screenshot:

Using Channels to Implement a Real-time Application

[122]

As we can see, after the channel has expired, a new one is immediately created;
depending on how we use the channel, this can be completely transparent for
our users.

Now, we can proceed to adding the code to handle messages pushed by the server
through the channel. We have to provide a callback for the onmessage event of the
goog.appengine.Socket class. When the socket receives a message, the callback is
invoked and a parameter is passed: the message object. The data field of this object
contains the string passed to the send_message() method on the server. We then
add the following code to the client.js file:

 socket.onopen = function() {
 console.log('Channel opened!');
 };

 socket.onmessage = function (msg) {
 window.alert(msg.data);
 };

 socket.onerror = function(err) {
 // reconnect on timeout
 if (err.code == 401) {
 init();
 }
 };

As soon as a message arrives, we open a dialog on the browser using the alert()
method of the window object. The dialog displays the string contained in the data
field of the message object, stating that a new note was created and we should
refresh the page to see the updated list.

To see the code in action, we can point the browser to the main page of the Notes
application; then, using the local development console, we can simulate an inbound
e-mail as we did in Chapter 3, Storing and Processing Users' Data.

Chapter 6

[123]

As soon as the e-mail is received and the new note created, we should see something
like this in our browser:

We are assuming that the only messages that arrive through the channel involve
the creation of a new note, but we can send more structured data from the server;
the callback function can then implement more complex logic to distinguish the
content of the message and perform different operations according to this.

Using Channels to Implement a Real-time Application

[124]

Tracking connections and
disconnections
An App Engine application is responsible for the creation of channels and the
transmission of the token, but it doesn't know whether the JavaScript client is
connected or not. For example, our Notes application sends a message upon the
creation of a new note through the inbound e-mail service, but on the other side, the
JavaScript client might or might not receive it. In some contexts, this is not an issue,
but there are several use cases where an App Engine application needs to know
when a client connects or disconnects from a channel.

To enable channel notifications, we first need to enable inbound Channel presence
service. To do this, we have to change our app.yaml configuration file by adding
the following code:

inbound_services:
- mail
- channel_presence

Now that the presence service is enabled, our Notes application will receive HTTP
POST requests to the following URLs:

• The /_ah/channel/connected/ URL: When a JavaScript client has
connected to the channel and can receive messages

• The /_ah/channel/disconnected/ URL: When a client has disconnected
from the channel

To see how the service works, we can add two handlers to the main.py module:

class ClientConnectedHandler(webapp2.RequestHandler):
 def post(self):
 logging.info('{} has connected'.format(self.request.
get('from')))

class ClientDisconnectedHandler(webapp2.RequestHandler):
 def post(self):
 logging.info('{} has disconnected'.format(self.request.
get('from')))

Each handler receives the from field into the POST request body. The field contains
the Client ID of the client that has connected or disconnected from the channel.
We can check out the application logs to see when the notifications take place.

Chapter 6

[125]

Summary
In this chapter, we learned the differences between an application that uses
the standard request/response exchange pattern to get data from a server and
a real-time application, where the clients are persistently connected to the server
and receive data as soon as it's available. Using the Channel API, we saw how easy
it can be to implement a real-time web application when it runs on App Engine.

By adding a new feature to our Notes application, we should now have an idea of
the features offered by the Channel API and what we can do to get the most out of
its components.

We first implemented the server part, managing channel creation and message
sending. Then, we moved to the client side, where we managed to implement the
logic needed to interact with a channel by writing just a few lines of JavaScript code.

The Notes application is almost complete now and we have enough familiarity
with Google Cloud Platform that we can stand to break it up and start over by
using another Python web framework instead of webapp2. In the next chapter,
we will re-implement Notes using Django.

Building an Application
with Django

Django is an open source web application framework written in Python, originally
written in 2003 by Adrian Holovaty and Simon Willison to quickly address the
need for a web-based, database-driven application serving contents to an online
newspaper. Django was released to the public as an open source project in 2005, and
rapidly gained a strong following. With tens of thousands of users and contributors
from all around the world, Django is one of the most adopted web frameworks
among the Python community today, supported by an independent, non-profit
foundation that promotes the project and protects its intellectual property.

One of the components that have contributed the most to the success of Django is its
Object-Relational Mapping (ORM), the data access layer that maps the underlying
relational database with some object-oriented code written in Python. At first,
what was considered a strong point of the framework turned out to be a weakness
within the App Engine environment. In fact, Django provides support for relational
databases only, thus excluding the Datastore option.

However, things have deeply changed after the release of the Google Cloud SQL
service, and now we can use Django and its ORM with a relational database on the
Google Cloud Platform. In this chapter, we will reimplement several features of
the original Notes application, starting from zero and using Django instead of the
webapp2 framework, showing how the App Engine platform can be a viable solution
to deploy and run Django applications.

Building an Application with Django

[128]

In this chapter, we will cover the following topics:

• Configuring the development environment
• Using Cloud SQL with the ORM by using the built-in authentication system
• Uploading files on the Google Cloud Storage

Setting up the local environment
At the time of writing this book, App Engine provides Django version 1.4 and 1.5 as
a third-party library for the Python 2.7 runtime environment. Even though it is quite
old (Django 1.4 was released on March 2012 and 1.5 was released in February 2013),
the 1.4 version is currently the long-term support distribution framework, with
security patches and data loss fixes guaranteed until March 2015, and the 1.5 version
(thus marked as experimental on App Engine) contains a lot of new features and
improvements compared to the 1.4 version. For these reasons, we can safely build
our applications using one of the Django packages provided by App Engine without
the risk of producing legacy code.

However, if we can afford to drop the official support that Google provides to
Django 1.4 and 1.5, we can use the latest version of Django currently available, 1.7,
the only difference being that we will have to take care of the deployment of the
package on our own because we won't find it on the production server.

Since the deployment of applications written with Django 1.4 and 1.5 is well
covered on the official documentation, and since we're building a prototype for
the only purpose of learning how to get the most out of Google App Engine,
we're going to develop our Django Notes application on Django 1.7; let's see how.

Configuring a virtual environment
When we need to use a specific version of Python packages that most likely differ
from the ones provided by the package manger of our operating system, it's better
to isolate the installation of such software in a separated environment using a tool
such as virtualenv, and avoid clashes.

Provided we are using Python 2.7, we can install virtualenv using the pip
package manager:

pip install virtualenv

Chapter 7

[129]

We can now proceed to start a new App Engine application as we did in Chapter 1,
Getting Started, by simply creating the application root folder:

mkdir django_notes && cd django_notes

Now we can set up a virtual environment inside the application folder:

virtualenv .

Every time we want to work in a virtual environment, we need to activate it before
so that we can transparently use Python and pip executables to run code and install
packages. For Linux and Mac OS X, we can activate a virtual environment in this way:

source ./bin/activate

For Windows, we can simply invoke the activation script in the Scripts folder:

Scripts\activate

To deactivate the virtual environment and stop referring to the isolated
Python installation, we can issue the following command for every supported
operating system:

deactivate

We now need to make the local App Engine Python runtime available to our virtual
environment. If we followed the instructions in Chapter 1, Getting Started, we should
now have installed the App Engine in a path on the filesystem depending on which
operating system we are running. Take note of that path; for example, on Mac OS X,
the App Engine SDK is sym-linked to the /usr/local/google_appengine URL. We
then create a file named gae.pth and put it into the site-package directory of the
virtual environment at the $VIRTUAL_ENV/lib/python2.7/site-packages/ path.

The $VIRTUAL_ENV variable is an environment variable, available while the virtual
environment is active, that points to the virtual environment installation on our local
filesystem. The .pth file must contain the following lines:

/path/to/appengine/sdk # /usr/local/google_appengine on Mac OS X
import dev_appserver; dev_appserver.fix_sys_path()

To check that everything is working properly, we can activate the environment
and try to import the App Engine package. For example, on Linux and Mac OS X,
we can do this:

source bin/activate

python -c"import google"

Building an Application with Django

[130]

Installing dependencies
Now that we have a virtual environment set up for our application, we can begin to
install the dependencies needed to run the Django Notes application. Of course, the
first package we need to install is Django:

pip install django -t <app_root>

As we have learned in Chapter 3, Storing and Processing Users' Data, we need to install
the package with the -t option so that it will be uploaded to the production server
during the deployment process.

Since Django is also provided by the App Engine Python SDK, we need to be sure
that when we import the import django package, Python is actually referring to the
1.7 package in our application root folder. There are many ways to accomplish this,
but we will add the following contents to the gae.pth file:

/path/to/appengine/sdk # /usr/local/google_appengine on Mac OS X
import dev_appserver; dev_appserver.fix_sys_path()
import sys; sys.path.insert(1, '/path/to/application/root')

Since the fix_sys_path() function prepends all the App Engine packages and
modules to the Python path, we need to insert the path where Django 1.7 lives before
anything else. That's why we're using the sys.path.insert() function here. To be
sure that we are using the right version of Django, once the virtualenv tool is active,
we can write this at the command line:

python -c"import django; print django.get_version()"

The output should be something like 1.7.1.

We will keep adding packages as long as we need them, but we have to remember
to activate the virtual environment every time we want to run the project locally or
deploy the application, and most importantly, every time we install a new package.

Rewriting our application using
Django 1.7
We already created the application root folder, the same folder we installed the
virtual environment in. Django provides a script that builds a standard application
layout called project, also providing some default content for the configuration
file. To start a new project within the application root, we issue the following at the
command line:

django/bin/django-admin.py startproject notes

Chapter 7

[131]

We should now have a folder called notes inside our application root containing a
Python module called wsgi.py we need to be aware of, as we will use it inside the
app.yaml file.

As we already know, to create a new App Engine application, we need to provide an
app.yaml file. We can pick any of the app.yaml files from the previous chapters as a
base, and then rewrite it as follows:

application: the_registered_application_ID
version: 2
runtime: python27
api_version: 1
threadsafe: yes

handlers:
- url: /static
 static_dir: static

- url: /.*
 script: notes.wsgi.application

We changed the version number so that we can easily manage which application
should run on the production server at any time: the old one built with the webapp2
framework, or the new one built with Django. We define only one handler, which
will match requests for any URL and serve them using the application instance
inside the wsgi.py module generated by the django_admin.py script inside our
project folder.

We can now run the development server and point the browser to the http://
localhost:8080 URL. If Django is working, we should see a message like this:

Building an Application with Django

[132]

As stated by the web page itself, we have created our first application on App Engine
using the Django web framework. Now we can proceed and let our application do
something more useful.

Using Google Cloud SQL as a database
backend
We already mentioned that we will make use of Google Cloud SQL as a relational
database backend so that we can run every component of the Django framework
without resorting to additional packages or derived projects.

Configuring the relational database layer to make the ORM work is one of the first
steps we have to take when developing a Django application. In fact, several key
components, such as the user authentication mechanism, rely on a working database.

The Django ORM provides full support for MySQL databases out of the box, so all of
the additional software we need in order to use Google Cloud SQL is the MySQLdb
Python package, which we will install with the pip package manager, exactly as we
did in Chapter 5, Storing Data in Cloud SQL. The following command is used to install
the package:

pip install MySQL-python

To use the package in the production server, we have to add the following to our
app.yaml file:

libraries:
- name: MySQLdb
 version: "latest"

We already know how to configure Google Cloud SQL, so we assume that at this
point, we have an instance up and running. We can access both from the local
development and the App Engine application, and we have already created a
database for the project.

If we open the settings.py module inside our Django project folder, we will see
that it contains the following:

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),
 }
}

Chapter 7

[133]

Django can use and connect to multiple relational databases at the same time from a
single application, and the DATABASES dictionary contains another Python dictionary
holding the configuration for each of them. For small applications, such as our
Notes, we can use only one database—the one labeled default. The parameters to
configure Cloud SQL when connecting from our local development environment and
the parameters we need when the application is running on App Engine production
servers slightly differ, so if we want to keep just one version of the settings module,
we need to add some logic.

First, we need to create a utils.py module at the <app_root>/notes/notes path,
containing the on_appengine() function from Chapter 5, Storing Data in Cloud SQL,
to determine whether our application is running on App Engine or not:

import os

def on_appengine():
 return os.getenv('SERVER_SOFTWARE', '').startswith('Google App
Engine')

Then we edit the settings.py module and change the DATABASES dictionary with
the following code:

Database
https://docs.djangoproject.com/en/1.7/ref/settings/#databases

from .utils import on_appengine

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.mysql',
 'NAME': 'notes',
 'USER': 'notes',
 'PASSWORD': 'notes_password',
 }
}
if on_appengine():
 DATABASES['default']['HOST'] = '/cloudsql/my-project-id:myfirst'
else:
 DATABASES['default']['HOST'] = '<instance_ip>'

Building an Application with Django

[134]

We use the same Python database driver when we connect both from the local
development environment and the App Engine production server. The database
name and user credentials are also the same, but we need to specify a different HOST
parameter depending on where the application is running because on App Engine,
the connection is performed with a Unix socket, while in local connection, we use a
TCP socket. If we want to use a local MySQL installation instead, we can change the
NAME, USER, PASSWORD, and HOST parameters accordingly.

Before moving to the final step to configure the relational database, we need to
introduce the concept of migrations, a new feature of Django 1.7. Since the ORM
maps Python objects to the database schema, it will likely require altering the
schema accordingly with the changes we make to the Python code. Django writes
such changes to one or more migration files that reside in several migration
folders inside our project source tree. We will see later in this chapter how to deal
with migrations. For the moment, all we need to do is to invoke a command called
migrate to create the first version of the database schema.

To invoke Django commands, we use the manage.py script, which was
generated by the django_admin.py script when we first created the
project. Inside the project folder, we can launch commands in this way:
python manage.py <command>

To see the list of available commands, we can invoke the manage.py
script without arguments:
python manage.py

To launch the migrate command, we issue the following at the command line:

python manage.py migrate

If the Cloud SQL instance is well configured, we should see the following output:

Operations to perform:

 Apply all migrations: admin, contenttypes, auth, sessions

Running migrations:

 Applying contenttypes.0001_initial... OK

 Applying auth.0001_initial... OK

 Applying admin.0001_initial... OK

 Applying sessions.0001_initial... OK

Chapter 7

[135]

Since the user authentication system is available by default, we can add a superuser
user to the system with this command:

python manage.py createsuperuser

The command will prompt for username, e-mail address, and password. We can
provide the credentials of our choice.

Creating a reusable application in Django
We already used the term project when referring to the filesystem layout generated
by the django_admin.py script. It contains all of the code and the assets needed to
run our web applications called Notes. The core of a Django project is its settings file,
which defines the global environment and configurations, and we have already seen
how to use it to set up the relational database layer.

It's now time to introduce the term "application." In the Django lingo, an application
is a Python package that provides a well-defined set of functionalities and can be
reused across different Django projects. We must not confuse the term "application" as
defined in Django and the more general term "web application." Even though Notes
is actually an application in the general sense, it is developed as a Django project and
contains some functional blocks called Django applications.

A Django application usually contains the ORM model classes, view functions and
classes, HTML templates, and static assets. An application package can be installed
via the pip package manager or provided together with the project package. We
need to know that a Django project will use an application only if it is listed in the
INSTALLED_APPS settings value in the settings.py module.

We will create one Django application to implement Notes core functionalities,
an application called core, to be precise. To create an empty application inside our
project, we can use the startapp command and pass the name of the application:

python manage.py startapp core

We can see how the command created a Python package inside our project folder
called core as we asked for. The package contains a set of standard modules we
will likely want to implement, as we will see in a moment.

Building an Application with Django

[136]

As mentioned before, we need to list our newly created app inside the INSTALLED_
APPS settings to tell Django that it must use it:

INSTALLED_APPS = (
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',

 'core',
)

Django 1.7 provides a registry called apps provided by the django.apps package,
which stores an AppConfig object for each installed application. We can use
AppConfig objects to introspect applications' metadata or to change the configuration
of a determined application. To see the apps registry in action, we can access the
Django shell like this:

python manage.py shell

Then we can test the following Python code:

>>> from django.apps import apps

>>> apps.get_app_config('core').verbose_name

'Core'

>>> apps.get_app_config('core').path

u'/opt/projects/django_notes/notes/core'

Views and templates
Now that the data backend is functional, we can start implementing the first building
block—providing the view showing the homepage for our Notes web application.
A view in the Django world is nothing more than a Python function or class that
takes an HTTP request and returns an HTTP response, implementing whatever logic
is needed to build the final content delivered to the client. We will add the code
implementing a view to build the homepage to the views.py module we created
inside our core application:

from django.shortcuts import render
from django import get_version

Chapter 7

[137]

def home(request):
 context = {'django_version': get_version()}
 return render(request, 'core/main.html', context)

The view parameter called home does something very similar to the get() method
of the MainHandler class in the webapp2 version of Notes. We create a context
dictionary that will be passed to the template during the rendering process. Then we
call the render() method, which passes the same request object we received as a
parameter—a string containing the path to the HTML template. It will be used for
the page and the context dictionary.

In the webapp2 version of Notes, we used Jinja2 to render our pages, but Django
has its own template system already integrated in the framework. The language
we use inside the HTML files is very similar to Jinja2, but some major differences
still exist, so we have to rewrite our templates. We create a new HTML file at
the core/templates/core/main.html path, relative to the project folder and
containing the following code:

<!DOCTYPE html>
<html>
<head lang="en">
 <meta charset="UTF-8">
 <title>Notes</title>

 <link rel="stylesheet" type="text/css" href="/static/css/notes.css">
</head>
<body>
 <div class="container">

 <h1>Welcome to Notes!</h1>
 <h5>Built with Django {{ django_version }}.</h5>

 <ul class="menu">
 Hello, {{ user }}

 <form action="" method="post" enctype="multipart/form-data">
 <legend>Add a new note</legend>
 <div class="form-group">
 <label>Title: <input type="text" id="title" name="title"/>
 </label>
 </div>
 <div class="form-group">

Building an Application with Django

[138]

 <label for="content">Content:</label>
 <textarea id="content" name="content"></textarea>
 </div>
 <div class="form-group">
 <label for="checklist_items">Checklist items:</label>
 <input type="text" id="checklist_items" name="checklist_items"
 placeholder="comma,separated,values"/>
 </div>
 <div class="form-group">
 <label for="uploaded_file">Attached file:</label>
 <input type="file" id="uploaded_file" name="uploaded_file">
 </div>
 <div class="form-group">
 <button type="submit">Save note</button>
 </div>
 </form>
 </div>

</body>
</html>

Notice in the template how we are using the {{ django_version }} element, which
outputs the variable we put in the context dictionary, and the {{ user }} element,
which is provided by default by the Django authentication system. Since we did not
perform a login, the current user is set to a special entity called anonymous user.

Now that we have a view function providing an HTTP response and a template to
render an HTML page, we need to map a URL of our choice to the view, just as we did
with webapp2. Django has a URL configurator module (also known as the URLconf
module) called urls.py, containing pure Python code and defining a mapping
between URLs described with regular expressions and view functions or classes. The
django_admin.py script generates an urls.py module we can use as a starting point,
but the final version to map the homepage view should be the following:

from django.conf.urls import patterns, include, url

urlpatterns = patterns('',
 url(r'^$', 'core.views.home', name='home'),
)

Chapter 7

[139]

A URLconf module must define a variable named urlpatterns and contain a list of
django.conf.urls.url instances that will be iterated in order by Django until one
of them matches a requested URL. When a match with a regular expression occurs,
Django stops the iteration and can potentially do two things:

1. Import and call the view passed as parameter.
2. Process an include statement that loads a urlpattern object from

another module.

In our case, we match the root URL for the domain and import the home function
view we previously defined in the views.py module.

Finally, we put the same CSS file we used for the webapp2 version of Notes at the
static/css/notes.css path, relative to the App Engine application root folder,
and we should get the result for the homepage, as shown in the following screenshot:

Building an Application with Django

[140]

Authenticating users with Django
To authenticate our users, we won't use the App Engine User service, and we will
completely rely on Django instead. Django provides a built-in user authentication
system that also provides authorization checking. We can verify that users are
who they claim to be, and we can determine what they are allowed to do. The
authentication system is implemented as a Django application, and we have to ensure
that it is listed in the INSTALLED_APPS settings before trying to use it as follows:

INSTALLED_APPS = (
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',

 'core',
)

The authentication system is also responsible for adding to the template context the
user variable so that we can write {{ user }} in our HTML templates.

Since we won't use the App Engine User service, we must implement the login and
logout pages by ourselves, and Django helps us by providing two out-of-the-box
views that serve as a login and a logout page. First of all, we need to map the login
and logout URLs to such views in the URLconf module, so we add the following to
the urls.py module:

from django.contrib.auth import views as auth_views

urlpatterns = patterns('',
 url(r'^$', 'notes.views.home', name='home'),
 url(r'^accounts/login/$', auth_views.login),
 url(r'^accounts/logout/$', auth_views.logout),
)

Even if the logic for logging in users comes for free, we need to provide an HTML
template for the login page. We add a folder called registration inside the
template folder of the core application and create a file in it called login.html,
containing the following code:

<!DOCTYPE html>
<html>

Chapter 7

[141]

<head lang="en">
 <meta charset="UTF-8">
 <title>Notes</title>

 <link rel="stylesheet" type="text/css" href="/static/css/notes.css">
</head>
<body>
 <div class="container">
 <form action="{% url 'django.contrib.auth.views.login' %}"
method="post">
 {% csrf_token %}
 <legend>You must login to use Notes</legend>
 <div class="form-group">
 <label for="username">Username:</label>
 <input type="text" id="username" name="username"/>
 </div>
 <div class="form-group">
 <label for="password">Password:</label>
 <input type="password" id="password" name="password"/>
 </div>
 <div class="form-group">
 <button type="submit">Login</button>
 </div>
 <input type="hidden" name="next" value="{{ next }}" />
 </form>
 </div>
</body>
</html>

We use the same style sheet and the same page structure of the main page to
show the login form. To populate the action attribute of the form, we use the url
template tag, which retrieves the URL of a view whose name is given. In this case,
the attribute will contain the URL mapped to the django.contrib.auth.views.
login view. We then use the {% csrf_token %} template tag to create a field inside
the form that Django needs in order to prevent Cross-Site Request Forgery (CSRF)
attacks. We also add a hidden field containing the URL we want to redirect users
to after a successful login. This URL is handled by Django, and the authentication
system takes care of filling the next value in the template context.

Building an Application with Django

[142]

Our users will be automatically redirected to the login page whenever they attempt
to access a URL that is login-protected. To see the authentication system in action,
we tell Django to protect the home view by adding the following code to the
views.py module inside the core application:

from django.contrib.auth.decorators import login_required

@login_required()
def home(request):
 context = {'django_version': get_version()}
 return render(request, 'core/main.html', context)

Now that we have added the login_required() function decorator to the home
view, only logged-in users will be able to see page contents, and others will be
redirected to the login page. If we try to access the http://localhost:8080 URL,
this is what we should see:

We can log in with the superuser user, using the same credentials we provided
during the createsuperuser command execution earlier in this chapter.

Chapter 7

[143]

Finally, we have to provide a link to the logout view, which users can access to
terminate their authenticated session. In the main.html template file, we add the
following code:

<ul class="menu">
 Hello, {{ user }}

 Logout

We simply retrieve the URL mapped to the logout view and Django will do the rest,
performing all the operations needed to make the user log out.

Using the ORM and migrations system
We are already familiar with the model classes provided by webapp2 because
in Chapter 2, A More Complex Application, we used them to map Python objects to
Datastore entities. Django uses an almost identical approach; we define Python
classes deriving from the django.db.models.Model package, and the ORM
component takes care of mapping instances of those classes to rows and tables in
the underlying relational database. To see the ORM in action, we add the following
models to the models.py module inside the core application:

from django.db import models
from django.contrib.auth.models import User

class Note(models.Model):
 title = models.CharField(max_length=10)
 content = models.TextField(blank=False)
 date_created = models.DateTimeField(auto_now_add=True)
 owner = models.ForeignKey(User)

class CheckListItem(models.Model):
 title = models.CharField(max_length=100)
 checked = models.BooleanField(default=False)
 note = models.ForeignKey('Note',
related_name='checklist_items')

Building an Application with Django

[144]

We define a Note model class with a title property containing small text (up to ten
characters), a content property containing text of arbitrary length, a date_created
property containing date and time, and an owner property, which is a foreign key
referring to an instance of the User model from the Django authentication system.
Since we pass the blank=False parameter to the TextField model field constructor,
the content property is required.

We then define a CheckListItem model class with a title property containing
small text (up to hundred characters), a checked property containing a Boolean
value that defaults to the False parameter when not specified, and a note property,
which is a foreign key referring to the Note model. The related_name='checklist_
items' parameter we pass to the ForeignKey model field constructor means that
we will be able to access the set of checklist items tied to a Note instance accessing a
property called checklist_items on the instance itself.

To translate our models into the SQL code needed to map them to the relational
database, we need to perform a migration, more precisely the initial migration since
this is the first time we are doing this for the core application:

python manage.py makemigrations core

The output of the migration should be the following:

Migrations for 'core':

 0001_initial.py:

 - Create model CheckListItem

 - Create model Note

 - Add field note to checklistitem

The makemigrations command creates a migration folder inside the core
application path with a migration file called 0001_initial.py. The migration file
contains the list of the operations the ORM needs to perform in order to map the
current Python code to the database schema, creating or altering tables accordingly.

Migration files are part of the codebase and should be kept under
version control like any other Python module.

To apply the changes to the database, we need to perform a migration with
this command:

python manage.py migrate core

Chapter 7

[145]

The output of applying the changes to the database should be the following:

Operations to perform:

 Apply all migrations: core

Running migrations:

 Applying core.0001_initial... OK

At this point, we have created the database schema for our core application.
If we want to confirm exactly which SQL code was produced by the migration
system, we can issue the following command:

python manage.py sqlmigrate core 0001_initial

This command will print on the command line the SQL code produced for our
initial migration.

At this point, we might notice that our Note model has a title field that is really
too small to contain descriptive titles for our notes, so we change it in models.py:

class Note(models.Model):
 title = models.CharField(max_length=100)
 content = models.TextField(blank=False)
 date_created = models.DateTimeField(auto_now_add=True)

Of course, this change will alter the database schema, so we need to perform
a migration:

python manage.py makemigrations core

This time, the output will be as follows:

Migrations for 'core':

 0002_auto_20141101_1128.py:

 - Alter field title on note

A file called 0002_auto_20141101_1128.py is added to the migration folder,
containing the SQL instructions needed to alter the database schema to reflect
our new Python code. The last step we need to take is to apply the migration:

python manage.py migrate core

Building an Application with Django

[146]

Processing forms with the Forms API
Now that our database is ready to store our data, we can implement the code needed
to handle the form we show in the main page to create new notes, and Django's
Forms API will simplify and automate a great part of this work. In particular, we will
let Django take care of the following:

• Creating the HTML form automatically from the contents of our Note model
class

• Processing and validating submitted data
• Providing a CSRF security check

First of all, we implement a class deriving from the django.forms.ModelForm class
that will let us define and process our form. Inside the core application, we create a
new Python module called forms.py, containing the following lines:

from django import forms
from .models import Note

class NoteForm(forms.ModelForm):
 class Meta:
 model = Note
 exclude = ['id', 'date_created', 'owner']

We define a Python class implementing a so-called model form, a Django form class
that defines and validates data from a Django model. We define another class called
Meta inside the NoteForm class. It contains the form's metadata, mainly the name of
the model it will work on and a list of fields of the model we don't want to show on
the HTML form.

We will use the NoteForm class in our home view, so we add the following to the
views.py module:

from django.http import HttpResponseRedirect
from django.core.urlresolvers import reverse
from .forms import NoteForm

@login_required()
def home(request):
 user = request.user
 if request.method == "POST":
 f = NoteForm(request.POST)
 if f.is_valid():

Chapter 7

[147]

 note = f.save(commit=False)
 note.owner = user
 note.save()
 return HttpResponseRedirect(reverse('home'))

 else:
 f = NoteForm()

 context = {
 'django_version': get_version(),
 'form': f,
 'notes': Note.objects.filter(owner=user).order_by('-id'),
 }
 return render(request, 'core/main.html', context)

We initially assign a user variable containing the current logged-in user instance.
Then we check whether the view is serving a HTTP POST request. If this is the case,
we instantiate our model form class, passing the request itself to the constructor.
The form will extract the data it needs from the request body. We then call the
is_valid() method to check whether all the fields needed were filled with the right
data, and we call the save() method passing the commit=False parameter that will
create a new Note instance without saving it in the database. We assign the owner
field to the current logged-in user and save the Note instance, this time making
it persist in the database. Finally, we redirect the user to the homepage URL. We
call the reverse() method and pass the view name as a parameter. If the request
is of the GET type, we instantiate an empty model form. The NoteForm instance is
added to the context so that the template can use it to render the HTML form. Here,
we perform our first database query using the Django ORM. The Note.objects.
filter(owner=user).order_by('-id') query returns a list of the notes' objects
filtered by the current logged-in user as owner and ordered by the id parameter in
reverse order (notice the - character before the field name). The list is added to the
context so that the template can render it.

The final step we need to take is modifying the main.html template so that it can
properly render the new contents we have just added to the context. Let's start with
the form, which we can easily define using the model form instance, form, without
writing too much HTML code:

<form method="post" action="" enctype="multipart/form-data">
 <legend>Add a new note</legend>

 {# Show visible fields #}
 {% for field in form.visible_fields %}

Building an Application with Django

[148]

 <div class="form-group">
 {{ field.errors }}
 {{ field.label_tag }}
 {{ field }}
 </div>
 {% endfor %}

 {# Include hidden fields #}
 {% for hidden in form.hidden_fields %}
 {{ hidden }}
 {% endfor %}

 {% csrf_token %}
 <div class="form-group">
 <button type="submit">Save note</button>
 </div>
</form>

We first iterate the visible fields of the form. Note that Django will take care of
printing the correct tags and labels. After iterating through the visible fields, we
print the hidden fields, then print the CSRF token (as we did for the login form),
and finally provide the submit button. Right after the form definition, we can add
the loop that produces the HTML code to show the notes to the current user:

{% for note in notes %}
<div class="note">
 <h4>{{ note.title }}</h4>
 <p class="note-content">{{ note.content }}</p>
 {% if note.checklist_items %}

 {% for item in note.checklist_items.all %}
 <li class="{%if item.checked%}checked{%endif%}">
 {{item.title}}

 {% endfor %}

 {% endif %}
</div>
{% endfor %}

Chapter 7

[149]

As we can see, the input control to add the checklist_items parameter is missing.
This is because we want to provide such items with the same list as we did in the
webapp2 version of Notes—a comma-separated list. Since the Note model does not
provide a field to hold this list, the model form won't show anything to provide such
data. Anyway, we can manually add arbitrary fields to a model form independently
from the fields of the associated model. In our forms.py module, we add the
following to the NoteForm class:

class NoteForm(forms.ModelForm):
 cl_items = forms.CharField(required=False,
 label="Checklist Items",
 widget=forms.TextInput(attrs={
 'placeholder': 'comma,separated,values'
 }))

 class Meta:
 model = Note
 exclude = ['id', 'date_created', 'owner']

We add a new field called ci_items. It is not required and is rendered using a
forms.TextInput widget. We don't use the default widget here because we want to
provide the placeholder attribute to the corresponding HTML tag. We can refresh
the homepage to see the new field appearing, without the need to touch the HTML
template file. Now we need to process this new field, and we do this in the home view:

@login_required()
def home(request):
 user = request.user
 if request.method == "POST":
 f = NoteForm(request.POST)
 if f.is_valid():
 note = f.save(commit=False)
 note.owner = user
 note.save()
 for item in f.cleaned_data['cl_items'].split(','):
 CheckListItem.objects.create(title=item,
 note=note)
 return HttpResponseRedirect(reverse('home'))

After saving the note instance, we access the cl_items value in the cleaned_data
dictionary Django filled after the form was processed. We split the string using the
comma as a separator, create a new CheckListItem instance for every item the user
passed through the form field, and cause that instance to persist.

Building an Application with Django

[150]

Uploading files to Google Cloud Storage
By default, when users upload their files, Django stores content locally in the server.
As we already know, App Engine applications run in a sandboxed environment
without being able to access the server filesystem, so this approach simply cannot
work. Anyway, Django provides an abstraction layer, the file storage system. We can
use this layer to customize where and how uploaded files are stored. We are going to
take advantage of this feature, implementing our own storage backend class that will
store uploaded files on the Google Cloud Storage.

Before starting, we need to install the GCS Client Library as we did in Chapter 3,
Storing and Processing Users' Data, in order to easily interact with the Cloud Storage
from our storage backend. We then create a storage.py module in our core
application, containing the definition of the storage backend class, as shown in the
following code:

class GoogleCloudStorage(Storage):
 def __init__(self):
 try:
 cloudstorage.validate_bucket_name(
 settings.BUCKET_NAME)
 except ValueError:
 raise ImproperlyConfigured(
 "Please specify a valid value for BUCKET_NAME")
 self._bucket = '/' + settings.BUCKET_NAME

The constructor must be invoked without arguments, so everything we need from
within the storage backend must be retrieved from the Django settings. In this case,
we expect that the bucket name was specified in the BUCKET_NAME settings value, and
we ensure that it is a valid name using the validate_bucket_name parameter from
the GCS Client Library. We then add to our class the methods we must provide to
meet the custom storage backend requirements:

 def _open(self, name, mode='rb'):
 return cloudstorage.open(self.path(name), 'r')

 def _save(self, name, content):
 realname = self.path(name)
 content_t = mimetypes.guess_type(realname)[0]
 with cloudstorage.open(realname, 'w',
 content_type=content_t,
 options={
 'x-goog-acl': 'public-read'
 }) as f:
 f.write(content.read())
 return os.path.join(self._bucket, realname)

Chapter 7

[151]

 def delete(self, name):
 try:
 cloudstorage.delete(self.path(name))
 except cloudstorage.NotFoundError:
 pass

 def exists(self, name):
 try:
 cloudstorage.stat(self.path(name))
 return True
 except cloudstorage.NotFoundError:
 return False

 def listdir(self, name):
 return [], [obj.filename for obj in
 cloudstorage.listbucket(self.path(name))]

 def size(self, name):
 filestat = cloudstorage.stat(self.path(name))
 return filestat.st_size

 def url(self, name):
 key = blobstore.create_gs_key('/gs' + name)
 return images.get_serving_url(key)

The code is pretty much the same as what we saw in Chapter 3, Storing and Processing
Users' Data, and all the class methods match a counterpart in the GCS Client Library,
so it is very compact. Notice how in the url parameter we are telling Django to
use the Google CDN to serve the files from our storage. We then add the following
optional methods to complete our storage backend:

 def path(self, name):
 if not name:
 raise SuspiciousOperation(
 "Attempted access to '%s' denied." % name)
 return os.path.join(self._bucket, os.path.normpath(name))

 def created_time(self, name):
 filestat = cloudstorage.stat(self.path(name))
 creation_date = timezone.datetime.fromtimestamp(
 filestat.st_ctime)
 return timezone.make_aware(creation_date,
 timezone.get_current_timezone())

The path() method returns the full path to the file, including the leading slash and
the bucket name. Access to the bucket root is not allowed, and we raise an exception
in that case.

Building an Application with Django

[152]

Now that the custom storage backend is complete, we tell Django to use it, so we
write the following code in the settings.py module:

DEFAULT_FILE_STORAGE = 'core.storage.GoogleCloudStorage'
BUCKET_NAME = '<your_bucket_name>'

To see the custom file storage in action, we are going to slightly change the
requirements of our Notes application. For the sake of simplicity, we will support
only one file attached to every note so that we can simply add a couple of fields to
the Note model class in our models.py module:

class Note(models.Model):
 title = models.CharField(max_length=100)
 content = models.TextField(blank=False)
 date_created = models.DateTimeField(auto_now_add=True)
 owner = models.ForeignKey(User)
 attach = models.FileField(blank=True, null=True)
 thumbnail_url = models.CharField(max_length=255, blank=True,
null=True)

The attach field is of the FileField type. This means Django will take care of the
upload and store procedure for us, using our file storage. The thumbnail_url field
will contain a string with the URL to retrieve the cropped version of the attachment
if it is an image, just as we saw in Chapter 3, Storing and Processing Users' Data. It's
important to remember that we have to perform a migration for our core application
after this change. We don't want to show the thumbnail_url field in our HTML
form, so we change the Meta class in the NoteForm file accordingly:

 class Meta:
 model = Note
 exclude = ['id', 'date_created', 'owner', 'thumbnail_url']

At this point, the HTML form will show the file input field, but we need to handle
uploads in our home view:

from .storage import GoogleCloudStorage
from google.appengine.api import images
from google.appengine.ext import blobstore

@login_required()
def home(request):
 user = request.user
 if request.method == "POST":
 f = NoteForm(request.POST, request.FILES)
 if f.is_valid():
 note = f.save(commit=False)
 note.owner = user
 if f.cleaned_data['attach']:

Chapter 7

[153]

 try:
 s = GoogleCloudStorage()
 path = '/gs' +
s.path(f.cleaned_data['attach'].name)
 key = blobstore.create_gs_key(path)
 note.thumbnail_url =
images.get_serving_url(key, size=150, crop=True)
 except images.TransformationError,
images.NotImageError:
 pass
 note.save()
 for item in f.cleaned_data['cl_items'].split(','):
 CheckListItem.objects.create(title=item,
note=note)
 return HttpResponseRedirect(reverse('home'))

First of all, we pass the request.FILES dictionary containing uploaded data to the
form constructor so that it can process and validate our attach field. Then, if the field
is present, we generate the thumbnail URL when possible and update our note model
instance accordingly. Here, we use our custom storage class to retrieve the path to the
file in the Cloud Storage. A custom storage backend class is not usually supposed to be
used directly by the developer, but in this case, we can turn a blind eye and avoid code
duplication. The very last step of the procedure is to show the attachment in the Notes
main page, so we change the main.html template in this way:

<h4>{{ note.title }}</h4>
<p class="note-content">{{ note.content }}</p>
{% if note.attach %}

 {% if note.thumbnail_url %}
 <li class="file">

 {% else %}
 <li class="file">
 {{ note.attach.name }}

 {% endif %}

{% endif %}

Even if this version of Notes supports only one attachment for each note, we keep the
same HTML structure we used for the webapp2 version to avoid rewriting CSS rules.
We will see a thumbnail if the attachment is an image and the filename otherwise.

Building an Application with Django

[154]

Summary
This was a long journey through the lands of Django, and even if we don't have
all the features of the webapp2 version of Notes, at this point, we do have a solid
starting point to add all the missing pieces. We already know how to deal with the
Cloud Platform services, and we can complete the porting as an exercise to get better
at Django programming and become even more confident with all the technologies
behind App Engine.

In this chapter, we learned how to start a Django project, the basic concepts behind
the framework, and how to integrate it smoothly inside an App Engine application.
Using Django version 1.7, we also had the opportunity of dealing with the brand
new migration system and getting the most out of the Cloud SQL database service.
At this point, we know how to deal with forms, a simple example showing how
easy life can be with the help of a framework like Django that saves us a lot of
repetitive work. Another important step we took towards the perfect blend between
Django and App Engine was the integration of the Google Cloud Storage service, an
excellent backend used to store the files users upload to our Notes application.

In the next chapter, we will go back to working with the webapp2 version of Notes to
implement a REST API through the Google Cloud Endpoints technology.

Exposing a REST API with
Google Cloud Endpoints

In Chapter 1, Getting Started, we provided the definition of a web application,
and one chapter after another, you learned to implement an application using App
Engine. At this point, we know enough about the anatomy of such kinds of software
to understand the differences between the backend and frontend components of a
web application: the first provides logic, definition, and access to data, and the latter
provides the user interface.

We did not make a clear distinction between these two components in the previous
chapters, and the code we wrote so far provided both the frontend and the backend
components without too much separation. In this chapter, we will tear apart the
frontend component of our Notes application, implementing a standalone backend
server ready to exchange data with different clients, from mobile applications to rich
JavaScript clients running in a browser.

Once again, to implement our application, we are going to leverage some tools and
services provided by the Google Cloud Platform, known as Google Cloud Endpoints.

In this chapter, we will cover the following topics:

• What REST is, and designing an API for the Notes application
• Using Cloud Endpoints to implement the REST API
• The API explorer tool
• Protecting the API with OAuth2

Exposing a REST API with Google Cloud Endpoints

[156]

Reasons to use a REST API
Representational State Transfer (REST) is a simple stateless architecture style usually
running over the HTTP protocol. The idea behind REST is exposing the state of the
system as a collection of resources we can manipulate, addressing them by their
name or ID. The backend service is responsible for making a resource's data persist,
usually through the use of a database server. Clients retrieve the state of a resource
performing HTTP requests to the server. The resource can be manipulated and sent
back to the server through an HTTP request as well. Resources can be represented in
several formats but we will use JSON, a lightweight, human-readable, and widespread
interchange format. We can see the manipulation of a resource state a bit like a Create,
Retrieve, Update, Delete (CRUD) system. What we are going to do is map each of
these operations to a specific HTTP verb. We will perform an HTTP POST request to
create a new resource, a GET request to retrieve an existing one, a PUT request to update
its state, and a DELETE request to remove it from the system.

REST is widely adopted these days, mainly because it allows a strong decoupling of
clients from servers, is easy to implement over HTTP, has a very good performance,
can be cached, and in general, can scale very well. Exposing a REST API makes
it extremely easy to provide a mobile client, a browser extension, or any piece of
software that needs to access and process application data; for these reasons, we
are going to provide a REST API for Notes. Using Cloud Endpoints, we'll be able to
add a REST API to the existing codebase of the webapp2 version of Notes without
touching the data models or the overall architecture of the application.

Designing and building the API
Before writing the code, we need to have a neat idea in mind of the resources we are
going to make available through the API, the methods we will provide to manipulate
such resources, and the response codes we will deliver to the clients. After designing
the API, we can start write some code to implement resources representation.

Resources, URLs, HTTP verbs, and
response code
Defining a resource is very similar to defining a model class in an ORM system, and
it's not uncommon for them to coincide, like in our case. In fact, we will provide the
following resources:

• Note
• NoteFile
• ChecklistItem

Chapter 8

[157]

Every resource will be identified by a URL. We omit the hostname here for clarity:

• The /notes URL: This identifies a collection of resources of type Note
• The /notes/:id URL: This identifies a single resource of type Note using

its ID as the discriminator
• The /notefiles URL: This identifies a collection of resources of type NoteFile
• The /notefiles/:id URL: This identifies a single resource of type NoteFile

We won't expose the CheckListItem resource through the API because in the
underlying data model, we defined the items as a StructuredProperty field of
the Note model. Since corresponding entities don't exist in the Datastore, we cannot
alter the state of a ChecklistItem resource without altering the Note state as well.
For this reason, exposing two different resources doesn't make much sense.

A client specifies a certain HTTP verb, or method, in the request header when
contacting the backend server, and HTTP verbs tell the server what to do with the
data identified by the URL. We need to know that, depending on whether a URL
represents a single resources or a collection, a verb might have different meanings.
For the URLs exposed by our REST API, we will support the following verbs:

• The GET request
 ° On a collection: This retrieves a list of resource representations
 ° On a single resource: This retrieves a resource representation

• The POST request
 ° On a collection: This creates a new resource and returns

its representation
 ° On a single resource: This is not applicable and returns an error

• The PUT request
 ° On a collection: This updates a list of resources in a batch and

returns no payload
 ° On a single resource: This updates the single resource and returns

the updated representation

• The DELETE request
 ° On a collection: This is not applicable and returns an error
 ° On a single resource: This deletes the resources and returns

no payload

Exposing a REST API with Google Cloud Endpoints

[158]

Every time the server answers a request from a client, an HTTP status code is
transmitted along with a possible payload. Our API will provide the following
status codes:

• 200 OK: This indicates that the request was successful.
• 204 No Content: This indicates that the request was successful but the

response contains no data, usually returned after a DELETE request.
• 400 Bad Request: This means the request was malformed; for example,

the data did not pass validation or is in the wrong format.
• 404 Not Found: This indicates that the requested resource could not

be found.
• 401 Unauthorized: This indicates that we need to perform authentication

before accessing the resource.
• 405 Method Not Allowed: This means that the HTTP method used is not

supported for this resource.
• 409 Conflict: This indicates a conflict occurred when updating the state of

the system, for example when we try to insert duplicates.
• 503 Service Unavailable: This indicates that the server is temporarily

unavailable. In particular, this occurs when our Cloud Endpoints application
raises an uncaught exception

• 500 Internal Server Error: This occurs when everything else has failed.

Now that the design of the API is complete, it's time for us to write some code.

Defining resource representations
We have already mentioned that both requests and responses might contain
representations of one or more resources, and we have also stated that we will use the
JSON format to implement such representations. Now we need to define a resource in
our code, and Cloud Endpoints will take care of transforming our resources back and
forth in JSON format for us. This operation is known as serialization.

Before we start coding, we need to spend some time on the Cloud Endpoints
architecture so that it'll be easier to understand why we use certain Python packages
or data structures.

Chapter 8

[159]

Cloud Endpoints is built on top of the Google Protocol RPC Library, a framework
implementing Remote Procedure Call (RPC) services over the HTTP protocol.
A service is a collection of methods that can be invoked through regular HTTP
requests. A method receives an object of a message type in the request and returns
another message type in response. Message types are regular Python classes deriving
from the protorpc.messages.Message class, while services are methods of a Python
class deriving from protorpc.remote.Service class. Since Cloud Endpoints are
actually an RPC service under the hood, the representations of our REST resources
will be implemented as RPC messages.

We create a new module called resources.py on the application root, containing the
following code:

from protorpc import messages
from protorpc import message_types

class CheckListItemRepr(messages.Message):
 title = messages.StringField(1)
 checked = messages.BooleanField(2)

class NoteRepr(messages.Message):
 key = messages.StringField(1)
 title = messages.StringField(2)
 content = messages.StringField(3)
 date_created = message_types.DateTimeField(4)
 checklist_items = messages.MessageField(CheckListItemRepr,
 5, repeated=True)
 files = messages.StringField(6, repeated=True)

class NoteCollection(messages.Message):
 items = messages.MessageField(NoteRepr, 1, repeated=True)

Defining message classes is a bit like defining model classes in an ORM; we specify
class attributes that correspond to each of the fields we want to use to represent a
resource. Fields have a type, and their constructors take an integer parameter used
as identifier that must be unique within the message class. The CheckListItemRepr
class will be used to serialize the checkable items attached to a note. NoteRepr
represents the note resource and is the core of our API.

Exposing a REST API with Google Cloud Endpoints

[160]

We need a key field so that clients can have a reference if they want to get details or
modify the resource. The checklist_items field references the CheckListItemRepr
class, which will be nested into note representations. We represent the files
associated with a note as a list of strings called files, containing keys for
models.NoteFile instances. Finally, we define a representation for a collection
of notes called NoteCollection. It has only one field, items, containing
single-note representations.

Once serialized, a JSON representation of a note should look like this:

{
 "checklist_items": [
 {
 "checked": false,
 "title": "one"
 },
 {
 "checked": true,
 "title": "two"
 },
 {
 "checked": false,
 "title": "three"
 }
],
 "content": "Some example contents",
 "date_created": "2014-11-08T15:49:07.696869",
 "files": [
 "ag9kZXZ-Ym9vay0xMjM0NTZyQAsSBFVzZXIiE"
],
 "key": "ag9kZXZ-Ym9vay0xMjM0NTZyKwsSBFVz",
 "title": "Example Note"
}

As we can see, the JSON representation is very easy to read.

Now that we have representations for our REST resources, we can start
implementing the endpoints for our REST API.

Chapter 8

[161]

Implementing API endpoints
As we already mentioned, our REST API will be integrated with the existing App
Engine application without altering its behavior, so we need to specify a new WSGI
application that will handle the URLs we map to the API endpoints. Let's start with
the app.yaml file, where we add the following code:

handlers:
- url: /static
 static_dir: static

- url: /_ah/spi/.*
 script: notes_api.app

- url: .*
 script: main.app

libraries:
- name: webapp2
 version: "2.5.2"

- name: jinja2
 version: latest

- name: endpoints
 version: 1.0

The regular expression that matches API URLs is actually /_ah/spi/.*. Even if
we perform requests to an URL such as https://example.com/_ah/api/v1/an-
endpoint, Cloud Endpoints will take care of the proper redirects. The handler script
of the API URLs points to the app variable in the notes_api module, which we are
yet to create. In a new file called notes_api.py, we add the following code:

import endpoints

app = endpoints.api_server([])

This is the very basic scaffold for our REST API. Now we need to define the
endpoints as methods of a Python class deriving from protorpc.remote.Service
class, and append this class to the list that was passed as a parameter to the
api_server() function.

Exposing a REST API with Google Cloud Endpoints

[162]

In the notes_api.py module, we add the NotesApi class, which will contain all
the endpoints needed to retrieve and manipulate note resources. Let's see how to
implement the endpoints operating on collections of notes, one at a time, starting
from the endpoint supporting GET requests:

from protorpc import message_types
from protorpc import remote
from google.appengine.ext import ndb

import models
import resources

@endpoints.api(name='notes', version='v1')
class NotesApi(remote.Service):

 @endpoints.method(message_types.VoidMessage,
 resources.NoteCollection,
 path='notes',
 http_method='GET',
 name='notes.notesList')
 def note_list(self, unused_request_msg):
 items = []
 for note in models.Note.query().fetch():
 checkl_items = []
 for i in note.checklist_items:
 checkl_items.append(
 resources.CheckListItemRepr(title=i.title,
 checked=i.checked))
 files = [f.urlsafe() for f in note.files]
 r = resources.NoteRepr(key=note.key.urlsafe(),
 title=note.title,
 content=note.content,
 date_created=note.date_created,
 checklist_items=checkl_items,
 files=files)
 items.append(r)

 return resources.NoteCollection(items=items)

app = endpoints.api_server([NotesApi])

Chapter 8

[163]

The decorator we apply to the NotesApi class, the @endpoints.api decorator, tells
Cloud Endpoints that this class is a part of an API called notes with version v1.
The note_list() method is decorated with the @endpoints.method decorator,
and this method expects the following parameters, in the order given:

1. The message class used for the request. In this case, we don't expect any
input, so we use, message_types.VoidMessage, a special message class
provided by Cloud Endpoints.

2. The message class we will return in the response, in this case our resources.
NoteCollection class.

3. The URL or path of the endpoint.
4. The HTTP method or verb supported by the endpoint.
5. A string representing the name of the endpoint.

The logic of the endpoint is simple—we load all the Note instances from the
Datastore, and for each of them, we build a NoteRepr object. Representations are
then added to a collection using the NoteCollection class and returned to the client.

Now we add the endpoint supporting requests of the POST type:

 @endpoints.method(resources.NoteRepr,
 resources.NoteRepr,
 path='notes',
 http_method='POST',
 name='notes.notesCreate')
 def note_create(self, new_resource):
 user = endpoints.get_current_user()
 if user is None:
 raise endpoints.UnauthorizedException()

 note = models.Note(parent=ndb.Key("User",
 user.nickname()),
 title=new_resource.title,
 content=new_resource.content)
 note.put()
 new_resource.key = note.key.urlsafe()
 new_resource.date_created = note.date_created
 return new_resource

Exposing a REST API with Google Cloud Endpoints

[164]

We name the method note_create() to better describe its semantics. It expects a
NoteRepr message in the request containing the information to create a new resource,
and will return a NoteRepr message in the response containing the resource created.
The new_resource parameter contains the NoteRepr instance that arrived in the
request and is used to build a new Note entity in the Datastore. We need to pass a user
as the owner of the note, so we call the get_current_user method from the endpoints
package. We will see later in the chapter how users can authenticate to use our API.
After calling the PUT type, we can access the key of the newly created entity, so we
update the new_resource message fields and return it to the client.

Here is the code for the endpoint supporting requests of the PUT type:

 @endpoints.method(resources.NoteCollection,
 message_types.VoidMessage,
 path='notes',
 http_method='PUT',
 name='notes.notesBatchUpdate')
 def note_batch_update(self, collection):
 for note_repr in collection.items:
 note = ndb.Key(urlsafe=note_repr.key).get()
 note.title = note_repr.title
 note.content = note_repr.content

 checklist_items = []
 for item in note_repr.checklist_items:
 checklist_items.append(
 models.CheckListItem(title=item.title,
 checked=item.checked))
 note.checklist_items = checklist_items

 files = []
 for file_id in note_repr.files:
 files.append(ndb.Key(urlsafe=file_id).get())
 note.files = files

 note.put()

 return message_types.VoidMessage()

The method is called note_batch_update() because it's supposed to perform
updates on a collection of resources received in the request, returning no payload
to the clients. It expects a NoteCollection message class in the input, and after
performing all the updates needed, it returns a VoidMessage instance.

Chapter 8

[165]

The last endpoint operating on a collection of notes is actually a handler for an error
condition. In fact, performing a DELETE request on a collection should result in an
HTTP error 405: method not allowed message. To respond to an API call with an
error code, we can just raise a proper exception in the Python method implementing
the endpoint:

 @endpoints.method(message_types.VoidMessage,
 message_types.VoidMessage,
 path='notes',
 http_method='DELETE',
 name='notes.notesBatchDelete')
 def note_list_delete(self, request):
 raise errors.MethodNotAllowed()

The note_list_delete() method just raises an exception that we still have to
define. In a new errors.py module in our application, we add the following:

import endpoints
import httplib

class MethodNotAllowed(endpoints.ServiceException):
 http_status = httplib.METHOD_NOT_ALLOWED

We need to define our own MethodNotAllowed exception because Cloud Endpoints
only provides exception classes for the most common HTTP error codes: 400, 401,
403, 404, and 500.

The portion of the REST API operating on a collection of resources of type note is
now complete, so we can move on and start implementing the endpoints operating
on a single note. The path to single resources contains an argument, the resource
identifier. In such cases, as well as when there's the need to pass query string
arguments, we cannot use a simple Message class for the request, but we must
use a special container, defined in the endpoints.ResourceContainer parameter,
that wraps both the message and the arguments in the path and in the query string.
In our case, since we're going to use the container more than once, we can define it
as a field of our NotesApi class:

from protorpc import messages

@endpoints.api(name='notes', version='v1')
class NotesApi(remote.Service):
 NoteRequestContainer = endpoints.ResourceContainer(
 resources.NoteRepr, key=messages.StringField(1))

Exposing a REST API with Google Cloud Endpoints

[166]

We pass the message we want to wrap to the constructor, along with the arguments
we need to receive through the request path or in the query string. Each argument
must be defined as a message field with a unique identifier.

We then proceed to define the endpoint that handles GET requests for a
single-note resource:

 @endpoints.method(NoteRequestContainer,
 resources.NoteRepr,
 path='notes/{key}',
 http_method='GET',
 name='notes.notesDetail')
 def note_get(self, request):
 note = ndb.Key(urlsafe=request.key).get()
 checklist_items = []
 for i in note.checklist_items:
 checklist_items.append(
 resources.CheckListItemRepr(title=i.title,
 checked=i.checked))
 files = [f.urlsafe() for f in note.files]
 return resources.NoteRepr(key=request.key,
 title=note.title,
 content=note.content,
 date_created=note.date_created,
 checklist_items=checklist_items,
 files=files)

We expect the NoteRequestContainer parameter in the input for our endpoint,
note_get(), that will return a NoteRepr message. The path contains the {key}
argument, and whenever the requested URL matches, Cloud Endpoint will fill the
corresponding key field in the NoteRequestContainer instance with the parsed
value. We then use the key of the resource to retrieve the corresponding entity from
the Datastore, and finally fill and return a NoteRepr message object.

We raise an error when clients make requests of type POST on a single resource,
so the endpoint is implemented as follows:

 @endpoints.method(NoteRequestContainer,
 message_types.VoidMessage,
 path='notes/{key}',
 http_method='POST',
 name='notes.notesDetailPost')
 def note_get_post(self, request):

Chapter 8

[167]

 raise errors.MethodNotAllowed()
This is the code for requests of type PUT instead:
 @endpoints.method(NoteRequestContainer,
 resources.NoteRepr,
 path='notes/{key}',
 http_method='PUT',
 name='notes.notesUpdate')
 def note_update(self, request):
 note = ndb.Key(urlsafe=request.key).get()
 note.title = request.title
 note.content = request.content
 checklist_items = []
 for item in request.checklist_items:
 checklist_items.append(
 models.CheckListItem(title=item.title,
 checked=item.checked))
 note.checklist_items = checklist_items

 files = []
 for file_id in request.files:
 files.append(ndb.Key(urlsafe=file_id).get())
 note.files = files
 note.put()
 return resources.NoteRepr(key=request.key,
 title=request.title,
 content=request.content,
 date_created=request.date_created,
 checklist_items=request.checklist_items,
 files=request.files)

The note_update() method retrieves the note entity from the Datastore and
updates its fields accordingly with the content of the request. Finally, the method
returns a representation of the updated resource.

The last method we need to support for a single resource is DELETE:

 @endpoints.method(NoteRequestContainer,
 message_types.VoidMessage,
 path='notes/{key}',
 http_method='DELETE',
 name='notes.notesDelete')
 def note_delete(self, request):
 ndb.Key(urlsafe=request.key).delete()
 return message_types.VoidMessage()

Exposing a REST API with Google Cloud Endpoints

[168]

The endpoint takes a request container, deletes the corresponding Datastore entity,
and returns an empty payload if everything is fine.

We finally have a complete REST API to deal with note entities. Now it's time to play
with it and check whether the results are as we expect.

Testing the API with API Explorer
We can test our REST API on the local development environment by running the
dev_appserver.py script or deploying the application on App Engine. In both cases,
Cloud Endpoints provides a tool that let us explore our API; let's see how.

With the local development server running, we point the browser to the
http://localhost:8080/_ah/api/explorer URL, and we are immediately
redirected to the API Explorer, where we can see our API listed, as shown in the
following screenshot:

Chapter 8

[169]

When we click on our API name, the explorer lists all the endpoints exposed through
the Cloud Endpoints service. Before we begin our test, we should ensure that some
notes exist in the Datastore. We can use the Notes web application to insert them.

By clicking on the notes List entry, we can access the details page for the endpoint,
where we can click on the Execute button to perform a GET request and retrieve a
collection of notes visible in the Response section, represented in JSON format. We
can also copy the key field of one of the notes in the collection and access the details
page for the notesDetail endpoint. Here, we paste the key on the key field in the
form and then press Execute button. This time, the response should contain the
resource representation.

To see how to update this resource, we access the details page for the notesUpdate
endpoint. Here, we can again paste the key of the resource we want to update and
build a request body with the Request body editor, a very powerful tool that let us
compose complex JSON objects by just pointing and clicking on some HTML controls.

.

Exposing a REST API with Google Cloud Endpoints

[170]

The API Explorer is of great help while developing an API to immediately see
the results of a call to an endpoint, test endpoints with particular payloads in the
request, and check the behavior of different versions of the same API. We could also
use other clients to test our API, such as the curl program from the command line,
but the interactivity granted by the API Explorer is a great value added.

In the next paragraph, we will see another functionality of the API Explorer that
will make our lives much easier—the opportunity to test our API with a client
authenticated with OAuth2.

Protecting an endpoint with OAuth2
Even if our REST API seems quite complete, a critical component is missing in our
implementation: any client in fact is currently able to retrieve all the notes stored in
the Datastore without providing authentication and regardless of being or not the
owner of those notes. Moreover, until we don't provide authentication for our REST
API, creating a note will be impossible because we need an authenticated user to
create an entity in the note_create() method of the NotesApi class. We can easily
fill this gap in our requirements because Cloud Endpoints provides support to
protect all or part of our API with the OAuth2 authorization framework.

The first step to provide protection to our API is to specify which clients we allow
to access the API. Here, we use the term "client" to actually identify a type of client,
such as a JavaScript application running in a browser, a mobile application running
on Android or iOS, and so on. Each client is identified with a string called client ID
that we must generate using the Developer console:

1. On the left menu, choose APIs & auth.
2. Select credentials.
3. Click on the Create new Client ID button.

A guided procedure is then started, and all we have to do to generate a new client ID
is follow the instructions on the screen.

We then specify the list of authorized client IDs with the @endpoints.api decorator
of our NotesApi class, like this:

JS_CLIENT_ID = '8nej3vl.apps.googleusercontent.com'
IOS_CLIENT_ID = 'm6gikl14bncbqks.apps.googleusercontent.com'

@endpoints.api(name='notes', version='v1',

Chapter 8

[171]

 allowed_client_ids=[
 endpoints.API_EXPLORER_CLIENT_ID,
 JS_CLIENT_ID,
 IOS_CLIENT_ID
])
class NotesApi(remote.Service):

To access the API from the explorer, we also list its client ID, which is provided by
the endpoints package. Since the client IDs are listed inside the Python source code,
we have to remember that we need to redeploy the application every time we change
the allowed_client_ids list.

If we add an Android application to the list of allowed client IDs, we must also
specify the audience parameter in the @endpoints.api decorator. The value of this
parameter is the same as that of the client ID:

JS_CLIENT_ID = '8nej3vl.apps.googleusercontent.com'
IOS_CLIENT_ID = 'm6gikl14bncbqks.apps.googleusercontent.com'
ANDROID_CLIENT_ID = '1djhfk8ne.apps.googleusercontent.com'

@endpoints.api(name='notes', version='v1',
 allowed_client_ids=[
 endpoints.API_EXPLORER_CLIENT_ID,
 JS_CLIENT_ID,
 IOS_CLIENT_ID,
 ANDROID_CLIENT_ID,
],
 audiences=[ANDROID_CLIENT_ID])
class NotesApi(remote.Service):

The last configuration step is the declaration of the OAuth2 scopes we want a client
to provide in order to access our API. For our Notes API, we will require only the
endpoints.EMAIL_SCOPE class, the minimum required by Cloud Endpoints to
provide OAuth2 authentication and authorization. We add the following to the
list of parameters we pass to the @endpoints.api decorator:

@endpoints.api(name='notes', version='v1',
 allowed_client_ids=[
 endpoints.API_EXPLORER_CLIENT_ID,
 JS_CLIENT_ID,
 ANDROID_CLIENT_ID
],
 audiences=[ANDROID_CLIENT_ID],
 scopes=[endpoints.EMAIL_SCOPE])
class NotesApi(remote.Service):

Exposing a REST API with Google Cloud Endpoints

[172]

From now on, the Cloud Endpoints framework will automatically authenticate
users and enforce the list of allowed clients, providing a valid User instance to our
application if the authentication procedure succeeds. To retrieve the authenticated
user, we call the endpoints.get_current_user() function the same way as we
did in the create_note() endpoint method. If the authentication procedure fails,
the get_current_user() function returns the None parameter. It's up to our code to
check whether the current user is valid inside the methods we want to protect.

For example, we can add the following security check at the very beginning of the
note_list() method in our NotesApi class:

 def note_list(self, request):
 if endpoints.get_current_user() is None:
 raise endpoints.UnauthorizedException()

Now, if we open the API Explorer and try to perform a GET request on the
notesList endpoint, we will get this response:

401 Unauthorized
{
 "error": {
 "code": 401,
 "errors": [
 {
 "domain": "global",
 "message": "Unauthorized",
 "reason": "required"
 }
],
 "message": "Unauthorized"
 }
}

Thanks to the API Explorer, we can authenticate ourselves with OAuth2 and try to
access the same endpoint to check whether we are allowed this time. Staying on the
page where we used to perform the failed request, we can see on the top-right corner
of the API Explorer interface a switch labeled Authorize requests using OAuth 2.0.
If we click on it, the explorer will start the authorization procedure using OAuth2
with one of our Google accounts, and once it is finished, we will be able to perform
the request without authentication errors again.

Besides having authentication in place, now we can also filter Datastore queries
using the user instance so that each user can only access their own data.

Chapter 8

[173]

Summary
In this final chapter, we took an in-depth look at the Cloud Endpoints framework,
and you now have the skills needed to complete the REST API and potentially support
a wide variety of clients: someone could write an Android version of Notes, some
other might provide a porting on iOS. We can write a JavaScript client and deliver it as
a Chrome or Firefox application through their respective marketplaces.

You learned about REST in brief and why you should choose it among other
solutions to talk with miscellaneous clients. We accurately designed our API,
providing a comprehensive set of endpoints to retrieve and manipulate resources
in our application. We finally implemented the code and played with the API using
the API Explorer, an interactive exploring tool capable of executing API methods,
showing request and response data, and authenticating the client.

REST is a language used in many places on the Internet, and thanks to the Cloud
Endpoints, we have the opportunity to easily provide a modern and powerful API
for every web application running on App Engine.

I hope you have enjoyed this book as much as I've enjoyed writing it, and whether
your next Python application will be running on Google App Engine or not, I hope
this book has helped you in making that decision.

Index
Symbol
_create_note() method 70

A
access

configuring 95, 96
Access Control List (ACL) 50
action property 34
Admin Console

URL 24, 82
ancestor query 38
anonymous user 138
API Explorer

REST API, testing 168, 169
api_version parameter 20
App Engine

application, uploading to 24, 25
URL 25

App Engine Launcher 16-18
application

Cloud SQL instance, connecting
from 100-104

dividing, into modules 87-90
application parameter 20
app.yaml configuration file 19, 20
attachments parameter 71

B
backup

performing 82, 83
BigQuery 10
Blobstore API 51

Bootstrap
URL 44

buckets 50

C
Channel API

about 109
channel 110
Client ID 110
implementing 112
JavaScript client 110
server 110
working 110, 111

checked property 40
checklist_items property 40
cloud computing stack

Infrastructure as a Service (IaaS) 8
Platform as a Service (PaaS) 8
Software as a Service (SaaS) 8

Cloud SQL instance
access, configuring 95, 96
connecting, from application 100-104
connecting, with MySQL console 97
creating 93-95
dedicated user, creating 98, 99
notes database, creating 97, 98
root password, setting 97
tables, creating 99, 100

Cloud Storage
files, serving from 54, 55

Cloud Storage Client Library
installing 50

composite data
arranging, with StructuredProperty 74-77

[176]

connections
tracking 124

Content Delivery Network (CDN)
files, serving through 56
images, serving 56-58
other files, serving 59

create_logout_url() method 33
Create, Retrieve, Update,

Delete (CRUD) 156
Cron

tasks, scheduling with 65, 66
Cross-Site Request Forgery (CSRF) 141
CSS (Cascading Style Sheets) 43
Customer Relationship

Management (CRM) 67

D
data

loading 104-107
persisting, in Datastore 36
saving 104-107

Datastore
backup, performing 82, 83
basic querying 38, 39
caching 81, 82
composite data, arranging with

StructuredProperty 74-77
data, persisting in 36
indexing 83, 84
models, defining 36, 37
NDB asynchronous operations 79-81
properties 74-77
queries, using 77
restore functionality 82
transactions 40-43
using 73

DB Datastore API 36
decode() method 71
dedicated user

creating 98, 99
delete() method 50
Denial-of-Service (DoS) 10
dependencies, Django

installing 130

Development Console 27
development server

running 22, 23
disconnections

tracking 124
Django

about 127
dependencies, installing 130
local environment, setting up 128
reusable application, creating 135, 136
users, authenticating 140-142
virtual environment, configuring 128, 129

Django 1.7
used, for rewriting Notes

application 130, 131
Document Object Model (DOM) 112
Domain Name System (DNS) 10

E
e-mail messages

users' data, receiving as 67-71
endpoints, REST API

implementing 161-168
protecting, with OAuth2 170-172

entity group 38
execute_transforms() method 62

F
files

serving, from Cloud Storage 54, 55
uploading, to Google Cloud Storage 50

files, Notes application
uploading, to Google Cloud

Storage 150-153
form

adding, to upload images 51-53
handling 34, 35

Forms API
Notes application forms, processing

with 146-149
Foundation

URL 44

[177]

G
GCS Client Library

about 50
installing 50

get_current_user() method 30
get_template() method 33
Google App Engine

about 9, 11
runtime environment 11, 12
services 12-14

Google Cloud Datastore 9
Google Cloud Endpoints 155
Google Cloud Platform

about 9
Hosting + Compute 9
services 10
Storage 9
URL 9

Google Cloud SQL
about 9, 93
using, as database backend for Notes

application 132-134
Google Cloud Storage

about 9
Cloud Storage Client Library, installing 50
files, serving from Cloud Storage 54, 55
files, serving from Content Delivery

Network (CDN) 56
files, uploading 150-153
files, uploading to 50
form, adding to upload images 51-53

Google Compute Engine 9
Google Developer Console

about 26
APIs, managing 26
applications identity, managing 26
applications security, managing 26
cap service 26
Development Console 27
filter service 26
project members, managing 26
URL 26

H
Hosting + Compute, Google Cloud Platform

Google App Engine 9
Google Compute Engine 9

HTML templates
used, with Jinja2 31-33

HTTPS (HTTP Secure) 25
HTTP verbs, REST API

defining 157

I
images

serving 56-58
transforming, with Images service 60-63

Immediately-Invoked Function
Expression (IIFE) 116

in-context cache 81
indexing 83, 84
Infrastructure as a Service (IaaS) 8
installation, Django dependencies 130

J
JavaScript code

for clients 115-123
Jinja2

HTML templates, used with 31-33

L
Linux

Python application, installing on 16
listbucket() method 50
long jobs

processing, with task queue 63-65

M
Mac OS X

Python application, installing on 16
main.py application script 21
map() method 79
mapping 78, 79

[178]

Memcache
about 81
using 85, 86

migrations 134
migrations system

using 143-145
models

defining 36, 37
modules

application, dividing into 87-90
MySQL installation

used, for development 107, 108

N
NDB asynchronous operations 79-81
NDB, caching levels

in-context cache 81
Memcache 81

Notes application
experimenting 29
files, uploading to Google

Cloud Storage 150-153
forms, processing with Forms API 146-149
Google Cloud SQL, using as

database backend 132-134
migrations system, using 143-145
ORM, using 143-145
reusable application, creating 135, 136
rewriting, Django 1.7 used 130, 131
templates, creating 136-138
users, authenticating with Django 140-142
views, implementing 136-138

notes database
creating 97, 98

notification e-mails
sending 66, 67

O
OAuth2

REST API endpoints, protecting 170-172
Object-Relational Mapping. See ORM
open() method 50

options parameter 59
ORM

about 127
using 143-145

owner_query() method 39

P
Packages 93
parent key 38
Platform as a Service (PaaS) 8
post() method 64
projection queries 77, 78
pull queues 63
push queues 63
Python application

App Engine Launcher 16-18
app.yaml configuration file 19, 20
creating 14-19
development server, running 22, 23
downloading 15
installing 15
installing, on Linux 16
installing, on Mac OS X 16
installing, on Windows 15
main.py application script 21
uploading, to App Engine 24, 25

Python Imaging Library (PIL) 61

Q
queries

mapping 78, 79
optimize iterations, with mapping 77
projection queries 77, 78
space saving, with projections 77

R
redirect() method 30
Remote Procedure Call (RPC) 159
Representational State Transfer

(REST) 10, 156
RequestHandler class 21

[179]

request timer 63
resources, REST API

defining 156
representations, defining 158-160

response codes, REST API
200 OK 158
204 No Content 158
400 Bad Request 158
401 Unauthorized 158
404 Not Found 158
405 Method Not Allowed 158
409 Conflict 158
500 Internal Server Error 158
503 Service Unavailable 158
defining 158

REST API
building 156
designing 156
endpoints, implementing 161-168
HTTP verbs, defining 157
resource representations, defining 158-160
resources, defining 156
response codes, defining 158
testing, with API Explorer 168, 169
URLs, defining 157
using 156

restore functionality 82, 83
root entity 38
root password

setting 97
runtime environment, Google App

Engine 11, 12
runtime parameter 20

S
script handlers 20
Secure Sockets Layer (SSL) 25
server

implementing 112-115
JavaScript code, for clients 115-123

services, Google App Engine
about 12
Channel API 13
Datastore backup/restore 13

images 13
mail 13
Memcache 13
modules 13
scheduled tasks 14
Task Queue 14
URL Fetch 14
users 14

services, Google Cloud Platform
about 10
Google Cloud DNS 10
Google Cloud Endpoints 10
Google Cloud Pub/Sub 10
Prediction API 10
Translate API 10

set_cache_policy() method 82
Software as a Service (SaaS) 8
SQL statement

date column 100
id column 100
operation column 100
user_id column 100

static file handlers 20
static files

using 43-46
stat() method 50
Storage, Google Cloud Platform

Google Cloud Datastore 9
Google Cloud SQL 9
Google Cloud Storage 9

StructuredProperty
composite data, arranging with 74-77

Subversion (SVN) 50

T
tables

creating 99, 100
tasklets 80
task queue

long jobs, processing with 63-65
pull queues 63
push queues 63

tasks
scheduling, with Cron 65, 66

[180]

W
Web Server Gateway Interface (WSGI) 11
Windows

Python application, installing on 15

X
XMLHttpRequest (XHR) 117

template context 32
templates, Notes application

creating 136-138
threadsafe parameter 20
title property 40
transactions, Datastore 40-43

U
urlsafe() method 76
URLs, REST API

defining 157
users

authenticating 30
users' data

receiving, as e-mail messages 67-71
users, Notes application

authenticating, with Django 140-142

V
version parameter 20
views, Notes application

implementing 136-138
virtualenv

installing 128

Thank you for buying
Python for Google App Engine

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Google App Engine Java and
GWT Application Development
ISBN: 978-1-84969-044-7 Paperback: 480 pages

Build powerful, scalable, and interactive web
applications in the cloud

1. Comprehensive coverage of building scalable,
modular, and maintainable applications with
GWT and GAE using Java.

2. Leverage the Google App Engine services
and enhance your app functionality
and performance.

3. Integrate your application with Google
Accounts, Facebook, and Twitter.

Google Apps: Mastering
Integration and Customization
ISBN: 978-1-84969-216-8 Paperback: 268 pages

Scale your applications and projects onto the cloud
with Google Apps

1. This is the English language translation of:
Integrer Google Apps dans le SI, copyright
Dunod, Paris, 2010.

2. The quickest way to migrate to Google
Apps - enabling you to get on with tasks.

3. Overcome key challenges of Cloud Computing
using Google Apps.

Please check www.PacktPub.com for information on our titles

Expert Python Programming
ISBN: 978-1-84719-494-7 Paperback: 372 pages

Best practices for designing, coding, and distributing
your Python software

1. Learn Python development best practices from
an expert, with detailed coverage of naming
and coding conventions.

2. Apply object-oriented principles, design
patterns, and advanced syntax tricks.

3. Manage your code with distributed
version control.

Learning Python Data
Visualization
ISBN: 978-1-78355-333-4 Paperback: 212 pages

Master how to build dynamic HTML5-ready SVG
charts using Python and the pygal library

1. A practical guide that helps you break into the
world of data visualization with Python.

2. Understand the fundamentals of building
charts in Python.

3. Packed with easy-to-understand tutorials
for developers who are new to Python or
charting in Python.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started
	The cloud computing stack – SaaS,
PaaS, and IaaS
	Google Cloud Platform
	Hosting + Compute
	Storage
	BigQuery
	Services

	What Google App Engine does
	The runtime environment
	The services

	Making our first Python application
	Download and installation
	Installing on Windows
	Installing on Mac OS X
	Installing on Linux

	App Engine Launcher
	Creating the application
	The app.yaml configuration file
	The main.py application script

	Running the development server
	Uploading the application to App Engine

	Google Developer Console
	Development Console

	Summary

	Chapter 2: A More Complex Application
	Experimenting on the Notes application
	Authenticating users
	HTML templates with Jinja2
	Handling forms
	Persisting data in Datastore
	Defining the models
	Basic querying
	Transactions

	Using static files
	Summary

	Chapter 3: Storing and Processing Users' Data
	Uploading files to Google Cloud Storage
	Installing Cloud Storage Client Library
	Adding a form to upload images
	Serving files from Cloud Storage
	Serving files through Google's Content Delivery Network
	Serving images
	Serving other types of files

	Transforming images with the Images service
	Processing long jobs with the task queue
	Scheduling tasks with Cron
	Sending notification e-mails
	Receiving users' data as e-mail messages
	Summary

	Chapter 4: Improving Application Performances
	Advanced use of Datastore
	More on properties – arrange composite data with StructuredProperty
	More on queries – save space with projections and optimize iterations with mapping
	Projection queries
	Mapping

	NDB asynchronous operations
	Caching
	Backup and restore functionalities
	Indexing

	Using Memcache
	Breaking our application into modules
	Summary

	Chapter 5: Storing Data in Google Cloud SQL
	Creating a Cloud SQL instance
	Configuring access
	Setting the root password

	Connecting to the instance with the MySQL console
	Creating the notes database
	Creating a dedicated user
	Creating tables

	Connecting to the instance from our application
	Loading and saving data
	Using the local MySQL installation for development
	Summary

	Chapter 6: Using Channels to Implement a Real-time Application
	Understanding how the Channel API works
	Making our application real time
	Implementing the server
	The JavaScript code for clients

	Tracking connections and disconnections
	Summary

	Chapter 7: Building an Application with Django
	Setting up the local environment
	Configuring a virtual environment
	Installing dependencies

	Rewriting our application using
Django 1.7
	Using Google Cloud SQL as a database backend
	Creating a reusable application in Django
	Views and templates
	Authenticating users with Django
	Using the ORM and the migrations system
	Processing forms with the Forms API
	Uploading files to the Google Cloud Storage

	Summary

	Chapter 8: Exposing a REST API with Google Cloud Endpoints
	Reasons to use a REST API
	Designing and building the API
	Resources, URLs, HTTP verbs, and response codes
	Defining resource representations

	Implementing the API endpoints
	Testing the API with the API Explorer
	Protecting an endpoint with OAuth2
	Summary

	Index

