

Python for Finance

Build real-life Python applications for quantitative
finance and financial engineering

Yuxing Yan

BIRMINGHAM - MUMBAI

Python for Finance

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2014

Production Reference: 1180414

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-437-5

www.packtpub.com

Cover Image by Aniket Sawant (aniket_sawant_photography@hotmail.com)

Credits

Author
Yuxing Yan

Reviewers
Mourad MOURAFIQ

Loucas Papayiannis

Jiri Pik

Commissioning Editor
Usha Iyer

Acquisition Editors
Pramila Balan

Llewellyn Rozario

Content Development Editor
Ruchita Bhansali

Technical Editors
Shubhangi Dhamgaye

Krishnaveni Haridas

Arwa Manasawala

Ankita Thakur

Copy Editors
Roshni Banerjee

Sarang Chari

Adithi Shetty

Project Coordinator
Swati Kumari

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Paul Hindle

Joanna McMahon

Indexers
Mehreen Deshkmukh

Monica Ajmera Mehta

Rekha Nair

Tejal Soni

Priya Subramani

Graphics
Abhinash Sahu

Production Coordinator
Aditi Gajjar Patel

Cover Work
Aditi Gajjar Patel

About the Author

Yuxing Yan graduated from McGill university with a PhD in finance. He has
taught various finance courses, such as Financial Modeling, Options and Futures,
Portfolio Theory, Quantitative Financial Analysis, Corporate Finance, and
Introduction to Financial Databases to undergraduate and graduate students at
seven universities: two in Canada, one in Singapore, and four in the USA.

Dr. Yan has actively done research with several publications in Journal of
Accounting and Finance, Journal of Banking and Finance, Journal of Empirical
Finance, Real Estate Review, Pacific Basin Finance Journal, Applied Financial
Economics, and Annals of Operations Research. For example, his latest publication,
co-authored with Shaojun Zhang, will appear in the Journal of Banking and Finance
in 2014. His research areas include investment, market microstructure, and open
source finance.

He is proficient at several computer languages such as SAS, R, MATLAB, C, and
Python. From 2003 to 2010, he worked as a technical director at Wharton Research
Data Services (WRDS), where he debugged several hundred computer programs
related to research for WRDS users. After that, he returned to teaching in 2010 and
introduced R into several quantitative courses at two universities. Based on lecture
notes, he has the first draft of an unpublished manuscript titled Financial Modeling
using R.

In addition, he is an expert on financial data. While teaching at NTU in Singapore, he
offered a course called Introduction to Financial Databases to doctoral students. While
working at WRDS, he answered numerous questions related to financial databases
and helped update CRSP, Compustat, IBES, and TAQ (NYSE high-frequency
database). In 2007, Dr. Yan and S.W. Zhu (his co-author) published a book titled
Financial Databases, Shiwu Zhu and Yuxing Yan, Tsinghua University Press. Currently,
he spends considerable time and effort on public financial data. If you have any
queries, you can always contact him at yany@canisius.edu.

Acknowledgments

I would like to thank Ben Amoako-Adu, Brian Smith (who taught me the first two
finance courses and offered unstinting support for many years after my graduation),
George Athanassakos (one of his assignments "forced" me to learn C), Jin-Chun Duan,
Wei-Hung Mao, Jerome Detemple, Bill Sealey, Chris Jacobs, Mo Chaudhury (my
former professors at McGill), and Laurence Kryzanowski. (His wonderful teaching
inspired me to concentrate on empirical finance and he edited my doctoral thesis
word by word even though he was not my supervisor!)

There is no doubt that my experience at Wharton has shaped my thinking and
enhanced my skill sets. I thank Chris Schull and Michael Boldin for offering me
the job; Mark Keintz, Dong Xu, Steven Crispi, and Dave Robinson, my former
colleagues, who helped me greatly during my first two years at Wharton; and
Eric Zhu, Paul Ratnaraj, Premal Vora, Shuguang Zhang, Michelle Duan, Nicholle
Mcniece, Russ Ney, Robin Nussbaum-Gold, and Mireia Gine for all their help.

In addition, I'd like to thank Shaobo Ji, Tong Yu, Shaoming Huang, Xing Zhang,
Changwen Miao, Karyl Leggio, Lisa Fairchild, K. G. Viswanathan, Na Wang, Mark
Lennon, and Qiyu (Jason) Zhang for helping me in many ways. I also want to thank
Shaojun Zhang and Qian Sun, my former colleagues and co-authors on several
papers, for their valuable input and discussions.

Creating a good book involves many talented publishing professionals and external
reviewers in addition to the author(s). I would like to acknowledge the excellent
efforts and input from the staff of my publisher, Packt Publishing, especially
Llewellyn F. Rozario, Swati Kumari, Arwa Manasawala, Ruchita Bhansali, Apeksha
Chitnis, and Pramila Balan as well as the external reviewers, Martin Olveyra,
Mourad MOURAFIQ, and Loucas Parayiannis, for their valuable advice, suggestions,
and criticism.

Finally, and most importantly, I thank my wife, Xiaoning Jin, for her strong support,
my daughter, Jing Yan, and son, James Yan, for their understanding and love they
have showered on me over the years.

About the Reviewers

Jiri Pik is a finance and business intelligence consultant working with major
investment banks, hedge funds, and other financial players. He has architected
and delivered breakthrough trading, portfolio and risk management systems, and
decision-support systems across industries.

His consulting firm, WIXESYS, provides their clients with certified expertise,
judgment, and execution at the speed of light. WIXESYS' power tools include
revolutionary Excel and Outlook add-ons available at http://spearian.com.

Loucas Papayiannis was born and raised in Cyprus, where he graduated from
the English School in Nicosia. After completing his mandatory military service at the
Cyprus National Guard, Loucas left for the University of California, Berkeley, where
he obtained a BSc in Electrical Engineering and Computer Science. While at Berkeley,
he had the opportunity to work for the Bosch Research Center in Palo Alto, where he
developed a strong interest in computer-human interface.

In an unexpected turn of events, an opportunity to work for Bloomberg LP in
London came up, after he completed his studies. Despite the fact that financial
software was a sharp change of direction from where Loucas was heading at the
time, he moved to London and seized the opportunity. He quickly grew to enjoy this
new field and consequently enrolled in an MSc program in Financial Mathematics at
King's College, London while still working full time, completing this degree in 2011.

In 2010, he started at Goldman Sachs, and in August 2012, he joined Barclays
Capital, where he is currently employed. His work is focused on developing an
FX Options application, and he mainly works with C++. However, he has worked
with a variety of languages and technologies through the years. He is a Linux
and Python enthusiast and spends his free time experimenting and developing
applications with them.

Mourad MOURAFIQ is a software engineer and data scientist. After successfully
completing his studies in Applied Mathematics, he worked at an investment bank as
a quantitative modeler in the structured products market, specializing in ABS, CDO,
and CDS. Then, he worked as a quantitative analyst for the largest French bank.

After a couple of years in the financial world, he discovered a passion for machine
learning and computational mathematics and decided to join a start-up that
specializes in software mining and artificial intelligence.

I would like to thank my mentors who took me under their wings
during my initial days on the trading floor.

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content

•	 On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Table of Contents
Preface	 1
Chapter 1: Introduction and Installation of Python	 9

Introduction to Python	 10
Installing Python	 12
Different versions of Python	 12
Ways to launch Python	 13

Launching Python with GUI	 13
Launching Python from the Python command line	 14
Launching Python from our own DOS window	 15

Quitting Python	 16
Error messages	 16
Python language is case sensitive	 17
Initializing the variable	 17
Finding the help window	 18
Finding manuals and tutorials	 19
Finding the version of Python	 21
Summary	 21
Exercises	 22

Chapter 2: Using Python as an Ordinary Calculator	 23
Assigning values to variables	 24

Displaying the value of a variable	 24
Error messages	 24

Can't call a variable without assignment	 25
Choosing meaningful names	 25
Using dir() to find variables and functions	 26

Deleting or unsigning a variable	 27

Table of Contents

[ii]

Basic math operations – addition, subtraction,
multiplication, and division	 28
The power function, floor, and remainder	 28

A true power function 	 30
Choosing appropriate precision	 31
Finding out more information about a specific built-in function	 32

Listing all built-in functions	 32
Importing the math module	 33

The pi, e, log, and exponential functions	 34
"import math" versus "from math import *"	 34

A few frequently used functions	 36
The print() function	 36
The type() function	 36
Last expression _ (underscore)	 36
Combining two strings	 37
The upper() function	 37

The tuple data type	 39
Summary	 40
Exercises	 40

Chapter 3: Using Python as a Financial Calculator	 43
Writing a Python function without saving it	 44
Default input values for a function	 45
Indentation is critical in Python	 45
Checking the existence of our functions	 46
Defining functions from our Python editor	 47
Activating our function using the import function	 48
Debugging a program from a Python editor	 48
Two ways to call our pv_f() function	 49
Generating our own module	 50
Types of comments	 51

The first type of comment	 51
The second type of comment	 52

Finding information about our pv_f() function	 52
The if() function	 53
Annuity estimation	 54
Converting the interest rates	 55
Continuously compounded interest rate	 57
A data type – list	 58
Net present value and the NPV rule	 58
Defining the payback period and the payback period rule	 60
Defining IRR and the IRR rule	 61

Table of Contents

[iii]

Showing certain files in a specific subdirectory	 62
Using Python as a financial calculator	 63
Adding our project directory to the path	 64
Summary	 66
Exercises	 67

Chapter 4: 13 Lines of Python to Price a Call Option	 71
Writing a program – the empty shell method	 73
Writing a program – the comment-all-out method	 75
Using and debugging other programs	 76
Summary	 76
Exercises	 77

Chapter 5: Introduction to Modules	 79
What is a module?	 80
Importing a module	 80

Adopting a short name for an imported module	 81
Showing all functions in an imported module	 82
Comparing "import math" and "from math import *"	 82
Deleting an imported module	 83
Importing only a few needed functions	 84
Finding out all built-in modules	 85
Finding out all the available modules	 86
Finding the location of an imported module	 87
More information about modules	 88
Finding a specific uninstalled module	 90

Module dependency	 90
Summary	 92
Exercises	 93

Chapter 6: Introduction to NumPy and SciPy	 95
Installation of NumPy and SciPy	 96
Launching Python from Anaconda	 96

Examples of using NumPy	 97
Examples of using SciPy	 98

Showing all functions in NumPy and SciPy	 102
More information about a specific function	 103
Understanding the list data type	 103
Working with arrays of ones, zeros, and the identity matrix	 104
Performing array manipulations	 105
Performing array operations with +, -, *, /	 105

Performing plus and minus operations	 105

Table of Contents

[iv]

Performing a matrix multiplication operation	 105
Performing an item-by-item multiplication operation	 107

The x.sum() dot function	 107
Looping through an array	 108
Using the help function related to modules	 108
A list of subpackages for SciPy	 109
Cumulative standard normal distribution	 109
Logic relationships related to an array	 110
Statistic submodule (stats) from SciPy	 111
Interpolation in SciPy	 112
Solving linear equations using SciPy	 113
Generating random numbers with a seed	 114
Finding a function from an imported module	 116
Understanding optimization	 116
Linear regression and Capital Assets Pricing Model (CAPM)	 117
Retrieving data from an external text file	 118

The loadtxt() and getfromtxt() functions 	 118
Installing NumPy independently	 119
Understanding the data types	 119
Summary	 120
Exercises	 120

Chapter 7: Visual Finance via Matplotlib	 123
Installing matplotlib via ActivePython	 124
Alternative installation via Anaconda	 125
Understanding how to use matplotlib	 125
Understanding simple and compounded interest rates	 129
Adding texts to our graph	 131
Working with DuPont identity	 133
Understanding the Net Present Value (NPV) profile	 135

Using colors effectively	 137
Using different shapes	 139

Graphical representation of the portfolio diversification effect	 140
Number of stocks and portfolio risk	 142

Retrieving historical price data from Yahoo! Finance	 144
Histogram showing return distribution	 145
Comparing stock and market returns	 148

Understanding the time value of money	 150
Candlesticks representation of IBM's daily price	 151

Graphical representation of two-year price movement	 153
IBM's intra-day graphical representations	 154

Table of Contents

[v]

Presenting both closing price and trading volume	 156
Adding mathematical formulae to our graph	 157
Adding simple images to our graphs	 158
Saving our figure to a file	 159

Performance comparisons among stocks	 160
Comparing return versus volatility for several stocks	 161
Finding manuals, examples, and videos	 163
Installing the matplotlib module independently	 163
Summary	 163
Exercises	 164

Chapter 8: Statistical Analysis of Time Series	 167
Installing Pandas and statsmodels	 168

Launching Python using the Anaconda command prompt	 169
Launching Python using the DOS window	 169
Launching Python using Spyder	 170

Using Pandas and statsmodels	 171
Using Pandas	 171
Examples from statsmodels	 173

Open data sources	 174
Retrieving data to our programs	 176

Inputting data from the clipboard	 176
Retrieving historical price data from Yahoo! Finance	 177
Inputting data from a text file	 178
Inputting data from an Excel file	 179
Inputting data from a CSV file	 180
Retrieving data from a web page	 180
Inputting data from a MATLAB dataset	 181

Several important functionalities	 182
Using pd.Series() to generate one-dimensional time series	 182
Using date variables	 183
Using the DataFrame	 183

Return estimation	 185
Converting daily returns to monthly returns	 187
Converting daily returns to annual returns	 190

Merging datasets by date	 191
Forming an n-stock portfolio	 192

T-test and F-test	 193
Tests of equal means and equal variances	 194
Testing the January effect	 195

Table of Contents

[vi]

Many useful applications	 196
52-week high and low trading strategy	 196
Roll's model to estimate spread (1984)	 197
Amihud's model for illiquidity (2002)	 198
Pastor and Stambaugh (2003) liquidity measure	 199
Fama-French three-factor model	 204
Fama-MacBeth regression	 206
Estimating rolling beta	 207
Understanding VaR	 210

Constructing an efficient frontier	 211
Estimating a variance-covariance matrix	 212
Optimization – minimization	 214
Constructing an optimal portfolio	 215
Constructing an efficient frontier with n stocks	 217

Understanding the interpolation technique	 220
Outputting data to external files	 221

Outputting data to a text file	 221
Saving our data to a binary file	 222
Reading data from a binary file	 222

Python for high-frequency data	 222
Spread estimated based on high-frequency data	 227

More on using Spyder	 228
A useful dataset	 230
Summary	 232
Exercise	 232

Chapter 9: The Black-Scholes-Merton Option Model	 237
Payoff and profit/loss functions for the call and put options	 238
European versus American options	 242
Cash flows, types of options, a right, and an obligation	 243
Normal distribution, standard normal distribution, and cumulative
standard normal distribution	 243
The Black-Scholes-Merton option model on non-dividend
paying stocks	 247
The p4f module for options	 248
European options with known dividends	 250
Various trading strategies	 251

Covered call – long a stock and short a call	 252
Straddle – buy a call and a put with the same exercise prices	 253
A calendar spread	 254

Table of Contents

[vii]

Butterfly with calls	 256
Relationship between input values and option values	 257
Greek letters for options	 258
The put-call parity and its graphical representation	 259
Binomial tree (the CRR method) and its graphical representation	 261

The binomial tree method for European options	 268
The binomial tree method for American options	 268

Hedging strategies	 269
Summary	 270
Exercises	 271

Chapter 10: Python Loops and Implied Volatility	 275
Definition of an implied volatility	 276
Understanding a for loop	 277

Estimating the implied volatility by using a for loop	 278
Implied volatility function based on a European call	 279
Implied volatility based on a put option model	 280
The enumerate() function	 281

Estimation of IRR via a for loop	 282
Estimation of multiple IRRs	 283

Understanding a while loop	 284
Using keyboard commands to stop an infinitive loop	 285

Estimating implied volatility by using a while loop	 286
Nested (multiple) for loops	 288

Estimating implied volatility by using an American call	 288
Measuring efficiency by time spent in finishing a program	 289
The mechanism of a binary search	 290
Sequential versus random access	 292
Looping through an array/DataFrame	 293

Assignment through a for loop	 294
Looping through a dictionary	 294

Retrieving option data from CBOE	 295
Retrieving option data from Yahoo! Finance	 297

Different expiring dates from Yahoo! Finance	 299
Retrieving the current price from Yahoo! Finance	 300

The put-call ratio	 300
The put-call ratio for a short period with a trend	 302

Summary	 303
Exercises	 304

Table of Contents

[viii]

Chapter 11: Monte Carlo Simulation and Options	 307
Generating random numbers from a standard normal distribution	 308

Drawing random samples from a normal (Gaussian) distribution	 309
Generating random numbers with a seed	 309
Generating n random numbers from a normal distribution	 310

Histogram for a normal distribution	 310
Graphical presentation of a lognormal distribution	 311

Generating random numbers from a uniform distribution	 312
Using simulation to estimate the pi value	 313
Generating random numbers from a Poisson distribution	 315

Selecting m stocks randomly from n given stocks	 315
Bootstrapping with/without replacements	 317
Distribution of annual returns	 319
Simulation of stock price movements	 320

Graphical presentation of stock prices at options' maturity dates	 322
Finding an efficient portfolio and frontier	 324

Finding an efficient frontier based on two stocks	 324
Impact of different correlations	 326

Constructing an efficient frontier with n stocks	 329
Geometric versus arithmetic mean	 332
Long-term return forecasting	 333
Pricing a call using simulation	 334
Exotic options	 335

Using the Monte Carlo simulation to price average options	 335
Pricing barrier options using the Monte Carlo simulation	 337

Barrier in-and-out parity	 339
Graphical presentation of an up-and-out and up-and-in parity	 340

Pricing lookback options with floating strikes	 342
Using the Sobol sequence to improve the efficiency	 344
Summary	 344
Exercises	 345

Chapter 12: Volatility Measures and GARCH	 347
Conventional volatility measure – standard deviation	 348
Tests of normality	 349

Estimating fat tails	 350
Lower partial standard deviation	 352
Test of equivalency of volatility over two periods	 354
Test of heteroskedasticity, Breusch, and Pagan (1979) 	 355
Retrieving option data from Yahoo! Finance	 358
Volatility smile and skewness	 360

Graphical presentation of volatility clustering	 362

Table of Contents

[ix]

The ARCH model	 363
Simulating an ARCH (1) process	 364

The GARCH (Generalized ARCH) model	 365
Simulating a GARCH process	 366
Simulating a GARCH (p,q) process using modified garchSim()	 367
GJR_GARCH by Glosten, Jagannanthan, and Runkle (1993)	 369

Summary	 373
Exercises	 373

Index	 375

Preface
It is our firm belief that an ambitious student major in finance should learn at least
one computer language. The basic reason is that we have entered the Big Data era.
In finance, we have a huge amount of data, and most of it is publically available free
of charge. To use such rich sources of data efficiently, we need a tool. Among many
potential candidates, Python is one of the best choices.

Why Python?
There are various reasons that Python should be used. Firstly, Python is free in terms
of license. Python is available for all major operating systems, such as Windows,
Linux/Unix, OS/2, Mac, and Amiga, among others. Being free has many benefits.
When students graduate, they could apply what they have learned wherever they
go. This is true for the financial community as well. In contrast, this is not true for
SAS and MATLAB. Secondly, Python is powerful, flexible, and easy to learn. It is
capable of solving almost all our financial and economic estimations. Thirdly, we
could apply Python to Big Data. Dasgupta (2013) argues that R and Python are two
of the most popular open source programming languages for data analysis. Fourthly,
there are many useful modules in Python. Each model is developed for a special
purpose. In this book, we focus on NumPy, SciPy, Matplotlib, Statsmodels, and
Pandas modules.

Preface

[2]

A programming book written by a finance
professor
There is no doubt that the majority of programming books are written by professors
from computer science. It seems odd that a finance professor writes a programming
book. It is understandable that the focus would be quite different. If an instructor
from computer science were writing this book, naturally the focus would be
Python, whereas the true focus should be finance. This should be obvious from the
title of the book Python for Finance. This book intends to change the fact that many
programming books serving the finance community have too much for the language
itself and too little for finance.

Small programs oriented
Based on the author's teaching experience at seven schools, McGill and Wilfrid
Laurier University (in Canada), NTU (in Singapore), and Loyola University,
Maryland, UMUC, Hofstra University, and Canisius College (in the United States),
and his eight-year consulting experience at Wharton School, he knows that many
finance students like small programs that solve one specific task. Most programming
books offer just a few complete and complex programs. The number of programs
is far too less than enough. There are two side effects for such an approach. First,
finance students are drowned in programming details, get intimidated, and
eventually lose interest in learning a computer language. Second, they don't learn
how to apply what they just learned, such as running a capital asset pricing model
(CAPM) to estimate IBM's beta from 1990 to 2013. This book offers about 300
complete Python programs around many finance topics.

Using real-world data
Another shortcoming of the majority of books for programming is that they use
hypothetical data. In this book, we use real-world data for various financial topics.
For example, instead of showing how to run CAPM to estimate the beta (market
risk), I show you how to estimate IBM, Apple, or Walmart's betas. Rather than just
presenting formulae that shows you how to estimate a portfolio's return and risk, the
Python programs are given to download real-world data, form various portfolios,
and then estimate their returns and risk including Value at Risk (VaR). When I
was a doctoral student, I learned the basic concept of volatility smiles. However,
until writing this book, I had a chance to download real-world data to draw IBM's
volatility smile.

Preface

[3]

What this book covers
Chapter 1, Introduction and Installation of Python, offers a short introduction, and
explains how to install Python and covers other related issues such as how to launch
and quit Python.

Chapter 2, Using Python as an Ordinary Calculator, presents some basic concepts
and several frequently used Python built-in functions, such as basic assignment,
precision, addition, subtraction, division, power function, and square root function.

Chapter 3, Using Python as a Financial Calculator, teaches us how to write simple
functions, such as functions to estimate the present value of one future cash flow,
the future value of one present value, the present value of annuity, the future value
of annuity, the present value of perpetuity, the price of a bond, and internal rate of
return (IRR).

Chapter 4, 13 Lines of Python to Price a Call Option, shows how to write a call option
without detailed knowledge about options and Python.

Chapter 5, Introduction to Modules, discusses modules, such as finding all available
or installed modules, and how to install a new module.

Chapter 6, Introduction to NumPy and SciPy, introduces the two most important
modules, called NumPy and SciPy, which are used intensively for scientific and
financial computation.

Chapter 7, Visual Finance via Matplotlib, shows you how to use the matplotlib module
to vividly explain many financial concepts by using graphs, pictures, color, and size.

Chapter 8, Statistical Analysis of Time Series, discusses many concepts and issues
associated with statistics in detail. Topics include how to download historical
prices from Yahoo! Finance; estimate returns, total risk, market risk, correlation
among stocks, correlation among different countries' markets; form various types
of portfolios; and construct an efficient portfolio.

Chapter 9, The Black-Scholes-Merton Option Model, discusses the Black-Scholes-Merton
option model in detail. In particular, it will cover the payoff and profit/loss functions
and their graphic presentations of call and put options, various trading strategies
and their visual presentations, normal distribution, Greeks, and put-call parity.

Chapter 10, Python Loops and Implied Volatility, introduces different types of loops.
Then it demonstrates how to estimate the implied volatility based on both European
and American options.

Preface

[4]

Chapter 11, Monte Carlo Simulation and Options, discusses how to use Monte Carlo
simulation to price European, American, average, lookback, and barrier options.

Chapter 12, Volatility Measures and GARCH, focuses on two issues: volatility measures
and ARCH/GARCH.

What could you achieve after reading this
book?
Here, we use several concrete examples to show what a reader could achieve after
going through this book carefully.

First, after reading the first two chapters, a reader/student should be able to use
Python to calculate the present value, future value, present value of annuity, IRR
(internal rate of return), and many other financial formulae. In other words, we could
use Python as a free ordinary calculator to solve many finance problems. Second,
after the first three chapters, a reader/student or a finance instructor could build a
free financial calculator, that is, combine about a few dozen small Python programs
into a big Python program. This big program behaves just like any other module
written by others. Third, readers learn how to write Python programs to download
and process financial data from various public data sources, such as Yahoo! Finance,
Google Finance, Federal Reserve Data Library, and Prof. French Data Library.

Fourth, readers would understand basic concepts associated with modules, which
are packages written by experts, other users, or us, for specific purposes. Fifth, after
understanding the module of Matplotlib, a reader could do various graphs. For
instance, readers could use graphs to demonstrate payoff/profit outcomes based
on various trading strategies by combining the underlying stocks and options.
Sixth, readers would be able to download IBM's daily price, and S&P 500 index
price, data from Yahoo! Finance and estimate its market risk (beta) by applying
CAPM. They could also form a portfolio with different securities, such as risk-free
assets, bonds, and stocks. Then, they can optimize their portfolios by applying
Markowitz's mean-variance model. In addition, readers will know how to estimate
the VaR of their portfolios.

Seventh, a reader should be able to price European and American options by
applying both the Black-Scholes-Merton option model for European options only,
and the Monte Carlo Simulation, for both European and American options. Last
but not least, a reader learns several ways to measure volatility. In particular, they
will learn how to use AutoRegressive Conditional Heteroskedasticity (ARCH) and
Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) models.

Preface

[5]

Who this book is for
If you are a graduate student major in finance, especially studying computational
finance, financial modeling, financial engineering, and business analytics, this book
will benefit you. If you are a professional, you could learn Python and use it in many
financial projects. If you are an individual investor, you could benefit from reading
this book as well.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Depending on your computer, choose the appropriate package, for example, Python
3.3.2 Windows x86 MSI Installer (Windows binary -- does not include
source)."

If we have a program, we will see the following codes:

from matplotlib.finance import quotes_historical_yahoo

import numpy as np

import pandas as pd

import statsmodels.api as sm

ticker='IBM'

begdate=(2008,10,1)

enddate=(2013,11,30)

p = quotes_historical_yahoo(ticker, begdate, enddate,asobject=True,
adjusted=True)

Any command-line input or output is written as follows:

>>>from matplotlib.pyplot import *

>>>plot([1,2,3,10])

>>>xlabel("x- axis")

>>>ylabel("my numbers")

>>>title("my figure")

>>>show()

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "Click on Start and
then on All Programs."

Preface

[6]

Two ways to use the book
Generally speaking, there are two ways to learn this book: read the book and learn
Python by yourself, or learn Python in a classroom setting. For a beginner, going
slow is a better strategy, such as spending two weeks per chapter except Chapter 8,
Statistical Analysis of Time Series, which needs at least three weeks. Professionals with
basic programming experience of another computer language could go through the
first few chapters relatively quickly and move to more advanced topics (chapters).
They should focus on option theory, implied volatility and measures of volatility,
and GARCH models. One feature of this book is that most chapters after Chapter 3,
Using Python as a Financial Calculator, are loosely connected. Because of this, after
learning the first three chapters in addition to Chapter 5, Introduction to Modules,
readers could jump to the chapters they are interested in.

On the other hand, the book is ideal to be used as a textbook for Financial Modeling
using Python or simply Python for finance courses to master degree students in the
areas of quantitative finance, computational finance, or financial engineering.
The amount of content of the book and expected effort needed is suitable for one
semester. The students could be senior undergraduate students with a reduced
depth. To teach undergraduate students, the last chapter should be dropped.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of. To send us general feedback,
simply send an e-mail to feedback@packtpub.com, and mention the book title via
the subject of your message.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Preface

[7]

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from: https://www.packtpub.com/sites/
default/files/downloads/4375OS_Images.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material. We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Introduction and
Installation of Python

In this chapter, first we offer a short introduction on why we adopt Python as our
computational tool and what the advantages are of using Python. Then, we discuss
how to install Python and other related issues, such as how to start and quit Python,
whether Python is case sensitive, and a few simple examples.

In particular, we will cover the following topics:

•	 Introduction to Python
•	 Installing Python
•	 Which version of Python should we use and what is the version of our

installed Python?
•	 Ways to launch and quit Python
•	 Error messages
•	 Python is case sensitive
•	 Initializing the variables
•	 Finding help, manuals, and tutorials
•	 Finding the Python versions

Introduction and Installation of Python

[10]

Introduction to Python
Our society entered the information era many years ago. Actually, we are drowning
in a sea of information, such as too many e-mails to read or too many web pages
we could possibly explore. With the Internet, we could find a huge amount of
information about almost everything such as important events or how to learn
Python. We could find information for a specific firm by searching online. For
instance, if we want to collect financial information associated with International
Business Machines (IBM), we could use Yahoo! Finance, Google Finance, Securities
and Exchange Commission (SEC) filings, and the company's web pages. Since we
are confronted with a lot of publicly available information, investors, professionals,
and researchers need a tool to process such a huge amount of information. In
addition, our society would move towards a more open and transparent society.
In finance, a new concept of open source finance has merged recently. Dane and
Masters (2009) suggest three components for open source finance: open software,
open data, and open codes. For the first component of open software, Python is one
of the best choices. An equally popular open source software is R. In the next section,
we summarize the advantages of learning and applying Python to finance.

Firstly, Python is free in terms of license. Being free has many benefits. Let's perform
a simple experiment here. Let's assume readers know nothing about Python and they
have no knowledge about option theory. How long do you think it would take them
to run a Python program to price a Black-Scholes call option? Less than 2 hours?
Here is what they could do; they could download and install Python after reading
the Installing Python section of this chapter, and it would take less than 10 minutes.
Spend another 10 minutes to launch and quit Python and also try a few examples.
Then, read the first page of Chapter 4, 13 Lines of Python to Price a Call Option, which
contains the code for the famous Black-Scholes call option model. In total, the
program has 13 lines. The reader could spend the next 40 minutes typing, correcting
typos, and retyping those 13 lines. With less than 2 hours, they should be able to run
the program to price a call option. The cost of adopting a new computer language
includes many aspects such as annual license cost, maintenance costs, available
packages, and support.

Another example is related to an SEC proposal. In 2010, the SEC proposed that all
financial institutions are to accompany their new Asset-Backed Security (ABS) with
a computer program showing the contractual cash flows of the securities (www.sec.
gov/rules/proposed/2010/33-9117.pdf). The proposed computer language is
Python. Obviously, any investor can access Python because it is free.

Chapter 1

[11]

For bond analytics or credit risks, Roger Ehrenberg (2007) argues for an open
source approach. Whether or not ratings should be required for institutional
investors to buy certain securities is not the issue; the essential point is getting better
transparency and analysis of instruments constituting the investable universe. Just
imagine what the impact would be if many financial institutions adopt the open
source initiative by storing their own debt ratings models into the public domain
and allowing others to contribute to its development! To contribute to such an open
source approach, Python (or R, free software as well) would be ideal in terms of
computational tools.

Secondly, Python is powerful, flexible, and easy to learn. It is capable of solving almost
all our financial and economic estimations. Python is available for all major operating
systems such as Windows, Linux/Unix, OS/2, Mac, and Amiga, among others.

Thirdly, Python is suitable for Big Data. Dasgupta (2013) argues that R and Python
are two of the most popular open source programming languages for data analysis.
Compared with R, Python is generally a better overall language, especially when
you consider its blend of functional programming with object orientation. Combined
with Scipy/Numpy, Matplotlib, and Statsmodel, it provides a powerful tool. In this
book, we will discuss a module called Pandas when we deal with financial data.

Fourthly, there are many useful modules for Python, such as toolboxes in MATLAB
and packages in R. Each model is developed for a special purpose. Later in the book,
we will touch base with about a dozen modules. However, we will pay special
attention to five of the most useful modules in finance: NumPy, SciPy, Matplotlib,
Statsmodels, and Pandas. The first two modules are associated with mathematical
estimations, formulae, matrices and their manipulation, data formats, and data
manipulations. Matplotlib is for visual presentations such as graphs. In Chapter 8,
Introduction to the Black-Scholes Option Model, we use this module intensively to explain
visually different payoff functions and profit/loss functions for various trading
strategies. The Statsmodels module deals with econometrics such as T-test, F-test,
and GARCH models. Again, the Pandas module is used for financial data analysis.

We should mention some disadvantages of Python as well. The most important
shortcoming is the lack of support because it is free. Some experts argue that
the Python community needs to grow and should include more statisticians
and mathematicians.

Introduction and Installation of Python

[12]

Installing Python
To install Python, perform the following two steps:

1.	 Go to http://www.python.org/download.
2.	 Depending on your computer, choose the appropriate package, for example,

Python 3.3.2 Windows x86 MSI Installer (Windows binary -- does
not include source).

At this stage, a new user could install the latest Python version. In other words, they
could simply ignore the next section related to the version and go directly to the How
to launch Python section.

Generally speaking, the following are the three ways to launch Python:

•	 From Python IDLE (GUI)
•	 From the Python command line
•	 From your command-line window

The three ways will be introduced in the How to launch Python?, Launch Python from
Python command line, and The third way to launch Python sections.

Different versions of Python
One of the most frequently asked questions related to Python's installation is which
version we should download. At this stage, any latest version would be fine, that is,
the version does not matter. There are three reasons behind this statement:

•	 The contents of the first four chapters are compatible with any version
•	 Removing and downloading Python is trivial
•	 Different versions could coexist

Later in the book, we will explain the module dependency which is associated with
a Python version. A module is a collection of many Python programs, written by
one or a group of experts, to serve a special purpose. For example, we will discuss a
module called Statsmodels, which is related to statistical and econometric models,
linear regression and the like. Generally speaking, we have built-in modules,
standard modules, third-party modules, and modules built by ourselves. We will
spend several chapters on this important topic.

Chapter 1

[13]

In this book, we will mention about two dozen modules. In particular, we will
discuss in detail the NumPy, SciPy, Matplotlib, Pandas, and Statsmodels modules.
The NumPy, Matplotlib, and Statsmodels modules depend on Python 2.7 or
above. All these packages have different versions for Python 2.x (2.5-2.6 and above,
depending on the case).

Ways to launch Python
There are three ways to launch Python and they are explained in the
following sections.

Launching Python with GUI
To launch Python, perform the following steps:

1.	 Click on Start and then on All Programs.
2.	 Find Python 3.3.
3.	 Click on IDLE (Python GUI) as shown in the following screenshot:

4.	 After Python starts, the following window appears:

Introduction and Installation of Python

[14]

Assume that an estimate of $100 is expected to be received in one year with an
annual discount rate of 10 percent. The present value of one future cash flow is
as follows:

()1 n
FVPV
R

=
+

 (1)

In this equation, PV is the present value, FV is the future value, R is the discount
rate, and n is the number of periods. According to the preceding formula, we
could manually type those values to get the present value of this one future cash
flow. Assume that we would receive $100 in one year. If the annual discount rate
is 10 percent, what is the present value of this $100? For this, let's take a look at the
following lines of code:

>>>100/(1+0.1)

90.9090909090909

>>>

The triple larger than signs (>>>) is the Python prompt.

It is a good idea to create a Python icon on your desktops for your convenience. In
addition to the preceding method, there are other methods to launch Python; see
the next two sections: Launching Python from the Python command line and Launching
Python from our own DOS window.

Launching Python from the Python
command line
A new user could skip this section and go to the Quitting Python section because
learning how to launch Python with GUI is more than enough. There are two reasons
for this. The first is because we know how to launch Python by using Python IDLE
or by clicking on the Python icon on our desktops, and the second reason is that we
could save and run our Python programs easily using Python IDLE.

Chapter 1

[15]

To launch Python from the Python command line, we have to perform the
following steps:

1.	 Click on Start and then on All Programs.
2.	 Find Python 3.3.
3.	 Click on Python (command line) as shown in the following screenshot:

4.	 After we click on Python (command line), we will see the following window:

Launching Python from our own DOS window
We could generate our own DOS window, and then launch Python from there.
In addition, we could navigate to the subdirectory, which contains our Python
programs. In order to this, perform the following steps:

1.	 Open a Window command line by clicking on Start and then enter cmd in
the run window as shown in the following screenshot:

2.	 Type cd c:\python33 to move to the appropriate directory.

Introduction and Installation of Python

[16]

3.	 Type python to run the software as shown in the following screenshot:

If we want to launch Python anywhere else, we have to include the path of our
Python directory. Assume that after installation we have python33 in C:. Replace
step 2 with the following DOS command:

set path=%path%;C:\python33

Quitting Python
Usually, we have several ways to quit Python, which are as follows:

•	 The first way to quit Python is to use Ctrl + D
•	 The second way to quit is Ctrl + Q
•	 The third way to quit is to click on File and then on Exit
•	 The fourth way is to click on X at the top-right corner of the window (that is,

close the window)

Later in the book, we will explain how to embed certain codes to quit Python when
a currently running program is finished.

Error messages
For the previous example, if we enter 100/(1+0.1)^2 instead of 100/(1+0.1), we
will see the following error message, which tells us that ^ is not supported:

>>>100/(1+0.1)^2

Traceback (most recent call last):

File "<psyhell#1>, line 1, in <module>

100/(1+0.1)^2

TypeError: unsupported operand type(s) for ^: 'float' and 'int'

>>>

Chapter 1

[17]

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

At this stage, a new user needs to pay attention to the last sentence of the error
message. Obviously, the last line tells us that ^ is not supported. Again, for a power
function, we should use double multiplications, **, instead of a karat, ^. In Chapter
2, Using Python as an Ordinary Calculator, we will show that a true power function,
pow(), is available.

Python language is case sensitive
Case sensitive means that x is different from X. The variable of John is different
from the variable of john. If we assume a value for x (lowercase x) and then call X
(uppercase X), we will see the following error message:

>>>x=2

>>>X

Traceback (most recent call last):

 File "<pyshell#1>", line 1, in <module>

 X

 NameError: name 'X' is not defined

>>>

In the preceding example, X is not assigned any value. Thus, when we call it
by typing X, we will receive an error message. Note that the last line mentions
NameError instead of TypeError. In Python, we use name for variables.

Initializing the variable
From the previous example, we know that after we assign a value to x, we can use x,
which means that x is now defined in the sense of other computer languages such as
FORTRAN and C/C++. The opposite is also true, that we could not use X if it is not
assigned a value in Python. In other words, when we assign a value to X, we have to
define it first. Compared to languages such as C++ or FORTRAN, we don't have to
define x as an integer before we assign 10 to it.

Introduction and Installation of Python

[18]

Another advantage is that we could change the data type of a variable easily. For the
FOTRAN language, if we have defined x as an integer, we cannot assign a string to
it. Since there is only assignment in Python, we could assign any value to a variable.
For example, we could assign 10 to x. It is legal to assign a string, such as Hello
World, to x in the next minute. However, we should not be confused with the data
type conversion, such as converting an integer to a string or vice versa. Conversion
between different data types will be discussed in the later chapters.

Finding the help window
After we launch Python, typing help() would initiate the help window (as shown
in the following lines of code). The prompt of the help window is help>. To quit the
help window, we simply press the Enter key once or type quit. After we quit the
help window, the Python prompt of >>> would reappear. Now, we launch the help
window as shown in the following lines of code:

>>>help()

Welcome to Python 3.3! This is the interactive help utility.

If this is your first time using Python, you should definitely check out
the tutorial on the Internet at http://docs.python.org/3.3/tutorial/.

Enter the name of any module, keyword, or topic to get help on writing
Python programs and using Python modules. To quit this help utility and
return to the interpreter, just type "quit".

To get a list of available modules, keywords, or topics, type "modules",
"keywords", or "topics". Each module also comes with a one-line summary
of what it does; to list the modules whose summaries contain a given word
such as "spam", type "modules spam".

help>

After typing keywords, we will have the following information:

>>>help> keywords

Here is a list of the Python keywords. Enter any keyword to get more
help.

False def if raise

None del import return

True elif in try

and else is while

as except lambda with

assert finally nonlocal yield

Chapter 1

[19]

break for not

class from or

continue global pass

help>

On the other hand, after typing topics, we will see what is shown in the
following screenshot:

At the moment, a new user doesn't need to understand those topics. Just remember
that we have a command to show us all the topics we could use.

Finding manuals and tutorials
There are many ways to find Python manuals and other related materials online. We
just mentioned two ways: from your computer and from the Python home. These
two ways are explained in details as follows:

To implement the first method (to have it manually installed on your computer), we
need to perform the following steps:

1.	 Click on Start and then on All Programs.
2.	 Find Python 3.3.

Introduction and Installation of Python

[20]

3.	 Click on Python Manuals as shown in the following screenshot:

4.	 After we click on Python Manuals, we will see the following window:

From the Python home, the following documents can be downloaded:

•	 Python 3.2 documents (3.2.5, last updated on May 15, 2013) at
http://docs.python.org/3.2/download.html

•	 Python 3.3 documents (3.3.2, last updated on August 04, 2013) at
http://docs.python.org/3.3/download.html

•	 Python 2.7 document(2.7.5, last updated on September 20, 2013) at
http://docs.python.org/2.7/download.html

Chapter 1

[21]

For new Python learners, the following are the web pages where they could find
many tutorial materials related to Python learning:

•	 Online tutorials:
°° http://docs.python.org/3/tutorial/

°° http://docs.python.org/2/tutorial/

•	 PDF version (424 pages):

°° http://www.tutorialspoint.com/python/python_pdf_version.
htm

°° http://anh.cs.luc.edu/python/hands-on/3.1/Hands-
onPythonTutorial.pdf

Finding the version of Python
When Python is launched, the first line will show our current version. Another way
is to issue the following two lines of Python code after we launch Python:

>>>import sys

>>>sys.version

'3.3.2 (v3.3.2:d047928ae3f6, May 16 2013, 00:03:43) [MSC v.1600 32 bit
(Intel)]'

>>>

The first line of command imports a module called sys. A module is a collection
of many Python programs serving a special purpose. Understanding a module
is critical in learning Python. We will discuss this in more detail in Chapter 5,
Introduction to Modules; Chapter 6, Introduction to NumPy and SciPy; Chapter 7, Visual
Finance via Matplotlib; and Chapter 8, Statistical Analysis of Time Series.

Summary
In this chapter, we learned how to install Python and other related issues, such as
how to launch and quit Python, whether Python is case sensitive, and a few simple
examples. Since it's a simple and straightforward explanation, any reader who is
new to Python could easily download and install Python in a few minutes. After
that, they could try a few given examples. We also offered a brief introduction as
to why we adopt Python as our computational tool, and what the advantages and
disadvantages are of using Python.

Introduction and Installation of Python

[22]

In the next chapter, you will learn some basic concepts and several frequently used
Python built-in functions. We will demonstrate how to use Python as an ordinary
calculator to solve many finance-related problems. For example, we could estimate
the present value of one future cash flow, the future value of one cash flow today, the
present value of a perpetuity, or the present value of a growing perpetuity. In addition,
we will discuss the dir(), type(), floor(), round(), and help() functions.

Exercises
1. Use a few sentences to describe the Python software.

2. What are the advantages and disadvantages of using Python as our
computational tool?

3. Where can we download and install Python?

4. Is Python case sensitive? What is the basic rule to define various
variables (names)?

5. Can we use a variable without defining it first?

6. Is it possible that we use a variable before we assign a value to it?

7. Is the version of Python important at this stage? Is the version of Python important
later in the book?

8. In how many ways can we launch Python?

9. Where can we find videos on how to install Python?

10. What is the URL for Python's homepage?

11. Estimate the area of a circle if the diameter is 10 using Python.

12. How do you assign a value to a new variable?

13. How can you find some sample examples related to Python?

14. How do you launch Python's help function?

15. Where is the location of Python on your PC (Mac)? How do we find the path?

16. What is the difference between defining a variable and assigning a value to it?

Using Python as an
Ordinary Calculator

In this chapter, we will learn some basic concepts and several frequently used
built-in functions of Python, such as basic assignment, precision, addition,
subtraction, division, power function, and square root function. In short, we
demonstrate how to use Python as an ordinary calculator to solve many
finance-related problems.

In this chapter, we will cover the following topics:

•	 Assigning values to variables
•	 Displaying the value of a variable
•	 Exploring error messages
•	 Understanding why we can't call a variable without assignment
•	 Choosing meaningful variable names
•	 Using dir() to find variables and functions
•	 Deleting or unsigning a variable
•	 Learning basic math operations—addition, subtraction, multiplication,

and division
•	 Learning about the power function, floor, and remainder
•	 Choosing appropriate precision
•	 Finding out more information about a specific built-in function
•	 Importing the math module
•	 The pi, e, log, and exponential functions

Using Python as an Ordinary Calculator

[24]

•	 Distinguishing between import math and from math import *
•	 Understanding frequently used functions—print(), type(), last expression

_, upper(), and combining two strings
•	 Learning about the tuple data type

Assigning values to variables
To assign a value to a variable is simple because unlike many other languages such
as C++ or FORTRAN, in Python, we don't need to define a variable before we assign
a value to it.

>>>pv=22

>>>pv+2

24

We could assign the same value to different variables simultaneously. In the
following example, we assign 100 to the three variables x, y, and z at once:

>>>x=y=z=100

Displaying the value of a variable
To find out the value of a variable, just type its name as shown in the following code:

>>>pv=100

>>>pv

100

>>>R=0.1

>>>R

0.1

Error messages
Assuming that we issue the sqrt(3) command to estimate the square root of three,
we would get the following error message:

>>>sqrt(3)

Traceback (most recent call last):

 File "<pyshell#17>", line 1, in <module>

 sqrt(3)

NameError: name 'sqrt' is not defined

Chapter 2

[25]

The last line of the error message tells us that the sqrt() function is not defined.
Later in the chapter, we learn that the sqrt() function is included in a module called
math and that we have to load (import) the module before we can call the functions
contained in it. A module is a package that contains a set of functions around a
specific subject.

Can't call a variable without assignment
Assuming that we never assign a value to the abcde variable, after typing abcde,
we would get the following error message:

>>>abcde

Traceback (most recent call last):

 File "<pyshell#0>", line 1, in <module>

 abcde

NameError: name 'abcde' is not defined

>>>

The last line tells us that this variable is not defined or assigned. In a sense, we could
view our value assignment as being equivalent to doing two things: assigning a
value to a variable and defining it at the same time.

Choosing meaningful names
A perpetuity describes the situations where equivalent periodic cash flows happen
in the future and last forever. For example, we receive $5 at the end of each year
forever. A real-world example is the UK government bond, called consol, that pays
fixed coupons. To estimate the present value of a perpetuity, we use the following
formula if the first cash flow occurs at the end of the first period:

() CPV perpetuity
R

= (1)

Here, PV is the present value, C is a perpetual periodic cash flow that happens at a
fixed interval, and R is the periodic discount rate. Here C and R should be consistent.
For example, if C is annual (monthly) cash flow, then R must be an annual (monthly)
discount rate. This is true for other frequencies too. Assume that a constant annual
cash flow is $10, with the first cash flow at the end of the first year, and that the
annual discount rate is 10 percent. Compare the following two ways to name the C
and R variables:

>>>x=10 # bad way for variable names

>>>y=0.1

Using Python as an Ordinary Calculator

[26]

>>>z=x/y

>>>Z

100

>>>C=10 # good way for assignments

>>>R=0.1

>>>pv=C/R

>>>pv

100

Using C for our future periodic cash flow is better than x, and using R for the
discount rate is better than y since both C and R are exactly the same as the variables
used in equation (1), while x and y bear no specific meanings. A growing perpetuity
is when the future cash flow grows at a constant growth rate, g. Its related present
value is given in the following formula:

() CPV perpetuity
R g

=
−

 (2)

In this formula, C is the first cash flow one period from today, R is the periodic
discount rate, and g is the growth rate. Obviously, the growth rate g should be less
than the discount rate R. Here is a real-world example: we purchase a perpetuity bond
with an annual payment C and an annual discount rate R. When we estimate its true
value today, we have to consider future inflation rates. If the future annual inflation is
CPI (consumer price index), then the growth rate will be the negative CPI.

Using dir() to find variables and functions
After assigning values to a few variables, we could use the dir() function to show
their existence. In the following example, variables n, pv, and r are shown among
other names. At the moment, just ignore the first five objects in the following code,
which start and end with two underscores:

>>>pv=100

>>>r=0.1

>>>n=5

>>>dir()

['__builtins__', '__doc__', '__loader__', '__name__', '__package__', 'n',
'pv', 'r']

Chapter 2

[27]

Deleting or unsigning a variable
Sometimes, when we write our programs, it might be a good idea to delete those
variables that we no longer need. In this case, we could use the del() function to
remove or unsign a variable. In the following example, we assign a value to rate,
show its value, delete it, and type the variable name trying to retrieve its value again:

>>>rate=0.075

>>>rate

0.075

The value 0.075 seen in the previous code is an output, because the variable called
rate was assigned a value. The following code is used retrieve the value of the
deleted variable:

>>>del rate

>>>rate

Traceback (most recent call last):

File "<pyshell#72>", line 1, in <module>

 Rate

NameError: name 'rate' is not defined [End of codes]

This output tells us that the rate variable is not defined (refer to the last sentence of
the previous output). To remove/delete/unsign several variables at once, we use a
comma to separate those variables as shown in the following code:

>>>pv=100

>>>r=0.85

>>>dir()

['__builtins__', '__doc__', '__name__', '__package__', 'pv', 'r']

>>>del pv, r

>>>dir()

['__builtins__', '__doc__', '__name__', '__package__']

Using Python as an Ordinary Calculator

[28]

Basic math operations – addition,
subtraction, multiplication, and division
For basic math operations in Python, we use the conventional mathematical
operators +, -, *, and /. These operators represent plus, minus, multiplication, and
division operations respectively. All these operators are embedded in the following
line of code:

>>>3.09+2.1*5.2-3/0.56

8.652857142857144

Although we use integer division less frequently in finance, a user might type the
division sign twice (//) accidentally to get a weird result. The integer division is
done with double slash //, which would return an integer value that is the largest
integer than the final output. The result of 7 divided by 3 is 2.33, and 2 will be the
largest integer smaller than 2.33. This example is shown in the following code:

>>>7/3

2.3333333333333335

For Python 2.x versions, 7/3 could be 2 instead of 2.333. Thus, we have to be
careful. In order to avoid an integer division, we could use 7/2 or 7/2., that is, at
least one of them is a real (float) number:

>>>7//3

2

Here, n//m is equivalent to an integer function of int(n/m) as shown in the
following code:

>>>x=7/3

>>>x

2.3333333333333335

>>>int(x)

2

The power function, floor, and remainder
For our FV=PV(1+R)^n, we use a power function. The floor function would give the
largest integer smaller than the current value. The remainder is the value that remains
after an integer division. Given a positive discount rate, the present value of a future
cash flow is always smaller than its corresponding future value.

Chapter 2

[29]

The following formula specifies the relationship between a present value and its
future value:

()1 n
FVPV
R

=
+

 (3)

In this formula, PV is the present value, FV is the future value, R is the cost of capital
(discount rate) per period, and n is the number of periods. Assume that we would
receive $100 payment in two years and that the annual discount rate is 10 percent.
What is the equivalent value today that we are willing to accept?

>>>100/(1+0.1)**2

82.64462809917354

Here, ** is used to perform a power function. The % operator is used to calculate the
remainder. Refer to the following example for the implementation of these operators:

>>>17/4 # normal division

4.25

>>>17//4 # save as floor(17/4)

4

>>>17%4 # find out the remainder

1

Assume that we would receive $10 at the end of each year forever and that the first
cash flow would occur at the end of the ninth year. What is the present value if the
discount rate is 8 percent per year? To solve this problem, we could combine the first
and third formulae we discussed as follows:

()
() 1

1,1
1

st th
m
CPV perpetuity cash flow at m period
RR −=

+
 (4)

In this formula, C is the periodic cash flow, R is the discount rate, the first cash
flow occurs at the mth period. Notice that when m is 1, equation (4) collapses to
equation (1). Applying equation (4), we would get a value of $67.53 as shown in
the following code:

>>>10/0.08/(1+0.08)**(9-1)

67.53361056274696

Using Python as an Ordinary Calculator

[30]

A true power function
If we deposit $100 today and the annual interest rate is 10 percent, what is the value
of our deposit one year later? If we use FV for the future value, PV for the present
value, R for the annual (periodic) interest rate, and n is the number of years (periods),
we get the following formula:

()1 nFV PV R= + (5)

Note that the two variables R and n should be consistent. It means that if R is an
effective monthly rate, n must be the number of months. If R is an effective annual
rate, n must be the number of years. This is true for other frequencies as well, as
shown in the following code:

>>>pv=100

>>>r=0.1

>>>n=1

>>>pv*(1+r)**n

110.00000000000001

Again, two multiplication signs ** stand for a power function. Actually, Python has
a built-in function for power function, pow(x,y) for raising x to the power of y. An
example of the power function is shown as follows:

>>>pow(2,3)

8

>>>100*pow((1+0.1),1)

110.00000000000001

Apparently, in the previous example, we use two inputs for the power function
pow(x,y). In this two-input case, it is equivalent to x**y. Actually, the function could
have three input variables. Using help(pow), we will find more information on this
function refer to the following output. In the previous example, pow((1+0.1),1)
is the same as pow(1+0.1,1). The parentheses around 1+0.1 are not necessary, but
their usage makes the expression clearer. In Python, we have the so-called LEGB rule
related to local variables and global variables as shown in the following table:

L Local refers to names assigned in any way within a function (def) and not
declared global in that function.

E Enclosing refers to enclosing function locals, such as names, in the local scope
of any and all enclosing functions (def).

Chapter 2

[31]

G Global refers to names such as those assigned at the top level of a module or
declared as a global variable within a function defined by def.

B Built-in refers to names pre-assigned in the built-in modules, such as open,
range, and SyntaxError.

To find out more information about a function, we use the help() function as follows:

>>>help(pow)

Help on built-in function pow in module builtins:

pow(...)

 pow(x, y[, z]) -> number

 With two arguments, equivalent to x**y. With three arguments,
equivalent to (x**y) % z, but may be more efficient (e.g. for longs).

According to the previous definition, we have an example as follows:

>>>pow(3,10,4)

1

>>>3**10%4

1

>>>3**10

59049

>>>59049%4

1

Choosing appropriate precision
The default precision for Python has 16 decimal places as shown in the following
example. This is good enough for most finance-related problems or research:

>>>7/3

2.3333333333333335

We could use the round() function to change the precision as follows:

>>>payment1=3/7

>>>payment1

0.42857142857142855

>>>payment2=round(y,5)

>>>payment2

0.42857

Using Python as an Ordinary Calculator

[32]

Assume that the units for both payment1 and payment2 are in millions. The
difference could be huge after we apply the round() function with just two decimal
places! If we use one dollar as our unit, the exact payment is $428,571. However,
if we use millions instead and apply two decimal places, we end up with 430,000,
which is shown in the following example. The difference is $1,429:

>>>payment1*10**6

428571.4285714285

>>>payment2=round(payment1,2)

>>>payment2

0.43

>>>payment2*10**6

430000.0

Finding out more information about a
specific built-in function
To understand each math function, we apply the help() function, such as
help(round), as shown in the following example:

>>>help(round)

Help on built-in function round in module builtins:

round(...)

 round(number[, ndigits]) -> number

Round a number to a given precision in decimal

digits (default 0 digits).This returns an int when

called with one argument, otherwise the same type as

the number. ndigits may be negative.

Listing all built-in functions
To find out all built-in functions, we perform the following two-step approach. First,
we issue dir() to find the default name that contains all default functions. When
typing its name, be aware that there are two underscores before and another two
underscores after the letters of builtins, that is, __builtins__:

>>>dir()

['__builtins__', '__doc__', '__loader__', '__name__', '__package__', 'x']

Chapter 2

[33]

Then, we type dir(__builtins__). The first and last couple of lines of the output
are given as follows:

>>>dir(__builtins__)

['ArithmeticError', 'AssertionError', 'AttributeError',

'BaseException', 'BlockingIOError', 'BrokenPipeError',

'BufferError', 'BytesWarning', 'ChildProcessError',

'range', 'repr', 'reversed', 'round', 'set', 'setattr',

'slice', 'sorted', 'staticmethod', 'str', 'sum',

'super', 'tuple', 'type', 'vars', 'zip']

Importing the math module
When learning finance with real-world data, we deal with many issues such as
downloading data from Yahoo! finance, choosing an optimal portfolio, estimating
volatility for individual stocks or for a portfolio, and constructing an efficient
frontier. For each subject (topic), experts develop a specific module (package). To use
them, we have to import them. For example, we can use import math to import all
basic math functions. In the following codes, we calculate the square root of a value:

>>>import math

>>>math.sqrt(3)

1.732050807568772

To find out all functions contained in the math module, we call the dir() function
again as follows:

>>>import math

>>>dir(math)

['__doc__', '__loader__', '__name__', '__package__', 'acos', 'acosh',
'asin', 'asinh', 'atan', 'atan2', 'atanh', 'ceil', 'copysign', 'cos',
'cosh', 'degrees', 'e', 'erf', 'erfc', 'exp', 'expm1', 'fabs',
'factorial', 'floor', 'fmod', 'frexp', 'fsum', 'gamma', 'hypot',
'isfinite', 'isinf', 'isnan', 'ldexp', 'lgamma', 'log', 'log10', 'log1p',
'log2', 'modf', 'pi', 'pow', 'radians', 'sin', 'sinh', 'sqrt', 'tan',
'tanh', 'trunc']

Using Python as an Ordinary Calculator

[34]

To make our command simpler, we could use import math as m instead as shown
in the following example:

>>>import math as m

>>>m.sqrt(5)

2.23606797749979

The pi, e, log, and exponential functions
Pi (3.14159265) and e (2.71828) are special values in math and finance. To show their
values, we have the following code. The first command imports a module called math.
A new learner just needs to memorize those commands without a deep understanding
of their meanings. Later in the book, we will devote four chapters to modules:

>>>import math

>>>math.pi

3.141592653589793

>>>math.e

2.718281828459045

>>>math.exp(2.2)

9.025013499434122

>>>math.log(math.e) # log() is a natural log function

1.0

>>>math.log10(10) # log10()

1.0

Again, we simply type pi or e to see their values. Since they are reserved values, it is
a good idea that we don't use them as our variables and don't assign a value to them.

"import math" versus "from math import *"
To make our program simpler, it is a good idea to use from math import *. Let's use
the sqrt() function as an example. If we use import math, we have to use math.
sqrt(2). On the other hand, if we use from math import *, we simply use sqrt(2)
as shown in the following example:

>>>from math import *

>>>dir()

Chapter 2

[35]

['__builtins__', '__doc__', '__loader__', '__name__', '__package__',
'acos', 'acosh', 'asin', 'asinh', 'atan', 'atan2', 'atanh', 'ceil',
'copysign', 'cos', 'cosh', 'degrees', 'e', 'erf', 'erfc', 'exp', 'expm1',
'fabs', 'factorial', 'floor', 'fmod', 'frexp', 'fsum', 'gamma', 'hypot',
'isfinite', 'isinf', 'isnan', 'ldexp', 'lgamma', 'log', 'log10', 'log1p',
'log2', 'modf', 'pi', 'pow', 'radians', 'sin', 'sinh', 'sqrt', 'tan',
'tanh', 'trunc']

Now, we could call those functions or set of values, such as pi and e, directly.
Now, math.pi is not defined if we issue it from math import * as shown in
the following code:

>>>pi

3.141592653589793

>>>math.pi

Traceback (most recent call last):

 File "<pyshell#25>", line 1, in <module>

 math.pi

NameError: name 'math' is not defined

One of the advantages of such a treatment is to make our programming a little bit
easier since these functions are available directly. However, if we assign a value to
e or pi, their values would be changed with our new assignment as shown in the
following code. Thus, we should be careful with those specific values:

>> pi

3.141592653589793

>>>pi=10

>>>pi

10

We could import a few functions from a specific module such as math as shown in
the following example:

>>>dir()

['__builtins__', '__doc__', '__loader__', '__name__', '__package__']

>>>from math import sqrt,log

>>>dir()

['__builtins__', '__doc__', '__loader__', '__name__', '__package__',
'log', 'sqrt']

Using Python as an Ordinary Calculator

[36]

A few frequently used functions
There are several functions we are going to use quite frequently. In this section,
we will discuss them briefly. The functions are print(), type(), upper(), strip(),
and last expression _. We will also learn how to merge two string variables. The
true power function pow() discussed earlier belongs to this category as well.

The print() function
Occasionally, we need to print something on screen. One way to do so is to apply the
print() function as shown in the following example:

>>>import math

>>>print('pi=',math.pi)

pi= 3.141592653589793

At this stage, a new user just applies this format without going into more detail
about the print() function.

The type() function
In Python, the type() function can be used to find out the type of a variable as
follows:

>>>pv=100.23

>>>type(pv)

<class 'float'>

>>>n=10

>>>type(n)

<class 'int'>

>>>

From these results we know that pv is of the type float (real number) and n is of the
type integer. In finance, integer and float are the two most used types. Later in the
book, we will discuss other types of data (variables).

Last expression _ (underscore)
In the interactive mode, the last printed expression is assigned to _ as shown in the
following example:

>>>x=1.56

>>>y=5.77

Chapter 2

[37]

>>>x+y

7.33000000000000000001

>>>9+_

16.32999999999999998

>>>round(_,1)

16.3

Combining two strings
We can assign a string in several ways. The following three lines show two ways to
assign a string to a variable and concatenation:

>>>x='This is '

>>>y=" a great job!"

In this assignment, one variable uses the single quotation mark, and the second one
applies double quotation marks. The result of concatenation is shown as follows:

>>>x+y

'This is a great job!'

The upper() function
The upper() function will convert the entire string into all capital letters as follows:

>>>x='This is a sentence'

>>>x.upper()

'THIS IS A SENTENCE'

Please pay attention to how we call such a function. This is our first time to see
such usage of a function. To remove the leading and trailing spaces, we can use the
strip() function. The following example uses a function called strip() that is used
to remove the leading and trailing spaces:

>>>x=" Hello "

>>>y=x.strip()

>>>y

'Hello'

>>>

Using Python as an Ordinary Calculator

[38]

We could combine the assignment operation and the strip() function as follows:

>>>z=" Hello ".strip()

If we want to know about all string functions, we can issue the dir('')
command as follows:

>>>dir('') # list all string functions

The output of this command is shown as follows:

>>>dir('')

['__add__', '__class__', '__contains__', '__delattr__', '__doc__',
'__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__',
'__getnewargs__', '__gt__', '__hash__', '__init__', '__iter__', '__
le__', '__len__', '__lt__', '__mod__', '__mul__', '__ne__', '__new__',
'__reduce__', '__reduce_ex__', '__repr__', '__rmod__', '__rmul__', '__
setattr__', '__sizeof__', '__str__', '__subclasshook__', 'capitalize',
'center', 'count', 'encode', 'endswith', 'expandtabs', 'find', 'format',
'format_map', 'index', 'isalnum', 'isalpha', 'isdecimal', 'isdigit',
'isidentifier', 'islower', 'isnumeric', 'isprintable', 'isspace',
'istitle', 'isupper', 'join', 'ljust', 'lower', 'lstrip', 'maketrans',
'partition', 'replace', 'rfind', 'rindex', 'rjust', 'rpartition',
'rsplit', 'rstrip', 'split', 'splitlines', 'startswith', 'strip',
'swapcase', 'title', 'translate', 'upper', 'zfill']

>>>

To find out specific information about a string function, we can use the following code:

>>>help(''.upper)

Help on the built-in upper() function is displayed as follows:

upper(...)

 S.upper() -> string

 Return a copy of the string S converted to uppercase.

Here is another example related to a built-in function called capitalize:

>>>print(''.capitalize)

Help on the built-in capitalize() function is displayed as follows:

capitalize(...)

 S.capitalize() -> string

 Return a copy of the string S with only its first character

 capitalized.

>>>

Chapter 2

[39]

The tuple data type
For Python, a tuple is a data type or object. A tuple could contain multiple data types
such as integer, float, string, and even another tuple. All data items are included in a
pair of parentheses as shown in the following example:

>>>x=('John',21)

>>>x

('John', 21)

We can use the len() function to find out how many data items are included in each
variable. Like C++, the subscript of a tuple starts from 0. If a tuple contains 10 data
items, its subscript will start from 0 and end at 9:

>>>x=('John',21)

>>>len(x)

2

>>>x[0]

'John'

>>>type(x[1])

<class 'int'>

The following commands generate an empty tuple and one data item separately:

>>>z=()

>>>type(z)

<class 'tuple'>

>>>y=(1,) # generate one item tuple

>>>type(y)

<class 'tuple'>

>>>x=(1) # is x a tuple?

For a tuple, one of its most important features as shown in the following example,
is that we cannot modify the value of a tuple, that is, the tuple is immutable. In the
next chapter, we will discuss another data type called list. For a list, we can modify
its values.

>>>investment=('NPV',100,'R=',0.08,'year',10)

>>>investment[1]

100

>>>investment[1]=345

Using Python as an Ordinary Calculator

[40]

Traceback (most recent call last):

 File "<pyshell#3>", line 1, in <module>

 investment[1]=345

TypeError: 'tuple' object does not support item assignment

Assume that we are interested in assigning a name and age to a variable x as John
and 21 respectively. Then we print My name is John and 21 year-old. We could
use the tuple type. Note that %d is the format for the integer type. We will mention
other data types in such a printing environment in later chapters:

>>>x=('John',21)

>>>print('My name is %s and %d year-old' % x)

My name is John and 21 year-old

Summary
In this chapter, we learned some basic concepts and several frequently used Python
built-in functions such as basic assignment, precision, addition, subtraction, division,
power function, and square root function. In short, we demonstrated how to use
Python as an ordinary calculator to solve many finance-related problems.

For example, how to estimate the present value of one future cash flow, the future
value of one cash flow today, the present value of a perpetuity, and the present value
of a growing perpetuity. In addition, we discussed the dir(), type(), floor(),
round(), and help() functions. We show how to get the list of all Python built-in
functions and how to get help for a specific function.

Based on the understanding of the first two chapters, in the next chapter, Chapter 3,
Using Python as a Financial Calculator, we plan to use Python as a financial calculator.

Exercises
1. What is the difference between showing the existence of our variables and
showing their values?

2. How can you find out more information about a specific function, such
as print()?

3. What is the definition of built-in functions?

4. What is a tuple?

Chapter 2

[41]

5. How do we generate a one-item tuple? What is wrong with the following way to
generate a one-item tuple?

>>>abc=("John")

6. Can we change the values of a tuple?

7. Is pow() a built-in function? How do we use it?

8. How do we find all built-in functions? How many built-in functions are present?

9. When we estimate the square root of three, which Python function should we use?

10. Assume that the present value of a perpetuity is $124 and the annual cash flow is
$50; what is the corresponding discount rate?

11. Based on the solution of the previous question, what is the quarterly rate?

12. The growing perpetuity is defined as: the future cash flow is increased at a
constant growth rate forever. We have the following formula:

() CPV growing perpetuity
R g

=
−

Here PV is the present value, C is the cash flow of the next period, g is a growth rate,
and R is the discount rate. If the first cash flow is $12.50, the constant growth rate
is 2.5 percent, and the discount rate is 8.5 percent. What is the present value of this
growing perpetuity?

13. For an n-day variance, we have the following formula:

2 2 2
n day n day dailynσ σ σ− − =

Here
2
dailyσ dailyσ is the daily variance and dailyσ is the daily standard deviation

(volatility). If the volatility (daily standard deviation) of a stock is 0.2, what is its
10-day volatility?

14. We expect to have $25,000 in 5 years. If the annual deposit rate is 4.5 percent,
how much amount do we have to deposit today?

15. How do we convert This is great! into all capital letters?

16. How do we limit our output to cents, such as rounding 2.567 to 2.57?

Using Python as an Ordinary Calculator

[42]

17. What is the difference between one forward slash / and two forward slashes //?

18. We have 41 students in our class. If three students form a group for their term
projects, how many groups would result and how many students remain? How
about seven per group?

19. Is the lower() function a built-in function? How can you find its usage?

20. Explain the following results in terms of the round() function:

>>>x=5.566

>>>round(x,2)

5.57

21. What is the present value of a growing perpetuity when its growth rate is higher
than the discount rate (g>R)?

() CPV perpetuity
R g

=
−

Using Python as a
Financial Calculator

In this chapter, we will learn how to write simple functions such as estimation of
the present value for a given future value, the present value of an annuity, and the
monthly payment of our mortgage. In addition, we will show how to combine two
dozens of small functions as a big Python program and use it for financial estimation.
In other words, we plan to create a financial calculator using Python.

In particular, we will cover the following topics:

•	 Writing a Python function without saving it
•	 Why indentation is critical in Python
•	 Three ways to input values and a default value for an input variable
•	 Using dir() to check the existence of our newly generated function
•	 Saving our pv_f() function
•	 Activating our function from our Python editor using import()
•	 While debugging a program, activate your program from a Python editor
•	 import test01 versus from test01 import *
•	 Removing a function using the del() method
•	 Generating our own module
•	 Two types of comments
•	 The if() function
•	 Estimation of annuity

Using Python as a Financial Calculator

[44]

•	 Interest rate conversion and continuously compounded interest rate
•	 Data type – list
•	 NPV rule, payback rule, and internal rate of return (IRR) rule
•	 Showing certain files in a specific directory and path issue
•	 Using Python as a financial calculator
•	 Adding our project directory to the path

Writing a Python function
without saving it
We start from the simplest way to write a Python program. The formula of
estimating the present value for a given future cash flow is as follows:

()1 n
FVPV
R

=
+

 (1)

In this equation, PV is the present value FV is the future value R is the periodic
discount rate, and n is the number of periods. After launching Python, we just type
the following two lines. After typing the second line, press the Enter key on our
keyboard twice to return to the Python prompt of >>>:

>>>def pv_f(pv,r,n):

 return fv/(1+r)**n

>>>

The key word used to write a Python function is def. The function name is pv_f. The
input variables are enclosed in the parentheses. Notice that upon pressing the Enter
key after we type colon (:), the next line is automatically indented. Now, we are
ready to call this present value function easily just as any Python built-in function.
One of the wonderful features is that after typing the function name and the left
parenthesis, that is, pv_f(, we will be given a list of input variables as shown in the
following screenshot. This feature is not true for the Python Version 2.7.

Chapter 3

[45]

To execute the function, just enter a set of ordered input values, as shown in the
following code:

>>>pv_f(100,0.1,1)

90.9090909090909

>>>pv_f(80,0.05,6)

59.69723173093019

Default input values for a function
Sometimes, we set up a default input value to call our function more efficiently.
Here, we use the dir2() function, which we created in the last section as an
example. If the most frequently called directory is in C: Python32, we could set
it as our default input value. This means after we activate this function and issue
>>>dir2(), the contents under this directory will be displayed automatically, as
shown in the following code:

def dir2(path="c:\python32"):

 from os import listdir

 print(listdir(path))

By the way, when a function needs inputs and there are no default input values,
we would receive an error message when we don't have input values.

Indentation is critical in Python
Indentation plays a vital role in Python. Let's look at an R program. Anything between
a pair of curly braces belongs to the same logic block. If we have multiple lines, the
indentation is not important for R programs, as shown in the following code:

pv_f<-function(fv,r,n) { # this is an R program

 pv<-fv*(1+r)^(-n)

pv

}

To achieve the same result in Python, we use indentations instead. This means that
all the lines with the same indentation belong to the same scope, as shown in the
following code:

def pv_f(fv,r,n):

 pv=fv/(1+r)**n

 return pv

Using Python as a Financial Calculator

[46]

The following are the ways to input values:

•	 In the preceding example, pv_f(100,0.1,1), we input three values, 100,
0.1, and 1. There is no ambiguity that 100 is the future value, 0.1 is the
discount rate, and 1 is the number of periods since the input variables are
arranged this way. This is the first way to input values into a function.

•	 The second way to input values is based on key words. The advantage of
this so-called key word method is that the order of input values does not play a
role anymore. This could reduce our careless mistakes because we don't have
to remember the input order when we call a function. This is especially true
when we are dealing with many functions (programs) written by different
developers/authors:
>>>pv_f(r=0.1,fv=100,n=1)

90.9090909090909

>>>pv_f(n=1,fv=100,r=0.1)

90.9090909090909

•	 The third way is the combination of the preceding two methods: ordered
input first and then inputs with keywords, as shown in the following code:

>>>pv=pv_f(100,r=0.1,n=1)

>>>pv2=pv_f(100,n=1,r=0.1)

A word of caution is that the third method is the ordered inputs first, then input(s)
with key words, and not the other way around.

Checking the existence of our functions
Again, we can use the dir() function to detect the existence of our just covered
pv_f() function, as shown in the following code:

>>>dir()

['__builtins__', '__doc__', '__name__', '__package__', 'pv_f']

To save our file, we need to perform the following simple steps:

1.	 Navigate to File | New Window Ctrl + N and type the following two-liner
code. A careful user would notice that after pressing the Enter key at the end
of the first line, the second line will be indented automatically. While writing
just two lines of code, it is not obvious. However, for a block of code with
multiple lines, a correct indentation is critical. Later in the chapter, we will
show and discuss this issue in more detail:
def pv_f(fv,r,n):

 return fv/(1+r)**n

Chapter 3

[47]

2.	 Click on File and then save (Ctrl + S) to save the preceding two lines of
code. Assume that we name the file as test01.py. The default directory is
Python33 in C: if we have installed Python 3.3.

When we save our function, the name of the file is not related to the name of the
function. This is especially true when our saved file contains multiple functions.

To activate our saved function, we have the two most used ways, discussed in the
Defining a function from our Python editor and Activating our function using the import
function sections.

While writing a Python program, we can use any editor, such as the Python editor,
Notepad, or even MS Word. If we are using MS Word, we have to remember to
save our program in the .txt format. However, the R editor is preferred since its
automatic indentation and colorful highlighting, among other features, make our
debugging job easier.

Defining functions from our Python editor
After saving our previously discussed two-line code, click on Run and then on Run
Module F5. If there is no error, the following line will appear. By the way, if we click
on Run before we save the program, we will be asked to save it:

>>>===========RESTART ==================

To check whether the pv_f() function is present in the memory, we type dir(), as
shown in the following code:

>>>dir()

['__builtins__', '__doc__', '__file__', '__loader__', '__name__', '__
package__', 'pv_f']

>>>

Now, we can execute this Python program by entering a set of three input values, as
shown in the following code:

>>>pv_f(100,0.1,1)

90.9090909090909

Using Python as a Financial Calculator

[48]

As we discussed before, we could use the key word method to input values. After we
quit and relaunch Python, the pv_f() function will be no longer available.

Activating our function using the import
function
In the previous chapter, we learned that we could issue the import math command
to upload the math module in order to use its included functions. Similarly, we can
use the import function here. In other words, we have to upload or import it. Since
we have the test01. py file saved under our default directory (Python33 in C:),
we will use it, as shown in the following code:

>>>import test01

>>>dir()

['__builtins__', '__doc__', '__file__', '__loader__', '__name__', '__
package__', 'test01']

>>>test01.pv_f(100,0.1,1)

90.9090909090909

Since test01 could be treated the same way as the math module discussed in Chapter
2, Using Python as an Ordinary Calculator, we have to use test01.pv() instead of
pv_f(). See the following comparison. The ceil() function offers the smallest
integer that is bigger than the input value:

>>>import math

>>>math.ceil(3.5)

4

>>>import test01

>>>test01.pv_f(100,0.1,1)

90.9090909090909

Debugging a program from a Python
editor
The preceding two sections show the two ways to activate our program, that is, from
a Python editor or using the import function. Usually, the choice should depend on
a user's preference. However, while debugging, activating our program from our
Python editor is much better than the second method. If we use the second method,
our program is not updated as we normally expect.

Chapter 3

[49]

The following example contains a typo since we use both r (lower case) and R
(capital letter) in the program (assume that we save it under C:\Python33 with the
name test02.py):

def pv_f(fv,r,n):

 return fv/(1+R)**n # a typo of r

After issuing from test02 import * and calling the function, we will see an error
message, as shown in the following code:

>>>from test02 import *

>>>pv_f(100,0.1,1)

Traceback (most recent call last):

 File "<pyshell#1>", line 1, in <module>

 pv_f(100,0.1,1)

 File ".\test02.py", line 3, in pv_f

 return fv/(1+R)**n

NameError: global name 'R' is not defined

After correcting the typo by replacing the capital R with a lowercase r, saving our
file, and repeating the first two lines of the preceding code, that is, from test01
import * and pv_f(100,0.1,1), we will still have an error message. Only after
quitting and restarting Python, can we call the updated Python program. This
feature makes our debugging task difficult if we use the second way to load our
updated function.

Two ways to call our pv_f() function
To call our pv_f() function included in the Python program test01.py, we can use
import test01 or from test01 import *. Obviously, it is more convenient to use
pv_f() instead of test01.pv_f(). To call the function directly, we use from test01
import *. Refer to the following parallel structures:

>>>from math import *

>>>sqrt(3.5)

1.8708286933869707

>>>from test01 import *

>>>pv_f(100,0.1,2)

82.64462809917354

Using Python as a Financial Calculator

[50]

When we are sure about the existence of a specific function in test01.py, we can
import it specifically as follows:

>>>from math import ceil,sqrt,pi

>>>from test01 import pv_f

The del() built-in function is used to remove a function or variable, as shown in the
following code:

>>>del pv_f

>>>dir()

['__builtins__', '__doc__', '__loader__', '__name__',

'__package__']

Generating our own module
The math module has more than two dozen functions, such as the pow(), sin(),
and ceil() functions. It is definitely a good idea to have just one program or file or
package or module to include all of them. Let's start from the simplest case of two
functions. The first function is the pv_f() function we discussed before. Our second
function is the present value of perpetuity, which has constant cash flow at the same
interval forever. If the first cash flow occurs at the end of the first period, we have the
following formula:

() cPV perpetuity
R

= (2)

Here, c is the constant periodic cash flow occurring at the end of each period, and R
is the periodic discount rate. For example, if we are expected to receive $10 at the end
of each year forever, and the first cash flow would happen at the end of the first year,
then the present value of such a perpetuity is $100 (10 / 0.1) if the annual discount
rate is 10 percent.

Again, we need to navigate to File | (Choose) A new Window (Ctrl+N), and then
type the following two functions:

def pv_f(fv,r,n):

 return fv*(1+r)**n

def pv_perpetuity(c,r):

 return c/r

Chapter 3

[51]

After executing the preceding two functions, navigate to File | Save, and give the
name fin101.py. After issuing from fin101 import *, both the functions will
be available:

>>>from fin101 import *

>>>pv_perpetuity(100,0.1)

1000.0

Types of comments
When we write a complex program, the flow of logic is very important. At the same
time, some good comments or explanations will help other programmers, other users,
and even ourselves greatly. For a program that is not well documented, its author
might have a hard time understanding it a few months later. We could add comments
in many places. For example, at the beginning of the program, we could write the
name of the program, objective, input variables, output variables, author or authors
of the program, version of the program, and contact information. Some comments
could be long, while others could be just a phrase. To satisfy various needs, Python has
different types of methods to add comments. When the underlying software compiles
the program, those comments could be ignored automatically.

The first type of comment
In Python, anything after # is a comment:

>>>fv=100 # this is comment

>>>fv

100

While writing a function, we could add several short comments such as definitions
of input variables and one or two examples to explain the usage of our function:

present value of perpetuity

def pv_perpetuity(c,r):

 # c is cash flow

 # r is discount rate

 return c/r

Using Python as a Financial Calculator

[52]

The second type of comment
If we have a one-line comment, it is quite convenient to use #. However, for
multiple-line comments, it is cumbersome to add one # in front of each line. For
those cases, we apply the second type of comments using a pair of triple quotation
marks, """ and """, to circle our comments. Thus, we could add a few lines to
explain how our pv_f() function works, as shown in the following code:

def pv_f(fv,r,n):

 """

 Objective: estimate present value

 fv: fture value

 r : discount periodic rate

 n : number of periods

 formula : fv/(1+r)**n

 e.g.,

 >>>pv_f(100,0.1,1)

 90.9090909090909

 >>>pv_f(r=0.1,fv=100,n=1)

 90.9090909090909

 >>>pv_f(n=1,fv=100,r=0.1)

 90.9090909090909

 """

 return fv/(1+r)**n

The alignment within our triple quotation marks is not important. Nevertheless,
a good alignment even within our second type of comments makes our programs
more readable.

Finding information about our pv_f() function
In the previous section, we added several lines of comments and two examples.
The beauty is that we could use those comments to help other users who need
more information about our function:

>>>help(pv_f)

Help on function pv_f in module fin101:

pv_f(fv, r, n)

 Objective: estimate present value

Chapter 3

[53]

 fv: fture value

 r : discount periodic rate

 n : number of periods

 formula : fv/(1+r)**n

 e.g.,

 >>>pv_f(100,0.1,1)

 90.9090909090909

 >>>pv_f(r=0.1,fv=100,n=1)

 90.9090909090909

 >>>pv_f(n=1,fv=100,r=0.1)

 90.9090909090909

Note that only the comments immediately under the first line of def would be shown
after we type help(pv_f). It means that the other, later comments will not be shown.
It also means that if we add any line, such as a=1, before our comments, then nothing
would be shown after we issue help(pv_f).

The if() function
The present value of a growing perpetuity has the following formula:

() cPV growing perpetuity
R g

=
− (3)

Here, C is the first cash flow occurring at the end of the first period, R is the effective
periodic rate, and g is the constant growth rate. The second and the third future
cash flows will be ()1c g+ and ()21c g+ , respectively. A necessary condition for the
correctness of equation (3) is that the discount rate should be greater than the growth
rate, that is, R should be greater than g. What is the present value if C is $10, R is 10
percent, and g is 12 percent? The wrong answer is -500. For these similar cases, we
could use the if() function to print an error message instead of offering the wrong
answer, as shown in the following code:

def pv_growing_perpetuity(c,r,g):

 if(r<g):

 print("r<g !!!!")

 else:

 return(c/(r-g))

Using Python as a Financial Calculator

[54]

We could try different sets of input values, as shown in the following code:

>>>pv_growing_perpetuity(10,0.1,0.08)

499.9999999999999

>>>pv_growing_perpetuity(10,0.1,0.12)

r<g !!!!

Annuity estimation
An annuity is the same periodic cash flows occurring at the same interval for n
periods. There are two types of annuity: ordinary annuity when cash flows occur at
the end of each period and annuity due when cash flows happen at the beginning of
each period. Here is an example. We are going to receive $100 at the end of each year
for the next 7 years. The formulae to estimate the present value and the future value
of an annuity are as follows when their first cash flows happens at the end of the
first period:

()
()
11

1 n
PMTPV annuity
R R

 
= − 

+  
 (4A)

()
()

()11 1
1 n

PMTPV annuity due R
R R

 
= − + 

+  
 (4B)

() ()1 1nPMTFV annuity R
R

 = + − 
 (5A)

() () ()1 1 1nPMTFV annuity due R R
R

 = + − + 
 (5B)

Chapter 3

[55]

Here, PV is the present value, PMT is the equal periodic payment, R is the periodic
discount rate, and n is the number of periods. In the preceding annuity formulae,
PMT, R, and n should be consistent. It means that PMT, R, and n should possess
the same frequency. For example, for mortgage estimation, PMT is the monthly
payment, R is an effective monthly rate, and n is the number of months. If the
annuity enjoys a constant growth rate of g, its present value is as follows:

() 11
1

nPMT gPV growing annuity
R g R

 + = −  − +   
 (6)

Similarly, the future value of a growing annuity is as follows:

() () ()1 1n nPMTPV growing annuity R g
R g

 = + − + −
 (7)

Converting the interest rates
Assume that bank A offers 5 percent compounding monthly, while bank B offers 5.1
percent compounding quarterly. Which bank should we borrow from in order to
enjoy a lower interest rate? These examples are associated with conversion between
different interest rates. First, let's look at the following formula used to estimate
effective annual rate (EAR) for a given Annual Percentage Rate (APR).

1 1
mAPREAR

m
 = + − 
 

 (8)

Here, m is the compounding frequency within one year. For example, if the annual
rate is 5 percent compounding semiannually, its equivalent effective annual rate
will be 5.0625 percent. From the two banks' offers, we would choose the offer of
bank A since the cost of borrowing (effective annual rate) is cheaper, as shown in
the following code:

>>>(1+0.05/2)**2-1

0.05062499999999992

>>>(1+0.051/4)**4-1

0.051983692114066615

Using Python as a Financial Calculator

[56]

For a mortgage estimate, if the annual rate is 5 percent, compounding monthly, the
effective monthly rate will be 0.41667 (0.05/12). However, if the given rate is 5
percent compounding semiannually, what is the corresponding effective monthly
rate? To convert one effective interest rate to another effective interest rate, and from
one APR to another APR, we have to perform the following steps. First, we have to
estimate an effective rate from a given APR and compounding frequency according
to the following formula:

effective
m

APRR
m

= (9)

Here, Rm is the effective rate, APR / m is the annual percentage rate compounded m
times per year, and m is the annual compounding frequency. For example, if a given
APR is 5 percent compounding semiannually, the effective semiannual rate is 2.5
percent. Combining equations (8) and (9), we have the following equivalency:

() ()1 2

1 2
1 1

m meffective effective
m mR R+ = + (10)

Or, we can write the following formula:

1 2

1 2

1 2

1 1
m m

APR APR
m m

   
+ = +   

   
 (11)

Here, APR1 and APR2 are the annual percentage rates and m1 and m2 are their
compounding frequencies. To find out the effective rate with compounding
frequency m2 for a given APR1 and m1, we have the following formula:

1

2

2

1

1

1 1
m
m

effective
m

APRR
m

 
= + − 
 

 (12)

Assume that we plan to borrow $300,000 to buy a house with a 30-year loan. What
is the monthly payment if our bank offers us 5 percent annual rate compounding
semiannually? From equation (4), we know that if we know R, then we can calculate
our monthly payment (pmt) since pv is 300000 and n is 30*12. By applying equation
(12), we would have a monthly mortgage rate of 0.4123915 percent, as shown in the
following code:

>>>r=(1+0.05/2)**(2/12)-1

>>>r

Chapter 3

[57]

0.0041239154651442345

>>>pv=300000

>>>n=30*12

>>>pmt=pv*r/(1-1/(1+r)**n)

>>>pmt

1601.0720364262665

Based on the preceding estimation, the effective monthly rate is 0.41239155 percent
and the monthly payment is $1601.07. At the end of this chapter, we have several
related exercises; refer to 3.18, 3.19, and 3.20.

Continuously compounded interest rate
In the previous section, our compounding frequency could be annual (m=1),
semiannual (2), quarterly (4), monthly (12), or daily (365). If the compounding
frequency increases further and further, such as by the hour, minute, and second, the
limit is called continuously compounded. The following is the conversion formula:

1n 1c
APRR m
m

 = ∗ + 
 

 (13)

Here, Rc is the continuously compounded rate, ln() is a natural log function, APR is
the annual percentage rate, and m is the compounding frequency per year. For the
natural log function, refer to the following code:

>>>import math

>>>math.e

2.718281828459045

>>>math.log(math.e)

1.0

For example, if a given APR of 5 percent is compounded semiannually, its
corresponding continuously compounded rate will be 4.9385225 percent, as
shown in the following code:

>>>import math

>>>2*math.log(1+0.05/2)

0.04938522518074283

Using Python as a Financial Calculator

[58]

In the next chapter, for a call option, the risk-free rate used is
continuously compounded.

A data type – list
A list? is another type of data. Unlike a tuple, which uses parentheses, lists use
square brackets, [and], as shown in the following code. A list could include
different types of data, such as string, integer, float, and A list itself:

>>>record=['John',21,'Engineer',3]

>>>record

['John', 21, 'Engineer', 3]

Like tuples, the first data item starts with a subscript of zero. If we want to list all the
data items from subscript 1 to the end of the list, we use record[1:], and to list all
the data items from subscript 2 to the end of the list, we use record[2:], as shown
in the following code:

>>>len(record)

4

>>>record[0]

'John'

>>>record[2:]

['Engineer', 3]

Unlike tuples, which are immutable, lists can be modified.

 record[0]='Mary'

>>>record[0]

'Mary'

Net present value and the NPV rule
Net present value (NPV) is defined as the difference between the present value of all
the benefits and costs, as shown in the following formula:

() ()NPV PV benefits PV costs= − (14)

Chapter 3

[59]

Assume that we have a 5-year project with an initial investment of $100 million.
The future cash flows at the end of each year for the next five years are $20m, $40m,
$50m, $20m, and $10m, respectively. If the discount rate for such type of investments
is 5 percent per year, should we take the project? First, we have to estimate the NPV
of our project. Second, we have to apply the following decision rule (the NPV rule):

()
()

0
0

If NPV project accept
If NPV project reject

>
 <

 (15)

If we manually estimate the NPV, we can do the following calculations

>>>-100 + 20/(1+0.05)+40/(1+0.05)**2 +50/(1+0.05)**3+20/(1+0.05)**4+10/
(1+0.05)**5

22.80998927303707

Since the NPV of our project is positive, we should accept it.

It is quite tedious to type each value. For example, we typed 0.05 (the r value) five
times. To make our typing a little easier, we could assign a value to r, as shown in the
following code:

>>>r=0.05

>>>-100 + 20/(1+r)+40/(1+r)**2 +50/(1+r)**3+20/(1+r)**4+10/(1+r)**5

22.80998927303707

A much better way is to generate an NPV function by entering the discount rate and
all cash flows including today's investment. After launching Python, navigate to File
| New Window Ctrl+N, and then type the following lines. Navigate to Run | Run
Module 5. Note that while asking for a filename, you could enter npv_f.py:

def npv_f(rate, cashflows):

 total = 0.0

 for i, cashflow in enumerate(cashflows):

 total += cashflow / (1 + rate)**i

 return total

Using Python as a Financial Calculator

[60]

In the preceding function, the first line defines a function with the def key word. The
function name is npv_f instead of npv. On the other hand, if we choose npv as our
function name, and when a user chooses npv as a variable, the function would not be
available any more. The second line defines a total variable and initializes its value
as 0. Based on their indentations, the third and fourth lines could be considered as
one block. The for loop has two intermediate variables i (from 0 to 5) and cashflow
(for values -100, 20, 40, 50, 20, and 10). Notice that the cashflow and cashflows
variables are different. The Python command of x+=v is equivalent to x=x+v. We
will discuss the for loop and other loops in more detail in Chapter 10, Python
Loops and Implied Volatility. If there is no error message, we could use the npv_f()
function easily. To find information about the enumerate() function, we could use
help(enumerate).

>>>r=0.05

>>>cashflows=[-100,20,40,50,20,10]

>>>npv_f(r,cashflows)

22.80998927303707

To make our function more user friendly, we could add the definitions of those two
input variables along with one or two examples.

Defining the payback period and the
payback period rule
A payback period is defined as the number of years we need to recover our initial
investment. In the preceding example, we needed more than two years but less than
three years to recover our $100 million investment since we recovered $60 million
two years and $110 million in three years.

If the revenue is assumed to be distributed evenly within a year, the payback period
of this project will be 2.8 years, as shown in the following code:

>>>40/50+2

2.8

The payback rule is that if the estimated payback period of our project is less than a
critical value (Tcritical), we accept the project. Otherwise, we reject it, as given in the
following conditions:

()
()

critical

critical

If Payback project T accept
If Payback project T reject

<
 >

 (16)

Chapter 3

[61]

Compared with the NPV rule, the payback period rule has many shortcomings,
including the fact that it ignores the time value of money and cash flows after the
payback period, and the benchmark of the critical value is ad hoc. The advantage
is that this rule is very simple.

Defining IRR and the IRR rule
IRR is the discount rate resulting in a zero NPV. The IRR rule is that if our project's
IRR is bigger than our cost of capital, we accept the project. Otherwise, we reject it,
as shown in the following conditions:

()
()

capital

capital

If IRR project R accept
If IRR project R reject

>
 <

 (17)

The Python code to estimate an IRR is as follows:

def IRR_f(cashflows,interations=100):

 rate=1.0

 investment=cashflows[0]

 for i in range(1,interations+1):

 rate*=(1-npv_f(rate,cashflows)/investment)

 return rate

At this stage, this program is quite complex. If a user cannot grasp its meaning, it this
won't impact on them understanding the rest of the chapter. The range(1,100+1)
statement will give us the range from 1 to 101. The i variable takes values from 1 to
101. In other words, the fifth line will repeat 101 times. An assumption behind the
fifth line is that R and NPV are negatively correlated. In other words, an increase in
discount rate R leads to a smaller NPV value.

The key is the fifth line, rate*=(1-npv_f(rate,cashflows)/investment). Let us
simplify it as the following equation:

()1 1i iR R k+ = ∗ −

Using Python as a Financial Calculator

[62]

If Ri leads to a positive NPV value, we would increase our discount rate, that is, Ri+1
will be bigger than Ri, that is, k will be a small negative number. On the other hand,
if Ri leads to a negative NPV value, we would reduce our discount rate, that is, a
positive k. The following result is based on the first round of the loop when R is
100 percent:

>>>cashflows=[-100,20,40,50,20,10] # cash flows

>>>npv_f(1,cashflows) # R(1) is 100%

-72.1875 # negative NPV

>>>cashflows[0] # we would reduce R

-100

>>>k=npv_f(1,cashflows)/cashflows[0]

>>>k # k is positive

0.721875

>>>1*(1-k)

0.27812499999999996 # R(2) will be 0.278

The IRR_f() function depends on the npv_f() function we generated before, as
shown in the following code:

>>>from npv_f import *

>>>cashflows=[-100,20,40,50,20,10]

>>>x=IRR_f(cashflows)

>>>x

0.13601259394401546

Thus, if our cost of capital is 5 percent, we accept the project. We can verify the
preceding result by using the npv_f function and use it as our new discount rate,
as shown in the following code:

>>>npv_f(r,x)

-1.4210854715202004e-14

Showing certain files in a specific
subdirectory
Sometimes we want to know which files are available under a specific directory or
subdirectory. Assume that we save both npv_f.py and pv_f.py at C:\Python33\.
To double check their existence, we have the following code:

>>>from os import listdir

>>>listdir("c:\Python33")

Chapter 3

[63]

Actually, we can create a function called dir2() to mimic the dir() function. The
difference is that the dir() function lists variables and functions in the memory,
while the dir2() function shows files in a given directory. Thus, the dir() function
does not need an input, while our dir2() function needs an input value, that is, a
directory, as shown in the following code:

def dir2(path):

 from os import listdir

 print(listdir(path))

After we save dir2.py at C:\Python33\, we issue the following command to
view it:

>>>from dir2 import *

>>>path='c:\python33'

Using Python as a financial calculator
Based on what we have learned in this chapter, we are ready to put together about
two dozen functions related to finance 101 or other finance courses, and call our final
big program fin101.py. After debugging all the errors, we could call this module
(program) easily by issuing the command from fin101 import *. A more detailed
procedure of how to generate such an R-based financial calculator is as follows:

1.	 Create an empty Python file called fin101.py and save it under our default
directory, that is, Python33 in C:, or other designated directory.

2.	 Add the pv_f() function to fin101.py, and debug the program until it is
error free.

3.	 Repeat the previous step by adding one function at a time until fin101.py
includes all our functions.

4.	 Generate a function called fin101, which is used to offer a list of all our
included functions. A few lines are shown in the following code. Assuming
that our fin101.py file has only two functions, we could generate a very
simple fin101() function, as shown in the following code:
def fin101():

 """

 1) Basic functions:

 PV: pv_f,pv_annuity, pv_perpeturity

 FV: fv_f, fv_annuity, fv_annuity_due

 2) How to use pv_f?

 >>>help(pv_f)

 """

Using Python as a Financial Calculator

[64]

5.	 To use this function, we have the following code. Assume here that the file
called fin101.py includes three functions, pv_f(), fv_f(), and fin101(),
as shown in the following code:

>>>from fin101 import *

>>>help(fin101)

Adding our project directory to the path
In the previous discussion, we assumed that all our programs are saved under our
default directory, that is, Python33 in C: or other similar directories. Obviously, it is
not convenient if we plan to save our Python programs for a specific project under
our designated directory. Assume that all of our programs related to our investment
courses are located at C:\yan\Teaching\Python_for_Finance\codes_chapters\.
To include it in our path, we have the following Python code:

import sys

myFolder="C:\\Yan\\Teaching\\Python_for_Finance\\codes_chapters"

if myFolder not in sys.path:

 sys.path.append(myFolder)

To double check, we use the print(sys.path) command, as shown in the
following code:

>>>import sys

>>>print(sys.path)

['', 'C:\\Python33\\Lib\\idlelib', 'C:\\windows\\system32\\python33.
zip', 'C:\\Python33\\DLLs', 'C:\\Python33\\lib', 'C:\\Python33', 'C:\\
Python33\\lib\\site-packages', 'C:\\Yan\\Teaching\\Python_for_Finance\\
codes_chapters']

An alternative way is to use the path function, as shown in the following code
(only a few lines are shown to save space):

>>>import os

>>>help(os.path)

Help on module ntpath:

NAME

 ntpath - Common pathname manipulations, WindowsNT/95 version.

Chapter 3

[65]

The following table summarizes the functions that we can include in our big Python
program to have most of the functions of a financial calculator. The table has the
following notations:

•	 PV is the present value
•	 FV is the future value
•	 R is the rate of interest for this period (discount rate)
•	 n is the number of periods
•	 C is a recursive cash flow for a perpetuity or annuity
•	 PMT is a recursive cash flow for a perpetuity or annuity (same as C)
•	 g is the growth rate for a growing perpetuity (annuity)
•	 APR is the annual percentage rate
•	 Rc is continuously compounded rate
•	 m is the compounding frequency each year

Note that C, R, and n should be consistent, that is, with the same frequency (unit).
The recommended formulae for a Python financial calculator are as follows:

()1 nFV PV R= +
()1 n
FVPV
R

=
+

() cPV perpetuity
R

=
Assume that the first cash flow occurs
at the end of the first period

() cPV growing perpetuity
R g

=
−

Assume that the first cash flow occurs
at the end of the first period. R > g

()
()
11

1 n
PMTPV annuity
R R

 
= − 

+  

Assume that the first cash flow occurs
at the end of the first period

() ()1 1nPMTFV annuity R
R

 = + − 
Assume that the first cash flow occurs
at the end of the first period

PV (perpetuity due) = PV(perpetuity)*(1+R) Due: cash flow occurs at the begin-
ning of each period

PV (annuity due) = PV(annuity) *(1+R) FV(annuity due) = FV(annuity) *(1+R)

Using Python as a Financial Calculator

[66]

PV (bond)=PV(coupons) + PV(face value)
()

() ()
11

1 1n n
c FVPV bond
R R R

 
= − + 

+ +  

1 1
mAPREAR

m
 = + − 
 

•	 EAR: It is the effective annual
rate

•	 APR: It is the annual percentage
rate

•	 m: It is the compounding
frequency per year

From one APR to another APR
For example, APR1, m1 and m2 are given,
what is APR2?

1 2

1 2

1 2

1 1
m m

APR APR
m m

   
+ = +   

   

From one effective rate to another
effective rate () ()1 2

1 2
1 1

m meffective effective
m mR R+ = +

From one APR to continuously
compounded rate, Rc 1n 1c

APRR m
m

 = ∗ + 
 

From Rc to APR
1

cR
mAPR m e

 
= ∗ − 

 

Summary
In this chapter, we learned how to write simple functions, such as functions to
estimate the present value of one future cash flow, the future value of one present
value, the present value of annuity, the future value of annuity, the present value of
perpetuity, the price of a bond, and Internal Rate of Return (IRR). Obviously, it is
difficult and time consuming to activate several dozens of small functions separately.
How to combine many small functions into a single Python program was be the
focus of this chapter. In other words, we planned to generate a Python program
(module) called fin101.py and used it as a financial calculator. After launching
Python, we issued one command from fin101 import * to activate or load or
import all of our functions. To sum it up, after reading this chapter, you should be
able to write a Python program (module), including almost all the formulae used in
courses such as corporate finance and investment.

Chapter 3

[67]

In Chapter 4, 13 Lines of Python to Price a Call Option, we will show how to write a
Python program to price a call option. In total, there are only 13 lines of code. To
make it suitable for any and all backgrounds, there are no mathematic formulae
related to the option theory.

Exercises
1. How do we generate a Python program without saving it? Please generate a
function that triples any input value.

2. How do we use comments effectively when we write a Python program?

3. What are the advantages and disadvantages of using a default input value
or values?

4. In this chapter, while writing a present value function, we use pv_f(). Why
not use pv(), the same as the following formula?

()1 n
FVPV
R

=
+

 (1)

Here PV is the present value, FV is the future value, R is the periodic discount rate,
and n is the number of periods.

5. How do we debug a complex Python program?

6. What is the efficient way to test a Python program?

7. Why is indentation critical in Python?

8. How to put two formulae together, such as the present value of one future cash
flow and the present value of an annuity?

9. How many types of comments are available? How do we use them effectively?

10. Write a fin101.py program and put together as many formulae as possible,
such as pv_f(), pv_perpetuity(), pv_perpetuity_due(), dpv_annuity(), dpv_
annuity_due(), fv_annuity(), among others.

11. Assume that we have a set of small programs put together called fin101.py.
What is the difference between the two Python commands, import fin101 and
from fin101 import *?

12. How to prevent erroneous inputs such as negative interest rate?

Using Python as a Financial Calculator

[68]

13. We know that the following code works. Here we assume that C:\Python33 exists.

>>>from os import listdir

>>>listdir("c:\python33")

However, the following function does not work. Why?

def dir3(path):

 from os import listdir

 listdir(path)

14. Assume that both npv_f.py and irr_f.py exist under C:\Python32\. What is
wrong with the following code?

>>>from irr_f import *

>>>import npv_f

>>>dir()

['IRR_f', '__builtins__', '__doc__', '__name__', '__package__', 'glob',
'npv_f']

>>>IRR_f(0.04,[-100,50,50,50])

Traceback (most recent call last):

 File "<pyshell#22>", line 1, in <module>

 IRR_f(0.04,[-100,50,50,50])

 File "C:\Python32\irr_f.py", line 3, in IRR_f

investment = cashflows[0]

TypeError: 'float' object is not sub

15. Write a Python program to estimate payback period. For example, the initial
investment is $256, and the expected future cash inflows in the next 7 years will be
$34, $44, $55, $67, $92, $70, and $50. What is the project's payback period in years?

16. If the discount rate is 7.7 percent per year, what is the discounted payback
period? Note: The discount payback period looks at how to recover our initial
investment by checking the summation of present values of future cash flows.

17. Assume that we have a directory C:\python32 and we plan to list all Python
programs under it with a .py extension. We could use the following code to
achieve this:

>>>import glob

>>>glob.glob("c:\python33*.py")

Chapter 3

[69]

Write a Python function called dir2() with an input string variable, that is, we can
call it dir2("c:\python32*.py").

18. Write a Python program to convert a given annual percent rate with
compounding frequency to another effective rate and APR.

1 2

1 2

1 2

1 1
m m

APR APR
m m

   
+ = +   

   

20. Write a Python conversion code to convert one rate to another by combining the
following equations:

1 2

1 2

1 2

1 1
m m

APR APR
m m

   
+ = +   

   

1c

m
R APRe

m
 = + 
 

3.21 Based on the following code, write a Python program to add our path, such as
addPath('c:\my_project'):

>>>import sys

>>>myFolder="C:\\Python_for_Finance\\codes_chapters"

>>>if myFolder not in sys.path:

 sys.path.append(myFolder)

22. Assume that we have 10 projects under 10 directories, such as C:\teaching\
python\, c:\projects\python\, c:\projects\portfolio\, and c:\projects\
investments\. Write a Python program (module) that has 10 functions with
default input values of those 10 directories. After running the first function, the path
of our first project will be automatically added to our path.

13 Lines of Python to
Price a Call Option

To many readers, option theory is like rocket science. In order to make option theory
less intimidating, we deliberately avoided any mathematical formula in this chapter.
Literally, the focus of the whole chapter is around 13 lines of Python code. An option
buyer pays to acquire the right to buy (or sell) something in the future while an
option seller receives an upfront payment to bear an obligation to sell to (or buy
from) the option buyer. A call option buyer has the right to buy a stock at a fixed
price and at a fixed date in the future. A European option can only be exercised when
the option expires, while an American option could be exercised any time before or
at the maturity date.

In this chapter, we will cover the following topics:

•	 13 lines of Python code to price a call option
•	 Writing a Python function without saving it
•	 Using the empty shell method to write a complex Python program
•	 Using the comment-all-out method to write a complex Python program
•	 How to debug other programs

We have the following five lines of Python code to price a European call option:

from math import *

def bs_call(S,X,T,r,sigma):

 d1 = (log(S/X)+(r+sigma*sigma/2.)*T)/(sigma*sqrt(T))

 d2 = d1-sigma*sqrt(T)

 return S*CND(d1)-X*exp(-r*T)*CND(d2)

13 Lines of Python to Price a Call Option

[72]

The first line imports the math module since we need the log(), sqrt(), and exp()
functions in our program. To price a call, we have five input variables: S is the
current stock price, X is the exercise price (a fixed price), T is the maturity (in years),
r is the continuously compounded risk-free rate, and sigma is the volatility of the
underlying security (such as a stock). Since our imported math module does not
include a cumulative standard normal distribution (CND) in the previous program,
we have to write a Python program ourselves. Obviously, if we could import a
module with the CND function, as shown in the following code, we could price a
call option with just five lines! In Chapter 6, Introduction to NumPy and SciPy, we will
show you how to achieve this by using a module called SciPy:

def CND(X):

 (a1,a2,a3,a4
,a5)=(0.31938153,-0.356563782,1.781477937,-1.821255978,1.330274429)

 L = abs(X)

 K=1.0/(1.0+0.2316419*L)

 w=1.0-1.0/sqrt(2*pi)*exp(-L*L/2.)*(a1*K+a2*K*K+a3*pow(K,3)+a4*pow(K,4)+
a5*pow(K,5))

 if X<0:

 w = 1.0-w

 return w

For the CND function, X is the input value. The second line assigns five values to a1,
a2, a3, a4, and a5. A tuple is used to save space. After launching Python, click on
File | New Window Ctrl + N, then type the previous 13 lines of code. After typing,
we will save the file, click on Run, and then click on Run Module F5. If there is no
error, we will see the following result:

>>>===========RESTART ==================

Now, we are ready to use our just finished Python program to price a call option.
With a set of input values of S, X, T, r, and sigma, we could estimate the Black-
Scholes' call option easily. Based on the following set of input values, the call price is
$2.28:

>>>bs_call(40,42,0.5,0.1,0.2)

2.2777859030683096

Until now, we know that there are two separate functions associated with the
pricing of a call option with a total of 13 lines. This is a perfect case based on which
we could explain how to write a relatively complex Python program. For the rest of
the chapter, we will show two ways of writing a Python program: the empty shell
method and comment-all-out method.

Chapter 4

[73]

Writing a program – the empty
shell method
To vividly describe this method, we call it the empty shell method. The method
works like this: generate an empty shell first and test it, then add one line and test it.
If there is no error, add one more line and test the program. Repeat this procedure
until you finish the whole program. The CND function is used as an example in the
following case:

1.	 After launching Python, click on File then New Window Ctrl + N. Generate
the following empty shell:
def CND(x):

 return x

2.	 Click on File | Save; for example, save it as cnd.py.
3.	 Click on Run and then click on Run from module F5. The following line

will appear:
>>>===========RESTART ==================

4.	 To test our program, we will enter various values. If we enter 1, the output
would be 1. If we enter 5, then the output will be 5, as shown in the
following example:
>>>CND(1)

1

5.	 We add one line as shown in the following code:
def CND(x):

 (a1,a2,a3,a4,a5)=(0.31938153,-0.356563782,1.781477937,-1.
821255978,1.330274429)

 return a1

6.	 Note that the return value is a1 instead of x. Click on Run and then
click on Run from module F5; you will see that the following line appears:
>>>===========RESTART ==================

7.	 We could test this program by entering any value. Here is an example:
>>>CND(1)

0.31938153

8.	 Repeat the previous step until we complete this CND() function (program) as
shown in the following code:
from math import *

def CND(X):

13 Lines of Python to Price a Call Option

[74]

 (a1,a2,a3,a4,a5)=(0.31938153,-0.356563782,1.781477937,
 -1.821255978,1.330274429)

 L = abs(X)

 K=1.0/(1.0+0.2316419*L)

 w=1.0-1.0/sqrt(2*pi)*exp(-L*L/2.)*(a1*K+a2*K*K+a3*pow(K,3)
+a4*pow(K,4)+a5*pow(K,5))

 if X<0:

 w = 1.0-w

 return w

9.	 The line from math import * is needed since we are using the sqrt()
function contained in the math module of our CND() function. We could
test this function with different input values as follows:
>>>CND(0)

0.5000000005248086

>>>CND(-2.3229)

0.010092238515047591

>>>CND(1.647)

0.9502209933627817

10.	 Since a standard normal distribution is symmetric, its cumulative
distribution will be 0.5 at 0. It is also well known that a z value of -2.33
corresponds to 1 percent and 1.647 for 95 percent. We could use the Excel
normdist() function to verify our CND function. The structure of the related
Excel function is normdist(x, mean, standard deviation, cumulative). The last one
takes 0 for the normal distribution and 1 for the cumulative distribution as
shown in the following screenshot:

Chapter 4

[75]

Writing a program – the comment-all-out
method
Here is the logic behind this comment-all-out method: type all the lines and then
comment them all. After that, we release one line at a time to debug. We use the
Black-Scholes' call option as an example in the following case:

1.	 Launch Python, click on File | New Window Ctrl + N. Generate the five
lines of code mentioned in step 3. We include several bugs on purpose.

2.	 Click on File and save it.
3.	 Comment out the entire program by using a pair of triple quotation marks.

Since we need some output, we add a return line as follows:
def bs_call(S,X,T,r,sigma):

 """

 d1 = (lo(S/X)+(r+sigma*sigma/2.)*T)/(sigma*sqrt(T))

 d2 = d1-sigmasqrt(T)

 return SCN(d1)-X*exp(-r*T)*CND(d2)

 """

return (X)

4.	 Again, click on Run and then Run from module F5. We will see that the
following output appears:
>>>===========RESTART ===============

5.	 We test it by using any set of input values as follows:
>>>bs_call(40,40,0.5,0.1,0.2)

40

>>>bs_call(40,42,0.5,0.1,0.2)

42

6.	 Note that the output takes the value of the second input variable since we
designed it this way.

7.	 The last step is to release one line at a time. If there is an error or errors,
modify the line accordingly:
defs_call(S,X,T,r,sigma):

 d1 = (lo(S/X)+(r+sigma*sigma/2.)*T)/(sigma*sqrt(T))

 """

13 Lines of Python to Price a Call Option

[76]

 d2 = d1-sigmasqrt(T)

 return SCN(d1)-X*exp(-r*T)*CND(d2)

 """

 return(x)

8.	 When calling the function, we will see an error message meaning that the
lo() function does not exist. Then we realize that we mistyped log(S/X)
as lo(S/X) as shown in the following code:
>>>bs_call(40,40,0.5,0.1,0.2)

Traceback (most recent call last):

 File "<pyshell#52>", line 1, in <module>

 bs_call(40,40,0.5,0.1,0.2)

 File "<pyshell#49>", line 2, in bs_call

 d1 = (lo(S/X)+(r+sigma*sigma/2.)*T)/(sigma*sqrt(T))

NameError: global name 'lo' is not defined

9.	 Repeat step 4 until we finish the whole program.

Using and debugging other programs
Quite often than not, we might start our project based on a program or programs
written by others, such as the programs by our fellow researchers, other students,
teachers, programs downloaded from the Internet, or the old programs we wrote
ourselves a long time ago. As the first step, we need to know whether our borrowed
program contains any errors. These two methods could be used to debug such a
program. In a sense, the second method, comment-all-out method, is preferred since
it might save us some typing or copy-and-paste time. To debug other programs, the
key is to find the locations of the errors. Here is a very useful Python program to
get data from Yahoo! Finance: http://goldb.org/ystockquote.html. A beginner
could download the program to try small functions contained in the program.

Summary
In this chapter, we deliberately avoided any mathematical formula related to the
option theory. Thus, within a short period of time, such as less than two hours, a
reader who has no clue about the option theory could price a European call option
based on the famous Black-Scholes model.

Chapter 4

[77]

In Chapter 5, Introduction to Modules, we will introduce modules formally, and it is the
first chapter of a three-chapter block that focuses on modules. A module is a package
or a set of programs written by one or a group of experts for a specific purpose.
For example, in Chapter 6, Introduction to NumPy and SciPy, we will show that five
lines, instead of 13 lines, could be used to price a call option since we could use the
cumulative standard normal distribution function contained in the SciPy module.

Exercises
1. Write a Python program to price a call option.

2. Explain the empty shell method that is used while writing a complex
Python program.

3. Explain the logic behind the so-called comment-all-out method when writing
a complex Python program.

4. Explain the usage of a return value when we debug a program.

5. When we write the CND, we could define a1, a2, a3, a4, and a5 separately. What
are the differences between the following two approaches?

Current approach:

(a1,a2,a3,a4
,a5)=(0.31938153,-0.356563782,1.781477937,-1.821255978,1.330274429)

An alternative approach:

a1=0.31938153

a2=-0.356563782

a3=1.781477937

a4=-1.821255978

a5=1.330274429

6. What are the definitions of effective annual rate, effect semi-annual rate, and risk-
free rate for the call option model? Assuming that the current annual risk-free rate
is 5 percent, compounded semi-annually, which value should we use as our input
value for the Black-Scholes call option model?

7. What is the call premium when the stock is traded at $39, the exercise price is $40,
the maturity date is three months, the risk-free rate is 3.5 percent (compounding
continuously), and the volatility is 0.15 per year?

13 Lines of Python to Price a Call Option

[78]

8. Repeat the previous exercise if the risk-free rate is still 3.5 percent per year but
compounded semiannually.

9. What are the advantages and disadvantages of using other programs?

10. How to debug other programs?

11. Write a Python program to convert any given annual percentage rate (APR)
that is compounded m times per year to a continuously compounded interest rate.

12. How do you improve the accuracy of the cumulative normal distribution?

13. What is the relationship between APR and a continuously compounded rate (Rc)?

14. A stock has the current stock price of $52.34. What is its call price if the exercise
price is the same as its current stock price, matures in six months with a 0.16 annual
volatility, and the risk-free rate is 3.1 percent (compounded continuously)?

15. For a set of S, X, T, r, and sigma, we could estimate a European call option by
using those 13 lines of Python codes. When the current stock price, S, increases while
other input values are the same, will the call price increase or decrease? Why?

16. Show the previous result graphically.

17. When the exercise price, X, increases, the value of a call will fall. Is this
true? Why?

18. If other input values are constant, the value of the call premium will increase if
the sigma of the stock increases. Is this true? Why?

19*. For a set of input values of S, X, T, r, and sigma, we could use the code in this
chapter to price a European call option, that is, C. On the other hand, if we observe
a real-world price of call premium (Cobs) with a set of values S, X, T, and r, we could
estimate an implied volatility (sigma). Specify a trial-and-error method to roughly
estimate the implied volatility (if a new learner could not get this question, it is
perfectly fine since we will devote a whole chapter to discuss how to do it).

20*. According to the so-called put-call parity, holding a call option with enough
cash at maturity (X dollars) is equivalent to holding a put option with a share of
underlying stock in hand. Here, both call and put options have the same exercise
price (X) with the same maturity (T) and both are European options. If the stock price
is $10, the exercise price is $11, maturity is six months, and the risk-free rate is 2.9
percent (compounded semi-annually), what is the price of a European put option?*
Indicates an advanced level question

Introduction to Modules
In this chapter, we will discuss modules, which are packages written by experts or
any individual to serve special purposes. In this book, we will use about a dozen
modules in total. Thus, knowledge related to modules is vitally important in our
understanding of Python and its application to finance.

In particular, we will cover the following topics:

•	 What is a module and how do we import a module?
•	 Showing all functions contained in an imported module
•	 Adopting a short name for an imported module
•	 Comparing between import math and from math import *
•	 Deleting an imported module
•	 Importing a few functions from a module
•	 Finding out all built-in modules and all available (reinstalled) modules
•	 How to find a specific uninstalled module
•	 Finding the location of an imported module
•	 Module dependency
•	 One super package including many modules
•	 Online searching of modules and videos on how to install a module

Introduction to Modules

[80]

What is a module?
A module is a package that is written by experts, users, or even a new beginner who
is very good in a specific area to serve a specific objective. For example, a Python
module is called quant, which is for quantitative financial analysis. The quant
combines SciPy and DomainModel. The module contains a domain model that has
exchanges, symbols, markets, and historical price, among other things. Modules
are very important in Python. In this book, we will mention about a dozen modules
implicitly or explicitly. In particular, we will discuss five modules in detail: NumPy
and SciPy in Chapter 6, Introduction to NumPy and SciPy; Matplotlib in Chapter 7,
Visual Finance via Matplotlib; and Pandas and Statsmodels in Chapter 8, Statistic
Analysis of Time Series. As of November 6, 2013, there are 24,955 Python packages
with different areas available according to the Python Package Index at
https://pypi.python.org/pypi?%3Aaction=browse. For the financial
and insurance industry, there are 687 modules currently available.

Importing a module
Assume that we want to estimate the square root of the number three. However,
after issuing the following lines of code, we would encounter an error message:

>>>sqrt(3)

SyntaxError: invalid syntax

>>>

The reason is that the sqrt() function is not a built-in function. To use the sqrt()
function, we need to import the math module first as follows:

>>>import math

>>>x=math.sqrt(3)

>>>round(x,4)

1.7321

To use the sqrt() function, we have to type math.sqrt() if we use the import
math command to upload the math module. In addition, after issuing the command
dir(), we will see the existence of the math module, which is the last one in the
output shown as follows:

>>>dir()

['__builtins__', '__doc__', '__name__', '__package__', 'math']

Chapter 5

[81]

In addition, when a module is reinstalled, we could use import x_module to upload
it. For instance, the math module is a built-in module, and it is preinstalled. Later in
the chapter, we show how to find all built-in modules. In the preceding output, after
issuing the command dir(), we also observe __builtins__. This __builtins__
module is different from other built-in modules, such as the math module. It is for all
built-in functions and other objects. Again, we could issue dir(__builtins__) to
list all built-in functions as shown in the following screenshot:

Adopting a short name for an imported
module
Sometimes, the name of a module is long or difficult to type. To save some typing
effort during our programming, we could use the command import x_module as
y_name as shown in the following lines of code:

>>>import sys as s

>>>import time as tt

>>>import numpy as np

>>>import matplotlib as mp

Introduction to Modules

[82]

When calling a specific function contained in an imported module, we use the
module's short name as shown in the following lines of code:

>>>import time as tt

>>>tt.localtime()

time.struct_time(tm_year=2013, tm_mon=7, tm_mday=21, tm_hour=22, tm_
min=39, tm_sec=41, tm_wday=6, tm_yday=202, tm_isdst=1)

Although we are free to choose any short names for our imported modules, we
should respect some convention, such as using np for NumPy and sp for SciPy.
One added advantage of using such commonly used short names is to make our
programs more readable by others.

Showing all functions in an imported module
Assume that we are interested in finding all functions contained in the math module.
For that, first we import it, and then we use dir(math) as shown in the following
lines of code:

>>>import math

>>>dir(math)

['__doc__', '__loader__', '__name__', '__package__', 'acos', 'acosh',
'asin', 'asinh', 'atan', 'atan2', 'atanh', 'ceil', 'copysign', 'cos',
'cosh', 'degrees', 'e', 'erf', 'erfc', 'exp', 'expm1', 'fabs',
'factorial', 'floor', 'fmod', 'frexp', 'fsum', 'gamma', 'hypot',
'isfinite', 'isinf', 'isnan', 'ldexp', 'lgamma', 'log', 'log10', 'log1p',
'log2', 'modf', 'pi', 'pow', 'radians', 'sin', 'sinh', 'sqrt', 'tan',
'tanh', 'trunc']

>>>

Comparing "import math" and "from
math import *"
Although we have discussed this issue in the previous chapters, for the completeness
of this chapter, we will mention it one more time. To make our program simpler, it is
a good idea to use from math import *. This is especially true for a beginner who
has just started to learn Python programming. Let's take a look at the following lines
of code:

>>>from math import *

>>>sqrt(3)

1.7320508075688772

Chapter 5

[83]

Now, all functions contained in the module will be available directly. On the other
hand, if we use import math, we have to specify math.sqrt() instead of sqrt().
When we become more familiar with Python, it would be a good idea to use the
import module. There are two reasons for this. First, we know exactly from which
module we apply our function. Second, we might have written our own function
with the same name as the function contained in another module. A module name
ahead of a function will distinguish it from our own function as shown in the
following lines of code:

>>>import math

>>>math.sqrt(3)

1.7320508075688772

Deleting an imported module
The del() function is used to remove an imported/uploaded module as shown in
the following lines of code:

>>>import math

>>>dir()

['__builtins__', '__doc__', '__loader__', '__name__', '__package__',
'math']

>>>del math

>>>dir()

['__builtins__', '__doc__', '__loader__', '__name__', '__package__']

However, if we use from math import *, we cannot remove all functions by issuing
del math. We have to remove individual functions separately. The following two
commands demonstrate such an effect:

>>>from math import *

>>>del math

Traceback (most recent call last):

 File "<pyshell#23>", line 1, in <module>

 del math

NameError: name 'math' is not defined

Introduction to Modules

[84]

In the following code example, we remove the sqrt() function from our memory.
It is obvious that there is no reason to do so. This operation is used purely for
illustration purposes. The following two commands delete the sqrt() function first,
then try to call it:

>>>del sqrt

>>>sqrt(2)

Traceback (most recent call last):

 File "<pyshell#26>", line 1, in <module>

 sqrt(2)

NameError: name 'sqrt' is not defined

Importing only a few needed functions
In Chapter 4, 13 Lines of Python to Price a Call Option, we need three functions, log(),
exp(), and sqrt(), to price a call option. To make those three functions available,
we issue the command from math import * to upload the math module which
contains those functions. After issuing from math import *, all the functions
included in the module will be available as shown in the following lines of code:

from math import *

def bs_call(S,X,T,r,sigma):

 d1 = (log(S/X)+(r+sigma*sigma/2.)*T)/(sigma*sqrt(T))

 d2 = d1-sigma*sqrt(T)

 return S*CND(d1)-X*exp(-r*T)*CND(d2)

On the other hand, if we need just a few functions, we could specify their names
as shown in the following lines of code:

>>>from math import log, exp, sqrt

>>>round(log(2.3,4))

0.8329

>>>round(sqrt(3.7),4)

1.9235

Chapter 5

[85]

Finding out all built-in modules
A tuple of strings gives the names of all modules that are compiled into this Python
interpreter. The key word here is builtin__module__names, as shown in the
following screenshot:

Note that a built-in module does not mean that they are currently available. For
example, from the preceding output, we know that the math module is preinstalled.
If we want to call a function, such as sin(), contained within the math module, we
have to import it first. On the other hand, the function called modules.keys() in the
sys module only lists the imported modules, as shown in the following screenshot:

Introduction to Modules

[86]

Finding out all the available modules
To find all available modules, we need to activate the help window first. After
that, we issue modules. The following graph illustrates the result after issuing such
a help command:

Then, we issue modules under the Python help> prompt as shown in the
following screenshot:

Chapter 5

[87]

The last lines are shown as follows:

To find a specific module, we just type modules followed by the module's name.
Assume that we are interested in the module called Matplotlib. Then, we issue
modules matplotlib in the help window. The precondition is that the matplotlib
module is preinstalled. If it is not, we could get an error message. The following
graph shows the output after issuing the command of modules matplotlib:

Finding the location of an imported module
In Chapter 6, Introduction to NymPy and SciPy, we will show you how to download and
install NumPy in detail. Here, we just assume that we have installed a module called
NumPy. The following are the three ways to find the location of an imported module:

Introduction to Modules

[88]

The first method (way) is to use print(np.__file__) as shown in the following
lines of code:

>>>import numpy as np

>>>print(np.__file__)

c:\Anaconda\lib\site-packages\numpy__init__.py

The second method is to use np.__file__ without invoking the print() function as
shown in the following lines of code:

>>>np.__file__

'C:\Anaconda\lib\site-packages\numpy__init__.py'

The third method is to just type np after we have imported the module as shown in
the following lines of code:

>>>np

<module 'numpy' from 'c:\Anaconda\lib\site-packages\numpy__init__.py'>

Some readers might ask why we should care about the location of an installed
module in the first place. For example, after finding out that the location of the
NumPy module is c:\Anaconda\lib\site_package\numpy\, we could go to that
subdirectory directly to find more information about this module. By going to the
subdirectory shown earlier, you will find several interesting subdirectories, such
as doc, random, and tests. From those specific subdirectories, a user, especially a
new learner, could locate many useful Python programs. If we accidently generate
a module that has the same name as an existing module, we should know where to
find the existing module for our debugging purposes. A good practice is to avoid
using the same name in the first place.

More information about modules
To get more information on modules, perform the following steps:

1.	 Navigate to All Programs | Python 3.3 | Module Docs as shown in the
following screenshot:

Chapter 5

[89]

2.	 We can also browse the path to find preinstalled modules. After
launching Python, click on File and then on Path Browser as shown
in the following screenshot:

3.	 After we click on Path Browser, we will be given a list of packages, that is,
modules, as shown in the following screenshot:

Introduction to Modules

[90]

Finding a specific uninstalled module
Assume that we are interested in using a Python module called quant for
quantitative analysis. Usually, we would try to import it first. Let's take a look at the
following lines of code:

>>>import quant

Traceback (most recent call last):

 File "<pyshell#0>", line 1, in <module>

 import quant

ImportError: No module named 'quant'

>>>

Since we encounter an error message, it means that the module called quant is not
preinstalled. The following are the steps by which we could locate this module:

1.	 Go to the Python Package Index at https://pypi.python.org/.
2.	 From this web page, choose Browse all packages.
3.	 Choose Python under programming languages (https://pypi.python.

org/pypi?%3Aaction=browse).
4.	 Next, choose Financial and Insurance Industry (https://pypi.python.

org/pypi?%3Aaction=browse).
5.	 Click on show all (https://pypi.python.org/pypi?:action=browse&c=3

3&c=214).
6.	 Search the list by using the keyword quant.
7.	 Finally, we locate the package. The following screenshot shows what we

would see at the end of the last discussed step:

After clicking on quant, we will find its related web page at https://pypi.python.
org/pypi/quant/0.8. Copy this address to your hard drive and ensure that Python
includes that path.

Module dependency
At the very beginning of this book, we argue that one of the advantages of using
Python is that it is a rich source of hundreds of special packages called modules. To
avoid duplicated efforts and to save time in developing new modules, later modules
choose to use functions developed on early modules; that is, they depend on
early modules.

Chapter 5

[91]

The advantage is obvious because developers could save lots of time and effort when
building and testing a new module. However, one disadvantage is that installation
becomes difficult.

There are two competing approaches. The first approach is to bundle everything
together and make sure that all parts play together nicely, thus avoiding the pain of
installing n packages independently. This is wonderful assuming that it works. A
potential issue is that the updating of individual modules might not be reflected in
the super package. The second approach is to use minimal dependencies. It causes
fewer headaches for the package maintainer, but for users who have to install several
components, it can be more of a hassle. Linux has a better way: using the package
installer. The publishers of the package can declare dependencies and the system
tracks them down assuming they are in the Linux repository. SciPy, NumPy, and
quant are all set up like that, and it works great.

In the next chapter, we will discuss the two most important modules, NumPy and
SciPy. However, their installation individually is not a simple exercise. Instead, we
choose a super package called Anaconda. After we install Anaconda, both NumPy and
SciPy would be available.

The following table presents about a dozen Python modules related to finance:

Name of the module Description
Ystockquote Retrieves stock quote data from Yahoo!

Finance
Quant Enterprise architecture for quantitative

analysis in finance
trytond_currency Trytond module with currencies
Economics Functions and data manipulation for

economics data
trytond_project Project module with project management
trytond_analytic_account Financial and accounting module performs

analytic accounting with any number of
analytic charts and the analytic account
balance report

trytond_account_statement Financial and accounting module with
Statement and Statement journal

trytond_stock_split Trytond module to split stock move
trytond_stock_forecast Trytond module with stock forecasts

Introduction to Modules

[92]

Name of the module Description
Finance Calculates financial risks and is optimized

for ease of use through class construction
and operator overload

FinDates Deals with dates in finance

The link that lists some of the most commonly used Python modules is available at
https://wiki.python.org/moin/UsefulModules.

The Python Package Index is available at https://pypi.python.org/pypi. Note
that you have to register first to view the complete list.

Summary
In this chapter, we discussed modules, such as finding all available or installed
modules and how to install a new module. In this book, we will use a few dozen
modules. Thus, an understanding of modules is vital. For example, a module called
Matplotlib, which is useful in various graphs, will be used intensively in the next
chapter, where we discuss the famous Black-Scholes-Merton option model.

In the next chapter, we will introduce the two most important modules: NumPy
and SciPy. Those two modules are used intensively for scientific and financial
computation. In this book, many chapters depend on these two modules. In addition,
many other modules depend on these two modules.

Chapter 5

[93]

Exercises
1. What is a module?

2. How do we find the number of functions in a module called math?

3. What is the difference between import math and from math import *?

4. How do we upload a few specific functions?

5. Where can we find manuals related to a module?

6. How do we remove a module?

7. If I am interested in just a few functions contained in the math module, how could
I import just them?

8. What is module dependency? Why is this an issue when we install a module?

9. There is a module called NumPy. How many modules does it depend on?

10. How could we, as beginners, write a simple module?

11. How many modules are currently available in Python? How do we find a list
of them?

12. Describe the major contents of a module called zipimport.

Introduction to
NumPy and SciPy

In this chapter, we will introduce the two most important modules, called NumPy and
SciPy, which are used intensively for scientific and financial computation based on
Python. In this book, many chapters and modules depend on these two modules.

In particular, we will cover the following topics:

•	 Installation of NumPy and SciPy
•	 Launching Python from Anaconda
•	 Examples of using NumPy and SciPy
•	 Showing all functions in NumPy and SciPy
•	 Getting more information about a specific function
•	 Understanding the list data type
•	 Array in NumPy, logic relationship related to arrays
•	 Working with arrays of ones, zeros, and identity matrix
•	 Performing array operations: +, -, *, and /
•	 The x.sum() dot function
•	 Looping through an array
•	 A list of subpackages for SciPy
•	 Cumulative standard normal distribution
•	 Generating random numbers
•	 Statistic submodule (stats) from SciPy
•	 Interpolation, linear equations, and optimization

Introduction to NumPy and SciPy

[96]

•	 Linear regression and Capital Assets Pricing Model (CAPM)
•	 Retrieving data from an external text file
•	 Installing NumPy independently
•	 Understanding the data types

Installation of NumPy and SciPy
In the previous chapter, we discussed the module dependency and how it might
be difficult to install a new module because it depends on many other modules.
Fortunately, several super packages, such as Anaconda and Enthought Canoy, could
be used to install several (or many) modules simultaneously. In this book, Anaconda
is used, since it contains both NumPy and SciPy. To install it, we have to perform the
following two steps:

1.	 Go to http://continuum.io/downloads.
2.	 According to your machine, choose the appropriate package, such as

Windows 32-bit / 280M / md5: 91a6398f63a8cc6fa3db3a1e9195b3bf.

After installation, we will see the anaconda folder in C: for the Windows system.
The Python version accompanying Anaconda is 2.7. In addition to NumPy and SciPy,
Anaconda contains the other three modules we plan to discuss in this book. For a
complete list of modules, about 124, included in Anaconda, you can check these out
at http://docs.continuum.io/anaconda/pkgs.html.

Launching Python from Anaconda
For the Window version, we locate the executable python.exe file at c:\anaconda
and then click on it. The following Python window will appear:

To test whether we have correctly installed NumPy and SciPY, we need to type the
following two commands to import them. If there is no error, it means that we have
installed them correctly.

>>>import numpy as np

>>>import scipy as sp

Chapter 6

[97]

In the last several chapters, we know that we could use from numpy import *
instead of import numpy as np to make all functions included in the NumPy module
into our namespace. However, most developers prefer to use import numpy as np.
From now on, we will follow this tradition. The second reason is that using sp.pv()
instead of pv() makes it clearer that the pv() function is from a module called sp. To
generate a Python icon on the desktop, we generate a shortcut first, and then move it
from c:\anaconda to our desktop.

Examples of using NumPy
In the following examples, the np.size() function from NumPy shows the number
of data items of an array, and the np.std() function is for the standard deviation
of an array:

>>>import numpy as np

>>>x= np.array([[1,2,3],[3,4,6]]) # 2 by 3 matrix

>>>np.size(x) # number of data items

>>>6

>>>np.size(x,1) # show number of columns

3

>>>np.std(x)

1.5723301886761005

>>>np.std(x,1)

Array([0.81649658, 1.24721913]

>>>total=x.sum() # pay attention to the format

>>>z=np.random.rand(50)# 50 random obs from [0.0, 1)

>>>y=np.random.normal(size=100) # from standard normal

>>>r=np.array(range(0,100),float)/100 # from 0, .01,to .99

Compared with a Python array, a NumPy array is a contiguous piece of memory that
is passed directly to LAPACK, which is a software library for numerical linear algebra,
under the hood so that matrix manipulation is very fast in Python. An array in NumPy
is like a matrix in MATLAB. Unlike lists in Python, an array should contain the
same data type as shown in the following line of code:

>>>np.array([100,0.1,2],float)

Introduction to NumPy and SciPy

[98]

The real type is float64, and the default for numerical values is also float64. In the
preceding example, we could view that the np.array() function converts a list with
the same data type, integer in this case, to an array. If we want to change the data
type, we could specify it in the second input value as shown in the following lines
of code:

>>>x=[1,2,3,20]

>>>y=np.array(x1,dtype=float)

>>>y

array([1., 2., 3., 20.])

In the previous example, dtype is the keyword specifying the data type. For a list,
we could have different data types without causing any problems. However, when
converting a list containing different data types into an array, we will get an error
message as shown in the following lines of code:

>>>x2=[1,2,3,"good"]

>>>x2

[1, 2, 3, 'good']

>>>y3=np.array(x2,float)

Traceback (most recent call last):

 File "<pyshell#25>", line 1, in <module>

 y3=np.array(x2,float)

ValueError: could not convert string to float: 'good'

.]])

Examples of using SciPy
The following are a few examples based on the functions contained in the SciPy
module. The first example is related to the Net Present Value (NPV) function:

>>>import scipy as sp

>>>cashflows=[50,40,20,10,50]

>>>npv=sp.npv(0.1,cashflows) #estimate NPV

>>>round(npv,2)

>>>144.56

Chapter 6

[99]

The np.npv() function estimates the present values for a given set of future cash
flows. The first input value is the discount rate, and the second input is an array of
future cash flows. This np.npv() function mimics Excel's NPV function. Like Excel,
np.npv() is not a true NPV function. It is actually a PV function. It estimates the
present value of future cash flows by assuming the first cash flow happens at the
end of the first period. An example of using an Excel NPV() function is as follows:

While using just one future cash flow, the meaning of the np.npv() function is much
clearer as shown in the following lines of code:

>>>c=[100]

>>>npv=np.npv(0.1,c)

>>>round(npv,2)

>>>90.91

>>>round(100/(1+0.1),2)

>>90.91

Based on the preceding argument, if we have an initial cash outflow, such as 100,
we have to modify our second input value, an array, accordingly as shown in the
following lines of code:

>>>cashflows=[-100,50,40,20,10,50]

>>>npv=sp.npv(0.1,cashflows[1:])+cashflow[0]

>>>round(npv,2)

>>>31.41

The sp.pmt() function is used to answer the following question: What is the monthly
cash flow to pay off a mortgage of $250,000 over 30 years with an annual percentage
rate (APR) of 4.5 percent, compounded monthly?

>>>payment=sp.pmt(0.045/12,30*12,250000)

>>>round(payment,2)

-1266.71

Introduction to NumPy and SciPy

[100]

Similar to the sp.npv() function, the sp.pmt() function mimics the equivalent
function in Excel, as we will see in the following screenshot. The input values are:
the effective period rate, the number of the period, and the present value.

The sp.pv() function replicates the Excel PV() function. The format for sp.pv() is
sp.pv(rate,nper,mpt,fv=0.0,when='end'). The discount rate is rate, nper is
the number of periods, and fv is the future value with a default value of zero. The
last input variable specifies whether the cash flows are at the end of each time period
or at the beginning of each period. By default, it is at the end of each period. The
following commands show how to call this function:

>>>pv1=sp.pv(0.1,5,0,100) # pv of one future cash flow

>>>round(pv1,2)

-92.09

>>>pv2=sp.pv(0.1,5,100) # pv of annuity

>>>round(pv2,2)

-379.08

The sp.fv() function has settings similar to that of sp.pv(). In finance, we estimate
both arithmetic and geometric means, which are defined in the following formulas.
For n numbers of 1x , 2x , 3 2 3x x x , ... and nx , we have:

1

n

i
i
x

Arithmetic mean
n

==
∑

 (1)

1

1

n n

ii
Geometric mean x

=

 = Π 
 

 (2)

Here, 1 21
...

n

i ni
x x x x

=
Π = ∗ ∗ ∗ . Assume that we have three numbers a, b, and c. Then

their arithmetic mean is (a+b+c)/3, while their geometric mean is (a*b*c)^(1/3). For
three values of 2, 3, and 4, we have the following two means:

>>>(2+3+4)/3.

>>>3.0

>>>geo_mean=(2*3*4)**(1./3)

>>>round(geo_mean,4)

2.8845

Chapter 6

[101]

If we have n returns, the formula to estimate their arithmetic mean remains the
same. However, the geometric mean formula for returns is different as shown in
the following screenshots:

1

n

i
i
R

Arithmetic mean
n

==
∑ (3)

()
1/

1
1 1

nn

ii
Geometric mean R

=

 = Π + −  
 (4)

We could use the sp.prod() function, which gives us the products of all data items
to estimate the geometric means for a given set of percentage returns as shown in the
following lines of code:

>>>import scipy as sp

>>>ret=sp.array([0.1,0.05,-0.02])

>>>sp.mean(ret) # arithmetic mean

0.04333

>>>pow(sp.prod(ret+1),1./len(ret))-1 # geometric mean

0.04216

Two other useful functions are sp.unique() and sp.median() as shown in the
following code:

>>>sp.unique([2,3,4,6,6,4,4])

Array([2,3,4,6])

>>>sp.median([1,2,3,4,5])

3.0

The Python sp.npv(), sp.pv(), sp.fv(), and sp.pmt() functions behave like
Excels npv(), pv(), fv(), and pmt() functions, respectively. They have the same
sign convention: the sign of the present value is the opposite of that of the future
value. In the following example to estimate a present value, if we enter a positive
future value, we will end up with a negative present value:

>>>import scipy as sp

>>>round(sp.pv(0.1,5,0,100),2)

>>>-62.09

>>>round(sp.pv(0.1,5,0,-100),2)

>>>62.09

Introduction to NumPy and SciPy

[102]

Showing all functions in NumPy and
SciPy
There are several ways to find out all the functions contained in a specific module.
First, we can read related manuals. Second, we can issue the following lines of code:

>>>import numpy as np

>>>dir(np)

To save space, only a few lines of code are shown in the following screenshot:

Actually, a better way is to generate an array with all of those functions as follows:

>>>x=np.array(dir(np))

>>>len(x) # showing the length of the array

571

>>>x[200:210] # showing 10 lines starting from 200

The following screenshot shows the output:

Similarly, to find all the functions in SciPy, we use the dir() function after we load
the module as shown in the following lines of code:

>>>import scipy as sp

>>>dir(sp)

Chapter 6

[103]

The first part is shown in the following screenshot:

More information about a specific
function
After issuing dir(np), we find the std() function among many others. To find
more information about this specific function, we use help(np.std). The following
screenshot shows only a few lines of code for brevity:

Understanding the list data type
In Chapter 3, Using Python as a Financial Calculator, tuples are introduced as one
of the data types. Recall that a tuple is defined by using parentheses such as
x=(1,2,3,"Hello"). In addition, after a tuple is defined, we cannot change its values.
Like tuples, the lists data type could contain different types of data, and their first
subscripts start from 0. The following Python commands generate a list for variable x:

>>>x=[1,2,"John", "M", "Student"]

>>>type(x)

<class 'list'>

Introduction to NumPy and SciPy

[104]

From the preceding code statements, we know that a set of variables included will be
closed by a pair of square brackets, that is []. To call specific data item(s), we could
use different ways to achieve our goals. The following commands show how to pick
up individual data items for different goals:

>>>x

[1, 2, 'John', 'M', 'Student']

>>>x[1]

2

>>>x[2:]

['John', 'M', 'Student']

Unlike tuples, we can modify the values of a list.

Working with arrays of ones, zeros, and
the identity matrix
In the following code examples, we don't show values of all the variables, from a
to i, to save space:

>>>import numpy as np

>>>a=np.zeros(10) # array with 10 zeros

>>>b=np.zeros((3,2),dtype=float) # 3 by 2 with zeros

>>>c=np.ones((4,3),float) # 4 by 3 with all ones

>>>d=np.array(range(10),float) # 0,1, 2,3 .. up to 9

>>>e1=np.identity(4) # identity 4 by 4 matrix

>>>e2=np.eys(4) # same as above

>>>e3=np.eys(4,k=1) # 1 start from k

>>>f=np.arange(1,20,3,float) # from 1 to 19 interval 3

>>>g=np.array([[2,2,2],[3,3,3]]) # 2 by 3

>>>h=np.zeros_like(g) # all zeros

>>>i=np.ones_linke(g) # all ones

Chapter 6

[105]

Performing array manipulations
In finance-related research, quite often we need to change the dimensions of a matrix
or an array. For example, converting a set of 100 random numbers into a 20 by 5
matrix or vice versa. For this purpose, we could use two NumPy functions, flatten()
and reshape(), as follows:

>>>pv=np.array([[100,10,10.2],[34,22,34]]) # 2 by 3

>>>x=pv.flatten() # matrix becomes a vector

>>>vp2=np.reshape(x,[3,2]) # 3 by 2 now

Performing array operations with +, -, *, /
Plus and minus for an array would have their normal meaning. However,
multiplication and division have quite different definitions. Using multiplication
as an example, A × B arrays could have two meanings: either item by item (A and B
should have the same dimensions, that is, both are n by m) or matrix multiplication
(the second dimension of A should be the same as the first dimension of B, that is, A
is n by m while B is m by p).

Performing plus and minus operations
When adding or subtracting two arrays, they must have the same dimensions, that
is, both are n by m. If they have different dimensions, we will get an error message.
The following example shows the summation of two cash flow arrays:

>>>cashFlows_1=np.array([-100,50,20])

>>>cashFlows_2=np.array([-80,100,120])

>>>cashFlows_1 + cashFlows_2

>>>array([-180, 150, 140])

Performing a matrix multiplication operation
For matrix multiplication, matrices A and B should be n by k and k by m. Assume
that matrix A is n by k and that B is k by m as shown in the following formula:

11 1

1

k

n nk

a a
A

a a

 
 =  
 
 

L

M O M

L

11 1

1

k

n nk

b b
B

b b

 
 =  
 
 

L

M O M

L

 (5)

Introduction to NumPy and SciPy

[106]

Our final matrix will have the dimensions n by m as shown in the following formula:

11 1

1

m

n nm

c c
A B C

c c

 
 ∗ = =  
 
 

L

M O M

L

 (6)

The individual data item, cij, in matrix C will have the following operation:

, ,
1 1 1

n m k

ij i t t j
i j t

c a b
= = =

=∑∑∑

Assume that we have two matrices/arrays x (n by k) and y (k by m); the dot product
will generate a matrix with n by m as shown in the following lines of code:

>>>x=np.array([[1,2,3],[4,5,6]],float) # 2 by 3

>>>y=np.array([[1,2],[3,3],[4,5]],float) # 3 by 2

>>>np.dot(x,y) # 2 by 2

Array([[19., 23.],

]43., 53.]])

Alternatively, we could convert arrays into matrices first and then use * of matrix
multiplication as shown in the following lines of code:

>>>x=np.matrix("1,2,3;4,5,6")

>>>y=np.matrix("1,2;3,3;4,5")

>>>x*y

Array([[19., 23.],[43., 53.]])

Actually, we could convert an array into a matrix easily as follows:

>>>x1=np.array([[1,2,3],[4,5,6]],float)

>>>x2=np.matrix(x1) # from array to matrix

>>>x3=np.array(x2) # from matrix to array

Chapter 6

[107]

Performing an item-by-item multiplication
operation
When two arrays have the same dimensions, the product of x*y will give an item
for item multiplication. When both A and B have the same dimensions, n by m, their
item by item multiplication will have the following form:

1 1

n m

ij ij ij
i j

c a b
= =

=∑∑

The following lines of code are an example of this:

>>>x=np.array([[1,2,3],[4,5,6]],float)

>>>y=np.array([[2,1,2],[4,0,5]],float)

>>>x*y

Array([[2., 2., 6.,]

 [16., 0., 30.]])

The x.sum() dot function
After x is defined as a NumPy array, we could use x.function() to conduct related
operations such as x.sum() as shown in the following lines of code:

>>>import numpy as np

>>>x=np.array([1,2,3])

>>>x.sum()

6

>>>np.sum(x)

6

If x is a NumPy array, we could have other functions with the same dot format as
well: x.mean(), x.min(), x.max(), x.var(), x.argmin(), x.clip(), x.copy(),
x.diagonal(), x.reshape(), x.tolist(), x.fill(), x.transpose(),
x.flatten(), and x.argmax(). Those dot functions are useful because of the
convenience they offer. The following commands show two such examples:

>>>cashFlows=np.array([-100,30,50,100,30,40])

>>>np.min(cashFlows)

Introduction to NumPy and SciPy

[108]

-100

>>>np.argmax(cashFlows)

0

The np.min() function shows the minimum value, while the np.argmin() function
gives the location (that is, index) of the minimum value.

Looping through an array
We could iterate over an array. The following code example prints each cash flow:

>>>import numpy as np

>>>cash_flows=np.array([-100,50,40,30,25,-10,50,100])

>>>for cash in cash_flows:

 print x

Using the help function related to
modules
We could use the help() function to find out more information about NumPy and
SciPy as shown in the following lines of code:

>>>help()

help>numpy

The first few lines are shown in the following screenshot:

Chapter 6

[109]

Similarly, we issue scipy in the help window as follows:

>>>help()

help> scipy # to save space, the output is not shown

A list of subpackages for SciPy
SciPy has about a dozen subpackages. The following table shows a list of
subpackages contained in SciPy:

Subpackage Description
Cluster Clustering algorithms
Constants Physical and mathematical constants
Fftpack Fast Fourier Transform routines
Integrate Integration and ordinary differential equation solvers
Interpolate Interpolation and smoothing splines
Io Input and output
Linalg Linear algebra
Ndimage N-dimensional image processing
Odr Orthogonal distance regression
optimize Optimization and root-finding routines
signal Signal processing
sparse Sparse matrices and associated routines
spatial Spatial data structures and algorithms
special Special functions
stats Statistical distributions and functions
weave C

Cumulative standard normal distribution
In Chapter 4, 13 Lines of Python to Price a Call Option, we used 13 lines of Python codes
to price a call option since we have to write our own cumulative standard normal
distribution. Fortunately, the cumulative standard normal distribution is included in
the submodule of SciPy. The following example shows the value of the cumulative
standard normal distribution at zero:

>>>from scipy.stats import norm

>>>norm.cdf(0)

0.5

Introduction to NumPy and SciPy

[110]

Thus, we could simplify our call option model considerably using just five
lines. The following code is a typical example of the benefits we can enjoy
using various modules:

from scipy import log,exp,sqrt,stats

defbs_call(S,X,T,r,sigma):

 d1=(log(S/X)+(r+sigma*sigma/2.)*T)/(sigma*sqrt(T))

 d2 = d1-sigma*sqrt(T)

 return S*stats.norm.cdf(d1)-X*exp(-r*T)*stats.norm.cdf(d2)

Now, we could use the following function by inputting a set of values:

>>>price=bs_call(40,40,1,0.03,0.2)

>>>round(price,2)

3.77

Logic relationships related to an array
An array could contain true and false as shown in the following lines of code.
This data type is called Boolean.

>>>import numpy as np

>>>x=np.array([True,Talse,True,False],bool)

>>>a=any(x) 	# if one item is TRUE then return TRUE

>>>b=all(x) 	# if all are TRUE then return TRUE

>>>cashFlows=np.array([-100,50,40,30,100,-5])

>>>a=cashFlows>0 # [False,True,True,True,True,False]

>>>np.logical_and(cashFlows>0, cashFlows<60)

Array([False,True,True,False,False],dtype=bool)

The logical_and(), logical_or(), and logical_not() functions could be used to
compare each data item included in an array as shown in the previous code example.
In addition, we could save the index or subscripts of the logic comparison and call
the array later as shown in the following lines of code:

>>>cashFlows=np.array([-100,50,40,30,100,-5])

>>>index=(cashFlows>0) # index is a Boolean variable

>>>cashFlows[index] # retrieve positive cash flows

Array([50., 40., 30., 100.])

Chapter 6

[111]

Statistic submodule (stats) from SciPy
One special module called stats contained in the SciPy module is worthy of special
attention, since many of our financial problems depend on this module. To find out
all the contained functions, we have the following lines of code:

>>>from scipy import stats

>>>dir(stats)

To save space, only a few lines are shown in the following screenshot:

From the output, not shown completely in the preceding screenshot, we could find
a ttest_1samp() function. To use the function, we generate 100 random numbers
drawn from a standard normal distribution, zero mean, and unit standard deviation.
For the one-sample T-test, we test whether its mean is 0. Based on the t-value (1.18)
and p-value (0.24), we could not reject the null hypothesis. This means that the
mean of our x is zero as shown in the following lines of code:

>>>import numpy as np

>>>from scipy import stats

>>>np.random.seed(124) # get the same random values

>>>x=np.random.normal(0,1,100) # mean=0,std=1

>>>skew=stats.skew(x) # skewness is -0.2297

>>>stats.ttest_1samp(x,0) # if the mean is zero

(array(1.176), 0.24228) # T-value and P-value

From NumPy, we could draw random numbers from various distributions; see a few
more examples:

>>>import numpy as np

>>>s=np.random.standard_t(10, size=1000) # from standard-T,df=10

Introduction to NumPy and SciPy

[112]

>>>x=np.random.uniform(low=0.0,high=1.0,size=100) # uniform

>>>stocks=np.random.random_integers(1,500,20)

>>>stocks

array([371, 15, 158, 468, 299, 470, 257, 481, 76, 196, 355, 386, 438,
484, 41, 39, 222, 377, 455, 46])

The two commands pick up 20 stocks randomly from 500 available stocks.

Interpolation in SciPy
In the following code example, x can be viewed as the x axis with a set of values from
0 to 10, while the vertical axis is y, where y = exp(-x/3). We intend to interpolate
between different y(i) values by applying two methods: linear and cubic. The
following lines of code are an example from SciPy Reference Guide:

>>>import numpy as np

>>>import matplotlib.pyplot as plt

>>>from scipy.interpolate import interp1d

>>>x = np.linspace(0, 10, 10)

>>>y = np.exp(-x/3.0)

>>>f = interp1d(x, y)

>>>f2 = interp1d(x, y, kind='cubic')

>>>xnew = np.linspace(0, 10, 40)

>>>plt.plot(x,y,'o',xnew,f(xnew),'-', xnew, f2(xnew),'--')

>>>plt.legend(['data', 'linear', 'cubic'], loc='best')

>>>plt.show()

In the preceding program, we use the np.linspace() function to generate evenly
spaced numbers—40 values—over a specified interval, from 0 to 10 in this case. The
related output is shown as follows:

Chapter 6

[113]

Solving linear equations using SciPy
Assume that we have the following three equations:

2 5 10
2 5 8
2 3 8 5

x y z
x y z
x y z

+ + =
 + + =
 + + =

 (7)

We define A and B as follows:

1 2 5
2 5 1
2 3 8

A
 
 =  
 
 

10
8
5

B
 
 =  
 
 

 (8)

Introduction to NumPy and SciPy

[114]

The solution is as follows:

1 2 5
2 5 1
2 3 8

A
 
 =  
 
 

10
8
5

B
 
 =  
 
 

 (9)

1

x
y A b
z

−

 
  = ∗ 
 
 

 (10)

The related Python code is as follows:

>>>import scipy as sp

>>>import numpy as np

>>>A=sp.mat('[1 2 5; 2 5 1; 2 3 8]')

>>>b = sp.mat('[10;8;5]')

>>>A.I*b

Matrix([-22.45, 10.09, 2.45]

>>>np.linalg.solve(A,b) # offer the same solution

Generating random numbers with a seed
One of the major assumptions about option theory is that stock prices follow a
log-normal distribution and returns follow a normal distribution. The following
lines of code show an example of this:

>>>importscipy as sp

>>>x=sp.random.rand(10) 	 # 10 random numbers from [0,1)

>>>y=sp.random.rand(5,2) # random numbers 5 by 2 array

>>>z=sp.random.rand.norm(100) from a standard normal

>>>

Chapter 6

[115]

After issuing the preceding function, the software would pick up a set of random
numbers depending on a user's computer time. However, sometimes we need a
fixed set of random numbers, and this is especially true when testing our models
and code, and for teaching. To satisfy this need, we will have to set up the seed
value before generating our random numbers, as shown in the following lines
of code:

>>>importscipy as sp

>>>sp.random.seed(12456)

>>>sp.random.rand(5)

[0.92961609, 0.3163755, 0.18391881, 0.20456028]

If we want to generate the exact same random numbers, we have to use the same
seed before we call the random.rand() function.

There are about two dozen distributions available, such as beta, binomial, chisquare,
exponential, f, gamma, geometric, lognormal, poission, uniform, and weibull. After
issuing help(np.random), we get the following output a (part of the all output):

Introduction to NumPy and SciPy

[116]

Finding a function from an
imported module
We could assign all related functions from NumPy to a variable such as x. Then,
we loop through it to print each individual function as shown in the following
lines of code:

>>>import numpy as np

>>>x=np.array(dir(np))

>>>for k in x:

 if (k.find("uni")!=-1):

 print k

unicode

unicode0

unicode_

union1d

unique

Understanding optimization
In finance, many issues depend on optimization, such as choosing an optimal
portfolio with an objective function and with a set of constraints. For those cases,
we could use a SciPy optimization module called scipy.optimize. Assume that
we want to estimate the x value that minimizes the value of y, where y =3 + x2.
Obviously, the minimum value of y is achieved when x takes a value of 0.

>>>import scipy.optimize as optimize

>>>def my_f(x):

 Return 3 + x**2

>>>optimize.fmin(my_f,5) # 5 is initial value

 Optimization terminated successfully

 Current function values: 3:000000

 Iterations: 20

 Function evaluations: 40

Array([0.])

Chapter 6

[117]

To find a list of all input variables to this fmin() function and their meanings, issue
help(optimize.fmin). To list all the functions included in scipy.optimize, issue
dir(optimize).

Linear regression and Capital Assets
Pricing Model (CAPM)
According to the famous CAPM, the returns of a stock are linearly correlated with
its market returns. Usually, we consider the relationship of the excess stock returns
versus the excess market returns.

()i f i mkt fR R a R Rβ− = + − (11)

Here Ri is the stock i's return; iβ is the slope (market risk); Rmkt is the market
return and Rf is the risk-free rate. Eventually, the preceding equation could be
rewritten as follows:

y xα β= + ∗ (12)

The following lines of code are an example of this:

>>>from scipy import stats

>>>stock_ret = [0.065, 0.0265, -0.0593, -0.001,0.0346]

>>>mkt_ret = [0.055, -0.09, -0.041,0.045,0.022]

>>>beta, alpha, r_value, p_value, std_err =

stats.linregress(stock_ret,mkt_ret)

>>>print beta, alpha

0.507743187877 -0.00848190035246

>>>print "R-squared=", r_value**2

R-squared =0.147885662966

>>>print "p-value =", p_value

0.522715523909

Introduction to NumPy and SciPy

[118]

Retrieving data from an external text file
When retrieving data from an external data file, the variable generated will be
a list.

>>>f=open("c:\\data\\ibm.csv","r")

>>>data=f.readlines()

>>>type(data)

<class 'list'>

The first few lines of the input file are shown in the following lines of code. In Chapter
7, Visual Finance via Matplotlib, we will discuss how to download this input file from
Yahoo! Finance.

>>>Date,Open,High,Low,Close,Volume,Adj Close

2013-07-26,196.59,197.37,195.00,197.35,2485100,197.35

2013-07-25,196.30,197.83,195.66,197.22,3014300,197.22

2013-07-24,195.95,197.30,195.86,196.61,2957900,196.61

2013-07-23,194.21,196.43,194.10,194.98,2863800,194.98

2013-07-22,193.40,195.79,193.28,194.09,3398000,194.09

2013-07-19,197.91,197.99,193.24,193.54,6997600,193.54

After we generate a variable called stock, we can view its first two observations
as follows:

>>>data[1]

'2013-07-26,196.59,197.37,195.00,197.35,2485100,197.35\n'

>>>data[2]

'2013-07-25,196.30,197.83,195.66,197.22,3014300,197.22\n'

The loadtxt() and getfromtxt() functions
The loadtxt() function included in the NumPy module could be used to input a text
or a CSV file as shown in the following lines of code:

>>>import numpy as ny

>>>ny.loadtxt("c:/data/ibm.csv",delimiter=',')

The function genfromtxt() in the NumPy module is more powerful but is a slower
function to input data. The advantage of this function compared with loadtxt() is
that the former treats non-standard values, such as 3.5 percent, as NA (Python
missing code).

Chapter 6

[119]

Installing NumPy independently
To install NumPy independently, we have to perform the following two steps:

1.	 Go to http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy.
2.	 Choose an appropriate package to download and install, such as numpy-MKL-

1.7.1.win32-py3.3.exe.

Understanding the data types
In the following table, most of the types of data are given:

Data type Description
Bool Boolean (True or False) stored as a byte
int Platform integer (normally either int32 or int64)
int8 Byte (-128 to 127)
int16 Integer (-32768 to 32767)
int32 Integer (-2147483648 to 2147483647)
int64 Integer (9223372036854775808 to 9223372036854775807)
unit8 Unsigned integer (0 to 255)
unit16 Unsigned integer (0 to 65535)
unit32 Unsigned integer (0 to 4294967295)
unit64 Unsigned integer (0 to 18446744073709551615)
float Short and for float64
float32 Single precision float: sign bit23 bits mantissa; 8 bits exponent
float64 52 bits mantissa
complex Shorthand for complex128
complex64 Complex number; represented by two 32-bit floats (real and

imaginary components)
complex128 Complex number; represented by two 64-bit floats (real and

imaginary components)

Introduction to NumPy and SciPy

[120]

Summary
In this chapter, we introduced the two most important modules, called NumPy and
SciPy, which are used intensively for scientific and financial computation. NumPy is
for numerical methodology, and SciPy could be viewed as an extension of NumPy.
In this book, many chapters depend on these two modules. In addition, many other
modules depend on these two modules. For instance, the Matplotlib (for graph)
module, which will be discussed in Chapter 7, Visual Finance via Matplotlib, and
Statsmodels (for statistical/financial modeling), which will be discussed in Chapter
8, Statistic Analysis of Time Series, depend on these two modules.

It is a very useful tool for visualization. We are going to use this module intensively
when we explain option theory.

Exercises
1. What is module dependency?

2. Why is it difficult to install NumPy independently?

3. What are the advantages and disadvantages of writing a module that
depends on other modules?

4. What are the advantages of using a super package to install many
modules simultaneously?

5. How do we find all the functions contained in NumPy and SciPy?

6. What is wrong with the following operation?

>>>x=[1,2,3]

>>>x.sum()

7. How can we print all the data items for a given array?

8. What is wrong with the following lines of code?

>>>import np

>>>x=np.array([True,false,true,false],bool)

9. How can we iterate through an array?

Chapter 6

[121]

10. Write a Python program to price a European call option using the cumulative
standard normal distribution included in the SciPy module. Compare your result
with the code in Chapter 4, 13 Lines of Python to Price a Call Option.

11. Find out the meaning of skewtest included in the stats submodule (SciPy), and
give an example of using this function.

12. How do we find all the functions of SciPy and NumPy?

13. We have the following simultaneous equations. 'What are the values of x, y,
and z?

2 2.5 2.3
3.4 4.2
2.9 y 1.8z 3.1

x y z
x y z
x

− + =
 + − =
− + + =

14. Debug the following lines of code, which are used to estimate a geometric mean
for a given set of returns:

>>>import scipy as sp

>>>ret=np.array([0.05,0.11,-0.03])

>>>pow(np.prod(ret+1),1/len(ret))-1

15. Write a Python program to estimate both arithmetic and geometric means for a
given set of returns.

16. In finance, we use the standard deviation of returns to measure the risk level of a
security or portfolio. Based on the latest five year daily prices from Yahoo! Finance,
what is the total risk for IBM? Note that we use the following formula to annualize a
volatility (variance) based on daily returns:

2 2252annual dailyσ σ=

17. Find out the meaning of zscore() included in the stats submodule (SciPy), and
offer a simple example of using this function.

18. What is the market risk (beta) for IBM in 2010? (Hint: the source of data could be
from Yahoo! Finance.)

19. What is wrong with the following lines of code?

>>>c=20

>>>npv=np.npv(0.1,c)

Introduction to NumPy and SciPy

[122]

20. The correlation coefficient function from NumPy is np.corrcoef(). Find more
about this function. Estimate the correlation coefficient between IBM, DELL, and
W-Mart.

21. Why is it claimed that the sn.npv() function from SciPY() is really a Present
Value (PV) function?

22. Design a true NPV function using all cash flows, including today's cash flow.

23. The Sharpe ratio is used to measure the trade-off between risk and return:

fR R
Sharpe

σ
−

=

Here, R is the expected returns for an individual security, and fR is the expected
risk-free rate. σ is the volatility, that is, standard deviation of the return on the
underlying security. Estimate Sharpe ratios for IBM, DELL, Citi, and W-Mart by
using their latest five-year monthly data.

Visual Finance via Matplotlib
Graphs and other visual representations have become more important in explaining
many complex financial concepts, trading strategies, and formulae. In this chapter,
we discuss the module matplotlib, which is used to create various types of graphs.
In addition, the module will be used intensively in Chapter 9, The Black-Scholes-Merton
Option Model, when we discuss the famous Black-Scholes-Merton option model
and various trading strategies. The matplotlib module is designed to produce
publication-quality figures and graphs. The matplotlib module depends on NumPy
and SciPy which were discussed in Chapter 6, Introduction to NumPy and SciPy. There
are several output formats, such as PDF, Postscript, SVG, and PNG.

In particular, we will cover the following:

•	 Several ways to install matplotlib
•	 Simple examples of using matplotlib
•	 Net Present Value (NPV) profile, DuPont identity, stock returns,

and histogram
•	 Total risk, market risk (beta), and firm-specific risk
•	 Stock co-movement and correlation
•	 Portfolio diversification
•	 Presentation of trading volume and price movement
•	 Return versus risk graph with several stocks
•	 Very complex examples of using matplotlib

Visual Finance via Matplotlib

[124]

Installing matplotlib via ActivePython
The first way to install the matplotlib module is via ActivePython. We install
ActivePython first and then install matplotlib. In the process of installing
matplotlib, NumPy would be installed as well since matplotlib depends on
both NumPy and SciPy. The whole procedure has four steps as follows:

1.	 Go to http://www.activestate.com/activepython/downloads.
2.	 Choose an appropriate executable file to download.
3.	 For Windows, navigate to All Programs | Accessories, and then click on

Command Prompt. You will see the following window:

4.	 After going to the appropriate directory, such as C:\Python27, type pypm
install matplotlib as shown in the following screenshot:

The matplotlib module depends on both NumPy and SciPy. Since the NumPy module
will be installed automatically when we install matplotlib, we need to install
SciPy; see the following similar procedure:

Chapter 7

[125]

To launch Python, navigate to All Programs | ActivateStateActive Python, and then
click on IDLE (Python GUI). For convenience, we could generate a shortcut on our
desktop as shown in the following screenshot:

Alternative installation via Anaconda
In Chapter 6, Introduction to NumPy and SciPy, we discussed the dependency of a
module. Because of such a dependency, it might be very difficult to install a module
independently since it depends on many other modules. In this book, we use the
so-called super-packages. If one of them is installed, most of our modules are
installed simultaneously. We choose Anaconda. To install Anaconda, we have
the following two steps:

1.	 Go to http://continuum.io/downloads.
2.	 Choose an appropriate package to download and install.

Understanding how to use matplotlib
The best way to understand the usage of the matplotlib module is through
examples. The following example could be the simplest one since it has just
three lines of Python code. The objective is to link several points. By default, the
matplotlib module assumes that the x axis starts at zero and moves by one on
every element of the array. The following command lines illustrate this situation:

>>>from matplotlib.pyplot import *

>>>plot([1,2,3,10])

>>>show()

Visual Finance via Matplotlib

[126]

After we press the Enter key after typing the last command of show(), the following
graph will appear:

At the bottom of the graph, we can find a set of icons, and based on them, we could
adjust our image and other functions, such as saving our image. After closing the
preceding figure, we could return to Python prompt. On the other hand, if we issue
show() the second time, nothing will happen. To repeat the preceding graph, we
have to issue both plot([1,2,3,10]) and show().

We could add labels for both the x axis and y axis as follows:

>>>from matplotlib.pyplot import *

>>>plot([1,2,3,10])

>>>xlabel("x- axis")

>>>ylabel("my numbers")

>>>title("my figure")

>>>show()

Chapter 7

[127]

The corresponding graph is shown in the following screenshot::

The next example presents two cosine functions:

>>>from pylab import *

>>>x = np.linspace(-np.pi, np.pi, 256,endpoint=True)

>>>C,S = np.cos(x), np.sin(x)

>>>plot(x,C),plot(x,S)

>>>show()

In the preceding code, the linspace() function has four input values: start, stop,
num, and endpoint. In the preceding example, we start from -3.1415916 and stop at
3.1415926, with 256 values between. In addition, the endpoints will be included. By
the way, the default value of num is 50.

Visual Finance via Matplotlib

[128]

The corresponding graph is shown in the following screenshot:

The following example shows the scatter pattern. First, the np.random.normal()
function is used to generate two sets of random numbers. Since n is 1024, we have
1,024 observations for both x and y variables. The key function is scatter(x,y)
as follows:

>>>from pylab import *

>>>n = 1024

>>>X = np.random.normal(0,1,n)

>>>Y = np.random.normal(0,1,n)

>>>scatter(X,Y)

>>>show()

Chapter 7

[129]

The corresponding output graph is given as follows:

We could check the scatter pattern to visually perceive the relationship between two
stocks. For example, we have two time series of returns for stocks A and B. Assume
that they are strongly, positively correlated, that is, stock A has a lower return of -1
percent and stock B has a quite similar low return. This is true for a higher return,
such as 20 percent. The scatter points of their matched returns should be distributed
along a 45-degree straight line.

Understanding simple and compounded
interest rates
Many students and practitioners are confused with the difference between simple
interest and compound interest. Simple interest does not consider interest on interest
while compound interest does. It is a good idea to represent them with a graph. For
instance, we borrow $1,000 today for 10 years with an annual interest of 8 percent per
year. What are the future values if 8 percent is the simple interest and compounded
interest rate? The formula for payment of a simple interest rate is as follows:

() ()1FV simple interest PV R n= + ∗ (1)

Visual Finance via Matplotlib

[130]

The future value for compounded interest is as follows:

 (2)

Here, PV is the load we borrow today, that is, present value, R is the period rate,
and n is the number of periods. Thus, those two future values will be $1,800 and
$2,158.93. The following program offers a graphic representation of a principal,
simple interest payment, and the future values:

import numpy as np

from matplotlib.pyplot import *

from pylab import *

pv=1000

r=0.08

n=10

t=linspace(0,n,n)

y1=np.ones(len(t))*pv # this is a horizontal line

y2=pv*(1+r*t)

y3=pv*(1+r)**t

title('Simple vs. compounded interest rates')

xlabel('Number of years')

ylabel('Values')

xlim(0,11)

ylim(800,2200)

plot(t, y1, 'b-')

plot(t, y2, 'g--')

plot(t, y3, 'r-')

show()

In the preceding program, the xlim() function would set the range of the x axis.
This is true for the ylim() function. The third input variable for both the xlim()
and ylim() functions is for color and for the line. The letter b is for black, g is for
green, and r is for red.

Chapter 7

[131]

The corresponding output graph for the previous code is given as follows:

Adding texts to our graph
In the following example, we simply insert a text. Remember that the x and y scale
is from 0 to 1:

>>>from pylab import *

>>>x = [0,1,2]

>>>y = [2,4,6]

>>>plot(x,y)

>>>figtext(0.2, 0.7, 'North & West')

>>>figtext(0.7, 0.2, 'East & South')

>>>show()

Visual Finance via Matplotlib

[132]

The corresponding output graph is given as follows:

Let's make it more complex. From the National Bureau of Economic Research web
page at http://www.nber.org/cycles.html, we can find the following table
showing the business cycle in the past two decades:

Turning Point Date Peak or Trough Announcement Date
June 1, 2009 Trough September 20, 2010
December 1, 2007 Peak December 1, 2008
November 1, 2001 Trough July 17, 2003
March 1, 2001 Peak November 26, 2001
March 1, 1991 Trough December 22, 1992
July 1, 1990 Peak April 25, 1991
November 1, 1982 Trough July 8, 1983
July 1, 1981 Peak June 1, 1982
July 1, 1980 Trough July 8, 1981
January 1, 1980 Peak June 3, 1980

Chapter 7

[133]

Working with DuPont identity
In finance, we could find useful information from a firm's financial statements such
as annual income statement, balance sheet, and cash flow statement. Ratio analysis
is one of the commonly used tools to compare the performance among different
firms and for the same firm over the years. DuPont identity is one of them. DuPont
identity divides Return on Equity (ROE) into three ratios: Gross Profit Margin,
Assets Turnover, and Equity Multiplier:

Net Income Sales Total AssetsROE
Sales Total Assets Book value of Equity

= ∗ ∗ (3)

The following code will show those three ratios with different colors. Here we have
the following information about some firms:

Ticker Fiscal Year
Ending Date

ROE Gross Profit
Margin

Assets
Turnover

Equity
Multiplier

IBM December 31,
2012

0.8804 0.1589 0.8766 6.3209

DELL February 1,
2013

0.2221 0.0417 1.1977 4.4513

WMT January 31,
2013

0.2227 0.0362 2.3099 2.6604

The Python code is as follows:

import numpy as np

import matplotlib.pyplot as plt

ind = np.arange(3)

plt.title("DuPont Identity")

plt.xlabel("Different companies")

plt.ylabel("Three ratios")

ROE=[0.88,0.22,0.22]

a = [0.16,0.04,0.036]

b = [0.88,1.12,2.31]

c = [6.32,4.45,2.66]

width = 0.45

plt.figtext(0.2,0.85,"ROE=0.88")

Visual Finance via Matplotlib

[134]

plt.figtext(0.5,0.7,"ROE=0.22")

plt.figtext(0.8,0.6,"ROE=0.22")

plt.figtext(0.2,0.75,"Profit Margin=0.16")

plt.figtext(0.5,0.5,"0.041")

plt.figtext(0.8,0.4,"0.036")

p1 = plt.bar(ind, a, width, color='b')

p2 = plt.bar(ind, b, width, color='r', bottom=a)

p3 = plt.bar(ind, c, width, color='y', bottom=[a[j] +b[j] for j in plt.
xticks(ind+width/2., ('IBM', 'DELL', 'WMT'))

plt.show()

In the previous program, plt.figtext(x,y,'text') adds a text message at x-y
location with x and both having a range from 0 to 1. The plt.bar() function is
used to generate three bars. The three bars are shown in the following figure:

Chapter 7

[135]

Understanding the Net Present Value
(NPV) profile
Gradually, we use graphs and other visual representations to explain many
complex financial concepts, formulae, and trading strategies. An NPV profile is
the relationship between a project's NPV and its discount rate (cost of capital).
For a normal project, where cash outflows first then cash inflows, its NPV will be
a decreasing function of the discount rate. The reason is that when the discount
rate increases, the present value of the future cash flows (most time benefits) will
decrease more than the current or the latest cash flows (most time costs). The NPV
is defined by the following formula:

The following program demonstrates a negative correlation between NPV and the
discount rate:

>>>import scipy as sp

>>>from matplotlib.pyplot import *

>>>cashflows=[-100,50,60,70]

>>>rate=[]

>>>npv=[]

>>>x=(0,0.7)

>>>y=(0,0)

>>>for i in range(1,70):

 rate.append(0.01*i)

 npv.append(sp.npv(0.01*i,cashflows[1:])+cashflows[0])

>>>plot(rate,npv),plot(x,y)

>>>show()

Visual Finance via Matplotlib

[136]

In the preceding program, we plan to draw two lines: a straight line at y=0 and an
NPV profile. The NPV profile indicates the relationship between NPV and discount
rate as shown in the following graph:

In the previous example, we see just one Internal Rate of Return (IRR) defined as the
discount rate makes NPV equal to zero. However, for abnormal projects, with cash
inflows first and then cash outflows, or for the projects with more than one change in
direction of cash flows, we could not tell whether we could have a unique IRR. This
scenario is represented as follows:

>>>from import scipy as sp

>>>cashflows=[-100,50,60,70]

>>>rate=0.1

>>>npv=sp.npv(rate,cashflows[1:])+cashflows[0]

>>>round(npv,2)

47.62

As we discussed in the previous chapter, the NPV function from SciPy mimics the
Excel NPV function, and it is actually a PV function using the following program:

>>>import scipy as sp

>>>import matplotlib.pyplot as plt

>>>cashflows=[504,-432,-432,-432,832]

Chapter 7

[137]

>>>rate=[]

>>>npv=[]

>>>x=[0,0.3]

>>>y=[0,0]

>>>for i in range(1,30):

 rate.append(0.01*i)

 npv.append(sp.npv(0.01*i,cashflows[1:])+cashflows[0])

>>>plt.plot(x,y),plt.plot(rate,npv)

>>>plt.show()

The output corresponding to this code is given as follows:

In the previous example, we know that there exist multiple IRRs. From the previous
chapter, we know that we could use the np.irr() function to find out those multiple
IRRs using the following program:

>>>import numpy as np

>>>cashflows=[504,-432,-432,-432,832]

>>>np.irr(cashflows)

array([0.08949087, 0.24006047])

Using colors effectively
To make our graphs or lines more eye-catching, we could use different colors. For
example, we have 4 years' EPS (Diluted EPS Excluding Extraordinary Items) from
Yahoo! Finance for the companies W-Mart and DELL. EPS is Earnings per Share.
We could contrast their EPS with different colors using the following program:

import matplotlib.pyplot as plt

A_EPS = (5.02, 4.54,4.18, 3.73)

B_EPS = (1.35, 1.88, 1.35, 0.73)

ind = np.arrange(len(A_EPS)) # the x locations for the groups

Visual Finance via Matplotlib

[138]

width = 0.40 # the width of the bars

fig, ax = plt.subplots()

A_Std=B_Std=(2,2,2,2)

rects1 = ax.bar(ind, A_EPS, width, color='r', yerr=A_Std)

rects2 = ax.bar(ind+width, B_EPS, width, color='y', yerr=B_Std)

ax.set_ylabel('EPS')

ax.set_xlabel('Year')

ax.set_title('Diluted EPS Excluding Extraordinary Items ')

ax.set_xticks(ind+width)

ax.set_xticklabels(('2012', '2011', '2010', '2009'))

ax.legend((rects1[0], rects2[0]), ('W-Mart', 'DELL'))

def autolabel(rects):

 for rect in rects:

 height = rect.get_height()

 ax.text(rect.get_x()+rect.get_width()/2., 1.05*height,
'%d'%int(height),

 ha='center', va='bottom')

autolabel(rects1)

autolabel(rects2)

plt.show()

The command of np.arange(3) will generate four values from 0 to 3 while
ax.set_xtickers() generates ticks. The corresponding output is shown in
the following figure:

Chapter 7

[139]

In the preceding code, we color W-Mart's EPS red, color='r', and DELL's EPS
yellow, color='y'. The eight different colors and their representing letters are given
in the following table:

Letter Color Letter Color
'b' Blue 'm' Magenta
'g' Green 'y' Yellow
'r' Red 'k' Black
'c' Cyan 'w' White

Using different shapes
To make our graphs more eye-catching, we could use different shapes. In the
following table, various shapes and their corresponding symbols are presented:

Character Description Character Description
'''-''' Solid line style '''3''' tri_left marker
'''--''' Dashed line style '''4''' tri_right marker
'''-.''' Dash-dot line style '''s''' Square marker
''':''' Dotted line style '''p''' Pentagon marker
'''.''' Point marker '''*''' Star marker
''', ''' Pixel marker '''h''' Hexagon1 marker
'''o''' Circle marker '''H''' Hexagon2 marker
'''v''' triangle_down marker '''+''' Plus marker
'''^''' triangle_up marker '''x''' X marker
'''<''' triangle_left marker '''D''' Diamond marker
'''>''' triangle_right marker '''d''' Thin_diamond marker
'''1''' tri_down marker '''|''' Vline marker
'''2''' tri_up marker '''_''' Hline marker

Visual Finance via Matplotlib

[140]

Graphical representation of the portfolio
diversification effect
In finance, we could remove firm-specific risk by combining different stocks in our
portfolio. First, let us look at a hypothetical case by assuming that we have 5 years'
annual returns of two stocks as follows:

Year Stock A Stock B
2009 0.102 0.1062
2010 -0.02 0.23
2011 0.213 0.045
2012 0.12 0.234
2013 0.13 0.113

We form an equal-weighted portfolio using those two stocks. Using the mean()
and std() functions contained in NumPy, we can estimate their means, standard
deviations, and correlation coefficients as follows:

>>>import numpy as np

>>>A=[0.102,-0.02, 0.213,0.12,0.13]

>>>B=[0.1062,0.23, 0.045,0.234,0.113]

>>>port_EW=(np.array(ret_A)+np.array(ret_B))/2.

>>>round(np.mean(A),3),round(np.mean(B),3),round(np.mean(port_EW),3)

(0.109, 0.146, 0.127)

>>>round(np.std(A),3),round(np.std(B),3),round(np.std(port_EW),3)

(0.075, 0.074, 0.027)

In the preceding code, we estimate mean returns, their standard deviations for
individual stocks, and an equal-weighted portfolio. The volatility (standard
deviation) of such an equal-weighted portfolio is 2.7 percent, considerably smaller
than those of the individual stock (7.5 percent for stock A and 7.4 percent for stock
B). In the following program, we use a graph to represent such an effect:

import numpy as np

import matplotlib.pyplot as plt

year=[2009,2010,2011,2012,2013]

ret_A=[0.102,-0.02, 0.213,0.12,0.13]

ret_B=[0.1062,0.23, 0.045,0.234,0.113]

Chapter 7

[141]

port_EW=(np.array(ret_A)+np.array(ret_B))/2.

plt.figtext(0.2,0.65,"Stock A")

plt.figtext(0.15,0.4,"Stock B")

plt.xlabel("Year")

plt.ylabel("Returns")

plt.plot(year,ret_A,lw=2)

plt.plot(year,ret_B,lw=2)

plt.plot(year,port_EW,lw=2)

plt.title("Indiviudal stocks vs. an equal-weighted 2-stock portflio")

plt.annotate('Equal-weighted Portfolio', xy=(2010, 0.1), xytext=(2011.,0)
,arrowprops=dict(facecolor='black',shrink=0.05),)

plt.ylim(-0.1,0.3)

plt.show()

The output graph corresponding to this code is given as follows:

Visual Finance via Matplotlib

[142]

In the preceding code, we add an arrow to indicate which line is associated with
our equal-weighted, two-stock portfolio by using the function called annotate().
The pair of values for xy=(2010,0.1) is for the destination of the arrow, and
xytext=(2011,0) is the starting point of the arrow. The color of the arrow is black.
For more detail about the function, just type help(plt.annotate) after issuing
import matplotlib.pyplot as plt. From the preceding graph, we see that the
fluctuation, uncertainty, or risk of our equal-weighted portfolio is much smaller than
those of individual stocks in its portfolio. We can also estimate their means, standard
deviation, and correlation coefficient. The correlation coefficient between those two
stocks is -0.75, and this is the reason why we could diversify away firm-specific risk
by forming an even equal-weighted portfolio as shown in the following code:

>>>import scipy as sp

>>>sp.corrcoef(A,B)

array([[1. , -0.74583429],

 [-0.74583429, 1.]])

In the preceding example, we use hypothetical numbers (returns) for two stocks.
How about IBM and W-Mart? First, we have to know how to retrieve historical price
data from Yahoo! Finance.

Number of stocks and portfolio risk
We know that when we increase the number of stocks in a portfolio, we would
diversify away firm-specific risk. However, how many stocks do we need to diversify
away from most of the firm-specific risk? Statman (1987) argues that we need at least
30 stocks. The title of his paper is How Many Stocks Make a Diversified Portfolio? in the
Journal of Financial Quantitative Analysis. Based on his relationship between n (number
of stocks) and the ratio of the portfolio standard deviation to the standard deviation
of a single stock, we have the graph showing the relationship between the two. The
values in the following table are from Statman (1987) where n is the number of stocks
in a portfolio, is the standard deviation of the annual portfolio returns, and is the
average of the standard deviation of a one-stock portfolio:

n n

1 49.236 1.00 45 20.316 0.41
2 37.358 0.76 50 20.203 0.41
4 29.687 0.60 75 19.860 0.40
6 26.643 0.54 100 19.686 0.40

Chapter 7

[143]

n n

8 24.983 0.51 200 19.432 0.39
10 23.932 0.49 300 19.336 0.39
12 23.204 0.47 400 19.292 0.39
14 22.670 0.46 500 19.265 0.39
16 22.261 0.45 600 19.347 0.39
18 21.939 0.45 700 19.233 0.39
20 21.677 0.44 800 19.224 0.39
25 21.196 0.43 900 19.217 0.39
30 20.870 0.42 1000 19.211 0.39
35 20.634 0.42 19.158 0.39

40 20.456 0.42

The following is our program:

from matplotlib.pyplot import *

n=[1,2,4,6,8,10,12,14,16,18,20,25,30,35,40,45,50,75,100,200,300,400,500,6
00,700,800,900,1000]

port_sigma=[0.49236,0.37358,0.29687,0.26643,0.24983,0.23932,0.23204,
0.22670,0.22261,0.21939,0.21677,0.21196,0.20870,0.20634,0.20456,0.20316,0
.20203,0.19860,0.19686,0.19432,0.19336,0.19292,0.19265,0.19347,0.19233,0.
19224,0.19217,0.19211,0.19158]

xlim(0,50)

ylim(0.1,0.4)

hlines(0.19217, 0, 50, colors='r', linestyles='dashed')

annotate('', xy=(5, 0.19), xycoords = 'data',xytext = (5, 0.28),
textcoords = 'data',arrowprops = {'arrowstyle':'<->'})

annotate('', xy=(30, 0.19), xycoords = 'data',xytext = (30, 0.1),
textcoords = 'data',arrowprops = {'arrowstyle':'<->'})

annotate('Total portfolio risk', xy=(5,0.3),xytext=(25,0.35),
arrowprops=dict(facecolor='black',shrink=0.02))

figtext(0.15,0.4,"Diversiable risk")

figtext(0.65,0.25,"Nondiversifiable risk")

plot(n[0:17],port_sigma[0:17])

Visual Finance via Matplotlib

[144]

title("Relationship between n and portfolio risk")

xlabel("Number of stocks in a portfolio")

ylabel("Ratio of Portfolio std to std of one stock")

show()

In the preceding code, the values for n, that is, the number of stocks in a portfolio,
and port_swigma, that is, the portfolio standard deviation, are from Statman (1987).
The functions ylim() and xlim() set the lower and upper limits for the x axis and y
axis respectively, as shown in the following figure:

Retrieving historical price data from
Yahoo! Finance
The function called quotes_historical_yahoo() in the matplotlib module could
be used to download historical price data from Yahoo! Finance. For example, we
want to download daily price data for IBM over the period from January 1, 2012 to
December 31, 2012, we have the following four-line Python code:

>>>from matplotlib.finance import quotes_historical_yahoo

>>>date1=(2012, 1, 1)

>>>date2=(2012, 12,31)

>>>price=quotes_historical_yahoo('IBM', date1, date2)

Chapter 7

[145]

To download IBM's historical price data up to today, we could use the datetime.
date.today() function as follows:

>>>import datetime

>>>import matplotlib.finance as finance

>>>import matplotlib.mlab as mlab

>>>ticker = 'IBM'

>>>begdate = datetime.date(2013,1,1)

>>>enddate = datetime.date.today()

>>>price = finance.fetch_historical_yahoo(ticker, begdate, enddate)

>>>r = mlab.csv2rec(price); price.close()

>>>r.sort()

The r.sort() function will sort the time series in ascending order since the original
data from Yahoo! Finance is arranged in descending order. To check the number of
observations, we use the len() function. To check the first observation and the last
one, we use r[0] and r[-1]; see the following results:

>>>len(r)

217

>>>r[0:4]

rec.array([(datetime.date(2013, 1, 2), 194.09, 196.35, 193.8, 196.35,
4234100, 192.61),

 (datetime.date(2013, 1, 3), 195.67, 196.29, 194.44, 195.27,
3644700, 191.55),

 (datetime.date(2013, 1, 4), 194.19, 194.46, 192.78, 193.99,
3380200, 190.3),

 (datetime.date(2013, 1, 7), 193.4, 193.78, 192.34, 193.14,
2862300, 189.46)],

 dtype=[('date', 'O'), ('open', '<f8'), ('high', '<f8'), ('low',
'<f8'), ('close', '<f8'), ('volume', '<i4'), ('adj_close', '<f8')])

>>>

Histogram showing return distribution
In finance, we use mean returns to represent the expected returns and use the
standard deviation of returns to represent the risk. A histogram could be used
to show those two. If the location is on the right, it means the stock has a higher
expected return, while the dispersion indicates the risk level: wider dispersion
suggests a higher risk as shown in the following program:

from matplotlib.pyplot import *

from matplotlib.finance import quotes_historical_yahoo

Visual Finance via Matplotlib

[146]

import numpy as np

import matplotlib.mlab as mlab

ticker='IBM'

begdate=(2013,1,1)

enddate=(2013,11,9)

p = quotes_historical_yahoo(ticker, begdate, enddate,asobject=True,
adjusted=True)

ret = (p.aclose[1:] - p.aclose[:-1])/p.aclose[1:]

[n,bins,patches] = hist(ret, 100)

mu = np.mean(ret)

sigma = np.std(ret)

x = mlab.normpdf(bins, mu, sigma)

plot(bins, x, color='red', lw=2)

title("IBM return distribution")

xlabel("Returns")

ylabel("Frequency")

show()

The output corresponding to the preceding code is given as follows:

Chapter 7

[147]

The next program makes the trading days more evenly distributed:

from __future__ import print_function

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.mlab as mlab

import matplotlib.cbook as cbook

import matplotlib.ticker as ticker

import datetime

import matplotlib.finance as finance

myticker = 'IBM'

begdate = datetime.date(2013,1,1)

enddate = datetime.date.today()

price = finance.fetch_historical_yahoo(myticker, begdate, enddate)

r = mlab.csv2rec(price); price.close()

r.sort()

r = r[-30:] # get the last 30 days

fig, ax = plt.subplots()

ax.plot(r.date, r.adj_close, 'o-')

ax.set_title('Fig. 1: IBM last 30 days with gaps on weekends')

fig.autofmt_xdate()

N = len(r)

ind = np.arange(N) # the evenly spaced plot indices

def format_date(x, pos=None):

 thisind = np.clip(int(x+0.5), 0, N-1)

 return r.date[thisind].strftime('%Y-%m-%d')

fig, ax = plt.subplots()

ax.plot(ind, r.adj_close, 'o-')

plt.xlabel("Every Monday shown")

ax.set_title('Fig 2: IBM last 30 days evenly spaced plot indices')

ax.xaxis.set_major_formatter(ticker.FuncFormatter(format_date))

fig.autofmt_xdate()

plt.show()

Visual Finance via Matplotlib

[148]

Only the second figure is shown to save space:

Comparing stock and market returns
We could download daily price data from Yahoo! Finance for one stock and the
market represented by S&P 500. Then estimate their returns and represent them
via a graph using the following code:

from matplotlib.pyplot import *

from matplotlib.finance import quotes_historical_yahoo

import numpy as np

def ret_f(ticker,begdate,enddate):

 p = quotes_historical_yahoo(ticker, begdate, enddate,asobject=True,
adjusted=True)

 return((p.aclose[1:] - p.aclose[:-1])/p.aclose[:-1])

begdate=(2013,1,1)

enddate=(2013,2,9)

ret1=ret_f('IBM',begdate,enddate)

ret2=ret_f('^GSPC',begdate,enddate)

n=min(len(ret1),len(ret2))

Chapter 7

[149]

s=np.ones(n)*2

t=range(n)

line=np.zeros(n)

plot(t,ret1[0:n], 'ro',s)

plot(t,ret2[0:n], 'bd',s)

plot(t,line,'b',s)

figtext(0.4,0.8,"Red for IBM, Blue for S&P500")

xlim(1,n)

ylim(-0.04,0.07)

title("Comparions between stock and market retuns")

xlabel("Day")

ylabel("Returns")

show()

The output corresponding to the preceding code is given as follows:

Visual Finance via Matplotlib

[150]

Understanding the time value of money
In finance, we know that $100 received today is more valuable than $100 received
one year later. If we use size to represent the difference, we could have the following
Python program to represent the same concept:

from matplotlib.pyplot import *

fig1 = figure(facecolor='white')

ax1 = axes(frameon=False)

ax1.set_frame_on(False)

ax1.get_xaxis().tick_bottom()

ax1.axes.get_yaxis().set_visible(False)

x=range(0,11,2)

x1=range(len(x),0,-1)

y = [0]*len(x);

annotate("Today's value of $100 received today",xy=(0,0),xytext=(2,0.001)
,arrowprops=dict(facecolor='black',shrink=0.02))

annotate("Today's value of $100 received in 2 years",xy=(2,0.00005),xytex
t=(3.5,0.0008),arrowprops=dict(facecolor='black',shrink=0.02))

annotate("received in 6 years",xy=(4,0.00005),xytext=(5.3,0.0006),arrowpr
ops=dict(facecolor='black',shrink=0.02))

annotate("received in 10 years",xy=(10,-0.00005),xytext=(4,-0.0006),arrow
props=dict(facecolor='black',shrink=0.02))

s = [50*2.5**n for n in x1];

title("Time value of money ")

xlabel("Time (number of years)")

scatter(x,y,s=s);

show()

The output graph is shown as follows:

Chapter 7

[151]

Candlesticks representation of IBM's
daily price
We could use candlesticks to represent the daily opening, high, low, and closing
prices. The vertical line represents high and low prices, while a rectangular bar
represents open-close span. When the close price is higher than the opening price,
we have a black bar. Otherwise, we would have a red bar. The following program
will show exactly this:

import matplotlib.pyplot as plt

import numpy as np

from matplotlib.dates import DateFormatter, WeekdayLocator, HourLocator,
DayLocator, MONDAY

from matplotlib.finance import quotes_historical_yahoo, candlestick,\

 plot_day_summary, candlestick2

date1 = (2013, 10, 20)

date2 = (2013, 11, 10)

ticker='IBM'

mondays = WeekdayLocator(MONDAY) # major ticks on the mondays

alldays = DayLocator() # minor ticks on the days

weekFormatter = DateFormatter('%b %d') # e.g., Jan 12

dayFormatter = DateFormatter('%d') # e.g., 12

quotes = quotes_historical_yahoo(ticker, date1, date2)

if len(quotes) == 0:

 raise SystemExit

fig, ax = plt.subplots()

fig.subplots_adjust(bottom=0.2)

ax.xaxis.set_major_locator(mondays)

ax.xaxis.set_minor_locator(alldays)

ax.xaxis.set_major_formatter(weekFormatter)

ax.xaxis.set_minor_formatter(dayFormatter)

plot_day_summary(ax, quotes, ticksize=3)

candlestick(ax, quotes, width=0.6)

ax.xaxis_date()

ax.autoscale_view()

plt.setp(plt.gca().get_xticklabels(), rotation=80,
horizontalalignment='right')

Visual Finance via Matplotlib

[152]

plt.figtext(0.35,0.45, '10/29: Open, High, Low, Close')

plt.figtext(0.35,0.42, ' 177.62, 182.32, 177.50, 182.12')

plt.figtext(0.35,0.32, 'Black ==> Close > Open ')

plt.figtext(0.35,0.28, 'Red ==> Close < Open ')

plt.title('Candlesticks for IBM from 10/20/2013 to 11/10/2013')

plt.ylabel('Price')

plt.xlabel('Date')

plt.show()

The output graph is shown as follows:

Chapter 7

[153]

Graphical representation of two-year price
movement
We could show the price movement for a given ticker from the first date to the
second date. In the following program, we have three input values: ticker,
begdate (first date), and enddate (second date):

import datetime

import matplotlib.pyplot as plt

from matplotlib.finance import quotes_historical_yahoo

from matplotlib.dates import MonthLocator,DateFormatter

ticker='AAPL'

begdate= datetime.date(2012, 1, 2)

enddate = datetime.date(2013, 12,4)

months = MonthLocator(range(1,13), bymonthday=1, interval=3) # every
3rd month

monthsFmt = DateFormatter("%b '%Y")

x = quotes_historical_yahoo(ticker, begdate, enddate)

if len(x) == 0:

 print ('Found no quotes')

 raise SystemExit

dates = [q[0] for q in x]

closes = [q[4] for q in x]

fig, ax = plt.subplots()

ax.plot_date(dates, closes, '-')

ax.xaxis.set_major_locator(months)

ax.xaxis.set_major_formatter(monthsFmt)

ax.xaxis.set_minor_locator(mondays)

ax.autoscale_view()

ax.grid(True)

fig.autofmt_xdate()

Visual Finance via Matplotlib

[154]

The output graph is shown as follows:

IBM's intra-day graphical representations
We could demonstrate the price movement of a stock for a given period, for example,
from January 2009 to today. First, let's look at the intra-day price pattern. The
following program will be explained in the next chapter:

import pandas as pd, numpy as np, datetime

ticker='AAPL'

path='http://www.google.com/finance/getprices?q=ttt&i=60&p=1d&f=d,o,h,l,c
,v'

p=np.array(pd.read_csv(path.replace('ttt',ticker),skiprows=7,header=No
ne))

date=[]

for i in arange(0,len(p)):

 if p[i][0][0]=='a':

 t= datetime.datetime.fromtimestamp(int(p[i][0].replace('a','')))

 date.append(t)

 else:

 date.append(t+datetime.timedelta(minutes =int(p[i][0])))

Chapter 7

[155]

final=pd.DataFrame(p,index=date)

final.columns=['a','Open','High','Low','Close','Vol']

del final['a']

x=final.index

y=final.Close

title('Intraday price pattern for ttt'.replace('ttt',ticker))

xlabel('Price of stock')

ylabel('Intro-day price pattern')

plot(x,y)

show()

The graph is shown in the following image:

Visual Finance via Matplotlib

[156]

A more complex program that we can run to find the intra-day pattern could be
found at http://matplotlib.org/examples/pylab_examples/finance_work2.
html. Our program is quite similar to the original program posted at the link. The
Python program used to generate the following graph is not shown to save space:

Presenting both closing price and trading
volume
Sometimes, we like to view both price movement and trading volumes
simultaneously. The following program accomplishes this:

>>>from pylab import plotfile, show

>>>import matplotlib.finance as finance

>>>ticker = 'IBM'

>>>begdate = datetime.date(2013,1,1)

>>>enddate = datetime.date.today()

Chapter 7

[157]

>>>x= finance.fetch_historical_yahoo(ticker, begdate, enddate)

>>>plotfile(x, (0,6,5))

>>>show()

The output graph is shown as follows:

Adding mathematical formulae to our graph
In finance, we use many mathematical formulae. Occasionally, we need to add a
mathematical formula to our figure. A set of formulae for a call option by using the
matplotlib module is shown in the following program:

import numpy as np

import matplotlib.mathtext as mathtext

import matplotlib.pyplot as plt

import matplotlib

matplotlib.rc('image', origin='upper')

parser = mathtext.MathTextParser("Bitmap")

r'$\left[\left\lfloor\frac{5}{\frac{\left(3\right)}{4}} y\right)\right]$'

rgba1, depth1 = parser.to_rgba(r' $d_2=\frac{ln(S_0/K)+(r-\sigma^2/2)T}{\
sigma\sqrt{T}}=d_1-\sigma\sqrt{T}$', color='blue',fontsize=12, dpi=200)

Visual Finance via Matplotlib

[158]

rgba2, depth2 = parser.to_rgba(r'$d_1=\frac{ln(S_0/K)+(r+\sigma^2/2)T}{\
sigma\sqrt{T}}$', color='blue', fontsize=12, dpi=200)

rgba3, depth3 = parser.to_rgba(r' $c=S_0N(d_1)- Ke^{-rT}N(d_2)$',
color='red',fontsize=14, dpi=200)

fig = plt.figure()

fig.figimage(rgba1.astype(float)/255., 100, 100)

The program crucially depends on the LaTeX format, which is a high-quality
typesetting system; it includes features designed for the production of technical and
scientific documentation. LaTeX is the de facto standard for the communication and
publication of scientific documents according to the web page of http://latex-
project.org/. The following is the output:

Adding simple images to our graphs
Assume that we have the Python logo saved under C:\temp. The logo could be
downloaded at http://canisius.edu/~yany/python_logo.png. The following
code could be used to retrieve it:

>>>import matplotlib.pyplot as plt

>>>import matplotlib.cbook as cbook

>>>image_file = cbook.get_sample_data('c:/temp/python_logo.png')

>>>image = plt.imread(image_file)

>>>plt.imshow(image)

>>>plt.axis('off')

>>>plt.show()

The cbook module is a collection of utility functions and classes. Many of them
are from the Python cookbook. Thus, it is named cbook. The following is the
corresponding graph:

Chapter 7

[159]

Saving our figure to a file
If we plan to save our figure as a .pdf file, we could use the following code:

>>>from matplotlib.pylab import *

>>>plot([1,1,4,5,10,11])

>>>savefig("c:/temp/test.pdf")

The following is the corresponding graph:

Visual Finance via Matplotlib

[160]

If we don't specify a particular path as done in the following code, the figure would
be at the current working directory; usually it is under C:\python27:

>>>savefig("test.pdf")

Performance comparisons among stocks
In the following program, we compare the performance of several stocks in terms of
their returns in 2013:

import matplotlib.pyplot as plt; plt.rcdefaults()

import numpy as np

import matplotlib.pyplot as plt

from matplotlib.finance import quotes_historical_yahoo

stocks = ('IBM', 'DELL', 'WMT', 'C', 'AAPL')

begdate=(2013,1,1)

enddate=(2013,11,30)

def ret_annual(ticker):

 x = quotes_historical_yahoo(ticker, begdate, enddate,asobject=True,
adjusted=True)

 logret = log(x.aclose[1:]/x.aclose[:-1])

 return(exp(sum(logret))-1)

performance = []

for ticker in stocks:

 performance.append(ret_annual(ticker))

y_pos = np.arange(len(stocks))

plt.barh(y_pos, performance, left=0, alpha=0.3)

plt.yticks(y_pos, stocks)

plt.xlabel('Annual returns ')

plt.title('Performance comparisons (annual return)')

plt.show()

Chapter 7

[161]

The related bar chart is shown in the following figure:

Comparing return versus volatility for
several stocks
The following program shows the locations of five stocks on the return versus
volatility graph:

import numpy as np

import matplotlib.pyplot as plt; plt.rcdefaults()

from matplotlib.finance import quotes_historical_yahoo

stocks = ('IBM', 'GE', 'WMT', 'C', 'AAPL')

begdate=(2013,1,1)

enddate=(2013,11,30)

def ret_vol(ticker):

 x = quotes_historical_yahoo(ticker,begdate,enddate,asobject=True,adju
sted=True)

 logret = log(x.aclose[1:]/x.aclose[:-1])

 return(exp(sum(logret))-1,std(logret))

ret=[];vol=[]

Visual Finance via Matplotlib

[162]

for ticker in stocks:

 r,v=ret_vol(ticker)

 ret.append(r)

 vol.append(v*sqrt(252))

labels = ['{0}'.format(i) for i in stocks]

xlabel('Volatility (annualized)')

ylabel('Annual return')

title('Return vs. volatility')

plt.subplots_adjust(bottom = 0.1)

color=np.array([0.18, 0.96, 0.75, 0.3, 0.9])

plt.scatter(vol, ret, marker = 'o', c=color,s = 1000,cmap=plt.get_
cmap('Spectral'))

for label, x, y in zip(labels, vol, ret):

 plt.annotate(label,xy=(x,y),xytext=(-20,20),textcoords='offset
points',

 ha = 'right', va = 'bottom',bbox = dict(boxstyle = 'round,pad=0.5',

 fc = 'yellow', alpha = 0.5),arrowprops = dict(arrowstyle = '->',

 connectionstyle = 'arc3,rad=0'))

plt.show()

In the graph, each point represents one stock in terms of its annual return and
annualized volatility. To make the picture more eye-catching, different colors
are used as shown in the following figure:

Chapter 7

[163]

Finding manuals, examples, and videos
The web page offering examples is http://matplotlib.org/examples/index.
html. We believe it is a good idea to study the examples given on the web page
before writing our own applications. The web pages related to matplotlib are
as follows:

•	 http://matplotlib.org/users/

•	 http://scipy-lectures.github.io/intro/matplotlib/matplotlib.
html

The web page of 5,000 examples is as follows:

•	 http://matplotlib.org/examples/index.html

•	 http://www.youtube.com/watch?v=OfumUp3hZmQ

How do we install ActivePython and matplotlib?

•	 http://www.activestate.com/activepython/python-financial-
scientific-modules (5m, 37s)

Visual financial statements can be found at the following location:

•	 http://www.youtube.com/watch?v=OfumUp3hZmQ

Installing the matplotlib module
independently
There are two steps to install the module:

1.	 Go to http://matplotlib.org/downloads.html.
2.	 Choose an appropriate package and download it, such as matplotlib-

1.2.1.win-amd64-py3.2.exe.

Summary
In this chapter, we showed how to use the matplotlib module to vividly explain
many financial concepts by using graph, pictures, color, and size. For example, in
a two-dimensional graph, we showed a few stocks' returns and volatility, the NPV
profile, multiple IRRs, and the portfolio diversification effect.

Visual Finance via Matplotlib

[164]

In Chapter 8, Statistical Analysis of Time Series, first we demonstrate how to retrieve
historical time series data from several public data sources, such as Yahoo! Finance,
Google Finance, Federal Reserve Data Library, and Prof. French's Data Library.
Then, we discussed various statistical tests, such as T-test, F-test, and normality
test. In addition, we presented Python programs to run capital asset pricing model
(CAPM), run a Fama-French three-factor model, estimate the Roll (1984) spread,
estimate Value at Risk (VaR) for individual stocks, and also estimate the Amihud
(2002) illiquidity measure, and the Pastor and Stambaugh (2003) liquidity measure
for portfolios. For the issue of anomaly in finance, we tested the existence of the so-
called January effect. For high-frequency data, we explained briefly how to draw
intra-day price movement and retrieved data from the Trade, Order, Report and
Quote (TORQ) database and the Trade and Quote (TAQ) database. The terms of
use for Yahoo! Finance is at http://finance.yahoo.com/badges/tos.

Exercises
1. What is the potential usage of matplotlib?

2. How do we install matplotlib?

3. Does the matplotlib module depend on NumPy? Does it depend on SciPy?

4. Write a Python function to generate an NPV profile with a set of input cash flows.

5. Write a Python function to download daily price time series from Yahoo! Finance.

6. We have six-year return vectors for two stocks and intend to construct a simple
equal-weighted portfolio. Interpret the following Python codes and explain the result
for the portfolio:

>>>A=[0.09,0.02, -0.13,0.20,-0.09,-0.03]

>>>B=[0.10,-0.3, -0.02,0.14,-0.13,0.23]

>>>C=[0.08,-0.16, 0.033,-0.24,0.053,-0.39]

>>>port_EW=(A+B)/3.

7. What is the standard deviation in terms of stock daily returns for the stocks of
IBM, DELL, WMT, and C and GE in 2011?

8. How do we estimate a moving beta for a set of given tickers?

9. How do we generate a histogram in terms of daily returns for IBM? You can use
five-year daily data from Yahoo! Finance.

Chapter 7

[165]

10. Which pair of stocks is more closely associated with each other among IBM,
DELL, and WMT? Show the evidence. You can use the latest five-year data from
Yahoo! Finance to support your arguments.

11. What is the Capital Market Line? How do we visualize this concept?

12. What is the Security Market Line? How do we visualize this concept?

13. Could you find empirical evidence to support or dispute the argument made by
Statman (1987) that a well-diversifiable portfolio should at least be holding 30 stocks?

14. Construct an efficient frontier with the use of ten stocks from Yahoo! Finance.
You can use either monthly or daily data.

15. How do we show the relationship between risk and returns?

16. What is the correlation between the US stock market and the Canadian stock
market? What is the relationship between the US stock market and the Japanese
stock market? For the US stock market, you can choose S&P500 (^GSPC for its ticker
symbol from Yahoo! Finance). To search market indices, go to finance.yahoo.com
first, type carat of (^) in the search bar, and press Enter. Your screen will look like the
following screenshot:

17. How do we randomly select ten stocks from a list of 100 tickers?

18. How do we draw an efficient frontier for ten stocks with five-year daily price data
downloaded from Yahoo! Finance?

19. What might be the potential usages of a 3D graph for teaching finance?

20. Find more information about visual finance and offer your own comments.

Visual Finance via Matplotlib

[166]

21. Debut the following program:

>>>import scipy as sp

>>>import matplotlib.pyplot as plt

>>>cashflows=[100,-50,-50,-50,60]

>>>rate=npv=[]

>>>x=[0,0.8]

>>>y=[0,0]

>>>for i in range(1,30):

 rate.append(0.01*i)

 npv.append(sp.npv(0.01*i,cashflows[1:])+cashflows[0])

>>>plt.plot(x,y),plt.plot(rate,npv)

>>>plt.show()

22. There are some issues with the DuPont identity discussed in this chapter. For
DELL and W-Mart, their ROE is the same, 0.22. However, the graph gives different
heights. The reason is that the final value of ROE is the product of three components
instead of summation. Find a way to overcome this issue, that is, your final output
which is shown in the following graph should have the same heights:

Statistical Analysis
of Time Series

Understanding the properties of financial time series is very important in finance.
In this chapter, we will discuss many issues, such as downloading historical prices,
estimating returns, total risk, market risk, correlation among stocks, correlation
among different countries' markets from various types of portfolios, and a portfolio
variance-covariance matrix; constructing an efficient portfolio and an efficient
frontier; estimating Roll (1984) spread; and also estimating the Amihud (2002)
illiquidity measure, and Pastor and Stambaugh's (2003) liquidity measure for
portfolios. The two related Python modules used are Pandas and statsmodels.

In this chapter, we will cover the following topics:

•	 Installation of Pandas and statsmodels
•	 Using Pandas and statsmodels
•	 Open data sources, and retrieving data from Excel, text, CSV, and MATLAB

files, and from a web page
•	 Date variable, DataFrame, and merging different datasets by date
•	 Term structure of interest rate, 52-week high and low trading strategy
•	 Return estimation and converting daily returns to monthly or annual returns
•	 Various tests, such as Durbin-Watson, T-test, and F-test
•	 Capital asset pricing model (CAPM), rolling beta, and Fama-

MacBeth regression
•	 Rolling volatility, correlation, forming ann-stock portfolio,

variance-covariance matrix, portfolio optimization, and efficient frontier

Statistical Analysis of Time Series

[168]

•	 The Roll (1985) spread, Amihud's (2002) illiquidity, and Pastor and
Stambaugh's (2003) liquidity measure

•	 Individual stock and portfolio's Value at Risk (VaR)
•	 January effect, size effect, and weekday effect
•	 Retrieving high-frequency data from Google Finance, Trade, Order,

Report, and Quotation (TORQ)

Installing Pandas and statsmodels
In the previous chapter, we used ActivePython. Although this package includes
Pandas using PyPm to install, statsmodel is unavailable in PyPm. Fortunately, we
could use Anaconda, introduced in Chapter 4, 13 Lines of Python Code to Price a Call
Option. The major reason that we recommend Anaconda is that the package includes
NumPy, SciPy, matplotlib, Pandas, and statsmodels. The second reason is its
wonderful editor called Spyder.

To install Anaconda, perform the following two steps:

1.	 Go to http://continuum.io/downloads.
2.	 According to your machine, choose an appropriate package, such as

Anaconda-1.8.0-Windows-x86.exe for a Windows version.

There are several ways to launch Python. After clicking on Start | All Programs,
search Anaconda; we will see the following hierarchy:

In the following three sections, we show different ways to launch Python.

Chapter 8

[169]

Launching Python using the Anaconda
command prompt
For launching Python using the Anaconda command prompt, perform the
following steps:

1.	 Click on Start | All Programs, search Anaconda, and then Anaconda
Command Prompt; we will go to the directory that contains the Python
executable file python.exe.

2.	 The exact path depends on individual installation. After typing python,
we launch Python, see the first line of the next screenshot. To test whether
Pandas and statsmodels are available, we import both of them. If there is
no error, it means that we have them installed correctly:

Launching Python using the DOS window
We can launch Python from any directory. To add the directory of our Python
executable file to the path, we perform the following steps:

1.	 First, launch Python via Anaconda Command Prompt (refer to the earlier
steps), and then copy the full path. In the preceding example, it is C:\Users\
yany\AppData\Local\Continuum\Anaconda.

2.	 Then, click on Start | Control Panel | View advanced system settings, click
on Environment Variables, find PATH, and then paste the full path given in
the preceding paragraph. (Note that this is for Windows only.)

3.	 Now, we can launch Python from any directory or subdirectory. After clicking
on Start, enter cmd in the Search programs and files textbox, and press the
Enter key; a DOS window will appear. Just type Python to launch it. Assume
that we have a two-line Python program called test01.py under the C:\temp
directory. The two lines of code in that file are x=10 and print x.

Statistical Analysis of Time Series

[170]

4.	 Again, click on Start, enter cmd in the Search programs and files textbox, and
then press Enter. From the DOS window, we go to the correct directory. To
show the program, issue type test01.py. To run the program, issue python
test01.py as follows:

Launching Python using Spyder
It is a much better choice to launch Python via Spyder, the editor accompanying
Anaconda. For the Windows version, perform the following steps:

1.	 Click on Start | All Files | Anaconda | Spyder; the following three panels
(windows) will appear. On the left-hand side panel, a default program called
temp.py appears as shown in the following screenshot:

Chapter 8

[171]

2.	 Let's try our first simple program. On the left-hand side panel, type x=10,
press Return, and type print x. We can remove the contents of the default
file before we type our two lines. In other words, our new program just has
the following two lines:
x=10

Print x

3.	 After clicking on the green run button on the menu bar, you will be asked
to save it. After that, the output will show on the bottom-right panel called
Console as shown in the following screenshot:

In the preceding output, the first line tells us the name of the program and the
working directory (wdir). As for the left-hand side panel, we can upload our
programs and modify them. One of the good features is that we can open many
Python programs simultaneously.

Using Pandas and statsmodels
We give a few examples in the following section for the two modules we are going
to use intensively in the rest of the book. Again, the Pandas module is for data
manipulation and the statsmodels module is for the statistical analysis.

Using Pandas
In the following example, we generate two time series starting from January 1, 2013.
The names of those two time series (columns) are A and B:

>>>import numpy as np

>>>import pandas as pd

>>>dates=pd.date_range('20130101',periods=5)

>>>np.random.seed(12345)

>>>x=pd.DataFrame(np.random.rand(5,2),index=dates,columns=('A','B'))

Statistical Analysis of Time Series

[172]

First, we import both NumPy and Pandas modules. The pd.date_range() function
is used to generate an index array. The x variable is a Pandas' data frame with dates
as its index. Later in this chapter, we will discuss pd.DataFrame(). The columns()
function defines the names of those columns. Because the seed() function is used in
the program, anyone can generate the same values. The describe() function offers
the properties of those two columns, such as mean and standard deviation. Again,
we call such a function as shown in the following code:

>>>x

 A B

2013-01-01 0.929616 0.316376

2013-01-02 0.183919 0.204560

2013-01-03 0.567725 0.595545

2013-01-04 0.964515 0.653177

2013-01-05 0.748907 0.653570

>>>x.describe()

 A B

count 5.000000 5.000000

mean 0.678936 0.484646

std 0.318866 0.209761

min 0.183919 0.204560

25% 0.567725 0.316376

50% 0.748907 0.595545

75% 0.929616 0.653177

max 0.964515 0.653570

>>>

Assume that we plan to replace missing values (NaN) with the mean of the time
series. The two functions used are mean() and fillna():

>>>import pandas as pd

>>>import numpy as np

>>>x=pd.Series([0.1,0.02,-0.03,np.nan,0.130,0.125])

>>>x

0 0.100

1 0.020

2 -0.030

3 NaN

Chapter 8

[173]

4 0.130

5 0.125

dtype: float64

>>>m=np.mean(x)

>>>round(m,4)

0.069

>>>y=x.fillna(m)

>>>y

0 0.100

1 0.020

2 -0.030

3 0.069 # nan is replaced with the mean

4 0.130

5 0.125

dtype: float64

>>>

Examples from statsmodels
In statistics, ordinary least square (OLS) regression is a method for estimating the
unknown parameters in a linear regression model. It minimizes the sum of squared
vertical distances between the observed values and the values predicted by the
linear approximation. The OLS method is used extensively in finance. Assume that
we have the following equation where y is an n by 1 vector (array), and x is an n by
(m+1) matrix, a return matrix (n by m), plus a vector that contains 1 only. N is the
number of observations, and m is the number of independent variables:

 (1)

In the following program, after generating the x and y vectors, we run an OLS
regression (a linear regression). The last line prints the parameters only:

>>>import numpy as np

>>>import statsmodels.api as sm

>>>y=[1,2,3,4,2,3,4]

>>>x=range(1,8)

>>>x=sm.add_constant(x)

>>>results=sm.OLS(y,x).fit()

>>>print results.params

Statistical Analysis of Time Series

[174]

The output is shown as follows:

>>>[1.28571429 0.35714286]

Open data sources
Since this chapter explores the statistical properties of time series, we need certain
data. It is a great idea to employ publicly available economic, financial, and
accounting data since every reader can download these time series with no cost.
The free data sources are summarized in the following table:

Name Web page
Yahoo! Finance http://finance.yahoo.com

Current and historical pricing, BS, IS, and so on
Google Finance http://www.google.com/finance

Current and historical trading prices
Federal Reserve Bank
Data Library

http://www.federalreserve.gov/releases/h15/
data.htm

Interest rates, rates for AAA, AA rated bonds, and so on
Financial statements

Russell indices http://www.russell.com

Russell indices
Prof. French's Data
Library

http://mba.tuck.dartmouth.edu/pages/faculty/
ken.french/data_library.html

Fama-French factors, market index, risk-free rate, and
industry classification

Census Bureau http://www.census.gov/

http://www.census.gov/compendia/statab/hist_
stats.html

Census data
Bondsonline http://www.bondsonline.com/

Bond data
U.S. Department of the
Treasury

http://www.treas.gov

U.S. Treasury ? yield
Bureau of Labor
Statistics

http://download.bls.gov/

http://www.bls.gov/

Inflation, employment, unemployment, pay, and benefits
Business cycles, vital statistics, and report of Presidents

Chapter 8

[175]

We can easily download many time series from these sources. For example, to
download IBM historical daily price data from Yahoo! Finance, we can perform the
following steps:

1.	 Go to Yahoo! Finance at http://finance.yahoo.com.
2.	 Enter IBM in the search box.
3.	 Click on Historical Prices.
4.	 Select the starting and ending dates, and click on Get Prices.
5.	 Go to the bottom of the page, and click on Download to Spreadsheet.

The first and last several lines are given as follows:

>>>Date,Open,High,Low,Close,Volume,Adj Close

2013-07-26,196.59,197.37,195.00,197.35,2485100,197.35

2013-07-25,196.30,197.83,195.66,197.22,3014300,197.22

2013-07-24,195.95,197.30,195.86,196.61,2957900,196.61

2013-07-23,194.21,196.43,194.10,194.98,2863800,194.98

1962-01-09,552.00,563.00,552.00,556.00,491200,2.43

1962-01-08,559.50,559.50,545.00,549.50,544000,2.40

1962-01-05,570.50,570.50,559.00,560.00,363200,2.44

1962-01-04,577.00,577.00,571.00,571.25,256000,2.49

1962-01-03,572.00,577.00,572.00,577.00,288000,2.52

1962-01-02,578.50,578.50,572.00,572.00,387200,2.50

The second example involves downloading the Russell 3000 time series. At
http://www.russell.com/indexes/data/us_equity/russell_us_index_
values.asp, find the appropriate time series, then click on Download File under
Historical. The download file will be a CSV file, the first few lines of which
are shown as follows:

"Index Name","Date","Value Without Dividends","Value With Dividends"

"Russell 3000® Index","06/01/1995",555.15,1034.42

"Russell 3000® Index","06/02/1995",555.15,1034.56

"Russell 3000® Index","06/05/1995",558.72,1041.21

"Russell 3000® Index","06/06/1995",558.50,1041.04

"Russell 3000® Index","06/07/1995",556.45,1037.21

"Russell 3000® Index","06/08/1995",555.83,1036.18

"Russell 3000® Index","06/09/1995",551.66,1028.41

Statistical Analysis of Time Series

[176]

"Russell 3000® Index","06/12/1995",554.61,1033.96

"Russell 3000® Index","06/13/1995",559.74,1043.93

"Russell 3000® Index","06/14/1995",560.19,1044.86

Retrieving data to our programs
To feed data to our programs, we need to understand how to input data. Since the
data courses vary, we introduce several ways to input data, such as from clipboard,
Yahoo! Finance, an external text or CSV file, a web page, and a MATLAB dataset.

Inputting data from the clipboard
In our everyday lives, we use Notepad, Microsoft Word, or Excel to input data.
One of the widely used functionalities is copy and paste. The pd.read_clipboard()
function contained in Pandas mimics this operation. For example, we type the
following contents on Notepad:

x y

1 2

3 4

5 6

Then, highlight these entries, right-click on it, copy and paste in the Python console,
and run the following two lines:

>>>import pandas as pd

>>>data=pd.read_clipboard()

>>>data

 X y

1 2

3 4

5 6

This is true for copying data from Microsoft Word and Excel.

Chapter 8

[177]

Retrieving historical price data from Yahoo!
Finance
The following simple program has just five lines, and we can use it to retrieve
DELL's historical prices data from Yahoo! Finance:

>>>from matplotlib.finance import quotes_historical_yahoo

>>>ticker='DELL'

>>>begdate=(2013,1,1)

>>>enddate=(2013,11,9)

>>>p=quotes_historical_yahoo(ticker, begdate, enddate,asobject=True,

adjusted=True)

To further check the variable called p, we could apply the type() and size()
functions. To view a few lines, we print the first and the last few lines on screen. The
p[0] array index is referred to in the first observation, while p[-1] is for the last one:

>>>type(p)

<class 'numpy.core.records.recarray'>

>>>size(p)

209

The output tells us that the data type of the output is an array. By looking at these
two days, we realize that the dataset is sorted with the oldest date as the first
observation. This is opposite to the date order where the first date is the latest date,
shown on Yahoo! Finance. For the array, we have seven variables: date, open, close,
high, low, volume, and aclose. The aclose variable is the adjusted closing price,
that is, a closing price adjusted for stock split and distribution such as dividends.

Statistical Analysis of Time Series

[178]

Inputting data from a text file
When importing data from an external file, Pandas has many functions, such as
read_table(), read_fwf(), read_hdf(), and io(). There is no way that we could
discuss each of them in this chapter. Thus, we focus on a few widely used functions.
Assume that our input dataset is the Fama-French monthly factors. To download
the time series manually, we go to Prof. French's data library at http://mba.tuck.
dartmouth.edu/pages/faculty/ken.french/data_library.html. Click on Fama/
French Factors, and download it. Then, unzip the file, delete the annual part, and
then name the text file ff_monthly.txt. The data items start from the fifth line, and
the fourth line is a header; refer to the following lines:

This file was created by CMPT_ME_BEME_RETS using the 201209 CRSP
database.

The 1-month TBill return is from Ibbotson and Associates, Inc.

[this is a blank line]

 Mkt-RF SMB HML RF

192607 2.62 -2.16 -2.92 0.22

192608 2.56 -1.49 4.88 0.25

192609 0.36 -1.38 -0.01 0.23

We could use read_table() to retrieve these three factors as shown in the
following code:

>>>import pandas as pd

>>>x=pd.read_table("c:/temp/ff_monthly.txt",skiprows=4)

After issuing help(read_table), we could get more information about this
function. The first several lines are shown as follows:

>>>import pandas as pd

>>>help(pd.read_table)

Help on function read_table in module pandas.io.parsers:

Chapter 8

[179]

read_table(filepath_or_buffer, sep='\t', dialect=None, compression=None,
doublequote=True, escapechar=None, quotechar='"', quoting=0,
skipinitialspace=False, lineterminator=None, header='infer', index_
col=None, names=None, prefix=None, skiprows=None, skipfooter=None,
skip_footer=0, na_values=None, true_values=None, false_values=None,
delimiter=None, converters=None, dtype=None, usecols=None, engine='c',
delim_whitespace=False, as_recarray=False, na_filter=True, compact_
ints=False, use_unsigned=False, low_memory=True, buffer_lines=None,
warn_bad_lines=True, error_bad_lines=True, keep_default_na=True,
thousands=None, comment=None, decimal='.', parse_dates=False, keep_
date_col=False, dayfirst=False, date_parser=None, memory_map=False,
nrows=None, iterator=False, chunksize=None, verbose=False, encoding=None,
squeeze=False)

 Read general delimited file into DataFrame

 Also supports optionally iterating or breaking of the file

 into chunks.

The most important input variables for the read_table() function are skiprows, sep,
index_col, and doublequote. Some of them will be discussed later in this chapter.

Inputting data from an Excel file
Assume that we have an Excel file with just two observations with a file named
text.xlsx saved under C:\temp\. In addition, the name of the spreadsheet that
contains the two lines of code shown after the screenshot is called Sheet1:

>>>infile=pd.ExcelFile("c:/temp/test.xlsx")

>>>x=infile.parse('Sheet1',header=None)

>>>x

 0 1 2

0 2013-01-01 00:00:00 0.1 0.3

1 2013-01-02 00:00:00 0.2 0.4

>>>

Statistical Analysis of Time Series

[180]

Inputting data from a CSV file
The function we could use to read a CSV file could be read_csv(), or read_
table(). Assume that we have the earlier data downloaded from Yahoo! Finance.
The file's name is ibm.csv, and it is located at C:\temp. Input IBM's daily price data.
The input file is ibm.csv, which we just downloaded from Yahoo! Finance. To see a
few lines, we just type f[1:2] as shown in the following code:

>>>import pandas as pd

>>>f=pd.read_csv("c:\\temp\\ibm.csv")

>>>f[1:3]

 Date Open High Low Close Volume Adj Close

1 2013-07-25 196.30 197.83 195.66 197.22 3014300 197.22

2 2013-07-24 195.95 197.30 195.86 196.61 2957900 196.61

Note that in this program, to retrieve data from an external CSV file, we use the
pd.read_csv("c:\\temp\\ibm.csv") command , which is equivalent to the
pd.read_csv("c:/temp/ibm.csv") command.

Retrieving data from a web page
An easy way to retrieve a stock's price data directly from Yahoo! Finance is to use the
pd.read_csv() function from a web page as shown in the following code:

>>>import pandas as pd

>>>x=pd.read_csv("http://chart.yahoo.com/table.csv?s=IBM")

>>>type(x)

<class 'pandas.core.frame.DataFrame'>

>>>

The last command in the previous code indicates that x is a DataFrame. If we just type
x, we will get more information about this variable as shown in the following code:

>>>x

<class 'pandas.core.frame.DataFrame'>

Int64Index: 13072 entries, 0 to 13071

Data columns (total 7 columns):

Date 13072 non-null values

Open 13072 non-null values

High 13072 non-null values

Low 13072 non-null values

Close 13072 non-null values

Chapter 8

[181]

Volume 13072 non-null values

Adj Close 13072 non-null values

dtypes: float64(5), int64(1), object(1)

>>>x[0:5]

 Date Open High Low Close Volume Adj Close

0 2013-12-04 175.37 177.50 175.16 175.74 5267400 175.74

1 2013-12-03 177.00 178.23 175.64 176.08 5864000 176.08

2 2013-12-02 179.46 179.59 177.12 177.48 4560000 177.48

3 2013-11-29 179.21 180.76 179.00 179.68 2870500 179.68

4 2013-11-27 177.83 180.18 177.82 178.97 4596500 178.97

>>>

The read_csv() function in Pandas is used to retrieve data from an external file. In
the preceding example, we need just two variables: date and adjusted closing price.
Since we have seven columns, of which date is the first and adjusted price is the last
one, their column numbers are 0 and 6. The keyword, usecols(), could be used to
achieve this:

>>>import pandas as pd

>>>url='http://chart.yahoo.com/table.csv?s=IBM'

>>>x=pd.read_csv(url,usecols=[0,6])

>>>x[0:5]

 Date Adj Close

0 2013-12-04 175.74

1 2013-12-03 176.08

2 2013-12-02 177.48

3 2013-11-29 179.68

4 2013-11-27 178.97

>>>

Inputting data from a MATLAB dataset
First, from http://canisius.edu/~yany/ibm.mat, we download MATLAB data.
Assume that the downloaded MATLAB dataset is saved under C:\temp\. We can
use the loadmat() function of SciPy to load it as follows:

>>>from __future__ import print_function

>>>import scipy.io as sp

>>>matData = sp.loadmat('c:/temp/ibm.mat')

Statistical Analysis of Time Series

[182]

Several important functionalities
Here, we introduce several important functionalities that we are going to use in the
rest of the chapters. The Series() function included in the Pandas module would
help us to generate time series. When dealing with time series, the most important
variable is date. This is why we explain the date variable in more detail. Data.Frame
is used intensively in Python and other languages, such as R.

Using pd.Series() to generate
one-dimensional time series
We could easily use the pd.Series() function to generate our time series; refer to
the following example:

>>>import pandas as pd

>>>x = pd.date_range('1/1/2013', periods=252)

>>>data = pd.Series(randn(len(x)), index=x)

>>>data.head()

2013-01-01 0.776670

2013-01-02 0.128904

2013-01-03 -0.064601

2013-01-04 0.988347

2013-01-05 0.459587

Freq: D, dtype: float64

>>>data.tail()

2013-09-05 -0.167599

2013-09-06 0.530864

2013-09-07 1.378951

2013-09-08 -0.729705

2013-09-09 1.414596

Freq: D, dtype: float64

>>>

Chapter 8

[183]

Using date variables
To better facilitate working with time series data, we introduce the read_csv()
and read_table() functions in Pandas. In particular, users can use parse_dates
or date_parse to designate a specific column as a date-time object. To use the first
column as our index, we issue the following commands:

>>>import pandas as pd

>>>url='http://chart.yahoo.com/table.csv?s=IBM'

>>>x=pd.read_csv(url,index_col=0,parse_dates=True)

>>>x.head()

 Open High Low Close Volume Adj Close

Date

2013-11-29 179.21 180.76 179.00 179.68 2870500 179.68

2013-11-27 177.83 180.18 177.82 178.97 4596500 178.97

2013-11-26 178.67 178.94 177.31 177.31 5756000 177.31

2013-11-25 180.25 180.75 177.82 178.94 7161900 178.94

2013-11-22 183.50 184.99 179.92 181.30 7610200 181.30

Using the DataFrame
The first example generates a column as follows:

>>>import pandas as pd

>>>df=pd.DataFrame(randn(8, 1), columns = ['A'], dtype = 'float32')

>>>df

 A

0 -0.581377

1 -1.790758

2 -0.418108

3 1.122045

4 -0.402717

5 0.694823

6 0.035632

7 0.919457

>>>

Statistical Analysis of Time Series

[184]

When running the previous code, we will not get the same results since the np.rand.
seed() function is not used. When we use the read_csv() or read_table()
functions to input data from an external file with a text format, the data type is also
DataFrame as shown in the following example:

>>>import pandas as pd

>>>index = pd.date_range('1/1/2013', periods=8)

>>>df = pd.DataFrame(randn(8, 3), index=index,columns=['A', 'B', 'C'])

>>>df

 A B C

2013-01-01 -1.185345 -0.422447 -0.610870

2013-01-02 -1.507653 -0.295807 -0.636771

2013-01-03 1.686858 -2.013024 -0.980905

2013-01-04 0.372631 -1.580834 0.515045

2013-01-05 -0.322729 -0.677587 -1.053555

2013-01-06 -0.518918 -0.952527 0.000124

2013-01-07 0.482760 2.049442 1.833976

2013-01-08 0.313321 0.162334 0.662253

Assume that we are only interested in two variables from IBM's historical daily data
from Yahoo! Finance: date and adjusted close price. In addition, we plan to use the
date variable as our index. We have the following Python program to accomplish
these requirements:

>>>import pandas as pd

>>>x=pd.read_csv('http://chart.yahoo.com/table.
csv?s=IBM',usecols=[0,6],index_col=0)

>>>type(x)

<class 'pandas.core.frame.DataFrame'>

>>>x.head()

 Adj Close

Date

2013-11-21 184.13

2013-11-20 185.19

2013-11-19 185.25

2013-11-18 184.47

2013-11-15 183.19

Chapter 8

[185]

To find more information about the pd.DataFrame() function included in Pandas,
we can issue help(pd.DataFrame) as follows:

>>>help(pd.DataFrame)

Help on class DataFrame in module pandas.core.frame:

class DataFrame(pandas.core.generic.NDFrame)

 Two-dimensional size-mutable, potentially heterogeneous tabular
datastructure with labeled axes (rows and columns). Arithmetic
operationsalign on both row and column labels. Can be thought of as a
dict-like container for Series objects. The primary pandas data structure

 Parameters

 data : numpy ndarray (structured or homogeneous), dict, or DataFrame
Dict can contain Series, arrays, constants, or list-like objects

 index : Index or array-like

 Index to use for resulting frame. Will default to np.arange(n) if
no indexing information part of input data and no index provided

 columns : Index or array-like Will default to np.arange(n) if not
column labels provided

 dtype : dtype, default None Data type to force, otherwise infer

 copy : boolean, default False

 Copy data from inputs. Only affects DataFrame / 2d ndarray input

Return estimation
If we have price data, we have to calculate returns. In addition, sometimes we
have to convert daily returns to weekly or monthly, or convert monthly returns
to quarterly or annual. Thus, understanding how to estimate returns and their
conversion is vital. Assume that we have four prices and we choose the first and
last three prices as follows:

>>>import numpy as np

>>>p=np.array([1,1.1,0.9,1.05])

Statistical Analysis of Time Series

[186]

It is important how these prices are sorted. If the first price happened before the
second price, we know that the first return should be (1.1-1)/1=10%. Next, we learn
how to retrieve the first n-1 and the last n-1 records from an n-record array. To list
the first n-1 prices, we use p[:-1], while for the last three prices we use p[1:] as
shown in the following code:

>>>print(p[:-1])

>>>print(p[1:])

 [1. 1.1 0.9]

[1.1 0.9 1.05]

To estimate returns, use the following code:

>>>ret=(p[1:]-p[:-1])/p[:-1]

>>>print ret

[0.1 -0.18181818 0.16666667]

However, if the prices are arranged in the reverse order, for example, the first one is
the latest price and the last one is the oldest price, then we have to estimate returns
in the following ways:

>>>ret=(p[:-1]-p[1:])/p[1:]

>>>print ret

[-0.09090909 0.22222222 -0.14285714]

>>>

The following code shows how to download daily price data from Yahoo! Finance
and estimate daily returns:

>>>from matplotlib.finance import quotes_historical_yahoo

>>>ticker='IBM'

>>>begdate=(2013,1,1)

>>>enddate=(2013,11,9)

>>>x = quotes_historical_yahoo(ticker, begdate, enddate,asobject=True,

adjusted=True)

>>>ret=(x.aclose[1:]-x.aclose[:-1])/x.aclose[:-1]

Chapter 8

[187]

The first line uploads a function from matplotlib.finance. We define the
beginning and ending dates using a tuple data type. The downloaded historical
daily price data is assigned to x. To verify that our returns are correctly estimated,
we can print a few prices to our screens. Then, we could manually verify one or two
return values as shown in the following code:

>>>x.date[0:3]

array([datetime.date(2013, 1, 2), datetime.date(2013, 1, 3),

 datetime.date(2013, 1, 4)], dtype=object)

>>>x.aclose[0:3]

array([192.61, 191.55, 190.3])

>>>ret[0:2]

array([-0.00550335, -0.00652571])

>>>(191.55-192.61)/192.61

-0.005503348735787354

>>>

Yes, the last result confirms that our first return is correctly estimated.

Converting daily returns to monthly returns
Sometimes, we need to convert daily returns to monthly or annual returns. Here is
our procedure. First, we estimate the daily log returns. We then take a summation
of all daily log returns within each month to find out the corresponding monthly log
returns. The final step is to convert a log monthly return to a monthly percentage
return. Assume that we have the price data of p0, p1, p2, …., p20, where p0 is the last
trading price of the last month, p1 is the first price of this month, and p20 is the last
price of this month. Thus, this month's percentage return is given as follows:

 (2)

The monthly log return is defined as follows:

20
monthly

0

log_ return log P
P

 
=  

 
 (3)

Statistical Analysis of Time Series

[188]

The relationship between monthly percentage and log return is given as follows:

 (4)

The daily log return is defined similarly as follows:

 (5)

Let's look at the following summation of log returns:

20
20

10

log_ log log_ daily
monthly i

i

preturn return
p =

 
= = 

 
∑ (6)

Based on the previous procedure, the following Python program converts daily
returns into monthly returns:

from matplotlib.finance import quotes_historical_yahoo

import numpy as np

import pandas as pd

ticker='IBM'

begdate=(2013,1,1)

enddate=(2013,11,9)

x = quotes_historical_yahoo(ticker, begdate, enddate,asobject=True,
adjusted=True)

logret = log(x.aclose[1:]/x.aclose[:-1])

yyyymm=[]

d0=x.date

for i in range(0,size(logret)):

 yyyymm.append(''.join([d0[i].strftime("%Y"),d0[i].strftime("%m")]))

y=pd.DataFrame(logret,yyyymm,columns=['ret_monthly'])

ret_monthly=y.groupby(y.index).sum()

Chapter 8

[189]

In the preceding program, we download daily price data based on a given ticker and
the beginning and ending dates. Since the closing price is adjusted for stock split and
potential distribution, we use it to estimate log returns. The procedure to generate
daily log returns instead of daily percentage returns is based on equation (6). Then,
we generate a variable called yyyymm. To show a few of its observations, we have the
following output:

The objective of generating such a date variable is to use it for grouping. To generate
this variable, we apply the join() function; refer to the following example. We use
d0[0] as an illustration:

>>>d0[0]

datetime.date(2013, 1, 2)

>>>d0[0].strftime("%Y")

'2013'

>>>d0[0].strftime("%m")

'01'

>>>''.join([d0[0].strftime("%Y"),d0[0].strftime("%m")])

'201301'

>>>

After printing the monthly returns, we have the following values:

>>>ret_monthly

 ret_monthly

201301 0.043980

201302 -0.006880

201303 0.045571

201304 -0.061913

201305 0.050327

201306 -0.088366

201307 0.023441

Statistical Analysis of Time Series

[190]

201308 -0.057450

201309 0.013031

201310 -0.039109

201311 0.009602

>>>

Converting daily returns to annual returns
Similarly, we could convert daily returns to annual ones with the help of the
following code:

from matplotlib.finance import quotes_historical_yahoo

import numpy as np

import pandas as pd

ticker='IBM'

begdate=(1990,1,1)

enddate=(2012,12,31)

x=quotes_historical_yahoo(ticker,begdate,enddate,asobject=True,adjusted=T
rue)

logret = log(x.aclose[1:]/x.aclose[:-1])

date=[]

d0=x.date

for i in range(0,size(logret)):

 date.append(d0[i].strftime("%Y"))

 y=pd.DataFrame(logret,date,columns=['ret_annual'])

 ret_annual=exp(y.groupby(y.index).sum())-1

The first and last several observations of the dataset are given, hereby using head()
and tail() functions of Pandas as follows:

>>>ret_annual.head()

 ret_annual

1990 0.197897

1991 -0.157460

1992 -0.411765

1993 0.187500

Chapter 8

[191]

1994 0.300877

>>>ret_annual.tail()

 ret_annual

2008 -0.150799

2009 0.546150

2010 0.134804

2011 0.284612

2012 0.045457

Merging datasets by date
Assume that we are interested in estimating the market risk (beta) for IBM using
daily data. The following is the program we can use to download IBM's price, market
return, and risk-free interest rate since we need them to run a capital asset pricing
model (CAPM):

from matplotlib.finance import quotes_historical_yahoo

import numpy as np

import pandas as pd

ticker='IBM'

begdate=(2013,10,1)

enddate=(2013,11,9)

x = quotes_historical_yahoo(ticker, begdate, enddate,asobject=True,
adjusted=True)

k=x.date

date=[]

for i in range(0,size(x)):

 date.append(''.join([k[i].strftime("%Y"),k[i].strftime("%m"),k[i].
strftime("%d")]))

x2=pd.DataFrame(x['aclose'],np.array(date,dtype=int64),columns=[ticker+'_
adjClose'])

ff=load('c:/temp/ffDaily.pickle')

final=pd.merge(x2,ff,left_index=True,right_index=True)

Statistical Analysis of Time Series

[192]

A part of the output is given as follows:

In the preceding output, there are two types of data for the five columns: price and
returns. The first column is price while the rest are returns. This does not make any
sense. However, we just show how to merge different time series by a date variable.
To merge a stock return column with returns, we simply estimate the return of IBM
before a merger.

Forming an n-stock portfolio
In the following program, we generate a dataset with three stocks in addition to
S&P500:

import statsimport numpy as np

import pandas as pd

tickers=['IBM','dell','wmt']

final=pd.read_csv('http://chart.yahoo.com/table.csv?s=^GSPC',usecols=[0,6
],index_col=0)

final.columns=['^GSPC']

for ticker in tickers:

 print ticker

 x = pd.read_csv('http://chart.yahoo.com/table.csv?s=ttt'.replace('ttt
',ticker),usecols=[0,6],index_col=0)

 x.columns=[ticker]

 final=pd.merge(final,x,left_index=True,right_index=True)

Chapter 8

[193]

To show the first and last few lines, we use the head() and tail() functions
as follows:

>>>final.head()

 ^GSPC IBM dell wmt

Date

2013-10-18 1744.50 172.85 13.83 75.71

2013-10-17 1733.15 173.90 13.85 75.78

2013-10-16 1721.54 185.73 13.85 75.60

2013-10-15 1698.06 183.67 13.83 74.37

2013-10-14 1710.14 185.97 13.85 74.68

>>>final.tail()

 ^GSPC IBM dell wmt

Date

1988-08-23 257.09 17.38 0.08 2.83

1988-08-22 256.98 17.36 0.08 2.87

1988-08-19 260.24 17.67 0.09 2.94

1988-08-18 261.03 17.97 0.09 2.98

1988-08-17 260.77 17.97 0.09 2.98

>>>

T-test and F-test
In finance, T-test could be viewed as one of the most used statistical hypothesis
tests in which the test statistic follows a student's t distribution if the null hypothesis
is supported. We know that the mean for a standard normal distribution is zero.
In the following program, we generate 1,000 random numbers from a standard
distribution. Then, we conduct two tests: test whether the mean is 0.5, and test
whether the mean is zero:

>>>from scipy import stats

>>>np.random.seed(1235)

>>>x = stats.norm.rvs(size=10000)

>>>print("T-value P-value (two-tail)")

>>>print(stats.ttest_1samp(x,5.0))

>>>print(stats.ttest_1samp(x,0))

T-value P-value (two-tail)

Statistical Analysis of Time Series

[194]

(array(-495.266783341032), 0.0)

(array(-0.26310321925083124), 0.79247644375164772)

>>>

For the first test, in which we test whether the time series has a mean of 0.5, we
reject the null hypothesis since the T-value is 495.2 and the P-value is 0. For the
second test, we accept the null hypothesis since the T-value is close to -0.26 and
the P-value is 0.79. In the following program, we test whether the mean daily
returns from IBM in 2013 is zero:

from scipy import stats

from matplotlib.finance import quotes_historical_yahoo

ticker='ibm'

begdate=(2013,1,1)

enddate=(2013,11,9)

p=quotes_historical_yahoo(ticker,begdate,enddate,asobject=True,
adjusted=True)

ret=(p.aclose[1:] - p.aclose[:-1])/p.aclose[:-1]

print(' Mean T-value P-value ')

print(round(mean(ret),5), stats.ttest_1samp(ret,0))

 Mean T-value P-value

(-0.00024, (array(-0.296271094280657), 0.76730904089713181))

From the previous results, we know that the average daily returns for IBM is
0.0024 percent. The T-value is -0.29 while the P-value is 0.77. Thus, the mean is
statistically not different from zero.

Tests of equal means and equal variances
Next, we test whether two variances for IBM and DELL in 2013 are equal or not. The
function called sp.stats.bartlet performs Bartlett's test for equal variances with
a null hypothesis that all input samples are from populations with equal variances.
The outputs are T-value and P-value:

import scipy as sp

from matplotlib.finance import quotes_historical_yahoo

begdate=(2013,1,1)

enddate=(2013,11,9)

def ret_f(ticker,begdate,enddate):

Chapter 8

[195]

 p = quotes_historical_yahoo(ticker,begdate, enddate,asobject=True,ad
justed=True)

 return((p.open[1:] - p.open[:-1])/p.open[:-1])

y=ret_f('IBM',begdate,enddate)

x=ret_f('DELL',begdate,enddate)

print(sp.stats.bartlett(x,y))

(5.1377132006045105, 0.023411467035559311)

With a T-value of 5.13 and a P-value of 2.3 percent, we conclude that these two
stocks will have different variances for their daily stock returns in 2013 if we choose
a significant level of 5 percent.

Testing the January effect
In this section, we use IBM's data to test the existence of the so-called January effect
which states that stock returns in January are statistically different from those in
other months. First, we collect the daily price for IBM from Yahoo! Finance. Then, we
convert daily returns to monthly ones. After that, we classify all monthly returns into
two groups: returns in January versus returns in other months. Finally, we test the
equality of group means as shown in the following code:

from matplotlib.finance import quotes_historical_yahoo

import numpy as np

import scipy as sp

from datetime import datetime

ticker='IBM'

begdate=(1962,1,1)

enddate=(2013,11,22)

x = quotes_historical_yahoo(ticker, begdate, enddate,asobject=True,
adjusted=True)

logret = log(x.aclose[1:]/x.aclose[:-1])

date=[]

d0=x.date

for i in range(0,size(logret)):

 t1=''.join([d0[i].strftime("%Y"),d0[i].strftime("%m"),"01"])

 date.append(datetime.strptime(t1,"%Y%m%d"))

 y=pd.DataFrame(logret,date,columns=['logret'])

 retM=y.groupby(y.index).sum()

Statistical Analysis of Time Series

[196]

ret_Jan=retM[retM.index.month==1]

ret_others=retM[retM.index.month!=1]

print(sp.stats.bartlett(ret_Jan.values,ret_others.values))
(1.1592293088621082, 0.28162543233634485)

>>>

Since the T-value is 1.16 and P-value is 0.28, we conclude that there is no January
effect if we use IBM as an example and choose a 5 percent significant level. A word
of caution: we should not generalize this result since it is based on just one stock. In
terms of the weekday effect, we could apply the same procedure to test its existence.

Many useful applications
In this section, we discuss many issues, such as the 52-week high and low trading
strategy, estimating the Roll (1984) spread, Amihud (2002) illiquidity measure, Pastor
and Stambaugh (2003) liquidity measure, and CAPM, and running a Fama-French
three-factor model, Fama-Macbeth regression, rolling beta, and VaR.

52-week high and low trading strategy
Some investors/researchers argue that we could adopt a 52-week high and low
trading strategy by taking a long position if today's price is close to the minimum
price achieved in the past 52 weeks and taking an opposite position if today's price
is close to its 52-week high. The following Python program presents this 52-week's
range and today's position:

from matplotlib.finance import quotes_historical_yahoo

from datetime import datetime

from dateutil.relativedelta import relativedelta

ticker='IBM'

enddate=datetime.now()

begdate=enddate-relativedelta(years=1)

p = quotes_historical_yahoo(ticker, begdate, enddate,asobject=True,
adjusted=True)

x=p[-1]

y=np.array(p.tolist())[:,-1]

high=max(y)

low=min(y)

print(" Today, Price High Low, % from low ")

print(x[0], x[-1], high, low, round((x[-1]-low)/(high-low)*100,2))

Chapter 8

[197]

The corresponding output is shown as follows:

According to the 52-week high and low trading strategy, we have more incentive to
buy IBM's stock today.

Roll's model to estimate spread (1984)
Liquidity is defined as how quickly we can dispose of our asset without losing its
intrinsic value. Usually, we use spread to represent liquidity. However, we need
high-frequency data to estimate spread. Later in the chapter, we show how to
estimate spread directly by using high-frequency data. To measure spread indirectly
based on daily observations, Roll (1984) shows that we can estimate it based on the
serial covariance in price changes as follows:

 (7A)

 (7B)

Here, Pt is the closing price of a stock on day t, is the average share price in the
estimation period. One of the problems of the Roll spread is that for some stocks over
certain periods, their covariance of price change is positive. For such cases, users set
S as being equal to zero. For example, we could use the following code to estimate
the covariance between and . The following Python code estimates Roll's
spread for a given ticker, in this case, DELL, using the latest one year's 252 trading
days' daily data from Yahoo! Finance:

from matplotlib.finance import quotes_historical_yahoo

ticker='IBM'

begdate=(2013,9,1)

enddate=(2013,11,11)

data= quotes_historical_yahoo(ticker, begdate, enddate,asobject=True,
adjusted=True)

p=data.aclose

d=diff(p)

Statistical Analysis of Time Series

[198]

cov_=cov(d[:-1],d[1:])

if cov_[0,1]<0:

 print("Roll spread for ", ticker, 'is', round(2*sqrt(-cov_[0,1]),3))

else:

 print("Cov is positive for ",ticker, 'positive', round(cov_[0,1],3))

The corresponding output is shown as follows:

Thus, during that period, Roll's spread for IBM is 1.145. The major assumption for
Roll's model is that the covariance between and is negative. When its value
is positive, Roll's model would fail. In a real world, it is true for many cases. Usually,
practitioners adopt two approaches: when the spread is negative, we just ignore
those cases or use other methods to estimate spread. The second approach is to add a
negative sign in front of a positive covariance.

Amihud's model for illiquidity (2002)
According to Amihud (2002), liquidity reflects the impact of order flow on price. His
illiquidity measure is defined as follows:

 (8)

Here, Rt is the daily return at day t, Pt is closing price at t, and Vt is the daily dollar
trading volume at t. Since the illiquidity is the reciprocal of liquidity, the lower the
illiquidity value, the higher the liquidity of the underlying security. First, let us look
at an item-by-item division:

>>>x=np.array([1,2,3],dtype='float')

>>>y=np.array([2,2,4],dtype='float')

>>>np.divide(x,y)

array([0.5 , 1. , 0.75])

>>>

Chapter 8

[199]

In the following code, we estimate Amihud's illiquidity for IBM based on trading
data in October 2013. The value is 1.165*10-11. It seems that this value is quite
small. Actually, the absolute value is not important; the relative value matters. If we
estimate the illiquidity for DELL over the same period, we would find a value of
0.638*10-11. Since 1.165 is greater than 0.638, we conclude that IBM is less liquid than
DELL. This correlation is represented in the following code:

import numpy as np

import statsmodels.api as sm

from matplotlib.finance import quotes_historical_yahoo

begdate=(2013,10,1)

enddate=(2013,10,30)

ticker='IBM' #WMT

data= quotes_historical_yahoo(ticker, begdate, enddate,asobject=True,
adjusted=True)

p=np.array(data.aclose)

dollar_vol=np.array(data.volume*p)

ret=np.array((p[1:] - p[:-1])/p[1:])

illiq=mean(np.divide(abs(ret),dollar_vol[1:]))

print("Aminud illiq=", illiq)

('Aminud illiq=', 1.1650681670001537e-11)

Pastor and Stambaugh (2003) liquidity
measure
Based on the methodology and empirical evidence in Campbell, Grossman, and
Wang (1993), Pastor and Stambaugh (2003) designed the following model to measure
individual stock's liquidity and the market liquidity:

 (9)

Here, ty is the excess stock return, , on day t, is the return for the stock,
 is the risk-free rate, is the market return; is the signed dollar trading

volume (()2, ,t t f t t tx sign R R p volume= − ∗ ∗), tp is the stock price, and is the
trading volume. The regression is run based on daily data for each month. In other
words, for each month, we get one that is defined as the liquidity measure for
individual stock.

Statistical Analysis of Time Series

[200]

The following code estimates the liquidity for IBM. First, we download the IBM and
S&P500 daily price data, estimate their daily returns, and merge them as follows:

from matplotlib.finance import quotes_historical_yahoo

import numpy as np

from matplotlib.finance import quotes_historical_yahoo

import numpy as np

import pandas as pd

import statsmodels.api as sm

ticker='IBM'

begdate=(2013,1,1)

enddate=(2013,1,31)

data = quotes_historical_yahoo(ticker, begdate, enddate,asobject=True,
adjusted=True)

ret = (data.aclose[1:]-data.aclose[:-1])/data.aclose[:-1]

dollar_vol=np.array(data.aclose[1:])*np.array(data.volume[1:])

date=[]

d0=data.date

for i in range(0,size(ret)):

 date.append(''.join([d0[i].strftime("%Y"),d0[i].strftime("%m"),d0[i].
strftime("%d")]))

tt=pd.DataFrame(ret,np.array(date,dtype=int64),columns=['ret'])

tt2=pd.DataFrame(dollar_vol,np.array(date,dtype=int64),columns=['doll
ar_vol'])

ff=load('c:/temp/ffDaily.pickle')

tt3=pd.merge(tt,tt2,left_index=True,right_index=True)

final=pd.merge(tt3,ff,left_index=True,right_index=True)

y=final.ret[1:]-final.Rf[1:]

x1=final.Mkt_Rf[:-1]

x2=sign(np.array(final.ret[:-1]-final.Rf[:-1]))*np.array(final.dollar_
vol[:-1])

x3=[x1,x2]

n=size(x3)

x=np.reshape(x3,[n/2,2])

x=sm.add_constant(x)

results=sm.OLS(y,x).fit()

print results.params

Chapter 8

[201]

In the previous program, y is IBM's excess return at time t+1, x1 is the market excess
return at time t, and x2 is the signed dollar trading volume at time t. The coefficient
before x2 is Pastor and Stambaugh's liquidity measure. The corresponding output is
given as follows:

Assume that we are interested in estimating the market risk (beta) for IBM using
daily data downloaded from Yahoo! Finance. The beta is defined by the following
linear regression:

 (10)

Here, Ri,t is the stock return for stock i, Rf is the risk-free rate, Rmkt,t is the market return,
and is the beta for stock i. Since the impact of the risk-free rate is quite small on the
beta estimation, we could use the following formula for an approximation:

 (11)

The following Python program is used to download the IBM and S&P500 daily price
data and estimate IBM's beta in 2013:

import numpy as np

import numpy as np

import statsmodels.api as sm

from matplotlib.finance import quotes_historical_yahoo

def ret_f(ticker,begdate, enddate):

 p = quotes_historical_yahoo(ticker, begdate, enddate,asobject=True,
adjusted=True)

 return((p.aclose[1:] - p.aclose[:-1])/p.aclose[:-1])

begdate=(2013,1,1)

enddate=(2013,11,9)

Statistical Analysis of Time Series

[202]

y=ret_f('IBM',begdate,enddate)

x=ret_f('^GSPC',begdate,enddate)

x=sm.add_constant(x)

model=sm.OLS(y,x)

results=model.fit()

print results.summary()

In the following program, we use a module called matplotlib, which is discussed in
the previous chapter. In particular, the function called quote_historical_yahoo()
is used to retrieve the daily price data from Yahoo! Finance for IBM and S&P500
(with a ticker symbol ^GSPC). For the return estimate, we use the adjust close,
that is, aclose. For the formula to estimate returns, we have p.aclose[:-1] and
p.aclose[1:]; refer to the following code:

>>>x=np.array([1,2,3,4,10])

>>>x[1:]

array([2, 3, 4, 10])

>>>x[:-1]

array([1, 2, 3, 4])

>>>

The output is shown as follows:

Chapter 8

[203]

From the output, we know that beta for IBM is 0.74, which means that if the market
risk premium increases by 1 percent, then IBM's risk premium would increase by
0.74 percent. In total, we have 216 observations used in 2013. The adjusted R2 is 18.7
percent. In addition, careful readers would find that we could get more information,
such as Durbin-Watson and Jarque-Bera, among others.

Before discussing how to run a Fama-French three-factor model, we show how to
save the Fama-French as a dataset with a special format. Any Pandas object has a
saving method, which uses Python's cPickle module to save data structures to a
designated name under a directory as shown in the following code:

>>>import pandas as pd

>>>import numpy as np

>>>np.random.seed(1234)

>>>a = pd.DataFrame(randn(6,5))

>>>a.to_pickle('c:/temp/a.pickle')

>>>k=load("c:/temp/a.pickle")

In the preceding program, np.random.seed(1234) is not needed if we plan to
generate any set of random numbers with 6 rows and 5 columns. Its usage will
guarantee that we can generate the same set of random numbers irrespective of the
number of times we run the preceding code. The values of the following output
would be the same if anyone runs the preceding code. In addition to this, the
extension of the output file need not necessarily be .pickle, that is, any extension is
fine (even no extension is fine):

>>>print(k)

>>> 0 1 2 3 4

0 0.471435 -1.190976 1.432707 -0.312652 -0.720589

1 0.887163 0.859588 -0.636524 0.015696 -2.242685

2 1.150036 0.991946 0.953324 -2.021255 -0.334077

3 0.002118 0.405453 0.289092 1.321158 -1.546906

4 -0.202646 -0.655969 0.193421 0.553439 1.318152

5 -0.469305 0.675554 -1.817027 -0.183109 1.058969

>>>

Statistical Analysis of Time Series

[204]

Fama-French three-factor model
The Fama-French three-factor model could be viewed as a natural extension of
CAPM, which is actually a single factor model. The IBM return is defined as follows:

, (12)

Here, is the IBM return, Rf is the risk-free return, is the market return, SMB
is the portfolio return of small stocks minus returns of big stocks, and HML is the
portfolio returns for high book-to-market value minus returns of low book-to-market
value stocks. The following program retrieves the Fama-French monthly factors and
generates a dataset with the pickle format:

>>>import pandas as pd

>>>file=open("c:/temp/ff_monthly.txt","r")

>>>data=file.readlines()

>>>f=[]

>>>index=[]

>>>for i in range(4,size(data)):

 t=data[i].split()

 index.append(int(t[0]))

 for j in range(1,5):

 k=float(t[j])

 f.append(k/100)

>>>n=len(f)

>>>f1=np.reshape(f,[n/4,4])

>>>ff=pd.DataFrame(f1,index=index,columns=['Mkt_Rf','SMB','HML','Rf'])

>>>ff.to_pickle("c:/temp/ffMonthly.pickle")

>>>ff.head()

 Mkt_Rf SMB HML Rf

192607 0.0265 -0.0239 -0.0257 0.0022

192608 0.0259 -0.0127 0.0458 0.0025

192609 0.0037 -0.0125 -0.0009 0.0023

192610 -0.0345 -0.0002 0.0102 0.0032

192611 0.0243 -0.0024 -0.0063 0.0031

>>>ff.tail()

 Mkt_Rf SMB HML Rf

201306 -0.0121 0.0123 -0.0045 0

Chapter 8

[205]

201307 0.0565 0.0185 0.0079 0

201308 -0.0269 0.0028 -0.0246 0

201309 0.0376 0.0285 -0.0152 0

201310 0.0417 -0.0152 0.0139 0

>>>

Next, we show how to run a Fama-French three-factor regression using five-year
monthly data, downloaded from Yahoo! Finance for IBM. The dataset for the
Fama-French monthly dataset in the Pandas' pickle format can be downloaded
from http://www.canisius.edu/~yany/ffMonthly.pickle:

from matplotlib.finance import quotes_historical_yahoo

import numpy as np

import pandas as pd

import statsmodels.api as sm

ticker='IBM'

begdate=(2008,10,1)

enddate=(2013,11,30)

p = quotes_historical_yahoo(ticker, begdate, enddate,asobject=True,
adjusted=True)

logret = log(p.aclose[1:]/p.aclose[:-1])

date=[]

d0=p.date

for i in range(0,size(logret)):

date.append(''.join([d0[i].strftime("%Y"),d0[i].strftime("%m")]))

t=pd.DataFrame(logret,np.array(date,dtype=int64),columns=['ret'])

ret=exp(t.groupby(t.index).sum())-1

ff=load('c:/temp/ffMonthly.pickle')

final=pd.merge(ret,ff,left_index=True,right_index=True)

y=final.ret

x=final[['Mkt_Rf','SMB','HML']]

x=sm.add_constant(x)

results=sm.OLS(y,x).fit()

print results.params

Statistical Analysis of Time Series

[206]

In the preceding program, we use a few modules. The beginning date is October 1,
2008, and the ending date is November 9, 2013. After retrieving the daily price data,
we estimate the daily return and then convert them to monthly ones. We upload the
Fama-French monthly three-factors time series and the Pandas' pickle format. In the
preceding program, the usage of np.array(date,dtype=int64) is to make both
indices have the same data types. The corresponding output is shown as follows:

Fama-MacBeth regression
First, let's look at the OLS regression by using the pd.ols function as follows:

from datetime import datetime

import numpy as np

import pandas as pd

n = 252

np.random.seed(12345)

begdate=datetime(2013, 1, 2)

dateRange = pd.date_range(begdate, periods=n)

x0= pd.DataFrame(np.random.randn(n, 1),columns=['ret'],index=dateRange)

y0=pd.Series(np.random.randn(n), index=dateRange)

print pd.ols(y=y0, x=x0)

For the Fama-MacBeth regression, we have the following code:

from datetime import datetime

import numpy as np

import pandas as pd

n = 252

np.random.seed(12345)

begdate=datetime(2013, 1, 2)

dateRange = pd.date_range(begdate, periods=n)

def makeDataFrame():

 data=pd.DataFrame(np.random.randn(n,7),columns=['A','B','C','D','E','
F','G'],

Chapter 8

[207]

 index=dateRange)

 return data

data = {

 'A': makeDataFrame(),

 'B': makeDataFrame(),

 'C': makeDataFrame()

}

Y = makeDataFrame()

print(pd.fama_macbeth(y=Y,x=data))

Estimating rolling beta
In the following implementation of the pd.ols function, the window parameter, such
as window=252, is for moving or rolling the window:

import numpy as np

import statsmodels.api as sm

from matplotlib.finance import quotes_historical_yahoo

def ret_f(ticker,begdate, enddate):

 p = quotes_historical_yahoo(ticker, begdate, enddate,asobject=True,
adjusted=True)

 return((p.aclose[1:] - p.aclose[0:-1])/p.aclose[:-1])

begdate=(1962,1,1)

enddate=(2013,11,9)

y0=pd.Series(ret_f('IBM',begdate,enddate))

x0=pd.Series(ret_f('^GSPC',begdate,enddate))

model = pd.ols(y=y0, x=x0, window=252)

We could view these beta values and the graph with the following code:

>>>model.beta.head()

 x intercept

251 1.608007 -0.000650

252 1.610066 -0.000652

253 1.608572 -0.000706

254 1.609975 -0.000736

255 1.611035 -0.000673

>>>model.beta.tail()

Statistical Analysis of Time Series

[208]

 x intercept

13049 0.784624 -0.000856

13050 0.787177 -0.000911

13051 0.790030 -0.000870

13052 0.780330 -0.000814

13053 0.775992 -0.000867

>>>

To show the graph of the moving beta, we use the plot() function as follows:

>>>model.beta.plot()

The corresponding graph is shown as follows:

Usually, we care more about annual betas, instead of the previous betas for
overlapping time periods. The following program estimates annual betas,
which are another type of rolling betas:

import numpy as np

import pandas as pd

import statsmodels.api as sm

from matplotlib.finance import quotes_historical_yahoo

Chapter 8

[209]

def ret_f(ticker,begdate, enddate):

 p = quotes_historical_yahoo(ticker, begdate, enddate,asobject=True,
adjusted=True)

 return((p.aclose[1:] - p.aclose[:-1])/p.aclose[:-1])

begdate=(1962,1,1)

enddate=(2013,11,9)

y0=pd.Series(ret_f('IBM',begdate,enddate))

x0=pd.Series(ret_f('^GSPC',begdate,enddate))

d=quotes_historical_yahoo('^GSPC', begdate, enddate,asobject=True,
adjusted=True).date[0:-1]

lag_year=d[0].strftime("%Y")

y1=[]

x1=[]

beta=[]

index0=[]

for i in range(1,len(d)):

 year=d[i].strftime("%Y")

 if(year==lag_year):

 x1.append(x0[i])

 y1.append(y0[i])

 else:

 model=pd.ols(y=pd.Series(y1),x=pd.Series(x1))

 print(lag_year, round(model.beta[0],4))

 beta.append(model.beta[0])

 index0.append(lag_year)

 x1=[]

 y1=[]

 lag_year=year

The first several years' betas are given as follows:

('1962', 1.6075)

('1963', 1.0976)

('1964', 1.4896)

('1965', 1.0463)

('1966', 1.2961)

('1967', 1.3819)

('1968', 1.5372)

('1969', 1.2412)

Statistical Analysis of Time Series

[210]

Understanding VaR
To evaluate the risk of a firm, a security, or a portfolio, various measures can be used,
such as standard deviation, variance, beta, or Sharpe ratio. However, most CEOs
prefer one simple number. In this case, one of the commonly used measures is VaR,
which is defined as the maximum loss with a confidence level over a predetermined
period. The following graph illustrates the concept of VaR based on a standard
normal distribution:

Here are a few examples. I have 200 shares of DELL stocks. Today's value is $2,942.
The maximum loss tomorrow is $239 with a 99 percent confidence level. Our mutual
fund has a value of $10 million today. The maximum loss over the next three months
is 0.5 million with 90 percent confidence. The value of our bank is $150 million.
The VaR of our bank is $10 million with 99 percent confidence over the next six
months. The most commonly used parameters for VaR are 1 percent and 5 percent
probabilities (99 percent and 95 percent confidence levels), and one-day and two-
week horizons. Based on the assumption of normality, we have the following
general form:

 (13)

Chapter 8

[211]

Here, position is the current market value of our portfolio, µperiod is the expected period
return, z is the cutoff point depending on a confidence level, and σ is the volatility.
For a normal distribution, z=2.33 for a 99 percent confident level, and z=1.64 for a
95 percent confident level. When the time period is short, such as one day, we could
ignore the impact of µperiod. Thus, we have the following simplest form:

 (14)

The following code shows the VaR for holding 50 shares of Wal-Mart stocks over a
10-day period:

from matplotlib.finance import quotes_historical_yahoo

import numpy as np

import pandas as pd

from scipy.stats import norm

n_shares=50 # input 1

confidence_level=0.99 # input 2

n_days=10 # input 3

z=norm.ppf(confidence_level)

ticker='WMT'

begdate=(2012,1,1)

enddate=(2012,12,31)

x=quotes_historical_yahoo(ticker,begdate,enddate,asobject=True,adjusted=T
rue)

ret = (x.aclose[1:]-x.aclose[:-1])/x.aclose[:-1]

position=n_shares*x.close[0]

VaR=position*z*std(ret)*sqrt(n_days)

print("Holding=",position, "VaR=", round(VaR,4), "in ", n_days, "Days")
('Holding=', 2890.0, 'VaR=', 218.2253, 'in ', 10, 'Days')

Today, the value of our holding is $2,890. Our maximum loss is $218.23 in the next 10
days with a confidence of 99 percent.

Constructing an efficient frontier
In finance, constructing an efficient frontier is always a challenging job. This is
especially true with real-world data. In this section, we discuss the estimation of a
variance-covariance matrix and its optimization, finding an optimal portfolio, and
constructing an efficient frontier with stock data downloaded from Yahoo! Finance.

Statistical Analysis of Time Series

[212]

Estimating a variance-covariance matrix
When a return matrix is given, we could estimate its variance-covariance matrix. For
a given set of weights, we could further estimate the portfolio variance. The formulae
to estimate the variance and standard deviation for returns from a single stock are
given as follows:

1

n

i
i
R

R
n

==
∑ (15)

2

2 1

2

()

1

n

i
i
R R

n
σ

σ σ

=


− = −

 =

∑
 (16)

Here, Ri is the stock return for period i, is their mean, and n is the number of the
observations. For an n-stock portfolio, we have the following formulae:

 (17)

The variance of a two-stock portfolio is given as follows:

 (18)

Here, is the covariance between stocks 1 and 2, is the correlation coefficient
between stocks 1 and 2. The covariance is defined as follows:

()()1, 1 2, 2
1

1,2 1

n

i i
i
R R R R

n
σ =

− −
=

−

∑ (19)

The variance of an n-stock portfolio is given as follows:

2
,

1 1

n n

port i j i j
i j

w wσ σ
= =

=∑∑ where, (20)

Chapter 8

[213]

Assume that our return matrix is n by m, that is, n period with m stocks:

 (21)

 (22)

For a matrix representation, our portfolio's expected return is given as follows:

 (23)

Its corresponding portfolio variance will be:

 (24)

 (25)

Of course, a two-stock portfolio is just a special case of an n-stock portfolio. Again, if
the values of the return matrix and the weight vector are given, we can estimate their
variance-covariance matrix and portfolio variance as follows:

>>>import numpy as np

>>>ret=matrix(np.

rray([[0.1,0.2],[0.10,0.1071],[-
0.02,0.25],[0.012,0.028],[0.06,0.262],[0.14,0.115]]))

>>>print("return matrix", ret)

>>>covar_=ret.T*ret

Statistical Analysis of Time Series

[214]

>>>weight=matrix(np.array([0.4,0.6]))

>>>print ("weight vecot",weight)

>>>print(weight*covar_*weight.T)

The corresponding two outputs, for return matrix and portfolio variance, are given
as follows:

Optimization – minimization
In the following example, we minimize our objective function of y:

 (26)

Obviously, we know that when x is 0, y is minimized. The Python code for
minimization is as follows:

>>>from scipy.optimize import minimize

>>>def y_f(x):

 return (3+2*x**2)

>>>x0=100

>>>res = minimize(y_f,x0,method='nelder-mead',options={'xtol':1e-
8,'disp': True})

>>>print(res.x)

Optimization terminated successfully.

 Current function value: 3.000000

 Iterations: 37

 Function evaluations: 74

[0.]

>>>

The output shows that the function value is 3, and it is achieved by assigning x as 0.

Chapter 8

[215]

Constructing an optimal portfolio
In finance, we are dealing with the trade-off between risk and return. One of the
widely used criteria is the Sharpe ratio, which is defined as follows:

 (27)

The following program would maximize the Sharpe ratio by changing the weights
of the stock in the portfolio. We have several steps in the program: the input area
is very simple, just several tickers in addition to the beginning and ending dates.
Then, we define four functions: converting daily returns into annual ones, estimate
a portfolio variance, estimate the Sharpe ratio, and estimate the nth weight when n-1
weights are given:

from matplotlib.finance import quotes_historical_yahoo

import numpy as np

import pandas as pd

import scipy as sp

from scipy.optimize import fmin

Step 1: input area

ticker=('IBM','WMT','C') # tickers

begdate=(1990,1,1) # beginning date

enddate=(2012,12,31) # ending date

rf=0.0003 # annual risk-free rate

In the second part of the program, we define a few functions: download data from
Yahoo! Finance, estimate daily returns and convert them into annual ones, estimate
portfolio variance, and estimate Sharpe ratio as shown in the following program:

Step 2: define a few functions

function 1:

def ret_annual(ticker,begdate,enddte):

 x=quotes_historical_yahoo(ticker,begdate,enddate,asobject=True,adjust
ed=True)

 logret = log(x.aclose[1:]/x.aclose[:-1])

 date=[]

Statistical Analysis of Time Series

[216]

 d0=x.date

 for i in range(0,size(logret)):

 date.append(d0[i].strftime("%Y"))

 y=pd.DataFrame(logret,date,columns=[ticker])

 return exp(y.groupby(y.index).sum())-1

function 2: estimate portfolio variance

def portfolio_var(R,w):

 cor = sp.corrcoef(R.T)

 std_dev=sp.std(R,axis=0)

 var = 0.0

 for i in xrange(n):

 for j in xrange(n):

 var += w[i]*w[j]*std_dev[i]*std_dev[j]*cor[i, j]

 return var

function 3: estimate Sharpe ratio

def sharpe(R,w):

 var = portfolio_var(R,w)

 mean_return=mean(R,axis=0)

 ret = sp.array(mean_return)

 return (sp.dot(w,ret) - rf)/sqrt(var)

function 4: for given n-1 weights, return a negative sharpe ratio

def negative_sharpe_n_minus_1_stock(w):

 w2=sp.append(w,1-sum(w))

 return -sharpe(R,w2) # using a return matrix here!!!!!!

Our major function would start from Step 3 as shown in the following code:

Step 3: generate a return matrix (annul return)

n=len(ticker) # number of stocks

x2=ret_annual(ticker[0],begdate,enddate)

for i in range(1,n):

 x_=ret_annual(ticker[i],begdate,enddate)

 x2=pd.merge(x2,x_,left_index=True,right_index=True)

using scipy array format

R = sp.array(x2)

print('Efficient porfolio (mean-variance) :ticker used')

print(ticker)

Chapter 8

[217]

print('Sharpe ratio for an equal-weighted portfolio')

equal_w=sp.ones(n, dtype=float) * 1.0 /n

print(equal_w)

print(sharpe(R,equal_w))

for n stocks, we could only choose n-1 weights

w0= sp.ones(n-1, dtype=float) * 1.0 /n

w1 = fmin(negative_sharpe_n_minus_1_stock,w0)

final_w = sp.append(w1, 1 - sum(w1))

final_sharpe = sharpe(R,final_w)

print ('Optimal weights are ')

print (final_w)

print ('final Sharpe ratio is ')

print(final_sharpe)

From the following output, we know that if we use a naïve equal-weighted strategy,
the Sharpe ratio is 0.63. However, the Sharpe ratio for our optimal portfolio is 0.67:

Constructing an efficient frontier with n stocks
Constructing an efficient frontier is always one of the most difficult tasks for
finance instructors since the task involves matrix manipulation and a constrained
optimization procedure. One efficient frontier could vividly explain the Markowitz
Portfolio theory. The following Python program uses five stocks to construct an
efficient frontier:

from matplotlib.finance import quotes_historical_yahoo

import numpy as np

import pandas as pd

Statistical Analysis of Time Series

[218]

from numpy.linalg import inv, pinv

Step 1: input area

begYear,endYear = 2001,2013

stocks=['IBM','WMT','AAPL','C','MSFT']

Step 2: define a few functions

function 1

def ret_monthly(ticker):

 x = quotes_historical_yahoo(ticker,(begYear,1,1),(endYear,12,31),asob
ject=True,adjusted=True)

 logret=log(x.aclose[1:]/x.aclose[:-1])

 date=[]

 d0=x.date

 for i in range(0,size(logret)):

 date.append(''.join([d0[i].strftime("%Y"),d0[i].strftime("%m")]))

 y=pd.DataFrame(logret,date,columns=[ticker])

 return y.groupby(y.index).sum()

function 2: objective function

def objFunction(W, R, target_ret):

 stock_mean=np.mean(R,axis=0)

 port_mean=np.dot(W,stock_mean) # portfolio mean

 cov=np.cov(R.T) # var-cov matrix

 port_var=np.dot(np.dot(W,cov),W.T) # portfolio variance

 penalty = 2000*abs(port_mean-target_ret)# penalty 4 deviation

 return np.sqrt(port_var) + penalty # objective function

Step 3: Generate a return matrix R

R0=ret_monthly(stocks[0]) # starting from 1st stock

n_stock=len(stocks) # number of stocks

for i in xrange(1,n_stock): # then merge with other stocks

 x=ret_monthly(stocks[i])

 R0=pd.merge(R0,x,left_index=True,right_index=True)

R=np.array(R0)

Step 4: estimate optimal portfolio for a given return

out_mean,out_std,out_weight=[],[],[]

stockMean=np.mean(R,axis=0)

for r in np.linspace(np.min(stockMean), np.max(stockMean), num=100):

Chapter 8

[219]

 W = ones([n_stock])/n_stock # starting from equal weights

 b_ = [(0,1) for i in range(n_stock)] # bounds, here no short

 c_ = ({'type':'eq', 'fun': lambda W: sum(W)-1. })#constraint

 result=sp.optimize.minimize(objFunction,W,(R,r),method='SLSQP',constr
aints=c_, bounds=b_)

 if not result.success: # handle error

 raise BaseException(result.message)

 out_mean.append(round(r,4)) # 4 decimal places

 std_=round(np.std(np.sum(R*result.x,axis=1)),6)

 out_std.append(std_)

 out_weight.append(result.x)

Step 4: plot the efficient frontier

title('Efficient Frontier')

xlabel('Standard Deviation of the porfolio (Risk))')

ylabel('Return of the portfolio')

figtext(0.5,0.75,str(n_stock)+' stock are used: ')

figtext(0.5,0.7,' '+str(stocks))

figtext(0.5,0.65,'Time period: '+str(begYear)+' ------ '+str(endYear))

plot(out_std,out_mean,'--')

The output graph is presented as follows:

Statistical Analysis of Time Series

[220]

Understanding the interpolation technique
Interpolation is a technique used quite frequently in finance. In the following
example, we have to find NaN between 2 and 6. The pd.interpolate() function,
for a linear interpolation, is used to fill in the two missing values:

>>>import pandas as pd

>>>import numpy as np

>>>x=pd.Series([1,2,np.nan,np.nan,6])

>>>x.interpolate()

0 1.000000

1 2.000000

2 3.333333

3 4.666667

4 6.000000

If the two known points are represented by the coordinates (x0,y0) and (x1,y1), the
linear interpolation is the straight line between these two points. For a value x in the
interval of (x0,x1), the value y along the straight line is given by the following formula:

 (28)

Solving this equation for y, which is the unknown value at x, gives the following result:

 (29)

From the Yahoo! Finance bond page, we can get the following information:

Maturity Yield Yesterday Last Week Last Month
3 Month 0.05 0.05 0.04 0.03
6 Month 0.08 0.07 0.07 0.06
2 Year 0.29 0.29 0.31 0.33
3 Year 0.57 0.54 0.59 0.61
5 Year 1.34 1.32 1.41 1.39
10 Year 2.7 2.66 2.75 2.66
30 Year 3.8 3.78 3.85 3.72

Chapter 8

[221]

Based on the tabular data, we have the following code:

>>>import numpy as np

>>>x=pd.Series([0.29,0.57,np.nan,1.34,np.nan,np.nan,np.nan,np.nan,2.7])

>>>y=x.interpolate()

>>>print y

0 0.290

1 0.570

2 0.955

3 1.340

4 1.612

5 1.884

6 2.156

7 2.428

8 2.700

dtype: float64

>>>

Outputting data to external files
In this section, we discuss several ways to save our data, such as saving data or
estimating results to a text file, a binary file, and so on.

Outputting data to a text file
The following code will download IBM's daily price historical data and save it to a
text file:

>>>from matplotlib.finance import quotes_historical_yahoo

>>>import re

>>>ticker='dell'

>>>outfile=open("c:/temp/dell.txt","w")

>>>begdate=(2013,1,1)

>>>enddate=(2013,11,9)

>>>p = quotes_historical_yahoo(ticker, begdate, enddate,asobject=True,
adjusted=True)

>>>x2= re.sub('[\(\)\{\}\.<>a-zA-Z]','', x)

>>>outfile.write(x2)

>>>outfile.close()

Statistical Analysis of Time Series

[222]

Saving our data to a binary file
The following program first generates a simple array that has just three values.
We save them to a binary file named tmp.bin at C:\temp\:

>>>import array

>>>import numpy as np

>>>outfile = "c:/temp/tmp.bin"

>>>fileobj = open(outfile, mode='wb')

>>>outvalues = array.array('f')

>>>data=np.array([1,2,3])

>>>outvalues.fromlist(data.tolist())

>>>outvalues.tofile(fileobj)

>>>fileobj.close()

Reading data from a binary file
Assume that we have generated a binary file called C:\temp\tmp.bin from the
previous discussion. The file has just three numbers 1, 2, and 3. The following
Python code is used to read them:

>>>import array

>>>infile=open("c:/temp/tmp.bin", "rb")

>>>s=infile.read() # read all bytes into a string

>>>d=array.array("f", s) # "f" for float

>>>print(d)

>>>infile.close()

Python for high-frequency data
High-frequency data is referred to second-by-second or millisecond-by-millisecond
transaction and quotation data. The New York Stock Exchange's TAQ (Trade
and Quotation) database is a typical example (http://www.nyxdata.com/data-
products/daily-taq). The following program can be used to retrieve high-frequency
data from Google Finance:

>>>import re, string

>>>import pandas as pd

>>>ticker='AAPL' # input a ticker

>>>f1="c:/temp/ttt.txt" # ttt will be replace with aboove sticker

Chapter 8

[223]

>>>f2=f1.replace("ttt",ticker)

>>>outfile=open(f2,"w")

>>>path="http://www.google.com/finance/getprices?q=ttt&i=300&p=10d&f=d,o,
h,l,c,v"

>>>path2=path.replace("ttt",ticker)

>>>df=pd.read_csv(path2,skiprows=8,header=None)

>>>df.to_csv(outfile,header=False,index=False)

>>>outfile.close()

In the preceding program, we have two input variables: ticker and path. After we
choose path with an embedded variable called ttt, we replace it with our ticker
using the string.replace() function. The first and last five lines are shown as
follows using the head() and tail() functions:

>>>df.head()

 0 1 2 3 4 5

0 1 519.55 520.20 517.05 517.23 256716

1 2 519.20 520.40 518.84 519.59 202711

2 3 518.71 519.29 518.00 519.18 144928

3 4 519.11 519.60 518.08 518.76 108554

4 5 519.31 519.80 518.67 519.09 104715

>>>df.tail()

 0 1 2 3 4 5

748 898 525.450 525.500 524.990 525.140 113120

749 899 525.660 525.670 525.170 525.440 68422

750 900 525.460 525.680 525.370 525.660 10639

751 901 525.548 525.557 525.200 525.370 0

752 902 525.420 525.580 525.265 525.545 0

>>>

The related web page for the intra-day high-frequency data from Google is located at
http://www.google.com/finance/getprices?q=AAPL&i=300&p=10d&f=d,o,h,l,
c,v and its header (first 10) lines are given as follows:

EXCHANGE%3DNASDAQ

MARKET_OPEN_MINUTE=570

MARKET_CLOSE_MINUTE=960

INTERVAL=300

COLUMNS=DATE,CLOSE,HIGH,LOW,OPEN

DATA=

Statistical Analysis of Time Series

[224]

TIMEZONE_OFFSET=-300

a1383575400,521.2,521.35,521.07,521.1

1,522.48,522.58,519.75,521.37

2,519.44,522.89,518.81,522.49

3,520.36,520.98,519.1901,519.49

The objective of the following program is to add a timestamp:

import pandas as pd, numpy as np, datetime

ticker='AAPL'

path='http://www.google.com/finance/getprices?q=ttt&i=60&p=5d&f=d,o,h,l,c
,v'

x=np.array(pd.read_csv(path.replace('ttt',ticker),skiprows=7,header=No
ne))

date=[]

for i in arange(0,len(x)):

 if x2[i][0][0]=='a':

 t= datetime.datetime.fromtimestamp(int(x2[i][0].replace('a','')))

 print ticker, t, x[i][1:]

 date.append(t)

 else:

 date.append(t+datetime.timedelta(minutes =int(x[i][0])))

final=pd.DataFrame(x,index=date)

final.columns=['a','Open','High','Low','Close','Vol']

del final['a']

final.to_csv('c:/temp/abc.csv'.replace('abc',ticker))

After running the program, we can observe the following output:

Chapter 8

[225]

To view the first and last several lines, we could use the head() and tail()functions
as follows:

>>>final.head()

 Open High Low Close Vol

2013-11-18 09:30:00 524.87 525.2402 524.762 524.99 80590

2013-11-18 09:31:00 525.08 525.5 524.76 524.82 79311

2013-11-18 09:32:00 525.75 525.8 525.01 525.03 43164

2013-11-18 09:33:00 526.445 526.58 525.65 525.75 81967

2013-11-18 09:34:00 526.48 526.5899 526.05 526.5899 40671

>>>final.tail()

 Open High Low Close Vol

2013-11-22 15:57:00 519.53 519.56 519.39 519.39 35530

2013-11-22 15:58:00 519.43 519.56 519.4 519.53 36581

2013-11-22 15:59:00 519.52 519.54 519.41 519.43 50983

2013-11-22 16:00:00 519.8 519.85 519.49 519.52 482044

2013-11-22 16:01:00 519.8 519.8 519.8 519.8 0

Since the TAQ database is quite expensive, most of the potential readers could
not access the data. Fortunately, we have a database called TORQ (Trade,
Order, Report, and Quotation). Thanks to Prof. Hasbrouck, the database could
be downloaded from http://people.stern.nyu.edu/jhasbrou/Research/
WorkingPaperIndex.htm. From the same web page, we could download the TORQ
manual as well. Based on Prof. Hasbrouck's binary datasets, we generate a few
corresponding datasets in the pickle format of Pandas. The Consolidated Trade (CT)
dataset can be downloaded from http://canisius.edu/~yany/TORQct.pickle.
After saving this dataset under C:\temp, we could issue the following two lines of
Python code to retrieve it:

>>>import pandas as pd

>>>ct=load('c:/temp/TORQct.pickle')

To view the first and last couple of lines, we use the head() and tail() functions
as follows:

>>>ct.head()

 date time price siz g127 tseq cond ex

symbol

AC 19901101 10:39:06 13 100 0 1587 N

AC 19901101 10:39:36 13 100 0 0 M

Statistical Analysis of Time Series

[226]

AC 19901101 10:39:38 13 100 0 0 M

AC 19901101 10:39:41 13 100 0 0 M

AC 19901101 10:41:38 13 300 0 1591 N

>>>ct.tail()

 date time price siz g127 tseq cond ex

symbol

ZNT 19910131 11:03:31 12.375 1000 0 237884 N

ZNT 19910131 12:47:21 12.500 6800 0 237887 N

ZNT 19910131 13:16:59 12.500 10000 0 237889 N

ZNT 19910131 14:51:52 12.500 100 0 237891 N

ZNT 19910131 14:52:27 12.500 3600 0 0 Z T

>>>

Since the ticker is used as an index, we could list all unique index values to find out
the names of stocks contained in the dataset as follows:

>>>import numpy as np

>>>unique(np.array(ct.index))

array(['AC','ACN','ACS','ADU','AL','ALL','ALX','AMD','AMN', 'AMO',

 'AR','ARX','ATE','AYD','BA','BG','BMC','BRT','BZF', 'CAL',

 'CL','CLE','CLF','CMH','CMI','CMY','COA','CP','CPC','CPY',

 'CU','CUC','CUE','CYM','CYR','DBD','DCN','DI','DLT','DP',

 'DSI','EFG','EHP','EKO','EMC','FBO','FDX','FFB','FLP',

 'FMI','FNM','FOE','FPC','FPL','GBE','GE','GFB','GLX','GMH',

 'GPI','GRH','HAN','HAT','HE','HF','HFI','HTR','IBM','ICM',

 'IEI','IPT','IS','ITG','KFV','KR','KWD','LOG','LPX','LUK',

 'MBK','MC','MCC','MCN','MDP','MNY','MO','MON','MRT','MTR',

 'MX','NI','NIC','NNP','NSI','NSO','NSP','NT','OCQ','OEH',

 'PCO','PEO','PH','PIM','PIR','PLP','PMI','POM','PPL','PRI',

'RDA','REC','RPS','SAH','SJI','SLB','SLT','SNT','SPF', 'SWY',
'T', 'TCI', 'TEK', 'TUG', 'TXI', 'UAM', 'UEP', 'UMG', 'URS',
'USH','UTD','UWR','VCC', 'VRC', 'W', 'WAE', 'WBN', 'WCS', 'WDG','WHX',
'WIN', 'XON', 'Y', 'ZIF', 'ZNT'], dtype=object)

>>>

Chapter 8

[227]

Spread estimated based on high-frequency
data
Based on the Consolidated Quote (CQ) dataset supplied by Prof. Hasbrouck, we
generate a dataset with the pickle format of Pandas, that can be downloaded from
http://canisius.edu/TORQcq.pickle. Assume that the following data is located
under C:\temp:

>>>import pandas as pd

>>>cq=load("c:/temp/TORQcq.pickle")

>>>cq.head()

 date time bid ofr bidsiz ofrsiz mode qseq

symbol

AC 19901101 9:30:44 12.875 13.125 32 5 10 50

AC 19901101 9:30:47 12.750 13.250 1 1 12 0

AC 19901101 9:30:51 12.750 13.250 1 1 12 0

AC 19901101 9:30:52 12.750 13.250 1 1 12 0

AC 19901101 10:40:13 12.750 13.125 2 2 12 0

>>>cq.tail()

 date time bid ofr bidsiz ofrsiz mode qseq

symbol

ZNT 19910131 13:31:06 12.375 12.875 1 1 12 0

ZNT 19910131 13:31:06 12.375 12.875 1 1 12 0

ZNT 19910131 16:08:44 12.500 12.750 1 1 3 69

ZNT 19910131 16:08:49 12.375 12.875 1 1 12 0

ZNT 19910131 16:16:54 12.375 12.875 1 1 3 0

Again, we could use the unique() function to find out all tickers. Assume that we
are interested in a stock with an MO ticker as shown in the following code:

>>>x=cq[cq.index=='MO']

>>>x.head()

 date time bid ofr bidsiz ofrsiz mode qseq

symbol

MO 19901101 9:30:33 47.000 47.125 100 4 10 50

MO 19901101 9:30:35 46.750 47.375 1 1 12 0

MO 19901101 9:30:38 46.875 47.750 1 1 12 0

MO 19901101 9:30:40 46.875 47.250 1 1 12 0

MO 19901101 9:30:47 47.000 47.125 100 3 12 51

Statistical Analysis of Time Series

[228]

It is a good idea to check a few observations. From the first line of the following
output, we know that spread should be 0.125 (47.125-47.000):

>>>x.head().ofr-x.head().bid

symbol

MO 0.125

MO 0.625

MO 0.875

MO 0.375

MO 0.125

dtype: float64

>>>

To find the mean spread and the mean relative spread, we have the following code.
The complete program is given as follows:

import pandas as pd

cq=load('c:/temp/TORQcq.pickle')

x=cq[cq.index=='MO']

spread=mean(x.ofr-x.bid)

rel_spread=mean(2*(x.ofr-x.bid)/(x.ofr+x.bid))

print round(spread,5)

print round(rel_spread,5)

0.39671

0.00788

In the preceding example, we didn't process or clean the data. Usually, we have to
process data by adding various filters, such as delete quotes with negative spread,
bidsiz is zero, or ofrsiz is zero, before we estimate spread and do other estimates.

More on using Spyder
Since Spyder is a wonderful editor, it deserves more space to explain its usage. The
related web page for Spyder is http://pythonhosted.org/spyder/. According to
its importance, we go through the most used features. To see several programs we
are just recently working on is a very good feature:

Chapter 8

[229]

1.	 Navigate to File | Open Recent. We will see a list of files we recently worked
on. Just click on the program you want to work on, and it will be loaded as
shown in the following screenshot:

2.	 Another feature is to run several lines of program instead of the whole
program. Select a few lines, click the second green icon just under Run.
This feature makes our programming and debugging task a little bit easier as
shown in the following screenshot:

3.	 The panel (window) called File explorer helps us to see programs under
a certain directory. First, we click on the open icon on the top-right of the
screen as shown in the following screenshot:

Statistical Analysis of Time Series

[230]

4.	 Then, choose the directory that contains all programs; see the
following screenshot:

Occasionally, the File explorer panel is not there. You can simply click on x on top of
the window to make it disappear. To make the File explorer window available, click
on View | Windows and tool bars, and check File explorer.

A useful dataset
With limited research funding, many teaching schools would not have a CRSP
subscription. For them, we have generated a dataset that contains more than 200
stocks, 15 different country indices, Consumer Price Index (CPI), the US national
debt, the prime rate, the risk-free rate, Small minus Big (SMB), High minus Low
(HML), Russell indices, and gold prices. The frequency of the dataset is monthly.
Since the name of each time series is used as an index, we have only two columns:
date and value. The value column contains two types of data: price (level) and
return. For stocks, CPI, debt-level, gold price, and Russell indices, their values are the
price (level), while for prime rate, risk-free rate, SMB, and HML, the second column
under value stands for return. The prime reason to have two types of data is that we
want to make such a dataset as reliable as possible since any user could verify any
number himself/herself. The dataset could be downloaded from http://canisius.
edu/~yany/yanMonthly.Pickle. To load this data, we have just one line of the
following Python code. Here, we assume that the dataset is saved under C:\temp:

>>>df=load("c:/temp/yanMonthly.Pickle")

>>>t=unique(np.array(df.index))

Chapter 8

[231]

The corresponding output is displayed as follows:

From the preceding output, we know that we have a total of 129 time series. To select
one individual time series, we use the index. For example, if we are interested in the
CPI time series, we can retrieve it from the dataset with the following code:

>>>x=df[df.index=='CPI']

>>>x.head()

 DATE VALUE

NAME

CPI 19130101 9.8

CPI 19130201 9.8

CPI 19130301 9.8

CPI 19130401 9.8

CPI 19130501 9.7

>>>x.tail()

 DATE VALUE

NAME

CPI 20130401 232.531

CPI 20130501 232.945

CPI 20130601 233.504

CPI 20130701 233.596

CPI 20130801 233.877

>>>

Statistical Analysis of Time Series

[232]

Summary
In this chapter, many concepts and issues associated with statistics are discussed
in detail. Topics include how to download historical prices from Yahoo! Finance;
estimate returns, total risk, market risk, correlation among stocks, and correlation
among different country's markets; form various types of portfolios; estimate a
portfolio variance-covariance matrix; construct an efficient portfolio, and an efficient
frontier; and estimate the Roll (1984) spread, Amihud's (2002) illiquidity, and Pastor
and Stambaugh's (2003) liquidity.

Although in Chapter 4, 13 Lines of Python Code to Price a Call Option, we discuss how
to use 13 lines to price a call option based on the Black-Scholes-Merton model even
without understanding its underlying theory and logic. In the next chapter, we will
explain the option theory and its related applications in more detail.

Exercise
1. What is the usage of the module called Pandas?

2. What is the usage of the module called statsmodels?

3. How can you install Pandas and statsmodels?

4. Which module contains the function called rolling_kurt? How can you use
the function?

5. Based on daily data downloaded from Yahoo! Finance, find whether IBM's daily
returns follows a normal distribution.

6. Based on daily returns in 2012, are the mean returns for IBM and DELL the same?
[Hint: you can use Yahoo! Finance as your source of data].

7. How can you replicate the Jagadeech and Tidman (1993) momentum strategy
using Python and CRSP data? [Assume that your school has CRSP subscription].

8. How many events happened in 2012 for IBM based on its daily returns?

9. For the following stock tickers, IBM, DELL, WMT, ^GSPC, C, A, AA, MOFT,
estimate their variance-covariance and correlation matrices based on the last five-
year monthly returns data, for example, from 2008-2012. Which two stocks are
strongly correlated?

10. Write a Python program to estimate rolling beta on a yearly basis. Use it to show
the annual beta for IBM from 1962 to 2013.

Chapter 8

[233]

11. Assume that we just downloaded the prime rate from the Federal Banks' data
library from http://www.federalreserve.gov/releases/h15/data.htm. We
downloaded the time series for Financial 1-month business day. A few lines of the
file are given as follows. Write a Python program to retrieve it and use the first
column as the index:

Series Description 30-Day AA Financial Commercial Paper Interest Rate

Unit: Percent

Multiplier: 1

Currency: NA

Unique Identifier: H15/H15/RIFSPPFAAD30_N.B

Time Period RIFSPPFAAD30_N.B

1/2/1997 5.35

1/3/1997 5.34

12. Which political party could manage the stock market better? According to the
web page at http://www.enchantedlearning.com/history/us/pres/list.
shtml, we can find to which party a president belongs. Thus, we can generate the
following table. The PARTY and RANGE variables are from the web page. YEAR2 is the
second number of RANGE minus one, except the last row:

PARTY RANGE YEAR1 YEAR2
Republican 1923-1929 1923 1928
Republican 1929-1933 1929 1932
Democrat 1933-1945 1933 1944
Democrat 1945-1953 1945 1952
Republican 1953-1961 1953 1960
Democrat 1961-1963 1961 1962
Democrat 1963-1969 1963 1968
Republican 1969-1974 1969 1973
Republican 1974-1977 1974 1976
Democrat 1977-1981 1977 1980
Republican 1981-1989 1981 1988
Republican 1989-1993 1989 1992
Democrat 1993-2001 1993 2000
Republican 2001-2009 2001 2008
Democrat 2009-2012 2009 2012

Statistical Analysis of Time Series

[234]

1.	 Download excess market return and risk-free from Prof. French data library
at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_
library.html.

2.	 Estimate market returns (excess market return plus risk-free rate).
3.	 Classify those returns into two groups: under Republican and Democratic.
4.	 Test the null hypothesis: two group means are equal:

Note: 1: How do we download and estimate market returns?

1.	 Go to the web page http://mba.tuck.dartmouth.edu/pages/faculty/
ken.french/data_library.html.

2.	 Click on Fama-French Factor, and download their monthly factors named
F-F_Research_Data_Factors.zip.

3.	 Unzip the zip file and estimate market monthly returns. For example, for July
1926, market return = 2.65/100+0.22/100:

This file was created by CMPT_ME_BEME_RETS using the 201212 CRSP
database.

The 1-month T-Bill return is from Ibbotson and Associates, Inc.

 Mkt-RF SMB HML RF

192607 2.65 -2.16 -2.92 0.22

192608 2.58 -1.49 4.88 0.25

192609 0.37 -1.38 -0.01 0.23

192610 -3.46 0.04 0.71 0.32

192611 2.43 -0.24 -0.31 0.31

192612 2.75 -0.01 -0.10 0.28

192701 -0.16 -0.30 4.79 0.25

192702 4.22 -0.24 3.35 0.26

192703 0.38 -1.87 -2.58 0.30

192704 0.41 0.29 0.95 0.25

192705 5.36 1.53 5.07 0.30

13. From Prof. French's data library at http://mba.tuck.dartmouth.edu/pages/
faculty/ken.french/data_library.html, download the monthly and daily Fama-
French factors, where SMB is for Small minus Big, and HML is for High minus Low.
Assume that you are holding an SMB portfolio. Answer the following three questions:

1) What is the total return from January 1, 1989 to December 31, 2012 using
daily data?

Chapter 8

[235]

2) What is the total return from January 1, 1989, to December 31, 2012, using
monthly data?

3) Are they the same? If they are different, why?

14. The following table presents the relationship between rating, default risk
(spread), and time. Write a Python program to interpolate the missing spreads, such
as S from year 11 to 29:

Rating 1 yr 2 yr 3 yr 5 yr 7 yr 10 yr 30 yr
Aaa/AAA 14 16 27 40 56 68 90
Aa1/AA+ 22 30 31 48 64 77 99
Aa2/AA 24 37 39 54 67 80 103
Aa3/AA- 25 39 40 58 71 81 109
A1/A+ 43 48 52 65 79 93 117
A2/A 46 51 54 67 81 95 121
A3/A- 50 54 57 72 84 98 124
Baa1/BBB+ 62 72 80 92 121 141 170
Baa2/BBB 65 80 88 97 128 151 177
Baa3/BBB- 72 85 90 102 134 159 183
Ba1/BB+ 185 195 205 215 235 255 275
Ba2/BB 195 205 215 225 245 265 285
Ba3/BB- 205 215 225 235 255 275 295
B1/B+ 265 275 285 315 355 395 445
B2/B 275 285 295 325 365 405 455
B3/B- 285 295 305 335 375 415 465
Caa/CCC+ 450 460 470 495 505 515 545

The table is located at http://www.bondsonline.com. The values in the table are
expressed in basis points, that are equivalent to 100th of one percent. For example,
40 is equivalent to 40*0.0001.

15. First, download three daily and monthly factors, Market, SMB, and HML from
Prof. French's data library at http://mba.tuck.dartmouth.edu/pages/faculty/
ken.french/data_library.html. Write a Python program to process them. Choose
a time period, such as from January 1, 2000, to December 31, 2013, to estimate the
total returns for the SMB portfolio by using both daily and monthly factors. Are
they the same? What is the total difference? What is the average annual difference?
Comment on your findings.

The Black-Scholes-Merton
Option Model

In modern finance, the option theory and its applications play an important role.
Many trading strategies, corporate incentive plans, and hedging strategies include
various types of options. In Chapter 6, Introduction to NumPy and SciPy, we showed
that you can write a five-line Python program to price a call option based on the
Black-Scholes-Merton option model even without understanding its underlying
theory and logic. In this chapter, we will explain the option theory and its related
applications in more detail.

In particular, we will cover the following topics:

•	 Payoff and profit/loss functions and their graphical representations of
call and put

•	 European versus American options
•	 Normal distribution, standard normal distribution, and cumulative

normal distribution
•	 The Black-Scholes-Merton option model with/without dividend
•	 Various trading strategies and their visual presentations, such as

covered call, straddle, butterfly, and calendar spread
•	 Delta, gamma, and other Greeks
•	 The put-call parity and its graphical representation
•	 Graphical representation for a one-step and a two-step binomial tree model
•	 Using the binomial tree method to price both European and

American options
•	 Hedging strategies

The Black-Scholes-Merton Option Model

[238]

Payoff and profit/loss functions for the
call and put options
An option gives its buyer the right to buy (call option) or sell (put option) something
in the future to the option seller at a predetermined price (exercise price). For
example, if we buy a European call option to acquire a stock for X dollars, such as
$30, at the end of three months, our payoff on maturity day will be the one calculated
using the following formula:

() (),0Tpayoff call Max S X= − (1)

Here, TS is the stock price at the maturity date (T), and the exercise price is X (X is
equal to 30 in this case). Assume that three months later the stock price will be $25.
We would not exercise our call option to pay $30 in exchange for the stock, since we
could buy the same stock with $25 in the open market. On the other hand, if the stock
price is $40, we will exercise our right to reap a payoff of $10, that is, buy the stock at
$30 and sell it at $40. The following program presents the payoff function for a call:

>>>def payoff_call(sT,x):

 return (sT-x+abs(sT-x))/2

Applying the payoff function is straightforward, as shown in the following code:

>>>payoff_call(25,30)

0

>>>payoff_call(40,30)

10

The first input variable, the stock price at the maturity T, could be an array as well, as
shown in the following code:

>>>import numpy as np

>>>x=20

>>>sT=np.arange(10,50,10)

>>>sT

array([10, 20, 30, 40])

>>>payoff_call(s,x)

array([0., 0., 10., 20.])

>>>

Chapter 9

[239]

To create a graphical representation, we have the following commands:

>>>import numpy as np

>>>s = np.arange(10,80,5)

>>>x=30

>>>payoff=(abs(s-x)+s-x)/2

>>>ylim(-10,50)

>>>plot(s,payoff)

The graph is shown in the following screenshot:

The payoff for a call option seller is the opposite of its buyer. It is important to
remember that this is a zero-sum game: you win, I lose. For example, an investor
sold three call options with an exercise price of $10. When the stock price is $15 on
the maturity, the option buyer's payoff is $15, while the total loss to the option writer
is $15 as well. If the call premium (option price) is c, the profit/loss function for a call
option buyer is the difference between his/her payoff and his/her initial investment
(c). Obviously, the timing of cash flows of paying an option premium upfront and its
payoff at maturity date is different. Here, we ignore the time value of money since
maturities are usually quite short.

For a call option buyer, the profit is calculated using the following formula:

() ()/ ,0TBuyer Profit loss call Max S X c= − − (2)

For a call option seller, the profit is calculated by using the following formula:

() ()/ ,0TSeller Profit loss call c Max S X= − − (3)

The Black-Scholes-Merton Option Model

[240]

A graph showing the profit/loss functions for the call option buyer and seller is
generated using the following code:

s = arange(30,70,5)

x=45;call=2.5

profit=(abs(s-x)+s-x)/2 -call

y2=zeros(len(s))

ylim(-30,50)

plot(s,profit)

plot(s,y2,'-.')

plot(s,-profit)

title("Profit/Loss function")

xlabel('Stock price')

ylabel('Profit (loss)')

plt.annotate('Call option buyer', xy=(55,15), xytext=(35,20),

 arrowprops=dict(facecolor='blue',shrink=0.01),)

plt.annotate('Call option seller', xy=(55,-10), xytext=(40,-20),

 arrowprops=dict(facecolor='red',shrink=0.01),)

show()

The graphical representation is shown in the following screenshot:

Chapter 9

[241]

A put option gives its buyer the right to sell a security (commodity) to the put option
buyer in the future at a predetermined price, X. The following is its payoff function:

() (),0TPayoff put Max X S= − (4)

Here, ST is the stock price at maturity and X is the exercise price (strike price). For a
put option buyer, the profit/loss function is as follows:

() ()/ ,0TBuyer Profit loss call Max X S p= − − (5)

The profit/loss function for a put option seller is just the opposite, as follows:

() ()/ ,0TSeller Profit loss call p Max X S= − − (6)

The related program and graph for the profit and loss functions for a put option
buyer and a seller are as follows:

s = arange(30,70,5)

x=45;p=2

y=c-(abs(x-s)+x-s)/2

y2=zeros(len(s))

x3=[x, x]

y3=[-30,10]

ylim(-30,50)

plot(s,y)

plot(s,y2,'-.')

plot(s,-y)

plot(x3,y3)

title("Profit/Loss function for a put option")

xlabel('Stock price')

ylabel('Profit (loss)')

plt.annotate('Put option buyer', xy=(35,12), xytext=(35,45),

 arrowprops=dict(facecolor='red',shrink=0.01),)

plt.annotate('Put option seller', xy=(35,-10), xytext=(35,-25),

 arrowprops=dict(facecolor='blue',shrink=0.01),)

plt.annotate('Exercise price', xy=(45,-30), xytext=(50,-20),

 arrowprops=dict(facecolor='black',shrink=0.01),)

show()

The Black-Scholes-Merton Option Model

[242]

The graph is shown in the following image:

European versus American options
A European option can be exercised only on the maturity date, while an American
option can be exercised any time before or on its maturity date. Since an American
option could be held until it matures, its price (option premium) should be higher
than or equal to its European counterparty.

American European

American European

C C
P P

≥
 ≥

 (7)

An important difference is that for a European option, we have a closed-form
solution, that is, the Black-Scholes-Merton option model. However, we don't have
a closed-form solution for an American option. Fortunately, we have several ways
to price an American option. Later in the chapter, we will show how to use the
binomial tree method, also called the CRR method, to price an American option.

Chapter 9

[243]

Cash flows, types of options, a right, and
an obligation
We know that for each business contract, we have two sides, a buyer and a seller.
This is true for an option contract as well. A call buyer will pay upfront (cash output)
to acquire a right. Since this is a zero-sum game, a call option seller would enjoy an
upfront cash inflow and assumes an obligation. The following table presents those
positions (buyer or seller), directions of the initial cash flows (inflow or outflow),
the option buyer's rights (buy or sell), and the option seller's obligations (that is, to
satisfy the option seller's demand):

Buyer

(long position)

Seller

(short position)

European

options

American

options

Call

A right to
buy a security
(commodity) at
a prefixed price

An obligation
to sell a security
(commodity) at a
prefixed price Are

exercised
on the
maturity
date only

Could be
exercised any
time before
or on the
maturity date

Put
A right to sell a
security with a
prefixed price

An obligation to
buy

Cash
Flow

Upfront cash
outflow

Upfront cash
inflow

The preceding table displays long/short, call/put, European/American options and
directions of initial cash flows.

Normal distribution, standard normal
distribution, and cumulative standard
normal distribution
In finance, normal distribution plays a central role. This is especially true for option
theory. The major reason is that it is commonly assumed that the stock prices follow
a log normal distribution while the stock returns follow a normal distribution. The
density of a normal distribution is defined as follows:

()
()2

22
2

1

2

x

f x e
µ

σ

πσ

−
−

= (8)

The Black-Scholes-Merton Option Model

[244]

Here, μ is the mean and σ is the standard deviation.

By setting μ as 0 and σ as 1, the preceding general normal distribution density
function collapses to the following standard normal distribution:

()
2

21
2

x

f x e
π

−
= (9)

The following code generates a graph for the standard normal distribution. The
SciPy's stats.norm.pdf() function is used for the standard normal distribution. The
default setting is with a zero mean and unit standard deviation, that is, the standard
normal density function:

>>>from scipy import exp,sqrt,stats

>>>stats.norm.pdf(0)

0.3989422804014327

>>>1/sqrt(2*pi) # verify manually

0.3989422804014327

>>>stats.norm.pdf(0,0.1,0.05)

1.0798193302637611

>>>1/sqrt(2*pi*0.05**2)*exp(-(0.1)**2/0.05**2/2) # verify manually

1.0798193302637611

>>>

To draw a standard normal distribution, we have the following program:

>>>from scipy import exp,sqrt,stats

>>>x = arange(-3,3,0.1)

>>>y=stats.norm.pdf(x)

>>>plot(x,y)

Chapter 9

[245]

The graph is shown in the following screenshot:

The cumulative standard normal distribution is the area under the standard normal
density function. In the following program, we will randomly choose a value of 0.325
(the z value). The shaded area on the left-hand size of the z value and under the
standard normal distribution will be the value for a cumulative normal distribution:

import numpy as np

from scipy import exp,sqrt,stats

from matplotlib import pyplot as plt

z=0.325 # user can change this number

def f(t):

 return stats.norm.pdf(t)

ylim(0,0.45)

x = np.arange(-3,3,0.1)

y1=f(x)

plt.plot(x,y1)

x2= np.arange(-4,z,1/40.)

sum=0

The Black-Scholes-Merton Option Model

[246]

delta=0.05

s=np.arange(-10,z,delta)

for i in s:

 sum+=f(i)*delta

plt.annotate('area is '+str(round(sum,4)),xy=(-1,0.25),xytext=(-3.8,0.4),

 arrowprops=dict(facecolor='red',shrink=0.01))

plt.annotate('z= '+str(z),xy=(z,0.01))

plt.fill_between(x2,f(x2))

The graphical representation for the preceding code is as follows:

The stats.norm.cdf() function is the cumulative standard normal distribution
and is as follows:

from scipy import exp,sqrt,stats

from matplotlib import pyplot as plt

z=0.325

def f(x):

 return stats.norm.cdf(x)

x = arange(-3,3,0.1)

y1=f(x)

y2=ones(len(x))*0.5

x3=[0,0]

y3=[0,1]

plt.plot(x,y1)

plt.plot(x, y2, 'b-')

Chapter 9

[247]

plt.plot(x3,y3)

plt.annotate('f(z)=f('+str(z)+') is '+str(np.round(f(z),4)),xy=(z,f(z)),

 xytext=(z-3,f(z)), arrowprops=dict(facecolor='red',shri
nk=0.01))

plt.annotate('z is '+str(z),xy=(z,0),xytext=(1.5,0.3),

 arrowprops=dict(facecolor='blue',shrink=0.01))

The following is the corresponding graph of the preceding code. Obviously, since
the normal distribution is symmetric, we could expect the cumulative standard
normal distribution to be 0.5 at zero, as shown in the following screenshot:

The Black-Scholes-Merton option model
on non-dividend paying stocks
The Black-Scholes-Merton option model is a closed-form solution to price a
European option on a stock that does not pay any dividends before its maturity
date. If we use 0S for the price today, X for the exercise price, r for the continuously
compounded risk-free rate, T for the maturity in years, and σ for the volatility of the
stock, the closed-form formulae for a European call (c) and put (p) will be as follows:

() ()
() ()

20

1

20

2 1

0 1 2

2 0 1

11n
2

11n
2

T

T

S T
xd

T
S T
xd d T

T
c S N d Xe N d
p Xe N d S N d

γ

γ

γ σ

σ

γ σ
σ

σ
−

−

    + +      =



    + −       = = −

 = −
 = − − −

 (10)

The Black-Scholes-Merton Option Model

[248]

Here, N() is the cumulative standard normal distribution. The following Python code
snippet represents the preceding formulae to evaluate a European call:

from scipy import log,exp,sqrt,stats

def bs_call(S,X,T,r,sigma):

 d1=(log(S/X)+(r+sigma*sigma/2.)*T)/(sigma*sqrt(T))

 d2 = d1-sigma*sqrt(T)

 return S*stats.norm.cdf(d1)-X*exp(-r*T)*stats.norm.cdf(d2)

In the preceding program, the stats.norm.cdf() function is the cumulative normal
distribution, that is, N() in the Black-Scholes-Merton option model. The current stock
price is $40, the strike price is $42, the time to maturity is six months, the risk-free
rate is 1.5 percent compounded continuously, and the volatility of the underlying
stock is 20 percent (compounded continuously). Based on the preceding code, the
European call is worth $1.56, as shown in the following code:

>>>c=bs_call(40,42,0.5,0.015,0.2)

>>>round(c,2)

1.56

The p4f module for options
In Chapter 3, Using Python as a Financial Calculator, we recommended the combining
of many small Python programs as one program. In this chapter, we adopted the
same strategy to combine all the programs in a big file p4f.py. For instance, the
preceding Python program, that is, the bs_call() function is included. Such a
collection of programs offers several benefits. First, when we use the bs_call()
function, we don't have to type those five lines. To save space, we will only show
a few functions included in p4f.py. For brevity, we will remove all the comments
included for each function. Those comments are designed to help future users when
issuing the help() function, such as help(bs_call()).

def bs_call(S,X,T,rf,sigma):

 from scipy import log,exp,sqrt,stats

 d1=(log(S/X)+(rf+sigma*sigma/2.)*T)/(sigma*sqrt(T))

 d2 = d1-sigma*sqrt(T)

 return S*stats.norm.cdf(d1)-X*exp(-rf*T)*stats.norm.cdf(d2)

The following program uses a binomial model to price a call option:

def binomial_grid(n):

 import networkx as nx

 import matplotlib.pyplot as plt

Chapter 9

[249]

 G=nx.Graph()

 for i in range(0,n+1):

 for j in range(1,i+2):

 if i<n:

 G.add_edge((i,j),(i+1,j))

 G.add_edge((i,j),(i+1,j+1))

 posG={} #dictionary with nodes position

 for node in G.nodes():

 posG[node]=(node[0],n+2+node[0]-2*node[1])

 nx.draw(G,pos=posG)

def delta_call(S,X,T,rf,sigma):

 from scipy import log,exp,sqrt,stats

 d1=(log(S/X)+(rf+sigma*sigma/2.)*T)/(sigma*sqrt(T))

 return(stats.norm.cdf(d1))

def delta_put(S,X,T,rf,sigma):

 from scipy import log,exp,sqrt,stats

 d1=(log(S/X)+(rf+sigma*sigma/2.)*T)/(sigma*sqrt(T))

 return(stats.norm.cdf(d1)-1)

To implement the Black-Scholes-Merton call option model, we simply use the
following code:

>>>import p4f

>>>c=p4f.bs_call(40,42,0.5,0.015,0.2)

>>>round(c,2)

1.56

The second advantage is to save space and make our programming simpler. Later in
the chapter, this point will become more clearer when we use the binomial_grid()
function. From now on, when a function is discussed for the first time, we will offer
complete code. However, when the program is used again and the program is quite
complex, we would call it indirectly via p4f. To find our working directory, use the
following code:

>>>import os

>>>print os.getcwd()

The Black-Scholes-Merton Option Model

[250]

European options with known dividends
Assume that we have a known dividend d distributed at time T1, T1 < T, where T is
our maturity date. We can modify the original Black-Scholes-Merton option model
by replacing S0 with S, where:

 (11)

2

1

11n
2

s T
xd

T

γ σ

σ

   + +   
   =

 (12)

2

2 1

11n
2

s T
xd d T

T

γ σ
σ

σ

   + −   
   = = −

 (13)

() ()1 2
rTc S N d X e N d−= ∗ − ∗ (14)

() ()2 1
rTp X e N d S N d−= ∗ − − ∗ − (15)

In the previously discussed example, if we have a known dividend of $1.5 delivered
in one month, what is the price of the call?. The price is calculated as follows:

>>>import p4f

>>>s0=40

>>>d=1.5

>>>r=0.015

>>>T=6/12

>>>s=s0-exp(-r*T*d)

>>>x=42

>>>sigma=0.2

>>>round(p4f.bs_call(s,x,T,r,sigma),2)

1.18

Chapter 9

[251]

The first line of the program imports the p4f module, which contains the call option
model. The result shows that the price of the call is $1.18, which is lower than the
previous value ($1.56). It is understandable since the price of the underlying stock
would drop roughly by $1.5 in one month. Because of this, the chance that we
could exercise our call option will be less, that is, less likely to go beyond $42. The
preceding argument is true for multiple known dividends distributed before T, that
is, 0

irT
iS e d−= −∑ .

Various trading strategies
In the following table, we will summarize several commonly used trading strategies
involving various types of options:

Names Description
Direction
of initial
cash flow

Expectation of future
price movement

Bull spread
with calls Buy a call (x1) sell a call (x2) [x1 < x2] Outflow Rise

Bull spread
with puts Buy a put (x1), sell a put (x2) [x1 < x2] Inflow Rise

Bear spread
with puts Buy a put (x2), sell a put (x1) [x1 < x2] Outflow Fall

Bear spread
with calls Buy a call (x2), sell a call (x1) [x1 < x2] Inflow Fall

Straddle Buy a call and sell a put with the
same x value Outflow Rise or fall

Strip Buy two puts and a call (with the
same x value) Outflow prob (fall) > prob

(rise)

Strap Buy two calls and one put (with the
same x value) Outflow prob (rise) > prob

(fall)

Strangle Buy a call (x2) and buy a put (x1) [x1
< x2] Outflow rise or fall

Butterfly
with calls

Buy two calls (x1, x3) and sell two
calls (x2) ()]2 1 3 / 2x x x= +

Outflow stay around x2

Butterfly
with puts

Buy two puts (x1,x3) and sell two
puts (x2) ()]2 1 3 / 2x x x= + stay around x2

Calendar
spread

Sell a call (T1) and buy a call (T2) with
the same strike price and T1 < T2 Outflow

The Black-Scholes-Merton Option Model

[252]

Covered call – long a stock and short a call
Assume that we purchase 100 shares of stock A, with a price of $10 each. Thus, the
total cost is $1,000. If at the same time, we write a call contract, one contract is worth
100 shares, at a price of $20. Thus, our total cost will be reduced by $20. Assume
further that the exercise price is $12. The graphical representation of our profit and
loss function is as follows:

import matplotlib as plt

import numpy as np

sT = arange(0,40,5)

k=15;s0=10;c=2

y0=zeros(len(sT))

y1=sT-s0 # stock only

y2=(abs(sT-k)+sT-k)/2-c # long a call

y3=y1-y2 # covered-call

ylim(-10,30)

plot(sT,y1)

plot(sT,y2)

plot(sT,y3,'red')

plot(sT,y0,'b-.')

plot([k,k],[-10,10],'black')

title('Covered call (long one share and short one call)')

xlabel('Stock price')

ylabel('Profit (loss)')

plt.annotate('Stock only (long one share)', xy=(24,15),xytext=(15,20),

 arrowprops=dict(facecolor='blue',shrink=0.01),)

plt.annotate('Long one share, short a call', xy=(10,4), xytext=(9,25),

 arrowprops=dict(facecolor='red',shrink=0.01),)

plt.annotate('Exercise price= '+str(k), xy=(k+0.2,-10+0.5))

show()

The related graph showing the positions of a Stock only call and a covered call is
given in the following screenshot. Obviously, when the stock price is below $17
(15 + 2), the covered call is better than a long share.

Chapter 9

[253]

Straddle – buy a call and a put with the same
exercise prices
Let's look at a very simple scenario. A firm faces an uncertain event next month. The
issue is that we are not sure about its direction, that is, whether it is a good event or
a bad one. To take advantage of such an opportunity, we could buy a call and a put
with the same exercise prices. This means that we will benefit either ways: the stock
moves up or down. Assume further that the exercise price is $30. The payoff of such
a strategy is given in the following code:

import matplotlib.pyplot as plt

sT = arange(30,80,5)

x=50; c=2; p=1

straddle=(abs(sT-x)+sT-x)/2-c + (abs(x-sT)+x-sT)/2-p

y0=zeros(len(sT))

ylim(-6,20)

xlim(40,70)

plot(sT,y0)

plot(sT,straddle,'r')

plot([x,x],[-6,4],'g-.')

title("Profit-loss for a Straddle")

xlabel('Stock price')

ylabel('Profit (loss)')

plt.annotate('Point 1='+str(x-c-p), xy=(x-p-c,0), xytext=(x-p-c,10),

The Black-Scholes-Merton Option Model

[254]

 arrowprops=dict(facecolor='red',shrink=0.01),)

plt.annotate('Point 2='+str(x+c+p), xy=(x+p+c,0), xytext=(x+p+c,13),

 arrowprops=dict(facecolor='blue',shrink=0.01),)

plt.annotate('exercise price', xy=(x+1,-5))

plt.annotate('Buy a call and buy a put with the same exercise
price',xy=(45,16))

The preceding code gives us the following graph:

The preceding graph shows that whichever way the stock goes, we would get the
profit. When could we lose? Obviously, when the stock does not change much, that
is, our expectation fails to materialize.

A calendar spread
A calendar spread involves two call options with the same exercise price but
different maturities: T1 and T2 (where T1 < T2). We sell a call with a shorter
maturity (T1) and buy a call with a longer maturity (T2). Since the call option price is
positively correlated with the maturity, we have initial cash outflow. Our expectation
is that when the first option matures at T1, the price of the underlying stock is close
to our exercise price. The code and graph for this are as follows:

import p4f

sT = arange(20,70,5)

s=40;x=40;T1=0.5;T2=1;sigma=0.3;r=0.05

payoff=(abs(sT-x)+sT-x)/2

call_01=p4f.bs_call(s,x,T1,r,sigma) # short

call_02=p4f.bs_call(s,x,T2,r,sigma) # long

Chapter 9

[255]

profit_01=payoff-call_01

call_03=p4f.bs_call(sT,x,(T2-T1),r,sigma)

calendar_spread=call_03-payoff+call_01 -call_02

y0=zeros(len(sT))

ylim(-20,20)

xlim(20,60)

plot(sT,call_03,'b-.')

plot(sT,call_02-call_01-payoff,'b-.')

plot(sT,calendar_spread,'r')

plot([x,x],[-20,-15])

title("Calendar spread with calls")

xlabel('Stock price at maturity (sT)')

ylabel('Profit (loss)')

plt.annotate('Buy a call with T1 and sell a call with T2', xy=(25,16))

plt.annotate('where T1<T2', xy=(25,14))

plt.annotate('Calendar spread', xy=(25,-3), xytext=(22,-15),

 arrowprops=dict(facecolor='red',shrink=0.01),)

plt.annotate('Value of the call (T2) at maturity', xy=(45,7),
xytext=(25,10),

 arrowprops=dict(facecolor='blue',shrink=0.01),)

plt.annotate('Proflit/loss with call 1 only', xy=(50,-10),
xytext=(30,-10),

 arrowprops=dict(facecolor='blue',shrink=0.01),)

plt.annotate('Exersise price', xy=(x+0.5,-20+0.5))

show()

The preceding code gives the following graph:

The Black-Scholes-Merton Option Model

[256]

Butterfly with calls
While buying two calls with the exercise prices x1 and x3 and selling two calls with
the exercise price x2, where x2 = (x1+x2)/2, with the same maturity for the same
stock, we call it butterfly. Its profit/loss function is as follows:

sT = arange(30,80,5)

x1=50; c1=10

x2=55; c2=7

x3=60; c3=5

y1=(abs(sT-x1)+sT-x1)/2-c1

y2=(abs(sT-x2)+sT-x2)/2-c2

y3=(abs(sT-x3)+sT-x3)/2-c3

butter_fly=y1+y3-2*y2

y0=zeros(len(sT))

ylim(-20,20)

xlim(40,70)

plot(sT,y0)

plot(sT,y1)

plot(sT,-y2,'-.')

plot(sT,y3)

plot(sT,butter_fly,'r')

title("Profit-loss for a Butterfly")

xlabel('Stock price')

ylabel('Profit (loss)')

plt.annotate('Butterfly', xy=(53,3), xytext=(42,4),

 arrowprops=dict(facecolor='red',shrink=0.01),)

plt.annotate('Buy 2 calls with x1, x3 and sell 2 calls with x2',
xy=(45,16))

plt.annotate(' x2=(x1+x3)/2', xy=(45,14))

plt.annotate(' x1=50, x2=55, x3=60',xy=(45,12))

plt.annotate(' c1=10,c2=7, c3=5', xy=(45,10))

show()

Chapter 9

[257]

The related graph is shown in the following image:

Relationship between input values and
option values
When the volatility of an underlying stock increases, both its call and put values
increase. The logic is that when a stock becomes more volatile, we have a better
chance to observe extreme values, that is, we have a better chance to exercise our
option. The following Python program shows this relationship:

import numpy as np

import p4f as pf

s0=30;T0=0.5;sigma0=0.2;r0=0.05;x0=30

sigma=np.arange(0.05,0.8,0.05)

T=np.arange(0.5,2.0,0.5)

call_0=pf.bs_call(s0,x0,T0,r0,sigma0)

call_sigma=pf.bs_call(s0,x0,T0,r0,sigma)

call_T=pf.bs_call(s0,x0,T,r0,sigma0)

plot(sigma,call_sigma,'b')

plot(T,call_T)

The Black-Scholes-Merton Option Model

[258]

Greek letters for options
In the option theory, several Greek letters, usually called Greeks, are used to
represent the sensitivity of the price of derivatives such as options to bring a
change in the underlying security. Collectively, those Greek letters are also called
the risk sensitivities, risk measures, or hedge parameters.

Delta (∆) is defined as the derivative of the option to its underlying security price.
The delta of a call is defined as follows:

C
S
∂

∆ =
∂

 (16)

We could design a hedge based on the delta value. The delta of a European call
on a non-dividend-paying stock is defined as follows:

()1call N d∆ = (17)

For example, if we write one call, we could buy delta number of shares of stocks so
that a small change in the stock price is offset by the change in the short call. The
definition of the delta_call() function is quite simple. Since it is included in the
p4f.py file, we can call it easily, as shown in the following code:

>>>from p4f import *

>>>round(delta_call(40,40,1,0.1,0.2),4)

0.7257

The delta for a European put on a non-dividend-paying stock is defined as follows:

()1 1put N d∆ = − (18)

The definition of the delta_put function is as follows:

>>>from p4f import *

>>>round(delta_put(40,40,1,0.1,0.2),4)

-0.2743

Chapter 9

[259]

Gamma is the rate of change of delta with respect to price. It can be defined as follows:

S
Γ ∂∆
=
∂

 (19)

To implement an effective delta hedge, we have to update our stockholding
constantly since delta depends on the price of the underlying security. Thus, if
gamma is small, we don't have to change our hedge too frequently. For a European
call (or put), its gamma value is given as follows:

()1
0

'N d
S T

Γ
σ

= (20)

Here, ()
2

21'
2

x

N x e
π

−
= .

The put-call parity and its graphical
representation
Let's look at a call with an exercise price of $20, a maturity of three months, and a
risk-free rate of 5 percent. The present value of this future $20 price is calculated in
the following code:

>>>x=20*exp(-0.05*3/12)

>>>round(x,2)

19.75

>>>

In three months, what will be the wealth of our portfolio, which consists of a call
on the same stock and $19.75 cash today? If the stock price is below $20, we don't
exercise the call and keep the cash. If the stock price is above $20, we use our cash
of $20 to exercise our call option to own the stock. Thus, our portfolio value will be
the maximum of those two values, that is, the stock price in three months or $20,
max(s,20).

On the other hand, how about a portfolio with a stock and a put option with an
exercise price of $20? If the stock price falls below $20, we exercise the put option and
get $20. If the stock price is above $20, we simply keep the stock. Thus, our portfolio
value will be the maximum of those two values, that is, the stock price in three
months or $20, max(s,20).

The Black-Scholes-Merton Option Model

[260]

Thus, for both the portfolios, we have the same terminal wealth of max(s,20). Based
on the no-arbitrage principle, the present values of those two portfolios should be
equal. We call this put-call parity, and we define it as follows:

0
fr TC Xe P S−+ = + (21)

When the stock has known dividend payments before its maturity date, we have the
following equality:

() 0
fr TC PV D Xe P S−+ + = + (22)

Here, D is the present value of all dividends before their maturity date (T). The
following Python program offers a graphical representation of the put-call parity:

import pylab as pl

import numpy as np

x=10

sT=np.arange(0,30,5)

payoff_call=(abs(sT-x)+sT-x)/2

payoff_put=(abs(x-sT)+x-sT)/2

cash=np.zeros(len(sT))+x

def graph(text,text2=''):

 pl.xticks(())

 pl.yticks(())

 pl.xlim(0,30)

 pl.ylim(0,20)

 pl.plot([x,x],[0,3])

 pl.text(x,-2,"X");

 pl.text(0,x,"X")

 pl.text(x,x*1.7, text, ha='center', va='center',size=10, alpha=.5)

 pl.text(-5,10,text2,size=25)

pl.figure(figsize=(6, 4))

pl.subplot(2, 3, 1); graph('Payoff of call'); pl.plot(sT,payoff_call)

pl.subplot(2, 3, 2); graph('cash','+'); pl.plot(sT,cash)

pl.subplot(2, 3, 3); graph('Porfolio A ','='); pl.plot(sT,cash+payoff_
call)

Chapter 9

[261]

pl.subplot(2, 3, 4); graph('Payoff of put '); pl.plot(sT,payoff_put)

pl.subplot(2, 3, 5); graph('Stock','+'); pl.plot(sT,sT)

pl.subplot(2, 3, 6); graph('Portfolio B','='); pl.plot(sT,sT+payoff_put)

pl.show()

The following is the output image:

Binomial tree (the CRR method) and its
graphical representation
The binomial tree method was proposed by Cox, Ross, and Robinstein in 1979. Because
of this, it is also called the CRR method. Based on the CRR method, we have the
following two-step approach. First, we draw a tree, such as the following one-step
tree. If we assume that our current stock value is S, there are two outcomes S*u and
S*d, where u > 1 and d < 1, as shown in the following code:

import matplotlib.pyplot as plt

xlim(0,1)

plt.figtext(0.18,0.5,'S')

plt.figtext(0.6,0.5+0.25,'Su')

plt.figtext(0.6,0.5-0.25,'Sd')

plt.annotate('',xy=(0.6,0.5+0.25), xytext=(0.1,0.5), arrowprops=dict(face
color='b',shrink=0.01))

plt.annotate('',xy=(0.6,0.5-0.25), xytext=(0.1,0.5), arrowprops=dict(face
color='b',shrink=0.01))

plt.axis('off')

The Black-Scholes-Merton Option Model

[262]

The following is its corresponding graph:

Obviously, the simplest tree is a one-step tree. Assume that today's price is $10, the
exercise price is $11, and a call option would mature in six months. In addition,
assume that we know that the price would have two outcomes, moving up (u = 1.15)
or moving down (d = 0.9). In other words, the final values are either $11 or $9. Based
on such information, we have the following graph showing the prices for such a
one-step binomial tree:

The following is the code to generate the preceding graph. This code is based on the
code available at http://litvak.eu/pyfi/:

import networkx as nx

import matplotlib.pyplot as plt

plt.figtext(0.08,0.6,"Stock price=$20")

plt.figtext(0.75,0.91,"Stock price=$22")

plt.figtext(0.75,0.87,"Option price=$1")

Chapter 9

[263]

plt.figtext(0.75,0.28,"Stock price=$18")

plt.figtext(0.75,0.24,"Option price=0")

n=1

def binomial_grid(n):

 G=nx.Graph()

 for i in range(0,n+1):

 for j in range(1,i+2):

 if i<n:

 G.add_edge((i,j),(i+1,j))

 G.add_edge((i,j),(i+1,j+1))

 posG={}

 for node in G.nodes():

 posG[node]=(node[0],n+2+node[0]-2*node[1])

 nx.draw(G,pos=posG)

binomial_grid(n)

In the preceding program, we generated the binomial_grid() function, since we
will call this function many times later in the chapter. Since we knew beforehand
that we would have two outcomes, we could choose an appropriate combination
of stock and call options to get our final outcome with certainty, that is, the same
terminal values. Assume that we choose an appropriate delta number of shares of
the underlying security and one call to have the same terminal value at the end of

one period, that is, 11.5 1 9 0∆∗ − = ∆ + and thus,
1 0.4

11.5 9
∆ = =

− . This means that if
we long 0.4 shares and short one call option, our final wealth will be the same, 0.4 *
11.5 - 1 =3.6 when the stock moves up or 0.4 * 9 = 3.6 when the stock moves down.
Assume further that if the continuously compounded risk-free value is 0.12 percent,
the value of today's portfolio will be equivalent to the discounted future certain
value 4.5, (0.4*10 – c=pv(3.6)) that is, 0.012 0.50.4 10 3.6 0.42c e− ∗= ∗ − ∗ = . If we use Python,
we will have the following result:

>>>round(0.4*10-exp(-0.012*0.5)*3.6,2)

0.42

>>>

For a two-step binomial tree, we have the following code:

import p4f

plt.figtext(0.08,0.6,"Stock price=$20")

plt.figtext(0.08,0.56,"call =7.43")

plt.figtext(0.33,0.76,"Stock price=$67.49")

The Black-Scholes-Merton Option Model

[264]

plt.figtext(0.33,0.70,"Option price=0.93")

plt.figtext(0.33,0.27,"Stock price=$37.40")

plt.figtext(0.33,0.23,"Option price=14.96")

plt.figtext(0.75,0.91,"Stock price=$91.11")

plt.figtext(0.75,0.87,"Option price=0")

plt.figtext(0.75,0.6,"Stock price=$50")

plt.figtext(0.75,0.57,"Option price=2")

plt.figtext(0.75,0.28,"Stock price=$27.44")

plt.figtext(0.75,0.24,"Option price=24.56")

n=2

p4f.binomial_grid(n)

Based on the CRR method, we have the following procedure:

1.	 Draw an n-step tree.
2.	 At the end of the nth step, estimate terminal prices.
3.	 Calculate the option value at each node based on the terminal

price, exercise, call, or put.
4.	 Discount it back one step, that is, from n to n-1, according to the

risk-neutral probability.
5.	 Repeat the previous step until we find the final value at step 0.

The formulae for calculating u, d, and p are as follows:

tu eσ ∆= (23)

1 td e
u

σ− ∆= = (24)

()r q ta e − ∆= (25)

a dp
u d
−

=
−

 (26)

()1 11u d
i i ip pν ν ν+ += + − (27)

Chapter 9

[265]

Here, u is the upward movement, d is the downward movement, σ is the volatility
of the underlying security, and r is the risk-free rate and t∆ is the step, that is, Tt

n
∆ =

. Here, T is the maturity in years, n is the number of steps, q is the dividend yield,
and p is the risk-neutral probability of an upward movement. The binomial_grid()
function is based on the functions shown under the one-step binomial tree graphical
representation. Again, as we mentioned before that this function is included in the
grand master file p4fy.py. The output graph is shown here. One obvious result is
that the preceding Python program is very simple and straight. Let us use a two-step
binomial tree to explain the whole process. Assume that the current stock price is
$10, the exercise price is $10, the maturity is three months, the number of steps is two,
the risk-free rate is 2 percent, and the volatility of the underlying security is 0.2. The
following Python code would generate a two-step tree:

from math import sqrt,exp

s=10;r=0.02;sigma=0.2;T=3./12;x=10

n=2;deltaT=T/n;q=0

u=exp(sigma*sqrt(deltaT));d=1/u

a=exp((r-q)*deltaT)

p=(a-d)/(u-d)

su=round(s*u,2);suu=round(s*u*u,2)

sd=round(s*d,2);sdd=round(s*d*d,2)

sud=s

plt.figtext(0.08,0.6,'Stock '+str(s))

plt.figtext(0.33,0.76,"Stock price=$"+str(su))

plt.figtext(0.33,0.27,'Stock price='+str(sd))

plt.figtext(0.75,0.91,'Stock price=$'+str(suu))

plt.figtext(0.75,0.6,'Stock price=$'+str(sud))

plt.figtext(0.75,0.28,"Stock price="+str(sdd))

p4f.binomial_grid(n)

The Black-Scholes-Merton Option Model

[266]

Now, we will use the risk-neutral probability to discount each value one step
backward. The corresponding code and graph are given as follows:

import p4f

s=10;x=10;r=0.05;sigma=0.2;T=3./12.;n=2;q=0 # q is dividend yield

deltaT=T/n # step

u=exp(sigma*sqrt(deltaT))

d=1/u

a=exp((r-q)*deltaT)

p=(a-d)/(u-d)

s_dollar='S=$';c_dollar='c=$'

p2=round(p,2)

plt.figtext(0.15,0.91,'Note: x='+str(x)+', r='+str(r)+', deltaT='+str(del
taT)+',p='+str(p2))

plt.figtext(0.35,0.61,'p')

plt.figtext(0.65,0.76,'p')

plt.figtext(0.65,0.43,'p')

plt.figtext(0.35,0.36,'1-p')

plt.figtext(0.65,0.53,'1-p')

plt.figtext(0.65,0.21,'1-p')

at level 2

su=round(s*u,2);suu=round(s*u*u,2)

sd=round(s*d,2);sdd=round(s*d*d,2)

sud=s

c_suu=round(max(suu-x,0),2)

c_s=round(max(s-x,0),2)

c_sdd=round(max(sdd-x,0),2)

plt.figtext(0.8,0.94,'s*u*u')

plt.figtext(0.8,0.91,s_dollar+str(suu))

plt.figtext(0.8,0.87,c_dollar+str(c_suu))

plt.figtext(0.8,0.6,s_dollar+str(sud))

plt.figtext(0.8,0.64,'s*u*d=s')

plt.figtext(0.8,0.57,c_dollar+str(c_s))

plt.figtext(0.8,0.32,'s*d*d')

plt.figtext(0.8,0.28,s_dollar+str(sdd))

plt.figtext(0.8,0.24,c_dollar+str(c_sdd))

at level 1

Chapter 9

[267]

c_01=round((p*c_suu+(1-p)*c_s)*exp(-r*deltaT),2)

c_02=round((p*c_s+(1-p)*c_sdd)*exp(-r*deltaT),2)

plt.figtext(0.43,0.78,'s*u')

plt.figtext(0.43,0.74,s_dollar+str(su))

plt.figtext(0.43,0.71,c_dollar+str(c_01))

plt.figtext(0.43,0.32,'s*d')

plt.figtext(0.43,0.27,s_dollar+str(sd))

plt.figtext(0.43,0.23,c_dollar+str(c_02))

at level 0 (today)

c_00=round(p*exp(-r*deltaT)*c_01+(1-p)*exp(-r*deltaT)*c_02,2)

plt.figtext(0.09,0.6,s_dollar+str(s))

plt.figtext(0.09,0.56,c_dollar+str(c_00))

p4f.binomial_grid(n)

Here, we explain a few values shown in the preceding graph. At the highest node
(s*u*u), since the terminal stock price is 11.52 and the exercise price is 10, the call
value is 1.52 (11.52 - 10). Similarly, on the s*u*d=s node, the call value is 0 since 10 -
10 = 0. For the call value 0.8, we have the following verification:

>>>p

0.5266253390068362

>>>deltaT

0.125

>>>v=(p*1.52+(1-p)*0)*exp(-r*deltaT)

>>>round(v,2)

0.80

>>>

The Black-Scholes-Merton Option Model

[268]

The binomial tree method for European
options
The following code is for the binomial tree method to price a European option:

from math import exp,sqrt

def biomialCall(s,x,T,r,sigma,n=100):

 deltaT = T /n

 u = exp(sigma * sqrt(deltaT))

 d = 1.0 / u

 a = exp(r * deltaT)

 p = (a - d) / (u - d)

 v = [[0.0 for j in xrange(i + 1)] for i in xrange(n + 1)]

 for j in xrange(i+1):

 v[n][j] = max(s * u**j * d**(n - j) - x, 0.0)

 for i in xrange(n-1, -1, -1):

 for j in xrange(i + 1):

 v[i][j]=exp(-r*deltaT)*(p*v[i+1][j+1]+(1.0-p)*v[i+1][j])

 return v[0][0]

To apply the function, we give it a set of input values. For the comparison, the result
based on the Black-Scholes-Merton option model is also shown in the following code:

>>>binomialCall(40,42,0.5,0.1,0.2,1000)

2.1055845631835846

>>>bs_call(40,42,0.5,0.1,0.2)

2.2777803294555348

>>>

The binomial tree method for American
options
Unlike the Black-Scholes-Merton option model, which could only be applied to
European options, the binomial tree (CRR) method could be used to price American
options. The only difference is that we have to consider the early exercise. The
following is the code to price an American option using the binomial tree method:

from math import exp,sqrt

def binomialCallAmerican(s,x,T,r,sigma,n=100):

Chapter 9

[269]

 deltaT = T /n

 u = exp(sigma * sqrt(deltaT))

 d = 1.0 / u

 a = exp(r * deltaT)

 p = (a - d) / (u - d)

 v = [[0.0 for j in xrange(i + 1)] for i in xrange(n + 1)]

 for j in xrange(i+1):

 v[n][j] = max(s * u**j * d**(n - j) - x, 0.0)

 for i in xrange(n-1, -1, -1):

 for j in xrange(i + 1):

 v1=exp(-r*deltaT)*(p*v[i+1][j+1]+(1.0-p)*v[i+1][j])

 v2=max(x-s,0) # early exercise

 v[i][j]=max(v1,v2)

 return v[0][0]

The key difference between pricing an American call option and a European call
option is its early exercise opportunity. In the preceding program, the last few lines
reflect this. For each node, we estimate two values, that is, v1 is for the discounted
value, and v2 is the payoff from an early exercise. We will choose a higher value, that
is, max(v1, v2). If using the same set of values to apply this binomial tree method
to price an American call, we have the following value. It is understandable that the
final result is higher than its European call counterpart:

>>>call=binomialCallAmerican(40,42,0.5,0.1,0.2,1000)

>>>round(call,2)

3.41

>>>

Hedging strategies
After selling a European call, we could hold ∆ shares of the same stock to hedge our
position. This is named delta hedge. Since delta (∆) is a function of the underlying
stock (S), to maintain an effective hedge, we have to rebalance our holding
constantly. This is called dynamic hedging. The delta of a portfolio is the weighted
deltas of individual securities in the portfolio. Note that when we short a security, its
weight will be negative.

1

n

port i i
i
w

=

∆ = ∆∑ (28)

The Black-Scholes-Merton Option Model

[270]

Assume that a US importer will pay 10 million pounds in three months. He or she
is concerned with a potential depreciation of the US dollar against the UK pound.
There are several ways to hedge such a risk: buy pounds now, enter a futures
contract to buy 10 million pounds in three months with a fixed exchange rate, or
buy call options with a fixed exchange rate as its exercise price. The first choice is
costly since the importer does not need UK pounds today. Entering a future contract
is risky as well, since an appreciation of the US dollar would cost the importer
extra money. On the other hand, entering a call option will guarantee a maximum
exchange rate today. At the same time, if the pound depreciates, the importer will
reap the benefits. Such activities are called hedging since we take the opposite
position of our risks.

For the currency options, we have the following equations:

20

1

11n
2d f

S r r T
xd

T

σ

σ

   + − +     =
 (29)

20

2 1

11n
2d f

S r r T
xd d T

T

σ
σ

σ

   + − +     = = −
 (30)

() ()0 1 2
rTc S N d X e N d−= ∗ − ∗ (31)

() ()2 0 1
rtp X e N d S N d−= ∗ − − ∗ − (32)

Here, 0S is the exchange rate of the US dollar per foreign currency, dr is the domestic
risk-free rate, and fr is the foreign country's risk-free rate.

Summary
In this chapter, we discussed the Black-Scholes-Merton option model in detail. In
particular, we covered the payoff and profit/loss functions and their graphical
representations of call and put options; various trading strategies and their visual
presentations, such as covered call, straddle, butterfly, calendar spread, normal
distribution, standard normal distribution, and cumulative normal distribution;
delta, gamma and other Greeks; the put-call parity; European versus American
options; and the binomial tree method to price options and hedging.

Chapter 9

[271]

In the next chapter, Python Loops and Implied Volatility, first we will discuss several
types of Python loops. Then, we will explain how to find the implied volatility for
a call or put option. In addition, we will explain how to download real-world option
data from several public available sources. Using that data, we will estimate implied
volatility, volatility skewness, and their applications.

Exercises
1. What is the difference between an American call and a European call?

2. What is the unit of rf in the Black-Scholes-Merton option model?

3. If we are given the annual rate of 3.4 percent, compounded semi-annually,
what will the value of rf be that we should use for the Black-Scholes-Merton
option model ?

4. How do we use options to hedge?

5. How do we treat predetermined cash dividends to price a European call?

6. Why is an American call worth more than a European call?

7. Assume you are a mutual fund manager and your portfolio's β is strongly
correlated with the market. You are worried about the short-term fall in the market.
What you could do to protect your portfolio?

8. The current price of stock A is $38.5 and the strike prices for a call and a put
options are both $37. If the continuously compounded risk-free rate is 3.2 percent,
maturity is six months, and the volatility of stock A is 0.25, what are the prices for
a European call and put?

9. Use the put-call parity to verify the above solutions.

10. When the strike prices for call and put in (9.11) are different, can we apply the
put-call parity?

11. For a set of input values, such as s = 40, x = 40, t = 3 / 12=0.25, r = 0.05, and sigma
= 0.20, using the Black-Scholes-Merton option model, we can estimate the value of
the call. Now keeping all parameters constant, except s (the current price of a stock),
show the relationship (a graph would be better) between calls and S.

12. Here is my portfolio: the more longer an underlying stock, the more longer a
call option. Write a Python program showing the payoff function of this portfolio.
Assume that the current stock price is $40 and the strike price of the European call
is $45.

The Black-Scholes-Merton Option Model

[272]

13. Bull spread with puts: buy a put on a stock with K1 and sell a put with a strike
price of K2 (K1 < K2). Since K1 < K2, the put purchased is less valuable than the
put sold, the Bull spread with puts involves upfront cash inflow. Write a Python
program for payoff and profit/loss functions, and draw a graph for this.

9.14 Bear spread with puts: investors expect that the stock price is going to fall. Buy
a put with K2 and sell a put with K1 (where K1 < K2). Since K1 < K2 due to which the
put purchased is more valuable than the put sold, the bear spread with puts involves
initial cash outflow. Write a Python program for payoff, profit/loss functions, and
draw a graph for this.

15. Butterfly spread: buy two calls with K1 and K3, and sell two calls with K2
(()2 1 30.5K K K= +).

a) Show that this strategy involves an initial investment. In other words, prove that
1 3 22C C C+ ≥ . You form a portfolio of long C1, C3, and short 2 * C2.

b) Write a Python program to show its profit function.

16. You have the following portfolio: long 100 shares, short 77 calls on the same
stocks, and long 88 puts on the same stocks. Assume that the current stock price is
$40, the strike price for the call is $45 and the strike price of the put is $38.

a) Write the payoff function for your portfolio.

b) What is the profit/loss function? Assume that the call and put premiums are $3
and $4 respectively.

c) Write a Python program for the preceding two tasks.

17. If we buy two puts and one call with the same exercise price, the strategy is called
Strips. Write a Python program to show its profit/loss function.

18. If we buy one put and two calls with the same exercise price, the strategy is called
"Strap". See the following graph. a) What is the expectation of such a strategy? b)
Write a program to show its profit/loss graph.

19. Write a program to draw a graph showing the relation of delta (∆) on a European
call on non-dividend stock with its underlying stock price (x axis).

20. The current stock price is $30, the exercise price is $30, the risk-free interest rate
is 6 percent per annum, compounding semi-annually, the volatility is 25 percent per
annum, the time to maturity is four months, and the underlying stock will pay $1
dividends at end of one month and five months, respectively. What are the prices
of a European call and a European put?

Chapter 9

[273]

21. In this chapter, we have the following code to present the one-step binomial tree:

import p4f

plt.figtext(0.08,0.6,"Stock price=$20")

plt.figtext(0.08,0.56,"call =7.43")

plt.figtext(0.33,0.76,"Stock price=$67.49")

plt.figtext(0.33,0.70,"Option price=0.93")

plt.figtext(0.33,0.27,"Stock price=$37.40")

plt.figtext(0.33,0.23,"Option price=14.96")

plt.figtext(0.75,0.91,"Stock price=$91.11")

plt.figtext(0.75,0.87,"Option price=0")

plt.figtext(0.75,0.6,"Stock price=$50")

plt.figtext(0.75,0.57,"Option price=2")

plt.figtext(0.75,0.28,"Stock price=$27.44")

plt.figtext(0.75,0.24,"Option price=24.56")

n=2

p4f.binomial_grid(n)

The following is its related graph:

Simplify the preceding program to make it look like the following one:

import p4f

plt.figtext("Stock price=$20")

plt.figtext("call =7.43")

The Black-Scholes-Merton Option Model

[274]

plt.figtext("Stock price=$67.49")

plt.figtext("Option price=0.93")

plt.figtext("Stock price=$37.40")

plt.figtext("Option price=14.96")

plt.figtext("Stock price=$91.11")

plt.figtext("Option price=0")

plt.figtext("Stock price=$50")

plt.figtext("Option price=2")

plt.figtext("Stock price=$27.44")

plt.figtext("Option price=24.56")

n=2

p4f.binomial_grid(n)

22. Write a Python program for the graphical representation of a three-step
binomial tree.

Python Loops and
Implied Volatility

In this chapter, we will study two topics: loops and implied volatility based on the
European options (Black-Scholes-Merton option model) and American options. For
the first topic, we have the for loop and while loop, the two most used loops. After
presenting the definition of the implied volatility and explaining the logic behind it,
we discuss three ways for its estimation: based on a for loop, on a while loop, and
on a binary search. A binary search is the most efficient way to find a solution in
such cases. However, the precondition to apply a binary search is that the objective
function is monotone increasing or decreasing function of our target estimate.
Fortunately, this is true since the value of an option price is an increasing function
of the volatility.

In particular, we will cover the following topics:

•	 What is an implied volatility?
•	 Logic behind the estimation of an implied volatility
•	 Understanding the for loop, while loop, and their applications
•	 Nested (multiple) loops
•	 The estimation of multiple IRRs
•	 The mechanism of a binary search
•	 The estimation of an implied volatility based on an American call
•	 The enumerate() function
•	 Retrieving option data from Yahoo! Finance and from Chicago Board

Options Exchange (CBOE)
•	 A graphical presentation of put-call ratios

Python Loops and Implied Volatility

[276]

Definition of an implied volatility
From the previous chapter, we know that for a set of input variables—S (the
present stock price), X (the exercise price), T (the maturity date in years), r (the
continuously compounded risk-free rate), and sigma (the volatility of the stock, that
is, the annualized standard deviation of its returns)—we could estimate the price of
a call option based on the Black-Scholes-Merton option model. Recall that to price a
European call option, we have the following Python code of five lines:

from scipy import log,exp,sqrt,stats

def bs_call(S,X,T,r,sigma):

 d1=(log(S/X)+(r+sigma*sigma/2.)*T)/(sigma*sqrt(T))

 d2 = d1-sigma*sqrt(T)

 return S*stats.norm.cdf(d1)-X*exp(-r*T)*stats.norm.cdf(d2)

After entering a set of five values, we can estimate the call price as follows:

>>>bs_call(40,40,0.5,0.05,0.25)

3.3040017284767735

On the other hand, if we know S, X, T, r, and c, how can we estimate sigma? Here, sigma
is our implied volatility. In other words, if we are given a set values such as S=40,
X=40, T=0.5, r=0.05, and c=3.30, we should find out the value of sigma, and it should
be equal to 0.25. In this chapter, we will learn how to estimate the implied volatility.

Actually, the underlying logic to figure out the implied volatility is very simple:
trial and error. Let's use the previous example as an illustration. We have five
values—S=40, X=40, T=0.5, r=0.05, and c=3.30. The basic design is that after inputting
100 different sigmas, plus the first four input values shown earlier, we have 100
call prices. The implied volatility is the sigma that achieves the smallest absolute
difference between the estimated call price and 3.30. Of course, we could increase
the number of trials to achieve a higher precision, that is, more decimal places.
Alternatively, we could adopt another conversion criterion: we stop when the
absolute difference between our estimated call price and the given call value is less
than a critical value, such as 1 cent, that is, |c-3.30|<0.01. Since it is not a good idea
to randomly pick up 100 or 1,000 different sigmas, we systematically choose those
values, that is, use a loop by selecting those sigmas systematically. Next, we will
discuss two types of loops: a for loop and a while loop.

Chapter 10

[277]

Understanding a for loop
A for loop is one of the most used loops in many computer languages. The
following flow diagram demonstrates how a loop works. Usually, we start with an
initial value. Then, we test a condition. If the condition is false, the program stops.
Otherwise, we execute a set of commands:

The simplest example is given as follows:

>>>for i in range(1,5):

 print i

Running these two lines will print 1, 2, 3, and 4. We have to be careful with the
range() function since the last number, 5, will not be printed in Python. Thus,
if we intend to print from 1 to n, we have to use the following code:

>>>n=10

>>>for i in range(1,n+1):

 print i

In the previous two examples, the default incremental value is 1. If we intend to
use an incremental value other than 1, we have to specify it as follows:

>>>for i in xrange(1,10,3):

 print i

Python Loops and Implied Volatility

[278]

The output values will be 1, 4, and 7. Along the same lines, if we want to print 5 to 1,
that is, in descending order, the incremental value should be -1:

>>>for j in xrange(5,1,-1):

 print j

Estimating the implied volatility by using a
for loop
First, we should generate a Python program to estimate the call price based on the
Black-Scholes-Merton option model as shown in the following code:

from scipy import log,exp,sqrt,stats

def bs_call(S,X,T,r,sigma):

 """Objective: estimate call for stock with one known dividend

 S: current stock price

 T : maturity date in years

 r : risk-free rate

 sigma: volatility

 """

 d1=(log(S/X)+(r+sigma*sigma/2.)*T)/(sigma*sqrt(T))

 d2 = d1-sigma*sqrt(T)

 return S*stats.norm.cdf(d1)-X*exp(-r*T)*stats.norm.cdf(d2)

S=40

K=40

T=0.5

r=0.05

c=3.30

for i in range(200):

 sigma=0.005*(i+1)

 diff=c-bs_call(S,K,T,r,sigma)

 if abs(diff)<=0.01:

 print(i,sigma, diff)

Chapter 10

[279]

To make our lives a little bit easier, we could include the bs_call() function in a
general or master program such as p4f.py. Then, our code would be simpler and
easier to understand, as shown in the following code snippet:

import p4f

S=40

K=40

T=0.5

r=0.05

c=3.30

for i in range(200):

 sigma=0.005*(i+1)

 diff=c-p4f.bs_call(S,K,T,r,sigma)

 if abs(diff)<=0.01:

 print(i,sigma, diff)

In the preceding program, we used the same set of input values as the example
shown earlier. Thus, our expected implied volatility is 0.25. The logic of this program
is that we use the trial-and-error method to feed our Black-Scholes-Merton option
model with many different sigmas (volatilities). For a given sigma (volatility), when
the difference between our estimated call price and the given call price is less than
0.01, we stop. That sigma (volatility) will be our implied volatility. The output from
the earlier program is shown as follows:

(49, 0.25, -0.0040060797372882817)

>>>

The first number, 49, is the value of the variable i, and 0.25 is the implied
volatility. The last value is the difference between our estimated call value and the
given call price of $3.30.

Implied volatility function based on a
European call
Ultimately, we could write a function to estimate the implied volatility based on
a European call. To save space, we remove all comments and examples from the
program as shown:

def implied_vol_call(S,X,T,r,c):

 from scipy import log,exp,sqrt,stats

 for i in range(200):

Python Loops and Implied Volatility

[280]

 sigma=0.005*(i+1)

 d1=(log(S/X)+(r+sigma*sigma/2.)*T)/(sigma*sqrt(T))

 d2 = d1-sigma*sqrt(T)

 diff=c-(S*stats.norm.cdf(d1)-X*exp(-r*T)*stats.norm.cdf(d2))

 if abs(diff)<=0.01:

 return i,sigma, diff

With a set of input values, we could apply the previous program easily as follows:

>>>implied_vol_call(40,40,0.5,0.05,3.3)

(49, 0.25, -0.0040060797372882817)

>>>

Implied volatility based on a put option model
Similarly, we could estimate an implied volatility based on a European put option
model. In the following program, we design a function named implied_vol_put_
min(). There are several differences between this function and the previous one.
First, the current function depends on a put option instead of a call. Thus, the last
input value is a put premium instead of a call premium. Second, the conversion
criterion is that an estimated price and the given put price have the smallest
difference. In the previous function, the conversion criterion is when the absolute
difference is less than 0.01. In a sense, the current program will guarantee an implied
volatility while the previous program does not guarantee an output:

def implied_vol_put_min(S,X,T,r,p):

 from scipy import log,exp,sqrt,stats

 implied_vol=1.0

 min_value=100.0

 for i in xrange(1,10000):

 sigma=0.0001*(i+1)

 d1=(log(S/X)+(r+sigma*sigma/2.)*T)/(sigma*sqrt(T))

 d2 = d1-sigma*sqrt(T)

 put=X*exp(-r*T)*stats.norm.cdf(-d2)-S*stats.norm.cdf(-d1)

 abs_diff=abs(put-p)

 if abs_diff<min_value:

 min_value=abs_diff

 implied_vol=sigma

 k=i

Chapter 10

[281]

 put_out=put

 print 'k, implied_vol, put, abs_diff'

return k,implied_vol, put_out,min_value

Let's use a set of input values to estimate the implied volatility. After that, we will
explain the logic behind the previous program. Assume, S=40, X=40, T=12 months,
r=0.1, and the put price is $1.50, as shown in the following code:

>>>implied_vol_put_min(40,40,1.,0.1,1.501)

k, implied_vol, put, abs_diff

(1999, 0.2, 1.5013673553027349, 0.00036735530273501737)

>>>

The implied volatility is 20 percent. The logic is that we assign a big value, such as
100, to a variable called min_value. For the first sigma with a value of 0.0002, we
have an almost zero put value. Thus, the absolute difference is 1.50, which is smaller
than 100. Because of this, our min_value variable will be replaced with the value
1.50. We continue this way until we go though the loop. For the recorded minimum
value, its corresponding sigma will be our implied volatility.

We could optimize the previous program by defining some intermediate values. For
example, in the previous program, we estimate ln(S/X) 10,000 times. Actually, we
define a new variable such as log_S_over_X, estimate its value just once, and use it
10,000 times. This is true for sigma*sigma/2.0, and sigman*sqrt(T).

The enumerate() function
When generating a Net Present Value (NPV) function, we need to estimate the
present value of all future and present cash flows as shown in the following formula:

()0 1

n
i
i

i

cashflow
NPV

R=

=
+

∑ (1)

In a sense, for each cash flow, we need two values: i and cash flow at i. For
these cases, we could apply the enumerate() function as shown in the
following NPV function:

def npv_f(rate, cashflows):

 total = 0.0

 for i, cashflow in enumerate(cashflows):

 total += cashflow / (1 + rate)**i

 return total

Python Loops and Implied Volatility

[282]

The enumerate() function would generate a pair of indices, starting from 0, and its
corresponding value. With a set of input values for the discount rate and a cash flow
array, we could apply the NPV function as follows:

>>>c=[-100.0, 60.0, 60.0, 60.0]

>>>r=0.1

>>>npv=npv_f(r,c)

>>>round(npv,2)

49.21

>>>

Estimation of IRR via a for loop
In the first two chapters, we learned that we could apply the Internal Rate of Return
(IRR) rule to evaluate our project with a set of forecasted current and future cash
flows. Based on a for loop, we could calculate the IRR of our project. The two related
functions, NPV() and IRR_f(), are shown as follows:

def npv_f(rate, cashflows):

 total = 0.0

 for i, cashflow in enumerate(cashflows):

 total += cashflow / (1 + rate)**i

 return total

Here, the key is finding out what kinds of values the intermediate variables i and
cashflow would take. From the previous section, we know that i will take values
from 0 to the number of cash flows and that cashflow would take all values from the
variable called cashflows. The total+=x statement is equivalent to total=total+x.
One issue is that if we enter -1 as our rate, the function would not work. We could
add an if command to prevent this from happening (refer to the succeeding solution
for the IRR() function). The second potential issue is that when the second input
variable contains NaN, the npv_f() function would fail. For these cases, we could use
the isnan() function contained in the NumPy module as shown in the following code:

def IRR_f(cashflows, iterations=100):

 if len(cashflows)==0:

 print 'number of cash flows is zero'

 return -99

 rate = 1.0

Chapter 10

[283]

 investment = cashflows[0]

 for i in range(1, iterations+1):

 rate *= (1 - npv_f(rate, cashflows) / investment)

 return rate

The underlying assumption for the previous code is that the first investment is our
initial investment, while all future cash flows are cash inflows. This means that the
NPV and the discount rate have a reverse relationship. For a given discount rate,
if its corresponding NPV is positive, we are supposed to increase the discount rate
in order to find a zero NPV—thus, the current rate times a value greater than one.
Notice that the investment is a cash outflow. Thus, it has a negative sign. The value
of (1-npv_f(rate, cashflows)/investment) will be greater than one. On the other
hand, if the estimated NPV is negative, we should reduce our discount rate, that is,
the current rate times a value lesser than one. Assume that we have the following
cash flows, what are the corresponding IRRs?

>>>cashflows=[-100,50,60,20,50]

>>>x=IRR_f(cashflows)

>>>round(x,3)

0.304

>>>

Estimation of multiple IRRs
In the earlier example, the direction of cash flows changes just once. Thus, there
exists one IRR. However, when the directions of cash flows change more than
once, we might have multiple IRRs. Assume that we have the following cash flows:
cashflows=[55,-50,-50,-50,100]. Since the directions of cash flows change twice,
we expect two IRRs. If we apply the previous IRR function, we could locate just one
cash flow as shown in the following code:

>>>cashflows=[55,-50,-50,-50,100]

>>>round(IRR_f(cashflows),3)

0.337

>>>

Here, we apply the same logic by using many different discount rates to find out
which two rates make the NPV (Net Present Value) become zero. The Python
program to estimate multiple IRRs is shown as follows:

def IRRs_f(cash_flows):

 n=1000

Python Loops and Implied Volatility

[284]

 r=range(1,n)

 epsilon=abs(mean(cash_flows)*0.01)

 irr=[-99.00]

 j=1

 npv=[]

 for i in r: npv.append(0)

 lag_sign=sign(npv_f(float(r[0]*1.0/n*1.0),cash_flows))

 for i in range(1,n-1):

 interest=float(r[i]*1.0/n*1.0)

 npv[i]=npv_f(interest,cash_flows)

 s=sign(npv[i])

 if s*lag_sign<0:

 lag_sign=s

 if j==1:

 irr=[interest]

 j=2

 else:

 irr.append(interest)

 return irr

We could call the function easily as follows:

>>>cashflows=[55,-50,-50,-50,100]

>>>IRRs_f(cashflows)

[0.072, 0.337]

>>>

Understanding a while loop
In the following program, the first line assigns an initial value to i. The second line
defines a condition for? when the while loop should stop. The last one increases the
value of i by 1. The i+=1 statement is equivalent to i=i+1. Similarly, t**=2 should
be interpreted as t=t**2:

i=1

while(i<=4):

 print(i)

 i+=1

Chapter 10

[285]

The key for a while loop is that an exit condition should be satisfied at least once.
Otherwise, we would enter an infinitive loop. For example, if we run the following
scripts, we would enter an infinitive loop. When this happens, we can use Ctrl + C to
stop it:

i=1

while(i!=2.1):

 print(i)

 i+=1

In the previous program, we compare two real numbers for equality. It is not a good
idea to use the equals sign for two real/float/double numbers. The next example is
related to the famous Fibonacci series: the summation of the previous two numbers
is the current one:

1,1,2,3,5,8,13,...Fibonacci series =

The Python code for computing the Fibonacci series is given as follows:

def fib(n):

 """Print a Fibonacci series up to n.

 """

 a, b = 0, 1

 while a < n:

 print a,

 a, b = b, a+b

When n is 1,000, we get the following results:

>>>fib(1000)

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

>>>

Using keyboard commands to stop an
infinitive loop
Sometimes, because of carelessness or other reasons, we might end up with an
infinitive loop (refer to the following program). Our original intention is to print
just four numbers ranging from one to four. However, since we forgot to add 1 to
the variable i after each printing, the exit condition will never be satisfied, that is,
it leads to an infinitive loop. For such cases, we could use Ctrl + C or Ctrl + Enter to
stop such an infinitive loop:

Python Loops and Implied Volatility

[286]

i=1

While i<5:

 Print i

>>>

If these commands do not work, then use Ctrl + Alt + Del to launch the Task
Manager, choose Python, and then click on End Task.

Estimating implied volatility by using a
while loop
This time, we use the Black-Scholes-Merton put option model and a while loop to
estimate the implied volatility. First, we present the put option model as follows:

def bs_put(S,X,T,rf,sigma):

 from scipy import log,exp,sqrt,stats

 d1=(log(S/X)+(rf+sigma*sigma/2.)*T)/(sigma*sqrt(T))

 d2 = d1-sigma*sqrt(T)

 return X*exp(-rf*T)*stats.norm.cdf(-d2)-S*stats.norm.cdf(-d1)

To apply the function, we input a set of values for S, X, T, rf, and sigma as follows:

>>>put=bs_put(40,40,0.5,0.05,0.2)

>>>round(put,2)

1.77

>>>

The following program uses both a while loop and the put option to estimate the
implied volatility. Here, we assume that the previous European put option function
is included in the p4y.py master program (module):

import p4f

S=40;K=40;T=0.5;r=0.05;sigma=0.2;p=1.77

diff=1;i=1

while abs(diff)>0.01:

 sigma=0.005*(i+1)

 diff=p-p4f.bs_put(S,K,T,r,sigma)

 i+=1

print('i, implied-vol, diff')

print(i,sigma, diff)

Chapter 10

[287]

From the following output, we know that the implied volatility is 0.2, the same as
we estimated using the Black-Scholes-Merton call option model. Again, we could
verify this using 0.2 as our input value for the volatility to confirm whether we have
the same put price:

i, implied-vol, diff

(40, 0.2, 0.0021120877944480476)

>>>

In the following program, we use break to exit an infinite loop. The condition of
one equals one is always true. The only hope to stop the loop is based on the break
clause. Another advantage of such a conversion criterion is that we don't have to
consider what an appropriate difference level is. Sometimes, choosing an appropriate
scale is not easy since option prices vary:

import p4f

S=40;K=40;T=0.5;r=0.05;sigma=0.2;p=1.77

diff=1;i=1

sigma_old=0.005

sign_1=sign(p-bs_put(S,K,T,r,sigma_old))

while(1):

 sigma=0.0001*(i+1)

 sign_2=sign(p-p4f.bs_put(S,K,T,r,sigma))

 i+=1

 if sign_1*sign_2<0:

 break

 else:

 sigma_old=sigma

print('i, implied-vol, diff')

print(i,(sigma_old+sigma)/2, diff)

The sign() function returns 1 if the input is greater than 1. It returns -1 if the
input is less than zero. A sample implementation of the sign() function is
given as follows:

>>>sign(-2)

-1

>>>sign(2)

1

>>>sign(0)

0

Python Loops and Implied Volatility

[288]

Nested (multiple) for loops
For a two-dimensional matrix, you need two loops with variables i and j shown
as follows:

n1=2

n2=3

for x in xrange(1, n1+1):

 for y in xrange(1, n2+1):

 print '%d * %d = %d' % (x, y, x*y)

We can use two while loops or the combination of a for loop and a while loop to
accomplish the same task.

Estimating implied volatility by using an
American call
Since almost all exchange listed stock options are American options, we show
the following program to estimate an implied volatility based on an American
call option:

from math import exp,sqrt

def binomialCallAmerican(s,x,T,r,sigma,n=100):

 deltaT = T /n

 u = exp(sigma * sqrt(deltaT))

 d = 1.0 / u

 a = exp(r * deltaT)

 p = (a - d) / (u - d)

 v = [[0.0 for j in xrange(i + 1)] for i in xrange(n + 1)]

 for j in xrange(i+1):

 v[n][j] = max(s * u**j * d**(n - j) - x, 0.0)

 for i in xrange(n-1, -1, -1):

 for j in xrange(i + 1):

 v1=exp(-r*deltaT)*(p*v[i+1][j+1]+(1.0-p)*v[i+1][j])

 v2=max(s-x,0)

 v[i][j]=max(v1,v2)

 return v[0][0]

Chapter 10

[289]

The previous Python program is used to estimate an American call option based
on the binomial-tree method, or CRR method. Based on the input values, we first
calculate u, d, and p, where u represents the up movement, d represents the down
movement, and p is the risk-neutral probability. The first loop estimates the option
values at the end of the tree for all nodes. With the second set of double loops, we
move backward from the last step to time zero. The variable v1 is the discounted
two-call option from the previous step while v2 is the early exercise premium since it
is an American option:

def implied_vol_American_call(s,x,T,r,c):

 implied_vol=1.0

 min_value=1000

 for i in range(1000):

 sigma=0.001*(i+1)

 c2=binomialCallAmerican(s,x,T,r,sigma)

 abs_diff=abs(c2-c)

 if abs_diff<min_value:

 min_value=abs_diff

 implied_vol=sigma

 k=i

 return implied_vol

To test the program, we could estimate an American call by inputting a set of values,
including sigma, and then estimate the implied volatility as follows:

>>>binomialCallAmerican(150,150,2./12.,0.003,0.2)

4.908836114170818

>>>implied_vol_American_call(150,150,2./12.,0.003,4.91)

0.2

>>>

Measuring efficiency by time spent in
finishing a program
The following program measures how much time, in seconds, is required to finish a
program. The function used is time.clock():

import time

start = time.clock()

n=10000000

Python Loops and Implied Volatility

[290]

for i in range(1,n):

 k=i+i+2

diff= (time.clock() - start)

print round(diff,2)

The total time we need to finish the previous meaningless loop is about 1.59 seconds.

The mechanism of a binary search
To estimate the implied volatility, the logic underlying the earlier methods is to run
the Black-Scholes-Merton option model a hundred times and choose the sigma value
that achieves the smallest difference between the estimated option price and the
observed price. Although the logic is easy to understand, such an approach is not
efficient since we need to call the Black-Scholes-Merton option model a few hundred
times. To estimate a few implied volatilities, such an approach would not pose any
problems. However, under two scenarios, such an approach is problematic. First, if we
need higher precision, such as sigma=0.25333, or we have to estimate several million
implied volatilities, we need to optimize our approach. Let's look at a simple example.

Assume that we randomly pick up a value between one and 5,000. How many steps
do we need to match this value if we sequentially run a loop from one to 5,000? A
binomial search is the log(n) worst-case scenario when linear search is the n worst-
case scenario. Thus, to search a value from one to 5,000, a linear search would need
5,000 steps (average 2,050) in a worst-case scenario, while a binary search would
need 12 steps (average 6) in a worst-case scenario. The following Python program
performs a binary search:

def binary_search(x, target, my_min=1, my_max=None):

 if my_max is None:

 my_max = len(x) - 1

 while my_min <= my_max:

 mid = (my_min + my_max)//2

 midval = x[mid]

 if midval < target:

 my_min = my_mid + 1

 elif midval > target:

 my_max = mid - 1

 else:

 return mid

 raise ValueError

Chapter 10

[291]

The next program generates a list of unique words from the Bible. Then, we conduct
a binary search to find the location for a given word. First, we have to download the
Bible in text format:

1.	 Go to http://printkjv.ifbweb.com/.
2.	 Download the zip file that includes the text file.

Unzip the downloaded zip file, and we will see a text file called AV1611Bible.txt.
Assuming that that the text file is saved under C:\temp\:

from string import maketrans

import pandas as pd

word_freq = {}

word_list = open("c:/temp/AV1611Bible.txt", "r").read().split()

for word in word_list:

 word = word.translate(maketrans("",""), '!"#$%&()*+,./:;<=>?@
[\\]^_'{|}~0123456789')

 if word.startswith('-'): word = word.replace('-','')

 if len(word): word_freq[word] = word_freq.get(word, 0) + 1

keys = sorted(word_freq.keys())

x=pd.DataFrame(keys)

x.to_pickle('c:/temp/uniqueWords.pickle')

This time, we compare words instead of values, the program for which is given
as follows:

def binaryText(x, target, my_min=1, my_max=None):

 if my_max is None:

 my_max = len(x) - 1

 while my_min <= my_max:

 mid = (my_min + my_max)//2

 midval = x.iloc[mid]

 if midval.values < target:

 my_min = mid + 1

 elif midval.values > target:

 my_max = mid - 1

 else:

 return mid

 raise ValueError

Python Loops and Implied Volatility

[292]

In the previous program, x.iloc[mid] gives us the value since x is in a
Data.Frame format:

>>>x.iloc[600]

 0

600 Baasha

>>>binaryText(x,'Baasha',1)

600

>>>

If users have issues in downloading the Bible discussed earlier, they could download
a file in a Pandas' pickle format from http://canisius.edu/~yany/uniqueWords.
pickle. Assuming that such a dataset is saved under C:\temp\, the following code
can be used to perform the binary search:

>>>x=load("c:/temp/uniqueWords.pickle")

>>>x.iloc[610]

 0

610 Bahurim

>>>binaryText(x,'Bahurim',1)

610

>>>

Sequential versus random access
If we have daily stock data, we could have them saved in different patterns. One
way is to save them as stock ID, date, high, low, opening price, closing price, and
trading volume. We could sort our stock ID and save them one after another. We
have two ways to write a Python program to access IBM data: sequential access
and random access. For sequential access, we read one line and check its stock ID
to see if it matches our ticker. If not, we go to the next line, until we find our data.
Such a sequential search is not efficient, especially when our dataset is huge, such as
several gigabits. It is a good idea to generate an index file, such as IBM, 1,000, 2,000.
Based on this information, we know that IBM's data is located from line 1,000 to line
2000. Thus, to retrieve IBM's data, we could jump to line 1,000 immediately without
having to go through the first 999 lines. This is called random access.

Chapter 10

[293]

Looping through an array/DataFrame
The following program shows how to print all values in an array:

import numpy as np

x = np.arange(10).reshape(2,5)

for y in np.nditer(x):

 print y

For another example of going through all tickers, we download a dataset called
yanMonthly.pickle from http://canisius.edu/~yany/yanMonthly.pickle.
Assume again that the downloaded dataset is saved under C:\temp\. We could use
the following program to retrieve the dataset and run a loop to print a dozen tickets:

x=load('c:/temp/yanMonthly.pickle')

stocks=x.index.unique()

for item in stocks[:10]:

 print item

 # add your codes here

The output of the previous code is shown as follows:

000001.SS

A

AA

AAPL

BC

BCF

C

CNC

COH

CPI

The previous program has no real meaning since we could simply type the following
codes to see those tickers. However, we could add our own related codes as follows:

>>>stocks[0:10]

array(['000001.SS', 'A', 'AA', 'AAPL', 'BC', 'BCF', 'C', 'CNC', 'COH',

 'CPI'], dtype=object)

>>>

Python Loops and Implied Volatility

[294]

Assignment through a for loop
The following program assigns values to a variable:

>>>x=[0.0 for i in xrange(5)]

>>>x

[0.0, 0.0, 0.0, 0.0, 0.0]

>>>

The previous assignment is quite simple. Actually, we could use x=zeros(5)
to achieve the same objective. The following program is an extension of the
previous code:

>>>v = [[0.0 for j in xrange(i + 1)] for i in xrange(4 + 1)]

>>>v

[[0.0], [0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0,
0.0, 0.0, 0.0]]

>>>len(v)

5

>>>v[0]

[0.0]

>>>v[1]

[0.0, 0.0]

>>>v[3]

[0.0, 0.0, 0.0, 0.0]

>>>

Looping through a dictionary
An example related to a dictionary is given as follows:

>>>market_cap= {"IBM":200.97, "MSFT":311.30, "WMT":253.91, "C": 158.50}

For each stock, we have its corresponding market capitalization. Each pair has a key
and a value. Again, stocks' names are keys while their market capitalizations are
values. To show their keys and values, refer to the following code:

>>>market_cap.keys()

['C', 'IBM', 'MSFT', 'WMT']

>>>market_cap.values()

[158.5, 200.97, 311.3, 253.91]

Chapter 10

[295]

To show both keys and values, we use the items() function as follows:

>>>market_cap.items()

[('C', 158.5), ('IBM', 200.97), ('MSFT', 311.3), ('WMT', 253.91)]

>>>

The following program demonstrates how to loop though a dictionary:

>>>market_cap= {"IBM":200.97, "MSFT":311.30, "WMT":253.91, "C": 158.50}

>>>for k,v in market_cap.items():

... print k,v

...

C 158.5

IBM 200.97

MSFT 311.3

Retrieving option data from CBOE
The Chicago Board Options Exchange (CBOE) trades options and futures. There
is a lot of free data available on the CBOE web pages. For example, we could enter
a ticker to download its related option data. To download IBM's option data, we
perform the following two steps:

1.	 Go to http://www.cboe.com/DelayedQuote/QuoteTableDownload.aspx.
2.	 Enter IBM, then click on Download.

The first few lines are shown in the following table. According to the original design,
the put data is arranged side by side with the call data. In order to have a clearer
presentation, we move the put option data under the call:

IBM (International
Business Machines) 172.8 -0.57

December 15, 2013 @
10:30 ET Bid 172.51 Ask 172.8 Size 2x6 Vol 4184836

Calls Last
Sale Net Bid Ask Vol Open

Int
13 December 125.00
(IBM1313L125) 0 0 46.75 50 0 0

13 December 125.00
(IBM1313L125-4) 0 0 46.45 50.45 0 0

Python Loops and Implied Volatility

[296]

13 Dec 125.00
(IBM1313L125-8) 0 0 46.2 50.3 0 0

13 Dec 125.00
(IBM1313L125-A) 0 0 46.5 50.5 0 0

13 Dec 125.00
(IBM1313L125-B) 0 0 46.15 50.15 0 0

13 Dec 125.00
(IBM1313L125-E) 0 0 46.25 50.3 0 0

Puts Last
Sale Net Bid Ask Vol Open

Int
13 Dec 125.00
(IBM1313X125) 0 0 0 0.03 0 0

13 Dec 125.00
(IBM1313X125-4) 0 0 0 0.03 0 0

13 Dec 125.00
(IBM1313X125-8) 0 0 0 0.03 0 0

13 Dec 125.00
(IBM1313X125-A) 0 0 0 1.72 0 0

13 Dec 125.00
(IBM1313X125-B) 0 0 0 0.04 0 0

13 Dec 125.00
(IBM1313X125-E) 0 0 0 0.03 0 0

Assume that our dataset is saved under C:\temp\. The following code would
retrieve the data from that dataset:

import numpy as np

x=pd.read_csv('c:/temp/QuoteData.dat',skiprows=2,header='infer')

y=np.array(x)

n=len(y)

To show the first and last several lines, we have the following code:

>>>print y[0:2]

[['13 Dec 125.00 (IBM1313L125)' 0.0 0.0 46.75 50.0 0L 0L

 '13 Dec 125.00 (IBM1313X125)' 0.0 0.0 0.0 0.03 0L 0L nan]

 ['13 Dec 125.00 (IBM1313L125-4)' 0.0 0.0 46.45 50.45 0L 0L

 '13 Dec 125.00 (IBM1313X125-4)' 0.0 0.0 0.0 0.03 0L 0L nan]]

>>>print y[n-3:n-1]

Chapter 10

[297]

[['16 Jan 250.00 (IBM1615A250-S)' 2.6 0.0 1.1 2.95 0L 219L

 '16 Jan 250.00 (IBM1615M250-S)' 66.0 0.0 80.75 83.65 0L 11L nan]

 ['16 Jan 250.00 (IBM1615A250-X)' 2.87 0.0 1.03 2.95 0L 219L

 '16 Jan 250.00 (IBM1615M250-X)' 0.0 0.0 80.75 83.65 0L 11L nan]]

>>>

Retrieving option data from Yahoo!
Finance
There are many sources of option data that we could use for our investments,
research, or teaching. One of them is Yahoo! Finance. To retrieve option data for
IBM, we have the following procedure:

1.	 Go to http://finance.yahoo.com.
2.	 Type IBM in the search box (top left-hand side).
3.	 Click on Options on the left-hand side.

The web page address of Yahoo! Finance is http://finance.yahoo.com/q/
op?s=IBM+Options. The screenshot of this web page is shown as follows:

The following program will download option data from Yahoo! Finance:

>>>from pandas.io.data import Options

>>>ticker='IBM'

>>>x = Options(ticker)

>>>calls, puts = x.get_options_data()

Python Loops and Implied Volatility

[298]

We can use the head() and tail() functions to view the first and last several lines
of the retrieved data:

>>>calls.head()

 Strike Symbol Last Chg Bid Ask Vol Open Int

0 100 IBM140118C00100000 78.25 0 83.65 87.10 2 12

1 125 IBM140118C00125000 53.30 0 58.70 61.90 2 1

2 130 IBM140118C00130000 48.30 0 53.70 56.90 1 1

3 135 IBM140118C00135000 45.80 0 48.70 50.70 5 13

4 140 IBM140118C00140000 35.35 0 43.70 46.95 10 125

>>>calls.tail()

 Strike Symbol Last Chg Bid Ask Vol Open Int

54 280 IBM140118C00280000 0.15 0 NaN 0.03 10 499

55 285 IBM140118C00285000 0.06 0 NaN 0.03 1 72

56 290 IBM140118C00290000 0.05 0 NaN 0.03 13 76

57 295 IBM140118C00295000 0.07 0 NaN 0.03 1 92

58 300 IBM140118C00300000 0.04 0 NaN 0.03 3 370

>>>puts.head()

 Strike Symbol Last Chg Bid Ask Vol Open Int

0 95 IBM140118P00095000 0.01 0.00 NaN 0.03 1 360

1 100 IBM140118P00100000 0.02 0.00 NaN 0.02 15 2569

2 105 IBM140118P00105000 0.02 0.00 NaN 0.03 12 1527

3 110 IBM140118P00110000 0.02 0.00 NaN 0.03 10 1176

4 115 IBM140118P00115000 0.01 0.04 NaN 0.03 10 1149

>>>puts.tail()

 Strike Symbol Last Chg Bid Ask Vol Open Int

58 230 IBM140118P00230000 44.97 0 42.95 46.3 4 76

59 235 IBM140118P00235000 53.20 0 47.95 51.3 1 8

60 240 IBM140118P00240000 67.56 0 52.95 56.3 3 1

61 245 IBM140118P00245000 43.11 0 57.95 61.3 0 9

62 250 IBM140118P00250000 51.75 0 62.95 66.3 5 27

>>>

Chapter 10

[299]

Different expiring dates from Yahoo! Finance
For each stock, we have different exercise prices and various expiring dates. In the
previous program, we retrieve the option data which has the shortest expiration
date. To retrieve other expiration dates, we have to specify the month and year. First,
let's look at some different web pages for different expirations:

•	 http://finance.yahoo.com/q/op?s=IBM&m=2014-
01?s=IBM140118C00100000+Options

•	 http://finance.yahoo.com/q/op?s=IBM&m=2014-02

•	 http://finance.yahoo.com/q/op?s=IBM&m=2014-03

•	 http://finance.yahoo.com/q/op?s=IBM&m=2014-04

•	 http://finance.yahoo.com/q/op?s=IBM&m=2014-06

•	 http://finance.yahoo.com/q/op?s=IBM&m=2014-07

•	 http://finance.yahoo.com/q/op?s=IBM&m=2015-01

•	 http://finance.yahoo.com/q/op?s=IBM&m=2016-01

For example, we intend to download option data for year=2014 and month=2 with
the following program:

from pandas.io.data import Options

ticker='IBM'

month=2

year=2014

x = Options(ticker)

calls, puts = x.get_options_data(month,year)

To show a few lines, we can use the head() function as follows:

>>>calls.head()

 Strike Symbol Last Chg Bid Ask Vol Open Int

0 150 IBM140222C00150000 30.00 0.00 33.95 37.00 8 10

1 160 IBM140222C00160000 23.31 0.00 24.10 27.00 3 62

2 165 IBM140222C00165000 18.47 0.00 19.85 21.35 1 50

3 170 IBM140222C00170000 16.60 0.00 16.15 16.70 23 467

4 175 IBM140222C00175000 12.20 0.04 11.95 12.50 5 767

>>>

Python Loops and Implied Volatility

[300]

Retrieving the current price from Yahoo!
Finance
Using the following Python program, we can retrieve the current stock prices for a
given set of ticker symbols:

import urllib

import re

stocks=['ibm', 'dell', 'goog']

for i in range(len(stocks)):

 file = urllib.urlopen("http://finance.yahoo.com/q?s=" +stocks[i] +
"&ql=1")

 text = file.read()

 pattern='(.+?)'

 price = re.findall(re.compile(pattern), text)

print "For ",stocks[i].upper(), " the price is ", price

If the previous code ran on December 29, 2013, the output would be as follows:

>>>runfile('C:/tem/4375OS_10_35_yahoo_price.py', wdir=r'C:/temp')

For IBM the price is ['185.08']

For DELL the price is ['13.86']

For GOOG the price is ['1,118.40']

>>>

The put-call ratio
The put-call ratio represents the perception of investors jointly towards the future. If
there is no obvious trend, that is, we expect a normal future, then the put-call ratio
should be close to one. On the other hand, if we expect a much brighter future, the
ratio should be lower than one. The following code shows a ratio of this type over the
years. First, we have to download the data from CBOE. Perform the following steps:

1.	 Go to http://www.cboe.com/.
2.	 Click on Quotes & Data on the menu bar.
3.	 Click on CBOE Volume & Put/Call Ratios.
4.	 Click on CBOE Total Exchange Volume and Put/Call Ratios (11-01-2006

to present) under Current.

Chapter 10

[301]

Assume that the file named totalpc.csv is saved under C:\temp\. The code is
given as follows:

import pandas as pd

from matplotlib.pyplot import *

data=pd.read_csv('c:/temp/totalpc.csv',skiprows=2,index_col=0,parse_
dates=True)

data.columns=('Calls','Puts','Total','Ratio')

x=data.index

y=data.Ratio

y2=ones(len(y))

title('Put-call ratio')

xlabel('Date')

ylabel('Put-call ratio')

ylim(0,1.5)

plot(x, y, 'b-')

plot(x, y2,'r')

show()

The corresponding graph is shown in the following figure:

Python Loops and Implied Volatility

[302]

The put-call ratio for a short period with a
trend
Based on the preceding program, we could choose a shorter period with a trend as
shown in the following code:

import pandas as pd

from matplotlib.pyplot import *

import matplotlib.pyplot as plt

from datetime import datetime

import statsmodels.api as sm

data=pd.read_csv('c:/temp/totalpc.csv',skiprows=2,index_col=0,parse_
dates=True)

data.columns=('Calls','Puts','Total','Ratio')

begdate=datetime(2013,6, 1)

enddate=datetime(2013,12,31)

data2=data[(data.index>=begdate) & (data.index<=enddate)]

x=data2.index

y=data2.Ratio

x2=range(len(x))

x3=sm.add_constant(x2)

model=sm.OLS(y,x3)

results=model.fit()

#print results.summary()

alpha=round(results.params[0],3)

slope=round(results.params[1],3)

y3=alpha+dot(slope,x2)

y2=ones(len(y))

title('Put-call ratio')

xlabel('Date')

ylabel('Put-call ratio')

ylim(0,1.5)

plot(x, y, 'b-')

plot(x, y2,'r-.')

plot(x,y3,'y+')

plt.figtext(0.3,0.35,'Trend: intercept='+str(alpha)+',

Chapter 10

[303]

slope='+str(slope))

show()

The corresponding graph is shown in the following figure:

Summary
In this chapter, we introduced different types of loops. Then, we demonstrated how
to estimate the implied volatility based on a European option (Black-Scholes-Merton
option model) and on an American option. We discussed the for loop and the
while loop, and their applications. For a given set of input values, such as current
stock price, the exercise price, the time to maturity, the continuously compounded
risk-free rate, and a call price (or put price), we showed how to estimate a stock's
implied volatility. In terms of efficiency, we explained the binary search method
and compared it with other approaches when estimating an implied volatility. In
addition, we demonstrated how to download option data, such as put-call ratio,
from Yahoo! Finance and the CBOE web page.

In the next chapter, we will focus on applications of Monte Carlo simulations on
option pricing. Using random numbers drawn from a normal distribution, we could
mimic the movements of a stock for a given set of mean and standard deviations.
After that, we will simulate the terminal values of a stock and its related payoffs for
a call or for a put. The mean of those discounted terminal values using the risk-free
rate as our discount rate would be our option price.

Python Loops and Implied Volatility

[304]

Exercises
1. How many types of loops are present in Python? What are the differences
between them?

2. What are the advantages of using a for loop versus a while loop? What are
the disadvantages?

3. Based on a for loop, write a Python program to estimate the implied volatility.
For a given set of values S=35, X=36, rf=0.024, T=1, sigma=0.13, and c=2.24, what
is the implied volatility?

4. Write a Python program based on the Black-Scholes-Merton option model put
option model to estimate the implied volatility.

5. Should we get different volatilities based on the Black-Scholes-Merton option
model's call and put?

6. For a stock with multiple calls, we could estimate its implied volatility based
on its call or put. Based on the Black-Scholes-Merton option model, could we get
different values?

7. When estimating a huge number of implied volatilities, such as 5,000 stocks, how
can we make our process more efficient?

8. We could apply the binary search method to estimate an implied volatility based
on the Black-Scholes-Merton option model. Could we apply it to estimate multiple
IRRs to speed up our process? Explain.

9. Is it necessary that we use the binary tree method to estimate an implied volatility?

10. After reading the chapter, we know that we could use the following function to
estimate an implied volatility based on call:

def implied_vol_call(S,X,T,r,c):

 from scipy import log,exp,sqrt,stats

 for i in range(200):

 sigma=0.005*(i+1)

 d1=(log(S/X)+(r+sigma*sigma/2.)*T)/(sigma*sqrt(T))

 d2 = d1-sigma*sqrt(T)

 diff=c-(S*stats.norm.cdf(d1)-X*exp(-r*T)*stats.norm.cdf(d2))

 if abs(diff)<=0.01:

 return i,sigma, diff

Chapter 10

[305]

With certain sets of input values, we could get no output; refer to the
following examples:

>>>implied_vol_call(25,40,1,0.05,3.3)

>>>implied_vol_call(25,26,1,0.05,3.3)

>>>implied_vol_call(40,40,5,0.05,3.3)

Find reasons and modify this program accordingly.

11. From this chapter, we learn that we could use the following program to
estimate an implied volatility based on the Black-Scholes-Merton option model:

def implied_vol_put_min(S,X,T,r,p):

 from scipy import log,exp,sqrt,stats

 implied_vol=1.0

 min_value=100.0

 for i in range(1,10000):

 sigma=0.0001*(i+1)

 d1=(log(S/X)+(r+sigma*sigma/2.)*T)/(sigma*sqrt(T))

 d2 = d1-sigma*sqrt(T)

 put=X*exp(-r*T)*stats.norm.cdf(-d2)-S*stats.norm.cdf(-d1)

 abs_diff=abs(put-p)

 if abs_diff<min_value:

 min_value=abs_diff

 implied_vol=sigma

 k=i

 put_out=put

 print 'k, implied_vol, put, abs_diff'

 return k,implied_vol, put_out,min_value

Using the knowledge that the put premiums are a monotone function of the
volatility, modify this program to make it more efficient.

12. What is wrong with the following program?

i=1

def while_less_than_n(n,k=1):

 i=1

 while True:

 if i<n:

Python Loops and Implied Volatility

[306]

 print i

 i+=k

 else:

 return 'done'

13. Write a Python program to estimate an implied volatility based on an
American put.

14. Write a Python program to download option data from Yahoo! Finance.
Then, estimate the implied volatility by using the average of bid and ask as call
or put prices.

15. Perform the following steps to download the put-call ratio data from CBOE:

1.	 Go to http://www.cboe.com/.
2.	 Click on Quotes & Data on the menu bar.
3.	 Click on CBOE Volume & Put/Call Ratios.
4.	 Click on CBOE Total Exchange Volume and Put/Call Ratios (11-01-2006

to present) under Current.

Write a Python program to print the first and last dates.

16. Write a Python program to retrieve the put-call ratio, and draw a graph. The
syntax of such a function can be put_call_graph(path,begdate,enddate). To
apply the function, we specify the path and two dates, for example, put_call_
graph('c:/temp/totalpc.csv',20130601,20131231).

Monte Carlo Simulation
and Options

In finance, we study the trade-off between risk and return. The common definition of
risk is uncertainty. For example, when evaluating a potential profitable project, we
have to predict many factors in the life of the project, such as the annual sales, price
of the final product, prices of raw materials, salary increase of employees, inflation
rate, cost of borrowing, cost of new equity, and economic status. For those cases, the
Monte Carlo simulation could be used to simulate many possible future outcomes,
events, and their various combinations. In this chapter, we focus on the applications
of the Monte Carlo simulation to price various options.

In this chapter, we will cover the following topics:

•	 Generating random numbers from standard normal distribution and
normal distribution

•	 Generating random numbers from a uniform distribution
•	 A simple application: estimate pi by the Monte Carlo simulation
•	 Generating random numbers from a Poisson distribution
•	 Bootstrapping with/without replacements
•	 The lognormal distribution and simulation of stock price movements
•	 Simulating terminal stock prices
•	 Simulating an efficient portfolio and an efficient frontier
•	 Using the Monte Carlo simulation to price European options that have

closed-form solutions, that is, replicate the Black-Scholes-Merton model
•	 Path independent versus path dependent options
•	 Long term expected return forecast

Monte Carlo Simulation and Options

[308]

•	 Exotic options
•	 Pricing lookback options with floating strikes
•	 Sobol sequence

Generating random numbers from
a standard normal distribution
Normal distributions play a central role in finance. A major reason is that many
finance theories, such as option theory and applications, are based on the assumption
that stock returns follow a normal distribution. It is quite often that we need to
generate n random numbers from a standard normal distribution. For this purpose,
we have the following two lines of code:

>>>import scipy as sp

>>>x=sp.random.standard_normal(size=10)

The basic random numbers in SciPy/NumPy are created by Mersenne Twister PRNG
in the numpy.random function. The random numbers for distributions in numpy.
random are in cython/pyrex and are pretty fast. To print the first few observations,
we use the print() function as follows:

>>>print x[0:5]

[-0.55062594 -0.51338547 -0.04208367 -0.66432268 0.49461661]

>>>

Alternatively, we could use the following code:

>>>import scipy as sp

>>>x=sp.random.normal(size=10)

This program is equivalent to the following one:

>>>import scipy as sp

>>>x=sp.random.normal(0,1,10)

The first input is for mean, the second input is for standard deviation, and the last
one is for the number of random numbers, that is, the size of the dataset. The default
settings for mean and standard deviations are 0 and 1. We could use the help()
function to find out the input variables. To save space, we show only the first few lines:

>>>help(sp.random.normal)

Help on built-in function normal:

Chapter 11

[309]

normal(...)

 normal(loc=0.0, scale=1.0, size=None)

Drawing random samples from a normal
(Gaussian) distribution
The probability density function of the normal distribution, first derived by De
Moivre and 200 years later by both Gauss and Laplace independently, is often called
the bell curve because of its characteristic shape; refer to the following graph:

Again, the density function for a standard normal distribution is defined as follows:

()
2

21
2

x

f x e
π

−
= (1)

Generating random numbers with a seed
Sometimes, we like to produce the same random numbers repeatedly. For example,
when a professor is explaining how to estimate the mean, standard deviation,
skewness, and kurtosis of five random numbers, it is a good idea that students could
generate exactly the same values as their instructor. Another example would be that
when we are debugging our Python program to simulate a stock's movements, we
might prefer to have the same intermediate numbers. For such cases, we use the
seed() function as follows:

>>>import scipy as sp

>>>sp.random.seed(12345)

>>>x=sp.random.normal(0,1,20)

Monte Carlo Simulation and Options

[310]

>>>print x[0:5]

[-0.20470766 0.47894334 -0.51943872 -0.5557303 1.96578057]

>>>

In this program, we use 12345 as our seed. The value of the seed is not important.
The key is that the same seed leads to the same random values.

Generating n random numbers from a normal
distribution
To generate n random numbers from a normal distribution, we have the
following code:

>>>import scipy as sp

>>>sp.random.seed(12345)

>>>x=sp.random.normal(0.05,0.1,50)

>>>print x[0:5]

[0.02952923 0.09789433 -0.00194387 -0.00557303 0.24657806]

>>>

The difference between this program and the previous one is that the mean is 0.05
instead of 0, while the standard deviation is 0.1 instead of 1. The density of a normal
distribution is defined by the following equation, where μ is the mean and σ is the
standard deviation. Obviously, the standard normal distribution is just a special case
of the normal distribution shown as follows:

()
()2

22
2

1

2

x

f x e
µ

σ

πσ

−
−

= (2)

Histogram for a normal distribution
A histogram is used intensively in the process of analyzing the properties of datasets.
To generate a histogram for a set of random values drawn from a normal distribution
with specified mean and standard deviation, we have the following code:

>>>import scipy as sp

>>>import matplotlib.pyplot as plt

>>>sp.random.seed(12345)

>>>x=sp.random.normal(0.08,0.2,1000)

>>>plt.hist(x, 15, normed=True)

>>>plt.show()

Chapter 11

[311]

The resultant graph is presented as follows:

Graphical presentation of a lognormal
distribution
When returns follow a normal distribution, the prices would follow a lognormal
distribution. The definition of a lognormal distribution is as follows:

()
()()2

2

1n
21; ,

2

x

f x e
x

µ

σµ σ
σ π

−
−

= (3)

The following code shows three different lognormal distributions with three pairs of
parameters, such as (0, 0.25), (0, 0.5), and (0, 1.0). The first parameter is for mean (
µ), while the second one is for standard deviation,σ :

import scipy.stats as sp

import numpy as np

import matplotlib.pyplot as plt

x=np.linspace(0,3,200)

mu=0

sigma0=[0.25,0.5,1]

color=['blue','red','green']

target=[(1.2,1.3),(1.7,0.4),(0.18,0.7)]

start=[(1.8,1.4),(1.9,0.6),(0.18,1.6)]

for i in range(len(sigma0)):

 sigma=sigma0[i]

Monte Carlo Simulation and Options

[312]

 y=1/(x*sigma*sqrt(2*pi))*exp(-(log(x)-mu)**2/(2*sigma*sigma))

 plt.annotate('mu='+str(mu)+', sigma='+str(sigma), xy=target[i],
xytext=start[i],

 arrowprops=dict(facecolor=color[i],shrink=0.01),)

 plt.plot(x,y,color[i])

plt.title('Lognormal distribution')

plt.xlabel('x')

plt.ylabel('lognormal density distribution')

plt.show()

The corresponding three graphs are put together to illustrate their similarities
and differences:

Generating random numbers from a
uniform distribution
When we plan to randomly choose m stocks from n available stocks, we could draw
a set of random numbers from a uniform distribution. To generate 10 random
numbers between one and 100 from a uniform distribution, we have the following
code. To guarantee that we generate the same set of random numbers, we use the
seed() function as follows:

>>>import scipy as sp

>>>sp.random.seed(123345)

>>>x=sp.random.uniform(low=1,high=100,size=10)

Chapter 11

[313]

Again, low, high, and size are the three keywords for the three input variables. The
first one specifies the minimum, the second one specifies the high end, while the
size gives the number of the random numbers we intend to generate. The first five
numbers are shown as follows:

>>>print x[0:5]

[30.32749021 20.58006409 2.43703988 76.15661293 75.06929084]

>>>

Using simulation to estimate the pi value
It is a good exercise to estimate pi by the Monte Carlo simulation. Let's draw a square
with 2R as its side. If we put the largest circle inside the square, its radius will be R.
In other words, the areas for those two shapes have the following equations:

2
circleS pi R= ∗ (4)

() () 22 2 4squareS R R R= ∗ = (5)

By dividing equation (4) by equation (5), we have the following result:

4
circle

square

S pi
S

=

In other words, the value of pi will be 4* Scircle/Ssquare. When running the
simulation, we generate n pairs of x and y from a uniform distribution with a range
of zero and 0.5. Then we estimate a distance that is the square root of the summation
of the squared x and y, that is, 2 2d x y= + . Obviously, when d is less than 0.5 (value
of R), it will fall into the circle. We can imagine throwing a dart that falls into the
circle. The value of the pi will take the following form:

4
, ..,

number of darts in circlepi
number of darts in square ie number of simulation

= ∗ (6)

Monte Carlo Simulation and Options

[314]

The following graph illustrates these random points within a circle and within
a square:

The Python program to estimate the value of pi is presented as follows:

import scipy as sp

n=100000

x=sp.random.uniform(low=0,high=1,size=n)

y=sp.random.uniform(low=0,high=1,size=n)

dist=sqrt(x**2+y**2)

in_circle=dist[dist<=1]

our_pi=len(in_circle)*4./n

print ('pi=',our_pi)

print('error (%)=', (our_pi-pi)/pi)

The estimated pi value would change whenever we run the previous code as shown
in the following code, and the accuracy of its estimation depends on the number of
trials, that is, n:

('pi=', 3.15)

('error (%)=', 0.0026761414789406262)

>>>

Chapter 11

[315]

Generating random numbers from a
Poisson distribution
To investigate the impact of private information, Easley, Kiefer, O'Hara, and
Paperman (1996) designed a (PIN) Probability of informed trading measure that
is derived based on the daily number of buyer-initiated trades and the number of
seller-initiated trades. The fundamental aspect of their model is to assume that order
arrivals follow a Poisson distribution. The following code shows how to generate n
random numbers from a Poisson distribution:

import scipy as sp

import matplotlib.pyplot as plt

x=sp.random.poisson(lam=1, size=100)

#plt.plot(x,'o')

a = 5. # shape

n = 1000

s = np.random.power(a, n)

count, bins, ignored = plt.hist(s, bins=30)

x = np.linspace(0, 1, 100)

y = a*x**(a-1.)

normed_y = n*np.diff(bins)[0]*y

plt.plot(x, normed_y)

plt.show()

Selecting m stocks randomly
from n given stocks
Based on the preceding program, we could easily choose 20 stocks from 500 available
securities. This is an important step if we intend to investigate the impact of the
number of randomly selected stocks on the portfolio volatility as shown in the
following code:

import scipy as sp

n_stocks_available=500

n_stocks=20

x=sp.random.uniform(low=1,high=n_stocks_available,size=n_stocks)

Monte Carlo Simulation and Options

[316]

y=[]

for i in range(n_stocks):

 y.append(int(x[i]))

#print y

final=unique(y)

print final

print len(final)

In the preceding program, we select 20 numbers from 500 numbers. Since we have
to choose integers, we might end up with less than 20 values, that is, some integers
appear more than once after we convert real numbers into integers. One solution is
to pick more than we need. Then choose the first 20 integers. An alternative is to use
the randrange() and randint() functions. In the next program, we choose n stocks
from all available stocks. First, we download a dataset from http://canisius.
edu/~yany/yanMonthly.pickle:

n_stocks=10

x=load('c:/temp/yanMonthly.pickle')

x2=unique(np.array(x.index))

x3=x2[x2<'ZZZZ'] # remove all indices

sp.random.seed(1234567)

nonStocks=['GOLDPRICE','HML','SMB','Mkt_Rf','Rf','Russ3000E_D','US_DEBT',

 'Russ3000E_X','US_GDP2009dollar','US_GDP2013dollar']

x4=list(x3)

for i in range(len(nonStocks)):

 x4.remove(nonStocks[i])

k=sp.random.uniform(low=1,high=len(x4),size=n_stocks)

y,s=[],[]

for i in range(n_stocks):

 index=int(k[i])

 y.append(index)

 s.append(x4[index])

final=unique(y)

print final

print s

In the preceding program, we remove non-stock data items. These non-stock items
are a part of data items. First, we load a dataset called yanMonthly.pickle that
includes over 200 stocks, gold price, GDP, unemployment rate, SMB (Small Minus
Big), HML (High Minus Low), risk-free rate, price rate, market excess rate, and
Russell indices.

Chapter 11

[317]

The .pickle extension means that the dataset has a type from Pandas. Since
x.index would present all indices for each observation, we need to use the unique()
function to select all unique IDs. Since we only consider stocks to form our portfolio,
we have to move all market indices and other non-stock securities, such as HML and
US_DEBT. Because all stock market indices start with a carat (^), we use less than
ZZZZ to remove them. For other IDs that are between A and Z, we have to remove
them one after another. For this purpose, we use the remove() function available for
a list variable. The final output is shown as follows:

Bootstrapping with/without replacements
Assume that we have the historical data, such as price and return, for a stock.
Obviously, we could estimate their mean, standard deviation, and other related
statistics. What are their expected annual mean and risk next year? The simplest,
maybe naïve way is to use the historical mean and standard deviation. A better way
is to construct the distribution of annual return and risk. This means that we have to
find a way to use historical data more effectively to predict the future. In such cases,
we could apply the bootstrapping methodology. For example, for one stock, we have
its last 20-year monthly returns, that is, 240 observations.

To estimate next year's 12 monthly returns, we need to construct a return
distribution. First, we choose 12 returns randomly from the historical return set
without replacements and estimate their mean and standard deviations. We repeat
this procedure 5,000 times. The final output will be our return-standard distribution.
Based on such a distribution, we could estimate other properties as well. Similarly,
we could do so with replacements.

One of the useful functions present in SciPy is called permutation(). Assume that
we have 10 numbers from one to 10 (inclusive of one and 10). We could call the
permutation() function to reshuffle them as follows:

import numpy as np

x=range(1,11)

print x

for i in range(5):

 y=np.random.permutation(x)

 print y

Monte Carlo Simulation and Options

[318]

The output of this code is shown as follows:

Based on the permutation() function, we could define a function with three input
variables: data, number of observations we plan to choose from the data randomly,
and whether we choose to bootstrap with or without replacement as shown in the
following code:

import numpy as np

def boots_f(data,n_obs,replacement=None):

 n=len(data)

 if (n<n_obs):

 print "n is less than n_obs"

 else:

 if replacement==None:

 y=np.random.permutation(data)

 return y[0:n_obs]

 else:

 y=[]

 for i in range(n_obs):

 k=np.random.permutation(data)

 y.append(k[0])

 return y

The constraint specified in the previous program is that the number of given
observations should be larger than the number of random returns we plan to pick
up. This is true for the bootstrapping without the replacement method. For the
bootstrapping with the replacement method, we could relax this constraint; refer to
the related exercise.

Chapter 11

[319]

Distribution of annual returns
It is a good application to estimate annualized return distribution and represent
it as a graph. To make our exercise more meaningful, we download Microsoft 's
daily price data. Then, we estimate its daily returns and convert them into annual
ones. Based on those annual returns, we generate its distribution by applying
bootstrapping with replacements 5,000 times as shown in the following code:

from matplotlib.finance import quotes_historical_yahoo

import matplotlib.pyplot as plt

import numpy as np

import scipy as sp

Step 1: input area

ticker='MSFT' # input value 1

begdate=(1926,1,1) # input value 2

enddate=(2013,12,31) # input value 3

n_simulation=5000 # input value 4

Step 2: retrieve price data and estimate log returns

x=quotes_historical_yahoo(ticker,begdate,enddate,asobject=True,adjusted=T
rue)

logret = log(x.aclose[1:]/x.aclose[:-1])

Step 3: estimate annual returns

date=[]

d0=x.date

for i in range(0,size(logret)):

 date.append(d0[i].strftime("%Y"))

y=pd.DataFrame(logret,date,columns=['logret'],dtype=float64)

ret_annual=exp(y.groupby(y.index).sum())-1

ret_annual.columns=['ret_annual']

n_obs=len(ret_annual)

Step 4: estimate distribution with replacement

sp.random.seed(123577)

final=zeros(n_obs,dtype=float)

for i in range(0,n_obs):

 x=sp.random.uniform(low=0,high=n_obs,size=n_obs)

 y=[]

Monte Carlo Simulation and Options

[320]

 for j in range(n_obs):

 y.append(int(x[j]))

 z=np.array(ret_annual)[y]

 final[i]=mean(z)

step 5: graph

plt.title('Mean return distribution: number of simulations ='+str(n_
simulation))

plt.xlabel('Mean return')

plt.ylabel('Frequency')

mean_annual=round(np.mean(np.array(ret_annual)),4)

plt.figtext(0.63,0.8,'mean annual='+str(mean_annual))

plt.hist(final, 50, normed=True)

plt.show()

The corresponding graph is shown as follows:

Simulation of stock price movements
We mentioned in the previous sections that in finance, returns are assumed to follow
a normal distribution, whereas prices follow a lognormal distribution. The stock
price at time t+1 is a function of the stock price at t, mean, standard deviation, and
the time interval as shown in the following formula:

t 1 ˆt t tS S S t S tµ σ ∈+ = + ∆ + ∆ (7)

Chapter 11

[321]

In this formula, 1tS + is the stock price at t+1, µ̂ is the expected stock return, t∆ is
the time interval (Tt n∆ =), T is the time (in years), n is the number of steps, ε is the
distribution term with a zero mean, and σ is the volatility of the underlying stock.
With a simple manipulation, equation (4) can lead to the following equation that we
will use in our programs:

2
t 1

1ˆexp
2tS S t tµ σ σ ∈+

  = − ∆ + ∆  
  

 (8)

In a risk-neutral work, no investors require compensation for bearing risk. In
other words, in such a world, the expected return on any security (investment)
is the risk-free rate. Thus, in a risk-neutral world, the previous equation becomes
the following equation:

2
t 1

1exp
2tS S r t tσ σ ∈+

  = − ∆ + ∆  
  

 (9)

If you want to learn more about the risk-neutral probability, refer to Options, Futures
and Other Derivatives, 7th edition, John Hull, Pearson, 2009. The Python code to simulate
a stock's movement (path) is as follows:

import scipy as sp

stock_price_today = 9.15 # stock price at time zero

T =1. # maturity date (in years)

n_steps=100. # number of steps

mu =0.15 # expected annual return

sigma = 0.2 # volatility (annualized)

sp.random.seed(12345) # seed()

n_simulation = 5 # number of simulations

dt =T/n_steps

S = sp.zeros([n_steps], dtype=float)

x = range(0, int(n_steps), 1)

for j in range(0, n_simulation):

 S[0]= stock_price_today

for i in x[:-1]:

 e=sp.random.normal()

 S[i+1]=S[i]+S[i]*(mu-0.5*pow(sigma,2))*dt+sigma*S[i]*sp.
sqrt(dt)*e;

 plot(x, S)

Monte Carlo Simulation and Options

[322]

figtext(0.2,0.8,'S0='+str(S0)+',mu='+str(mu)+',sigma='+str(sigma))

figtext(0.2,0.76,'T='+str(T)+', steps='+str(int(n_steps)))

title('Stock price (number of simulations = %d ' % n_simulation +')')

xlabel('Total number of steps ='+str(int(n_steps)))

ylabel('stock price')

show()

To make our graph more readable, we deliberately choose just five simulations. Since
the seed() function is applied, you can replicate the following graph by running the
previous code:

Graphical presentation of stock prices at
options' maturity dates
Up to now, we have discussed that options are really path-independent, which
means the option prices depend on terminal values. Thus, before pricing such an
option, we need to know the terminal stock prices. To extend the previous program,
we have the following code to estimate the terminal stock prices for a given set
of values: S0 (initial stock price), n_simulation (number of terminal prices), T
(maturity date in years), n_steps (number of steps), mu (expected annual stock
returns), and sigma (volatility):

from scipy import zeros, sqrt, shape

import scipy as sp

S0 = 9.15 # stock price at time zero

T =1. # years

Chapter 11

[323]

n_steps=100. # number of steps

mu =0.15 # expected annual return

sigma = 0.2 # volatility (annual)

sp.random.seed(12345) # fix those random numbers

n_simulation = 1000 # number of simulation

dt =T/n_steps

S = zeros([n_simulation], dtype=float)

x = range(0, int(n_steps), 1)

for j in range(0, n_simulation):

 tt=S0

for i in x[:-1]:

 e=sp.random.normal()

 tt+=tt*(mu-0.5*pow(sigma,2))*dt+sigma*tt*sqrt(dt)*e;

 S[j]=tt

title('Histogram of terminal price')

ylabel('Number of frequencies')

xlabel('Terminal price')

figtext(0.5,0.8,'S0='+str(S0)+',mu='+str(mu)+',sigma='+str(sigma))

figtext(0.5,0.76,'T='+str(T)+', steps='+str(int(n_steps)))

figtext(0.5,0.72,'Number of terminal prices='+str(int(n_simulation)))

hist(S)

The histogram of our simulated terminal prices is shown as follows:

Monte Carlo Simulation and Options

[324]

Finding an efficient portfolio and frontier
In this section, we show you how to use the Monte Carlo simulation to generate
returns for a pair of stocks with known means, standard deviations, and correlation
between them. By applying the maximize function, we minimize the portfolio risk of
this two-stock portfolio. Then, we change the correlations between the two stocks to
illustrate the impact of correlation on our efficient frontier. The last one is the most
complex one since it constructs an efficient frontier based on n stocks.

Finding an efficient frontier based on two
stocks
The following program aims at generating an efficient frontier based on two stocks
with known means, standard deviations, and correlation. We have just six input
values: two means, two standard deviations, the correlation (ρ), and the number
of simulations. To generate the correlated y1 and y2 time series, we generate the
uncorrelated x1 and x2 series first. Then, we apply the following formulae:

1 1y x= (10A)

2
2 1 21y x xρ ρ= + − (10B)

Another important issue is how to construct an objective function to minimize. Our
objective function is the standard deviation of the portfolio in addition to a penalty
that is defined as the scaled absolute deviation from our target portfolio mean. In
other words, we minimize both the risk of the portfolio and the deviation of our
portfolio return from our target return as shown in the following code:

import numpy as np

import scipy as sp

import pandas as pd

from datetime import datetime as dt

from scipy.optimize import minimize

Step 1: input area

mean_0=(0.15,0.25) # mean returns for 2 stocks

std_0= (0.10,0.20) # standard deviations for 2 stocks

corr_=0.2 # correlation between 2 stocks

Chapter 11

[325]

n=1000 # number of simulations (returns) for each stock

Step 2: Generate two uncorrelated time series

n_stock=len(mean_0)

sp.random.seed(12345) # could generate the same random numbers

x1=sp.random.normal(loc=mean_0[0],scale=std_0[0],size=n)

x2=sp.random.normal(loc=mean_0[1],scale=std_0[1],size=n)

if(any(x1)<=-1.0 or any(x2)<=-1.0):

 print ('Error: return is <=-100%')

Step 3: Generate two correlated time series

index_=pd.date_range(start=dt(2001,1,1),periods=n,freq='d')

y1=pd.DataFrame(x1,index=index_)

y2=pd.DataFrame(corr_*x1+sqrt(1-corr_**2)*x2,index=index_)

step 4: generate a return matrix called R

R0=pd.merge(y1,y2,left_index=True,right_index=True)

R=np.array(R0)

Step 5: define a few functions

def objFunction(W, R, target_ret):

 stock_mean=np.mean(R,axis=0)

 port_mean=np.dot(W,stock_mean) # portfolio mean

 cov=np.cov(R.T) # var-covar matrix

 port_var=np.dot(np.dot(W,cov),W.T) # portfolio variance

 penalty = 2000*abs(port_mean-target_ret) # penalty 4 deviation

return np.sqrt(port_var) + penalty # objective function

Step 6: estimate optimal portfolio for a given return

out_mean,out_std,out_weight=[],[],[]

stockMean=np.mean(R,axis=0)

for r in np.linspace(np.min(stockMean), np.max(stockMean), num=100):

 W = ones([n_stock])/n_stock # start equal w

 b_ = [(0,1) for i in range(n_stock)] # bounds

 c_ = ({'type':'eq', 'fun': lambda W: sum(W)-1. })# constraint

 result=minimize(objFunction,W,(R,r),method='SLSQP',constraints=c_,
bounds=b_)

 if not result.success: # handle error

raise BaseException(result.message)

 out_mean.append(round(r,4)) # a few decimal places

Monte Carlo Simulation and Options

[326]

 std_=round(np.std(np.sum(R*result.x,axis=1)),6)

 out_std.append(std_)

 out_weight.append(result.x)

Step 7: plot the efficient frontier

title('Simulation for an Efficient Frontier from given 2 stocks')

xlabel('Standard Deviation of the 2-stock Portfolio (Risk)')

ylabel('Return of the 2-stock portfolio')

figtext(0.2,0.80,' mean = '+str(stockMean))

figtext(0.2,0.75,' std ='+str(std_0))

figtext(0.2,0.70,' correlation ='+str(corr_))

plot(np.array(std_0),np.array(stockMean),'o',markersize=8)

plot(out_std,out_mean,'--',linewidth=3)

The corresponding graph is shown as follows:

Impact of different correlations
Based on the previous program, we vary the correlations between the two stocks to
illustrate the critical role played by this factor in terms of diversification, as shown in
the following code:

import numpy as np

import scipy as sp

import pandas as pd

Chapter 11

[327]

from datetime import datetime as dt

import matplotlib.pyplot as plt

from scipy.optimize import minimize

Step 1: input area

mean_0=(0.15,0.25) # mean returns for 2 stocks

std_0= (0.10,0.20) # standard deviations for 2 stocks

n=1000 # number of simulations (returns) for each stock

corr_=(0.1,0.5,0.8)

Step 2: Generate two uncorrelated time series

n_stock=len(mean_0)

sp.random.seed(12345) # could generate the same random numbers

x11=sp.random.normal(loc=0,scale=1,size=n)

x12=sp.random.normal(loc=0,scale=1,size=n)

n_corr=len(corr_)

style_=['-.','--','-']

for j in range(n_corr):

 # Step 3: Generate two correlated time series

 corr2=corr_[j]

 index_=pd.date_range(start=dt(2001,1,1),periods=n,freq='d')

 x21=pd.DataFrame(x11,index=index_)

 x22=pd.DataFrame(corr2*x11+sqrt(1-corr2**2)*x12,index=index_)

 y1=mean_0[0]+x21*std_0[0]

 y2=mean_0[1]+x22*std_0[1]

 # step 4: generate a return matrix called R

 R0=pd.merge(y1,y2,left_index=True,right_index=True)

 R=np.array(R0)

 # Step 5: define a few functions

def objFunction(W, R, target_ret):

 stock_mean=np.mean(R,axis=0)

 port_mean=np.dot(W,stock_mean) # portfolio mean

 cov=np.cov(R.T) # var-covar matrix

 port_var=np.dot(np.dot(W,cov),W.T) # portfolio variance

 penalty = 2000*abs(port_mean-target_ret) # penalty 4 deviation

Monte Carlo Simulation and Options

[328]

return np.sqrt(port_var) + penalty # objective function

 #print('stock mean=',stockMean)

 # Step 6: estimate optimal portfolo for a given return

 out_mean,out_std,out_weight=[],[],[]

 stockMean=np.mean(R,axis=0)

 print('hahastyle[j]',stockMean)

 for r in np.linspace(np.min(stockMean), np.max(stockMean), num=100):

 W = ones([n_stock])/n_stock # starting:equal w

 b_ = [(0,1) for i in range(n_stock)] # bounds

 c_ = ({'type':'eq', 'fun': lambda W: sum(W)-1. })# constraint

 result=minimize(objFunction,W,(R,r),method='SLSQP',constraints
=c_, bounds=b_)

 if not result.success:

raise BaseException(result.message)

 out_mean.append(round(r,4)) # a few decimal places

 std_=round(np.std(np.sum(R*result.x,axis=1)),6)

 out_std.append(std_)

 out_weight.append(result.x)

 # Step 7A: plot the efficient frontier

 plt.plot(out_std,out_mean,style_[j],label='corr='+str(corr2),linewid
th=3)

Step 7B: plot the efficient frontier

stockMean2=[round(stockMean[0],3),round(stockMean[1],3)]

title('Simulation for an Efficient Frontier with different correlations')

xlabel('Standard Deviation of the Porfolio')

ylabel('Return of the portfolio')

figtext(0.2,0.85,' mean = '+str(stockMean2))

figtext(0.2,0.80,' std ='+str(std_0))

figtext(0.2,0.75,' corr ='+str(corr_))

plt.plot(np.array(std_0),np.array(stockMean),'o',markersize=10)

plt.legend(loc='lower right')

plt.show()

Chapter 11

[329]

The following graph suggests that the lower the correlation, the better our two-stock
formed efficient frontier:

Constructing an efficient frontier with n stocks
When the number of stocks, n, increases, the correlation between each pair of stocks
increases dramatically. For n stocks, we have n*(n-1)/2 correlations. For example, if n
is 10, we have 45 correlations. Because of this, it is not a good idea to manually input
those values. Instead, we generate means, standard deviations, and correlations by
drawing random numbers from several uniform distributions. To produce correlated
returns, first we generate n uncorrelated stock return time series and then apply
Cholesky decomposition as follows:

import numpy as np

import scipy as sp

import pandas as pd

from datetime import datetime as dt

from scipy.optimize import minimize

Step 1: input area

n_stocks=10

sp.random.seed(123456) # produce the same random
numbers

n_corr=n_stocks*(n_stocks-1)/2 # number of correlation

Monte Carlo Simulation and Options

[330]

corr_0=sp.random.uniform(0.05,0.25,n_corr) # generate correlations

mean_0=sp.random.uniform(-0.1,0.25,n_stocks)# means

std_0=sp.random.uniform(0.05,0.35,n_stocks) # standard deviation

n_obs=1000 # number of simuations (returns) for each stock

Step 2: produce correlation matrix: Cholesky decomposition

corr_=sp.zeros((n_stocks,n_stocks))

for i in range(n_stocks):

 for j in range(n_stocks):

 if i==j:

 corr_[i,j]=1

 else:

 corr_[i,j]=corr_0[i+j]

U=np.linalg.cholesky(corr_)

Step 3: Generate two uncorrelated time series

R0=np.zeros((n_obs,n_stocks))

for i in range(n_obs):

 for j in range(n_stocks):

 R0[i,j]=sp.random.normal(loc=mean_0[j],scale=std_0[j],size=1)

if(any(R0)<=-1.0):

 print ('Error: return is <=-100%')

Step 4: generate correlated return matrix: Cholesky

R=np.dot(R0,U)

R=np.array(R)

Step 5: define a few functions

def objFunction(W, R, target_ret):

 stock_mean=np.mean(R,axis=0)

 port_mean=np.dot(W,stock_mean) # portfolio mean

 cov=np.cov(R.T) # var-covar matrix

 port_var=np.dot(np.dot(W,cov),W.T) # portfolio variance

 penalty = 2000*abs(port_mean-target_ret) # penalty 4 deviation

return np.sqrt(port_var) + penalty # objective function

Step 6: estimate optimal portfolo for a given return

out_mean,out_std,out_weight=[],[],[]

stockMean=np.mean(R,axis=0)

Chapter 11

[331]

for r in np.linspace(np.min(stockMean), np.max(stockMean), num=100):

 W = sp.ones([n_stocks])/n_stocks # starting:equal w

 b_ = [(0,1) for i in range(n_stocks)] # bounds

 c_ = ({'type':'eq', 'fun': lambda W: sum(W)-1. })# constraint

 result=minimize(objFunction,W,(R,r),method='SLSQP',constraints=c_,
bounds=b_)

 if not result.success: # handle error

raise BaseException(result.message)

 out_mean.append(round(r,4)) # a few decimal places

 std_=round(np.std(np.sum(R*result.x,axis=1)),6)

 out_std.append(std_)

 out_weight.append(result.x)

Step 7: plot the efficient frontier

title('Simulation for an Efficient Frontier: '+str(n_stocks)+' stocks')

xlabel('Standard Deviation of the Porfolio')

ylabel('Return of the2-stock portfolio')

#xlim(min(std_0), max(std_0))

plot(out_std,out_mean,'--',linewidth=3)

The related graph is as follows:

Monte Carlo Simulation and Options

[332]

Geometric versus arithmetic mean
In the next section, we discuss long-term return forecasting. Since we apply the
weighted arithmetic and geometric means, we need to familiarize ourselves with the
geometric mean first. For n returns (1R , 2R , 3 ,... ., nR R) their arithmetic and geometric
means are defined as follows:

1

n

i
i

arithmetic

R
R

n
==
∑

 (10)

()
1

1
1 1

n n

geometric ii
R R

=

 = Π + −  
 (11)

In this formula, Ri is the stock's ith return. For an arithmetic mean, we could use the
mean() function. Most of the time, the arithmetic mean is used in our estimations
because of its simplicity. Since geometric means consider the time of values, it is
considered to be more accurate for returns' estimation based on historical data.
One important feature is that the geometric mean is smaller than its corresponding
arithmetic mean unless all input values, such as all returns, are all the same. Because
of this feature, many argue that using arithmetic means to predict future returns
would lead to an overestimation. In contrast, geometric means would lead to an
underestimation. Since the geometric mean for returns is different from the normal
definition of the geometric mean when the values are not returns, it is worthwhile to
write our own function as shown in the following code:

def geomean_ret(returns):

 product = 1

 for ret in returns:

 product *= (1+ret)

return product ** (1.0/len(returns))-1

For a set of n returns, we could estimate their arithmetic and geometric mean
as follows:

>>>returns=[0.01,0.02,-0.03,0.015,0.10]

>>>geomean_ret(returns)

0.022140040774623948

>>>mean(returns)

0.023

Chapter 11

[333]

Long-term return forecasting
Many researchers and practitioners argue that a long-term return forecast would
be overestimated if it is based on the arithmetic mean of the past returns and
underestimated based on a geometric mean. Using 80 years' historical returns to
forecast the next 25-year future return, Jacquier, Kane, and Marcus (2003) suggest
the following weighted scheme:

25 80 25
80 80geometric arithmeticlong term forecast R R−

− = + (12)

The following program reflects equation (12):

from matplotlib.finance import quotes_historical_yahoo

import numpy as np

import pandas as pd

ticker='IBM' # input value 1

begdate=(1926,1,1) # input value 2

enddate=(2013,12,31) # input value 3

n_forecast=15. # input value 4

def geomean_ret(returns):

 product = 1

 for ret in returns:

 product *= (1+ret)

 return product ** (1.0/len(returns))-1

x=quotes_historical_yahoo(ticker,begdate,enddate,asobject=True,
adjusted=True)

logret = log(x.aclose[1:]/x.aclose[:-1])

date=[]

d0=x.date

for i in range(0,size(logret)):

 date.append(d0[i].strftime("%Y"))

y=pd.DataFrame(logret,date,columns=['logret'],dtype=float64)

ret_annual=exp(y.groupby(y.index).sum())-1

ret_annual.columns=['ret_annual']

Monte Carlo Simulation and Options

[334]

n_history=len(ret_annual)

a_mean=mean(np.array(ret_annual))

g_mean=geomean_ret(np.array(ret_annual))

future_ret=n_forecast/n_history*g_mean+(n_history-n_forecast)/n_
history*a_mean

print 'Arithmetric mean=',round(a_mean,3), 'Geomean=',round(g_
mean,3),'forecast=',future_ret

We could print a few of the annual returns, the number of years, and final result
as follows:

>>>ret_annual.head()

 ret_annual

1962 -0.326613

1963 0.347305

1964 -0.022222

1965 0.222727

1966 0.122677

>>>len(ret_annual)

52

>>>print 'Arithmetric omean=',round(a_mean,3), 'Geomean=',round(g_
mean,3),'forecast=',future_ret

Arithmetric omean= 0.12 Geomean= 0.087 forecast= [0.11074861]

>>>

Pricing a call using simulation
After knowing the terminal prices, we could estimate the payoff for a call if the
exercise price is given. The mean of those discounted payoffs using the risk-free
rate as our discount rate will be our call price. The following code helps us
estimate the call price:

from scipy import zeros, sqrt, shape

import scipy as sp

S0 = 40. # stock price at time zero

X= 40. # exercise price

T =0.5 # years

r =0.05 # risk-free rate

sigma = 0.2 # volatility (annual)

Chapter 11

[335]

n_steps=100. # number of steps

sp.random.seed(12345) # fix those random numbers

n_simulation = 5000 # number of simulation

dt =T/n_steps

call = zeros([n_simulation], dtype=float)

x = range(0, int(n_steps), 1)

for j in range(0, n_simulation):

 sT=S0

for i in x[:-1]:

 e=sp.random.normal()

 sT*=exp((r-0.5*sigma*sigma)*dt+sigma*e*sqrt(dt))

 call[j]=max(sT-X,0)

call_price=mean(call)*exp(-r*T)

print 'call price = ', round(call_price,3)

The estimated call price is $2.75. The same logic applies to pricing a put option.

Exotic options
Up to now, we discussed European and American options in Chapter 9, The Black-
Scholes-Merton Option Model, which are also called vanilla options. One of the
characters is path independent. On the other hand, exotic options are more complex
since they might have several triggers relating to the determination of their payoffs.
An exotic option could include nonstandard underlying instrument developed for
particular investors, banks, or firms. Exotic options usually are traded over-the-
counter (OTC). For exotic options, we don't have closed-form solutions, such as
the Black-Scholes-Merton model. Thus, we have to depend on other means to price
them. The Monte Carlo simulation is one of the ways to price many exotic options. In
the next several subsections, we show how to price Asian options, digit options, and
barrier options.

Using the Monte Carlo simulation to price
average options
European and American options are path-independent options. This means that an
option's payoff depends only on the terminal stock price and strike price. One related
issue for path-dependent options is market manipulation at the maturity date.
Another issue is that some investors or hedgers might care more about the average
price instead of a terminal price.

Monte Carlo Simulation and Options

[336]

For example, a refinery is worried about the oil, its major raw material, and price
movement in the next three months. They plan to hedge the potential price jumps in
crude oil. The company could buy a call option. However, since the firm consumes a
huge amount of crude oil every day, naturally it cares more about the average price
instead of just the terminal price on which a vanilla call option depends. For such
cases, average options will be more effective. Average options are a type of Asian
options. For an average option, its payoff is determined by the average underlying
prices over some preset period of time. There are two types of averages: arithmetic
average and geometric average.

The payoff function of an Asian call (average price) is given as follows:

() (),0averagepayoff call Max P X= − (13)

The payoff function of an Asian put (average price) is given below.

() (),0averagepayoff put Max X P= − (14)

Asian options are one of the basic forms of exotic options. Another advantage of
Asian options is that their costs are cheaper compared to European and American
vanilla options since the variation of an average will be much smaller than a terminal
price. The following Python program is for an Asian option with an arithmetic
average price:

import scipy as sp

s0=40. # today stock price

x=40. # exercise price

T=0.5 # maturity in years

r=0.05 # risk-free rate

sigma=0.2 # volatility (annualized)

n_simulation=100 # number of simulations

n_steps=100.

dt=T/n_steps

call=sp.zeros([n_simulation], dtype=float)

for j in range(0, n_simulation):

 sT=s0

 total=0

for i in range(0,int(n_steps)):

 e=sp.random.normal()

Chapter 11

[337]

 sT*=sp.exp((r-0.5*sigma*sigma)*dt+sigma*e*sp.sqrt(dt))

 total+=sT

 price_average=total/n_steps

 call[j]=max(price_average-x,0)

call_price=mean(call)*exp(-r*T)

print 'call price = ', round(call_price,3)

Pricing barrier options using the Monte
Carlo simulation
Unlike the Black-Scholes-Merton option model's call and put options, which are path
independent, a barrier option is path-dependent. A barrier option is similar in many
ways to an ordinary option except there exists a trigger. An "in" option starts its life
worthless unless the underlying stock reaches a predetermined knock-in barrier. On
the contrary, an "out" barrier option starts its life active and turns useless when a
knock-out barrier price is breached. In addition, if a barrier option expires inactive,
it may be worthless, or there may be a cash rebate paid out as a fraction of the
premium. The four types of barrier options are given as follows:

•	 Up-and-out: In this barrier option, the price starts from below a barrier level.
If it reaches the barrier, it is knocked out.

•	 Down-and-out: In this barrier option, the price starts from above a barrier. If
it reaches the barrier, it is knocked out.

•	 Up-and-in: In this barrier option, the price starts below a barrier and has to
reach the barrier to be activated.

•	 Down-and-in: In this barrier option, the price starts above a barrier and has
to reach the barrier to be activated.

The next Python program is for an up-and-out barrier option with a European call:

import scipy as sp

import p4f

def up_and_out_call(s0,x,T,r,sigma,n_simulation,barrier):

 n_steps=100.

 dt=T/n_steps

 total=0

 for j in range(0, n_simulation):

 sT=s0

 out=False

Monte Carlo Simulation and Options

[338]

 for i in range(0,int(n_steps)):

 e=sp.random.normal()

 sT*=sp.exp((r-0.5*sigma*sigma)*dt+sigma*e*sp.sqrt(dt))

 if sT>barrier:

 out=True

 if out==False:

 total+=p4f.bs_call(s0,x,T,r,sigma)

 return total/n_simulation

The basic design is that we simulate the stock movement n times, such as 100 times.
For each simulation, we have 100 steps. Whenever the stock price reaches the barrier,
the payoff will be zero. Otherwise, the payoff will be a vanilla European call. The
final value will be the summation of all call prices that are not knocked out, divided
by the number of simulations, as shown in the following code:

s0=40. # today stock price

x=40. # exercise price

barrier=42 # barrier level

T=0.5 # maturity in years

r=0.05 # risk-free rate

sigma=0.2 # volatility (annualized)

n_simulation=100 # number of simulations

result=up_and_out_call(s0,x,T,r,sigma,n_simulation,barrier)

print 'up-and-out-call = ', round(result,3)

up-and-out-call = 0.606

The Python code for the down-and-in put option is shown as follows:

def down_and_in_put(s0,x,T,r,sigma,n_simulation,barrier):

 n_steps=100.

 dt=T/n_steps

 total=0

 for j in range(0, n_simulation):

 sT=s0

 in_=False

 for i in range(0,int(n_steps)):

 e=sp.random.normal()

 sT*=sp.exp((r-0.5*sigma*sigma)*dt+sigma*e*sp.sqrt(dt))

 if sT<barrier:

Chapter 11

[339]

 in_=True

 #print 'sT=',sT

 #print 'j=',j ,'out=',out

 if in_==True:

 total+=p4f.bs_put(s0,x,T,r,sigma)

 return total/n_simulation

Barrier in-and-out parity
If we buy an up-and-out European call and an up-and-in European call, then the
following parity should hold good:

up and out up and incall call call− − − −+ = (14)

The logic is very simple—if the stock price reaches the barrier, then the first call
is worthless and the second call will be activated. If the stock price never touches
the barrier, the first call will remain active, while the second one is never activated.
Either way, one of them is active. The following Python program illustrates
such scenarios:

def up_call(s0,x,T,r,sigma,n_simulation,barrier):

import scipy as sp

 import p4f

 n_steps=100.

 dt=T/n_steps

 inTotal=0

 outTotal=0

 for j in range(0, n_simulation):

 sT=s0

 inStatus=False

 outStatus=True

for i in range(0,int(n_steps)):

 e=sp.random.normal()

 sT*=sp.exp((r-0.5*sigma*sigma)*dt+sigma*e*sp.sqrt(dt))

if sT>barrier:

 outStatus=False

 inStatus=True

Monte Carlo Simulation and Options

[340]

 #print 'sT=',sT

 #print 'j=',j ,'out=',out

if outStatus==True:

 outTotal+=p4f.bs_call(s0,x,T,r,sigma)

 else:

 inTotal+=p4f.bs_call(s0,x,T,r,sigma)

return outTotal/n_simulation, inTotal/n_simulation

We input a set of values to test whether the summation of an up-and-out call and an
up-and-in call will be the same as a vanilla call:

s0=40. # today stock price

x=40. # exercise price

barrier=42 # barrier level

T=0.5 # maturity in years

r=0.05 # risk-free rate

sigma=0.2 # volatility (annualized)

n_simulation=100 # number of simulations

upOutCall,upInCall=up_call(s0,x,T,r,sigma,n_simulation,barrier)

print 'upOutCall=', round(upOutCall,2),'upInCall=',round(upInCall,2)

print 'Black-Scholes call', round(p4f.bs_call(s0,x,T,r,sigma),2)

The following output proves the parity mentioned in the preceding paragraph:

upCall= 0.8 upInCall= 1.96

Black-Scholes call 2.76

Graphical presentation of an up-and-out and
up-and-in parity
It is a good idea to use the Monte Carlo simulation to present such a parity. The
following code is designed to achieve this. To make our simulation clearer, we
deliberately choose just five simulations:

import scipy as sp

s0=9.15 # stock price at time zero

x=9.15 # exercise price

barrier=10.15 # barrier

T =0.5 # maturity date (in years)

Chapter 11

[341]

n_steps=30. # number of steps

r =0.05 # expected annual return

sigma = 0.2 # volatility (annualized)

sp.random.seed(125) # seed()

n_simulation = 5 # number of simulations

dt =T/n_steps

S = sp.zeros([n_steps], dtype=float)

time_= range(0, int(n_steps), 1)

c=p4f.bs_call(s0,x,T,r,sigma)

sp.random.seed(124)

outTotal, inTotal= 0.,0.

n_out,n_in=0,0

for j in range(0, n_simulation):

 S[0]= s0

 inStatus=False

 outStatus=True

for i in time_[:-1]:

 e=sp.random.normal()

 S[i+1]=S[i]*exp((r-0.5*pow(sigma,2))*dt+sigma*sp.sqrt(dt)*e)

 if S[i+1]>barrier:

 outStatus=False

 inStatus=True

 plot(time_, S)

if outStatus==True:

 outTotal+=c;n_out+=1

 else:

 inTotal+=c;n_in+=1

S=sp.zeros(int(n_steps))+barrier

plot(time_,S,'.-')

upOutCall=round(outTotal/n_simulation,3)

upInCall=round(inTotal/n_simulation,3)

figtext(0.15,0.8,'S='+str(S0)+',X='+str(x))

figtext(0.15,0.76,'T='+str(T)+',r='+str(r)+',sigma=='+str(sigma))

figtext(0.15,0.6,'barrier='+str(barrier))

figtext(0.40,0.86, 'call price ='+str(round(c,3)))

Monte Carlo Simulation and Options

[342]

figtext(0.40,0.83,'up_and_out_call ='+str(upOutCall)+' (='+str(n_
out)+'/'+

str(n_simulation)+'*'+str(round(c,3))+')')

figtext(0.40,0.80,'up_and_in_call ='+str(upInCall)+' (='+str(n_in)+'/'+

str(n_simulation)+'*'+str(round(c,3))+')')

title('Up-and-out and up-and-in parity (# of simulations = %d ' % n_
simulation +')')

xlabel('Total number of steps ='+str(int(n_steps)))

ylabel('stock price')

show()

The price of a vanilla call is $0.65. Since there is one simulation that reached the
barrier, the up-and-out call will be 4/5*0.63, while the up-and-in call will be 1/5*0.63.
The corresponding graph is shown as follows:

Pricing lookback options with floating
strikes
The lookback options depend on the paths (history) travelled by the underlying
security. Thus, they are called path-dependent exotic options as well. One of them
is named floating strikes. The payoff function of a call when the exercise price is the
minimum price achieved during the life of the option is given as follows:

(),0T min T minPayoff Max S S S S= − = − (15)

Chapter 11

[343]

The Python code for this lookback option is shown as follows:

def lookback_min_price_as_strike(s,T,r,sigma,n_simulation):

 n_steps=100.

 dt=T/n_steps

 total=0

 for j in range(n_simulation):

 min_price=100000. # a very big number

 sT=s

 for i in range(int(n_steps)):

 e=sp.random.normal()

 sT*=sp.exp((r-0.5*sigma*sigma)*dt+sigma*e*sp.sqrt(dt))

if sT<min_price:

 min_price=sT

 #print 'j=',j,'i=',i,'total=',total

 total+=p4f.bs_call(s,min_price,T,r,sigma)

 return total/n_simulation

Remember that the previous function needs two modules. Thus, we have to import
those modules before we call the function as shown in the following code:

>>>import scipy as sp

>>>import p4f

>>>s=40. # today stock price

>>>T=0.5 # maturity in years

>>>r=0.05 # risk-free rate

>>>sigma=0.2 # volatility (annualized)

>>>n_simulation=1000 # number of simulations

>>>result=lookback_min_price_as_strike(s,T,r,sigma,n_simulation)

>>>print 'lookback min price as strike = ', round(result,3)

The result for one run is shown as follows:

lookback min price as strike = 5.304

Monte Carlo Simulation and Options

[344]

Using the Sobol sequence to improve the
efficiency
When applying the Monte Carlo simulation to solve various finance related
problems, we need to generate a certain number of random numbers. When the
accuracy is very high, we have to draw a huge amount of such random numbers.
For example, when pricing options, we use very small interval or a large number
of steps to increase the number of decimal places of our final option prices. Thus,
the efficiency of our Monte Carlo simulation would be a vital issue in terms of
computational time and costs. This is especially true if we have a thousand options
to price. One way to increase the efficiency is to apply a correct or better algorithm,
that is, optimize our code. Another way is to use some special types of random
number generators, such as the Sobol sequence.

Sobol sequences belong to the so-called low-discrepancy sequences, which
satisfy the properties of random numbers but are distributed more evenly. Thus,
they are usually called quasi random. Based on the related Python Sobol library
developed, we could have the programs from the given links. First, we go to the
web page at http://people.sc.fsu.edu/~jburkardt/py_src/sobol/sobol.
html and download a Python program called sobol_lib.py written by Corrado
Chisari. Another web page related to the Sobol sequence is https://github.com/
naught101/sobol_seq.

Summary
In this chapter, we discussed several types of distributions: normal, standard normal,
lognormal, and Poisson. Since the assumption that stocks follow a lognormal
distribution and returns follow a normal distribution is the cornerstone for option
theory, the Monte Carlo simulation is used to price European options. Under certain
scenarios, Asian options might be more effective in terms of hedging. Exotic options
are more complex than the vanilla options since the former have no closed-form
solution, while the latter could be priced by the Black-Scholes-Merton option model.
One way to price these exotic options is to use the Monte Carlo simulation. The
Python programs to price an Asian option and lookback options are discussed
in detail.

Chapter 11

[345]

In the next chapter, we will discuss various volatility measures, such as our
conventional standard deviation, Lower Partial Standard Deviation (LPSD). Using
the standard deviation of returns as a risk measure is based on a critical assumption
that stock returns follow a normal distribution. Because of this, we introduce several
normality tests. In addition, we graphically show volatility clustering—high volatility
is usually followed by a high-volatility period, while low volatility is usually followed
by a low-volatility period. To deal with this phenomenon, the Autoregressive
conditional heteroskedasticity (ARCH) process was developed by Angel (1982),
and the Generalized AutoRegressive Conditional Heteroskedasticity (GARCH)
processes, which are an extension of ARCH was developed by Bollerslev (1986).
Their graphical presentations and related Python programs will be also covered in
the next chapter.

Exercises
1. Download daily price from Yahoo! Finance for DELL. Estimate daily returns and
convert them into monthly returns. Assume its monthly returns follow a normal
distribution. Draw a graph with the mean and standard deviation from the previous
monthly returns.

2. Debug the following program:

import scipy as sp

S0 = 9.15 ;T =1;n_steps=10;mu =0.15;sigma = 0.2

n_simulation = 10

dt =T/n_steps

S = sp.zeros([n_steps], dtype=float)

x = range(0, int(n_steps), 1)

for j in range(0, n_simulation):

 S[0]= S0

for i in x[:-1]:

 e=sp.random.normal()

 S[i+1]=S[i,j]+S[i]*(mu-0.5*pow(sigma,2))*dt+sigma*S[i]*sp.
sqrt(dt)*e;

 plot(x, S)

figtext(0.2,0.8,'S0='+str(S0)+',mu='+str(mu)+',sigma='+str(sigma))

figtext(0.2,0.76,'T='+str(T)+', steps='+str(int(n_steps)))

Monte Carlo Simulation and Options

[346]

title('Stock price (number of simulations = %d ' % n_simulation +')')

xlabel('Total number of steps ='+str(n_steps)))

ylabel('stock price')

show()

3. Write a Python program to price an Asian average price put based on the
arithmetic mean.

4. Write a Python program to price an Asian average price put based on the
geometric mean.

5. Write a Python program to price an up-and-in call (barrier option).

6. Write a Python program to price a down-and-out put (barrier option).

7. Write a Python program to show the down-and-out and down-and-in parity.

8. Write a Python program to use permutation() from SciPy to select 12 monthly
returns randomly from the past five-year data without placement. To test your
program, you can use Citigroup and the time period January 1, 2009 to December 31,
2014 from Yahoo! Finance.

9. Write a Python program to run bootstrapping with n given returns. For each time,
we select m returns where m>n.

Volatility Measures
and GARCH

In finance, we know that risk is defined as uncertainty since we are unable to
predict the future more accurately. Based on the assumption that prices follow a
lognormal distribution and returns follow a normal distribution, we could define
risk as standard deviation or variance of the returns of a security. We call this our
conventional definition of volatility (uncertainty). Since a normal distribution is
symmetric, it will treat a positive deviation from a mean in the same manner as it
would a negative deviation. This is against our conventional wisdom since we treat
them differently. To overcome this, Sortino (1983) suggests a lower partial standard
deviation. Up to now, we assume that the volatility of a time series is a constant.
Obviously this is not true. Another observation is volatility clustering, which means
that high volatility is usually followed by a high-volatility period, and this is true
for low volatility that is usually followed by a low-volatility period. To model
this, Angel (1982) develops an AutoRegressive Conditional Heteroskedasticity
(ARCH) process, and Bollerslev (1986) extends it to a Generalized AutoRegressive
Conditional Heteroskedasticity (GARCH) process.

In this chapter, we will cover the following topics:

•	 Conventional volatility measure—standard deviation—based on a
normality assumption

•	 Test of normality
•	 Testing fat tail
•	 An estimation of lower partial standard deviation (LPSD) given by

Sortino (1983)
•	 Test of equivalency of volatility over two periods

Volatility Measures and GARCH

[348]

•	 Test of heteroskedasticity, Breusch and Pagan (1979)
•	 Retrieving option data from Yahoo! Finance
•	 Volatility smile and skewness
•	 Definition of an AutoRegressive Conditional Heteroskedasticity

(ARCH) process
•	 Simulation of an ARCH (1) process
•	 Definition of a Generalized AutoRegressive Conditional Heteroskedasticity

(GARCH) process
•	 Simulation of an GARCH (1,1) process
•	 Simulation of an GARCH (p,q) process by modifying the garchSim()

function borrowed from R
•	 Modeling a GJR_GARCH process by Glosten, Jagannathan, and Runkle (1993)

Conventional volatility
measure – standard deviation
In most finance textbooks, we use the standard deviation of returns as a risk
measure. This is based on a critical assumption that log returns follow a normal
distribution. Even both standard deviation and variance could be used to measure
uncertainty; the former is usually called volatility itself. For example, if we say that
the volatility of IBM is 20 percent, it means that its annualized standard deviation is
20 percent. Using IBM as an example, the following program is used to estimate its
annualized volatility:

from matplotlib.finance import quotes_historical_yahoo

import numpy as np

ticker='IBM'

begdate=(2009,1,1)

enddate=(2013,12,31)

p = quotes_historical_yahoo(ticker, begdate, enddate,asobject=True,
adjusted=True)

ret = (p.aclose[1:] - p.aclose[:-1])/p.aclose[1:]

std_annual=np.std(ret)*np.sqrt(252)

From the following output, we know that the volatility is 20.87 percent for IBM:

>>>print 'volatility (std)=',round(std_annual,4)

volatility (std)= 0.2087

>>>

Chapter 12

[349]

Tests of normality
The Shapiro-Wilk test is a normality test. The following Python program verifies
whether IBM's returns are following a normal distribution. The last five-year daily
data from Yahoo! Finance is used for the test. The null hypothesis is that IBM's daily
returns are drawn from a normal distribution:

from scipy import stats

from matplotlib.finance import quotes_historical_yahoo

import numpy as np

ticker='IBM'

begdate=(2009,1,1)

enddate=(2013,12,31)

p = quotes_historical_yahoo(ticker, begdate, enddate,asobject=True,
adjusted=True)

ret = (p.aclose[1:] - p.aclose[:-1])/p.aclose[1:]

print 'ticker=',ticker,'W-test, and P-value'

print stats.shapiro(ret)

The results are shown as follows:

The first value of the result is the test statistic, and the second one is its corresponding
p-value. Since this p-value is so close to zero, we reject the null hypothesis. In other
words, we conclude that IBM's daily returns do not follow a normal distribution.

For the normality test, we could also apply the Anderson-Darling test, which is a
modification of the Kolmogorov-Smirnov test, to verify whether the observations
follow a particular distribution. The stats.anderson() function has tests for
normal, exponential, logistic, and Gumbel (Extreme Value Type I) distributions.
The default test is for a normal distribution. After calling the function and printing
the testing results, we see the following result:

>>>>print stats.anderson(ret)

(14.727130515534327, array([0.574, 0.654, 0.785, 0.915, 1.089]),
array([15. , 10. , 5. , 2.5, 1.]))

Volatility Measures and GARCH

[350]

Here, we have three sets of values: the Anderson-Darling test statistic, a set of critical
values, and a set of corresponding confidence levels, such as 15 percent, 10 percent,
5 percent, 2.5 percent, and 1 percent as shown in the previous output. If we choose
a 1 percent confidence level—the last value of the third set—the critical value is
1.089, the last value of the second set. Since our testing statistic is 14.73, which is
much higher than the critical value of 1.089, we reject the null hypothesis. Thus,
our Anderson-Darling test leads to the same conclusion as our Shapiro-Wilk test.

Estimating fat tails
One of the important properties of a normal distribution is that we could use mean
and standard deviation, the first two moments, to fully define the whole distribution.
For n returns of a security, its first four moments are defined in equation (1). The
mean or average is defined as follows:

1

n

i
i
R

R
n

µ == =
∑ (1)

Its (sample) variance is defined by the following equation. The standard deviation,
that is, σ, is the squared root of the variance:

()2
2 1

1

n

i
i
R R

n
σ =

−
=

−

∑ (2)

The skewness defined by the following formula indicates whether the distribution is
skewed to the left or to the right. For a symmetric distribution, its skewness is zero:

()3
1

3(1)

n

i
i
R R

skew
n σ

=

−
=

−

∑
 (3)

The kurtosis reflects the impact of extreme values because of its power of four. There
are two types of definitions with and without minus three; refer to the following two
equations. The reason behind the deduction of three in equation (4B), is that for a
normal distribution, its kurtosis based on equation (4A) is three:

()4
1

4(1)

n

i
i
R R

kurtosis
n σ

=

−
=

−

∑ (4A)

Chapter 12

[351]

()
()4

1
4 3

(1)

n

i
i
R R

excess kurtosis
n σ

=

−
= −

−

∑ (4B)

Some books distinguish these two equations by calling equation (4B) excess kurtosis.
However, many functions based on equation (4B) are still named kurtosis. Since we
know that a standard normal distribution has a zero mean, unit standard deviation,
zero skewness, and zero kurtosis (based on equation 4B). The following output
confirms these facts:

The mean, skewness, and kurtosis are all close to zero, while the standard deviation
is close to one. Next, we estimate the four moments for S&P500 based on its daily
returns as follows:

from scipy import stats

from matplotlib.finance import quotes_historical_yahoo

import numpy as np

ticker='^GSPC'

begdate=(1926,1,1)

enddate=(2013,12,31)

p = quotes_historical_yahoo(ticker, begdate, enddate,asobject=True,
adjusted=True)

ret = (p.aclose[1:] - p.aclose[:-1])/p.aclose[1:]

print('S&P500 n =',len(ret))

print('S&P500 mean =',round(np.mean(ret),8))

print('S&P500 std =',round(np.std(ret),8))

print('S&P500 skewness=',round(stats.skew(ret),8))

print('S&P500 kurtosis=',round(stats.kurtosis(ret),8))

Volatility Measures and GARCH

[352]

The output for the five values mentioned in the previous code, including the number
of observations, is given as follows:

This result is very close to the result in the paper titled Study of Fat-tail Risk by Cook
Pine Capital, which can be downloaded from http://www.cookpinecapital.com/
pdf/Study%20of%20Fat-tail%20Risk.pdf. Using the same argument, we conclude
that the S&P500 daily returns are skewed to the left, that is, a negative skewness, and
have fat tails (kurtosis is 38.22 instead of zero).

Lower partial standard deviation
One issue with using standard deviation of returns as a risk measure is that the
positive deviation is also viewed as bad. The second issue is that the deviation is
from the average instead of a fixed benchmark, such as a risk-free rate. To overcome
these shortcomings, Sortino (1983) suggests the lower partial standard deviation,
which is defined as the average of squared deviation from the risk-free rate
conditional on negative excess returns, as shown in the following formula:

()2
1 , 0

1

m

i f
i

i f

R R
LPSD where R R

n
=

−
= − >

−

∑ (5)

Because we need the risk-free rate in this equation, we could generate a Fama-French
dataset that includes the risk-free rate as one of their time series. First, download
their daily factors from http://mba.tuck.dartmouth.edu/pages/faculty/ken.
french/data_library.html.Then, unzip it and delete the non-data part at the end
of the text file. Assume the final text file is saved under C:/temp/:

import pandas as pd

import datetime

file=open("c:/temp/F-F_Research_Data_Factors_daily.txt","r")

data=file.readlines()

f=[]

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html,d
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html,d

Chapter 12

[353]

index=[]

for i in range(5,size(data)):

 t=data[i].split()

 t0_n=int(t[0])

 y=int(t0_n/10000)

 m=int(t0_n/100)-y*100

 d=int(t0_n)-y*10000-m*100

 index.append(datetime.datetime(y,m,d))

 for j in range(1,5):

 k=float(t[j])

 f.append(k/100)

n=len(f)

f1=np.reshape(f,[n/4,4])

ff=pd.DataFrame(f1,index=index,columns=['Mkt_Rf','SMB','HML','Rf'])

ff.to_pickle("c:/temp/ffDaily.pickle")

The name of the final dataset is ffDaily.pickle. It is a good idea to generate
this dataset yourself. However, the dataset could be downloaded from http://
canisius.edu/~yany/ffDaily.pickle. Using the last five years' data (January 1,
2009 to December 31, 2013), we could estimate IBM's LPSD as follows:

from scipy import stats

from matplotlib.finance import quotes_historical_yahoo

import numpy as np

import pandas as pd

ticker='IBM'

begdate=(2009,1,1)

enddate=(2013,12,31)

p = quotes_historical_yahoo(ticker, begdate, enddate,asobject=True,
adjusted=True)

ret = (p.aclose[1:] - p.aclose[:-1])/p.aclose[1:]

date_=p.date

x=pd.DataFrame(data=ret,index=date_[:-1],columns=['ret'])

ff=load('c:/temp/ffDaily.pickle')

final=pd.merge(x,ff,left_index=True,right_index=True)

k=final.ret-final.Rf

k2=k[k>0]

LPSD=np.std(k2)*np.sqrt(252)

print(' LPSD (annualized) for ', ticker, 'is ',round(LPSD,3))

http://canisius.edu/~yany/ffDaily.pickle
http://canisius.edu/~yany/ffDaily.pickle

Volatility Measures and GARCH

[354]

The following output shows that IBM's LPSD is 14.8 percent quite different from 20.9
percent shown in the previous section:

Test of equivalency of volatility over
two periods
We know that the stock market fell dramatically in October, 1987. We could choose
a stock to test the volatility before and after October, 1987. For instance, we could use
Ford Motor Corp, with a ticker of F, to illustrate how to test the equality of variance
before and after the market crash in 1987. In the following Python program, we
define a function called ret_f() to retrieve daily price data from Yahoo! Finance
and estimate its daily returns:

import scipy as sp

from matplotlib.finance import quotes_historical_yahoo

import numpy as np

input area

ticker='F' # stock

begdate1=(1982,9,1) # starting date for period #1

enddate1=(1987,9,1) # ending date for period #1

begdate2=(1987,12,1) # starting date for period #2

enddate2=(1992,12,1) # ending date for period #2

define a function

def ret_f(ticker,begdate,enddate):

 p = quotes_historical_yahoo(ticker, begdate, enddate,asobject=True,
adjusted=True)

 ret = (p.aclose[1:] - p.aclose[:-1])/p.aclose[1:]

 date_=p.date

 return pd.DataFrame(data=ret,index=date_[:-1],columns=['ret'])

call the above function twice

ret1=ret_f(ticker,begdate1,enddate1)

ret2=ret_f(ticker,begdate2,enddate2)

output

Chapter 12

[355]

print('Std period #1 vs. std period #2')

print(round(sp.std(ret1.ret),6), round(sp.std(ret2.ret),6))

print('T value , p-value ')

print(sp.stats.bartlett(ret1.ret,ret2.ret))

The very-high T value and close to zero p-value in the following screenshot suggest
the rejection of the hypothesis that during these two periods, the stock has the same
volatility. The corresponding output is given as follows:

Test of heteroskedasticity, Breusch, and
Pagan (1979)
Breusch and Pagan (1979) designed a test to confirm or reject the null assumption
that the residuals from a regression is homogeneous, that is, with a constant
volatility. The following formula represents their logic. First, we run a linear
regression of y against x:

t t ty xα β= + +∈ (6)

Here, y is the independent variable, x is the independent variable, α is the intercept,
β is the coefficient and t∈ is an error term. After we get the error term (residual), we
run the second regression:

2
0 1t t txγ γ ν∈ = + + (7)

Assume that the fitted values from running the previous regression is tfν , then the
Breusch-Pangan (1979) measure is given as follows, and it follows a χ2 distribution
with a k degree of freedom:

2

1

1
2

n

i
i

BP f v
=

= ∑ (8)

Volatility Measures and GARCH

[356]

The following example is borrowed from an R package called lm.test (test linear
regression), and its authors are Hothorn et al. (2014). We generate a time series of x, y1
and y2. The independent variable is x, and the dependent variables are y1 and y2. By
our design, y1 is homogeneous, that is, with a constant variance (standard deviation),
and y2 is non-homogeneous (heterogeneous), that is, the variance (standard deviation)
is not constant. For a variable x, we have the following 100 values:

[]1,1, 1,1,... ., 1,1x = − − − (9)

Then, we generate two error terms with 100 random values each. For the error1, its
100 values are drawn from the standard normal distribution, that is, with zero mean
and unit standard deviation. For error2, its 100 values are drawn from a normal
distribution with a zero mean and 2 as the standard deviation. The y1 and y2 time
series are defined as follows:

1 1y x error= + (10)

[] []2 1, 2,1,3, ...99 2,4,6, ..100i iy x e i e i= + = + = (11)

For the odd scripts of y2, the error terms are derived from error1, while for the even
scripts, the error terms are derived from error2. To find more information about the
PDF file related to lm.test, or an R package, we have the following six steps:

1.	 Go to http://www.r-project.org.
2.	 Click on CRAN under Download, Packages.
3.	 Choose a close-by server.
4.	 Click on Packages on the left-hand side of the screen.
5.	 Choose a list and search lm.test.
6.	 Click the link and download the PDF file related to lm.test.

The following is the related Python code:

import numpy as np

import statsmodels.api as sm

import scipy as sp

def breusch_pagan_test(y,x):

 results=sm.OLS(y,x).fit()

 resid=results.resid

Chapter 12

[357]

 n=len(resid)

 sigma2 = sum(resid**2)/n

 f = resid**2/sigma2 - 1

 results2=sm.OLS(f,x).fit()

 fv=results2.fittedvalues

 bp=0.5 * sum(fv**2)

 df=results2.df_model

 p_value=1-sp.stats.chi.cdf(bp,df)

 return round(bp,6), df, round(p_value,7)

sp.random.seed(12345)

n=100

x=[]

error1=sp.random.normal(0,1,n)

error2=sp.random.normal(0,2,n)

for i in range(n):

 if i%2==1:

 x.append(1)

 else:

 x.append(-1)

y1=x+np.array(x)+error1

y2=zeros(n)

for i in range(n):

 if i%2==1:

 y2[i]=x[i]+error1[i]

 else:

 y2[i]=x[i]+error2[i]

print ('y1 vs. x (we expect to accept the null hypothesis)')

bp=breusch_pagan_test(y1,x)

print('BP value, df, p-value')

print 'bp =', bp

bp=breusch_pagan_test(y2,x)

Volatility Measures and GARCH

[358]

print ('y2 vs. x (we expect to rject the null hypothesis)')

print('BP value, df, p-value')

print('bp =', bp)

For the result of running regression by using y1 against x, we know that its residual
vale would be homogeneous, that is, variance or standard deviation is a constant.
Thus, we expect to accept the null hypothesis. The opposite is true for y2 against x,
since, based on our design, the error terms for y2 are heterogeneous. Thus, we expect
to reject the null hypothesis. The corresponding output is shown as follows:

Retrieving option data from Yahoo!
Finance
In the previous chapter, we discussed in detail how to estimate implied volatility
with a hypothetic set of input values. To use real-world data to estimate implied
volatility, we could define a function with three input variables: ticker, month,
and year as follows:

def get_option_data(tickrr,exp_date):

 x = Options(ticker,'yahoo')

 puts,calls = x.get_options_data(expiry=exp_date)

 return puts, calls

To call the function, we enter three values, such as IBM, 2, and 2014, when we plan to
retrieve options expired in February, 2014. The code with these three values is shown
as follows:

def from pandas.io.data import Options

import datetime

ticker='IBM'

exp_date=datetime.date(2014,2,28)

puts, calls =get_option_data(ticker,exp_date)

print puts.head()

Chapter 12

[359]

Strike Symbol Last Chg Bid Ask Vol Open Int

0 100 IBM140222P00100000 0.01 0 NaN 0.03 16 16

1 105 IBM140222P00105000 0.04 0 NaN 0.03 10 10

2 115 IBM140222P00115000 0.01 0 NaN 0.05 1 2

3 120 IBM140222P00120000 0.02 0 0.01 0.06 10 20

4 130 IBM140222P00130000 0.03 0 0.02 0.06 1 146

 Strike Symbol Last Chg Bid Ask Vol Open Int

0 150 IBM140222C00150000 30.00 0.00 37.0 40.00 8 10

1 160 IBM140207C00160000 25.30 0.00 27.2 30.00 1 1

2 160 IBM140222C00160000 29.80 0.00 27.1 30.00 2 64

3 165 IBM140222C00165000 25.27 0.00 22.2 24.10 3 55

4 170 IBM140222C00170000 18.82 1.63 18.3 18.65 1 386

>>>

From Yahoo! Finance, we could just retrieve call data and save it. This is also true
for the put data. The two output datasets with the Pandas' pickle format can be
downloaded from http://canisius.edu/~yany/callsFeb2014.pickle and
http://canisius.edu/~yany/putsFeb2014.pickle:

from pandas.io.data import Options

import datetime

import pandas as pd

def call_data(tickrr,exp_date):

 x = Options(ticker,'yahoo')

 data= x.get_call_data(expiry=exp_date)

 return data

ticker='IBM'

exp_date=datetime.date(2014,2,28)

c=call_data(ticker,exp_date)

print c.head()

callsFeb2014=pd.DataFrame(c,columns=['Strike','Symbol','Chg','Bid','Ask',
'Vol','Open Int'])

callsFeb2014.to_pickle('c:/temp/callsFeb2014.pickle')

def put_data(tickrr,exp_date):

 x = Options(ticker,'yahoo')

 data= x.get_put_data(expiry=exp_date)

 return data

http://canisius.edu/~yany/callsFeb2014.pickle
http://canisius.edu/~yany/callsFeb2014.pickle

Volatility Measures and GARCH

[360]

p=put_data(ticker,exp_date)

putsFeb2014=pd.DataFrame(p,columns=['Strike','Symbol','Chg','Bid','Ask','
Vol','Open Int'])

putsFeb2014.to_pickle('c:/temp/putsFeb2014.pickle')

Volatility smile and skewness
Obviously, each stock should possess just one volatility. However, when estimating
implied volatility, different strike prices might offer us different implied volatilities.
More specifically, the implied volatility based on out-of-the-money options, at-
the-money options, and in-the-money options might be quite different. Volatility
smile is the shape going down then up with the exercise prices, while the volatility
skewness is downward or upward sloping. The key is that investors' sentiments and
the supply and demand relationship have a fundamental impact on the volatility
skewness. Thus, such a smile or skewness provides information on whether investors
such as fund managers prefer to write calls or puts, as shown in the following code:

from pandas.io.data import Options

from matplotlib.finance import quotes_historical_yahoo

Step 1: define two functions

def call_data(tickrr,exp_date):

 x = Options(ticker,'yahoo')

 data= x.get_call_data(expiry=exp_date)

 return data

def implied_vol_call_min(S,X,T,r,c):

 from scipy import log,exp,sqrt,stats

 implied_vol=1.0

 min_value=1000

 for i in range(10000):

 sigma=0.0001*(i+1)

 d1=(log(S/X)+(r+sigma*sigma/2.)*T)/(sigma*sqrt(T))

 d2 = d1-sigma*sqrt(T)

 c2=S*stats.norm.cdf(d1)-X*exp(-r*T)*stats.norm.cdf(d2)

 abs_diff=abs(c2-c)

 if abs_diff<min_value:

 min_value=abs_diff

 implied_vol=sigma

 k=i

Chapter 12

[361]

 return implied_vol

Step 2: input area

ticker='IBM'

exp_date=datetime.date(2014,2,28) # first try not exact

r=0.0003 # estimate

begdate=datetime.date(2010,1,1) # this is arbitrary since we care
about current price

Step 3: get call option data

calls=call_data(ticker,exp_date)

exp_date0=int('20'+calls.Symbol[0][len(ticker):9]) # find examt expiring
date

today=datetime.date.today()

p = quotes_historical_yahoo(ticker, begdate, today, asobject=True,
adjusted=True)

s=p.close[-1] # get current stock price

y=int(exp_date0/10000)

m=int(exp_date0/100)-y*100

d=exp_date0-y*10000-m*100

exp_date=datetime.date(y,m,d) # get exact expiring date

T=(exp_date-today).days/252.0 # T in years

Step 4: run a loop to estimate the implied volatility

n=len(calls.Strike) # number of strike

strike=[] # initialization

implied_vol=[] # initialization

call2=[] # initialization

x_old=0 # used when we choose the first strike

for i in range(n):

 x=calls.Strike[i]

 c=(calls.Bid[i]+calls.Ask[i])/2.0

 if c >0:

 print ('i=',i,', c=',c)

 if x!=x_old:

 vol=implied_vol_call_min(s,x,T,r,c)

 strike.append(x)

 implied_vol.append(vol)

 call2.append(c)

Volatility Measures and GARCH

[362]

 print x,c,vol

 x_old=x

Step 5: draw a smile

title('Skewness smile (skew)')

xlabel('Exercise Price')

ylabel('Implied Volatility')

plot(strike,implied_vol,'o')

In this program, if multiple implied volatilities for the same strike price exist, we
choose the first implied volatility. Alternatively, we could take the average of several
implied volatilities for the same exercise price. The graph of the volatility smile is
shown as follows:

Again, if anyone wants to reproduce the previous graph, they can download the call
options dataset from http://canisius.edu/~yany/callsFeb2014.pickle.

Graphical presentation of volatility clustering
One of the observations is labeled as volatility clustering, which means that high
volatility is usually followed by a high-volatility period, while low volatility is usually
followed by a low-volatility period. The following program shows this phenomenon
by using S&P500 daily returns from 1988 to 2006. Note that, in the following code, in
order to show 1988 on the x axis, we add a few months before 1988:

from matplotlib.finance import quotes_historical_yahoo

import numpy as npticker='^GSPC'

begdate=(1987,11,1)

http://canisius.edu/~yany/callsFeb2014.pickle

Chapter 12

[363]

enddate=(2006,12,31)

p = quotes_historical_yahoo(ticker, begdate, enddate,asobject=True,
adjusted=True)

ret = (p.aclose[1:] - p.aclose[:-1])/p.aclose[1:]

title('Illustration of volatility clustering (S&P500)')

ylabel('Daily returns')

xlabel('Date')

x=p.date[1:]

plot(x,ret)

This program is inspired by the graph drawn by M.P. Visser; refer to http://staff.
science.uva.nl/~marvisse/volatility.html. The graph corresponding to the
previous code is shown as follows:

The ARCH model
Based on previous arguments, we know that the volatility or variance of stock
returns is not constant. According to the ARCH model, we could use the error
terms from pervious estimation to help us predict the next volatility or variance.
This model was developed by Robert F. Engle, the winner of the 2003 Nobel Prize
in Economics. The formula for an ARCH (q) model is presented as follows:

2 2
0 1

1

q

t i t
i

eσ α α −
=

= +∑ (12)

Volatility Measures and GARCH

[364]

Here,
2
tσ is the variance at time t, iα is the ith coefficient, 2

t ie − is the squared error
term for the period of t-I, and q is the order of error terms. When q is 1, we have the
simplest ARCH (1) process as follows:

2 2
0 1 1t teσ α α −= + (13)

Simulating an ARCH (1) process
It is a good idea that we simulate an ARCH (1) process and have a better
understanding of the volatility clustering, which means that high volatility is
usually followed by a high-volatility period while low volatility is usually
followed by a low-volatility period. The following code reflects this phenomenon:

import scipy as sp

sp.random.seed(12345)

n=1000 # n is the number of observations

n1=100 # we need to drop the first several observations

n2=n+n1 # sum of two numbers

a=(0.1,0.3) # ARCH (1) coefficients alpha0 and alpha1, see Equation
(3)

errors=sp.random.normal(0,1,n2)

t=sp.zeros(n2)

t[0]=sp.random.normal(0,sp.sqrt(a[0]/(1-a[1])),1)

for i in range(1,n2-1):

 t[i]=errors[i]*sp.sqrt(a[0]+a[1]*t[i-1]**2)

y=t[n1-1:-1] # drop the first n1 observations

title('ARCH (1) process')

x=range(n)

plot(x,y)

Chapter 12

[365]

From the following graph, we see that indeed a higher volatility period is usually
followed with high volatility while this is also true for a low-volatility clustering:

The GARCH (Generalized ARCH) model
Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) is an
important extension of ARCH, by Bollerslev (1986). The GARCH (p,q) process is
defined as follows:

2 2 2
0 1 1 1

1 1

q p

t i t i t
i i

σ α α β σ− = −
= =

= + ∈ +∑ ∑ (14)

Here, 2
tσ is the variance at time t, q is the order for the error terms, p is the order for

the variance, 0α is a constant, iα is the coefficient for the error term at t-i, iβ is the
coefficient for the variance at time t-i. Obviously, the simplest GARCH process is
when both p and q are set to 1, that is, GARCH (1,1), which has following formula:

2 2 2
0 1 1 1t t tσ α α βσ− −= + ∈ + (15)

Volatility Measures and GARCH

[366]

Simulating a GARCH process
Based on the previous program related to ARCH (1), we could simulate a GARCH
(1,1) process as follows:

import scipy as sp

sp.random.seed(12345)

n=1000 # n is the number of observations

n1=100 # we need to drop the first several observations

n2=n+n1 # sum of two numbers

alpha=(0.1,0.3) # GARCH (1,1) coefficients alpha0 and alpha1, see
Equation (3)

beta=0.2

errors=sp.random.normal(0,1,n2)

t=sp.zeros(n2)

t[0]=sp.random.normal(0,sp.sqrt(a[0]/(1-a[1])),1)

for i in range(1,n2-1):

 t[i]=errors[i]*sp.sqrt(alpha[0]+alpha[1]*errors[i-
1]**2+beta*t[i-1]**2)

y=t[n1-1:-1] # drop the first n1 observations

title('GARCH (1,1) process')

x=range(n)

plot(x,y)

Honestly speaking, the following graph is quite similar to the previous one under the
ARCH (1) process. The graph corresponding to the previous code is shown as follows:

Chapter 12

[367]

Simulating a GARCH (p,q) process using
modified garchSim()
The following code is based on the R function called garchSim(), which is included
in the R package called fGarch. The authors for fGarch are Diethelm Wuertz and
Yohan Chalabi. To find the related manual, we perform the following steps:

1.	 Go to http://www.r-project.org.
2.	 Click on ACRAN under Download, Packages.
3.	 Choose a close-by server.
4.	 Click on Packages on the left-hand side of the screen.
5.	 Choose a list and search for fgarch.
6.	 Click on the link and download the PDF file related to fgarch.

The Python program based on the R program is given as follows:

import scipy as sp

import numpy as np

sp.random.seed(12345)

m=2

n=100 # n is the number of observations

nDrop=100 # we need to drop the first several observations

delta=2

omega=1e-6

alpha=(0.05,0.05)

beta=0.8

mu=ar=ma=ar=0.0

gamma=(0.0,0.0)

order_ar =size(ar)

order_ma =size(ma)

order_beta =size(beta)

order_alpha =size(alpha)

z0=sp.random.standard_normal(n+nDrop)

deltainv=1/delta

spec_1=spec_2=spec_3=np.array([2])

z = np.hstack((spec_1,z0))

t=np.zeros(n+nDrop)

Volatility Measures and GARCH

[368]

h = np.hstack((spec_2,t))

y = np.hstack((spec_3,t))

eps0 = h**deltainv * z

for i in range(m+1,n +nDrop+m-1):

 t1=sum(alpha[::-1]*abs(eps0[i-2:i])) # reverse alpha =alpha[::-1]

 t2=eps0[i-order_alpha-1:i-1]

 t3=t2*t2

 t4=np.dot(gamma,t3.T)

 t5=sum(beta* h[i-order_beta:i-1])

 h[i]=omega+t1-t4+ t5

 eps0[i] = h[i]**deltainv * z[i]

 t10=ar * y[i-order_ar:i-1]

 t11=ma * eps0[i -order_ma:i-1]

 y[i]=mu+sum(t10)+sum(t11)+eps0[i]

garch=y[nDrop+1:]

sigma=h[nDrop+1:]**0.5

eps=eps0[nDrop+1:]

x=range(1,len(garch)+1)

plot(x,garch,'r')

plot(x,sigma,'b')

#plot(x,eps,'g')

title('GARCH(2,1) process')

figtext(0.2,0.8,'omega='+str(omega)+', alpha='+str(alpha)+',beta='+str(be
ta))

figtext(0.2,0.75,'gamma='+str(gamma))

figtext(0.2,0.7,'mu='+str(mu)+', ar='+str(ar)+',ma='+str(ma))

show()

In the preceding program, omega is the constant in equation (10), while alpha is
associated with error terms and beta is associated with variance. There are two
items in alpha[a,b]: a is for t-1, while b is for t-2. However, for eps0[t-2:i],
they stand for t-2 and t-1. The alpha and eps0 terms are not consistent with each
other. Thus, we have to reverse the order of a and b. This is the reason why we use
alpha[::-1]. Since several values are zero, such as mu, ar, and ma, the time series
of garch is identical with eps. Thus, we show just two time series in the following
graph. The high volatility is for garch, while the other one is for standard deviation:

Chapter 12

[369]

GJR_GARCH by Glosten, Jagannanthan, and
Runkle (1993)
Glosten, Jagannathan, and Runkle (1993) models asymmetry in the GARCH process.
They suggest to model t t tzσ∈ = where tz is the i.i.d. hypothesis. GJR_GARCH (1,1,1)
has the following format:

2 2 2 2
1 1 1 1t t t t tIσ ω α βσ γ− − − −= + ∈ + + ∈ (16)

Here, the condition 1 0tI − = if 1 0t−∈ ≥ and 1 1tI − = if 1 0t−∈ < holds true. The following
code is taken from the Kevin Sheppard website located at:

http://nbviewer.ipython.org/url/www.kevinsheppard.com/images/9/9e/
Example_GJR-GARCH.ipynb:

import numpy as np

import matplotlib.pyplot as plt

from numpy import size, log, pi, sum, diff, array, zeros, diag, dot, mat,
asarray, sqrt

from numpy.linalg import inv

from scipy.optimize import fmin_slsqp

from matplotlib.mlab import csv2rec

Volatility Measures and GARCH

[370]

def gjr_garch_likelihood(parameters, data, sigma2, out=None):

 mu = parameters[0]

 omega = parameters[1]

 alpha = parameters[2]

 gamma = parameters[3]

 beta = parameters[4]

 T = size(data,0)

 eps = data-mu

 for t in xrange(1,T):

 sigma2[t]=(omega+alpha*eps[t-1]**2+gamma*eps[t-1]**2*(eps[t-
1]<0)+beta*sigma2[t-1])

 logliks = 0.5*(log(2*pi) + log(sigma2) + eps**2/sigma2)

 loglik = sum(logliks)

 if out is None:

 return loglik

 else:

 return loglik, logliks, copy(sigma2)

def gjr_constraint(parameters,data, sigma2, out=None):

 alpha = parameters[2]

 gamma = parameters[3]

 beta = parameters[4]

 return array([1-alpha-gamma/2-beta]) # Constraint
alpha+gamma/2+beta<=1

def hessian_2sided(fun, theta, args):

 f = fun(theta, *args)

 h = 1e-5*np.abs(theta)

 thetah = theta + h

 h = thetah-theta

 K = size(theta,0)

 h = np.diag(h)

 fp = zeros(K)

 fm = zeros(K)

 for i in xrange(K):

 fp[i] = fun(theta+h[i], *args)

 fm[i] = fun(theta-h[i], *args)

Chapter 12

[371]

 fpp = zeros((K,K))

 fmm = zeros((K,K))

 for i in xrange(K):

 for j in xrange(i,K):

 fpp[i,j] = fun(theta + h[i] + h[j], *args)

 fpp[j,i] = fpp[i,j]

 fmm[i,j] = fun(theta-h[i]-h[j], *args)

 fmm[j,i] = fmm[i,j]

 hh = (diag(h))

 hh = hh.reshape((K,1))

 hh = dot(hh,hh.T)

 H = zeros((K,K))

 for i in xrange(K):

 for j in xrange(i,K):

 H[i,j] = (fpp[i,j]-fp[i]-fp[j] + f+ f-fm[i]-fm[j] +
fmm[i,j])/hh[i,j]/2

 H[j,i] = H[i,j]

 return H

We can write a function called GJR_GARCH() by including all initial values,
constraints, and bounds as follows:

def GJR_GARCH(ret):

 startV=array([ret.mean(),ret.var()*0.01,0.03,0.09,0.90])

 finfo=np.finfo(np.float64)

 t=(0.0,1.0)

 bounds=[(-10*ret.mean(),10*ret.mean()),(finfo.eps,2*ret.var()),t,t,t]

 T=size(ret,0)

 sigma2=np.repeat(ret.var(),T)

 inV=(ret,sigma2)

 return fmin_slsqp(gjr_garch_likelihood,startV,f_ieqcons=gjr_constrain
t,bounds=bounds,args=inV)

In order to replicate our result, we could use the random.seed() function
to fix our returns obtained from generating a set of random numbers from
a uniform distribution:

sp.random.seed(12345)

returns=sp.random.uniform(-0.2,0.3,100)

tt=GJR_GARCH(returns)

Volatility Measures and GARCH

[372]

After we call the GJR_GARCH() function by inputting returns, we expect five printed
outputs as follows:

The interpretations of these five outputs are given in the following table:

Meaning
1 Message describing the exit mode from the optimizer
2 The final value of the objective function
3 The number of iterations
4 Function evaluations
5 Gradient evaluations

The descriptions of various exit modes are listed in the following table:

Exit mode Description
-1 Gradient evaluation required (g and a)
0 Optimization terminated successfully
1 Function evaluation required (f and c)
2 More equality constraints than independent variables
3 More than 3*n iterations in LSQ sub problem
4 Inequality constraints incompatible
5 Singular matrix E in LSQ subproblem
6 Singular matrix C in LSQ subproblem
7 Rank-deficient equality constraint subproblem HFTI
8 Positive directional derivative for line search
9 Iteration limit exceeded

Chapter 12

[373]

To show our final parameter values, we print our results with the help of the
following code:

>>>print tt

[7.73958583e-02 6.65856138e-03 1.00386156e-12 -1.67115250e-12

 6.61947977e-01]

>>>

Summary
In this chapter, we focused on several issues, especially on volatility measures and
ARCH/GARCH. For the volatility measures, first we discussed the widely used
standard deviation, which is based on the normality assumption. To show that such
an assumption might not hold, we introduced several normality tests, such as the
Shapiro-Wilk test and the Anderson-Darling test. To show a fat tail of many stocks'
real distribution benchmarked on a normal distribution, we vividly used various
graphs to illustrate it. To show that the volatility might not be constant, we presented
the test to compare the variance over two periods. Then, we showed a Python
program to conduct the Breusch-Pangan (1979) test for heteroskedasticity. ARCH
and GARCH are used widely to describe the evolvements of volatility over time. For
these models, we simulate their simple form such as ARCH (1) and GARCH (1,1)
processes. In addition to their graphical presentations, the Python codes of Kevin
Sheppard are included to solve the GJR_GARCH (1,1,1) process.

Exercises
1. What is the definition of volatility?

2. How can you measure risk (volatility)?/

3. What are the issues related to the widely used definition of risk
(standard deviation)?

4. How can you test whether stock returns follow a normal distribution?
For given sets of stocks, test whether they follow a normal distribution.

5. What is the lower partial standard deviation? What are its applications?

6. Choose five stocks, such as DELL, IBM, Microsoft, Citi Group, and Walmart,
and compare their standard deviation with LPSD based on the last three-years'
daily data.

Volatility Measures and GARCH

[374]

7. Is a stock's volatility constant over the years?

8. Use the Breusch-Pagan (1979) test to confirm or reject the hypothesis that daily
returns for IBM is homogeneous.

9. How can you test whether a stock's volatility is constant?

10. What does "fat tail" mean ? Why should we care about fat tail?

11. How can you download the option data?

12. What is an ARCH (1) process?

13. What is a GARCH (1,1) process?

14. Apply GARCH (1,1) process to DELL.

15. Write a Python program to show the volatility smile by using a set of put options.

Index
Symbols
_ expression 36
52-week high and low trading strategy 196
%d 40
% operator 29

A
ActivatePython installation

URL 124
American call

used, for estimating implied
volatility 288, 289

American option
about 242
versus European option 242

Amihud's model for illiquidity (2002) 198
Anaconda

Python, launching from 96, 97
URL 96

Anaconda command prompt
used, for launching Python 169

Anaconda installation
URL 125

Anderson-Darling test 349
annotate() function 142
annualized return distribution

estimating 319, 320
annual percentage rate (APR) 55, 99
annual returns

daily returns, converting to 190, 191
annuity

estimating 54, 55
ARCH

about 347, 363, 364

ARCH (1) process, simulating 364
ARCH (1) process

simulating 364
arithmetic average 336
arithmetic mean

versus geometric mean 332
array

logic relationships 110
looping through 108, 293
working with 104
performing 105

array operations
item by item multiplication operation,

performing 107
matrix multiplication operation,

performing 105, 106
minus operation, performing 105
plus operation, performing 105

Asian options
about 336
advantages 336

Asset-Backed Security (ABS) 10
AutoRegressive Conditional

Heteroskedasticity. See ARCH

B
barrier options

Down-and-out option 337
pricing, Monte Carlo simulation

used 337, 338
Up-and-in option 337
Up-and-out option 337

bear spread with calls trading strategy 251
bear spread with puts trading strategy 251

[376]

binary file
data, reading from 222
data, saving to 222

binary search 290, 291
binomial_grid() function 249, 263, 265
binomial tree (CRR) method

about 261
for American options 268, 269
for European options 268
graphical representation 262-267

Black-Scholes-Merton option model 242,
247, 248

Bondsonline
URL 174

bootstrapping
without replacements 317, 318
with replacements 317, 318

Breusch 355-358
bs_call() function 248, 279
built-in functions

listing 32
bull spread with calls trading strategy 251
bull spread with puts trading strategy 251
Bureau of Labor Statistics

URL 174
butterfly with calls trading strategy 251,

256, 257
butterfly with puts trading strategy 251

C
calendar spread 254
calendar spread trading strategy 251
call

pricing, simulation used 334, 335
call buyer 243
call option 243
candlesticks

used, to represent daily price 151, 152
Capital asset pricing model. See CAPM
capitalize() function 38
CAPM

about 117-203
Fama-French three-factor model 204-206
Fama-MacBeth regression 206, 207
rolling beta estimation 207-209
VaR, using 210, 211

cash flow 243
CBOE

option data, retrieving from 295, 296
URL 300

ceil() function 48
Census Bureau

URL 174
certain files

displaying, in specific subdirectory 63
Chicago Board Options Exchange. See

CBOE
clipboard

data, inputting from 176
closing price

and trading volume, viewing 156
Cluster 109
CND 72, 109, 110, 245, 246
CND() function 73
colors

using 137-139
comment-all-out method

about 75
example 75

comments types
first type comment 51
second type comment 52

compounded interest
defining 129, 130

Consolidated Quote dataset. See CQ dataset
Consolidated Trade dataset. See CT dataset
Constants 109
Consumer Price Index (CPI) 231
continuously compounded

interest rate 57, 58
Cook Pine Capital

URL 352
CPI (consumer price index) 26
CQ dataset 227-229
CSV file

data, inputting from 180
CT dataset

about 226
URL 226

cumulative standard normal distribution.
See CND

current price
retrieving, from Yahoo! Finance 300

[377]

D
daily price

representing, candlesticks used 151, 152
daily returns

converting, to annual
returns 190, 191

converting, to monthly
returns 187-190

data
inputting, from clipboard 176
inputting, from CSV file 180
inputting, from Excel file 179, 180
inputting, from MATLAB dataset 181
inputting, from text file 178, 179
outputting, to external files 221
outputting, to text file 222
reading, from binary file 222
retrieving, from external text file 118
retrieving, from web page 180, 181
saving, to binary file 222

DataFrame
looping through 293
used, for working with time series 183-185

dataset
URL 231, 316

datasets
merging, by date 191, 192
n-stock portfolio, forming 192, 193

data types 58, 119
date

datasets, merging by 191, 192
datetime.date.today() function 145
date variables

used, for working with time series 183
default input values

used, for functions 45
default precision

choosing 31
del() function 27
delta 258
delta_call() function 258
delta_put function 258
dictionary

looping through 294
different correlations

impact of 326, 329

different shapes
using 139

dir2() function 45, 63
dir() function

about 33, 46, 63, 102
using, for finding variables 26

DOS window
Python, launching 15
used, for launching Python 169

Down-and-out option 337
DuPont identity

working with 133, 134

E
e (2.71828) 34
Economics module 91
effective annual rate (EAR) 55
efficiency

measuring, by time spent 289
efficient frontier

constructing 211
constructing, n stocks used 217, 219
constructing, with n stocks 329
finding, based on two stocks 324, 326
optimal portfolio,

constructing 215-217
variance-covariance matrix,

estimating 212-214
variance-covariance matrix optimization

214, 215
empty shell method

about 73
describing 73, 74

Enter key 18
enumerate() function 60, 281
equal means test

performing 195
equal variances test

performing, sp.stats.bartlet used 194
error message

abcde variable, error message 25
about 16, 25

European option
about 242
versus American option 242

[378]

European options
with known dividends 250, 251

Excel file
data, inputting from 179, 180

existence
checking, of functions 46, 47

exit modes 372
exotic options

about 335
barrier options pricing, Monte Carlo

simulation used 337, 338
Monte Carlo simulation, using 335

exp() function 72
expiration dates

retrieving, from Yahoo! Finance 299
URL 299

external text file
data, retrieving from 118

F
Fama-French dataset 352
Fama-French three-factor

model 204-206
Fama-MacBeth regression 206, 207
fat tails

estimating 350, 351
Federal Reserve Bank Data Library

URL 174
Fftpack 109
fGarch 367
figure

saving, to file 159, 160
file

figure, saving to 159, 160
File | New Window Ctrl + N 75
fin101() function 64
finance related Python modules

Economics 91
Finance 91
FinDates 92
Quant 91
trytond_account_statement 91
trytond_analytic_account 91
trytond_currency 91
trytond_project 91

trytond_stock_forecast 91
trytond_stock_split 91
Ystockquote 91

financial calculator
Python, using as 64

FinDates module 92
first type comment 51
floating strikes

lookback options, pricing with 342, 343
floor function

using 28
for loop

about 277
assigning through 294
IRR, estimating via 282, 283
used, for estimating implied

volatility 278, 279
from math import * 82
F-test 194
functions

activating, import function used 48
default input values, using for 45
defining, from Python editor 47
displaying, in NumPy 102
displaying, in SciPy 102
existence, checking 46, 47
finding, from imported module 116
print() function 36
type() function 36
upper() function 37, 38

G
GARCH

about 365
GARCH (p,q) process simulating, modified

garchSim() used 367, 368
process, simulating 366

GARCH (p,q) process
simulating, modified garchSim()

used 367, 368
garchSim() R function 367
Generalized AutoRegressive Conditional

Heteroskedasticity. See GARCH
genfromtxt() function 118
geometric average 336

[379]

geometric mean
versus arithmetic mean 332

GJR_GARCH() function 371, 372
Glosten model 369
Google Finance

URL 174
graph

mathematical formulae, adding to 157, 158
simple images, adding to 158
texts, adding to 131, 132

Greek letters
for options 258, 259

GUI
used, for Python launching 13

H
head() function 298
hedging strategies 269, 270
help function

using 108
help() function 31, 32, 108, 308
help(round) function 32
help window

finding 18, 19
heteroskedasticity 355
high-frequency data

about 223
retrieving, from Google Finance 223, 224
spread estimation based 227-229
TAQ 226
TAQ database 223, 224
TORQ database 226

High minus Low (HML) 231
histogram

about 310
used, for displaying return distribution

145-148
historical price data

retrieving, from Yahoo! Finance 144, 177
HML (High Minus Low) 317

I
IBM option data

URL 295
if() function 53, 54

implied volatility
about 276
estimating, American call used 288, 289
estimating, for loop used 278, 279
estimating, while loop used 286, 287

implied volatility function
based on European call 279
based on put option model 280, 281

imported module
all functions, displaying 82
deleting 83
functions, finding from 116
location, finding 87, 88
short name, adopting for 81

import function
used, for activating functions 48

import math 83
in-and-out parity 339, 340
indentation

in Python 45, 46
input values, and option values

relationship 257
installation

Python 12
Integrate 109
interest rates

converting 55-57
internal rate of return. See IRR
International Business Machines (IBM) 10
Interpolate 109
interpolation technique 220, 221
intra-day graphical representations 154-156
intra-day pattern

URL 156
Io 109
IRR

about 136
defining 61, 63
estimating, via for loop 282, 283

IRR rule
defining 61, 63

isnan() function 282
item by item multiplication operation

performing 107
items() function 295

[380]

J
Jagannanthan model 369
January effect

testing 195
join() function 189

K
Kolmogorov-Smirnov test 349
kurtosis 351

L
LaTeX

URL 158
LEGB rule 30
len() function 39, 145
Linalg 109
linear equations

solving, SciPy used 113, 114
Linear regression and Capital Assets Pricing

Model. See CAPM
linspace() function 127
list data type 103, 104
loadmat() function 181
loadtxt() function 118
lo() function 76
log() function 72
logic relationships 110
lognormal distribution

graphical presentation 311, 312
long-term return forecast 333, 334
lookback options

pricing, with floating strikes 342, 343
loss function

for call option 240
lower partial standard

deviation (LPSD) 347, 352, 353

M
manuals, Python

finding 19, 20
online tutorials 21
PDF version 21

market returns
and stock, comparing 148

mathematical formulae
adding, to graph 157, 158

math import * 34
math module

about 72
e (2.71828) 34
importing 33
pi (3.14159265) 34

MATLAB dataset
data, inputting from 181

matplotlib
alternative installation, via Anaconda 125
installing, via ActivatePython 124, 125
URL 163
using 125-128

matplotlib module
about 87
installing 163

matrix multiplication operation
performing 105, 106

mean() function 332
meaningful variable names

choosing 25, 26
min_value variable 281
module

about 80-89
available modules, finding 86, 87
built-in modules 85
dependency approaches 91
exp() function, importing 84
importing 80
log() function, importing 84
short name, adopting for 81
specific uninstalled module, finding 90
sqrt(), importing 84

Monte Carlo simulation
used, for pricing barrier options 337, 338
using 335

monthly returns
daily returns, converting to 187-190

M.P. Visser 363
m stocks

random selection, from n
given stocks 315, 316

multiple IRRs
estimating 283

[381]

N
Ndimage 109
Nested (multiple) for loops 288
Net present value. See NPV
normal distribution

about 243
drawing 244
histogram 310
n random numbers, generating from 310
random samples, drawing from 309

normality test 349, 350
normdist() function 74
np.argmin() function 108
np.array() function 98
np.irr() function 137
np.linspace() function 112
np.min() function 108
np.npv() function 99
np.random.normal() function 128
np.size() function 97
np.std() function 97
NPV

about 59, 60
defining 135

npv_f() function 282
NPV() function 99, 281
NPV profile

about 135, 136
colors, using 137, 139
different shapes, using 139

NPV rule 59, 60
n random numbers

generating, from normal distribution 310
n-stock portfolio

forming 192, 193
n stocks

efficient frontier, constructing with 329
used, for constructing an efficient

frontier 217-219
NumPy

functions, displaying in 102
installing 96, 119

NumPy module 87
numpy.random function 308
NumPy, using

examples 97, 98

O
Odr 109
OLS regression

using 173
one dimensional time series

DataFrame, using 183-185
date variables, using 183
generating, pd.Series()

function used 182, 183
open data sources

Bondsonline 174
Bureau of Labor Statistics 174
Census Bureau 174
Federal Reserve Bank Data Library 174
Google Finance 174
Prof. French's Data Library 174
Russell indices 174
U.S. Department of the Treasury 174
Yahoo! Finance 174
Yahoo! Finance, downloading from 175

optimal portfolio
constructing 215-217

optimization 116
optimization, variance-covariance

matrix 214, 215
optimize 109
option data

retrieving, from CBOE 295, 296
retrieving, from Yahoo! Finance 297
retrieving, Yahoo! Finance 358

ordinary least square regression. See OLS
regression

over-the-counter (OTC) 335
own module

generating 50

P
p4f module

for options 248, 249
Pagan 355-358
Pandas

installing 168
used, for data manipulation 171-173

Pandas module 11

[382]

Pandas pickle format
URL 292

Pastor and Stambaugh (2003) liquidity
measure 199, 201

path
project directory, adding to 65

Path Browser 89
path function 65
payback period

defining 60
payback period rule

defining 60
payoff function

for call option 238, 239
pd.DataFrame() function 185
pd.interpolate() function 220
pd.ols function 207
pd.read_clipboard() function 176
pd.read_csv() function 180
pd.Series() function

about 182
used, for generating one dimensional

time series 182, 183
permutation() function 317
pi (3.14159265) 34
PIN (Probability of informed trading) 315
pi value

estimating, simulation used 313, 314
plt.bar() function 134
plus operation

performing 105
Poisson distribution

random numbers, generating from 315
portfolio diversification effect

graphical representation 140-142
number of stocks 142-144
portfolio risk 142-144

power function
about 30
using 28, 29

print() function 36, 308
Prof. French's Data Library

URL 174
profit function

for call option 240

program
debugging 76
debugging, from Python editor 48, 49

project directory
adding, to path 65

put-call parity
about 259
graphical representation 260, 261

put-call ratio
about 300
for shorter period 302, 303

put option 241, 243
about 47, 52
calling 49

pv() function 97
Python

about 10
addition operation 28
benefits 10, 11
division operation 28
help window, finding 18
installing 12
launching, Anaconda command

prompt used 169
launching, DOS window used 169
launching, from Anaconda 96, 97
launching, from own DOS window 15
launching, from Python command line 14
launching, Spyder used 170, 171
launching, ways 12
launching, with GUI 13, 14
modules 11
multiplication operation 28
quitting, ways 16, 17
shortcoming 11
subtraction operation 28
used, as financial calculator 64
version, finding 21
versions 12

Python code
about 71
for down-and-in put option 338

Python command line
Python, launching from 14

Python editor
functions, defining from 47
program, debugging from 48, 49

[383]

Python function
writing 44

Python home documents 20
Python Manuals

finding 20
Python module. See module
Python Package Index

URL 92

Q
quant 80
Quant module 91

R
randint() function 316
random access

versus sequential access 292
random numbers

generating, from Poisson
distribution 315

generating, from standard normal
distribution 308

generating, from uniform
distribution 312, 313

generating, with seed 114, 115, 309, 310
random.rand() function 115
random samples

drawing, from normal distribution 309
random.seed() function 371
randrange() function 316
range() function 277
read_csv() function 181
read_table() function 179
remainder 28
remove() function 317
ret_f() function 354
return

versus volatility, comparing 161, 162
return distribution

displaying, histogram used 145-148
return estimation

about 185-187
daily returns, converting to annual

returns 190, 191
daily returns, converting to monthly

returns 187, 189

Return on Equity (ROE) 133
rolling beta

estimating 207-209
Roll's model to estimate

spread (1984) 197, 198
round() function 32
r.sort() function 145
Runkle model 369
Run Module F5 72

S
SciPy

functions, displaying in 102
installing 96
interpolating in 112
stats 111, 112
subpackages 109
used, for solving linear equations 113, 114

SciPy module 72
SciPy, subpackages

Cluster 109
Constants 109
Fftpack 109
Integrate 109
Interpolate 109
Io 109
Linalg 109
Ndimage 109
Odr 109
optimize 109
signal 109
sparse 109
spatial 109
special 109
stats 109

SciPy, using
examples 98-101

second type comment 52
Securities and Exchange

Commission (SEC) 10
seed

random numbers, generating with 114, 115,
309, 310

seed() function 309, 312, 322
sequential access

versus random access 292

[384]

Shapiro-Wilk test 349
signal 109
sign() function 287
simple images

adding, to graph 158
simple interest

defining 129, 130
simulation

used, for pi value estimation 313, 314
used, for pricing call 334, 335

skewness 351, 360
Small minus Big (SMB) 231
SMB (Small Minus Big) 316
smile 360
Sobol sequence

URL 344
used, for improving efficiency 344

Sortino 347
sparse 109
spatial 109
special 109
specific function 103
specific subdirectory

certain files, displaying 63
specific uninstalled module

finding 90
sp.fv() function 100
sp.npv() function 100
sp.pmt() function 99
sp.prod() function 101
sp.pv() function 100
spread estimation

based on, high-frequency data 227-229
sp.stats.bartlet function

used, for testing equal variance 194
Spyder

URL 229
used, for launching Python 170, 171
using 229, 230

sqrt(3) command 24
sqrt() function 25, 34, 72, 80, 84
standard normal distribution

about 244
random numbers, generating from 308

stats 109, 111, 112
stats.anderson() function 349

statsmodels
about 12
installing 168
OLS regression method 173
using, for statistical analysis 173

stats.norm.cdf() function 246, 248
stats.norm.pdf() function 244
std() function 103
stock

and market returns, comparing 148
performance, comparing among 160

stock price movements
simulating 320-322

straddle trading strategy 251, 253, 254
strangle trading strategy 251
strap trading strategy 251
string.replace() function 223
strip() function 37, 38
strip trading strategy 251
sys module 21

T
tail() function 298
terminal stock prices

estimating 322, 323
text file

data, inputting from 178, 179
data, outputting to 222

texts
adding, to graph 131, 132

time value, money
defining 150

TORQ database
about 226
URL 226

Trade, Order, Report, and Quotation. See
TORQ database

trading strategies
about 251
bear spread with calls 251
bear spread with puts 251
bull spread with calls 251
bull spread with puts 251
butterfly with calls 251, 256, 257
butterfly with puts 251
calendar spread 251, 254

[385]

covered call 252
straddle 251-254
strangle 251
strap 251
strip 251

trading volume
and closing price, viewing 156

trytond_account_statement module 91
trytond_currency module 91
trytond_project module 91
trytond_stock_forecast module 91
trytond_stock_split module 91
T-test

about 193
equal means test, performing 194
equal variances test, performing 194
January effect, testing 195
performing 193, 194

ttest_1samp() function 111
tuple data type 39, 40
two strings

combining 37
two-year price movement

graphical representation 153, 154
type() function 36

U
uniform distribution

random numbers, generating from 312, 313
unique() function 228, 317
Up-and-in option 337
up-and-in parity

graphical representation 340-342
Up-and-out option 337
up-and-out parity

graphical representation 340-342
upper() function 37, 38
U.S. Department of the Treasury

URL 174
useful applications

52-week high and low trading strategy 196
Amihud's model for

illiquidity (2002) 198, 199
Pastor and Stambaugh (2003)

liquidity measure 199- 201
Roll's model to estimate

spread (1984) 197, 198

V
Value at Risk. See VaR
values

assigning, to variables 24
vanilla options 335
VaR

using 210, 211
variable

deleting 27
initializing 17
unsigning 27
values, assigning to 24
values, displaying 24

variance-covariance matrix
estimating 212, 214
optimization 214, 215

versions, Python
finding 21

Visual financial statements
URL 163

volatility
about 348, 360
over two periods, equivalency testing 354
versus return, comparing 161, 162

volatility clustering 362, 363
volatility skewness 360, 362
volatility smile 360, 362

W
web page

data, retrieving from 180, 181
web page examples

URL 163
while loop

about 284
used, for estimating implied

volatility 286, 287

X
xlim() function 130
x.sum() dot function 107

[386]

Y
Yahoo! Finance

current price, retrieving from 300
different expiring dates 299
historical price data, retrieving

from 144, 177
option data, retrieving from 297, 358
URL 174, 297

yanMonthly.pickle
URL 293

ylim() function 130
Ystockquote 91

Thank you for buying
Python for Finance

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Introduction to R for
Quantitative Finance
ISBN: 978-1-78328-093-3 Paperback: 164 pages

Solve a diverse range of problems with R, one of the
most powerful tools for quantitative finance

1.	 Use time series analysis to model and forecast
house prices.

2.	 Estimate the term structure of interest rates
using prices of government bonds.

3.	 Detect systemically important financial
institutions by employing financial
network analysis .

Python High Performance
Programming
ISBN: 978-1-78328-845-8 Paperback: 108 pages

Boost the performance of your Python programs
using advanced techniques

1.	 Identify the bottlenecks in your applications
and solve them using the best profiling
techniques.

2.	 Write efficient numerical code in NumPy and
Cython.

3.	 Adapt your programs to run on multiple
processors with parallel programming.

Please check www.PacktPub.com for information on our titles

Python Data Visualization
Cookbook
ISBN: 978-1-78216-336-7 Paperback: 280 pages

Over 60 recipes that will enable you to learn how to
create attractive visualizations using Python's most
popular libraries

1.	 Learn how to set up an optimal Python
environment for data visualization.

2.	 Understand the topics such as importing
data for visualization and formatting data for
visualization.

3.	 Understand the underlying data and how to
use the right visualizations.

Python Geospatial Development
Second Edition
ISBN: 978-1-78216-152-3 Paperback: 508 pages

Learn to build sophisticated mapping applications
from scratch using Python tools for geospatial
development

1.	 Build your own complete and sophisticated
mapping applications in Python.

2.	 Walks you through the process of building
your own online system for viewing and
editing geospatial data.

3.	 Practical, hands-on tutorial that teaches you all
about geospatial development in Python.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction and
Installation of Python
	Introduction to Python
	Installing Python
	Different versions of Python
	Ways to launch Python
	Launching Python with GUI
	Launching Python from the Python
command line
	Launching Python from our own DOS window

	Quitting Python
	Error messages
	Python language is case sensitive
	Initializing the variable
	Finding the help window
	Finding manuals and tutorials
	Finding the version of Python
	Summary
	Exercises

	Chapter 2: Using Python as an
Ordinary Calculator
	Assigning values to variables
	Displaying the value of a variable

	Error messages
	Can't call a variable without assignment

	Choosing meaningful names
	Using dir() to find variables and functions
	Deleting or unsigning a variable

	Basic math operations – addition, subtraction, multiplication, and division
	The power function, floor, and remainder
	A true power function

	Choosing appropriate precision
	Finding out more information about a specific built-in function
	Listing all built-in functions

	Importing the math module
	The pi, e, log, and exponential functions
	"import math" versus "from math import *"

	A few frequently used functions
	The print() function
	The type() function
	Last expression _ (underscore)
	Combining two strings
	The upper() function

	The tuple data type
	Summary
	Exercises

	Chapter 3: Using Python as a
Financial Calculator
	Writing a Python function
without saving it
	Default input values for a function
	Indentation is critical in Python
	Checking the existence of our functions
	Defining functions from our Python editor
	Activating our function using the import function
	Debugging a program from a Python editor
	Two ways to call our pv_f() function
	Generating our own module
	Types of comments
	The first type of comment
	The second type of comment
	Finding information about our pv_f() function

	The if() function
	Annuity estimation
	Converting the interest rates
	Continuously compounded interest rate
	A data type – list
	Net present value and the NPV rule
	Defining the payback period and the payback period rule
	Defining IRR and the IRR rule
	Showing certain files in a specific subdirectory
	Using Python as a financial calculator
	Adding our project directory to the path
	Summary
	Exercises

	Chapter 4: 13 Lines of Python to
Price a Call Option
	Writing a program – the empty
shell method
	Writing a program – the comment-all-out method
	Using and debugging other programs
	Summary
	Exercises

	Chapter 5: Introduction to Modules
	What is a module?
	Importing a module
	Adopting a short name for an imported module
	Showing all functions in an imported module
	Comparing "import math" and "from
math import *"
	Deleting an imported module
	Importing only a few needed functions
	Finding out all built-in modules
	Finding out all the available modules
	Finding the location of an imported module
	More information about modules
	Finding a specific uninstalled module

	Module dependency
	Summary
	Exercises

	Chapter 6: Introduction to
NumPy and SciPy
	Installation of NumPy and SciPy
	Launching Python from Anaconda
	Examples of using NumPy
	Examples of using SciPy

	Showing all functions in NumPy and SciPy
	More information about a specific function
	Understanding the list data type
	Working with arrays of ones, zeros, and the identity matrix
	Performing array manipulations
	Performing array operations with +, -, *, /
	Performing plus and minus operations
	Performing a matrix multiplication operation
	Performing an item-by-item multiplication operation

	The x.sum() dot function
	Looping through an array
	Using the help function related to modules
	A list of subpackages for SciPy
	Cumulative standard normal distribution
	Logic relationships related to an array
	Statistic submodule (stats) from SciPy
	Interpolation in SciPy
	Solving linear equations using SciPy
	Generating random numbers with a seed
	Finding a function from an
imported module
	Understanding optimization
	Linear regression and Capital Assets Pricing Model (CAPM)
	Retrieving data from an external text file
	The loadtxt() and getfromtxt() functions

	Installing NumPy independently
	Understanding the data types
	Summary
	Exercises

	Chapter 7: Visual Finance via Matplotlib
	Installing matplotlib via ActivePython
	Alternative installation via Anaconda
	Understanding how to use matplotlib
	Understanding simple and compounded interest rates
	Adding texts to our graph
	Working with DuPont identity
	Understanding the Net Present Value (NPV) profile
	Using colors effectively
	Using different shapes

	Graphical representation of the portfolio diversification effect
	Number of stocks and portfolio risk

	Retrieving historical price data from Yahoo! Finance
	Histogram showing return distribution
	Comparing stock and market returns

	Understanding the time value of money
	Candlesticks representation of IBM's daily price
	Graphical representation of two-year price movement

	IBM's intra-day graphical representations
	Presenting both closing price and trading volume
	Adding mathematical formulae to our graph
	Adding simple images to our graphs
	Saving our figure to a file

	Performance comparisons among stocks
	Comparing return versus volatility for several stocks
	Finding manuals, examples, and videos
	Installing the matplotlib module independently
	Summary
	Exercises

	Chapter 8: Statistical Analysis
of Time Series
	Installing Pandas and statsmodels
	Launching Python using the Anaconda command prompt
	Launching Python using the DOS window
	Launching Python using Spyder

	Using Pandas and statsmodels
	Using Pandas
	Examples from statsmodels

	Open data sources
	Retrieving data to our programs
	Inputting data from the clipboard
	Retrieving historical price data from Yahoo! Finance
	Inputting data from a text file
	Inputting data from an Excel file
	Inputting data from a CSV file
	Retrieving data from a web page
	Inputting data from a MATLAB dataset

	Several important functionalities
	Using pd.Series() to generate
one-dimensional time series
	Using date variables
	Using the DataFrame

	Return estimation
	Converting daily returns to monthly returns
	Converting daily returns to annual returns

	Merging datasets by date
	Forming an n-stock portfolio

	T-test and F-test
	Tests of equal means and equal variances
	Testing the January effect

	Many useful applications
	52-week high and low trading strategy
	Roll's model to estimate spread (1984)
	Amihud's model for illiquidity (2002)
	Pastor and Stambaugh (2003) liquidity measure
	Fama-French three-factor model
	Fama-MacBeth regression
	Estimating rolling beta
	Understanding VaR

	Constructing an efficient frontier
	Estimating a variance-covariance matrix
	Optimization – minimization
	Constructing an optimal portfolio
	Constructing an efficient frontier with n stocks

	Understanding the interpolation technique
	Outputting data to external files
	Outputting data to a text file
	Saving our data to a binary file
	Reading data from a binary file

	Python for high-frequency data
	Spread estimated based on high-frequency data

	More on using Spyder
	A useful dataset
	Summary
	Exercise

	Chapter 9: The Black-Scholes-Merton Option Model
	Payoff and profit/loss functions for the call and put options
	European versus American options
	Cash flows, types of options, a right, and an obligation
	Normal distribution, standard normal distribution, and cumulative standard normal distribution
	The Black-Scholes-Merton option model on non-dividend paying stocks
	The p4f module for options
	European options with known dividends
	Various trading strategies
	Covered call – long a stock and short a call
	Straddle – buy a call and a put with the same exercise prices
	A calendar spread
	Butterfly with calls

	Relationship between input values and option values
	Greek letters for options
	The put-call parity and its graphical representation
	Binomial tree (the CRR method) and its graphical representation
	The binomial tree method for European options
	The binomial tree method for American options

	Hedging strategies
	Summary
	Exercises

	Chapter 10: Python Loops and
Implied Volatility
	Definition of an implied volatility
	Understanding a for loop
	Estimating the implied volatility by using a
for loop
	Implied volatility function based on a European call
	Implied volatility based on a put option model
	The enumerate() function

	Estimation of IRR via a for loop
	Estimation of multiple IRRs

	Understanding a while loop
	Using keyboard commands to stop an infinitive loop
	Estimating implied volatility by using a
while loop
	Nested (multiple) for loops

	Estimating implied volatility by using an American call
	Measuring efficiency by time spent in finishing a program
	The mechanism of a binary search
	Sequential versus random access
	Looping through an array/DataFrame
	Assignment through a for loop
	Looping through a dictionary

	Retrieving option data from CBOE
	Retrieving option data from Yahoo! Finance
	Different expiring dates from Yahoo! Finance
	Retrieving the current price from Yahoo! Finance

	The put-call ratio
	The put-call ratio for a short period with a trend

	Summary
	Exercises

	Chapter 11: Monte Carlo Simulation
and Options
	Generating random numbers from
a standard normal distribution
	Drawing random samples from a normal (Gaussian) distribution
	Generating random numbers with a seed
	Generating n random numbers from a normal distribution
	Histogram for a normal distribution

	Graphical presentation of a lognormal distribution

	Generating random numbers from a uniform distribution
	Using simulation to estimate the pi value
	Generating random numbers from a Poisson distribution
	Selecting m stocks randomly
from n given stocks

	Bootstrapping with/without replacements
	Distribution of annual returns
	Simulation of stock price movements
	Graphical presentation of stock prices at options' maturity dates

	Finding an efficient portfolio and frontier
	Finding an efficient frontier based on two stocks
	Impact of different correlations

	Constructing an efficient frontier with n stocks

	Geometric versus arithmetic mean
	Long-term return forecasting
	Pricing a call using simulation
	Exotic options
	Using the Monte Carlo simulation to price average options
	Pricing barrier options using the Monte
Carlo simulation

	Barrier in-and-out parity
	Graphical presentation of an up-and-out and up-and-in parity

	Pricing lookback options with floating strikes
	Using the Sobol sequence to improve the efficiency
	Summary
	Exercises

	Chapter 12: Volatility Measures
and GARCH
	Conventional volatility
measure – standard deviation
	Tests of normality
	Estimating fat tails

	Lower partial standard deviation
	Test of equivalency of volatility over
two periods
	Test of heteroskedasticity, Breusch, and Pagan (1979)
	Retrieving option data from Yahoo! Finance
	Volatility smile and skewness
	Graphical presentation of volatility clustering

	The ARCH model
	Simulating an ARCH (1) process

	The GARCH (Generalized ARCH) model
	Simulating a GARCH process
	Simulating a GARCH (p,q) process using modified garchSim()
	GJR_GARCH by Glosten, Jagannanthan, and Runkle (1993)

	Summary
	Exercises

	Index

