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Preface
It is our firm belief that an ambitious student major in finance should learn at least 
one computer language. The basic reason is that we have entered the Big Data era. 
In finance, we have a huge amount of data, and most of it is publically available free 
of charge. To use such rich sources of data efficiently, we need a tool. Among many 
potential candidates, Python is one of the best choices.

Why Python?
There are various reasons that Python should be used. Firstly, Python is free in terms 
of license. Python is available for all major operating systems, such as Windows, 
Linux/Unix, OS/2, Mac, and Amiga, among others. Being free has many benefits. 
When students graduate, they could apply what they have learned wherever they 
go. This is true for the financial community as well. In contrast, this is not true for 
SAS and MATLAB. Secondly, Python is powerful, flexible, and easy to learn. It is 
capable of solving almost all our financial and economic estimations. Thirdly, we 
could apply Python to Big Data. Dasgupta (2013) argues that R and Python are two 
of the most popular open source programming languages for data analysis. Fourthly, 
there are many useful modules in Python. Each model is developed for a special 
purpose. In this book, we focus on NumPy, SciPy, Matplotlib, Statsmodels, and 
Pandas modules.
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A programming book written by a finance 
professor
There is no doubt that the majority of programming books are written by professors 
from computer science. It seems odd that a finance professor writes a programming 
book. It is understandable that the focus would be quite different. If an instructor 
from computer science were writing this book, naturally the focus would be 
Python, whereas the true focus should be finance. This should be obvious from the 
title of the book Python for Finance. This book intends to change the fact that many 
programming books serving the finance community have too much for the language 
itself and too little for finance.

Small programs oriented
Based on the author's teaching experience at seven schools, McGill and Wilfrid 
Laurier University (in Canada), NTU (in Singapore), and Loyola University, 
Maryland, UMUC, Hofstra University, and Canisius College (in the United States), 
and his eight-year consulting experience at Wharton School, he knows that many 
finance students like small programs that solve one specific task. Most programming 
books offer just a few complete and complex programs. The number of programs 
is far too less than enough. There are two side effects for such an approach. First, 
finance students are drowned in programming details, get intimidated, and 
eventually lose interest in learning a computer language. Second, they don't learn 
how to apply what they just learned, such as running a capital asset pricing model 
(CAPM) to estimate IBM's beta from 1990 to 2013. This book offers about 300 
complete Python programs around many finance topics.

Using real-world data
Another shortcoming of the majority of books for programming is that they use 
hypothetical data. In this book, we use real-world data for various financial topics. 
For example, instead of showing how to run CAPM to estimate the beta (market 
risk), I show you how to estimate IBM, Apple, or Walmart's betas. Rather than just 
presenting formulae that shows you how to estimate a portfolio's return and risk, the 
Python programs are given to download real-world data, form various portfolios, 
and then estimate their returns and risk including Value at Risk (VaR). When I 
was a doctoral student, I learned the basic concept of volatility smiles. However, 
until writing this book, I had a chance to download real-world data to draw IBM's 
volatility smile.
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What this book covers
Chapter 1, Introduction and Installation of Python, offers a short introduction, and 
explains how to install Python and covers other related issues such as how to launch 
and quit Python.

Chapter 2, Using Python as an Ordinary Calculator, presents some basic concepts 
and several frequently used Python built-in functions, such as basic assignment, 
precision, addition, subtraction, division, power function, and square root function.

Chapter 3, Using Python as a Financial Calculator, teaches us how to write simple 
functions, such as functions to estimate the present value of one future cash flow, 
the future value of one present value, the present value of annuity, the future value 
of annuity, the present value of perpetuity, the price of a bond, and internal rate of 
return (IRR).

Chapter 4, 13 Lines of Python to Price a Call Option, shows how to write a call option 
without detailed knowledge about options and Python.

Chapter 5, Introduction to Modules, discusses modules, such as finding all available  
or installed modules, and how to install a new module.

Chapter 6, Introduction to NumPy and SciPy, introduces the two most important 
modules, called NumPy and SciPy, which are used intensively for scientific and 
financial computation.

Chapter 7, Visual Finance via Matplotlib, shows you how to use the matplotlib module 
to vividly explain many financial concepts by using graphs, pictures, color, and size.

Chapter 8, Statistical Analysis of Time Series, discusses many concepts and issues 
associated with statistics in detail. Topics include how to download historical  
prices from Yahoo! Finance; estimate returns, total risk, market risk, correlation 
among stocks, correlation among different countries' markets; form various types  
of portfolios; and construct an efficient portfolio.

Chapter 9, The Black-Scholes-Merton Option Model, discusses the Black-Scholes-Merton 
option model in detail. In particular, it will cover the payoff and profit/loss functions 
and their graphic presentations of call and put options, various trading strategies 
and their visual presentations, normal distribution, Greeks, and put-call parity.

Chapter 10, Python Loops and Implied Volatility, introduces different types of loops. 
Then it demonstrates how to estimate the implied volatility based on both European 
and American options.
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Chapter 11, Monte Carlo Simulation and Options, discusses how to use Monte Carlo 
simulation to price European, American, average, lookback, and barrier options.

Chapter 12, Volatility Measures and GARCH, focuses on two issues: volatility measures 
and ARCH/GARCH.

What could you achieve after reading this 
book?
Here, we use several concrete examples to show what a reader could achieve after 
going through this book carefully.

First, after reading the first two chapters, a reader/student should be able to use 
Python to calculate the present value, future value, present value of annuity, IRR 
(internal rate of return), and many other financial formulae. In other words, we could 
use Python as a free ordinary calculator to solve many finance problems. Second, 
after the first three chapters, a reader/student or a finance instructor could build a 
free financial calculator, that is, combine about a few dozen small Python programs 
into a big Python program. This big program behaves just like any other module 
written by others. Third, readers learn how to write Python programs to download 
and process financial data from various public data sources, such as Yahoo! Finance, 
Google Finance, Federal Reserve Data Library, and Prof. French Data Library.

Fourth, readers would understand basic concepts associated with modules, which 
are packages written by experts, other users, or us, for specific purposes. Fifth, after 
understanding the module of Matplotlib, a reader could do various graphs. For 
instance, readers could use graphs to demonstrate payoff/profit outcomes based 
on various trading strategies by combining the underlying stocks and options. 
Sixth, readers would be able to download IBM's daily price, and S&P 500 index 
price, data from Yahoo! Finance and estimate its market risk (beta) by applying 
CAPM. They could also form a portfolio with different securities, such as risk-free 
assets, bonds, and stocks. Then, they can optimize their portfolios by applying 
Markowitz's mean-variance model. In addition, readers will know how to estimate 
the VaR of their portfolios.

Seventh, a reader should be able to price European and American options by 
applying both the Black-Scholes-Merton option model for European options only, 
and the Monte Carlo Simulation, for both European and American options. Last 
but not least, a reader learns several ways to measure volatility. In particular, they 
will learn how to use AutoRegressive Conditional Heteroskedasticity (ARCH) and 
Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) models.
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Who this book is for
If you are a graduate student major in finance, especially studying computational 
finance, financial modeling, financial engineering, and business analytics, this book 
will benefit you. If you are a professional, you could learn Python and use it in many 
financial projects. If you are an individual investor, you could benefit from reading 
this book as well.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"Depending on your computer, choose the appropriate package, for example, Python 
3.3.2 Windows x86 MSI Installer (Windows binary -- does not include 
source)."

If we have a program, we will see the following codes:

from matplotlib.finance import quotes_historical_yahoo

import numpy as np

import pandas as pd

import statsmodels.api as sm

ticker='IBM'

begdate=(2008,10,1)

enddate=(2013,11,30)

p = quotes_historical_yahoo(ticker, begdate, enddate,asobject=True, 
adjusted=True)

Any command-line input or output is written as follows:

>>>from matplotlib.pyplot import *

>>>plot([1,2,3,10])

>>>xlabel("x- axis")

>>>ylabel("my numbers")

>>>title("my figure")

>>>show()

New terms and important words are shown in bold. Words that you see on the screen, 
in menus or dialog boxes for example, appear in the text like this: "Click on Start and 
then on All Programs."
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Two ways to use the book
Generally speaking, there are two ways to learn this book: read the book and learn 
Python by yourself, or learn Python in a classroom setting. For a beginner, going 
slow is a better strategy, such as spending two weeks per chapter except Chapter 8, 
Statistical Analysis of Time Series, which needs at least three weeks. Professionals with 
basic programming experience of another computer language could go through the 
first few chapters relatively quickly and move to more advanced topics (chapters). 
They should focus on option theory, implied volatility and measures of volatility, 
and GARCH models. One feature of this book is that most chapters after Chapter 3, 
Using Python as a Financial Calculator, are loosely connected. Because of this, after 
learning the first three chapters in addition to Chapter 5, Introduction to Modules, 
readers could jump to the chapters they are interested in.

On the other hand, the book is ideal to be used as a textbook for Financial Modeling 
using Python or simply Python for finance courses to master degree students in the 
areas of quantitative finance, computational finance, or financial engineering. 
The amount of content of the book and expected effort needed is suitable for one 
semester. The students could be senior undergraduate students with a reduced 
depth. To teach undergraduate students, the last chapter should be dropped.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for 
us to develop titles that you really get the most out of. To send us general feedback, 
simply send an e-mail to feedback@packtpub.com, and mention the book title via 
the subject of your message.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.packtpub.com. If you purchased this book 
elsewhere, you can visit http://www.packtpub.com/support and register to have 
the files e-mailed directly to you.
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Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams 
used in this book. The color images will help you better understand the changes in 
the output. You can download this file from: https://www.packtpub.com/sites/
default/files/downloads/4375OS_Images.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link, 
and entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list of 
existing errata, under the Errata section of that title. Any existing errata can be viewed 
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated 
material. We appreciate your help in protecting our authors, and our ability to bring 
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.





Introduction and  
Installation of Python

In this chapter, first we offer a short introduction on why we adopt Python as our 
computational tool and what the advantages are of using Python. Then, we discuss 
how to install Python and other related issues, such as how to start and quit Python, 
whether Python is case sensitive, and a few simple examples.

In particular, we will cover the following topics:

•	 Introduction to Python
•	 Installing Python
•	 Which version of Python should we use and what is the version of our 

installed Python?
•	 Ways to launch and quit Python
•	 Error messages
•	 Python is case sensitive
•	 Initializing the variables
•	 Finding help, manuals, and tutorials
•	 Finding the Python versions
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Introduction to Python
Our society entered the information era many years ago. Actually, we are drowning 
in a sea of information, such as too many e-mails to read or too many web pages 
we could possibly explore. With the Internet, we could find a huge amount of 
information about almost everything such as important events or how to learn 
Python. We could find information for a specific firm by searching online. For 
instance, if we want to collect financial information associated with International 
Business Machines (IBM), we could use Yahoo! Finance, Google Finance, Securities 
and Exchange Commission (SEC) filings, and the company's web pages. Since we 
are confronted with a lot of publicly available information, investors, professionals, 
and researchers need a tool to process such a huge amount of information. In 
addition, our society would move towards a more open and transparent society. 
In finance, a new concept of open source finance has merged recently. Dane and 
Masters (2009) suggest three components for open source finance: open software, 
open data, and open codes. For the first component of open software, Python is one 
of the best choices. An equally popular open source software is R. In the next section, 
we summarize the advantages of learning and applying Python to finance.

Firstly, Python is free in terms of license. Being free has many benefits. Let's perform 
a simple experiment here. Let's assume readers know nothing about Python and they 
have no knowledge about option theory. How long do you think it would take them 
to run a Python program to price a Black-Scholes call option? Less than 2 hours? 
Here is what they could do; they could download and install Python after reading 
the Installing Python section of this chapter, and it would take less than 10 minutes. 
Spend another 10 minutes to launch and quit Python and also try a few examples. 
Then, read the first page of Chapter 4, 13 Lines of Python to Price a Call Option, which 
contains the code for the famous Black-Scholes call option model. In total, the 
program has 13 lines. The reader could spend the next 40 minutes typing, correcting 
typos, and retyping those 13 lines. With less than 2 hours, they should be able to run 
the program to price a call option. The cost of adopting a new computer language 
includes many aspects such as annual license cost, maintenance costs, available 
packages, and support.

Another example is related to an SEC proposal. In 2010, the SEC proposed that all 
financial institutions are to accompany their new Asset-Backed Security (ABS) with 
a computer program showing the contractual cash flows of the securities (www.sec.
gov/rules/proposed/2010/33-9117.pdf). The proposed computer language is 
Python. Obviously, any investor can access Python because it is free.
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For bond analytics or credit risks, Roger Ehrenberg (2007) argues for an open 
source approach. Whether or not ratings should be required for institutional 
investors to buy certain securities is not the issue; the essential point is getting better 
transparency and analysis of instruments constituting the investable universe. Just 
imagine what the impact would be if many financial institutions adopt the open 
source initiative by storing their own debt ratings models into the public domain 
and allowing others to contribute to its development! To contribute to such an open 
source approach, Python (or R, free software as well) would be ideal in terms of 
computational tools.

Secondly, Python is powerful, flexible, and easy to learn. It is capable of solving almost 
all our financial and economic estimations. Python is available for all major operating 
systems such as Windows, Linux/Unix, OS/2, Mac, and Amiga, among others.

Thirdly, Python is suitable for Big Data. Dasgupta (2013) argues that R and Python 
are two of the most popular open  source programming languages for data analysis. 
Compared with R, Python is generally a better overall language, especially when 
you consider its blend of functional programming with object orientation. Combined 
with Scipy/Numpy, Matplotlib, and Statsmodel, it provides a powerful tool. In this 
book, we will discuss a module called Pandas when we deal with financial data.

Fourthly, there are many useful modules for Python, such as toolboxes in MATLAB 
and packages in R. Each model is developed for a special purpose. Later in the book, 
we will touch base with about a dozen modules. However, we will pay special 
attention to five of the most useful modules in finance: NumPy, SciPy, Matplotlib, 
Statsmodels, and Pandas. The first two modules are associated with mathematical 
estimations, formulae, matrices and their manipulation, data formats, and data 
manipulations. Matplotlib is for visual presentations such as graphs. In Chapter 8, 
Introduction to the Black-Scholes Option Model, we use this module intensively to explain 
visually different payoff functions and profit/loss functions for various trading 
strategies. The Statsmodels module deals with econometrics such as T-test, F-test, 
and GARCH models. Again, the Pandas module is used for financial data analysis.

We should mention some disadvantages of Python as well. The most important 
shortcoming is the lack of support because it is free. Some experts argue that  
the Python community needs to grow and should include more statisticians  
and mathematicians.
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Installing Python
To install Python, perform the following two steps:

1.	 Go to http://www.python.org/download.
2.	 Depending on your computer, choose the appropriate package, for example, 

Python 3.3.2 Windows x86 MSI Installer (Windows binary -- does 
not include source).

At this stage, a new user could install the latest Python version. In other words, they 
could simply ignore the next section related to the version and go directly to the How 
to launch Python section.

Generally speaking, the following are the three ways to launch Python:

•	 From Python IDLE (GUI)
•	 From the Python command line
•	 From your command-line window

The three ways will be introduced in the How to launch Python?, Launch Python from 
Python command line, and The third way to launch Python sections.

Different versions of Python
One of the most frequently asked questions related to Python's installation is which 
version we should download. At this stage, any latest version would be fine, that is, 
the version does not matter. There are three reasons behind this statement:

•	 The contents of the first four chapters are compatible with any version
•	 Removing and downloading Python is trivial
•	 Different versions could coexist

Later in the book, we will explain the module dependency which is associated with 
a Python version. A module is a collection of many Python programs, written by 
one or a group of experts, to serve a special purpose. For example, we will discuss a 
module called Statsmodels, which is related to statistical and econometric models, 
linear regression and the like. Generally speaking, we have built-in modules, 
standard modules, third-party modules, and modules built by ourselves. We will 
spend several chapters on this important topic.
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In this book, we will mention about two dozen modules. In particular, we will 
discuss in detail the NumPy, SciPy, Matplotlib, Pandas, and Statsmodels modules. 
The NumPy, Matplotlib, and Statsmodels modules depend on Python 2.7 or 
above. All these packages have different versions for Python 2.x (2.5-2.6 and above, 
depending on the case).

Ways to launch Python
There are three ways to launch Python and they are explained in the  
following sections.

Launching Python with GUI
To launch Python, perform the following steps:

1.	 Click on Start and then on All Programs.
2.	 Find Python 3.3.
3.	 Click on IDLE (Python GUI) as shown in the following screenshot:

4.	 After Python starts, the following window appears:
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Assume that an estimate of $100 is expected to be received in one year with an 
annual discount rate of 10 percent. The present value of one future cash flow is  
as follows:

( )1 n
FVPV
R

=
+

          (1)

In this equation, PV is the present value, FV is the future value, R is the discount 
rate, and n is the number of periods. According to the preceding formula, we 
could manually type those values to get the present value of this one future cash 
flow. Assume that we would receive $100 in one year. If the annual discount rate 
is 10 percent, what is the present value of this $100? For this, let's take a look at the 
following lines of code:

>>>100/(1+0.1)

90.9090909090909

>>>

The triple larger than signs (>>>) is the Python prompt.

It is a good idea to create a Python icon on your desktops for your convenience. In 
addition to the preceding method, there are other methods to launch Python; see 
the next two sections: Launching Python from the Python command line and Launching 
Python from our own DOS window.

Launching Python from the Python  
command line
A new user could skip this section and go to the Quitting Python section because 
learning how to launch Python with GUI is more than enough. There are two reasons 
for this. The first is because we know how to launch Python by using Python IDLE 
or by clicking on the Python icon on our desktops, and the second reason is that we 
could save and run our Python programs easily using Python IDLE.
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To launch Python from the Python command line, we have to perform the  
following steps:

1.	 Click on Start and then on All Programs.
2.	 Find Python 3.3.
3.	 Click on Python (command line) as shown in the following screenshot:

4.	 After we click on Python (command line), we will see the following window:

Launching Python from our own DOS window
We could generate our own DOS window, and then launch Python from there. 
In addition, we could navigate to the subdirectory, which contains our Python 
programs. In order to this, perform the following steps:

1.	 Open a Window command line by clicking on Start and then enter cmd in  
the run window as shown in the following screenshot:

2.	 Type cd c:\python33 to move to the appropriate directory.
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3.	 Type python to run the software as shown in the following screenshot:

If we want to launch Python anywhere else, we have to include the path of our 
Python directory. Assume that after installation we have python33 in C:. Replace 
step 2 with the following DOS command:

set path=%path%;C:\python33

Quitting Python
Usually, we have several ways to quit Python, which are as follows:

•	 The first way to quit Python is to use Ctrl + D
•	 The second way to quit is Ctrl + Q
•	 The third way to quit is to click on File and then on Exit
•	 The fourth way is to click on X at the top-right corner of the window (that is, 

close the window)

Later in the book, we will explain how to embed certain codes to quit Python when  
a currently running program is finished.

Error messages
For the previous example, if we enter 100/(1+0.1)^2 instead of 100/(1+0.1), we 
will see the following error message, which tells us that ^ is not supported:

>>>100/(1+0.1)^2

Traceback (most recent call last):

File "<psyhell#1>, line 1, in <module>

100/(1+0.1)^2

TypeError: unsupported operand type(s) for ^: 'float' and 'int'

>>>



Chapter 1

[ 17 ]

Downloading the example code
You can download the example code files for all Packt books you have 
purchased from your account at http://www.packtpub.com. If you 
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

At this stage, a new user needs to pay attention to the last sentence of the error 
message. Obviously, the last line tells us that ^ is not supported. Again, for a power 
function, we should use double multiplications, **, instead of a karat, ^. In Chapter 
2, Using Python as an Ordinary Calculator, we will show that a true power function, 
pow(), is available.

Python language is case sensitive
Case sensitive means that x is different from X. The variable of John is different 
from the variable of john. If we assume a value for x (lowercase x) and then call X 
(uppercase X), we will see the following error message:

>>>x=2

>>>X

Traceback (most recent call last):

       File "<pyshell#1>", line 1, in <module>

           X

       NameError: name 'X' is not defined

>>>

In the preceding example, X is not assigned any value. Thus, when we call it 
by typing X, we will receive an error message. Note that the last line mentions 
NameError instead of TypeError. In Python, we use name for variables.

Initializing the variable
From the previous example, we know that after we assign a value to x, we can use x, 
which means that x is now defined in the sense of other computer languages such as 
FORTRAN and C/C++. The opposite is also true, that we could not use X if it is not 
assigned a value in Python. In other words, when we assign a value to X, we have to 
define it first. Compared to languages such as C++ or FORTRAN, we don't have to 
define x as an integer before we assign 10 to it.



Introduction and Installation of Python

[ 18 ]

Another advantage is that we could change the data type of a variable easily. For the 
FOTRAN language, if we have defined x as an integer, we cannot assign a string to 
it. Since there is only assignment in Python, we could assign any value to a variable. 
For example, we could assign 10 to x. It is legal to assign a string, such as Hello 
World, to x in the next minute. However, we should not be confused with the data 
type conversion, such as converting an integer to a string or vice versa. Conversion 
between different data types will be discussed in the later chapters.

Finding the help window
After we launch Python, typing help() would initiate the help window (as shown 
in the following lines of code). The prompt of the help window is help>. To quit the 
help window, we simply press the Enter key once or type quit. After we quit the 
help window, the Python prompt of >>> would reappear. Now, we launch the help 
window as shown in the following lines of code:

>>>help()

Welcome to Python 3.3!  This is the interactive help utility.

If this is your first time using Python, you should definitely check out 
the tutorial on the Internet at http://docs.python.org/3.3/tutorial/.

Enter the name of any module, keyword, or topic to get help on writing 
Python programs and using Python modules.  To quit this help utility and 
return to the interpreter, just type "quit".

To get a list of available modules, keywords, or topics, type "modules", 
"keywords", or "topics".  Each module also comes with a one-line summary 
of what it does; to list the modules whose summaries contain a given word 
such as "spam", type "modules spam".

help>

After typing keywords, we will have the following information:

>>>help> keywords

Here is a list of the Python keywords.  Enter any keyword to get more 
help.

False       def         if               raise

None        del         import           return

True        elif        in               try

and         else        is               while

as          except     lambda            with

assert      finally    nonlocal          yield
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break       for        not                 

class       from        or                  

continue    global      pass                

help>

On the other hand, after typing topics, we will see what is shown in the  
following screenshot:

At the moment, a new user doesn't need to understand those topics. Just remember 
that we have a command to show us all the topics we could use.

Finding manuals and tutorials
There are many ways to find Python manuals and other related materials online. We 
just mentioned two ways: from your computer and from the Python home. These 
two ways are explained in details as follows:

To implement the first method (to have it manually installed on your computer), we 
need to perform the following steps:

1.	 Click on Start and then on All Programs.
2.	 Find Python 3.3.
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3.	 Click on Python Manuals as shown in the following screenshot:

4.	 After we click on Python Manuals, we will see the following window:

From the Python home, the following documents can be downloaded:

•	 Python 3.2 documents (3.2.5, last updated on May 15, 2013) at  
http://docs.python.org/3.2/download.html

•	 Python 3.3 documents (3.3.2, last updated on August 04, 2013) at  
http://docs.python.org/3.3/download.html

•	 Python 2.7 document(2.7.5, last updated on September 20, 2013) at  
http://docs.python.org/2.7/download.html
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For new Python learners, the following are the web pages where they could find 
many tutorial materials related to Python learning:

•	 Online tutorials:
°° http://docs.python.org/3/tutorial/

°° http://docs.python.org/2/tutorial/

•	 PDF version (424 pages):

°° http://www.tutorialspoint.com/python/python_pdf_version.
htm

°° http://anh.cs.luc.edu/python/hands-on/3.1/Hands-
onPythonTutorial.pdf

Finding the version of Python
When Python is launched, the first line will show our current version. Another way 
is to issue the following two lines of Python code after we launch Python:

>>>import sys

>>>sys.version

'3.3.2 (v3.3.2:d047928ae3f6, May 16 2013, 00:03:43) [MSC v.1600 32 bit 
(Intel)]'

>>>

The first line of command imports a module called sys. A module is a collection 
of many Python programs serving a special purpose. Understanding a module 
is critical in learning Python. We will discuss this in more detail in Chapter 5, 
Introduction to Modules; Chapter 6, Introduction to NumPy and SciPy; Chapter 7, Visual 
Finance via Matplotlib; and Chapter 8, Statistical Analysis of Time Series.

Summary
In this chapter, we learned how to install Python and other related issues, such as 
how to launch and quit Python, whether Python is case sensitive, and a few simple 
examples. Since it's a simple and straightforward explanation, any reader who is 
new to Python could easily download and install Python in a few minutes. After 
that, they could try a few given examples. We also offered a brief introduction as 
to why we adopt Python as our computational tool, and what the advantages and 
disadvantages are of using Python.
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In the next chapter, you will learn some basic concepts and several frequently used 
Python built-in functions. We will demonstrate how to use Python as an ordinary 
calculator to solve many finance-related problems. For example, we could estimate 
the present value of one future cash flow, the future value of one cash flow today, the 
present value of a perpetuity, or the present value of a growing perpetuity. In addition, 
we will discuss the dir(), type(), floor(), round(), and help() functions.

Exercises
1. Use a few sentences to describe the Python software.

2. What are the advantages and disadvantages of using Python as our  
computational tool?

3. Where can we download and install Python?

4. Is Python case sensitive? What is the basic rule to define various  
variables (names)?

5. Can we use a variable without defining it first?

6. Is it possible that we use a variable before we assign a value to it?

7. Is the version of Python important at this stage? Is the version of Python important 
later in the book?

8. In how many ways can we launch Python?

9. Where can we find videos on how to install Python?

10. What is the URL for Python's homepage?

11. Estimate the area of a circle if the diameter is 10 using Python.

12. How do you assign a value to a new variable?

13. How can you find some sample examples related to Python?

14. How do you launch Python's help function?

15. Where is the location of Python on your PC (Mac)? How do we find the path?

16. What is the difference between defining a variable and assigning a value to it?



Using Python as an  
Ordinary Calculator

In this chapter, we will learn some basic concepts and several frequently used  
built-in functions of Python, such as basic assignment, precision, addition, 
subtraction, division, power function, and square root function. In short, we 
demonstrate how to use Python as an ordinary calculator to solve many  
finance-related problems.

In this chapter, we will cover the following topics:

•	 Assigning values to variables
•	 Displaying the value of a variable
•	 Exploring error messages
•	 Understanding why we can't call a variable without assignment
•	 Choosing meaningful variable names
•	 Using dir() to find variables and functions
•	 Deleting or unsigning a variable
•	 Learning basic math operations—addition, subtraction, multiplication,  

and division
•	 Learning about the power function, floor, and remainder
•	 Choosing appropriate precision
•	 Finding out more information about a specific built-in function
•	 Importing the math module
•	 The pi, e, log, and exponential functions
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•	 Distinguishing between import math and from math import *
•	 Understanding frequently used functions—print(), type(), last expression 

_, upper(), and combining two strings
•	 Learning about the tuple data type

Assigning values to variables
To assign a value to a variable is simple because unlike many other languages such 
as C++ or FORTRAN, in Python, we don't need to define a variable before we assign 
a value to it.

>>>pv=22

>>>pv+2

24

We could assign the same value to different variables simultaneously. In the 
following example, we assign 100 to the three variables x, y, and z at once:

>>>x=y=z=100

Displaying the value of a variable
To find out the value of a variable, just type its name as shown in the following code:

>>>pv=100

>>>pv

100

>>>R=0.1

>>>R

0.1

Error messages
Assuming that we issue the sqrt(3) command to estimate the square root of three, 
we would get the following error message:

>>>sqrt(3)

Traceback (most recent call last):

  File "<pyshell#17>", line 1, in <module>

    sqrt(3)

NameError: name 'sqrt' is not defined
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The last line of the error message tells us that the sqrt() function is not defined. 
Later in the chapter, we learn that the sqrt() function is included in a module called 
math and that we have to load (import) the module before we can call the functions 
contained in it. A module is a package that contains a set of functions around a 
specific subject.

Can't call a variable without assignment
Assuming that we never assign a value to the abcde variable, after typing abcde,  
we would get the following error message:

>>>abcde

Traceback (most recent call last):

  File "<pyshell#0>", line 1, in <module>

    abcde

NameError: name 'abcde' is not defined

>>>

The last line tells us that this variable is not defined or assigned. In a sense, we could 
view our value assignment as being equivalent to doing two things: assigning a 
value to a variable and defining it at the same time.

Choosing meaningful names
A perpetuity describes the situations where equivalent periodic cash flows happen 
in the future and last forever. For example, we receive $5 at the end of each year 
forever. A real-world example is the UK government bond, called consol, that pays 
fixed coupons. To estimate the present value of a perpetuity, we use the following 
formula if the first cash flow occurs at the end of the first period:

( ) CPV perpetuity
R

=           (1)

Here, PV is the present value, C is a perpetual periodic cash flow that happens at a 
fixed interval, and R is the periodic discount rate. Here C and R should be consistent. 
For example, if C is annual (monthly) cash flow, then R must be an annual (monthly) 
discount rate. This is true for other frequencies too. Assume that a constant annual 
cash flow is $10, with the first cash flow at the end of the first year, and that the 
annual discount rate is 10 percent. Compare the following two ways to name the C 
and R variables:

>>>x=10       # bad way for variable names

>>>y=0.1
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>>>z=x/y

>>>Z

100

>>>C=10       # good way for assignments

>>>R=0.1

>>>pv=C/R

>>>pv

100

Using C for our future periodic cash flow is better than x, and using R for the 
discount rate is better than y since both C and R are exactly the same as the variables 
used in equation (1), while x and y bear no specific meanings. A growing perpetuity 
is when the future cash flow grows at a constant growth rate, g. Its related present 
value is given in the following formula:

( ) CPV perpetuity
R g

=
−

          (2)

In this formula, C is the first cash flow one period from today, R is the periodic 
discount rate, and g is the growth rate. Obviously, the growth rate g should be less 
than the discount rate R. Here is a real-world example: we purchase a perpetuity bond 
with an annual payment C and an annual discount rate R. When we estimate its true 
value today, we have to consider future inflation rates. If the future annual inflation is 
CPI (consumer price index), then the growth rate will be the negative CPI.

Using dir() to find variables and functions
After assigning values to a few variables, we could use the dir() function to show 
their existence. In the following example, variables n, pv, and r are shown among 
other names. At the moment, just ignore the first five objects in the following code, 
which start and end with two underscores:

>>>pv=100

>>>r=0.1

>>>n=5

>>>dir()

['__builtins__', '__doc__', '__loader__', '__name__', '__package__', 'n', 
'pv', 'r']
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Deleting or unsigning a variable
Sometimes, when we write our programs, it might be a good idea to delete those 
variables that we no longer need. In this case, we could use the del() function to 
remove or unsign a variable. In the following example, we assign a value to rate, 
show its value, delete it, and type the variable name trying to retrieve its value again:

>>>rate=0.075

>>>rate

0.075

The value 0.075 seen in the previous code is an output, because the variable called 
rate was assigned a value. The following code is used retrieve the value of the 
deleted variable:

>>>del rate

>>>rate

Traceback (most recent call last):

File "<pyshell#72>", line 1, in <module>

    Rate

NameError: name 'rate' is not defined [End of codes]

This output tells us that the rate variable is not defined (refer to the last sentence of 
the previous output). To remove/delete/unsign several variables at once, we use a 
comma to separate those variables as shown in the following code:

>>>pv=100

>>>r=0.85

>>>dir()

['__builtins__', '__doc__', '__name__', '__package__', 'pv', 'r']

>>>del pv, r

>>>dir()

['__builtins__', '__doc__', '__name__', '__package__']



Using Python as an Ordinary Calculator

[ 28 ]

Basic math operations – addition, 
subtraction, multiplication, and division
For basic math operations in Python, we use the conventional mathematical 
operators +, -, *, and /. These operators represent plus, minus, multiplication, and 
division operations respectively. All these operators are embedded in the following 
line of code:

>>>3.09+2.1*5.2-3/0.56

8.652857142857144

Although we use integer division less frequently in finance, a user might type the 
division sign twice (//) accidentally to get a weird result. The integer division is 
done with double slash //, which would return an integer value that is the largest 
integer than the final output. The result of 7 divided by 3 is 2.33, and 2 will be the 
largest integer smaller than 2.33. This example is shown in the following code:

>>>7/3

2.3333333333333335

For Python 2.x versions, 7/3 could be 2 instead of 2.333. Thus, we have to be 
careful. In order to avoid an integer division, we could use 7/2 or 7/2., that is, at 
least one of them is a real (float) number:

>>>7//3

2

Here, n//m is equivalent to an integer function of int(n/m) as shown in the 
following code:

>>>x=7/3

>>>x

2.3333333333333335

>>>int(x)

2

The power function, floor, and remainder
For our FV=PV(1+R)^n, we use a power function. The floor function would give the 
largest integer smaller than the current value. The remainder is the value that remains 
after an integer division. Given a positive discount rate, the present value of a future 
cash flow is always smaller than its corresponding future value.
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The following formula specifies the relationship between a present value and its  
future value:

( )1 n
FVPV
R

=
+

          (3)

In this formula, PV is the present value, FV is the future value, R is the cost of capital 
(discount rate) per period, and n is the number of periods. Assume that we would 
receive $100 payment in two years and that the annual discount rate is 10 percent. 
What is the equivalent value today that we are willing to accept?

>>>100/(1+0.1)**2

82.64462809917354

Here, ** is used to perform a power function. The % operator is used to calculate the 
remainder. Refer to the following example for the implementation of these operators:

>>>17/4       # normal division

4.25

>>>17//4      # save as floor(17/4)

4

>>>17%4       # find out the remainder

1

Assume that we would receive $10 at the end of each year forever and that the first 
cash flow would occur at the end of the ninth year. What is the present value if the 
discount rate is 8 percent per year? To solve this problem, we could combine the first 
and third formulae we discussed as follows:

( )
( ) 1

1,1
1

st th
m
CPV perpetuity cash flow at m period
RR −=

+
          (4)

In this formula, C is the periodic cash flow, R is the discount rate, the first cash  
flow occurs at the mth period. Notice that when m is 1, equation (4) collapses to 
equation (1). Applying equation (4), we would get a value of $67.53 as shown in  
the following code:

>>>10/0.08/(1+0.08)**(9-1)

67.53361056274696
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A true power function 
If we deposit $100 today and the annual interest rate is 10 percent, what is the value 
of our deposit one year later? If we use FV for the future value, PV for the present 
value, R for the annual (periodic) interest rate, and n is the number of years (periods), 
we get the following formula:

( )1 nFV PV R= +           (5)

Note that the two variables R and n should be consistent. It means that if R is an 
effective monthly rate, n must be the number of months. If R is an effective annual 
rate, n must be the number of years. This is true for other frequencies as well, as 
shown in the following code:

>>>pv=100

>>>r=0.1

>>>n=1

>>>pv*(1+r)**n

110.00000000000001

Again, two multiplication signs ** stand for a power function. Actually, Python has 
a built-in function for power function, pow(x,y) for raising x to the power of y. An 
example of the power function is shown as follows:

>>>pow(2,3)

8

>>>100*pow((1+0.1),1)

110.00000000000001

Apparently, in the previous example, we use two inputs for the power function 
pow(x,y). In this two-input case, it is equivalent to x**y. Actually, the function could 
have three input variables. Using help(pow), we will find more information on this 
function refer to the following output. In the previous example, pow((1+0.1),1) 
is the same as pow(1+0.1,1). The parentheses around 1+0.1 are not necessary, but 
their usage makes the expression clearer. In Python, we have the so-called LEGB rule 
related to local variables and global variables as shown in the following table:

L Local refers to names assigned in any way within a function (def) and not 
declared global in that function.

E Enclosing refers to enclosing function locals, such as names, in the local scope 
of any and all enclosing functions (def).
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G Global refers to names such as those assigned at the top level of a module or 
declared as a global variable within a function defined by def.

B Built-in refers to names pre-assigned in the built-in modules, such as open, 
range, and SyntaxError.

To find out more information about a function, we use the help() function as follows:

>>>help(pow)

Help on built-in function pow in module builtins:

pow(...)

    pow(x, y[, z]) -> number

    With two arguments, equivalent to x**y.  With three arguments, 
equivalent to (x**y) % z, but may be more efficient (e.g. for longs).

According to the previous definition, we have an example as follows:

>>>pow(3,10,4)

1

>>>3**10%4

1

>>>3**10

59049

>>>59049%4

1

Choosing appropriate precision
The default precision for Python has 16 decimal places as shown in the following 
example. This is good enough for most finance-related problems or research:

>>>7/3

2.3333333333333335

We could use the round() function to change the precision as follows:

>>>payment1=3/7

>>>payment1

0.42857142857142855

>>>payment2=round(y,5)

>>>payment2

0.42857
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Assume that the units for both payment1 and payment2 are in millions. The 
difference could be huge after we apply the round() function with just two decimal 
places! If we use one dollar as our unit, the exact payment is $428,571. However, 
if we use millions instead and apply two decimal places, we end up with 430,000, 
which is shown in the following example. The difference is $1,429:

>>>payment1*10**6

428571.4285714285

>>>payment2=round(payment1,2)

>>>payment2

0.43

>>>payment2*10**6

430000.0

Finding out more information about a 
specific built-in function
To understand each math function, we apply the help() function, such as 
help(round), as shown in the following example:

>>>help(round)

Help on built-in function round in module builtins:

round(...)

    round(number[, ndigits]) -> number

Round a number to a given precision in decimal  

digits (default 0 digits).This returns an int when 

called with one argument, otherwise the same type as 

the number. ndigits may be negative.

Listing all built-in functions
To find out all built-in functions, we perform the following two-step approach. First, 
we issue dir() to find the default name that contains all default functions. When 
typing its name, be aware that there are two underscores before and another two 
underscores after the letters of builtins, that is, __builtins__:

>>>dir()

['__builtins__', '__doc__', '__loader__', '__name__', '__package__', 'x']
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Then, we type dir(__builtins__). The first and last couple of lines of the output 
are given as follows:

>>>dir(__builtins__)

['ArithmeticError', 'AssertionError', 'AttributeError', 

'BaseException', 'BlockingIOError', 'BrokenPipeError', 

'BufferError', 'BytesWarning', 'ChildProcessError',  

     

     

'range', 'repr', 'reversed', 'round', 'set', 'setattr', 

'slice', 'sorted', 'staticmethod', 'str', 'sum', 

'super', 'tuple', 'type', 'vars', 'zip']

Importing the math module
When learning finance with real-world data, we deal with many issues such as 
downloading data from Yahoo! finance, choosing an optimal portfolio, estimating 
volatility for individual stocks or for a portfolio, and constructing an efficient 
frontier. For each subject (topic), experts develop a specific module (package). To use 
them, we have to import them. For example, we can use import math to import all 
basic math functions. In the following codes, we calculate the square root of a value:

>>>import math

>>>math.sqrt(3)

1.732050807568772

To find out all functions contained in the math module, we call the dir() function 
again as follows:

>>>import math

>>>dir(math)

['__doc__', '__loader__', '__name__', '__package__', 'acos', 'acosh', 
'asin', 'asinh', 'atan', 'atan2', 'atanh', 'ceil', 'copysign', 'cos', 
'cosh', 'degrees', 'e', 'erf', 'erfc', 'exp', 'expm1', 'fabs', 
'factorial', 'floor', 'fmod', 'frexp', 'fsum', 'gamma', 'hypot', 
'isfinite', 'isinf', 'isnan', 'ldexp', 'lgamma', 'log', 'log10', 'log1p', 
'log2', 'modf', 'pi', 'pow', 'radians', 'sin', 'sinh', 'sqrt', 'tan', 
'tanh', 'trunc']
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To make our command simpler, we could use import math as m instead as shown 
in the following example:

>>>import math as m

>>>m.sqrt(5)

2.23606797749979

The pi, e, log, and exponential functions
Pi (3.14159265) and e (2.71828) are special values in math and finance. To show their 
values, we have the following code. The first command imports a module called math. 
A new learner just needs to memorize those commands without a deep understanding 
of their meanings. Later in the book, we will devote four chapters to modules:

>>>import math

>>>math.pi

3.141592653589793

>>>math.e

2.718281828459045

>>>math.exp(2.2)

9.025013499434122

>>>math.log(math.e) # log() is a natural log function 

1.0

>>>math.log10(10)   # log10() 

1.0

Again, we simply type pi or e to see their values. Since they are reserved values, it is 
a good idea that we don't use them as our variables and don't assign a value to them.

"import math" versus "from math import *"
To make our program simpler, it is a good idea to use from math import *. Let's use 
the sqrt() function as an example. If we use import math, we have to use math.
sqrt(2). On the other hand, if we use from math import *, we simply use sqrt(2) 
as shown in the following example:

>>>from math import *

>>>dir()
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['__builtins__', '__doc__', '__loader__', '__name__', '__package__', 
'acos', 'acosh', 'asin', 'asinh', 'atan', 'atan2', 'atanh', 'ceil', 
'copysign', 'cos', 'cosh', 'degrees', 'e', 'erf', 'erfc', 'exp', 'expm1', 
'fabs', 'factorial', 'floor', 'fmod', 'frexp', 'fsum', 'gamma', 'hypot', 
'isfinite', 'isinf', 'isnan', 'ldexp', 'lgamma', 'log', 'log10', 'log1p', 
'log2', 'modf', 'pi', 'pow', 'radians', 'sin', 'sinh', 'sqrt', 'tan', 
'tanh', 'trunc']

Now, we could call those functions or set of values, such as pi and e, directly.  
Now, math.pi is not defined if we issue it from math import * as shown in  
the following code:

>>>pi

3.141592653589793

>>>math.pi

Traceback (most recent call last):

  File "<pyshell#25>", line 1, in <module>

    math.pi

NameError: name 'math' is not defined

One of the advantages of such a treatment is to make our programming a little bit 
easier since these functions are available directly. However, if we assign a value to 
e or pi, their values would be changed with our new assignment as shown in the 
following code. Thus, we should be careful with those specific values:

>> pi

3.141592653589793

>>>pi=10

>>>pi

10

We could import a few functions from a specific module such as math as shown in 
the following example:

>>>dir()

['__builtins__', '__doc__', '__loader__', '__name__', '__package__']

>>>from math import sqrt,log

>>>dir()

['__builtins__', '__doc__', '__loader__', '__name__', '__package__', 
'log', 'sqrt']
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A few frequently used functions
There are several functions we are going to use quite frequently. In this section,  
we will discuss them briefly. The functions are print(), type(), upper(), strip(), 
and last expression _. We will also learn how to merge two string variables. The  
true power function pow() discussed earlier belongs to this category as well.

The print() function
Occasionally, we need to print something on screen. One way to do so is to apply the 
print() function as shown in the following example:

>>>import math            

>>>print('pi=',math.pi)

pi= 3.141592653589793

At this stage, a new user just applies this format without going into more detail 
about the print() function.

The type() function
In Python, the type() function can be used to find out the type of a variable as 
follows:

>>>pv=100.23

>>>type(pv)

<class 'float'>

>>>n=10

>>>type(n)

<class 'int'>

>>>

From these results we know that pv is of the type float (real number) and n is of the 
type integer. In finance, integer and float are the two most used types. Later in the 
book, we will discuss other types of data (variables).

Last expression _ (underscore)
In the interactive mode, the last printed expression is assigned to _ as shown in the 
following example:

>>>x=1.56

>>>y=5.77
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>>>x+y

7.33000000000000000001

>>>9+_

16.32999999999999998

>>>round(_,1)

16.3

Combining two strings
We can assign a string in several ways. The following three lines show two ways to 
assign a string to a variable and concatenation:

>>>x='This is '

>>>y=" a great job!"

In this assignment, one variable uses the single quotation mark, and the second one 
applies double quotation marks. The result of concatenation is shown as follows:

>>>x+y

'This is  a great job!'

The upper() function
The upper() function will convert the entire string into all capital letters as follows:

>>>x='This is a sentence'

>>>x.upper()

'THIS IS A SENTENCE'

Please pay attention to how we call such a function. This is our first time to see 
such usage of a function. To remove the leading and trailing spaces, we can use the 
strip() function. The following example uses a function called strip() that is used 
to remove the leading and trailing spaces:

>>>x=" Hello "

>>>y=x.strip()

>>>y

'Hello'

>>>
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We could combine the assignment operation and the strip() function as follows:

>>>z=" Hello   ".strip()  

If we want to know about all string functions, we can issue the dir('')  
command as follows:

>>>dir('')  # list all string functions

The output of this command is shown as follows:

>>>dir('')

['__add__', '__class__', '__contains__', '__delattr__', '__doc__', 
'__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', 
'__getnewargs__', '__gt__', '__hash__', '__init__', '__iter__', '__
le__', '__len__', '__lt__', '__mod__', '__mul__', '__ne__', '__new__', 
'__reduce__', '__reduce_ex__', '__repr__', '__rmod__', '__rmul__', '__
setattr__', '__sizeof__', '__str__', '__subclasshook__', 'capitalize', 
'center', 'count', 'encode', 'endswith', 'expandtabs', 'find', 'format', 
'format_map', 'index', 'isalnum', 'isalpha', 'isdecimal', 'isdigit', 
'isidentifier', 'islower', 'isnumeric', 'isprintable', 'isspace', 
'istitle', 'isupper', 'join', 'ljust', 'lower', 'lstrip', 'maketrans', 
'partition', 'replace', 'rfind', 'rindex', 'rjust', 'rpartition', 
'rsplit', 'rstrip', 'split', 'splitlines', 'startswith', 'strip', 
'swapcase', 'title', 'translate', 'upper', 'zfill']

>>>

To find out specific information about a string function, we can use the following code:

>>>help(''.upper)

Help on the built-in upper() function is displayed as follows:

upper(...)

    S.upper() -> string

    Return a copy of the string S converted to uppercase.

Here is another example related to a built-in function called capitalize:

>>>print(''.capitalize)

Help on the built-in capitalize() function is displayed as follows:

capitalize(...)

    S.capitalize() -> string

    Return a copy of the string S with only its first character

    capitalized.

>>>
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The tuple data type
For Python, a tuple is a data type or object. A tuple could contain multiple data types 
such as integer, float, string, and even another tuple. All data items are included in a 
pair of parentheses as shown in the following example:

>>>x=('John',21)

>>>x

('John', 21)

We can use the len() function to find out how many data items are included in each 
variable. Like C++, the subscript of a tuple starts from 0. If a tuple contains 10 data 
items, its subscript will start from 0 and end at 9:

>>>x=('John',21)

>>>len(x)

2

>>>x[0]

'John'

>>>type(x[1])

<class 'int'>

The following commands generate an empty tuple and one data item separately:

>>>z=()

>>>type(z)

<class 'tuple'>

>>>y=(1,)          # generate one item tuple

>>>type(y)

<class 'tuple'>

>>>x=(1)         # is x a tuple?

For a tuple, one of its most important features as shown in the following example, 
is that we cannot modify the value of a tuple, that is, the tuple is immutable. In the 
next chapter, we will discuss another data type called list. For a list, we can modify 
its values.

>>>investment=('NPV',100,'R=',0.08,'year',10)

>>>investment[1]

100

>>>investment[1]=345
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Traceback (most recent call last):

  File "<pyshell#3>", line 1, in <module>

    investment[1]=345

TypeError: 'tuple' object does not support item assignment

Assume that we are interested in assigning a name and age to a variable x as John 
and 21 respectively. Then we print My name is John and 21 year-old. We could 
use the tuple type. Note that %d is the format for the integer type. We will mention 
other data types in such a printing environment in later chapters:

>>>x=('John',21)

>>>print('My name is %s and %d year-old' % x)

My name is John and 21 year-old

Summary
In this chapter, we learned some basic concepts and several frequently used Python 
built-in functions such as basic assignment, precision, addition, subtraction, division, 
power function, and square root function. In short, we demonstrated how to use 
Python as an ordinary calculator to solve many finance-related problems.

For example, how to estimate the present value of one future cash flow, the future 
value of one cash flow today, the present value of a perpetuity, and the present value 
of a growing perpetuity. In addition, we discussed the dir(), type(), floor(), 
round(), and help() functions. We show how to get the list of all Python built-in 
functions and how to get help for a specific function.

Based on the understanding of the first two chapters, in the next chapter, Chapter 3, 
Using Python as a Financial Calculator, we plan to use Python as a financial calculator.

Exercises
1. What is the difference between showing the existence of our variables and 
showing their values?

2. How can you find out more information about a specific function, such  
as print()?

3. What is the definition of built-in functions?

4. What is a tuple?
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5. How do we generate a one-item tuple? What is wrong with the following way to 
generate a one-item tuple? 

>>>abc=("John")

6. Can we change the values of a tuple?

7. Is pow() a built-in function? How do we use it?

8. How do we find all built-in functions? How many built-in functions are present? 

9. When we estimate the square root of three, which Python function should we use?

10. Assume that the present value of a perpetuity is $124 and the annual cash flow is 
$50; what is the corresponding discount rate?

11. Based on the solution of the previous question, what is the quarterly rate?

12. The growing perpetuity is defined as: the future cash flow is increased at a 
constant growth rate forever. We have the following formula:

( ) CPV growing perpetuity
R g

=
−

Here PV is the present value, C is the cash flow of the next period, g is a growth rate, 
and R is the discount rate. If the first cash flow is $12.50, the constant growth rate 
is 2.5 percent, and the discount rate is 8.5 percent. What is the present value of this 
growing perpetuity?

13. For an n-day variance, we have the following formula:

2 2 2
n day n day dailynσ σ σ− − =

Here 
2
dailyσ  dailyσ  is the daily variance and dailyσ  is the  daily standard deviation 

(volatility). If the volatility (daily standard deviation) of a stock is 0.2, what is its  
10-day volatility?

14. We expect to have $25,000 in 5 years. If the annual deposit rate is 4.5 percent,  
how much amount do we have to deposit today?

15. How do we convert This is great! into all capital letters?

16. How do we limit our output to cents, such as rounding 2.567 to 2.57?
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17. What is the difference between one forward slash / and two forward slashes //?

18. We have 41 students in our class. If three students form a group for their term 
projects, how many groups would result and how many students remain? How 
about seven per group?

19. Is the lower() function a built-in function? How can you find its usage?

20. Explain the following results in terms of the round() function:

>>>x=5.566

>>>round(x,2)

5.57

21. What is the present value of a growing perpetuity when its growth rate is higher 
than the discount rate (g>R)?

( ) CPV perpetuity
R g

=
−



Using Python as a  
Financial Calculator

In this chapter, we will learn how to write simple functions such as estimation of 
the present value for a given future value, the present value of an annuity, and the 
monthly payment of our mortgage. In addition, we will show how to combine two 
dozens of small functions as a big Python program and use it for financial estimation. 
In other words, we plan to create a financial calculator using Python.

In particular, we will cover the following topics:

•	 Writing a Python function without saving it
•	 Why indentation is critical in Python
•	 Three ways to input values and a default value for an input variable
•	 Using dir() to check the existence of our newly generated function
•	 Saving our pv_f() function
•	 Activating our function from our Python editor using import()
•	 While debugging a program, activate your program from a Python editor
•	 import test01 versus from test01 import *
•	 Removing a function using the del() method
•	 Generating our own module
•	 Two types of comments
•	 The if() function
•	 Estimation of annuity



Using Python as a Financial Calculator

[ 44 ]

•	 Interest rate conversion and continuously compounded interest rate
•	 Data type – list
•	 NPV rule, payback rule, and internal rate of return (IRR) rule
•	 Showing certain files in a specific directory and path issue
•	 Using Python as a financial calculator
•	 Adding our project directory to the path

Writing a Python function  
without saving it
We start from the simplest way to write a Python program. The formula of 
estimating the present value for a given future cash flow is as follows:

( )1 n
FVPV
R

=
+

          (1)

In this equation, PV is the present value FV is the future value R is the periodic 
discount rate, and n is the number of periods. After launching Python, we just type 
the following two lines. After typing the second line, press the Enter key on our 
keyboard twice to return to the Python prompt of >>>:

>>>def pv_f(pv,r,n):

             return fv/(1+r)**n

>>>

The key word used to write a Python function is def. The function name is pv_f. The 
input variables are enclosed in the parentheses. Notice that upon pressing the Enter 
key after we type colon (:), the next line is automatically indented. Now, we are 
ready to call this present value function easily just as any Python built-in function. 
One of the wonderful features is that after typing the function name and the left 
parenthesis, that is, pv_f(, we will be given a list of input variables as shown in the 
following screenshot. This feature is not true for the Python Version 2.7.
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To execute the function, just enter a set of ordered input values, as shown in the 
following code:

>>>pv_f(100,0.1,1)

90.9090909090909

>>>pv_f(80,0.05,6)

59.69723173093019

Default input values for a function
Sometimes, we set up a default input value to call our function more efficiently. 
Here, we use the dir2() function, which we created in the last section as an 
example. If the most frequently called directory is in C: Python32, we could set 
it as our default input value. This means after we activate this function and issue 
>>>dir2(), the contents under this directory will be displayed automatically, as 
shown in the following code:

def dir2(path="c:\python32"):

    from os import listdir

    print(listdir(path))    

By the way, when a function needs inputs and there are no default input values,  
we would receive an error message when we don't have input values.

Indentation is critical in Python
Indentation plays a vital role in Python. Let's look at an R program. Anything between 
a pair of curly braces belongs to the same logic block. If we have multiple lines, the 
indentation is not important for R programs, as shown in the following code:

pv_f<-function(fv,r,n) {   # this is an R program

    pv<-fv*(1+r)^(-n)

pv

}

To achieve the same result in Python, we use indentations instead. This means that 
all the lines with the same indentation belong to the same scope, as shown in the 
following code:

def pv_f(fv,r,n):

    pv=fv/(1+r)**n

    return pv
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The following are the ways to input values:

•	 In the preceding example, pv_f(100,0.1,1), we input three values, 100, 
0.1, and 1. There is no ambiguity that 100 is the future value, 0.1 is the 
discount rate, and 1 is the number of periods since the input variables are 
arranged this way. This is the first way to input values into a function.

•	 The second way to input values is based on key words. The advantage of 
this so-called key word method is that the order of input values does not play a 
role anymore. This could reduce our careless mistakes because we don't have 
to remember the input order when we call a function. This is especially true 
when we are dealing with many functions (programs) written by different 
developers/authors:
>>>pv_f(r=0.1,fv=100,n=1)

90.9090909090909

>>>pv_f(n=1,fv=100,r=0.1)

90.9090909090909

•	 The third way is the combination of the preceding two methods: ordered 
input first and then inputs with keywords, as shown in the following code:

>>>pv=pv_f(100,r=0.1,n=1)

>>>pv2=pv_f(100,n=1,r=0.1)

A word of caution is that the third method is the ordered inputs first, then input(s) 
with key words, and not the other way around.

Checking the existence of our functions
Again, we can use the dir() function to detect the existence of our just covered 
pv_f() function, as shown in the following code:

>>>dir()

['__builtins__', '__doc__', '__name__', '__package__', 'pv_f']

To save our file, we need to perform the following simple steps:

1.	 Navigate to File | New Window Ctrl + N and type the following two-liner 
code. A careful user would notice that after pressing the Enter key at the end 
of the first line, the second line will be indented automatically. While writing 
just two lines of code, it is not obvious. However, for a block of code with 
multiple lines, a correct indentation is critical. Later in the chapter, we will 
show and discuss this issue in more detail:
def pv_f(fv,r,n):

    return fv/(1+r)**n
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2.	 Click on File and then save (Ctrl + S) to save the preceding two lines of 
code. Assume that we name the file as test01.py. The default directory is 
Python33 in C: if we have installed Python 3.3.

When we save our function, the name of the file is not related to the name of the 
function. This is especially true when our saved file contains multiple functions.

To activate our saved function, we have the two most used ways, discussed in the 
Defining a function from our Python editor and Activating our function using the import 
function sections.

While writing a Python program, we can use any editor, such as the Python editor, 
Notepad, or even MS Word. If we are using MS Word, we have to remember to 
save our program in the .txt format. However, the R editor is preferred since its 
automatic indentation and colorful highlighting, among other features, make our 
debugging job easier.

Defining functions from our Python editor
After saving our previously discussed two-line code, click on Run and then on Run 
Module F5. If there is no error, the following line will appear. By the way, if we click 
on Run before we save the program, we will be asked to save it:

>>>===========RESTART ==================

To check whether the pv_f() function is present in the memory, we type dir(), as 
shown in the following code:

>>>dir()

['__builtins__', '__doc__', '__file__', '__loader__', '__name__', '__
package__', 'pv_f']

>>>

Now, we can execute this Python program by entering a set of three input values, as 
shown in the following code:

>>>pv_f(100,0.1,1)

90.9090909090909
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As we discussed before, we could use the key word method to input values. After we 
quit and relaunch Python, the pv_f() function will be no longer available.

Activating our function using the import 
function
In the previous chapter, we learned that we could issue the import math command 
to upload the math module in order to use its included functions. Similarly, we can 
use the import function here. In other words, we have to upload or import it. Since 
we have the test01. py file saved under our default directory (Python33 in C:), 
we will use it, as shown in the following code:

>>>import test01

>>>dir()

['__builtins__', '__doc__', '__file__', '__loader__', '__name__', '__
package__', 'test01']

>>>test01.pv_f(100,0.1,1)

90.9090909090909

Since test01 could be treated the same way as the math module discussed in Chapter 
2, Using Python as an Ordinary Calculator, we have to use test01.pv() instead of 
pv_f(). See the following comparison. The ceil() function offers the smallest 
integer that is bigger than the input value:

>>>import math

>>>math.ceil(3.5)

4

>>>import test01

>>>test01.pv_f(100,0.1,1)

90.9090909090909

Debugging a program from a Python 
editor
The preceding two sections show the two ways to activate our program, that is, from 
a Python editor or using the import function. Usually, the choice should depend on 
a user's preference. However, while debugging, activating our program from our 
Python editor is much better than the second method. If we use the second method, 
our program is not updated as we normally expect.
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The following example contains a typo since we use both r (lower case) and R 
(capital letter) in the program (assume that we save it under C:\Python33 with the 
name test02.py):

def pv_f(fv,r,n):

    return fv/(1+R)**n   # a typo of r

After issuing from test02 import * and calling the function, we will see an error 
message, as shown in the following code:

>>>from test02 import *

>>>pv_f(100,0.1,1)

Traceback (most recent call last):

  File "<pyshell#1>", line 1, in <module>

    pv_f(100,0.1,1)

  File ".\test02.py", line 3, in pv_f

    return fv/(1+R)**n

NameError: global name 'R' is not defined

After correcting the typo by replacing the capital R with a lowercase r, saving our 
file, and repeating the first two lines of the preceding code, that is, from test01 
import * and pv_f(100,0.1,1), we will still have an error message. Only after 
quitting and restarting Python, can we call the updated Python program. This 
feature makes our debugging task difficult if we use the second way to load our 
updated function.

Two ways to call our pv_f() function
To call our pv_f() function included in the Python program test01.py, we can use 
import test01 or from test01 import *. Obviously, it is more convenient to use 
pv_f() instead of test01.pv_f(). To call the function directly, we use from test01 
import *. Refer to the following parallel structures:

>>>from math import *

>>>sqrt(3.5)

1.8708286933869707

>>>from test01 import * 

>>>pv_f(100,0.1,2)

82.64462809917354
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When we are sure about the existence of a specific function in test01.py, we can 
import it specifically as follows:

>>>from math import ceil,sqrt,pi

>>>from test01 import pv_f

The del() built-in function is used to remove a function or variable, as shown in the 
following code:

>>>del pv_f

>>>dir()

['__builtins__', '__doc__', '__loader__', '__name__', 

'__package__']

Generating our own module
The math module has more than two dozen functions, such as the pow(), sin(), 
and ceil() functions. It is definitely a good idea to have just one program or file or 
package or module to include all of them. Let's start from the simplest case of two 
functions. The first function is the pv_f() function we discussed before. Our second 
function is the present value of perpetuity, which has constant cash flow at the same 
interval forever. If the first cash flow occurs at the end of the first period, we have the 
following formula:

( ) cPV perpetuity
R

=           (2)

Here, c is the constant periodic cash flow occurring at the end of each period, and R 
is the periodic discount rate. For example, if we are expected to receive $10 at the end 
of each year forever, and the first cash flow would happen at the end of the first year, 
then the present value of such a perpetuity is $100 (10 / 0.1) if the annual discount 
rate is 10 percent.

Again, we need to navigate to File | (Choose) A new Window (Ctrl+N), and then 
type the following two functions:

def pv_f(fv,r,n):

    return fv*(1+r)**n

def pv_perpetuity(c,r):

    return c/r
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After executing the preceding two functions, navigate to File | Save, and give the 
name fin101.py. After issuing from fin101 import *, both the functions will  
be available:

>>>from fin101 import *

>>>pv_perpetuity(100,0.1)

1000.0

Types of comments
When we write a complex program, the flow of logic is very important. At the same 
time, some good comments or explanations will help other programmers, other users, 
and even ourselves greatly. For a program that is not well documented, its author 
might have a hard time understanding it a few months later. We could add comments 
in many places. For example, at the beginning of the program, we could write the 
name of the program, objective, input variables, output variables, author or authors 
of the program, version of the program, and contact information. Some comments 
could be long, while others could be just a phrase. To satisfy various needs, Python has 
different types of methods to add comments. When the underlying software compiles 
the program, those comments could be ignored automatically.

The first type of comment
In Python, anything after # is a comment:

>>>fv=100 # this is comment

>>>fv

100

While writing a function, we could add several short comments such as definitions  
of input variables and one or two examples to explain the usage of our function:

# present value of perpetuity

def pv_perpetuity(c,r):

    # c is cash flow

    # r is discount rate

    return c/r
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The second type of comment
If we have a one-line comment, it is quite convenient to use #. However, for  
multiple-line comments, it is cumbersome to add one # in front of each line. For 
those cases, we apply the second type of comments using a pair of triple quotation 
marks, """ and """, to circle our comments. Thus, we could add a few lines to 
explain how our pv_f() function works, as shown in the following code:

def pv_f(fv,r,n):

    """

    Objective: estimate present value

              fv: fture value

              r : discount periodic rate

              n : number of periods

        formula : fv/(1+r)**n      

           e.g.,

           >>>pv_f(100,0.1,1)

           90.9090909090909

           >>>pv_f(r=0.1,fv=100,n=1)

           90.9090909090909

           >>>pv_f(n=1,fv=100,r=0.1)

           90.9090909090909

    """

    return fv/(1+r)**n

The alignment within our triple quotation marks is not important. Nevertheless, 
a good alignment even within our second type of comments makes our programs 
more readable.

Finding information about our pv_f() function
In the previous section, we added several lines of comments and two examples.  
The beauty is that we could use those comments to help other users who need  
more information about our function:

>>>help(pv_f)

Help on function pv_f in module fin101:

pv_f(fv, r, n)

    Objective: estimate present value



Chapter 3

[ 53 ]

          fv: fture value

          r : discount periodic rate

          n : number of periods

    formula : fv/(1+r)**n      

       e.g.,

       >>>pv_f(100,0.1,1)

       90.9090909090909

       >>>pv_f(r=0.1,fv=100,n=1)

       90.9090909090909

       >>>pv_f(n=1,fv=100,r=0.1)

       90.9090909090909 

Note that only the comments immediately under the first line of def would be shown 
after we type help(pv_f). It means that the other, later comments will not be shown. 
It also means that if we add any line, such as a=1, before our comments, then nothing 
would be shown after we issue help(pv_f).

The if() function
The present value of a growing perpetuity has the following formula:

( ) cPV growing perpetuity
R g

=
−           (3)

Here, C is the first cash flow occurring at the end of the first period, R is the effective 
periodic rate, and g is the constant growth rate. The second and the third future 
cash flows will be ( )1c g+  and ( )21c g+ , respectively. A necessary condition for the 
correctness of equation (3) is that the discount rate should be greater than the growth 
rate, that is, R should be greater than g. What is the present value if C is $10, R is 10 
percent, and g is 12 percent? The wrong answer is -500. For these similar cases, we 
could use the if() function to print an error message instead of offering the wrong 
answer, as shown in the following code:

def pv_growing_perpetuity(c,r,g):

    if(r<g):

        print("r<g !!!!")

    else:

        return(c/(r-g))    
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We could try different sets of input values, as shown in the following code:

>>>pv_growing_perpetuity(10,0.1,0.08)

499.9999999999999

>>>pv_growing_perpetuity(10,0.1,0.12)

r<g !!!!

Annuity estimation
An annuity is the same periodic cash flows occurring at the same interval for n 
periods. There are two types of annuity: ordinary annuity when cash flows occur at 
the end of each period and annuity due when cash flows happen at the beginning of 
each period. Here is an example. We are going to receive $100 at the end of each year 
for the next 7 years. The formulae to estimate the present value and the future value 
of an annuity are as follows when their first cash flows happens at the end of the  
first period:

( )
( )
11

1 n
PMTPV annuity
R R

 
= − 

+  
          (4A)

( )
( )

( )11 1
1 n

PMTPV annuity due R
R R

 
= − + 

+  
          (4B)

( ) ( )1 1nPMTFV annuity R
R

 = + − 
          (5A)

( ) ( ) ( )1 1 1nPMTFV annuity due R R
R

 = + − + 
          (5B)
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Here, PV is the present value, PMT is the equal periodic payment, R is the periodic 
discount rate, and n is the number of periods. In the preceding annuity formulae, 
PMT, R, and n should be consistent. It means that PMT, R, and n should possess 
the same frequency. For example, for mortgage estimation, PMT is the monthly 
payment, R is an effective monthly rate, and n is the number of months. If the 
annuity enjoys a constant growth rate of g, its present value is as follows:

( ) 11
1

nPMT gPV growing annuity
R g R

 + = −  − +   
         (6)

Similarly, the future value of a growing annuity is as follows:

( ) ( ) ( )1 1n nPMTPV growing annuity R g
R g

 = + − + −
          (7)

Converting the interest rates
Assume that bank A offers 5 percent compounding monthly, while bank B offers 5.1 
percent compounding quarterly. Which bank should we borrow from in order to 
enjoy a lower interest rate? These examples are associated with conversion between 
different interest rates. First, let's look at the following formula used to estimate 
effective annual rate (EAR) for a given Annual Percentage Rate (APR).

1 1
mAPREAR

m
 = + − 
 

          (8)

Here, m is the compounding frequency within one year. For example, if the annual 
rate is 5 percent compounding semiannually, its equivalent effective annual rate  
will be 5.0625 percent. From the two banks' offers, we would choose the offer of  
bank A since the cost of borrowing (effective annual rate) is cheaper, as shown in  
the following code:

>>>(1+0.05/2)**2-1

0.05062499999999992

>>>(1+0.051/4)**4-1

0.051983692114066615
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For a mortgage estimate, if the annual rate is 5 percent, compounding monthly, the 
effective monthly rate will be 0.41667 (0.05/12). However, if the given rate is 5 
percent compounding semiannually, what is the corresponding effective monthly 
rate? To convert one effective interest rate to another effective interest rate, and from 
one APR to another APR, we have to perform the following steps. First, we have to 
estimate an effective rate from a given APR and compounding frequency according 
to the following formula:

effective
m

APRR
m

=           (9)

Here, Rm is the effective rate, APR / m is the annual percentage rate compounded m 
times per year, and m is the annual compounding frequency. For example, if a given 
APR is 5 percent compounding semiannually, the effective semiannual rate is 2.5 
percent. Combining equations (8) and (9), we have the following equivalency:

( ) ( )1 2

1 2
1 1

m meffective effective
m mR R+ = +           (10)

Or, we can write the following formula:

1 2

1 2

1 2

1 1
m m

APR APR
m m

   
+ = +   

   
          (11)

Here, APR1 and APR2 are the annual percentage rates and m1 and m2 are their 
compounding frequencies. To find out the effective rate with compounding 
frequency m2 for a given APR1 and m1, we have the following formula:

1

2

2

1

1

1 1
m
m

effective
m

APRR
m

 
= + − 
 

          (12)

Assume that we plan to borrow $300,000 to buy a house with a 30-year loan. What 
is the monthly payment if our bank offers us 5 percent annual rate compounding 
semiannually? From equation (4), we know that if we know R, then we can calculate 
our monthly payment (pmt) since pv is 300000 and n is 30*12. By applying equation 
(12), we would have a monthly mortgage rate of 0.4123915 percent, as shown in the 
following code:

>>>r=(1+0.05/2)**(2/12)-1

>>>r
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0.0041239154651442345

>>>pv=300000

>>>n=30*12

>>>pmt=pv*r/(1-1/(1+r)**n)

>>>pmt

1601.0720364262665

Based on the preceding estimation, the effective monthly rate is 0.41239155 percent 
and the monthly payment is $1601.07. At the end of this chapter, we have several 
related exercises; refer to 3.18, 3.19, and 3.20. 

Continuously compounded interest rate
In the previous section, our compounding frequency could be annual (m=1), 
semiannual (2), quarterly (4), monthly (12), or daily (365). If the compounding 
frequency increases further and further, such as by the hour, minute, and second, the 
limit is called continuously compounded. The following is the conversion formula:

1n 1c
APRR m
m

 = ∗ + 
 

          (13)

Here, Rc is the continuously compounded rate, ln() is a natural log function, APR is 
the annual percentage rate, and m is the compounding frequency per year. For the 
natural log function, refer to the following code:

>>>import math

>>>math.e

2.718281828459045

>>>math.log(math.e)

1.0

For example, if a given APR of 5 percent is compounded semiannually, its 
corresponding continuously compounded rate will be 4.9385225 percent, as  
shown in the following code:

>>>import math

>>>2*math.log(1+0.05/2)

0.04938522518074283
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In the next chapter, for a call option, the risk-free rate used is  
continuously compounded.

A data type – list
A list? is another type of data. Unlike a tuple, which uses parentheses, lists use 
square brackets, [ and ], as shown in the following code. A list could include 
different types of data, such as string, integer, float, and A list itself:

>>>record=['John',21,'Engineer',3]

>>>record

['John', 21, 'Engineer', 3]

Like tuples, the first data item starts with a subscript of zero. If we want to list all the 
data items from subscript 1 to the end of the list, we use record[1:], and to list all 
the data items from subscript 2 to the end of the list, we use record[2:], as shown 
in the following code:

>>>len(record)

4

>>>record[0]

'John'

>>>record[2:]

['Engineer', 3]

Unlike tuples, which are immutable, lists can be modified.

 record[0]='Mary'

>>>record[0]

'Mary'

Net present value and the NPV rule
Net present value (NPV) is defined as the difference between the present value of all 
the benefits and costs, as shown in the following formula:

( ) ( )NPV PV benefits PV costs= −           (14)
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Assume that we have a 5-year project with an initial investment of $100 million. 
The future cash flows at the end of each year for the next five years are $20m, $40m, 
$50m, $20m, and $10m, respectively. If the discount rate for such type of investments 
is 5 percent per year, should we take the project? First, we have to estimate the NPV 
of our project. Second, we have to apply the following decision rule (the NPV rule):

( )
( )

0
0

If NPV project accept
If NPV project reject

>
 <

          (15)

If we manually estimate the NPV, we can do the following calculations 

>>>-100 + 20/(1+0.05)+40/(1+0.05)**2 +50/(1+0.05)**3+20/(1+0.05)**4+10/
(1+0.05)**5

22.80998927303707

Since the NPV of our project is positive, we should accept it.

It is quite tedious to type each value. For example, we typed 0.05 (the r value) five 
times. To make our typing a little easier, we could assign a value to r, as shown in the 
following code:

>>>r=0.05

>>>-100 + 20/(1+r)+40/(1+r)**2 +50/(1+r)**3+20/(1+r)**4+10/(1+r)**5

22.80998927303707

A much better way is to generate an NPV function by entering the discount rate and 
all cash flows including today's investment. After launching Python, navigate to File 
| New Window Ctrl+N, and then type the following lines. Navigate to Run | Run 
Module 5. Note that while asking for a filename, you could enter npv_f.py:

def npv_f(rate, cashflows):

    total = 0.0

    for i, cashflow in enumerate(cashflows):

        total += cashflow / (1 + rate)**i

    return total



Using Python as a Financial Calculator

[ 60 ]

In the preceding function, the first line defines a function with the def key word. The 
function name is npv_f instead of npv. On the other hand, if we choose npv as our 
function name, and when a user chooses npv as a variable, the function would not be 
available any more. The second line defines a total variable and initializes its value 
as 0. Based on their indentations, the third and fourth lines could be considered as 
one block. The for loop has two intermediate variables i (from 0 to 5) and cashflow 
(for values -100, 20, 40, 50, 20, and 10). Notice that the cashflow and cashflows 
variables are different. The Python command of x+=v is equivalent to x=x+v. We 
will discuss the for loop and other loops in more detail in Chapter 10, Python 
Loops and Implied Volatility. If there is no error message, we could use the npv_f() 
function easily. To find information about the enumerate() function, we could use 
help(enumerate).

>>>r=0.05

>>>cashflows=[-100,20,40,50,20,10]

>>>npv_f(r,cashflows)

22.80998927303707

To make our function more user friendly, we could add the definitions of those two 
input variables along with one or two examples.

Defining the payback period and the 
payback period rule
A payback period is defined as the number of years we need to recover our initial 
investment. In the preceding example, we needed more than two years but less than 
three years to recover our $100 million investment since we recovered $60 million 
two years and $110 million in three years.

If the revenue is assumed to be distributed evenly within a year, the payback period 
of this project will be 2.8 years, as shown in the following code:

>>>40/50+2

2.8

The payback rule is that if the estimated payback period of our project is less than a 
critical value (Tcritical), we accept the project. Otherwise, we reject it, as given in the 
following conditions:

( )
( )

critical

critical

If Payback project T accept
If Payback project T reject

<
 >

          (16)
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Compared with the NPV rule, the payback period rule has many shortcomings, 
including the fact that it ignores the time value of money and cash flows after the 
payback period, and the benchmark of the critical value is ad hoc. The advantage  
is that this rule is very simple.

Defining IRR and the IRR rule
IRR is the discount rate resulting in a zero NPV. The IRR rule is that if our project's 
IRR is bigger than our cost of capital, we accept the project. Otherwise, we reject it,  
as shown in the following conditions:

( )
( )

capital

capital

If IRR project R accept
If IRR project R reject

>
 <

          (17)

The Python code to estimate an IRR is as follows:

def  IRR_f(cashflows,interations=100):

        rate=1.0

        investment=cashflows[0]

        for i in range(1,interations+1):

             rate*=(1-npv_f(rate,cashflows)/investment)

        return rate 

At this stage, this program is quite complex. If a user cannot grasp its meaning, it this 
won't impact on them understanding the rest of the chapter. The range(1,100+1) 
statement will give us the range from 1 to 101. The i variable takes values from 1 to 
101. In other words, the fifth line will repeat 101 times. An assumption behind the 
fifth line is that R and NPV are negatively correlated. In other words, an increase in 
discount rate R leads to a smaller NPV value.

The key is the fifth line, rate*=(1-npv_f(rate,cashflows)/investment). Let us 
simplify it as the following equation:

( )1 1i iR R k+ = ∗ −
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If Ri leads to a positive NPV value, we would increase our discount rate, that is, Ri+1 
will be bigger than Ri, that is, k will be a small negative number. On the other hand, 
if Ri leads to a negative NPV value, we would reduce our discount rate, that is, a 
positive k. The following result is based on the first round of the loop when R is  
100 percent:

>>>cashflows=[-100,20,40,50,20,10] # cash flows

>>>npv_f(1,cashflows)              # R(1) is 100%

-72.1875                            # negative NPV  

>>>cashflows[0]                    # we would reduce R

-100

>>>k=npv_f(1,cashflows)/cashflows[0]

>>>k                               # k is positive     

0.721875 

>>>1*(1-k)

0.27812499999999996                 # R(2) will be 0.278

The IRR_f() function depends on the npv_f() function we generated before, as 
shown in the following code:

>>>from npv_f import *

>>>cashflows=[-100,20,40,50,20,10]

>>>x=IRR_f(cashflows)

>>>x

0.13601259394401546

Thus, if our cost of capital is 5 percent, we accept the project. We can verify the 
preceding result by using the npv_f function and use it as our new discount rate,  
as shown in the following code:

>>>npv_f(r,x)

-1.4210854715202004e-14

Showing certain files in a specific 
subdirectory
Sometimes we want to know which files are available under a specific directory or 
subdirectory. Assume that we save both npv_f.py and pv_f.py at C:\Python33\. 
To double check their existence, we have the following code:

>>>from os import listdir

>>>listdir("c:\Python33")



Chapter 3

[ 63 ]

Actually, we can create a function called dir2() to mimic the dir() function. The 
difference is that the dir() function lists variables and functions in the memory, 
while the dir2() function shows files in a given directory. Thus, the dir() function 
does not need an input, while our dir2() function needs an input value, that is, a 
directory, as shown in the following code:

def dir2(path):

    from os import listdir

    print(listdir(path))    

After we save dir2.py at C:\Python33\, we issue the following command to  
view it:

>>>from dir2 import *

>>>path='c:\python33'

Using Python as a financial calculator
Based on what we have learned in this chapter, we are ready to put together about 
two dozen functions related to finance 101 or other finance courses, and call our final 
big program fin101.py. After debugging all the errors, we could call this module 
(program) easily by issuing the command from fin101 import *. A more detailed 
procedure of how to generate such an R-based financial calculator is as follows:

1.	 Create an empty Python file called fin101.py and save it under our default 
directory, that is, Python33 in C:, or other designated directory.

2.	 Add the pv_f() function to fin101.py, and debug the program until it is 
error free.

3.	 Repeat the previous step by adding one function at a time until fin101.py 
includes all our functions.

4.	 Generate a function called fin101, which is used to offer a list of all our 
included functions. A few lines are shown in the following code. Assuming 
that our fin101.py file has only two functions, we could generate a very 
simple fin101() function, as shown in the following code:
def fin101():

    """

    1) Basic functions:

       PV:  pv_f,pv_annuity, pv_perpeturity

       FV:  fv_f, fv_annuity, fv_annuity_due

    2) How to use pv_f?

       >>>help(pv_f)

    """
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5.	 To use this function, we have the following code. Assume here that the file 
called fin101.py includes three functions, pv_f(), fv_f(), and fin101(), 
as shown in the following code:

>>>from fin101 import *

>>>help(fin101)

Adding our project directory to the path
In the previous discussion, we assumed that all our programs are saved under our 
default directory, that is, Python33 in C: or other similar directories. Obviously, it is 
not convenient if we plan to save our Python programs for a specific project under 
our designated directory. Assume that all of our programs related to our investment 
courses are located at C:\yan\Teaching\Python_for_Finance\codes_chapters\. 
To include it in our path, we have the following Python code:

import sys

myFolder="C:\\Yan\\Teaching\\Python_for_Finance\\codes_chapters"

if myFolder not in sys.path:

           sys.path.append(myFolder)

To double check, we use the print(sys.path) command, as shown in the  
following code:

>>>import sys

>>>print(sys.path)

['', 'C:\\Python33\\Lib\\idlelib', 'C:\\windows\\system32\\python33.
zip', 'C:\\Python33\\DLLs', 'C:\\Python33\\lib', 'C:\\Python33', 'C:\\
Python33\\lib\\site-packages', 'C:\\Yan\\Teaching\\Python_for_Finance\\
codes_chapters']

An alternative way is to use the path function, as shown in the following code  
(only a few lines are shown to save space):

>>>import os

>>>help(os.path) 

Help on module ntpath:

NAME

    ntpath - Common pathname manipulations, WindowsNT/95 version.



Chapter 3

[ 65 ]

The following table summarizes the functions that we can include in our big Python 
program to have most of the functions of a financial calculator. The table has the 
following notations:

•	 PV is the present value
•	 FV is the future value
•	 R is the rate of interest for this period (discount rate)
•	 n is the number of periods
•	 C is a recursive cash flow for a perpetuity or annuity
•	 PMT is a recursive cash flow for a perpetuity or annuity (same as C)
•	 g is the growth rate for a growing perpetuity (annuity)
•	 APR is the annual percentage rate
•	 Rc is continuously compounded rate
•	 m is the compounding frequency each year

Note that C, R, and n should be consistent, that is, with the same frequency (unit). 
The recommended formulae for a Python financial calculator are as follows:

( )1 nFV PV R= +
( )1 n
FVPV
R

=
+

( ) cPV perpetuity
R

=
Assume that the first cash flow occurs 
at the end of the first period

( ) cPV growing perpetuity
R g

=
−

Assume that the first cash flow occurs 
at the end of the first period. R > g

( )
( )
11

1 n
PMTPV annuity
R R

 
= − 

+  

Assume that the first cash flow occurs 
at the end of the first period

( ) ( )1 1nPMTFV annuity R
R

 = + − 
Assume that the first cash flow occurs 
at the end of the first period

PV (perpetuity due) = PV(perpetuity)*(1+R) Due: cash flow occurs at the begin-
ning of each period

PV (annuity due) = PV(annuity) *(1+R) FV(annuity due) = FV(annuity) *(1+R)
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PV (bond)=PV(coupons) + PV(face value)
( )

( ) ( )
11

1 1n n
c FVPV bond
R R R

 
= − + 

+ +  

1 1
mAPREAR

m
 = + − 
 

•	 EAR: It is the effective annual 
rate

•	 APR: It is the annual percentage 
rate

•	 m: It is the compounding 
frequency per year

From one APR to another APR
For example, APR1, m1 and m2 are given, 
what is APR2?

1 2

1 2

1 2

1 1
m m

APR APR
m m

   
+ = +   

   

From one effective rate to another  
effective rate ( ) ( )1 2

1 2
1 1

m meffective effective
m mR R+ = +

From one APR to continuously  
compounded rate, Rc 1n 1c

APRR m
m

 = ∗ + 
 

From Rc to APR
1

cR
mAPR m e

 
= ∗ − 

 

Summary
In this chapter, we learned how to write simple functions, such as functions to 
estimate the present value of one future cash flow, the future value of one present 
value, the present value of annuity, the future value of annuity, the present value of 
perpetuity, the price of a bond, and Internal Rate of Return (IRR). Obviously, it is 
difficult and time consuming to activate several dozens of small functions separately. 
How to combine many small functions into a single Python program was be the 
focus of this chapter. In other words, we planned to generate a Python program 
(module) called fin101.py and used it as a financial calculator. After launching 
Python, we issued one command from fin101 import * to activate or load or 
import all of our functions. To sum it up, after reading this chapter, you should be 
able to write a Python program (module), including almost all the formulae used in 
courses such as corporate finance and investment.
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In Chapter 4, 13 Lines of Python to Price a Call Option, we will show how to write a 
Python program to price a call option. In total, there are only 13 lines of code. To 
make it suitable for any and all backgrounds, there are no mathematic formulae 
related to the option theory.

Exercises
1. How do we generate a Python program without saving it? Please generate a 
function that triples any input value.

2. How do we use comments effectively when we write a Python program?

3. What are the advantages and disadvantages of using a default input value  
or values?

4. In this chapter, while writing a present value function, we use pv_f(). Why  
not use pv(), the same as the following formula?

( )1 n
FVPV
R

=
+

          (1)

Here PV is the present value, FV is the future value, R is the periodic discount rate, 
and n is the number of periods.

5. How do we debug a complex Python program?

6. What is the efficient way to test a Python program?

7. Why is indentation critical in Python?

8. How to put two formulae together, such as the present value of one future cash 
flow and the present value of an annuity?

9. How many types of comments are available? How do we use them effectively?

10. Write a fin101.py program and put together as many formulae as possible, 
such as pv_f(), pv_perpetuity(), pv_perpetuity_due(), dpv_annuity(), dpv_
annuity_due(), fv_annuity(), among others.

11. Assume that we have a set of small programs put together called fin101.py. 
What is the difference between the two Python commands, import fin101 and 
from fin101 import *?

12. How to prevent erroneous inputs such as negative interest rate?
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13. We know that the following code works. Here we assume that C:\Python33 exists.

>>>from os import listdir

>>>listdir("c:\python33") 

However, the following function does not work. Why?

def dir3(path):

    from os import listdir

    listdir(path)    

14. Assume that both npv_f.py and irr_f.py exist under C:\Python32\. What is 
wrong with the following code? 

>>>from irr_f import *

>>>import npv_f

>>>dir()

['IRR_f', '__builtins__', '__doc__', '__name__', '__package__', 'glob', 
'npv_f']

>>>IRR_f(0.04,[-100,50,50,50])

Traceback (most recent call last):

  File "<pyshell#22>", line 1, in <module>

    IRR_f(0.04,[-100,50,50,50])

  File "C:\Python32\irr_f.py", line 3, in IRR_f

investment = cashflows[0] 

TypeError: 'float' object is not sub

15. Write a Python program to estimate payback period. For example, the initial 
investment is $256, and the expected future cash inflows in the next 7 years will be 
$34, $44, $55, $67, $92, $70, and $50. What is the project's payback period in years?

16. If the discount rate is 7.7 percent per year, what is the discounted payback 
period? Note: The discount payback period looks at how to recover our initial 
investment by checking the summation of present values of future cash flows.

17. Assume that we have a directory C:\python32 and we plan to list all Python 
programs under it with a .py extension. We could use the following code to  
achieve this:

>>>import glob

>>>glob.glob("c:\python33\*.py")    
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Write a Python function called dir2() with an input string variable, that is, we can 
call it dir2("c:\python32\*.py").

18. Write a Python program to convert a given annual percent rate with 
compounding frequency to another effective rate and APR.

1 2

1 2

1 2

1 1
m m

APR APR
m m

   
+ = +   

   

20. Write a Python conversion code to convert one rate to another by combining the 
following equations:

1 2

1 2

1 2

1 1
m m

APR APR
m m

   
+ = +   

   

1c

m
R APRe

m
 = + 
 

3.21 Based on the following code, write a Python program to add our path, such as 
addPath('c:\my_project'):

>>>import sys

>>>myFolder="C:\\Python_for_Finance\\codes_chapters"

>>>if myFolder not in sys.path:

           sys.path.append(myFolder)

22. Assume that we have 10 projects under 10 directories, such as C:\teaching\
python\, c:\projects\python\, c:\projects\portfolio\, and c:\projects\
investments\. Write a Python program (module) that has 10 functions with 
default input values of those 10 directories. After running the first function, the path 
of our first project will be automatically added to our path.





13 Lines of Python to  
Price a Call Option

To many readers, option theory is like rocket science. In order to make option theory 
less intimidating, we deliberately avoided any mathematical formula in this chapter. 
Literally, the focus of the whole chapter is around 13 lines of Python code. An option 
buyer pays to acquire the right to buy (or sell) something in the future while an 
option seller receives an upfront payment to bear an obligation to sell to (or buy 
from) the option buyer. A call option buyer has the right to buy a stock at a fixed 
price and at a fixed date in the future. A European option can only be exercised when 
the option expires, while an American option could be exercised any time before or 
at the maturity date.

In this chapter, we will cover the following topics:

•	 13 lines of Python code to price a call option
•	 Writing a Python function without saving it
•	 Using the empty shell method to write a complex Python program
•	 Using the comment-all-out method to write a complex Python program
•	 How to debug other programs

We have the following five lines of Python code to price a European call option:

from math import *

def bs_call(S,X,T,r,sigma):

    d1 = (log(S/X)+(r+sigma*sigma/2.)*T)/(sigma*sqrt(T))

    d2 = d1-sigma*sqrt(T)

    return S*CND(d1)-X*exp(-r*T)*CND(d2)
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The first line imports the math module since we need the log(), sqrt(), and exp() 
functions in our program. To price a call, we have five input variables: S is the 
current stock price, X is the exercise price (a fixed price), T is the maturity (in years), 
r is the continuously compounded risk-free rate, and sigma is the volatility of the 
underlying security (such as a stock). Since our imported math module does not 
include a cumulative standard normal distribution (CND) in the previous program, 
we have to write a Python program ourselves. Obviously, if we could import a 
module with the CND function, as shown in the following code, we could price a 
call option with just five lines! In Chapter 6, Introduction to NumPy and SciPy, we will 
show you how to achieve this by using a module called SciPy:

def CND(X):

  (a1,a2,a3,a4
,a5)=(0.31938153,-0.356563782,1.781477937,-1.821255978,1.330274429)

  L = abs(X)

  K=1.0/(1.0+0.2316419*L)

  w=1.0-1.0/sqrt(2*pi)*exp(-L*L/2.)*(a1*K+a2*K*K+a3*pow(K,3)+a4*pow(K,4)+
a5*pow(K,5))

  if X<0:

       w = 1.0-w

  return w

For the CND function, X is the input value. The second line assigns five values to a1, 
a2, a3, a4, and a5. A tuple is used to save space. After launching Python, click on 
File | New Window Ctrl + N, then type the previous 13 lines of code. After typing, 
we will save the file, click on Run, and then click on Run Module F5. If there is no 
error, we will see the following result:

>>>===========RESTART ==================

Now, we are ready to use our just finished Python program to price a call option. 
With a set of input values of S, X, T, r, and sigma, we could estimate the Black-
Scholes' call option easily. Based on the following set of input values, the call price is 
$2.28:

>>>bs_call(40,42,0.5,0.1,0.2)

2.2777859030683096 

Until now, we know that there are two separate functions associated with the 
pricing of a call option with a total of 13 lines. This is a perfect case based on which 
we could explain how to write a relatively complex Python program. For the rest of 
the chapter, we will show two ways of writing a Python program: the empty shell 
method and comment-all-out method.
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Writing a program – the empty  
shell method
To vividly describe this method, we call it the empty shell method. The method 
works like this: generate an empty shell first and test it, then add one line and test it. 
If there is no error, add one more line and test the program. Repeat this procedure 
until you finish the whole program. The CND function is used as an example in the 
following case:

1.	 After launching Python, click on File then New Window Ctrl + N. Generate 
the following empty shell:
def CND(x):

    return x

2.	 Click on File | Save; for example, save it as cnd.py.
3.	 Click on Run and then click on Run from module F5. The following line  

will appear:
>>>===========RESTART ==================

4.	 To test our program, we will enter various values. If we enter 1, the output 
would be 1. If we enter 5, then the output will be 5, as shown in the  
following example:
>>>CND(1)

1

5.	 We add one line as shown in the following code:
def CND(x):

    (a1,a2,a3,a4,a5)=(0.31938153,-0.356563782,1.781477937,-1. 
821255978,1.330274429)

    return a1

6.	 Note that the return value is a1 instead of x. Click on Run and then  
click on Run from module F5; you will see that the following line appears:
>>>===========RESTART ==================

7.	 We could test this program by entering any value. Here is an example:
>>>CND(1)

0.31938153

8.	 Repeat the previous step until we complete this CND() function (program) as 
shown in the following code:
from math import *

def CND(X):
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  (a1,a2,a3,a4,a5)=(0.31938153,-0.356563782,1.781477937, 
  -1.821255978,1.330274429)

  L = abs(X)

  K=1.0/(1.0+0.2316419*L)

  w=1.0-1.0/sqrt(2*pi)*exp(-L*L/2.)*(a1*K+a2*K*K+a3*pow(K,3) 
+a4*pow(K,4)+a5*pow(K,5))

  if X<0:

       w = 1.0-w

  return w

9.	 The line from math import * is needed since we are using the sqrt() 
function contained in the math module of our CND() function. We could  
test this function with different input values as follows:
>>>CND(0)

0.5000000005248086

>>>CND(-2.3229)

0.010092238515047591

>>>CND(1.647)

0.9502209933627817

10.	 Since a standard normal distribution is symmetric, its cumulative 
distribution will be 0.5 at 0. It is also well known that a z value of -2.33 
corresponds to 1 percent and 1.647 for 95 percent. We could use the Excel 
normdist() function to verify our CND function. The structure of the related 
Excel function is normdist(x, mean, standard deviation, cumulative). The last one 
takes 0 for the normal distribution and 1 for the cumulative distribution as 
shown in the following screenshot:
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Writing a program – the comment-all-out 
method
Here is the logic behind this comment-all-out method: type all the lines and then 
comment them all. After that, we release one line at a time to debug. We use the 
Black-Scholes' call option as an example in the following case:

1.	 Launch Python, click on File | New Window Ctrl + N. Generate the five 
lines of code mentioned in step 3. We include several bugs on purpose.

2.	 Click on File and save it.
3.	 Comment out the entire program by using a pair of triple quotation marks. 

Since we need some output, we add a return line as follows:
def bs_call(S,X,T,r,sigma):

    """

    d1 = (lo(S/X)+(r+sigma*sigma/2.)*T)/(sigma*sqrt(T))

    d2 = d1-sigmasqrt(T)

    return SCN(d1)-X*exp(-r*T)*CND(d2)

    """

return (X)

4.	 Again, click on Run and then Run from module F5. We will see that the 
following output appears:
>>>===========RESTART ===============

5.	 We test it by using any set of input values as follows:
>>>bs_call(40,40,0.5,0.1,0.2)

40

>>>bs_call(40,42,0.5,0.1,0.2)

42

6.	 Note that the output takes the value of the second input variable since we 
designed it this way.

7.	 The last step is to release one line at a time. If there is an error or errors, 
modify the line accordingly:
defs_call(S,X,T,r,sigma):

    d1 = (lo(S/X)+(r+sigma*sigma/2.)*T)/(sigma*sqrt(T))

    """
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    d2 = d1-sigmasqrt(T)

    return SCN(d1)-X*exp(-r*T)*CND(d2)

    """

    return(x)

8.	 When calling the function, we will see an error message meaning that the 
lo() function does not exist. Then we realize that we mistyped log(S/X)  
as lo(S/X) as shown in the following code:
>>>bs_call(40,40,0.5,0.1,0.2)

Traceback (most recent call last):

  File "<pyshell#52>", line 1, in <module>

    bs_call(40,40,0.5,0.1,0.2)

  File "<pyshell#49>", line 2, in bs_call

    d1 = (lo(S/X)+(r+sigma*sigma/2.)*T)/(sigma*sqrt(T))

NameError: global name 'lo' is not defined

9.	 Repeat step 4 until we finish the whole program.

Using and debugging other programs
Quite often than not, we might start our project based on a program or programs 
written by others, such as the programs by our fellow researchers, other students, 
teachers, programs downloaded from the Internet, or the old programs we wrote 
ourselves a long time ago. As the first step, we need to know whether our borrowed 
program contains any errors. These two methods could be used to debug such a 
program. In a sense, the second method, comment-all-out method, is preferred since 
it might save us some typing or copy-and-paste time. To debug other programs, the 
key is to find the locations of the errors. Here is a very useful Python program to 
get data from Yahoo! Finance: http://goldb.org/ystockquote.html. A beginner 
could download the program to try small functions contained in the program.

Summary
In this chapter, we deliberately avoided any mathematical formula related to the 
option theory. Thus, within a short period of time, such as less than two hours, a 
reader who has no clue about the option theory could price a European call option 
based on the famous Black-Scholes model.
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In Chapter 5, Introduction to Modules, we will introduce modules formally, and it is the 
first chapter of a three-chapter block that focuses on modules. A module is a package 
or a set of programs written by one or a group of experts for a specific purpose. 
For example, in Chapter 6, Introduction to NumPy and SciPy, we will show that five 
lines, instead of 13 lines, could be used to price a call option since we could use the 
cumulative standard normal distribution function contained in the SciPy module.

Exercises
1. Write a Python program to price a call option.

2. Explain the empty shell method that is used while writing a complex  
Python program.

3. Explain the logic behind the so-called comment-all-out method when writing  
a complex Python program.

4. Explain the usage of a return value when we debug a program.

5. When we write the CND, we could define a1, a2, a3, a4, and a5 separately. What 
are the differences between the following two approaches?

Current approach:

(a1,a2,a3,a4
,a5)=(0.31938153,-0.356563782,1.781477937,-1.821255978,1.330274429)

An alternative approach:

a1=0.31938153

a2=-0.356563782

a3=1.781477937

a4=-1.821255978

a5=1.330274429

6. What are the definitions of effective annual rate, effect semi-annual rate, and risk-
free rate for the call option model? Assuming that the current annual risk-free rate 
is 5 percent, compounded semi-annually, which value should we use as our input 
value for the Black-Scholes call option model?

7. What is the call premium when the stock is traded at $39, the exercise price is $40, 
the maturity date is three months, the risk-free rate is 3.5 percent (compounding 
continuously), and the volatility is 0.15 per year?
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8. Repeat the previous exercise if the risk-free rate is still 3.5 percent per year but 
compounded semiannually.

9. What are the advantages and disadvantages of using other programs?

10. How to debug other programs?

11. Write a Python program to convert any given annual percentage rate (APR)  
that is compounded m times per year to a continuously compounded interest rate.

12. How do you improve the accuracy of the cumulative normal distribution?

13. What is the relationship between APR and a continuously compounded rate (Rc)?

14. A stock has the current stock price of $52.34. What is its call price if the exercise 
price is the same as its current stock price, matures in six months with a 0.16 annual 
volatility, and the risk-free rate is 3.1 percent (compounded continuously)?

15. For a set of S, X, T, r, and sigma, we could estimate a European call option by 
using those 13 lines of Python codes. When the current stock price, S, increases while 
other input values are the same, will the call price increase or decrease? Why?

16. Show the previous result graphically.

17. When the exercise price, X, increases, the value of a call will fall. Is this  
true? Why?

18. If other input values are constant, the value of the call premium will increase if 
the sigma of the stock increases. Is this true? Why?

19*. For a set of input values of S, X, T, r, and sigma, we could use the code in this 
chapter to price a European call option, that is, C. On the other hand, if we observe 
a real-world price of call premium (Cobs) with a set of values S, X, T, and r, we could 
estimate an implied volatility (sigma). Specify a trial-and-error method to roughly 
estimate the implied volatility (if a new learner could not get this question, it is 
perfectly fine since we will devote a whole chapter to discuss how to do it).

20*. According to the so-called put-call parity, holding a call option with enough 
cash at maturity (X dollars) is equivalent to holding a put option with a share of 
underlying stock in hand. Here, both call and put options have the same exercise 
price (X) with the same maturity (T) and both are European options. If the stock price 
is $10, the exercise price is $11, maturity is six months, and the risk-free rate is 2.9 
percent (compounded semi-annually), what is the price of a European put option?* 
Indicates an advanced level question



Introduction to Modules
In this chapter, we will discuss modules, which are packages written by experts or 
any individual to serve special purposes. In this book, we will use about a dozen 
modules in total. Thus, knowledge related to modules is vitally important in our 
understanding of Python and its application to finance.

In particular, we will cover the following topics:

•	 What is a module and how do we import a module?
•	 Showing all functions contained in an imported module
•	 Adopting a short name for an imported module
•	 Comparing between import math and from math import *
•	 Deleting an imported module
•	 Importing a few functions from a module
•	 Finding out all built-in modules and all available (reinstalled) modules
•	 How to find a specific uninstalled module
•	 Finding the location of an imported module
•	 Module dependency
•	 One super package including many modules
•	 Online searching of modules and videos on how to install a module
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What is a module?
A module is a package that is written by experts, users, or even a new beginner who 
is very good in a specific area to serve a specific objective. For example, a Python 
module is called quant, which is for quantitative financial analysis. The quant 
combines SciPy and DomainModel. The module contains a domain model that has 
exchanges, symbols, markets, and historical price, among other things. Modules 
are very important in Python. In this book, we will mention about a dozen modules 
implicitly or explicitly. In particular, we will discuss five modules in detail: NumPy 
and SciPy in Chapter 6, Introduction to NumPy and SciPy; Matplotlib in Chapter 7, 
Visual Finance via Matplotlib; and Pandas and Statsmodels in Chapter 8, Statistic 
Analysis of Time Series. As of November 6, 2013, there are 24,955 Python packages 
with different areas available according to the Python Package Index at  
https://pypi.python.org/pypi?%3Aaction=browse. For the financial  
and insurance industry, there are 687 modules currently available.

Importing a module
Assume that we want to estimate the square root of the number three. However, 
after issuing the following lines of code, we would encounter an error message:

>>>sqrt(3)

SyntaxError: invalid syntax

>>>

The reason is that the sqrt() function is not a built-in function. To use the sqrt() 
function, we need to import the math module first as follows:

>>>import math

>>>x=math.sqrt(3)

>>>round(x,4)

1.7321

To use the sqrt() function, we have to type math.sqrt() if we use the import 
math command to upload the math module. In addition, after issuing the command 
dir(), we will see the existence of the math module, which is the last one in the 
output shown as follows:

>>>dir()

['__builtins__', '__doc__', '__name__', '__package__', 'math']
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In addition, when a module is reinstalled, we could use import x_module to upload 
it. For instance, the math module is a built-in module, and it is preinstalled. Later in 
the chapter, we show how to find all built-in modules. In the preceding output, after 
issuing the command dir(), we also observe __builtins__. This __builtins__ 
module is different from other built-in modules, such as the math module. It is for all 
built-in functions and other objects. Again, we could issue dir(__builtins__) to 
list all built-in functions as shown in the following screenshot:

Adopting a short name for an imported 
module
Sometimes, the name of a module is long or difficult to type. To save some typing 
effort during our programming, we could use the command import x_module as 
y_name as shown in the following lines of code:

>>>import sys as s

>>>import time as tt

>>>import numpy as np

>>>import matplotlib as mp
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When calling a specific function contained in an imported module, we use the 
module's short name as shown in the following lines of code:

>>>import time as tt

>>>tt.localtime()

time.struct_time(tm_year=2013, tm_mon=7, tm_mday=21, tm_hour=22, tm_
min=39, tm_sec=41, tm_wday=6, tm_yday=202, tm_isdst=1)

Although we are free to choose any short names for our imported modules, we 
should respect some convention, such as using np for NumPy and sp for SciPy. 
One added advantage of using such commonly used short names is to make our 
programs more readable by others.

Showing all functions in an imported module
Assume that we are interested in finding all functions contained in the math module. 
For that, first we import it, and then we use dir(math) as shown in the following 
lines of code:

>>>import math

>>>dir(math)

['__doc__', '__loader__', '__name__', '__package__', 'acos', 'acosh', 
'asin', 'asinh', 'atan', 'atan2', 'atanh', 'ceil', 'copysign', 'cos', 
'cosh', 'degrees', 'e', 'erf', 'erfc', 'exp', 'expm1', 'fabs', 
'factorial', 'floor', 'fmod', 'frexp', 'fsum', 'gamma', 'hypot', 
'isfinite', 'isinf', 'isnan', 'ldexp', 'lgamma', 'log', 'log10', 'log1p', 
'log2', 'modf', 'pi', 'pow', 'radians', 'sin', 'sinh', 'sqrt', 'tan', 
'tanh', 'trunc']

>>>

Comparing "import math" and "from  
math import *"
Although we have discussed this issue in the previous chapters, for the completeness 
of this chapter, we will mention it one more time. To make our program simpler, it is 
a good idea to use from math import *. This is especially true for a beginner who 
has just started to learn Python programming. Let's take a look at the following lines 
of code:

>>>from math import *

>>>sqrt(3)

1.7320508075688772
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Now, all functions contained in the module will be available directly. On the other 
hand, if we use import math, we have to specify math.sqrt() instead of sqrt(). 
When we become more familiar with Python, it would be a good idea to use the 
import module. There are two reasons for this. First, we know exactly from which 
module we apply our function. Second, we might have written our own function 
with the same name as the function contained in another module. A module name 
ahead of a function will distinguish it from our own function as shown in the 
following lines of code:

>>>import math

>>>math.sqrt(3)

1.7320508075688772

Deleting an imported module
The del() function is used to remove an imported/uploaded module as shown in 
the following lines of code:

>>>import math

>>>dir()

['__builtins__', '__doc__', '__loader__', '__name__', '__package__', 
'math']

>>>del math

>>>dir()

['__builtins__', '__doc__', '__loader__', '__name__', '__package__']

However, if we use from math import *, we cannot remove all functions by issuing 
del math. We have to remove individual functions separately. The following two 
commands demonstrate such an effect:

>>>from math import *

>>>del math

Traceback (most recent call last):

  File "<pyshell#23>", line 1, in <module>

    del math

NameError: name 'math' is not defined
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In the following code example, we remove the sqrt() function from our memory. 
It is obvious that there is no reason to do so. This operation is used purely for 
illustration purposes. The following two commands delete the sqrt() function first, 
then try to call it:

>>>del sqrt

>>>sqrt(2)

Traceback (most recent call last):

  File "<pyshell#26>", line 1, in <module>

    sqrt(2)

NameError: name 'sqrt' is not defined

Importing only a few needed functions
In Chapter 4, 13 Lines of Python to Price a Call Option, we need three functions, log(), 
exp(), and sqrt(), to price a call option. To make those three functions available, 
we issue the command from math import * to upload the math module which 
contains those functions. After issuing from math import *, all the functions 
included in the module will be available as shown in the following lines of code:

from math import *

def bs_call(S,X,T,r,sigma):

    d1 = (log(S/X)+(r+sigma*sigma/2.)*T)/(sigma*sqrt(T))

    d2 = d1-sigma*sqrt(T)

    return S*CND(d1)-X*exp(-r*T)*CND(d2)

On the other hand, if we need just a few functions, we could specify their names  
as shown in the following lines of code:

>>>from math import log, exp, sqrt

>>>round(log(2.3,4))

0.8329

>>>round(sqrt(3.7),4)

1.9235
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Finding out all built-in modules
A tuple of strings gives the names of all modules that are compiled into this Python 
interpreter. The key word here is builtin__module__names, as shown in the 
following screenshot:

Note that a built-in module does not mean that they are currently available. For 
example, from the preceding output, we know that the math module is preinstalled. 
If we want to call a function, such as sin(), contained within the math module, we 
have to import it first. On the other hand, the function called modules.keys() in the 
sys module only lists the imported modules, as shown in the following screenshot:
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Finding out all the available modules
To find all available modules, we need to activate the help window first. After  
that, we issue modules. The following graph illustrates the result after issuing such  
a help command:

Then, we issue modules under the Python help> prompt as shown in the  
following screenshot:
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The last lines are shown as follows:

To find a specific module, we just type modules followed by the module's name. 
Assume that we are interested in the module called Matplotlib. Then, we issue 
modules matplotlib in the help window. The precondition is that the matplotlib 
module is preinstalled. If it is not, we could get an error message. The following 
graph shows the output after issuing the command of modules matplotlib:

Finding the location of an imported module
In Chapter 6, Introduction to NymPy and SciPy, we will show you how to download and 
install NumPy in detail. Here, we just assume that we have installed a module called 
NumPy. The following are the three ways to find the location of an imported module:
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The first method (way) is to use print(np.__file__) as shown in the following 
lines of code:

>>>import numpy as np

>>>print(np.__file__)

c:\Anaconda\lib\site-packages\numpy\__init__.py

The second method is to use np.__file__ without invoking the print() function as 
shown in the following lines of code:

>>>np.__file__

'C:\Anaconda\lib\site-packages\numpy\__init__.py'

The third method is to just type np after we have imported the module as shown in 
the following lines of code:

>>>np

<module 'numpy' from 'c:\Anaconda\lib\site-packages\numpy\__init__.py'>

Some readers might ask why we should care about the location of an installed 
module in the first place. For example, after finding out that the location of the 
NumPy module is c:\Anaconda\lib\site_package\numpy\, we could go to that 
subdirectory directly to find more information about this module. By going to the 
subdirectory shown earlier, you will find several interesting subdirectories, such 
as doc, random, and tests. From those specific subdirectories, a user, especially a 
new learner, could locate many useful Python programs. If we accidently generate 
a module that has the same name as an existing module, we should know where to 
find the existing module for our debugging purposes. A good practice is to avoid 
using the same name in the first place.

More information about modules
To get more information on modules, perform the following steps:

1.	 Navigate to All Programs | Python 3.3 | Module Docs as shown in the 
following screenshot:
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2.	 We can also browse the path to find preinstalled modules. After  
launching Python, click on File and then on Path Browser as shown  
in the following screenshot:

3.	 After we click on Path Browser, we will be given a list of packages, that is, 
modules, as shown in the following screenshot:
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Finding a specific uninstalled module
Assume that we are interested in using a Python module called quant for 
quantitative analysis. Usually, we would try to import it first. Let's take a look at the 
following lines of code:

>>>import quant

Traceback (most recent call last):

  File "<pyshell#0>", line 1, in <module>

    import quant

ImportError: No module named 'quant'

>>>

Since we encounter an error message, it means that the module called quant is not 
preinstalled. The following are the steps by which we could locate this module:

1.	 Go to the Python Package Index at https://pypi.python.org/.
2.	 From this web page, choose Browse all packages.
3.	 Choose Python under programming languages (https://pypi.python.

org/pypi?%3Aaction=browse).
4.	 Next, choose Financial and Insurance Industry (https://pypi.python.

org/pypi?%3Aaction=browse).
5.	 Click on show all (https://pypi.python.org/pypi?:action=browse&c=3

3&c=214).
6.	 Search the list by using the keyword quant.
7.	 Finally, we locate the package. The following screenshot shows what we 

would see at the end of the last discussed step:

After clicking on quant, we will find its related web page at https://pypi.python.
org/pypi/quant/0.8. Copy this address to your hard drive and ensure that Python 
includes that path.

Module dependency
At the very beginning of this book, we argue that one of the advantages of using 
Python is that it is a rich source of hundreds of special packages called modules. To 
avoid duplicated efforts and to save time in developing new modules, later modules 
choose to use functions developed on early modules; that is, they depend on  
early modules.
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The advantage is obvious because developers could save lots of time and effort when 
building and testing a new module. However, one disadvantage is that installation 
becomes difficult.

There are two competing approaches. The first approach is to bundle everything 
together and make sure that all parts play together nicely, thus avoiding the pain of 
installing n packages independently. This is wonderful assuming that it works. A 
potential issue is that the updating of individual modules might not be reflected in 
the super package. The second approach is to use minimal dependencies. It causes 
fewer headaches for the package maintainer, but for users who have to install several 
components, it can be more of a hassle. Linux has a better way: using the package 
installer. The publishers of the package can declare dependencies and the system 
tracks them down assuming they are in the Linux repository. SciPy, NumPy, and 
quant are all set up like that, and it works great.

In the next chapter, we will discuss the two most important modules, NumPy and 
SciPy. However, their installation individually is not a simple exercise. Instead, we 
choose a super package called Anaconda. After we install Anaconda, both NumPy and 
SciPy would be available.

The following table presents about a dozen Python modules related to finance:

Name of the module Description
Ystockquote Retrieves stock quote data from Yahoo! 

Finance
Quant Enterprise architecture for quantitative 

analysis in finance
trytond_currency Trytond module with currencies
Economics Functions and data manipulation for 

economics data
trytond_project Project module with project management
trytond_analytic_account Financial and accounting module performs 

analytic accounting with any number of 
analytic charts and the analytic account 
balance report

trytond_account_statement Financial and accounting module with 
Statement and Statement journal

trytond_stock_split Trytond module to split stock move
trytond_stock_forecast Trytond module with stock forecasts
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Name of the module Description
Finance Calculates financial risks and is optimized  

for ease of use through class construction  
and operator overload

FinDates Deals with dates in finance

The link that lists some of the most commonly used Python modules is available at 
https://wiki.python.org/moin/UsefulModules.

The Python Package Index is available at https://pypi.python.org/pypi. Note 
that you have to register first to view the complete list.

Summary
In this chapter, we discussed modules, such as finding all available or installed 
modules and how to install a new module. In this book, we will use a few dozen 
modules. Thus, an understanding of modules is vital. For example, a module called 
Matplotlib, which is useful in various graphs, will be used intensively in the next 
chapter, where we discuss the famous Black-Scholes-Merton option model.

In the next chapter, we will introduce the two most important modules: NumPy 
and SciPy. Those two modules are used intensively for scientific and financial 
computation. In this book, many chapters depend on these two modules. In addition, 
many other modules depend on these two modules.
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Exercises
1. What is a module?

2. How do we find the number of functions in a module called math?

3. What is the difference between import math and from math import *?

4. How do we upload a few specific functions?

5. Where can we find manuals related to a module?

6. How do we remove a module?

7. If I am interested in just a few functions contained in the math module, how could 
I import just them?

8. What is module dependency? Why is this an issue when we install a module?

9. There is a module called NumPy. How many modules does it depend on?

10. How could we, as beginners, write a simple module?

11. How many modules are currently available in Python? How do we find a list  
of them?

12. Describe the major contents of a module called zipimport.





Introduction to  
NumPy and SciPy

In this chapter, we will introduce the two most important modules, called NumPy and 
SciPy, which are used intensively for scientific and financial computation based on 
Python. In this book, many chapters and modules depend on these two modules.

In particular, we will cover the following topics:

•	 Installation of NumPy and SciPy
•	 Launching Python from Anaconda
•	 Examples of using NumPy and SciPy
•	 Showing all functions in NumPy and SciPy
•	 Getting more information about a specific function
•	 Understanding the list data type
•	 Array in NumPy, logic relationship related to arrays
•	 Working with arrays of ones, zeros, and identity matrix
•	 Performing array operations: +, -, *, and /
•	 The x.sum() dot function
•	 Looping through an array
•	 A list of subpackages for SciPy
•	 Cumulative standard normal distribution
•	 Generating random numbers
•	 Statistic submodule (stats) from SciPy
•	 Interpolation, linear equations, and optimization
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•	 Linear regression and Capital Assets Pricing Model (CAPM)
•	 Retrieving data from an external text file
•	 Installing NumPy independently
•	 Understanding the data types

Installation of NumPy and SciPy
In the previous chapter, we discussed the module dependency and how it might 
be difficult to install a new module because it depends on many other modules. 
Fortunately, several super packages, such as Anaconda and Enthought Canoy, could 
be used to install several (or many) modules simultaneously. In this book, Anaconda 
is used, since it contains both NumPy and SciPy. To install it, we have to perform the 
following two steps:

1.	 Go to http://continuum.io/downloads.
2.	 According to your machine, choose the appropriate package, such as 

Windows 32-bit / 280M / md5: 91a6398f63a8cc6fa3db3a1e9195b3bf.

After installation, we will see the anaconda folder in C: for the Windows system. 
The Python version accompanying Anaconda is 2.7. In addition to NumPy and SciPy, 
Anaconda contains the other three modules we plan to discuss in this book. For a 
complete list of modules, about 124, included in Anaconda, you can check these out 
at http://docs.continuum.io/anaconda/pkgs.html.

Launching Python from Anaconda
For the Window version, we locate the executable python.exe file at c:\anaconda 
and then click on it. The following Python window will appear:

To test whether we have correctly installed NumPy and SciPY, we need to type the 
following two commands to import them. If there is no error, it means that we have 
installed them correctly.

>>>import numpy as np

>>>import scipy as sp  
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In the last several chapters, we know that we could use from numpy import * 
instead of import numpy as np to make all functions included in the NumPy module 
into our namespace. However, most developers prefer to use import numpy as np. 
From now on, we will follow this tradition. The second reason is that using sp.pv() 
instead of pv() makes it clearer that the pv() function is from a module called sp. To 
generate a Python icon on the desktop, we generate a shortcut first, and then move it 
from c:\anaconda to our desktop.

Examples of using NumPy
In the following examples, the np.size() function from NumPy shows the number  
of data items of an array, and the np.std() function is for the standard deviation  
of an array:

>>>import numpy as np

>>>x= np.array([[1,2,3],[3,4,6]])   # 2 by 3 matrix

>>>np.size(x)        # number of data items

>>>6

>>>np.size(x,1)      # show number of columns 

3

>>>np.std(x)     

1.5723301886761005

>>>np.std(x,1)

Array([ 0.81649658,  1.24721913]

>>>total=x.sum()                      # pay attention to the format

>>>z=np.random.rand(50)# 50 random obs from [0.0, 1)

>>>y=np.random.normal(size=100)       # from standard normal  

>>>r=np.array(range(0,100),float)/100 # from 0, .01,to .99

Compared with a Python array, a NumPy array is a contiguous piece of memory that 
is passed directly to LAPACK, which is a software library for numerical linear algebra, 
under the hood so that matrix manipulation is very fast in Python. An array in NumPy 
is like a matrix in MATLAB. Unlike lists in Python, an array should contain the 
same data type as shown in the following line of code:

>>>np.array([100,0.1,2],float)
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The real type is float64, and the default for numerical values is also float64. In the 
preceding example, we could view that the np.array() function converts a list with 
the same data type, integer in this case, to an array. If we want to change the data 
type, we could specify it in the second input value as shown in the following lines  
of code:

>>>x=[1,2,3,20]

>>>y=np.array(x1,dtype=float)

>>>y

array([  1.,   2.,   3.,  20.])

In the previous example, dtype is the keyword specifying the data type. For a list, 
we could have different data types without causing any problems. However, when 
converting a list containing different data types into an array, we will get an error 
message as shown in the following lines of code:

>>>x2=[1,2,3,"good"]

>>>x2

[1, 2, 3, 'good']

>>>y3=np.array(x2,float)

Traceback (most recent call last):

  File "<pyshell#25>", line 1, in <module>

    y3=np.array(x2,float)

ValueError: could not convert string to float: 'good'

. ]])

Examples of using SciPy
The following are a few examples based on the functions contained in the SciPy 
module. The first example is related to the Net Present Value (NPV) function:

>>>import scipy as sp

>>>cashflows=[50,40,20,10,50]

>>>npv=sp.npv(0.1,cashflows) #estimate NPV 

>>>round(npv,2)

>>>144.56



Chapter 6

[ 99 ]

The np.npv() function estimates the present values for a given set of future cash 
flows. The first input value is the discount rate, and the second input is an array of 
future cash flows. This np.npv() function mimics Excel's NPV function. Like Excel, 
np.npv() is not a true NPV function. It is actually a PV function. It estimates the 
present value of future cash flows by assuming the first cash flow happens at the  
end of the first period. An example of using an Excel NPV() function is as follows:

While using just one future cash flow, the meaning of the np.npv() function is much 
clearer as shown in the following lines of code:

>>>c=[100]

>>>npv=np.npv(0.1,c)

>>>round(npv,2)

>>>90.91

>>>round(100/(1+0.1),2)

>>90.91

Based on the preceding argument, if we have an initial cash outflow, such as 100, 
we have to modify our second input value, an array, accordingly as shown in the 
following lines of code:

>>>cashflows=[-100,50,40,20,10,50]

>>>npv=sp.npv(0.1,cashflows[1:])+cashflow[0] 

>>>round(npv,2)

>>>31.41

The sp.pmt() function is used to answer the following question: What is the monthly 
cash flow to pay off a mortgage of $250,000 over 30 years with an annual percentage 
rate (APR) of 4.5 percent, compounded monthly?

>>>payment=sp.pmt(0.045/12,30*12,250000)

>>>round(payment,2)

-1266.71
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Similar to the sp.npv() function, the sp.pmt() function mimics the equivalent 
function in Excel, as we will see in the following screenshot. The input values are:  
the effective period rate, the number of the period, and the present value.

The sp.pv() function replicates the Excel PV() function. The format for sp.pv() is 
sp.pv(rate,nper,mpt,fv=0.0,when='end'). The discount rate is rate, nper is 
the number of periods, and fv is the future value with a default value of zero. The 
last input variable specifies whether the cash flows are at the end of each time period 
or at the beginning of each period. By default, it is at the end of each period. The 
following commands show how to call this function:

>>>pv1=sp.pv(0.1,5,0,100)  # pv of one future cash flow

>>>round(pv1,2)

-92.09

>>>pv2=sp.pv(0.1,5,100)    # pv of annuity

>>>round(pv2,2)

-379.08

The sp.fv() function has settings similar to that of sp.pv(). In finance, we estimate 
both arithmetic and geometric means, which are defined in the following formulas. 
For n numbers of 1x , 2x , 3 2 3x x x , ... and nx , we have:
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Π = ∗ ∗ ∗ . Assume that we have three numbers a, b, and c. Then 

their arithmetic mean is (a+b+c)/3, while their geometric mean is (a*b*c)^(1/3). For 
three values of 2, 3, and 4, we have the following two means:

>>>(2+3+4)/3.

>>>3.0

>>>geo_mean=(2*3*4)**(1./3)

>>>round(geo_mean,4)

2.8845
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If we have n returns, the formula to estimate their arithmetic mean remains the  
same. However, the geometric mean formula for returns is different as shown in  
the following screenshots:
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We could use the sp.prod() function, which gives us the products of all data items 
to estimate the geometric means for a given set of percentage returns as shown in the 
following lines of code:

>>>import scipy as sp

>>>ret=sp.array([0.1,0.05,-0.02])

>>>sp.mean(ret)                      # arithmetic mean   

0.04333

>>>pow(sp.prod(ret+1),1./len(ret))-1 # geometric mean   

0.04216

Two other useful functions are sp.unique() and sp.median() as shown in the 
following code:

>>>sp.unique([2,3,4,6,6,4,4])

Array([2,3,4,6])

>>>sp.median([1,2,3,4,5])

3.0

The Python sp.npv(), sp.pv(), sp.fv(), and sp.pmt() functions behave like 
Excels npv(), pv(), fv(), and pmt() functions, respectively. They have the same 
sign convention: the sign of the present value is the opposite of that of the future 
value. In the following example to estimate a present value, if we enter a positive 
future value, we will end up with a negative present value:

>>>import scipy as sp

>>>round(sp.pv(0.1,5,0,100),2)

>>>-62.09

>>>round(sp.pv(0.1,5,0,-100),2)

>>>62.09



Introduction to NumPy and SciPy

[ 102 ]

Showing all functions in NumPy and 
SciPy
There are several ways to find out all the functions contained in a specific module. 
First, we can read related manuals. Second, we can issue the following lines of code:

>>>import numpy as np

>>>dir(np)  

To save space, only a few lines of code are shown in the following screenshot:

Actually, a better way is to generate an array with all of those functions as follows:

>>>x=np.array(dir(np))

>>>len(x)            # showing the length of the array

571

>>>x[200:210]        # showing 10 lines starting from 200

The following screenshot shows the output:

Similarly, to find all the functions in SciPy, we use the dir() function after we load 
the module as shown in the following lines of code:

>>>import scipy as sp

>>>dir(sp)  
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The first part is shown in the following screenshot:

More information about a specific 
function
After issuing dir(np), we find the std() function among many others. To find 
more information about this specific function, we use help(np.std). The following 
screenshot shows only a few lines of code for brevity:

Understanding the list data type
In Chapter 3, Using Python as a Financial Calculator, tuples are introduced as one 
of the data types. Recall that a tuple is defined by using parentheses such as 
x=(1,2,3,"Hello"). In addition, after a tuple is defined, we cannot change its values. 
Like tuples, the lists data type could contain different types of data, and their first 
subscripts start from 0. The following Python commands generate a list for variable x:

>>>x=[1,2,"John", "M", "Student"]

>>>type(x)

<class 'list'>
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From the preceding code statements, we know that a set of variables included will be 
closed by a pair of square brackets, that is []. To call specific data item(s), we could 
use different ways to achieve our goals. The following commands show how to pick 
up individual data items for different goals:

>>>x

[1, 2, 'John', 'M', 'Student']

>>>x[1]

2

>>>x[2:]

['John', 'M', 'Student']

Unlike tuples, we can modify the values of a list.

Working with arrays of ones, zeros, and 
the identity matrix
In the following code examples, we don't show values of all the variables, from a  
to i, to save space:

>>>import numpy as np

>>>a=np.zeros(10)                #  array with 10 zeros

>>>b=np.zeros((3,2),dtype=float) #  3 by 2 with zeros

>>>c=np.ones((4,3),float)        #  4 by 3 with all ones

>>>d=np.array(range(10),float)   #  0,1, 2,3 .. up to 9

>>>e1=np.identity(4)             #  identity 4 by 4 matrix

>>>e2=np.eys(4)                  #  same as above

>>>e3=np.eys(4,k=1)              #  1 start from k  

>>>f=np.arange(1,20,3,float)     # from 1 to 19 interval 3

>>>g=np.array([[2,2,2],[3,3,3]]) #  2 by 3

>>>h=np.zeros_like(g)            #  all zeros

>>>i=np.ones_linke(g)            #  all ones
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Performing array manipulations
In finance-related research, quite often we need to change the dimensions of a matrix 
or an array. For example, converting a set of 100 random numbers into a 20 by 5 
matrix or vice versa. For this purpose, we could use two NumPy functions, flatten() 
and reshape(), as follows:

>>>pv=np.array([[100,10,10.2],[34,22,34]]) # 2 by 3

>>>x=pv.flatten()                      #  matrix becomes a vector

>>>vp2=np.reshape(x,[3,2])             # 3 by 2 now

Performing array operations with +, -, *, /
Plus and minus for an array would have their normal meaning. However, 
multiplication and division have quite different definitions. Using multiplication 
as an example, A × B arrays could have two meanings: either item by item (A and B 
should have the same dimensions, that is, both are n by m) or matrix multiplication 
(the second dimension of A should be the same as the first dimension of B, that is, A 
is n by m while B is m by p ).

Performing plus and minus operations
When adding or subtracting two arrays, they must have the same dimensions, that 
is, both are n by m. If they have different dimensions, we will get an error message. 
The following example shows the summation of two cash flow arrays:

>>>cashFlows_1=np.array([-100,50,20])

>>>cashFlows_2=np.array([-80,100,120])

>>>cashFlows_1 + cashFlows_2

>>>array([-180, 150, 140])

Performing a matrix multiplication operation
For matrix multiplication, matrices A and B should be n by k and k by m. Assume 
that matrix A is n by k and that B is k by m as shown in the following formula:

11 1
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k

n nk

a a
A

a a

 
 =  
 
 
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1

k
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b b
B

b b

 
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Our final matrix will have the dimensions n by m as shown in the following formula:

11 1

1

m

n nm

c c
A B C

c c

 
 ∗ = =  
 
 

L

M O M

L

          (6)

The individual data item, cij, in matrix C will have the following operation:

, ,
1 1 1

n m k

ij i t t j
i j t

c a b
= = =

=∑∑∑

Assume that we have two matrices/arrays x (n by k) and y (k by m); the dot product 
will generate a matrix with n by m as shown in the following lines of code:

>>>x=np.array([[1,2,3],[4,5,6]],float)   # 2 by 3

>>>y=np.array([[1,2],[3,3],[4,5]],float) # 3 by 2

>>>np.dot(x,y)                           # 2 by 2

Array([[19.,  23.],

  ]43., 53.]])

Alternatively, we could convert arrays into matrices first and then use * of matrix 
multiplication as shown in the following lines of code:

>>>x=np.matrix("1,2,3;4,5,6") 

>>>y=np.matrix("1,2;3,3;4,5") 

>>>x*y

Array([[19., 23.],[43., 53.]])

Actually, we could convert an array into a matrix easily as follows:

>>>x1=np.array([[1,2,3],[4,5,6]],float)   

>>>x2=np.matrix(x1)   # from array to matrix

>>>x3=np.array(x2)    # from matrix to array
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Performing an item-by-item multiplication 
operation
When two arrays have the same dimensions, the product of x*y will give an item 
for item multiplication. When both A and B have the same dimensions, n by m, their 
item by item multiplication will have the following form:

1 1

n m

ij ij ij
i j

c a b
= =

=∑∑

The following lines of code are an example of this:

>>>x=np.array([[1,2,3],[4,5,6]],float)

>>>y=np.array([[2,1,2],[4,0,5]],float)

>>>x*y

Array([[2.,  2.,  6., ]

        [16.,  0.,  30. ]])

The x.sum() dot function
After x is defined as a NumPy array, we could use x.function() to conduct related 
operations such as x.sum() as shown in the following lines of code:

>>>import numpy as np

>>>x=np.array([1,2,3])

>>>x.sum()

6

>>>np.sum(x)

6

If x is a NumPy array, we could have other functions with the same dot format as 
well: x.mean(), x.min(), x.max(), x.var(), x.argmin(), x.clip(), x.copy(), 
x.diagonal(), x.reshape(), x.tolist(), x.fill(), x.transpose(), 
x.flatten(), and x.argmax(). Those dot functions are useful because of the 
convenience they offer. The following commands show two such examples:

>>>cashFlows=np.array([-100,30,50,100,30,40])

>>>np.min(cashFlows)  
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-100

>>>np.argmax(cashFlows)

0

The np.min() function shows the minimum value, while the np.argmin() function 
gives the location (that is, index) of the minimum value.

Looping through an array
We could iterate over an array. The following code example prints each cash flow:

>>>import numpy as np

>>>cash_flows=np.array([-100,50,40,30,25,-10,50,100])

>>>for cash in cash_flows:

        print x

Using the help function related to 
modules
We could use the help() function to find out more information about NumPy and 
SciPy as shown in the following lines of code:

>>>help()

help>numpy

The first few lines are shown in the following screenshot:



Chapter 6

[ 109 ]

Similarly, we issue scipy in the help window as follows:

>>>help()

help> scipy     # to save space, the output is not shown

A list of subpackages for SciPy
SciPy has about a dozen subpackages. The following table shows a list of 
subpackages contained in SciPy:

Subpackage Description
Cluster Clustering algorithms
Constants Physical and mathematical constants
Fftpack Fast Fourier Transform routines
Integrate Integration and ordinary differential equation solvers
Interpolate Interpolation and smoothing splines
Io Input and output
Linalg Linear algebra
Ndimage N-dimensional image processing
Odr Orthogonal distance regression
optimize Optimization and root-finding routines
signal Signal processing
sparse Sparse matrices and associated routines
spatial Spatial data structures and algorithms
special Special functions
stats Statistical distributions and functions
weave C

Cumulative standard normal distribution
In Chapter 4, 13 Lines of Python to Price a Call Option, we used 13 lines of Python codes 
to price a call option since we have to write our own cumulative standard normal 
distribution. Fortunately, the cumulative standard normal distribution is included in 
the submodule of SciPy. The following example shows the value of the cumulative 
standard normal distribution at zero:

>>>from scipy.stats import norm

>>>norm.cdf(0)

0.5
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Thus, we could simplify our call option model considerably using just five  
lines. The following code is a typical example of the benefits we can enjoy  
using various modules:

from scipy import log,exp,sqrt,stats

defbs_call(S,X,T,r,sigma):

    d1=(log(S/X)+(r+sigma*sigma/2.)*T)/(sigma*sqrt(T))

    d2 = d1-sigma*sqrt(T)

    return S*stats.norm.cdf(d1)-X*exp(-r*T)*stats.norm.cdf(d2)

Now, we could use the following function by inputting a set of values:

>>>price=bs_call(40,40,1,0.03,0.2)

>>>round(price,2)

3.77

Logic relationships related to an array
An array could contain true and false as shown in the following lines of code.  
This data type is called Boolean.

>>>import numpy as np

>>>x=np.array([True,Talse,True,False],bool)

>>>a=any(x)  	# if one item is TRUE then return TRUE

>>>b=all(x)  	# if all are TRUE then return TRUE

>>>cashFlows=np.array([-100,50,40,30,100,-5])

>>>a=cashFlows>0  # [False,True,True,True,True,False]

>>>np.logical_and(cashFlows>0, cashFlows<60)

Array([False,True,True,False,False],dtype=bool)

The logical_and(), logical_or(), and logical_not() functions could be used to 
compare each data item included in an array as shown in the previous code example. 
In addition, we could save the index or subscripts of the logic comparison and call 
the array later as shown in the following lines of code:

>>>cashFlows=np.array([-100,50,40,30,100,-5])

>>>index=(cashFlows>0) # index is a Boolean variable    

>>>cashFlows[index]    # retrieve positive cash flows 

Array([50., 40., 30., 100. ])
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Statistic submodule (stats) from SciPy
One special module called stats contained in the SciPy module is worthy of special 
attention, since many of our financial problems depend on this module. To find out 
all the contained functions, we have the following lines of code:

>>>from scipy import stats

>>>dir(stats)    

To save space, only a few lines are shown in the following screenshot:

From the output, not shown completely in the preceding screenshot, we could find 
a ttest_1samp() function. To use the function, we generate 100 random numbers 
drawn from a standard normal distribution, zero mean, and unit standard deviation. 
For the one-sample T-test, we test whether its mean is 0. Based on the t-value (1.18) 
and p-value (0.24), we could not reject the null hypothesis. This means that the 
mean of our x is zero as shown in the following lines of code:

>>>import numpy as np

>>>from scipy import stats

>>>np.random.seed(124) # get the same random values

>>>x=np.random.normal(0,1,100) # mean=0,std=1 

>>>skew=stats.skew(x)     # skewness is -0.2297 

>>>stats.ttest_1samp(x,0) # if the mean is zero

(array(1.176), 0.24228)    # T-value and P-value

From NumPy, we could draw random numbers from various distributions; see a few 
more examples:

>>>import numpy as np

>>>s=np.random.standard_t(10, size=1000) # from standard-T,df=10
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>>>x=np.random.uniform(low=0.0,high=1.0,size=100) # uniform

>>>stocks=np.random.random_integers(1,500,20)

>>>stocks

array([371,  15, 158, 468, 299, 470, 257, 481,  76, 196, 355, 386, 438, 
484,  41,  39, 222, 377, 455,  46])

The two commands pick up 20 stocks randomly from 500 available stocks.

Interpolation in SciPy
In the following code example, x can be viewed as the x axis with a set of values from 
0 to 10, while the vertical axis is y, where y = exp(-x/3). We intend to interpolate 
between different y(i) values by applying two methods: linear and cubic. The 
following lines of code are an example from SciPy Reference Guide:

>>>import numpy as np

>>>import matplotlib.pyplot as plt

>>>from scipy.interpolate import interp1d

>>>x = np.linspace(0, 10, 10)

>>>y = np.exp(-x/3.0)

>>>f = interp1d(x, y)

>>>f2 = interp1d(x, y, kind='cubic')

>>>xnew = np.linspace(0, 10, 40)

>>>plt.plot(x,y,'o',xnew,f(xnew),'-', xnew, f2(xnew),'--')

>>>plt.legend(['data', 'linear', 'cubic'], loc='best')

>>>plt.show()

In the preceding program, we use the np.linspace() function to generate evenly 
spaced numbers—40 values—over a specified interval, from 0 to 10 in this case. The 
related output is shown as follows:
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Solving linear equations using SciPy
Assume that we have the following three equations:

2 5 10
2 5 8
2 3 8 5

x y z
x y z
x y z

+ + =
 + + =
 + + =

          (7)

We define A and B as follows:

1 2 5
2 5 1
2 3 8

A
 
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8
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The solution is as follows:

1 2 5
2 5 1
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The related Python code is as follows:

>>>import scipy as sp

>>>import numpy as np

>>>A=sp.mat('[1 2 5; 2 5 1; 2 3 8]')

>>>b = sp.mat('[10;8;5]')

>>>A.I*b      

Matrix([-22.45, 10.09, 2.45]

>>>np.linalg.solve(A,b)  # offer the same solution

Generating random numbers with a seed
One of the major assumptions about option theory is that stock prices follow a  
log-normal distribution and returns follow a normal distribution. The following  
lines of code show an example of this:

>>>importscipy as sp

>>>x=sp.random.rand(10) 	 # 10 random numbers from [0,1)

>>>y=sp.random.rand(5,2) # random numbers 5 by 2 array

>>>z=sp.random.rand.norm(100) from a standard normal 

>>>
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After issuing the preceding function, the software would pick up a set of random 
numbers depending on a user's computer time. However, sometimes we need a  
fixed set of random numbers, and this is especially true when testing our models  
and code, and for teaching. To satisfy this need, we will have to set up the seed  
value before generating our random numbers, as shown in the following lines  
of code:

>>>importscipy as sp

>>>sp.random.seed(12456)

>>>sp.random.rand(5)

[0.92961609, 0.3163755, 0.18391881, 0.20456028]

If we want to generate the exact same random numbers, we have to use the same 
seed before we call the random.rand() function.

There are about two dozen distributions available, such as beta, binomial, chisquare, 
exponential, f, gamma, geometric, lognormal, poission, uniform, and weibull. After 
issuing help(np.random), we get the following output a (part of the all output):
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Finding a function from an  
imported module
We could assign all related functions from NumPy to a variable such as x. Then,  
we loop through it to print each individual function as shown in the following  
lines of code:

>>>import numpy as np

>>>x=np.array(dir(np))

>>>for k in x:

        if (k.find("uni")!=-1):

              print k

unicode

unicode0

unicode_

union1d

unique

Understanding optimization
In finance, many issues depend on optimization, such as choosing an optimal 
portfolio with an objective function and with a set of constraints. For those cases, 
we could use a SciPy optimization module called scipy.optimize. Assume that 
we want to estimate the x value that minimizes the value of y, where y =3 + x2. 
Obviously, the minimum value of y is achieved when x takes a value of 0.

>>>import scipy.optimize as optimize 

>>>def my_f(x):

       Return 3 + x**2

>>>optimize.fmin(my_f,5)   # 5 is initial value

     Optimization terminated successfully

     Current function values: 3:000000

     Iterations: 20

     Function evaluations: 40

Array([ 0. ])
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To find a list of all input variables to this fmin() function and their meanings, issue 
help(optimize.fmin). To list all the functions included in scipy.optimize, issue 
dir(optimize).

Linear regression and Capital Assets 
Pricing Model (CAPM)
According to the famous CAPM, the returns of a stock are linearly correlated with 
its market returns. Usually, we consider the relationship of the excess stock returns 
versus the excess market returns.

( )i f i mkt fR R a R Rβ− = + −          (11)

Here Ri is the stock i's return; iβ  is the slope (market risk); Rmkt is the market  
return and Rf is the risk-free rate. Eventually, the preceding equation could be 
rewritten as follows:

y xα β= + ∗           (12)

The following lines of code are an example of this:

>>>from scipy import stats

>>>stock_ret = [0.065, 0.0265, -0.0593, -0.001,0.0346]

>>>mkt_ret  = [0.055, -0.09, -0.041,0.045,0.022]

>>>beta, alpha, r_value, p_value, std_err =

stats.linregress(stock_ret,mkt_ret)

>>>print beta, alpha 

0.507743187877  -0.00848190035246

>>>print "R-squared=", r_value**2

R-squared =0.147885662966

>>>print "p-value =", p_value

0.522715523909
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Retrieving data from an external text file
When retrieving data from an external data file, the variable generated will be  
a list.

>>>f=open("c:\\data\\ibm.csv","r")

>>>data=f.readlines()

>>>type(data)

<class 'list'>

The first few lines of the input file are shown in the following lines of code. In Chapter 
7, Visual Finance via Matplotlib, we will discuss how to download this input file from 
Yahoo! Finance.

>>>Date,Open,High,Low,Close,Volume,Adj Close

2013-07-26,196.59,197.37,195.00,197.35,2485100,197.35

2013-07-25,196.30,197.83,195.66,197.22,3014300,197.22

2013-07-24,195.95,197.30,195.86,196.61,2957900,196.61

2013-07-23,194.21,196.43,194.10,194.98,2863800,194.98

2013-07-22,193.40,195.79,193.28,194.09,3398000,194.09

2013-07-19,197.91,197.99,193.24,193.54,6997600,193.54

After we generate a variable called stock, we can view its first two observations  
as follows:

>>>data[1]

'2013-07-26,196.59,197.37,195.00,197.35,2485100,197.35\n'

>>>data[2]

'2013-07-25,196.30,197.83,195.66,197.22,3014300,197.22\n'

The loadtxt() and getfromtxt() functions 
The loadtxt() function included in the NumPy module could be used to input a text 
or a CSV file as shown in the following lines of code:

>>>import numpy as ny

>>>ny.loadtxt("c:/data/ibm.csv",delimiter=',')

The function genfromtxt() in the NumPy module is more powerful but is a slower 
function to input data. The advantage of this function compared with loadtxt() is 
that the former treats non-standard values, such as 3.5 percent, as NA (Python  
missing code).



Chapter 6

[ 119 ]

Installing NumPy independently
To install NumPy independently, we have to perform the following two steps:

1.	 Go to http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy.
2.	 Choose an appropriate package to download and install, such as numpy-MKL-

1.7.1.win32-py3.3.exe.

Understanding the data types
In the following table, most of the types of data are given:

Data type Description
Bool Boolean (True or False) stored as a byte
int Platform integer (normally either int32 or int64)
int8 Byte (-128 to 127)
int16 Integer (-32768 to 32767)
int32 Integer (-2147483648 to 2147483647)
int64 Integer (9223372036854775808 to 9223372036854775807)
unit8 Unsigned integer (0 to 255)
unit16 Unsigned integer (0 to 65535)
unit32 Unsigned integer (0 to 4294967295)
unit64 Unsigned integer (0 to 18446744073709551615)
float Short and for float64
float32 Single precision float: sign bit23 bits mantissa; 8 bits exponent
float64 52 bits mantissa
complex Shorthand for complex128
complex64 Complex number; represented by two 32-bit floats (real and 

imaginary components)
complex128 Complex number; represented by two 64-bit floats (real and 

imaginary components)
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Summary
In this chapter, we introduced the two most important modules, called NumPy and 
SciPy, which are used intensively for scientific and financial computation. NumPy is 
for numerical methodology, and SciPy could be viewed as an extension of NumPy. 
In this book, many chapters depend on these two modules. In addition, many other 
modules depend on these two modules. For instance, the Matplotlib (for graph) 
module, which will be discussed in Chapter 7, Visual Finance via Matplotlib, and 
Statsmodels (for statistical/financial modeling), which will be discussed in Chapter 
8, Statistic Analysis of Time Series, depend on these two modules.

It is a very useful tool for visualization. We are going to use this module intensively 
when we explain option theory.

Exercises
1. What is module dependency?

2. Why is it difficult to install NumPy independently?

3. What are the advantages and disadvantages of writing a module that  
depends on other modules?

4. What are the advantages of using a super package to install many  
modules simultaneously?

5. How do we find all the functions contained in NumPy and SciPy?

6. What is wrong with the following operation?

>>>x=[1,2,3]

>>>x.sum()

7. How can we print all the data items for a given array?

8. What is wrong with the following lines of code?

>>>import np

>>>x=np.array([True,false,true,false],bool)

9. How can we iterate through an array?
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10. Write a Python program to price a European call option using the cumulative 
standard normal distribution included in the SciPy module. Compare your result 
with the code in Chapter 4, 13 Lines of Python to Price a Call Option.

11. Find out the meaning of skewtest included in the stats submodule (SciPy), and 
give an example of using this function.

12. How do we find all the functions of SciPy and NumPy?

13. We have the following simultaneous equations. 'What are the values of x, y,  
and z?

2 2.5 2.3
3.4 4.2
2.9 y 1.8z 3.1

x y z
x y z
x

− + =
 + − =
− + + =

14. Debug the following lines of code, which are used to estimate a geometric mean 
for a given set of returns:

>>>import scipy as sp

>>>ret=np.array([0.05,0.11,-0.03])

>>>pow(np.prod(ret+1),1/len(ret))-1

15. Write a Python program to estimate both arithmetic and geometric means for a 
given set of returns.

16. In finance, we use the standard deviation of returns to measure the risk level of a 
security or portfolio. Based on the latest five year daily prices from Yahoo! Finance, 
what is the total risk for IBM? Note that we use the following formula to annualize a 
volatility (variance) based on daily returns:

2 2252annual dailyσ σ=

17. Find out the meaning of zscore() included in the stats submodule (SciPy), and 
offer a simple example of using this function.

18. What is the market risk (beta) for IBM in 2010? (Hint: the source of data could be 
from Yahoo! Finance.)

19. What is wrong with the following lines of code?

>>>c=20

>>>npv=np.npv(0.1,c)
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20. The correlation coefficient function from NumPy is np.corrcoef(). Find more 
about this function. Estimate the correlation coefficient between IBM, DELL, and 
W-Mart.

21. Why is it claimed that the sn.npv() function from SciPY() is really a Present 
Value (PV) function?

22. Design a true NPV function using all cash flows, including today's cash flow.

23. The Sharpe ratio is used to measure the trade-off between risk and return:

fR R
Sharpe

σ
−

=

Here, R  is the expected returns for an individual security, and fR  is the expected 
risk-free rate. σ  is the volatility, that is, standard deviation of the return on the 
underlying security. Estimate Sharpe ratios for IBM, DELL, Citi, and W-Mart by 
using their latest five-year monthly data.



Visual Finance via Matplotlib
Graphs and other visual representations have become more important in explaining 
many complex financial concepts, trading strategies, and formulae. In this chapter, 
we discuss the module matplotlib, which is used to create various types of graphs. 
In addition, the module will be used intensively in Chapter 9, The Black-Scholes-Merton 
Option Model, when we discuss the famous Black-Scholes-Merton option model 
and various trading strategies. The matplotlib module is designed to produce 
publication-quality figures and graphs. The matplotlib module depends on NumPy 
and SciPy which were discussed in Chapter 6, Introduction to NumPy and SciPy. There 
are several output formats, such as PDF, Postscript, SVG, and PNG.

In particular, we will cover the following:

•	 Several ways to install matplotlib
•	 Simple examples of using matplotlib
•	 Net Present Value (NPV) profile, DuPont identity, stock returns,  

and histogram
•	 Total risk, market risk (beta), and firm-specific risk
•	 Stock co-movement and correlation
•	 Portfolio diversification
•	 Presentation of trading volume and price movement
•	 Return versus risk graph with several stocks
•	 Very complex examples of using matplotlib
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Installing matplotlib via ActivePython
The first way to install the matplotlib module is via ActivePython. We install 
ActivePython first and then install matplotlib. In the process of installing 
matplotlib, NumPy would be installed as well since matplotlib depends on   
both NumPy and SciPy. The whole procedure has four steps as follows:

1.	 Go to http://www.activestate.com/activepython/downloads.
2.	 Choose an appropriate executable file to download.
3.	 For Windows, navigate to All Programs | Accessories, and then click on 

Command Prompt. You will see the following window:

4.	 After going to the appropriate directory, such as C:\Python27, type pypm 
install matplotlib as shown in the following screenshot:

The matplotlib module depends on both NumPy and SciPy. Since the NumPy module 
will be installed automatically when we install matplotlib, we need to install 
SciPy; see the following similar procedure:
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To launch Python, navigate to All Programs | ActivateStateActive Python, and then 
click on IDLE (Python GUI). For convenience, we could generate a shortcut on our 
desktop as shown in the following screenshot:

Alternative installation via Anaconda
In Chapter 6, Introduction to NumPy and SciPy, we discussed the dependency of a 
module. Because of such a dependency, it might be very difficult to install a module 
independently since it depends on many other modules. In this book, we use the  
so-called super-packages. If one of them is installed, most of our modules are 
installed simultaneously. We choose Anaconda. To install Anaconda, we have  
the following two steps:

1.	 Go to http://continuum.io/downloads.
2.	 Choose an appropriate package to download and install.

Understanding how to use matplotlib
The best way to understand the usage of the matplotlib module is through 
examples. The following example could be the simplest one since it has just 
three lines of Python code. The objective is to link several points. By default, the 
matplotlib module assumes that the x axis starts at zero and moves by one on  
every element of the array. The following command lines illustrate this situation:

>>>from matplotlib.pyplot import *

>>>plot([1,2,3,10])

>>>show()
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After we press the Enter key after typing the last command of show(), the following 
graph will appear:

At the bottom of the graph, we can find a set of icons, and based on them, we could 
adjust our image and other functions, such as saving our image. After closing the 
preceding figure, we could return to Python prompt. On the other hand, if we issue 
show() the second time, nothing will happen. To repeat the preceding graph, we 
have to issue both plot([1,2,3,10]) and show().

We could add labels for both the x axis and y axis as follows:

>>>from matplotlib.pyplot import *

>>>plot([1,2,3,10])

>>>xlabel("x- axis")

>>>ylabel("my numbers")

>>>title("my figure")

>>>show()
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The corresponding graph is shown in the following screenshot::

The next example presents two cosine functions:

>>>from pylab import *

>>>x = np.linspace(-np.pi, np.pi, 256,endpoint=True)

>>>C,S = np.cos(x), np.sin(x)

>>>plot(x,C),plot(x,S)

>>>show()

In the preceding code, the linspace() function has four input values: start, stop, 
num, and endpoint. In the preceding example, we start from -3.1415916 and stop at 
3.1415926, with 256 values between. In addition, the endpoints will be included. By 
the way, the default value of num is 50.
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The corresponding graph is shown in the following screenshot:

The following example shows the scatter pattern. First, the np.random.normal() 
function is used to generate two sets of random numbers. Since n is 1024, we have 
1,024 observations for both x and y variables. The key function is scatter(x,y)  
as follows:

>>>from pylab import *

>>>n = 1024

>>>X = np.random.normal(0,1,n)

>>>Y = np.random.normal(0,1,n)

>>>scatter(X,Y)

>>>show()
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The corresponding output graph is given as follows:

We could check the scatter pattern to visually perceive the relationship between two 
stocks. For example, we have two time series of returns for stocks A and B. Assume 
that they are strongly, positively correlated, that is, stock A has a lower return of -1 
percent and stock B has a quite similar low return. This is true for a higher return, 
such as 20 percent. The scatter points of their matched returns should be distributed 
along a 45-degree straight line.

Understanding simple and compounded 
interest rates
Many students and practitioners are confused with the difference between simple 
interest and compound interest. Simple interest does not consider interest on interest 
while compound interest does. It is a good idea to represent them with a graph. For 
instance, we borrow $1,000 today for 10 years with an annual interest of 8 percent per 
year. What are the future values if 8 percent is the simple interest and compounded 
interest rate? The formula for payment of a simple interest rate is as follows:

( ) ( )1FV simple interest PV R n= + ∗        (1)
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The future value for compounded interest is as follows:

       (2)

Here, PV is the load we borrow today, that is, present value, R is the period rate, 
and n is the number of periods. Thus, those two future values will be $1,800 and 
$2,158.93. The following program offers a graphic representation of a principal, 
simple interest payment, and the future values:

import numpy as np

from matplotlib.pyplot import *

from pylab import *

pv=1000

r=0.08

n=10

t=linspace(0,n,n)

y1=np.ones(len(t))*pv # this is a horizontal line 

y2=pv*(1+r*t)

y3=pv*(1+r)**t

title('Simple vs. compounded interest rates')

xlabel('Number of years')

ylabel('Values')

xlim(0,11)

ylim(800,2200)

plot(t, y1, 'b-')

plot(t, y2, 'g--')

plot(t, y3, 'r-')

show()

In the preceding program, the xlim() function would set the range of the x axis.  
This is true for the ylim() function. The third input variable for both the xlim()  
and ylim() functions is for color and for the line. The letter b is for black, g is for 
green, and r is for red.
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The corresponding output graph for the previous code is given as follows:

Adding texts to our graph
In the following example, we simply insert a text. Remember that the x and y scale  
is from 0 to 1:

>>>from pylab import *

>>>x = [0,1,2]

>>>y = [2,4,6]

>>>plot(x,y)

>>>figtext(0.2, 0.7, 'North & West')

>>>figtext(0.7, 0.2, 'East & South')

>>>show()
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The corresponding output graph is given as follows:

Let's make it more complex. From the National Bureau of Economic Research web 
page at http://www.nber.org/cycles.html, we can find the following table 
showing the business cycle in the past two decades:

Turning Point Date Peak or Trough Announcement Date
June 1, 2009 Trough September 20, 2010
December 1, 2007 Peak December 1, 2008
November 1, 2001 Trough July 17, 2003
March 1, 2001 Peak November 26, 2001
March 1, 1991 Trough December 22, 1992
July 1, 1990 Peak April 25, 1991
November 1, 1982 Trough July 8, 1983
July 1, 1981 Peak June 1, 1982
July 1, 1980 Trough July 8, 1981
January 1, 1980 Peak June 3, 1980



Chapter 7

[ 133 ]

Working with DuPont identity
In finance, we could find useful information from a firm's financial statements such 
as annual income statement, balance sheet, and cash flow statement. Ratio analysis 
is one of the commonly used tools to compare the performance among different 
firms and for the same firm over the years. DuPont identity is one of them. DuPont 
identity divides Return on Equity (ROE) into three ratios: Gross Profit Margin, 
Assets Turnover, and Equity Multiplier:

Net Income Sales Total AssetsROE
Sales Total Assets Book value of Equity

= ∗ ∗        (3)

The following code will show those three ratios with different colors. Here we have 
the following information about some firms:

Ticker Fiscal Year 
Ending Date

ROE Gross Profit 
Margin

Assets 
Turnover

Equity 
Multiplier

IBM December 31, 
2012

0.8804 0.1589 0.8766 6.3209

DELL February 1, 
2013

0.2221 0.0417 1.1977 4.4513

WMT January 31, 
2013

0.2227 0.0362 2.3099 2.6604

The Python code is as follows:

import numpy as np

import matplotlib.pyplot as plt

ind = np.arange(3)

plt.title("DuPont Identity")

plt.xlabel("Different companies")

plt.ylabel("Three ratios")

ROE=[0.88,0.22,0.22]

a = [0.16,0.04,0.036]

b = [0.88,1.12,2.31]

c = [6.32,4.45,2.66]

width = 0.45

plt.figtext(0.2,0.85,"ROE=0.88")
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plt.figtext(0.5,0.7,"ROE=0.22")

plt.figtext(0.8,0.6,"ROE=0.22")

plt.figtext(0.2,0.75,"Profit Margin=0.16")

plt.figtext(0.5,0.5,"0.041")

plt.figtext(0.8,0.4,"0.036")

p1 = plt.bar(ind, a, width, color='b')

p2 = plt.bar(ind, b, width, color='r', bottom=a)

p3 = plt.bar(ind, c, width, color='y', bottom=[a[j] +b[j] for j in plt.
xticks(ind+width/2., ('IBM', 'DELL', 'WMT') )

plt.show()

In the previous program, plt.figtext(x,y,'text') adds a text message at x-y 
location with x and both having a range from 0 to 1. The plt.bar() function is  
used to generate three bars. The three bars are shown in the following figure:
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Understanding the Net Present Value 
(NPV) profile
Gradually, we use graphs and other visual representations to explain many 
complex financial concepts, formulae, and trading strategies. An NPV profile is 
the relationship between a project's NPV and its discount rate (cost of capital). 
For a normal project, where cash outflows first then cash inflows, its NPV will be 
a decreasing function of the discount rate. The reason is that when the discount 
rate increases, the present value of the future cash flows (most time benefits) will 
decrease more than the current or the latest cash flows (most time costs). The NPV  
is defined by the following formula:

The following program demonstrates a negative correlation between NPV and the 
discount rate:

>>>import scipy as sp

>>>from matplotlib.pyplot import *

>>>cashflows=[-100,50,60,70]

>>>rate=[]

>>>npv=[]

>>>x=(0,0.7)

>>>y=(0,0)

>>>for i in range(1,70):

    rate.append(0.01*i)

    npv.append(sp.npv(0.01*i,cashflows[1:])+cashflows[0])

>>>plot(rate,npv),plot(x,y)

>>>show()
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In the preceding program, we plan to draw two lines: a straight line at y=0 and an 
NPV profile. The NPV profile indicates the relationship between NPV and discount 
rate as shown in the following graph:

In the previous example, we see just one Internal Rate of Return (IRR) defined as the 
discount rate makes NPV equal to zero. However, for abnormal projects, with cash 
inflows first and then cash outflows, or for the projects with more than one change in 
direction of cash flows, we could not tell whether we could have a unique IRR. This 
scenario is represented as follows:

>>>from import scipy as sp

>>>cashflows=[-100,50,60,70]

>>>rate=0.1

>>>npv=sp.npv(rate,cashflows[1:])+cashflows[0]

>>>round(npv,2)

47.62

As we discussed in the previous chapter, the NPV function from SciPy mimics the 
Excel NPV function, and it is actually a PV function using the following program:

>>>import scipy as sp

>>>import matplotlib.pyplot as plt

>>>cashflows=[504,-432,-432,-432,832]
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>>>rate=[]

>>>npv=[]

>>>x=[0,0.3]

>>>y=[0,0]

>>>for i in range(1,30):

    rate.append(0.01*i)

    npv.append(sp.npv(0.01*i,cashflows[1:])+cashflows[0])

>>>plt.plot(x,y),plt.plot(rate,npv)

>>>plt.show()

The output corresponding to this code is given as follows:

In the previous example, we know that there exist multiple IRRs. From the previous 
chapter, we know that we could use the np.irr() function to find out those multiple 
IRRs using the following program:

>>>import numpy as np

>>>cashflows=[504,-432,-432,-432,832]

>>>np.irr(cashflows)

array([ 0.08949087,  0.24006047])

Using colors effectively
To make our graphs or lines more eye-catching, we could use different colors. For 
example, we have 4 years' EPS (Diluted EPS Excluding Extraordinary Items) from 
Yahoo! Finance for the companies W-Mart and DELL. EPS is Earnings per Share.  
We could contrast their EPS with different colors using the following program:

import matplotlib.pyplot as plt

A_EPS = (5.02, 4.54,4.18, 3.73)

B_EPS = (1.35, 1.88, 1.35, 0.73)

ind = np.arrange(len(A_EPS))  # the x locations for the groups
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width = 0.40                 # the width of the bars

fig, ax = plt.subplots()

A_Std=B_Std=(2,2,2,2)

rects1 = ax.bar(ind, A_EPS, width, color='r', yerr=A_Std)

rects2 = ax.bar(ind+width, B_EPS, width, color='y', yerr=B_Std)

ax.set_ylabel('EPS')

ax.set_xlabel('Year')

ax.set_title('Diluted EPS Excluding Extraordinary Items ')

ax.set_xticks(ind+width)

ax.set_xticklabels( ('2012', '2011', '2010', '2009') )

ax.legend( (rects1[0], rects2[0]), ('W-Mart', 'DELL') )

def autolabel(rects):

    for rect in rects:

        height = rect.get_height()

        ax.text(rect.get_x()+rect.get_width()/2., 1.05*height, 
'%d'%int(height),

                ha='center', va='bottom')

autolabel(rects1)

autolabel(rects2)

plt.show()

The command of np.arange(3) will generate four values from 0 to 3 while 
ax.set_xtickers() generates ticks. The corresponding output is shown in  
the following figure:
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In the preceding code, we color W-Mart's EPS red, color='r', and DELL's EPS 
yellow, color='y'. The eight different colors and their representing letters are given 
in the following table:

Letter Color Letter Color
'b' Blue 'm' Magenta
'g' Green 'y' Yellow
'r' Red 'k' Black
'c' Cyan 'w' White

Using different shapes
To make our graphs more eye-catching, we could use different shapes. In the 
following table, various shapes and their corresponding symbols are presented:

Character Description Character Description
'''-''' Solid line style '''3''' tri_left marker
'''--''' Dashed line style '''4''' tri_right marker
'''-.''' Dash-dot line style '''s''' Square marker
''':''' Dotted line style '''p''' Pentagon marker
'''.''' Point marker '''*''' Star marker
''', ''' Pixel marker '''h''' Hexagon1 marker
'''o''' Circle marker '''H''' Hexagon2 marker
'''v''' triangle_down marker '''+''' Plus marker
'''^''' triangle_up marker '''x''' X marker
'''<''' triangle_left marker '''D''' Diamond marker
'''>''' triangle_right marker '''d''' Thin_diamond marker
'''1''' tri_down marker '''|''' Vline marker
'''2''' tri_up marker '''_''' Hline marker



Visual Finance via Matplotlib

[ 140 ]

Graphical representation of the portfolio 
diversification effect
In finance, we could remove firm-specific risk by combining different stocks in our 
portfolio. First, let us look at a hypothetical case by assuming that we have 5 years' 
annual returns of two stocks as follows:

Year Stock A Stock B
2009 0.102 0.1062
2010 -0.02 0.23
2011 0.213 0.045
2012 0.12 0.234
2013 0.13 0.113

We form an equal-weighted portfolio using those two stocks. Using the mean() 
and std() functions contained in NumPy, we can estimate their means, standard 
deviations, and correlation coefficients as follows:

>>>import numpy as np

>>>A=[0.102,-0.02, 0.213,0.12,0.13]

>>>B=[0.1062,0.23, 0.045,0.234,0.113]

>>>port_EW=(np.array(ret_A)+np.array(ret_B))/2.

>>>round(np.mean(A),3),round(np.mean(B),3),round(np.mean(port_EW),3)

(0.109, 0.146, 0.127)

>>>round(np.std(A),3),round(np.std(B),3),round(np.std(port_EW),3)

(0.075, 0.074, 0.027)

In the preceding code, we estimate mean returns, their standard deviations for 
individual stocks, and an equal-weighted portfolio. The volatility (standard 
deviation) of such an equal-weighted portfolio is 2.7 percent, considerably smaller 
than those of the individual stock (7.5 percent for stock A and 7.4 percent for stock 
B). In the following program, we use a graph to represent such an effect:

import numpy as np

import matplotlib.pyplot as plt

year=[2009,2010,2011,2012,2013]

ret_A=[0.102,-0.02, 0.213,0.12,0.13]

ret_B=[0.1062,0.23, 0.045,0.234,0.113]
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port_EW=(np.array(ret_A)+np.array(ret_B))/2.

plt.figtext(0.2,0.65,"Stock A")

plt.figtext(0.15,0.4,"Stock B")

plt.xlabel("Year")

plt.ylabel("Returns")

plt.plot(year,ret_A,lw=2)

plt.plot(year,ret_B,lw=2)

plt.plot(year,port_EW,lw=2)

plt.title("Indiviudal stocks vs. an equal-weighted 2-stock portflio")

plt.annotate('Equal-weighted Portfolio', xy=(2010, 0.1), xytext=(2011.,0)
,arrowprops=dict(facecolor='black',shrink=0.05),        )

plt.ylim(-0.1,0.3)

plt.show()

The output graph corresponding to this code is given as follows:
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In the preceding code, we add an arrow to indicate which line is associated with 
our equal-weighted, two-stock portfolio by using the function called annotate(). 
The pair of values for xy=(2010,0.1) is for the destination of the arrow, and 
xytext=(2011,0) is the starting point of the arrow. The color of the arrow is black. 
For more detail about the function, just type help(plt.annotate) after issuing 
import matplotlib.pyplot as plt. From the preceding graph, we see that the 
fluctuation, uncertainty, or risk of our equal-weighted portfolio is much smaller than 
those of individual stocks in its portfolio. We can also estimate their means, standard 
deviation, and correlation coefficient. The correlation coefficient between those two 
stocks is -0.75, and this is the reason why we could diversify away firm-specific risk 
by forming an even equal-weighted portfolio as shown in the following code:

>>>import scipy as sp

>>>sp.corrcoef(A,B)

array([[ 1.        , -0.74583429],

       [-0.74583429,  1.        ]])

In the preceding example, we use hypothetical numbers (returns) for two stocks. 
How about IBM and W-Mart? First, we have to know how to retrieve historical price 
data from Yahoo! Finance.

Number of stocks and portfolio risk
We know that when we increase the number of stocks in a portfolio, we would 
diversify away firm-specific risk. However, how many stocks do we need to diversify 
away from most of the firm-specific risk? Statman (1987) argues that we need at least 
30 stocks. The title of his paper is How Many Stocks Make a Diversified Portfolio? in the 
Journal of Financial Quantitative Analysis. Based on his relationship between n (number 
of stocks) and the ratio of the portfolio standard deviation to the standard deviation 
of a single stock, we have the graph showing the relationship between the two. The 
values in the following table are from Statman (1987) where n is the number of stocks 
in a portfolio,  is the standard deviation of the annual portfolio returns, and  is the 
average of the standard deviation of a one-stock portfolio:

n n

1 49.236 1.00 45 20.316 0.41
2 37.358 0.76 50 20.203 0.41
4 29.687 0.60 75 19.860 0.40
6 26.643 0.54 100 19.686 0.40
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n n

8 24.983 0.51 200 19.432 0.39
10 23.932 0.49 300 19.336 0.39
12 23.204 0.47 400 19.292 0.39
14 22.670 0.46 500 19.265 0.39
16 22.261 0.45 600 19.347 0.39
18 21.939 0.45 700 19.233 0.39
20 21.677 0.44 800 19.224 0.39
25 21.196 0.43 900 19.217 0.39
30 20.870 0.42 1000 19.211 0.39
35 20.634 0.42 19.158 0.39

40 20.456 0.42

The following is our program:

from matplotlib.pyplot import *

n=[1,2,4,6,8,10,12,14,16,18,20,25,30,35,40,45,50,75,100,200,300,400,500,6
00,700,800,900,1000]

port_sigma=[0.49236,0.37358,0.29687,0.26643,0.24983,0.23932,0.23204, 
0.22670,0.22261,0.21939,0.21677,0.21196,0.20870,0.20634,0.20456,0.20316,0
.20203,0.19860,0.19686,0.19432,0.19336,0.19292,0.19265,0.19347,0.19233,0.
19224,0.19217,0.19211,0.19158]

xlim(0,50)

ylim(0.1,0.4)

hlines(0.19217, 0, 50,  colors='r', linestyles='dashed')

annotate('', xy=(5, 0.19), xycoords = 'data',xytext = (5, 0.28),  
textcoords = 'data',arrowprops = {'arrowstyle':'<->'})

annotate('', xy=(30, 0.19), xycoords = 'data',xytext = (30, 0.1),  
textcoords = 'data',arrowprops = {'arrowstyle':'<->'})

annotate('Total portfolio risk', xy=(5,0.3),xytext=(25,0.35), 
arrowprops=dict(facecolor='black',shrink=0.02))         

figtext(0.15,0.4,"Diversiable risk")

figtext(0.65,0.25,"Nondiversifiable risk")

plot(n[0:17],port_sigma[0:17])
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title("Relationship between n and portfolio risk")

xlabel("Number of stocks in a portfolio")

ylabel("Ratio of Portfolio std to std of one stock")

show()

In the preceding code, the values for n, that is, the number of stocks in a portfolio, 
and port_swigma, that is, the portfolio standard deviation, are from Statman (1987). 
The functions ylim() and xlim() set the lower and upper limits for the x axis and y 
axis respectively, as shown in the following figure:

Retrieving historical price data from 
Yahoo! Finance
The function called quotes_historical_yahoo() in the matplotlib module could 
be used to download historical price data from Yahoo! Finance. For example, we 
want to download daily price data for IBM over the period from January 1, 2012 to 
December 31, 2012, we have the following four-line Python code:

>>>from matplotlib.finance import quotes_historical_yahoo

>>>date1=(2012, 1, 1)

>>>date2=(2012, 12,31)

>>>price=quotes_historical_yahoo('IBM', date1, date2)
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To download IBM's historical price data up to today, we could use the datetime.
date.today() function as follows:

>>>import datetime

>>>import matplotlib.finance as finance

>>>import matplotlib.mlab as mlab

>>>ticker = 'IBM'

>>>begdate = datetime.date(2013,1,1)

>>>enddate = datetime.date.today()

>>>price = finance.fetch_historical_yahoo(ticker, begdate, enddate)

>>>r = mlab.csv2rec(price); price.close()

>>>r.sort()

The r.sort() function will sort the time series in ascending order since the original 
data from Yahoo! Finance is arranged in descending order. To check the number of 
observations, we use the len() function. To check the first observation and the last 
one, we use r[0] and r[-1]; see the following results:

>>>len(r)

217

>>>r[0:4]

rec.array([ (datetime.date(2013, 1, 2), 194.09, 196.35, 193.8, 196.35, 
4234100, 192.61),

       (datetime.date(2013, 1, 3), 195.67, 196.29, 194.44, 195.27, 
3644700, 191.55),

       (datetime.date(2013, 1, 4), 194.19, 194.46, 192.78, 193.99, 
3380200, 190.3),

       (datetime.date(2013, 1, 7), 193.4, 193.78, 192.34, 193.14, 
2862300, 189.46)], 

      dtype=[('date', 'O'), ('open', '<f8'), ('high', '<f8'), ('low', 
'<f8'), ('close', '<f8'), ('volume', '<i4'), ('adj_close', '<f8')])

>>>

Histogram showing return distribution
In finance, we use mean returns to represent the expected returns and use the 
standard deviation of returns to represent the risk. A histogram could be used 
to show those two. If the location is on the right, it means the stock has a higher 
expected return, while the dispersion indicates the risk level: wider dispersion 
suggests a higher risk as shown in the following program:

from matplotlib.pyplot import *

from matplotlib.finance import quotes_historical_yahoo
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import numpy as np

import matplotlib.mlab as mlab

ticker='IBM'

begdate=(2013,1,1)

enddate=(2013,11,9)

p = quotes_historical_yahoo(ticker, begdate, enddate,asobject=True, 
adjusted=True)

ret = (p.aclose[1:] - p.aclose[:-1])/p.aclose[1:]

[n,bins,patches] = hist(ret, 100)

mu = np.mean(ret)

sigma = np.std(ret)

x = mlab.normpdf(bins, mu, sigma)

plot(bins, x, color='red', lw=2)

title("IBM return distribution")

xlabel("Returns")

ylabel("Frequency")

show()

The output corresponding to the preceding code is given as follows:
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The next program makes the trading days more evenly distributed:

from __future__ import print_function

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.mlab as mlab

import matplotlib.cbook as cbook

import matplotlib.ticker as ticker

import datetime

import matplotlib.finance as finance

myticker = 'IBM'

begdate = datetime.date(2013,1,1)

enddate = datetime.date.today()

price = finance.fetch_historical_yahoo(myticker, begdate, enddate)

r = mlab.csv2rec(price); price.close()

r.sort()

r = r[-30:]  # get the last 30 days

fig, ax = plt.subplots()

ax.plot(r.date, r.adj_close, 'o-')

ax.set_title('Fig. 1: IBM last 30 days with gaps on weekends')

fig.autofmt_xdate()

N = len(r)

ind = np.arange(N)  # the evenly spaced plot indices

def format_date(x, pos=None):

    thisind = np.clip(int(x+0.5), 0, N-1)

    return r.date[thisind].strftime('%Y-%m-%d')

fig, ax = plt.subplots()

ax.plot(ind, r.adj_close, 'o-')

plt.xlabel("Every Monday shown")

ax.set_title('Fig 2: IBM last 30 days evenly spaced plot indices')

ax.xaxis.set_major_formatter(ticker.FuncFormatter(format_date))

fig.autofmt_xdate()

plt.show()
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Only the second figure is shown to save space:

Comparing stock and market returns
We could download daily price data from Yahoo! Finance for one stock and the 
market represented by S&P 500. Then estimate their returns and represent them  
via a graph using the following code:

from matplotlib.pyplot import *

from matplotlib.finance import quotes_historical_yahoo

import numpy as np

def ret_f(ticker,begdate,enddate):

     p = quotes_historical_yahoo(ticker, begdate, enddate,asobject=True, 
adjusted=True)

     return((p.aclose[1:] - p.aclose[:-1])/p.aclose[:-1])

begdate=(2013,1,1)

enddate=(2013,2,9)

ret1=ret_f('IBM',begdate,enddate)

ret2=ret_f('^GSPC',begdate,enddate)

n=min(len(ret1),len(ret2))
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s=np.ones(n)*2

t=range(n)

line=np.zeros(n)

plot(t,ret1[0:n], 'ro',s )

plot(t,ret2[0:n], 'bd',s)

plot(t,line,'b',s)

figtext(0.4,0.8,"Red for IBM, Blue for S&P500")

xlim(1,n)

ylim(-0.04,0.07)

title("Comparions between stock and market retuns")

xlabel("Day")

ylabel("Returns")

show()

The output corresponding to the preceding code is given as follows:
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Understanding the time value of money
In finance, we know that $100 received today is more valuable than $100 received 
one year later. If we use size to represent the difference, we could have the following 
Python program to represent the same concept:

from matplotlib.pyplot import *

fig1 = figure(facecolor='white')

ax1 = axes(frameon=False)

ax1.set_frame_on(False)

ax1.get_xaxis().tick_bottom() 

ax1.axes.get_yaxis().set_visible(False) 

x=range(0,11,2)

x1=range(len(x),0,-1)

y = [0]*len(x);

annotate("Today's value of $100 received today",xy=(0,0),xytext=(2,0.001)
,arrowprops=dict(facecolor='black',shrink=0.02))

annotate("Today's value of $100 received in 2 years",xy=(2,0.00005),xytex
t=(3.5,0.0008),arrowprops=dict(facecolor='black',shrink=0.02))

annotate("received in 6 years",xy=(4,0.00005),xytext=(5.3,0.0006),arrowpr
ops=dict(facecolor='black',shrink=0.02))

annotate("received in 10 years",xy=(10,-0.00005),xytext=(4,-0.0006),arrow
props=dict(facecolor='black',shrink=0.02))

s = [50*2.5**n for n in x1];

title("Time value of money ")

xlabel("Time (number of years)")

scatter(x,y,s=s);

show()

The output graph is shown as follows:
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Candlesticks representation of IBM's 
daily price
We could use candlesticks to represent the daily opening, high, low, and closing 
prices. The vertical line represents high and low prices, while a rectangular bar 
represents open-close span. When the close price is higher than the opening price,  
we have a black bar. Otherwise, we would have a red bar. The following program 
will show exactly this:

import matplotlib.pyplot as plt

import numpy as np

from matplotlib.dates import DateFormatter, WeekdayLocator, HourLocator, 
DayLocator, MONDAY

from matplotlib.finance import quotes_historical_yahoo, candlestick,\

     plot_day_summary, candlestick2

date1 = ( 2013, 10, 20)

date2 = ( 2013, 11, 10 )

ticker='IBM'

mondays = WeekdayLocator(MONDAY)        # major ticks on the mondays

alldays    = DayLocator()               # minor ticks on the days

weekFormatter = DateFormatter('%b %d')  # e.g., Jan 12

dayFormatter = DateFormatter('%d')      # e.g., 12

quotes = quotes_historical_yahoo(ticker, date1, date2)

if len(quotes) == 0:

    raise SystemExit

fig, ax = plt.subplots()

fig.subplots_adjust(bottom=0.2)

ax.xaxis.set_major_locator(mondays)

ax.xaxis.set_minor_locator(alldays)

ax.xaxis.set_major_formatter(weekFormatter)

ax.xaxis.set_minor_formatter(dayFormatter)

plot_day_summary(ax, quotes, ticksize=3)

candlestick(ax, quotes, width=0.6)

ax.xaxis_date()

ax.autoscale_view()

plt.setp( plt.gca().get_xticklabels(), rotation=80, 
horizontalalignment='right')
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plt.figtext(0.35,0.45, '10/29:   Open,    High,     Low,   Close')

plt.figtext(0.35,0.42, '        177.62,  182.32,   177.50,  182.12')

plt.figtext(0.35,0.32, 'Black ==> Close > Open ')

plt.figtext(0.35,0.28, 'Red   ==> Close < Open ')

plt.title('Candlesticks for IBM from 10/20/2013 to 11/10/2013')            

plt.ylabel('Price')

plt.xlabel('Date')

plt.show()

The output graph is shown as follows:
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Graphical representation of two-year price 
movement
We could show the price movement for a given ticker from the first date to the 
second date. In the following program, we have three input values: ticker,  
begdate (first date), and enddate (second date):

import datetime

import matplotlib.pyplot as plt

from matplotlib.finance import quotes_historical_yahoo

from matplotlib.dates import MonthLocator,DateFormatter

ticker='AAPL'

begdate= datetime.date( 2012, 1, 2 )

enddate = datetime.date( 2013, 12,4)

months    = MonthLocator(range(1,13), bymonthday=1, interval=3) # every 
3rd month

monthsFmt = DateFormatter("%b '%Y")

x = quotes_historical_yahoo(ticker, begdate, enddate)

if len(x) == 0:

    print ('Found no quotes')

    raise SystemExit

dates = [q[0] for q in x]

closes = [q[4] for q in x]

fig, ax = plt.subplots()

ax.plot_date(dates, closes, '-')

ax.xaxis.set_major_locator(months)

ax.xaxis.set_major_formatter(monthsFmt)

ax.xaxis.set_minor_locator(mondays)

ax.autoscale_view()

ax.grid(True)

fig.autofmt_xdate()
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The output graph is shown as follows:

IBM's intra-day graphical representations
We could demonstrate the price movement of a stock for a given period, for example, 
from January 2009 to today. First, let's look at the intra-day price pattern. The 
following program will be explained in the next chapter:

import pandas as pd, numpy as np, datetime 

ticker='AAPL'

path='http://www.google.com/finance/getprices?q=ttt&i=60&p=1d&f=d,o,h,l,c
,v'

p=np.array(pd.read_csv(path.replace('ttt',ticker),skiprows=7,header=No
ne))

date=[]

for i in arange(0,len(p)):

    if p[i][0][0]=='a':

        t= datetime.datetime.fromtimestamp(int(p[i][0].replace('a','')))

        date.append(t)

    else:

        date.append(t+datetime.timedelta(minutes =int(p[i][0])))
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final=pd.DataFrame(p,index=date)

final.columns=['a','Open','High','Low','Close','Vol']

del final['a']

x=final.index

y=final.Close

title('Intraday price pattern for ttt'.replace('ttt',ticker))

xlabel('Price of stock')

ylabel('Intro-day price pattern')

plot(x,y)

show()

The graph is shown in the following image:
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A more complex program that we can run to find the intra-day pattern could be 
found at http://matplotlib.org/examples/pylab_examples/finance_work2.
html. Our program is quite similar to the original program posted at the link. The 
Python program used to generate the following graph is not shown to save space:

Presenting both closing price and trading 
volume
Sometimes, we like to view both price movement and trading volumes 
simultaneously. The following program accomplishes this:

>>>from pylab import plotfile, show

>>>import matplotlib.finance as finance

>>>ticker = 'IBM'

>>>begdate = datetime.date(2013,1,1)

>>>enddate = datetime.date.today()
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>>>x= finance.fetch_historical_yahoo(ticker, begdate, enddate)

>>>plotfile(x, (0,6,5))

>>>show()

The output graph is shown as follows:

Adding mathematical formulae to our graph
In finance, we use many mathematical formulae. Occasionally, we need to add a 
mathematical formula to our figure. A set of formulae for a call option by using the 
matplotlib module is shown in the following program:

import numpy as np

import matplotlib.mathtext as mathtext

import matplotlib.pyplot as plt

import matplotlib

matplotlib.rc('image', origin='upper')

parser = mathtext.MathTextParser("Bitmap")

r'$\left[\left\lfloor\frac{5}{\frac{\left(3\right)}{4}} y\right)\right]$'

rgba1, depth1 = parser.to_rgba(r' $d_2=\frac{ln(S_0/K)+(r-\sigma^2/2)T}{\
sigma\sqrt{T}}=d_1-\sigma\sqrt{T}$', color='blue',fontsize=12, dpi=200)
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rgba2, depth2 = parser.to_rgba(r'$d_1=\frac{ln(S_0/K)+(r+\sigma^2/2)T}{\
sigma\sqrt{T}}$', color='blue', fontsize=12, dpi=200)

rgba3, depth3 = parser.to_rgba(r' $c=S_0N(d_1)- Ke^{-rT}N(d_2)$', 
color='red',fontsize=14, dpi=200)

fig = plt.figure()

fig.figimage(rgba1.astype(float)/255., 100, 100)

The program crucially depends on the LaTeX format, which is a high-quality 
typesetting system; it includes features designed for the production of technical and 
scientific documentation. LaTeX is the de facto standard for the communication and 
publication of scientific documents according to the web page of http://latex-
project.org/. The following is the output:

Adding simple images to our graphs
Assume that we have the Python logo saved under C:\temp. The logo could be 
downloaded at http://canisius.edu/~yany/python_logo.png. The following 
code could be used to retrieve it:

>>>import matplotlib.pyplot as plt

>>>import matplotlib.cbook as cbook

>>>image_file = cbook.get_sample_data('c:/temp/python_logo.png')

>>>image = plt.imread(image_file)

>>>plt.imshow(image)

>>>plt.axis('off') 

>>>plt.show()

The cbook module is a collection of utility functions and classes. Many of them 
are from the Python cookbook. Thus, it is named cbook. The following is the 
corresponding graph:
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Saving our figure to a file
If we plan to save our figure as a .pdf file, we could use the following code:

>>>from matplotlib.pylab import *

>>>plot([1,1,4,5,10,11])

>>>savefig("c:/temp/test.pdf")

The following is the corresponding graph:
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If we don't specify a particular path as done in the following code, the figure would 
be at the current working directory; usually it is under C:\python27:

>>>savefig("test.pdf")

Performance comparisons among stocks
In the following program, we compare the performance of several stocks in terms of 
their returns in 2013:

import matplotlib.pyplot as plt; plt.rcdefaults()

import numpy as np

import matplotlib.pyplot as plt

from matplotlib.finance import quotes_historical_yahoo

stocks = ('IBM', 'DELL', 'WMT', 'C', 'AAPL')

begdate=(2013,1,1)

enddate=(2013,11,30)

def ret_annual(ticker):

    x = quotes_historical_yahoo(ticker, begdate, enddate,asobject=True, 
adjusted=True)

    logret = log(x.aclose[1:]/x.aclose[:-1])

    return(exp(sum(logret))-1)

performance = []

for ticker in stocks:

    performance.append(ret_annual(ticker))

y_pos = np.arange(len(stocks))

plt.barh(y_pos, performance, left=0, alpha=0.3)

plt.yticks(y_pos, stocks)

plt.xlabel('Annual returns ')

plt.title('Performance comparisons (annual return)')

plt.show()
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The related bar chart is shown in the following figure:

Comparing return versus volatility for 
several stocks
The following program shows the locations of five stocks on the return versus 
volatility graph:

import numpy as np

import matplotlib.pyplot as plt; plt.rcdefaults()

from matplotlib.finance import quotes_historical_yahoo

stocks = ('IBM', 'GE', 'WMT', 'C', 'AAPL')

begdate=(2013,1,1)

enddate=(2013,11,30)

def ret_vol(ticker):

    x = quotes_historical_yahoo(ticker,begdate,enddate,asobject=True,adju
sted=True)

    logret = log(x.aclose[1:]/x.aclose[:-1])

    return(exp(sum(logret))-1,std(logret))    

ret=[];vol=[]
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for ticker in stocks:

    r,v=ret_vol(ticker)

    ret.append(r)

    vol.append(v*sqrt(252))

labels = ['{0}'.format(i) for i in stocks]

xlabel('Volatility (annualized)')

ylabel('Annual return')

title('Return vs. volatility')

plt.subplots_adjust(bottom = 0.1)

color=np.array([ 0.18,  0.96,  0.75,  0.3,  0.9])

plt.scatter(vol, ret, marker = 'o',  c=color,s = 1000,cmap=plt.get_
cmap('Spectral'))

for label, x, y in zip(labels, vol, ret):

    plt.annotate(label,xy=(x,y),xytext=(-20,20),textcoords='offset 
points',

    ha = 'right', va = 'bottom',bbox = dict(boxstyle = 'round,pad=0.5', 

    fc = 'yellow', alpha = 0.5),arrowprops = dict(arrowstyle = '->', 

    connectionstyle = 'arc3,rad=0'))

plt.show()

In the graph, each point represents one stock in terms of its annual return and 
annualized volatility. To make the picture more eye-catching, different colors  
are used as shown in the following figure:
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Finding manuals, examples, and videos
The web page offering examples is http://matplotlib.org/examples/index.
html. We believe it is a good idea to study the examples given on the web page 
before writing our own applications. The web pages related to matplotlib are  
as follows:

•	 http://matplotlib.org/users/

•	 http://scipy-lectures.github.io/intro/matplotlib/matplotlib.
html

The web page of 5,000 examples is as follows:

•	 http://matplotlib.org/examples/index.html

•	 http://www.youtube.com/watch?v=OfumUp3hZmQ

How do we install ActivePython and matplotlib?

•	 http://www.activestate.com/activepython/python-financial-
scientific-modules (5m, 37s)

Visual financial statements can be found at the following location:

•	 http://www.youtube.com/watch?v=OfumUp3hZmQ

Installing the matplotlib module 
independently
There are two steps to install the module:

1.	 Go to http://matplotlib.org/downloads.html.
2.	 Choose an appropriate package and download it, such as matplotlib-

1.2.1.win-amd64-py3.2.exe.

Summary
In this chapter, we showed how to use the matplotlib module to vividly explain 
many financial concepts by using graph, pictures, color, and size. For example, in 
a two-dimensional graph, we showed a few stocks' returns and volatility, the NPV 
profile, multiple IRRs, and the portfolio diversification effect.
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In Chapter 8, Statistical Analysis of Time Series, first we demonstrate how to retrieve 
historical time series data from several public data sources, such as Yahoo! Finance, 
Google Finance, Federal Reserve Data Library, and Prof. French's Data Library. 
Then, we discussed various statistical tests, such as T-test, F-test, and normality 
test. In addition, we presented Python programs to run capital asset pricing model 
(CAPM), run a Fama-French three-factor model, estimate the Roll (1984) spread, 
estimate Value at Risk (VaR) for individual stocks, and also estimate the Amihud 
(2002) illiquidity measure, and the Pastor and Stambaugh (2003) liquidity measure 
for portfolios. For the issue of anomaly in finance, we tested the existence of the so-
called January effect. For high-frequency data, we explained briefly how to draw 
intra-day price movement and retrieved data from the Trade, Order, Report and 
Quote (TORQ) database and the Trade and Quote (TAQ) database. The terms of  
use for Yahoo! Finance is at http://finance.yahoo.com/badges/tos.

Exercises
1. What is the potential usage of matplotlib?

2. How do we install matplotlib?

3. Does the matplotlib module depend on NumPy? Does it depend on SciPy?

4. Write a Python function to generate an NPV profile with a set of input cash flows.

5. Write a Python function to download daily price time series from Yahoo! Finance.

6. We have six-year return vectors for two stocks and intend to construct a simple 
equal-weighted portfolio. Interpret the following Python codes and explain the result 
for the portfolio:

>>>A=[0.09,0.02, -0.13,0.20,-0.09,-0.03]

>>>B=[0.10,-0.3, -0.02,0.14,-0.13,0.23]

>>>C=[0.08,-0.16, 0.033,-0.24,0.053,-0.39]

>>>port_EW=(A+B)/3.

7. What is the standard deviation in terms of stock daily returns for the stocks of 
IBM, DELL, WMT, and C and GE in 2011?

8. How do we estimate a moving beta for a set of given tickers?

9. How do we generate a histogram in terms of daily returns for IBM? You can use 
five-year daily data from Yahoo! Finance.
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10. Which pair of stocks is more closely associated with each other among IBM, 
DELL, and WMT? Show the evidence. You can use the latest five-year data from 
Yahoo! Finance to support your arguments.

11. What is the Capital Market Line? How do we visualize this concept?

12. What is the Security Market Line? How do we visualize this concept?

13. Could you find empirical evidence to support or dispute the argument made by 
Statman (1987) that a well-diversifiable portfolio should at least be holding 30 stocks?

14. Construct an efficient frontier with the use of ten stocks from Yahoo! Finance. 
You can use either monthly or daily data.

15. How do we show the relationship between risk and returns?

16. What is the correlation between the US stock market and the Canadian stock 
market? What is the relationship between the US stock market and the Japanese 
stock market? For the US stock market, you can choose S&P500 (^GSPC for its ticker 
symbol from Yahoo! Finance). To search market indices, go to finance.yahoo.com 
first, type carat of (^) in the search bar, and press Enter. Your screen will look like the 
following screenshot:

17. How do we randomly select ten stocks from a list of 100 tickers?

18. How do we draw an efficient frontier for ten stocks with five-year daily price data 
downloaded from Yahoo! Finance?

19. What might be the potential usages of a 3D graph for teaching finance?

20. Find more information about visual finance and offer your own comments.
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21. Debut the following program:

>>>import scipy as sp

>>>import matplotlib.pyplot as plt

>>>cashflows=[100,-50,-50,-50,60]

>>>rate=npv=[]

>>>x=[0,0.8]

>>>y=[0,0]

>>>for i in range(1,30):

    rate.append(0.01*i)

    npv.append(sp.npv(0.01*i,cashflows[1:])+cashflows[0])

>>>plt.plot(x,y),plt.plot(rate,npv)

>>>plt.show()

22. There are some issues with the DuPont identity discussed in this chapter. For 
DELL and W-Mart, their ROE is the same, 0.22. However, the graph gives different 
heights. The reason is that the final value of ROE is the product of three components 
instead of summation. Find a way to overcome this issue, that is, your final output 
which is shown in the following graph should have the same heights:



Statistical Analysis  
of Time Series

Understanding the properties of financial time series is very important in finance. 
In this chapter, we will discuss many issues, such as downloading historical prices, 
estimating returns, total risk, market risk, correlation among stocks, correlation 
among different countries' markets from various types of portfolios, and a portfolio 
variance-covariance matrix; constructing an efficient portfolio and an efficient 
frontier; estimating Roll (1984) spread; and also estimating the Amihud (2002) 
illiquidity measure, and Pastor and Stambaugh's (2003) liquidity measure for 
portfolios. The two related Python modules used are Pandas and statsmodels.

In this chapter, we will cover the following topics:

•	 Installation of Pandas and statsmodels
•	 Using Pandas and statsmodels
•	 Open data sources, and retrieving data from Excel, text, CSV, and MATLAB 

files, and from a web page
•	 Date variable, DataFrame, and merging different datasets by date
•	 Term structure of interest rate, 52-week high and low trading strategy
•	 Return estimation and converting daily returns to monthly or annual returns
•	 Various tests, such as Durbin-Watson, T-test, and F-test
•	 Capital asset pricing model (CAPM), rolling beta, and Fama- 

MacBeth regression
•	 Rolling volatility, correlation, forming ann-stock portfolio,  

variance-covariance matrix, portfolio optimization, and efficient frontier
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•	 The Roll (1985) spread, Amihud's (2002) illiquidity, and Pastor and 
Stambaugh's (2003) liquidity measure

•	 Individual stock and portfolio's Value at Risk (VaR)
•	 January effect, size effect, and weekday effect
•	 Retrieving high-frequency data from Google Finance, Trade, Order,  

Report, and Quotation (TORQ)

Installing Pandas and statsmodels
In the previous chapter, we used ActivePython. Although this package includes 
Pandas using PyPm to install, statsmodel is unavailable in PyPm. Fortunately, we 
could use Anaconda, introduced in Chapter 4, 13 Lines of Python Code to Price a Call 
Option. The major reason that we recommend Anaconda is that the package includes 
NumPy, SciPy, matplotlib, Pandas, and statsmodels. The second reason is its 
wonderful editor called Spyder.

To install Anaconda, perform the following two steps:

1.	 Go to http://continuum.io/downloads.
2.	 According to your machine, choose an appropriate package, such as 

Anaconda-1.8.0-Windows-x86.exe for a Windows version.

There are several ways to launch Python. After clicking on Start | All Programs, 
search Anaconda; we will see the following hierarchy:

In the following three sections, we show different ways to launch Python.
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Launching Python using the Anaconda 
command prompt
For launching Python using the Anaconda command prompt, perform the  
following steps:

1.	 Click on Start | All Programs, search Anaconda, and then Anaconda 
Command Prompt; we will go to the directory that contains the Python 
executable file python.exe.

2.	 The exact path depends on individual installation. After typing python, 
we launch Python, see the first line of the next screenshot. To test whether 
Pandas and statsmodels are available, we import both of them. If there is 
no error, it means that we have them installed correctly:

Launching Python using the DOS window
We can launch Python from any directory. To add the directory of our Python 
executable file to the path, we perform the following steps:

1.	 First, launch Python via Anaconda Command Prompt (refer to the earlier 
steps), and then copy the full path. In the preceding example, it is C:\Users\
yany\AppData\Local\Continuum\Anaconda.

2.	 Then, click on Start | Control Panel | View advanced system settings, click 
on Environment Variables, find PATH, and then paste the full path given in 
the preceding paragraph. (Note that this is for Windows only.)

3.	 Now, we can launch Python from any directory or subdirectory. After clicking 
on Start, enter cmd in the Search programs and files textbox, and press the 
Enter key; a DOS window will appear. Just type Python to launch it. Assume 
that we have a two-line Python program called test01.py under the C:\temp 
directory. The two lines of code in that file are x=10 and print x.
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4.	 Again, click on Start, enter cmd in the Search programs and files textbox, and 
then press Enter. From the DOS window, we go to the correct directory. To 
show the program, issue type test01.py. To run the program, issue python 
test01.py as follows:

Launching Python using Spyder
It is a much better choice to launch Python via Spyder, the editor accompanying 
Anaconda. For the Windows version, perform the following steps:

1.	 Click on Start | All Files | Anaconda | Spyder; the following three panels 
(windows) will appear. On the left-hand side panel, a default program called 
temp.py appears as shown in the following screenshot:
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2.	 Let's try our first simple program. On the left-hand side panel, type x=10, 
press Return, and type print x. We can remove the contents of the default 
file before we type our two lines. In other words, our new program just has 
the following two lines:
x=10

Print x

3.	 After clicking on the green run button on the menu bar, you will be asked 
to save it. After that, the output will show on the bottom-right panel called 
Console as shown in the following screenshot:

In the preceding output, the first line tells us the name of the program and the 
working directory (wdir). As for the left-hand side panel, we can upload our 
programs and modify them. One of the good features is that we can open many 
Python programs simultaneously.

Using Pandas and statsmodels
We give a few examples in the following section for the two modules we are going 
to use intensively in the rest of the book. Again, the Pandas module is for data 
manipulation and the statsmodels module is for the statistical analysis.

Using Pandas
In the following example, we generate two time series starting from January 1, 2013. 
The names of those two time series (columns) are A and B:

>>>import numpy as np

>>>import pandas as pd

>>>dates=pd.date_range('20130101',periods=5)

>>>np.random.seed(12345)

>>>x=pd.DataFrame(np.random.rand(5,2),index=dates,columns=('A','B'))
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First, we import both NumPy and Pandas modules. The pd.date_range() function 
is used to generate an index array. The x variable is a Pandas' data frame with dates 
as its index. Later in this chapter, we will discuss pd.DataFrame(). The columns() 
function defines the names of those columns. Because the seed() function is used in 
the program, anyone can generate the same values. The describe() function offers 
the properties of those two columns, such as mean and standard deviation. Again, 
we call such a function as shown in the following code:

>>>x

                   A         B

2013-01-01  0.929616  0.316376

2013-01-02  0.183919  0.204560

2013-01-03  0.567725  0.595545

2013-01-04  0.964515  0.653177

2013-01-05  0.748907  0.653570

>>>x.describe()

              A         B

count  5.000000  5.000000

mean   0.678936  0.484646

std    0.318866  0.209761

min    0.183919  0.204560

25%    0.567725  0.316376

50%    0.748907  0.595545

75%    0.929616  0.653177

max    0.964515  0.653570

>>>

Assume that we plan to replace missing values (NaN) with the mean of the time 
series. The two functions used are mean() and fillna():

>>>import pandas as pd

>>>import numpy as np

>>>x=pd.Series([0.1,0.02,-0.03,np.nan,0.130,0.125])

>>>x

0    0.100

1    0.020

2   -0.030

3      NaN
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4    0.130

5    0.125

dtype: float64

>>>m=np.mean(x)

>>>round(m,4)

0.069

>>>y=x.fillna(m)

>>>y

0    0.100

1    0.020

2   -0.030

3    0.069 # nan is replaced with the mean

4    0.130

5    0.125

dtype: float64

>>>

Examples from statsmodels
In statistics, ordinary least square (OLS) regression is a method for estimating the 
unknown parameters in a linear regression model. It minimizes the sum of squared 
vertical distances between the observed values and the values predicted by the 
linear approximation. The OLS method is used extensively in finance. Assume that 
we have the following equation where y is an n by 1 vector (array), and x is an n by 
(m+1) matrix, a return matrix (n by m), plus a vector that contains 1 only. N is the 
number of observations, and m is the number of independent variables:

            (1)

In the following program, after generating the x and y vectors, we run an OLS 
regression (a linear regression). The last line prints the parameters only:

>>>import numpy as np

>>>import statsmodels.api as sm

>>>y=[1,2,3,4,2,3,4]

>>>x=range(1,8)

>>>x=sm.add_constant(x)

>>>results=sm.OLS(y,x).fit()

>>>print results.params
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The output is shown as follows:

>>>[ 1.28571429  0.35714286]

Open data sources
Since this chapter explores the statistical properties of time series, we need certain 
data. It is a great idea to employ publicly available economic, financial, and 
accounting data since every reader can download these time series with no cost.  
The free data sources are summarized in the following table:

Name Web page
Yahoo! Finance http://finance.yahoo.com

Current and historical pricing, BS, IS, and so on
Google Finance http://www.google.com/finance

Current and historical trading prices
Federal Reserve Bank 
Data Library

http://www.federalreserve.gov/releases/h15/
data.htm

Interest rates, rates for AAA, AA rated bonds, and so on
Financial statements

Russell indices http://www.russell.com

Russell indices
Prof. French's Data 
Library

http://mba.tuck.dartmouth.edu/pages/faculty/
ken.french/data_library.html

Fama-French factors, market index, risk-free rate, and 
industry classification

Census Bureau http://www.census.gov/

http://www.census.gov/compendia/statab/hist_
stats.html

Census data
Bondsonline http://www.bondsonline.com/

Bond data
U.S. Department of the 
Treasury

http://www.treas.gov

U.S. Treasury ? yield
Bureau of Labor 
Statistics

http://download.bls.gov/

http://www.bls.gov/

Inflation, employment, unemployment, pay, and benefits
Business cycles, vital statistics, and report of Presidents
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We can easily download many time series from these sources. For example, to 
download IBM historical daily price data from Yahoo! Finance, we can perform the 
following steps:

1.	 Go to Yahoo! Finance at http://finance.yahoo.com.
2.	 Enter IBM in the search box.
3.	 Click on Historical Prices.
4.	 Select the starting and ending dates, and click on Get Prices.
5.	 Go to the bottom of the page, and click on Download to Spreadsheet.

The first and last several lines are given as follows:

>>>Date,Open,High,Low,Close,Volume,Adj Close

2013-07-26,196.59,197.37,195.00,197.35,2485100,197.35

2013-07-25,196.30,197.83,195.66,197.22,3014300,197.22

2013-07-24,195.95,197.30,195.86,196.61,2957900,196.61

2013-07-23,194.21,196.43,194.10,194.98,2863800,194.98

1962-01-09,552.00,563.00,552.00,556.00,491200,2.43

1962-01-08,559.50,559.50,545.00,549.50,544000,2.40

1962-01-05,570.50,570.50,559.00,560.00,363200,2.44

1962-01-04,577.00,577.00,571.00,571.25,256000,2.49

1962-01-03,572.00,577.00,572.00,577.00,288000,2.52

1962-01-02,578.50,578.50,572.00,572.00,387200,2.50

The second example involves downloading the Russell 3000 time series. At  
http://www.russell.com/indexes/data/us_equity/russell_us_index_
values.asp, find the appropriate time series, then click on Download File under 
Historical. The download file will be a CSV file, the first few lines of which  
are shown as follows:

"Index Name","Date","Value Without Dividends","Value With Dividends"

"Russell 3000® Index","06/01/1995",555.15,1034.42

"Russell 3000® Index","06/02/1995",555.15,1034.56

"Russell 3000® Index","06/05/1995",558.72,1041.21

"Russell 3000® Index","06/06/1995",558.50,1041.04

"Russell 3000® Index","06/07/1995",556.45,1037.21

"Russell 3000® Index","06/08/1995",555.83,1036.18

"Russell 3000® Index","06/09/1995",551.66,1028.41
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"Russell 3000® Index","06/12/1995",554.61,1033.96

"Russell 3000® Index","06/13/1995",559.74,1043.93

"Russell 3000® Index","06/14/1995",560.19,1044.86

Retrieving data to our programs
To feed data to our programs, we need to understand how to input data. Since the 
data courses vary, we introduce several ways to input data, such as from clipboard, 
Yahoo! Finance, an external text or CSV file, a web page, and a MATLAB dataset.

Inputting data from the clipboard
In our everyday lives, we use Notepad, Microsoft Word, or Excel to input data.  
One of the widely used functionalities is copy and paste. The pd.read_clipboard() 
function contained in Pandas mimics this operation. For example, we type the 
following contents on Notepad:

x y

1 2 

3 4 

5 6

Then, highlight these entries, right-click on it, copy and paste in the Python console, 
and run the following two lines:

>>>import pandas as pd

>>>data=pd.read_clipboard()

>>>data

   X  y

1  2

3  4

5  6

This is true for copying data from Microsoft Word and Excel.
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Retrieving historical price data from Yahoo! 
Finance
The following simple program has just five lines, and we can use it to retrieve 
DELL's historical prices data from Yahoo! Finance:

>>>from matplotlib.finance import quotes_historical_yahoo

>>>ticker='DELL'

>>>begdate=(2013,1,1)

>>>enddate=(2013,11,9)

>>>p=quotes_historical_yahoo(ticker, begdate, enddate,asobject=True, 

adjusted=True)

To further check the variable called p, we could apply the type() and size() 
functions. To view a few lines, we print the first and the last few lines on screen. The 
p[0] array index is referred to in the first observation, while p[-1] is for the last one:

>>>type(p)

<class 'numpy.core.records.recarray'>

>>>size(p)

209

The output tells us that the data type of the output is an array. By looking at these 
two days, we realize that the dataset is sorted with the oldest date as the first 
observation. This is opposite to the date order where the first date is the latest date, 
shown on Yahoo! Finance. For the array, we have seven variables: date, open, close, 
high, low, volume, and aclose. The aclose variable is the adjusted closing price, 
that is, a closing price adjusted for stock split and distribution such as dividends.
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Inputting data from a text file
When importing data from an external file, Pandas has many functions, such as 
read_table(), read_fwf(), read_hdf(), and io(). There is no way that we could 
discuss each of them in this chapter. Thus, we focus on a few widely used functions. 
Assume that our input dataset is the Fama-French monthly factors. To download 
the time series manually, we go to Prof. French's data library at http://mba.tuck.
dartmouth.edu/pages/faculty/ken.french/data_library.html. Click on Fama/
French Factors, and download it. Then, unzip the file, delete the annual part, and 
then name the text file ff_monthly.txt. The data items start from the fifth line, and 
the fourth line is a header; refer to the following lines:

This file was created by CMPT_ME_BEME_RETS using the 201209 CRSP 
database.

The 1-month TBill return is from Ibbotson and Associates, Inc.

[this is a blank line]

        Mkt-RF     SMB     HML      RF

192607    2.62   -2.16   -2.92    0.22

192608    2.56   -1.49    4.88    0.25

192609    0.36   -1.38   -0.01    0.23

We could use read_table() to retrieve these three factors as shown in the  
following code:

>>>import pandas as pd

>>>x=pd.read_table("c:/temp/ff_monthly.txt",skiprows=4)

After issuing help(read_table), we could get more information about this 
function. The first several lines are shown as follows:

>>>import pandas as pd

>>>help(pd.read_table)

Help on function read_table in module pandas.io.parsers:
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read_table(filepath_or_buffer, sep='\t', dialect=None, compression=None, 
doublequote=True, escapechar=None, quotechar='"', quoting=0, 
skipinitialspace=False, lineterminator=None, header='infer', index_
col=None, names=None, prefix=None, skiprows=None, skipfooter=None, 
skip_footer=0, na_values=None, true_values=None, false_values=None, 
delimiter=None, converters=None, dtype=None, usecols=None, engine='c', 
delim_whitespace=False, as_recarray=False, na_filter=True, compact_
ints=False, use_unsigned=False, low_memory=True, buffer_lines=None, 
warn_bad_lines=True, error_bad_lines=True, keep_default_na=True, 
thousands=None, comment=None, decimal='.', parse_dates=False, keep_
date_col=False, dayfirst=False, date_parser=None, memory_map=False, 
nrows=None, iterator=False, chunksize=None, verbose=False, encoding=None, 
squeeze=False)

    Read general delimited file into DataFrame

    

    Also supports optionally iterating or breaking of the file

    into chunks.

The most important input variables for the read_table() function are skiprows, sep, 
index_col, and doublequote. Some of them will be discussed later in this chapter.

Inputting data from an Excel file
Assume that we have an Excel file with just two observations with a file named 
text.xlsx saved under C:\temp\. In addition, the name of the spreadsheet that 
contains the two lines of code shown after the screenshot is called Sheet1:

>>>infile=pd.ExcelFile("c:/temp/test.xlsx")

>>>x=infile.parse('Sheet1',header=None)

>>>x

                    0    1    2

0 2013-01-01 00:00:00  0.1  0.3

1 2013-01-02 00:00:00  0.2  0.4

>>>
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Inputting data from a CSV file
The function we could use to read a CSV file could be read_csv(), or read_
table(). Assume that we have the earlier data downloaded from Yahoo! Finance. 
The file's name is ibm.csv, and it is located at C:\temp. Input IBM's daily price data. 
The input file is ibm.csv, which we just downloaded from Yahoo! Finance. To see a 
few lines, we just type f[1:2] as shown in the following code:

>>>import pandas as pd

>>>f=pd.read_csv("c:\\temp\\ibm.csv")

>>>f[1:3]

         Date    Open    High     Low   Close   Volume  Adj Close

1  2013-07-25  196.30  197.83  195.66  197.22  3014300     197.22

2  2013-07-24  195.95  197.30  195.86  196.61  2957900     196.61

Note that in this program, to retrieve data from an external CSV file, we use the 
pd.read_csv("c:\\temp\\ibm.csv") command , which is equivalent to the 
pd.read_csv("c:/temp/ibm.csv") command.

Retrieving data from a web page
An easy way to retrieve a stock's price data directly from Yahoo! Finance is to use the 
pd.read_csv() function from a web page as shown in the following code:

>>>import pandas as pd

>>>x=pd.read_csv("http://chart.yahoo.com/table.csv?s=IBM")

>>>type(x)

<class 'pandas.core.frame.DataFrame'>

>>>

The last command in the previous code indicates that x is a DataFrame. If we just type 
x, we will get more information about this variable as shown in the following code:

>>>x

<class 'pandas.core.frame.DataFrame'>

Int64Index: 13072 entries, 0 to 13071

Data columns (total 7 columns):

Date         13072  non-null values

Open         13072  non-null values

High         13072  non-null values

Low          13072  non-null values

Close        13072  non-null values
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Volume       13072  non-null values

Adj Close    13072  non-null values

dtypes: float64(5), int64(1), object(1)

>>>x[0:5]

         Date    Open    High     Low   Close   Volume  Adj Close

0  2013-12-04  175.37  177.50  175.16  175.74  5267400     175.74

1  2013-12-03  177.00  178.23  175.64  176.08  5864000     176.08

2  2013-12-02  179.46  179.59  177.12  177.48  4560000     177.48

3  2013-11-29  179.21  180.76  179.00  179.68  2870500     179.68

4  2013-11-27  177.83  180.18  177.82  178.97  4596500     178.97

>>>

The read_csv() function in Pandas is used to retrieve data from an external file. In 
the preceding example, we need just two variables: date and adjusted closing price. 
Since we have seven columns, of which date is the first and adjusted price is the last 
one, their column numbers are 0 and 6. The keyword, usecols(), could be used to 
achieve this:

>>>import pandas as pd

>>>url='http://chart.yahoo.com/table.csv?s=IBM'

>>>x=pd.read_csv(url,usecols=[0,6])

>>>x[0:5]

         Date  Adj Close

0  2013-12-04     175.74

1  2013-12-03     176.08

2  2013-12-02     177.48

3  2013-11-29     179.68

4  2013-11-27     178.97

>>>

Inputting data from a MATLAB dataset
First, from http://canisius.edu/~yany/ibm.mat, we download MATLAB data. 
Assume that the downloaded MATLAB dataset is saved under C:\temp\. We can 
use the loadmat() function of SciPy to load it as follows:

>>>from __future__ import print_function

>>>import scipy.io as sp

>>>matData = sp.loadmat('c:/temp/ibm.mat')
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Several important functionalities
Here, we introduce several important functionalities that we are going to use in the 
rest of the chapters. The Series() function included in the Pandas module would 
help us to generate time series. When dealing with time series, the most important 
variable is date. This is why we explain the date variable in more detail. Data.Frame 
is used intensively in Python and other languages, such as R.

Using pd.Series() to generate  
one-dimensional time series
We could easily use the pd.Series() function to generate our time series; refer to 
the following example:

>>>import pandas as pd

>>>x = pd.date_range('1/1/2013', periods=252)

>>>data = pd.Series(randn(len(x)), index=x)

>>>data.head()

2013-01-01    0.776670

2013-01-02    0.128904

2013-01-03   -0.064601

2013-01-04    0.988347

2013-01-05    0.459587

Freq: D, dtype: float64

>>>data.tail()

2013-09-05   -0.167599

2013-09-06    0.530864

2013-09-07    1.378951

2013-09-08   -0.729705

2013-09-09    1.414596

Freq: D, dtype: float64

>>>
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Using date variables
To better facilitate working with time series data, we introduce the read_csv() 
and read_table() functions in Pandas. In particular, users can use parse_dates 
or date_parse to designate a specific column as a date-time object. To use the first 
column as our index, we issue the following commands:

>>>import pandas as pd

>>>url='http://chart.yahoo.com/table.csv?s=IBM'

>>>x=pd.read_csv(url,index_col=0,parse_dates=True) 

>>>x.head()

              Open    High     Low   Close   Volume  Adj Close

Date                                                          

2013-11-29  179.21  180.76  179.00  179.68  2870500     179.68

2013-11-27  177.83  180.18  177.82  178.97  4596500     178.97

2013-11-26  178.67  178.94  177.31  177.31  5756000     177.31

2013-11-25  180.25  180.75  177.82  178.94  7161900     178.94

2013-11-22  183.50  184.99  179.92  181.30  7610200     181.30

Using the DataFrame
The first example generates a column as follows:

>>>import pandas as pd

>>>df=pd.DataFrame(randn(8, 1), columns = ['A'], dtype = 'float32') 

>>>df

          A

0 -0.581377

1 -1.790758

2 -0.418108

3  1.122045

4 -0.402717

5  0.694823

6  0.035632

7  0.919457

>>>



Statistical Analysis of Time Series

[ 184 ]

When running the previous code, we will not get the same results since the np.rand.
seed() function is not used. When we use the read_csv() or read_table() 
functions to input data from an external file with a text format, the data type is also 
DataFrame as shown in the following example:

>>>import pandas as pd

>>>index = pd.date_range('1/1/2013', periods=8)

>>>df = pd.DataFrame(randn(8, 3), index=index,columns=['A', 'B', 'C'])

>>>df

                   A         B         C

2013-01-01 -1.185345 -0.422447 -0.610870

2013-01-02 -1.507653 -0.295807 -0.636771

2013-01-03  1.686858 -2.013024 -0.980905

2013-01-04  0.372631 -1.580834  0.515045

2013-01-05 -0.322729 -0.677587 -1.053555

2013-01-06 -0.518918 -0.952527  0.000124

2013-01-07  0.482760  2.049442  1.833976

2013-01-08  0.313321  0.162334  0.662253

Assume that we are only interested in two variables from IBM's historical daily data 
from Yahoo! Finance: date and adjusted close price. In addition, we plan to use the 
date variable as our index. We have the following Python program to accomplish 
these requirements:

>>>import pandas as pd

>>>x=pd.read_csv('http://chart.yahoo.com/table.
csv?s=IBM',usecols=[0,6],index_col=0)

>>>type(x)

<class 'pandas.core.frame.DataFrame'>

>>>x.head()

            Adj Close

Date                 

2013-11-21     184.13

2013-11-20     185.19

2013-11-19     185.25

2013-11-18     184.47

2013-11-15     183.19
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To find more information about the pd.DataFrame() function included in Pandas, 
we can issue help(pd.DataFrame) as follows:

>>>help(pd.DataFrame)

Help on class DataFrame in module pandas.core.frame:

class DataFrame(pandas.core.generic.NDFrame)

   Two-dimensional size-mutable, potentially heterogeneous tabular 
datastructure with labeled axes (rows and columns). Arithmetic 
operationsalign on both row and column labels. Can be thought of as a 
dict-like container for Series objects. The primary pandas data structure

   

   Parameters

   ----------

   data : numpy ndarray (structured or homogeneous), dict, or DataFrame 
Dict can contain Series, arrays, constants, or list-like objects

   index : Index or array-like

       Index to use for resulting frame. Will default to np.arange(n) if 
no indexing information part of input data and no index provided

  columns : Index or array-like Will default to np.arange(n) if not 
column labels provided

   dtype : dtype, default None Data type to force, otherwise infer

   copy : boolean, default False

      Copy data from inputs. Only affects DataFrame / 2d ndarray input

Return estimation
If we have price data, we have to calculate returns. In addition, sometimes we 
have to convert daily returns to weekly or monthly, or convert monthly returns 
to quarterly or annual. Thus, understanding how to estimate returns and their 
conversion is vital. Assume that we have four prices and we choose the first and  
last three prices as follows:

>>>import numpy as np

>>>p=np.array([1,1.1,0.9,1.05])
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It is important how these prices are sorted. If the first price happened before the 
second price, we know that the first return should be (1.1-1)/1=10%. Next, we learn 
how to retrieve the first n-1 and the last n-1 records from an n-record array. To list 
the first n-1 prices, we use p[:-1], while for the last three prices we use p[1:] as 
shown in the following code:

>>>print(p[:-1])

>>>print(p[1:])

 [ 1.   1.1  0.9]

[ 1.1   0.9   1.05]

To estimate returns, use the following code:

>>>ret=(p[1:]-p[:-1])/p[:-1]

>>>print ret

[ 0.1        -0.18181818  0.16666667]

However, if the prices are arranged in the reverse order, for example, the first one is 
the latest price and the last one is the oldest price, then we have to estimate returns 
in the following ways:

>>>ret=(p[:-1]-p[1:])/p[1:]

>>>print ret

[-0.09090909  0.22222222 -0.14285714]

>>>

The following code shows how to download daily price data from Yahoo! Finance 
and estimate daily returns:

>>>from matplotlib.finance import quotes_historical_yahoo

>>>ticker='IBM'

>>>begdate=(2013,1,1)

>>>enddate=(2013,11,9)

>>>x = quotes_historical_yahoo(ticker, begdate, enddate,asobject=True, 

adjusted=True)

>>>ret=(x.aclose[1:]-x.aclose[:-1])/x.aclose[:-1]
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The first line uploads a function from matplotlib.finance. We define the 
beginning and ending dates using a tuple data type. The downloaded historical 
daily price data is assigned to x. To verify that our returns are correctly estimated, 
we can print a few prices to our screens. Then, we could manually verify one or two 
return values as shown in the following code:

>>>x.date[0:3]

array([datetime.date(2013, 1, 2), datetime.date(2013, 1, 3),

       datetime.date(2013, 1, 4)], dtype=object)

>>>x.aclose[0:3]

array([ 192.61,  191.55,  190.3 ])

>>>ret[0:2]

array([-0.00550335, -0.00652571])

>>>(191.55-192.61)/192.61

-0.005503348735787354

>>>

Yes, the last result confirms that our first return is correctly estimated.

Converting daily returns to monthly returns
Sometimes, we need to convert daily returns to monthly or annual returns. Here is 
our procedure. First, we estimate the daily log returns. We then take a summation 
of all daily log returns within each month to find out the corresponding monthly log 
returns. The final step is to convert a log monthly return to a monthly percentage 
return. Assume that we have the price data of p0, p1, p2, …., p20, where p0 is the last 
trading price of the last month, p1 is the first price of this month, and p20 is the last 
price of this month. Thus, this month's percentage return is given as follows:

           (2)

The monthly log return is defined as follows:

20
monthly

0

log_ return log P
P

 
=  

 
          (3)
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The relationship between monthly percentage and log return is given as follows:

          (4)

The daily log return is defined similarly as follows:

           (5)

Let's look at the following summation of log returns:

20
20

10

log_ log log_ daily
monthly i

i

preturn return
p =

 
= = 

 
∑        (6)

Based on the previous procedure, the following Python program converts daily 
returns into monthly returns:

from matplotlib.finance import quotes_historical_yahoo

import numpy as np

import pandas as pd

ticker='IBM'

begdate=(2013,1,1)

enddate=(2013,11,9)

x = quotes_historical_yahoo(ticker, begdate, enddate,asobject=True, 
adjusted=True)

logret = log(x.aclose[1:]/x.aclose[:-1])

yyyymm=[]

d0=x.date

for i in range(0,size(logret)):

    yyyymm.append(''.join([d0[i].strftime("%Y"),d0[i].strftime("%m")]))

y=pd.DataFrame(logret,yyyymm,columns=['ret_monthly'])

ret_monthly=y.groupby(y.index).sum() 
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In the preceding program, we download daily price data based on a given ticker and 
the beginning and ending dates. Since the closing price is adjusted for stock split and 
potential distribution, we use it to estimate log returns. The procedure to generate 
daily log returns instead of daily percentage returns is based on equation (6). Then, 
we generate a variable called yyyymm. To show a few of its observations, we have the 
following output:

The objective of generating such a date variable is to use it for grouping. To generate 
this variable, we apply the join() function; refer to the following example. We use 
d0[0] as an illustration:

>>>d0[0]

datetime.date(2013, 1, 2)

>>>d0[0].strftime("%Y")

'2013'

>>>d0[0].strftime("%m")

'01'

>>>''.join([d0[0].strftime("%Y"),d0[0].strftime("%m")])

'201301'

>>>

After printing the monthly returns, we have the following values:

>>>ret_monthly

        ret_monthly

201301     0.043980

201302    -0.006880

201303     0.045571

201304    -0.061913

201305     0.050327

201306    -0.088366

201307     0.023441
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201308    -0.057450

201309     0.013031

201310    -0.039109

201311     0.009602

>>>

Converting daily returns to annual returns
Similarly, we could convert daily returns to annual ones with the help of the 
following code:

from matplotlib.finance import quotes_historical_yahoo

import numpy as np

import pandas as pd

ticker='IBM'

begdate=(1990,1,1)

enddate=(2012,12,31)

x=quotes_historical_yahoo(ticker,begdate,enddate,asobject=True,adjusted=T
rue)

logret = log(x.aclose[1:]/x.aclose[:-1])

date=[]

d0=x.date

for i in range(0,size(logret)):

    date.append(d0[i].strftime("%Y"))

 y=pd.DataFrame(logret,date,columns=['ret_annual'])

 ret_annual=exp(y.groupby(y.index).sum())-1

The first and last several observations of the dataset are given, hereby using head() 
and tail() functions of Pandas as follows:

>>>ret_annual.head()

      ret_annual

1990    0.197897

1991   -0.157460

1992   -0.411765

1993    0.187500
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1994    0.300877

>>>ret_annual.tail()

      ret_annual

2008   -0.150799

2009    0.546150

2010    0.134804

2011    0.284612

2012    0.045457

Merging datasets by date
Assume that we are interested in estimating the market risk (beta) for IBM using 
daily data. The following is the program we can use to download IBM's price, market 
return, and risk-free interest rate since we need them to run a capital asset pricing 
model (CAPM):

from matplotlib.finance import quotes_historical_yahoo

import numpy as np

import pandas as pd

ticker='IBM'

begdate=(2013,10,1)

enddate=(2013,11,9)

x = quotes_historical_yahoo(ticker, begdate, enddate,asobject=True, 
adjusted=True)

k=x.date

date=[]

for i in range(0,size(x)):

    date.append(''.join([k[i].strftime("%Y"),k[i].strftime("%m"),k[i].
strftime("%d")]))

x2=pd.DataFrame(x['aclose'],np.array(date,dtype=int64),columns=[ticker+'_
adjClose'])

ff=load('c:/temp/ffDaily.pickle')

final=pd.merge(x2,ff,left_index=True,right_index=True)
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A part of the output is given as follows:

In the preceding output, there are two types of data for the five columns: price and 
returns. The first column is price while the rest are returns. This does not make any 
sense. However, we just show how to merge different time series by a date variable. 
To merge a stock return column with returns, we simply estimate the return of IBM 
before a merger.

Forming an n-stock portfolio
In the following program, we generate a dataset with three stocks in addition to 
S&P500:

import statsimport numpy as np

import pandas as pd

tickers=['IBM','dell','wmt']

final=pd.read_csv('http://chart.yahoo.com/table.csv?s=^GSPC',usecols=[0,6
],index_col=0)

final.columns=['^GSPC']

for ticker in tickers:

    print ticker

    x = pd.read_csv('http://chart.yahoo.com/table.csv?s=ttt'.replace('ttt
',ticker),usecols=[0,6],index_col=0)

    x.columns=[ticker]

    final=pd.merge(final,x,left_index=True,right_index=True)
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To show the first and last few lines, we use the head() and tail() functions  
as follows:

>>>final.head()

              ^GSPC     IBM   dell    wmt

Date                                     

2013-10-18  1744.50  172.85  13.83  75.71

2013-10-17  1733.15  173.90  13.85  75.78

2013-10-16  1721.54  185.73  13.85  75.60

2013-10-15  1698.06  183.67  13.83  74.37

2013-10-14  1710.14  185.97  13.85  74.68

>>>final.tail()

             ^GSPC    IBM  dell   wmt

Date                                 

1988-08-23  257.09  17.38  0.08  2.83

1988-08-22  256.98  17.36  0.08  2.87

1988-08-19  260.24  17.67  0.09  2.94

1988-08-18  261.03  17.97  0.09  2.98

1988-08-17  260.77  17.97  0.09  2.98

>>>

T-test and F-test
In finance, T-test could be viewed as one of the most used statistical hypothesis  
tests in which the test statistic follows a student's t distribution if the null hypothesis 
is supported. We know that the mean for a standard normal distribution is zero. 
In the following program, we generate 1,000 random numbers from a standard 
distribution. Then, we conduct two tests: test whether the mean is 0.5, and test 
whether the mean is zero:

>>>from scipy import stats

>>>np.random.seed(1235)

>>>x = stats.norm.rvs(size=10000)

>>>print("T-value   P-value (two-tail)")

>>>print(stats.ttest_1samp(x,5.0))

>>>print(stats.ttest_1samp(x,0)) 

T-value   P-value (two-tail)
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(array(-495.266783341032), 0.0)

(array(-0.26310321925083124), 0.79247644375164772)

>>>

For the first test, in which we test whether the time series has a mean of 0.5, we 
reject the null hypothesis since the T-value is 495.2 and the P-value is 0. For the 
second test, we accept the null hypothesis since the T-value is close to -0.26 and  
the P-value is 0.79. In the following program, we test whether the mean daily 
returns from IBM in 2013 is zero:

from scipy import stats

from matplotlib.finance import quotes_historical_yahoo

ticker='ibm'

begdate=(2013,1,1)

enddate=(2013,11,9)

p=quotes_historical_yahoo(ticker,begdate,enddate,asobject=True, 
adjusted=True)

ret=(p.aclose[1:] - p.aclose[:-1])/p.aclose[:-1]

print('        Mean        T-value       P-value  '  )

print(round(mean(ret),5), stats.ttest_1samp(ret,0))

      Mean                              T-value       P-value  

(-0.00024, (array(-0.296271094280657), 0.76730904089713181))

From the previous results, we know that the average daily returns for IBM is 
0.0024 percent. The T-value is -0.29 while the P-value is 0.77. Thus, the mean is 
statistically not different from zero.

Tests of equal means and equal variances
Next, we test whether two variances for IBM and DELL in 2013 are equal or not. The 
function called sp.stats.bartlet performs Bartlett's test for equal variances with 
a null hypothesis that all input samples are from populations with equal variances. 
The outputs are T-value and P-value:

import scipy as sp

from matplotlib.finance import quotes_historical_yahoo

begdate=(2013,1,1)

enddate=(2013,11,9)

def ret_f(ticker,begdate,enddate):
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     p = quotes_historical_yahoo(ticker,begdate, enddate,asobject=True,ad
justed=True)

     return((p.open[1:] - p.open[:-1])/p.open[:-1])

y=ret_f('IBM',begdate,enddate)

x=ret_f('DELL',begdate,enddate)

print(sp.stats.bartlett(x,y)) 

(5.1377132006045105, 0.023411467035559311)

With a T-value of 5.13 and a P-value of 2.3 percent, we conclude that these two 
stocks will have different variances for their daily stock returns in 2013 if we choose 
a significant level of 5 percent.

Testing the January effect
In this section, we use IBM's data to test the existence of the so-called January effect 
which states that stock returns in January are statistically different from those in 
other months. First, we collect the daily price for IBM from Yahoo! Finance. Then, we 
convert daily returns to monthly ones. After that, we classify all monthly returns into 
two groups: returns in January versus returns in other months. Finally, we test the 
equality of group means as shown in the following code:

from matplotlib.finance import quotes_historical_yahoo

import numpy as np

import scipy as sp

from datetime import datetime

ticker='IBM'

begdate=(1962,1,1)

enddate=(2013,11,22)

x = quotes_historical_yahoo(ticker, begdate, enddate,asobject=True, 
adjusted=True)

logret = log(x.aclose[1:]/x.aclose[:-1])

date=[]

d0=x.date

for i in range(0,size(logret)):

    t1=''.join([d0[i].strftime("%Y"),d0[i].strftime("%m"),"01"])

    date.append(datetime.strptime(t1,"%Y%m%d"))

    y=pd.DataFrame(logret,date,columns=['logret'])

    retM=y.groupby(y.index).sum()



Statistical Analysis of Time Series

[ 196 ]

ret_Jan=retM[retM.index.month==1]

ret_others=retM[retM.index.month!=1]

print(sp.stats.bartlett(ret_Jan.values,ret_others.values))
(1.1592293088621082, 0.28162543233634485)

>>>

Since the T-value is 1.16 and P-value is 0.28, we conclude that there is no January 
effect if we use IBM as an example and choose a 5 percent significant level. A word 
of caution: we should not generalize this result since it is based on just one stock. In 
terms of the weekday effect, we could apply the same procedure to test its existence.

Many useful applications
In this section, we discuss many issues, such as the 52-week high and low trading 
strategy, estimating the Roll (1984) spread, Amihud (2002) illiquidity measure, Pastor 
and Stambaugh (2003) liquidity measure, and CAPM, and running a Fama-French 
three-factor model, Fama-Macbeth regression, rolling beta, and VaR.

52-week high and low trading strategy
Some investors/researchers argue that we could adopt a 52-week high and low 
trading strategy by taking a long position if today's price is close to the minimum 
price achieved in the past 52 weeks and taking an opposite position if today's price 
is close to its 52-week high. The following Python program presents this 52-week's 
range and today's position:

from matplotlib.finance import quotes_historical_yahoo

from datetime import datetime

from dateutil.relativedelta import relativedelta

ticker='IBM'

enddate=datetime.now()

begdate=enddate-relativedelta(years=1)

p = quotes_historical_yahoo(ticker, begdate, enddate,asobject=True, 
adjusted=True)

x=p[-1]

y=np.array(p.tolist())[:,-1]

high=max(y)

low=min(y)

print("    Today,                    Price     High   Low,  % from low ")

print(x[0], x[-1], high, low, round((x[-1]-low)/(high-low)*100,2))
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The corresponding output is shown as follows:

According to the 52-week high and low trading strategy, we have more incentive to 
buy IBM's stock today.

Roll's model to estimate spread (1984)
Liquidity is defined as how quickly we can dispose of our asset without losing its 
intrinsic value. Usually, we use spread to represent liquidity. However, we need 
high-frequency data to estimate spread. Later in the chapter, we show how to 
estimate spread directly by using high-frequency data. To measure spread indirectly 
based on daily observations, Roll (1984) shows that we can estimate it based on the 
serial covariance in price changes as follows:

         (7A)

          (7B)

Here, Pt is the closing price of a stock on day t,  is the average share price in the 
estimation period. One of the problems of the Roll spread is that for some stocks over 
certain periods, their covariance of price change is positive. For such cases, users set 
S as being equal to zero. For example, we could use the following code to estimate 
the covariance between  and . The following Python code estimates Roll's 
spread for a given ticker, in this case, DELL, using the latest one year's 252 trading 
days' daily data from Yahoo! Finance:

from matplotlib.finance import quotes_historical_yahoo

ticker='IBM'

begdate=(2013,9,1)

enddate=(2013,11,11)

data= quotes_historical_yahoo(ticker, begdate, enddate,asobject=True, 
adjusted=True)

p=data.aclose

d=diff(p)
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cov_=cov(d[:-1],d[1:])

if cov_[0,1]<0:

   print("Roll spread for ", ticker, 'is', round(2*sqrt(-cov_[0,1]),3))

else:

   print("Cov is positive for ",ticker, 'positive', round(cov_[0,1],3))

The corresponding output is shown as follows:

Thus, during that period, Roll's spread for IBM is 1.145. The major assumption for 
Roll's model is that the covariance between  and  is negative. When its value 
is positive, Roll's model would fail. In a real world, it is true for many cases. Usually, 
practitioners adopt two approaches: when the spread is negative, we just ignore 
those cases or use other methods to estimate spread. The second approach is to add a 
negative sign in front of a positive covariance.

Amihud's model for illiquidity (2002)
According to Amihud (2002), liquidity reflects the impact of order flow on price. His 
illiquidity measure is defined as follows:

             (8)

Here, Rt is the daily return at day t, Pt is closing price at t, and Vt is the daily dollar 
trading volume at t. Since the illiquidity is the reciprocal of liquidity, the lower the 
illiquidity value, the higher the liquidity of the underlying security. First, let us look 
at an item-by-item division:

>>>x=np.array([1,2,3],dtype='float')

>>>y=np.array([2,2,4],dtype='float')

>>>np.divide(x,y)

array([ 0.5 ,  1.  ,  0.75])

>>>



Chapter 8

[ 199 ]

In the following code, we estimate Amihud's illiquidity for IBM based on trading 
data in October 2013. The value is 1.165*10-11. It seems that this value is quite 
small. Actually, the absolute value is not important; the relative value matters. If we 
estimate the illiquidity for DELL over the same period, we would find a value of 
0.638*10-11. Since 1.165 is greater than 0.638, we conclude that IBM is less liquid than 
DELL. This correlation is represented in the following code:

import numpy as np

import statsmodels.api as sm

from matplotlib.finance import quotes_historical_yahoo

begdate=(2013,10,1)

enddate=(2013,10,30)

ticker='IBM'  #WMT

data= quotes_historical_yahoo(ticker, begdate, enddate,asobject=True, 
adjusted=True)

p=np.array(data.aclose)

dollar_vol=np.array(data.volume*p)

ret=np.array((p[1:] - p[:-1])/p[1:])

illiq=mean(np.divide(abs(ret),dollar_vol[1:]))

print("Aminud illiq=", illiq) 

('Aminud illiq=', 1.1650681670001537e-11)

Pastor and Stambaugh (2003) liquidity 
measure
Based on the methodology and empirical evidence in Campbell, Grossman, and 
Wang (1993), Pastor and Stambaugh (2003) designed the following model to measure 
individual stock's liquidity and the market liquidity:

                  (9)

Here, ty  is the excess stock return, , on day t,  is the return for the stock, 
 is the risk-free rate,  is the market return;  is the signed dollar trading 

volume ( ( )2, ,t t f t t tx sign R R p volume= − ∗ ∗ ), tp  is the stock price, and  is the 
trading volume. The regression is run based on daily data for each month. In other 
words, for each month, we get one  that is defined as the liquidity measure for 
individual stock.
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The following code estimates the liquidity for IBM. First, we download the IBM and 
S&P500 daily price data, estimate their daily returns, and merge them as follows:

from matplotlib.finance import quotes_historical_yahoo

import numpy as np

from matplotlib.finance import quotes_historical_yahoo

import numpy as np

import pandas as pd

import statsmodels.api as sm

ticker='IBM'

begdate=(2013,1,1)

enddate=(2013,1,31)

data = quotes_historical_yahoo(ticker, begdate, enddate,asobject=True, 
adjusted=True)

ret = (data.aclose[1:]-data.aclose[:-1])/data.aclose[:-1]

dollar_vol=np.array(data.aclose[1:])*np.array(data.volume[1:])

date=[]

d0=data.date

for i in range(0,size(ret)):

    date.append(''.join([d0[i].strftime("%Y"),d0[i].strftime("%m"),d0[i].
strftime("%d")]))

tt=pd.DataFrame(ret,np.array(date,dtype=int64),columns=['ret'])

tt2=pd.DataFrame(dollar_vol,np.array(date,dtype=int64),columns=['doll
ar_vol'])

ff=load('c:/temp/ffDaily.pickle')

tt3=pd.merge(tt,tt2,left_index=True,right_index=True)

final=pd.merge(tt3,ff,left_index=True,right_index=True)

y=final.ret[1:]-final.Rf[1:]

x1=final.Mkt_Rf[:-1]

x2=sign(np.array(final.ret[:-1]-final.Rf[:-1]))*np.array(final.dollar_
vol[:-1])

x3=[x1,x2]

n=size(x3)

x=np.reshape(x3,[n/2,2])

x=sm.add_constant(x)

results=sm.OLS(y,x).fit()

print results.params
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In the previous program, y is IBM's excess return at time t+1, x1 is the market excess 
return at time t, and x2 is the signed dollar trading volume at time t. The coefficient 
before x2 is Pastor and Stambaugh's liquidity measure. The corresponding output is 
given as follows:

Assume that we are interested in estimating the market risk (beta) for IBM using 
daily data downloaded from Yahoo! Finance. The beta is defined by the following 
linear regression:

         (10)

Here, Ri,t is the stock return for stock i, Rf is the risk-free rate, Rmkt,t is the market return, 
and  is the beta for stock i. Since the impact of the risk-free rate is quite small on the 
beta estimation, we could use the following formula for an approximation:

         (11)

The following Python program is used to download the IBM and S&P500 daily price 
data and estimate IBM's beta in 2013:

import numpy as np

import numpy as np

import statsmodels.api as sm

from matplotlib.finance import quotes_historical_yahoo

def ret_f(ticker,begdate, enddate):

    p = quotes_historical_yahoo(ticker, begdate, enddate,asobject=True, 
adjusted=True)

    return((p.aclose[1:] - p.aclose[:-1])/p.aclose[:-1])

begdate=(2013,1,1)

enddate=(2013,11,9)
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y=ret_f('IBM',begdate,enddate)

x=ret_f('^GSPC',begdate,enddate)

x=sm.add_constant(x)

model=sm.OLS(y,x)

results=model.fit()

print results.summary()

In the following program, we use a module called matplotlib, which is discussed in 
the previous chapter. In particular, the function called quote_historical_yahoo() 
is used to retrieve the daily price data from Yahoo! Finance for IBM and S&P500 
(with a ticker symbol ^GSPC). For the return estimate, we use the adjust close, 
that is, aclose. For the formula to estimate returns, we have p.aclose[:-1] and 
p.aclose[1:]; refer to the following code:

>>>x=np.array([1,2,3,4,10])

>>>x[1:]

array([ 2,  3,  4, 10])

>>>x[:-1]

array([1, 2, 3, 4])

>>>

The output is shown as follows:
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From the output, we know that beta for IBM is 0.74, which means that if the market 
risk premium increases by 1 percent, then IBM's risk premium would increase by 
0.74 percent. In total, we have 216 observations used in 2013. The adjusted R2 is 18.7 
percent. In addition, careful readers would find that we could get more information, 
such as Durbin-Watson and Jarque-Bera, among others.

Before discussing how to run a Fama-French three-factor model, we show how to 
save the Fama-French as a dataset with a special format. Any Pandas object has a 
saving method, which uses Python's cPickle module to save data structures to a 
designated name under a directory as shown in the following code:

>>>import pandas as pd

>>>import numpy as np

>>>np.random.seed(1234)

>>>a = pd.DataFrame(randn(6,5))

>>>a.to_pickle('c:/temp/a.pickle')

>>>k=load("c:/temp/a.pickle")

In the preceding program, np.random.seed(1234) is not needed if we plan to 
generate any set of random numbers with 6 rows and 5 columns. Its usage will 
guarantee that we can generate the same set of random numbers irrespective of the 
number of times we run the preceding code. The values of the following output 
would be the same if anyone runs the preceding code. In addition to this, the 
extension of the output file need not necessarily be .pickle, that is, any extension is 
fine (even no extension is fine):

>>>print(k)

>>>       0         1         2         3         4

0  0.471435 -1.190976  1.432707 -0.312652 -0.720589

1  0.887163  0.859588 -0.636524  0.015696 -2.242685

2  1.150036  0.991946  0.953324 -2.021255 -0.334077

3  0.002118  0.405453  0.289092  1.321158 -1.546906

4 -0.202646 -0.655969  0.193421  0.553439  1.318152

5 -0.469305  0.675554 -1.817027 -0.183109  1.058969

>>>
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Fama-French three-factor model
The Fama-French three-factor model could be viewed as a natural extension of 
CAPM, which is actually a single factor model. The IBM return is defined as follows:

,    (12)

Here, is the IBM return, Rf is the risk-free return, is the market return, SMB 
is the portfolio return of small stocks minus returns of big stocks, and HML is the 
portfolio returns for high book-to-market value minus returns of low book-to-market 
value stocks. The following program retrieves the Fama-French monthly factors and 
generates a dataset with the pickle format:

>>>import pandas as pd

>>>file=open("c:/temp/ff_monthly.txt","r")

>>>data=file.readlines()

>>>f=[]

>>>index=[]

>>>for i in range(4,size(data)):

       t=data[i].split()

       index.append(int(t[0]))

       for j in range(1,5):

           k=float(t[j])

           f.append(k/100)

>>>n=len(f)       

>>>f1=np.reshape(f,[n/4,4])

>>>ff=pd.DataFrame(f1,index=index,columns=['Mkt_Rf','SMB','HML','Rf'])

>>>ff.to_pickle("c:/temp/ffMonthly.pickle")

>>>ff.head()

        Mkt_Rf     SMB     HML      Rf

192607  0.0265 -0.0239 -0.0257  0.0022

192608  0.0259 -0.0127  0.0458  0.0025

192609  0.0037 -0.0125 -0.0009  0.0023

192610 -0.0345 -0.0002  0.0102  0.0032

192611  0.0243 -0.0024 -0.0063  0.0031

>>>ff.tail()

        Mkt_Rf     SMB     HML  Rf

201306 -0.0121  0.0123 -0.0045   0
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201307  0.0565  0.0185  0.0079   0

201308 -0.0269  0.0028 -0.0246   0

201309  0.0376  0.0285 -0.0152   0

201310  0.0417 -0.0152  0.0139   0

>>>

Next, we show how to run a Fama-French three-factor regression using five-year 
monthly data, downloaded from Yahoo! Finance for IBM. The dataset for the  
Fama-French monthly dataset in the Pandas' pickle format can be downloaded  
from http://www.canisius.edu/~yany/ffMonthly.pickle:

from matplotlib.finance import quotes_historical_yahoo

import numpy as np

import pandas as pd

import statsmodels.api as sm

ticker='IBM'

begdate=(2008,10,1)

enddate=(2013,11,30)

p = quotes_historical_yahoo(ticker, begdate, enddate,asobject=True, 
adjusted=True)

logret = log(p.aclose[1:]/p.aclose[:-1])

date=[]

d0=p.date

for i in range(0,size(logret)):

date.append(''.join([d0[i].strftime("%Y"),d0[i].strftime("%m")]))

    

t=pd.DataFrame(logret,np.array(date,dtype=int64),columns=['ret'])

ret=exp(t.groupby(t.index).sum())-1

ff=load('c:/temp/ffMonthly.pickle')

final=pd.merge(ret,ff,left_index=True,right_index=True)

y=final.ret

x=final[['Mkt_Rf','SMB','HML']]

x=sm.add_constant(x)

results=sm.OLS(y,x).fit()

print results.params
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In the preceding program, we use a few modules. The beginning date is October 1, 
2008, and the ending date is November 9, 2013. After retrieving the daily price data, 
we estimate the daily return and then convert them to monthly ones. We upload the 
Fama-French monthly three-factors time series and the Pandas' pickle format. In the 
preceding program, the usage of np.array(date,dtype=int64) is to make both 
indices have the same data types. The corresponding output is shown as follows:

Fama-MacBeth regression
First, let's look at the OLS regression by using the pd.ols function as follows:

from datetime import datetime

import numpy as np

import pandas as pd

n = 252

np.random.seed(12345)

begdate=datetime(2013, 1, 2)

dateRange = pd.date_range(begdate, periods=n)

x0= pd.DataFrame(np.random.randn(n, 1),columns=['ret'],index=dateRange)

y0=pd.Series(np.random.randn(n), index=dateRange)

print pd.ols(y=y0, x=x0)

For the Fama-MacBeth regression, we have the following code:

from datetime import datetime

import numpy as np

import pandas as pd

n = 252

np.random.seed(12345)

begdate=datetime(2013, 1, 2)

dateRange = pd.date_range(begdate, periods=n)

def makeDataFrame():

    data=pd.DataFrame(np.random.randn(n,7),columns=['A','B','C','D','E','
F','G'],
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    index=dateRange)

    return data

data = {

    'A': makeDataFrame(),

    'B': makeDataFrame(),

    'C': makeDataFrame()

}

Y = makeDataFrame()

print(pd.fama_macbeth(y=Y,x=data))

Estimating rolling beta
In the following implementation of the pd.ols function, the window parameter, such 
as window=252, is for moving or rolling the window:

import numpy as np

import statsmodels.api as sm

from matplotlib.finance import quotes_historical_yahoo

def ret_f(ticker,begdate, enddate):

    p = quotes_historical_yahoo(ticker, begdate, enddate,asobject=True, 
adjusted=True)

    return((p.aclose[1:] - p.aclose[0:-1])/p.aclose[:-1])

begdate=(1962,1,1)

enddate=(2013,11,9)

y0=pd.Series(ret_f('IBM',begdate,enddate))

x0=pd.Series(ret_f('^GSPC',begdate,enddate))

model = pd.ols(y=y0, x=x0, window=252)

We could view these beta values and the graph with the following code:

>>>model.beta.head()

            x  intercept

251  1.608007  -0.000650

252  1.610066  -0.000652

253  1.608572  -0.000706

254  1.609975  -0.000736

255  1.611035  -0.000673

>>>model.beta.tail()
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              x  intercept

13049  0.784624  -0.000856

13050  0.787177  -0.000911

13051  0.790030  -0.000870

13052  0.780330  -0.000814

13053  0.775992  -0.000867

>>>

To show the graph of the moving beta, we use the plot() function as follows:

>>>model.beta.plot()

The corresponding graph is shown as follows:

Usually, we care more about annual betas, instead of the previous betas for 
overlapping time periods. The following program estimates annual betas,  
which are another type of rolling betas:

import numpy as np

import pandas as pd

import statsmodels.api as sm

from matplotlib.finance import quotes_historical_yahoo
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def ret_f(ticker,begdate, enddate):

    p = quotes_historical_yahoo(ticker, begdate, enddate,asobject=True, 
adjusted=True)

    return((p.aclose[1:] - p.aclose[:-1])/p.aclose[:-1])

begdate=(1962,1,1)

enddate=(2013,11,9)

y0=pd.Series(ret_f('IBM',begdate,enddate))

x0=pd.Series(ret_f('^GSPC',begdate,enddate))

d=quotes_historical_yahoo('^GSPC', begdate, enddate,asobject=True, 
adjusted=True).date[0:-1]

lag_year=d[0].strftime("%Y")

y1=[]

x1=[]

beta=[]

index0=[]

for i in range(1,len(d)):

    year=d[i].strftime("%Y")

    if(year==lag_year):

        x1.append(x0[i])

        y1.append(y0[i])

    else:

        model=pd.ols(y=pd.Series(y1),x=pd.Series(x1))

        print(lag_year, round(model.beta[0],4))

        beta.append(model.beta[0])

        index0.append(lag_year)

        x1=[]

        y1=[]

        lag_year=year

The first several years' betas are given as follows:

('1962', 1.6075)

('1963', 1.0976)

('1964', 1.4896)

('1965', 1.0463)

('1966', 1.2961)

('1967', 1.3819)

('1968', 1.5372)

('1969', 1.2412)
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Understanding VaR
To evaluate the risk of a firm, a security, or a portfolio, various measures can be used, 
such as standard deviation, variance, beta, or Sharpe ratio. However, most CEOs 
prefer one simple number. In this case, one of the commonly used measures is VaR, 
which is defined as the maximum loss with a confidence level over a predetermined 
period. The following graph illustrates the concept of VaR based on a standard 
normal distribution:

Here are a few examples. I have 200 shares of DELL stocks. Today's value is $2,942. 
The maximum loss tomorrow is $239 with a 99 percent confidence level. Our mutual 
fund has a value of $10 million today. The maximum loss over the next three months 
is 0.5 million with 90 percent confidence. The value of our bank is $150 million. 
The VaR of our bank is $10 million with 99 percent confidence over the next six 
months. The most commonly used parameters for VaR are 1 percent and 5 percent 
probabilities (99 percent and 95 percent confidence levels), and one-day and two-
week horizons. Based on the assumption of normality, we have the following  
general form:

      (13)
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Here, position is the current market value of our portfolio, µperiod is the expected period 
return, z is the cutoff point depending on a confidence level, and σ is the volatility. 
For a normal distribution, z=2.33 for a 99 percent confident level, and z=1.64 for a 
95 percent confident level. When the time period is short, such as one day, we could 
ignore the impact of µperiod. Thus, we have the following simplest form:

        (14)

The following code shows the VaR for holding 50 shares of Wal-Mart stocks over a 
10-day period:

from matplotlib.finance import quotes_historical_yahoo

import numpy as np

import pandas as pd

from scipy.stats import norm

n_shares=50                      # input 1

confidence_level=0.99            # input 2

n_days=10                        # input 3

z=norm.ppf(confidence_level)

ticker='WMT'

begdate=(2012,1,1)

enddate=(2012,12,31)

x=quotes_historical_yahoo(ticker,begdate,enddate,asobject=True,adjusted=T
rue)

ret = (x.aclose[1:]-x.aclose[:-1])/x.aclose[:-1]

position=n_shares*x.close[0]

VaR=position*z*std(ret)*sqrt(n_days)

print("Holding=",position, "VaR=", round(VaR,4), "in ", n_days, "Days") 
('Holding=', 2890.0, 'VaR=', 218.2253, 'in ', 10, 'Days')

Today, the value of our holding is $2,890. Our maximum loss is $218.23 in the next 10 
days with a confidence of 99 percent.

Constructing an efficient frontier
In finance, constructing an efficient frontier is always a challenging job. This is 
especially true with real-world data. In this section, we discuss the estimation of a 
variance-covariance matrix and its optimization, finding an optimal portfolio, and 
constructing an efficient frontier with stock data downloaded from Yahoo! Finance.
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Estimating a variance-covariance matrix
When a return matrix is given, we could estimate its variance-covariance matrix. For 
a given set of weights, we could further estimate the portfolio variance. The formulae 
to estimate the variance and standard deviation for returns from a single stock are 
given as follows:
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Here, Ri is the stock return for period i,  is their mean, and n is the number of the 
observations. For an n-stock portfolio, we have the following formulae:

             (17)

The variance of a two-stock portfolio is given as follows:

   (18)

Here,  is the covariance between stocks 1 and 2,  is the correlation coefficient 
between stocks 1 and 2. The covariance is defined as follows:
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The variance of an n-stock portfolio is given as follows:
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Assume that our return matrix is n by m, that is, n period with m stocks:

           (21)

           (22)

For a matrix representation, our portfolio's expected return is given as follows:

           (23)

Its corresponding portfolio variance will be:

           (24)

           (25)

Of course, a two-stock portfolio is just a special case of an n-stock portfolio. Again, if 
the values of the return matrix and the weight vector are given, we can estimate their 
variance-covariance matrix and portfolio variance as follows:

>>>import numpy as np

>>>ret=matrix(np.

rray([[0.1,0.2],[0.10,0.1071],[-
0.02,0.25],[0.012,0.028],[0.06,0.262],[0.14,0.115]]))

>>>print("return matrix", ret)

>>>covar_=ret.T*ret
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>>>weight=matrix(np.array([0.4,0.6]))

>>>print ("weight vecot",weight)

>>>print(weight*covar_*weight.T)

The corresponding two outputs, for return matrix and portfolio variance, are given 
as follows:

Optimization – minimization
In the following example, we minimize our objective function of y:

             (26)

Obviously, we know that when x is 0, y is minimized. The Python code for 
minimization is as follows:

>>>from scipy.optimize import minimize

>>>def y_f(x):

    return (3+2*x**2)

>>>x0=100

>>>res = minimize(y_f,x0,method='nelder-mead',options={'xtol':1e-
8,'disp': True})

>>>print(res.x) 

Optimization terminated successfully.

         Current function value: 3.000000

         Iterations: 37

         Function evaluations: 74

[ 0.]

>>>

The output shows that the function value is 3, and it is achieved by assigning x as 0.
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Constructing an optimal portfolio
In finance, we are dealing with the trade-off between risk and return. One of the 
widely used criteria is the Sharpe ratio, which is defined as follows:

          (27)

The following program would maximize the Sharpe ratio by changing the weights 
of the stock in the portfolio. We have several steps in the program: the input area 
is very simple, just several tickers in addition to the beginning and ending dates. 
Then, we define four functions: converting daily returns into annual ones, estimate 
a portfolio variance, estimate the Sharpe ratio, and estimate the nth weight when n-1 
weights are given:

from matplotlib.finance import quotes_historical_yahoo

import numpy as np

import pandas as pd

import scipy as sp

from scipy.optimize import fmin

# Step 1: input area

ticker=('IBM','WMT','C')   # tickers

begdate=(1990,1,1)         # beginning date 

enddate=(2012,12,31)       # ending date

rf=0.0003                  # annual risk-free rate

In the second part of the program, we define a few functions: download data from 
Yahoo! Finance, estimate daily returns and convert them into annual ones, estimate 
portfolio variance, and estimate Sharpe ratio as shown in the following program:

# Step 2: define a few functions

# function 1: 

def ret_annual(ticker,begdate,enddte):

    x=quotes_historical_yahoo(ticker,begdate,enddate,asobject=True,adjust
ed=True)

    logret = log(x.aclose[1:]/x.aclose[:-1])

    date=[]
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    d0=x.date

    for i in range(0,size(logret)):

        date.append(d0[i].strftime("%Y"))

    y=pd.DataFrame(logret,date,columns=[ticker])

    return exp(y.groupby(y.index).sum())-1

# function 2: estimate portfolio variance 

def portfolio_var(R,w):

    cor = sp.corrcoef(R.T)

    std_dev=sp.std(R,axis=0)

    var = 0.0

    for i in xrange(n):

        for j in xrange(n):

            var += w[i]*w[j]*std_dev[i]*std_dev[j]*cor[i, j]

    return var

# function 3: estimate Sharpe ratio

def sharpe(R,w):

    var = portfolio_var(R,w)

    mean_return=mean(R,axis=0)

    ret = sp.array(mean_return)

    return (sp.dot(w,ret) - rf)/sqrt(var)

# function 4: for given n-1 weights, return a negative sharpe ratio

def negative_sharpe_n_minus_1_stock(w):

    w2=sp.append(w,1-sum(w))

    return -sharpe(R,w2)        # using a return matrix here!!!!!!

Our major function would start from Step 3 as shown in the following code:

# Step 3: generate a return matrix (annul return)

n=len(ticker)              # number of stocks

x2=ret_annual(ticker[0],begdate,enddate) 

for i in range(1,n):

    x_=ret_annual(ticker[i],begdate,enddate) 

    x2=pd.merge(x2,x_,left_index=True,right_index=True)

# using scipy array format 

R = sp.array(x2)

print('Efficient porfolio (mean-variance) :ticker used')

print(ticker)



Chapter 8

[ 217 ]

print('Sharpe ratio for an equal-weighted portfolio')

equal_w=sp.ones(n, dtype=float) * 1.0 /n 

print(equal_w)

print(sharpe(R,equal_w))

# for n stocks, we could only choose n-1 weights

w0= sp.ones(n-1, dtype=float) * 1.0 /n 

w1 = fmin(negative_sharpe_n_minus_1_stock,w0)

final_w = sp.append(w1, 1 - sum(w1))

final_sharpe = sharpe(R,final_w)

print ('Optimal weights are ')

print (final_w)

print ('final Sharpe ratio is ')

print(final_sharpe)

From the following output, we know that if we use a naïve equal-weighted strategy, 
the Sharpe ratio is 0.63. However, the Sharpe ratio for our optimal portfolio is 0.67:

Constructing an efficient frontier with n stocks
Constructing an efficient frontier is always one of the most difficult tasks for 
finance instructors since the task involves matrix manipulation and a constrained 
optimization procedure. One efficient frontier could vividly explain the Markowitz 
Portfolio theory. The following Python program uses five stocks to construct an 
efficient frontier:

from matplotlib.finance import quotes_historical_yahoo

import numpy as np

import pandas as pd
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from numpy.linalg import inv, pinv 

# Step 1: input area

begYear,endYear = 2001,2013

stocks=['IBM','WMT','AAPL','C','MSFT']

# Step 2: define a few functions

#         function 1

def ret_monthly(ticker):

    x = quotes_historical_yahoo(ticker,(begYear,1,1),(endYear,12,31),asob
ject=True,adjusted=True)

    logret=log(x.aclose[1:]/x.aclose[:-1])

    date=[]

    d0=x.date

    for i in range(0,size(logret)):

        date.append(''.join([d0[i].strftime("%Y"),d0[i].strftime("%m")]))

    y=pd.DataFrame(logret,date,columns=[ticker])

    return y.groupby(y.index).sum()

#  function 2: objective function     

def objFunction(W, R, target_ret): 

    stock_mean=np.mean(R,axis=0)  

    port_mean=np.dot(W,stock_mean)          # portfolio mean

    cov=np.cov(R.T)                         # var-cov matrix

    port_var=np.dot(np.dot(W,cov),W.T)      # portfolio variance

    penalty = 2000*abs(port_mean-target_ret)# penalty 4 deviation 

    return np.sqrt(port_var) + penalty      # objective function 

# Step 3: Generate a return matrix R

R0=ret_monthly(stocks[0])      # starting from 1st stock

n_stock=len(stocks)            # number of stocks

for i in xrange(1,n_stock):    # then merge with other stocks

    x=ret_monthly(stocks[i])

    R0=pd.merge(R0,x,left_index=True,right_index=True)

R=np.array(R0)

# Step 4: estimate optimal portfolio for a given return 

out_mean,out_std,out_weight=[],[],[] 

stockMean=np.mean(R,axis=0)    

for r in np.linspace(np.min(stockMean), np.max(stockMean), num=100):
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    W = ones([n_stock])/n_stock      # starting from equal weights 

    b_ = [(0,1) for i in range(n_stock)]  # bounds, here no short

    c_ = ({'type':'eq', 'fun': lambda W: sum(W)-1. })#constraint

    result=sp.optimize.minimize(objFunction,W,(R,r),method='SLSQP',constr
aints=c_, bounds=b_)    

    if not result.success:                   # handle error

        raise BaseException(result.message) 

    out_mean.append(round(r,4))              #  4 decimal places

    std_=round(np.std(np.sum(R*result.x,axis=1)),6)

    out_std.append(std_)

    out_weight.append(result.x) 

# Step 4: plot the efficient frontier

title('Efficient Frontier')

xlabel('Standard Deviation of the porfolio (Risk))')

ylabel('Return of the portfolio')

figtext(0.5,0.75,str(n_stock)+' stock are used: ')

figtext(0.5,0.7,' '+str(stocks))

figtext(0.5,0.65,'Time period: '+str(begYear)+' ------ '+str(endYear))

plot(out_std,out_mean,'--')

The output graph is presented as follows:
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Understanding the interpolation technique
Interpolation is a technique used quite frequently in finance. In the following 
example, we have to find NaN between 2 and 6. The pd.interpolate() function, 
for a linear interpolation, is used to fill in the two missing values:

>>>import pandas as pd

>>>import numpy as np

>>>x=pd.Series([1,2,np.nan,np.nan,6])

>>>x.interpolate()

0  1.000000

1  2.000000

2  3.333333

3  4.666667

4  6.000000

If the two known points are represented by the coordinates (x0,y0) and (x1,y1), the 
linear interpolation is the straight line between these two points. For a value x in the 
interval of (x0,x1), the value y along the straight line is given by the following formula:

             (28)

Solving this equation for y, which is the unknown value at x, gives the following result:

           (29)

From the Yahoo! Finance bond page, we can get the following information:

Maturity Yield Yesterday Last Week Last Month
3 Month 0.05 0.05 0.04 0.03
6 Month 0.08 0.07 0.07 0.06
2 Year 0.29 0.29 0.31 0.33
3 Year 0.57 0.54 0.59 0.61
5 Year 1.34 1.32 1.41 1.39
10 Year 2.7 2.66 2.75 2.66
30 Year 3.8 3.78 3.85 3.72
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Based on the tabular data, we have the following code:

>>>import numpy as np

>>>x=pd.Series([0.29,0.57,np.nan,1.34,np.nan,np.nan,np.nan,np.nan,2.7])

>>>y=x.interpolate()

>>>print y

0    0.290

1    0.570

2    0.955

3    1.340

4    1.612

5    1.884

6    2.156

7    2.428

8    2.700

dtype: float64

>>>

Outputting data to external files
In this section, we discuss several ways to save our data, such as saving data or 
estimating results to a text file, a binary file, and so on.

Outputting data to a text file
The following code will download IBM's daily price historical data and save it to a 
text file:

>>>from matplotlib.finance import quotes_historical_yahoo

>>>import re

>>>ticker='dell'

>>>outfile=open("c:/temp/dell.txt","w")

>>>begdate=(2013,1,1)

>>>enddate=(2013,11,9)

>>>p = quotes_historical_yahoo(ticker, begdate, enddate,asobject=True, 
adjusted=True)

>>>x2= re.sub('[\(\)\{\}\.<>a-zA-Z]','', x)

>>>outfile.write(x2)

>>>outfile.close()
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Saving our data to a binary file
The following program first generates a simple array that has just three values.  
We save them to a binary file named tmp.bin at C:\temp\:

>>>import array

>>>import numpy as np

>>>outfile = "c:/temp/tmp.bin"

>>>fileobj = open(outfile, mode='wb')

>>>outvalues = array.array('f')

>>>data=np.array([1,2,3])

>>>outvalues.fromlist(data.tolist())

>>>outvalues.tofile(fileobj)

>>>fileobj.close()

Reading data from a binary file
Assume that we have generated a binary file called C:\temp\tmp.bin from the 
previous discussion. The file has just three numbers 1, 2, and 3. The following 
Python code is used to read them:

>>>import array

>>>infile=open("c:/temp/tmp.bin", "rb") 

>>>s=infile.read()                # read all bytes into a string 

>>>d=array.array("f", s)          # "f" for float 

>>>print(d)

>>>infile.close()

Python for high-frequency data
High-frequency data is referred to second-by-second or millisecond-by-millisecond 
transaction and quotation data. The New York Stock Exchange's TAQ (Trade 
and Quotation) database is a typical example (http://www.nyxdata.com/data-
products/daily-taq). The following program can be used to retrieve high-frequency 
data from Google Finance:

>>>import re, string

>>>import pandas as pd

>>>ticker='AAPL'         # input a ticker

>>>f1="c:/temp/ttt.txt"  # ttt will be replace with aboove sticker
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>>>f2=f1.replace("ttt",ticker)

>>>outfile=open(f2,"w")

>>>path="http://www.google.com/finance/getprices?q=ttt&i=300&p=10d&f=d,o,
h,l,c,v"

>>>path2=path.replace("ttt",ticker)

>>>df=pd.read_csv(path2,skiprows=8,header=None)

>>>df.to_csv(outfile,header=False,index=False)

>>>outfile.close()

In the preceding program, we have two input variables: ticker and path. After we 
choose path with an embedded variable called ttt, we replace it with our ticker 
using the string.replace() function. The first and last five lines are shown as 
follows using the head() and tail() functions:

>>>df.head()

   0       1       2       3       4       5

0  1  519.55  520.20  517.05  517.23  256716

1  2  519.20  520.40  518.84  519.59  202711

2  3  518.71  519.29  518.00  519.18  144928

3  4  519.11  519.60  518.08  518.76  108554

4  5  519.31  519.80  518.67  519.09  104715

>>>df.tail()

       0        1        2        3        4       5

748  898  525.450  525.500  524.990  525.140  113120

749  899  525.660  525.670  525.170  525.440   68422

750  900  525.460  525.680  525.370  525.660   10639

751  901  525.548  525.557  525.200  525.370       0

752  902  525.420  525.580  525.265  525.545       0

>>>

The related web page for the intra-day high-frequency data from Google is located at 
http://www.google.com/finance/getprices?q=AAPL&i=300&p=10d&f=d,o,h,l,
c,v and its header (first 10) lines are given as follows:

EXCHANGE%3DNASDAQ

MARKET_OPEN_MINUTE=570

MARKET_CLOSE_MINUTE=960

INTERVAL=300

COLUMNS=DATE,CLOSE,HIGH,LOW,OPEN

DATA=
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TIMEZONE_OFFSET=-300

a1383575400,521.2,521.35,521.07,521.1

1,522.48,522.58,519.75,521.37

2,519.44,522.89,518.81,522.49

3,520.36,520.98,519.1901,519.49

The objective of the following program is to add a timestamp:

import pandas as pd, numpy as np, datetime 

ticker='AAPL'

path='http://www.google.com/finance/getprices?q=ttt&i=60&p=5d&f=d,o,h,l,c
,v'

x=np.array(pd.read_csv(path.replace('ttt',ticker),skiprows=7,header=No
ne))

date=[]

for i in arange(0,len(x)):

    if x2[i][0][0]=='a':

        t= datetime.datetime.fromtimestamp(int(x2[i][0].replace('a','')))

        print ticker, t, x[i][1:]

        date.append(t)

    else:

        date.append(t+datetime.timedelta(minutes =int(x[i][0])))

final=pd.DataFrame(x,index=date)

final.columns=['a','Open','High','Low','Close','Vol']

del final['a']

final.to_csv('c:/temp/abc.csv'.replace('abc',ticker))

After running the program, we can observe the following output:
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To view the first and last several lines, we could use the head() and tail()functions 
as follows:

>>>final.head()

                        Open      High      Low     Close    Vol

2013-11-18 09:30:00   524.87  525.2402  524.762    524.99  80590

2013-11-18 09:31:00   525.08     525.5   524.76    524.82  79311

2013-11-18 09:32:00   525.75     525.8   525.01    525.03  43164

2013-11-18 09:33:00  526.445    526.58   525.65    525.75  81967

2013-11-18 09:34:00   526.48  526.5899   526.05  526.5899  40671

>>>final.tail()

                       Open    High     Low   Close     Vol

2013-11-22 15:57:00  519.53  519.56  519.39  519.39   35530

2013-11-22 15:58:00  519.43  519.56   519.4  519.53   36581

2013-11-22 15:59:00  519.52  519.54  519.41  519.43   50983

2013-11-22 16:00:00   519.8  519.85  519.49  519.52  482044

2013-11-22 16:01:00   519.8   519.8   519.8   519.8       0

Since the TAQ database is quite expensive, most of the potential readers could 
not access the data. Fortunately, we have a database called TORQ (Trade, 
Order, Report, and Quotation). Thanks to Prof. Hasbrouck, the database could 
be downloaded from http://people.stern.nyu.edu/jhasbrou/Research/
WorkingPaperIndex.htm. From the same web page, we could download the TORQ 
manual as well. Based on Prof. Hasbrouck's binary datasets, we generate a few 
corresponding datasets in the pickle format of Pandas. The Consolidated Trade (CT) 
dataset can be downloaded from http://canisius.edu/~yany/TORQct.pickle. 
After saving this dataset under C:\temp, we could issue the following two lines of 
Python code to retrieve it:

>>>import pandas as pd

>>>ct=load('c:/temp/TORQct.pickle')

To view the first and last couple of lines, we use the head() and tail() functions  
as follows:

>>>ct.head()

            date      time  price  siz  g127  tseq cond ex

symbol                                                    

AC      19901101  10:39:06     13  100     0  1587       N

AC      19901101  10:39:36     13  100     0     0       M
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AC      19901101  10:39:38     13  100     0     0       M

AC      19901101  10:39:41     13  100     0     0       M

AC      19901101  10:41:38     13  300     0  1591       N

>>>ct.tail()

            date      time   price    siz  g127    tseq cond ex

symbol                                                         

ZNT     19910131  11:03:31  12.375   1000     0  237884       N

ZNT     19910131  12:47:21  12.500   6800     0  237887       N

ZNT     19910131  13:16:59  12.500  10000     0  237889       N

ZNT     19910131  14:51:52  12.500    100     0  237891       N

ZNT     19910131  14:52:27  12.500   3600     0       0    Z  T

>>>

Since the ticker is used as an index, we could list all unique index values to find out 
the names of stocks contained in the dataset as follows:

>>>import numpy as np

>>>unique(np.array(ct.index))

array(['AC','ACN','ACS','ADU','AL','ALL','ALX','AMD','AMN', 'AMO',

       'AR','ARX','ATE','AYD','BA','BG','BMC','BRT','BZF', 'CAL',

       'CL','CLE','CLF','CMH','CMI','CMY','COA','CP','CPC','CPY',

       'CU','CUC','CUE','CYM','CYR','DBD','DCN','DI','DLT','DP',

       'DSI','EFG','EHP','EKO','EMC','FBO','FDX','FFB','FLP',

       'FMI','FNM','FOE','FPC','FPL','GBE','GE','GFB','GLX','GMH',

       'GPI','GRH','HAN','HAT','HE','HF','HFI','HTR','IBM','ICM',

       'IEI','IPT','IS','ITG','KFV','KR','KWD','LOG','LPX','LUK',

       'MBK','MC','MCC','MCN','MDP','MNY','MO','MON','MRT','MTR',

       'MX','NI','NIC','NNP','NSI','NSO','NSP','NT','OCQ','OEH',

       'PCO','PEO','PH','PIM','PIR','PLP','PMI','POM','PPL','PRI',

'RDA','REC','RPS','SAH','SJI','SLB','SLT','SNT','SPF',      'SWY', 
'T', 'TCI', 'TEK', 'TUG', 'TXI', 'UAM', 'UEP', 'UMG', 'URS',  
'USH','UTD','UWR','VCC', 'VRC', 'W', 'WAE', 'WBN', 'WCS', 'WDG','WHX', 
'WIN', 'XON', 'Y', 'ZIF', 'ZNT'], dtype=object)

>>>
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Spread estimated based on high-frequency 
data
Based on the Consolidated Quote (CQ) dataset supplied by Prof. Hasbrouck, we 
generate a dataset with the pickle format of Pandas, that can be downloaded from 
http://canisius.edu/TORQcq.pickle. Assume that the following data is located 
under C:\temp:

>>>import pandas as pd

>>>cq=load("c:/temp/TORQcq.pickle")

>>>cq.head()

            date      time     bid     ofr  bidsiz  ofrsiz  mode  qseq

symbol                                                                

AC      19901101   9:30:44  12.875  13.125      32       5    10    50

AC      19901101   9:30:47  12.750  13.250    1      1    12     0

AC      19901101   9:30:51  12.750  13.250    1      1    12     0

AC      19901101   9:30:52  12.750  13.250    1      1    12     0

AC      19901101  10:40:13  12.750  13.125    2      2    12     0

>>>cq.tail()

            date      time     bid     ofr  bidsiz  ofrsiz  mode  qseq

symbol                                                                

ZNT     19910131  13:31:06  12.375  12.875     1     1    12     0

ZNT     19910131  13:31:06  12.375  12.875     1     1    12     0

ZNT     19910131  16:08:44  12.500  12.750     1     1     3    69

ZNT     19910131  16:08:49  12.375  12.875     1     1    12     0

ZNT     19910131  16:16:54  12.375  12.875     1     1     3     0

Again, we could use the unique() function to find out all tickers. Assume that we 
are interested in a stock with an MO ticker as shown in the following code:

>>>x=cq[cq.index=='MO']

>>>x.head()

            date     time     bid     ofr  bidsiz  ofrsiz  mode  qseq

symbol                                                               

MO      19901101  9:30:33  47.000  47.125   100      4    10    50

MO      19901101  9:30:35  46.750  47.375     1      1    12     0

MO      19901101  9:30:38  46.875  47.750     1      1    12     0

MO      19901101  9:30:40  46.875  47.250     1      1    12     0

MO      19901101  9:30:47  47.000  47.125   100      3    12    51
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It is a good idea to check a few observations. From the first line of the following 
output, we know that spread should be 0.125 (47.125-47.000):

>>>x.head().ofr-x.head().bid

symbol

MO        0.125

MO        0.625

MO        0.875

MO        0.375

MO        0.125

dtype: float64

>>>

To find the mean spread and the mean relative spread, we have the following code. 
The complete program is given as follows:

import pandas as pd

cq=load('c:/temp/TORQcq.pickle')

x=cq[cq.index=='MO']

spread=mean(x.ofr-x.bid)

rel_spread=mean(2*(x.ofr-x.bid)/(x.ofr+x.bid))

print round(spread,5)

print round(rel_spread,5)

0.39671

0.00788

In the preceding example, we didn't process or clean the data. Usually, we have to 
process data by adding various filters, such as delete quotes with negative spread, 
bidsiz is zero, or ofrsiz is zero, before we estimate spread and do other estimates.

More on using Spyder
Since Spyder is a wonderful editor, it deserves more space to explain its usage. The 
related web page for Spyder is http://pythonhosted.org/spyder/. According to 
its importance, we go through the most used features. To see several programs we 
are just recently working on is a very good feature:
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1.	 Navigate to File | Open Recent. We will see a list of files we recently worked 
on. Just click on the program you want to work on, and it will be loaded as 
shown in the following screenshot:

2.	 Another feature is to run several lines of program instead of the whole 
program. Select a few lines, click the second green icon just under Run.  
This feature makes our programming and debugging task a little bit easier as 
shown in the following screenshot:

3.	 The panel (window) called File explorer helps us to see programs under 
a certain directory. First, we click on the open icon on the top-right of the 
screen as shown in the following screenshot:
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4.	 Then, choose the directory that contains all programs; see the  
following screenshot:

Occasionally, the File explorer panel is not there. You can simply click on x on top of 
the window to make it disappear. To make the File explorer window available, click 
on View | Windows and tool bars, and check File explorer.

A useful dataset
With limited research funding, many teaching schools would not have a CRSP 
subscription. For them, we have generated a dataset that contains more than 200 
stocks, 15 different country indices, Consumer Price Index (CPI), the US national 
debt, the prime rate, the risk-free rate, Small minus Big (SMB), High minus Low 
(HML), Russell indices, and gold prices. The frequency of the dataset is monthly. 
Since the name of each time series is used as an index, we have only two columns: 
date and value. The value column contains two types of data: price (level) and 
return. For stocks, CPI, debt-level, gold price, and Russell indices, their values are the 
price (level), while for prime rate, risk-free rate, SMB, and HML, the second column 
under value stands for return. The prime reason to have two types of data is that we 
want to make such a dataset as reliable as possible since any user could verify any 
number himself/herself. The dataset could be downloaded from http://canisius.
edu/~yany/yanMonthly.Pickle. To load this data, we have just one line of the 
following Python code. Here, we assume that the dataset is saved under C:\temp:

>>>df=load("c:/temp/yanMonthly.Pickle")

>>>t=unique(np.array(df.index))
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The corresponding output is displayed as follows:

From the preceding output, we know that we have a total of 129 time series. To select 
one individual time series, we use the index. For example, if we are interested in the 
CPI time series, we can retrieve it from the dataset with the following code:

>>>x=df[df.index=='CPI']

>>>x.head()

          DATE  VALUE

NAME                 

CPI   19130101    9.8

CPI   19130201    9.8

CPI   19130301    9.8

CPI   19130401    9.8

CPI   19130501    9.7

>>>x.tail()

          DATE    VALUE

NAME                   

CPI   20130401  232.531

CPI   20130501  232.945

CPI   20130601  233.504

CPI   20130701  233.596

CPI   20130801  233.877

>>>
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Summary
In this chapter, many concepts and issues associated with statistics are discussed 
in detail. Topics include how to download historical prices from Yahoo! Finance; 
estimate returns, total risk, market risk, correlation among stocks, and correlation 
among different country's markets; form various types of portfolios; estimate a 
portfolio variance-covariance matrix; construct an efficient portfolio, and an efficient 
frontier; and estimate the Roll (1984) spread, Amihud's (2002) illiquidity, and Pastor 
and Stambaugh's (2003) liquidity.

Although in Chapter 4, 13 Lines of Python Code  to Price a Call Option, we discuss how 
to use 13 lines to price a call option based on the Black-Scholes-Merton model even 
without understanding its underlying theory and logic. In the next chapter, we will 
explain the option theory and its related applications in more detail.

Exercise
1. What is the usage of the module called Pandas?

2. What is the usage of the module called statsmodels?

3. How can you install Pandas and statsmodels?

4. Which module contains the function called rolling_kurt? How can you use  
the function?

5. Based on daily data downloaded from Yahoo! Finance, find whether IBM's daily 
returns follows a normal distribution.

6. Based on daily returns in 2012, are the mean returns for IBM and DELL the same? 
[Hint: you can use Yahoo! Finance as your source of data].

7. How can you replicate the Jagadeech and Tidman (1993) momentum strategy 
using Python and CRSP data? [Assume that your school has CRSP subscription].

8. How many events happened in 2012 for IBM based on its daily returns?

9. For the following stock tickers, IBM, DELL, WMT, ^GSPC, C, A, AA, MOFT, 
estimate their variance-covariance and correlation matrices based on the last five-
year monthly returns data, for example, from 2008-2012. Which two stocks are 
strongly correlated?

10. Write a Python program to estimate rolling beta on a yearly basis. Use it to show 
the annual beta for IBM from 1962 to 2013.
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11. Assume that we just downloaded the prime rate from the Federal Banks' data 
library from http://www.federalreserve.gov/releases/h15/data.htm. We 
downloaded the time series for Financial 1-month business day. A few lines of the 
file are given as follows. Write a Python program to retrieve it and use the first 
column as the index:

Series Description  30-Day AA Financial Commercial Paper Interest Rate

Unit:  Percent

Multiplier:  1

Currency:  NA

Unique Identifier:   H15/H15/RIFSPPFAAD30_N.B

Time Period  RIFSPPFAAD30_N.B

1/2/1997  5.35

1/3/1997  5.34

12. Which political party could manage the stock market better? According to the 
web page at http://www.enchantedlearning.com/history/us/pres/list.
shtml, we can find to which party a president belongs. Thus, we can generate the 
following table. The PARTY and RANGE variables are from the web page. YEAR2 is the 
second number of RANGE minus one, except the last row:

PARTY RANGE YEAR1 YEAR2
Republican 1923-1929 1923 1928
Republican 1929-1933 1929 1932
Democrat 1933-1945 1933 1944
Democrat 1945-1953 1945 1952
Republican 1953-1961 1953 1960
Democrat 1961-1963 1961 1962
Democrat 1963-1969 1963 1968
Republican 1969-1974 1969 1973
Republican 1974-1977 1974 1976
Democrat 1977-1981 1977 1980
Republican 1981-1989 1981 1988
Republican 1989-1993 1989 1992
Democrat 1993-2001 1993 2000
Republican 2001-2009 2001 2008
Democrat 2009-2012 2009 2012
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1.	 Download excess market return and risk-free from Prof. French data library 
at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_
library.html.

2.	 Estimate market returns (excess market return plus risk-free rate).
3.	 Classify those returns into two groups: under Republican and Democratic.
4.	 Test the null hypothesis: two group means are equal:

             

Note: 1: How do we download and estimate market returns?

1.	 Go to the web page http://mba.tuck.dartmouth.edu/pages/faculty/
ken.french/data_library.html.

2.	 Click on Fama-French Factor, and download their monthly factors named 
F-F_Research_Data_Factors.zip.

3.	 Unzip the zip file and estimate market monthly returns. For example, for July 
1926, market return = 2.65/100+0.22/100:

This file was created by CMPT_ME_BEME_RETS using the 201212 CRSP 
database.

The 1-month T-Bill return is from Ibbotson and Associates, Inc.

        Mkt-RF     SMB     HML      RF

192607    2.65   -2.16   -2.92    0.22

192608    2.58   -1.49    4.88    0.25

192609    0.37   -1.38   -0.01    0.23

192610   -3.46    0.04    0.71    0.32

192611    2.43   -0.24   -0.31    0.31

192612    2.75   -0.01   -0.10    0.28

192701   -0.16   -0.30    4.79    0.25

192702    4.22   -0.24    3.35    0.26

192703    0.38   -1.87   -2.58    0.30

192704    0.41    0.29    0.95    0.25

192705    5.36    1.53    5.07    0.30

13. From Prof. French's data library at http://mba.tuck.dartmouth.edu/pages/
faculty/ken.french/data_library.html, download the monthly and daily Fama-
French factors, where SMB is for Small minus Big, and HML is for High minus Low. 
Assume that you are holding an SMB portfolio. Answer the following three questions:

1) What is the total return from January 1, 1989 to December 31, 2012 using  
daily data?
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2) What is the total return from January 1, 1989, to December 31, 2012, using  
monthly data?

3) Are they the same? If they are different, why?

14. The following table presents the relationship between rating, default risk 
(spread), and time. Write a Python program to interpolate the missing spreads, such 
as S from year 11 to 29:

Rating 1 yr 2 yr 3 yr 5 yr 7 yr 10 yr 30 yr
Aaa/AAA 14 16 27 40 56 68 90
Aa1/AA+ 22 30 31 48 64 77 99
Aa2/AA 24 37 39 54 67 80 103
Aa3/AA- 25 39 40 58 71 81 109
A1/A+ 43 48 52 65 79 93 117
A2/A 46 51 54 67 81 95 121
A3/A- 50 54 57 72 84 98 124
Baa1/BBB+ 62 72 80 92 121 141 170
Baa2/BBB 65 80 88 97 128 151 177
Baa3/BBB- 72 85 90 102 134 159 183
Ba1/BB+ 185 195 205 215 235 255 275
Ba2/BB 195 205 215 225 245 265 285
Ba3/BB- 205 215 225 235 255 275 295
B1/B+ 265 275 285 315 355 395 445
B2/B 275 285 295 325 365 405 455
B3/B- 285 295 305 335 375 415 465
Caa/CCC+ 450 460 470 495 505 515 545

The table is located at http://www.bondsonline.com. The values in the table are 
expressed in basis points, that are equivalent to 100th of one percent. For example,  
40 is equivalent to 40*0.0001.

15. First, download three daily and monthly factors, Market, SMB, and HML from 
Prof. French's data library at http://mba.tuck.dartmouth.edu/pages/faculty/
ken.french/data_library.html. Write a Python program to process them. Choose 
a time period, such as from January 1, 2000, to December 31, 2013, to estimate the 
total returns for the SMB portfolio by using both daily and monthly factors. Are 
they the same? What is the total difference? What is the average annual difference? 
Comment on your findings.





The Black-Scholes-Merton 
Option Model

In modern finance, the option theory and its applications play an important role. 
Many trading strategies, corporate incentive plans, and hedging strategies include 
various types of options. In Chapter 6, Introduction to NumPy and SciPy, we showed 
that you can write a five-line Python program to price a call option based on the 
Black-Scholes-Merton option model even without understanding its underlying 
theory and logic. In this chapter, we will explain the option theory and its related 
applications in more detail.

In particular, we will cover the following topics:

•	 Payoff and profit/loss functions and their graphical representations of  
call and put

•	 European versus American options
•	 Normal distribution, standard normal distribution, and cumulative  

normal distribution
•	 The Black-Scholes-Merton option model with/without dividend
•	 Various trading strategies and their visual presentations, such as  

covered call, straddle, butterfly, and calendar spread
•	 Delta, gamma, and other Greeks
•	 The put-call parity and its graphical representation
•	 Graphical representation for a one-step and a two-step binomial tree model
•	 Using the binomial tree method to price both European and  

American options
•	 Hedging strategies
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Payoff and profit/loss functions for the 
call and put options
An option gives its buyer the right to buy (call option) or sell (put option) something 
in the future to the option seller at a predetermined price (exercise price). For 
example, if we buy a European call option to acquire a stock for X dollars, such as 
$30, at the end of three months, our payoff on maturity day will be the one calculated 
using the following formula:

( ) ( ),0Tpayoff call Max S X= −           (1)

Here, TS  is the stock price at the maturity date (T), and the exercise price is X (X is 
equal to 30 in this case). Assume that three months later the stock price will be $25. 
We would not exercise our call option to pay $30 in exchange for the stock, since we 
could buy the same stock with $25 in the open market. On the other hand, if the stock 
price is $40, we will exercise our right to reap a payoff of $10, that is, buy the stock at 
$30 and sell it at $40. The following program presents the payoff function for a call:

>>>def payoff_call(sT,x):

      return (sT-x+abs(sT-x))/2

Applying the payoff function is straightforward, as shown in the following code:

>>>payoff_call(25,30)

0

>>>payoff_call(40,30)

10

The first input variable, the stock price at the maturity T, could be an array as well, as 
shown in the following code:

>>>import numpy as np

>>>x=20

>>>sT=np.arange(10,50,10)

>>>sT

array([10, 20, 30, 40])

>>>payoff_call(s,x)

array([  0.,   0.,  10.,  20.])

>>>
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To create a graphical representation, we have the following commands:

>>>import numpy as np

>>>s = np.arange(10,80,5)

>>>x=30

>>>payoff=(abs(s-x)+s-x)/2

>>>ylim(-10,50)

>>>plot(s,payoff)

The graph is shown in the following screenshot:

The payoff for a call option seller is the opposite of its buyer. It is important to 
remember that this is a zero-sum game: you win, I lose. For example, an investor 
sold three call options with an exercise price of $10. When the stock price is $15 on 
the maturity, the option buyer's payoff is $15, while the total loss to the option writer 
is $15 as well. If the call premium (option price) is c, the profit/loss function for a call 
option buyer is the difference between his/her payoff and his/her initial investment 
(c). Obviously, the timing of cash flows of paying an option premium upfront and its 
payoff at maturity date is different. Here, we ignore the time value of money since 
maturities are usually quite short.

For a call option buyer, the profit is calculated using the following formula:

( ) ( )/ ,0TBuyer Profit loss call Max S X c= − −           (2)

For a call option seller, the profit is calculated by using the following formula:

( ) ( )/ ,0TSeller Profit loss call c Max S X= − −           (3)
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A graph showing the profit/loss functions for the call option buyer and seller is 
generated using the following code:

s = arange(30,70,5)

x=45;call=2.5

profit=(abs(s-x)+s-x)/2 -call

y2=zeros(len(s))

ylim(-30,50)

plot(s,profit)

plot(s,y2,'-.')

plot(s,-profit)

title("Profit/Loss function")

xlabel('Stock price')

ylabel('Profit (loss)')

plt.annotate('Call option buyer', xy=(55,15), xytext=(35,20),

             arrowprops=dict(facecolor='blue',shrink=0.01),)

plt.annotate('Call option seller', xy=(55,-10), xytext=(40,-20),

             arrowprops=dict(facecolor='red',shrink=0.01),)

show()

The graphical representation is shown in the following screenshot:
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A put option gives its buyer the right to sell a security (commodity) to the put option 
buyer in the future at a predetermined price, X. The following is its payoff function:

( ) ( ),0TPayoff put Max X S= −           (4)

Here, ST is the stock price at maturity and X is the exercise price (strike price). For a 
put option buyer, the profit/loss function is as follows:

( ) ( )/ ,0TBuyer Profit loss call Max X S p= − −           (5)

The profit/loss function for a put option seller is just the opposite, as follows:

( ) ( )/ ,0TSeller Profit loss call p Max X S= − −           (6)

The related program and graph for the profit and loss functions for a put option 
buyer and a seller are as follows:

s = arange(30,70,5)

x=45;p=2

y=c-(abs(x-s)+x-s)/2

y2=zeros(len(s))

x3=[x, x]

y3=[-30,10]

ylim(-30,50)

plot(s,y)

plot(s,y2,'-.')

plot(s,-y)

plot(x3,y3)

title("Profit/Loss function for a put option")

xlabel('Stock price')

ylabel('Profit (loss)')

plt.annotate('Put option buyer', xy=(35,12), xytext=(35,45),

             arrowprops=dict(facecolor='red',shrink=0.01),)

plt.annotate('Put option seller', xy=(35,-10), xytext=(35,-25),

             arrowprops=dict(facecolor='blue',shrink=0.01),)

plt.annotate('Exercise price', xy=(45,-30), xytext=(50,-20),

             arrowprops=dict(facecolor='black',shrink=0.01),)

show()
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The graph is shown in the following image:

European versus American options
A European option can be exercised only on the maturity date, while an American 
option can be exercised any time before or on its maturity date. Since an American 
option could be held until it matures, its price (option premium) should be higher 
than or equal to its European counterparty.

American European

American European

C C
P P

≥
 ≥

          (7)

An important difference is that for a European option, we have a closed-form 
solution, that is, the Black-Scholes-Merton option model. However, we don't have 
a closed-form solution for an American option. Fortunately, we have several ways 
to price an American option. Later in the chapter, we will show how to use the 
binomial tree method, also called the CRR method, to price an American option.
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Cash flows, types of options, a right, and 
an obligation
We know that for each business contract, we have two sides, a buyer and a seller. 
This is true for an option contract as well. A call buyer will pay upfront (cash output) 
to acquire a right. Since this is a zero-sum game, a call option seller would enjoy an 
upfront cash inflow and assumes an obligation. The following table presents those 
positions (buyer or seller), directions of the initial cash flows (inflow or outflow), 
the option buyer's rights (buy or sell), and the option seller's obligations (that is, to 
satisfy the option seller's demand):

Buyer 

(long position)

Seller 

(short position)

European

options

American

options

Call

A right to 
buy a security 
(commodity) at 
a prefixed price

An obligation 
to sell a security 
(commodity) at a 
prefixed price Are 

exercised 
on the 
maturity 
date only

Could be 
exercised any 
time before  
or on the 
maturity date

Put
A right to sell a 
security with a 
prefixed price

An obligation to 
buy

Cash
Flow

Upfront cash 
outflow

Upfront cash 
inflow

The preceding table displays long/short, call/put, European/American options and 
directions of initial cash flows.

Normal distribution, standard normal 
distribution, and cumulative standard 
normal distribution
In finance, normal distribution plays a central role. This is especially true for option 
theory. The major reason is that it is commonly assumed that the stock prices follow 
a log normal distribution while the stock returns follow a normal distribution. The 
density of a normal distribution is defined as follows:

( )
( )2

22
2

1

2

x

f x e
µ

σ

πσ

−
−

=           (8)
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Here, μ is the mean and σ is the standard deviation.

By setting μ as 0 and σ as 1, the preceding general normal distribution density 
function collapses to the following standard normal distribution:

( )
2

21
2

x

f x e
π

−
=            (9)

The following code generates a graph for the standard normal distribution. The 
SciPy's stats.norm.pdf() function is used for the standard normal distribution. The 
default setting is with a zero mean and unit standard deviation, that is, the standard 
normal density function:

>>>from scipy import exp,sqrt,stats

>>>stats.norm.pdf(0)

0.3989422804014327

>>>1/sqrt(2*pi)                                   # verify manually

0.3989422804014327

>>>stats.norm.pdf(0,0.1,0.05)      

1.0798193302637611

>>>1/sqrt(2*pi*0.05**2)*exp(-(0.1)**2/0.05**2/2)  # verify manually

1.0798193302637611

>>>

To draw a standard normal distribution, we have the following program: 

>>>from scipy import exp,sqrt,stats

>>>x = arange(-3,3,0.1)

>>>y=stats.norm.pdf(x)

>>>plot(x,y)
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The graph is shown in the following screenshot:

The cumulative standard normal distribution is the area under the standard normal 
density function. In the following program, we will randomly choose a value of 0.325 
(the z value). The shaded area on the left-hand size of the z value and under the 
standard normal distribution will be the value for a cumulative normal distribution:

import numpy as np

from scipy import exp,sqrt,stats

from matplotlib import pyplot as plt

z=0.325                      # user can change this number

def f(t):

    return stats.norm.pdf(t)

ylim(0,0.45)

x = np.arange(-3,3,0.1)

y1=f(x)

plt.plot(x,y1)

x2= np.arange(-4,z,1/40.)

sum=0
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delta=0.05

s=np.arange(-10,z,delta)

for i in s:

    sum+=f(i)*delta

plt.annotate('area is '+str(round(sum,4)),xy=(-1,0.25),xytext=(-3.8,0.4),

             arrowprops=dict(facecolor='red',shrink=0.01))

plt.annotate('z= '+str(z),xy=(z,0.01))

plt.fill_between(x2,f(x2))

The graphical representation for the preceding code is as follows:

The stats.norm.cdf() function is the cumulative standard normal distribution  
and is as follows:

from scipy import exp,sqrt,stats

from matplotlib import pyplot as plt

z=0.325

def f(x):

    return stats.norm.cdf(x)

x = arange(-3,3,0.1)

y1=f(x)

y2=ones(len(x))*0.5

x3=[0,0]

y3=[0,1]

plt.plot(x,y1)

plt.plot(x, y2, 'b-')
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plt.plot(x3,y3)

plt.annotate('f(z)=f('+str(z)+') is '+str(np.round(f(z),4)),xy=(z,f(z)),

             xytext=(z-3,f(z)), arrowprops=dict(facecolor='red',shri
nk=0.01))

plt.annotate('z is '+str(z),xy=(z,0),xytext=(1.5,0.3),

             arrowprops=dict(facecolor='blue',shrink=0.01))

The following is the corresponding graph of the preceding code. Obviously, since  
the normal distribution is symmetric, we could expect the cumulative standard 
normal distribution to be 0.5 at zero, as shown in the following screenshot:

The Black-Scholes-Merton option model 
on non-dividend paying stocks
The Black-Scholes-Merton option model is a closed-form solution to price a 
European option on a stock that does not pay any dividends before its maturity 
date. If we use 0S  for the price today, X for the exercise price, r for the continuously 
compounded risk-free rate, T for the maturity in years, and σ  for the volatility of the 
stock, the closed-form formulae for a European call (c) and put (p) will be as follows:
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          (10)
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Here, N() is the cumulative standard normal distribution. The following Python code 
snippet represents the preceding formulae to evaluate a European call:

from scipy import log,exp,sqrt,stats

def bs_call(S,X,T,r,sigma):

    d1=(log(S/X)+(r+sigma*sigma/2.)*T)/(sigma*sqrt(T))

    d2 = d1-sigma*sqrt(T)

    return S*stats.norm.cdf(d1)-X*exp(-r*T)*stats.norm.cdf(d2)

In the preceding program, the stats.norm.cdf() function is the cumulative normal 
distribution, that is, N() in the Black-Scholes-Merton option model. The current stock 
price is $40, the strike price is $42, the time to maturity is six months, the risk-free 
rate is 1.5 percent compounded continuously, and the volatility of the underlying 
stock is 20 percent (compounded continuously). Based on the preceding code, the 
European call is worth $1.56, as shown in the following code:

>>>c=bs_call(40,42,0.5,0.015,0.2) 

>>>round(c,2)

1.56

The p4f module for options
In Chapter 3, Using Python as a Financial Calculator, we recommended the combining 
of many small Python programs as one program. In this chapter, we adopted the 
same strategy to combine all the programs in a big file p4f.py. For instance, the 
preceding Python program, that is, the bs_call() function is included. Such a 
collection of programs offers several benefits. First, when we use the bs_call() 
function, we don't have to type those five lines. To save space, we will only show 
a few functions included in p4f.py. For brevity, we will remove all the comments 
included for each function. Those comments are designed to help future users when 
issuing the help() function, such as help(bs_call()).

def bs_call(S,X,T,rf,sigma):

    from scipy import log,exp,sqrt,stats

    d1=(log(S/X)+(rf+sigma*sigma/2.)*T)/(sigma*sqrt(T))

    d2 = d1-sigma*sqrt(T)

    return S*stats.norm.cdf(d1)-X*exp(-rf*T)*stats.norm.cdf(d2)

The following program uses a binomial model to price a call option:

def binomial_grid(n):

    import networkx as nx 

    import matplotlib.pyplot as plt 
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    G=nx.Graph() 

    for i in range(0,n+1):     

        for j in range(1,i+2):         

            if i<n:             

                G.add_edge((i,j),(i+1,j))

                G.add_edge((i,j),(i+1,j+1)) 

    posG={}    #dictionary with nodes position 

    for node in G.nodes():     

        posG[node]=(node[0],n+2+node[0]-2*node[1]) 

    nx.draw(G,pos=posG)      

def delta_call(S,X,T,rf,sigma):

    from scipy import log,exp,sqrt,stats

    d1=(log(S/X)+(rf+sigma*sigma/2.)*T)/(sigma*sqrt(T))

    return(stats.norm.cdf(d1))

def delta_put(S,X,T,rf,sigma):

    from scipy import log,exp,sqrt,stats

    d1=(log(S/X)+(rf+sigma*sigma/2.)*T)/(sigma*sqrt(T))

    return(stats.norm.cdf(d1)-1)

To implement the Black-Scholes-Merton call option model, we simply use the 
following code:

>>>import p4f

>>>c=p4f.bs_call(40,42,0.5,0.015,0.2) 

>>>round(c,2)

1.56

The second advantage is to save space and make our programming simpler. Later in 
the chapter, this point will become more clearer when we use the binomial_grid() 
function. From now on, when a function is discussed for the first time, we will offer 
complete code. However, when the program is used again and the program is quite 
complex, we would call it indirectly via p4f. To find our working directory, use the 
following code:

>>>import os

>>>print os.getcwd()
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European options with known dividends
Assume that we have a known dividend d distributed at time T1, T1 < T, where T is 
our maturity date. We can modify the original Black-Scholes-Merton option model 
by replacing S0 with S, where:

          (11)
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( ) ( )1 2
rTc S N d X e N d−= ∗ − ∗           (14)

( ) ( )2 1
rTp X e N d S N d−= ∗ − − ∗ −           (15)

In the previously discussed example, if we have a known dividend of $1.5 delivered 
in one month, what is the price of the call?. The price is calculated as follows:

>>>import p4f

>>>s0=40

>>>d=1.5

>>>r=0.015

>>>T=6/12

>>>s=s0-exp(-r*T*d)

>>>x=42

>>>sigma=0.2 

>>>round(p4f.bs_call(s,x,T,r,sigma),2)

1.18
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The first line of the program imports the p4f module,  which contains the call option 
model. The result shows that the price of the call is $1.18, which is lower than the 
previous value ($1.56). It is understandable since the price of the underlying stock 
would drop roughly by $1.5 in one month. Because of this, the chance that we 
could exercise our call option will be less, that is, less likely to go beyond $42. The 
preceding argument is true for multiple known dividends distributed before T, that 
is, 0

irT
iS e d−= −∑ .

Various trading strategies
In the following table, we will summarize several commonly used trading strategies 
involving various types of options:

Names Description
Direction 
of initial 
cash flow

Expectation of future 
price movement

Bull spread 
with calls Buy a call (x1) sell a call (x2) [x1 < x2] Outflow Rise

Bull spread 
with puts Buy a put (x1), sell a put (x2) [x1 < x2] Inflow Rise

Bear spread 
with puts Buy a put (x2), sell a put (x1) [x1 < x2] Outflow Fall

Bear spread 
with calls Buy a call (x2), sell a call (x1) [x1 < x2] Inflow Fall

Straddle Buy a call and sell a put with the 
same x value Outflow Rise or fall

Strip Buy two puts and a call (with the 
same x value) Outflow prob (fall) > prob 

(rise)

Strap Buy two calls and one put (with the 
same x value) Outflow prob (rise) > prob 

(fall)

Strangle Buy a call (x2) and buy a put (x1) [x1 
< x2] Outflow rise or fall

Butterfly 
with calls

Buy two calls (x1, x3) and sell two 
calls (x2) ( ) ]2 1 3 / 2x x x= +

Outflow stay around x2

Butterfly 
with puts

Buy two puts (x1,x3) and sell two 
puts (x2) ( ) ]2 1 3 / 2x x x= + stay around x2

Calendar 
spread

Sell a call (T1) and buy a call (T2) with 
the same strike price and T1 < T2 Outflow



The Black-Scholes-Merton Option Model

[ 252 ]

Covered call – long a stock and short a call
Assume that we purchase 100 shares of stock A, with a price of $10 each. Thus, the 
total cost is $1,000. If at the same time, we write a call contract, one contract is worth 
100 shares, at a price of $20. Thus, our total cost will be reduced by $20. Assume 
further that the exercise price is $12. The graphical representation of our profit and 
loss function is as follows:

import matplotlib as plt

import numpy as np

sT = arange(0,40,5)

k=15;s0=10;c=2

y0=zeros(len(sT))

y1=sT-s0                    # stock only 

y2=(abs(sT-k)+sT-k)/2-c     # long a call

y3=y1-y2                    # covered-call

ylim(-10,30)

plot(sT,y1)

plot(sT,y2)

plot(sT,y3,'red')

plot(sT,y0,'b-.')

plot([k,k],[-10,10],'black')

title('Covered call (long one share and short one call)')

xlabel('Stock price')

ylabel('Profit (loss)')

plt.annotate('Stock only (long one share)', xy=(24,15),xytext=(15,20),

             arrowprops=dict(facecolor='blue',shrink=0.01),)

plt.annotate('Long one share, short a call', xy=(10,4), xytext=(9,25),

             arrowprops=dict(facecolor='red',shrink=0.01),)

plt.annotate('Exercise price= '+str(k), xy=(k+0.2,-10+0.5))

             

show()

The related graph showing the positions of a Stock only call and a covered call is 
given in the following screenshot. Obviously, when the stock price is below $17  
(15 + 2), the covered call is better than a long share.
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Straddle – buy a call and a put with the same 
exercise prices
Let's look at a very simple scenario. A firm faces an uncertain event next month. The 
issue is that we are not sure about its direction, that is, whether it is a good event or 
a bad one. To take advantage of such an opportunity, we could buy a call and a put 
with the same exercise prices. This means that we will benefit either ways: the stock 
moves up or down. Assume further that the exercise price is $30. The payoff of such 
a strategy is given in the following code:

import matplotlib.pyplot as plt

sT = arange(30,80,5)

x=50;  c=2; p=1

straddle=(abs(sT-x)+sT-x)/2-c + (abs(x-sT)+x-sT)/2-p

y0=zeros(len(sT))

ylim(-6,20)

xlim(40,70)

plot(sT,y0)

plot(sT,straddle,'r')

plot([x,x],[-6,4],'g-.')

title("Profit-loss for a Straddle")

xlabel('Stock price')

ylabel('Profit (loss)')

plt.annotate('Point 1='+str(x-c-p), xy=(x-p-c,0), xytext=(x-p-c,10),
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             arrowprops=dict(facecolor='red',shrink=0.01),)

plt.annotate('Point 2='+str(x+c+p), xy=(x+p+c,0), xytext=(x+p+c,13),

             arrowprops=dict(facecolor='blue',shrink=0.01),)

plt.annotate('exercise price', xy=(x+1,-5))

plt.annotate('Buy a call and buy a put with the same exercise 
price',xy=(45,16))

The preceding code gives us the following graph:

The preceding graph shows that whichever way the stock goes, we would get the 
profit. When could we lose? Obviously, when the stock does not change much, that 
is, our expectation fails to materialize.

A calendar spread
A calendar spread involves two call options with the same exercise price but 
different maturities: T1 and T2 (where T1 < T2). We sell a call with a shorter 
maturity (T1) and buy a call with a longer maturity (T2). Since the call option price is 
positively correlated with the maturity, we have initial cash outflow. Our expectation 
is that when the first option matures at T1, the price of the underlying stock is close 
to our exercise price. The code and graph for this are as follows:

import p4f

sT = arange(20,70,5)

s=40;x=40;T1=0.5;T2=1;sigma=0.3;r=0.05

payoff=(abs(sT-x)+sT-x)/2

call_01=p4f.bs_call(s,x,T1,r,sigma)  # short

call_02=p4f.bs_call(s,x,T2,r,sigma)  # long
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profit_01=payoff-call_01

call_03=p4f.bs_call(sT,x,(T2-T1),r,sigma)

calendar_spread=call_03-payoff+call_01 -call_02

y0=zeros(len(sT))

ylim(-20,20)

xlim(20,60)

plot(sT,call_03,'b-.')

plot(sT,call_02-call_01-payoff,'b-.')

plot(sT,calendar_spread,'r')

plot([x,x],[-20,-15])

title("Calendar spread with calls")

xlabel('Stock price at maturity (sT)')

ylabel('Profit (loss)')

plt.annotate('Buy a call with T1  and sell a call with T2', xy=(25,16))

plt.annotate('where T1<T2', xy=(25,14))

plt.annotate('Calendar spread', xy=(25,-3), xytext=(22,-15),

             arrowprops=dict(facecolor='red',shrink=0.01),)

plt.annotate('Value of the call (T2) at maturity', xy=(45,7), 
xytext=(25,10),

             arrowprops=dict(facecolor='blue',shrink=0.01),)

plt.annotate('Proflit/loss with call 1 only', xy=(50,-10), 
xytext=(30,-10),

             arrowprops=dict(facecolor='blue',shrink=0.01),)

plt.annotate('Exersise price', xy=(x+0.5,-20+0.5))

show()

The preceding code gives the following graph:
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Butterfly with calls
While buying two calls with the exercise prices x1 and x3 and selling two calls with 
the exercise price x2, where x2 = (x1+x2)/2, with the same maturity for the same 
stock, we call it butterfly. Its profit/loss function is as follows:

sT = arange(30,80,5)

x1=50;    c1=10

x2=55;    c2=7

x3=60;    c3=5   

y1=(abs(sT-x1)+sT-x1)/2-c1

y2=(abs(sT-x2)+sT-x2)/2-c2

y3=(abs(sT-x3)+sT-x3)/2-c3

butter_fly=y1+y3-2*y2

y0=zeros(len(sT))

ylim(-20,20)

xlim(40,70)

plot(sT,y0)

plot(sT,y1)

plot(sT,-y2,'-.')

plot(sT,y3)

plot(sT,butter_fly,'r')

title("Profit-loss for a Butterfly")

xlabel('Stock price')

ylabel('Profit (loss)')

plt.annotate('Butterfly', xy=(53,3), xytext=(42,4),

             arrowprops=dict(facecolor='red',shrink=0.01),)

plt.annotate('Buy 2 calls with x1, x3 and sell 2 calls with x2', 
xy=(45,16))

plt.annotate('   x2=(x1+x3)/2', xy=(45,14))

plt.annotate('   x1=50, x2=55, x3=60',xy=(45,12))

plt.annotate('   c1=10,c2=7, c3=5', xy=(45,10))

show()
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The related graph is shown in the following image:

Relationship between input values and 
option values
When the volatility of an underlying stock increases, both its call and put values 
increase. The logic is that when a stock becomes more volatile, we have a better 
chance to observe extreme values, that is, we have a better chance to exercise our 
option. The following Python program shows this relationship:

import numpy as np

import p4f as pf

s0=30;T0=0.5;sigma0=0.2;r0=0.05;x0=30

sigma=np.arange(0.05,0.8,0.05)

T=np.arange(0.5,2.0,0.5)

call_0=pf.bs_call(s0,x0,T0,r0,sigma0)

call_sigma=pf.bs_call(s0,x0,T0,r0,sigma)

call_T=pf.bs_call(s0,x0,T,r0,sigma0)

plot(sigma,call_sigma,'b')

plot(T,call_T)
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Greek letters for options
In the option theory, several Greek letters, usually called Greeks, are used to 
represent the sensitivity of the price of derivatives such as options to bring a  
change in the underlying security. Collectively, those Greek letters are also called  
the risk sensitivities, risk measures, or hedge parameters.

Delta (∆) is defined as the derivative of the option to its underlying security price. 
The delta of a call is defined as follows:

C
S
∂

∆ =
∂

          (16)

We could design a hedge based on the delta value. The delta of a European call  
on a non-dividend-paying stock is defined as follows:

( )1call N d∆ =           (17)

For example, if we write one call, we could buy delta number of shares of stocks so 
that a small change in the stock price is offset by the change in the short call. The 
definition of the delta_call() function is quite simple. Since it is included in the 
p4f.py file, we can call it easily, as shown in the following code:

>>>from p4f import *

>>>round(delta_call(40,40,1,0.1,0.2),4)

0.7257

The delta for a European put on a non-dividend-paying stock is defined as follows:

( )1 1put N d∆ = −           (18)

The definition of the delta_put function is as follows:

>>>from p4f import *

>>>round(delta_put(40,40,1,0.1,0.2),4)

-0.2743
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Gamma is the rate of change of delta with respect to price. It can be defined as follows:

S
Γ ∂∆
=
∂

          (19)

To implement an effective delta hedge, we have to update our stockholding 
constantly since delta depends on the price of the underlying security. Thus, if 
gamma is small, we don't have to change our hedge too frequently. For a European 
call (or put), its gamma value is given as follows:
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The put-call parity and its graphical 
representation
Let's look at a call with an exercise price of $20, a maturity of three months, and a 
risk-free rate of 5 percent. The present value of this future $20 price is calculated in 
the following code:

>>>x=20*exp(-0.05*3/12)   

>>>round(x,2)

19.75

>>>

In three months, what will be the wealth of our portfolio, which consists of a call 
on the same stock and $19.75 cash today? If the stock price is below $20, we don't 
exercise the call and keep the cash. If the stock price is above $20, we use our cash 
of $20 to exercise our call option to own the stock. Thus, our portfolio value will be 
the maximum of those two values, that is, the stock price in three months or $20, 
max(s,20).

On the other hand, how about a portfolio with a stock and a put option with an 
exercise price of $20? If the stock price falls below $20, we exercise the put option and 
get $20. If the stock price is above $20, we simply keep the stock. Thus, our portfolio 
value will be the maximum of those two values, that is, the stock price in three 
months or $20, max(s,20).
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Thus, for both the portfolios, we have the same terminal wealth of max(s,20). Based 
on the no-arbitrage principle, the present values of those two portfolios should be 
equal. We call this put-call parity, and we define it as follows:

0
fr TC Xe P S−+ = +           (21)

When the stock has known dividend payments before its maturity date, we have the 
following equality:

( ) 0
fr TC PV D Xe P S−+ + = +           (22)

Here, D is the present value of all dividends before their maturity date (T). The 
following Python program offers a graphical representation of the put-call parity:

import pylab as pl

import numpy as np

x=10

sT=np.arange(0,30,5)

payoff_call=(abs(sT-x)+sT-x)/2

payoff_put=(abs(x-sT)+x-sT)/2

cash=np.zeros(len(sT))+x

def graph(text,text2=''):

    pl.xticks(())

    pl.yticks(())

    pl.xlim(0,30)

    pl.ylim(0,20)

    pl.plot([x,x],[0,3])

    pl.text(x,-2,"X"); 

    pl.text(0,x,"X")

    pl.text(x,x*1.7, text, ha='center', va='center',size=10, alpha=.5)

    pl.text(-5,10,text2,size=25)

pl.figure(figsize=(6, 4))

pl.subplot(2, 3, 1); graph('Payoff of call');  pl.plot(sT,payoff_call)

pl.subplot(2, 3, 2); graph('cash','+');        pl.plot(sT,cash)

pl.subplot(2, 3, 3); graph('Porfolio A ','='); pl.plot(sT,cash+payoff_
call)
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pl.subplot(2, 3, 4); graph('Payoff of put ');  pl.plot(sT,payoff_put)

pl.subplot(2, 3, 5); graph('Stock','+');       pl.plot(sT,sT)

pl.subplot(2, 3, 6); graph('Portfolio B','=');  pl.plot(sT,sT+payoff_put)

pl.show()

The following is the output image:

Binomial tree (the CRR method) and its 
graphical representation
The binomial tree method was proposed by Cox, Ross, and Robinstein in 1979. Because 
of this, it is also called the CRR method. Based on the CRR method, we have the 
following two-step approach. First, we draw a tree, such as the following one-step 
tree. If we assume that our current stock value is S, there are two outcomes S*u and 
S*d, where u > 1 and d < 1, as shown in the following code:

import matplotlib.pyplot as plt 

xlim(0,1)

plt.figtext(0.18,0.5,'S')

plt.figtext(0.6,0.5+0.25,'Su')

plt.figtext(0.6,0.5-0.25,'Sd')

plt.annotate('',xy=(0.6,0.5+0.25), xytext=(0.1,0.5), arrowprops=dict(face
color='b',shrink=0.01))

plt.annotate('',xy=(0.6,0.5-0.25), xytext=(0.1,0.5), arrowprops=dict(face
color='b',shrink=0.01))

plt.axis('off')
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The following is its corresponding graph:

Obviously, the simplest tree is a one-step tree. Assume that today's price is $10, the 
exercise price is $11, and a call option would mature in six months. In addition, 
assume that we know that the price would have two outcomes, moving up (u = 1.15) 
or moving down (d = 0.9). In other words, the final values are either $11 or $9. Based 
on such information, we have the following graph showing the prices for such a  
one-step binomial tree:

The following is the code to generate the preceding graph. This code is based on the 
code available at http://litvak.eu/pyfi/:

import networkx as nx 

import matplotlib.pyplot as plt 

plt.figtext(0.08,0.6,"Stock price=$20")

plt.figtext(0.75,0.91,"Stock price=$22")

plt.figtext(0.75,0.87,"Option price=$1")
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plt.figtext(0.75,0.28,"Stock price=$18")

plt.figtext(0.75,0.24,"Option price=0")

n=1

def binomial_grid(n):

    G=nx.Graph() 

    for i in range(0,n+1):     

        for j in range(1,i+2):         

            if i<n:             

                G.add_edge((i,j),(i+1,j))

                G.add_edge((i,j),(i+1,j+1)) 

    posG={}   

    for node in G.nodes():     

        posG[node]=(node[0],n+2+node[0]-2*node[1])

    nx.draw(G,pos=posG)      

binomial_grid(n)

In the preceding program, we generated the binomial_grid() function, since we 
will call this function many times later in the chapter. Since we knew beforehand 
that we would have two outcomes, we could choose an appropriate combination 
of stock and call options to get our final outcome with certainty, that is, the same 
terminal values. Assume that we choose an appropriate delta number of shares of 
the underlying security and one call to have the same terminal value at the end of 

one period, that is, 11.5 1 9 0∆∗ − = ∆ +  and thus, 
1 0.4

11.5 9
∆ = =

− . This means that if 
we long 0.4 shares and short one call option, our final wealth will be the same, 0.4 * 
11.5 - 1 =3.6 when the stock moves up or 0.4 * 9 = 3.6 when the stock moves down. 
Assume further that if the continuously compounded risk-free value is 0.12 percent, 
the value of today's portfolio will be equivalent to the discounted future certain 
value 4.5, (0.4*10 – c=pv(3.6)) that is, 0.012 0.50.4 10 3.6 0.42c e− ∗= ∗ − ∗ = . If we use Python, 
we will have the following result:

>>>round(0.4*10-exp(-0.012*0.5)*3.6,2)

0.42

>>>

For a two-step binomial tree, we have the following code:

import p4f

plt.figtext(0.08,0.6,"Stock price=$20")

plt.figtext(0.08,0.56,"call =7.43")

plt.figtext(0.33,0.76,"Stock price=$67.49")
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plt.figtext(0.33,0.70,"Option price=0.93")

plt.figtext(0.33,0.27,"Stock price=$37.40")

plt.figtext(0.33,0.23,"Option price=14.96")

plt.figtext(0.75,0.91,"Stock price=$91.11")

plt.figtext(0.75,0.87,"Option price=0")

plt.figtext(0.75,0.6,"Stock price=$50")

plt.figtext(0.75,0.57,"Option price=2")

plt.figtext(0.75,0.28,"Stock price=$27.44")

plt.figtext(0.75,0.24,"Option price=24.56")

n=2

p4f.binomial_grid(n)

Based on the CRR method, we have the following procedure:

1.	 Draw an n-step tree.
2.	 At the end of the nth step, estimate terminal prices.
3.	 Calculate the option value at each node based on the terminal  

price, exercise, call, or put.
4.	 Discount it back one step, that is, from n to n-1, according to the  

risk-neutral probability.
5.	 Repeat the previous step until we find the final value at step 0.  

The formulae for calculating u, d, and p are as follows:

tu eσ ∆=            (23)

1 td e
u

σ− ∆= =           (24)

( )r q ta e − ∆=           (25)

a dp
u d
−

=
−

          (26)

( )1 11u d
i i ip pν ν ν+ += + −           (27)
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Here, u is the upward movement, d is the downward movement, σ  is the volatility 
of the underlying security, and r is the risk-free rate and t∆  is the step, that is, Tt

n
∆ =

. Here, T is the maturity in years, n is the number of steps, q is the dividend yield, 
and p is the risk-neutral probability of an upward movement. The binomial_grid() 
function is based on the functions shown under the one-step binomial tree graphical 
representation. Again, as we mentioned before that this function is included in the 
grand master file p4fy.py. The output graph is shown here. One obvious result is 
that the preceding Python program is very simple and straight. Let us use a two-step 
binomial tree to explain the whole process. Assume that the current stock price is 
$10, the exercise price is $10, the maturity is three months, the number of steps is two, 
the risk-free rate is 2 percent, and the volatility of the underlying security is 0.2. The 
following Python code would generate a two-step tree:

from math import sqrt,exp

s=10;r=0.02;sigma=0.2;T=3./12;x=10

n=2;deltaT=T/n;q=0 

u=exp(sigma*sqrt(deltaT));d=1/u

a=exp((r-q)*deltaT)

p=(a-d)/(u-d)

su=round(s*u,2);suu=round(s*u*u,2)

sd=round(s*d,2);sdd=round(s*d*d,2)

sud=s

plt.figtext(0.08,0.6,'Stock '+str(s))

plt.figtext(0.33,0.76,"Stock price=$"+str(su))

plt.figtext(0.33,0.27,'Stock price='+str(sd))

plt.figtext(0.75,0.91,'Stock price=$'+str(suu))

plt.figtext(0.75,0.6,'Stock price=$'+str(sud))

plt.figtext(0.75,0.28,"Stock price="+str(sdd))

p4f.binomial_grid(n)
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Now, we will use the risk-neutral probability to discount each value one step 
backward. The corresponding code and graph are given as follows:

import p4f

s=10;x=10;r=0.05;sigma=0.2;T=3./12.;n=2;q=0  # q is dividend yield

deltaT=T/n     # step 

u=exp(sigma*sqrt(deltaT))

d=1/u

a=exp((r-q)*deltaT)

p=(a-d)/(u-d)

s_dollar='S=$';c_dollar='c=$'

p2=round(p,2)

plt.figtext(0.15,0.91,'Note: x='+str(x)+', r='+str(r)+', deltaT='+str(del
taT)+',p='+str(p2))

plt.figtext(0.35,0.61,'p')

plt.figtext(0.65,0.76,'p')

plt.figtext(0.65,0.43,'p')

plt.figtext(0.35,0.36,'1-p')

plt.figtext(0.65,0.53,'1-p')

plt.figtext(0.65,0.21,'1-p')

# at level 2

su=round(s*u,2);suu=round(s*u*u,2)

sd=round(s*d,2);sdd=round(s*d*d,2)

sud=s

c_suu=round(max(suu-x,0),2)

c_s=round(max(s-x,0),2)

c_sdd=round(max(sdd-x,0),2)

plt.figtext(0.8,0.94,'s*u*u')

plt.figtext(0.8,0.91,s_dollar+str(suu))

plt.figtext(0.8,0.87,c_dollar+str(c_suu))

plt.figtext(0.8,0.6,s_dollar+str(sud))

plt.figtext(0.8,0.64,'s*u*d=s')

plt.figtext(0.8,0.57,c_dollar+str(c_s))

plt.figtext(0.8,0.32,'s*d*d')

plt.figtext(0.8,0.28,s_dollar+str(sdd))

plt.figtext(0.8,0.24,c_dollar+str(c_sdd))

# at level 1
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c_01=round((p*c_suu+(1-p)*c_s)*exp(-r*deltaT),2)

c_02=round((p*c_s+(1-p)*c_sdd)*exp(-r*deltaT),2)

plt.figtext(0.43,0.78,'s*u')

plt.figtext(0.43,0.74,s_dollar+str(su))

plt.figtext(0.43,0.71,c_dollar+str(c_01))

plt.figtext(0.43,0.32,'s*d')

plt.figtext(0.43,0.27,s_dollar+str(sd))

plt.figtext(0.43,0.23,c_dollar+str(c_02))

# at level 0 (today)

c_00=round(p*exp(-r*deltaT)*c_01+(1-p)*exp(-r*deltaT)*c_02,2)

plt.figtext(0.09,0.6,s_dollar+str(s))

plt.figtext(0.09,0.56,c_dollar+str(c_00))

p4f.binomial_grid(n)

Here, we explain a few values shown in the preceding graph. At the highest node 
(s*u*u), since the terminal stock price is 11.52 and the exercise price is 10, the call 
value is 1.52 (11.52 - 10). Similarly, on the s*u*d=s node, the call value is 0 since 10 - 
10 = 0. For the call value 0.8, we have the following verification:

>>>p

0.5266253390068362

>>>deltaT

0.125

>>>v=(p*1.52+(1-p)*0)*exp(-r*deltaT)

>>>round(v,2)

0.80

>>>
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The binomial tree method for European 
options
The following code is for the binomial tree method to price a European option:

from math import exp,sqrt

def biomialCall(s,x,T,r,sigma,n=100):

    deltaT = T /n

    u = exp(sigma * sqrt(deltaT))

    d = 1.0 / u

    a = exp(r * deltaT)

    p = (a - d) / (u - d)

    v = [[0.0 for j in xrange(i + 1)] for i in xrange(n + 1)]

    for j in xrange(i+1):

        v[n][j] = max(s * u**j * d**(n - j) - x, 0.0)

    for i in xrange(n-1, -1, -1):

        for j in xrange(i + 1):

            v[i][j]=exp(-r*deltaT)*(p*v[i+1][j+1]+(1.0-p)*v[i+1][j])

    return v[0][0]

To apply the function, we give it a set of input values. For the comparison, the result 
based on the Black-Scholes-Merton option model is also shown in the following code:

>>>binomialCall(40,42,0.5,0.1,0.2,1000) 

2.1055845631835846

>>>bs_call(40,42,0.5,0.1,0.2) 

2.2777803294555348

>>>

The binomial tree method for American 
options
Unlike the Black-Scholes-Merton option model, which could only be applied to 
European options, the binomial tree (CRR) method could be used to price American 
options. The only difference is that we have to consider the early exercise. The 
following is the code to price an American option using the binomial tree method:

from math import exp,sqrt

def binomialCallAmerican(s,x,T,r,sigma,n=100):
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    deltaT = T /n

    u = exp(sigma * sqrt(deltaT))

    d = 1.0 / u

    a = exp(r * deltaT)

    p = (a - d) / (u - d)

    v = [[0.0 for j in xrange(i + 1)] for i in xrange(n + 1)]

    for j in xrange(i+1):

        v[n][j] = max(s * u**j * d**(n - j) - x, 0.0)

    for i in xrange(n-1, -1, -1):

        for j in xrange(i + 1):

            v1=exp(-r*deltaT)*(p*v[i+1][j+1]+(1.0-p)*v[i+1][j])

            v2=max(x-s,0)       # early exercise 

            v[i][j]=max(v1,v2)

    return v[0][0]

The key difference between pricing an American call option and a European call 
option is its early exercise opportunity. In the preceding program, the last few lines 
reflect this. For each node, we estimate two values, that is, v1 is for the discounted 
value, and v2 is the payoff from an early exercise. We will choose a higher value, that 
is, max(v1, v2). If using the same set of values to apply this binomial tree method 
to price an American call, we have the following value. It is understandable that the 
final result is higher than its European call counterpart:

>>>call=binomialCallAmerican(40,42,0.5,0.1,0.2,1000)

>>>round(call,2)

3.41

>>>

Hedging strategies
After selling a European call, we could hold ∆ shares of the same stock to hedge our 
position. This is named delta hedge. Since delta (∆) is a function of the underlying 
stock (S), to maintain an effective hedge, we have to rebalance our holding 
constantly. This is called dynamic hedging. The delta of a portfolio is the weighted 
deltas of individual securities in the portfolio. Note that when we short a security, its 
weight will be negative.

1

n

port i i
i
w

=

∆ = ∆∑           (28)
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Assume that a US importer will pay 10 million pounds in three months. He or she 
is concerned with a potential depreciation of the US dollar against the UK pound. 
There are several ways to hedge such a risk: buy pounds now, enter a futures 
contract to buy 10 million pounds in three months with a fixed exchange rate, or 
buy call options with a fixed exchange rate as its exercise price. The first choice is 
costly since the importer does not need UK pounds today. Entering a future contract 
is risky as well, since an appreciation of the US dollar would cost the importer 
extra money. On the other hand, entering a call option will guarantee a maximum 
exchange rate today. At the same time, if the pound depreciates, the importer will 
reap the benefits. Such activities are called hedging since we take the opposite 
position of our risks.

For the currency options, we have the following equations:

20

1

11n
2d f

S r r T
xd

T

σ

σ

   + − +     =
          (29)

20

2 1

11n
2d f

S r r T
xd d T

T

σ
σ

σ

   + − +     = = −
          (30)

( ) ( )0 1 2
rTc S N d X e N d−= ∗ − ∗           (31)

( ) ( )2 0 1
rtp X e N d S N d−= ∗ − − ∗ −           (32)

Here, 0S  is the exchange rate of the US dollar per foreign currency, dr  is the domestic 
risk-free rate, and fr  is the foreign country's risk-free rate.

Summary
In this chapter, we discussed the Black-Scholes-Merton option model in detail. In 
particular, we covered the payoff and profit/loss functions and their graphical 
representations of call and put options; various trading strategies and their visual 
presentations, such as covered call, straddle, butterfly, calendar spread, normal 
distribution, standard normal distribution, and cumulative normal distribution; 
delta, gamma and other Greeks; the put-call parity; European versus American 
options; and the binomial tree method to price options and hedging.
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In the next chapter, Python Loops and Implied Volatility, first we will discuss several 
types of Python loops. Then, we will explain how to find the implied volatility for  
a call or put option. In addition, we will explain how to download real-world option 
data from several public available sources. Using that data, we will estimate implied 
volatility, volatility skewness, and their applications.

Exercises
1. What is the difference between an American call and a European call?

2. What is the unit of rf in the Black-Scholes-Merton option model?

3. If we are given the annual rate of 3.4 percent, compounded semi-annually,  
what will the value of rf be that we should use for the Black-Scholes-Merton  
option model ?

4. How do we use options to hedge?

5. How do we treat predetermined cash dividends to price a European call?

6. Why is an American call worth more than a European call?

7. Assume you are a mutual fund manager and your portfolio's β is strongly 
correlated with the market. You are worried about the short-term fall in the market. 
What you could do to protect your portfolio?

8. The current price of stock A is $38.5 and the strike prices for a call and a put 
options are both $37. If the continuously compounded risk-free rate is 3.2 percent, 
maturity is six months, and the volatility of stock A is 0.25, what are the prices for  
a European call and put?

9. Use the put-call parity to verify the above solutions.

10. When the strike prices for call and put in (9.11) are different, can we apply the 
put-call parity?

11. For a set of input values, such as s = 40, x = 40, t = 3 / 12=0.25, r = 0.05, and sigma 
= 0.20, using the Black-Scholes-Merton option model, we can estimate the value of 
the call. Now keeping all parameters constant, except s (the current price of a stock), 
show the relationship (a graph would be better) between calls and S.

12. Here is my portfolio: the more longer an underlying stock, the more longer a 
call option. Write a Python program showing the payoff function of this portfolio. 
Assume that the current stock price is $40 and the strike price of the European call  
is $45.
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13. Bull spread with puts: buy a put on a stock with K1 and sell a put with a strike 
price of K2 (K1 < K2). Since K1 < K2, the put purchased is less valuable than the 
put sold, the Bull spread with puts involves upfront cash inflow. Write a Python 
program for payoff and profit/loss functions, and draw a graph for this.

9.14 Bear spread with puts: investors expect that the stock price is going to fall. Buy 
a put with K2 and sell a put with K1 (where K1 < K2). Since K1 < K2 due to which the 
put purchased is more valuable than the put sold, the bear spread with puts involves 
initial cash outflow. Write a Python program for payoff, profit/loss functions, and 
draw a graph for this.

15. Butterfly spread: buy two calls with K1 and K3, and sell two calls with K2  
( ( )2 1 30.5K K K= + ).

a) Show that this strategy involves an initial investment. In other words, prove that 
1 3 22C C C+ ≥ . You form a portfolio of long C1, C3, and short 2 * C2.

b) Write a Python program to show its profit function.

16. You have the following portfolio: long 100 shares, short 77 calls on the same 
stocks, and long 88 puts on the same stocks. Assume that the current stock price is 
$40, the strike price for the call is $45 and the strike price of the put is $38. 

a) Write the payoff function for your portfolio.

b) What is the profit/loss function? Assume that the call and put premiums are $3 
and $4 respectively.

c) Write a Python program for the preceding two tasks. 

17. If we buy two puts and one call with the same exercise price, the strategy is called 
Strips. Write a Python program to show its profit/loss function.

18. If we buy one put and two calls with the same exercise price, the strategy is called 
"Strap". See the following graph. a) What is the expectation of such a strategy? b) 
Write a program to show its profit/loss graph.

19. Write a program to draw a graph showing the relation of delta ( ∆ ) on a European 
call on non-dividend stock with its underlying stock price (x axis).

20. The current stock price is $30, the exercise price is $30, the risk-free interest rate 
is 6 percent per annum, compounding semi-annually, the volatility is 25 percent per 
annum, the time to maturity is four months, and the underlying stock will pay $1 
dividends at end of one month and five months, respectively. What are the prices  
of a European call and a European put?
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21. In this chapter, we have the following code to present the one-step binomial tree:

import p4f

plt.figtext(0.08,0.6,"Stock price=$20")

plt.figtext(0.08,0.56,"call =7.43")

plt.figtext(0.33,0.76,"Stock price=$67.49")

plt.figtext(0.33,0.70,"Option price=0.93")

plt.figtext(0.33,0.27,"Stock price=$37.40")

plt.figtext(0.33,0.23,"Option price=14.96")

plt.figtext(0.75,0.91,"Stock price=$91.11")

plt.figtext(0.75,0.87,"Option price=0")

plt.figtext(0.75,0.6,"Stock price=$50")

plt.figtext(0.75,0.57,"Option price=2")

plt.figtext(0.75,0.28,"Stock price=$27.44")

plt.figtext(0.75,0.24,"Option price=24.56")

n=2

p4f.binomial_grid(n)

The following is its related graph:

Simplify the preceding program to make it look like the following one:

import p4f

plt.figtext("Stock price=$20")

plt.figtext("call =7.43")
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plt.figtext("Stock price=$67.49")

plt.figtext("Option price=0.93")

plt.figtext("Stock price=$37.40")

plt.figtext("Option price=14.96")

plt.figtext("Stock price=$91.11")

plt.figtext("Option price=0")

plt.figtext("Stock price=$50")

plt.figtext("Option price=2")

plt.figtext("Stock price=$27.44")

plt.figtext("Option price=24.56")

n=2

p4f.binomial_grid(n)

22. Write a Python program for the graphical representation of a three-step  
binomial tree.



Python Loops and  
Implied Volatility

In this chapter, we will study two topics: loops and implied volatility based on the 
European options (Black-Scholes-Merton option model) and American options. For 
the first topic, we have the for loop and while loop, the two most used loops. After 
presenting the definition of the implied volatility and explaining the logic behind it, 
we discuss three ways for its estimation: based on a for loop, on a while loop, and 
on a binary search. A binary search is the most efficient way to find a solution in 
such cases. However, the precondition to apply a binary search is that the objective 
function is monotone increasing or decreasing function of our target estimate. 
Fortunately, this is true since the value of an option price is an increasing function  
of the volatility.

In particular, we will cover the following topics:

•	 What is an implied volatility?
•	 Logic behind the estimation of an implied volatility
•	 Understanding the for loop, while loop, and their applications
•	 Nested (multiple) loops
•	 The estimation of multiple IRRs
•	 The mechanism of a binary search
•	 The estimation of an implied volatility based on an American call
•	 The enumerate() function
•	 Retrieving option data from Yahoo! Finance and from Chicago Board 

Options Exchange (CBOE)
•	 A graphical presentation of put-call ratios
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Definition of an implied volatility
From the previous chapter, we know that for a set of input variables—S (the 
present stock price), X (the exercise price), T (the maturity date in years), r (the 
continuously compounded risk-free rate), and sigma (the volatility of the stock, that 
is, the annualized standard deviation of its returns)—we could estimate the price of 
a call option based on the Black-Scholes-Merton option model. Recall that to price a 
European call option, we have the following Python code of five lines:

from scipy import log,exp,sqrt,stats

def bs_call(S,X,T,r,sigma):

    d1=(log(S/X)+(r+sigma*sigma/2.)*T)/(sigma*sqrt(T))

    d2 = d1-sigma*sqrt(T)

    return S*stats.norm.cdf(d1)-X*exp(-r*T)*stats.norm.cdf(d2)

After entering a set of five values, we can estimate the call price as follows:

>>>bs_call(40,40,0.5,0.05,0.25)

3.3040017284767735

On the other hand, if we know S, X, T, r, and c, how can we estimate sigma? Here, sigma 
is our implied volatility. In other words, if we are given a set values such as S=40, 
X=40, T=0.5, r=0.05, and c=3.30, we should find out the value of sigma, and it should 
be equal to 0.25. In this chapter, we will learn how to estimate the implied volatility.

Actually, the underlying logic to figure out the implied volatility is very simple: 
trial and error. Let's use the previous example as an illustration. We have five 
values—S=40, X=40, T=0.5, r=0.05, and c=3.30. The basic design is that after inputting 
100 different sigmas, plus the first four input values shown earlier, we have 100 
call prices. The implied volatility is the sigma that achieves the smallest absolute 
difference between the estimated call price and 3.30. Of course, we could increase 
the number of trials to achieve a higher precision, that is, more decimal places. 
Alternatively, we could adopt another conversion criterion: we stop when the 
absolute difference between our estimated call price and the given call value is less 
than a critical value, such as 1 cent, that is, |c-3.30|<0.01. Since it is not a good idea 
to randomly pick up 100 or 1,000 different sigmas, we systematically choose those 
values, that is, use a loop by selecting those sigmas systematically. Next, we will 
discuss two types of loops: a for loop and a while loop.
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Understanding a for loop
A for loop is one of the most used loops in many computer languages. The 
following flow diagram demonstrates how a loop works. Usually, we start with an 
initial value. Then, we test a condition. If the condition is false, the program stops. 
Otherwise, we execute a set of commands:

The simplest example is given as follows:

>>>for i in range(1,5):

      print i

Running these two lines will print 1, 2, 3, and 4. We have to be careful with the 
range() function since the last number, 5, will not be printed in Python. Thus,  
if we intend to print from 1 to n, we have to use the following code:

>>>n=10

>>>for i in range(1,n+1):

      print i

In the previous two examples, the default incremental value is 1. If we intend to  
use an incremental value other than 1, we have to specify it as follows:

>>>for i in xrange(1,10,3):

      print i
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The output values will be 1, 4, and 7. Along the same lines, if we want to print 5 to 1, 
that is, in descending order, the incremental value should be -1:

>>>for j in xrange(5,1,-1):

      print j

Estimating the implied volatility by using a  
for loop
First, we should generate a Python program to estimate the call price based on the 
Black-Scholes-Merton option model as shown in the following code:

from scipy import log,exp,sqrt,stats

def bs_call(S,X,T,r,sigma):

    """Objective: estimate call for stock with one known dividend

       S: current stock price

       T : maturity date in years

       r : risk-free rate

       sigma: volatility

    """

    d1=(log(S/X)+(r+sigma*sigma/2.)*T)/(sigma*sqrt(T))

    d2 = d1-sigma*sqrt(T)

    return S*stats.norm.cdf(d1)-X*exp(-r*T)*stats.norm.cdf(d2)

S=40

K=40

T=0.5

r=0.05

c=3.30

for i in range(200):

    sigma=0.005*(i+1)

    diff=c-bs_call(S,K,T,r,sigma)

    if abs(diff)<=0.01:

        print(i,sigma, diff)
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To make our lives a little bit easier, we could include the bs_call() function in a 
general or master program such as p4f.py. Then, our code would be simpler and 
easier to understand, as shown in the following code snippet:

import p4f 

S=40

K=40

T=0.5

r=0.05

c=3.30

for i in range(200):

    sigma=0.005*(i+1)

    diff=c-p4f.bs_call(S,K,T,r,sigma)

    if abs(diff)<=0.01:

        print(i,sigma, diff)

In the preceding program, we used the same set of input values as the example 
shown earlier. Thus, our expected implied volatility is 0.25. The logic of this program 
is that we use the trial-and-error method to feed our Black-Scholes-Merton option 
model with many different sigmas (volatilities). For a given sigma (volatility), when 
the difference between our estimated call price and the given call price is less than 
0.01, we stop. That sigma (volatility) will be our implied volatility. The output from 
the earlier program is shown as follows:

(49, 0.25, -0.0040060797372882817)

>>>

The first number, 49, is the value of the variable i, and 0.25 is the implied 
volatility. The last value is the difference between our estimated call value and the 
given call price of $3.30.

Implied volatility function based on a 
European call
Ultimately, we could write a function to estimate the implied volatility based on 
a European call. To save space, we remove all comments and examples from the 
program as shown:

def implied_vol_call(S,X,T,r,c):

    from scipy import log,exp,sqrt,stats

    for i in range(200):
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        sigma=0.005*(i+1)

        d1=(log(S/X)+(r+sigma*sigma/2.)*T)/(sigma*sqrt(T))

        d2 = d1-sigma*sqrt(T)

        diff=c-(S*stats.norm.cdf(d1)-X*exp(-r*T)*stats.norm.cdf(d2))

        if abs(diff)<=0.01:

            return i,sigma, diff

With a set of input values, we could apply the previous program easily as follows:

>>>implied_vol_call(40,40,0.5,0.05,3.3)

(49, 0.25, -0.0040060797372882817)

>>>

Implied volatility based on a put option model
Similarly, we could estimate an implied volatility based on a European put option 
model. In the following program, we design a function named implied_vol_put_
min(). There are several differences between this function and the previous one. 
First, the current function depends on a put option instead of a call. Thus, the last 
input value is a put premium instead of a call premium. Second, the conversion 
criterion is that an estimated price and the given put price have the smallest 
difference. In the previous function, the conversion criterion is when the absolute 
difference is less than 0.01. In a sense, the current program will guarantee an implied 
volatility while the previous program does not guarantee an output:

def implied_vol_put_min(S,X,T,r,p):

    from scipy import log,exp,sqrt,stats

    implied_vol=1.0

    min_value=100.0

    for i in xrange(1,10000):

        sigma=0.0001*(i+1)

        d1=(log(S/X)+(r+sigma*sigma/2.)*T)/(sigma*sqrt(T))

        d2 = d1-sigma*sqrt(T)

        put=X*exp(-r*T)*stats.norm.cdf(-d2)-S*stats.norm.cdf(-d1)

        abs_diff=abs(put-p)

        if abs_diff<min_value:

            min_value=abs_diff

            implied_vol=sigma

            k=i
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            put_out=put

    print 'k, implied_vol, put, abs_diff'

return k,implied_vol, put_out,min_value

Let's use a set of input values to estimate the implied volatility. After that, we will 
explain the logic behind the previous program. Assume, S=40, X=40, T=12 months, 
r=0.1, and the put price is $1.50, as shown in the following code:

>>>implied_vol_put_min(40,40,1.,0.1,1.501)

k, implied_vol, put, abs_diff

(1999, 0.2, 1.5013673553027349, 0.00036735530273501737)

>>>

The implied volatility is 20 percent. The logic is that we assign a big value, such as 
100, to a variable called min_value. For the first sigma with a value of 0.0002, we 
have an almost zero put value. Thus, the absolute difference is 1.50, which is smaller 
than 100. Because of this, our min_value variable will be replaced with the value 
1.50. We continue this way until we go though the loop. For the recorded minimum 
value, its corresponding sigma will be our implied volatility.

We could optimize the previous program by defining some intermediate values. For 
example, in the previous program, we estimate ln(S/X) 10,000 times. Actually, we 
define a new variable such as log_S_over_X, estimate its value just once, and use it 
10,000 times. This is true for sigma*sigma/2.0, and sigman*sqrt(T).

The enumerate() function
When generating a Net Present Value ( NPV) function, we need to estimate the 
present value of all future and present cash flows as shown in the following formula:
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i

i

cashflow
NPV

R=

=
+

∑              (1)

In a sense, for each cash flow, we need two values: i and cash flow at i. For  
these cases, we could apply the enumerate() function as shown in the  
following NPV function:

def npv_f(rate, cashflows):

    total = 0.0

    for i, cashflow in enumerate(cashflows):

        total += cashflow / (1 + rate)**i

    return total
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The enumerate() function would generate a pair of indices, starting from 0, and its 
corresponding value. With a set of input values for the discount rate and a cash flow 
array, we could apply the NPV function as follows:

>>>c=[-100.0, 60.0, 60.0, 60.0]

>>>r=0.1

>>>npv=npv_f(r,c)

>>>round(npv,2)

49.21

>>>

Estimation of IRR via a for loop
In the first two chapters, we learned that we could apply the Internal Rate of Return 
(IRR) rule to evaluate our project with a set of forecasted current and future cash 
flows. Based on a for loop, we could calculate the IRR of our project. The two related 
functions, NPV() and IRR_f(), are shown as follows:

def npv_f(rate, cashflows):

    total = 0.0

    for i, cashflow in enumerate(cashflows):

        total += cashflow / (1 + rate)**i

    return total

Here, the key is finding out what kinds of values the intermediate variables i and 
cashflow would take. From the previous section, we know that i will take values 
from 0 to the number of cash flows and that cashflow would take all values from the 
variable called cashflows. The total+=x statement is equivalent to total=total+x. 
One issue is that if we enter -1 as our rate, the function would not work. We could 
add an if command to prevent this from happening (refer to the succeeding solution 
for the IRR() function). The second potential issue is that when the second input 
variable contains NaN, the npv_f() function would fail. For these cases, we could use 
the isnan() function contained in the NumPy module as shown in the following code:

def IRR_f(cashflows, iterations=100):

    if len(cashflows)==0:

        print 'number of cash flows is zero'

        return -99

    rate = 1.0
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    investment = cashflows[0]

    for i in range(1, iterations+1):

        rate *= (1 - npv_f(rate, cashflows) / investment)

    return rate

The underlying assumption for the previous code is that the first investment is our 
initial investment, while all future cash flows are cash inflows. This means that the 
NPV and the discount rate have a reverse relationship. For a given discount rate, 
if its corresponding NPV is positive, we are supposed to increase the discount rate 
in order to find a zero NPV—thus, the current rate times a value greater than one. 
Notice that the investment is a cash outflow. Thus, it has a negative sign. The value 
of (1-npv_f(rate, cashflows)/investment) will be greater than one. On the other 
hand, if the estimated NPV is negative, we should reduce our discount rate, that is, 
the current rate times a value lesser than one. Assume that we have the following 
cash flows, what are the corresponding IRRs?

>>>cashflows=[-100,50,60,20,50]

>>>x=IRR_f(cashflows)

>>>round(x,3)

0.304

>>>

Estimation of multiple IRRs
In the earlier example, the direction of cash flows changes just once. Thus, there 
exists one IRR. However, when the directions of cash flows change more than 
once, we might have multiple IRRs. Assume that we have the following cash flows: 
cashflows=[55,-50,-50,-50,100]. Since the directions of cash flows change twice, 
we expect two IRRs. If we apply the previous IRR function, we could locate just one 
cash flow as shown in the following code:

>>>cashflows=[55,-50,-50,-50,100]

>>>round(IRR_f(cashflows),3)

0.337

>>>

Here, we apply the same logic by using many different discount rates to find out 
which two rates make the NPV (Net Present Value) become zero. The Python 
program to estimate multiple IRRs is shown as follows:

def IRRs_f(cash_flows):

    n=1000
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    r=range(1,n)

    epsilon=abs(mean(cash_flows)*0.01)

    irr=[-99.00]

    j=1

    npv=[]

    for i in r: npv.append(0)

    lag_sign=sign(npv_f(float(r[0]*1.0/n*1.0),cash_flows))

    for i in range(1,n-1):

                  interest=float(r[i]*1.0/n*1.0)

                  npv[i]=npv_f(interest,cash_flows)

                  s=sign(npv[i])

                  if s*lag_sign<0:

                      lag_sign=s

                      if j==1:

                          irr=[interest]

                          j=2

                      else:

                          irr.append(interest)

    return irr

We could call the function easily as follows:

>>>cashflows=[55,-50,-50,-50,100]

>>>IRRs_f(cashflows)

[0.072, 0.337]

>>>

Understanding a while loop
In the following program, the first line assigns an initial value to i. The second line 
defines a condition for? when the while loop should stop. The last one increases the 
value of i by 1. The i+=1 statement is equivalent to i=i+1. Similarly, t**=2 should 
be interpreted as t=t**2:

i=1

while(i<=4):

    print(i)

    i+=1
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The key for a while loop is that an exit condition should be satisfied at least once. 
Otherwise, we would enter an infinitive loop. For example, if we run the following 
scripts, we would enter an infinitive loop. When this happens, we can use Ctrl + C to 
stop it:

i=1

while(i!=2.1):

    print(i)

    i+=1

In the previous program, we compare two real numbers for equality. It is not a good 
idea to use the equals sign for two real/float/double numbers. The next example is 
related to the famous Fibonacci series: the summation of the previous two numbers 
is the current one:

1,1,2,3,5,8,13,... ... ....Fibonacci series =

The Python code for computing the Fibonacci series is given as follows:

def fib(n):

    """Print a Fibonacci series up to n.

    """

    a, b = 0, 1

    while a < n:

        print a,  

        a, b = b, a+b

When n is 1,000, we get the following results:

>>>fib(1000)

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

>>>

Using keyboard commands to stop an 
infinitive loop
Sometimes, because of carelessness or other reasons, we might end up with an 
infinitive loop (refer to the following program). Our original intention is to print 
just four numbers ranging from one to four. However, since we forgot to add 1 to 
the variable i after each printing, the exit condition will never be satisfied, that is, 
it leads to an infinitive loop. For such cases, we could use Ctrl + C or Ctrl + Enter to 
stop such an infinitive loop:
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i=1

While i<5:

    Print i

>>>

If these commands do not work, then use Ctrl + Alt + Del to launch the Task 
Manager, choose Python, and then click on End Task.

Estimating implied volatility by using a  
while loop
This time, we use the Black-Scholes-Merton put option model and a while loop to 
estimate the implied volatility. First, we present the put option model as follows:

def bs_put(S,X,T,rf,sigma):

    from scipy import log,exp,sqrt,stats

    d1=(log(S/X)+(rf+sigma*sigma/2.)*T)/(sigma*sqrt(T))

    d2 = d1-sigma*sqrt(T)

    return X*exp(-rf*T)*stats.norm.cdf(-d2)-S*stats.norm.cdf(-d1)

To apply the function, we input a set of values for S, X, T, rf, and sigma as follows:

>>>put=bs_put(40,40,0.5,0.05,0.2)

>>>round(put,2)

1.77

>>>

The following program uses both a while loop and the put option to estimate the 
implied volatility. Here, we assume that the previous European put option function 
is included in the p4y.py master program (module):

import p4f 

S=40;K=40;T=0.5;r=0.05;sigma=0.2;p=1.77

diff=1;i=1

while abs(diff)>0.01:

    sigma=0.005*(i+1)

    diff=p-p4f.bs_put(S,K,T,r,sigma)

    i+=1

print('i, implied-vol, diff')

print(i,sigma, diff)



Chapter 10

[ 287 ]

From the following output, we know that the implied volatility is 0.2, the same as 
we estimated using the Black-Scholes-Merton call option model. Again, we could 
verify this using 0.2 as our input value for the volatility to confirm whether we have 
the same put price:

i, implied-vol, diff

(40, 0.2, 0.0021120877944480476)

>>>

In the following program, we use break to exit an infinite loop. The condition of 
one equals one is always true. The only hope to stop the loop is based on the break 
clause. Another advantage of such a conversion criterion is that we don't have to 
consider what an appropriate difference level is. Sometimes, choosing an appropriate 
scale is not easy since option prices vary:

import p4f 

S=40;K=40;T=0.5;r=0.05;sigma=0.2;p=1.77

diff=1;i=1

sigma_old=0.005

sign_1=sign(p-bs_put(S,K,T,r,sigma_old))

while(1):

    sigma=0.0001*(i+1)

    sign_2=sign(p-p4f.bs_put(S,K,T,r,sigma))

    i+=1

    if sign_1*sign_2<0:

        break

    else:

        sigma_old=sigma

print('i, implied-vol, diff')

print(i,(sigma_old+sigma)/2, diff)

The sign() function returns 1 if the input is greater than 1. It returns -1 if the  
input is less than zero. A sample implementation of the sign() function is  
given as follows:

>>>sign(-2)

-1

>>>sign(2)

1

>>>sign(0)

0
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Nested (multiple) for loops
For a two-dimensional matrix, you need two loops with variables i and j shown  
as follows:

n1=2

n2=3

for x in xrange(1, n1+1):

    for y in xrange(1, n2+1):

        print '%d * %d = %d' % (x, y, x*y)

We can use two while loops or the combination of a for loop and a while loop to 
accomplish the same task.

Estimating implied volatility by using an 
American call
Since almost all exchange listed stock options are American options, we show  
the following program to estimate an implied volatility based on an American  
call option:

from math import exp,sqrt

def binomialCallAmerican(s,x,T,r,sigma,n=100):

    deltaT = T /n

    u = exp(sigma * sqrt(deltaT))

    d = 1.0 / u

    a = exp(r * deltaT)

    p = (a - d) / (u - d)

    v = [[0.0 for j in xrange(i + 1)] for i in xrange(n + 1)]

    for j in xrange(i+1):

        v[n][j] = max(s * u**j * d**(n - j) - x, 0.0)

    for i in xrange(n-1, -1, -1):

        for j in xrange(i + 1):

            v1=exp(-r*deltaT)*(p*v[i+1][j+1]+(1.0-p)*v[i+1][j])

            v2=max(s-x,0)

            v[i][j]=max(v1,v2)

    return v[0][0]
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The previous Python program is used to estimate an American call option based 
on the binomial-tree method, or CRR method. Based on the input values, we first 
calculate u, d, and p, where u represents the up movement, d represents the down 
movement, and p is the risk-neutral probability. The first loop estimates the option 
values at the end of the tree for all nodes. With the second set of double loops, we 
move backward from the last step to time zero. The variable v1 is the discounted 
two-call option from the previous step while v2 is the early exercise premium since it 
is an American option:

def implied_vol_American_call(s,x,T,r,c):

    implied_vol=1.0

    min_value=1000

    for i in range(1000):

        sigma=0.001*(i+1)

        c2=binomialCallAmerican(s,x,T,r,sigma)

        abs_diff=abs(c2-c)

        if abs_diff<min_value:

            min_value=abs_diff

            implied_vol=sigma

            k=i

    return implied_vol       

To test the program, we could estimate an American call by inputting a set of values, 
including sigma, and then estimate the implied volatility as follows:

>>>binomialCallAmerican(150,150,2./12.,0.003,0.2)

4.908836114170818

>>>implied_vol_American_call(150,150,2./12.,0.003,4.91)

0.2

>>>

Measuring efficiency by time spent in 
finishing a program
The following program measures how much time, in seconds, is required to finish a 
program. The function used is time.clock():

import time

start = time.clock()

n=10000000
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for i in range(1,n):

    k=i+i+2

diff= (time.clock() - start)

print round(diff,2)

The total time we need to finish the previous meaningless loop is about 1.59 seconds.

The mechanism of a binary search
To estimate the implied volatility, the logic underlying the earlier methods is to run 
the Black-Scholes-Merton option model a hundred times and choose the sigma value 
that achieves the smallest difference between the estimated option price and the 
observed price. Although the logic is easy to understand, such an approach is not 
efficient since we need to call the Black-Scholes-Merton option model a few hundred 
times. To estimate a few implied volatilities, such an approach would not pose any 
problems. However, under two scenarios, such an approach is problematic. First, if we 
need higher precision, such as sigma=0.25333, or we have to estimate several million 
implied volatilities, we need to optimize our approach. Let's look at a simple example.

Assume that we randomly pick up a value between one and 5,000. How many steps 
do we need to match this value if we sequentially run a loop from one to 5,000? A 
binomial search is the log(n) worst-case scenario when linear search is the n worst-
case scenario. Thus, to search a value from one to 5,000, a linear search would need 
5,000 steps (average 2,050) in a worst-case scenario, while a binary search would 
need 12 steps (average 6) in a worst-case scenario. The following Python program 
performs a binary search:

def binary_search(x, target, my_min=1, my_max=None):

    if my_max is None:

        my_max = len(x) - 1

    while my_min <= my_max:

        mid = (my_min + my_max)//2

        midval = x[mid]

        if midval < target:

            my_min = my_mid + 1

        elif midval > target:

            my_max = mid - 1

        else:

            return mid

    raise ValueError
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The next program generates a list of unique words from the Bible. Then, we conduct 
a binary search to find the location for a given word. First, we have to download the 
Bible in text format:

1.	 Go to http://printkjv.ifbweb.com/.
2.	 Download the zip file that includes the text file.

Unzip the downloaded zip file, and we will see a text file called AV1611Bible.txt. 
Assuming that that the text file is saved under C:\temp\:

from string import maketrans

import pandas as pd

word_freq = {}

word_list = open("c:/temp/AV1611Bible.txt", "r").read().split()

for word in word_list:

    word = word.translate(maketrans("",""), '!"#$%&()*+,./:;<=>?@
[\\]^_'{|}~0123456789')

    if word.startswith('-'): word = word.replace('-','')

    if len(word): word_freq[word] = word_freq.get(word, 0) + 1

keys = sorted(word_freq.keys())

x=pd.DataFrame(keys)

x.to_pickle('c:/temp/uniqueWords.pickle')

This time, we compare words instead of values, the program for which is given  
as follows:

def binaryText(x, target, my_min=1, my_max=None):

    if my_max is None:

        my_max = len(x) - 1

    while my_min <= my_max:

        mid = (my_min + my_max)//2

        midval = x.iloc[mid]

        if midval.values < target:

            my_min = mid + 1

        elif midval.values > target:

            my_max = mid - 1

        else:

            return mid

    raise ValueError
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In the previous program, x.iloc[mid] gives us the value since x is in a  
Data.Frame format:

>>>x.iloc[600]

          0

600  Baasha

>>>binaryText(x,'Baasha',1)

600

>>>

If users have issues in downloading the Bible discussed earlier, they could download 
a file in a Pandas' pickle format from http://canisius.edu/~yany/uniqueWords.
pickle. Assuming that such a dataset is saved under C:\temp\, the following code 
can be used to perform the binary search:

>>>x=load("c:/temp/uniqueWords.pickle")

>>>x.iloc[610]

           0

610  Bahurim

>>>binaryText(x,'Bahurim',1)

610

>>>

Sequential versus random access
If we have daily stock data, we could have them saved in different patterns. One 
way is to save them as stock ID, date, high, low, opening price, closing price, and 
trading volume. We could sort our stock ID and save them one after another. We 
have two ways to write a Python program to access IBM data: sequential access 
and random access. For sequential access, we read one line and check its stock ID 
to see if it matches our ticker. If not, we go to the next line, until we find our data. 
Such a sequential search is not efficient, especially when our dataset is huge, such as 
several gigabits. It is a good idea to generate an index file, such as IBM, 1,000, 2,000. 
Based on this information, we know that IBM's data is located from line 1,000 to line 
2000. Thus, to retrieve IBM's data, we could jump to line 1,000 immediately without 
having to go through the first 999 lines. This is called random access.
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Looping through an array/DataFrame
The following program shows how to print all values in an array:

import numpy as np

x = np.arange(10).reshape(2,5)

for y in np.nditer(x):

    print y

For another example of going through all tickers, we download a dataset called 
yanMonthly.pickle from http://canisius.edu/~yany/yanMonthly.pickle. 
Assume again that the downloaded dataset is saved under C:\temp\. We could use 
the following program to retrieve the dataset and run a loop to print a dozen tickets:

x=load('c:/temp/yanMonthly.pickle')

stocks=x.index.unique()

for item in stocks[:10]:

  print item

  # add your codes here

The output of the previous code is shown as follows:

000001.SS

A

AA

AAPL

BC

BCF

C

CNC

COH

CPI

The previous program has no real meaning since we could simply type the following 
codes to see those tickers. However, we could add our own related codes as follows:

>>>stocks[0:10]

array(['000001.SS', 'A', 'AA', 'AAPL', 'BC', 'BCF', 'C', 'CNC', 'COH',

       'CPI'], dtype=object)

>>>
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Assignment through a for loop
The following program assigns values to a variable:

>>>x=[0.0 for i in xrange(5)]

>>>x

[0.0, 0.0, 0.0, 0.0, 0.0]

>>>

The previous assignment is quite simple. Actually, we could use x=zeros(5)  
to achieve the same objective. The following program is an extension of the  
previous code:

>>>v = [[0.0 for j in xrange(i + 1)] for i in xrange(4 + 1)]

>>>v

[[0.0], [0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 
0.0, 0.0, 0.0]] 

>>>len(v)

5

>>>v[0]

[0.0]

>>>v[1]

[0.0, 0.0]

>>>v[3]

[0.0, 0.0, 0.0, 0.0]

>>>

Looping through a dictionary
An example related to a dictionary is given as follows:

>>>market_cap= {"IBM":200.97, "MSFT":311.30, "WMT":253.91, "C": 158.50}

For each stock, we have its corresponding market capitalization. Each pair has a key 
and a value. Again, stocks' names are keys while their market capitalizations are 
values. To show their keys and values, refer to the following code:

>>>market_cap.keys()

['C', 'IBM', 'MSFT', 'WMT']

>>>market_cap.values()

[158.5, 200.97, 311.3, 253.91]
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To show both keys and values, we use the items() function as follows:

>>>market_cap.items()

[('C', 158.5), ('IBM', 200.97), ('MSFT', 311.3), ('WMT', 253.91)]

>>>

The following program demonstrates how to loop though a dictionary:

>>>market_cap= {"IBM":200.97, "MSFT":311.30, "WMT":253.91, "C": 158.50}

>>>for k,v in market_cap.items():

...     print k,v

...

C 158.5

IBM 200.97

MSFT 311.3

Retrieving option data from CBOE
The Chicago Board Options Exchange ( CBOE) trades options and futures. There 
is a lot of free data available on the CBOE web pages. For example, we could enter 
a ticker to download its related option data. To download IBM's option data, we 
perform the following two steps:

1.	 Go to http://www.cboe.com/DelayedQuote/QuoteTableDownload.aspx.
2.	 Enter IBM, then click on Download.

The first few lines are shown in the following table. According to the original design, 
the put data is arranged side by side with the call data. In order to have a clearer 
presentation, we move the put option data under the call:

IBM (International 
Business Machines) 172.8 -0.57

December 15, 2013 @ 
10:30 ET Bid 172.51 Ask 172.8 Size 2x6 Vol 4184836

Calls Last 
Sale Net Bid Ask Vol Open 

Int
13 December 125.00 
(IBM1313L125) 0 0 46.75 50 0 0

13 December 125.00 
(IBM1313L125-4) 0 0 46.45 50.45 0 0
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13 Dec 125.00 
(IBM1313L125-8) 0 0 46.2 50.3 0 0

13 Dec 125.00 
(IBM1313L125-A) 0 0 46.5 50.5 0 0

13 Dec 125.00 
(IBM1313L125-B) 0 0 46.15 50.15 0 0

13 Dec 125.00 
(IBM1313L125-E) 0 0 46.25 50.3 0 0

Puts Last 
Sale Net Bid Ask Vol Open 

Int
13 Dec 125.00 
(IBM1313X125) 0 0 0 0.03 0 0

13 Dec 125.00 
(IBM1313X125-4) 0 0 0 0.03 0 0

13 Dec 125.00 
(IBM1313X125-8) 0 0 0 0.03 0 0

13 Dec 125.00 
(IBM1313X125-A) 0 0 0 1.72 0 0

13 Dec 125.00 
(IBM1313X125-B) 0 0 0 0.04 0 0

13 Dec 125.00 
(IBM1313X125-E) 0 0 0 0.03 0 0

Assume that our dataset is saved under C:\temp\. The following code would 
retrieve the data from that dataset:

import numpy as np

x=pd.read_csv('c:/temp/QuoteData.dat',skiprows=2,header='infer')

y=np.array(x)

n=len(y)

To show the first and last several lines, we have the following code:

>>>print y[0:2]

[['13 Dec 125.00 (IBM1313L125)' 0.0 0.0 46.75 50.0 0L 0L

  '13 Dec 125.00 (IBM1313X125)' 0.0 0.0 0.0 0.03 0L 0L nan]

 ['13 Dec 125.00 (IBM1313L125-4)' 0.0 0.0 46.45 50.45 0L 0L

  '13 Dec 125.00 (IBM1313X125-4)' 0.0 0.0 0.0 0.03 0L 0L nan]]

>>>print y[n-3:n-1]
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[['16 Jan 250.00 (IBM1615A250-S)' 2.6 0.0 1.1 2.95 0L 219L

  '16 Jan 250.00 (IBM1615M250-S)' 66.0 0.0 80.75 83.65 0L 11L nan]

 ['16 Jan 250.00 (IBM1615A250-X)' 2.87 0.0 1.03 2.95 0L 219L

  '16 Jan 250.00 (IBM1615M250-X)' 0.0 0.0 80.75 83.65 0L 11L nan]]

>>>

Retrieving option data from Yahoo! 
Finance
There are many sources of option data that we could use for our investments, 
research, or teaching. One of them is Yahoo! Finance. To retrieve option data for  
IBM, we have the following procedure:

1.	 Go to http://finance.yahoo.com.
2.	 Type IBM in the search box (top left-hand side).
3.	 Click on Options on the left-hand side.

The web page address of Yahoo! Finance is http://finance.yahoo.com/q/
op?s=IBM+Options. The screenshot of this web page is shown as follows:

The following program will download option data from Yahoo! Finance:

>>>from pandas.io.data import Options

>>>ticker='IBM'

>>>x = Options(ticker)

>>>calls, puts = x.get_options_data()
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We can use the head() and tail() functions to view the first and last several lines 
of the retrieved data:

>>>calls.head()

   Strike              Symbol   Last  Chg    Bid    Ask  Vol  Open Int

0     100  IBM140118C00100000  78.25    0  83.65  87.10    2        12

1     125  IBM140118C00125000  53.30    0  58.70  61.90    2         1

2     130  IBM140118C00130000  48.30    0  53.70  56.90    1         1

3     135  IBM140118C00135000  45.80    0  48.70  50.70    5        13

4     140  IBM140118C00140000  35.35    0  43.70  46.95   10       125

>>>calls.tail()

    Strike              Symbol  Last  Chg  Bid   Ask  Vol  Open Int

54     280  IBM140118C00280000  0.15    0  NaN  0.03   10       499

55     285  IBM140118C00285000  0.06    0  NaN  0.03    1        72

56     290  IBM140118C00290000  0.05    0  NaN  0.03   13        76

57     295  IBM140118C00295000  0.07    0  NaN  0.03    1        92

58     300  IBM140118C00300000  0.04    0  NaN  0.03    3       370

>>>puts.head()

   Strike              Symbol  Last   Chg  Bid   Ask  Vol  Open Int

0      95  IBM140118P00095000  0.01  0.00  NaN  0.03    1       360

1     100  IBM140118P00100000  0.02  0.00  NaN  0.02   15      2569

2     105  IBM140118P00105000  0.02  0.00  NaN  0.03   12      1527

3     110  IBM140118P00110000  0.02  0.00  NaN  0.03   10      1176

4     115  IBM140118P00115000  0.01  0.04  NaN  0.03   10      1149

>>>puts.tail()

    Strike              Symbol   Last  Chg    Bid   Ask  Vol  Open Int

58     230  IBM140118P00230000  44.97    0  42.95  46.3    4        76

59     235  IBM140118P00235000  53.20    0  47.95  51.3    1         8

60     240  IBM140118P00240000  67.56    0  52.95  56.3    3         1

61     245  IBM140118P00245000  43.11    0  57.95  61.3    0         9

62     250  IBM140118P00250000  51.75    0  62.95  66.3    5        27

>>>
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Different expiring dates from Yahoo! Finance
For each stock, we have different exercise prices and various expiring dates. In the 
previous program, we retrieve the option data which has the shortest expiration 
date. To retrieve other expiration dates, we have to specify the month and year. First, 
let's look at some different  web pages for different expirations:

•	 http://finance.yahoo.com/q/op?s=IBM&m=2014-
01?s=IBM140118C00100000+Options

•	 http://finance.yahoo.com/q/op?s=IBM&m=2014-02

•	 http://finance.yahoo.com/q/op?s=IBM&m=2014-03

•	 http://finance.yahoo.com/q/op?s=IBM&m=2014-04

•	 http://finance.yahoo.com/q/op?s=IBM&m=2014-06

•	 http://finance.yahoo.com/q/op?s=IBM&m=2014-07

•	 http://finance.yahoo.com/q/op?s=IBM&m=2015-01

•	 http://finance.yahoo.com/q/op?s=IBM&m=2016-01

For example, we intend to download option data for year=2014 and month=2 with 
the following program:

from pandas.io.data import Options

ticker='IBM'

month=2

year=2014

x = Options(ticker)

calls, puts = x.get_options_data(month,year)

To show a few lines, we can use the head() function as follows:

>>>calls.head()

   Strike              Symbol   Last   Chg    Bid    Ask  Vol  Open Int

0     150  IBM140222C00150000  30.00  0.00  33.95  37.00    8        10

1     160  IBM140222C00160000  23.31  0.00  24.10  27.00    3        62

2     165  IBM140222C00165000  18.47  0.00  19.85  21.35    1        50

3     170  IBM140222C00170000  16.60  0.00  16.15  16.70   23       467

4     175  IBM140222C00175000  12.20  0.04  11.95  12.50    5       767

>>>
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Retrieving the current price from Yahoo! 
Finance
Using the following Python program, we can retrieve the current stock prices for a 
given set of ticker symbols:

import urllib

import re

stocks=['ibm', 'dell', 'goog']

for i in range(len(stocks)):

    file = urllib.urlopen("http://finance.yahoo.com/q?s=" +stocks[i] + 
"&ql=1")

    text = file.read()

    pattern='<span id="yfs_l84_' + stocks[i] + '">(.+?)</span>'

    price = re.findall(re.compile(pattern), text)

print "For ",stocks[i].upper(), " the price is ", price

If the previous code ran on December 29, 2013, the output would be as follows:

>>>runfile('C:/tem/4375OS_10_35_yahoo_price.py', wdir=r'C:/temp')

For  IBM  the price is  ['185.08']

For  DELL  the price is  ['13.86']

For  GOOG  the price is  ['1,118.40']

>>>

The put-call ratio
The put-call ratio represents the perception of investors jointly towards the future. If 
there is no obvious trend, that is, we expect a normal future, then the put-call ratio 
should be close to one. On the other hand, if we expect a much brighter future, the 
ratio should be lower than one. The following code shows a ratio of this type over the 
years. First, we have to download the data from CBOE. Perform the following steps:

1.	 Go to http://www.cboe.com/.
2.	 Click on Quotes & Data on the menu bar.
3.	 Click on CBOE Volume & Put/Call Ratios.
4.	 Click on CBOE Total Exchange Volume and Put/Call Ratios (11-01-2006  

to present) under Current.
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Assume that the file named totalpc.csv is saved under C:\temp\. The code is 
given as follows:

import pandas as pd

from matplotlib.pyplot import *

data=pd.read_csv('c:/temp/totalpc.csv',skiprows=2,index_col=0,parse_
dates=True)

data.columns=('Calls','Puts','Total','Ratio')

x=data.index

y=data.Ratio

y2=ones(len(y))

title('Put-call ratio')

xlabel('Date')

ylabel('Put-call ratio')

ylim(0,1.5)

plot(x, y, 'b-')

plot(x, y2,'r')

show()

The corresponding graph is shown in the following figure:
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The put-call ratio for a short period with a 
trend
Based on the preceding program, we could choose a shorter period with a trend as 
shown in the following code:

import pandas as pd

from matplotlib.pyplot import *

import matplotlib.pyplot as plt

from datetime import datetime

import statsmodels.api as sm

data=pd.read_csv('c:/temp/totalpc.csv',skiprows=2,index_col=0,parse_
dates=True)

data.columns=('Calls','Puts','Total','Ratio')

begdate=datetime(2013,6, 1)

enddate=datetime(2013,12,31)

data2=data[(data.index>=begdate) & (data.index<=enddate)]

x=data2.index

y=data2.Ratio

x2=range(len(x))

x3=sm.add_constant(x2)

model=sm.OLS(y,x3)

results=model.fit()

#print results.summary()

alpha=round(results.params[0],3)

slope=round(results.params[1],3)

y3=alpha+dot(slope,x2)

y2=ones(len(y))

title('Put-call ratio')

xlabel('Date')

ylabel('Put-call ratio')

ylim(0,1.5)

plot(x, y, 'b-')

plot(x, y2,'r-.')

plot(x,y3,'y+')

plt.figtext(0.3,0.35,'Trend: intercept='+str(alpha)+', 
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slope='+str(slope))

show()

The corresponding graph is shown in the following figure:

Summary
In this chapter, we introduced different types of loops. Then, we demonstrated how 
to estimate the implied volatility based on a European option (Black-Scholes-Merton 
option model) and on an American option. We discussed the for loop and the 
while loop, and their applications. For a given set of input values, such as current 
stock price, the exercise price, the time to maturity, the continuously compounded 
risk-free rate, and a call price (or put price), we showed how to estimate a stock's 
implied volatility. In terms of efficiency, we explained the binary search method 
and compared it with other approaches when estimating an implied volatility. In 
addition, we demonstrated how to download option data, such as put-call ratio, 
from Yahoo! Finance and the CBOE web page.

In the next chapter, we will focus on applications of Monte Carlo simulations on 
option pricing. Using random numbers drawn from a normal distribution, we could 
mimic the movements of a stock for a given set of mean and standard deviations. 
After that, we will simulate the terminal values of a stock and its related payoffs for 
a call or for a put. The mean of those discounted terminal values using the risk-free 
rate as our discount rate would be our option price.



Python Loops and Implied Volatility

[ 304 ]

Exercises
1. How many types of loops are present in Python? What are the differences  
between them?

2. What are the advantages of using a for loop versus a while loop? What are  
the disadvantages?

3. Based on a for loop, write a Python program to estimate the implied volatility.  
For a given set of values S=35, X=36, rf=0.024, T=1, sigma=0.13, and c=2.24, what  
is the implied volatility?

4. Write a Python program based on the Black-Scholes-Merton option model put 
option model to estimate the implied volatility.

5. Should we get different volatilities based on the Black-Scholes-Merton option 
model's call and put?

6. For a stock with multiple calls, we could estimate its implied volatility based  
on its call or put. Based on the Black-Scholes-Merton option model, could we get 
different values?

7. When estimating a huge number of implied volatilities, such as 5,000 stocks, how 
can we make our process more efficient?

8. We could apply the binary search method to estimate an implied volatility based 
on the Black-Scholes-Merton option model. Could we apply it to estimate multiple 
IRRs to speed up our process? Explain.

9. Is it necessary that we use the binary tree method to estimate an implied volatility?

10. After reading the chapter, we know that we could use the following function to 
estimate an implied volatility based on call:

def implied_vol_call(S,X,T,r,c):

    from scipy import log,exp,sqrt,stats

    for i in range(200):

        sigma=0.005*(i+1)

        d1=(log(S/X)+(r+sigma*sigma/2.)*T)/(sigma*sqrt(T))

        d2 = d1-sigma*sqrt(T)

        diff=c-(S*stats.norm.cdf(d1)-X*exp(-r*T)*stats.norm.cdf(d2))

        if abs(diff)<=0.01:

            return i,sigma, diff
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With certain sets of input values, we could get no output; refer to the  
following examples:

>>>implied_vol_call(25,40,1,0.05,3.3)

>>>implied_vol_call(25,26,1,0.05,3.3)

>>>implied_vol_call(40,40,5,0.05,3.3)

Find reasons and modify this program accordingly.

11. From this chapter, we learn that we could use the following program to  
estimate an implied volatility based on the Black-Scholes-Merton option model:

def implied_vol_put_min(S,X,T,r,p):

    from scipy import log,exp,sqrt,stats

    implied_vol=1.0

    min_value=100.0

    for i in range(1,10000):

        sigma=0.0001*(i+1)

        d1=(log(S/X)+(r+sigma*sigma/2.)*T)/(sigma*sqrt(T))

        d2 = d1-sigma*sqrt(T)

        put=X*exp(-r*T)*stats.norm.cdf(-d2)-S*stats.norm.cdf(-d1)

        abs_diff=abs(put-p)

        if abs_diff<min_value:

            min_value=abs_diff

            implied_vol=sigma

            k=i

            put_out=put

    print 'k, implied_vol, put, abs_diff'

    return k,implied_vol, put_out,min_value

Using the knowledge that the put premiums are a monotone function of the 
volatility, modify this program to make it more efficient.

12. What is wrong with the following program?

i=1

def while_less_than_n(n,k=1):

    i=1

    while True:

        if i<n:
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            print i

            i+=k

    else:

       return 'done'

13. Write a Python program to estimate an implied volatility based on an  
American put.

14. Write a Python program to download option data from Yahoo! Finance.  
Then, estimate the implied volatility by using the average of bid and ask as call  
or put prices.

15. Perform the following steps to download the put-call ratio data from CBOE:

1.	 Go to http://www.cboe.com/.
2.	 Click on Quotes & Data on the menu bar.
3.	 Click on CBOE Volume & Put/Call Ratios.
4.	 Click on CBOE Total Exchange Volume and Put/Call Ratios (11-01-2006  

to present) under Current.

Write a Python program to print the first and last dates.

16. Write a Python program to retrieve the put-call ratio, and draw a graph. The 
syntax of such a function can be put_call_graph(path,begdate,enddate). To 
apply the function, we specify the path and two dates, for example, put_call_
graph('c:/temp/totalpc.csv',20130601,20131231).



Monte Carlo Simulation  
and Options

In finance, we study the trade-off between risk and return. The common definition of 
risk is uncertainty. For example, when evaluating a potential profitable project, we 
have to predict many factors in the life of the project, such as the annual sales, price 
of the final product, prices of raw materials, salary increase of employees, inflation 
rate, cost of borrowing, cost of new equity, and economic status. For those cases, the 
Monte Carlo simulation could be used to simulate many possible future outcomes, 
events, and their various combinations. In this chapter, we focus on the applications 
of the Monte Carlo simulation to price various options.

In this chapter, we will cover the following topics:

•	 Generating random numbers from standard normal distribution and  
normal distribution

•	 Generating random numbers from a uniform distribution
•	 A simple application: estimate pi by the Monte Carlo simulation
•	 Generating random numbers from a Poisson distribution
•	 Bootstrapping with/without replacements
•	 The lognormal distribution and simulation of stock price movements
•	 Simulating terminal stock prices
•	 Simulating an efficient portfolio and an efficient frontier
•	 Using the Monte Carlo simulation to price European options that have 

closed-form solutions, that is, replicate the Black-Scholes-Merton model
•	 Path independent versus path dependent options
•	 Long term expected return forecast
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•	 Exotic options
•	 Pricing lookback options with floating strikes
•	 Sobol sequence

Generating random numbers from  
a standard normal distribution
Normal distributions play a central role in finance. A major reason is that many 
finance theories, such as option theory and applications, are based on the assumption 
that stock returns follow a normal distribution. It is quite often that we need to 
generate n random numbers from a standard normal distribution. For this purpose, 
we have the following two lines of code:

>>>import scipy as sp

>>>x=sp.random.standard_normal(size=10)

The basic random numbers in SciPy/NumPy are created by Mersenne Twister PRNG 
in the numpy.random function. The random numbers for distributions in numpy.
random are in cython/pyrex and are pretty fast. To print the first few observations, 
we use the print() function as follows:

>>>print x[0:5]

[-0.55062594 -0.51338547 -0.04208367 -0.66432268  0.49461661]

>>>

Alternatively, we could use the following code:

>>>import scipy as sp

>>>x=sp.random.normal(size=10)

This program is equivalent to the following one:

>>>import scipy as sp

>>>x=sp.random.normal(0,1,10)

The first input is for mean, the second input is for standard deviation, and the last 
one is for the number of random numbers, that is, the size of the dataset. The default 
settings for mean and standard deviations are 0 and 1. We could use the help() 
function to find out the input variables. To save space, we show only the first few lines:

>>>help(sp.random.normal)

Help on built-in function normal:



Chapter 11

[ 309 ]

normal(...)

    normal(loc=0.0, scale=1.0, size=None)

Drawing random samples from a normal 
(Gaussian) distribution
The probability density function of the normal distribution, first derived by De 
Moivre and 200 years later by both Gauss and Laplace independently, is often called 
the bell curve because of its characteristic shape; refer to the following graph:

Again, the density function for a standard normal distribution is defined as follows:
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Generating random numbers with a seed
Sometimes, we like to produce the same random numbers repeatedly. For example, 
when a professor is explaining how to estimate the mean, standard deviation, 
skewness, and kurtosis of five random numbers, it is a good idea that students could 
generate exactly the same values as their instructor. Another example would be that 
when we are debugging our Python program to simulate a stock's movements, we 
might prefer to have the same intermediate numbers. For such cases, we use the 
seed() function as follows:

>>>import scipy as sp

>>>sp.random.seed(12345)

>>>x=sp.random.normal(0,1,20) 
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>>>print x[0:5] 

[-0.20470766  0.47894334 -0.51943872 -0.5557303   1.96578057]

>>>

In this program, we use 12345 as our seed. The value of the seed is not important. 
The key is that the same seed leads to the same random values.

Generating n random numbers from a normal 
distribution
To generate n random numbers from a normal distribution, we have the  
following code:

>>>import scipy as sp

>>>sp.random.seed(12345)

>>>x=sp.random.normal(0.05,0.1,50) 

>>>print x[0:5] 

[ 0.02952923  0.09789433 -0.00194387 -0.00557303  0.24657806]

>>>

The difference between this program and the previous one is that the mean is 0.05 
instead of 0, while the standard deviation is 0.1 instead of 1. The density of a normal 
distribution is defined by the following equation, where μ is the mean and σ is the 
standard deviation. Obviously, the standard normal distribution is just a special case 
of the normal distribution shown as follows:

( )
( )2

22
2

1

2

x

f x e
µ

σ

πσ

−
−

=              (2)

Histogram for a normal distribution
A histogram is used intensively in the process of analyzing the properties of datasets. 
To generate a histogram for a set of random values drawn from a normal distribution 
with specified mean and standard deviation, we have the following code:

>>>import scipy as sp

>>>import matplotlib.pyplot as plt

>>>sp.random.seed(12345)

>>>x=sp.random.normal(0.08,0.2,1000)

>>>plt.hist(x, 15, normed=True)

>>>plt.show()
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The resultant graph is presented as follows:

Graphical presentation of a lognormal 
distribution
When returns follow a normal distribution, the prices would follow a lognormal 
distribution. The definition of a lognormal distribution is as follows:
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The following code shows three different lognormal distributions with three pairs of 
parameters, such as (0, 0.25), (0, 0.5), and (0, 1.0). The first parameter is for mean (
µ ), while the second one is for standard deviation,σ :

import scipy.stats as sp

import numpy as np

import matplotlib.pyplot as plt

x=np.linspace(0,3,200)

mu=0

sigma0=[0.25,0.5,1]

color=['blue','red','green']

target=[(1.2,1.3),(1.7,0.4),(0.18,0.7)]

start=[(1.8,1.4),(1.9,0.6),(0.18,1.6)]

for i in range(len(sigma0)):

    sigma=sigma0[i]
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    y=1/(x*sigma*sqrt(2*pi))*exp(-(log(x)-mu)**2/(2*sigma*sigma))

    plt.annotate('mu='+str(mu)+', sigma='+str(sigma), xy=target[i], 
xytext=start[i],

                 arrowprops=dict(facecolor=color[i],shrink=0.01),)

    plt.plot(x,y,color[i])

plt.title('Lognormal distribution')

plt.xlabel('x')

plt.ylabel('lognormal density distribution')

plt.show()

The corresponding three graphs are put together to illustrate their similarities  
and differences:

Generating random numbers from a 
uniform distribution
When we plan to randomly choose m stocks from n available stocks, we could draw  
a set of random numbers from a uniform distribution. To generate 10 random 
numbers between one and 100 from a uniform distribution, we have the following 
code. To guarantee that we generate the same set of random numbers, we use the 
seed() function as follows:

>>>import scipy as sp

>>>sp.random.seed(123345)

>>>x=sp.random.uniform(low=1,high=100,size=10)



Chapter 11

[ 313 ]

Again, low, high, and size are the three keywords for the three input variables. The 
first one specifies the minimum, the second one specifies the high end, while the 
size gives the number of the random numbers we intend to generate. The first five 
numbers are shown as follows:

>>>print x[0:5]

[ 30.32749021  20.58006409   2.43703988  76.15661293  75.06929084]

>>>

Using simulation to estimate the pi value
It is a good exercise to estimate pi by the Monte Carlo simulation. Let's draw a square 
with 2R as its side. If we put the largest circle inside the square, its radius will be R. 
In other words, the areas for those two shapes have the following equations:

2
circleS pi R= ∗              (4)

( ) ( ) 22 2 4squareS R R R= ∗ =              (5)

By dividing equation (4) by equation (5), we have the following result:

4
circle

square

S pi
S

=

In other words, the value of pi will be 4* Scircle/Ssquare. When running the 
simulation, we generate n pairs of x and y from a uniform distribution with a range 
of zero and 0.5. Then we estimate a distance that is the square root of the summation 
of the squared x and y, that is, 2 2d x y= + . Obviously, when d is less than 0.5 (value 
of R), it will fall into the circle. We can imagine throwing a dart that falls into the 
circle. The value of the pi will take the following form:

4
, ..,

number of darts in circlepi
number of darts in square ie number of simulation

= ∗        (6)
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The following graph illustrates these random points within a circle and within  
a square:

The Python program to estimate the value of pi is presented as follows:

import scipy as sp

n=100000

x=sp.random.uniform(low=0,high=1,size=n)

y=sp.random.uniform(low=0,high=1,size=n)

dist=sqrt(x**2+y**2)

in_circle=dist[dist<=1]

our_pi=len(in_circle)*4./n

print ('pi=',our_pi)

print('error (%)=', (our_pi-pi)/pi)

The estimated pi value would change whenever we run the previous code as shown 
in the following code, and the accuracy of its estimation depends on the number of 
trials, that is, n:

('pi=', 3.15)

('error (%)=', 0.0026761414789406262)

>>>
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Generating random numbers from a 
Poisson distribution
To investigate the impact of private information, Easley, Kiefer, O'Hara, and 
Paperman (1996) designed a (PIN) Probability of informed trading measure that 
is derived based on the daily number of buyer-initiated trades and the number of 
seller-initiated trades. The fundamental aspect of their model is to assume that order 
arrivals follow a Poisson distribution. The following code shows how to generate n 
random numbers from a Poisson distribution:

import scipy as sp

import matplotlib.pyplot as plt

x=sp.random.poisson(lam=1, size=100)

#plt.plot(x,'o')

a = 5. # shape

n = 1000

s = np.random.power(a, n)

count, bins, ignored = plt.hist(s, bins=30)

x = np.linspace(0, 1, 100)

y = a*x**(a-1.)

normed_y = n*np.diff(bins)[0]*y

plt.plot(x, normed_y)

plt.show()  

Selecting m stocks randomly  
from n given stocks
Based on the preceding program, we could easily choose 20 stocks from 500 available 
securities. This is an important step if we intend to investigate the impact of the 
number of randomly selected stocks on the portfolio volatility as shown in the 
following code:

import scipy as sp

n_stocks_available=500

n_stocks=20

x=sp.random.uniform(low=1,high=n_stocks_available,size=n_stocks)
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y=[]

for i in range(n_stocks):

    y.append(int(x[i]))

#print y

final=unique(y)

print final

print len(final)

In the preceding program, we select 20 numbers from 500 numbers. Since we have 
to choose integers, we might end up with less than 20 values, that is, some integers 
appear more than once after we convert real numbers into integers. One solution is 
to pick more than we need. Then choose the first 20 integers. An alternative is to use 
the randrange() and randint() functions. In the next program, we choose n stocks 
from all available stocks. First, we download a dataset from http://canisius.
edu/~yany/yanMonthly.pickle:

n_stocks=10

x=load('c:/temp/yanMonthly.pickle')

x2=unique(np.array(x.index))

x3=x2[x2<'ZZZZ']      # remove all indices

sp.random.seed(1234567)

nonStocks=['GOLDPRICE','HML','SMB','Mkt_Rf','Rf','Russ3000E_D','US_DEBT',

   'Russ3000E_X','US_GDP2009dollar','US_GDP2013dollar']

x4=list(x3)

for i in range(len(nonStocks)):

    x4.remove(nonStocks[i])

k=sp.random.uniform(low=1,high=len(x4),size=n_stocks)

y,s=[],[]

for i in range(n_stocks):

    index=int(k[i])

    y.append(index)

    s.append(x4[index])

final=unique(y)

print final

print s

In the preceding program, we remove non-stock data items. These non-stock items 
are a part of data items. First, we load a dataset called yanMonthly.pickle that 
includes over 200 stocks, gold price, GDP, unemployment rate, SMB (Small Minus 
Big), HML (High Minus Low), risk-free rate, price rate, market excess rate, and 
Russell indices. 
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The .pickle extension means that the dataset has a type from Pandas. Since 
x.index would present all indices for each observation, we need to use the unique() 
function to select all unique IDs. Since we only consider stocks to form our portfolio, 
we have to move all market indices and other non-stock securities, such as HML and 
US_DEBT. Because all stock market indices start with a carat (^), we use less than 
ZZZZ to remove them. For other IDs that are between A and Z, we have to remove 
them one after another. For this purpose, we use the remove() function available for 
a list variable. The final output is shown as follows:

Bootstrapping with/without replacements
Assume that we have the historical data, such as price and return, for a stock. 
Obviously, we could estimate their mean, standard deviation, and other related 
statistics. What are their expected annual mean and risk next year? The simplest, 
maybe naïve way is to use the historical mean and standard deviation. A better way 
is to construct the distribution of annual return and risk. This means that we have to 
find a way to use historical data more effectively to predict the future. In such cases, 
we could apply the bootstrapping methodology. For example, for one stock, we have 
its last 20-year monthly returns, that is, 240 observations.

To estimate next year's 12 monthly returns, we need to construct a return 
distribution. First, we choose 12 returns randomly from the historical return set 
without replacements and estimate their mean and standard deviations. We repeat 
this procedure 5,000 times. The final output will be our return-standard distribution. 
Based on such a distribution, we could estimate other properties as well. Similarly, 
we could do so with replacements.

One of the useful functions present in SciPy is called permutation(). Assume that 
we have 10 numbers from one to 10 (inclusive of one and 10). We could call the 
permutation() function to reshuffle them as follows:

import numpy as np

x=range(1,11)

print x

for i in range(5):

    y=np.random.permutation(x)

    print y
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The output of this code is shown as follows:

Based on the permutation() function, we could define a function with three input 
variables: data, number of observations we plan to choose from the data randomly, 
and whether we choose to bootstrap with or without replacement as shown in the 
following code:

import numpy as np

def boots_f(data,n_obs,replacement=None):

    n=len(data)

    if (n<n_obs): 

        print "n is less than n_obs"

    else:

        if replacement==None:

            y=np.random.permutation(data)

            return y[0:n_obs]

        else:

            y=[]

 for i in range(n_obs):

        k=np.random.permutation(data)

        y.append(k[0])

    return y

The constraint specified in the previous program is that the number of given 
observations should be larger than the number of random returns we plan to pick 
up. This is true for the bootstrapping without the replacement method. For the 
bootstrapping with the replacement method, we could relax this constraint; refer to 
the related exercise.
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Distribution of annual returns
It is a good application to estimate annualized return distribution and represent 
it as a graph. To make our exercise more meaningful, we download Microsoft 's 
daily price data. Then, we estimate its daily returns and convert them into annual 
ones. Based on those annual returns, we generate its distribution by applying 
bootstrapping with replacements 5,000 times as shown in the following code:

from matplotlib.finance import quotes_historical_yahoo

import matplotlib.pyplot as plt

import numpy as np

import scipy as sp

# Step 1: input area

ticker='MSFT'          # input value 1

begdate=(1926,1,1)     # input value 2

enddate=(2013,12,31)   # input value 3

n_simulation=5000      # input value 4

# Step 2: retrieve price data and estimate log returns

x=quotes_historical_yahoo(ticker,begdate,enddate,asobject=True,adjusted=T
rue)

logret = log(x.aclose[1:]/x.aclose[:-1])

# Step 3: estimate annual returns

date=[]

d0=x.date

for i in range(0,size(logret)):

    date.append(d0[i].strftime("%Y"))

y=pd.DataFrame(logret,date,columns=['logret'],dtype=float64)

ret_annual=exp(y.groupby(y.index).sum())-1

ret_annual.columns=['ret_annual']

n_obs=len(ret_annual)

# Step 4: estimate distribution with replacement

sp.random.seed(123577)

final=zeros(n_obs,dtype=float)

for i in range(0,n_obs):

    x=sp.random.uniform(low=0,high=n_obs,size=n_obs)

    y=[]
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    for j in range(n_obs):

        y.append(int(x[j]))

    z=np.array(ret_annual)[y]

    final[i]=mean(z)

# step 5: graph

plt.title('Mean return distribution: number of simulations ='+str(n_
simulation))

plt.xlabel('Mean return')

plt.ylabel('Frequency')

mean_annual=round(np.mean(np.array(ret_annual)),4)

plt.figtext(0.63,0.8,'mean annual='+str(mean_annual))

plt.hist(final, 50, normed=True)

plt.show()

The corresponding graph is shown as follows:

Simulation of stock price movements
We mentioned in the previous sections that in finance, returns are assumed to follow 
a normal distribution, whereas prices follow a lognormal distribution. The stock 
price at time t+1 is a function of the stock price at t, mean, standard deviation, and 
the time interval as shown in the following formula:

t 1 ˆt t tS S S t S tµ σ ∈+ = + ∆ + ∆           (7)



Chapter 11

[ 321 ]

In this formula, 1tS +  is the stock price at t+1, µ̂  is the expected stock return, t∆  is 
the time interval ( Tt n∆ = ), T is the time (in years), n is the number of steps, ε is the 
distribution term with a zero mean, and σ is the volatility of the underlying stock. 
With a simple manipulation, equation (4) can lead to the following equation that we 
will use in our programs:

2
t 1

1ˆexp
2tS S t tµ σ σ ∈+

  = − ∆ + ∆  
  

        (8)

In a risk-neutral work, no investors require compensation for bearing risk. In  
other words, in such a world, the expected return on any security (investment)  
is the risk-free rate. Thus, in a risk-neutral world, the previous equation becomes  
the following equation:

2
t 1

1exp
2tS S r t tσ σ ∈+

  = − ∆ + ∆  
  

          (9)

If you want to learn more about the risk-neutral probability, refer to Options, Futures 
and Other Derivatives, 7th edition, John Hull, Pearson, 2009. The Python code to simulate 
a stock's movement (path) is as follows:

import scipy as sp

stock_price_today = 9.15  # stock price at time zero

T =1.                     # maturity date (in years)

n_steps=100.              # number of steps

mu =0.15                  # expected annual return 

sigma = 0.2               # volatility (annualized)

sp.random.seed(12345)     # seed() 

n_simulation = 5          # number of simulations

dt =T/n_steps    

S = sp.zeros([n_steps], dtype=float)

x = range(0, int(n_steps), 1)

for j in range(0, n_simulation):

    S[0]= stock_price_today

for i in x[:-1]:

        e=sp.random.normal()

        S[i+1]=S[i]+S[i]*(mu-0.5*pow(sigma,2))*dt+sigma*S[i]*sp.
sqrt(dt)*e;

    plot(x, S)
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figtext(0.2,0.8,'S0='+str(S0)+',mu='+str(mu)+',sigma='+str(sigma))

figtext(0.2,0.76,'T='+str(T)+', steps='+str(int(n_steps)))

title('Stock price (number of simulations = %d ' % n_simulation +')')

xlabel('Total number of steps ='+str(int(n_steps)))

ylabel('stock price')

show()

To make our graph more readable, we deliberately choose just five simulations. Since 
the seed() function is applied, you can replicate the following graph by running the 
previous code:

Graphical presentation of stock prices at 
options' maturity dates
Up to now, we have discussed that options are really path-independent, which 
means the option prices depend on terminal values. Thus, before pricing such an 
option, we need to know the terminal stock prices. To extend the previous program, 
we have the following code to estimate the terminal stock prices for a given set 
of values: S0 (initial stock price), n_simulation (number of terminal prices), T 
(maturity date in years), n_steps (number of steps), mu (expected annual stock 
returns), and sigma (volatility):

from scipy import zeros, sqrt, shape

import scipy as sp

S0 = 9.15             # stock price at time zero

T =1.                 # years
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n_steps=100.          # number of steps

mu =0.15              # expected annual return 

sigma = 0.2           # volatility (annual)

sp.random.seed(12345) # fix those random numbers

n_simulation = 1000    # number of simulation

dt =T/n_steps

S = zeros([n_simulation], dtype=float)

x = range(0, int(n_steps), 1)

for j in range(0, n_simulation):

    tt=S0

for i in x[:-1]:

        e=sp.random.normal()

        tt+=tt*(mu-0.5*pow(sigma,2))*dt+sigma*tt*sqrt(dt)*e;

        S[j]=tt

title('Histogram of terminal price')

ylabel('Number of frequencies')

xlabel('Terminal price')

figtext(0.5,0.8,'S0='+str(S0)+',mu='+str(mu)+',sigma='+str(sigma))

figtext(0.5,0.76,'T='+str(T)+', steps='+str(int(n_steps)))

figtext(0.5,0.72,'Number of terminal prices='+str(int(n_simulation)))

hist(S)

The histogram of our simulated terminal prices is shown as follows:
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Finding an efficient portfolio and frontier
In this section, we show you how to use the Monte Carlo simulation to generate 
returns for a pair of stocks with known means, standard deviations, and correlation 
between them. By applying the maximize function, we minimize the portfolio risk of 
this two-stock portfolio. Then, we change the correlations between the two stocks to 
illustrate the impact of correlation on our efficient frontier. The last one is the most 
complex one since it constructs an efficient frontier based on n stocks.

Finding an efficient frontier based on two 
stocks
The following program aims at generating an efficient frontier based on two stocks 
with known means, standard deviations, and correlation. We have just six input 
values: two means, two standard deviations, the correlation (ρ), and the number 
of simulations. To generate the correlated y1 and y2 time series, we generate the 
uncorrelated x1 and x2 series first. Then, we apply the following formulae:

1 1y x=              (10A)

2
2 1 21y x xρ ρ= + −              (10B)

Another important issue is how to construct an objective function to minimize. Our 
objective function is the standard deviation of the portfolio in addition to a penalty 
that is defined as the scaled absolute deviation from our target portfolio mean. In 
other words, we minimize both the risk of the portfolio and the deviation of our 
portfolio return from our target return as shown in the following code:

import numpy as np

import scipy as sp

import pandas as pd

from datetime import datetime as dt

from scipy.optimize import minimize

# Step 1: input area

mean_0=(0.15,0.25) # mean returns for 2 stocks

std_0= (0.10,0.20) # standard deviations for 2 stocks

corr_=0.2          # correlation between 2 stocks
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n=1000             # number of simulations (returns) for each stock

# Step 2: Generate two uncorrelated time series 

n_stock=len(mean_0)

sp.random.seed(12345) # could generate the same random numbers 

x1=sp.random.normal(loc=mean_0[0],scale=std_0[0],size=n)

x2=sp.random.normal(loc=mean_0[1],scale=std_0[1],size=n)

if(any(x1)<=-1.0 or any(x2)<=-1.0):

    print ('Error: return is <=-100%')

# Step 3: Generate two correlated time series 

index_=pd.date_range(start=dt(2001,1,1),periods=n,freq='d')

y1=pd.DataFrame(x1,index=index_)

y2=pd.DataFrame(corr_*x1+sqrt(1-corr_**2)*x2,index=index_)

# step 4: generate a return matrix called R

R0=pd.merge(y1,y2,left_index=True,right_index=True)

R=np.array(R0)

# Step 5: define a few functions

def objFunction(W, R, target_ret): 

    stock_mean=np.mean(R,axis=0)  

    port_mean=np.dot(W,stock_mean)           # portfolio mean

    cov=np.cov(R.T)                          # var-covar matrix

    port_var=np.dot(np.dot(W,cov),W.T)       # portfolio variance

    penalty = 2000*abs(port_mean-target_ret) # penalty 4 deviation 

return np.sqrt(port_var) + penalty       # objective function 

# Step 6: estimate optimal portfolio for a given return 

out_mean,out_std,out_weight=[],[],[] 

stockMean=np.mean(R,axis=0)    

for r in np.linspace(np.min(stockMean), np.max(stockMean), num=100):

    W = ones([n_stock])/n_stock                      # start equal w 

    b_ = [(0,1) for i in range(n_stock)]             # bounds

    c_ = ({'type':'eq', 'fun': lambda W: sum(W)-1. })# constraint

    result=minimize(objFunction,W,(R,r),method='SLSQP',constraints=c_, 
bounds=b_)    

    if not result.success:                    # handle error

raise BaseException(result.message) 

    out_mean.append(round(r,4))               # a few decimal places
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    std_=round(np.std(np.sum(R*result.x,axis=1)),6)

    out_std.append(std_)

    out_weight.append(result.x) 

# Step 7: plot the efficient frontier

title('Simulation for an Efficient Frontier from given 2 stocks')

xlabel('Standard Deviation of the 2-stock Portfolio (Risk)')

ylabel('Return of the 2-stock portfolio')

figtext(0.2,0.80,' mean = '+str(stockMean))

figtext(0.2,0.75,' std  ='+str(std_0))

figtext(0.2,0.70,' correlation ='+str(corr_))

plot(np.array(std_0),np.array(stockMean),'o',markersize=8)

plot(out_std,out_mean,'--',linewidth=3)

The corresponding graph is shown as follows:

Impact of different correlations
Based on the previous program, we vary the correlations between the two stocks to 
illustrate the critical role played by this factor in terms of diversification, as shown in 
the following code:

import numpy as np

import scipy as sp

import pandas as pd
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from datetime import datetime as dt

import matplotlib.pyplot as plt

from scipy.optimize import minimize

# Step 1: input area

mean_0=(0.15,0.25) # mean returns for 2 stocks

std_0= (0.10,0.20) # standard deviations for 2 stocks

n=1000             # number of simulations (returns) for each stock

corr_=(0.1,0.5,0.8)

# Step 2: Generate two uncorrelated time series 

n_stock=len(mean_0)

sp.random.seed(12345) # could generate the same random numbers 

x11=sp.random.normal(loc=0,scale=1,size=n)

x12=sp.random.normal(loc=0,scale=1,size=n)

n_corr=len(corr_)

style_=['-.','--','-']

for j in range(n_corr):

    # Step 3: Generate two correlated time series 

    corr2=corr_[j]

    index_=pd.date_range(start=dt(2001,1,1),periods=n,freq='d')

    x21=pd.DataFrame(x11,index=index_)

    x22=pd.DataFrame(corr2*x11+sqrt(1-corr2**2)*x12,index=index_)

    y1=mean_0[0]+x21*std_0[0]

    y2=mean_0[1]+x22*std_0[1]

    # step 4: generate a return matrix called R

    R0=pd.merge(y1,y2,left_index=True,right_index=True)

    R=np.array(R0)

    # Step 5: define a few functions

def objFunction(W, R, target_ret):

        stock_mean=np.mean(R,axis=0)  

        port_mean=np.dot(W,stock_mean)           # portfolio mean

        cov=np.cov(R.T)                          # var-covar matrix

        port_var=np.dot(np.dot(W,cov),W.T)       # portfolio variance

        penalty = 2000*abs(port_mean-target_ret) # penalty 4 deviation 
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return np.sqrt(port_var) + penalty       # objective function 

        #print('stock mean=',stockMean)

    # Step 6: estimate optimal portfolo for a given return 

    out_mean,out_std,out_weight=[],[],[] 

    stockMean=np.mean(R,axis=0)    

    print('hahastyle[j]',stockMean)

    for r in np.linspace(np.min(stockMean), np.max(stockMean), num=100):

        W = ones([n_stock])/n_stock   # starting:equal w 

        b_ = [(0,1) for i in range(n_stock)]             # bounds

        c_ = ({'type':'eq', 'fun': lambda W: sum(W)-1. })# constraint

        result=minimize(objFunction,W,(R,r),method='SLSQP',constraints
=c_, bounds=b_)    

        if not result.success:

raise BaseException(result.message) 

        out_mean.append(round(r,4))               # a few decimal places

        std_=round(np.std(np.sum(R*result.x,axis=1)),6)

        out_std.append(std_)

        out_weight.append(result.x) 

    # Step 7A: plot the efficient frontier

    plt.plot(out_std,out_mean,style_[j],label='corr='+str(corr2),linewid
th=3)

# Step 7B: plot the efficient frontier

stockMean2=[round(stockMean[0],3),round(stockMean[1],3)]

title('Simulation for an Efficient Frontier with different correlations')

xlabel('Standard Deviation of the Porfolio')

ylabel('Return of the portfolio')

figtext(0.2,0.85,' mean = '+str(stockMean2))

figtext(0.2,0.80,' std  ='+str(std_0))

figtext(0.2,0.75,' corr ='+str(corr_))

plt.plot(np.array(std_0),np.array(stockMean),'o',markersize=10)

plt.legend(loc='lower right')

plt.show()
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The following graph suggests that the lower the correlation, the better our two-stock 
formed efficient frontier:

Constructing an efficient frontier with n stocks
When the number of stocks, n, increases, the correlation between each pair of stocks 
increases dramatically. For n stocks, we have n*(n-1)/2 correlations. For example, if n 
is 10, we have 45 correlations. Because of this, it is not a good idea to manually input 
those values. Instead, we generate means, standard deviations, and correlations by 
drawing random numbers from several uniform distributions. To produce correlated 
returns, first we generate n uncorrelated stock return time series and then apply 
Cholesky decomposition as follows:

import numpy as np

import scipy as sp

import pandas as pd

from  datetime import datetime as dt

from scipy.optimize import minimize

# Step 1: input area

n_stocks=10

sp.random.seed(123456)                      # produce the same random 
numbers 

n_corr=n_stocks*(n_stocks-1)/2              # number of correlation 
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corr_0=sp.random.uniform(0.05,0.25,n_corr)  # generate correlations 

mean_0=sp.random.uniform(-0.1,0.25,n_stocks)# means

std_0=sp.random.uniform(0.05,0.35,n_stocks) # standard deviation 

n_obs=1000        # number of simuations (returns) for each stock

# Step 2: produce correlation matrix: Cholesky decomposition

corr_=sp.zeros((n_stocks,n_stocks))

for i in range(n_stocks):

    for j in range(n_stocks):

        if i==j:

            corr_[i,j]=1

        else:

            corr_[i,j]=corr_0[i+j]

U=np.linalg.cholesky(corr_)

# Step 3: Generate two uncorrelated time series 

R0=np.zeros((n_obs,n_stocks))

for i in range(n_obs):

    for j in range(n_stocks):

        R0[i,j]=sp.random.normal(loc=mean_0[j],scale=std_0[j],size=1)

if(any(R0)<=-1.0):

    print ('Error: return is <=-100%')

# Step 4: generate correlated return matrix: Cholesky     

R=np.dot(R0,U)

R=np.array(R)

# Step 5: define a few functions

def objFunction(W, R, target_ret): 

    stock_mean=np.mean(R,axis=0)  

    port_mean=np.dot(W,stock_mean)           # portfolio mean

    cov=np.cov(R.T)                          # var-covar matrix

    port_var=np.dot(np.dot(W,cov),W.T)       # portfolio variance

    penalty = 2000*abs(port_mean-target_ret) # penalty 4 deviation 

return np.sqrt(port_var) + penalty       # objective function 

# Step 6: estimate optimal portfolo for a given return 

out_mean,out_std,out_weight=[],[],[] 

stockMean=np.mean(R,axis=0)    
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for r in np.linspace(np.min(stockMean), np.max(stockMean), num=100):

    W = sp.ones([n_stocks])/n_stocks              # starting:equal w 

    b_ = [(0,1) for i in range(n_stocks)]         # bounds

    c_ = ({'type':'eq', 'fun': lambda W: sum(W)-1. })# constraint

    result=minimize(objFunction,W,(R,r),method='SLSQP',constraints=c_, 
bounds=b_)    

    if not result.success:                    # handle error

raise BaseException(result.message) 

    out_mean.append(round(r,4))               # a few decimal places

    std_=round(np.std(np.sum(R*result.x,axis=1)),6)

    out_std.append(std_)

    out_weight.append(result.x) 

# Step 7: plot the efficient frontier

title('Simulation for an Efficient Frontier: '+str(n_stocks)+' stocks')

xlabel('Standard Deviation of the Porfolio')

ylabel('Return of the2-stock portfolio')

#xlim(min(std_0), max(std_0))

plot(out_std,out_mean,'--',linewidth=3)

The related graph is as follows:
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Geometric versus arithmetic mean
In the next section, we discuss long-term return forecasting. Since we apply the 
weighted arithmetic and geometric means, we need to familiarize ourselves with the 
geometric mean first. For n returns ( 1R , 2R , 3 ,... ., nR R ) their arithmetic and geometric 
means are defined as follows:

1
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             (10)
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           (11)

In this formula, Ri is the stock's ith return. For an arithmetic mean, we could use the 
mean() function. Most of the time, the arithmetic mean is used in our estimations 
because of its simplicity. Since geometric means consider the time of values, it is 
considered to be more accurate for returns' estimation based on historical data. 
One important feature is that the geometric mean is smaller than its corresponding 
arithmetic mean unless all input values, such as all returns, are all the same. Because 
of this feature, many argue that using arithmetic means to predict future returns 
would lead to an overestimation. In contrast, geometric means would lead to an 
underestimation. Since the geometric mean for returns is different from the normal 
definition of the geometric mean when the values are not returns, it is worthwhile to 
write our own function as shown in the following code:

def geomean_ret(returns):

    product = 1

    for ret in returns:

        product *= (1+ret)

return product ** (1.0/len(returns))-1

For a set of n returns, we could estimate their arithmetic and geometric mean  
as follows:

>>>returns=[0.01,0.02,-0.03,0.015,0.10]

>>>geomean_ret(returns)

0.022140040774623948

>>>mean(returns)

0.023
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Long-term return forecasting
Many researchers and practitioners argue that a long-term return forecast would 
be overestimated if it is based on the arithmetic mean of the past returns and 
underestimated based on a geometric mean. Using 80 years' historical returns to 
forecast the next 25-year future return, Jacquier, Kane, and Marcus (2003) suggest  
the following weighted scheme:

25 80 25
80 80geometric arithmeticlong term forecast R R−

− = +        (12)

The following program reflects equation (12):

from matplotlib.finance import quotes_historical_yahoo

import numpy as np

import pandas as pd

ticker='IBM'           # input value 1

begdate=(1926,1,1)     # input value 2

enddate=(2013,12,31)   # input value 3

n_forecast=15.         # input value 4

def geomean_ret(returns):

    product = 1

    for ret in returns:

        product *= (1+ret)

    return product ** (1.0/len(returns))-1

x=quotes_historical_yahoo(ticker,begdate,enddate,asobject=True, 
adjusted=True)

logret = log(x.aclose[1:]/x.aclose[:-1])

date=[]

d0=x.date

for i in range(0,size(logret)):

    date.append(d0[i].strftime("%Y"))

y=pd.DataFrame(logret,date,columns=['logret'],dtype=float64)

ret_annual=exp(y.groupby(y.index).sum())-1

ret_annual.columns=['ret_annual']
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n_history=len(ret_annual)

a_mean=mean(np.array(ret_annual))

g_mean=geomean_ret(np.array(ret_annual))

future_ret=n_forecast/n_history*g_mean+(n_history-n_forecast)/n_
history*a_mean

print 'Arithmetric mean=',round(a_mean,3), 'Geomean=',round(g_
mean,3),'forecast=',future_ret

We could print a few of the annual returns, the number of years, and final result  
as follows:

>>>ret_annual.head()

      ret_annual

1962   -0.326613

1963    0.347305

1964   -0.022222

1965    0.222727

1966    0.122677

>>>len(ret_annual)

52

>>>print 'Arithmetric omean=',round(a_mean,3), 'Geomean=',round(g_
mean,3),'forecast=',future_ret

Arithmetric omean= 0.12 Geomean= 0.087 forecast= [ 0.11074861]

>>>

Pricing a call using simulation
After knowing the terminal prices, we could estimate the payoff for a call if the 
exercise price is given. The mean of those discounted payoffs using the risk-free  
rate as our discount rate will be our call price. The following code helps us  
estimate the call price:

from scipy import zeros, sqrt, shape

import scipy as sp

S0 = 40.      # stock price at time zero

X=   40.      # exercise price

T =0.5        # years

r =0.05       # risk-free rate

sigma = 0.2   # volatility (annual)
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n_steps=100.          # number of steps

sp.random.seed(12345) # fix those random numbers

n_simulation = 5000   # number of simulation

dt =T/n_steps

call = zeros([n_simulation], dtype=float)

x = range(0, int(n_steps), 1)

for j in range(0, n_simulation):

    sT=S0

for i in x[:-1]:

        e=sp.random.normal()

        sT*=exp((r-0.5*sigma*sigma)*dt+sigma*e*sqrt(dt))

        call[j]=max(sT-X,0)

call_price=mean(call)*exp(-r*T)

print 'call price = ', round(call_price,3)

The estimated call price is $2.75. The same logic applies to pricing a put option.

Exotic options
Up to now, we discussed European and American options in Chapter 9, The Black-
Scholes-Merton Option Model, which are also called vanilla options. One of the 
characters is path independent. On the other hand, exotic options are more complex 
since they might have several triggers relating to the determination of their payoffs. 
An exotic option could include nonstandard underlying instrument developed for 
particular investors, banks, or firms. Exotic options usually are traded over-the-
counter (OTC). For exotic options, we don't have closed-form solutions, such as 
the Black-Scholes-Merton model. Thus, we have to depend on other means to price 
them. The Monte Carlo simulation is one of the ways to price many exotic options. In 
the next several subsections, we show how to price Asian options, digit options, and 
barrier options.

Using the Monte Carlo simulation to price 
average options
European and American options are path-independent options. This means that an 
option's payoff depends only on the terminal stock price and strike price. One related 
issue for path-dependent options is market manipulation at the maturity date. 
Another issue is that some investors or hedgers might care more about the average 
price instead of a terminal price.
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For example, a refinery is worried about the oil, its major raw material, and price 
movement in the next three months. They plan to hedge the potential price jumps in 
crude oil. The company could buy a call option. However, since the firm consumes a 
huge amount of crude oil every day, naturally it cares more about the average price 
instead of just the terminal price on which a vanilla call option depends. For such 
cases, average options will be more effective. Average options are a type of Asian 
options. For an average option, its payoff is determined by the average underlying 
prices over some preset period of time. There are two types of averages: arithmetic 
average and geometric average.

The payoff function of an Asian call (average price) is given as follows:

( ) ( ),0averagepayoff call Max P X= −          (13)

The payoff function of an Asian put (average price) is given below.

( ) ( ),0averagepayoff put Max X P= −          (14)

Asian options are one of the basic forms of exotic options. Another advantage of 
Asian options is that their costs are cheaper compared to European and American 
vanilla options since the variation of an average will be much smaller than a terminal 
price. The following Python program is for an Asian option with an arithmetic 
average price:

import scipy as sp

s0=40.           # today stock price 

x=40.            # exercise price

T=0.5            # maturity in years

r=0.05           # risk-free rate

sigma=0.2        # volatility (annualized)

n_simulation=100 # number of simulations 

n_steps=100.    

dt=T/n_steps

call=sp.zeros([n_simulation], dtype=float)

for j in range(0, n_simulation):

    sT=s0

    total=0

for i in range(0,int(n_steps)):

        e=sp.random.normal()
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        sT*=sp.exp((r-0.5*sigma*sigma)*dt+sigma*e*sp.sqrt(dt))

        total+=sT

    price_average=total/n_steps

    call[j]=max(price_average-x,0)

call_price=mean(call)*exp(-r*T)

print 'call price = ', round(call_price,3)

Pricing barrier options using the Monte  
Carlo simulation
Unlike the Black-Scholes-Merton option model's call and put options, which are path 
independent, a barrier option is path-dependent. A barrier option is similar in many 
ways to an ordinary option except there exists a trigger. An "in" option starts its life 
worthless unless the underlying stock reaches a predetermined knock-in barrier. On 
the contrary, an "out" barrier option starts its life active and turns useless when a 
knock-out barrier price is breached. In addition, if a barrier option expires inactive, 
it may be worthless, or there may be a cash rebate paid out as a fraction of the 
premium. The four types of barrier options are given as follows:

•	 Up-and-out: In this barrier option, the price starts from below a barrier level. 
If it reaches the barrier, it is knocked out.

•	 Down-and-out: In this barrier option, the price starts from above a barrier. If 
it reaches the barrier, it is knocked out.

•	 Up-and-in: In this barrier option, the price starts below a barrier and has to 
reach the barrier to be activated.

•	 Down-and-in: In this barrier option, the price starts above a barrier and has 
to reach the barrier to be activated.

The next Python program is for an up-and-out barrier option with a European call:

import scipy as sp

import p4f

def up_and_out_call(s0,x,T,r,sigma,n_simulation,barrier):

    n_steps=100.    

    dt=T/n_steps

    total=0

    for j in range(0, n_simulation):

        sT=s0

        out=False
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        for i in range(0,int(n_steps)):

            e=sp.random.normal()

            sT*=sp.exp((r-0.5*sigma*sigma)*dt+sigma*e*sp.sqrt(dt))

            if sT>barrier:

                out=True

        if out==False:

            total+=p4f.bs_call(s0,x,T,r,sigma)

    return total/n_simulation    

The basic design is that we simulate the stock movement n times, such as 100 times. 
For each simulation, we have 100 steps. Whenever the stock price reaches the barrier, 
the payoff will be zero. Otherwise, the payoff will be a vanilla European call. The 
final value will be the summation of all call prices that are not knocked out, divided 
by the number of simulations, as shown in the following code:

s0=40.           # today stock price 

x=40.            # exercise price

barrier=42       # barrier level

T=0.5            # maturity in years

r=0.05           # risk-free rate

sigma=0.2        # volatility (annualized)

n_simulation=100 # number of simulations 

result=up_and_out_call(s0,x,T,r,sigma,n_simulation,barrier)

print 'up-and-out-call = ', round(result,3)

up-and-out-call =  0.606

The Python code for the down-and-in put option is shown as follows:

def down_and_in_put(s0,x,T,r,sigma,n_simulation,barrier):

    n_steps=100.    

    dt=T/n_steps

    total=0

    for j in range(0, n_simulation):

        sT=s0

        in_=False

        for i in range(0,int(n_steps)):

            e=sp.random.normal()

            sT*=sp.exp((r-0.5*sigma*sigma)*dt+sigma*e*sp.sqrt(dt))

            if sT<barrier:
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                in_=True

                #print 'sT=',sT

        #print 'j=',j ,'out=',out

        if in_==True:

            total+=p4f.bs_put(s0,x,T,r,sigma)

    return total/n_simulation

Barrier in-and-out parity
If we buy an up-and-out European call and an up-and-in European call, then the 
following parity should hold good:

up and out up and incall call call− − − −+ =           (14)

The logic is very simple—if the stock price reaches the barrier, then the first call 
is worthless and the second call will be activated. If the stock price never touches 
the barrier, the first call will remain active, while the second one is never activated. 
Either way, one of them is active. The following Python program illustrates  
such scenarios:

def up_call(s0,x,T,r,sigma,n_simulation,barrier):

import scipy as sp

    import p4f

    n_steps=100.    

    dt=T/n_steps

    inTotal=0

    outTotal=0

    for j in range(0, n_simulation):

        sT=s0

        inStatus=False

        outStatus=True

for i in range(0,int(n_steps)):

            e=sp.random.normal()

            sT*=sp.exp((r-0.5*sigma*sigma)*dt+sigma*e*sp.sqrt(dt))

if sT>barrier:

                outStatus=False

                inStatus=True
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                #print 'sT=',sT

        #print 'j=',j ,'out=',out

if outStatus==True:

            outTotal+=p4f.bs_call(s0,x,T,r,sigma)

        else:

            inTotal+=p4f.bs_call(s0,x,T,r,sigma)

return outTotal/n_simulation, inTotal/n_simulation

We input a set of values to test whether the summation of an up-and-out call and an 
up-and-in call will be the same as a vanilla call:

s0=40.           # today stock price 

x=40.            # exercise price

barrier=42       # barrier level

T=0.5            # maturity in years

r=0.05           # risk-free rate

sigma=0.2        # volatility (annualized)

n_simulation=100 # number of simulations 

upOutCall,upInCall=up_call(s0,x,T,r,sigma,n_simulation,barrier)

print 'upOutCall=', round(upOutCall,2),'upInCall=',round(upInCall,2)

print 'Black-Scholes call', round(p4f.bs_call(s0,x,T,r,sigma),2)

The following output proves the parity mentioned in the preceding paragraph:

upCall= 0.8 upInCall= 1.96

Black-Scholes call 2.76

Graphical presentation of an up-and-out and 
up-and-in parity
It is a good idea to use the Monte Carlo simulation to present such a parity. The 
following code is designed to achieve this. To make our simulation clearer, we 
deliberately choose just five simulations:

import scipy as sp

s0=9.15              # stock price at time zero

x=9.15               # exercise price

barrier=10.15        # barrier

T =0.5               # maturity date (in years)
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n_steps=30.          # number of steps

r =0.05              # expected annual return 

sigma = 0.2          # volatility (annualized)

sp.random.seed(125)  # seed() 

n_simulation = 5     # number of simulations

dt =T/n_steps    

S = sp.zeros([n_steps], dtype=float)

time_= range(0, int(n_steps), 1)

c=p4f.bs_call(s0,x,T,r,sigma)

sp.random.seed(124)

outTotal, inTotal= 0.,0.

n_out,n_in=0,0

for j in range(0, n_simulation):

    S[0]= s0

    inStatus=False

    outStatus=True

for i in time_[:-1]:

        e=sp.random.normal()

        S[i+1]=S[i]*exp((r-0.5*pow(sigma,2))*dt+sigma*sp.sqrt(dt)*e)

        if S[i+1]>barrier:

            outStatus=False

            inStatus=True

    plot(time_, S)

if outStatus==True:

        outTotal+=c;n_out+=1

    else:

        inTotal+=c;n_in+=1

S=sp.zeros(int(n_steps))+barrier

plot(time_,S,'.-')

upOutCall=round(outTotal/n_simulation,3)

upInCall=round(inTotal/n_simulation,3)

figtext(0.15,0.8,'S='+str(S0)+',X='+str(x))

figtext(0.15,0.76,'T='+str(T)+',r='+str(r)+',sigma=='+str(sigma))

figtext(0.15,0.6,'barrier='+str(barrier))

figtext(0.40,0.86, 'call price            ='+str(round(c,3)))
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figtext(0.40,0.83,'up_and_out_call ='+str(upOutCall)+' (='+str(n_
out)+'/'+

str(n_simulation)+'*'+str(round(c,3))+')')

figtext(0.40,0.80,'up_and_in_call ='+str(upInCall)+' (='+str(n_in)+'/'+

str(n_simulation)+'*'+str(round(c,3))+')')

title('Up-and-out and up-and-in parity (# of simulations = %d ' % n_
simulation +')')

xlabel('Total number of steps ='+str(int(n_steps)))

ylabel('stock price')

show()

The price of a vanilla call is $0.65. Since there is one simulation that reached the 
barrier, the up-and-out call will be 4/5*0.63, while the up-and-in call will be 1/5*0.63. 
The corresponding graph is shown as follows:

Pricing lookback options with floating 
strikes
The lookback options depend on the paths (history) travelled by the underlying 
security. Thus, they are called path-dependent exotic options as well. One of them 
is named floating strikes. The payoff function of a call when the exercise price is the 
minimum price achieved during the life of the option is given as follows:

( ),0T min T minPayoff Max S S S S= − = −         (15)
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The Python code for this lookback option is shown as follows:

def lookback_min_price_as_strike(s,T,r,sigma,n_simulation):

    n_steps=100.    

    dt=T/n_steps

    total=0

    for j in range(n_simulation):

        min_price=100000.   # a very big number 

        sT=s

        for i in range(int(n_steps)):

            e=sp.random.normal()

            sT*=sp.exp((r-0.5*sigma*sigma)*dt+sigma*e*sp.sqrt(dt))

if sT<min_price:

                min_price=sT

            #print 'j=',j,'i=',i,'total=',total

        total+=p4f.bs_call(s,min_price,T,r,sigma)

    return total/n_simulation    

Remember that the previous function needs two modules. Thus, we have to import 
those modules before we call the function as shown in the following code:

>>>import scipy as sp

>>>import p4f

>>>s=40.             # today stock price

>>>T=0.5             # maturity in years

>>>r=0.05            # risk-free rate

>>>sigma=0.2         # volatility (annualized)

>>>n_simulation=1000 # number of simulations

>>>result=lookback_min_price_as_strike(s,T,r,sigma,n_simulation)

>>>print 'lookback min price as strike = ', round(result,3)

The result for one run is shown as follows:

lookback min price as strike =  5.304
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Using the Sobol sequence to improve the 
efficiency
When applying the Monte Carlo simulation to solve various finance related 
problems, we need to generate a certain number of random numbers. When the 
accuracy is very high, we have to draw a huge amount of such random numbers. 
For example, when pricing options, we use very small interval or a large number 
of steps to increase the number of decimal places of our final option prices. Thus, 
the efficiency of our Monte Carlo simulation would be a vital issue in terms of 
computational time and costs. This is especially true if we have a thousand options  
to price. One way to increase the efficiency is to apply a correct or better algorithm, 
that is, optimize our code. Another way is to use some special types of random 
number generators, such as the Sobol sequence.

Sobol sequences belong to the so-called low-discrepancy sequences, which 
satisfy the properties of random numbers but are distributed more evenly. Thus, 
they are usually called quasi random. Based on the related Python Sobol library 
developed, we could have the programs from the given links. First, we go to the 
web page at http://people.sc.fsu.edu/~jburkardt/py_src/sobol/sobol.
html and download a Python program called sobol_lib.py written by Corrado 
Chisari. Another web page related to the Sobol sequence is https://github.com/
naught101/sobol_seq.

Summary
In this chapter, we discussed several types of distributions: normal, standard normal, 
lognormal, and Poisson. Since the assumption that stocks follow a lognormal 
distribution and returns follow a normal distribution is the cornerstone for option 
theory, the Monte Carlo simulation is used to price European options. Under certain 
scenarios, Asian options might be more effective in terms of hedging. Exotic options 
are more complex than the vanilla options since the former have no closed-form 
solution, while the latter could be priced by the Black-Scholes-Merton option model. 
One way to price these exotic options is to use the Monte Carlo simulation. The 
Python programs to price an Asian option and lookback options are discussed  
in detail.
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In the next chapter, we will discuss various volatility measures, such as our 
conventional standard deviation, Lower Partial Standard Deviation (LPSD). Using 
the standard deviation of returns as a risk measure is based on a critical assumption 
that stock returns follow a normal distribution. Because of this, we introduce several 
normality tests. In addition, we graphically show volatility clustering—high volatility 
is usually followed by a high-volatility period, while low volatility is usually followed 
by a low-volatility period. To deal with this phenomenon, the Autoregressive 
conditional heteroskedasticity (ARCH) process was developed by Angel (1982), 
and the Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) 
processes, which are an extension of ARCH was developed by Bollerslev (1986).  
Their graphical presentations and related Python programs will be also covered in  
the next chapter.

Exercises
1. Download daily price from Yahoo! Finance for DELL. Estimate daily returns and 
convert them into monthly returns. Assume its monthly returns follow a normal 
distribution. Draw a graph with the mean and standard deviation from the previous 
monthly returns.

2. Debug the following program:

import scipy as sp

S0 = 9.15 ;T =1;n_steps=10;mu =0.15;sigma = 0.2

n_simulation =  10

dt =T/n_steps    

S = sp.zeros([n_steps], dtype=float)

x = range(0, int(n_steps), 1)

for j in range(0, n_simulation):

    S[0]= S0

for i in x[:-1]:

        e=sp.random.normal()

        S[i+1]=S[i,j]+S[i]*(mu-0.5*pow(sigma,2))*dt+sigma*S[i]*sp.
sqrt(dt)*e;

    plot(x, S)

figtext(0.2,0.8,'S0='+str(S0)+',mu='+str(mu)+',sigma='+str(sigma))

figtext(0.2,0.76,'T='+str(T)+', steps='+str(int(n_steps)))
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title('Stock price (number of simulations = %d ' % n_simulation +')')

xlabel('Total number of steps ='+str(n_steps)))

ylabel('stock price')

show()

3. Write a Python program to price an Asian average price put based on the 
arithmetic mean.

4. Write a Python program to price an Asian average price put based on the 
geometric mean.

5. Write a Python program to price an up-and-in call (barrier option).

6. Write a Python program to price a down-and-out put (barrier option).

7. Write a Python program to show the down-and-out and down-and-in parity.

8. Write a Python program to use permutation() from SciPy to select 12 monthly 
returns randomly from the past five-year data without placement. To test your 
program, you can use Citigroup and the time period January 1, 2009 to December 31, 
2014 from Yahoo! Finance.

9. Write a Python program to run bootstrapping with n given returns. For each time, 
we select m returns where m>n.



Volatility Measures  
and GARCH

In finance, we know that risk is defined as uncertainty since we are unable to 
predict the future more accurately. Based on the assumption that prices follow a 
lognormal distribution and returns follow a normal distribution, we could define 
risk as standard deviation or variance of the returns of a security. We call this our 
conventional definition of volatility (uncertainty). Since a normal distribution is 
symmetric, it will treat a positive deviation from a mean in the same manner as it 
would a negative deviation. This is against our conventional wisdom since we treat 
them differently. To overcome this, Sortino (1983) suggests a lower partial standard 
deviation. Up to now, we assume that the volatility of a time series is a constant. 
Obviously this is not true. Another observation is volatility clustering, which means 
that high volatility is usually followed by a high-volatility period, and this is true 
for low volatility that is usually followed by a low-volatility period. To model 
this, Angel (1982) develops an AutoRegressive Conditional Heteroskedasticity 
(ARCH) process, and Bollerslev (1986) extends it to a Generalized AutoRegressive 
Conditional Heteroskedasticity (GARCH) process.

In this chapter, we will cover the following topics:

•	 Conventional volatility measure—standard deviation—based on a  
normality assumption

•	 Test of normality
•	 Testing fat tail
•	 An estimation of lower partial standard deviation (LPSD) given by  

Sortino (1983)
•	 Test of equivalency of volatility over two periods
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•	 Test of heteroskedasticity, Breusch and Pagan (1979)
•	 Retrieving option data from Yahoo! Finance
•	 Volatility smile and skewness
•	 Definition of an AutoRegressive Conditional Heteroskedasticity  

(ARCH) process
•	 Simulation of an ARCH (1) process
•	 Definition of a Generalized AutoRegressive Conditional Heteroskedasticity 

(GARCH) process
•	 Simulation of an GARCH (1,1) process
•	 Simulation of an GARCH (p,q) process by modifying the garchSim() 

function borrowed from R
•	 Modeling a GJR_GARCH process by Glosten, Jagannathan, and Runkle (1993)

Conventional volatility  
measure – standard deviation
In most finance textbooks, we use the standard deviation of returns as a risk 
measure. This is based on a critical assumption that log returns follow a normal 
distribution. Even both standard deviation and variance could be used to measure 
uncertainty; the former is usually called volatility itself. For example, if we say that 
the volatility of IBM is 20 percent, it means that its annualized standard deviation is 
20 percent. Using IBM as an example, the following program is used to estimate its 
annualized volatility:

from matplotlib.finance import quotes_historical_yahoo

import numpy as np

ticker='IBM'

begdate=(2009,1,1)

enddate=(2013,12,31)

p = quotes_historical_yahoo(ticker, begdate, enddate,asobject=True, 
adjusted=True)

ret = (p.aclose[1:] - p.aclose[:-1])/p.aclose[1:]

std_annual=np.std(ret)*np.sqrt(252)

From the following output, we know that the volatility is 20.87 percent for IBM:

>>>print 'volatility (std)=',round(std_annual,4)

volatility (std)= 0.2087

>>>
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Tests of normality
The Shapiro-Wilk test is a normality test. The following Python program verifies 
whether IBM's returns are following a normal distribution. The last five-year daily 
data from Yahoo! Finance is used for the test. The null hypothesis is that IBM's daily 
returns are drawn from a normal distribution:

from scipy import stats

from matplotlib.finance import quotes_historical_yahoo

import numpy as np

ticker='IBM'

begdate=(2009,1,1)

enddate=(2013,12,31)

p = quotes_historical_yahoo(ticker, begdate, enddate,asobject=True, 
adjusted=True)

ret = (p.aclose[1:] - p.aclose[:-1])/p.aclose[1:]

print 'ticker=',ticker,'W-test, and P-value'

print stats.shapiro(ret)

The results are shown as follows:

The first value of the result is the test statistic, and the second one is its corresponding 
p-value. Since this p-value is so close to zero, we reject the null hypothesis. In other 
words, we conclude that IBM's daily returns do not follow a normal distribution.

For the normality test, we could also apply the Anderson-Darling test, which is a 
modification of the Kolmogorov-Smirnov test, to verify whether the observations 
follow a particular distribution. The stats.anderson() function has tests for 
normal, exponential, logistic, and Gumbel (Extreme Value Type I) distributions.  
The default test is for a normal distribution. After calling the function and printing 
the testing results, we see the following result:

>>>>print stats.anderson(ret)

(14.727130515534327, array([ 0.574,  0.654,  0.785,  0.915,  1.089]), 
array([ 15. ,  10. ,   5. ,   2.5,   1. ]))
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Here, we have three sets of values: the Anderson-Darling test statistic, a set of critical 
values, and a set of corresponding confidence levels, such as 15 percent, 10 percent,  
5 percent, 2.5 percent, and 1 percent as shown in the previous output. If we choose  
a 1 percent confidence level—the last value of the third set—the critical value is 
1.089, the last value of the second set. Since our testing statistic is 14.73, which is 
much higher than the critical value of 1.089, we reject the null hypothesis. Thus,  
our Anderson-Darling test leads to the same conclusion as our Shapiro-Wilk test.

Estimating fat tails
One of the important properties of a normal distribution is that we could use mean 
and standard deviation, the first two moments, to fully define the whole distribution. 
For n returns of a security, its first four moments are defined in equation (1). The 
mean or average is defined as follows:
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Its (sample) variance is defined by the following equation. The standard deviation, 
that is, σ, is the squared root of the variance:
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The skewness defined by the following formula indicates whether the distribution is 
skewed to the left or to the right. For a symmetric distribution, its skewness is zero:
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The kurtosis reflects the impact of extreme values because of its power of four. There 
are two types of definitions with and without minus three; refer to the following two 
equations. The reason behind the deduction of three in equation (4B), is that for a 
normal distribution, its kurtosis based on equation (4A) is three:
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Some books distinguish these two equations by calling equation (4B) excess kurtosis. 
However, many functions based on equation (4B) are still named kurtosis. Since we 
know that a standard normal distribution has a zero mean, unit standard deviation, 
zero skewness, and zero kurtosis (based on equation 4B). The following output 
confirms these facts:

The mean, skewness, and kurtosis are all close to zero, while the standard deviation 
is close to one. Next, we estimate the four moments for S&P500 based on its daily 
returns as follows:

from scipy import stats

from matplotlib.finance import quotes_historical_yahoo

import numpy as np

ticker='^GSPC'

begdate=(1926,1,1)

enddate=(2013,12,31)

p = quotes_historical_yahoo(ticker, begdate, enddate,asobject=True, 
adjusted=True)

ret = (p.aclose[1:] - p.aclose[:-1])/p.aclose[1:]

print( 'S&P500  n       =',len(ret))

print( 'S&P500  mean    =',round(np.mean(ret),8))

print( 'S&P500  std     =',round(np.std(ret),8))

print( 'S&P500  skewness=',round(stats.skew(ret),8))

print( 'S&P500  kurtosis=',round(stats.kurtosis(ret),8))
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The output for the five values mentioned in the previous code, including the number 
of observations, is given as follows:

This result is very close to the result in the paper titled Study of Fat-tail Risk by Cook 
Pine Capital, which can be downloaded from http://www.cookpinecapital.com/
pdf/Study%20of%20Fat-tail%20Risk.pdf. Using the same argument, we conclude 
that the S&P500 daily returns are skewed to the left, that is, a negative skewness, and 
have fat tails (kurtosis is 38.22 instead of zero).

Lower partial standard deviation
One issue with using standard deviation of returns as a risk measure is that the 
positive deviation is also viewed as bad. The second issue is that the deviation is 
from the average instead of a fixed benchmark, such as a risk-free rate. To overcome 
these shortcomings, Sortino (1983) suggests the lower partial standard deviation, 
which is defined as the average of squared deviation from the risk-free rate 
conditional on negative excess returns, as shown in the following formula:
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Because we need the risk-free rate in this equation, we could generate a Fama-French 
dataset that includes the risk-free rate as one of their time series. First, download 
their daily factors from http://mba.tuck.dartmouth.edu/pages/faculty/ken.
french/data_library.html.Then, unzip it and delete the non-data part at the end 
of the text file. Assume the final text file is saved under C:/temp/:

import pandas as pd

import datetime

file=open("c:/temp/F-F_Research_Data_Factors_daily.txt","r")

data=file.readlines()

f=[]

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html,d
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html,d


Chapter 12

[ 353 ]

index=[]

for i in range(5,size(data)):

    t=data[i].split()

    t0_n=int(t[0])

    y=int(t0_n/10000)

    m=int(t0_n/100)-y*100

    d=int(t0_n)-y*10000-m*100

    index.append(datetime.datetime(y,m,d))

    for j in range(1,5):

        k=float(t[j])

        f.append(k/100)

n=len(f)       

f1=np.reshape(f,[n/4,4])

ff=pd.DataFrame(f1,index=index,columns=['Mkt_Rf','SMB','HML','Rf'])

ff.to_pickle("c:/temp/ffDaily.pickle")

The name of the final dataset is ffDaily.pickle. It is a good idea to generate 
this dataset yourself. However, the dataset could be downloaded from http://
canisius.edu/~yany/ffDaily.pickle. Using the last five years' data (January 1, 
2009 to December 31, 2013), we could estimate IBM's LPSD as follows:

from scipy import stats

from matplotlib.finance import quotes_historical_yahoo

import numpy as np

import pandas as pd

ticker='IBM'

begdate=(2009,1,1)

enddate=(2013,12,31)

p = quotes_historical_yahoo(ticker, begdate, enddate,asobject=True, 
adjusted=True)

ret = (p.aclose[1:] - p.aclose[:-1])/p.aclose[1:]

date_=p.date

x=pd.DataFrame(data=ret,index=date_[:-1],columns=['ret'])

ff=load('c:/temp/ffDaily.pickle')

final=pd.merge(x,ff,left_index=True,right_index=True)

k=final.ret-final.Rf

k2=k[k>0]

LPSD=np.std(k2)*np.sqrt(252)

print(' LPSD (annualized) for ', ticker, 'is ',round(LPSD,3))

http://canisius.edu/~yany/ffDaily.pickle
http://canisius.edu/~yany/ffDaily.pickle
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The following output shows that IBM's LPSD is 14.8 percent quite different from 20.9 
percent shown in the previous section:

Test of equivalency of volatility over  
two periods
We know that the stock market fell dramatically in October, 1987. We could choose  
a stock to test the volatility before and after October, 1987. For instance, we could use 
Ford Motor Corp, with a ticker of F, to illustrate how to test the equality of variance 
before and after the market crash in 1987. In the following Python program, we 
define a function called ret_f() to retrieve daily price data from Yahoo! Finance  
and estimate its daily returns:

import scipy as sp

from matplotlib.finance import quotes_historical_yahoo

import numpy as np

# input area 

ticker='F'               # stock

begdate1=(1982,9,1)      # starting date for period  #1

enddate1=(1987,9,1)      # ending   date for period  #1

begdate2=(1987,12,1)     # starting date for period  #2

enddate2=(1992,12,1)     # ending   date for period  #2

# define a function

def ret_f(ticker,begdate,enddate):

    p = quotes_historical_yahoo(ticker, begdate, enddate,asobject=True, 
adjusted=True)

    ret = (p.aclose[1:] - p.aclose[:-1])/p.aclose[1:]

    date_=p.date

    return pd.DataFrame(data=ret,index=date_[:-1],columns=['ret'])

# call the above function twice    

ret1=ret_f(ticker,begdate1,enddate1)

ret2=ret_f(ticker,begdate2,enddate2)

# output
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print('Std period #1  vs. std period #2')

print(round(sp.std(ret1.ret),6),  round(sp.std(ret2.ret),6))

print('T value ,    p-value ')

print(sp.stats.bartlett(ret1.ret,ret2.ret))

The very-high T value and close to zero p-value in the following screenshot suggest 
the rejection of the hypothesis that during these two periods, the stock has the same 
volatility. The corresponding output is given as follows:

Test of heteroskedasticity, Breusch, and 
Pagan (1979) 
Breusch and Pagan (1979) designed a test to confirm or reject the null assumption 
that the residuals from a regression is homogeneous, that is, with a constant 
volatility. The following formula represents their logic. First, we run a linear 
regression of y against x:

t t ty xα β= + +∈              (6)

Here, y is the independent variable, x is the independent variable, α is the intercept, 
β is the coefficient and t∈  is an error term. After we get the error term (residual), we 
run the second regression:

2
0 1t t txγ γ ν∈ = + +              (7)

Assume that the fitted values from running the previous regression is tfν  , then the 
Breusch-Pangan (1979) measure is given as follows, and it follows a χ2 distribution 
with a k degree of freedom:
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The following example is borrowed from an R package called lm.test (test linear 
regression), and its authors are Hothorn et al. (2014). We generate a time series of x, y1 
and y2. The independent variable is x, and the dependent variables are y1 and y2. By 
our design, y1 is homogeneous, that is, with a constant variance (standard deviation), 
and y2 is non-homogeneous (heterogeneous), that is, the variance (standard deviation) 
is not constant. For a variable x, we have the following 100 values:

[ ]1,1, 1,1,... ., 1,1x = − − −           (9)

Then, we generate two error terms with 100 random values each. For the error1, its 
100 values are drawn from the standard normal distribution, that is, with zero mean 
and unit standard deviation. For error2, its 100 values are drawn from a normal 
distribution with a zero mean and 2 as the standard deviation. The y1 and y2 time 
series are defined as follows:

1 1y x error= +              (10)

[ ] [ ]2 1, 2,1,3, ...99 2,4,6, ..100i iy x e i e i= + = + =      (11)

For the odd scripts of y2, the error terms are derived from error1, while for the even 
scripts, the error terms are derived from error2. To find more information about the 
PDF file related to lm.test, or an R package, we have the following six steps:

1.	 Go to http://www.r-project.org.
2.	 Click on CRAN under Download, Packages.
3.	 Choose a close-by server.
4.	 Click on Packages on the left-hand side of the screen.
5.	 Choose a list and search lm.test.
6.	 Click the link and download the PDF file related to lm.test.

The following is the related Python code:

import numpy as np

import statsmodels.api as sm

import scipy as sp

def breusch_pagan_test(y,x):

    results=sm.OLS(y,x).fit()

    resid=results.resid



Chapter 12

[ 357 ]

    n=len(resid)

    sigma2 = sum(resid**2)/n

    f = resid**2/sigma2 - 1

    results2=sm.OLS(f,x).fit()

    fv=results2.fittedvalues

    bp=0.5 * sum(fv**2)

    df=results2.df_model

    p_value=1-sp.stats.chi.cdf(bp,df)

    return round(bp,6), df, round(p_value,7)

sp.random.seed(12345)

n=100

x=[]

error1=sp.random.normal(0,1,n)

error2=sp.random.normal(0,2,n)

for i in range(n):

    if i%2==1:

        x.append(1)

    else:

        x.append(-1)

y1=x+np.array(x)+error1  

y2=zeros(n)

for i in range(n):

    if i%2==1:

        y2[i]=x[i]+error1[i]

    else:

        y2[i]=x[i]+error2[i]

print ('y1 vs. x (we expect to accept the null hypothesis)')

bp=breusch_pagan_test(y1,x)

print('BP value,  df,      p-value')

print 'bp =', bp

bp=breusch_pagan_test(y2,x)
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print ('y2 vs. x  (we expect to rject the null hypothesis)')

print('BP value,  df,      p-value')

print('bp =', bp)

For the result of running regression by using y1 against x, we know that its residual 
vale would be homogeneous, that is, variance or standard deviation is a constant. 
Thus, we expect to accept the null hypothesis. The opposite is true for y2 against x, 
since, based on our design, the error terms for y2 are heterogeneous. Thus, we expect 
to reject the null hypothesis. The corresponding output is shown as follows:

Retrieving option data from Yahoo! 
Finance
In the previous chapter, we discussed in detail how to estimate implied volatility 
with a hypothetic set of input values. To use real-world data to estimate implied 
volatility, we could define a function with three input variables: ticker, month,  
and year as follows:

def get_option_data(tickrr,exp_date):

    x = Options(ticker,'yahoo')

    puts,calls = x.get_options_data(expiry=exp_date)

    return puts, calls

To call the function, we enter three values, such as IBM, 2, and 2014, when we plan to 
retrieve options expired in February, 2014. The code with these three values is shown 
as follows:

def from pandas.io.data import Options

import datetime

ticker='IBM'

exp_date=datetime.date(2014,2,28)

puts, calls =get_option_data(ticker,exp_date)

print puts.head()
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Strike              Symbol  Last  Chg   Bid   Ask  Vol  Open Int

0     100  IBM140222P00100000  0.01    0   NaN  0.03   16        16

1     105  IBM140222P00105000  0.04    0   NaN  0.03   10        10

2     115  IBM140222P00115000  0.01    0   NaN  0.05    1         2

3     120  IBM140222P00120000  0.02    0  0.01  0.06   10        20

4     130  IBM140222P00130000  0.03    0  0.02  0.06    1       146

   Strike              Symbol   Last   Chg   Bid    Ask  Vol  Open Int

0     150  IBM140222C00150000  30.00  0.00  37.0  40.00    8        10

1     160  IBM140207C00160000  25.30  0.00  27.2  30.00    1         1

2     160  IBM140222C00160000  29.80  0.00  27.1  30.00    2        64

3     165  IBM140222C00165000  25.27  0.00  22.2  24.10    3        55

4     170  IBM140222C00170000  18.82  1.63  18.3  18.65    1       386

>>>

From Yahoo! Finance, we could just retrieve call data and save it. This is also true 
for the put data. The two output datasets with the Pandas' pickle format can be 
downloaded from http://canisius.edu/~yany/callsFeb2014.pickle and 
http://canisius.edu/~yany/putsFeb2014.pickle:

from pandas.io.data import Options

import datetime

import pandas as pd

def call_data(tickrr,exp_date):

    x = Options(ticker,'yahoo')

    data= x.get_call_data(expiry=exp_date)

    return data

ticker='IBM'

exp_date=datetime.date(2014,2,28)

c=call_data(ticker,exp_date)

print c.head()

callsFeb2014=pd.DataFrame(c,columns=['Strike','Symbol','Chg','Bid','Ask',
'Vol','Open Int'])

callsFeb2014.to_pickle('c:/temp/callsFeb2014.pickle')

def put_data(tickrr,exp_date):

    x = Options(ticker,'yahoo')

    data= x.get_put_data(expiry=exp_date)

    return data

http://canisius.edu/~yany/callsFeb2014.pickle
http://canisius.edu/~yany/callsFeb2014.pickle
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p=put_data(ticker,exp_date)

putsFeb2014=pd.DataFrame(p,columns=['Strike','Symbol','Chg','Bid','Ask','
Vol','Open Int'])

putsFeb2014.to_pickle('c:/temp/putsFeb2014.pickle')

Volatility smile and skewness
Obviously, each stock should possess just one volatility. However, when estimating 
implied volatility, different strike prices might offer us different implied volatilities. 
More specifically, the implied volatility based on out-of-the-money options, at-
the-money options, and in-the-money options might be quite different. Volatility 
smile is the shape going down then up with the exercise prices, while the volatility 
skewness is downward or upward sloping. The key is that investors' sentiments and 
the supply and demand relationship have a fundamental impact on the volatility 
skewness. Thus, such a smile or skewness provides information on whether investors 
such as fund managers prefer to write calls or puts, as shown in the following code:

from pandas.io.data import Options

from matplotlib.finance import quotes_historical_yahoo

# Step 1: define two functions 

def call_data(tickrr,exp_date):

    x = Options(ticker,'yahoo')

    data= x.get_call_data(expiry=exp_date)

    return data

def implied_vol_call_min(S,X,T,r,c):

    from scipy import log,exp,sqrt,stats

    implied_vol=1.0

    min_value=1000

    for i in range(10000):

        sigma=0.0001*(i+1)

        d1=(log(S/X)+(r+sigma*sigma/2.)*T)/(sigma*sqrt(T))

        d2 = d1-sigma*sqrt(T)

        c2=S*stats.norm.cdf(d1)-X*exp(-r*T)*stats.norm.cdf(d2)

        abs_diff=abs(c2-c)

        if abs_diff<min_value:

            min_value=abs_diff

            implied_vol=sigma

            k=i
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    return implied_vol

# Step 2: input area

ticker='IBM'

exp_date=datetime.date(2014,2,28)  # first try not exact 

r=0.0003                           # estimate 

begdate=datetime.date(2010,1,1)    # this is arbitrary since we care 
about current price

# Step 3: get call option data 

calls=call_data(ticker,exp_date)

exp_date0=int('20'+calls.Symbol[0][len(ticker):9])  # find examt expiring 
date

today=datetime.date.today()

p = quotes_historical_yahoo(ticker, begdate, today, asobject=True, 
adjusted=True)

s=p.close[-1]                      # get current stock price

y=int(exp_date0/10000)

m=int(exp_date0/100)-y*100

d=exp_date0-y*10000-m*100

exp_date=datetime.date(y,m,d)   # get exact expiring date

T=(exp_date-today).days/252.0   # T in years

#  Step 4:  run a loop to estimate the implied volatility

n=len(calls.Strike)             # number of strike

strike=[]                       # initialization 

implied_vol=[]                  # initialization 

call2=[]                        # initialization 

x_old=0                         # used when we choose the first strike

for i in range(n):

    x=calls.Strike[i]

    c=(calls.Bid[i]+calls.Ask[i])/2.0

    if c >0:

        print ('i=',i,',    c=',c)

        if x!=x_old:

            vol=implied_vol_call_min(s,x,T,r,c)

            strike.append(x)

            implied_vol.append(vol)

            call2.append(c)
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            print x,c,vol

            x_old=x

# Step 5: draw a smile

title('Skewness smile (skew)')

xlabel('Exercise Price')

ylabel('Implied Volatility')

plot(strike,implied_vol,'o')

In this program, if multiple implied volatilities for the same strike price exist, we 
choose the first implied volatility. Alternatively, we could take the average of several 
implied volatilities for the same exercise price. The graph of the volatility smile is 
shown as follows:

Again, if anyone wants to reproduce the previous graph, they can download the call 
options dataset from http://canisius.edu/~yany/callsFeb2014.pickle.

Graphical presentation of volatility clustering
One of the observations is labeled as volatility clustering, which means that high 
volatility is usually followed by a high-volatility period, while low volatility is usually 
followed by a low-volatility period. The following program shows this phenomenon 
by using S&P500 daily returns from 1988 to 2006. Note that, in the following code, in 
order to show 1988 on the x axis, we add a few months before 1988:

from matplotlib.finance import quotes_historical_yahoo

import numpy as npticker='^GSPC'

begdate=(1987,11,1)

http://canisius.edu/~yany/callsFeb2014.pickle
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enddate=(2006,12,31)

p = quotes_historical_yahoo(ticker, begdate, enddate,asobject=True, 
adjusted=True)

ret = (p.aclose[1:] - p.aclose[:-1])/p.aclose[1:]

title('Illustration of volatility clustering (S&P500)')

ylabel('Daily returns')

xlabel('Date')

x=p.date[1:]

plot(x,ret)

This program is inspired by the graph drawn by M.P. Visser; refer to http://staff.
science.uva.nl/~marvisse/volatility.html. The graph corresponding to the 
previous code is shown as follows:

The ARCH model
Based on previous arguments, we know that the volatility or variance of stock 
returns is not constant. According to the ARCH model, we could use the error  
terms from pervious estimation to help us predict the next volatility or variance.  
This model was developed by Robert F. Engle, the winner of the 2003 Nobel Prize  
in Economics. The formula for an ARCH (q) model is presented as follows:

2 2
0 1

1

q

t i t
i

eσ α α −
=

= +∑              (12)
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Here, 
2
tσ  is the variance at time t, iα  is the ith coefficient, 2

t ie −  is the squared error 
term for the period of t-I, and q is the order of error terms. When q is 1, we have the 
simplest ARCH (1) process as follows:

2 2
0 1 1t teσ α α −= +              (13)

Simulating an ARCH (1) process
It is a good idea that we simulate an ARCH (1) process and have a better 
understanding of the volatility clustering, which means that high volatility is 
usually followed by a high-volatility period while low volatility is usually  
followed by a low-volatility period. The following code reflects this phenomenon:

import scipy as sp

sp.random.seed(12345)

n=1000          # n is the number of observations

n1=100          # we need to drop the first several observations

n2=n+n1         # sum of two numbers

a=(0.1,0.3)     # ARCH (1) coefficients alpha0 and alpha1, see Equation 
(3)

errors=sp.random.normal(0,1,n2)

t=sp.zeros(n2)

t[0]=sp.random.normal(0,sp.sqrt(a[0]/(1-a[1])),1)

for i in range(1,n2-1):

    t[i]=errors[i]*sp.sqrt(a[0]+a[1]*t[i-1]**2)

y=t[n1-1:-1]   # drop the first n1 observations

title('ARCH (1) process')

x=range(n)

plot(x,y)
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From the following graph, we see that indeed a higher volatility period is usually 
followed with high volatility while this is also true for a low-volatility clustering:

The GARCH (Generalized ARCH) model
Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) is an 
important extension of ARCH, by Bollerslev (1986). The GARCH (p,q) process is 
defined as follows:

2 2 2
0 1 1 1

1 1

q p

t i t i t
i i

σ α α β σ− = −
= =

= + ∈ +∑ ∑          (14)

Here, 2
tσ  is the variance at time t, q is the order for the error terms, p is the order for 

the variance, 0α  is a constant, iα  is the coefficient for the error term at t-i, iβ  is the 
coefficient for the variance at time t-i. Obviously, the simplest GARCH process is 
when both p and q are set to 1, that is, GARCH (1,1), which has following formula:

2 2 2
0 1 1 1t t tσ α α βσ− −= + ∈ +            (15)
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Simulating a GARCH process
Based on the previous program related to ARCH (1), we could simulate a GARCH 
(1,1) process as follows:

import scipy as sp

sp.random.seed(12345)

n=1000          # n is the number of observations

n1=100          # we need to drop the first several observations

n2=n+n1         # sum of two numbers

alpha=(0.1,0.3)     # GARCH (1,1) coefficients alpha0 and alpha1, see 
Equation (3)

beta=0.2

errors=sp.random.normal(0,1,n2)

t=sp.zeros(n2)

t[0]=sp.random.normal(0,sp.sqrt(a[0]/(1-a[1])),1)

for i in range(1,n2-1):

    t[i]=errors[i]*sp.sqrt(alpha[0]+alpha[1]*errors[i-
1]**2+beta*t[i-1]**2)

y=t[n1-1:-1]   # drop the first n1 observations

title('GARCH (1,1) process')

x=range(n)

plot(x,y)

Honestly speaking, the following graph is quite similar to the previous one under the 
ARCH (1) process. The graph corresponding to the previous code is shown as follows:
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Simulating a GARCH (p,q) process using 
modified garchSim()
The following code is based on the R function called garchSim(), which is included 
in the R package called fGarch. The authors for fGarch are Diethelm Wuertz and 
Yohan Chalabi. To find the related manual, we perform the following steps:

1.	 Go to http://www.r-project.org.
2.	 Click on ACRAN under Download, Packages.
3.	 Choose a close-by server.
4.	 Click on Packages on the left-hand side of the screen.
5.	 Choose a list and search for fgarch.
6.	 Click on the link and download the PDF file related to fgarch.

The Python program based on the R program is given as follows:

import scipy as sp

import numpy as np

sp.random.seed(12345)

m=2

n=100       # n is the number of observations

nDrop=100   # we need to drop the first several observations

delta=2

omega=1e-6

alpha=(0.05,0.05)

beta=0.8

mu=ar=ma=ar=0.0

gamma=(0.0,0.0)

order_ar    =size(ar)

order_ma    =size(ma)

order_beta  =size(beta)

order_alpha =size(alpha)

z0=sp.random.standard_normal(n+nDrop)

deltainv=1/delta

spec_1=spec_2=spec_3=np.array([2])

z = np.hstack((spec_1,z0))

t=np.zeros(n+nDrop)
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h = np.hstack((spec_2,t))

y = np.hstack((spec_3,t))

eps0 = h**deltainv  * z

for i in range(m+1,n +nDrop+m-1):

    t1=sum(alpha[::-1]*abs(eps0[i-2:i]))   # reverse alpha =alpha[::-1]

    t2=eps0[i-order_alpha-1:i-1]

    t3=t2*t2

    t4=np.dot(gamma,t3.T)    

    t5=sum(beta* h[i-order_beta:i-1])

    h[i]=omega+t1-t4+ t5

    eps0[i] = h[i]**deltainv * z[i]

    t10=ar * y[i-order_ar:i-1]

    t11=ma * eps0[i -order_ma:i-1]

    y[i]=mu+sum(t10)+sum(t11)+eps0[i]

garch=y[nDrop+1:]    

sigma=h[nDrop+1:]**0.5

eps=eps0[nDrop+1:]

x=range(1,len(garch)+1)    

plot(x,garch,'r')

plot(x,sigma,'b')

#plot(x,eps,'g')

title('GARCH(2,1) process')

figtext(0.2,0.8,'omega='+str(omega)+', alpha='+str(alpha)+',beta='+str(be
ta))

figtext(0.2,0.75,'gamma='+str(gamma))

figtext(0.2,0.7,'mu='+str(mu)+', ar='+str(ar)+',ma='+str(ma))

show()

In the preceding program, omega is the constant in equation (10), while alpha is 
associated with error terms and beta is associated with variance. There are two 
items in alpha[a,b]: a is for t-1, while b is for t-2. However, for eps0[t-2:i], 
they stand for t-2 and t-1. The alpha and eps0 terms are not consistent with each 
other. Thus, we have to reverse the order of a and b. This is the reason why we use 
alpha[::-1]. Since several values are zero, such as mu, ar, and ma, the time series 
of garch is identical with eps. Thus, we show just two time series in the following 
graph. The high volatility is for garch, while the other one is for standard deviation:
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GJR_GARCH by Glosten, Jagannanthan, and 
Runkle (1993)
Glosten, Jagannathan, and Runkle (1993) models asymmetry in the GARCH process. 
They suggest to model t t tzσ∈ =  where tz  is the i.i.d. hypothesis. GJR_GARCH (1,1,1) 
has the following format:

2 2 2 2
1 1 1 1t t t t tIσ ω α βσ γ− − − −= + ∈ + + ∈          (16)

Here, the condition 1 0tI − =  if 1 0t−∈ ≥  and 1 1tI − =  if 1 0t−∈ < holds true. The following 
code is taken from the Kevin Sheppard website located at:

http://nbviewer.ipython.org/url/www.kevinsheppard.com/images/9/9e/
Example_GJR-GARCH.ipynb:

import numpy as np

import matplotlib.pyplot as plt

from numpy import size, log, pi, sum, diff, array, zeros, diag, dot, mat, 
asarray, sqrt

from numpy.linalg import inv

from scipy.optimize import fmin_slsqp

from matplotlib.mlab import csv2rec
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def gjr_garch_likelihood(parameters, data, sigma2, out=None):

    mu = parameters[0]

    omega = parameters[1]

    alpha = parameters[2]

    gamma = parameters[3]

    beta = parameters[4]

    T = size(data,0)

    eps = data-mu

    for t in xrange(1,T):

        sigma2[t]=(omega+alpha*eps[t-1]**2+gamma*eps[t-1]**2*(eps[t-
1]<0)+beta*sigma2[t-1])

    logliks = 0.5*(log(2*pi) + log(sigma2) + eps**2/sigma2)

    loglik = sum(logliks)

    if out is None:

        return loglik

    else:

        return loglik, logliks, copy(sigma2)

def gjr_constraint(parameters,data, sigma2, out=None):

    alpha = parameters[2]

    gamma = parameters[3]

    beta = parameters[4]

    return array([1-alpha-gamma/2-beta]) # Constraint 
alpha+gamma/2+beta<=1

def hessian_2sided(fun, theta, args):

    f = fun(theta, *args)

    h = 1e-5*np.abs(theta)

    thetah = theta + h

    h = thetah-theta

    K = size(theta,0)

    h = np.diag(h)

    fp = zeros(K)

    fm = zeros(K)

    for i in xrange(K):

        fp[i] = fun(theta+h[i], *args)

        fm[i] = fun(theta-h[i], *args)
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    fpp = zeros((K,K))

    fmm = zeros((K,K))

    for i in xrange(K):

        for j in xrange(i,K):

            fpp[i,j] = fun(theta + h[i] + h[j], *args)

            fpp[j,i] = fpp[i,j]

            fmm[i,j] = fun(theta-h[i]-h[j], *args)

            fmm[j,i] = fmm[i,j]

    hh = (diag(h))

    hh = hh.reshape((K,1))

    hh = dot(hh,hh.T)

    H = zeros((K,K))

    for i in xrange(K):

        for j in xrange(i,K):

            H[i,j] = (fpp[i,j]-fp[i]-fp[j] + f+ f-fm[i]-fm[j] + 
fmm[i,j])/hh[i,j]/2

            H[j,i] = H[i,j]

    return H

We can write a function called GJR_GARCH() by including all initial values, 
constraints, and bounds as follows:

def GJR_GARCH(ret):

    startV=array([ret.mean(),ret.var()*0.01,0.03,0.09,0.90])

    finfo=np.finfo(np.float64)

    t=(0.0,1.0)

    bounds=[(-10*ret.mean(),10*ret.mean()),(finfo.eps,2*ret.var()),t,t,t]

    T=size(ret,0)

    sigma2=np.repeat(ret.var(),T)

    inV=(ret,sigma2)

    return fmin_slsqp(gjr_garch_likelihood,startV,f_ieqcons=gjr_constrain
t,bounds=bounds,args=inV)

In order to replicate our result, we could use the random.seed() function  
to fix our returns obtained from generating a set of random numbers from  
a uniform distribution:

sp.random.seed(12345)

returns=sp.random.uniform(-0.2,0.3,100)

tt=GJR_GARCH(returns)
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After we call the GJR_GARCH() function by inputting returns, we expect five printed 
outputs as follows:

The interpretations of these five outputs are given in the following table:

# Meaning
1 Message describing the exit mode from the optimizer
2 The final value of the objective function
3 The number of iterations
4 Function evaluations
5 Gradient evaluations

The descriptions of various exit modes are listed in the following table:

Exit mode Description 
-1 Gradient evaluation required (g and a)
0 Optimization terminated successfully
1 Function evaluation required (f and c)
2 More equality constraints than independent variables
3 More than 3*n iterations in LSQ sub problem
4 Inequality constraints incompatible
5 Singular matrix E in LSQ subproblem
6 Singular matrix C in LSQ subproblem
7 Rank-deficient equality constraint subproblem HFTI
8 Positive directional derivative for line search
9 Iteration limit exceeded
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To show our final parameter values, we print our results with the help of the 
following code:

>>>print tt

[  7.73958583e-02   6.65856138e-03   1.00386156e-12  -1.67115250e-12

   6.61947977e-01]

>>>

Summary
In this chapter, we focused on several issues, especially on volatility measures and 
ARCH/GARCH. For the volatility measures, first we discussed the widely used 
standard deviation, which is based on the normality assumption. To show that such 
an assumption might not hold, we introduced several normality tests, such as the 
Shapiro-Wilk test and the Anderson-Darling test. To show a fat tail of many stocks' 
real distribution benchmarked on a normal distribution, we vividly used various 
graphs to illustrate it. To show that the volatility might not be constant, we presented 
the test to compare the variance over two periods. Then, we showed a Python 
program to conduct the Breusch-Pangan (1979) test for heteroskedasticity. ARCH 
and GARCH are used widely to describe the evolvements of volatility over time. For 
these models, we simulate their simple form such as ARCH (1) and GARCH (1,1) 
processes. In addition to their graphical presentations, the Python codes of Kevin 
Sheppard are included to solve the GJR_GARCH (1,1,1) process.

Exercises
1. What is the definition of volatility?

2. How can you measure risk (volatility)?/

3. What are the issues related to the widely used definition of risk  
(standard deviation)?

4. How can you test whether stock returns follow a normal distribution?  
For given sets of stocks, test whether they follow a normal distribution.

5. What is the lower partial standard deviation? What are its applications?

6. Choose five stocks, such as DELL, IBM, Microsoft, Citi Group, and Walmart,  
and compare their standard deviation with LPSD based on the last three-years'  
daily data.
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7. Is a stock's volatility constant over the years?

8. Use the Breusch-Pagan (1979) test to confirm or reject the hypothesis that daily 
returns for IBM is homogeneous.

9. How can you test whether a stock's volatility is constant?

10. What does "fat tail" mean ? Why should we care about fat tail?

11. How can you download the option data?

12. What is an ARCH (1) process?

13. What is a GARCH (1,1) process?

14. Apply GARCH (1,1) process to DELL.

15. Write a Python program to show the volatility smile by using a set of put options.
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items() function  295
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J
Jagannanthan model  369
January effect

testing  195
join() function  189

K
Kolmogorov-Smirnov test  349
kurtosis  351

L
LaTeX

URL  158
LEGB rule  30
len() function  39, 145
Linalg  109
linear equations

solving, SciPy used  113, 114
Linear regression and Capital Assets Pricing 

Model. See  CAPM
linspace() function  127
list data type  103, 104
loadmat() function  181
loadtxt() function  118
lo() function  76
log() function  72
logic relationships  110
lognormal distribution

graphical presentation  311, 312
long-term return forecast  333, 334
lookback options

pricing, with floating strikes  342, 343
loss function

for call option  240
lower partial standard  

deviation (LPSD)  347, 352, 353

M
manuals, Python

finding  19, 20
online tutorials  21
PDF version  21

market returns
and stock, comparing  148

mathematical formulae
adding, to graph  157, 158

math import *  34
math module

about  72
e (2.71828)  34
importing  33
pi (3.14159265)  34

MATLAB dataset
data, inputting from  181

matplotlib
alternative installation, via Anaconda  125
installing, via ActivatePython  124, 125
URL  163
using  125-128

matplotlib module
about  87
installing  163

matrix multiplication operation
performing  105, 106

mean() function  332
meaningful variable names

choosing  25, 26
min_value variable  281
module

about  80-89
available modules, finding  86, 87
built-in modules  85
dependency approaches  91
exp() function, importing  84
importing  80
log() function, importing  84
short name, adopting for  81
specific uninstalled module, finding  90
sqrt(), importing  84

Monte Carlo simulation
used, for pricing barrier options  337, 338
using  335

monthly returns
daily returns, converting to  187-190

M.P. Visser  363
m stocks

random selection, from n  
given stocks  315, 316

multiple IRRs
estimating  283
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N
Ndimage  109
Nested (multiple) for loops  288
Net present value. See  NPV
normal distribution

about  243
drawing  244
histogram  310
n random numbers, generating from  310
random samples, drawing from  309

normality test  349, 350
normdist() function  74
np.argmin() function  108
np.array() function  98
np.irr() function  137
np.linspace() function  112
np.min() function  108
np.npv() function  99
np.random.normal() function  128
np.size() function  97
np.std() function  97
NPV

about  59, 60
defining  135

npv_f() function  282
NPV() function  99, 281
NPV profile

about  135, 136
colors, using  137, 139
different shapes, using  139

NPV rule  59, 60
n random numbers

generating, from normal distribution  310
n-stock portfolio

forming  192, 193
n stocks

efficient frontier, constructing with  329
used, for constructing an efficient  

frontier  217-219
NumPy

functions, displaying in  102
installing  96, 119

NumPy module  87
numpy.random function  308
NumPy, using

examples  97, 98

O
Odr  109
OLS regression

using  173
one dimensional time series

DataFrame, using  183-185
date variables, using  183
generating, pd.Series()  

function used  182, 183
open data sources

Bondsonline  174
Bureau of Labor Statistics  174
Census Bureau  174
Federal Reserve Bank Data Library  174
Google Finance  174
Prof. French's Data Library  174
Russell indices  174
U.S. Department of the Treasury  174
Yahoo! Finance  174
Yahoo! Finance, downloading from  175

optimal portfolio
constructing  215-217

optimization  116
optimization, variance-covariance  

matrix  214, 215
optimize  109
option data

retrieving, from CBOE  295, 296
retrieving, from Yahoo! Finance  297
retrieving, Yahoo! Finance  358

ordinary least square regression. See  OLS 
regression

over-the-counter (OTC)  335
own module

generating  50

P
p4f module

for options  248, 249
Pagan  355-358
Pandas

installing  168
used, for data manipulation  171-173

Pandas module  11
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Pandas pickle format
URL  292

Pastor and Stambaugh (2003) liquidity 
measure  199, 201

path
project directory, adding to  65

Path Browser  89
path function  65
payback period

defining  60
payback period rule

defining  60
payoff function

for call option  238, 239
pd.DataFrame() function  185
pd.interpolate() function  220
pd.ols function  207
pd.read_clipboard() function  176
pd.read_csv() function  180
pd.Series() function

about  182
used, for generating one dimensional  

time series  182, 183
permutation() function  317
pi (3.14159265)  34
PIN (Probability of informed trading)  315
pi value

estimating, simulation used  313, 314
plt.bar() function  134
plus operation

performing  105
Poisson distribution

random numbers, generating from  315
portfolio diversification effect

graphical representation  140-142
number of stocks  142-144
portfolio risk  142-144

power function
about  30
using  28, 29

print() function  36, 308
Prof. French's Data Library

URL  174
profit function

for call option  240

program
debugging  76
debugging, from Python editor  48, 49

project directory
adding, to path  65

put-call parity
about  259
graphical representation  260, 261

put-call ratio
about  300
for shorter period  302, 303

put option  241, 243
about  47, 52
calling  49

pv() function  97
Python

about  10
addition operation  28
benefits  10, 11
division operation  28
help window, finding  18
installing  12
launching, Anaconda command  

prompt used  169
launching, DOS window used  169
launching, from Anaconda  96, 97
launching, from own DOS window  15
launching, from Python command line  14
launching, Spyder used  170, 171
launching, ways  12
launching, with GUI  13, 14
modules  11
multiplication operation  28
quitting, ways  16, 17
shortcoming  11
subtraction operation  28
used, as financial calculator  64
version, finding  21
versions  12

Python code 
about  71
for down-and-in put option  338

Python command line
Python, launching from  14

Python editor
functions, defining from  47
program, debugging from  48, 49
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Python function
writing  44

Python home documents  20
Python Manuals

finding  20
Python module. See  module
Python Package Index

URL  92

Q
quant  80
Quant module  91

R
randint() function  316
random access

versus sequential access  292
random numbers

generating, from Poisson  
distribution  315

generating, from standard normal  
distribution  308

generating, from uniform  
distribution  312, 313

generating, with seed  114, 115, 309, 310
random.rand() function  115
random samples

drawing, from normal distribution  309
random.seed() function  371
randrange() function  316
range() function  277
read_csv() function  181
read_table() function  179
remainder  28
remove() function  317
ret_f() function  354
return

versus volatility, comparing  161, 162
return distribution

displaying, histogram used  145-148
return estimation

about  185-187
daily returns, converting to annual  

returns  190, 191
daily returns, converting to monthly  

returns  187, 189

Return on Equity (ROE)  133
rolling beta

estimating  207-209
Roll's model to estimate  

spread (1984)  197, 198
round() function  32
r.sort() function  145
Runkle model  369
Run Module F5  72

S
SciPy

functions, displaying in  102
installing  96
interpolating in  112
stats  111, 112
subpackages  109
used, for solving linear equations  113, 114

SciPy module  72
SciPy, subpackages

Cluster  109
Constants  109
Fftpack  109
Integrate  109
Interpolate  109
Io  109
Linalg  109
Ndimage  109
Odr  109
optimize  109
signal  109
sparse  109
spatial  109
special  109
stats  109

SciPy, using
examples  98-101

second type comment  52
Securities and Exchange  

Commission (SEC)  10
seed

random numbers, generating with  114, 115, 
309, 310

seed() function  309, 312, 322
sequential access

versus random access  292
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Shapiro-Wilk test  349
signal  109
sign() function  287
simple images

adding, to graph  158
simple interest

defining  129, 130
simulation

used, for pi value estimation  313, 314
used, for pricing call  334, 335

skewness  351, 360
Small minus Big (SMB)  231
SMB (Small Minus Big)  316
smile  360
Sobol sequence

URL  344
used, for improving efficiency  344

Sortino  347
sparse  109
spatial  109
special  109
specific function  103
specific subdirectory

certain files, displaying  63
specific uninstalled module

finding  90
sp.fv() function  100
sp.npv() function  100
sp.pmt() function  99
sp.prod() function  101
sp.pv() function  100
spread estimation

based on, high-frequency data  227-229
sp.stats.bartlet function

used, for testing equal variance  194
Spyder

URL  229
used, for launching Python  170, 171
using  229, 230

sqrt(3) command  24
sqrt() function  25, 34, 72, 80, 84
standard normal distribution

about  244
random numbers, generating from  308

stats  109, 111, 112
stats.anderson() function  349

statsmodels
about  12
installing  168
OLS regression method  173
using, for statistical analysis  173

stats.norm.cdf() function  246, 248
stats.norm.pdf() function  244
std() function  103
stock

and market returns, comparing  148
performance, comparing among  160

stock price movements
simulating  320-322

straddle trading strategy  251, 253, 254
strangle trading strategy  251
strap trading strategy  251
string.replace() function  223
strip() function  37, 38
strip trading strategy  251
sys module  21

T
tail() function  298
terminal stock prices

estimating  322, 323
text file

data, inputting from  178, 179
data, outputting to  222

texts
adding, to graph  131, 132

time value, money
defining  150

TORQ database
about  226
URL  226

Trade, Order, Report, and Quotation. See  
TORQ database

trading strategies
about  251
bear spread with calls  251
bear spread with puts  251
bull spread with calls  251
bull spread with puts  251
butterfly with calls  251, 256, 257
butterfly with puts  251
calendar spread  251, 254
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covered call  252
straddle  251-254
strangle  251
strap  251
strip  251

trading volume
and closing price, viewing  156

trytond_account_statement module  91
trytond_currency module  91
trytond_project module  91
trytond_stock_forecast module  91
trytond_stock_split module  91
T-test

about  193
equal means test, performing  194
equal variances test, performing  194
January effect, testing  195
performing  193, 194

ttest_1samp() function  111
tuple data type  39, 40
two strings

combining  37
two-year price movement

graphical representation  153, 154
type() function  36

U
uniform distribution

random numbers, generating from  312, 313
unique() function  228, 317
Up-and-in option  337
up-and-in parity

graphical representation  340-342
Up-and-out option  337
up-and-out parity

graphical representation  340-342
upper() function  37, 38
U.S. Department of the Treasury

URL  174
useful applications

52-week high and low trading strategy  196
Amihud's model for  

illiquidity (2002)  198, 199
Pastor and Stambaugh (2003)  

liquidity measure  199- 201
Roll's model to estimate  

spread (1984)  197, 198

V
Value at Risk. See  VaR
values

assigning, to variables  24
vanilla options  335
VaR

using  210, 211
variable

deleting  27
initializing  17
unsigning  27
values, assigning to  24
values, displaying  24

variance-covariance matrix
estimating  212, 214
optimization  214, 215

versions, Python
finding  21

Visual financial statements
URL  163

volatility
about  348, 360
over two periods, equivalency testing  354
versus return, comparing  161, 162

volatility clustering  362, 363
volatility skewness  360, 362
volatility smile  360, 362

W
web page

data, retrieving from  180, 181
web page examples

URL  163
while loop

about  284
used, for estimating implied  

volatility  286, 287

X
xlim() function  130
x.sum() dot function  107
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Y
Yahoo! Finance

current price, retrieving from  300
different expiring dates  299
historical price data, retrieving  

from  144, 177
option data, retrieving from  297, 358
URL  174, 297

yanMonthly.pickle
URL  293

ylim() function  130
Ystockquote  91
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