

Mastering Python Design
Patterns

Create various design patterns to master the art of
solving problems using Python

Sakis Kasampalis

BIRMINGHAM - MUMBAI

Mastering Python Design Patterns

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2015

Production reference: 1220115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-932-4

www.packtpub.com

www.packtpub.com

Credits

Author
Sakis Kasampalis

Reviewers
Evan Dempsey

Amitabh Sharma

Yogendra Sharma

Patrycja Szabłowska

Commissioning Editor
Kunal Parikh

Acquisition Editor
Owen Roberts

Content Development Editor
Sumeet Sawant

Technical Editors
Tanvi Bhatt

Gaurav Suri

Copy Editors
Shivangi Chaturvedi

Nithya P.

Adithi Shetty

Project Coordinator
Aboli Ambardekar

Proofreaders
Ameesha Green

Joyce Littlejohn

Indexer
Tejal Soni

Graphics
Abhinash Sahu

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

About the Author

Sakis Kasampalis (@SKasampalis) is a software engineer living in the
Netherlands. He is not dogmatic about particular programming languages and tools;
his principle is that the right tool should be used for the right job. One of his favorite
tools is Python because he finds it very productive.

Sakis was also the technical reviewer of Mastering Object-oriented Python and Learning
Python Design Patterns, published by Packt Publishing.

I want to thank my sweetheart, Georgia, for supporting this effort.
Many thanks to Owen Roberts who encouraged me to write this
book. I also want to thank Sumeet Sawant for being a very kind and
cooperative content development editor. Last but not least, I want to
thank the reviewers of this book for their valuable feedback.

About the Reviewers

Evan Dempsey is a software developer from Waterford, Ireland. When he isn't
hacking in Python for fun and profit, he enjoys craft beers, common Lisp, and
keeping up with modern research in machine learning. He is a contributor to several
open source projects.

Amitabh Sharma is a professional software engineer. He has worked extensively
on enterprise applications in telecommunications and business analytics. His work
is focused on service-oriented architecture, data warehouses, and languages such as
Java, Python, and others.

I would like to thank my grandfather and my father for allowing me
to learn all that I can. I would also like to thank my wife, Komal, for
her support and encouragement.

Yogendra Sharma was born and brought up in a small but cultural town,
Pratapgarh, in the state of Rajasthan. His basic education has been imparted in his
hometown itself, and he completed his BTech in Computer Science from Jaipur.
He is basically an engineer by heart and a technical enthusiast by nature.

He has vast experience in the fields of Python, Django framework, web app security,
networking, Web 2.0, and C++.

Along with CCNA, many other esteemed certifications have been awarded to him.
He is an active member of International Association of Engineers, Ubuntu, India,
and Computer Society of India.

More recently, he participated in bug bounty programs and won many bug bounties,
including the respected Yahoo, Ebay, PayPal bug bounty. He has been appointed
as security researcher for several respected organizations, such as Adobe, Ebay,
Avira, Moodle, Cisco, Atlassian, Basecamp, CodeClimate, Abacus, Rediff, Assembla,
RecruiterBox, Tumbler, Wrike, Indeed, HybridSaaS, Sengrid, and SnapEngag.

He has reviewed many books from reputed publishing houses. You can find him on
LinkedIn at http://in.linkedin.com/in/yogendra0sharma.

I would like to thank all my friends who always encouraged me to
do something new and believing in me.

Patrycja Szabłowska is a Python developer with some Java background,
with experience mainly in backend development. She graduated from Nicolaus
Copernicus University in Toruń, Poland.

She is currently working in Warsaw, Poland, at Grupa Wirtualna Polska. She is
constantly exploring technical novelties and is open-minded and eager to learn about
the next Python library or framework. Her favorite programming motto is Code is
read much more often than it is written.

I'd like to thank my husband, Wacław, for encouraging me to explore new frontiers,
and also my parents for teaching me what matters the most.

http://in.linkedin.com/in/yogendra0sharma

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on
Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

Table of Contents
Preface 1
Chapter 1: The Factory Pattern 9

Factory Method 9
A real-life example 10
A software example 10
Use cases 10
Implementation 12

Abstract Factory 20
A real-life example 20
A software example 21
Use cases 21
Implementation 21

Summary 27
Chapter 2: The Builder Pattern 29

A real-life example 30
A software example 30
Use cases 31
Implementation 34
Summary 43

Chapter 3: The Prototype Pattern 45
A real-life example 47
A software example 48
Use cases 48
Implementation 49
Summary 54

Table of Contents

[ii]

Chapter 4: The Adapter Pattern 57
A real-life example 58
A software example 58
Use cases 59
Implementation 59
Summary 63

Chapter 5: The Decorator Pattern 65
A real-life example 66
A software example 67
Use cases 67
Implementation 68
Summary 73

Chapter 6: The Facade Pattern 75
A real-life example 76
A software example 76
Use cases 77
Implementation 77
Summary 83

Chapter 7: The Flyweight Pattern 85
A real-life example 86
A software example 86
Use cases 86
Implementation 87
Summary 92

Chapter 8: The Model-View-Controller Pattern 93
A real-life example 94
A software example 94
Use cases 95
Implementation 96
Summary 100

Chapter 9: The Proxy Pattern 103
A real-life example 106
A software example 107
Use cases 107
Implementation 108
Summary 112

Table of Contents

[iii]

Chapter 10: The Chain of Responsibility Pattern 113
A real-life example 115
A software example 115
Use cases 116
Implementation 117
Summary 122

Chapter 11: The Command Pattern 125
A real-life example 126
A software example 126
Use cases 127
Implementation 127
Summary 135

Chapter 12: The Interpreter Pattern 137
A real-life example 138
A software example 138
Use cases 139
Implementation 140
Summary 147

Chapter 13: The Observer Pattern 149
A real-life example 149
A software example 150
Use cases 151
Implementation 151
Summary 158

Chapter 14: The State Pattern 159
A real-life example 161
A software example 162
Use cases 162
Implementation 162
Summary 169

Chapter 15: The Strategy Pattern 171
A real-life example 172
A software example 173
Use cases 174
Implementation 175
Summary 180

Table of Contents

[iv]

Chapter 16: The Template Pattern 181
A real-life example 187
A software example 188
Use cases 188
Implementation 189
Summary 192

Index 193

Preface

Design patterns
In software engineering, a design pattern is a recommended solution to a software
design problem. Design patterns generally describe how to structure our code to
solve common design problems using best practices. It is important to note that a
design pattern is a high-level solution; it doesn't focus on implementation details
such as algorithms and data structures [GOF95, page 13], [j.mp/srcmdp]. It is up to
us, as software engineers, to decide which algorithm and data structure is optimal
to use for the problem we are trying to solve.

If you are wondering what is the meaning of the text within [], please
jump to the Conventions section of this preface for a moment to see how
references are formatted in this book.

The most important part of a design pattern is probably its name. The benefit
of naming all patterns is that we have, on our hands, a common vocabulary to
communicate [GOF95, page 13]. Thus, if you send some code for review and your
peer reviewer gives feedback mentioning "I think that you can use a Strategy here
instead of ...", even if you don't know or remember what a strategy is, you can
immediately look it up.

As programming languages evolve, some design patterns such as Singleton become
obsolete or even antipatterns [j.mp/jalfdp], others are built in the programming
language (iterator), and new patterns are born (Borg/Monostate [j.mp/amdpp],
[j.mp/wikidpc]).

j.mp/srcmdp
j.mp/jalfdp
j.mp/amdpp
j.mp/wikidpc

Preface

[2]

Common misunderstandings about
design patterns
There are a few misunderstandings about design patterns. One misunderstanding
is that design patterns should be used right from the start when writing code. It is
not unusual to see developers struggling with which pattern they should use in
their code, even if they haven't first tried to solve the problem in their own way
[j.mp/prsedp], [j.mp/stedp].

Not only is this wrong, but it is also against the nature of design patterns. Design
patterns are discovered (in contrast to invented) as better solutions over existing
solutions. If you have no existing solution, it doesn't make sense to look for a better
one. Just go ahead and use your skills to solve your problem as best as you think. If
your code reviewers have no objections and through time you see that your solution
is smart and flexible enough, it means that you don't need to waste your time on
struggling about which pattern to use. You might have even discovered a better
design pattern than the existing one. Who knows? The point is do not limit your
creativity in favor of forcing yourself to use existing design patterns.

A second misunderstanding is that design patterns should be used everywhere. This
results in creating complex solutions with unnecessary interfaces and hierarchies,
where a simpler and straightforward solution would be sufficient. Do no treat design
patterns as a panacea because they are not. They must be used only if there is proof
that your existing code "smells", and is hard to extend and maintain. Try thinking in
terms of you aren't gonna need it (YAGNI [j.mp/c2yagni]) and Keep it simple stupid
(KISS [j.mp/wikikis]). Using design patterns everywhere is as evil as premature
optimization [j.mp/c2pro].

Design patterns and Python
This book focuses on design patterns in Python. Python is different than most
common programming languages used in popular design patterns books (usually
Java [FFBS04] or C++ [GOF95]). It supports duck-typing, functions are first-class
citizens, and some patterns (for instance, iterator and decorator) are built-in features.
The intent of this book is to demonstrate the most fundamental design patterns, not
all patterns that have been documented so far [j.mp/wikidpc]. The code examples
focus on using idiomatic Python when applicable [j.mp/idiompyt]. If you are not
familiar with the Zen of Python, it is a good idea to open the Python REPL right now
and execute import this. The Zen of Python is both amusing and meaningful.

j.mp/prsedp
j.mp/stedp
j.mp/c2yagni
j.mp/wikikis
j.mp/c2pro
j.mp/wikidpc

Preface

[3]

What this book covers
Part 1: Creational patterns presents design patterns that deal with object creation.

Chapter 1, The Factory Pattern, will teach you how to use the Factory design pattern
(Factory Method and Abstract Factory) to initialize objects, and cover the benefits of
using the Factory design pattern instead of direct object instantiation.

Chapter 2, The Builder Pattern, will teach you how to simplify the creation of objects
that are typically composed by more than one related objects.

Chapter 3, The Prototype Pattern, will teach you how to create a new object that is a full
copy (hence, the name clone) of an existing object.

Part 2: Structural patterns presents design patterns that deal with relationships
between the entities (classes, objects, and so on) of a system.

Chapter 4, The Adapter Pattern, will teach you how to make your existing code
compatible with a foreign interface (for example, an external library) with
minimal changes.

Chapter 5, The Decorator Pattern, will teach you how to enhance the functionality of an
object without using inheritance.

Chapter 6, The Facade Pattern, will teach you how to create a single entry point to hide
the complexity of a system.

Chapter 7, The Flyweight Pattern, will teach you how to reuse objects from an
object pool to improve the memory usage and possibly the performance of
your applications.

Chapter 8, The Model-View-Controller Pattern, will teach you how to improve the
maintainability of your applications by avoiding mixing the business logic with
the user interface.

Chapter 9, The Proxy Pattern, will teach you how to improve the security of your
application by adding an extra layer of protection.

Part 3: Behavioral patterns presents design patterns that deal with the
communication of the system's entities.

Chapter 10, The Chain of Responsibility Pattern, will teach you how to send a request
to multiple receivers.

Preface

[4]

Chapter 11, The Command Pattern, will teach you how to make your application
capable of reverting already applied operations.

Chapter 12, The Interpreter Pattern, will teach you how to create a simple language on
top of Python, which can be used by domain experts without forcing them to learn
how to program in Python.

Chapter 13, The Observer Pattern, will teach you how to send notifications to the
registered stakeholders of an object whenever its state changes.

Chapter 14, The State Pattern, will teach you how to create a state machine to model
a problem and the benefits of this technique.

Chapter 15, The Strategy Pattern, will teach you how to pick (during runtime) an
algorithm between many available algorithms, based on some input criteria
(for example, the element size).

Chapter 16, The Template Pattern, will teach you how to make a clear separation
between the common and different parts of an algorithm to avoid unnecessary
code duplication.

What you need for this book
The code is written exclusively in Python 3. Python 3 is, in many aspects, not
compatible with Python 2.x [j.mp/p2orp3]. The focus is on Python 3.4.0 but using
Python 3.3.0 should also be fine, since there are no syntax differences between
Python 3.3.0 and Python 3.4.0 [j.mp/py3dot4]. In general, if you install the latest
Python 3 version from www.python.org, you should be fine with running the
examples. Most modules/libraries that are used in the examples are a part of the
Python 3 distribution. If an example requires any extra modules to be installed,
instructions on how to install them are given before presenting the related code.

Who this book is for
The audience of this book is Python programmers with an intermediate background
and an interest in design patterns implemented in idiomatic Python. Programmers
of other languages who are interested in Python can also benefit, but it's better
if they first read some materials that explain how things are done in Python
[j.mp/idiompyt], [j.mp/dspython].

Preface

[5]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation
of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We will use two libraries that are part of the Python distribution for working with
XML and JSON: xml.etree.ElementTree and json."

A block of code is set as follows:

 @property
 def parsed_data(self):
 return self.data

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

 @property
 def parsed_data(self):
 return self.data

Any command-line input or output is written as follows:

>>> python3 factory_method.py

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Clicking
the Next button moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[6]

Book references follow the format [Author, page]. For example, the reference
[GOF95, page 10] refers to the 10th page of the GOF (Design Patterns: Elements of
Reusable Object-Oriented Software) book. At the end of the book, there is a section
devoted to all book references.

Web references follow the format [j.mp/shortened]. These are shortened URL
addresses that you can type or copy/paste into your web browser and be redirected
to the real (usually longer and sometimes uglier) web reference. For example,
typing j.mp/idiompyt in you web browser's address bar should redirect you to
http://python.net/~goodger/projects/pycon/2007/idiomatic/handout.html.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

http://python.net/~goodger/projects/pycon/2007/idiomatic/handout.html
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[7]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

The Factory Pattern
Creational design patterns deal with an object creation [j.mp/wikicrea]. The aim
of a creational design pattern is to provide better alternatives for situations where a
direct object creation (which in Python happens by the __init__() function [j.mp/
divefunc], [Lott14, page 26]) is not convenient.

In the Factory design pattern, a client asks for an object without knowing where the
object is coming from (that is, which class is used to generate it). The idea behind
a factory is to simplify an object creation. It is easier to track which objects are
created if this is done through a central function, in contrast to letting a client create
objects using a direct class instantiation [Eckel08, page 187]. A factory reduces the
complexity of maintaining an application by decoupling the code that creates an
object from the code that uses it [Zlobin13, page 30].

Factories typically come in two forms: the Factory Method, which is a method (or in
Pythonic terms, a function) that returns a different object per input parameter [j.mp/
factorympat]; the Abstract Factory, which is a group of Factory Methods used to
create a family of related products [GOF95, page 100], [j.mp/absfpat].

Factory Method
In the Factory Method, we execute a single function, passing a parameter that
provides information about what we want. We are not required to know any details
about how the object is implemented and where it is coming from.

j.mp/divefunc
j.mp/divefunc
j.mp/factorympat
j.mp/factorympat

The Factory Pattern

[10]

A real-life example
An example of the Factory Method pattern used in reality is in plastic toy
construction. The molding powder used to construct plastic toys is the same,
but different figures can be produced using different plastic molds. This is like
having a Factory Method in which the input is the name of the figure that we
want (duck and car) and the output is the plastic figure that we requested.
The toy construction case is shown in the following figure, which is provided by
www.sourcemaking.com [j.mp/factorympat].

A software example
The Django framework uses the Factory Method pattern for creating the fields
of a form. The forms module of Django supports the creation of different kinds
of fields (CharField, EmailField) and customizations (max_length, required)
[j.mp/djangofacm].

Use cases
If you realize that you cannot track the objects created by your application because
the code that creates them is in many different places instead of a single function/
method, you should consider using the Factory Method pattern [Eckel08, page 187].
The Factory Method centralizes an object creation and tracking your objects becomes
much easier. Note that it is absolutely fine to create more than one Factory Method,
and this is how it is typically done in practice. Each Factory Method logically groups
the creation of objects that have similarities. For example, one Factory Method might
be responsible for connecting you to different databases (MySQL, SQLite), another
Factory Method might be responsible for creating the geometrical object that you
request (circle, triangle), and so on.

www.sourcemaking.com
j.mp/factorympat
j.mp/djangofacm

Chapter 1

[11]

The Factory Method is also useful when you want to decouple an object creation
from an object usage. We are not coupled/bound to a specific class when creating an
object, we just provide partial information about what we want by calling a function.
This means that introducing changes to the function is easy without requiring any
changes to the code that uses it [Zlobin13, page 30].

Another use case worth mentioning is related to improving the performance and
memory usage of an application. A Factory Method can improve the performance
and memory usage by creating new objects only if it is absolutely necessary
[Zlobin13, page 28]. When we create objects using a direct class instantiation, extra
memory is allocated every time a new object is created (unless the class uses caching
internally, which is usually not the case). We can see that in practice in the following
code (file id.py), it creates two instances of the same class A and uses the id()
function to compare their memory addresses. The addresses are also printed in the
output so that we can inspect them. The fact that the memory addresses are different
means that two distinct objects are created as follows:

class A(object):
 pass

if __name__ == '__main__':
 a = A()
 b = A()

 print(id(a) == id(b))
 print(a, b)

Executing id.py on my computer gives the following output:

>> python3 id.py

False

<__main__.A object at 0x7f5771de8f60> <__main__.A object at
0x7f5771df2208>

Note that the addresses that you see if you execute the file are not the same as I see
because they depend on the current memory layout and allocation. But the result
must be the same: the two addresses should be different. There's one exception that
happens if you write and execute the code in the Python Read-Eval-Print Loop
(REPL) (interactive prompt), but that's a REPL-specific optimization which is not
happening normally.

The Factory Pattern

[12]

Implementation
Data comes in many forms. There are two main file categories for storing/retrieving
data: human-readable files and binary files. Examples of human-readable files are
XML, Atom, YAML, and JSON. Examples of binary files are the .sq3 file format used
by SQLite and the .mp3 file format used to listen to music.

In this example, we will focus on two popular human-readable formats: XML and
JSON. Although human-readable files are generally slower to parse than binary files,
they make data exchange, inspection, and modification much easier. For this reason,
it is advised to prefer working with human-readable files, unless there are other
restrictions that do not allow it (mainly unacceptable performance and proprietary
binary formats).

In this problem, we have some input data stored in an XML and a JSON file, and we
want to parse them and retrieve some information. At the same time, we want to
centralize the client's connection to those (and all future) external services. We will
use the Factory Method to solve this problem. The example focuses only on XML
and JSON, but adding support for more services should be straightforward.

First, let's take a look at the data files. The XML file, person.xml, is based on the
Wikipedia example [j.mp/wikijson] and contains information about individuals
(firstName, lastName, gender, and so on) as follows:

<persons>
 <person>
 <firstName>John</firstName>
 <lastName>Smith</lastName>
 <age>25</age>
 <address>
 <streetAddress>21 2nd Street</streetAddress>
 <city>New York</city>
 <state>NY</state>
 <postalCode>10021</postalCode>
 </address>
 <phoneNumbers>
 <phoneNumber type="home">212 555-1234</phoneNumber>
 <phoneNumber type="fax">646 555-4567</phoneNumber>
 </phoneNumbers>
 <gender>
 <type>male</type>
 </gender>
 </person>
 <person>
 <firstName>Jimy</firstName>

Chapter 1

[13]

 <lastName>Liar</lastName>
 <age>19</age>
 <address>
 <streetAddress>18 2nd Street</streetAddress>
 <city>New York</city>
 <state>NY</state>
 <postalCode>10021</postalCode>
 </address>
 <phoneNumbers>
 <phoneNumber type="home">212 555-1234</phoneNumber>
 </phoneNumbers>
 <gender>
 <type>male</type>
 </gender>
 </person>
 <person>
 <firstName>Patty</firstName>
 <lastName>Liar</lastName>
 <age>20</age>
 <address>
 <streetAddress>18 2nd Street</streetAddress>
 <city>New York</city>
 <state>NY</state>
 <postalCode>10021</postalCode>
 </address>
 <phoneNumbers>
 <phoneNumber type="home">212 555-1234</phoneNumber>
 <phoneNumber type="mobile">001 452-8819</phoneNumber>
 </phoneNumbers>
 <gender>
 <type>female</type>
 </gender>
 </person>
</persons>

The JSON file, donut.json, comes from the GitHub account of Adobe [j.mp/
adobejson] and contains donut information (type, price/unit that is, ppu, topping,
and so on) as follows:

[
 {
 "id": "0001",
 "type": "donut",
 "name": "Cake",
 "ppu": 0.55,

j.mp/adobejson
j.mp/adobejson

The Factory Pattern

[14]

 "batters": {
 "batter": [
 { "id": "1001", "type": "Regular" },
 { "id": "1002", "type": "Chocolate" },
 { "id": "1003", "type": "Blueberry" },
 { "id": "1004", "type": "Devil's Food" }
]
 },
 "topping": [
 { "id": "5001", "type": "None" },
 { "id": "5002", "type": "Glazed" },
 { "id": "5005", "type": "Sugar" },
 { "id": "5007", "type": "Powdered Sugar" },
 { "id": "5006", "type": "Chocolate with Sprinkles" },
 { "id": "5003", "type": "Chocolate" },
 { "id": "5004", "type": "Maple" }
]
 },
 {
 "id": "0002",
 "type": "donut",
 "name": "Raised",
 "ppu": 0.55,
 "batters": {
 "batter": [
 { "id": "1001", "type": "Regular" }
]
 },
 "topping": [
 { "id": "5001", "type": "None" },
 { "id": "5002", "type": "Glazed" },
 { "id": "5005", "type": "Sugar" },
 { "id": "5003", "type": "Chocolate" },
 { "id": "5004", "type": "Maple" }
]
 },
 {
 "id": "0003",
 "type": "donut",
 "name": "Old Fashioned",
 "ppu": 0.55,
 "batters": {
 "batter": [

Chapter 1

[15]

 { "id": "1001", "type": "Regular" },
 { "id": "1002", "type": "Chocolate" }
]
 },
 "topping": [
 { "id": "5001", "type": "None" },
 { "id": "5002", "type": "Glazed" },
 { "id": "5003", "type": "Chocolate" },
 { "id": "5004", "type": "Maple" }
]
 }
]

We will use two libraries that are part of the Python distribution for working with
XML and JSON: xml.etree.ElementTree and json as follows:

import xml.etree.ElementTree as etree
import json

The JSONConnector class parses the JSON file and has a parsed_data() method
that returns all data as a dictionary (dict). The property decorator is used to make
parsed_data() appear as a normal variable instead of a method as follows:

class JSONConnector:

 def __init__(self, filepath):
 self.data = dict()
 with open(filepath, mode='r', encoding='utf-8') as f:
 self.data = json.load(f)

 @property
 def parsed_data(self):
 return self.data

The XMLConnector class parses the XML file and has a parsed_data() method that
returns all data as a list of xml.etree.Element as follows:

class XMLConnector:

 def __init__(self, filepath):
 self.tree = etree.parse(filepath)

 @property
 def parsed_data(self):
 return self.tree

The Factory Pattern

[16]

The connection_factory() function is a Factory Method. It returns an instance of
JSONConnector or XMLConnector depending on the extension of the input file path
as follows:

def connection_factory(filepath):
 if filepath.endswith('json'):
 connector = JSONConnector
 elif filepath.endswith('xml'):
 connector = XMLConnector
 else:
 raise ValueError('Cannot connect to {}'.format(filepath))
 return connector(filepath)

The connect_to() function is a wrapper of connection_factory(). It adds
exception handling as follows:

def connect_to(filepath):
 factory = None
 try:
 factory = connection_factory(filepath)
 except ValueError as ve:
 print(ve)
 return factory

The main() function demonstrates how the Factory Method design pattern can be
used. The first part makes sure that exception handling is effective as follows:

def main():
 sqlite_factory = connect_to('data/person.sq3')

The next part shows how to work with the XML files using the Factory Method.
XPath is used to find all person elements that have the last name Liar. For each
matched person, the basic name and phone number information are shown
as follows:

 xml_factory = connect_to('data/person.xml')
 xml_data = xml_factory.parsed_data()
 liars = xml_data.findall
 (".//{person}[{lastName}='{}']".format('Liar'))
 print('found: {} persons'.format(len(liars)))
 for liar in liars:
 print('first name:
 {}'.format(liar.find('firstName').text))
 print('last name: {}'.format(liar.find('lastName').text))
 [print('phone number ({}):'.format(p.attrib['type']),
 p.text) for p in liar.find('phoneNumbers')]

Chapter 1

[17]

The final part shows how to work with the JSON files using the Factory Method.
Here, there's no pattern matching, and therefore the name, price, and topping of all
donuts are shown as follows:

 json_factory = connect_to('data/donut.json')
 json_data = json_factory.parsed_data
 print('found: {} donuts'.format(len(json_data)))
 for donut in json_data:
 print('name: {}'.format(donut['name']))
 print('price: ${}'.format(donut['ppu']))
 [print('topping: {} {}'.format(t['id'], t['type'])) for t
 in donut['topping']]

For completeness, here is the complete code of the Factory Method implementation
(factory_method.py) as follows:

import xml.etree.ElementTree as etree
import json

class JSONConnector:
 def __init__(self, filepath):
 self.data = dict()
 with open(filepath, mode='r', encoding='utf-8') as f:
 self.data = json.load(f)

 @property
 def parsed_data(self):
 return self.data

class XMLConnector:
 def __init__(self, filepath):
 self.tree = etree.parse(filepath)

 @property
 def parsed_data(self):
 return self.tree

def connection_factory(filepath):
 if filepath.endswith('json'):
 connector = JSONConnector
 elif filepath.endswith('xml'):
 connector = XMLConnector
 else:
 raise ValueError('Cannot connect to {}'.format(filepath))
 return connector(filepath)

The Factory Pattern

[18]

def connect_to(filepath):
 factory = None
 try:
 factory = connection_factory(filepath)
 except ValueError as ve:
 print(ve)
 return factory

def main():
 sqlite_factory = connect_to('data/person.sq3')
 print()

 xml_factory = connect_to('data/person.xml')
 xml_data = xml_factory.parsed_data
 liars = xml_data.findall(".//{}[{}='{}']".format('person',
 'lastName', 'Liar'))
 print('found: {} persons'.format(len(liars)))
 for liar in liars:
 print('first name:
 {}'.format(liar.find('firstName').text))
 print('last name: {}'.format(liar.find('lastName').text))
 [print('phone number ({}):'.format(p.attrib['type']),
 p.text) for p in liar.find('phoneNumbers')]
 print()

 json_factory = connect_to('data/donut.json')
 json_data = json_factory.parsed_data
 print('found: {} donuts'.format(len(json_data)))
 for donut in json_data:
 print('name: {}'.format(donut['name']))
 print('price: ${}'.format(donut['ppu']))
 [print('topping: {} {}'.format(t['id'], t['type'])) for t
 in donut['topping']]

if __name__ == '__main__':
 main()

Here is the output of this program as follows:

>>> python3 factory_method.py

Cannot connect to data/person.sq3

found: 2 persons

first name: Jimy

Chapter 1

[19]

last name: Liar

phone number (home): 212 555-1234

first name: Patty

last name: Liar

phone number (home): 212 555-1234

phone number (mobile): 001 452-8819

found: 3 donuts

name: Cake

price: $0.55

topping: 5001 None

topping: 5002 Glazed

topping: 5005 Sugar

topping: 5007 Powdered Sugar

topping: 5006 Chocolate with Sprinkles

topping: 5003 Chocolate

topping: 5004 Maple

name: Raised

price: $0.55

topping: 5001 None

topping: 5002 Glazed

topping: 5005 Sugar

topping: 5003 Chocolate

topping: 5004 Maple

name: Old Fashioned

price: $0.55

topping: 5001 None

topping: 5002 Glazed

topping: 5003 Chocolate

topping: 5004 Maple

Notice that although JSONConnector and XMLConnector have the same interfaces,
what is returned by parsed_data() is not handled in a uniform way. Different
python code must be used to work with each connector. Although it would be nice
to be able to use the same code for all connectors, this is at most times not realistic
unless we use some kind of common mapping for the data which is very often
provided by external data providers. Assuming that you can use exactly the same
code for handling the XML and JSON files, what changes are required to support a
third format, for example, SQLite? Find an SQLite file or create your own and try it.

The Factory Pattern

[20]

As it is now, the code does not forbid a direct instantiation of a connector. Is it
possible to do this? Try doing it.

Hint: Functions in Python can have nested classes.

Abstract Factory
The Abstract Factory design pattern is a generalization of Factory Method. Basically,
an Abstract Factory is a (logical) group of Factory Methods, where each Factory
Method is responsible for generating a different kind of object [Eckel08, page 193].

A real-life example
Abstract Factory is used in car manufacturing. The same machinery is used for
stamping the parts (doors, panels, hoods, fenders, and mirrors) of different car
models. The model that is assembled by the machinery is configurable and easy
to change at any time. We can see an example of the car manufacturing Abstract
Factory in the following figure, which is provided by www.sourcemaking.com
[j.mp/absfpat].

www.sourcemaking.com

Chapter 1

[21]

A software example
The django_factory package is an Abstract Factory implementation for creating
Django models in tests. It is used for creating instances of models that support test-
specific attributes. This is important because the tests become readable and avoid
sharing unnecessary code [j.mp/djangoabs].

Use cases
Since the Abstract Factory pattern is a generalization of the Factory Method pattern,
it offers the same benefits: it makes tracking an object creation easier, it decouples
an object creation from an object usage, and it gives us the potential to improve the
memory usage and performance of our application.

But a question is raised: how do we know when to use the Factory Method versus
using an Abstract Factory? The answer is that we usually start with the Factory
Method which is simpler. If we find out that our application requires many Factory
Methods which it makes sense to combine for creating a family of objects, we end up
with an Abstract Factory.

A benefit of the Abstract Factory that is usually not very visible from a user's
point of view when using the Factory Method is that it gives us the ability to modify
the behavior of our application dynamically (in runtime) by changing the active
Factory Method. The classic example is giving the ability to change the look and feel
of an application (for example, Apple-like, Windows-like, and so on) for the user
while the application is in use, without the need to terminate it and start it again
[GOF95, page 99].

Implementation
To demonstrate the Abstract Factory pattern, I will reuse one of my favorite examples,
included in Python 3 Patterns & Idioms, Bruce Eckel, [Eckel08, page 193]. Imagine that
we are creating a game or we want to include a mini-game as part of our application
to entertain our users. We want to include at least two games, one for children and
one for adults. We will decide which game to create and launch in runtime, based on
user input. An Abstract Factory takes care of the game creation part.

The Factory Pattern

[22]

Let's start with the kid's game. It is called FrogWorld. The main hero is a frog who
enjoys eating bugs. Every hero needs a good name, and in our case the name is
given by the user in runtime. The interact_with() method is used to describe the
interaction of the frog with an obstacle (for example, bug, puzzle, and other frog)
as follows:

class Frog:
 def __init__(self, name):
 self.name = name

 def __str__(self):
 return self.name

 def interact_with(self, obstacle):
 print('{} the Frog encounters {} and {}!'.format(self,
 obstacle, obstacle.action()))

There can be many different kinds of obstacles but for our example an obstacle
can only be a Bug. When the frog encounters a bug, only one action is supported:
it eats it!

class Bug:
 def __str__(self):
 return 'a bug'

 def action(self):
 return 'eats it'

The FrogWorld class is an Abstract Factory. Its main responsibilities are creating
the main character and the obstacle(s) of the game. Keeping the creation methods
separate and their names generic (for example, make_character(), make_
obstacle()) allows us to dynamically change the active factory (and therefore the
active game) without any code changes. In a statically typed language, the Abstract
Factory would be an abstract class/interface with empty methods, but in Python this
is not required because the types are checked in runtime [Eckel08, page 195], [j.mp/
ginstromdp] as follows:

class FrogWorld:
 def __init__(self, name):
 print(self)
 self.player_name = name

 def __str__(self):
 return '\n\n\t------ Frog World -------'

j.mp/ginstromdp
j.mp/ginstromdp

Chapter 1

[23]

 def make_character(self):
 return Frog(self.player_name)

 def make_obstacle(self):
 return Bug()

The WizardWorld game is similar. The only differences are that the wizard battles
against monsters like orks instead of eating bugs!

class Wizard:
 def __init__(self, name):
 self.name = name

 def __str__(self):
 return self.name

 def interact_with(self, obstacle):
 print('{} the Wizard battles against {} and
 {}!'.format(self, obstacle, obstacle.action()))

class Ork:
 def __str__(self):
 return 'an evil ork'

 def action(self):
 return 'kills it'

class WizardWorld:
 def __init__(self, name):
 print(self)
 self.player_name = name

 def __str__(self):
 return '\n\n\t------ Wizard World -------'

 def make_character(self):
 return Wizard(self.player_name)

 def make_obstacle(self):
 return Ork()

The Factory Pattern

[24]

The GameEnvironment is the main entry point of our game. It accepts factory as an
input, and uses it to create the world of the game. The play() method initiates the
interaction between the created hero and the obstacle as follows:

class GameEnvironment:
 def __init__(self, factory):
 self.hero = factory.make_character()
 self.obstacle = factory.make_obstacle()

 def play(self):
 self.hero.interact_with(self.obstacle)

The validate_age() function prompts the user to give a valid age. If the age is not
valid, it returns a tuple with the first element set to False. If the age is fine, the first
element of the tuple is set to True and that's the case where we actually care about
the second element of the tuple, which is the age given by the user as follows:

def validate_age(name):
 try:
 age = input('Welcome {}. How old are you? '.format(name))
 age = int(age)
 except ValueError as err:
 print("Age {} is invalid, please try
 again...".format(age))
 return (False, age)
 return (True, age)

Last but not least comes the main() function. It asks for the user's name and age, and
decides which game should be played by the age of the user as follows:

def main():
 name = input("Hello. What's your name? ")
 valid_input = False
 while not valid_input:
 valid_input, age = validate_age(name)
 game = FrogWorld if age < 18 else WizardWorld
 environment = GameEnvironment(game(name))
 environment.play()

And the complete code of the Abstract Factory implementation (abstract_factory.
py) is given as follows:

class Frog:
 def __init__(self, name):
 self.name = name

Chapter 1

[25]

 def __str__(self):
 return self.name

 def interact_with(self, obstacle):
 print('{} the Frog encounters {} and {}!'.format(self,
 obstacle, obstacle.action()))

class Bug:
 def __str__(self):
 return 'a bug'

 def action(self):
 return 'eats it'

class FrogWorld:
 def __init__(self, name):
 print(self)
 self.player_name = name

 def __str__(self):
 return '\n\n\t------ Frog World -------'

 def make_character(self):
 return Frog(self.player_name)

 def make_obstacle(self):
 return Bug()

class Wizard:
 def __init__(self, name):
 self.name = name

 def __str__(self):
 return self.name

 def interact_with(self, obstacle):
 print('{} the Wizard battles against {} and
 {}!'.format(self, obstacle, obstacle.action()))

class Ork:
 def __str__(self):
 return 'an evil ork'

The Factory Pattern

[26]

 def action(self):
 return 'kills it'

class WizardWorld:
 def __init__(self, name):
 print(self)
 self.player_name = name

 def __str__(self):
 return '\n\n\t------ Wizard World -------'

 def make_character(self):
 return Wizard(self.player_name)

 def make_obstacle(self):
 return Ork()

class GameEnvironment:
 def __init__(self, factory):
 self.hero = factory.make_character()
 self.obstacle = factory.make_obstacle()

 def play(self):
 self.hero.interact_with(self.obstacle)

def validate_age(name):
 try:
 age = input('Welcome {}. How old are you? '.format(name))
 age = int(age)
 except ValueError as err:
 print("Age {} is invalid, please try
 again...".format(age))
 return (False, age)
 return (True, age)

def main():
 name = input("Hello. What's your name? ")
 valid_input = False
 while not valid_input:
 valid_input, age = validate_age(name)
 game = FrogWorld if age < 18 else WizardWorld
 environment = GameEnvironment(game(name))
 environment.play()

if __name__ == '__main__':
 main()

Chapter 1

[27]

A sample output of this program is as follows:

>>> python3 abstract_factory.py

Hello. What's your name? Nick

Welcome Nick. How old are you? 17

 ------ Frog World -------

Nick the Frog encounters a bug and eats it!

Try extending the game to make it more complete. You can go as far as you want:
many obstacles, many enemies, and whatever else you like.

Summary
In this chapter, we have seen how to use the Factory Method and the Abstract
Factory design patterns. Both patterns are used when we want to (a) track an object
creation, (b) decouple an object creation from an object usage, or even (c) improve the
performance and resource usage of an application. Case (c) was not demonstrated in
the chapter. You might consider it as a good exercise.

The Factory Method design pattern is implemented as a single function that doesn't
belong to any class, and is responsible for the creation of a single kind of object
(a shape, a connection point, and so on). We saw how the Factory Method relates
to toy construction, mentioned how it is used by Django for creating different form
fields, and discussed other possible use cases for it. As an example, we implemented
a Factory Method that provides access to the XML and JSON files.

The Abstract Factory design pattern is implemented as a number of Factory Methods
that belong to a single class and are used to create a family of related objects (the
parts of a car, the environment of a game, and so forth). We mentioned how the
Abstract Factory is related with car manufacturing, how the django_factory Django
package makes use of it to create clean tests, and covered the use cases of it. The
implementation of the Abstract Factory is a mini-game that shows how we can use
many related factories in a single class.

In the next chapter, we will talk about the Builder pattern, which is another creational
pattern that can be used for fine-controlling the creation of complex objects.

The Builder Pattern
Imagine that we want to create an object that is composed of multiple parts and
the composition needs to be done step by step. The object is not complete unless
all its parts are fully created. That's where the Builder design pattern can help
us. The Builder pattern separates the construction of a complex object from its
representation. By keeping the construction separate from the representation, the
same construction can be used to create several different representations [GOF95,
page 110], [j.mp/builderpat].

A practical example can help us understand what the purpose of the Builder pattern
is. Suppose that we want to create an HTML page generator, the basic structure
(construction part) of an HTML page is always the same: it begins with <html>
and finishes with </html>; inside the HTML section are the <head> and </head>
elements, inside the head section are the <title> and </title> elements, and so
forth. But the representation of the page can differ. Each page has its own title, its
own headings, and different <body> contents. Moreover, the page is usually built in
steps: one function adds the title, another adds the main heading, another the footer,
and so on. Only after the whole structure of a page is complete can it be shown to
the client using a final render function. We can take it even further and extend the
HTML generator so that it can generate totally different HTML pages. One page
might contain tables, another page might contain image galleries, yet another page
contains the contact form, and so on.

The HTML page generation problem can be solved using the Builder pattern. In this
pattern, there are two main participants: the builder and the director. The builder
is responsible for creating the various parts of the complex object. In the HTML
example, these parts are the title, heading, body, and the footer of the page. The
director controls the building process using a builder instance. The HTML example
means for calling the builder's functions for setting the title, the heading, and so on.
Using a different builder instance allows us to create a different HTML page without
touching any code of the director.

The Builder Pattern

[30]

A real-life example
The Builder design pattern is used in fast-food restaurants. The same procedure
is always used to prepare a burger and the packaging (box and paper bag), even
if there are many different kinds of burgers (classic, cheeseburger, and more) and
different packages (small-sized box, medium-sized box, and so forth). The difference
between a classic burger and a cheeseburger is in the representation, and not in the
construction procedure. The director is the cashier who gives instructions about
what needs to be prepared to the crew, and the builder is the person from the
crew that takes care of the specific order. The following figure provided by www.
sourcemaking.com shows a Unified Modeling Language (UML) sequence diagram
of the communication that takes place between the customer (client), the cashier
(director), and the crew (builder) when a kid's menu is ordered [j.mp/builderpat].

A software example
The HTML example that was mentioned at the beginning of the chapter is actually used
by django-widgy, a third-party tree editor for Django that can be used as a Content
Management System (CMS). The django-widgy editor contains a page builder that
can be used for creating HTML pages with different layouts [j.mp/widgypb].

The django-query-builder library is another third-party Django library that relies on
the Builder pattern. The django-query-builder library can be used for building SQL
queries dynamically. Using this, we can control all aspects of a query and create a
different range of queries, from simple to very complex [j.mp/djangowidgy].

www.sourcemaking.com
www.sourcemaking.com
j.mp/builderpat

Chapter 2

[31]

Use cases
We use the Builder pattern when we know that an object must be created in multiple
steps, and different representations of the same construction are required. These
requirements exist in many applications such as page generators (like the HTML
page generator mentioned in this chapter), document converters [GOF95, page 110],
and User Interface (UI) form creators [j.mp/pipbuild].

Some resources mention that the Builder pattern can also be used as a solution to
the telescopic constructor problem [j.mp/wikibuilder]. The telescopic constructor
problem occurs when we are forced to create a new constructor for supporting
different ways of creating an object. The problem is that we end up with many
constructors and long parameter lists, which are hard to manage. An example of
the telescopic constructor is listed at the stackoverflow website [j.mp/sobuilder].
Fortunately, this problem does not exist in Python, because it can be solved in
at least two ways:

• With named parameters [j.mp/sobuipython]
• With argument list unpacking [j.mp/arglistpy]

At this point, the distinction between the Builder pattern and the Factory pattern
might not be very clear. The main difference is that a Factory pattern creates an
object in a single step, whereas a Builder pattern creates an object in multiple steps,
and almost always through the use of a director. Some targeted implementations of
the Builder pattern like Java's StringBuilder bypass the use of a director, but that's
the exception to the rule.

Another difference is that while a Factory pattern returns a created object
immediately, in the Builder pattern the client code explicitly asks the director
to return the final object when it needs it [GOF95, page 113], [j.mp/builderpat].

The new computer analogy might help to distinguish between a Builder pattern and
a Factory pattern. Assume that you want to buy a new computer. If you decide to
buy a specific preconfigured computer model, for example, the latest Apple 1.4 GHz
Mac mini, you use the Factory pattern. All the hardware specifications are already
predefined by the manufacturer, who knows what to do without consulting you. The
manufacturer typically receives just a single instruction. Code-wise, this would look
like the following (apple-factory.py):

MINI14 = '1.4GHz Mac mini'

class AppleFactory:
 class MacMini14:
 def __init__(self):
 self.memory = 4 # in gigabytes

The Builder Pattern

[32]

 self.hdd = 500 # in gigabytes
 self.gpu = 'Intel HD Graphics 5000'

 def __str__(self):
 info = ('Model: {}'.format(MINI14),
 'Memory: {}GB'.format(self.memory),
 'Hard Disk: {}GB'.format(self.hdd),
 'Graphics Card: {}'.format(self.gpu))
 return '\n'.join(info)

 def build_computer(self, model):
 if (model == MINI14):
 return self.MacMini14()
 else:
 print("I don't know how to build {}".format(model))

if __name__ == '__main__':
 afac = AppleFactory()
 mac_mini = afac.build_computer(MINI14)
 print(mac_mini)

Notice the nested MacMini14 class. This is a neat way of forbidding the
direct instantiation of a class.

Another option is buying a custom PC. In this case, you use the Builder pattern.
You are the director that gives orders to the manufacturer (builder) about
your ideal computer specifications. Code-wise, this looks like the following
(computer-builder.py):

class Computer:
 def __init__(self, serial_number):
 self.serial = serial_number
 self.memory = None # in gigabytes
 self.hdd = None # in gigabytes
 self.gpu = None

 def __str__(self):
 info = ('Memory: {}GB'.format(self.memory),
 'Hard Disk: {}GB'.format(self.hdd),
 'Graphics Card: {}'.format(self.gpu))
 return '\n'.join(info)

Chapter 2

[33]

class ComputerBuilder:
 def __init__(self):
 self.computer = Computer('AG23385193')

 def configure_memory(self, amount):
 self.computer.memory = amount

 def configure_hdd(self, amount):
 self.computer.hdd = amount

 def configure_gpu(self, gpu_model):
 self.computer.gpu = gpu_model

class HardwareEngineer:
 def __init__(self):
 self.builder = None

 def construct_computer(self, memory, hdd, gpu):
 self.builder = ComputerBuilder()
 [step for step in (self.builder.configure_memory(memory),
 self.builder.configure_hdd(hdd),
 self.builder.configure_gpu(gpu))]

 @property
 def computer(self):
 return self.builder.computer

def main():
 engineer = HardwareEngineer()
 engineer.construct_computer(hdd=500, memory=8, gpu='GeForce
 GTX 650 Ti')
 computer = engineer.computer
 print(computer)

if __name__ == '__main__':
 main()

The basic changes are the introduction of a builder ComputerBuilder, a director
HardwareEngineer, and the step-by-step construction of a computer, which now
supports different configurations (notice that memory, hdd, and gpu are parameters
and not preconfigured). What do we need to do if we want to support the
construction of tablets? Implement this as an exercise.

You might also want to change the computer serial_number into something that
is different for each computer, because as it is now it means that all computers will
have the same serial number (which is impractical).

The Builder Pattern

[34]

Implementation
Let's see how we can use the Builder design pattern to make a pizza ordering
application. The pizza example is particularly interesting because a pizza is prepared
in steps that should follow a specific order. To add the sauce, you first need to
prepare the dough. To add the topping, you first need to add the sauce. And you
can't start baking the pizza unless both the sauce and the topping are placed on the
dough. Moreover, each pizza usually requires a different baking time, depending
on the thickness of its dough and the topping used.

We start with importing the required modules and declaring a few Enum parameters
[j.mp/pytenum] plus a constant that are used many times in the application. The
STEP_DELAY constant is used to add a time delay between the different steps of
preparing a pizza (prepare the dough, add the sauce, and so on) as follows:

from enum import Enum

PizzaProgress = Enum('PizzaProgress', 'queued preparation baking
ready')
PizzaDough = Enum('PizzaDough', 'thin thick')
PizzaSauce = Enum('PizzaSauce', 'tomato creme_fraiche')
PizzaTopping = Enum('PizzaTopping', 'mozzarella double_mozzarella
bacon ham mushrooms red_onion oregano')
STEP_DELAY = 3 # in seconds for the sake of the
example

Our end product is a pizza, which is described by the Pizza class. When using the
Builder pattern, the end product does not have many responsibilities, since it is
not supposed to be instantiated directly. A builder creates an instance of the end
product and makes sure that it is properly prepared. That's why the Pizza class is
so minimal. It basically initializes all data to sane default values. An exception is the
prepare_dough() method. The prepare_dough() method is defined in the Pizza
class instead of a builder for two reasons:

• To clarify the fact that the end product is typically minimal does not mean
that you should never assign it any responsibilities

• To promote code reuse through composition [GOF95, page 32]

class Pizza:
 def __init__(self, name):
 self.name = name
 self.dough = None
 self.sauce = None
 self.topping = []

Chapter 2

[35]

 def __str__(self):
 return self.name

 def prepare_dough(self, dough):
 self.dough = dough
 print('preparing the {} dough of your
 {}...'.format(self.dough.name, self))
 time.sleep(STEP_DELAY)
 print('done with the {} dough'.format(self.dough.name))

There are two builders: one for creating a margarita pizza (MargaritaBuilder) and
another for creating a creamy bacon pizza (CreamyBaconBuilder). Each builder
creates a Pizza instance and contains methods that follow the pizza-making
procedure: prepare_dough(), add_sauce(), add_topping(), and bake(). To be
precise, prepare_dough() is just a wrapper to the prepare_dough() method of the
Pizza class. Notice how each builder takes care of all the pizza-specific details. For
example, the topping of the margarita pizza is double mozzarella and oregano,
while the topping of the creamy bacon pizza is mozzarella, bacon, ham, mushrooms,
red onion, and oregano as follows:

class MargaritaBuilder:
 def __init__(self):
 self.pizza = Pizza('margarita')
 self.progress = PizzaProgress.queued
 self.baking_time = 5 # in seconds for the sake of the
 example

 def prepare_dough(self):
 self.progress = PizzaProgress.preparation
 self.pizza.prepare_dough(PizzaDough.thin)

 def add_sauce(self):
 print('adding the tomato sauce to your margarita...')
 self.pizza.sauce = PizzaSauce.tomato
 time.sleep(STEP_DELAY)
 print('done with the tomato sauce')

 def add_topping(self):
 print('adding the topping (double mozzarella, oregano) to
 your margarita')
 self.pizza.topping.append([i for i in
 (PizzaTopping.double_mozzarella, PizzaTopping.oregano)])
 time.sleep(STEP_DELAY)
 print('done with the topping (double mozzarella,
 oregano)')

The Builder Pattern

[36]

 def bake(self):
 self.progress = PizzaProgress.baking
 print('baking your margarita for {}
 seconds'.format(self.baking_time))
 time.sleep(self.baking_time)
 self.progress = PizzaProgress.ready
 print('your margarita is ready')

class CreamyBaconBuilder:
 def __init__(self):
 self.pizza = Pizza('creamy bacon')
 self.progress = PizzaProgress.queued
 self.baking_time = 7 # in seconds for the sake of the
 example

 def prepare_dough(self):
 self.progress = PizzaProgress.preparation
 self.pizza.prepare_dough(PizzaDough.thick)

 def add_sauce(self):
 print('adding the crème fraîche sauce to your creamy
 bacon')

 self.pizza.sauce = PizzaSauce.creme_fraiche
 time.sleep(STEP_DELAY)

 print('done with the crème fraîche sauce')

 def add_topping(self):
 print('adding the topping (mozzarella, bacon, ham,
 mushrooms, red onion, oregano) to your creamy bacon')
 self.pizza.topping.append([t for t in
 (PizzaTopping.mozzarella, PizzaTopping.bacon,
 PizzaTopping.ham,PizzaTopping.mushrooms,
 PizzaTopping.red_onion, PizzaTopping.oregano)])
 time.sleep(STEP_DELAY)
 print('done with the topping (mozzarella, bacon, ham,
 mushrooms, red onion, oregano)')

 def bake(self):
 self.progress = PizzaProgress.baking
 print('baking your creamy bacon for {}
 seconds'.format(self.baking_time))
 time.sleep(self.baking_time)
 self.progress = PizzaProgress.ready
 print('your creamy bacon is ready')

Chapter 2

[37]

The director in this example is the waiter. The core of the Waiter class is the
construct_pizza() method, which accepts a builder as a parameter and executes
all the pizza preparation steps in the right order. Choosing the appropriate builder,
which can even be done in runtime, gives us the ability to create different pizza
styles without modifying any code of the director (Waiter). The Waiter class also
contains the pizza() method, which returns the end product (prepared pizza) as a
variable to the caller as follows:

class Waiter:
 def __init__(self):
 self.builder = None

 def construct_pizza(self, builder):
 self.builder = builder
 [step() for step in (builder.prepare_dough,
 builder.add_sauce, builder.add_topping, builder.bake)]

 @property
 def pizza(self):
 return self.builder.pizza

The validate_style() function is similar to the validate_age() function as
described in Chapter 1, The Factory Pattern. It is used to make sure that the user
gives valid input, which in this case is a character that is mapped to a pizza builder.
The m character uses the MargaritaBuilder class and the c character uses the
CreamyBaconBuilder class. These mappings are in the builder parameter. A tuple
is returned, with the first element set to True if the input is valid, or False if it is
invalid as follows:

def validate_style(builders):
 try:
 pizza_style = input('What pizza would you like,
 [m]argarita or [c]reamy bacon? ')
 builder = builders[pizza_style]()
 valid_input = True
 except KeyError as err:
 print('Sorry, only margarita (key m) and creamy bacon (key
 c) are available')
 return (False, None)
 return (True, builder)

The Builder Pattern

[38]

The last part is the main() function. The main() function contains a code for
instantiating a pizza builder. The pizza builder is then used by the Waiter director
for preparing the pizza. The created pizza can be delivered to the client at any
later point:

def main():
 builders = dict(m=MargaritaBuilder, c=CreamyBaconBuilder)
 valid_input = False
 while not valid_input:
 valid_input, builder = validate_style(builders)
 print()
 waiter = Waiter()
 waiter.construct_pizza(builder)
 pizza = waiter.pizza
 print()
 print('Enjoy your {}!'.format(pizza))

To put all these things together, here's the complete code of this example (builder.py):

from enum import Enum
import time

PizzaProgress = Enum('PizzaProgress', 'queued preparation baking
ready')
PizzaDough = Enum('PizzaDough', 'thin thick')
PizzaSauce = Enum('PizzaSauce', 'tomato creme_fraiche')
PizzaTopping = Enum('PizzaTopping', 'mozzarella double_mozzarella
bacon ham mushrooms red_onion oregano')
STEP_DELAY = 3 # in seconds for the sake of the
example

class Pizza:
 def __init__(self, name):
 self.name = name
 self.dough = None
 self.sauce = None
 self.topping = []

 def __str__(self):
 return self.name

 def prepare_dough(self, dough):
 self.dough = dough
 print('preparing the {} dough of your
 {}...'.format(self.dough.name, self))

Chapter 2

[39]

 time.sleep(STEP_DELAY)
 print('done with the {} dough'.format(self.dough.name))

class MargaritaBuilder:
 def __init__(self):
 self.pizza = Pizza('margarita')
 self.progress = PizzaProgress.queued
 self.baking_time = 5 # in seconds for the sake of the
 example

 def prepare_dough(self):
 self.progress = PizzaProgress.preparation
 self.pizza.prepare_dough(PizzaDough.thin)

 def add_sauce(self):
 print('adding the tomato sauce to your margarita...')
 self.pizza.sauce = PizzaSauce.tomato
 time.sleep(STEP_DELAY)
 print('done with the tomato sauce')

 def add_topping(self):
 print('adding the topping (double mozzarella, oregano) to
 your margarita')
 self.pizza.topping.append([i for i in
 (PizzaTopping.double_mozzarella, PizzaTopping.oregano)])
 time.sleep(STEP_DELAY)
 print('done with the topping (double mozzarrella,
oregano)')

 def bake(self):
 self.progress = PizzaProgress.baking
 print('baking your margarita for {}
 seconds'.format(self.baking_time))
 time.sleep(self.baking_time)
 self.progress = PizzaProgress.ready
 print('your margarita is ready')

class CreamyBaconBuilder:
 def __init__(self):
 self.pizza = Pizza('creamy bacon')
 self.progress = PizzaProgress.queued
 self.baking_time = 7 # in seconds for the sake of the
 example

The Builder Pattern

[40]

 def prepare_dough(self):
 self.progress = PizzaProgress.preparation
 self.pizza.prepare_dough(PizzaDough.thick)

 def add_sauce(self):
 print('adding the crème fraîche sauce to your creamy
 bacon')
 self.pizza.sauce = PizzaSauce.creme_fraiche
 time.sleep(STEP_DELAY)
 print('done with the crème fraîche sauce')

 def add_topping(self):
 print('adding the topping (mozzarella, bacon, ham,
 mushrooms, red onion, oregano) to your creamy bacon')
 self.pizza.topping.append([t for t in
 (PizzaTopping.mozzarella, PizzaTopping.bacon,
 PizzaTopping.ham,PizzaTopping.mushrooms,
 PizzaTopping.red_onion, PizzaTopping.oregano)])
 time.sleep(STEP_DELAY)
 print('done with the topping (mozzarella, bacon, ham,
 mushrooms, red onion, oregano)')

 def bake(self):
 self.progress = PizzaProgress.baking
 print('baking your creamy bacon for {}
 seconds'.format(self.baking_time))
 time.sleep(self.baking_time)
 self.progress = PizzaProgress.ready
 print('your creamy bacon is ready')

class Waiter:
 def __init__(self):
 self.builder = None

 def construct_pizza(self, builder):
 self.builder = builder
 [step() for step in (builder.prepare_dough,
 builder.add_sauce, builder.add_topping, builder.bake)]

 @property
 def pizza(self):
 return self.builder.pizza

Chapter 2

[41]

def validate_style(builders):
 try:
 pizza_style = input('What pizza would you like,
 [m]argarita or [c]reamy bacon? ')
 builder = builders[pizza_style]()
 valid_input = True
 except KeyError as err:
 print('Sorry, only margarita (key m) and creamy bacon (key
 c) are available')
 return (False, None)
 return (True, builder)

def main():
 builders = dict(m=MargaritaBuilder, c=CreamyBaconBuilder)
 valid_input = False
 while not valid_input:
 valid_input, builder = validate_style(builders)
 print()
 waiter = Waiter()
 waiter.construct_pizza(builder)
 pizza = waiter.pizza
 print()
 print('Enjoy your {}!'.format(pizza))

if __name__ == '__main__':
 main()

A sample output of this example is as follows:

>>> python3 builder.py

What pizza would you like, [m]argarita or [c]reamy bacon? r

Sorry, only margarita (key m) and creamy bacon (key c) are available

What pizza would you like, [m]argarita or [c]reamy bacon? m

preparing the thin dough of your margarita...

done with the thin dough

adding the tomato sauce to your margarita...

done with the tomato sauce

adding the topping (double mozzarella, oregano) to your margarita

done with the topping (double mozzarella, oregano)

baking your margarita for 5 seconds

your margarita is ready

Enjoy your margarita!

The Builder Pattern

[42]

Supporting only two pizza types is a shame. Implement a Hawaiian pizza builder.
Consider using inheritance after thinking about the advantages and disadvantages.
Check the ingredients of a typical Hawaiian pizza and decide which class you
need to extend: MargaritaBuilder or CreamyBaconBuilder? Perhaps both
[j.mp/pymulti]?

In the book, Effective Java (2nd edition), Joshua Bloch describes an interesting
variation of the Builder pattern where calls to builder methods are chained. This is
accomplished by defining the builder itself as an inner class and returning itself from
each of the setter-like methods on it. The build() method returns the final object.
This pattern is called the Fluent Builder. Here's a Python implementation, which
was kindly provided by a reviewer of the book:

class Pizza:
 def __init__(self, builder):
 self.garlic = builder.garlic
 self.extra_cheese = builder.extra_cheese

 def __str__(self):
 garlic = 'yes' if self.garlic else 'no'
 cheese = 'yes' if self.extra_cheese else 'no'
 info = ('Garlic: {}'.format(garlic),
 'Extra cheese: {}'.format(cheese))
 return '\n'.join(info)

 class PizzaBuilder:
 def __init__(self):
 self.extra_cheese = False
 self.garlic = False

 def add_garlic(self):
 self.garlic = True
 return self

 def add_extra_cheese(self):
 self.extra_cheese = True
 return self

 def build(self):
 return Pizza(self)

if __name__ == '__main__':
 pizza =
 Pizza.PizzaBuilder().add_garlic().add_extra_cheese().build()
 print(pizza)

Adapt the pizza example to make use of the Fluent Builder pattern. Which version
of the two do you prefer? What are the pros and cons of each version?

Chapter 2

[43]

Summary
In this chapter, we have seen how to use the Builder design pattern. We use the
Builder pattern for creating an object in situations where using the Factory pattern
(either a Factory Method or an Abstract Factory) is not a good option. A Builder
pattern is usually a better candidate than a Factory pattern when:

• We want to create a complex object (an object composed of many parts
and created in different steps that might need to follow a specific order).

• Different representations of an object are required, and we want to keep
the construction of an object decoupled from its representation

• We want to create an object at one point in time but access it at a later point

We saw how the Builder pattern is used in fast-food restaurants for preparing
meals, and how two third-party Django packages, django-widgy and django-query-
builder, use it for generating HTML pages and dynamic SQL queries, respectively.
We focused on the differences between a Builder pattern and a Factory pattern, and
gave a preconfigured (Factory) versus customer (Builder) computer order analogy
to clarify them.

In the implementation part, we have seen how to create a pizza ordering application,
which has preparation dependencies. There are many recommended interesting
exercises in this chapter, including implementing a Fluent Builder.

In the next chapter, you will learn about the last creational design pattern covered in
this book: the Prototype pattern, which is used for cloning an object.

The Prototype Pattern
Sometimes, we need to create an exact copy of an object. For instance, assume
that you want to create an application for storing, sharing, and editing (such as
modifying, adding notes, and removing) culinary recipes. User Bob finds a cake
recipe and after making a few modifications he thinks that his cake is delicious, and
he wants to share it with his friend, Alice. But what does sharing a recipe mean?
If Bob wants to do some further experimentation with his recipe after sharing it
with Alice, will the new changes also be visible in Alice's recipe? Can Bob keep two
copies of the cake recipe? His delicious cake recipe should remain unaffected by any
changes made in the experimental cake recipe.

Such problems can be solved by allowing the users to have more than one
independent copy of the same recipe. Each copy is called a clone, because it is
an exact copy of the original object at a specific point in time. The time aspect is
important, since it affects what the clone contains. For example, if Bob shares the
cake recipe with Alice before making his own improvements to achieve perfection,
Alice will never be able to bake her own version of the delicious cake that Bob
created! She will only be able to bake the original cake recipe found by Bob.

Note the difference between a copy and a reference. If we have two references to the
same cake recipe, whatever changes Bob makes to the recipe will be visible to Alice's
version of the recipe, and vice versa. What we want is both Bob and Alice to have
their own copy, so that they can make independent changes without affecting each
other's recipe. Bob actually needs two copies of the cake recipe: the delicious version
and the experimental version.

The Prototype Pattern

[46]

The difference between a reference and a copy is shown in the following figure:

On the left part, we can see two references. Both Alice and Bob refer to the same
recipe, which essentially means that they share it and all modifications are visible
by both. On the right part, we can see two different copies of the same recipe. In this
case, independent modifications are allowed and the changes of Alice do not affect
the changes of Bob, and vice versa.

The Prototype design pattern helps us with creating object clones. In its simplest
version, the Prototype pattern is just a clone() function that accepts an object as
an input parameter and returns a clone of it. In Python, this can be done using the
copy.deepcopy() function. Let's see an example. In the following code (file clone.
py), there are two classes, A and B. A is the parent class and B is the derived class. In
the main part, we create an instance of class B b, and use deepcopy() to create a
clone of b named c. The result is that all the members of the hierarchy (at the point
of time the cloning happens) are copied in the clone c. As an interesting exercise,
you can try using deepcopy() with composition instead of inheritance which is
shown in the following code:

import copy

class A:
 def __init__(self):
 self.x = 18
 self.msg = 'Hello'

class B(A):
 def __init__(self):
 A.__init__(self)
 self.y = 34

Chapter 3

[47]

 def __str__(self):
 return '{}, {}, {}'.format(self.x, self.msg, self.y)

if __name__ == '__main__':
 b = B()
 c = copy.deepcopy(b)
 print([str(i) for i in (b, c)])
 print([i for i in (b, c)])

When executing clone.py on my computer, I get the following:

>>> python3 clone.py

['18, Hello, 34', '18, Hello, 34']

[<__main__.B object at 0x7f92dac33240>, <__main__.B object at
0x7f92dac33208>]

Although your output of the second line will most likely not be the same as
mine, what's important is to notice that the two objects reside in two different
memory addresses (the 0x... part). This means that the two objects are two
independent copies.

In the Implementation section, later in this chapter, we will see how to use copy.
deepcopy() with some extra boilerplate code wrapped in a class, for keeping a
registry of the objects that are cloned.

A real-life example
The Prototype design pattern is all about cloning an object. Mitosis, the process
in a cell division by which the nucleus divides resulting in two new nuclei, each
of which has exactly the same chromosome and DNA content as the original cell,
is an example of biological cloning [j.mp/mmitosis].

The Prototype Pattern

[48]

The following figure, provided by www.sourcemaking.com, shows an example of the
mitotic division of a cell [j.mp/pprotpat]:

Another popular example of (artificial) cloning is Dolly, the sheep [j.mp/wikidolly].

A software example
There are many Python applications that make use of the Prototype pattern [j.mp/
pythonprot], but it is almost never referred to as Prototype since cloning objects
is a built-in feature of the language.

One application that uses Prototype is the Visualization Toolkit (VTK) [j.mp/pyvto].
VTK is an open source cross-platform system for 3D computer graphics, image
processing, and visualization. VTK uses Prototype for creating clones of geometrical
elements such as points, lines, hexahedrons, and so forth [j.mp/vtkcell].

Another project that uses Prototype is music21. According to the project's page,
"music21 is a set of tools for helping scholars and other active listeners answer
questions about music quickly and simply" [j.mp/pmusic21]. The music21 toolkit
uses Prototype for copying musical notes and scores [j.mp/py21code].

Use cases
The Prototype pattern is useful when we have an existing object and we want to
create an exact copy of it. A copy of an object is usually required when we know
that parts of the object will be modified but we want to keep the original object
untouched. In such cases, it doesn't make sense to recreate the original object
from scratch [j.mp/protpat].

j.mp/pythonprot
j.mp/pythonprot

Chapter 3

[49]

Another case where Prototype comes in handy is when we want to duplicate a
complex object. By duplicating a complex object, we can think of an object that is
populated from a database and has references to other objects that are also populated
from a database. It is a lot of effort to create an object clone by querying the
database(s) multiple times again. Using Prototype for such cases is more convenient.

So far, we have covered only the reference versus copy issue, but a copy can be
further divided into a deep copy versus a shallow copy. A deep copy is what we
have seen so far: all data of the original object are simply copied in the clone, without
making any exceptions. A shallow copy relies on references. We can introduce data
sharing, and techniques like copy-on-write to improve the performance (such as clone
creation time) and the memory usage. Using shallow copies might be worthwhile if
the available resources are limited (such as embedded systems) or performance is
critical (such as high-performance computing).

In Python, we can do shallow copies using the copy.copy() function. Quoting
the official Python documentation, the differences between a shallow copy (copy.
copy()) and a deep copy (copy.deepcopy()) in Python are [j.mp/py3copy]
as follows:

• "A shallow copy constructs a new compound object and then (to the extent
possible) inserts references into it to the objects found in the original.

• A deep copy constructs a new compound object and then, recursively, inserts
copies into it of the objects found in the original."

Can you think of any examples where using shallow copies is better than using
deep copies?

Implementation
In programming, it is not uncommon for a book to be available in multiple editions.
For example, the classic textbook on C programming The C Programming Language by
Kernighan and Ritchie is available in two editions. The first edition was published
in 1978. At that time, C was not standardized. The second edition of the book was
published 10 years later and covers the standard (ANSI) version of C. What are
the differences between the two editions? To mention a few, the price, the length
(number of pages), and the publication date. But there are also many similarities: the
authors, the publishers, and the tags/keywords that describe the book are exactly
the same. This indicates that creating a new book from scratch is not always the best
approach. If we know that there are many similarities between two book editions,
we can use cloning and modify only the different parts of the new edition.

The Prototype Pattern

[50]

Let's see how we can use the Prototype pattern for creating an application that
shows book information. We begin with the representation of a book. Apart from
the usual initialization, the Book class demonstrates an interesting technique. It
shows how we can avoid the telescopic constructor problem. In the __init__()
method, only three parameters are fixed: name, authors, and price. But clients
can pass more parameters in the form of keywords (name=value) using the rest
variable-length list. The line self.__dict__.update(rest) adds the contents of
rest to the internal dictionary of the Book class to make them part of it.

But there's a catch. Since we don't know all the names of the added parameters,
we need to access the internal dict for making use of them in __str__(). And
since the contents of a dictionary do not follow any specific order, we use an
OrderedDict to force an order; otherwise, every time the program is executed,
different outputs will be shown. Of course, you should not take my words for
granted. As an exercise, remove the usage of OrderedDict and sorted() and
run the example to see if I'm right:

class Book:
 def __init__(self, name, authors, price, **rest):
 '''Examples of rest: publisher, length, tags, publication
 date'''
 self.name = name
 self.authors = authors
 self.price = price # in US dollars
 self.__dict__.update(rest)

 def __str__(self):
 mylist=[]
 ordered = OrderedDict(sorted(self.__dict__.items()))
 for i in ordered.keys():
 mylist.append('{}: {}'.format(i, ordered[i]))
 if i == 'price':
 mylist.append('$')
 mylist.append('\n')
 return ''.join(mylist)

The Prototype class implements the Prototype design pattern. The heart of the
Prototype class is the clone() method, which does the actual cloning using the
familiar copy.deepcopy() function. But the Prototype class does a bit more than
supporting cloning. It contains the register() and unregister() methods, which
can be used to keep track of the objects that are cloned in a dictionary. Note that this
is just a convenience, and not a necessity.

Chapter 3

[51]

Moreover, the clone() method uses the same trick that __str__() uses in the
Book class, but this time for a different reason. Using the variable-length list attr,
we can pass only the variables that really need to be modified when cloning an
object as follows:

class Prototype:
 def __init__(self):
 self.objects = dict()

 def register(self, identifier, obj):
 self.objects[identifier] = obj

 def unregister(self, identifier):
 del self.objects[identifier]

 def clone(self, identifier, **attr):
 found = self.objects.get(identifier)
 if not found:
 raise ValueError('Incorrect object identifier:
 {}'.format(identifier))
 obj = copy.deepcopy(found)
 obj.__dict__.update(attr)
 return obj

The main() function shows The C Programming Language book cloning example
mentioned at the beginning of this section in practice. When cloning the first edition
of the book to create the second edition, we only need to pass the modified values of
the existing parameters. But we can also pass extra parameters. In this case, edition
is a new parameter that was not needed in the first book but is useful information for
the clone:

def main():
 b1 = Book('The C Programming Language', ('Brian W. Kernighan',
 'Dennis M.Ritchie'), price=118, publisher='Prentice Hall',
 length=228, publication_date='1978-02-22', tags=('C',
 'programming', 'algorithms', 'data structures'))

 prototype = Prototype()
 cid = 'k&r-first'
 prototype.register(cid, b1)
 b2 = prototype.clone(cid, name='The C Programming Language
 (ANSI)', price=48.99, length=274,
 publication_date='1988-04-01', edition=2)

 for i in (b1, b2):
 print(i)
 print("ID b1 : {} != ID b2 : {}".format(id(b1), id(b2)))

The Prototype Pattern

[52]

Notice the usage of the id() function which returns the memory address of an
object. When we clone an object using a deep copy, the memory addresses of the
clone must be different from the memory addresses of the original object.

The prototype.py file is as follows:

import copy
from collections import OrderedDict

class Book:
 def __init__(self, name, authors, price, **rest):
 '''Examples of rest: publisher, length, tags, publication
 date'''
 self.name = name
 self.authors = authors
 self.price = price # in US dollars
 self.__dict__.update(rest)

 def __str__(self):
 mylist=[]
 ordered = OrderedDict(sorted(self.__dict__.items()))
 for i in ordered.keys():
 mylist.append('{}: {}'.format(i, ordered[i]))
 if i == 'price':
 mylist.append('$')
 mylist.append('\n')
 return ''.join(mylist)

class Prototype:
 def __init__(self):
 self.objects = dict()

 def register(self, identifier, obj):
 self.objects[identifier] = obj

 def unregister(self, identifier):
 del self.objects[identifier]

 def clone(self, identifier, **attr):
 found = self.objects.get(identifier)
 if not found:
 raise ValueError('Incorrect object identifier:
 {}'.format(identifier))
 obj = copy.deepcopy(found)

Chapter 3

[53]

 obj.__dict__.update(attr)
 return obj

def main():
 b1 = Book('The C Programming Language', ('Brian W. Kernighan',
 'Dennis M.Ritchie'), price=118, publisher='Prentice Hall',
 length=228, publication_date='1978-02-22', tags=('C',
 'programming', 'algorithms', 'data structures'))

 prototype = Prototype()
 cid = 'k&r-first'
 prototype.register(cid, b1)
 b2 = prototype.clone(cid, name='The C Programming Language
 (ANSI)', price=48.99, length=274,
 publication_date='1988-04-01', edition=2)

 for i in (b1, b2):
 print(i)
 print("ID b1 : {} != ID b2 : {}".format(id(b1), id(b2)))

if __name__ == '__main__':
 main()

The output of id() depends on the current memory allocation of the computer and
you should expect it to differ on every execution of this program. But no matter what
the actual addresses are, they should not be the same in any chance.

A sample output when I execute this program on my machine is as follows:

>>> python3 prototype.py

authors: ('Brian W. Kernighan', 'Dennis M. Ritchie')

length: 228

name: The C Programming Language

price: 118$

publication_date: 1978-02-22

publisher: Prentice Hall

tags: ('C', 'programming', 'algorithms', 'data structures')

authors: ('Brian W. Kernighan', 'Dennis M. Ritchie')

edition: 2

length: 274

name: The C Programming Language (ANSI)

price: 48.99$

The Prototype Pattern

[54]

publication_date: 1988-04-01

publisher: Prentice Hall

tags: ('C', 'programming', 'algorithms', 'data structures')

ID b1 : 140004970829304 != ID b2 : 140004970829472

Indeed, Prototype works as expected. The second edition of The C Programming
Language book reuses all the information that was set in the first edition, and all the
differences that we defined are only applied to the second edition. The first edition
remains unaffected. Our confidence can be increased by looking at the output of the
id() function: the two addresses are different.

As an exercise, you can come up with your own example of Prototype. A few ideas
are as follows:

• The recipe example that was mentioned in this chapter
• The database-populated object that was mentioned in this chapter
• Copying an image so that you can add your own modifications without

touching the original

Summary
In this chapter, we have seen how to use the Prototype design pattern. Prototype is
used for creating exact copies of objects. Creating a copy of an object can actually
mean two things:

• Relying on references, which happens when a shallow copy is created
• Duplicating everything, which happens when a deep copy is created

In the first case, we want to focus on improving the performance and the memory
usage of our application by introducing data sharing between objects. But we
need to be careful about modifying data, because all modifications are visible to all
copies. Shallow copies were not introduced in this chapter, but you might want to
experiment with them.

In the second case, we want to be able to make modifications to one copy without
affecting the rest. That's useful for cases like the cake-recipe example that we have
seen. Here, no data sharing is done and so we need to be careful about the resource
consumption and the overhead that is introduced by our clones.

Chapter 3

[55]

We showed a simple example of a deep copying which in Python is done using the
copy.deepcopy() function. We also mentioned examples of cloning found in real
life, focusing on mitosis.

Many software projects use Prototype, but in Python it is not mentioned as such
because it is a built-in feature. Among them are the VTK, which uses Prototype for
creating clones of geometrical elements, and music21, which uses it for duplicating
musical scores and notes.

Finally, we discussed the use cases of Prototype and implemented a program that
supports cloning books so that all information that does not change in a new edition
can be reused, but at the same time modified information can be updated and new
information can be added.

Prototype is the last creational design pattern covered in this book. The next chapter
begins with Adapter, a structural design pattern that can be used to make two
incompatible software interfaces compatible.

The Adapter Pattern
Structural design patterns deal with the relationships between the entities (such as
classes and objects) of a system. A structural design pattern focuses on providing a
simple way of composing objects for creating new functionality [GOF95, page 155],
[j.mp/structpat].

Adapter is a structural design pattern that helps us make two incompatible interfaces
compatible. First, let's answer what incompatible interfaces really mean. If we have
an old component and we want to use it in a new system, or a new component that
we want to use in an old system, the two can rarely communicate without requiring
any code changes. But changing the code is not always possible, either because
we don't have access to it (for example, the component is provided as an external
library) or because it is impractical. In such cases, we can write an extra layer that
makes all the required modifications for enabling the communication between the
two interfaces. This layer is called the Adapter.

E-commerce systems are known examples. Assume that we use an e-commerce
system that contains a calculate_total(order) function. The function calculates
the total amount of an order, but only in Danish Kroner (DKK). It is reasonable for
our customers to ask us to add support for more popular currencies, such as United
States Dollars (USD) and Euros (EUR). If we own the source code of the system we
can extend it by adding new functions for doing the conversions from DKK to USD
and from DKK to EUR. But what if we don't have access to the source code of the
application because it is provided to us only as an external library? In this case, we
can still use the library (for example, call its methods), but we cannot modify/extend
it. The solution is to write a wrapper (also known as Adapter) that converts the data
from the given DKK format to the expected USD or EUR format.

The Adapter Pattern

[58]

The Adapter pattern is not useful only for data conversions. In general, if you want
to use an interface that expects function_a() but you only have function_b(), you
can use an Adapter to convert (adapt) function_b() to function_a() [Eckel08, page
207], [j.mp/adapterpat]. This is not only true for functions but also for function
parameters. An example is a function that expects the parameters x, y, and z but you
only have a function that works with the parameters x and y at hand. We will see
how to use the Adapter pattern in the implementation section.

A real-life example
Probably all of us use the Adapter pattern every day, but in hardware instead of
software. If you have a smartphone or a tablet, you need to use something (for
example, the lightning connector of an iPhone) with a USB adapter for connecting
it to your computer. If you are traveling from most European countries to the UK,
you need to use a plug adapter for charging your laptop. The same is true if you are
traveling from Europe to USA, or the other way around. Adapters are everywhere!

The following image, courtesy of sourcemaking.com, shows several examples of
hardware adapters [j.mp/adapterpat]:

A software example
Grok is a Python framework that runs on top of Zope 3 and focuses on agile
development. The Grok framework uses Adapters for making it possible for existing
objects to conform to specific APIs without the need to modify them [j.mp/grokada].

The Python Traits package also uses the Adapter pattern for transforming an object
that does not implement of a specific interface (or set of interfaces) to an object that
does [j.mp/pytraitsad].

Chapter 4

[59]

Use cases
The Adapter pattern is used for making things work after they have been
implemented [j.mp/adapterpat]. Usually one of the two incompatible interfaces
is either foreign or old/legacy. If the interface is foreign, it means that we have no
access to the source code. If it is old it is usually impractical to refactor it. We can take
it even further and argue that altering the implementation of a legacy component to
meet our needs is not only impractical, but it also violates the open/close principle
[j.mp/adaptsimp]. The open/close principle is one of the fundamental principles
of Object-Oriented design (the O of SOLID). It states that a software entity should
be open for extension, but closed for modification. That basically means that we
should be able to extend the behavior of an entity without making source code
modifications. Adapter respects the open/closed principle [j.mp/openclosedp].

Therefore, using an Adapter for making things work after they have been
implemented is a better approach because it:

• Does not require access to the source code of the foreign interface
• Does not violate the open/closed principle

Implementation
There are many ways of implementing the Adapter design pattern in Python
[Eckel08, page 207]. All the techniques demonstrated by Bruce Eckel use inheritance,
but Python provides an alternative, and in my opinion, a more idiomatic way of
implementing an Adapter. The alternative technique should be familiar to you,
since it uses the internal dictionary of a class, and we have seen how to do that in
Chapter 3, The Prototype Pattern.

Let's begin with the what we have part. Our application has a Computer class that
shows basic information about a computer. All the classes of this example, including
the Computer class are very primitive, because we want to focus on the Adapter
pattern and not on how to make a class as complete as possible.

class Computer:
 def __init__(self, name):
 self.name = name

 def __str__(self):
 return 'the {} computer'.format(self.name)

 def execute(self):
 return 'executes a program'

The Adapter Pattern

[60]

In this case, the execute() method is the main action that the computer can perform.
This method is called by the client code.

Now we move to the what we want part. We decide to enrich our application with
more functionality, and luckily, we find two interesting classes implemented in two
different libraries that are unrelated with our application: Synthesizer and Human.
In the Synthesizer class, the main action is performed by the play() method. In the
Human class, it is performed by the speak() method. To indicate that the two classes
are external, we place them in a separate module, as shown:

class Synthesizer:
 def __init__(self, name):
 self.name = name

 def __str__(self):
 return 'the {} synthesizer'.format(self.name)

 def play(self):
 return 'is playing an electronic song'

class Human:
 def __init__(self, name):
 self.name = name

 def __str__(self):
 return '{} the human'.format(self.name)

 def speak(self):
 return 'says hello'

So far so good. But, we have a problem. The client only knows how to call the
execute() method, and it has no idea about play() or speak(). How can we make
the code work without changing the Synthesizer and Human classes? Adapters to
the rescue! We create a generic Adapter class that allows us to adapt a number of
objects with different interfaces, into one unified interface. The obj argument of the
__init__() method is the object that we want to adapt, and adapted_methods is a
dictionary containing key/value pairs of method the client calls/method that should
be called.

class Adapter:
 def __init__(self, obj, adapted_methods):
 self.obj = obj
 self.__dict__.update(adapted_methods)

 def __str__(self):
 return str(self.obj)

Chapter 4

[61]

Let's see how we can use the Adapter pattern. An objects list holds all the objects.
The compatible objects that belong to the Computer class need no adaptation. We can
add them directly to the list. The incompatible objects are not added directly. They
are adapted using the Adapter class. The result is that the client code can continue
using the known execute() method on all objects without the need to be aware of
any interface differences between the used classes.

def main():
 objects = [Computer('Asus')]
 synth = Synthesizer('moog')
 objects.append(Adapter(synth, dict(execute=synth.play)))
 human = Human('Bob')
 objects.append(Adapter(human, dict(execute=human.speak)))

 for i in objects:
 print('{} {}'.format(str(i), i.execute()))

Let's see the complete code of the Adapter pattern example (files external.py and
adapter.py) as follows:

class Synthesizer:
 def __init__(self, name):
 self.name = name

 def __str__(self):
 return 'the {} synthesizer'.format(self.name)

 def play(self):
 return 'is playing an electronic song'

class Human:
 def __init__(self, name):
 self.name = name

 def __str__(self):
 return '{} the human'.format(self.name)

 def speak(self):
 return 'says hello'

from external import Synthesizer, Human

class Computer:
 def __init__(self, name):
 self.name = name

The Adapter Pattern

[62]

 def __str__(self):
 return 'the {} computer'.format(self.name)

 def execute(self):
 return 'executes a program'

class Adapter:
 def __init__(self, obj, adapted_methods):
 self.obj = obj
 self.__dict__.update(adapted_methods)

 def __str__(self):
 return str(self.obj)

def main():
 objects = [Computer('Asus')]
 synth = Synthesizer('moog')
 objects.append(Adapter(synth, dict(execute=synth.play)))
 human = Human('Bob')
 objects.append(Adapter(human, dict(execute=human.speak)))

 for i in objects:
 print('{} {}'.format(str(i), i.execute()))

if __name__ == "__main__":
 main()

The output when executing the example is:

>>> python3 adapter.py

the Asus computer executes a program

the moog synthesizer is playing an electronic song

Bob the human says hello

We managed to make the Human and Synthesizer classes compatible with the
interface expected by the client, without changing their source code. This is nice.

Here's a challenging exercise for you. There is a problem with this implementation.
While all classes have a name attribute, the following code fails:

for i in objects:
 print(i.name)

Chapter 4

[63]

First of all, why does this code fail? Although this makes sense from a coding point
of view, it does not make sense at all for the client code which should not be aware
of details such as what is adapted and what is not adapted. We just want to provide
a uniform interface. How can we make this code work?

Hint: Think of how you can delegate the non-adapted parts
to the object contained in the Adapter class.

Summary
This chapter covered the Adapter design pattern. We use the Adapter pattern for
making two (or more) incompatible interfaces compatible. As a motivation, an
e-commerce system that should support multiple currencies was mentioned.
We use adapters every day for interconnecting devices, charging them, and so on.

Adapter makes things work after they have been implemented. The Grok Python
framework and the Traits package use the Adapter pattern for achieving API
conformance and interface compatibility, respectively. The open/close principle
is strongly connected with these aspects.

In the implementation section, we saw how to achieve interface conformance using
the Adapter pattern without modifying the source code of the incompatible model.
This is achieved through a generic Adapter class that does the work for us. Although
we could use sub-classing (inheritance) to implement the Adapter pattern in the
traditional way in Python, this technique is a great alternative.

In the next chapter, we will see how we can use the Decorator pattern to extend the
behavior of an object without using sub-classing.

The Decorator Pattern
Whenever we want to add extra functionality to an object, we have a number of
different options. We can:

• Add the functionality directly to the class the object belongs to, if it makes
sense (for example, add a new method)

• Use composition
• Use inheritance

Composition should generally be preferred over inheritance, because inheritance
makes code reuse harder, it's static, and applies to an entire class and all instances
of it [GOF95, page 31], [j.mp/decopat].

Design patterns offer us a fourth option that supports extending the functionality
of an object dynamically (in runtime): Decorators. A Decorator pattern can add
responsibilities to an object dynamically, and in a transparent manner (without
affecting other objects) [GOF95, page 196].

In many programming languages, the Decorator pattern is implemented using
sub-classing (inheritance) [GOF95, page 198]. In Python, we can (and should) use
the built-in decorator feature. A Python decorator is a specific change to the syntax
of Python that is used for extending the behavior of a class, method, or function
without using inheritance. In terms of implementation, a Python decorator is a
callable (function, method, class) that accepts a function object fin as input, and
returns another function object fout [j.mp/conqdec]. This means that any callable
that has these properties can be treated as a decorator. We have already seen how
to use the built-in property decorator that makes a method appear as a variable in
Chapter 1, The Factory Pattern and Chapter 2, The Builder Pattern. In the implementation
section, we will learn how to implement and use our own decorators.

The Decorator Pattern

[66]

There is no one-to-one relationship between the Decorator pattern and Python
decorators. Python decorators can actually do much more than the Decorator
pattern. One of the things they can be used for, is to implement the Decorator
pattern [Eckel08, page 59], [j.mp/moinpydec].

A real-life example
The fact that the pattern is called Decorator does not mean that it should be used
only for making things look prettier. The Decorator pattern is generally used for
extending the functionality of an object. Real examples of such extensions are: adding
a silencer to a gun, using different camera lenses (in cameras with removable lenses),
and so on.

The following figure, provided by sourcemaking.com, shows how we can decorate a
gun with special accessories to make it silent, more accurate, and devastating [j.mp/
decopat]. Note that the figure uses sub-classing, but in Python, this is not necessary
because we can use the built-in decorator feature of the language.

sourcemaking.com
j.mp/decopat
j.mp/decopat

Chapter 5

[67]

A software example
The Django framework uses decorators to a great extent. An example is the View
decorator. Django's View decorators can be used for [j.mp/djangodec]:

• Restricting access to views based on the HTTP request
• Controlling the caching behavior on specific views
• Controlling compression on a per-view basis
• Controlling caching based on specific HTTP request headers

The Grok framework also uses decorators for achieving different goals such as
[j.mp/grokdeco]:

• Registering a function as an event subscriber
• Protecting a method with a specific permission
• Implementing the Adapter pattern

Use cases
The Decorator pattern shines when used for implementing cross-cutting concerns
[Lott14, page 223], [j.mp/wikicrosscut]. Examples of cross-cutting concerns are:

• Data validation
• Transaction processing (A transaction in this case is similar to a database

transaction, in the sense that either all steps should be completed
successfully, or the transaction should fail.)

• Caching
• Logging
• Monitoring
• Debugging
• Business rules
• Compression
• Encryption

In general, all parts of an application that are generic and can be applied to many
other parts of it, are considered cross-cutting concerns.

The Decorator Pattern

[68]

Another popular example of using the Decorator pattern is Graphical User
Interface (GUI) toolkits. In a GUI toolkit, we want to be able to add features
such as borders, shadows, colors, and scrolling to individual components/widgets
[GOF95, page 196].

Implementation
Python decorators are generic and very powerful. You can find many examples of
how they can be used at the decorator library of python.org [j.mp/pydeclib]. In
this section, we will see how we can implement a memoization decorator [j.mp/
memoi]. All recursive functions can benefit from memoization, so let's pick the
popular Fibonacci sequence example. Implementing the recursive algorithm of
Fibonacci is straight forward, but it has major performance issues, even for small
values. First, let's see the naive implementation (file fibonacci_naive.py).

def fibonacci(n):
 assert(n >= 0), 'n must be >= 0'
 return n if n in (0, 1) else fibonacci(n-1) + fibonacci(n-2)

if __name__ == '__main__':
 from timeit import Timer
 t = Timer('fibonacci(8)', 'from __main__ import fibonacci')
 print(t.timeit())

A sample execution of this example shows how slow this implementation is. It takes
17 seconds to calculate the eighth Fibonacci number. The same execution gives the
following output:

>>> python3 fibonacci_naive.py

16.669270177000726

Let's use memoization to see if it helps. In the following code, we use a dict for
caching the already computed values of the Fibonacci sequence. We also change the
parameter passed to the fibonacci() function. We want to calculate the hundredth
Fibonacci number instead of the eighth.

known = {0:0, 1:1}

def fibonacci(n):
 assert(n >= 0), 'n must be >= 0'
 if n in known:
 return known[n]
 res = fibonacci(n-1) + fibonacci(n-2)
 known[n] = res

j.mp/memoi
j.mp/memoi

Chapter 5

[69]

 return res

if __name__ == '__main__':
 from timeit import Timer
 t = Timer('fibonacci(100)', 'from __main__ import fibonacci')
 print(t.timeit())

Executing the memoization-based code shows that performance improves
dramatically, and is acceptable even for computing large values. A sample
execution is as follows:

>>> python3 fibonacci.py

0.31532211999729043

But there are already a few problems with this approach. While the performance is
not an issue any longer, the code is not as clean as it is when not using memoization.
And what happens if we decide to extend the code with more math functions
and turn it into a module? Let's assume that the next function we decide to add
is nsum(), which returns the sum of the first n numbers. Note that this function is
already available in the math module as fsum(), but we can easily think of other
functions that are not available in the standard library and would be useful for our
module (for example Pascal's triangle, the sieve of Eratosthenes, and so on). The code
of the nsum() function using memoization (file mymath.py) is given as follows:

known_sum = {0:0}

def nsum(n):
 assert(n >= 0), 'n must be >= 0'
 if n in known_sum:
 return known_sum[n]
 res = n + nsum(n-1)
 known_sum[n] = res
 return res

Do you notice the problem already? We ended up with a new dict called known_sum
which acts as our cache for nsum, and a function that is more complex than it would
be without using memoization. Our module is becoming unnecessarily complex. Is it
possible to keep the recursive functions as simple as the naive versions, but achieve
a performance similar to the performance of the functions that use memoization?
Fortunately, it is, and the solution is to use the Decorator pattern.

The Decorator Pattern

[70]

First, we create a memoize() decorator as shown in the following example. Our
decorator accepts the function fn that needs to be memoized, as an input. It uses
a dict named known as the cache. The functools.wraps() function is a function
that is used for convenience when creating decorators. It is not mandatory but a
good practice to use since it makes sure that the documentation and the signature of
the function that is decorated, are preserved [j.mp/funcwraps]. The argument list
*args, is required in this case because the functions that we want to decorate accept
input arguments. It would be redundant to use it if fibonacci() and nsum() didn't
require any arguments, but they require n.

import functools

def memoize(fn):
 known = dict()

 @functools.wraps(fn)
 def memoizer(*args):
 if args not in known:
 known[args] = fn(*args)
 return known[args]

 return memoizer

Now, we can use our memoize() decorator with the naive version of our functions.
This has the benefit of readable code without performance impacts. We apply a
decorator using what is known as decoration (or decoration line). A decoration uses
the @name syntax, where name is the name of the decorator that we want to use. It is
nothing more than syntactic sugar for simplifying the usage of decorators. We can
even bypass this syntax and execute our decorator manually, but that is left as an
exercise for you. Let's see how the memoize() decorator is used with our recursive
functions in the following example:

@memoize
def nsum(n):
 '''Returns the sum of the first n numbers'''
 assert(n >= 0), 'n must be >= 0'
 return 0 if n == 0 else n + nsum(n-1)

@memoize
def fibonacci(n):
 '''Returns the nth number of the Fibonacci sequence'''
 assert(n >= 0), 'n must be >= 0'
 return n if n in (0, 1) else fibonacci(n-1) + fibonacci(n-2)

Chapter 5

[71]

The last part of the code shows how to use the decorated functions and measure their
performance. measure is a list of dict used to avoid code repetition. Note how
__name__ and __doc__ show the proper function names and documentation values,
respectively. Try removing the @functools.wraps(fn) decoration from memoize(),
and see if this is still the case:

if __name__ == '__main__':
 from timeit import Timer
 measure = [{'exec':'fibonacci(100)', 'import':'fibonacci',
 'func':fibonacci},{'exec':'nsum(200)', 'import':'nsum',
 'func':nsum}]
 for m in measure:
 t = Timer('{}'.format(m['exec']), 'from __main__ import
 {}'.format(m['import']))
 print('name: {}, doc: {}, executing: {}, time:
 {}'.format(m['func'].__name__, m['func'].__doc__,
 m['exec'], t.timeit()))

Let's see the complete code of our math module (file mymath.py) and a sample
output when executing it.

import functools

def memoize(fn):
 known = dict()

 @functools.wraps(fn)
 def memoizer(*args):
 if args not in known:
 known[args] = fn(*args)
 return known[args]

 return memoizer

@memoize
def nsum(n):
 '''Returns the sum of the first n numbers'''
 assert(n >= 0), 'n must be >= 0'
 return 0 if n == 0 else n + nsum(n-1)

@memoize
def fibonacci(n):
 '''Returns the nth number of the Fibonacci sequence'''
 assert(n >= 0), 'n must be >= 0'
 return n if n in (0, 1) else fibonacci(n-1) + fibonacci(n-2)

The Decorator Pattern

[72]

if __name__ == '__main__':
 from timeit import Timer
 measure = [{'exec':'fibonacci(100)', 'import':'fibonacci',
 'func':fibonacci}, {'exec':'nsum(200)', 'import':'nsum',
 'func':nsum}]
 for m in measure:
 t = Timer('{}'.format(m['exec']), 'from __main__
 import{}'.format(m['import']))
 print('name: {}, doc: {}, executing: {}, time:
 {}'.format(m['func'].__name__, m['func'].__doc__,
 m['exec'], t.timeit()))

Note that the execution times might differ in your case.

>>> python3 mymath.py

name: fibonacci, doc: Returns the nth number of the Fibonacci
sequence, executing: fibonacci(100), time: 0.4169441329995607

name: nsum, doc: Returns the sum of the first n numbers,
executing: nsum(200), time: 0.4160157349997462

Nice. Readable code and acceptable performance. Now, you might argue that this
is not the Decorator pattern, since we don't apply it in runtime. The truth is that a
decorated function cannot be undecorated; but you can still decide in runtime if the
decorator will be executed or not. That's an interesting exercise left for you.

Hint: Use a decorator that acts as a wrapper which decides whether or not
the real decorator is executed based on some condition.

Another interesting property of decorators that is not covered in this chapter is that,
you can decorate a function with more than one decorator. So here's another exercise:
create a decorator that helps you to debug recursive functions, and apply it on
nsum() and fibonacci(). In what order are the multiple decorators executed?

If you have not had enough with decorators, I have one last exercise for you. The
memoize() decorator does not work with functions that accept more than one
argument. How can we verify that? After verifying it, try finding a way of fixing
this issue.

Chapter 5

[73]

Summary
This chapter covered the Decorator pattern and its relation to the Python
programming language. We use the Decorator pattern as a convenient way of
extending the behavior of an object without using inheritance. Python extends the
Decorator concept even more, by allowing us to extend the behavior of any callable
(function, method, or class) without using inheritance or composition. We can use
the built-in decorator feature of Python.

We have seen a few examples of objects that are decorated in reality, like guns and
cameras. From a software point of view, both Django and Grok use decorators for
achieving different goals, such as controlling HTTP compression and caching.

The Decorator pattern is a great solution for implementing cross-cutting concerns,
because they are generic and do not fit well into the OOP paradigm. We mentioned
many categories of cross-cutting concerns in the Use cases section. In fact, in the
Implementation section a cross-cutting concern was demonstrated: memoization.
We saw how decorators can help us to keep our functions clean, without sacrificing
performance.

The recommended exercises in this chapter can help you understand decorators
even better, so that you can use this very powerful tool for solving many common
(and perhaps less common) programming problems. The next chapter covers the
Facade pattern, which is a convenient way of simplifying access to a complex system.

The Facade Pattern
As systems evolve, they can get very complex. It is not unusual to end up with a
very large (and sometimes confusing) collection of classes and interactions. In many
cases, we don't want to expose this complexity to the client. The Facade (also known
as Façade) design pattern helps us to hide the internal complexity of our systems and
expose only what is necessary to the client through a simplified interface [Eckel08,
page 209]. In essence, Facade is an abstraction layer implemented over an existing
complex system.

The role of Facade is demonstrated in the following figure. The figure is a class
diagram representation of Wikipedia's Java Facade example [j.mp/wikifac]. A
computer is a complex machine that depends on several parts to be fully functional.
To keep things simple, the word computer in this case, refers to an IBM derivative
that uses a Von Neumann architecture. Booting a computer is a particularly complex
procedure. The CPU, main memory, and hard disk need to be up and running;
the boot loader must be loaded from the hard disk to the main memory, the CPU
must boot the operating system kernel, and so forth. Instead of exposing all this
complexity to the client, we create a Facade that encapsulates the whole procedure,
making sure that all steps are executed in the right order.

The Facade Pattern

[76]

From the classes shown in the figure, only the Computer class needs to be exposed
to the client code. The client executes only the start() method of Computer. All the
other complex parts are taken care of by the Facade Computer class.

A real-life example
The Facade pattern is quite common in reality. When you call a bank or company,
you are usually first connected to the customer service department. The customer
service employee acts as a Facade between you and the actual department (billing,
technical support, general assistance, and so on) and the employee that will help you
with your specific problem. The following figure, provided by sourcemaking.com,
shows this example graphically [j.mp/facadepat]:

A key used to turn on a car or motorcycle can also be considered a Facade. It is a
simple way of activating a system that is very complex internally. And of course, the
same is true for other complex electronic devices that we can activate with a single
button, such as computers.

A software example
The django-oscar-datacash module is a Django third-party module that integrates
with the DataCash payment gateway. The module has a Gateway class that provides
fine-grained access to the various DataCash APIs. On top of that, it also offers
a Facade class that provides a less granular API (for those who don't want to
mess with the details) and the ability to save transactions for auditing purposes
[j.mp/oscarfac].

Chapter 6

[77]

Caliendo, an interface for mocking Python APIs, contains a facade module which
uses the Facade pattern for doing many different but useful things, such as caching
methods and deciding what to return based on the input object which is passed to
the top-level Facade method [j.mp/caliendofac].

Use cases
The most usual reason to use the Facade pattern is for providing a single, simple
entry point to a complex system. By introducing Facade, the client code can use a
system by simply calling a single method/function. At the same time, the internal
system does not lose any functionality. It just encapsulates it.

Not exposing the internal functionality of a system to the client code gives us an
extra benefit; we can introduce changes to the system, but the client code remains
unaware and unaffected by the changes. No modifications are required to the
client code [Zlobin13, page 44].

Facade is also useful if you have more than one layer in your system. You can
introduce one Facade entry point per layer, and let all layers communicate with each
other through their Facades. That promotes loose coupling and keeps the layers as
independent as possible [GOF95, page 209].

Implementation
Assume that we want to create an operating system using a multi-server approach,
similar to how it is done in MINIX 3 [j.mp/minix3] or GNU Hurd [j.mp/gnuhurd].
A multi-server operating system has a minimal kernel, called the microkernel, that
runs in privileged mode. All the other services of the system are following a server
architecture (driver server, process server, file server, and so forth). Each server
belongs to a different memory address space and runs on top of the microkernel
in user mode. The pros of this approach are that the operating system can become
more fault-tolerant, reliable, and secure. For example, since all drivers are running in
user mode on a driver server, a bug in a driver cannot crash the whole system, and
neither can it affect the other servers. The cons of this approach are the performance
overhead and the complexity of system programming, because the communication
between a server and the microkernel, as well as between the independent servers,
happens using message passing. Message passing is more complex than the shared
memory model used in monolithic kernels like Linux [j.mp/helenosm].

The Facade Pattern

[78]

We begin with a Server interface. An Enum parameter describes the different
possible states of a server. We use the abc module to forbid direct instantiation
of the Server interface and make the fundamental boot() and kill() methods
mandatory, assuming that different actions are needed to be taken for booting,
killing, and restarting each server. If you have not used the abc module before,
note the following important things:

• We need to subclass ABCMeta, using the metaclass keyword
• We use the @abstractmethod decorator for stating which methods should be

implemented (mandatory) by all subclasses of Server

Try removing the boot() or kill() method of a subclass and see what happens. Do
the same after removing the @abstractmethod decorator also. Do things work as
you expected?

Let's consider the following code:

State = Enum('State', 'new running sleeping restart zombie')

class Server(metaclass=ABCMeta):
 @abstractmethod
 def __init__(self):
 pass

 def __str__(self):
 return self.name

 @abstractmethod
 def boot(self):
 pass

 @abstractmethod
 def kill(self, restart=True):
 pass

A modular operating system can have a great number of interesting servers: a file
server, a process server, an authentication server, a network server, a graphical/
window server, and so forth. The following example includes two stub servers-
the FileServer, and the ProcessServer. Apart from the methods required to be
implemented by the Server interface, each server can have its own specific methods.
For instance the FileServer has a create_file() method for creating files, and the
ProcessServer has a create_process() method for creating processes.

class FileServer(Server):
 def __init__(self):
 '''actions required for initializing the file server'''

Chapter 6

[79]

 self.name = 'FileServer'
 self.state = State.new

 def boot(self):
 print('booting the {}'.format(self))
 '''actions required for booting the file server'''
 self.state = State.running

def kill(self, restart=True):
 print('Killing {}'.format(self))
 '''actions required for killing the file server'''
 self.state = State.restart if restart else State.zombie

 def create_file(self, user, name, permissions):
 '''check validity of permissions, user rights, etc.'''

 print("trying to create the file '{}' for user '{}' with
 permissions {}".format(name, user, permissions))

class ProcessServer(Server):
 def __init__(self):
 '''actions required for initializing the process server'''
 self.name = 'ProcessServer'
 self.state = State.new

 def boot(self):
 print('booting the {}'.format(self))
 '''actions required for booting the process server'''
 self.state = State.running

 def kill(self, restart=True):
 print('Killing {}'.format(self))
 '''actions required for killing the process server'''
 self.state = State.restart if restart else State.zombie

 def create_process(self, user, name):
 '''check user rights, generate PID, etc.'''

 print("trying to create the process '{}' for user
 '{}'".format(name, user))

The Facade Pattern

[80]

The OperatingSystem class is a Facade. In __init__(), all the necessary server
instances are created. The start() method, used by the client code, is the entry point
to the system. More wrapper methods can be added, if necessary, as access point
to the services of the servers such as the wrappers create_file() and create_
process(). From the client's point of view, all those services are provided by the
OperatingSystem class. The client should not be confused with unnecessary details
such as the existence of servers and the responsibility of each server.

class OperatingSystem:
 '''The Facade'''
 def __init__(self):
 self.fs = FileServer()
 self.ps = ProcessServer()

 def start(self):
 [i.boot() for i in (self.fs, self.ps)]

 def create_file(self, user, name, permissions):
 return self.fs.create_file(user, name, permissions)

 def create_process(self, user, name):
 return self.ps.create_process(user, name)

In the following full code listing (file facade.py), you can see that there are many
dummy classes and servers. They are there to give an idea about the required
abstractions (User, Process, File, and so forth) and servers (WindowServer,
NetworkServer, and so forth) for making the system functional. A recommended
exercise is to implement at least one service of the system (for example, file creation).
Feel free to change the interface and the signature of the methods to fit your needs.
Make sure that after your changes, the client code does not need to know anything
other than the Facade OperatingSystem class:

from enum import Enum
from abc import ABCMeta, abstractmethod

State = Enum('State', 'new running sleeping restart zombie')

class User:
 pass

class Process:
 pass

class File:
 pass

Chapter 6

[81]

class Server(metaclass=ABCMeta):
 @abstractmethod
 def __init__(self):
 pass

 def __str__(self):
 return self.name

 @abstractmethod
 def boot(self):
 pass

 @abstractmethod
 def kill(self, restart=True):
 pass

class FileServer(Server):
 def __init__(self):
 '''actions required for initializing the file server'''
 self.name = 'FileServer'
 self.state = State.new

 def boot(self):
 print('booting the {}'.format(self))
 '''actions required for booting the file server'''
 self.state = State.running

 def kill(self, restart=True):
 print('Killing {}'.format(self))
 '''actions required for killing the file server'''
 self.state = State.restart if restart else State.zombie

 def create_file(self, user, name, permissions):
 '''check validity of permissions, user rights, etc.'''

 print("trying to create the file '{}' for user '{}' with
 permissions {}".format(name, user, permissions))

class ProcessServer(Server):
 def __init__(self):
 '''actions required for initializing the process server'''
 self.name = 'ProcessServer'
 self.state = State.new

The Facade Pattern

[82]

 def boot(self):
 print('booting the {}'.format(self))
 '''actions required for booting the process server'''
 self.state = State.running

 def kill(self, restart=True):
 print('Killing {}'.format(self))
 '''actions required for killing the process server'''
 self.state = State.restart if restart else State.zombie

 def create_process(self, user, name):
 '''check user rights, generate PID, etc.'''

 print("trying to create the process '{}' for user
 '{}'".format(name, user))

class WindowServer:
 pass

class NetworkServer:
 pass

class OperatingSystem:
 '''The Facade'''
 def __init__(self):
 self.fs = FileServer()
 self.ps = ProcessServer()

 def start(self):
 [i.boot() for i in (self.fs, self.ps)]

 def create_file(self, user, name, permissions):
 return self.fs.create_file(user, name, permissions)

 def create_process(self, user, name):
 return self.ps.create_process(user, name)

def main():
 os = OperatingSystem()
 os.start()
 os.create_file('foo', 'hello', '-rw-r-r')
 os.create_process('bar', 'ls /tmp')

if __name__ == '__main__':
 main()

Chapter 6

[83]

Executing the example shows the starting message of our two stub servers:

>>> python3 facade.py

booting the FileServer

booting the ProcessServer

trying to create the file 'hello' for user 'foo' with permissions -
rw-r-r

trying to create the process 'ls /tmp' for user 'bar'

The Facade OperatingSystem class does a good job. The client code can create files
and processes without needing to know internal details about the operating system,
such as the existence of multiple servers. To be precise, the client code can call the
methods for creating files and processes, but they are currently dummy. As an
interesting exercise, you can implement one of the two methods, or even both.

Summary
In this chapter, we have learned how to use the Facade pattern. This pattern is ideal
for providing a simple interface to client code that wants to use a complex system
but does not need to be aware of the system's complexity. A computer is a Facade,
since all we need to use it is to press a single button for turning it on. All the rest
hardware complexity is handled transparently by the BIOS, the boot loader, and the
rest system software. There are more real-life examples of Facade, such as when we
are connected to the customer service department of a bank, or a company, and the
keys that we use to turn a vehicle on.

We discussed two Django third-party modules that use Facade: django-oscar-datacash
and Caliendo. The first uses the Facade pattern to provide a simple DataCash API,
and the ability to save transactions. The latter uses Facade for different purposes, like
caching and deciding what should be returned based on the type of the input object.

We covered the basic use cases of Facade and ended the chapter with an
implementation of the interface used by a multi-server operating system. A Facade
is an elegant way of hiding the complexity of a system, because in most cases the
client code should not be aware of such details.

In the next chapter, we will learn how to use the Flyweight design pattern for
reusing objects to improve the resource usage of a system.

The Flyweight Pattern
Object-oriented systems can face performance issues due to the overhead of object
creation. Performance issues usually appear in embedded systems with limited
resources, such as smartphones and tablets. The same problem can appear in large
and complex systems are where we need to create a very large number of objects
(and possibly users) that need to coexist at the same time.

This happens because whenever we create a new object, extra memory needs to
be allocated. Although virtual memory provides us, theoretically, with unlimited
memory, the reality is different. If all the physical memory of a system gets
exhausted, it will start swapping pages to the secondary storage, usually a Hard
Disk Drive (HDD), which, in most cases, is unacceptable due to the performance
differences between the main memory and HDD. Solid State Drives (SSD) generally
have better performance than HDD, but not everybody is expected to use SSD. So,
SSD are not going to totally replace HDD anytime soon [j.mp/wissd].

Apart from memory usage, performance is also a consideration. Graphics software,
including computer games, should be able to render 3D information (for example,
a forest with thousands of trees or a village full of soldiers) extremely fast. If each
object of a 3D terrain is created individually and no data sharing is used, the
performance will be prohibitive [j.mp/flyweightp].

As software engineers, we should solve software problems by writing better
software, instead of forcing the customer to buy extra or better hardware. The
Flyweight design pattern is a technique used to minimize memory usage and
improve performance by introducing data sharing between similar objects [j.mp/
wflyw]. A Flyweight is a shared object that contains state-independent, immutable
(also known as intrinsic) data. The state-dependent, mutable (also known as
extrinsic) data should not be part of Flyweight because this is information that
cannot be shared since it differs per object. If Flyweight needs extrinsic data, they
should be provided explicitly by the client code [GOF95, page 219], [j.mp/smflywe].

j.mp/wflyw
j.mp/wflyw

The Flyweight Pattern

[86]

An example might help to clarify how the Flyweight pattern can be practically used.
Let's assume that we are creating a performance-critical game, for example, a First-
Person Shooter (FPS). In FPS games, the players (soldiers) share some states, such as
representation and behavior. In Counter-Strike, for instance, all soldiers of the same
team (counter-terrorists versus terrorists) look the same (representation). In the same
game, all soldiers (of both teams) have some common actions, such as jump, duck,
and so forth (behavior). This means that we can create a Flyweight that will contain
all the common data. Of course, the soldiers also have many mutable data that are
different per soldier and will not be a part of the Flyweight, such as weapons, health,
locations, and so on.

A real-life example
Flyweight is an optimization design pattern; therefore, it is not easy to find a
good real-life example of it. We can think of Flyweight as caching in real life. For
example, many bookstores have dedicated shelves with the newest and most popular
publications. This is a cache. First, you can take a look at the dedicated shelves for
the book you are looking for, and if you cannot find it, you can ask the librarian to
assist you.

A software example
The Exaile music player [j.mp/exaile] uses Flyweight to reuse objects (in this case,
music tracks) that are identified by the same URL. There's no point in creating a new
object if it has the same URL as an existing object, so the same object is reused to save
resources [j.mp/exailefly].

Peppy, an XEmacs-like editor implemented in Python [j.mp/peppyp], uses the
Flyweight pattern to store the state of a major mode status bar. That's because unless
modified by the user, all status bars share the same properties [j.mp/peepyfly].

Use cases
Flyweight is all about improving performance and memory usage. All embedded
systems (phones, tablets, game consoles, microcontrollers, and so forth) and
performance-critical applications (games, 3D graphics processing, real-time systems,
and so forth) can benefit from it.

Chapter 7

[87]

The Gang Of Four (GoF) book lists the following requirements that need to be satisfied
to effectively use the Flyweight Pattern [GOF95, page 221]:

• The application needs to use a large number of objects.
• There are so many objects that it's too expensive to store/render them. Once

the mutable state is removed (because if it is required, it should be passed
explicitly to Flyweight by the client code), many groups of distinct objects
can be replaced by relatively few shared objects.

• Object identity is not important for the application. We cannot rely on object
identity because object sharing causes identity comparisons to fail (objects
that appear different to the client code, end up having the same identity).

Implementation
Since I already mentioned the tree example, let's see how we can implement it. In
this example, we will create a very small forest of fruit trees. It is small to make sure
that the whole output is readable in a single terminal page. However, no matter how
large you make the forest, the memory allocation stays the same. An Enum parameter
describes the three different types of fruit trees as follows:

TreeType = Enum('TreeType', 'apple_tree cherry_tree peach_tree')

Before diving into the code, let's spend a moment to note the difference between
memoization and the Flyweight pattern. Memoization is an optimization technique
that uses a cache to avoid recomputing results that were already computed in an
earlier execution step. Memoization does not focus on a specific programming
paradigm such as object-oriented programming (OOP). In Python, memoization
can be applied on both methods and simple functions. Flyweight is an OOP-specific
optimization design pattern that focuses on sharing object data.

Flyweight can be implemented in Python in many ways, but I find the
implementation shown in this example very neat. The pool variable is the object pool
(in other words, our cache). Notice that pool is a class attribute (a variable shared
by all instances) [j.mp/diveclsattr]. Using the __new__() special method, which
is called before __init__(), we are converting the Tree class to a metaclass that
supports self-references. This means that cls references the Tree class [Lott14, page
99]. When the client code creates an instance of Tree, they pass the type of the tree as
tree_type. The type of the tree is used to check if a tree of the same type has already
been created. If that's the case, the previously created object is returned; otherwise,
the new tree type is added to the pool and returned as shown:

 def __new__(cls, tree_type):
 obj = cls.pool.get(tree_type, None)

The Flyweight Pattern

[88]

 if not obj:
 obj = object.__new__(cls)
 cls.pool[tree_type] = obj
 obj.tree_type = tree_type
 return obj

The render() method is what will be used to render a tree on the screen. Notice how
all the mutable (extrinsic) information not known by Flyweight needs to be explicitly
passed by the client code. In this case, a random age and a location of form x, y is
used for every tree. To make render() more useful, it is necessary to ensure that no
trees are rendered on top of each other. Consider this as an exercise. If you want to
make rendering more fun, you can use a graphics toolkit such as Tkinter or Pygame.

def render(self, age, x, y):
 print('render a tree of type {} and age {} at ({},
 {})'.format(self.tree_type, age, x, y))

The main() function shows how we can use the Flyweight pattern. The age of a
tree is a random value between 1 and 30 years. The coordinate uses random values
between 1 and 100. Although eighteen trees are rendered, memory is allocated only
for three. The last line of the output proves that when using Flyweight, we cannot
rely on object identity. The id() function returns the memory address of an object.
This is not the default behavior in Python because by default, id() returns a unique
ID (actually the memory address of an object as an integer) for each object. In our
case, even if two objects appear to be different, they actually have the same identity
if they belong to the same Flyweight family (in this case, the family is defined by
tree_type). Of course, different identity comparisons can still be used for objects
of different families, but that is possible only if the client knows the implementation
details (which is not the case usually).

def main():
 rnd = random.Random()
 age_min, age_max = 1, 30 # in years
 min_point, max_point = 0, 100
 tree_counter = 0

 for _ in range(10):
 t1 = Tree(TreeType.apple_tree)
 t1.render(rnd.randint(age_min, age_max),
 rnd.randint(min_point, max_point),
 rnd.randint(min_point, max_point))
 tree_counter += 1

Chapter 7

[89]

 for _ in range(3):
 t2 = Tree(TreeType.cherry_tree)
 t2.render(rnd.randint(age_min, age_max),
 rnd.randint(min_point, max_point),
 rnd.randint(min_point, max_point))
 tree_counter += 1

 for _ in range(5):
 t3 = Tree(TreeType.peach_tree)
 t3.render(rnd.randint(age_min, age_max),
 rnd.randint(min_point, max_point),
 rnd.randint(min_point, max_point))
 tree_counter += 1

 print('trees rendered: {}'.format(tree_counter))
 print('trees actually created: {}'.format(len(Tree.pool)))

 t4 = Tree(TreeType.cherry_tree)
 t5 = Tree(TreeType.cherry_tree)
 t6 = Tree(TreeType.apple_tree)
 print('{} == {}? {}'.format(id(t4), id(t5), id(t4) == id(t5)))
 print('{} == {}? {}'.format(id(t5), id(t6), id(t5) == id(t6)))

The following full code listing (file flyweight.py) will give the complete picture of
how the Flyweight pattern is implemented and used:

import random
from enum import Enum

TreeType = Enum('TreeType', 'apple_tree cherry_tree peach_tree')

class Tree:
 pool = dict()

 def __new__(cls, tree_type):
 obj = cls.pool.get(tree_type, None)
 if not obj:
 obj = object.__new__(cls)
 cls.pool[tree_type] = obj
 obj.tree_type = tree_type
 return obj

The Flyweight Pattern

[90]

 def render(self, age, x, y):
 print('render a tree of type {} and age {} at ({},
 {})'.format(self.tree_type, age, x, y))

def main():
 rnd = random.Random()
 age_min, age_max = 1, 30 # in years
 min_point, max_point = 0, 100
 tree_counter = 0

 for _ in range(10):
 t1 = Tree(TreeType.apple_tree)
 t1.render(rnd.randint(age_min, age_max),
 rnd.randint(min_point, max_point),
 rnd.randint(min_point, max_point))
 tree_counter += 1

 for _ in range(3):
 t2 = Tree(TreeType.cherry_tree)
 t2.render(rnd.randint(age_min, age_max),
 rnd.randint(min_point, max_point),
 rnd.randint(min_point, max_point))
 tree_counter += 1

 for _ in range(5):
 t3 = Tree(TreeType.peach_tree)
 t3.render(rnd.randint(age_min, age_max),
 rnd.randint(min_point, max_point),
 rnd.randint(min_point, max_point))
 tree_counter += 1

 print('trees rendered: {}'.format(tree_counter))
 print('trees actually created: {}'.format(len(Tree.pool)))

 t4 = Tree(TreeType.cherry_tree)
 t5 = Tree(TreeType.cherry_tree)
 t6 = Tree(TreeType.apple_tree)
 print('{} == {}? {}'.format(id(t4), id(t5), id(t4) == id(t5)))
 print('{} == {}? {}'.format(id(t5), id(t6), id(t5) == id(t6)))

if __name__ == '__main__':
 main()

Chapter 7

[91]

The execution of the preceding example shows the type, random age, and
coordinates of the rendered objects, as well as the identity comparison results
between Flyweight objects of the same/different families. Do not expect to see the
same output as the following since the ages and coordinates are random, and the
object identities depend on the memory map.

>>> python3 flyweight.py

render a tree of type TreeType.apple_tree and age 4 at (88, 19)

render a tree of type TreeType.apple_tree and age 18 at (31, 35)

render a tree of type TreeType.apple_tree and age 7 at (54, 23)

render a tree of type TreeType.apple_tree and age 3 at (9, 11)

render a tree of type TreeType.apple_tree and age 2 at (93, 6)

render a tree of type TreeType.apple_tree and age 12 at (3, 49)

render a tree of type TreeType.apple_tree and age 10 at (5, 65)

render a tree of type TreeType.apple_tree and age 6 at (19, 16)

render a tree of type TreeType.apple_tree and age 2 at (21, 32)

render a tree of type TreeType.apple_tree and age 21 at (87, 79)

render a tree of type TreeType.cherry_tree and age 24 at (94, 31)

render a tree of type TreeType.cherry_tree and age 14 at (92, 37)

render a tree of type TreeType.cherry_tree and age 14 at (9, 88)

render a tree of type TreeType.peach_tree and age 23 at (44, 90)

render a tree of type TreeType.peach_tree and age 16 at (15, 59)

render a tree of type TreeType.peach_tree and age 1 at (81, 98)

render a tree of type TreeType.peach_tree and age 13 at (67, 63)

render a tree of type TreeType.peach_tree and age 12 at (69, 42)

trees rendered: 18

trees actually created: 3

140322427827480 == 140322427827480? True

140322427827480 == 140322427709088? False

Here's an exercise if you want to play more with Flyweight. Implement the FPS
soldier example mentioned in this chapter. Think about which data should be part of
Flyweight (immutable, intrinsic) and which should not (mutable, extrinsic).

The Flyweight Pattern

[92]

Summary
In this chapter, we covered the Flyweight pattern. We can use Flyweight when we
want to improve the memory usage and possibly the performance of our application.
This is quite important in all systems with limited resources (think of embedded
systems) and systems that focus on performance, such as graphics software and
electronic games. The Exaile music player for GTK+ uses Flyweight to avoid object
duplication, and the Peppy text editor uses it to share the properties of the status bar.

In general we use Flyweight when an application needs to create a large number of
computationally expensive objects that share many properties. The important point
is to separate the immutable (shared) properties, from the mutable. We implemented
a tree renderer that supports three different tree families. By providing the mutable
age and x, y properties explicitly to the render() method, we managed to create
only three different objects instead of eighteen. Although that might not seem like a
big win, imagine if the trees were two thousand instead of eighteen.

The next chapter covers a very popular design pattern that is used to keep the code
that handles the user interface decoupled from the code that handles the (business)
logic: Model-View-Controller.

The Model-View-Controller
Pattern

One of the design principles related to software engineering is the Separation of
Concerns (SoC) principle. The idea behind the SoC principle is to split an application
into distinct sections, where each section addresses a separate concern. Examples
of such concerns are the layers used in a layered design (data access layer, business
logic layer, presentation layer, and so forth). Using the SoC principle simplifies the
development and maintenance of software applications [j.mp/wikisoc].

The Model-View-Controller (MVC) pattern is nothing more than the SoC principle
applied to OOP. The name of the pattern comes from the three main components
used to split a software application: the model, the view, and the controller. MVC
is considered an architectural pattern rather than a design pattern. The difference
between an architectural and a design pattern is that the former has a broader scope
than the latter. Nevertheless, MVC is too important to skip just for this reason. Even
if we will never have to implement it from scratch, we need to be familiar with it
because all common frameworks use MVC or a slightly different version of it
(more on this later).

The model is the core component. It represents knowledge. It contains and manages
the (business) logic, data, state, and rules of an application. The view is a visual
representation of the model. Examples of views are a computer GUI, the text output
of a computer terminal, a smartphone's application GUI, a PDF document, a pie
chart, a bar chart, and so forth. The view only displays the data, it doesn't handle
it. The controller is the link/glue between the model and view. All communication
between the model and the view happens through a controller [GOF95, page 14],
[j.mp/cohomvc], [j.mp/wikipmvc].

The Model-View-Controller Pattern

[94]

A typical use of an application that uses MVC after the initial screen is rendered to
the user is as follows:

• The user triggers a view by clicking (typing, touching, and so on) a button
• The view informs the controller about the user's action
• The controller processes user input and interacts with the model
• The model performs all the necessary validation and state changes, and

informs the controller about what should be done
• The controller instructs the view to update and display the output

appropriately, following the instructions given by the model

You might be wondering why is the controller part necessary? Can't we just
skip it? We could, but then we would lose a big benefit that MVC provides: the
ability to use more than one view (even at the same time, if that's what we want)
without modifying the model. To achieve decoupling between the model and
its representation, every view typically needs its own controller. If the model
communicated directly with a specific view, we wouldn't be able to use multiple
views (or at least, not in a clean and modular way).

A real-life example
MVC is the SoC principle applied to OOP. The SoC principle is used a lot in real life.
For example, if you build a new house, you usually assign different professionals to:

• Install the plumbing and electricity
• Paint the house

Another example is a restaurant. In a restaurant, the waiters receive orders and serve
dishes to the customers, but the meals are cooked by the chefs [j.mp/somvc].

A software example
The web2py web framework [j.mp/webtopy] is a lightweight Python framework that
embraces the MVC pattern. If you have never tried web2py, I encourage you to do
it since it is extremely simple to install. All I had to do was download a package and
execute a single Python file (web2py.py). There are many examples that demonstrate
how MVC can be used in web2py on the project's web page [j.mp/web2pyex].

Chapter 8

[95]

Django is also an MVC framework, although it uses different naming conventions.
The controller is called view, and the view is called template. Django uses the name
Model-Template-View (MTV). According to the designers of Django, the view
describes what data is seen by the user, and therefore, it uses the name view as the
Python callback function for a particular URL. The term Template in Django is used
to separate content from representation. It describes how the data is seen by the user,
not which data is seen [j.mp/djangomtv].

Use cases
MVC is a very generic and useful design pattern. In fact, all popular Web
frameworks (Django, Rails, and Yii) and application frameworks (iPhone SDK,
Android, and QT) make use of MVC or a variation of it (Model-View-Adapter
(MVA), Model-View-Presenter (MVP), and so forth). However, even if we don't
use any of these frameworks, it makes sense to implement the pattern on our own
because of the benefits it provides, which are as follows:

• The separation between the view and model allows graphics designers to
focus on the UI part and programmers to focus on development, without
interfering with each other.

• Because of the loose coupling between the view and model, each part can be
modified/extended without affecting the other. For example, adding a new
view is trivial. Just implement a new controller for it.

• Maintaining each part is easier because the responsibilities are clear.

When implementing MVC from scratch, be sure that you create smart models, thin
controllers, and dumb views [Zlobin13, page 9].

A model is considered smart because it:

• Contains all the validation/business rules/logic
• Handles the state of the application
• Has access to application data (database, cloud, and so on)
• Does not depend on the UI

A controller is considered thin because it:

• Updates the model when the user interacts with the view
• Updates the view when the model changes
• Processes the data before delivering it to the model/view, if necessary

The Model-View-Controller Pattern

[96]

• Does not display the data
• Does not access the application data directly
• Does not contain validation/business rules/logic

A view is considered dumb because it:

• Displays the data
• Allows the user to interact with it
• Does only minimal processing, usually provided by a template language

(for example, using simple variables and loop controls)
• Does not store any data
• Does not access the application data directly
• Does not contain validation/business rules/logic

If you are implementing MVC from scratch and want to find out if you did it right,
you can try answering two key questions:

• If your application has a GUI, is it skinnable? How easily can you change
the skin/look and feel of it? Can you give the user the ability to change the
skin of your application during runtime? If this is not simple, it means that
something is going wrong with your MVC implementation [j.mp/cohomvc].

• If your application has no GUI (for instance, if it's a terminal application),
how hard is it to add GUI support? Or, if adding a GUI is irrelevant, is it easy
to add views to display the results in a chart (pie chart, bar chart, and so on)
or a document (PDF, spreadsheet, and so on)? If these changes are not trivial
(a matter of creating a new controller with a view attached to it, without
modifying the model), MVC is not implemented properly.

If you make sure that these two conditions are satisfied, your application will be
more flexible and maintainable compared to an application that does not use MVC.

Implementation
I could use any of the common frameworks to demonstrate how to use MVC but I
feel that the picture will be incomplete. So I decided to show how to implement MVC
from scratch, using a very simple example: a quote printer. The idea is extremely
simple. The user enters a number and sees the quote related to that number. The
quotes are stored in a quotes tuple. This is the data that normally exists in a
database, file, and so on, and only the model has direct access to it.

Chapter 8

[97]

Let's consider the example in the following code:

quotes = ('A man is not complete until he is married. Then he is
 finished.', 'As I said before, I never repeat myself.',
 'Behind a successful man is an exhausted woman.',
 'Black holes really suck...', 'Facts are stubborn
 things.')

The model is minimalistic. It only has a get_quote() method that returns the quote
(string) of the quotes tuple based on its index n. Note that n can be less than or equal
to 0, due to the way indexing works in Python. Improving this behavior is given as
an exercise for you at the end of this section.

class QuoteModel:
 def get_quote(self, n):
 try:
 value = quotes[n]
 except IndexError as err:
 value = 'Not found!'
 return value

The view has three methods: show(), which is used to print a quote (or the message
Not found!) on the screen, error(), which is used to print an error message on the
screen, and select_quote(), which reads the user's selection. This can be seen in
the following code:

class QuoteTerminalView:
 def show(self, quote):
 print('And the quote is: "{}"'.format(quote))

 def error(self, msg):
 print('Error: {}'.format(msg))

 def select_quote(self):
 return input('Which quote number would you like to see? ')

The controller does the coordination. The __init__() method initializes the model
and view. The run() method validates the quote index given by the user, gets the
quote by the model, and passes it back to the view to be displayed as shown in the
following code:

class QuoteTerminalController:
 def __init__(self):
 self.model = QuoteModel()
 self.view = QuoteTerminalView()

The Model-View-Controller Pattern

[98]

 def run(self):
 valid_input = False
 while not valid_input:
 n = self.view.select_quote()
 try:
 n = int(n)
 except ValueError as err:
 self.view.error("Incorrect index '{}'".format(n))
 else:
 valid_input = True
 quote = self.model.get_quote(n)
 self.view.show(quote)

Last but not least, the main() function initializes and fires the controller as shown in
the following code:

def main():
 controller = QuoteTerminalController()
 while True:
 controller.run()

The following is the full code of the example (file mvc.py):

quotes = ('A man is not complete until he is married. Then he is
 finished.', 'As I said before, I never repeat myself.',
 'Behind a successful man is an exhausted woman.',
 'Black holes really suck...', 'Facts are stubborn
 things.')

class QuoteModel:
 def get_quote(self, n):
 try:
 value = quotes[n]
 except IndexError as err:
 value = 'Not found!'
 return value

class QuoteTerminalView:
 def show(self, quote):
 print('And the quote is: "{}"'.format(quote))

 def error(self, msg):
 print('Error: {}'.format(msg))

Chapter 8

[99]

 def select_quote(self):
 return input('Which quote number would you like to see? ')

class QuoteTerminalController:
 def __init__(self):
 self.model = QuoteModel()
 self.view = QuoteTerminalView()

 def run(self):
 valid_input = False
 while not valid_input:
 try:
 n = self.view.select_quote()
 n = int(n)
 valid_input = True
 except ValueError as err:
 self.view.error("Incorrect index '{}'".format(n))
 quote = self.model.get_quote(n)
 self.view.show(quote)

def main():
 controller = QuoteTerminalController()
 while True:
 controller.run()

if __name__ == '__main__':
 main()

A sample execution of mvc.py shows how the program handles errors and prints
quotes to the user:

>>> python3 mvc.py

Which quote number would you like to see? a

Error: Incorrect index 'a'

Which quote number would you like to see? 40

And the quote is: "Not found!"

Which quote number would you like to see? 0

And the quote is: "A man is not complete until he is married. Then he is
finished."

Which quote number would you like to see? 3

And the quote is: "Black holes really suck..."

The Model-View-Controller Pattern

[100]

Of course, you don't (and shouldn't) have to stop here. Keep coding. There are many
interesting ideas that you can experiment with. A few of them are:

• Make the program more user-friendly by allowing only indexes of values
greater than or equal to 1 to be given by the user. You will also need to
modify get_quote().

• Add a graphical view using a GUI framework such as Tkinter, Pygame, or
Kivy. How modular is the program? Can you decide during runtime which
view will be used?

• Give the user an option to view a random quote by typing a key, for example,
key r.

• The index validation is currently done in the controller. Is that a good
approach? What happens if you write another view that needs its own
controller? Think about the changes required to move index validation
in the model to make the code reusable for all controller/view pairs.

• Extend this example to make it work like a Create, Read, Update, Delete
(CRUD) application. You should be able to enter new quotes, delete
existing quotes, and modify a quote.

Summary
In this chapter, we covered the MVC pattern. MVC is a very important design
pattern used to structure an application in three parts: the model, the view,
and the controller.

Each part has clear roles and responsibilities. The model has access to the data and
manages the state of the application. The view is a representation of the model. The
view does not need to be graphical; textual output is also considered a totally fine
view. The controller is the link between the model and view. Proper use of MVC
guarantees that we end up with an application that is easy to maintain and extend.

The MVC pattern is the SoC principle applied to object-oriented programming.
This principle is similar to how a new house is constructed or how a restaurant
is operated.

The web2py Python framework uses MVC as the core architectural idea. Even
the simplest web2py examples make use of MVC to achieve modularity and
maintainability. Django is also an MVC framework, although it uses the name MTV.

When using MVC, make sure that you creating smart models (core functionality),
thin controllers (functionality required for the communication between the view
and the controller), and dumb views (representation and minimal processing).

Chapter 8

[101]

In the Implementation section, we saw how to implement MVC from scratch to show
funny quotes to the user. This is not very different from the functionality required to
listing all the posts of an RSS feed. Feel free to implement this as an exercise, if none
of the other recommended exercises appeal to you.

In the next chapter, you will learn how to secure an interface using an extra
protection layer, implemented using the Proxy design pattern.

The Proxy Pattern
In some applications, we want to execute one or more important action before
accessing an object. An example is accessing sensitive information. Before allowing
any user to access sensitive information, we want to make sure that the user has
sufficient privileges. A similar situation exists in operating systems. A user is
required to have administrative privileges to install new programs system-wide.

The important action is not necessarily related to security issues. Lazy initialization
[j.mp/wikilazy] is another case; we want to delay the creation of a computationally
expensive object until the first time the user actually needs to use it.

Such actions are typically performed using the Proxy design pattern. The pattern
gets its name from the proxy (also known as surrogate) object used to perform an
important action before accessing the actual object. There are four different well-
known proxy types [GOF95, page 234], [j.mp/proxypat]. They are as follows:

• A remote proxy, which acts as the local representation of an object that really
exists in a different address space (for example, a network server).

• A virtual proxy, which uses lazy initialization to defer the creation of a
computationally expensive object until the moment it is actually needed.

• A protection/protective proxy, which controls access to a sensitive object.
• A smart (reference) proxy, which performs extra actions when an

object is accessed. Examples of such actions are reference counting
and thread-safety checks.

I find virtual proxies very useful so let's see an example of how we can implement
them in Python right now. In the Implementation section, you will learn how to create
protective proxies.

The Proxy Pattern

[104]

There are many ways to create a virtual proxy in Python, but I always like focusing
on the idiomatic/pythonic implementations. The code shown here is based on the
great answer by Cyclone, a user of the site stackoverflow.com [j.mp/solazyinit].
To avoid confusion, I should clarify that in this section, the terms property, variable,
and attribute are used interchangeably. First, we create a LazyProperty class that
can be used as a decorator. When it decorates a property, LazyProperty loads the
property lazily (on the first use) instead of instantly. The __init__() method creates
two variables that are used as aliases to the method that initializes a property. The
method variable is an alias to the actual method, and the method_name variable is an
alias to the method's name. To get a better understanding about how the two aliases
are used, print their value to the output (uncomment the two commented lines in the
following code):

class LazyProperty:
 def __init__(self, method):
 self.method = method
 self.method_name = method.__name__
 # print('function overriden: {}'.format(self.fget))
 # print("function's name: {}".format(self.func_name))

The LazyProperty class is actually a descriptor [j.mp/pydesc]. Descriptors are
the recommended mechanism to use in Python to override the default behavior
of its attribute access methods: __get__(), __set__(), and __delete__(). The
LazyProperty class overrides only __set__() because that is the only access
method it needs to override. In other words, we don't have to override all access
methods. The __get__() method accesses the value of the property the underlying
method wants to assign, and uses setattr() to do the assignment manually. What
__get()__ actually does is very neat; it replaces the method with the value! This
means that not only is the property lazily loaded, it can also be set only once. We
will see what this means in a moment. Again, uncomment the commented line in
the following code to get some extra info:

 def __get__(self, obj, cls):
 if not obj:
 return None
 value = self.method(obj)
 # print('value {}'.format(value))
 setattr(obj, self.method_name, value)
 return value

Chapter 9

[105]

The Test class shows how we can use the LazyProperty class. There are three
attributes: x, y, and _resource. We want the _resource variable to be loaded lazily;
thus, we initialize it to None as shown in the following code:

class Test:
 def __init__(self):
 self.x = 'foo'
 self.y = 'bar'
 self._resource = None

The resource() method is decorated with the LazyProperty class. For
demonstration purposes, the LazyProperty class initializes the _resource attribute
as a tuple as shown in the following code. Normally, this would be a slow/
expensive initialization (database, graphics, and so on):

 @LazyProperty
 def resource(self):
 print('initializing self._resource which is:
 {}'.format(self._resource))
 self._resource = tuple(range(5)) # expensive
 return self._resource

The main() function shows how lazy initialization behaves. Notice how overriding
the __get()__ access method makes it possible to treat the resource() method as
a variable (we can use t.resource instead of t.resource()):

def main():
 t = Test()
 print(t.x)
 print(t.y)
 # do more work...
 print(t.resource)
 print(t.resource)

In the execution output of this example (the lazy.py file), we can see that:

• The _resource variable is indeed initialized not by the time the t instance is
created, but the first time that we use t.resource.

• The second time t.resource is used, the variable is not initialized again.
That's why the initialization string initializing self._resource which is: is
shown only once.

The Proxy Pattern

[106]

• The following shows the execution of the lazy.py file:
>>> python3 lazy.py

foo

bar

initializing self._resource which is: None

(0, 1, 2, 3, 4)

(0, 1, 2, 3, 4)

There are two basic, different kinds of lazy initialization in OOP. They are as follows:

• At the instance level: This means that an object's property is initialized
lazily, but the property has an object scope. Each instance (object) of the same
class has its own (different) copy of the property.

• At the class or module level: In this case, we do not want a different copy
per instance, but all the instances share the same property, which is lazily
initialized. This case is not covered in this chapter. If you find it interesting,
consider it as an exercise.

A real-life example
Chip (also known as Chip and PIN) cards [j.mp/wichpin] are a good example of
a protective proxy used in real life. The debit/credit card contains a chip that first
needs to be read by the ATM or card reader. After the chip is verified, a password
(PIN) is required to complete the transaction. This means that you cannot make any
transactions without physically presenting the card and knowing the PIN.

A bank check that is used instead of cash to make purchases and deals is an
example of a remote proxy. The check gives access to a bank account. The following
figure, courtesy of sourcemaking.com, shows how a check acts as a remote proxy
[j.mp/proxypat]:

Chapter 9

[107]

A software example
The weakref module of Python contains a proxy() method that accepts an input
object and returns a smart proxy to it. Weak references are the recommended way
to add a reference counting support to an object [j.mp/wrefproxy].

ZeroMQ [j.mp/zermq] is a set of FOSS projects that focus on decentralized
computing. The Python implementation of ZeroMQ has a proxy module that
implements a remote proxy. This module allows Tornado [j.mp/pytornado]
handlers to be run in separate remote processes [j.mp/pyzmq].

Use cases
Since there are at least four common proxy types, the Proxy design pattern has many
use cases, as follows:

• It is used when creating a distributed system using either a private network
or the cloud. In a distributed system, some objects exist in the local memory
and some objects exist in the memory of remote computers. If we don't
want the client code to be aware of such differences, we can create a remote
proxy that hides/encapsulates them, making the distributed nature of the
application transparent.

The Proxy Pattern

[108]

• It is used if our application is suffering from performance issues due to the
early creation of expensive objects. Introducing lazy initialization using
a virtual proxy to create the objects only at the moment they are actually
required can give us significant performance improvements.

• It is used to check if a user has sufficient privileges to access a piece of
information. If our application handles sensitive information (for example,
medical data), we want to make sure that the user trying to access/modify
it is allowed to do so. A protection/protective proxy can handle all
security-related actions.

• It is used when our application (or library, toolkit, framework, and so forth)
uses multiple threads and we want to move the burden of thread-safety from
the client code to the application. In this case, we can create a smart proxy to
hide the thread-safety complexities from the client.

• An Object-Relational Mapping (ORM) API is also an example of how to use
a remote proxy. Many popular web frameworks, including Django, use an
ORM to provide OOP-like access to a relational database. An ORM acts as a
proxy to a relational database that can be actually located anywhere, either
at a local or remote server.

Implementation
To demonstrate the Proxy pattern, we will implement a simple protection proxy
to view and add users. The service provides two options:

• Viewing the list of users: This operation does not require special privileges
• Adding a new user: This operation requires the client to provide a special

secret message

The SensitiveInfo class contains the information that we want to protect. The
users variable is the list of existing users. The read() method prints the list of
the users. The add() method adds a new user to the list. Let's consider the
following code:

class SensitiveInfo:
 def __init__(self):
 self.users = ['nick', 'tom', 'ben', 'mike']

 def read(self):
 print('There are {} users: {}'.format(len(self.users), '
 '.join(self.users)))

 def add(self, user):
 self.users.append(user)
 print('Added user {}'.format(user))

Chapter 9

[109]

The Info class is a protection proxy of SensitiveInfo. The secret variable is
the message required to be known/provided by the client code to add a new user.
Note that this is just an example. In reality, you should never:

• Store passwords in the source code
• Store passwords in a clear-text form
• Use a weak (for example, MD5) or custom form of encryption

The read() method is a wrapper to SensitiveInfo.read(). The add() method
ensures that a new user can be added only if the client code knows the secret
message. Let's consider the following code:

class Info:
 def __init__(self):
 self.protected = SensitiveInfo()
 self.secret = '0xdeadbeef'

 def read(self):
 self.protected.read()

 def add(self, user):
 sec = input('what is the secret? ')
 self.protected.add(user) if sec == self.secret else
 print("That's wrong!")

The main() function shows how the Proxy pattern can be used by the client code. The
client code creates an instance of the Info class and uses the displayed menu to read
the list, add a new user, or exit the application. Let's consider the following code:

def main():
 info = Info()

 while True:
 print('1. read list |==| 2. add user |==| 3. quit')
 key = input('choose option: ')
 if key == '1':
 info.read()
 elif key == '2':
 name = input('choose username: ')
 info.add(name)
 elif key == '3':
 exit()
 else:
 print('unknown option: {}'.format(key))

The Proxy Pattern

[110]

Let's see the the full code of the proxy.py file:

class SensitiveInfo:
 def __init__(self):
 self.users = ['nick', 'tom', 'ben', 'mike']

 def read(self):
 print('There are {} users: {}'.format(len(self.users), '
 '.join(self.users)))

 def add(self, user):
 self.users.append(user)
 print('Added user {}'.format(user))

class Info:
 '''protection proxy to SensitiveInfo'''

 def __init__(self):
 self.protected = SensitiveInfo()
 self.secret = '0xdeadbeef'

 def read(self):
 self.protected.read()

 def add(self, user):
 sec = input('what is the secret? ')
 self.protected.add(user) if sec == self.secret else
 print("That's wrong!")

def main():
 info = Info()

 while True:
 print('1. read list |==| 2. add user |==| 3. quit')
 key = input('choose option: ')
 if key == '1':
 info.read()
 elif key == '2':
 name = input('choose username: ')
 info.add(name)
 elif key == '3':
 exit()
 else:
 print('unknown option: {}'.format(key))

if __name__ == '__main__':
 main()

Chapter 9

[111]

Here is an example of how to execute proxy.py:

>>> python3 proxy.py

1. read list |==| 2. add user |==| 3. quit

choose option: a

1. read list |==| 2. add user |==| 3. quit

choose option: 4

1. read list |==| 2. add user |==| 3. quit

choose option: 1

There are 4 users: nick tom ben mike

1. read list |==| 2. add user |==| 3. quit

choose option: 2

choose username: pet

what is the secret? blah

That's wrong!

1. read list |==| 2. add user |==| 3. quit

choose option: 2

choose username: bill

what is the secret? 0xdeadbeef

Added user bill

1. read list |==| 2. add user |==| 3. quit

choose option: 1

There are 5 users: nick tom ben mike bill

1. read list |==| 2. add user |==| 3. quit

choose option: 3

Have you already spotted flaws or missing features that can improve the Proxy
example? I have a few suggestions. They are as follows:

• This example has a very big security flaw. Nothing prevents the client code
from bypassing the security of the application by creating an instance of
SensitiveInfo directly. Improve the example to prevent this situation. One
way is to use the abc module to forbid direct instantiation of SensitiveInfo.
What other code changes are required in this case?

• A basic security rule is that we should never store clear-text passwords.
Storing a password safely is not very hard as long as we know which
libraries to use [j.mp/hashsec]. If you have an interest in security, read
the article and try to implement a secure way to store the secret message
externally (for example, in a file or database).

The Proxy Pattern

[112]

• The application only supports adding new users, but what about removing
an existing user? Add a remove() method. Should remove() be a privileged
operation?

Summary
In this chapter, you learned how to use the Proxy design pattern. We used the Proxy
pattern to implement a surrogate of an actual class when we want to act before
(or after) accessing it. There are four different Proxy types. They are as follows:

• A remote proxy, which represents an object that lives in a remote location
(for example, our own remote server or cloud service)

• A virtual proxy to delay the initialization of an object until it is actually used
• A protection/protective proxy, which is used to access control to an object

that handles sensitive information
• When we want to extend the behavior of an object by adding support such as

reference counting, we use a smart (reference) proxy

In the first code example, we created a virtual proxy in a pythonic style, using
decorators and descriptors. This proxy allows us to initialize object properties
in a lazy manner.

Chip and PIN and bank checks are examples of two different proxies used by people
every day. Chip and PIN is a protective proxy, while a bank check is a remote proxy.
However, proxies are also used in popular software. Python has a weakref.proxy()
method that makes the creation of a smart proxy of an object very easy. The Python
implementation of ZeroMQ uses a remote proxy.

We discussed several use cases of the Proxy pattern, including performance, security,
and offering simple APIs to users. In the second code example, we implemented
a protection proxy to handle users. This example can be improved in many ways,
especially regarding its security flaws and the fact that the list of users is not
persistent (permanently stored). Hopefully, you will find the recommended
exercises interesting.

In the next chapter, we will explore behavioral design patterns. Behavioral patterns
cope with object interconnection and algorithms. The first behavioral pattern that
will be covered is Chain of Responsibility, which allows us to create a chain of
receiving objects so that we can send broadcast messages. Sending a broadcast
message is useful when the handler of a request is not known in advance.

The Chain of
Responsibility Pattern

When developing an application, most of the time we know which method should
satisfy a particular request in advance. However, this is not always the case. For
example, we can think of any broadcast computer network, such as the original
Ethernet implementation [j.mp/wikishared]. In broadcast computer networks, all
requests are sent to all nodes (broadcast domains are excluded for simplicity), but
only the nodes that are interested in a sent request process it. All computers that
participate in a broadcast network are connected to each other using a common
medium such as the cable that connects the three nodes in the following figure:

If a node is not interested or does not know how to handle a request, it can perform
the following actions:

• Ignore the request and do nothing
• Forward the request to the next node

The Chain of Responsibility Pattern

[114]

The way in which the node reacts to a request is an implementation detail. However,
we can use the analogy of a broadcast computer network to understand what the
chain of responsibility pattern is all about. The Chain of Responsibility pattern is
used when we want to give a chance to multiple objects to satisfy a single request, or
when we don't know which object (from a chain of objects) should process a specific
request in advance. The principle is the same as the following:

1. There is a chain (linked list, tree, or any other convenient data structure)
of objects.

2. We start by sending a request to the first object in the chain.
3. The object decides whether it should satisfy the request or not.
4. The object forwards the request to the next object.
5. This procedure is repeated until we reach the end of the chain.

At the application level, instead of talking about cables and network nodes, we can
focus on objects and the flow of a request. The following figure, courtesy of www.
sourcemaking.com [j.mp/smchain], shows how the client code sends a request to
all processing elements (also known as nodes or handlers) of an application:

Note that the client code only knows about the first processing element, instead of
having references to all of them, and each processing element only knows about its
immediate next neighbor (called the successor), not about every other processing
element. This is usually a one-way relationship, which in programming terms means
a singly linked list in contrast to a doubly linked list; a singly linked list does not
allow navigation in both ways, while a doubly linked list allows that. This chain
organization is used for a good reason. It achieves decoupling between the sender
(client) and the receivers (processing elements) [GOF95, page 254].

www.sourcemaking.com
www.sourcemaking.com

Chapter 10

[115]

A real-life example
ATMs and, in general, any kind of machine that accepts/returns banknotes or coins
(for example, a snack vending machine) use the chain of responsibility pattern. There
is always a single slot for all banknotes, as shown in the following figure, courtesy of
www.sourcemaking.com:

When a banknote is dropped, it is routed to the appropriate receptacle. When it is
returned, it is taken from the appropriate receptacle [j.mp/smchain], [j.mp/c2chain].
We can think of the single slot as the shared communication medium and the different
receptacles as the processing elements. The result contains cash from one or more
receptacles. For example, in the preceding figure, we see what happens when we
request $175 from the ATM.

A software example
I tried to find some good examples of Python applications that use the Chain of
Responsibility pattern but I couldn't, most likely because Python programmers
don't use this name. So, my apologies, but I will use other programming languages
as a reference.

www.sourcemaking.com

The Chain of Responsibility Pattern

[116]

The servlet filters of Java are pieces of code that are executed before an HTTP request
arrives at a target. When using servlet filters, there is a chain of filters. Each filter
performs a different action (user authentication, logging, data compression, and so
forth), and either forwards the request to the next filter until the chain is exhausted,
or it breaks the flow if there is an error (for example, the authentication failed three
consecutive times) [j.mp/soservl].

Apple's Cocoa and Cocoa Touch frameworks use Chain of Responsibility to handle
events. When a view receives an event that it doesn't know how to handle, it
forwards the event to its superview. This goes on until a view is capable of
handling the event or the chain of views is exhausted [j.mp/chaincocoa].

Use cases
By using the Chain of Responsibility pattern, we give a chance to a number of
different objects to satisfy a specific request. This is useful when we don't know
which object should satisfy a request in advance. An example is a purchase system.
In purchase systems, there are many approval authorities. One approval authority
might be able to approve orders up to a certain value, let's say $100. If the order is
more than $100, the order is sent to the next approval authority in the chain that
can approve orders up to $200, and so forth.

Another case where Chain of Responsibility is useful is when we know that more
than one object might need to process a single request. This is what happens in an
event-based programming. A single event such as a left mouse click can be caught
by more than one listener.

It is important to note that the Chain of Responsibility pattern is not very useful
if all the requests can be taken care of by a single processing element, unless we
really don't know which element that is. The value of this pattern is the decoupling
that it offers. Instead of having a many-to-many relationship between a client and
all processing elements (and the same is true regarding the relationship between a
processing element and all other processing elements), a client only needs to know
how to communicate with the start (head) of the chain.

Chapter 10

[117]

The following figure demonstrates the difference between tight and loose coupling.
The idea behind loosely coupled systems is to simplify maintenance and make it
easier for us to understand how they function [j.mp/loosecoup]:

Implementation
There are many ways to implement Chain of Responsibility in Python, but my
favorite implementation is the one by Vespe Savikko [j.mp/savviko]. Vespe's
implementation uses dynamic dispatching in a Pythonic style to handle requests
[j.mp/ddispatch].

Let's implement a simple event-based system using Vespe's implementation as a
guide. The following is the UML class diagram of the system:

The Chain of Responsibility Pattern

[118]

The Event class describes an event. We'll keep it simple, so in our case an event has
only name:

class Event:
 def __init__(self, name):
 self.name = name

 def __str__(self):
 return self.name

The Widget class is the core class of the application. The parent aggregation shown
in the UML diagram indicates that each widget can have a reference to a parent
object, which by convention, we assume is a Widget instance. Note, however, that
according to the rules of inheritance, an instance of any of the subclasses of Widget
(for example, an instance of MsgText) is also an instance of Widget. The default value
of parent is None:

class Widget:
 def __init__(self, parent=None):
 self.parent = parent

The handle() method uses dynamic dispatching through hasattr() and getattr()
to decide who is the handler of a specific request (event). If the widget that is asked
to handle an event does not support it, there are two fallback mechanisms. If the
widget has parent, then the handle() method of parent is executed. If the widget
has no parent but a handle_default() method, handle_default() is executed:

 def handle(self, event):
 handler = 'handle_{}'.format(event)
 if hasattr(self, handler):
 method = getattr(self, handler)
 method(event)
 elif self.parent:
 self.parent.handle(event)
 elif hasattr(self, 'handle_default'):
 self.handle_default(event)

At this point, you might have realized why the Widget and Event classes are only
associated (no aggregation or composition relationships) in the UML class diagram.
The association is used to show that the Widget class "knows" about the Event class
but does not have any strict references to it, since an event needs to be passed only as
a parameter to handle().

Chapter 10

[119]

MainWIndow, MsgText, and SendDialog are all widgets with different behaviors. Not
all these three widgets are expected to be able to handle the same events, and even
if they can handle the same event, they might behave differently. MainWIndow can
handle only the close and default events:

class MainWindow(Widget):
 def handle_close(self, event):
 print('MainWindow: {}'.format(event))

 def handle_default(self, event):
 print('MainWindow Default: {}'.format(event))

SendDialog can handle only the paint event:

class SendDialog(Widget):
 def handle_paint(self, event):
 print('SendDialog: {}'.format(event))

Finally, MsgText can handle only the down event:

class MsgText(Widget):
 def handle_down(self, event):
 print('MsgText: {}'.format(event))

The main() function shows how we can create a few widgets and events, and how
the widgets react to those events. All events are sent to all the widgets. Note the
parent relationship of each widget. The sd object (an instance of SendDialog) has as
its parent the mw object (an instance of MainWindow). However, not all objects need
to have a parent that is an instance of MainWindow. For example, the msg object (an
instance of MsgText) has the sd object as a parent:

def main():
 mw = MainWindow()
 sd = SendDialog(mw)
 msg = MsgText(sd)

 for e in ('down', 'paint', 'unhandled', 'close'):
 evt = Event(e)
 print('\nSending event -{}- to MainWindow'.format(evt))
 mw.handle(evt)
 print('Sending event -{}- to SendDialog'.format(evt))
 sd.handle(evt)
 print('Sending event -{}- to MsgText'.format(evt))
 msg.handle(evt)

The Chain of Responsibility Pattern

[120]

The following is the full code of the example (chain.py):

class Event:
 def __init__(self, name):
 self.name = name

 def __str__(self):
 return self.name

class Widget:
 def __init__(self, parent=None):
 self.parent = parent

 def handle(self, event):
 handler = 'handle_{}'.format(event)
 if hasattr(self, handler):
 method = getattr(self, handler)
 method(event)
 elif self.parent:
 self.parent.handle(event)
 elif hasattr(self, 'handle_default'):
 self.handle_default(event)

class MainWindow(Widget):
 def handle_close(self, event):
 print('MainWindow: {}'.format(event))

 def handle_default(self, event):
 print('MainWindow Default: {}'.format(event))

class SendDialog(Widget):
 def handle_paint(self, event):
 print('SendDialog: {}'.format(event))

class MsgText(Widget):
 def handle_down(self, event):
 print('MsgText: {}'.format(event))

def main():
 mw = MainWindow()
 sd = SendDialog(mw)
 msg = MsgText(sd)

Chapter 10

[121]

 for e in ('down', 'paint', 'unhandled', 'close'):
 evt = Event(e)
 print('\nSending event -{}- to MainWindow'.format(evt))
 mw.handle(evt)
 print('Sending event -{}- to SendDialog'.format(evt))
 sd.handle(evt)
 print('Sending event -{}- to MsgText'.format(evt))
 msg.handle(evt)

if __name__ == '__main__':
 main()

Executing chain.py gives us the following results:

>>> python3 chain.py

Sending event -down- to MainWindow

MainWindow Default: down

Sending event -down- to SendDialog

MainWindow Default: down

Sending event -down- to MsgText

MsgText: down

Sending event -paint- to MainWindow

MainWindow Default: paint

Sending event -paint- to SendDialog

SendDialog: paint

Sending event -paint- to MsgText

SendDialog: paint

Sending event -unhandled- to MainWindow

MainWindow Default: unhandled

Sending event -unhandled- to SendDialog

MainWindow Default: unhandled

Sending event -unhandled- to MsgText

MainWindow Default: unhandled

The Chain of Responsibility Pattern

[122]

Sending event -close- to MainWindow

MainWindow: close

Sending event -close- to SendDialog

MainWindow: close

Sending event -close- to MsgText

MainWindow: close

There are some interesting things that we can see in the output. For instance,
sending a down event to MainWindow ends up being handled by the default
MainWindow handler. Another nice case is that although a close event cannot be
handled directly by SendDialog and MsgText, all the close events end up being
handled properly by MainWindow. That's the beauty of using the parent relationship
as a fallback mechanism.

If you want to spend some more creative time on the event example, you can replace
the dumb print statements and add some actual behavior to the listed events. Of
course, you are not limited to the listed events. Just add your favorite event and
make it do something useful!

Another exercise is to add a MsgText instance during runtime that has MainWindow
as the parent. Is this hard? Do the same for an event (add a new event to an existing
widget). Which is harder?

Summary
In this chapter, we covered the Chain of Responsibility design pattern. This pattern is
useful to model requests / handle events when the number and type of handlers isn't
known in advance. Examples of systems that fit well with Chain of Responsibility are
event-based systems, purchase systems, and shipping systems.

In the Chain Of Responsibility pattern, the sender has direct access to the first node
of a chain. If the request cannot be satisfied by the first node, it forwards to the next
node. This continues until either the request is satisfied by a node or the whole chain
is traversed. This design is used to achieve loose coupling between the sender and
the receiver(s).

ATMs are an example of Chain Of Responsibility. The single slot that is used for
all banknotes can be considered the head of the chain. From here, depending on
the transaction, one or more receptacles is used to process the transaction. The
receptacles can be considered the processing elements of the chain.

Chapter 10

[123]

Java's servlet filters use the Chain of Responsibility pattern to perform different
actions (for example, compression and authentication) on an HTTP request. Apple's
Cocoa frameworks use the same pattern to handle events such as button presses and
finger gestures.

The implementation section demonstrates how we can create our own event-based
system in Python using dynamic dispatching.

The next chapter is about the Command pattern, which is used (but not limited to)
to add undo support in an application.

The Command Pattern
Most applications nowadays have an undo operation. It is hard to imagine, but undo
did not exist in any software for many years. Undo was introduced in 1974 [j.mp/
wiundo], but Fortran and Lisp, two programming languages that are still widely
used, were created in 1957 and 1958, respectively [j.mp/proghist]! I wouldn't like
to be an application user during those years. Making a mistake meant that the user
had no easy way to fix it.

Enough with the history. We want to know how we can implement the undo
functionality in our applications. And since you have read the title of this chapter,
you already know which design pattern is recommended to implement undo: the
Command pattern.

The Command design pattern helps us encapsulate an operation (undo, redo, copy,
paste, and so forth) as an object. What this simply means is that we create a class
that contains all the logic and the methods required to implement the operation. The
advantages of doing this are as follows [GOF95, page 265], [j.mp/cmdpattern]:

• We don't have to execute a command directly. It can be executed on will.
• The object that invokes the command is decoupled from the object

that knows how to perform it. The invoker does not need to know any
implementation details about the command.

• If it makes sense, multiple commands can be grouped to allow the invoker
to execute them in order. This is useful, for instance, when implementing
a multilevel undo command.

j.mp/wiundo
j.mp/wiundo

The Command Pattern

[126]

A real-life example
When we go to the restaurant for dinner, we give the order to the waiter. The check
(usually paper) they use to write the order on is an example of Command. After
writing the order, the waiter places it in the check queue that is executed by the
cook. Each check is independent and can be used to execute many and different
commands, for example, one command for each item that will be cooked. The
following figure, courtesy of www.sourcemaking.com [j.mp/cmdpattern],
shows a sequence diagram of a sample order:

A software example
PyQt is the Python binding of the QT toolkit. PyQt contains a QAction class that
models an action as a command. Extra optional information is supported for every
action, such as description, tooltip, shortcut, and more [j.mp/qaction].

git-cola [j.mp/git-cola], a Git GUI written in Python, uses the Command pattern
to modify the model, amend a commit, apply a different election, check out, and
so forth [j.mp/git-cola-code].

Chapter 11

[127]

Use cases
Many developers use the undo example as the only use case of the Command
pattern. The truth is that undo is the killer feature of the Command pattern.
However, the Command pattern can actually do much more [GOF95, page 265],
[j.mp/commddp]:

• GUI buttons and menu items: The PyQt example that was already
mentioned uses the Command pattern to implement actions on
buttons and menu items.

• Other operations: Apart from undo, Command can be used to implement
any operation. A few examples are cut, copy, paste, redo, and capitalize text.

• Transactional behavior and logging: Transactional behavior and logging
are important to keep a persistent log of changes. They are used by operating
systems to recover from system crashes, relational databases to implement
transactions, filesystems to implement snapshots, and installers (wizards)
to revert cancelled installations.

• Macros: By macros, in this case, we mean a sequence of actions that can be
recorded and executed on demand at any point in time. Popular editors such
as Emacs and Vim support macros.

Implementation
In this section, we will use the Command pattern to implement the most basic
file utilities:

• Creating a file and optionally writing a string in it
• Reading the contents of a file
• Renaming a file
• Deleting a file

We will not implement these utilities from scratch, since Python already offers
good implementations of them in the os module. What we want is to add an extra
abstraction level on top of them so that they can be treated as commands. By doing
this, we get all the advantages offered by commands.

The Command Pattern

[128]

The following use case diagram shows the supported operations that a user can
execute. From the operations shown, renaming a file and creating a file support
undo. Deleting a file and reading the contents of a file do no support undo. Undo
can actually be implemented on delete file operations. One technique is to use a
special trash/wastebasket directory that stores all the deleted files, so that they can
be restored when the user requests it. This is the default behavior used on all modern
desktop environments and is left as an exercise.

Each command has two parts: the initialization part and the execution part. The
initialization part is taken care of by the __init__() method and contains all the
information required by the command to be able to do something useful (the path of
a file, the contents that will be written to the file, and so forth). The execution part is
taken care by the execute() method. We call the execute() method when we want
to actually run a command. This is not necessarily right after initializing it.

Let's start with the rename utility, which is implemented using the RenameFile class.
The __init__() method accepts the source (path_src) and destination (path_dest)
file paths as parameters (strings). If no path separators are used, the current directory
is used to create the file. An example of using a path separator is passing the string
/tmp/file1 as path_src and the string /home/user/file2 as path_dest. The
example of not using a path is passing file1 as path_src and file2 as path_dest:

class RenameFile:
 def __init__(self, path_src, path_dest):
 self.src, self.dest = path_src, path_dest

Chapter 11

[129]

The execute() method does the actual renaming using os.rename(). verbose is a
global flag, which, when activated (by default, it is activated), gives feedback to the
user about the operation that is performed. You can deactivate it if you prefer silent
commands. Note that although print() is good enough for an example, normally
something more mature and powerful can be used, for example, the logging module
[j.mp/py3log]:

 def execute(self):
 if verbose:
 print("[renaming '{}' to '{}']".format(self.src, self.
dest))
 os.rename(self.src, self.dest)

Our rename utility supports the undo operation through its undo() method. In this
case, undo uses os.rename() again to revert the name of the file to its original value:

 def undo(self):
 if verbose:
 print("[renaming '{}' back to '{}']".format(self.dest,
self.src))
 os.rename(self.dest, self.src)

Deleting a file is a single function, instead of a class. I did that to show you that it is
not mandatory to create a new class for every command that you want to add (more
on that will be covered later). The delete_file() function accepts a file path as a
string and uses os.remove() to delete it:

def delete_file(path):
 if verbose:
 print("deleting file '{}".format(path))
 os.remove(path)

Back to using classes again. The CreateFile class is used to create a file. The
__init__() function accepts the familiar path parameter and a txt string, which
is the content that will be written to the file. If nothing is passed as txt, the default
"hello world" text is written to the file. Normally, the sane default behavior is to
create an empty file, but for the needs of this example, I decided to write a default
string in it. Feel free to change it:

 def __init__(self, path, txt='hello world\n'):
 self.path, self.txt = path, txt

The Command Pattern

[130]

The execute() method uses the with statement and open() to open the file
(mode='w' means write mode), and write() to write the txt string:

 def execute(self):
 if verbose:
 print("[creating file '{}']".format(self.path))
 with open(self.path, mode='w', encoding='utf-8') as out_file:
 out_file.write(self.txt)

The undo operation of creating a file is to delete it. So, undo() simply uses
delete_file() to achieve that:

 def undo(self):
 delete_file(self.path)

The last utility gives us the ability to read the contents of a file. The execute()
method of the ReadFile class uses the with statement with open() again, this
time in read mode, and just prints the contents of it using print():

 def execute(self):
 if verbose:
 print("[reading file '{}']".format(self.path))
 with open(self.path, mode='r', encoding='utf-8') as in_file:
 print(in_file.read(), end='')

The main() function makes use of the utilities. The orig_name and new_name
parameters are the original and new name of the file that is created and renamed.
A commands list is used to add (and configure) all the commands that we want
to execute at a later point. Note that the commands are not executed unless we
explicitly call execute() for each command:

 orig_name, new_name = 'file1', 'file2'

 commands = []
 for cmd in CreateFile(orig_name), ReadFile(orig_name),
 RenameFile(orig_name, new_name):
 commands.append(cmd)

 [c.execute() for c in commands]

Chapter 11

[131]

The next step is to ask the users if they want to undo the executed commands or not.
The user selects whether the commands will be undone or not. If they choose to undo
them, undo() is executed for all commands in the commands list. However, since not
all commands support undo, exception handling is used to catch (and ignore) the
AttributeError exception generated when the undo() method is missing. If you
don't like using exception handling for such cases, you can check explicitly whether
a command supports the undo operation by adding a Boolean method, for example,
supports_undo() or can_de_undone():

 answer = input('reverse the executed commands? [y/n] ')

 if answer not in 'yY':
 print("the result is {}".format(new_name))
 exit()

 for c in reversed(commands):
 try:
 c.undo()
 except AttributeError as e:
 pass

Here's the full code of the example (command.py):

import os

verbose = True

class RenameFile:
 def __init__(self, path_src, path_dest):
 self.src, self.dest = path_src, path_dest

 def execute(self):
 if verbose:
 print("[renaming '{}' to '{}']".format(self.src, self.
dest))
 os.rename(self.src, self.dest)

 def undo(self):
 if verbose:
 print("[renaming '{}' back to '{}']".format(self.dest,
self.src))
 os.rename(self.dest, self.src)

The Command Pattern

[132]

class CreateFile:
 def __init__(self, path, txt='hello world\n'):
 self.path, self.txt = path, txt

 def execute(self):
 if verbose:
 print("[creating file '{}']".format(self.path))
 with open(self.path, mode='w', encoding='utf-8') as out_file:
 out_file.write(self.txt)

 def undo(self):
 delete_file(self.path)

class ReadFile:
 def __init__(self, path):
 self.path = path

 def execute(self):
 if verbose:
 print("[reading file '{}']".format(self.path))
 with open(self.path, mode='r', encoding='utf-8') as in_file:
 print(in_file.read(), end='')

def delete_file(path):
 if verbose:
 print("deleting file '{}".format(path))
 os.remove(path)

def main():
 orig_name, new_name = 'file1', 'file2'

 commands = []
 for cmd in CreateFile(orig_name), ReadFile(orig_name),
RenameFile(orig_name, new_name):
 commands.append(cmd)

 [c.execute() for c in commands]

 answer = input('reverse the executed commands? [y/n] ')

 if answer not in 'yY':
 print("the result is {}".format(new_name))
 exit()

Chapter 11

[133]

 for c in reversed(commands):
 try:
 c.undo()
 except AttributeError as e:
 pass

if __name__ == "__main__":
 main()

Let's see two sample executions of command.py. In the first one, there is no undo of
commands, whereas in the second one there is:

>>> python3 command.py

[creating file 'file1']

[reading file 'file1']

hello world

[renaming 'file1' to 'file2']

reverse the executed commands? [y/n] n

the result is file2

>>> python3 command.py

[creating file 'file1']

[reading file 'file1']

hello world

[renaming 'file1' to 'file2']

reverse the executed commands? [y/n] y

[renaming 'file2' back to 'file1']

deleting file 'file1'

The command example can be improved in many aspects. To begin with, none of
the utilities follow a defensive programming style [j.mp/dobbdef]. What happens
if we try to rename a file that doesn't exist? What about files that exist but cannot be
renamed because we don't have the proper filesystem permissions? The same issues
exist with all tools; for example, what happens if we try to read a file that doesn't
exist? Try improving the utilities by doing some kind of error handling. Is checking
the return status of the methods that belong to the os module necessary?

The Command Pattern

[134]

The file creation utility creates a file using the default file permissions as decided
by the filesystem. For example, in POSIX systems, the permissions are -rw-rw-r--.
You might want to give the ability to the user to provide their own permissions by
passing the appropriate parameter to CreateFile. How can you do that? Hint: one
way is by using os.fdopen().

And now, here's something for you to think about. I mentioned earlier that a
command does not necessarily need to be a class. That's how the delete utility was
implemented; there is just a delete_file() function. What are the advantages and
disadvantages of this approach? Here's a hint: is it possible to put a delete command
in the commands list as it was done for the rest of the commands? We know that
functions are first-class citizens in Python, so we can do something such as the
following (the first-class.py file):

 orig_name = 'file1'
 df=delete_file

 commands = []
 commands.append(df)

 for c in commands:
 try:
 c.execute()
 except AttributeError as e:
 df(orig_name)

 for c in reversed(commands):
 try:
 c.undo()
 except AttributeError as e:
 pass

Although this example works, it has some issues:

• The code is not uniform. We rely too much on exception handling, which is
not the normal flow of a program. While all the rest of the commands have
an execute() method, in this case, there is no execute().

• Currently, the delete file utility has no undo support. What happens if we
eventually decide to add undo support for it? Normally, we add an undo()
method in the class that represents the command. However, in this case,
there is no class. We could create another function to handle undo, but
creating a class is a better approach.

Chapter 11

[135]

Summary
In this chapter, we covered the Command pattern. Using this design pattern, we can
encapsulate an operation such as copy/paste as an object. This offers many benefits,
as follows:

• We can execute a command whenever we want and not necessarily in
creation time

• The client code that executes a command does not need to know any details
about how it is implemented

• We can group commands and execute them in a specific order

Executing a command is like ordering at a restaurant. Each customer order is an
independent command that enters many stages and is finally executed by the cook.

Many GUI frameworks, including PyQt use the Command pattern to model actions
that can be triggered by one or more events and can be customized. However,
Command is not limited to frameworks; normal applications such as git-cola also
use it for the benefits it offers.

Although the most advertised feature of Command by far is undo, it has more
uses. In general, any operation that can be executed on user's will at runtime is a
good candidate to use the Command pattern. Command is also great for grouping
multiple commands. That's useful for implementing macros, multilevel undo, and
transactions. A transaction should either succeed, which means that all operations of
it should succeed (the commit operation), or it should fail completely if at least one of
its operations fails (the rollback operation). If you want to take the Command pattern
to the next level, you can work on an example that involves grouping commands
as transactions.

To demonstrate Command, we implemented some basic file utilities on top of
Python's os module. Our utilities support undo and have a uniform interface,
which makes grouping commands easy.

The next chapter covers the Interpreter pattern, which can be used to create a
computer language that focuses on a specific domain. Such a language is called
a Domain Specific Language (DSL).

The Interpreter Pattern
There are at least two different user categories for each application:

• Basic users: The users of this category just want to be able to use the
application in an intuitive way. They don't like to spend too much time
on configuring or learning the internals of the application. Basic usage is
sufficient for them.

• Advanced users: Those users, who are in fact usually the minority, don't
mind spending some extra time on learning how to use the advanced
features of the application. They can go as far as learning a configuration
(or scripting) language if they know that learning it will:

 ° Give them the ability to have better control of an application
 ° Help them express their ideas in a better way
 ° Make them more productive

The Interpreter pattern is interesting only for the advanced users of an application.
That's because the main idea behind Interpreter is to give the ability to non-beginner
users and domain experts to use a simple language to express their ideas. However,
what is a simple language? For our needs, a simple language is a language that is less
complex than a programming language.

Usually, what we want to create is a Domain Specific Language (DSL). A DSL is a
computer language of limited expressiveness targeting a particular domain. DSLs
are used for different things, such as combat simulation, billing, visualization,
configuration, communication protocols, and so on. DSLs are divided into internal
DSLs and external DSLs [j.mp/wikidsl], [j.mp/fowlerdsl].

The Interpreter Pattern

[138]

Internal DSLs are built on top of a host programming language. An example of an
internal DSL is a language that solves linear equations using Python. The advantages
of using an internal DSL are that we don't have to worry about creating, compiling,
and parsing grammar because these are already taken care of by the host language.
The disadvantage is that we are constrained by the features of the host language. It is
very challenging to create an expressive, concise, and fluent internal DSL if the host
language does not have these features [j.mp/jwodsl].

External DSLs do not depend on host languages. The creator of the DSL can decide all
aspects of the language (grammar, syntax, and so forth), but they are also responsible
for creating a parser and compiler for it. Creating a parser and compiler for a new
language can be a very complex, long, and painful procedure [j.mp/jwodsl].

The Interpreter pattern is related only to internal DSLs. Therefore, our goal is
to create a simple but useful language using the features provided by the host
programming language, which in this case is Python. Note that Interpreter does
not address parsing at all. It assumes that we already have the parsed data in some
convenient form. This can be an abstract syntax tree (AST) or any other handy
data structure [GOF95, page 276].

A real-life example
A musician is an example of the Interpreter pattern in reality. Musical notation
represents the pitch and duration of a sound graphically. The musician is able to
reproduce a sound precisely based on its notation. In a sense, musical notation is
the language of music, and the musician is the interpreter of that language. The
following figure, which is courtesy of www.sourcemaking.com [j.mp/smintpat],
shows a graphical representation of the music example.

A software example
There are many software examples of internal DSLs. PyT is a Python DSL to generate
(X)HTML. PyT focuses on performance and claims to have comparable speed with
Jinja2 [j.mp/ghpyt]. Of course, we should not assume that the Interpreter pattern
is necessarily used in PyT. However, since it is an internal DSL, Interpreter is a very
good candidate for it.

Chromium is a FOSS browser that inspired Google Chrome [j.mp/chromiumb].
A part of the Mesa library Python binding of Chromium uses the Interpreter
pattern to translate C model arguments to Python objects and executing the
related commands [j.mp/intchromium].

www.sourcemaking.com

Chapter 12

[139]

Use cases
The Interpreter pattern is used when we want to offer a simple language to domain
experts and advanced users to solve their problems. The first thing we should
stress is that Interpreter should only be used to implement simple languages. If the
language has the requirements of an external DSL, there are better tools to create
languages from scratch (yacc and lex, Bison, ANTLR, and so on).

Our goal is to offer the right programming abstractions to the specialist, who is
often not a programmer, to make them productive. Ideally, they shouldn't know
advanced Python to use our DSL, but knowing even a little bit of Python is a plus
since that's what we eventually get at the end. Advanced Python concepts should
not be a requirement. Moreover, the performance of the DSL is usually not an
important concern. The focus is on offering a language that hides the peculiarities
of the host language and offers a more human-readable syntax. Admittedly, Python
is already a very readable language with far less peculiar syntax than many other
programming languages.

The Interpreter Pattern

[140]

Implementation
Let's create an internal DSL to control a smart house. This example fits well into
the Internet of things era, which is getting more and more attention nowadays. The
user is able to control their home using a very simple event notation. An event has
the form of command -> receiver -> arguments. The arguments part is optional.
Not all events require arguments. An example of an event that does not require
any arguments is shown:

open -> gate

An example of an event that requires arguments is shown:

increase -> boiler temperature -> 3 degrees

The -> symbol is used to mark the end of one part of an event and state the
beginning of the next one. There are many ways to implement an internal DSL. We
can use plain old regular expressions, string processing, a combination of operator
overloading, and metaprogramming, or a library/tool that can do the hard work for
us. Although, officially, Interpreter does not address parsing, I feel that a practical
example needs to cover parsing as well. For this reason, I decided to use a tool to
take care of the parsing part. The tool is called Pyparsing and is part of the standard
Python3 distribution. To find out more about Pyparsing, check the mini book Getting
Started with Pyparsing by Paul McGuire. If Pyparsing is not already installed on your
system, you can install it using the following command:

>>> pip3 install pyparsing

The following sequence diagram shows what happens when the open gate event is
executed by the user. The situation is similar for the rest events, with the exception
that some events are a bit more complex because they require arguments.

Chapter 12

[141]

Before getting into coding, it is a good practice to define a simple grammar for our
language. We can define the grammar using the Backus-Naur Form (BNF) notation
[j.mp/bnfgram]:

event ::= command token receiver token arguments
command ::= word+
word ::= a collection of one or more alphanumeric characters
token ::= ->
receiver ::= word+
arguments ::= word+

What the grammar basically tells us is that an event has the form of command ->
receiver -> arguments, and that commands, receivers, and arguments have
the same form: a group of one or more alphanumeric characters. If you are
wondering about the necessity of the numeric part, it is included to allow us
to pass arguments such as 3 degrees at the command increase -> boiler
temperature -> 3 degrees.

Now that we have defined the grammar, we can move on to converting it to actual
code. Here's how the code looks:

 word = Word(alphanums)
 command = Group(OneOrMore(word))
 token = Suppress("->")
 device = Group(OneOrMore(word))
 argument = Group(OneOrMore(word))
 event = command + token + device + Optional(token + argument)

The basic difference between the code and grammar definition is that the code needs
to be written in the bottom-up approach. For instance, we cannot use word without
first assigning it a value. Suppress is used to state that we want the -> symbol to be
skipped from the parsed results.

The full code of this example (the interpreter.py file) uses many placeholder
classes, but to keep you focused, I will first show only one class. The complete code
listing is also included and will be shown after going through the single class example.
Let's take a look at the Boiler class. A boiler has a default temperature of 83 degrees
Celsius. There are also two methods to increase and decrease the current temperature:

class Boiler:
 def __init__(self):
 self.temperature = 83 # in celsius

 def __str__(self):
 return 'boiler temperature: {}'.format(self.temperature)

The Interpreter Pattern

[142]

 def increase_temperature(self, amount):
 print("increasing the boiler's temperature by {}
 degrees".format(amount))
 self.temperature += amount

 def decrease_temperature(self, amount):
 print("decreasing the boiler's temperature by {}
 degrees".format(amount))
 self.temperature -= amount

The next step is to add the grammar, which we already covered. We will also create a
boiler instance and print its default state:

 word = Word(alphanums)
 command = Group(OneOrMore(word))
 token = Suppress("->")
 device = Group(OneOrMore(word))
 argument = Group(OneOrMore(word))
 event = command + token + device + Optional(token + argument)

 boiler = Boiler()
 print(boiler)

The simplest way to retrieve the parsed output of Pyparsing is by using the
parseString() method. The result is a ParseResults instance, which is actually a
parse tree that can be treated as a nested list. For example, executing print(event.
parseString('increase -> boiler temperature -> 3 degrees')) gives the
following result:

[['increase'], ['boiler', 'temperature'], ['3', 'degrees']]

So, in this case, we know that the first sublist is the command (increase), the second
sublist is the receiver (boiler temperature), and the third sublist is the argument
(3 degrees). We can actually unpack the ParseResults instance, which gives us
direct access to these three parts of the event. Having direct access means that we
can match patterns to find out which method should be executed:

 cmd, dev, arg = event.parseString('increase -> boiler temperature
-> 3 degrees')
 if 'increase' in ' '.join(cmd):
 if 'boiler' in ' '.join(dev):
 boiler.increase_temperature(int(arg[0]))

 print(boiler)

Chapter 12

[143]

Executing the preceding snippet gives the following output:

>>> python3 boiler.py
boiler temperature: 83
increasing the boiler's temperature by 3 degrees
boiler temperature: 86

The full code of interpreter.py is not very different from what I just described. It
is just extended to support more events and devices:

from pyparsing import Word, OneOrMore, Optional, Group, Suppress,
alphanums

class Gate:
 def __init__(self):
 self.is_open = False

 def __str__(self):
 return 'open' if self.is_open else 'closed'

 def open(self):
 print('opening the gate')
 self.is_open = True

 def close(self):
 print('closing the gate')
 self.is_open = False

class Garage:
 def __init__(self):
 self.is_open = False

 def __str__(self):
 return 'open' if self.is_open else 'closed'

 def open(self):
 print('opening the garage')
 self.is_open = True

 def close(self):
 print('closing the garage')
 self.is_open = False

The Interpreter Pattern

[144]

class Aircondition:
 def __init__(self):
 self.is_on = False

 def __str__(self):
 return 'on' if self.is_on else 'off'

 def turn_on(self):
 print('turning on the aircondition')
 self.is_on = True

 def turn_off(self):
 print('turning off the aircondition')
 self.is_on = False

class Heating:
 def __init__(self):
 self.is_on = False

 def __str__(self):
 return 'on' if self.is_on else 'off'

 def turn_on(self):
 print('turning on the heating')
 self.is_on = True

 def turn_off(self):
 print('turning off the heating')
 self.is_on = False

class Boiler:
 def __init__(self):
 self.temperature = 83# in celsius

 def __str__(self):
 return 'boiler temperature: {}'.format(self.temperature)

 def increase_temperature(self, amount):
 print("increasing the boiler's temperature by {} degrees".
format(amount))
 self.temperature += amount

Chapter 12

[145]

 def decrease_temperature(self, amount):
 print("decreasing the boiler's temperature by {} degrees".
format(amount))
 self.temperature -= amount

class Fridge:
 def __init__(self):
 self.temperature = 2 # in celsius

 def __str__(self):
 return 'fridge temperature: {}'.format(self.temperature)

 def increase_temperature(self, amount):
 print("increasing the fridge's temperature by {} degrees".
format(amount))
 self.temperature += amount

 def decrease_temperature(self, amount):
 print("decreasing the fridge's temperature by {} degrees".
format(amount))
 self.temperature -= amount

def main():
 word = Word(alphanums)
 command = Group(OneOrMore(word))
 token = Suppress("->")
 device = Group(OneOrMore(word))
 argument = Group(OneOrMore(word))
 event = command + token + device + Optional(token + argument)

 gate = Gate()
 garage = Garage()
 airco = Aircondition()
 heating = Heating()
 boiler = Boiler()
 fridge = Fridge()

 tests = ('open -> gate',
 'close -> garage',
 'turn on -> aircondition',
 'turn off -> heating',
 'increase -> boiler temperature -> 5 degrees',
 'decrease -> fridge temperature -> 2 degrees')

The Interpreter Pattern

[146]

 open_actions = {'gate':gate.open, 'garage':garage.open,
'aircondition':airco.turn_on,
 'heating':heating.turn_on, 'boiler
temperature':boiler.increase_temperature,
 'fridge temperature':fridge.increase_temperature}
 close_actions = {'gate':gate.close, 'garage':garage.close,
'aircondition':airco.turn_off,
 'heating':heating.turn_off, 'boiler
temperature':boiler.decrease_temperature,
 'fridge temperature':fridge.decrease_temperature}

 for t in tests:
 if len(event.parseString(t)) == 2: # no argument
 cmd, dev = event.parseString(t)
 cmd_str, dev_str = ' '.join(cmd), ' '.join(dev)
 if 'open' in cmd_str or 'turn on' in cmd_str:
 open_actions[dev_str]()
 elif 'close' in cmd_str or 'turn off' in cmd_str:
 close_actions[dev_str]()
 elif len(event.parseString(t)) == 3: # argument
 cmd, dev, arg = event.parseString(t)
 cmd_str, dev_str, arg_str = ' '.join(cmd), ' '.join(dev),
' '.join(arg)
 num_arg = 0
 try:
 num_arg = int(arg_str.split()[0]) # extract the
numeric part
 except ValueError as err:
 print("expected number but got: '{}'".format(arg_
str[0]))
 if 'increase' in cmd_str and num_arg > 0:
 open_actions[dev_str](num_arg)
 elif 'decrease' in cmd_str and num_arg > 0:
 close_actions[dev_str](num_arg)

if __name__ == '__main__':
 main()

Executing the preceding example gives the following output:

>>> python3 interpreter.py

opening the gate

closing the garage

turning on the aircondition

turning off the heating

Chapter 12

[147]

increasing the boiler's temperature by 5 degrees

decreasing the fridge's temperature by 2 degrees

If you want to experiment more with this example, I have a few suggestions for you.
The first change that will make it much more interesting is to make it interactive.
Currently, all the events are hardcoded in the tests tuple. However, the user wants
to be able to activate events using an interactive prompt. Do not forget to check how
sensitive Pyparsing is regarding spaces, tabs, or unexpected input. For example,
what happens if the user types: turn off ->
heating 37?

Another possible improvement: notice how the open_actions and close_actions
maps are used to relate a receiver with a method. Is it possible to use a single map
instead of two? Are there any advantages in doing that?

Summary
In this chapter, we covered the Interpreter design pattern. The Interpreter pattern is
used to offer a programming-like framework to advanced users and domain experts,
but without exposing the complexities of a programming language. This is achieved
by implementing a DSL.

A DSL is a computer language that has limited expressiveness and targets a specific
domain. There are two categories of DSLs: internal DSLs and external DSLs. While
internal DSLs are built on top of a host programming language and rely on it,
external DSLs are implemented from scratch and do not depend on an existing
programming language. Interpreter is related only to internal DSLs.

Musical notation is an example of a non-software DSL. The musician acts as the
Interpreter that uses the notation to produce music. From a software perspective,
many Python template engines make use of Internal DSLs. PyT is a high-performance
Python DSL to generate (X)HTML. We also saw how the Mesa library of Chromium
uses the Interpreter pattern to translate graphics-related C code to Python
executable objects.

Although parsing is generally not addressed by the Interpreter pattern, in the
implementation section, we used Pyparsing to create a DSL that controls a smart
house, and saw that using a good parsing tool makes "interpreting" the results
using pattern matching simple.

The next chapter demonstrates the Observer pattern. Observer is used to create
a publish-subscribe communication type between two or more objects.

The Observer Pattern
Sometimes, we want to update a group of objects when the state of another
object changes. A very popular example lies in the Model-View-Controller (MVC)
pattern. Assume that we are using the data of the same model in two views, for
instance in a pie chart and in a spreadsheet. Whenever the model is modified,
both the views need to be updated. That's the role of the Observer design pattern
[Eckel08, page 213].

The Observer pattern describes a publish-subscribe relationship between a single
object, : the publisher, which is also known as the subject or observable, and one or
more objects, : the subscribers, also known as observers. In the MVC example, the
publisher is the model and the subscribers are the views. However, MVC is not the
only publish-subscribe example. Subscribing to a news feed such as RSS or Atom
is another example. Many readers can subscribe to the feed typically using a feed
reader, and every time a new item is added, they receive the update automatically.

The ideas behind Observer are the same as the ideas behind MVC and the separation
of concerns principle, that is, to increase decoupling between the publisher and
subscribers, and to make it easy to add/remove subscribers at runtime. Additionally,
the publisher is not concerned about who its observers are. It just sends notifications
to all the subscribers [GOF95, page 327].

A real-life example
In reality, an auction resembles Observer. Every auction bidder has a number paddle
that is raised whenever they want to place a bid. Whenever the paddle is raised
by a bidder, the auctioneer acts as the subject by updating the price of the bid and
broadcasting the new price to all bidders (subscribers).

The Observer Pattern

[150]

The following figure, courtesy of www.sourcemaking.com, [j.mp/observerpat],
shows how the Observer pattern relates to an auction:

A software example
The django-observer package [j.mp/django-obs] is a third-party Django package
that can be used to register callback functions that are executed when there are
changes in several Django fields. Many different types of fields are supported
(CharField, IntegerField, and so forth).

RabbitMQ is a library that can be used to add asynchronous messaging support to an
application. Several messaging protocols are supported, such as HTTP and AMQP.
RabbitMQ can be used in a Python application to implement a publish-subscribe
pattern, which is nothing more than the Observer design pattern [j.mp/rabbitmqobs].

www.sourcemaking.com

Chapter 13

[151]

Use cases
We generally use the Observer pattern when we want to inform/update one or
more objects (observers/subscribers) about a change that happened to another
object (subject/publisher/observable). The number of observers as well as who
the observers are may vary and can be changed dynamically (at runtime).

We can think of many cases where Observer can be useful. One such case was
already mentioned at the start of this chapter: news feeds. Whether it is RSS, Atom,
or another format, the idea is the same; you follow a feed, and every time it is
updated, you receive a notification about the update [Zlobin13, page 60].

The same concept exists in social networking. If you are connected to another person
using a social networking service, and your connection updates something, you are
notified about it. It doesn't matter if the connection is a Twitter user that you follow,
a real friend on Facebook, or a business colleague on LinkedIn.

Event-driven systems are another example where Observer can be (and usually is)
used. In such systems, listeners are used to "listen" for specific events. The listeners
are triggered when an event they are listening to is created. This can be typing a
specific key (of the keyboard), moving the mouse, and more. The event plays the role
of the publisher and the listeners play the role of the observers. The key point in this
case is that multiple listeners (observers) can be attached to a single event (publisher)
[j.mp/magobs].

Implementation
In this section, we will implement a data formatter. The ideas described here are
based on the ActiveState Python Observer code recipe [j.mp/pythonobs]. There
is a default formatter that shows a value in the decimal format. However, we
can add/register more formatters. In this example, we will add a hex and binary
formatter. Every time the value of the default formatter is updated, the registered
formatters are notified and take action. In this case, the action is to show the new
value in the relevant format.

The Observer Pattern

[152]

Observer is actually one of the patterns where inheritance makes sense. We can have
a base Publisher class that contains the common functionality of adding, removing,
and notifying observers. Our DefaultFormatter class derives from Publisher
and adds the formatter-specific functionality. We can dynamically add and remove
observers on demand. The following class diagram shows an instance of the example
using two observers: HexFormatter and BinaryFormatter. Note that, because class
diagrams are static, they cannot show the whole lifetime of a system, only the state
of it at a specific point in time.

We begin with the Publisher class. The observers are kept in the observers list.
The add() method registers a new observer, or throws an error if it already exists.
The remove() method unregisters an existing observer, or throws an exception if it
does not exist. Finally, the notify() method informs all observers about a change:

class Publisher:
 def __init__(self):
 self.observers = []

 def add(self, observer):
 if observer not in self.observers:
 self.observers.append(observer)
 else:
 print('Failed to add: {}'.format(observer))

 def remove(self, observer):
 try:
 self.observers.remove(observer)
 except ValueError:
 print('Failed to remove: {}'.format(observer))

 def notify(self):
 [o.notify(self) for o in self.observers]

Chapter 13

[153]

Let's continue with the DefaultFormatter class. The first thing that __init__()
does is call __init__() method of the base class, since this is not done automatically
in Python. A DefaultFormatter instance has name to make it easier for us to track
its status. We use name mangling in the _data variable to state that it should not be
accessed directly. Note that this is always possible in Python [Lott14, page 54] but
fellow developers have no excuse for doing so, since the code already states that they
shouldn't. There is a serious reason for using name mangling in this case. Stay tuned.
DefaultFormatter treats the _data variable as an integer, and the default value
is zero:

class DefaultFormatter(Publisher):
 def __init__(self, name):
 Publisher.__init__(self)
 self.name = name
 self._data = 0

The __str__() method returns information about the name of the publisher and
the value of _data. type(self).__name__ is a handy trick to get the name of a class
without hardcoding it. It is one of those things that make the code less readable but
easier to maintain. It is up to you to decide if you like it or not:

def __str__(self):
 return "{}: '{}' has data = {}".format(type(self).__name__,
self.name,

self._data)

There are two data() methods. The first one uses the @property decorator to give
read access to the _data variable. Using this, we can just execute object.data
instead of object.data():

 @property
 def data(self):
 return self._data

The second data() method is more interesting. It uses the @setter decorator, which
is called every time the assignment (=) operator is used to assign a new value to the
_data variable. This method also tries to cast a new value to an integer, and does
exception handling in case this operation fails:

 @data.setter
 def data(self, new_value):
 try:
 self._data = int(new_value)
 except ValueError as e:

The Observer Pattern

[154]

 print('Error: {}'.format(e))
 else:
 self.notify()

The next step is to add the observers. The functionality of HexFormatter and
BinaryFormatter is very similar. The only difference between them is how they
format the value of data received by the publisher, that is, in hexadecimal and
binary, respectively:

class HexFormatter:
 def notify(self, publisher):
 print("{}: '{}' has now hex data = {}".format(type(self).__
name__,
 publisher.name, hex(publisher.data)))

class BinaryFormatter:
 def notify(self, publisher):
 print("{}: '{}' has now bin data = {}".format(type(self).__
name__,
 publisher.name, bin(publisher.data)))

No example is fun without some test data. The main() function initially creates a
DefaultFormatter instance named test1 and afterwards attaches (and detaches)
the two available observers. Exception handling is also exercised to make sure that
the application does not crash when erroneous data is passed by the user. Moreover,
things such as trying to add the same observer twice or removing an observer that
does not exist should cause no crashes:

def main():
 df = DefaultFormatter('test1')
 print(df)

 print()
 hf = HexFormatter()
 df.add(hf)
 df.data = 3
 print(df)

 print()
 bf = BinaryFormatter()
 df.add(bf)
 df.data = 21
 print(df)

Chapter 13

[155]

 print()
 df.remove(hf)
 df.data = 40
 print(df)

 print()
 df.remove(hf)
 df.add(bf)

 df.data = 'hello'
 print(df)

 print()
 df.data = 15.8
 print(df)

Here's how the full code of the example (observer.py) looks:

class Publisher:
 def __init__(self):
 self.observers = []

 def add(self, observer):
 if observer not in self.observers:
 self.observers.append(observer)
 else:
 print('Failed to add: {}'.format(observer))

 def remove(self, observer):
 try:
 self.observers.remove(observer)
 except ValueError:
 print('Failed to remove: {}'.format(observer))

 def notify(self):
 [o.notify(self) for o in self.observers]

class DefaultFormatter(Publisher):
 def __init__(self, name):
 Publisher.__init__(self)
 self.name = name
 self._data = 0

The Observer Pattern

[156]

 def __str__(self):
 return "{}: '{}' has data = {}".format(type(self).__name__,
self.name, self._data)

 @property
 def data(self):
 return self._data

 @data.setter
 def data(self, new_value):
 try:
 self._data = int(new_value)
 except ValueError as e:
 print('Error: {}'.format(e))
 else:
 self.notify()

class HexFormatter:
 def notify(self, publisher):
 print("{}: '{}' has now hex data = {}".format(type(self).__
name__, publisher.name, hex(publisher.data)))

class BinaryFormatter:
 def notify(self, publisher):
 print("{}: '{}' has now bin data = {}".format(type(self).__
name__, publisher.name, bin(publisher.data)))

def main():
 df = DefaultFormatter('test1')
 print(df)

 print()
 hf = HexFormatter()
 df.add(hf)
 df.data = 3
 print(df)

 print()
 bf = BinaryFormatter()
 df.add(bf)
 df.data = 21
 print(df)

 print()
 df.remove(hf)
 df.data = 40
 print(df)

Chapter 13

[157]

 print()
 df.remove(hf)
 df.add(bf)

 df.data = 'hello'
 print(df)

 print()
 df.data = 15.8
 print(df)

if __name__ == '__main__':
 main()

Executing observer.py gives the following output:

>>> python3 observer.py

DefaultFormatter: 'test1' has data = 0

HexFormatter: 'test1' has now hex data = 0x3

DefaultFormatter: 'test1' has data = 3

HexFormatter: 'test1' has now hex data = 0x15

BinaryFormatter: 'test1' has now bin data = 0b10101

DefaultFormatter: 'test1' has data = 21

BinaryFormatter: 'test1' has now bin data = 0b101000

DefaultFormatter: 'test1' has data = 40

Failed to remove: <__main__.HexFormatter object at 0x7f30a2fb82e8>

Failed to add: <__main__.BinaryFormatter object at 0x7f30a2fb8320>

Error: invalid literal for int() with base 10: 'hello'

BinaryFormatter: 'test1' has now bin data = 0b101000

DefaultFormatter: 'test1' has data = 40

BinaryFormatter: 'test1' has now bin data = 0b1111

DefaultFormatter: 'test1' has data = 15

What we see in the output is that as the extra observers are added, more (and
relevant) output is shown, and when an observer is removed, it is not notified
any longer. That's exactly what we want: runtime notifications that we are able
to enable/disable on demand.

The Observer Pattern

[158]

The defensive programming part of the application also seems to work fine. Trying
to do funny things such as removing an observer that does not exist or adding the
same observer twice is not allowed. The messages shown are not very user-friendly
but I leave that up to you as an exercise. Runtime failures of trying to pass a string
when the API expects a number are also properly handled without causing the
application to crash/terminate.

This example would be much more interesting if it were interactive. Even a simple
menu that allows the user to attach/detach observers at runtime and modify the
value of DefaultFormatter would be nice because the runtime aspect becomes
much more visible. Feel free to do it.

Another nice exercise is to add more observers. For example, you can add an octal
formatter, a roman numeral formatter, or any other observer that uses your favorite
representation. Be creative and have fun!

Summary
In this chapter, we covered the Observer design pattern. We use Observer when we
want to be able to inform/notify all stakeholders (an object or a group of objects)
when the state of an object changes. An important feature of observer is that the
number of subscribers/observers as well as who the subscribers are may vary
and can be changed at runtime.

To understand Observer, you can think of an auction, with the bidders being the
subscribers and the auctioneer being the publisher. This pattern is used quite a lot
in the software world.

In general, all systems that make use of the MVC pattern are event-based. As specific
examples, we mentioned:

• django-observer, a third-party Django library used to register observers that
are executed when fields are modified.

• The Python bindings of RabbitMQ. We referred to a specific example of
RabbitMQ used to implement the publish-subscribe (aka Observer) pattern.

In the implementation example, we saw how to use Observer to create data
formatters that can be attached and detached at runtime to enrich the behavior
of an object. Hopefully, you will find the recommended exercises interesting.

The next chapter introduces the State design pattern, which can be used to
implement a core computer science concept: state machines.

The State Pattern
Object-oriented programming focuses on mutating the state of objects that interact
with each other. A very handy tool to model (and when necessary, mathematically
formalize) state transitions in many problems is using a finite-state machine
(commonly known as a state machine) First, what's a state machine? A state machine
is an abstract machine that has two key components: states and transitions. A state is
the current (active) status of a system. For example, if we have a radio receiver, two
possible states are tuning on the FM or AM. Another possible state is switching from
one FM/AM radio station to another. A transition is the switch from one state to
another. A transition is initiated by a triggering event or condition. Usually, an action
or set of actions is executed before or after a transition occurs. Assuming that our
radio receiver is tuned on the 107 FM station, an example of a transition is the button
pressed by the listener to switch to 107.5 FM.

A nice feature of state machines is that they can be represented as graphs (called state
diagrams), where each state is a node and each transition is an edge between two
nodes. The following figure, courtesy of Wikipedia [j.mp/wikistate], shows the
state diagram of a typical operating system process (no specific systems are targeted).
When a process is initially created by a user, it goes into the created/new state. From
this state, the only transition is to go into the waiting state, which happens when the
scheduler loads the process in memory and adds it to the queue of the processes
that are waiting/ready for execution. A waiting process has two possible transitions: it
can either be picked for execution (transition to running), or it can be replaced with a
process that has higher priority (transition to swapped out and waiting).

The State Pattern

[160]

Other typical states of a process are terminated (completed or killed), blocked (for
example, waiting for an I/O operation to complete), and so forth. It is important
to note that a state machine has only one active state at a specific point in time. For
instance, a process cannot be at the same time in the state created and the state running.

State machines can be used to solve many kinds of different problems, including
non-computational problems. Non-computational examples include vending
machines, elevators, traffic lights, combination locks, parking meters, automated
gas pumps, and natural language grammar description. Computational examples
include game programming and other domains of computer programming,
hardware design, protocol design, and programming language parsing [j.mp/
wikifsm], [j.mp/fsmfound].

Alright, that sounds good. But how are state machines related to the State
design pattern? It turns out that the State pattern is nothing more than a state
machine applied on a particular Software Engineering problem [GOF95, page 342],
[Eckel08, page 151].

j.mp/wikifsm
j.mp/wikifsm

Chapter 14

[161]

A real-life example
Once again (we saw this in the Chain of Responsibility pattern), a snack vending
machine is an example of the State pattern in everyday life. Vending machines have
different states and react differently depending on the amount of money that we
insert. Depending on our selection and the money we inserted, the machine can:

• Reject our selection because the product we requested is out of stock
• Reject our selection because the amount of money we inserted is

not sufficient
• Deliver the product and give no change because we inserted the

exact amount
• Deliver the product and return the change

There are, for sure, more possible states, but you get the point. The following
figure, provided by www.sourcemaking.com [j.mp/smstate], shows a possible
implementation of the different vending machine states using inheritance:

The State Pattern

[162]

A software example
Using the State pattern in essence means implementing a state machine to solve
a software problem in a specific domain. The django-fsm package is a third-party
package that can be used to simplify the implementation and usage of state
machines in the Django framework [j.mp/django-fsm].

Python offers more than one third-party package/module to use and implement
state machines [j.mp/pyfsm]. We will see how to use one of them in the
implementation section.

Another project worth mentioning is the State Machine Compiler (SMC). With SMC,
you can describe your state machine in a single text file using a simple Domain
Specific Language (DSL), and it will generate the state machine's code automatically.
The project claims that the DSL is so simple that you can write it as a one-to-one
translation of a state diagram. I haven't tried it but that sounds very interesting.
SMC can generate code in a number of programming languages, including Python
[j.mp/smcsrc].

Use cases
The State pattern is applicable to many problems. All the problems that can be
solved using state machines are good use cases to use the State pattern. An example
we have already seen is the process model of an operating/embedded system.

Programming language compiler implementation is another good example. Lexical
and syntactic analysis can use states to build abstract syntax trees [j.mp/wikifsm].

Event-driven systems are yet another example. In an event-driven system, the
transition from one state to another triggers an event/message. Many computer games
use this technique. For example, a monster might move from the state guard to the
state attack when the main hero approaches it [j.mp/wikievfsm], [j.mp/gamefsm].

To quote Thomas Jaeger: "the state design pattern allows for full encapsulation of an
unlimited number of states on a context for easy maintenance and flexibility" [j.mp/statevs].

Implementation
Let's write the required Python code that demonstrates how to create a state machine
based on the state diagram shown earlier in this chapter. Our state machine should
cover the different states of a process and the transitions between them.

Chapter 14

[163]

The State design pattern is usually implemented using a parent State class that
contains the common functionality of all the states, and a number of derived
ConcreteState classes, where each derived class contains only the state-specific
required functionality. A sample implementation can be found at [j.mp/statepat].
In my opinion, these are implementation details. The State pattern focuses on
implementing a state machine. The core parts of a state machine are the states and
transitions between the states. It doesn't matter how those parts are implemented.

To avoid reinventing the wheel, we can make use of the existing Python modules
that not only help us create state machines, but also do it in a Pythonic way. A
module that I find very useful is state_machine [j.mp/state_machine]. Before
going any further, if state_machine is not already installed on your system, you
can install it using the following command:

>>> pip3 install state_machine

The state_machine module is simple enough that no special introduction is
required. We will cover most aspects of it while going through the code of
the example.

Let's start with the Process class. Each created process has its own state machine.
The first step to create a state machine using the state_machine module is to use
the @acts_as_state_machine decorator:

@acts_as_state_machine
class Process:

Next, we define the states of our state machine. This is a one-to-one mapping of what
we see in the state diagram. The only difference is that we should give a hint about
the initial state of the state machine. We do that by setting initial=True:

 created = State(initial=True)
 waiting = State()
 running = State()
 terminated = State()
 blocked = State()
 swapped_out_waiting = State()
 swapped_out_blocked = State()

We continue with defining the transitions. In the state_machine module, a
transition has the name Event. We define the possible transitions using the
arguments from_states and to_state. from_states can be either a single
state or a group of states (tuple):

 wait = Event(from_states=(created, running, blocked,
 swapped_out_waiting), to_state=waiting)

The State Pattern

[164]

 run = Event(from_states=waiting, to_state=running)
 terminate = Event(from_states=running, to_state=terminated)
 block = Event(from_states=(running, swapped_out_blocked),
 to_state=blocked)
 swap_wait = Event(from_states=waiting, to_state=swapped_out_
waiting)
 swap_block = Event(from_states=blocked, to_state=swapped_out_
blocked)

Each process has a name. Officially, a process needs to have much more information
to be useful (for example, ID, priority, status, and so forth) but let's keep it simple
to focus on the pattern:

 def __init__(self, name):
 self.name = name

Transitions are not very useful if nothing happens when they occur. The
state_machine module provides us with the @before and @after decorators that
can be used to execute actions before or after a transition occurs, respectfully. For the
purpose of this example, the actions are limited to printing information about the
state change of the process:

 @after('wait')
 def wait_info(self):
 print('{} entered waiting mode'.format(self.name))

 @after('run')
 def run_info(self):
 print('{} is running'.format(self.name))

 @before('terminate')
 def terminate_info(self):
 print('{} terminated'.format(self.name))

 @after('block')
 def block_info(self):
 print('{} is blocked'.format(self.name))

 @after('swap_wait')
 def swap_wait_info(self):
 print('{} is swapped out and waiting'.format(self.name))

 @after('swap_block')
 def swap_block_info(self):
 print('{} is swapped out and blocked'.format(self.name))

Chapter 14

[165]

The transition() function accepts three arguments: process, which is an instance
of Process, event, which is an instance of Event (wait, run, terminate, and so
forth), and event_name, which is the name of the event. The name of the event is
printed if something goes wrong when trying to execute event:

def transition(process, event, event_name):
 try:
 event()
 except InvalidStateTransition as err:
 print('Error: transition of {} from {} to {} failed'.
format(process.name,
 process.current_state, event_name))

The state_info() function shows some basic information about the current (active)
state of the process:

def state_info(process):
 print('state of {}: {}'.format(process.name, process.current_
state))

At the beginning of the main() function, we define some string constants, which are
passed as event_name:

def main():
 RUNNING = 'running'
 WAITING = 'waiting'
 BLOCKED = 'blocked'
 TERMINATED = 'terminated'

Next, we create two Process instances and print information about their initial state:

 p1, p2 = Process('process1'), Process('process2')
 [state_info(p) for p in (p1, p2)]

The rest of the function experiments with different transitions. Recall the state
diagram we covered in this chapter. The allowed transitions should be with respect to
the state diagram. For example, it should be possible to switch from state running to
state blocked, but it shouldn't be possible to switch from state blocked to state running:

 print()
 transition(p1, p1.wait, WAITING)
 transition(p2, p2.terminate, TERMINATED)
 [state_info(p) for p in (p1, p2)]

 print()
 transition(p1, p1.run, RUNNING)

The State Pattern

[166]

 transition(p2, p2.wait, WAITING)
 [state_info(p) for p in (p1, p2)]

 print()
 transition(p2, p2.run, RUNNING)
 [state_info(p) for p in (p1, p2)]

 print()
 [transition(p, p.block, BLOCKED) for p in (p1, p2)]
 [state_info(p) for p in (p1, p2)]

 print()
 [transition(p, p.terminate, TERMINATED) for p in (p1, p2)]
 [state_info(p) for p in (p1, p2)]

Here is the full code of the example (the state.py file):

from state_machine import State, Event, acts_as_state_machine, after,
before, InvalidStateTransition

@acts_as_state_machine
class Process:
 created = State(initial=True)
 waiting = State()
 running = State()
 terminated = State()
 blocked = State()
 swapped_out_waiting = State()
 swapped_out_blocked = State()

 wait = Event(from_states=(created, running, blocked,
 swapped_out_waiting), to_state=waiting)
 run = Event(from_states=waiting, to_state=running)
 terminate = Event(from_states=running, to_state=terminated)
 block = Event(from_states=(running, swapped_out_blocked),
 to_state=blocked)
 swap_wait = Event(from_states=waiting, to_state=swapped_out_
waiting)
 swap_block = Event(from_states=blocked, to_state=swapped_out_
blocked)

 def __init__(self, name):
 self.name = name

Chapter 14

[167]

 @after('wait')
 def wait_info(self):
 print('{} entered waiting mode'.format(self.name))

 @after('run')
 def run_info(self):
 print('{} is running'.format(self.name))

 @before('terminate')
 def terminate_info(self):
 print('{} terminated'.format(self.name))

 @after('block')
 def block_info(self):
 print('{} is blocked'.format(self.name))

 @after('swap_wait')
 def swap_wait_info(self):
 print('{} is swapped out and waiting'.format(self.name))

 @after('swap_block')
 def swap_block_info(self):
 print('{} is swapped out and blocked'.format(self.name))

def transition(process, event, event_name):
 try:
 event()
 except InvalidStateTransition as err:
 print('Error: transition of {} from {} to {} failed'.
format(process.name,
 process.current_state, event_name))

def state_info(process):
 print('state of {}: {}'.format(process.name, process.current_
state))

def main():
 RUNNING = 'running'
 WAITING = 'waiting'
 BLOCKED = 'blocked'
 TERMINATED = 'terminated'

 p1, p2 = Process('process1'), Process('process2')
 [state_info(p) for p in (p1, p2)]

The State Pattern

[168]

 print()
 transition(p1, p1.wait, WAITING)
 transition(p2, p2.terminate, TERMINATED)
 [state_info(p) for p in (p1, p2)]

 print()
 transition(p1, p1.run, RUNNING)
 transition(p2, p2.wait, WAITING)
 [state_info(p) for p in (p1, p2)]

 print()
 transition(p2, p2.run, RUNNING)
 [state_info(p) for p in (p1, p2)]

 print()
 [transition(p, p.block, BLOCKED) for p in (p1, p2)]
 [state_info(p) for p in (p1, p2)]

 print()
 [transition(p, p.terminate, TERMINATED) for p in (p1, p2)]
 [state_info(p) for p in (p1, p2)]

if __name__ == '__main__':
 main()

Here's what we get when executing state.py:

>>> python3 state.py

state of process1: created

state of process2: created

process1 entered waiting mode

Error: transition of process2 from created to terminated failed

state of process1: waiting

state of process2: created

process1 is running

process2 entered waiting mode

state of process1: running

state of process2: waiting

Chapter 14

[169]

process2 is running

state of process1: running

state of process2: running

process1 is blocked

process2 is blocked

state of process1: blocked

state of process2: blocked

Error: transition of process1 from blocked to terminated failed

Error: transition of process2 from blocked to terminated failed

state of process1: blocked

state of process2: blocked

Indeed, the output shows that illegal transitions such as created → terminated and
blocked → terminated fail gracefully. We don't want the application to crash when an
illegal transition is requested, and this is handled properly by the except block.

Notice how using a good module such as state_machine eliminates conditional logic.
There's no need to use long and error-prone if-else statements that check for each
and every state transition and react upon them.

To get a better feeling about the State pattern and state machines, I strongly
recommend you to implement your own example. This can be anything, a simple
video game (you can use state machines to handle the states of the main hero and
the enemies), an elevator, a parser, or any other system that can be modeled using
state machines.

Summary
In this chapter, we covered the State design pattern. The State pattern is an
implementation of one or more finite-state machines (in short, state machines)
used to solve a particular Software Engineering problem.

A state machine is an abstract machine with two main components: states and
transitions. A state is the current status of a system. A state machine can have only
one active state at any point in time. A transition is a switch from the current state
to a new state. It is normal to execute one or more actions before or after a transition
occurs. State machines can be represented visually using state diagrams.

The State Pattern

[170]

State machines are used to solve many computational and non-computational
problems. Some of them are traffic lights, parking meters, hardware design,
programming language parsing, and so forth. We saw how a snack vending
machine relates to the way a state machine works.

Modern software offers libraries/modules to make the implementation and
usage of state machines easier. Django offers the third-party django-fsm package and
Python also has many contributed modules. In fact, one of them (state_machine)
was used in the implementation section. The State Machine Compiler (SMC) is
yet another promising project, offering many programming language bindings
(including Python).

We saw how to implement a state machine of a computer system process using the
state_machine module. The state_machine module simplifies the creation of
a state machine and the definition of actions before/after transitions.

In the next chapter, we will see how we can pick an algorithm (between many
candidates) dynamically using the Strategy design pattern.

The Strategy Pattern
Most problems can be solved in more than one way. Take, for example, the sorting
problem, which is related to putting the elements of a list in a specific order.
There are many sorting algorithms, and, in general, none of them is considered the
best for all cases [j.mp/algocomp]. There are different criteria that help us pick a
sorting algorithm on a per-case basis. Some of the things that should be taken into
account are:

• Number of elements that need to be sorted: This is called the input size.
Almost all the sorting algorithms behave fairly well when the input size is
small, but only a few of them have good performance with a large input size.

• Best/average/worst time complexity of the algorithm: Time complexity is
(roughly) the amount of time the algorithm takes to complete, excluding
coefficients and lower order terms. This is often the most usual criterion
to pick an algorithm, although it is not always sufficient.

• Space complexity of the algorithm: Space complexity is (again roughly) the
amount of physical memory needed to fully execute an algorithm. This is
very important when we are working with big data or embedded systems,
which usually have limited memory.

• Stability of the algorithm: An algorithm is considered stable when it
maintains the relative order of elements with equal values after it is executed.

• Code complexity of the algorithm: If two algorithms have the same
time/space complexity and are both stable, it is important to know
which algorithm is easier to code and maintain.

There are possibly more criteria that can be taken into account. The important
question is are we really forced to use a single sorting algorithm for all cases?
The answer is of course not. A better solution is to have all the sorting algorithms
available, and using the mentioned criteria to pick the best algorithm for the current
case. That's what the Strategy pattern is about.

The Strategy Pattern

[172]

The Strategy pattern promotes using multiple algorithms to solve a problem. Its
killer feature is that it makes it possible to switch algorithms at runtime transparently
(the client code is unaware of the change). So, if you have two algorithms and you
know that one works better with small input sizes, while the other works better with
large input sizes, you can use Strategy to decide which algorithm to use based on the
input data at runtime.

A real-life example
Reaching an airport to catch a flight is a good Strategy example used in reality:

• If we want to save money and we leave early, we can go by bus/train
• If we don't mind paying for a parking place and have our own car, we can

go by car
• If we don't have a car but we are in a hurry, we can take a taxi

There are trade-offs between cost, time, convenience, and so forth. The following
figure, courtesy of www.sourcemaking.com [j.mp/strategypat], shows an example
of the different ways (strategies) you can reach the airport:

Chapter 15

[173]

A software example
Python's sorted() and list.sort() functions are examples of the Strategy pattern.
Both functions accept a named parameter key, which is basically the name of the
function that implements a sorting Strategy [Eckel08, page 202].

The following example (the code is in the langs.py file) shows how two different
strategies can be used to sort programming languages in the following ways:

• Alphabetically
• Based on their popularity (using the TIOBE index [j.mp/tiobe14])

A namedtuple programming language [j.mp/namedtuple] is used to keep the
statistics of the programming languages. A named tuple is an easy-to-create,
lightweight, immutable object type. It is compatible with a normal tuple but it can
also be treated as an object (can be called by name, using the usual class notation).
A named tuple can be used [j.mp/sonamed]:

• Instead of a class when we want to focus on immutability
• Instead of a tuple, when it makes sense to use the object notation to create

more readable code

I took the liberty to also demonstrate the pprint and attrgetter modules. The
pprint module is used to pretty print a data structure, and attregetter is used
to access the attributes of class or namedtuple by name. The alternative of using
attregetter is to use a lambda function, but I find attregetter more readable:

import pprint
from collections import namedtuple
from operator import attrgetter

if __name__ == '__main__':
 ProgrammingLang = namedtuple('ProgrammingLang', 'name ranking')

 stats = (('Ruby', 14), ('Javascript', 8), ('Python', 7),
 ('Scala', 31), ('Swift', 18), ('Lisp', 23))

 lang_stats = [ProgrammingLang(n, r) for n, r in stats]
 pp = pprint.PrettyPrinter(indent=5)
 pp.pprint(sorted(lang_stats, key=attrgetter('name')))
 print()
 pp.pprint(sorted(lang_stats, key=attrgetter('ranking')))

The Strategy Pattern

[174]

Executing langs.py gives the following output:

>>>python3 langs.py

[ProgrammingLang(name='Javascript', ranking=8),

 ProgrammingLang(name='Lisp', ranking=23),

 ProgrammingLang(name='Python', ranking=7),

 ProgrammingLang(name='Ruby', ranking=14),

 ProgrammingLang(name='Scala', ranking=31),

 ProgrammingLang(name='Swift', ranking=18)]

[ProgrammingLang(name='Python', ranking=7),

 ProgrammingLang(name='Javascript', ranking=8),

 ProgrammingLang(name='Ruby', ranking=14),

 ProgrammingLang(name='Swift', ranking=18),

 ProgrammingLang(name='Lisp', ranking=23),

 ProgrammingLang(name='Scala', ranking=31)]

The Java API also uses the Strategy design pattern. The java.util.Comparator is
an interface that contains a compare() method, which is essentially a strategy that
can be passed to sorting methods such as Collections.sort and Arrays.sort
[j.mp/jdkpatterns].

Use cases
Strategy is a very generic design pattern with many use cases. In general, whenever
we want to be able to apply different algorithms dynamically and transparently,
Strategy is the way to go. By different algorithms, I mean different implementations
of the same algorithm. This means that the result should be exactly the same, but
each implementation has a different performance and code complexity (as an
example, think of sequential search versus binary search).

We have already seen how Python and Java use the Strategy pattern to support
different sorting algorithms. However, Strategy is not limited to sorting. It can also
be used to create all kinds of different resource filters (authentication, logging, data
compression, encryption, and so forth) [j.mp/javaxfilter].

Another usage of the Strategy pattern is to create different formatting
representations, either to achieve portability (for example, line-breaking differences
between platforms) or dynamically change the representation of data.

Chapter 15

[175]

Yet another usage of Strategy worth mentioning is in simulations. If we want, for
instance, to simulate robots, we know that some robots are more aggressive than
others, some are faster, and so forth. All these differences in robot behavior can be
modeled as different Strategies [j.mp/oostrat].

Implementation
There is not much to be said about implementing the Strategy pattern. In languages
where functions are not first-class citizens, each Strategy should be implemented in
a different class. Wikipedia demonstrates that at [j.mp/stratwiki]. In Python,
we can treat functions as normal variables and this simplifies the implementation
of Strategy.

Assume that we are asked to implement an algorithm to check if all characters in
a string are unique. For example, the algorithm should return true if we enter the
string "dream" because none of the characters is repeated. If we enter the string
"pizza", it should return false because the letter "z" exists two times. Note that the
repeated characters do not need to be consecutive, and the string does not need to
be a valid word. The algorithm should also return false for the string "1r2a3ae"
because the letter "a" appears twice.

After thinking about the problem carefully, we come up with an implementation
that sorts the string and compares all characters pair by pair. First, we implement
the pairs() function, which returns all neighbor pairs of a sequence seq.

def pairs(seq):
 n = len(seq)
 for i in range(n):
 yield seq[i], seq[(i + 1) % n]

Next, we implement the allUniqueSort() function, which accepts a string s and
returns True if all characters in the string are unique; otherwise, it returns False. To
demonstrate the Strategy pattern, we will make a simplification by assuming that this
algorithm fails to scale. We assume that it works fine for strings that are up to five
characters. For longer strings, we simulate a slowdown by inserting a sleep statement:

SLOW = 3 # in seconds
LIMIT = 5 # in characters
WARNING = 'too bad, you picked the slow algorithm :('

def allUniqueSort(s):
 if len(s) > LIMIT:
 print(WARNING)
 time.sleep(SLOW)

The Strategy Pattern

[176]

 srtStr = sorted(s)
 for (c1, c2) in pairs(srtStr):
 if c1 == c2:
 return False
 return True

We are not happy with the performance of allUniqueSort() and we are trying to
think of ways to improve it. After some time, we come up with a new algorithm
allUniqueSet() that eliminates the need to sort. In this case, we use a set. If the
character in check has already been inserted in the set, it means that not all
characters in the string are unique:

def allUniqueSet(s):
 if len(s) < LIMIT:
 print(WARNING)
 time.sleep(SLOW)

 return True if len(set(s)) == len(s) else False

Unfortunately, while allUniqueSet() has no scaling problems, for some strange
reason, it has worse performance than allUniqueSort() when checking short
strings. What can we do in this case? Well, we can keep both algorithms and use the
one that fits best, depending on the length of the string that we want to check. The
function allUnique() accepts an input string s and a strategy function strategy,
which in this case is one of allUniqueSort(), allUniqueSet(). The function
allUnique() executes the input strategy and returns its result to the caller.

The main() function lets the user:

• Enter the word to be checked for character uniqueness
• Choose the pattern that will be used

It also does some basic error handling and gives the ability to the user to
quit gracefully:

def main():
 while True:
 word = None
 while not word:
 word = input('Insert word (type quit to exit)> ')

 if word == 'quit':
 print('bye')
 return

Chapter 15

[177]

 strategy_picked = None
 strategies = { '1': allUniqueSet, '2': allUniqueSort }
 while strategy_picked not in strategies.keys():
 strategy_picked = input('Choose strategy: [1] Use a
set, [2] Sort and pair> ')

 try:
 strategy = strategies[strategy_picked]
 print('allUnique({}): {}'.format(word,
allUnique(word, strategy)))
 except KeyError as err:
 print('Incorrect option: {}'.format(strategy_
picked))

Here's the complete code of the example (the strategy.py file):

import time

SLOW = 3 # in seconds
LIMIT = 5 # in characters
WARNING = 'too bad, you picked the slow algorithm :('

def pairs(seq):
 n = len(seq)
 for i in range(n):
 yield seq[i], seq[(i + 1) % n]

def allUniqueSort(s):
 if len(s) > LIMIT:
 print(WARNING)
 time.sleep(SLOW)
 srtStr = sorted(s)
 for (c1, c2) in pairs(srtStr):
 if c1 == c2:
 return False
 return True

def allUniqueSet(s):
 if len(s) < LIMIT:
 print(WARNING)
 time.sleep(SLOW)

The Strategy Pattern

[178]

 return True if len(set(s)) == len(s) else False

def allUnique(s, strategy):
 return strategy(s)

def main():
 while True:
 word = None
 while not word:
 word = input('Insert word (type quit to exit)> ')

 if word == 'quit':
 print('bye')
 return

 strategy_picked = None
 strategies = { '1': allUniqueSet, '2': allUniqueSort }
 while strategy_picked not in strategies.keys():
 strategy_picked = input('Choose strategy: [1] Use a
set, [2] Sort and pair> ')

 try:
 strategy = strategies[strategy_picked]
 print('allUnique({}): {}'.format(word,
allUnique(word, strategy)))
 except KeyError as err:
 print('Incorrect option: {}'.format(strategy_
picked))
 print()

if __name__ == '__main__':
 main()

Let's view a sample execution of strategy.py:

>>> python3 strategy.py

Insert word (type quit to exit)> balloon

Choose strategy: [1] Use a set, [2] Sort and pair> 1

allUnique(balloon): False

Insert word (type quit to exit)> balloon

Choose strategy: [1] Use a set, [2] Sort and pair> 2

too bad, you picked the slow algorithm :(

Chapter 15

[179]

allUnique(balloon): False

Insert word (type quit to exit)> bye

Choose strategy: [1] Use a set, [2] Sort and pair> 1

too bad, you picked the slow algorithm :(

allUnique(bye): True

Insert word (type quit to exit)> bye

Choose strategy: [1] Use a set, [2] Sort and pair> 2

allUnique(bye): True

Insert word (type quit to exit)> h

Choose strategy: [1] Use a set, [2] Sort and pair> 1

too bad, you picked the slow algorithm :(

allUnique(h): True

Insert word (type quit to exit)> h

Choose strategy: [1] Use a set, [2] Sort and pair> 2

allUnique(h): False

Insert word (type quit to exit)> quit

bye

The first word (balloon) has more than five characters and not all of them
are unique. In this case, both algorithms return the correct result (False) but
allUniqueSort() is slower and the user is warned.

The second word (bye) has less than five characters and all characters are
unique. Again, both algorithms return the expected result (True) but this time,
allUniqueSet() is slower and the user is warned once more.

The last "word" (h) is a special case. While allUniqueSet() is slow, it handles it
properly and returns the expected True. The algorithm allUniqueSort() returns
a super quick but incorrect result. Can you find out why? Fix the allUniqueSort()
algorithm as an exercise. You might want to forbid single character words, which I
find perfectly fine (definitely better than returning an incorrect result).

The Strategy Pattern

[180]

Normally, the strategy that we want to use should not be picked by the user. The
point of the strategy pattern is that it makes it possible to use different algorithms
transparently. Change the code so that the faster algorithm is always picked.

There are two usual users of our code. One is the end user, who should be unaware
of what's happening in the code, and to achieve that we can follow the tips given in
the previous paragraph. Another possible category of users is the other developers.
Assume that we want to create an API that will be used by the other developers. How
can we keep them unaware of the strategy pattern? A tip is to think of encapsulating
the two functions in a common class, for example, AllUnique. In this case, the other
developers will just need to create an instance of AllUnique and execute a single
method, for instance, test(). What needs to be done in this method?

Summary
In this chapter, we saw the Strategy design pattern. Strategy is generally used when
we want to be able to use multiple solutions for the same problem transparently.
There is no perfect algorithm for all input data and all cases, and by using Strategy,
we can dynamically decide which algorithm to use in each case. In reality, we use
the Strategy pattern when we want to get to an airport to catch a flight.

Python uses the Strategy pattern to let the client code decide how to sort the elements
of a data structure. We saw an example of how to sort programming languages
based on their TIOBE index ranking.

The use of the Strategy design pattern is not limited to the sorting domain. Encryption,
compression, logging, and other domains that deal with resources use Strategy to
provide different ways to filter data. Portability is another domain where Strategy
is applicable. Simulations are yet another good candidate.

We saw how Python with its first-class functions simplifies the implementation of
Strategy by implementing two different algorithms that check if all the characters
in a word are unique.

In the final chapter of this book, we will cover the Template pattern, which is used
to abstract the common parts of an algorithm to promote code reuse.

The Template Pattern
A key ingredient in writing good code is avoiding redundancy. In object-oriented
programming (OOP), methods and functions are important tools that we can use
to avoid writing redundant code. Remember the sorted() example in the previous
chapter. The sorted() function is generic enough that it can be used to sort more
than one data structure (lists, tuples, and namedtuples) using arbitrary keys. That's
the definition of a good function.

Functions such as sorted() demonstrate the ideal case. In reality, we cannot always
write 100 percent generic code. There are many algorithms that have some (but not
all) common steps. A good example is breadth-first search (BFS) and depth-first
search (DFS), two popular algorithms used in graph searching. Assume that we
are asked to implement BFS and DFS in Python. Initially, we come up with two
independent implementations (the graph.py file). The functions bfs() and dfs()
return a tuple of (True, path) if a path between start and end exists, or
(False, path) (in this case, path is empty) if a path does not exist:

def bfs(graph, start, end):
 path = []
 visited = [start]
 while visited:
 current = visited.pop(0)
 if current not in path:
 path.append(current)
 if current == end:
 print(path)
 return (True, path)
 # skip vertices with no connections
 if current not in graph:
 continue

The Template Pattern

[182]

 visited = visited + graph[current]
 return (False, path)

def dfs(graph, start, end):
 path = []
 visited = [start]
 while visited:
 current = visited.pop(0)
 if current not in path:
 path.append(current)
 if current == end:
 print(path)
 return (True, path)
 # skip vertices with no connections
 if current not in graph:
 continue
 visited = graph[current] + visited
 return (False, path)

Notice the similarities between the two algorithms. There is only one difference that
is highlighted. All the rest of the parts are exactly the same. We'll get back to that in
a moment.

Let's first test the algorithms using the graph provided by Wikimedia [j.mp/
wikicities]. For simplicity, we will assume that the graph is directed. This means
that we can only move one way; we can check how we can go from Frankfurt
to Mannheim but not the other way around.

We can represent the directed graph using dict of list. Each city is a key in dict,
and the contents of list are all the possible destinations starting from that city.
Cities that are leafs (for example, Erfurt) just use an empty list (no destinations):

def main():
 graph = {
 'Frankfurt': ['Mannheim', 'Wurzburg', 'Kassel'],
 'Mannheim': ['Karlsruhe'],
 'Karlsruhe': ['Augsburg'],
 'Augsburg': ['Munchen'],
 'Wurzburg': ['Erfurt', 'Nurnberg'],
 'Nurnberg': ['Stuttgart', 'Munchen'],

j.mp/wikicities
j.mp/wikicities

Chapter 16

[183]

 'Kassel': ['Munchen'],
 'Erfurt': [],
 'Stuttgart': [],
 'Munchen': []
 }

 bfs_path = bfs(graph, 'Frankfurt', 'Nurnberg')
 dfs_path = dfs(graph, 'Frankfurt', 'Nurnberg')
 print('bfs Frankfurt-Nurnberg: {}'.format(bfs_path[1] if bfs_path[0]
else 'Not
 found'))
 print('dfs Frankfurt-Nurnberg: {}'.format(dfs_path[1] if dfs_path[0]
else 'Not
 found'))

 bfs_nopath = bfs(graph, 'Wurzburg', 'Kassel')
 print('bfs Wurzburg-Kassel: {}'.format(bfs_nopath[1] if bfs_
nopath[0] else
 'Not found'))
 dfs_nopath = dfs(graph, 'Wurzburg', 'Kassel')
 print('dfs Wurzburg-Kassel: {}'.format(dfs_nopath[1] if dfs_
nopath[0] else
 'Not found'))

if __name__ == '__main__':
 main()

The results are not very interesting from a quality point of view because DFS and
BFS do not work well with weighted graphs (the weights are completely ignored).
Better algorithms to work with weighted graphs are shortest-path first (Dijkstra's),
Bellman-Ford, A*, and so forth. However, we still want our graph traversal to be the
expected. What we expect as the output of the algorithms is a list of the cities that
were visited while searching for the path from Frankfurt to Nurnberg. So let's take
a look at the results.

>> python3 graph.py

bfs Frankfurt-Nurnberg: ['Frankfurt', 'Mannheim', 'Wurzburg', 'Kassel',

 'Karlsruhe', 'Erfurt', 'Nurnberg']

dfs Frankfurt-Nurnberg: ['Frankfurt', 'Mannheim', 'Karlsruhe',
'Augsburg',

The Template Pattern

[184]

 'Munchen', 'Wurzburg', 'Erfurt', 'Nurnberg']

bfs Wurzburg-Kassel: Not found

dfs Wurzburg-Kassel: Not found

The results look fine. BFS traverses in breadth and DFS in depth, and both algorithms
do not return any unexpected results. This is fine, but there is still a problem with
our code: redundancy. There is only one difference between the two algorithms but
the rest of the code is written twice. Can we do something about this problem?

The answer is yes. That's the problem solved by The Template design pattern.
This pattern focuses on eliminating code redundancy. The idea is that we should
be able to redefine certain parts of an algorithm without changing its structure.
Let's see how the code looks after the necessary refactoring to avoid duplication
(the graph_template.py file):

def traverse(graph, start, end, action):
 path = []
 visited = [start]
 while visited:
 current = visited.pop(0)
 if current not in path:
 path.append(current)
 if current == end:
 return (True, path)
 # skip vertices with no connections

Chapter 16

[185]

 if current not in graph:
 continue
 visited = action(visited, graph[current])
 return (False, path)

def extend_bfs_path(visited, current):
 return visited + current

def extend_dfs_path(visited, current):
 return current + visited

Instead of having two bfs() and dfs() functions, we refactored the code to use
a single traverse() function. The traverse() function is actually a Template
function. It accepts action as a parameter, which is the function that "knows"
how to extend the path. Depending on the algorithm that we use, we pass
extend_bfs_path() or extends_dfs_path() as the action.

You might argue that we could achieve the same result by adding a condition inside
traverse() to detect which traversal algorithm should be used. This is shown in the
following code (the graph_template_slower.py file):

BFS = 1
DFS = 2

def traverse(graph, start, end, algorithm):
 path = []
 visited = [start]
 while visited:
 current = visited.pop(0)
 if current not in path:
 path.append(current)
 if current == end:
 return (True, path)
 # skip vertices with no connections
 if current not in graph:
 continue
 if algorithm == BFS:
 visited = extend_bfs_path(visited, graph[current])
 elif algorithm == DFS:
 visited = extend_dfs_path(visited, graph[current])
 else:
 raise ValueError("No such algorithm.")
 return (False, path)

The Template Pattern

[186]

I don't like this solution for many reasons, as follows:

• It makes traverse() hard to maintain. If we add a third way to extend the
path, we would need to extend the code of traverse() by adding one more
condition to check if the new path extension action is used. It is better if
traverse() acts like it has no idea about which action it should execute.
No special logic in traverse() is required.

• It only works for algorithms that have one-line differences. If there are
more differences, we are much better off creating a new function instead
of polluting the traverse() function with details specific to action.

• It makes traverse() slower. That's because every time traverse() is
executed, it needs to check explicitly which traversal function should
be executed.

Executing traverse() is not very different from executing dfs() or bfs(). Here's
an example:

 bfs_path = traverse(graph, 'Frankfurt', 'Nurnberg', extend_bfs_path)
 dfs_path = traverse(graph, 'Frankfurt', 'Nurnberg', extend_dfs_path)
 print('bfs Frankfurt-Nurnberg: {}'.format(bfs_path[1] if bfs_path[0]
else 'Not
 found'))
 print('dfs Frankfurt-Nurnberg: {}'.format(dfs_path[1] if dfs_path[0]
else 'Not
 found'))

The execution of graph-template.py should give the same results as the execution
of graph.py:

>> python3 graph-template.py

bfs Frankfurt-Nurnberg: ['Frankfurt', 'Mannheim', 'Wurzburg', 'Kassel',

 'Karlsruhe', 'Erfurt', 'Nurnberg']

dfs Frankfurt-Nurnberg: ['Frankfurt', 'Mannheim', 'Karlsruhe',
'Augsburg',

 'Munchen', 'Wurzburg', 'Erfurt', 'Nurnberg']

bfs Wurzburg-Kassel: Not found

dfs Wurzburg-Kassel: Not found

Chapter 16

[187]

A real-life example
The daily routine of a worker, especially for workers of the same company, is very
close to the Template design pattern. All workers follow more or less the same
routine, but specific parts of the routine are very different. This is shown in the
following figure, provided by www.sourcemaking.com [j.mp/templatepat]. The
fundamental difference between what is shown in the figure and implementing the
Template pattern in Python is that in Python, inheritance is not mandatory. We can
use it if it really benefits us. If there's no real benefit, we can skip it and use naming
and typing conventions.

The Template Pattern

[188]

A software example
Python uses the Template pattern in the cmd module, which is used to build line-
oriented command interpreters. Specifically, cmd.Cmd.cmdloop() implements an
algorithm that reads input commands continuously and dispatches them to action
methods. What is done before the loop, after the loop, and the command parsing
part are always the same. This is also called the invariant part of an algorithm.
What changes are the actual action methods (the variant part) [j.mp/templatemart,
page 27].

The Python module asyncore, which is used to implement asynchronous socket
service client/servers, also uses Template. Methods such as asyncore.dispather.
handle_connect_event() and asyncore.dispather.handle_write_event()
contain only generic code. To execute the socket-specific code, they execute the
handle_connect() method. Note that what is executed is handle_connect() of
a specific socket, not asyncore.dispatcher.handle_connect(), which actually
contains only a warning. We can see that using the inspect module:

>> python3

import inspect

import asyncore

inspect.getsource(asyncore.dispatcher.handle_connect)

" def handle_connect(self):\n self.log_info('unhandled connect
event', 'warning')\n"

Use cases
The Template design pattern focuses on eliminating code repetition. If we notice that
there is repeatable code in algorithms that have structural similarities, we can keep
the invariant (common) parts of the algorithms in a template method/function and
move the variant (different) parts in action/hook methods/functions.

Pagination is a good use case to use Template. A pagination algorithm can be split
into an abstract (invariant) part and a concrete (variant) part. The invariant part takes
care of things such as the maximum number of lines/page. The variant part contains
functionality to show the header and footer of a specific page that is paginated
[j.mp/templatemart, page 10].

All application frameworks make use of some form of the Template pattern. When
we use a framework to create a graphical application, we usually inherit from a class
and implement our custom behavior. However, before this, a Template method is
usually called that implements the part of the application that is always the same,
which is drawing the screen, handling the event loop, resizing and centralizing the
window, and so on [EckelPython, page 143].

j.mp/templatemart

Chapter 16

[189]

Implementation
In this section, we will implement a banner generator. The idea is rather simple.
We want to send some text to a function, and the function should generate a banner
containing the text. Banners have some sort of style, for example, dots or dashes
surrounding the text. The banner generator has a default style, but we should be
able to provide our own style.

The function generate_banner() is our Template function. It accepts, as an input,
the text (msg) that we want our banner to contain, and optionally the style (style)
that we want to use. The default style is dots_style, which we will see in a moment.
The generate_banner() function wraps the styled text with a simple header and
footer. In reality, the header and footer can be much more complex, but nothing
forbids us from calling functions that can do the header and footer generations
instead of just printing simple strings:

def generate_banner(msg, style=dots_style):
 print('-- start of banner --')
 print(style(msg))
 print('-- end of banner --\n\n')

The default dots_style() simply capitalizes msg and prints 10 dots before and
after it:

def dots_style(msg):
 msg = msg.capitalize()
 msg = '.' * 10 + msg + '.' * 10
 return msg

Another style that is supported by the generator is admire_style(). This style
shows the text in upper case and puts an exclamation mark between each character
of the text:

def admire_style(msg):
 msg = msg.upper()
 return '!'.join(msg)

The next style is by far my favorite. The cow_style() style uses the cowpy module to
generate random ASCII art characters emoting the text in question [j.mp/pycowpy].
If cowpy is not already installed on your system, you can install it using the following
command:

>> pip3 install cowpy

The Template Pattern

[190]

The cow_style() style executes the milk_random_cow() method of cowpy, which is
used to generate a random ASCII art character every time cow_style() is executed:

def cow_style(msg):

 msg = cow.milk_random_cow(msg)
 return msg

The main() function sends the text "happy coding" to the banner and prints it to the
standard output using all the available styles:

def main():
 msg = 'happy coding'
 [generate_banner(msg, style) for style in (dots_style, admire_
style,
 cow_style)]

The following is the full code of template.py:

from cowpy import cow

def dots_style(msg):
 msg = msg.capitalize()
 msg = '.' * 10 + msg + '.' * 10
 return msg

def admire_style(msg):
 msg = msg.upper()
 return '!'.join(msg)

def cow_style(msg):

 msg = cow.milk_random_cow(msg)
 return msg

def generate_banner(msg, style=dots_style):
 print('-- start of banner --')
 print(style(msg))
 print('-- end of banner --\n\n')

def main():
 msg = 'happy coding'

Chapter 16

[191]

 [generate_banner(msg, style) for style in (dots_style, admire_
style, cow_style)]

if __name__ == '__main__':
 main()

Let's take a look at a sample output of template.py. Your cow_style() output
might be different due to the randomness of cowpy:

>>> python3 template.py

-- start of banner --

..........Happy coding..........

-- end of banner --

-- start of banner --

H!A!P!P!Y! !C!O!D!I!N!G

-- end of banner --

-- start of banner --

< Happy coding >

 \

 \ __ _/_/

 \ __/

 (xx)_______

 (__)\)\/\

 U ||----w |

 || ||

-- end of banner --

Do you like the art generated by cowpy? I certainly do. As an exercise, you can create
your own style and add it to the banner generator.

Another good exercise is to try implementing your own Template example. Find
some existing redundant code that you wrote and the Template pattern is applicable.
If you cannot find any good examples in your own code, you can still search on
GitHub or any other code-hosting service. After finding a good candidate, refactor
the code to use Template and eliminate duplication.

The Template Pattern

[192]

Summary
In this chapter, we covered the Template design pattern. We use Template
to eliminate redundant code when implementing algorithms with structural
similarities. The code duplication elimination happens using action/hook methods/
functions, which are first-class citizens in Python. We saw an actual example of code
refactoring using the Template pattern with the BFS and DFS algorithms.

We saw how the daily routine of a worker resembles the Template pattern. We also
mentioned two examples of how Python uses Template in its libraries. General use
cases of when to use Template were also mentioned.

We concluded the chapter by implementing a banner generator, which uses a
Template function to implement custom text styles.

This is the end of this book. I hope you enjoyed it. Before I leave you, I want to remind
you about something by quoting Alex Martelli, an important Python contributor, who
says, "Design patterns are discovered, not invented" [j.mp/templatemart, page 25].

Index
A
Abstract Factory design pattern

about 20
implementing 21-27
real-life example 20
software example 21
use cases 21

abstract syntax tree (AST) 138
Adapter pattern

about 57
examples 57
implementing 59-63
real-life example 58
software example 58
use cases 59

advanced users 137

B
Backus-Naur Form (BNF) 141
basic users 137
breadth-first search (BFS)

about 181
implementing 182-186

builder 29
Builder design pattern

implementing 34-42
real-life example 30
software example 30
use cases 31-33

C
Caliendo 77
Chain of Responsibility pattern

about 114

implementing 117-122
real-life example 115
software example 115
use cases 116, 117

Command pattern
about 125
implementing 127-134
real-life example 126
software example 126
use cases 127

Content Management System (CMS) 30
controller 93
Create, Read, Update, Delete (CRUD) 100
cross-cutting concerns

about 67
examples 67

D
Danish Kroner (DKK) 57
DataCash payment gateway 76
Decorator pattern

about 65
implementing 68-72
real-life example 66
software example 67
use cases 67

depth-first search (DFS)
about 181
implementing 182-186

descriptors 104
director 29
Django 67, 95
django_factory package 21
django-observer package 150

[194]

django-oscar-datacash module 76
django-query-builder library 30
django-widgy 30
Domain Specific Languages (DSLs)

about 137, 162
external DSLs 138
internal DSLs 138

E
Exaile music player 86
external DSLs 138

F
Facade pattern

about 75
implementing 77-83
real-life example 76
software example 76
use cases 77

Factory design pattern 9
Factory Method pattern

about 9
implementing 12-19
real-life example 10
software example 10
use cases 10, 11

First-Person Shooter (FPS) 86
Flyweight pattern

about 85
implementing 87-91
real-life example 86
software example 86
use cases 86, 87

G
git-cola 126
Graphical User Interface (GUI) toolkits 68
Grok 58

H
Hard Disk Drive (HDD) 85

I
internal DSLs 138
Interpreter pattern

about 137
implementing 140-147
real-life example 138
software example 138
use cases 139

L
LazyProperty class 104

M
memoization 87
memoization decorator 68
microkernel 77
model 93
Model-Template-View (MTV) 95
Model-View-Adapter (MVA) 95
Model-View-Controller (MVC) pattern

about 93
implementing 96-100
real-life example 94
software example 94, 95
use cases 95, 96

Model-View-Presenter (MVP) 95
music21 48

O
object-oriented programming (OOP) 87
Object-Relational Mapping (ORM) API 108
Observer pattern

about 149
data formatter, implementing 151-158
real-life example 149
software example 150
use cases 151

open/close principle 59

P
Peppy 86
protection/protective proxy 103

[195]

Prototype design pattern
implementing 49-54
real-life example 47, 48
software example 48
use cases 48

Proxy design pattern
implementing 108-111
real-life example 106
software example 107
use cases 107
using 103

R
RabbitMQ 150
Read-Eval-Print Loop (REPL) 11
remote proxy 103

S
Separation of Concerns (SoC) principle 93
smart (reference) proxy 103
Solid State Drives (SSD) 85
sorted() function 181
sorting algorithm

considerations, for picking up 171
state 159
State design pattern

about 160
implementing 162-169
real-life example 161
software example 162
use cases 162

state diagrams 159
state machine 159, 160
State Machine Compiler (SMC) 162
Strategy pattern

about 172
implementing 175-180
real-life example 172
software example 173, 174
use cases 174

StringBuilder 31
structural design patterns 57

T
Template design pattern

about 184
banner generator, implementing 189-191
real-life example 187
software example 188
use cases 188

Traits package 58
transition 159
traverse() function 186

U
Unified Modeling Language (UML) 30
use cases, Command pattern

GUI buttons 127
macros 127
menu items 127
other operations 127
transactional behavior and logging 127

user, categories
advanced 137
basic 137

User Interface (UI) 31

V
view 93
View decorators 67
virtual proxy 103
Visualization Toolkit (VTK) 48

W
web2py web framework 94

Z
ZeroMQ 107

Thank you for buying
Mastering Python Design Patterns

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Learning Python Design Patterns
ISBN: 978-1-78328-337-8 Paperback: 100 pages

A practical and fast-paced guide exploring Python
design patterns

1. Explore the Model-View-Controller pattern and
learn how to build a URL shortening service.

2. All design patterns use a real-world example
that can be modified and applied in your
software.

3. No unnecessary theory! The book consists
of only the fundamental knowledge that you
need to know.

Mastering Object-oriented Python
ISBN: 978-1-78328-097-1 Paperback: 634 pages

Grasp the intricacies of object-oriented programming
in Python in order to efficiently build powerful
real-world applications

1. Create applications with flexible logging,
powerful configuration and command-line
options, automated unit tests, and good
documentation.

2. Use the Python special methods to integrate
seamlessly with built-in features and the
standard library.

3. Design classes to support object persistence
in JSON, YAML, Pickle, CSV, XML, Shelve,
and SQL.

Please check www.PacktPub.com for information on our titles

Python for Secret Agents
ISBN: 978-1-78398-042-0 Paperback: 216 pages

Analyze, encrypt, and uncover intelligence data using
Python, the essential tool for all aspiring secret agents

1. Build a toolbox of Python gadgets for password
recovery, currency conversion, and civic
data hacking.

2. Use stenography to hide secret messages
in images.

3. Get to grips with geocoding to find villains'
secret lairs.

Python Network Programming
Cookbook
ISBN: 978-1-84951-346-3 Paperback: 234 pages

Over 70 detailed recipes to develop practical
solutions for a wide range of real-world network
programming tasks

1. Demonstrates how to write various besopke
client/server networking applications using
standard and popular third-party Python
libraries.

2. Learn how to develop client programs for
networking protocols such as HTTP/HTTPS,
SMTP, POP3, FTP, CGI, XML-RPC, SOAP,
and REST.

3. Provides practical, hands-on recipes combined
with short and concise explanations on code
snippets.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: The Factory Pattern
	Factory Method
	A real-life example
	A software example
	Use cases

	Implementation
	Abstract Factory
	A real-life example
	A software example
	Use cases
	Implementation

	Summary

	Chapter 2: The Builder Pattern
	A real-life example
	A software example
	Use cases
	Implementation
	Summary

	Chapter 3: The Prototype Pattern
	A real-life example
	A software example
	Use cases
	Implementation
	Summary

	Chapter 4: The Adapter Pattern
	A real-life example
	A software example
	Use cases
	Implementation
	Summary

	Chapter 5: The Decorator Pattern
	A real-life example
	A software example
	Use cases
	Implementation
	Summary

	Chapter 6: The Facade Pattern
	A real-life example
	A software example
	Use cases
	Implementation
	Summary

	Chapter 7: The Flyweight Pattern
	A real-life example
	A software example
	Use cases
	Implementation
	Summary

	Chapter 8: The Model-View-Controller Pattern
	A real-life example
	A software example
	Use cases
	Implementation
	Summary

	Chapter 9: The Proxy Pattern
	A real-life example
	A software example
	Use cases
	Implementation
	Summary

	Chapter 10: The Chain of Responsibility Pattern
	A real-life example
	A software example
	Use cases
	Implementation
	Summary

	Chapter 11: The Command Pattern
	A real-life example
	A software example
	Use cases
	Implementation
	Summary

	Chapter 12: The Interpreter Pattern
	A real-life example
	A software example
	Use cases
	Implementation
	Summary

	Chapter 13: The Observer Pattern
	A real-life example
	A software example
	Use cases
	Implementation
	Summary

	Chapter 14: The State Pattern
	A real-life example
	A software example
	Use cases
	Implementation
	Summary

	Chapter 15: The Strategy Pattern
	A real-life example
	A software example
	Use cases
	Implementation
	Summary

	Chapter 16: The Template Pattern
	A real-life example
	A software example
	Use cases
	Implementation
	Summary

	Index

