

Learning scikit-learn: Machine
Learning in Python

Experience the benefits of machine learning techniques
by applying them to real-world problems using Python
and the open source scikit-learn library

Raúl Garreta

Guillermo Moncecchi

 BIRMINGHAM - MUMBAI

Learning scikit-learn: Machine Learning in Python

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2013

Production Reference: 1181113

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-193-0

www.packtpub.com

Cover Image by Faiz Fattohi (faizfattohi@gmail.com)

Credits

Authors
Raúl Garreta

Guillermo Moncecchi

Reviewers
Andreas Hjortgaard Danielsen

Noel Dawe

Gavin Hackeling

Acquisition Editors
Kunal Parikh

Owen Roberts

Commissioning Editor
Deepika Singh

Technical Editors
Shashank Desai

Iram Malik

Copy Editors
Sarang Chari

Janbal Dharmaraj

Aditya Nair

Project Coordinator
Aboli Ambardekar

Proofreader
Katherine Tarr

Indexer
Monica Ajmera Mehta

Graphics
Abhinash Sahu

Production Co-ordinator
Pooja Chiplunkar

Cover Work
Pooja Chiplunkar

About the Authors

Raúl Garreta is a Computer Engineer with much experience in the theory and
application of Artificial Intelligence (AI), where he specialized in Machine Learning
and Natural Language Processing (NLP).

He has an entrepreneur profile with much interest in the application of science,
technology, and innovation to the Internet industry and startups. He has worked in
many software companies, handling everything from video games to implantable
medical devices.

In 2009, he co-founded Tryolabs with the objective to apply AI to the development of
intelligent software products, where he performs as the CTO and Product Manager
of the company. Besides the application of Machine Learning and NLP, Tryolabs'
expertise lies in the Python programming language and has been catering to many
clients in Silicon Valley. Raul has also worked in the development of the Python
community in Uruguay, co-organizing local PyDay and PyCon conferences.

He is also an assistant professor at the Computer Science Institute of Universidad de
la República in Uruguay since 2007, where he has been working on the courses of
Machine Learning, NLP, as well as Automata Theory and Formal Languages. Besides
this, he is finishing his Masters degree in Machine Learning and NLP. He is also very
interested in the research and application of Robotics, Quantum Computing, and
Cognitive Modeling. Not only is he a technology enthusiast and science fiction lover
(geek) but also a big fan of arts, such as cinema, photography, and painting.

I would like to thank my girlfriend for putting up with my long
working sessions and always supporting me. Thanks to my parents,
grandma, and aunt Pinky for their unconditional love and for always
supporting my projects. Thanks to my friends and teammates at
Tryolabs for always pushing me forward. Thanks Guillermo for
joining me in writing this book. Thanks Diego Garat for introducing
me to the amazing world of Machine Learning back in 2005.

Also, I would like to have a special mention to the open source
Python and scikit-learn community for their dedication and
professionalism in developing these beautiful tools.

Guillermo Moncecchi is a Natural Language Processing researcher at the
Universidad de la República of Uruguay. He received a PhD in Informatics from the
Universidad de la República, Uruguay and a Ph.D in Language Sciences from the
Université Paris Ouest, France. He has participated in several international projects
on NLP. He has almost 15 years of teaching experience on Automata Theory, Natural
Language Processing, and Machine Learning.

He also works as Head Developer at the Montevideo Council and has lead
the development of several public services for the council, particularly in the
Geographical Information Systems area. He is one of the Montevideo Open Data
movement leaders, promoting the publication and exploitation of the city's data.

I would like to thank my wife and kids for putting up with my late
night writing sessions, and my family, for being there. You are the
best I have.

Thanks to Javier Couto for his invaluable advice. Thanks to Raúl
for inviting me to write this book. Thanks to all the people of the
Natural Language Group and the Instituto de Computación at the
Universidad de la República. I am proud of the great job we do
every day building the uruguayan NLP and ML community.

About the Reviewers

Andreas Hjortgaard Danielsen holds a Master's degree in Computer
Science from the University of Copenhagen, where he specialized in Machine
Learning and Computer Vision. While writing his Master's thesis, he was an
intern research student in the Lampert Group at the Institute of Science and
Technology (IST), Austria in Vienna. The topic of his thesis was object localization
using conditional random fields with special focus on efficient parameter learning.
He now works as a software developer in the information services industry where
he has used scikit-learn for topic classification of text documents. See more on his
website at http://www.hjortgaard.net/.

Noel Dawe is a Ph.D. student in the field of Experimental High Energy
Particle Physics at Simon Fraser University, Canada. As a member of the ATLAS
collaboration, he has been a part of the search team for the Higgs boson using
high energy proton-proton collisions at CERN's Large Hadron Collider (LHC) in
Geneva, Switzerland. In his free time, he enjoys contributing to open source scientific
software, including scikit-learn. He has developed a significant interest toward
Machine learning, to the benefit of his research where he has employed many of the
concepts and techniques introduced in this book to improve the identification of tau
leptons in the ATLAS detector, and later to extract the small signature of the Higgs
boson from the vast amount of LHC collision data. He continues to learn and apply
new data analysis techniques, some seen as unconventional in his field, to solve the
problems of increasing complexity and growing data sets.

Gavin Hackeling is a Developer and Creative Technologist based in New York
City. He is a graduate from New York University in Interactive Telecommunications
Program.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents
Preface 1
Chapter 1: Machine Learning – A Gentle Introduction 5

Installing scikit-learn 6
Linux 7
Mac 8
Windows 8
Checking your installation 8

Our first machine learning method – linear classification 10
Evaluating our results 16
Machine learning categories 20
Important concepts related to machine learning 21
Summary 23

Chapter 2: Supervised Learning 25
Image recognition with Support Vector Machines 25

Training a Support Vector Machine 28
Text classification with Naïve Bayes 33

Preprocessing the data 35
Training a Naïve Bayes classifier 36
Evaluating the performance 40

Explaining Titanic hypothesis with decision trees 41
Preprocessing the data 43
Training a decision tree classifier 47
Interpreting the decision tree 49
Random Forests – randomizing decisions 51
Evaluating the performance 52

Table of Contents

[ii]

Predicting house prices with regression 53
First try – a linear model 55
Second try – Support Vector Machines for regression 57
Third try – Random Forests revisited 58
Evaluation 59

Summary 60
Chapter 3: Unsupervised Learning 61

Principal Component Analysis 62
Clustering handwritten digits with k-means 67
Alternative clustering methods 74
Summary 77

Chapter 4: Advanced Features 79
Feature extraction 80
Feature selection 84
Model selection 88
Grid search 94
Parallel grid search 95
Summary 99

Index 101

Preface
Suppose you want to predict whether tomorrow will be a sunny or rainy day.
You can develop an algorithm that is based on the current weather and your
meteorological knowledge using a rather complicated set of rules to return the
desired prediction. Now suppose that you have a record of the day-by-day weather
conditions for the last five years, and you find that every time you had two sunny
days in a row, the following day also happened to be a sunny one. Your algorithm
could generalize this and predict that tomorrow will be a sunny day since the sun
reigned today and yesterday. This algorithm is a pretty simple example of learning
from experience. This is what Machine Learning is all about: algorithms that learn
from the available data.

In this book, you will learn several methods for building Machine Learning
applications that solve different real-world tasks, from document classification to
image recognition.

We will use Python, a simple, popular, and widely used programming language,
and scikit-learn, an open source Machine Learning library.

In each chapter, we will present a different Machine Learning setting and a couple
of well-studied methods as well as show step-by-step examples that use Python and
scikit-learn to solve concrete tasks. We will also show you tips and tricks to improve
algorithm performance, both from the accuracy and computational cost point of views.

Preface

[2]

What this book covers
Chapter 1, Machine Learning – A Gentle Introduction, presents the main concepts behind
Machine Learning while solving a simple classification problem: discriminating
flower species based on its characteristics.

Chapter 2, Supervised Learning, introduces four classification methods: Support Vector
Machines, Naive Bayes, decision trees, and Random Forests. These methods are
used to recognize faces, classify texts, and explain the causes for surviving from the
Titanic accident. It also presents Linear Models and revisits Support Vector Machines
and Random Forests, using them to predict house prices in Boston.

Chapter 3, Unsupervised Learning, describes methods for dimensionality reduction
with Principal Component Analysis to visualize high dimensional data in just
two dimensions. It also introduces clustering techniques to group instances of
handwritten digits according to a similarity measure using the k-means algorithm.

Chapter 4, Advanced Features, shows how to preprocess the data and select the
best features for learning, a task called Feature Selection. It also introduces
Model Selection: selecting the best method parameters using the available data
and parallel computation.

What you need for this book
For running the book's examples, you will need a running Python environment,
including the scikit-learn library and NumPy and SciPy mathematical libraries.
The source code will be available in the form of IPython notebooks. For Chapter 4,
Advanced Features, we will also include the Pandas Python library. Chapter 1, Machine
Learning – A Gentle Introduction, shows how to install them in your operating system.

Who this book is for
This book is intended for programmers who want to add Machine Learning and
data-based methods to their programming skills.

Preface

[3]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "The SGDClassifier initialization function
allows several parameters."

A block of code is set as follows:

>>> from sklearn.linear_model import SGDClassifier
>>> clf = SGDClassifier()
>>> clf.fit(X_train, y_train)

Any command-line input or output is written as follows:

sudo apt-get install python-matplotlib

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[4]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.comwith a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Machine Learning –
A Gentle Introduction

"I was into data before it was big"—@ml_hipster

You have probably heard recently about big data. The Internet, the explosion of
electronic devices with tremendous computational power, and the fact that almost
every process in our world uses some kind of software, are giving us huge amounts
of data every minute.

Think about social networks, where we store information about people, their
interests, and their interactions. Think about process-control devices, ranging from
web servers to cars and pacemakers, which permanently leave logs of data about
their performance. Think about scientific research initiatives, such as the genome
project, which have to analyze huge amounts of data about our DNA.

There are many things you can do with this data: examine it, summarize it, and even
visualize it in several beautiful ways. However, this book deals with another use
for data: as a source of experience to improve our algorithms' performance. These
algorithms, which can learn from previous data, conform to the field of Machine
Learning, a subfield of Artificial Intelligence.

Machine Learning – A Gentle Introduction

[6]

Any machine learning problem can be represented with the following three concepts:

• We will have to learn to solve a task T. For example, build a spam filter that
learns to classify e-mails as spam or ham.

• We will need some experience E to learn to perform the task. Usually,
experience is represented through a dataset. For the spam filter, experience
comes as a set of e-mails, manually classified by a human as spam or ham.

• We will need a measure of performance P to know how well we are solving
the task and also to know whether after doing some modifications, our
results are improving or getting worse. The percentage of e-mails that our
spam filtering is correctly classifying as spam or ham could be P for our
spam-filtering task.

Scikit-learn is an open source Python library of popular machine learning algorithms
that will allow us to build these types of systems. The project was started in 2007
as a Google Summer of Code project by David Cournapeau. Later that year, Matthieu
Brucher started working on this project as part of his thesis. In 2010, Fabian Pedregosa,
Gael Varoquaux, Alexandre Gramfort, and Vincent Michel of INRIA took the project
leadership and produced the first public release. Nowadays, the project is being
developed very actively by an enthusiastic community of contributors. It is built
upon NumPy (http://www.numpy.org/) and SciPy (http://scipy.org/), the
standard Python libraries for scientific computation. Through this book, we will
use it to show you how the incorporation of previous data as a source of experience
could serve to solve several common programming tasks in an efficient and probably
more effective way.

In the following sections of this chapter, we will start viewing how to install scikit-
learn and prepare your working environment. After that, we will have a brief
introduction to machine learning in a practical way, trying to introduce key machine
learning concepts while solving a simple practical task.

Installing scikit-learn
Installation instructions for scikit-learn are available at http://scikit-learn.org/
stable/install.html. Several examples in this book include visualizations, so
you should also install the matplotlib package from http://matplotlib.org/.
We also recommend installing IPython Notebook, a very useful tool that includes a
web-based console to edit and run code snippets, and render the results. The source
code that comes with this book is provided through IPython notebooks.

Chapter 1

[7]

An easy way to install all packages is to download and install the Anaconda
distribution for scientific computing from https://store.continuum.io/, which
provides all the necessary packages for Linux, Mac, and Windows platforms. Or, if
you prefer, the following sections gives some suggestions on how to install every
package on each particular platform.

Linux
Probably the easiest way to install our environment is through the operating system
packages. In the case of Debian-based operating systems, such as Ubuntu, you can
install the packages by running the following commands:

• Firstly, to install the package we enter the following command:
sudo apt-get install build-essential python-dev python-numpy
python-setuptools python-scipy libatlas-dev

• Then, to install matplotlib, run the following command:
sudo apt-get install python-matplotlib

• After that, we should be ready to install scikit-learn by issuing this command:
sudo pip install scikit-learn

• To install IPython Notebook, run the following command:
sudo apt-get install ipython-notebook

• If you want to install from source, let's say to install all the libraries within a
virtual environment, you should issue the following commands:
pip install numpy

pip install scipy

pip install scikit-learn

• To install Matplotlib, you should run the following commands:
pip install libpng-dev libjpeg8-dev libfreetype6-dev

pip install matplotlib

• To install IPython Notebook, you should run the following commands:

pip install ipython

pip install tornado

pip install pyzmq

Machine Learning – A Gentle Introduction

[8]

Mac
You can similarly use tools such as MacPorts and HomeBrew that contain
precompiled versions of these packages.

Windows
To install scikit-learn on Windows, you can download a Windows installer from the
downloads section of the project web page: http://sourceforge.net/projects/
scikit-learn/files/

Checking your installation
To check that everything is ready to run, just open your Python (or probably better,
IPython) console and type the following:

>>> import sklearn as sk
>>> import numpy as np
>>> import matplotlib.pyplot as plt

We have decided to precede Python code with >>> to separate it from the sentence
results. Python will silently import the scikit-learn, NumPy, and matplotlib
packages, which we will use through the rest of this book's examples.

If you want to execute the code presented in this book, you should run
IPython Notebook:

ipython notebook

This will allow you to open the corresponding notebooks right in your browser.

Chapter 1

[9]

Datasets
As we have said, machine learning methods rely on previous experience, usually
represented by a dataset. Every method implemented on scikit-learn assumes that
data comes in a dataset, a certain form of input data representation that makes it
easier for the programmer to try different methods on the same data. Scikit-learn
includes a few well-known datasets. In this chapter, we will use one of them, the
Iris flower dataset, introduced in 1936 by Sir Ronald Fisher to show how a statistical
method (discriminant analysis) worked (yes, they were into data before it was big).
You can find a description of this dataset on its own Wikipedia page, but, essentially,
it includes information about 150 elements (or, in machine learning terminology,
instances) from three different Iris flower species, including sepal and petal length
and width. The natural task to solve using this dataset is to learn to guess the Iris
species knowing the sepal and petal measures. It has been widely used on machine
learning tasks because it is a very easy dataset in a sense that we will see later. Let's
import the dataset and show the values for the first instance:

>>> from sklearn import datasets
>>> iris = datasets.load_iris()
>>> X_iris, y_iris = iris.data, iris.target
>>> print X_iris.shape, y_iris.shape
 (150, 4) (150,)
>>> print X_iris[0], y_iris[0]
 [5.1 3.5 1.4 0.2] 0

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.
com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

We can see that the iris dataset is an object (similar to a dictionary) that has two
main components:

• A data array, where, for each instance, we have the real values for sepal
length, sepal width, petal length, and petal width, in that order (note that for
efficiency reasons, scikit-learn methods work on NumPy ndarrays instead of
the more descriptive but much less efficient Python dictionaries or lists). The
shape of this array is (150, 4), meaning that we have 150 rows (one for each
instance) and four columns (one for each feature).

• A target array, with values in the range of 0 to 2, corresponding to each
instance of Iris species (0: setosa, 1: versicolor, and 2: virginica), as you can
verify by printing the iris.target.target_names value.

Machine Learning – A Gentle Introduction

[10]

While it's not necessary for every dataset we want to use with scikit-learn to have
this exact structure, we will see that every method will require this data array, where
each instance is represented as a list of features or attributes, and another target array
representing a certain value we want our learning method to learn to predict. In
our example, the petal and sepal measures are our real-valued attributes, while the
flower species is the one-of-a-list class we want to predict.

Our first machine learning method –
linear classification
To get a grip on the problem of machine learning in scikit-learn, we will start with a
very simple machine learning problem: we will try to predict the Iris flower species
using only two attributes: sepal width and sepal length. This is an instance of a
classification problem, where we want to assign a label (a value taken from a discrete
set) to an item according to its features.

Let's first build our training dataset—a subset of the original sample, represented by
the two attributes we selected and their respective target values. After importing the
dataset, we will randomly select about 75 percent of the instances, and reserve the
remaining ones (the evaluation dataset) for evaluation purposes (we will see later
why we should always do that):

>>> from sklearn.cross_validation import train_test_split
>>> from sklearn import preprocessing
>>> # Get dataset with only the first two attributes
>>> X, y = X_iris[:, :2], y_iris
>>> # Split the dataset into a training and a testing set
>>> # Test set will be the 25% taken randomly
>>> X_train, X_test, y_train, y_test = train_test_split(X, y,
 test_size=0.25, random_state=33)
>>> print X_train.shape, y_train.shape
 (112, 2) (112,)
>>> # Standardize the features
>>> scaler = preprocessing.StandardScaler().fit(X_train)
>>> X_train = scaler.transform(X_train)
>>> X_test = scaler.transform(X_test)

Chapter 1

[11]

The train_test_split function automatically builds the training and evaluation
datasets, randomly selecting the samples. Why not just select the first 112 examples?
This is because it could happen that the instance ordering within the sample could
matter and that the first instances could be different to the last ones. In fact, if you
look at the Iris datasets, the instances are ordered by their target class, and this
implies that the proportion of 0 and 1 classes will be higher in the new training set,
compared with that of the original dataset. We always want our training data to be a
representative sample of the population they represent.

The last three lines of the previous code modify the training set in a process usually
called feature scaling. For each feature, calculate the average, subtract the mean
value from the feature value, and divide the result by their standard deviation. After
scaling, each feature will have a zero average, with a standard deviation of one. This
standardization of values (which does not change their distribution, as you could
verify by plotting the X values before and after scaling) is a common requirement of
machine learning methods, to avoid that features with large values may weight too
much on the final results.

Now, let's take a look at how our training instances are distributed in the two-
dimensional space generated by the learning feature. pyplot, from the matplotlib
library, will help us with this:

>>> import matplotlib.pyplot as plt
>>> colors = ['red', 'greenyellow', 'blue']
>>> for i in xrange(len(colors)):
>>> xs = X_train[:, 0][y_train == i]
>>> ys = X_train[:, 1][y_train == i]
>>> plt.scatter(xs, ys, c=colors[i])
>>> plt.legend(iris.target_names)
>>> plt.xlabel('Sepal length')
>>> plt.ylabel('Sepal width')

Machine Learning – A Gentle Introduction

[12]

The scatter function simply plots the first feature value (sepal width) for each
instance versus its second feature value (sepal length) and uses the target class
values to assign a different color for each class. This way, we can have a pretty good
idea of how these attributes contribute to determine the target class. The following
screenshot shows the resulting plot:

Looking at the preceding screenshot, we can see that the separation between the red
dots (corresponding to the Iris setosa) and green and blue dots (corresponding to the
two other Iris species) is quite clear, while separating green from blue dots seems a
very difficult task, given the two features available. This is a very common scenario:
one of the first questions we want to answer in a machine learning task is if the
feature set we are using is actually useful for the task we are solving, or if we need to
add new attributes or change our method.

Given the available data, let's, for a moment, redefine our learning task: suppose
we aim, given an Iris flower instance, to predict if it is a setosa or not. We have
converted our problem into a binary classification task (that is, we only have two
possible target classes).

Chapter 1

[13]

If we look at the picture, it seems that we could draw a straight line that correctly
separates both the sets (perhaps with the exception of one or two dots, which
could lie in the incorrect side of the line). This is exactly what our first classification
method, linear classification models, tries to do: build a line (or, more generally, a
hyperplane in the feature space) that best separates both the target classes, and use
it as a decision boundary (that is, the class membership depends on what side of the
hyperplane the instance is).

To implement linear classification, we will use the SGDClassifier from scikit-learn.
SGD stands for Stochastic Gradient Descent, a very popular numerical procedure
to find the local minimum of a function (in this case, the loss function, which
measures how far every instance is from our boundary). The algorithm will learn the
coefficients of the hyperplane by minimizing the loss function.

To use any method in scikit-learn, we must first create the corresponding classifier
object, initialize its parameters, and train the model that better fits the training data.
You will see while you advance in this book that this procedure will be pretty much
the same for what initially seemed very different tasks.

>>> from sklearn.linear_modelsklearn._model import SGDClassifier
>>> clf = SGDClassifier()
>>> clf.fit(X_train, y_train)

The SGDClassifier initialization function allows several parameters. For the
moment, we will use the default values, but keep in mind that these parameters
could be very important, especially when you face more real-world tasks, where the
number of instances (or even the number of attributes) could be very large. The fit
function is probably the most important one in scikit-learn. It receives the training
data and the training classes, and builds the classifier. Every supervised learning
method in scikit-learn implements this function.

What does the classifier look like in our linear model method? As we have already
said, every future classification decision depends just on a hyperplane. That
hyperplane is, then, our model. The coef_ attribute of the clf object (consider, for
the moment, only the first row of the matrices), now has the coefficients of the linear
boundary and the intercept_ attribute, the point of intersection of the line with the
y axis. Let's print them:

>>> print clf.coef_
[[-28.53692691 15.05517618]
 [-8.93789454 -8.13185613]
 [14.02830747 -12.80739966]]
>>> print clf.intercept_
[-17.62477802 -2.35658325 -9.7570213]

Machine Learning – A Gentle Introduction

[14]

Indeed in the real plane, with these three values, we can draw a line, represented by
the following equation:

-17.62477802 - 28.53692691 * x1 + 15.05517618 * x2 = 0

Now, given x1 and x2 (our real-valued features), we just have to compute the value
of the left-side of the equation: if its value is greater than zero, then the point is
above the decision boundary (the red side), otherwise it will be beneath the line (the
green or blue side). Our prediction algorithm will simply check this and predict the
corresponding class for any new iris flower.

But, why does our coefficient matrix have three rows? Because we did not tell the
method that we have changed our problem definition (how could we have done
this?), and it is facing a three-class problem, not a binary decision problem. What, in
this case, the classifier does is the same we did—it converts the problem into three
binary classification problems in a one-versus-all setting (it proposes three lines that
separate a class from the rest).

The following code draws the three decision boundaries and lets us know if they
worked as expected:

>>> x_min, x_max = X_train[:, 0].min() - .5, X_train[:, 0].max() +
 .5
>>> y_min, y_max = X_train[:, 1].min() - .5, X_train[:, 1].max() +
 .5
>>> xs = np.arange(x_min, x_max, 0.5)
>>> fig, axes = plt.subplots(1, 3)
>>> fig.set_size_inches(10, 6)
>>> for i in [0, 1, 2]:
>>> axes[i].set_aspect('equal')
>>> axes[i].set_title('Class '+ str(i) + ' versus the rest')
>>> axes[i].set_xlabel('Sepal length')
>>> axes[i].set_ylabel('Sepal width')
>>> axes[i].set_xlim(x_min, x_max)
>>> axes[i].set_ylim(y_min, y_max)
>>> sca(axes[i])
>>> plt.scatter(X_train[:, 0], X_train[:, 1], c=y_train,
 cmap=plt.cm.prism)
>>> ys = (-clf.intercept_[i] –
 Xs * clf.coef_[i, 0]) / clf.coef_[i, 1]
>>> plt.plot(xs, ys, hold=True)

Chapter 1

[15]

The first plot shows the model built for our original binary problem. It looks like
the line separates quite well the Iris setosa from the rest. For the other two tasks, as
we expected, there are several points that lie on the wrong side of the hyperplane.

Now, the end of the story: suppose that we have a new flower with a sepal width of
4.7 and a sepal length of 3.1, and we want to predict its class. We just have to apply
our brand new classifier to it (after normalizing!). The predict method takes
an array of instances (in this case, with just one element) and returns a list of
predicted classes:

>>>print clf.predict(scaler.transform([[4.7, 3.1]]))
[0]

If our classifier is right, this Iris flower is a setosa. Probably, you have noticed that
we are predicting a class from the possible three classes but that linear models are
essentially binary: something is missing. You are right. Our prediction procedure
combines the result of the three binary classifiers and selects the class in which it is
more confident. In this case, we will select the boundary line whose distance to the
instance is longer. We can check that using the classifier decision_function method:

>>>print clf.decision_function(scaler.transform([[4.7, 3.1]]))
[[19.73905808 8.13288449 -28.63499119]]

Machine Learning – A Gentle Introduction

[16]

Evaluating our results
We want to be a little more formal when we talk about a good classifier. What does
that mean? The performance of a classifier is a measure of its effectiveness. The
simplest performance measure is accuracy: given a classifier and an evaluation
dataset, it measures the proportion of instances correctly classified by the classifier.
First, let's test the accuracy on the training set:

>>> from sklearn import metrics
>>> y_train_pred = clf.predict(X_train)
>>> print metrics.accuracy_score(y_train, y_train_pred)
0.821428571429

This figure tells us that 82 percent of the training set instances are correctly classified
by our classifier.

Probably, the most important thing you should learn from this chapter is that
measuring accuracy on the training set is really a bad idea. You have built your
model using this data, and it is possible that your model adjusts well to them but
performs poorly in future (previously unseen data), which is its purpose. This
phenomenon is called overfitting, and you will see it now and again while you
read this book. If you measure based on your training data, you will never detect
overfitting. So, never measure based on your training data.

This is why we have reserved part of the original dataset (the testing partition)—we
want to evaluate performance on previously unseen data. Let's check the accuracy
again, now on the evaluation set (recall that it was already scaled):

>>> y_pred = clf.predict(X_test)
>>> print metrics.accuracy_score(y_test, y_pred)
0.684210526316

We obtained an accuracy of 68 percent in our testing set. Usually, accuracy on the
testing set is lower than the accuracy on the training set, since the model is actually
modeling the training set, not the testing set. Our goal will always be to produce
models that avoid overfitting when trained over a training set, so they have enough
generalization power to also correctly model the unseen data.

Accuracy on the test set is a good performance measure when the number of instances
of each class is similar, that is, we have a uniform distribution of classes. But if you
have a skewed distribution (say, 99 percent of the instances belong to one class), a
classifier that always predicts the majority class could have an excellent performance in
terms of accuracy despite the fact that it is an extremely naive method.

Chapter 1

[17]

Within scikit-learn, there are several evaluation functions; we will show three
popular ones: precision, recall, and F1-score (or f-measure). They assume a binary
classification problem and two classes—a positive one and a negative one. In our
example, the positive class could be Iris setosa, while the other two will be combined
into one negative class.

• Precision: This computes the proportion of instances predicted as positives
that were correctly evaluated (it measures how right our classifier is when it
says that an instance is positive).

• Recall: This counts the proportion of positive instances that were correctly
evaluated (measuring how right our classifier is when faced with a positive
instance).

• F1-score: This is the harmonic mean of precision and recall, and tries to
combine both in a single number.

The harmonic mean is used instead of the arithmetic mean because
the latter compensates low values for precision and with high
values for recall (and vice versa). On the other hand, with harmonic
mean we will always have low values if either precision or recall
is low. For an interesting description of this issue refer to the
paper http://www.cs.odu.edu/~mukka/cs795sum12dm/
Lecturenotes/Day3/F-measure-YS-26Oct07.pdf

We can define these measures in terms of True and False, and Positives
and Negatives:

Prediction: Positive Prediction: Negative
Target cass: Positive True Positive (TP) False Negative (FN)
Target cass: Negative False Positive (FP) True Negative (TN)

With m being the sample size (that is, TP + TN + FP + FN), we have the
following formulae:

• Accuracy = (TP + TN) / m
• Precision = TP / (TP + FP)
• Recall = TP / (TP + FN)
• F1-score = 2 * Precision * Recall / (Precision + Recall)

Machine Learning – A Gentle Introduction

[18]

Let's see it in practice:

>>> print metrics.classification_report(y_test, y_pred,
 target_names=iris.target_names)
 precision recall f1-score support

setosa 1.00 1.00 1.00 8
versicolor 0.43 0.27 0.33 11
virginica 0.65 0.79 0.71 19

avg / total 0.66 0.68 0.66 38

We have computed precision, recall, and f1-score for each class and their average
values. What we can see in this table is:

• The classifier obtained 1.0 precision and recall in the setosa class. This
means that for precision, 100 percent of the instances that are classified as
setosa are really setosa instances, and for recall, that 100 percent of the setosa
instances were classified as setosa.

• On the other hand, in the versicolor class, the results are not as good:
we have a precision of 0.43, that is, only 43 percent of the instances that are
classified as versicolor are really versicolor instances. Also, for versicolor, we
have a recall of 0.27, that is, only 27 percent of the versicolor instances are
correctly classified.

Now, we can see that our method (as we expected) is very good at predicting
setosa, while it suffers when it has to separate the versicolor or virginica
classes. The support value shows how many instances of each class we had in the
testing set.

Another useful metric (especially for multi-class problems) is the confusion matrix:
in its (i, j) cell, it shows the number of class instances i that were predicted to
be in class j. A good classifier will accumulate the values on the confusion matrix
diagonal, where correctly classified instances belong.

>>> print metrics.confusion_matrix(y_test, y_pred)
[[8 0 0]
[0 3 8]
[0 4 15]]

Our classifier is never wrong in our evaluation set when it classifies class 0 (setosa)
flowers. But, when it faces classes 1 and 2 flowers (versicolor and virginica), it
confuses them. The confusion matrix gives us useful information to know what types
of errors the classifier is making.

Chapter 1

[19]

To finish our evaluation process, we will introduce a very useful method known
as cross-validation. As we explained before, we have to partition our dataset into
a training set and a testing set. However, partitioning the data, results such that
there are fewer instances to train on, and also, depending on the particular partition
we make (usually made randomly), we can get either better or worse results.
Cross-validation allows us to avoid this particular case, reducing result variance and
producing a more realistic score for our models. The usual steps for k-fold
cross-validation are the following:

1. Partition the dataset into k different subsets.
2. Create k different models by training on k-1 subsets and testing on the

remaining subset.
3. Measure the performance on each of the k models and take the average

measure.

Let's do that with our linear classifier. First, we will have to create a composite
estimator made by a pipeline of the standardization and linear models. With this
technique, we make sure that each iteration will standardize the data and then
train/test on the transformed data. The Pipeline class is also useful to simplify
the construction of more complex models that chain-multiply the transformations.
We will chose to have k = 5 folds, so each time we will train on 80 percent of the
data and test on the remaining 20 percent. Cross-validation, by default, uses accuracy
as its performance measure, but we could select the measurement by passing any
scorer function as an argument.

>>> from sklearn.cross_validation import cross_val_score, KFold
>>> from sklearn.pipeline import Pipeline
>>> # create a composite estimator made by a pipeline of the
 standarization and the linear model
>>> clf = Pipeline([
 ('scaler', StandardScaler()),
 ('linear_model', SGDClassifier())
])
>>> # create a k-fold cross validation iterator of k=5 folds
>>> cv = KFold(X.shape[0], 5, shuffle=True, random_state=33)
>>> # by default the score used is the one returned by score
 method of the estimator (accuracy)
>>> scores = cross_val_score(clf, X, y, cv=cv)
>>> print scores
[0.66666667 0.93333333 0.66666667 0.7 0.6]

Machine Learning – A Gentle Introduction

[20]

We obtained an array with the k scores. We can calculate the mean and the standard
error to obtain a final figure:

>>> from scipy.stats import sem
>>> def mean_score(scores):
 return ("Mean score: {0:.3f} (+/-
 {1:.3f})").format(np.mean(scores), sem(scores))
>>> print mean_score(scores)
Mean score: 0.713 (+/-0.057)

Our model has an average accuracy of 0.71.

Machine learning categories
Classification is only one of the possible machine learning problems that can be
addressed with scikit-learn. We can organize them in the following categories:

• In the previous example, we had a set of instances (that is, a set of data
collected from a population) represented by certain features and with a
particular target attribute. Supervised learning algorithms try to build a
model from this data, which lets us predict the target attribute for new
instances, knowing only these instance features. When the target class
belongs to a discrete set (such as a list of flower species), we are facing a
classification problem.

• Sometimes the class we want to predict, instead of belonging to a discrete
set, ranges on a continuous set, such as the real number line. In this case, we
are trying to solve a regression problem (the term was coined by Francis
Galton, who observed that the heights of tall ancestors tend to regress down
towards a normal value, the average human height). For example, we could
try to predict the petal width based on the other three features. We will see
that the methods used for regression are quite different from those used for
classification.

• Another different type of machine learning problem is that of unsupervised
learning. In this case, we do not have a target class to predict but instead
want to group instances according to some similarity measure based on the
available set of features. For example, suppose you have a dataset composed
of e-mails and want to group them by their main topic (the task of grouping
instances is called clustering). We can use it as features, for example, the
different words used in each of them.

Chapter 1

[21]

Important concepts related to
machine learning
The linear classifier we presented in the previous section could look too simple.
What if we use a higher degree polynomial? What if we also take as features not
only the sepal length and width, but also the petal length and the petal width?
This is perfectly possible, and depending on the sample distribution, it could lead
to a better fit to the training data, resulting in higher accuracy. The problem with
this approach is that now we must estimate not only the three original parameters
(the coefficients for x1, x2, and the interception point), but also the parameters for
the new features x3 and x4 (petal length and width) and also the product
combinations of the four features.

Intuitively, we would need more training data to adequately estimate these
parameters. The number of parameters (and consequently, the amount of training
data needed to adequately estimate them) would rapidly grow if we add more
features or higher order terms. This phenomenon, present in every machine learning
method, is called the idem curse of dimensionality: when the number of parameters
of a model grows, the data needed to learn them grows exponentially.

This notion is closely related to the problem of overfitting mentioned earlier. As our
training data is not enough, we risk producing a model that could be very good at
predicting the target class on the training dataset but fail miserably when faced with
new data, that is, our model does not have the generalization power. That is why it is
so important to evaluate our methods on previously unseen data.

The general rule is that, in order to avoid overfitting, we should prefer simple (that
is, with less parameters) methods, something that could be seen as an instantiation
of the philosophical principle of Occam's razor, which states that among competing
hypotheses, the hypothesis with the fewest assumptions should be selected.

However, we should also take into account Einstein's words:

"Everything should be made as simple as possible, but not simpler."

The idem curse of dimensionality may suggest that we keep our models simple,
but on the other hand, if our model is too simple we run the risk of suffering
from underfitting. Underfitting problems arise when our model has such a low
representation power that it cannot model the data even if we had all the training
data we want. We clearly have underfitting when our algorithm cannot achieve good
performance measures even when measuring on the training set.

Machine Learning – A Gentle Introduction

[22]

As a result, we will have to achieve a balance between overfitting and underfitting.
This is one of the most important problems that we will have to address when
designing our machine learning models.

Other key concepts to take into account are the idem bias and variance of a machine
learning method. Consider an extreme method that, in a binary classification setting,
always predicts the positive class for any new instance. Its predictions are, trivially,
always the same, or in statistical terms, it has null variance; but it will fail to predict
negative examples: it is very biased towards positive results. On the other hand,
consider a method that predicts, for a new instance, the class of the nearest instance
in the training set (in fact, this method exists, and it is called the 1-nearest neighbor).
The generalization assumptions that this method uses are very small: it has a very
low bias; but, if we change the training data, results could dramatically change,
that is, its variance is very high. These are extreme examples of the bias-variance
tradeoff. It can be shown that, no matter which method we are using, if we reduce
bias, variance will increase, and vice versa.

Linear classifiers have generally low-variance: no matter what subset we select for
training, results will be similar. However, if the data distribution (as in the case of the
versicolor and virginica species) makes target classes not separable by a hyperplane,
these results will be consistently wrong, that is, the method is highly biased.

On the other hand, kNN (a memory-based method we will not address in this book)
has very low bias but high variance: the results are generally very good at describing
training data but tend to vary greatly when trained on different training instances.

There are other important concepts related to real-world applications where our
data will not come naturally as a list of real-valued features. In these cases, we will
need to have methods to transform non real-valued features to real-valued ones.
Besides, there are other steps related to feature standardization and normalization,
which as we saw in our Iris example, are needed to avoid undesired effects regarding
the different value ranges. These transformations on the feature space are known as
data preprocessing.

After having a defined feature set, we will see that not all of the features that
come in our original dataset could be useful for resolving our task. So we must also
have methods to do feature selection, that is, methods to select the most
promising features.

In this book, we will present several problems and in each of them we will show
different ways to transform and find the most relevant features to use for learning
a task, called feature engineering, which is based on our knowledge of the domain
of the problem and/or data analysis methods. These methods, often not valued
enough, are a fundamental step toward obtaining good results.

Chapter 1

[23]

Summary
In this chapter, we introduced the main general concepts in machine learning and
presented scikit-learn, the Python library we will use in the rest of this book. We
included a very simple example of classification, trying to show the main steps
for learning, and including the most important evaluation measures we will use.
In the rest of this book, we plan to show you different machine learning methods
and techniques using different real-world examples for each one. In almost every
computational task, the presence of historical data could allow us to improve
performance in the sense introduced at the beginning of this chapter.

The next chapter introduces supervised learning methods: we have annotated data
(that is, instances where the target class/value is known) and we want to predict
the same class/value for future data from the same population. In the case of
classification tasks, that is, a discrete-valued target class, several different models
exist, ranging from statistical methods, such as the simple Naïve Bayes to advanced
linear classifiers, such as Support Vector Machines (SVM). Some methods, such as
decision trees, will allow us to visualize how important a feature is to discriminate
between different target classes and have a human interpretation of the decision
process. We will also address another type of supervised learning task: regression,
that is, methods that try to predict real-valued data.

Supervised Learning
In Chapter 1, Machine Learning – A Gentle Introduction, we sketched the general idea of
a supervised learning algorithm. We have the training data where each instance has
an input (a set of attributes) and a desired output (a target class). Then we use this
data to train a model that will predict the same target class for new unseen instances.

Supervised learning methods are nowadays a standard tool in a wide range
of disciplines, from medical diagnosis to natural language processing, image
recognition, and searching for new particles at the Large Hadron Collider (LHC).
In this chapter we will present several methods applied to several real-world
examples by using some of the many algorithms implemented in scikit-learn.
This chapter does not intend to substitute the scikit-learn reference, but is an
introduction to the main supervised learning techniques and shows how they can
be used to solve practical problems.

Image recognition with Support
Vector Machines
Imagine that the instances in your dataset are points in a multidimensional space;
we can assume that the model built by our classifier can be a surface or using linear
algebra terminology, a hyperplane that separates instances (points) of one class
from the rest. Support Vector Machines (SVM) are supervised learning methods
that try to obtain these hyperplanes in an optimal way, by selecting the ones that
pass through the widest possible gaps between instances of different classes. New
instances will be classified as belonging to a certain category based on which side of
the surfaces they fall on.

Supervised Learning

[26]

The following figure shows an example for a two-dimensional space with two
features (X1 and X2) and two classes (black and white):

We can observe that the green hyperplane does not separate both classes, committing
some classification errors. The blue and the red hyperplanes separate both classes
without errors. However, the red surface separates both classes with maximum
margin; it is the most distant hyperplane from the closest instances from the two
categories. The main advantage of this approach is that it will probably lower the
generalization error, making this model resistant to overfitting, something that
actually has been verified in several, different, classification tasks.

This approach can be generalized to construct hyperplanes not only in two
dimensions, but also in high or infinite dimensional spaces. What is more, we can
use nonlinear surfaces, such as polynomial or radial basis functions, by using the so
called kernel trick, implicitly mapping inputs into high-dimensional feature spaces.

SVM has become one of the state-of-the-art machine learning models for many tasks
with excellent results in many practical applications. One of the greatest advantages
of SVM is that they are very effective when working on high-dimensional spaces,
that is, on problems which have a lot of features to learn from. They are also very
effective when the data is sparse (think about a high-dimensional space with very
few instances). Besides, they are very efficient in terms of memory storage, since only
a subset of the points in the learning space is used to represent the decision surfaces.

Chapter 2

[27]

To mention some disadvantages, SVM models could be very calculation intensive
while training the model and they do not return a numerical indicator of how
confident they are about a prediction. However, we can use some techniques such as
K-fold cross-validation to avoid this, at the cost of increasing the computational cost.

We will apply SVM to image recognition, a classic problem with a very large
dimensional space (the value of each pixel of the image is considered as a feature).
What we will try to do is, given an image of a person's face, predict to which
of the possible people from a list does it belongs (this kind of approach is used,
for example, in social network applications to automatically tag people within
photographs). Our learning set will be a group of labeled images of peoples' faces,
and we will try to learn a model that can predict the label of unseen instances.
The intuitive and first approach would be to use the image pixels as features for
the learning algorithm, so pixel values will be our learning attributes and the
individual's label will be our target class.

Our dataset is provided within scikit-learn, so let's start by importing and printing
its description.

>>> import sklearn as sk
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from sklearn.datasets import fetch_olivetti_faces
>>> faces = fetch_olivetti_faces()
>>> print faces.DESCR

The dataset contains 400 images of 40 different persons. The photos were taken
with different light conditions and facial expressions (including open/closed eyes,
smiling/not smiling, and with glasses/no glasses). For additional information about
the dataset refer to http://www.cl.cam.ac.uk/research/dtg/attarchive/
facedatabase.html.

Looking at the content of the faces object, we get the following properties: images,
data, and target. Images contain the 400 images represented as 64 x 64 pixel
matrices. data contains the same 400 images but as array of 4096 pixels. target is, as
expected, an array with the target classes, ranging from 0 to 39.

>>> print faces.keys()
['images', 'data', 'target', 'DESCR']
>>> print faces.images.shape
(400, 64, 64)
>>> print faces.data.shape
(400, 4096)
>>> print faces.target.shape
(400,)

Supervised Learning

[28]

Normalizing the data is important as we saw in the previous chapter. It is also
important for the application of SVM to obtain good results. In our particular case,
we can verify by running the following snippet that our images already come as
values in a very uniform range between 0 and 1 (pixel value):

>>> print np.max(faces.data)
1.0
>>> print np.min(faces.data)
0.0
>>> print np.mean(faces.data)
0.547046432495

Therefore, we do not have to normalize the data. Before learning, let's plot some
faces. We will define the following helper function:

>>> def print_faces(images, target, top_n):
>>> # set up the figure size in inches
>>> fig = plt.figure(figsize=(12, 12))
>>> fig.subplots_adjust(left=0, right=1, bottom=0, top=1,
 hspace=0.05, wspace=0.05)
>>> for i in range(top_n):
>>> # plot the images in a matrix of 20x20
>>> p = fig.add_subplot(20, 20, i + 1, xticks=[],
 yticks=[])
>>> p.imshow(images[i], cmap=plt.cm.bone)
>>>
>>> # label the image with the target value
>>> p.text(0, 14, str(target[i]))
>>> p.text(0, 60, str(i))

If we print the first 20 images, we can see faces from two persons.

>>> print_faces(faces.images, faces.target, 20)

Training a Support Vector Machine
To use SVM in scikit-learn to solve our task, we will import the SVC class from the
sklearn.svm module:

>>> from sklearn.svm import SVC

Chapter 2

[29]

The Support Vector Classifier (SVC) will be used for classification. In the last section
of this chapter, we will use SVM for regression tasks.

The SVC implementation has different important parameters; probably the most
relevant is kernel, which defines the kernel function to be used in our classifier
(think of the kernel functions as different similarity measures between instances).
By default, the SVC class uses the rbf kernel, which allows us to model nonlinear
problems. To start, we will use the simplest kernel, the linear one.

>>> svc_1 = SVC(kernel='linear')

Before continuing, we will split our dataset into training and testing datasets.

>>> from sklearn.cross_validation import train_test_split
>>> X_train, X_test, y_train, y_test = train_test_split(
 faces.data, faces.target, test_size=0.25, random_state=0)

And we will define a function to evaluate K-fold cross-validation.

>>> from sklearn.cross_validation import cross_val_score, KFold
>>> from scipy.stats import sem
>>>
>>> def evaluate_cross_validation(clf, X, y, K):
>>> # create a k-fold croos validation iterator
>>> cv = KFold(len(y), K, shuffle=True, random_state=0)
>>> # by default the score used is the one returned by score
 method of the estimator (accuracy)
>>> scores = cross_val_score(clf, X, y, cv=cv)
>>> print scores
>>> print ("Mean score: {0:.3f} (+/-{1:.3f})").format(
 np.mean(scores), sem(scores))

>>> evaluate_cross_validation(svc_1, X_train, y_train, 5)
[0.93333333 0.91666667 0.95 0.95 0.91666667]
Mean score: 0.933 (+/-0.007)

Cross-validation with five folds, obtains pretty good results (accuracy of 0.933). In a
few steps we obtained a face classifier.

Supervised Learning

[30]

We will also define a function to perform training on the training set and evaluate
the performance on the testing set.

>>> from sklearn import metrics
>>>
>>> def train_and_evaluate(clf, X_train, X_test, y_train, y_test):
>>>
>>> clf.fit(X_train, y_train)
>>>
>>> print "Accuracy on training set:"
>>> print clf.score(X_train, y_train)
>>> print "Accuracy on testing set:"
>>> print clf.score(X_test, y_test)
>>>
>>> y_pred = clf.predict(X_test)
>>>
>>> print "Classification Report:"
>>> print metrics.classification_report(y_test, y_pred)
>>> print "Confusion Matrix:"
>>> print metrics.confusion_matrix(y_test, y_pred)

If we train and evaluate, the classifier performs the operation with almost no errors.

>>> train_and_evaluate(svc_1, X_train, X_test, y_train, y_test)
Accuracy on training set:
1.0
Accuracy on testing set:
0.99

Let's do a little more, why don't we try to classify the faces as people with and
without glasses? Let's do that.

First thing to do is to define the range of the images that show faces wearing glasses.
The following list shows the indexes of these images:

>>> # the index ranges of images of people with glasses
>>> glasses = [
 (10, 19), (30, 32), (37, 38), (50, 59), (63, 64),
 (69, 69), (120, 121), (124, 129), (130, 139), (160, 161),
 (164, 169), (180, 182), (185, 185), (189, 189), (190, 192),
 (194, 194), (196, 199), (260, 269), (270, 279), (300, 309),
 (330, 339), (358, 359), (360, 369)
]

Chapter 2

[31]

You can check these values by using the print_faces function that was defined
before to plot the 400 faces and looking at the indexes in the lower-left corners.

Then we'll define a function that from those segments returns a new target array that
marks with 1 for the faces with glasses and 0 for the faces without glasses (our new
target classes):

>>> def create_target(segments):
>>> # create a new y array of target size initialized with
 zeros
>>> y = np.zeros(faces.target.shape[0])
>>> # put 1 in the specified segments
>>> for (start, end) in segments:
>>> y[start:end + 1] = 1
>>> return y
>>> target_glasses = create_target(glasses)

So we must perform the training/testing split again.

>>> X_train, X_test, y_train, y_test = train_test_split(
 faces.data, target_glasses, test_size=0.25, random_state=0)

Now let's create a new SVC classifier, and train it with the new target vector using
the following command:

>>> svc_2 = SVC(kernel='linear')

If we check the performance with cross-validation by the following code:

>>> evaluate_cross_validation(svc_2, X_train, y_train, 5)
[0.98333333 0.98333333 0.93333333 0.96666667 0.96666667]
Mean score: 0.967 (+/-0.009)

We obtain a mean accuracy of 0.967 with cross-validation if we evaluate on our
testing set.

>>> train_and_evaluate(svc_2, X_train, X_test, y_train, y_test)
Accuracy on training set:
1.0
Accuracy on testing set:
0.99

Supervised Learning

[32]

Classification Report:
 precision recall f1-score support

 0 1.00 0.99 0.99 67
 1 0.97 1.00 0.99 33

avg / total 0.99 0.99 0.99 100

Confusion Matrix:
[[66 1]
 [0 33]]

Could it be possible that our classifier has learned to identify peoples' faces
associated with glasses and without glasses precisely? How can we be sure that
this is not happening and that if we get new unseen faces, it will work as expected?
Let's separate all the images of the same person, sometimes wearing glasses and
sometimes not. We will also separate all the images of the same person, the ones
with indexes from 30 to 39, train by using the remaining instances, and evaluate on
our new 10 instances set. With this experiment we will try to discard the fact that it is
remembering faces, not glassed-related features.

>>> X_test = faces.data[30:40]
>>> y_test = target_glasses[30:40]
>>> print y_test.shape[0]
10
>>> select = np.ones(target_glasses.shape[0])
>>> select[30:40] = 0
>>> X_train = faces.data[select == 1]
>>> y_train = target_glasses[select == 1]
>>> print y_train.shape[0]
390
>>> svc_3 = SVC(kernel='linear')
>>> train_and_evaluate(svc_3, X_train, X_test, y_train, y_test)
Accuracy on training set:
1.0
Accuracy on testing set:
0.9
Classification Report:
 precision recall f1-score support

 0 0.83 1.00 0.91 5
 1 1.00 0.80 0.89 5

avg / total 0.92 0.90 0.90 10

Chapter 2

[33]

Confusion Matrix:
[[5 0]
 [1 4]]

From the 10 images, only one error, still pretty good results, let's check out which
one was incorrectly classified. First, we have to reshape the data from arrays to 64 x
64 matrices:

>>> y_pred = svc_3.predict(X_test)
>>> eval_faces = [np.reshape(a, (64, 64)) for a in X_eval]

Then plot with our print_faces function:

>>> print_faces(eval_faces, y_pred, 10)

The image number 8 in the preceding figure has glasses and was classified as no
glasses. If we look at that instance, we can see that it is different from the rest of the
images with glasses (the border of the glasses cannot be seen clearly and the person
is shown with closed eyes), which could be the reason it has been misclassified.

With a few lines, we created a face classifier with a linear SVM model. Usually we
would not get such good results in the first trial. In these cases, (besides looking at
different features) we can start tweaking the hyperparameters of our algorithm. In
the particular case of SVM, we can try with different kernel functions; if linear does
not give good results, we can try with polynomial or RBF kernels. Also the C and the
gamma parameters may affect the results. For a description of the arguments and its
values, please refer to the scikit-learn documentation.

Text classification with Naïve Bayes
Naïve Bayes is a simple but powerful classifier based on a probabilistic model
derived from the Bayes' theorem. Basically it determines the probability that an
instance belongs to a class based on each of the feature value probabilities. The naïve
term comes from the fact that it assumes that each feature is independent of the rest,
that is, the value of a feature has no relation to the value of another feature.

Supervised Learning

[34]

Despite being very simple, it has been used in many domains with very good
results. The independence assumption, although a naïve and strong simplification,
is one of the features that make the model useful in practical applications. Training
the model is reduced to the calculation of the involved conditional probabilities,
which can be estimated by counting frequencies of correlations between feature
values and class values.

One of the most successful applications of Naïve Bayes has been within the field
of Natural Language Processing (NLP). NLP is a field that has been much related
to machine learning, since many of its problems can be formulated as a classification
task. Usually, NLP problems have important amounts of tagged data in the form
of text documents. This data can be used as a training dataset for machine
learning algorithms.

In this section, we will use Naïve Bayes for text classification; we will have a set of
text documents with their corresponding categories, and we will train a Naïve Bayes
algorithm to learn to predict the categories of new unseen instances. This simple task
has many practical applications; probably the most known and widely used one is
spam filtering. In this section we will try to classify newsgroup messages using a
dataset that can be retrieved from within scikit-learn. This dataset consists of around
19,000 newsgroup messages from 20 different topics ranging from politics and
religion to sports and science.

As usual, we first start by importing our pylab environment:

>>> %pylab inline

Our dataset can be obtained by importing the fetch_20newgroups function from the
sklearn.datasets module. We have to specify if we want to import a part or all of
the set of instances (we will import all of them).

>>> from sklearn.datasets import fetch_20newsgroups
>>> news = fetch_20newsgroups(subset='all')

If we look at the properties of the dataset, we will find that we have the usual ones:
DESCR, data, target, and target_names. The difference now is that data holds a list
of text contents, instead of a numpy matrix:

Chapter 2

[35]

>>> print type(news.data), type(news.target), type(news.target_names)
<type 'list'> <type 'numpy.ndarray'> <type 'list'>
>>> print news.target_names
['alt.atheism', 'comp.graphics', 'comp.os.ms-windows.misc', 'comp.sys.
ibm.pc.hardware', 'comp.sys.mac.hardware', 'comp.windows.x', 'misc.
forsale', 'rec.autos', 'rec.motorcycles', 'rec.sport.baseball', 'rec.
sport.hockey', 'sci.crypt', 'sci.electronics', 'sci.med', 'sci.space',
'soc.religion.christian', 'talk.politics.guns', 'talk.politics.
mideast', 'talk.politics.misc', 'talk.religion.misc']
>>> print len(news.data)
18846
>>> print len(news.target)
18846

If you look at, say, the first instance, you will see the content of a newsgroup
message, and you can get its corresponding category:

>>> print news.data[0]
>>> print news.target[0], news.target_names[news.target[0]]

Preprocessing the data
Our machine learning algorithms can work only on numeric data, so our next
step will be to convert our text-based dataset to a numeric dataset. Currently we
only have one feature, the text content of the message; we need some function that
transforms a text into a meaningful set of numeric features. Intuitively one could
try to look at which are the words (or more precisely, tokens, including numbers or
punctuation signs) that are used in each of the text categories, and try to characterize
each category with the frequency distribution of each of those words. The sklearn.
feature_extraction.text module has some useful utilities to build numeric
feature vectors from text documents.

Before starting the transformation, we will have to partition our data into training and
testing set. The loaded data is already in a random order, so we only have to split the
data into, for example, 75 percent for training and the rest 25 percent for testing:

>>> SPLIT_PERC = 0.75
>>> split_size = int(len(news.data)*SPLIT_PERC)
>>> X_train = news.data[:split_size]
>>> X_test = news.data[split_size:]
>>> y_train = news.target[:split_size]
>>> y_test = news.target[split_size:]

Supervised Learning

[36]

If you look inside the sklearn.feature_extraction.text module, you
will find three different classes that can transform text into numeric features:
CountVectorizer, HashingVectorizer, and TfidfVectorizer. The difference
between them resides in the calculations they perform to obtain the numeric features.
CountVectorizer basically creates a dictionary of words from the text corpus. Then,
each instance is converted to a vector of numeric features where each element will be
the count of the number of times a particular word appears in the document.

HashingVectorizer, instead of constricting and maintaining the dictionary in
memory, implements a hashing function that maps tokens into feature indexes, and
then computes the count as in CountVectorizer.

TfidfVectorizer works like the CountVectorizer, but with a more advanced
calculation called Term Frequency Inverse Document Frequency (TF-IDF). This is a
statistic for measuring the importance of a word in a document or corpus. Intuitively,
it looks for words that are more frequent in the current document, compared with
their frequency in the whole corpus of documents. You can see this as a way to
normalize the results and avoid words that are too frequent, and thus not useful to
characterize the instances.

Training a Naïve Bayes classifier
We will create a Naïve Bayes classifier that is composed of a feature vectorizer
and the actual Bayes classifier. We will use the MultinomialNB class from the
sklearn.naive_bayes module. In order to compose the classifier with the
vectorizer, as we saw in Chapter 1, Machine Learning – A Gentle Introduction, scikit-
learn has a very useful class called Pipeline (available in the sklearn.pipeline
module) that eases the construction of a compound classifier, which consists of
several vectorizers and classifiers.

We will create three different classifiers by combining MultinomialNB with the three
different text vectorizers just mentioned, and compare which one performs better
using the default parameters:

>>> from sklearn.naive_bayes import MultinomialNB
>>> from sklearn.pipeline import Pipeline
>>> from sklearn.feature_extraction.text import TfidfVectorizer, >>>
HashingVectorizer, CountVectorizer
>>>
>>> clf_1 = Pipeline([
>>> ('vect', CountVectorizer()),
>>> ('clf', MultinomialNB()),
>>>])

Chapter 2

[37]

>>> clf_2 = Pipeline([
>>> ('vect', HashingVectorizer(non_negative=True)),
>>> ('clf', MultinomialNB()),
>>>])
>>> clf_3 = Pipeline([
>>> ('vect', TfidfVectorizer()),
>>> ('clf', MultinomialNB()),
>>>])

We will define a function that takes a classifier and performs the K-fold cross-
validation over the specified X and y values:

>>> from sklearn.cross_validation import cross_val_score, KFold
>>> from scipy.stats import sem
>>>
>>> def evaluate_cross_validation(clf, X, y, K):
>>> # create a k-fold croos validation iterator of k=5 folds
>>> cv = KFold(len(y), K, shuffle=True, random_state=0)
>>> # by default the score used is the one returned by score >>>
method of the estimator (accuracy)
>>> scores = cross_val_score(clf, X, y, cv=cv)
>>> print scores
>>> print ("Mean score: {0:.3f} (+/-{1:.3f})").format(
>>> np.mean(scores), sem(scores))

Then we will perform a five-fold cross-validation by using each one of the classifiers.

>>> clfs = [clf_1, clf_2, clf_3]
>>> for clf in clfs:
>>> evaluate_cross_validation(clf, news.data, news.target, 5)

These calculations may take some time; the results are as follows:

[0.86813478 0.86415495 0.86893075 0.85831786 0.8729443]
Mean score: 0.866 (+/-0.002)
[0.76359777 0.77182276 0.77765986 0.76147519 0.78222812]
Mean score: 0.771 (+/-0.004)
[0.86282834 0.85195012 0.86282834 0.85619528 0.87612732]
Mean score: 0.862 (+/-0.004)

As you can see CountVectorizer and TfidfVectorizer had similar performances,
and much better than HashingVectorizer.

Supervised Learning

[38]

Let's continue with TfidfVectorizer; we could try to improve the results by trying
to parse the text documents into tokens with a different regular expression.

>>> clf_4 = Pipeline([
>>> ('vect', TfidfVectorizer(
>>> token_pattern=ur"\b[a-z0-9_\-\.]+[a-z][a-z0->>> 9_\-
>>> \.]+\b",
>>>)),
>>> ('clf', MultinomialNB()),
>>>])

The default regular expression: ur"\b\w\w+\b" considers alphanumeric characters
and the underscore. Perhaps also considering the slash and the dot could improve
the tokenization, and begin considering tokens as Wi-Fi and site.com. The new
regular expression could be: ur"\b[a-z0-9_\-\.]+[a-z][a-z0-9_\-\.]+\b". If
you have queries about how to define regular expressions, please refer to the Python
re module documentation. Let's try our new classifier:

>>> evaluate_cross_validation(clf_4, news.data, news.target, 5)
[0.87078801 0.86309366 0.87689042 0.86574688 0.8795756]
Mean score: 0.871 (+/-0.003)

We have a slight improvement from 0.86 to 0.87.

Another parameter that we can use is stop_words: this argument allows us to pass
a list of words we do not want to take into account, such as too frequent words, or
words we do not a priori expect to provide information about the particular topic.

We will define a function to load the stop words from a text file as follows:

>>> def get_stop_words():
>>> result = set()
>>> for line in open('stopwords_en.txt', 'r').readlines():
>>> result.add(line.strip())
>>> return result

Chapter 2

[39]

And create a new classifier with this new parameter as follows:

>>> clf_5 = Pipeline([
>>> ('vect', TfidfVectorizer(
>>> stop_words= get_stop_words(),
>>> token_pattern=ur"\b[a-z0-9_\-\.]+[a-z][a-z0->>>
9_\-\.]+\b",
>>>)),
>>> ('clf', MultinomialNB()),
>>>])

>>> evaluate_cross_validation(clf_5, news.data, news.target, 5)
[0.88989122 0.8837888 0.89042186 0.88325816 0.89655172]
Mean score: 0.889 (+/-0.002)

The preceding code shows another improvement from 0.87 to 0.89.

Let's keep this vectorizer and start looking at the MultinomialNB parameters. This
classifier has few parameters to tweak; the most important is the alpha parameter,
which is a smoothing parameter. Let's set it to a lower value; instead of setting alpha
to 1.0 (the default value), we will set it to 0.01:

>>> clf_7 = Pipeline([
>>> ('vect', TfidfVectorizer(
>>> stop_words=stop_words,
>>> token_pattern=ur"\b[a-z0-9_\-\.]+[a-z][a-z0->>>
9_\-\.]+\b",
>>>)),
>>> ('clf', MultinomialNB(alpha=0.01)),
>>>])

>>> evaluate_cross_validation(clf_7, news.data, news.target, 5)
[0.92305651 0.91377023 0.92066861 0.91907668 0.92281167]
Mean score: 0.920 (+/-0.002)

The results had an important boost from 0.89 to 0.92, pretty good. At this point,
we could continue doing trials by using different values of alpha or doing new
modifications of the vectorizer. In Chapter 4, Advanced Features, we will show you
practical utilities to try many different configurations and keep the best one. But for
now, let's look a little more at our Naïve Bayes model.

Supervised Learning

[40]

Evaluating the performance
If we decide that we have made enough improvements in our model, we are ready to
evaluate its performance on the testing set.

We will define a helper function that will train the model in the entire training set
and evaluate the accuracy in the training and in the testing sets. It will also print
a classification report (precision and recall on every class) and the corresponding
confusion matrix:

>>> from sklearn import metrics
>>>
>>> def train_and_evaluate(clf, X_train, X_test, y_train, y_test):
>>>
>>> clf.fit(X_train, y_train)
>>>
>>> print "Accuracy on training set:"
>>> print clf.score(X_train, y_train)
>>> print "Accuracy on testing set:"
>>> print clf.score(X_test, y_test)
>>> y_pred = clf.predict(X_test)
>>>
>>> print "Classification Report:"
>>> print metrics.classification_report(y_test, y_pred)
>>> print "Confusion Matrix:"
>>> print metrics.confusion_matrix(y_test, y_pred)

We will evaluate our best classifier.

>>> train_and_evaluate(clf_7, X_train, X_test, y_train, y_test)
Accuracy on training set:
0.99398613273
Accuracy on testing set:
0.913837011885

As we can see, we obtained very good results, and as we would expect, the accuracy
in the training set is quite better than in the testing set. We may expect, in new
unseen instances, an accuracy of around 0.91.

If we look inside the vectorizer, we can see which tokens have been used to create
our dictionary:

>>> print len(clf_7.named_steps['vect'].get_feature_names())

61236

Chapter 2

[41]

This shows that the dictionary is composed of 61236 tokens. Let's print the
feature names.

>>> clf_7.named_steps['vect'].get_feature_names()

The following table presents an extract of the results:

Extract of features obtained by vectorizer
u''sanctuaries'',
u''sanctuary'',
u''sanctum'',
u''sand'',
u''sandals'',
u''sandbags'',
u''sandberg'',
u''sandblasting'',
u''sanders'',

u''sanderson'',
u''sandia'',
u''sandiego.ncr.com'',
u''sanding'',
u''sandlak'',
u''sandman.caltech.edu'',
u''sandman.ece.clarkson.edu'',
u''sandra'',
u''sandro'',
u''sands''

You can see that some words are semantically very similar, for example, sand
and sands, sanctuaries and sanctuary. Perhaps if the plurals and the singulars are
counted to the same bucket, we would better represent the documents. This is a very
common task, which could be solved using stemming, a technique that relates two
words having the same lexical root.

Explaining Titanic hypothesis with
decision trees
A common argument against linear classifiers and against statistical learning
methods is that it is difficult to explain how the built model decides its predictions
for the target classes. If you have a highly dimensional SVM, it is impossible for a
human being to even imagine how the hyperplane built looks like. A Naïve Bayes
classifier will tell you something like: "this class is the most probable, assuming
it comes from a similar distribution as the training data, and making a few more
assumptions" something not very useful, for example, we want to know why this or
that mail should be considered as spam.

Supervised Learning

[42]

decision trees are very simple yet powerful supervised learning methods, which
constructs a decision tree model, which will be used to make predictions. The
following figure shows a very simple decision tree to decide if an e-mail should be
considered spam:

Does it the word “Viagra”have

Classify as Spam Does it come from your contact list?

Classify as Ham Classify as Spam

Yes No

Yes No

It first asks if the e-mail contains the word Viagra; if the answer is yes, it classifies
it as spam; if the answer is no, it further asks if it comes from somebody in your
contacts list; this time, if the answer is yes, it classifies the e-mail as Ham; if the
answer is no, it classify it as spam. The main advantage of this model is that a human
being can easily understand and reproduce the sequence of decisions (especially if
the number of attributes is small) taken to predict the target class of a new instance.
This is very important for tasks such as medical diagnosis or credit approval, where
we want to show a reason for the decision, rather than just saying this is what the
training data suggests (which is, by definition, what every supervised learning
method does). In this section, we will show you through a working example what
decision trees look like, how they are built, and how they are used for prediction.

The problem we would like to solve is to determine if a Titanic's passenger would
have survived, given her age, passenger class, and sex. We will work with the
Titanic dataset that can be downloaded from http://biostat.mc.vanderbilt.
edu/wiki/pub/Main/DataSets/titanic.txt. Like every other example in this
chapter, we start with a dataset that includes the list of Titanic's passengers and a
feature indicating whether they survived or not. Each instance in the dataset has the
following form:

"1","1st",1,"Allen, Miss Elisabeth Walton",29.0000,"Southampton","St
Louis, MO","B-5","24160 L221","2","female"

Chapter 2

[43]

The list of attributes is: Ordinal, Class, Survived (0=no, 1=yes), Name, Age, Port
of Embarkation, Home/Destination, Room, Ticket, Boat, and Sex. We will start by
loading the dataset into a numpy array.

>>> import csv
>>> import numpy as np
>>> with open('data/titanic.csv', 'rb') as csvfile:
>>> titanic_reader = csv.reader(csvfile, delimiter=',',
>>> quotechar='"')
>>>
>>> # Header contains feature names
>>> row = titanic_reader.next()
>>> feature_names = np.array(row)
>>>
>>> # Load dataset, and target classes
>>> titanic_X, titanic_y = [], []
>>> for row in titanic_reader:
>>> titanic_X.append(row)
>>> titanic_y.append(row[2]) # The target value is
 "survived"
>>>
>>> titanic_X = np.array(titanic_X)
>>> titanic_y = np.array(titanic_y)

The code shown uses the Python csv module to load the data.

>>> print feature_names
['row.names' 'pclass' 'survived' 'name' 'age' 'embarked' 'home.dest'
'room' 'ticket' 'boat' 'sex']

>>> print titanic_X[0], titanic_y[0]
['1' '1st' '1' 'Allen, Miss Elisabeth Walton' '29.0000' 'Southampton'
'St Louis, MO' 'B-5' '24160 L221' '2' 'female'] 1

Preprocessing the data
The first step we must take is to select the attributes we will use for learning:

>>> # we keep class, age and sex
>>> titanic_X = titanic_X[:, [1, 4, 10]]
>>> feature_names = feature_names[[1, 4, 10]]

Supervised Learning

[44]

We have selected feature numbers 1, 4, and 10 that is class, age, and sex, based
on the assumption that the remaining attributes have no effect on the passenger's
survival. Feature selection is an extremely important step while creating a machine
learning solution. If the algorithm does not have good features as input, it will not
have good enough material to learn from, results won't be good, no matter even if
we have the best machine learning algorithm ever designed.

Sometimes the feature selection will be made manually, based on our knowledge
of the problem's domain and the machine learning method we are planning to use.
Sometimes feature selection may be done by using automatic tools to evaluate and
select the most promising ones. In Chapter 4, Advanced Features, we will talk a bit
about these techniques, but for now, we will manually select our attributes. Very
specific attributes (such as Name in our case) could result in overfitting (consider a
tree that just asks if the name is X, she survived); attributes where there is a small
number of instances with each value, present a similar problem (they might not be
useful for generalization). We will use class, age, and sex because a priori, we expect
them to have influenced the passenger's survival.

Now, our learning data looks like:

>>> print feature_names
['pclass' 'age' 'sex']

>>> print titanic_X[12],titanic_y[12]
['1st' 'NA' 'female'] 1

We have shown instance number 12 because it poses a problem to solve; one of its
features (the age) is not available. We have missing values, a usual problem with
datasets. In this case, we decided to substitute missing values with the mean age in
the training data. We could have taken a different approach, for example, using the
most common value in the training data, or the median value. When we substitute
missing values, we have to understand that we are modifying the original problem,
so we have to be very careful with what we are doing. This is a general rule in
machine learning; when we change data, we should have a clear idea of what we are
changing, to avoid skewing the final results.

>>> # We have missing values for age
>>> # Assign the mean value
>>> ages = titanic_X[:, 1]
>>> mean_age = np.mean(titanic_X[ages != 'NA',
 1].astype(np.float))
>>> titanic_X[titanic_X[:, 1] == 'NA', 1] = mean_age

Chapter 2

[45]

The implementation of decision trees in scikit-learn expects as input a list of real-
valued features, and the decision rules of the model would be of the form:

Feature <= value

For example, age <= 20.0. Our attributes (except for age) are categorical; that is,
they correspond to a value taken from a discrete set such as male and female. So,
we have to convert categorical data into real values. Let's start with the sex feature.
The preprocessing module of scikit-learn includes a LabelEncoder class, whose fit
method allows conversion of a categorical set into a 0..K-1 integer, where K is the
number of different classes in the set (in the case of sex, just 0 or 1):

>>> # Encode sex
>>> from sklearn.preprocessing import LabelEncoder
>>> enc = LabelEncoder()
>>> label_encoder = enc.fit(titanic_X[:, 2])
>>> print "Categorical classes:", label_encoder.classes_
Categorical classes: ['female' 'male']

>>> integer_classes =
 label_encoder.transform(label_encoder.classes_)
>>> print "Integer classes:", integer_classes
Integer classes: [0 1]

>>> t = label_encoder.transform(titanic_X[:, 2])
>>> titanic_X[:, 2] = t

The last two sentences transform the values of the sex attribute into 0-1 values, and
modify the training set.

print feature_names
['pclass' 'age' 'sex']

print titanic_X[12], titanic_y[12]
['1st' '31.1941810427' '0'] 1

Supervised Learning

[46]

We still have a categorical attribute: class. We could use the same approach and
convert its three classes into 0, 1, and 2. This transformation implicitly introduces an
ordering between classes, something that is not an issue in our problem. However,
we will try a more general approach that does not assume an ordering, and it
is widely used to convert categorical classes into real-valued attributes. We will
introduce an additional encoder and convert the class attributes into three new
binary features, each of them indicating if the instance belongs to a feature value (1)
or (0). This is called one hot encoding, and it is a very common way of managing
categorical attributes for real-based methods:

>>> from sklearn.preprocessing import OneHotEncoder
>>>
>>> enc = LabelEncoder()
>>> label_encoder = enc.fit(titanic_X[:, 0])
>>> print "Categorical classes:", label_encoder.classes_
Categorical classes: ['1st' '2nd' '3rd']

>>> integer_classes =
 label_encoder.transform(label_encoder.classes_).reshape(3, 1)
>>> print "Integer classes:", integer_classes
Integer classes: [[0] [1] [2]]

>>> enc = OneHotEncoder()
>>> one_hot_encoder = enc.fit(integer_classes)
>>> # First, convert classes to 0-(N-1) integers using
 label_encoder
>>> num_of_rows = titanic_X.shape[0]
>>> t = label_encoder.transform(titanic_X[:,
 0]).reshape(num_of_rows, 1)
>>> # Second, create a sparse matrix with three columns, each one
 indicating if the instance belongs to the class
>>> new_features = one_hot_encoder.transform(t)
>>> # Add the new features to titanix_X
>>> titanic_X = np.concatenate([titanic_X,
 new_features.toarray()], axis = 1)
>>> #Eliminate converted columns
>>> titanic_X = np.delete(titanic_X, [0], 1)
>>> # Update feature names
>>> feature_names = ['age', 'sex', 'first_class', 'second_class',
 'third_class']
>>> # Convert to numerical values
>>> titanic_X = titanic_X.astype(float)
>>> titanic_y = titanic_y.astype(float)

Chapter 2

[47]

The preceding code first converts the classes into integers and then uses the
OneHotEncoder class to create the three new attributes that are added to the array of
features. It finally eliminates from training data the original class feature.

>>> print feature_names
['age', 'sex', 'first_class', 'second_class', 'third_class']

>>> print titanic_X[0], titanic_y[0]
[29. 0. 1. 0. 0.] 1.0

We have now a suitable learning set for scikit-learn to learn a decision tree. Also,
standardization is not an issue for decision trees because the relative magnitude of
features does not affect the classifier performance.

The preprocessing step is usually underestimated in machine learning methods,
but as we can see even in this very simple example, it can take some time to make
data look as our methods expect. It is also very important in the overall machine
learning process; if we fail in this step (for example, incorrectly encoding attributes,
or selecting the wrong features), the following steps will fail, no matter how good the
method we use for learning.

Training a decision tree classifier
Now to the interesting part; let's build a decision tree from our training data. As
usual, we will first separate training and testing data.

>>> from sklearn.cross_validation import train_test_split
>>> X_train, X_test, y_train, y_test = train_test_split(titanic_X, >>>
titanic_y, test_size=0.25, random_state=33)

Now, we can create a new DecisionTreeClassifier and use the fit method of the
classifier to do the learning job.

>>> from sklearn import tree
>>> clf = tree.DecisionTreeClassifier(criterion='entropy',
 max_depth=3,min_samples_leaf=5)
>>> clf = clf.fit(X_train,y_train)

Supervised Learning

[48]

DecisionTreeClassifier accepts (as most learning methods) several
hyperparameters that control its behavior. In this case, we used the Information
Gain (IG) criterion for splitting learning data, told the method to build a tree of at
most three levels, and to accept a node as a leaf if it includes at least five training
instances. To explain this and show how decision trees work, let's visualize the
model built. The following code assumes you are using IPython and that your
Python distribution includes the pydot module. Also, it allows generation of
Graphviz code from the tree and assumes that Graphviz itself is installed. For more
information about Graphviz, please refer to http://www.graphviz.org/.

>>> import pydot,StringIO
>>> dot_data = StringIO.StringIO()
>>> tree.export_graphviz(clf, out_file=dot_data,
 feature_names=['age','sex','1st_class','2nd_class'
 '3rd_class'])
>>> graph = pydot.graph_from_dot_data(dot_data.getvalue())
>>> graph.write_png('titanic.png')
>>> from IPython.core.display import Image
>>> Image(filename='titanic.png')

The decision tree we have built represents a series of decisions based on the training
data. To classify an instance, we should answer the question at each node. For
example, at our root node, the question is: Is sex<=0.5? (are we talking about a
woman?). If the answer is yes, you go to the left child node in the tree; otherwise
you go to the right child node. You keep answering questions (was she in the third
class?, was she in the first class?, and was she below 13 years old?), until you reach a
leaf. When you are there, the prediction corresponds to the target class that has most
instances (that is if the answers are given to the previous questions). In our case, if
she was a woman from second class, the answer would be 1 (that is she survived),
and so on.

Chapter 2

[49]

You might be asking how our method decides which questions should be asked in
each step. The answer is Information Gain (IG) (or the Gini index, which is a similar
measure of disorder used by scikit-learn). IG measures how much entropy we lose
if we answer the question, or alternatively, how much surer we are after answering
it. Entropy is a measure of disorder in a set, if we have zero entropy, it means all
values are the same (in our case, all instances of the target classes are the same),
while it reaches its maximum when there is an equal number of instances of each
class (in our case, when half of the instances correspond to survivors and the other
half to non survivors). At each node, we have a certain number of instances (starting
from the whole dataset), and we measure its entropy. Our method will select the
questions that yield more homogeneous partitions (with the lowest entropy), when
we consider only those instances for which the answer for the question is yes or no,
that is, when the entropy after answering the question decreases.

Interpreting the decision tree
As you can see in the tree, at the beginning of the decision tree growing process,
you have the 984 instances in the training set, 662 of them corresponding to class
0 (fatalities), and 322 of them to class 1 (survivors). The measured entropy for this
initial group is about 0.632. From the possible list of questions we can ask, the one
that produces the greatest information gain is: Was she a woman? (remember that
the female category was encoded as 0). If the answer is yes, entropy is almost the
same, but if the answer is no, it is greatly reduced (the proportion of men who
died was much greater than the general proportion of casualties). In this sense,
the woman question seems to be the best to ask. After that, the process continues,
working in each node only with the instances that have feature values that
correspond to the questions in the path to the node.

If you look at the tree, in each node we have: the question, the initial Shannon entropy,
the number of instances we are considering, and their distribution with respect to the
target class. In each step, the number of instances gets reduced to those that answer
yes (the left branch) and no (the right branch) to the question posed by that node. The
process continues until a certain stopping criterion is met (in our case, until we have a
fourth-level node, or the number of considered samples is lower than five).

At prediction time, we take an instance and start traversing the tree, answering the
questions based on the instance features, until we reach a leaf. At this point, we look
at to how many instances of each class we had in the training set, and select the class
to which most instances belonged.

Supervised Learning

[50]

For example, consider the question of determining if a 10-year-old girl, from
first class would have survived. The answer to the first question (was she female?) is
yes, so we take the left branch of the tree. In the two following questions the answers
are no (was she from third class?) and yes (was she from first class?), so we take the
left and right branch respectively. At this time, we have reached a leaf. In the training
set, we had 102 people with these attributes, 97 of them survivors. So, our answer
would be survived.

In general, we found reasonable results: the group with more casualties (449 from
496) corresponded to adult men from second or third class, as you can check in
the tree. Most girls from first class, on the other side, survived. Let's measure the
accuracy of our method in the training set (we will first define a helper function to
measure the performance of a classifier):

>>> from sklearn import metrics
>>> def measure_performance(X,y,clf, show_accuracy=True,
 show_classification_report=True, show_confussion_matrix=True):
>>> y_pred=clf.predict(X)
>>> if show_accuracy:
>>> print "Accuracy:{0:.3f}".format(
>>> metrics.accuracy_score(y, y_pred)
>>>),"\n"
>>>
>>> if show_classification_report:
>>> print "Classification report"
>>> print metrics.classification_report(y,y_pred),"\n"
>>>
>>> if show_confussion_matrix:
>>> print "Confussion matrix"
>>> print metrics.confusion_matrix(y,y_pred),"\n"

>>> measure_performance(X_train,y_train,clf,
 show_classification=False, show_confusion_matrix=False))
Accuracy:0.838

Our tree has an accuracy of 0.838 on the training set. But remember that this is not
a good indicator. This is especially true for decision trees as this method is highly
susceptible to overfitting. Since we did not separate an evaluation set, we should
apply cross-validation. For this example, we will use an extreme case of cross-
validation, named leave-one-out cross-validation. For each instance in the training
sample, we train on the rest of the sample, and evaluate the model built on the only
instance left out. After performing as many classifications as training instances,
we calculate the accuracy simply as the proportion of times our method correctly
predicted the class of the left-out instance, and found it is a little lower (as we
expected) than the resubstitution accuracy on the training set.

Chapter 2

[51]

>>> from sklearn.cross_validation import cross_val_score, LeaveOneOut
>>> from scipy.stats import sem
>>>
>>> def loo_cv(X_train, y_train,clf):
>>> # Perform Leave-One-Out cross validation
>>> # We are preforming 1313 classifications!
>>> loo = LeaveOneOut(X_train[:].shape[0])
>>> scores = np.zeros(X_train[:].shape[0])
>>> for train_index, test_index in loo:
>>> X_train_cv, X_test_cv = X_train[train_index],
 X_train[test_index]
>>> y_train_cv, y_test_cv = y_train[train_index],
 y_train[test_index]
>>> clf = clf.fit(X_train_cv,y_train_cv)
>>> y_pred = clf.predict(X_test_cv)
>>> scores[test_index] = metrics.accuracy_score(
 y_test_cv.astype(int), y_pred.astype(int))
>>> print ("Mean score: {0:.3f} (+/-{1:.3f})").format(np.
mean(scores), sem(scores))

 >>> loo_cv(X_train, y_train,clf)
Mean score: 0.837 (+/-0.012)

The main advantage of leave-one-out cross-validation is that it allows almost as
much data for training as we have available, so it is particularly well suited for those
cases where data is scarce. Its main problem is that training a different classifier for
each instance could be very costly in terms of the computation time.

A big question remains here: how we selected the hyperparameters for our method
instantiation? This problem is a general one, it is called model selection, and we will
address it in more detail in Chapter 4, Advanced Features.

Random Forests – randomizing decisions
A common criticism to decision trees is that once the training set is divided after
answering a question, it is not possible to reconsider this decision. For example, if
we divide men and women, every subsequent question would be only about men or
women, and the method could not consider another type of question (say, age less
than a year, irrespective of the gender). Random Forests try to introduce some level
of randomization in each step, proposing alternative trees and combining them to
get the final prediction. These types of algorithms that consider several classifiers
answering the same question are called ensemble methods. In the Titanic task, it is
probably hard to see this problem because we have very few features, but consider
the case when the number of features is in the order of thousands.

Supervised Learning

[52]

Random Forests propose to build a decision tree based on a subset of the training
instances (selected randomly, with replacement), but using a small random number
of features at each set from the feature set. This tree growing process is repeated
several times, producing a set of classifiers. At prediction time, each grown tree,
given an instance, predicts its target class exactly as decision trees do. The class
that most of the trees vote (that is the class most predicted by the trees) is the one
suggested by the ensemble classifier.

In scikit-learn, using Random Forests is as simple as importing
RandomForestClassifier from the sklearn.ensemble module, and fitting the
training data as follows:

>>> from sklearn.ensemble import RandomForestClassifier
>>> clf = RandomForestClassifier(n_estimators=10, random_state=33)
>>> clf = clf.fit(X_train, y_train)
>>> loo_cv(X_train, y_train, clf)
Mean score: 0.817 (+/-0.012)

We find that results are actually worse for Random Forests. It seems that introducing
randomization was, after all, not a good idea because the number of features was too
small. However, for bigger datasets, with a bigger number of features, Random Forests
is a very fast, simple, and popular method to improve accuracy, retaining the virtues of
decision trees. Actually, in the next section, we will use them for regression.

Evaluating the performance
The final step in every supervised learning task should be to evaluate our best classifier
on the previously unseen data, to get an idea of its prediction performance. Remember,
this step should not be used to select among competing methods or parameters. That
would be cheating (because again, we risk overfitting the new data). So, in our case,
let's measure the performance of decision trees on the testing data.

>>> clf_dt = tree.DecisionTreeClassifier(criterion='entropy', max_
depth=3, min_samples_leaf=5)
>>> clf_dt.fit(X_train, y_train)
>>> measure_performance(X_test, y_test, clf_dt)
Accuracy:0.793
Classification report
 precision recall f1-score support

 0 0.77 0.96 0.85 202
 1 0.88 0.54 0.67 127

avg / total 0.81 0.79 0.78 329
Confusion matrix
[[193 9]
 [59 68]]

Chapter 2

[53]

From the classification results and the confusion matrix, it seems that our method
tends to predict too much that the person did not survive.

Predicting house prices with regression
In every example we have seen so far, we have faced what in Chapter 1, Machine
Learning – A Gentle Introduction, we called classification problems: the output we
aimed at predicting belonged to a discrete set. But often, we would want to predict
a value extracted from the real line. The learning schema is still the same: fit a model
to the training data, and evaluate on new data to get the target class whose value is
a real number. Our classifier, instead of selecting a class from a list, should act as a
real-valued function, which for each of the (possibly infinite) combination of learning
features returns a real number. We could consider regression as classification with an
infinite number of target classes.

Many problems can be modeled both as classification and regression tasks,
depending on the class we selected as the target. For example, predicting blood
sugar level is a regression task, while predicting if somebody has diabetes or not is a
classification task.

In the example of the first figure, we have used a line to fit the learning data
(composed of a sole attribute and a target value), that is, we have performed linear
regression. If we want to predict the value of a new instance, we get their real-valued
attribute and obtain the predicted value by projecting the inferred line into the
second axis.

Supervised Learning

[54]

In this section, we will compare several regression methods by using the same
dataset. We will try to predict the price of a house as a function of its attributes.
As the dataset, we will use the Boston house-prices dataset, which includes 506
instances, representing houses in the suburbs of Boston by 14 features, one of them
(the median value of owner-occupied homes) being the target class (for a detailed
reference, see http://archive.ics.uci.edu/ml/datasets/Housing). Each
attribute in this dataset is real-valued.

The dataset is included in the standard scikit-learn distribution, so let's start
by loading it:

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from sklearn.datasets import load_boston
>>> boston = load_boston()
>>> print boston.data.shape
(506, 13)
>>> print boston.feature_names
['CRIM' 'ZN' 'INDUS' 'CHAS' 'NOX' 'RM' 'AGE' 'DIS' 'RAD' 'TAX'
'PTRATIO' 'B' 'LSTAT' 'MEDV']
>>> print np.max(boston.target), np.min(boston.target),
 np.mean(boston.target)
50.0 5.0 22.5328063241

You should try printing boston.DESCR to get a feel of what each feature means.
This is a very healthy habit: machine learning is not just number crunching,
understanding the problem we are facing is crucial, especially to select the best
learning model to use.

As usual, we start slicing our learning set into training and testing datasets, and
normalizing the data:

>>> from sklearn.cross_validation import train_test_split
>>> X_train, X_test, y_train, y_test =
 train_test_split(boston.data, boston.target, test_size=0.25,
 random_state=33)
>>> from sklearn.preprocessing import StandardScaler
>>> scalerX = StandardScaler().fit(X_train)
>>> scalery = StandardScaler().fit(y_train)
>>> X_train = scalerX.transform(X_train)
>>> y_train = scalery.transform(y_train)
>>> X_test = scalerX.transform(X_test)
>>> y_test = scalery.transform(y_test)

Chapter 2

[55]

Before looking at our best classifier, let's define how we will compare our results.
Since we want to preserve our testing set for evaluating the performance of the final
classifier, we should find a way to select the best model while avoiding overfitting.
We already know the answer: cross-validation. Regression poses an additional
problem: how should we evaluate our results? Accuracy is not a good idea, since
we are predicting real values, it is almost impossible for us to predict exactly the
final value. There are several measures that can be used (you can look at the list of
functions under sklearn.metrics module). The most common is the R2 score, or
coefficient of determination that measures the proportion of the outcomes variation
explained by the model, and is the default score function for regression methods in
scikit-learn. This score reaches its maximum value of 1 when the model perfectly
predicts all the test target values. Using this measure, we will build a function that
trains a model and evaluates its performance using five-fold cross-validation and the
coefficient of determination.

>>> from sklearn.cross_validation import *
>>> def train_and_evaluate(clf, X_train, y_train):
>>> clf.fit(X_train, y_train)
>>> print "Coefficient of determination on training
 set:",clf.score(X_train, y_train)
>>> # create a k-fold cross validation iterator of k=5 folds
>>> cv = KFold(X_train.shape[0], 5, shuffle=True,
 random_state=33)
>>> scores = cross_val_score(clf, X_train, y_train, cv=cv)
>>> print "Average coefficient of determination using 5-fold
 crossvalidation:",np.mean(scores)

First try – a linear model
The question that linear models try to answer is which hyperplane in the
14-dimensional space created by our learning features (including the target value)
is located closer to them. After this hyperplane is found, prediction reduces to
calculate the projection on the hyperplane of the new point, and returning the target
value coordinate. Think of our first example in Chapter 1, Machine Learning – A Gentle
Introduction, where we wanted to find a line separating our training instances.
We could have used that line to predict the second learning attribute as a function
of the first one, that is, linear regression.

But, what do we mean by closer? The usual measure is least squares: calculate the
distance of each instance to the hyperplane, square it (to avoid sign problems), and
sum them. The hyperplane whose sum is smaller is the least squares estimator (the
hyperplane in the case if two dimensions are just a line).

Supervised Learning

[56]

Since we don't know how our data fits (it is difficult to print a 14-dimension
scatter plot!), we will start with a linear model called SGDRegressor, which tries to
minimize squared loss.

>>> from sklearn import linear_model
>>> clf_sgd = linear_model.SGDRegressor(loss='squared_loss',
 penalty=None, random_state=42)
>>> train_and_evaluate(clf_sgd,X_train,y_train)
Coefficient of determination on training set: 0.743303511411
Average coefficient of determination using 5-fold crossvalidation:
0.715166411086

We can print the hyperplane coefficients our method has calculated, which is
as follows:

>>> print clf_sgd.coef_
[-0.07641527 0.06963738 -0.05935062 0.10878438 -0.06356188
0.37260998 -0.02912886 -0.20180631 0.08463607 -0.05534634
-0.19521922 0.0653966 -0.36990842]

You probably noted the penalty=None parameter when we called the method.
The penalization parameter for linear regression methods is introduced to avoid
overfitting. It does this by penalizing those hyperplanes having some of their
coefficients too large, seeking hyperplanes where each feature contributes more or less
the same to the predicted value. This parameter is generally the L2 norm (the squared
sums of the coefficients) or the L1 norm (that is the sum of the absolute value of the
coefficients). Let's see how our model works if we introduce an L2 penalty.

>>> clf_sgd1 = linear_model.SGDRegressor(loss='squared_loss',
 penalty='l2', random_state=42)
>>> train_and_evaluate(clf_sgd1, X_train, y_train)
Coefficient of determination on training set: 0.743300616394
Average coefficient of determination using 5-fold crossvalidation:
0.715166962417

In this case, we did not obtain an improvement.

Chapter 2

[57]

Second try – Support Vector Machines
for regression
The regression version of SVM can be used instead to find the hyperplane.

>>> from sklearn import svm
>>> clf_svr = svm.SVR(kernel='linear')
>>> train_and_evaluate(clf_svr, X_train, y_train)
Coefficient of determination on training set: 0.71886923342
Average coefficient of determination using 5-fold crossvalidation:
0.694983285734

Here, we had no improvement. However, one of the main advantages of SVM is that
(using what we called the kernel trick) we can use a nonlinear function, for example,
a polynomial function to approximate our data.

>>> clf_svr_poly = svm.SVR(kernel='poly')
>>> train_and_evaluate(clf_svr_poly, X_train, y_train)
Coefficient of determination on training set: 0.904109273301
Average coefficient of determination using 5-fold cross validation:
0.754993478137

Now, our results are six points better in terms of coefficient of determination. We can
actually improve this by using a Radial Basis Function (RBF) kernel.

>>> clf_svr_rbf = svm.SVR(kernel='rbf')
>>> train_and_evaluate(clf_svr_rbf, X_train, y_train)
Coefficient of determination on training set: 0.900132065979
Average coefficient of determination using 5-fold cross validation:
0.821626135903

RBF kernels have been used in several problems and have shown to be very effective.
Actually, RBF is the default kernel used by SVM methods in scikit-learn.

Supervised Learning

[58]

Third try – Random Forests revisited
We can try a very different approach to regression using Random Forests. We have
previously used Random Forests for classification. When used for regression, the tree
growing procedure is exactly the same, but at prediction time, when we arrive at a
leaf, instead of reporting the majority class, we return a representative real value, for
example, the average of the target values.

Actually, we will use Extra Trees, implemented in the ExtraTreesRegressor
class within the sklearn.ensemble module. This method adds an extra level of
randomization. It not only selects for each tree a different, random subset of features,
but also randomly selects the threshold for each decision.

>>> from sklearn import ensemble
>>> clf_et=ensemble.ExtraTreesRegressor(n_estimators=10,
 compute_importances=True, random_state=42)
>>> train_and_evaluate(clf_et, X_train, y_train)
Coefficient of determination on training set: 1.0
Average coefficient of determination using 5-fold cross validation:
0.852511952001

The first thing to note is that we have not only completely eliminated underfitting
(achieving perfect prediction on training values), but also improved the performance
by three points while using cross-validation. An interesting feature of Extra Trees
is that they allow computing the importance of each feature for the regression task.
Let's compute this importance as follows:

>>> print sort(zip(clf_et.feature_importances_,
 boston.feature_names), axis=0)

[['0.000231085384564' 'AGE']
 ['0.000909210196652' 'B']
 ['0.00162702734638' 'CHAS']
 ['0.00292361527201' 'CRIM']
 ['0.00472492264278' 'DIS']
 ['0.00489022243822' 'INDUS']
 ['0.0067481487587' 'LSTAT']
 ['0.00852353178943' 'NOX']
 ['0.00873406149286' 'PTRATIO']
 ['0.0366902590312' 'RAD']
 ['0.0982265323415' 'RM']
 ['0.385904111089' 'TAX']
 ['0.439867272217' 'ZN']]

We can see that ZN (proportion of residential land zoned for lots over 25,000 sq. ft.)
and TAX (full-value property tax rate) are by far the most influential features on our
final decision.

Chapter 2

[59]

Evaluation
As usual, let's evaluate the performance of our best method on the testing set
(previously, we slightly modified our measure_performance function to show the
coefficient of determination):

>>> from sklearn import metrics
>>> def measure_performance(X, y, clf, show_accuracy=True,
 show_classification_report=True, show_confusion_matrix=True,
 show_r2_score=False):
>>> y_pred = clf.predict(X)
>>> if show_accuracy:
>>> print "Accuracy:{0:.3f}".format(
>>> metrics.accuracy_score(y, y_pred)
>>>),"\n"
>>>
>>> if show_classification_report:
>>> print "Classification report"
>>> print metrics.classification_report(y, y_pred),"\n"
>>>
>>> if show_confusion_matrix:
>>> print "Confusion matrix"
>>> print metrics.confusion_matrix(y, y_pred),"\n"
>>>
>>> if show_r2_score:
>>> print "Coefficient of determination:{0:.3f}".format(
>>> metrics.r2_score(y, y_pred)
>>>),"\n"

>>> measure_performance(X_test, y_test, clf_et,
 show_accuracy=False, show_classification_report=False,
 show_confusion_matrix=False, show_r2_score=True)
Coefficient of determination:0.793

Once we have selected our best method and used all the available data, we
could train our best method on the whole training set, but we will have no way
to measure its performance on future data, simply because we do not have any
more data available.

Supervised Learning

[60]

Summary
In this chapter we reviewed some of the most common supervised learning methods
and some practical applications. We learned that supervised methods require
instances to have both input features and a target class. In the next chapter, we
will review unsupervised learning methods that do not require a target class to be
learned. These methods are very useful to understand the structure of the data and
can also be used as a previous step before utilizing a supervised learning model.

Unsupervised Learning
Nowadays, it is a common assertion that huge amounts of data are available from
the Internet for learning. If you read the previous chapters, you will see that even
though supervised learning methods are very powerful in predicting future values
based on the existing data, they have an obvious drawback: data must be curated;
a human being should have annotated the target class for a certain number of
instances. This labor is typically done by an expert (if you want to assign the correct
species to iris flowers, you need somebody who knows about these flowers at least);
it will probably take some time and money to complete, and it will typically not
produce significant amounts of data (at least not compared with the Internet!). Every
supervised learning building must stand on as much curated data as possible.

However, there are some things we can do without annotated data. Consider the
case when you want to assign table seats in a wedding. You want to group people,
putting similar people at the same table (the bride's family, the groom's friends, and
so on). Anyone that has organized a wedding knows that this task, called Clustering
in machine learning terminology, is not an easy one. Sometimes people belong to
more than one group, and you have to decide if not so similar people can be together
(for example, the bride and groom's parents). Clustering involves finding groups
where all elements in the group are similar, but objects in different groups are not.
What does it mean to be similar is a question every clustering method must answer.
The other critical question is how to separate clusters. Humans are very good at
finding clusters when faced with two-dimensional data (consider identifying cities
in a map just based on the presence of streets), but things become more difficult as
dimensions grow.

In this chapter we will present several approximations for clustering: k-means
(probably the most popular clustering method), affinity propagation, mean shift,
and a model-based method called Gaussian Mixture Models.

Unsupervised Learning

[62]

Another example of unsupervised learning is Dimensionality Reduction. Suppose
we represent learning instances with a large number of attributes and want to
visualize them to identify their principal patterns. This is very difficult when the
number of features is more than three, simply because we cannot visualize more than
three dimensions. Dimensionality Reduction methods present a way to represent
data points of a high dimensional dataset in a lower dimensional space, keeping (at
least partly) their pattern structure. These methods are also helpful in selecting the
models we should use for learning. For example, if it is reasonable to approximate
some supervised learning task using a linear hyperplane or should we resort to more
complicated models.

Principal Component Analysis
Principal Component Analysis (PCA) is an orthogonal linear transformation that
turns a set of possibly correlated variables into a new set of variables that are as
uncorrelated as possible. The new variables lie in a new coordinate system such
that the greatest variance is obtained by projecting the data in the first coordinate,
the second greatest variance by projecting in the second coordinate, and so on.
These new coordinates are called principal components; we have as many principal
components as the number of original dimensions, but we keep only those with
high variance. Each new principal component that is added to the principal
components set must comply with the restriction that it should be orthogonal
(that is, uncorrelated) to the remaining principal components. PCA can be seen
as a method that reveals the internal structure of data; it supplies the user with a
lower dimensional shadow of the original objects. If we keep only the first principal
components, data dimensionality is reduced and thus it is easier to visualize the
structure of data. If we keep, for example, only the first and second components, we
can examine data using a two-dimensional scatter plot. As a result, PCA is useful for
exploratory data analysis before building predictive models.

For our learning methods, PCA will allow us to reduce a high-dimensional space
into a low-dimensional one while preserving as much variance as possible. It
is an unsupervised method since it does not need a target class to perform its
transformations; it only relies on the values of the learning attributes. This is very
useful for two major purposes:

• Visualization: Projecting a high-dimensional space, for example, into
two dimensions will allow us to map our instances into a two-dimensional
graph. Using these graphical visualizations, we can have insights about
the distribution of instances and look at how separable instances from
different classes are. In this section we will use PCA to transform and
visualize a dataset.

Chapter 3

[63]

• Feature selection: Since PCA can transform instances from high to lower
dimensions, we could use this method to address the curse of dimensionality.
Instead of learning from the original set of features, we can transform our
instances with PCA and then apply a learning algorithm on top of the new
feature space.

As a working example, in this section we will use a dataset of handwritten digits
digitalized in matrices of 8x8 pixels, so each instance will consist initially of 64
attributes. How can we visualize the distribution of instances? Visualizing 64
dimensions at the same time is impossible for a human being, so we will use PCA
to reduce the instances to two dimensions and visualize its distribution in a
two-dimensional scatter graph.

We start by loading our dataset (the digits dataset is one of the sample datasets
provided with scikit-learn).

>>> from sklearn.datasets import load_digits
>>> digits = load_digits()
>>> X_digits, y_digits = digits.data, digits.target

If we print the digits keys, we get:

>>> print digits.keys()
['images', 'data', 'target_names', 'DESCR', 'target']

We will use the data matrix that has the instances of 64 attributes each and the
target vector that has the corresponding digit number.

Let us print the digits to take a look at how the instances will appear:

>>> import matplotlib.pyplot as plt
>>> n_row, n_col = 2, 5
>>>
>>> def print_digits(images, y, max_n=10):
>>> # set up the figure size in inches
>>> fig = plt.figure(figsize=(2. * n_col, 2.26 * n_row))
>>> i=0
>>> while i < max_n and i < images.shape[0]:
>>> p = fig.add_subplot(n_row, n_col, i + 1, xticks=[],
 yticks=[])
>>> p.imshow(images[i], cmap=plt.cm.bone,
 interpolation='nearest')
>>> # label the image with the target value
>>> p.text(0, -1, str(y[i]))
>>> i = i + 1
>>>
>>> print_digits(digits.images, digits.target, max_n=10)

Unsupervised Learning

[64]

These instances can be seen in the following diagram:

Define a function that will plot a scatter with the two-dimensional points that
will be obtained by a PCA transformation. Our data points will also be colored
according to their classes. Recall that the target class will not be used to perform
the transformation; we want to investigate if the distribution after PCA reveals the
distribution of the different classes, and if they are clearly separable. We will use ten
different colors for each of the digits, from 0 to 9.

>>> def plot_pca_scatter():
>>> colors = ['black', 'blue', 'purple', 'yellow', 'white',
 'red', 'lime', 'cyan', 'orange', 'gray']
>>> for i in xrange(len(colors)):
>>> px = X_pca[:, 0][y_digits == i]
>>> py = X_pca[:, 1][y_digits == i]
>>> plt.scatter(px, py, c=colors[i])
>>> plt.legend(digits.target_names)
>>> plt.xlabel('First Principal Component')
>>> plt.ylabel('Second Principal Component')

At this point, we are ready to perform the PCA transformation. In scikit-learn,
PCA is implemented as a transformer object that learns n number of components
through the fit method, and can be used on new data to project it onto these
components. In scikit-learn, we have various classes that implement different
kinds of PCA decompositions, such as PCA, ProbabilisticPCA, RandomizedPCA,
and KernelPCA. If you need a detailed description of each, please refer to the
scikit-learn documentation. In our case, we will work with the PCA class from the
sklearn.decomposition module. The most important parameter we can change is
n_components, which allows us to specify the number of features that the obtained
instances will have. In our case, we want to transform instances of 64 features to
instances of just two features, so we will set n_components to 2.

Chapter 3

[65]

Now we perform the transformation and plot the results:

>>> from sklearn.decomposition import PCA
>>> estimator = PCA(n_components=10)
>>> X_pca = estimator.fit_transform(X_digits)
>>> plot_pca_scatter()

The plotted results can be seen in the following diagram:

From the preceding figure, we can draw a few interesting conclusions:

• We can view the 10 different classes corresponding to the 10 digits at first
sight. We see that for most classes, their instances are clearly grouped in
clusters according to their target class, and also that the clusters are relatively
distinct. The exception is the class corresponding to the digit 5 with instances
very sparsely distributed over the plane overlap with the other classes.

• At the other extreme, the class corresponding to the digit 0 is the most
separated cluster. Intuitively, this class may be the one that is easiest to
separate from the rest; that is, if we train a classifier, it should be the class
with the best evaluation figures.

• Also, for topological distribution, we may predict that contiguous classes
correspond to similar digits, which means they will be the most difficult to
separate. For example, the clusters corresponding to digits 9 and 3 appear
contiguous (which will be expected as their graphical representations are
similar), so it might be more difficult to separate a 9 from a 3 than a 9 from a
4, which is on the left-hand side, far from these clusters.

Unsupervised Learning

[66]

Notice that we quickly got a graph that gave us a lot of insight into the problem.
This technique may be used before training a supervised classifier in order to better
understand the difficulties we may encounter. With this knowledge, we may plan
better feature preprocessing, feature selection, select a more suitable learning model,
and so on. As we mentioned before, it can also be used to perform dimension
reduction to avoid the curse of dimensionality and also may allow us to use simpler
learning methods, such as linear models.

To finish, let us look at principal component transformations. We will take the
principal components from the estimator by accessing the components attribute.
Each of its components is a matrix that is used to transform a vector from the original
space to the transformed space. In the scatter we previously plotted, we only took
into account the first two components.

We will plot all the components in the same shape as the original data (digits).

>>> def print_pca_components(images, n_col, n_row):
>>> plt.figure(figsize=(2. * n_col, 2.26 * n_row))
>>> for i, comp in enumerate(images):
>>> plt.subplot(n_row, n_col, i + 1)
>>> plt.imshow(comp.reshape((8, 8)),
 interpolation='nearest')
>>> plt.text(0, -1, str(i + 1) + '-component')
>>> plt.xticks(())
>>> plt.yticks(())

The components can be seen as follows:

Chapter 3

[67]

By taking a look at the first two components in the preceding figure, we can draw a
few interesting observations:

• If you look at the second component, you can see that it mostly highlights
the central region of the image. The digit class that is most affected by this
pattern is 0, since its central region is empty. This intuition is confirmed by
looking at our previous scatter plot. If you look at the cluster corresponding
to the digit 0, you can see it is the one that has the lower values for the second
component.

• Regarding the first component, as we see in the scatter plot, it is very
useful to separate the clusters corresponding to the digit 4 (extreme left,
low value) and the digit 3 (extreme right, high value). If you see the first
component plot, it agrees with this observation. You can see that the regions
corresponding to the zone are very similar to the digit 3, while it has color in
the zones that are characteristic of the digit 4.

If we used additional components, we will get more characteristics to be able to
separate the classes into new dimensions. For example, we could add the third
principal component and try to plot our instances in a tridimensional scatter plot.

In the next section, we will show another unsupervised group of methods: clustering
algorithms. Like dimensionality-reduction algorithms, clustering does not need to
know a target class. However, clustering methods try to group instances, looking for
those that are (in some way) similar. We will see, however, that clustering methods,
like supervised methods, can use PCA to better visualize and analyze their results.

Clustering handwritten digits
with k-means
K-means is the most popular clustering algorithm, because it is very simple and easy
to implement and it has shown good performance on different tasks. It belongs to the
class of partition algorithms that simultaneously partition data points into distinct
groups called clusters. An alternative group of methods, which we will not cover in
this book, are hierarchical clustering algorithms. These find an initial set of clusters
and divide or merge them to form new ones.

The main idea behind k-means is to find a partition of data points such that
the squared distance between the cluster mean and each point in the cluster is
minimized. Note that this method assumes that you know a priori the number of
clusters your data should be divided into.

Unsupervised Learning

[68]

We will show in this section how k-means works using a motivating example, the
problem of clustering handwritten digits. So, let us first import our dataset into our
Python environment and show how handwritten digits look (we will use a slightly
different version of the print_digits function we introduced in the previous section).

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>>
>>> from sklearn.datasets import load_digits
>>> from sklearn.preprocessing import scale
>>> digits = load_digits()
>>> data = scale(digits.data)
>>>
>>> def print_digits(images,y,max_n=10):
>>> # set up the figure size in inches
>>> fig = plt.figure(figsize=(12, 12))
>>> fig.subplots_adjust(left=0, right=1, bottom=0, top=1,
 hspace=0.05, wspace=0.05)
>>> i = 0
>>> while i <max_n and i <images.shape[0]:
>>> # plot the images in a matrix of 20x20
>>> p = fig.add_subplot(20, 20, i + 1, xticks=[],
 yticks=[])
>>> p.imshow(images[i], cmap=plt.cm.bone)
>>> # label the image with the target value
>>> p.text(0, 14, str(y[i]))
>>> i = i + 1
>>>
>>> print_digits(digits.images, digits.target, max_n=10)

The print digits can be seen in the following:

You can see that the dataset contains the corresponding number associated as
a target class, but since we are clustering we will not use this information until
evaluation time. We will just see if we can group the figures based on their similarity,
and form the ten clusters we can expect.

Chapter 3

[69]

As usual, we must separate train and testing sets as follows:

>>> from sklearn.cross_validation import train_test_split
>>> X_train, X_test, y_train, y_test, images_train,
 images_test = train_test_split(
 data, digits.target, digits.images, test_size=0.25,
 random_state=42)
>>>
>>> n_samples, n_features = X_train.shape
>>> n_digits = len(np.unique(y_train))
>>> labels = y_train

Once we have our training set, we are ready to cluster instances. What the k-means
algorithm does is:

1. Select an initial set of cluster centers at random.
2. Find the nearest cluster center for each data point, and assign the data point

closest to that cluster.
3. Compute the new cluster centers, averaging the values of the cluster data

points, and repeat until cluster membership stabilizes; that is, until a few
data points change their clusters after each iteration.

Because of how k-means works, it can converge to local minima, and the initial
set of cluster centers could greatly affect the clusters found. The usual approach to
mitigate this is to try several initial sets and select the set with minimal value for the
sum of squared distances between cluster centers (or inertia). The implementation
of k-means in scikit-learn already does this (the n-init parameter allows us to
establish how many different centroid configurations the algorithm will try). It also
allows us to specify that the initial centroids will be sufficiently separated, leading to
better results. Let's see how this works on our dataset.

>>> from sklearn import cluster
>>> clf = Cluster.KMeans(init='kmeans++',
 n_clusters=10, random_state=42)
>>> clf.fit(X_train)

The procedure is similar to the one used for supervised learning, but note that the
fit method only takes the training data as an argument. Also observe that we need
to specify the number of clusters. We can perceive this number because we know
that clusters represent numbers.

If we print the value of the labels_ attribute of the classifier, we get a list of the
cluster numbers associated to each training instance.

>>> print_digits(images_train, clf.labels_, max_n=10)

Unsupervised Learning

[70]

The cluster can be seen in the following diagram:

Note that the cluster number has nothing to do with the real number value.
Remember that we have not used the class to classify; we only grouped images by
similarity. Let's see how our algorithm behaves on the testing data.

To predict the clusters for training data, we use the usual predict method of
the classifier.

>>> y_pred=clf.predict(X_test)

Let us see how clusters look:

>>> def print_cluster(images, y_pred, cluster_number):
>>> images = images[y_pred==cluster_number]
>>> y_pred = y_pred[y_pred==cluster_number]
>>> print_digits(images, y_pred,max_n=10)
>>> for i in range(10):
>>> print_cluster(images_test, y_pred, i)

This code shows ten images from each cluster. Some clusters are very clear, as shown
in the following figure:

Chapter 3

[71]

Cluster number 2 corresponds to zeros. What about cluster number 7?

It is not so clear. It seems cluster 7 is something like drawn numbers that look
similar to the digit nine. Cluster number 9 only has six instances, as shown in the
following figure:

It must be clear after reading that we are not classifying images here (as in the face
examples in the previous chapter). We are grouping into ten classes (you can try
changing the number of clusters and see what happens).

How can we evaluate our performance? Precision and all that stuff does not work,
since we have no target classes to compare with. To evaluate, we need to know the
"real" clusters, whatever that means. We can suppose, for our example, that each
cluster includes every drawing of a certain number, and only that number. Knowing
this, we can compute the adjusted Rand index between our cluster assignment and
the expected one. The Rand index is a similar measure for accuracy, but it takes into
account the fact that classes can have different names in both assignments. That is, if
we change class names, the index does not change. The adjusted index tries to deduct
from the result coincidences that have occurred by chance. When you have the exact
same clusters in both sets, the Rand index equals one, while it equals zero when
there are no clusters sharing a data point.

>>> from sklearn import metrics
>>> print "Adjusted rand score:
 {:.2}".format(metrics.adjusted_rand_score(y_test, y_pred))
Adjusted rand score:0.57

Unsupervised Learning

[72]

We can also print the confusion matrix as follows:

>>> print metrics.confusion_matrix(y_test, y_pred)
[[0 0 43 0 0 0 0 0 0 0]
 [20 0 0 7 0 0 0 10 0 0]
 [5 0 0 31 0 0 0 1 1 0]
 [1 0 0 1 0 1 4 0 39 0]
 [1 50 0 0 0 0 1 2 0 1]
 [1 0 0 0 1 41 0 0 16 0]
 [0 0 1 0 44 0 0 0 0 0]
 [0 0 0 0 0 1 34 1 0 5]
 [21 0 0 0 0 3 1 2 11 0]
 [0 0 0 0 0 2 3 3 40 0]]

Observe that the class 0 in the test set (which coincides with number 0 drawings) is
completely assigned to the cluster number 2. We have problems with number 8: 21
instances are assigned class 0, while 11 are assigned class 8, and so on. Not so good
after all.

If we want to graphically show how k-means clusters look like, we must plot them
on a two-dimensional plane. We have learned how to do that in the previous section:
Principal Component Analysis (PCA). Let's construct a meshgrid of points (after
dimensionality reduction), calculate their assigned cluster, and plot them.

This example is taken from the very nice scikit-learn tutorial at
http://scikit-learn.org/.

>>> from sklearn import decomposition
>>> pca = decomposition.PCA(n_components=2).fit(X_train)
>>> reduced_X_train = pca.transform(X_train)
>>> # Step size of the mesh.
>>> h = .01
>>> # point in the mesh [x_min, m_max]x[y_min, y_max].
>>> x_min, x_max = reduced_X_train[:, 0].min() + 1,
 reduced_X_train[:, 0].max() - 1
>>> y_min, y_max = reduced_X_train[:, 1].min() + 1,
 reduced_X_train[:, 1].max() - 1
>>> xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
 np.arange(y_min, y_max, h))
>>> kmeans = cluster.KMeans(init='k-means++', n_clusters=n_digits,
 n_init=10)

Chapter 3

[73]

>>> kmeans.fit(reduced_X_train)
>>> Z = kmeans.predict(np.c_[xx.ravel(), yy.ravel()])
>>> # Put the result into a color plot
>>> Z = Z.reshape(xx.shape)
>>> plt.figure(1)
>>> plt.clf()
>>> plt.imshow(Z, interpolation='nearest',
 extent=(xx.min(), xx.max(), yy.min(),
 yy.max()), cmap=plt.cm.Paired, aspect='auto', origin='lower')
>>> plt.plot(reduced_X_train[:, 0], reduced_X_train[:, 1], 'k.',
 markersize=2)
>>> # Plot the centroids as a white X
>>> centroids = kmeans.cluster_centers_
>>> plt.scatter(centroids[:, 0], centroids[:, 1],marker='.',
 s=169, linewidths=3, color='w', zorder=10)
>>> plt.title('K-means clustering on the digits dataset (PCA
 reduced data)\nCentroids are marked with white dots')
>>> plt.xlim(x_min, x_max)
>>> plt.ylim(y_min, y_max)
>>> plt.xticks(())
>>> plt.yticks(())
>>> plt.show()

The k-means clustering on the digits dataset can be seen in the following diagram:

Unsupervised Learning

[74]

Alternative clustering methods
The scikit-learn toolkit includes several clustering algorithms, all of them including
similar methods and parameters to those we used in k-means. In this section we will
briefly review some of them, suggesting some of their advantages.

A typical problem for clustering is that most methods require the number of
clusters we want to identify. The general approach to solve this is to try different
numbers and let an expert determine which works best using techniques such
as dimensionality reduction to visualize clusters. There are also some methods
that try to automatically calculate the number of clusters. Scikit-learn includes an
implementation of Affinity Propagation, a method that looks for instances that are
the most representative of others, and uses them to describe the clusters. Let's see
how it works on our digit-learning problem:

>>> aff = cluster.AffinityPropagation()
>>> aff.fit(X_train)
>>> print aff.cluster_centers_indices_.shape
(112,)

Affinity propagation detected 112 clusters in our training set. It seems, after all, that
the numbers are not so similar between them. You can try drawing the clusters using
the print_digits function, and see which clusters seemed to group. The cluster_
centers_indices_ attribute represents what Affinity Propagation found as the
canonical elements of each cluster.

Another method that calculates cluster number is MeanShift(). If we apply it to our
example, it detects 18 clusters as follows:

>>> ms = cluster.MeanShift()
>>> ms.fit(X_train)
>>> print ms.cluster_centers_.shape
(18, 64)

In this case, the cluster_centers_ attribute shows the hyperplane cluster centroids.
The two previous examples show that results can vary a lot depending on the
method we are using. Which clustering method to use depends on the problem we
are solving and the type of clusters we want to find.

Note that, for the last two methods, we cannot use the Rand score to evaluate
performance because we do not have a canonical set of clusters to compare with.
We can, however, measure the inertia of the clustering, since inertia is the sum
of distances from each data point to the centroid; we expect near-zero numbers.
Unfortunately, there is currently no way in scikit-learn to measure inertia except for
the k-means method.

Chapter 3

[75]

Finally, we will try a probabilistic approach to clustering, using Gaussian Mixture
Models (GMM). We will see, from a procedural view, that it is very similar to
k-means, but their theoretical principles are quite different. GMM assumes that data
comes from a mixture of finite Gaussian distributions with unknown parameters. A
Gaussian distribution is a well-known distribution function within statistics used to
model many phenomena. It has a bell shaped function centered in the mean value;
you have probably seen the following drawing before:

If we take a sufficiently large sample of men and measure their height, the histogram
(proportion of men with each specific height) can be adjusted by a Gaussian
distribution with mean 1.774 meters and standard deviation of 0.1466 meters. Mean
indicates the most probable value (which coincides with the peak of the curve),
and standard deviation indicates how spread out the results are; that is, how far
they can appear from the mean values. If we measure the area beneath the curve
(that is, its integral) between two specific heights, we can know, given a man, how
probable it is that his height lies between the two values, in case the distribution is
correct. Now, why should we expect that distribution and not another? Actually,
not every phenomenon has the same distribution, but a theorem called the Law of
Large Numbers tells us that whenever we repeat an experiment a large number of
times (for example, measuring somebody's height), the distribution of results can be
approximated by a Gaussian.

Unsupervised Learning

[76]

Generally, we have a multivariate (that is, involving more than one feature)
distribution, but the idea is the same. There is a point in the hyperplane (the mean)
most instances will be closer to; when we move away from the mean, the probability
of finding a point in the cluster will decrease. How far this probability decreases is
dependent on the second parameter, the variance. As we said, GMM assumes each
cluster has a multivariate normal distribution, and the method objective is to find
the k centroids (estimating mean and variance from training data using an algorithm
called Expectation-Maximization (EM)) and assign each point to the nearest mean.
Let's see how it works on our example.

>>> from sklearn import mixture
>>> gm = mixture.GMM(n_components=n_digits,
 covariance_type='tied', random_state=42)
>>> gm.fit(X_train)
GMM(covariance_type='tied', init_params='wmc', min_covar=0.001,n_
components=10, n_init=1, n_iter=100, params='wmc',random_
state=42,thresh=0.01)

You can observe that the procedure is exactly the same as the one we used for
k-means. covariance_type is a method parameter that indicates how we expect
features; that is, each pixel to be related. For example, we can suppose that they are
independent, but we can also expect that closer points are correlated, and so on. For
the moment, we will use the tied covariance type. In the next chapter, we will show
some techniques to select between different parameter values.

Let's see how it performs on our testing data:

>>> # Print train clustering and confusion matrix
>>> y_pred = gm.predict(X_test)
>>> print "Adjusted rand
 score:{:.2}".format(metrics.adjusted_rand_score(y_test,
 y_pred))
Adjusted rand score:0.65

>>> print "Homogeneity score:{:.2}
 ".format(metrics.homogeneity_score(y_test, y_pred))
Homogeneity score:0.74

>>> print "Completeness score: {:.2}
 ".format(metrics.completeness_score(y_test, y_pred))
Completeness score: 0.79

Chapter 3

[77]

Compared to k-means, we achieved a better Rand score (0.65 versus 0.59), indicating
that we have better aligned our clusters with the original digits. We also included
two interesting measures included in sklearn.metrics. Homogeneity is a number
between 0.0 and 1.0 (greater is better). A value of 1.0 indicates that clusters only
contain data points from a single class; that is, clusters effectively group similar
instances. Completeness, on the other hand, is satisfied when every data point of
a given class is within the same cluster (meaning that we have grouped all possible
instances of the class, instead of building several uniform but smaller clusters).
We can see homogeneity and completeness as the unsupervised versions of
precision and recall.

Summary
In this chapter we presented some of the most important unsupervised learning
methods. We did not intend to provide you with an exhaustive introduction to all
the possible methods, but instead a brief introduction to these kinds of techniques.
We described how we can use unsupervised algorithms to perform a quick data
analysis to understand the behavior of the dataset and also perform dimensionality
reduction. Both applications are very useful as a step before applying a supervised
learning method. We also applied unsupervised learning techniques such as k-means
to resolve problems without using a target class—a very useful way to create
applications on top of untagged data.

In Chapter 4, Advanced Features, we will look at techniques that will allow us to obtain
better results in the application of machine learning algorithms. We will look at
data-preprocessing and feature-selection techniques to obtain better features to learn
from. Also, we will use grid search techniques to obtain the parameters that produce
the best performance with our algorithms.

Advanced Features
In the previous chapters we have studied several algorithms for very different tasks,
from classification and regression to clustering and dimensionality reduction. We
showed how we can apply these algorithms to predict results when faced with new
data. That is what machine learning is all about. In this last chapter, we want to show
some important concepts and methods you should take into account if you want to
do real-world machine learning.

• In real-world problems, usually data is not already expressed by attribute/
float value pairs, but through more complex structures or is not structured at
all. We will learn feature extraction techniques that will allow us to extract
scikit-learn features from data.

• From the initial set of available features, not all of them will be useful
for our algorithms to learn from; in fact, some of them may degrade our
performance. We will address the problem of selecting the most adequate
feature set, a process known as feature selection.

• Finally, as we have seen in the examples in this book, many of the machine
learning algorithms have parameters that must be set in order to use them.
To do that, we will review model selection techniques; that is, methods to
select the most promising hyperparameters to our algorithms.

All these steps are crucial in order to obtain decent results when working with
machine learning applications.

Advanced Features

[80]

Feature extraction
The usual scenario for learning tasks such as those presented in this book include a
list of instances (represented as feature/value pairs) and a special feature (the target
class) that we want to predict for future instances based on the values of the remaining
features. However, the source data does not usually come in this format. We have to
extract what we think are potentially useful features and convert them to our learning
format. This process is called feature extraction or feature engineering, and it is an
often underestimated but very important and time-consuming phase in most real-
world machine learning tasks. We can identify two different steps in this task:

• Obtain features: This step involves processing the source data and extracting
the learning instances, usually in the form of feature/value pairs where
the value can be an integer or float value, a string, a categorical value, and
so on. The method used for extraction depends heavily on how the data
is presented. For example, we can have a set of pictures and generate an
integer-valued feature for each pixel, indicating its color level, as we did
in the face recognition example in Chapter 2, Supervised Learning. Since this
is a very task-dependent job, we will not delve into details and assume we
already have this setting for our examples.

• Convert features: Most scikit-learn algorithms assume as an input a set of
instances represented as a list of float-valued features. How to get these
features will be the main subject of this section.

We can, as we did in Chapter 2, Supervised Learning, build ad hoc procedures to
convert the source data. There are, however, tools that can help us to obtain a
suitable representation. The Python package pandas (http://pandas.pydata.
org/), for example, provides data structures and tools for data analysis. It aims to
provide similar features to those of R, the popular language and environment for
statistical computing. We will use pandas to import the Titanic data we presented in
Chapter 2, Supervised Learning, and convert them to the scikit-learn format.

Let's start by importing the original titanic.csv data into a pandas DataFrame data
structure (DataFrame is essentially a two-dimensional labeled data structure where
columns can potentially include different data types and each row represents an
instance). As usual, we previously import the numpy and pyplot packages.

>>> %pylab inline
>>> import pandas as pd
>>> import numpy as np
>>> import matplotlib.pyplot as plt

Chapter 4

[81]

Then we import the Titanic data with pandas.

>>> titanic = pd.read_csv('data/titanic.csv')
>>> print titanic
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1313 entries, 0 to 1312
Data columns (total 11 columns):
row.names 1313 non-null values
pclass 1313 non-null values
survived 1313 non-null values
name 1313 non-null values
age 633 non-null values
embarked 821 non-null values
home.dest 754 non-null values
room 77 non-null values
ticket 69 non-null values
boat 347 non-null values
sex 1313 non-null values
dtypes: float64(1), int64(2), object(8)

You can see that each csv column has a corresponding feature into the DataFrame,
and that the feature type is induced from the available data. We can inspect some
features to see what they look like.

>>> print titanic.head()[['pclass', 'survived', 'age', 'embarked',
 'boat', 'sex']]
pclass survived age embarked boat sex
0 1st 1 29.0000 Southampton 2 female
1 1st 0 2.0000 Southampton NaN female
2 1st 0 30.0000 Southampton (135) male
3 1st 0 25.0000 Southampton NaN female
4 1st 1 0.9167 Southampton 11 male

Advanced Features

[82]

The main difficulty we have now is that scikit-learn methods expect real numbers
as feature values. In Chapter 2, Supervised Learning, we used the LabelEncoder and
OneHotEncoder preprocessing methods to manually convert certain categorical
features into 1-of-K values (generating a new feature for each possible value; valued
1 if the original feature had the corresponding value and 0 otherwise). This time, we
will use a similar scikit-learn method, DictVectorizer, which automatically builds
these features from the different original feature values. Moreover, we will program
a method to encode a set of columns in a unique step.

>>> from sklearn import feature_extraction
>>> def one_hot_dataframe(data, cols, replace=False):
>>> vec = feature_extraction.DictVectorizer()
>>> mkdict = lambda row: dict((col, row[col]) for col in cols)
>>> vecData = pd.DataFrame(vec.fit_transform(
>>> data[cols].apply(mkdict, axis=1)).toarray())
>>> vecData.columns = vec.get_feature_names()
>>> vecData.index = data.index
>>> if replace:
>>> data = data.drop(cols, axis=1)
>>> data = data.join(vecData)
>>> return (data, vecData)

The one_hot_dataframe method (based on the script at https://gist.github.
com/kljensen/5452382) takes a pandas DataFrame data structure and a list of
columns and encodes each column into the necessary 1-of-K features. If the replace
parameter is True, it will also substitute the original column with the new set. Let's
see it applied to the categorical pclass, embarked, and sex features (titanic_n only
contains the previously created columns):

>>> titanic,titanic_n = one_hot_dataframe(titanic, ['pclass',
 'embarked', 'sex'], replace=True)
>>> titanic.describe()
<class 'pandas.core.frame.DataFrame'>
Index: 8 entries, count to max
Data columns (total 12 columns):
row.names 8 non-null values
survived 8 non-null values
age 8 non-null values
embarked 8 non-null values
embarked=Cherbourg 8 non-null values
embarked=Queenstown 8 non-null values
embarked=Southampton 8 non-null values
pclass=1st 8 non-null values
pclass=2nd 8 non-null values
pclass=3rd 8 non-null values
sex=female 8 non-null values
sex=male 8 non-null values
dtypes: float64(12)

Chapter 4

[83]

The pclass attribute has been converted to three pclass=1st, pclass=2nd,
pclass=3rd features, and similarly for the other two features. Note that the
embarked feature has not disappeared, This is due to the fact that the original
embarked attribute included NaN values, indicating a missing value; in those cases,
every feature based on embarked will be valued 0, but the original feature whose
value is NaN remains, indicating the feature is missing for certain instances. Next, we
encode the remaining categorical attributes:

>>> titanic, titanic_n = one_hot_dataframe(titanic, ['home.dest',
 'room', 'ticket', 'boat'], replace=True)

We also have to deal with missing values, since DecisionTreeClassifier we plan
to use does not admit them on input. Pandas allow us to replace them with a fixed
value using the fillna method. We will use the mean age for the age feature, and 0
for the remaining missing attributes.

>>> mean = titanic['age'].mean()
>>> titanic['age'].fillna(mean, inplace=True)
>>> titanic.fillna(0, inplace=True)

Now, all of our features (except for Name) are in a suitable format. We are ready to
build the test and training sets, as usual.

>>> from sklearn.cross_validation import train_test_split
>>> titanic_target = titanic['survived']
>>> titanic_data = titanic.drop(['name', 'row.names', 'survived'],
 axis=1)
>>> X_train, X_test, y_train, y_test =
 train_test_split(titanic_data, titanic_target, test_size=0.25,
 random_state=33)

We decided to simply drop the name attribute, since we do not expect it to be
informative about the survival status (we have one different value for each instance,
so we can generalize over it). We also specified the survived feature as the target
class, and consequently eliminated it from the training vector.

Let's see how a decision tree works with the current feature set.

>>> from sklearn import tree
>>> dt = tree.DecisionTreeClassifier(criterion='entropy')
>>> dt = dt.fit(X_train, y_train)
>>> from sklearn import metrics
>>> y_pred = dt.predict(X_test)
>>> print "Accuracy:{0:.3f}".format(metrics.accuracy_score(y_test,
 y_pred)), "\n"
Accuracy:0.839

Advanced Features

[84]

Feature selection
Until now, when training our decision tree, we used every available feature in our
learning dataset. This seems perfectly reasonable, since we want to use as much
information as there is available to build our model. There are, however, two main
reasons why we would want to restrict the number of features used:

• Firstly, for some methods, especially those (such as decision trees) that
reduce the number of instances used to refine the model at each step, it is
possible that irrelevant features could suggest correlations between features
and target classes that arise just by chance and do not correctly model the
problem. This aspect is also related to overfitting; having certain over-specific
features may lead to poor generalization. Besides, some features may be
highly correlated, and will simply add redundant information.

• The second reason is a real-world one. A large number of features could
greatly increase the computation time without a corresponding classifier
improvement. This is of particular importance when working with Big Data,
where the number of instances and features could easily grow to several
thousand or more. Also, in relation to the curse of dimensionality, learning
a generalizable model from a dataset with too many features relative to the
number of instances can be difficult.

As a result, working with a smaller feature set may lead to better results. So we want
to find some way to algorithmically find the best features. This task is called feature
selection and is a crucial step when we aim to get decent results with machine
learning algorithms. If we have poor features, our algorithm will return poor results
no matter how sophisticated our machine learning algorithm is.

Consider, for example, our very simple Titanic example. We started with just 11
features, but after 1-of-K encoding they grew to 581.

>>> print titanic
<class 'pandas.core.frame.DataFrame'> Int64Index: 1313 entries, 0
to 1312 Columns: 581 entries, row.names to ticket=L15 1s dtypes:
float64(578), int64(2), object(1)

This does not pose an important computational problem, but consider what could
happen if, as previously demonstrated, we represent each document in a dataset as
the number of occurrences of each possible word. Another problem is that decision
trees suffer from overfitting. If branching is based on a very small number of
instances, the prediction power of the built model will decrease on future data. One
solution to this is to adjust model parameters (such as the maximum tree depth or
the minimum required number of instances at a leaf node). In this example, however,
we will take a different approach: we will try to limit the features to the most
relevant ones.

Chapter 4

[85]

What do we mean by relevant? This is an important question. A general approach
is to find the smallest set of features that correctly characterize the training data. If
a feature always coincides with the target class (that is, it is a perfect predictor), it is
enough to characterize the data. On the other hand, if a feature always has the same
value, its prediction power will be very low.

The general approach in feature selection is to get some kind of evaluation function
that, when given a potential feature, returns a score of how useful the feature is,
and then keeps the features with the highest scores. These methods may have the
disadvantage of not detecting correlations between features. Other methods may
be more brute force: try all possible subsets of the original feature list, train the
algorithm on each combination, and keep the combination that gets the best results.

As an evaluation method, we can, for instance, use a statistical test that measures
how probable it is that two random variables (say, a given feature and the target
class) are independent; that is, there is no correlation between them.

Scikit-learn provides several methods in the feature_selection module. We will
use the SelectPercentile method that, when given a statistical test, selects a user-
specified percentile of features with the highest scoring. The most popular statistical
test is the χ² (chi-squared) statistic. Let's see how it works for our Titanic example; we
will use it to select 20 percent of the most important features:

>>> from sklearn import feature_selection
>>> fs = feature_selection.SelectPercentile(
 feature_selection.chi2, percentile=20)
>>> X_train_fs = fs.fit_transform(X_train, y_train)

The X_train_fs array now has the statistically more important features. We can
now train our decision tree on this data.

>>> dt.fit(X_train_fs, y_train)
>>> X_test_fs = fs.transform(X_test)
>>> y_pred_fs = dt.predict(X_test_fs)
>>> print "Accuracy:{0:.3f}".format(metrics.accuracy_score(y_test,
 y_pred_fs)),"\n"
Accuracy:0.845

We can see that the accuracy on the training set improved half a point after feature
selection on the training set.

Advanced Features

[86]

Is it possible to find the optimal number of features? If by optimal we mean with
the best performance on the training set, it is actually possible; we can simply use
a brute-force approach and try with different numbers of features while measuring
their performance on the training set using cross-validation.

>>> from sklearn import cross_validation
>>>
>>> percentiles = range(1, 100, 5)
>>> results = []
>>> for i in range(1,100,5):
>>> fs = feature_selection.SelectPercentile(
 feature_selection.chi2, percentile=i
)
>>> X_train_fs = fs.fit_transform(X_train, y_train)
>>> scores = cross_validation.cross_val_score(dt, X_train_fs,
 y_train, cv=5)
>>> results = np.append(results, scores.mean())
>>> optimal_percentil = np.where(results == results.max())[0]
>>> print "Optimal number of features:{0}".format(
 percentiles[optimal_percentil]), "\n"
Optimal number of features:11
>>>
>>> # Plot number of features VS. cross-validation scores
>>> import pylab as pl
>>> pl.figure()
>>> pl.xlabel("Number of features selected")
>>> pl.ylabel("Cross-validation accuracy)")
>>> pl.plot(percentiles, results)

The following figure shows how cross-validation accuracy changes with the number
of features:

Chapter 4

[87]

We can see that accuracy quickly improves when we start adding features, remaining
stable after the percentile of features turns about 10. In fact, the best accuracy is
achieved when using 64 of the original 581 features (at the 11 percent percentile).
Let's see if this actually improved performance on the testing set.

>>> fs = feature_selection.SelectPercentile(
 feature_selection.chi2,
 percentile=percentiles[optimal_percentil])
>>> X_train_fs = fs.fit_transform(X_train, y_train)
>>> dt.fit(X_train_fs, y_train)
>>> X_test_fs = fs.transform(X_test)
>>> y_pred_fs = dt.predict(X_test_fs)
>>> print "Accuracy:{0:.3f}".format(metrics.accuracy_score(y_test,
 y_pred_fs)), "\n"
Accuracy:0.848

The performance improved slightly, again. Compared with our initial performance,
we have finally improved by almost one accuracy point using only 11 percent of
the features.

The reader may have noted that while creating our classifier, we used the default
parameters, except for the splitting criterion, where we have used entropy. Can we
improve our model using different parameters? This task is called model selection,
and we will address it in detail in the next section using a different learning example.
For now, let's just test if the alternative method (gini) would result in better
performance for our example. To do this, we will again use cross-validation.

>>> dt = tree.DecisionTreeClassifier(criterion='entropy')
>>> scores = cross_validation.cross_val_score(dt, X_train_fs,
 y_train, cv=5)
>>> print "Entropy criterion accuracy on
 cv: {0:.3f}".format(scores.mean())
Entropy criterion accuracy on cv: 0.889
>>> dt = tree.DecisionTreeClassifier(criterion='gini')
>>> scores = cross_validation.cross_val_score(dt, X_train_fs,
 y_train, cv=5)
>>> print "Gini criterion accuracy on
 cv: {0:.3f}".format(scores.mean())
Gini criterion accuracy on cv: 0.897

Advanced Features

[88]

The Gini criterion performs better on our training set. How about its performance on
the test set?

>>> dt.fit(X_train_fs, y_train)
>>> X_test_fs = fs.transform(X_test)
>>> y_pred_fs = dt.predict(X_test_fs)
>>> print "Accuracy:
 {0:.3f}".format(metrics.accuracy_score(y_test,
 y_pred_fs)),"\n"
Accuracy: 0.848

It seems that performance improvement on the training set did not hold for the
evaluation set. This is always possible. In fact, performance could have decreased
(recall overfitting). Our model is still the best. If we changed our model to use the one
with the best performance in the testing set, we can never measure its performance,
since the testing dataset could not be considered "unseen data" anymore.

Model selection
In the previous section we worked on ways to preprocess the data and select the
most promising features. As we stated, selecting a good set of features is a crucial
step to obtain good results. Now we will focus on another important step: selecting
the algorithm parameters, known as hyperparameters to distinguish them from the
parameters that are adjusted within the machine learning algorithm. Many machine
learning algorithms include hyperparameters (from now on we will simply call them
parameters) that guide certain aspects of the underlying method and have great
impact on the results. In this section we will review some methods to help us obtain
the best parameter configuration, a process known as model selection.

We will look back at the text-classification problem we addressed in Chapter
2, Supervised Learning. In that example, we compounded a TF-IDF vectorizer
alongside a multinomial Naïve Bayes (NB) algorithm to classify a set of newsgroup
messages into a discrete number of categories. The MultinomialNB algorithm has
one important parameter, named alpha, that adjusts the smoothing. We initially
used the class with its default parameter values (alpha = 1.0) and obtained an
accuracy of 0.89. But when we set alpha to 0.01, we obtained a noticeable accuracy
improvement to 0.92. Clearly, the configuration of the alpha parameter has great
impact on the performance of the algorithm. How can we be sure 0.01 is the best
value? Perhaps if we try other possible values, we could still obtain better results.

Chapter 4

[89]

Let's start again with our text-classification problem, but for now we will only use a
reduced number of instances. We will work only with 3,000 instances. We start by
importing our pylab environment and loading the data.

>>> %pylab inline
>>> from sklearn.datasets import fetch_20newsgroups
>>> news = fetch_20newsgroups(subset='all')
>>> n_samples = 3000
>>> X_train = news.data[:n_samples]
>>> y_train = news.target[:n_samples]

After that, we need to import the classes to construct our classifier.

>>> from sklearn.naive_bayes import MultinomialNB
>>> from sklearn.pipeline import Pipeline
>>> from sklearn.feature_extraction.text import TfidfVectorizer

Then import the set of stop words and create a pipeline that compounds the TF-IDF
vectorizer and the Naïve Bayes algorithms (recall that we had a stopwords_en.txt
file with a list of stop words).

>>> def get_stop_words():
>>> result = set()
>>> for line in open('stopwords_en.txt', 'r').readlines():
>>> result.add(line.strip())
>>> return result
>>> stop_words = get_stop_words()
>>> clf = Pipeline([('vect', TfidfVectorizer(
>>> stop_words=stop_words,
>>> token_pattern=ur"\b[a-z0-9_\-\.]+[a-z][a-z0-9_\-
 \.]+\b",
>>>)),
>>> ('nb', MultinomialNB(alpha=0.01)),
>>>])

Advanced Features

[90]

If we evaluate our algorithm with a three-fold cross-validation, we obtain a mean
score of around 0.811.

>>> from sklearn.cross_validation import cross_val_score, KFold
>>> from scipy.stats import sem
>>> def evaluate_cross_validation(clf, X, y, K):
>>> # create a k-fold croos validation iterator of k=5 folds
>>> cv = KFold(len(y), K, shuffle=True, random_state=0)
>>> # by default the score used is the one returned by score
 method of the estimator (accuracy)
>>> scores = cross_val_score(clf, X, y, cv=cv)
>>> print scores
>>> print ("Mean score: {0:.3f} (+/-{1:.3f})").format(
>>> np.mean(scores), sem(scores))
>>> evaluate_cross_validation(clf, X_train, y_train, 3)
[0.814 0.815 0.804]
Mean score: 0.811 (+/-0.004)

It looks like we should train the algorithm with a list of different parameter values
and keep the parameter value that achieves the best results. Let's implement a helper
function to do that. This function will train the algorithm with a list of values, each
time obtaining an accuracy score calculated by performing k-fold cross-validation
on the training instances. After that, it will plot the training and testing scores as a
function of the parameter values.

>>> def calc_params(X, y, clf, param_values, param_name, K):
>>> # initialize training and testing scores with zeros
>>> train_scores = np.zeros(len(param_values))
>>> test_scores = np.zeros(len(param_values))
>>>
>>> # iterate over the different parameter values
>>> for i, param_value in enumerate(param_values):
>>> print param_name, ' = ', param_value
>>> # set classifier parameters
>>> clf.set_params(**{param_name:param_value})
>>> # initialize the K scores obtained for each fold
>>> k_train_scores = np.zeros(K)
>>> k_test_scores = np.zeros(K)
>>> # create KFold cross validation
>>> cv = KFold(n_samples, K, shuffle=True, random_state=0)
>>> # iterate over the K folds

Chapter 4

[91]

>>> for j, (train, test) in enumerate(cv):
>>> clf.fit([X[k] for k in train], y[train])
>>> k_train_scores[j] = clf.score([X[k] for k in
 train], y[train])
>>> k_test_scores[j] = clf.score([X[k] for k in test],
 y[test])
>>> train_scores[i] = np.mean(k_train_scores)
>>> test_scores[i] = np.mean(k_test_scores)
>>>
>>> # plot the training and testing scores in a log scale
>>> plt.semilogx(param_values, train_scores, alpha=0.4, lw=2,
 c='b')
>>> plt.semilogx(param_values, test_scores, alpha=0.4, lw=2,
 c='g')
>>> plt.xlabel("Alpha values")
>>> plt.ylabel("Mean cross-validation accuracy")
>>> # return the training and testing scores on each parameter

 value
>>> return train_scores, test_scores

The function accepts six arguments: the feature array, the target array, the classifier
object to be used, the list of parameter values, the name of the parameter to adjust,
and the number of K folds to be used in the crossvalidation evaluation.

Let's call this function; we will use numpy's logspace function to generate a list of
alpha values spaced evenly on a log scale.

>>> alphas = np.logspace(-7, 0, 8)
>>> print alphas
[1.00000000e-07 1.00000000e-06 1.00000000e-05 1.00000000e-04
1.00000000e-03 1.00000000e-02 1.00000000e-01 1.00000000e+00]

We will set the values of the alpha parameter of the NB classifier within the pipeline,
which corresponds to the parameter name nb__alpha. We will use three folds for the
cross-validation.

>>> train_scores, test_scores = calc_params(X_train, y_train, clf,
alphas, 'nb__alpha', 3)

Advanced Features

[92]

In the following figure, the line at the top corresponds to the training accuracy and
the one at the bottom to the testing accuracy:

As expected, the training accuracy is always greater than the testing accuracy. We
can see in the graph that the best testing accuracy is obtained with an alpha value in
the range of 10-2 and 10-1. Below this range, the classifier shows signs of overfitting
(the training accuracy is high but the testing accuracy is lower than it could be).
Above this range, the classifier shows signs of underfitting (accuracy on the training
set is lower than it could be).

It is worth mentioning that at this point a second pass could be performed in the
range of 10-2 and 10-1with a finer grid to find an ever better alpha value.

Let's print the scores vector to look at the actual values.

>>> print 'training scores: ', train_scores
>>> print 'testing scores: ', test_scores
training scores: [1. 1. 1. 1. 1. 0.99933333 0.99633333 0.96933333]
testing scores: [0.75 0.75666667 0.76433333 0.77533333 0.78866667
0.811 0.81233333 0.753]

The best results are obtained with an alpha value of 0.1 (accuracy of 0.812).

Chapter 4

[93]

We created a very useful function to graph and obtain the best parameter value for a
classifier. Let's use it to adjust another classifier that uses a Support Vector Machines
(SVM) instead of MultinomialNB:

>>> from sklearn.svm import SVC
>>>
>>> clf = Pipeline([
>>> ('vect', TfidfVectorizer(
>>> stop_words=stop_words,
>>> token_pattern=ur"\b[a-z0-9_\-\.]+[a-z][a-z0-
 9_\-\.]+\b",
>>>)),
>>> ('svc', SVC()),
>>>])

We created a pipeline as before, but now we use the SVC classifier with its default
values. Now we will use our calc_params function to adjust the gamma parameter.

>>> gammas = np.logspace(-2, 1, 4)
>>> train_scores, test_scores = calc_params(X_train, y_train, clf,
gammas,'svc__gamma', 3)

For gamma values lesser than one we have underfitting and for gamma values
greater than one we have overfitting.

Advanced Features

[94]

So the best result is for a gamma value of 1, where we obtain a training accuracy of
0.999 and a testing accuracy of 0.760.

If you take a closer look at the SVC class constructor parameters, we have other
parameters, apart from gamma, that may also affect classifier performance. If we
only adjust the gamma value, we implicitly state that the optimal C value is 1.0
(the default value that we did not explicitly set). Perhaps we could obtain better
results with a new combination of C and gamma values. This opens a new degree of
complexity; we should try all the parameter combinations and keep the better one.

Grid search
To mitigate this problem, we have a very useful class named GridSearchCV within
the sklearn.grid_search module. What we have been doing with our calc_
params function is a kind of grid search in one dimension. With GridSearchCV, we
can specify a grid of any number of parameters and parameter values to traverse. It
will train the classifier for each combination and obtain a cross-validation accuracy to
evaluate each one.

Let's use it to adjust the C and the gamma parameters at the same time.

>>> from sklearn.grid_search import GridSearchCV

>>> parameters = {
>>> 'svc__gamma': np.logspace(-2, 1, 4),
>>> 'svc__C': np.logspace(-1, 1, 3),
>>> }
>>> clf = Pipeline([
>>> ('vect', TfidfVectorizer(
>>> stop_words=stop_words,
>>> token_pattern=ur"\b[a-z0-9_\-\.]+[a-z][a-z0-
 9_\-\.]+\b",
>>>)),
>>> ('svc', SVC()),
>>>])
>>> gs = GridSearchCV(clf, parameters, verbose=2, refit=False, cv=3)

Let's execute our grid search and print the best parameter values and scores.

>>> %time _ = gs.fit(X_train, y_train)
>>> gs.best_params_, gs.best_score_
CPU times: user 304.39 s, sys: 2.55 s, total: 306.94 s
Wall time: 306.56 s
 ({'svc__C': 10.0, 'svc__gamma': 0.10000000000000001},
0.81166666666666665)

Chapter 4

[95]

With the grid search, we obtained a better combination of C and gamma parameters,
for values 10.0 and 0.10 respectively, with a three-fold cross-validation accuracy of
0.811, which is much better than the best value we obtained (0.76) in the previous
experiment by only adjusting gamma and keeping the C value at 1.0.

At this point, we could continue performing experiments by trying not only to adjust
other parameters of the SVC but also adjusting the parameters on TfidfVectorizer,
which is also part of the estimator. Note that this additionally increases the
complexity. As you might have noticed, the previous grid search experiment took
about five minutes to finish. If we add new parameters to adjust, the time will
increase exponentially. As a result, these kinds of methods are very resource/time
intensive; this is also the reason why we used only a subset of the total instances.

Parallel grid search
Grid search calculation grows exponentially with each parameter and its possible
values we want to tune. We could reduce our response time if we calculate each
of the combinations in parallel instead of sequentially, as we have done. In our
previous example, we had four different values for gamma and three different values
for C, summing up 12 parameter combinations. Additionally, we also needed to train
each combination three times (in a three-fold cross-validation), so we summed up
36 trainings and evaluations. We could try to run these 36 tasks in parallel, since the
tasks are independent.

Most modern computers have multiple cores that can be used to run tasks in parallel.
We also have a very useful tool within IPython, called IPython parallel, that allows
us to run independent tasks in parallel, each task in a different core of our machine.
Let's do that with our text classifier example.

We will first declare a function that will persist all K folds for the cross-validation
in different files. These files will be loaded by a process that will execute the
corresponding fold. To do that, we will use the joblib library.

>>> from sklearn.externals import joblib
>>> from sklearn.cross_validation import ShuffleSplit
>>> import os
>>> def persist_cv_splits(X, y, K=3, name='data',
 suffix="_cv_%03d.pkl"):
>>> """Dump K folds to filesystem."""
>>>
>>> cv_split_filenames = []
>>>

Advanced Features

[96]

>>> # create KFold cross validation
>>> cv = KFold(n_samples, K, shuffle=True, random_state=0)
>>>
>>> # iterate over the K folds
>>> for i, (train, test) in enumerate(cv):
>>> cv_fold = ([X[k] for k in train], y[train], [X[k] for
 k in test], y[test])
>>> cv_split_filename = name + suffix % i
>>> cv_split_filename = os.path.abspath(cv_split_filename)
>>> joblib.dump(cv_fold, cv_split_filename)
>>> cv_split_filenames.append(cv_split_filename)
>>>
>>> return cv_split_filenames
>>> cv_filenames = persist_cv_splits(X, y, name='news')

The following function loads a particular fold and fits the classifier with the specified
parameter set, returning the testing score. This function will be called by each of the
parallel tasks.

>>> def compute_evaluation(cv_split_filename, clf, params):
>>>
>>> # All module imports should be executed in the worker
 namespace
>>> from sklearn.externals import joblib
>>>
>>> # load the fold training and testing partitions from the
 filesystem
>>> X_train, y_train, X_test, y_test = joblib.load(
>>> cv_split_filename, mmap_mode='c')
>>>
>>> clf.set_params(**params)
>>> clf.fit(X_train, y_train)
>>> test_score = clf.score(X_test, y_test)
>>> return test_score

Chapter 4

[97]

Finally, the following function executes the grid search in parallel tasks. For each
parameter combination (returned by the IterGrid iterator), it iterates over K folds
and creates a task to compute the evaluation. It returns the parameter combinations
alongside the tasks list.

>>> from sklearn.grid_search import IterGrid
>>>
>>> def parallel_grid_search(lb_view, clf, cv_split_filenames, param_
grid):
>>> all_tasks = []
>>> all_parameters = list(IterGrid(param_grid))
>>>
>>> # iterate over parameter combinations
>>> for i, params in enumerate(all_parameters):
>>> task_for_params = []
>>> # iterate over the K folds
>>> for j, cv_split_filename in
 enumerate(cv_split_filenames):
>>> t = lb_view.apply(
>>> compute_evaluation, cv_split_filename, clf,
 params)
>>> task_for_params.append(t)
>>>
>>> all_tasks.append(task_for_params)
>>>
>>> return all_parameters, all_tasks

Now we use IPython parallel to get the client and a load balanced view. We must
first create a local cluster of N engines (one for each core of your machine) using the
Cluster tab in the IPython Notebook. Then we create the client and the view and
execute our parallel_grid_search function.

>>> from sklearn.svm import SVC
>>> from IPython.parallel import Client
>>>
>>> client = Client()
>>> lb_view = client.load_balanced_view()
>>>
>>> all_parameters, all_tasks = parallel_grid_search(
 lb_view, clf, cv_filenames, parameters)

Advanced Features

[98]

IPython parallel will start to run the tasks in parallel. We can use this to monitor the
progress of the whole task group.

>>> def print_progress(tasks):
>>> progress = np.mean([task.ready() for task_group in tasks
 for task in task_group])
>>> print "Tasks completed: {0}%".format(100 * progress)

After all the tasks are completed, use the following function:

>>> print_progress(all_tasks)
Tasks completed: 100.0%

We can define a function that computes the mean score of the completed tasks.

>>> def find_bests(all_parameters, all_tasks, n_top=5):
>>> """Compute the mean score of the completed tasks"""
>>> mean_scores = []
>>>
>>> for param, task_group in zip(all_parameters, all_tasks):
>>> scores = [t.get() for t in task_group if t.ready()]
>>> if len(scores) == 0:
>>> continue
>>> mean_scores.append((np.mean(scores), param))
>>>
>>> return sorted(mean_scores, reverse=True)[:n_top]
>>> print find_bests(all_parameters, all_tasks)

[(0.81733333333333336, {'svc__gamma': 0.10000000000000001, 'svc__C':
10.0}), (0.78733333333333333, {'svc__gamma': 1.0, 'svc__C':
10.0}), (0.76000000000000012, {'svc__gamma': 1.0, 'svc__C': 1.0}),
(0.30099999999999999, {'svc__gamma': 0.01, 'svc__C': 10.0}),
(0.19933333333333333, {'svc__gamma': 0.10000000000000001, 'svc__C':
1.0})]

You can observe that we computed the same results as in the previous section,
but in half the time (if you used two cores) or in a quarter of the time (if you used
four cores).

Chapter 4

[99]

Summary
In this chapter we reviewed two important methods to improve our results when
applying machine learning algorithms: feature selection and model selection. First,
we used different techniques to preprocess data, extract features, and select the most
promising features. Then we used techniques to automatically calculate the most
promising hyperparameters of machine learning algorithms and used methods to
parallelize these calculations.

The reader must be aware that this book covered only the main machine learning
lines and some of their methods. Keep in mind that there is much more than
supervised and unsupervised learning. For example:

• Semi-supervised learning methods are the middle ground between
supervised and unsupervised learning. They combine small amounts of
annotated data with huge amounts of unlabeled data. Usually, unlabeled
data can reveal the underlying distribution of elements and obtain better
results in combination with a small, labeled dataset.

• Active learning is a particular case within semi-supervised methods. Again,
it is useful when labeled data is scarce or hard to obtain. In active learning,
the algorithm actively queries a human expert to answer the label of certain
unlabeled instances, and thus learn the concept over a reduced set of labeled
instances.

• Reinforcement learning proposes methods where an agent learns from
feedback (rewards or reinforcements) after performing actions within an
environment. The agent learns to perform a task by trying to maximize the
cumulative reward. These methods have been very successful in robotics and
video games.

• Sequential classification (very commonly used in Natural Language
Processing (NLP)) assigns a sequence of labels to a sequence of items; for
example, the parts of speech of the words in a sentence.

Besides these, there are lots of supervised learning methods with radically different
approaches to those we presented; for example, neural networks, maximum entropy
models, memory-based models, and rule-based models. Machine learning is a very
active research area with a growing literature; there are many books and courses that
the reader can use to go deeper into the theory and details.

Scikit-learn has many of these algorithms implemented, and lacks others, but expect
its active and enthusiastic contributors to build them soon. We encourage the reader
to be part of the community!

Index
A
affinity propagation 61, 74

B
bias-variance tradeoff 22

C
calc_params function 93, 94
cluster_centers_ attribute 74
cluster_centers_indices_ attribute 74
clustering

about 20, 61
method, alternatives 74-77
prediciting, for training data 70, 71

clusters 67, 69
coef_ attribute 13
Completeness 77
CountVectorizer 36
covariance_type method 76

D
data

preprocessing 36
data array 9
DataFrame 80
data preprocessing 22
dataset

about 9, 10
URL 27

datasets decision trees
about 42
classifier, training 47, 49
data, preprocessing with 43-47
interpreting 49-51
performance, evaluating 52
Titanic hypothesis with 41, 43

digit class 67
Dimensionality Reduction 62

E
embarked attribute 83
Expectation-Maximization (EM) 76
ExtraTreesRegressor class 58

F
F1-score 17
faces object 27
feature engineering 22
feature extraction

about 79-83
convert features 80
obtain features 80

feature selection 79-87
feature_selection module 85
fit method 69

[102]

G
Gaussian Mixture Models (GMM) 61, 75
Graphviz

URL 48
grid search

about 94, 95
parallel grid search 95-98

H
harmonic mean 17
HashingVectorizer 36
Homogeneity 77
house prices

linear model 55, 56
performance, evaluating 59
predicting, with regression 53, 54
Random Forests 58
Support Vector Machines 57

I
image recognition

with Support Vector Machines 25-28
Information Gain (IG) 48, 49
intercept_ attribute 13
IPython Notebook 6
IPython parallel 95
IterGrid iterator 97

K
k-means 61, 67

L
labels_ attribute 69
Large Hadron Collider. See LHC
Law of Large Numbers 75
leave-one-out cross-validation 50
LHC 25
linear classification 10-15
Linux

Scikit-learn, installing on 7

M
Mac

Scikit-learn, installing on 8
machine learning

concepts 21, 22
issues 6
linear classification 10-15
method 10-13
results, evaluating 16-20

machine learning categories 20
matplotlib package

URL, for installing 6
measure_performance function 59
meshgrid

of points 72
model selection 51, 79, 88, 90-94
MultinomialNB algorithm 88

N
Naïve Bayes

about 33
classifier, training 36-39
data, preprocessing 35, 36
performance, evaluating 40
used, for classifying text 33, 35

Natural Language Processing. See NLP
n-init parameter 69
NLP 34
NumPy

URL 6

O
one_hot_dataframe method 82
OneHotEncoder class 47
one hot encoding 46
overfitting 16

[103]

P
parallel_grid_search function 97
PCA

about 62-66
feature, selecting 63
function, defining 64
visualization 62

pclass attribute 83
Pipeline class 19
precision 17
Principal Component Analysis. See PCA
print_digits function 68, 74
print_faces function 31
pydot module 48
Python package pandas

URL 80

R
Rand index 71
Random Forests 51
recall 17
replace parameter 82

S
Scikit-learn

about 6, 25
installation, checking 8
installing 6
installing, on Linux 7
installing, on Mac 8
installing, on Windows 8
tutorial, URL 72

SciPy
URL 6

SelectPercentile method 85
SGD 13
SGDClassifier initialization function 13
sklearn.datasets module 34
sklearn.decomposition module 64
sklearn.ensemble module 52, 58
sklearn.feature_extraction.text

module 35, 36

sklearn.grid_search module 94
sklearn.naive_bayes module 36
sklearn.pipeline module 36
sklearn.svm module 28
spam filtering 34
Stochastic Gradient Descent. See SGD
supervised learning algorithm 25
survived feature 83
SVC

about 29-31
data, reshaping 33
image recognition with 25-28
training 28

T
target array 9
Term Frequency Inverse Document

Frequency (TF-IDF) 36
TfidfVectorizer 38
Titanic dataset 42
train_test_split function 11

W
Windows

Scikit-learn, installing on 8

Thank you for buying
Learning scikit-learn: Machine Learning in Python

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Building Machine Learning
Systems with Python
ISBN: 978-1-78216-140-0 Paperback: 290 pages

Master the art of machine learning with Python and
build effective machine learning systems with this
intensive hands-on guide

1. Master Machine Learning using a broad set of
Python libraries and start building your own
Python-based ML systems

2. Covers classification, regression, feature
engineering, and much more guided by
practical examples

Learning SciPy for Numerical and
Scientific Computing
ISBN: 978-1-78216-162-2 Paperback: 150 pages

A practical tutorial that guarantees fast, accurate,
and easy-to-code solutions to your numerical and
scientific computing problems with the power of
SciPy and Python

1. Perform complex operations with large
matrices, including eigenvalue problems,
matrix decompositions, or solution to large
systems of equations

2. Step-by-step examples to easily implement
statistical analysis and data mining that rivals
in performance any of the costly specialized
software suites

3. Plenty of examples of state-of-the-art research
problems from all disciplines of science, that
prove how simple, yet effective, is to provide
solutions based on SciPy

Please check www.PacktPub.com for information on our titles

Python 3 Object Oriented
Programming
ISBN: 978-1-84951-126-1 Paperback: 404 pages

Harness the power of Python 3 objects

1. Learn how to do Object Oriented Programming
in Python using this step-by-step tutorial

2. Design public interfaces using abstraction,
encapsulation, and information hiding

3. Turn your designs into working software by
studying the Python syntax

4. Raise, handle, define, and manipulate
exceptions using special error objects

Machine Learning with R
ISBN: 978-1-78216-214-8 Paperback: 396 pages

Learn how to use R to apply powerful machine
learning methods and gain an insight into
real-world applications

1. Harness the power of R for statistical
computing and data science

2. Use R to apply common machine learning
algorithms with real-world applications

3. Prepare, examine, and visualize data
for analysis

4. Understand how to choose between machine
learning models

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Machine Learning – A Gentle Introduction
	Installing scikit-learn
	Linux
	Mac
	Windows
	Checking your installation

	Our first machine learning method:
linear classification
	Evaluating our results
	Machine learning categories
	Important concepts related to
machine learning
	Summary

	Chapter 2: Supervised Learning
	Image recognition with Support
Vector Machines
	Training a Support Vector Machine

	Text classification with Naïve Bayes
	Preprocessing the data
	Training a Naïve Bayes classifier
	Evaluating the performance

	Explaining Titanic hypothesis with decision trees
	Preprocessing the data
	Training a decision tree classifier
	Interpreting the decision tree
	Random Forests – randomizing decisions
	Evaluating the performance

	Predicting house prices with regression
	First try – a linear model
	Second try – Support Vector Machines
for regression
	Third try – Random Forests revisited
	Evaluation

	Summary

	Chapter 3: Unsupervised Learning
	Principal Component Analysis
	Clustering handwritten digits
with k-means
	Alternative clustering methods
	Summary

	Chapter 4: Advanced Features
	Feature extraction
	Feature selection
	Model selection
	Grid search
	Parallel grid search
	Summary

	Index

