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Preface
Suppose you want to predict whether tomorrow will be a sunny or rainy day. 
You can develop an algorithm that is based on the current weather and your 
meteorological knowledge using a rather complicated set of rules to return the 
desired prediction. Now suppose that you have a record of the day-by-day weather 
conditions for the last five years, and you find that every time you had two sunny 
days in a row, the following day also happened to be a sunny one. Your algorithm 
could generalize this and predict that tomorrow will be a sunny day since the sun 
reigned today and yesterday. This algorithm is a pretty simple example of learning 
from experience. This is what Machine Learning is all about: algorithms that learn 
from the available data.

In this book, you will learn several methods for building Machine Learning  
applications that solve different real-world tasks, from document classification to 
image recognition.

We will use Python, a simple, popular, and widely used programming language, 
and scikit-learn, an open source Machine Learning library.

In each chapter, we will present a different Machine Learning setting and a couple 
of well-studied methods as well as show step-by-step examples that use Python and 
scikit-learn to solve concrete tasks. We will also show you tips and tricks to improve 
algorithm performance, both from the accuracy and computational cost point of views.
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What this book covers
Chapter 1, Machine Learning – A Gentle Introduction, presents the main concepts behind 
Machine Learning while solving a simple classification problem: discriminating 
flower species based on its characteristics.

Chapter 2, Supervised Learning, introduces four classification methods: Support Vector 
Machines, Naive Bayes, decision trees, and Random Forests. These methods are 
used to recognize faces, classify texts, and explain the causes for surviving from the 
Titanic accident. It also presents Linear Models and revisits Support Vector Machines 
and Random Forests, using them to predict house prices in Boston.

Chapter 3, Unsupervised Learning, describes methods for dimensionality reduction 
with Principal Component Analysis to visualize high dimensional data in just 
two dimensions. It also introduces clustering techniques to group instances of 
handwritten digits according to a similarity measure using the k-means algorithm.

Chapter 4, Advanced Features, shows how to preprocess the data and select the  
best features for learning, a task called Feature Selection. It also introduces  
Model Selection: selecting the best method parameters using the available data  
and parallel computation.

What you need for this book
For running the book's examples, you will need a running Python environment, 
including the scikit-learn library and NumPy and SciPy mathematical libraries. 
The source code will be available in the form of IPython notebooks. For Chapter 4, 
Advanced Features, we will also include the Pandas Python library. Chapter 1, Machine 
Learning – A Gentle Introduction, shows how to install them in your operating system.

Who this book is for
This book is intended for programmers who want to add Machine Learning and 
data-based methods to their programming skills.
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Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text are shown as follows: "The SGDClassifier initialization function 
allows several parameters."

A block of code is set as follows:

>>> from sklearn.linear_model import SGDClassifier
>>> clf = SGDClassifier()
>>> clf.fit(X_train, y_train)

Any command-line input or output is written as follows:

# sudo apt-get install python-matplotlib

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for us 
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.
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Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.packtpub.com. If you purchased this book 
elsewhere, you can visit http://www.packtpub.com/support and register to have 
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link, 
and entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list of 
existing errata, under the Errata section of that title. Any existing errata can be viewed 
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.comwith a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring  
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.



Machine Learning –  
A Gentle Introduction

"I was into data before it was big"—@ml_hipster

You have probably heard recently about big data. The Internet, the explosion of 
electronic devices with tremendous computational power, and the fact that almost 
every process in our world uses some kind of software, are giving us huge amounts 
of data every minute.

Think about social networks, where we store information about people, their 
interests, and their interactions. Think about process-control devices, ranging from 
web servers to cars and pacemakers, which permanently leave logs of data about 
their performance. Think about scientific research initiatives, such as the genome 
project, which have to analyze huge amounts of data about our DNA.

There are many things you can do with this data: examine it, summarize it, and even 
visualize it in several beautiful ways. However, this book deals with another use 
for data: as a source of experience to improve our algorithms' performance. These 
algorithms, which can learn from previous data, conform to the field of Machine 
Learning, a subfield of Artificial Intelligence.
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Any machine learning problem can be represented with the following three concepts:

• We will have to learn to solve a task T. For example, build a spam filter that 
learns to classify e-mails as spam or ham.

• We will need some experience E to learn to perform the task. Usually, 
experience is represented through a dataset. For the spam filter, experience 
comes as a set of e-mails, manually classified by a human as spam or ham.

• We will need a measure of performance P to know how well we are solving 
the task and also to know whether after doing some modifications, our 
results are improving or getting worse. The percentage of e-mails that our 
spam filtering is correctly classifying as spam or ham could be P for our 
spam-filtering task.

Scikit-learn is an open source Python library of popular machine learning algorithms 
that will allow us to build these types of systems. The project was started in 2007 
as a Google Summer of Code project by David Cournapeau. Later that year, Matthieu 
Brucher started working on this project as part of his thesis. In 2010, Fabian Pedregosa, 
Gael Varoquaux, Alexandre Gramfort, and Vincent Michel of INRIA took the project 
leadership and produced the first public release. Nowadays, the project is being 
developed very actively by an enthusiastic community of contributors. It is built 
upon NumPy (http://www.numpy.org/) and SciPy (http://scipy.org/), the 
standard Python libraries for scientific computation. Through this book, we will 
use it to show you how the incorporation of previous data as a source of experience 
could serve to solve several common programming tasks in an efficient and probably 
more effective way.

In the following sections of this chapter, we will start viewing how to install scikit-
learn and prepare your working environment. After that, we will have a brief 
introduction to machine learning in a practical way, trying to introduce key machine 
learning  concepts while solving a simple practical task.

Installing scikit-learn
Installation instructions for scikit-learn are available at http://scikit-learn.org/
stable/install.html. Several examples in this book include visualizations, so  
you should also install the matplotlib package from http://matplotlib.org/. 
We also recommend installing IPython Notebook, a very useful tool that includes a 
web-based console to edit and run code snippets, and render the results. The source 
code that comes with this book is provided through IPython notebooks.
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An easy way to install all packages is to download and install the Anaconda 
distribution for scientific computing from https://store.continuum.io/, which 
provides all the necessary packages for Linux, Mac, and Windows platforms. Or, if 
you prefer, the following sections gives some suggestions on how to install every 
package on each particular platform.

Linux
Probably the easiest way to install our environment is through the operating system 
packages. In the case of Debian-based operating systems, such as Ubuntu, you can 
install the packages by running the following commands:

• Firstly, to install the package we enter the following command:
# sudo apt-get install build-essential python-dev python-numpy 
python-setuptools python-scipy libatlas-dev

• Then, to install matplotlib, run the following command:
# sudo apt-get install python-matplotlib

• After that, we should be ready to install scikit-learn by issuing this command:
# sudo pip install scikit-learn

• To install IPython Notebook, run the following command:
# sudo apt-get install ipython-notebook

• If you want to install from source, let's say to install all the libraries within a 
virtual environment, you should issue the following commands:
# pip install numpy

# pip install scipy

# pip install scikit-learn

• To install Matplotlib, you should run the following commands:
# pip install libpng-dev libjpeg8-dev libfreetype6-dev

# pip install matplotlib

• To install IPython Notebook, you should run the following commands:

# pip install ipython

# pip install tornado

# pip install pyzmq
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Mac
You can similarly use tools such as MacPorts and HomeBrew that contain 
precompiled versions of these packages.

Windows
To install scikit-learn on Windows, you can download a Windows installer from the 
downloads section of the project web page: http://sourceforge.net/projects/
scikit-learn/files/

Checking your installation
To check that everything is ready to run, just open your Python (or probably better, 
IPython) console and type the following:

>>> import sklearn as sk
>>> import numpy as np
>>> import matplotlib.pyplot as plt

We have decided to precede Python code with >>> to separate it from the sentence 
results. Python will silently import the scikit-learn, NumPy, and matplotlib 
packages, which we will use through the rest of this book's examples.

If you want to execute the code presented in this book, you should run  
IPython Notebook:

# ipython notebook

This will allow you to open the corresponding notebooks right in your browser.
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Datasets
As we have said, machine learning methods rely on previous experience, usually 
represented by a dataset. Every method implemented on scikit-learn assumes that 
data comes in a dataset, a certain form of input data representation that makes it 
easier for the programmer to try different methods on the same data. Scikit-learn 
includes a few well-known datasets. In this chapter, we will use one of them, the 
Iris flower dataset, introduced in 1936 by Sir Ronald Fisher to show how a statistical 
method (discriminant analysis) worked (yes, they were into data before it was big). 
You can find a description of this dataset on its own Wikipedia page, but, essentially, 
it includes information about 150 elements (or, in machine learning terminology, 
instances) from three different Iris flower species, including sepal and petal length 
and width. The natural task to solve using this dataset is to learn to guess the Iris 
species knowing the sepal and petal measures. It has been widely used on machine 
learning tasks because it is a very easy dataset in a sense that we will see later. Let's 
import the dataset and show the values for the first instance:

>>> from sklearn import datasets
>>> iris = datasets.load_iris()
>>> X_iris, y_iris = iris.data, iris.target
>>> print X_iris.shape, y_iris.shape
  (150, 4) (150,)
>>> print X_iris[0], y_iris[0]
  [ 5.1  3.5  1.4  0.2] 0

Downloading the example code
You can download the example code files for all Packt books you 
have purchased from your account at http://www.packtpub.
com. If you purchased this book elsewhere, you can visit 
http://www.packtpub.com/support and register to have 
the files e-mailed directly to you.

We can see that the iris dataset is an object (similar to a dictionary) that has two 
main components:

• A data array, where, for each instance, we have the real values for sepal 
length, sepal width, petal length, and petal width, in that order (note that for 
efficiency reasons, scikit-learn methods work on NumPy ndarrays instead of 
the more descriptive but much less efficient Python dictionaries or lists). The 
shape of this array is (150, 4), meaning that we have 150 rows (one for each 
instance) and four columns (one for each feature).

• A target array, with values in the range of 0 to 2, corresponding to each 
instance of Iris species (0: setosa, 1: versicolor, and 2: virginica), as you can 
verify by printing the iris.target.target_names value.
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While it's not necessary for every dataset we want to use with scikit-learn to have 
this exact structure, we will see that every method will require this data array, where 
each instance is represented as a list of features or attributes, and another target array 
representing a certain value we want our learning method to learn to predict. In 
our example, the petal and sepal measures are our real-valued attributes, while the 
flower species is the one-of-a-list class we want to predict.

Our first machine learning method – 
linear classification
To get a grip on the problem of machine learning in scikit-learn, we will start with a 
very simple machine learning problem: we will try to predict the Iris flower species 
using only two attributes: sepal width and sepal length. This is an instance of a 
classification problem, where we want to assign a label (a value taken from a discrete 
set) to an item according to its features.

Let's first build our training dataset—a subset of the original sample, represented by 
the two attributes we selected and their respective target values. After importing the 
dataset, we will randomly select about 75 percent of the instances, and reserve the 
remaining ones (the evaluation dataset) for evaluation purposes (we will see later 
why we should always do that):

>>> from sklearn.cross_validation import train_test_split
>>> from sklearn import preprocessing
>>> # Get dataset with only the first two attributes
>>> X, y = X_iris[:, :2], y_iris
>>> # Split the dataset into a training and a testing set
>>> # Test set will be the 25% taken randomly
>>> X_train, X_test, y_train, y_test = train_test_split(X, y,  
  test_size=0.25, random_state=33)
>>> print X_train.shape, y_train.shape
  (112, 2) (112,)
>>> # Standardize the features
>>> scaler = preprocessing.StandardScaler().fit(X_train)
>>> X_train = scaler.transform(X_train)
>>> X_test = scaler.transform(X_test)
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The train_test_split function automatically builds the training and evaluation 
datasets, randomly selecting the samples. Why not just select the first 112 examples? 
This is because it could happen that the instance ordering within the sample could 
matter and that the first instances could be different to the last ones. In fact, if you 
look at the Iris datasets, the instances are ordered by their target class, and this 
implies that the proportion of 0 and 1 classes will be higher in the new training set, 
compared with that of the original dataset. We always want our training data to be a 
representative sample of the population they represent.

The last three lines of the previous code modify the training set in a process usually 
called feature scaling. For each feature, calculate the average, subtract the mean 
value from the feature value, and divide the result by their standard deviation. After 
scaling, each feature will have a zero average, with a standard deviation of one. This 
standardization of values (which does not change their distribution, as you could 
verify by plotting the X values before and after scaling) is a common requirement of 
machine learning methods, to avoid that features with large values may weight too 
much on the final results.

Now, let's take a look at how our training instances are distributed in the two-
dimensional space generated by the learning feature. pyplot, from the matplotlib 
library, will help us with this:

>>> import matplotlib.pyplot as plt
>>> colors = ['red', 'greenyellow', 'blue']
>>> for i in xrange(len(colors)):
>>>     xs = X_train[:, 0][y_train == i]
>>>     ys = X_train[:, 1][y_train == i]
>>>     plt.scatter(xs, ys, c=colors[i])
>>> plt.legend(iris.target_names)
>>> plt.xlabel('Sepal length')
>>> plt.ylabel('Sepal width')
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The scatter function simply plots the first feature value (sepal width) for each 
instance versus its second feature value (sepal length) and uses the target class 
values to assign a different color for each class. This way, we can have a pretty good 
idea of how these attributes contribute to determine the target class. The following 
screenshot shows the resulting plot:

Looking at the preceding screenshot, we can see that the separation between the red 
dots (corresponding to the Iris setosa) and green and blue dots (corresponding to the 
two other Iris species) is quite clear, while separating green from blue dots seems a 
very difficult task, given the two features available. This is a very common scenario: 
one of the first questions we want to answer in a machine learning task is if the 
feature set we are using is actually useful for the task we are solving, or if we need to 
add new attributes or change our method.

Given the available data, let's, for a moment, redefine our learning task: suppose 
we aim, given an Iris flower instance, to predict if it is a setosa or not. We have 
converted our problem into a binary classification task (that is, we only have two 
possible target classes).
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If we look at the picture, it seems that we could draw a straight line that correctly 
separates both the sets (perhaps with the exception of one or two dots, which 
could lie in the incorrect side of the line). This is exactly what our first classification 
method, linear classification models, tries to do: build a line (or, more generally, a 
hyperplane in the feature space) that best separates both the target classes, and use 
it as a decision boundary (that is, the class membership depends on what side of the 
hyperplane the instance is).

To implement linear classification, we will use the SGDClassifier from scikit-learn. 
SGD stands for Stochastic Gradient Descent, a very popular numerical procedure 
to find the local minimum of a function (in this case, the loss function, which 
measures how far every instance is from our boundary). The algorithm will learn the 
coefficients of the hyperplane by minimizing the loss function.

To use any method in scikit-learn, we must first create the corresponding classifier 
object, initialize its parameters, and train the model that better fits the training data. 
You will see while you advance in this book that this procedure will be pretty much 
the same for what initially seemed very different tasks.

>>> from sklearn.linear_modelsklearn._model import SGDClassifier
>>> clf = SGDClassifier()
>>> clf.fit(X_train, y_train) 

The SGDClassifier initialization function allows several parameters. For the 
moment, we will use the default values, but keep in mind that these parameters 
could be very important, especially when you face more real-world tasks, where the 
number of instances (or even the number of attributes) could be very large. The fit 
function is probably the most important one in scikit-learn. It receives the training 
data and the training classes, and builds the classifier. Every supervised learning 
method in scikit-learn implements this function.

What does the classifier look like in our linear model method? As we have already 
said, every future classification decision depends just on a hyperplane. That 
hyperplane is, then, our model. The coef_ attribute of the clf object (consider, for 
the moment, only the first row of the matrices), now has the coefficients of the linear 
boundary and the intercept_ attribute, the point of intersection of the line with the 
y axis. Let's print them:

>>> print clf.coef_
[[-28.53692691  15.05517618]
  [ -8.93789454  -8.13185613]
  [ 14.02830747 -12.80739966]]
>>> print clf.intercept_
[-17.62477802  -2.35658325  -9.7570213 ] 
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Indeed in the real plane, with these three values, we can draw a line, represented by 
the following equation:

-17.62477802 - 28.53692691 * x1 + 15.05517618 * x2 = 0

Now, given x1 and x2 (our real-valued features), we just have to compute the value 
of the left-side of the equation: if its value is greater than zero, then the point is 
above the decision boundary (the red side), otherwise it will be beneath the line (the 
green or blue side). Our prediction algorithm will simply check this and predict the 
corresponding class for any new iris flower.

But, why does our coefficient matrix have three rows? Because we did not tell the 
method that we have changed our problem definition (how could we have done 
this?), and it is facing a three-class problem, not a binary decision problem. What, in 
this case, the classifier does is the same we did—it converts the problem into three 
binary classification problems in a one-versus-all setting (it proposes three lines that 
separate a class from the rest).

The following code draws the three decision boundaries and lets us know if they 
worked as expected:

>>> x_min, x_max = X_train[:, 0].min() - .5, X_train[:, 0].max() +  
    .5
>>> y_min, y_max = X_train[:, 1].min() - .5, X_train[:, 1].max() + 
    .5
>>> xs = np.arange(x_min, x_max, 0.5)
>>> fig, axes = plt.subplots(1, 3)
>>> fig.set_size_inches(10, 6)
>>> for i in [0, 1, 2]:
>>>     axes[i].set_aspect('equal')
>>>     axes[i].set_title('Class '+ str(i) + ' versus the rest')
>>>     axes[i].set_xlabel('Sepal length')
>>>     axes[i].set_ylabel('Sepal width')
>>>     axes[i].set_xlim(x_min, x_max)
>>>     axes[i].set_ylim(y_min, y_max)
>>>     sca(axes[i])
>>>     plt.scatter(X_train[:, 0], X_train[:, 1], c=y_train,
        cmap=plt.cm.prism)
>>>     ys = (-clf.intercept_[i] –
        Xs * clf.coef_[i, 0]) / clf.coef_[i, 1]
>>>     plt.plot(xs, ys, hold=True)    
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The first plot shows the model built for our original binary problem. It looks like  
the line separates quite well the Iris setosa from the rest. For the other two tasks, as 
we expected, there are several points that lie on the wrong side of the hyperplane.

Now, the end of the story: suppose that we have a new flower with a sepal width of 
4.7 and a sepal length of 3.1, and we want to predict its class. We just have to apply 
our brand new classifier to it (after normalizing!). The predict method takes  
an array of instances (in this case, with just one element) and returns a list of 
predicted classes:

>>>print clf.predict(scaler.transform([[4.7, 3.1]]))
[0]

If our classifier is right, this Iris flower is a setosa. Probably, you have noticed that 
we are predicting a class from the possible three classes but that linear models are 
essentially binary: something is missing. You are right. Our prediction procedure 
combines the result of the three binary classifiers and selects the class in which it is 
more confident. In this case, we will select the boundary line whose distance to the 
instance is longer. We can check that using the classifier decision_function method:

>>>print clf.decision_function(scaler.transform([[4.7, 3.1]]))
[[ 19.73905808   8.13288449 -28.63499119]]
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Evaluating our results
We want to be a little more formal when we talk about a good classifier. What does 
that mean? The performance of a classifier is a measure of its effectiveness. The 
simplest performance measure is accuracy: given a classifier and an evaluation 
dataset, it measures the proportion of instances correctly classified by the classifier. 
First, let's test the accuracy on the training set:

>>> from sklearn import metrics
>>> y_train_pred = clf.predict(X_train)
>>> print metrics.accuracy_score(y_train, y_train_pred)
0.821428571429 

This figure tells us that 82 percent of the training set instances are correctly classified 
by our classifier.

Probably, the most important thing you should learn from this chapter is that 
measuring accuracy on the training set is really a bad idea. You have built your 
model using this data, and it is possible that your model adjusts well to them but 
performs poorly in future (previously unseen data), which is its purpose. This 
phenomenon is called overfitting, and you will see it now and again while you 
read this book. If you measure based on your training data, you will never detect 
overfitting. So, never measure based on your training data.

This is why we have reserved part of the original dataset (the testing partition)—we 
want to evaluate performance on previously unseen data. Let's check the accuracy 
again, now on the evaluation set (recall that it was already scaled):

>>> y_pred = clf.predict(X_test)
>>> print metrics.accuracy_score(y_test, y_pred)
0.684210526316 

We obtained an accuracy of 68 percent in our testing set. Usually, accuracy on the 
testing set is lower than the accuracy on the training set, since the model is actually 
modeling the training set, not the testing set. Our goal will always be to produce 
models that avoid overfitting when trained over a training set, so they have enough 
generalization power to also correctly model the unseen data.

Accuracy on the test set is a good performance measure when the number of instances 
of each class is similar, that is, we have a uniform distribution of classes. But if you 
have a skewed distribution (say, 99 percent of the instances belong to one class), a 
classifier that always predicts the majority class could have an excellent performance in 
terms of accuracy despite the fact that it is an extremely naive method.
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Within scikit-learn, there are several evaluation functions; we will show three 
popular ones: precision, recall, and F1-score (or f-measure). They assume a binary 
classification problem and two classes—a positive one and a negative one. In our 
example, the positive class could be Iris setosa, while the other two will be combined 
into one negative class.

• Precision: This computes the proportion of instances predicted as positives 
that were correctly evaluated (it measures how right our classifier is when it 
says that an instance is positive).

• Recall: This counts the proportion of positive instances that were correctly 
evaluated (measuring how right our classifier is when faced with a positive 
instance).

• F1-score: This is the harmonic mean of precision and recall, and tries to 
combine both in a single number.

The harmonic mean is used instead of the arithmetic mean because 
the latter compensates low values for precision and with high 
values for recall (and vice versa). On the other hand, with harmonic 
mean we will always have low values if either precision or recall 
is low. For an interesting description of this issue refer to the 
paper http://www.cs.odu.edu/~mukka/cs795sum12dm/
Lecturenotes/Day3/F-measure-YS-26Oct07.pdf

We can define these measures in terms of True and False, and Positives  
and Negatives:

Prediction: Positive Prediction: Negative
Target cass: Positive True Positive (TP) False Negative (FN)
Target cass: Negative False Positive (FP) True Negative (TN)

With m being the sample size (that is, TP + TN + FP + FN), we have the  
following formulae:

• Accuracy = (TP + TN) / m
• Precision = TP / (TP + FP)
• Recall = TP / (TP + FN)
• F1-score = 2 * Precision * Recall / (Precision + Recall)
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Let's see it in practice:

>>> print metrics.classification_report(y_test, y_pred, 
  target_names=iris.target_names)
               precision    recall  f1-score   support

setosa          1.00          1.00      1.00         8
versicolor      0.43          0.27      0.33        11
virginica       0.65          0.79      0.71        19

avg / total     0.66          0.68      0.66        38

We have computed precision, recall, and f1-score for each class and their average 
values. What we can see in this table is:

• The classifier obtained 1.0 precision and recall in the setosa class. This 
means that for precision, 100 percent of the instances that are classified as 
setosa are really setosa instances, and for recall, that 100 percent of the setosa 
instances were classified as setosa.

• On the other hand, in the versicolor class, the results are not as good: 
we have a precision of 0.43, that is, only 43 percent of the instances that are 
classified as versicolor are really versicolor instances. Also, for versicolor, we 
have a recall of 0.27, that is, only 27 percent of the versicolor instances are 
correctly classified.

Now, we can see that our method (as we expected) is very good at predicting 
setosa, while it suffers when it has to separate the versicolor or virginica 
classes. The support value shows how many instances of each class we had in the 
testing set.

Another useful metric (especially for multi-class problems) is the confusion matrix: 
in its (i, j) cell, it shows the number of class instances i that were predicted to 
be in class j. A good classifier will accumulate the values on the confusion matrix 
diagonal, where correctly classified instances belong.

>>> print metrics.confusion_matrix(y_test, y_pred)
[[ 8  0  0]
[ 0  3  8]
[ 0  4 15]] 

Our classifier is never wrong in our evaluation set when it classifies class 0 (setosa) 
flowers. But, when it faces classes 1 and 2 flowers (versicolor and virginica), it 
confuses them. The confusion matrix gives us useful information to know what types 
of errors the classifier is making.
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To finish our evaluation process, we will introduce a very useful method known  
as cross-validation. As we explained before, we have to partition our dataset into  
a training set and a testing set. However, partitioning the data, results such that  
there are fewer instances to train on, and also, depending on the particular partition 
we make (usually made randomly), we can get either better or worse results.  
Cross-validation allows us to avoid this particular case, reducing result variance and 
producing a more realistic score for our models. The usual steps for k-fold  
cross-validation are the following:

1. Partition the dataset into k different subsets.
2. Create k different models by training on k-1 subsets and testing on the 

remaining subset.
3. Measure the performance on each of the k models and take the average 

measure.

Let's do that with our linear classifier. First, we will have to create a composite 
estimator made by a pipeline of the standardization and linear models. With this 
technique, we make sure that each iteration will standardize the data and then  
train/test on the transformed data. The Pipeline class is also useful to simplify  
the construction of more complex models that chain-multiply the transformations. 
We will chose to have k = 5 folds, so each time we will train on 80 percent of the  
data and test on the remaining 20 percent. Cross-validation, by default, uses accuracy 
as its performance measure, but we could select the measurement by passing any 
scorer function as an argument.

>>> from sklearn.cross_validation import cross_val_score, KFold
>>> from sklearn.pipeline import Pipeline
>>> # create a composite estimator made by a pipeline of the 
    standarization and the linear model
>>> clf = Pipeline([
        ('scaler', StandardScaler()),
        ('linear_model', SGDClassifier())
])
>>> # create a k-fold cross validation iterator of k=5 folds
>>> cv = KFold(X.shape[0], 5, shuffle=True, random_state=33)
>>> # by default the score used is the one returned by score 
    method of the estimator (accuracy)
>>> scores = cross_val_score(clf, X, y, cv=cv)
>>> print scores
[ 0.66666667  0.93333333  0.66666667  0.7         0.6       ]
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We obtained an array with the k scores. We can calculate the mean and the standard 
error to obtain a final figure:

>>> from scipy.stats import sem
>>> def mean_score(scores):
    return ("Mean score: {0:.3f} (+/-
    {1:.3f})").format(np.mean(scores), sem(scores))
>>> print mean_score(scores)
Mean score: 0.713 (+/-0.057)

Our model has an average accuracy of 0.71.

Machine learning categories
Classification is only one of the possible machine learning problems that can be 
addressed with scikit-learn. We can organize them in the following categories:

• In the previous example, we had a set of instances (that is, a set of data 
collected from a population) represented by certain features and with a 
particular target attribute. Supervised learning algorithms try to build a 
model from this data, which lets us predict the target attribute for new 
instances, knowing only these instance features. When the target class 
belongs to a discrete set (such as a list of flower species), we are facing a 
classification problem.

• Sometimes the class we want to predict, instead of belonging to a discrete 
set, ranges on a continuous set, such as the real number line. In this case, we 
are trying to solve a regression problem (the term was coined by Francis 
Galton, who observed that the heights of tall ancestors tend to regress down 
towards a normal value, the average human height). For example, we could 
try to predict the petal width based on the other three features. We will see 
that the methods used for regression are quite different from those used for 
classification.

• Another different type of machine learning problem is that of unsupervised 
learning. In this case, we do not have a target class to predict but instead 
want to group instances according to some similarity measure based on the 
available set of features. For example, suppose you have a dataset composed 
of e-mails and want to group them by their main topic (the task of grouping 
instances is called clustering). We can use it as features, for example, the 
different words used in each of them.
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Important concepts related to  
machine learning
The linear classifier we presented in the previous section could look too simple.  
What if we use a higher degree polynomial? What if we also take as features not  
only the sepal length and width, but also the petal length and the petal width?  
This is perfectly possible, and depending on the sample distribution, it could lead  
to a better fit to the training data, resulting in higher accuracy. The problem with  
this approach is that now we must estimate not only the three original parameters 
(the coefficients for x1, x2, and the interception point), but also the parameters for  
the new features x3 and x4 (petal length and width) and also the product 
combinations of the four features.

Intuitively, we would need more training data to adequately estimate these 
parameters. The number of parameters (and consequently, the amount of training 
data needed to adequately estimate them) would rapidly grow if we add more 
features or higher order terms. This phenomenon, present in every machine learning 
method, is called the idem curse of dimensionality: when the number of parameters 
of a model grows, the data needed to learn them grows exponentially.

This notion is closely related to the problem of overfitting mentioned earlier. As our 
training data is not enough, we risk producing a model that could be very good at 
predicting the target class on the training dataset but fail miserably when faced with 
new data, that is, our model does not have the generalization power. That is why it is 
so important to evaluate our methods on previously unseen data.

The general rule is that, in order to avoid overfitting, we should prefer simple (that 
is, with less parameters) methods, something that could be seen as an instantiation 
of the philosophical principle of Occam's razor, which states that among competing 
hypotheses, the hypothesis with the fewest assumptions should be selected.

However, we should also take into account Einstein's words:

"Everything should be made as simple as possible, but not simpler."

The idem curse of dimensionality may suggest that we keep our models simple, 
but on the other hand, if our model is too simple we run the risk of suffering 
from underfitting. Underfitting problems arise when our model has such a low 
representation power that it cannot model the data even if we had all the training 
data we want. We clearly have underfitting when our algorithm cannot achieve good 
performance measures even when measuring on the training set.
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As a result, we will have to achieve a balance between overfitting and underfitting. 
This is one of the most important problems that we will have to address when 
designing our machine learning models.

Other key concepts to take into account are the idem bias and variance of a machine 
learning method. Consider an extreme method that, in a binary classification setting, 
always predicts the positive class for any new instance. Its predictions are, trivially, 
always the same, or in statistical terms, it has null variance; but it will fail to predict 
negative examples: it is very biased towards positive results. On the other hand, 
consider a method that predicts, for a new instance, the class of the nearest instance 
in the training set (in fact, this method exists, and it is called the 1-nearest neighbor). 
The generalization assumptions that this method uses are very small: it has a very 
low bias; but, if we change the training data, results could dramatically change, 
that is, its variance is very high. These are extreme examples of the bias-variance 
tradeoff. It can be shown that, no matter which method we are using, if we reduce 
bias, variance will increase, and vice versa.

Linear classifiers have generally low-variance: no matter what subset we select for 
training, results will be similar. However, if the data distribution (as in the case of the 
versicolor and virginica species) makes target classes not separable by a hyperplane, 
these results will be consistently wrong, that is, the method is highly biased.

On the other hand, kNN (a memory-based method we will not address in this book)  
has very low bias but high variance: the results are generally very good at describing 
training data but tend to vary greatly when trained on different training instances.

There are other important concepts related to real-world applications where our  
data will not come naturally as a list of real-valued features. In these cases, we will 
need to have methods to transform non real-valued features to real-valued ones. 
Besides, there are other steps related to feature standardization and normalization, 
which as we saw in our Iris example, are needed to avoid undesired effects regarding 
the different value ranges. These transformations on the feature space are known as 
data preprocessing.

After having a defined feature set, we will see that not all of the features that  
come in our original dataset could be useful for resolving our task. So we must also 
have methods to do feature selection, that is, methods to select the most  
promising features.

In this book, we will present several problems and in each of them we will show 
different ways to transform and find the most relevant features to use for learning 
a task, called feature engineering, which is based on our knowledge of the domain 
of the problem and/or data analysis methods. These methods, often not valued 
enough, are a fundamental step toward obtaining good results.
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Summary
In this chapter, we introduced the main general concepts in machine learning and 
presented scikit-learn, the Python library we will use in the rest of this book. We 
included a very simple example of classification, trying to show the main steps 
for learning, and including the most important evaluation measures we will use. 
In the rest of this book, we plan to show you different machine learning methods 
and techniques using different real-world examples for each one. In almost every 
computational task, the presence of historical data could allow us to improve 
performance in the sense introduced at the beginning of this chapter.

The next chapter introduces supervised learning methods: we have annotated data 
(that is, instances where the target class/value is known) and we want to predict 
the same class/value for future data from the same population. In the case of 
classification tasks, that is, a discrete-valued target class, several different models 
exist, ranging from statistical methods, such as the simple Naïve Bayes to advanced 
linear classifiers, such as Support Vector Machines (SVM). Some methods, such as 
decision trees, will allow us to visualize how important a feature is to discriminate 
between different target classes and have a human interpretation of the decision 
process. We will also address another type of supervised learning task: regression, 
that is, methods that try to predict real-valued data.





Supervised Learning
In Chapter 1, Machine Learning – A Gentle Introduction, we sketched the general idea of 
a supervised learning algorithm. We have the training data where each instance has 
an input (a set of attributes) and a desired output (a target class). Then we use this 
data to train a model that will predict the same target class for new unseen instances.

Supervised learning methods are nowadays a standard tool in a wide range 
of disciplines, from medical diagnosis to natural language processing, image 
recognition, and searching for new particles at the Large Hadron Collider (LHC).  
In this chapter we will present several methods applied to several real-world 
examples by using some of the many algorithms implemented in scikit-learn.  
This chapter does not intend to substitute the scikit-learn reference, but is an 
introduction to the main supervised learning techniques and shows how they can  
be used to solve practical problems.

Image recognition with Support  
Vector Machines
Imagine that the instances in your dataset are points in a multidimensional space; 
we can assume that the model built by our classifier can be a surface or using linear 
algebra terminology, a hyperplane that separates instances (points) of one class 
from the rest. Support Vector Machines (SVM) are supervised learning methods 
that try to obtain these hyperplanes in an optimal way, by selecting the ones that 
pass through the widest possible gaps between instances of different classes. New 
instances will be classified as belonging to a certain category based on which side of 
the surfaces they fall on.
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The following figure shows an example for a two-dimensional space with two 
features (X1 and X2) and two classes (black and white):

We can observe that the green hyperplane does not separate both classes, committing 
some classification errors. The blue and the red hyperplanes separate both classes 
without errors. However, the red surface separates both classes with maximum 
margin; it is the most distant hyperplane from the closest instances from the two 
categories. The main advantage of this approach is that it will probably lower the 
generalization error, making this model resistant to overfitting, something that 
actually has been verified in several, different, classification tasks.

This approach can be generalized to construct hyperplanes not only in two 
dimensions, but also in high or infinite dimensional spaces. What is more, we can 
use nonlinear surfaces, such as polynomial or radial basis functions, by using the so 
called kernel trick, implicitly mapping inputs into high-dimensional feature spaces.

SVM has become one of the state-of-the-art machine learning models for many tasks 
with excellent results in many practical applications. One of the greatest advantages 
of SVM is that they are very effective when working on high-dimensional spaces, 
that is, on problems which have a lot of features to learn from. They are also very 
effective when the data is sparse (think about a high-dimensional space with very 
few instances). Besides, they are very efficient in terms of memory storage, since only 
a subset of the points in the learning space is used to represent the decision surfaces.
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To mention some disadvantages, SVM models could be very calculation intensive 
while training the model and they do not return a numerical indicator of how 
confident they are about a prediction. However, we can use some techniques such as 
K-fold cross-validation to avoid this, at the cost of increasing the computational cost.

We will apply SVM to image recognition, a classic problem with a very large 
dimensional space (the value of each pixel of the image is considered as a feature). 
What we will try to do is, given an image of a person's face, predict to which 
of the possible people from a list does it belongs (this kind of approach is used, 
for example, in social network applications to automatically tag people within 
photographs). Our learning set will be a group of labeled images of peoples' faces, 
and we will try to learn a model that can predict the label of unseen instances. 
The intuitive and first approach would be to use the image pixels as features for 
the learning algorithm, so pixel values will be our learning attributes and the 
individual's label will be our target class.

Our dataset is provided within scikit-learn, so let's start by importing and printing  
its description.

>>> import sklearn as sk
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from sklearn.datasets import fetch_olivetti_faces
>>> faces = fetch_olivetti_faces()
>>> print faces.DESCR

The dataset contains 400 images of 40 different persons. The photos were taken 
with different light conditions and facial expressions (including open/closed eyes, 
smiling/not smiling, and with glasses/no glasses). For additional information about 
the dataset refer to http://www.cl.cam.ac.uk/research/dtg/attarchive/
facedatabase.html.

Looking at the content of the faces object, we get the following properties: images, 
data, and target. Images contain the 400 images represented as 64 x 64 pixel 
matrices. data contains the same 400 images but as array of 4096 pixels. target is, as 
expected, an array with the target classes, ranging from 0 to 39.

>>> print faces.keys()
['images', 'data', 'target', 'DESCR']
>>> print faces.images.shape
(400, 64, 64)
>>> print faces.data.shape
(400, 4096)
>>> print faces.target.shape
(400,)
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Normalizing the data is important as we saw in the previous chapter. It is also 
important for the application of SVM to obtain good results. In our particular case, 
we can verify by running the following snippet that our images already come as 
values in a very uniform range between 0 and 1 (pixel value):

>>> print np.max(faces.data)
1.0
>>> print np.min(faces.data)
0.0
>>> print np.mean(faces.data)
0.547046432495

Therefore, we do not have to normalize the data. Before learning, let's plot some 
faces. We will define the following helper function:

>>> def print_faces(images, target, top_n):
>>>     # set up the figure size in inches
>>>     fig = plt.figure(figsize=(12, 12))
>>>     fig.subplots_adjust(left=0, right=1, bottom=0, top=1, 
        hspace=0.05, wspace=0.05)
>>>     for i in range(top_n):
>>>         # plot the images in a matrix of 20x20
>>>         p = fig.add_subplot(20, 20, i + 1, xticks=[], 
            yticks=[])
>>>         p.imshow(images[i], cmap=plt.cm.bone)
>>>         
>>>         # label the image with the target value
>>>         p.text(0, 14, str(target[i]))
>>>         p.text(0, 60, str(i))

If we print the first 20 images, we can see faces from two persons.

>>> print_faces(faces.images, faces.target, 20)

Training a Support Vector Machine
To use SVM in scikit-learn to solve our task, we will import the SVC class from the 
sklearn.svm module:

>>> from sklearn.svm import SVC
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The Support Vector Classifier (SVC) will be used for classification. In the last section 
of this chapter, we will use SVM for regression tasks.

The SVC implementation has different important parameters; probably the most 
relevant is kernel, which defines the kernel function to be used in our classifier 
(think of the kernel functions as different similarity measures between instances). 
By default, the SVC class uses the rbf kernel, which allows us to model nonlinear 
problems. To start, we will use the simplest kernel, the linear one.

>>> svc_1 = SVC(kernel='linear')

Before continuing, we will split our dataset into training and testing datasets.

>>> from sklearn.cross_validation import train_test_split
>>> X_train, X_test, y_train, y_test = train_test_split(
    faces.data, faces.target, test_size=0.25, random_state=0)

And we will define a function to evaluate K-fold cross-validation.

>>> from sklearn.cross_validation import cross_val_score, KFold
>>> from scipy.stats import sem
>>>
>>> def evaluate_cross_validation(clf, X, y, K):
>>>     # create a k-fold croos validation iterator
>>>     cv = KFold(len(y), K, shuffle=True, random_state=0)
>>>     # by default the score used is the one returned by score 
     method of the estimator (accuracy)
>>>     scores = cross_val_score(clf, X, y, cv=cv)
>>>     print scores
>>>     print ("Mean score: {0:.3f} (+/-{1:.3f})").format(
        np.mean(scores), sem(scores))

>>> evaluate_cross_validation(svc_1, X_train, y_train, 5)
[ 0.93333333  0.91666667  0.95        0.95        0.91666667]
Mean score: 0.933 (+/-0.007)

Cross-validation with five folds, obtains pretty good results (accuracy of 0.933). In a 
few steps we obtained a face classifier.
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We will also define a function to perform training on the training set and evaluate 
the performance on the testing set.

>>> from sklearn import metrics
>>>
>>> def train_and_evaluate(clf, X_train, X_test, y_train, y_test):
>>>     
>>>     clf.fit(X_train, y_train)
>>>     
>>>     print "Accuracy on training set:"
>>>     print clf.score(X_train, y_train)
>>>     print "Accuracy on testing set:"
>>>     print clf.score(X_test, y_test)
>>>     
>>>     y_pred = clf.predict(X_test)
>>>     
>>>     print "Classification Report:"
>>>     print metrics.classification_report(y_test, y_pred)
>>>     print "Confusion Matrix:"
>>>     print metrics.confusion_matrix(y_test, y_pred)

If we train and evaluate, the classifier performs the operation with almost no errors.

>>> train_and_evaluate(svc_1, X_train, X_test, y_train, y_test)
Accuracy on training set:
1.0
Accuracy on testing set:
0.99

Let's do a little more, why don't we try to classify the faces as people with and 
without glasses? Let's do that.

First thing to do is to define the range of the images that show faces wearing glasses. 
The following list shows the indexes of these images:

>>> # the index ranges of images of people with glasses
>>> glasses = [
   (10, 19), (30, 32), (37, 38), (50, 59), (63, 64),
   (69, 69), (120, 121), (124, 129), (130, 139), (160, 161),
   (164, 169), (180, 182), (185, 185), (189, 189), (190, 192),
   (194, 194), (196, 199), (260, 269), (270, 279), (300, 309),
   (330, 339), (358, 359), (360, 369)
]
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You can check these values by using the print_faces function that was defined 
before to plot the 400 faces and looking at the indexes in the lower-left corners.

Then we'll define a function that from those segments returns a new target array that 
marks with 1 for the faces with glasses and 0 for the faces without glasses (our new 
target classes):

>>> def create_target(segments):
>>>     # create a new y array of target size initialized with 
     zeros
>>>     y = np.zeros(faces.target.shape[0])
>>>     # put 1 in the specified segments
>>>     for (start, end) in segments:
>>>         y[start:end + 1] = 1
>>>     return y
>>> target_glasses = create_target(glasses)

So we must perform the training/testing split again.

>>> X_train, X_test, y_train, y_test = train_test_split(
        faces.data, target_glasses, test_size=0.25, random_state=0)

Now let's create a new SVC classifier, and train it with the new target vector using 
the following command:

>>> svc_2 = SVC(kernel='linear')

If we check the performance with cross-validation by the following code:

>>> evaluate_cross_validation(svc_2, X_train, y_train, 5)
[ 0.98333333  0.98333333  0.93333333  0.96666667  0.96666667]
Mean score: 0.967 (+/-0.009)

We obtain a mean accuracy of 0.967 with cross-validation if we evaluate on our 
testing set.

>>> train_and_evaluate(svc_2, X_train, X_test, y_train, y_test)
Accuracy on training set:
1.0
Accuracy on testing set:
0.99
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Classification Report:
             precision    recall  f1-score   support

          0       1.00      0.99      0.99        67
          1       0.97      1.00      0.99        33

avg / total       0.99      0.99      0.99       100

Confusion Matrix:
[[66  1]
 [ 0 33]]

Could it be possible that our classifier has learned to identify peoples' faces 
associated with glasses and without glasses precisely? How can we be sure that 
this is not happening and that if we get new unseen faces, it will work as expected? 
Let's separate all the images of the same person, sometimes wearing glasses and 
sometimes not. We will also separate all the images of the same person, the ones 
with indexes from 30 to 39, train by using the remaining instances, and evaluate on 
our new 10 instances set. With this experiment we will try to discard the fact that it is 
remembering faces, not glassed-related features.

>>> X_test = faces.data[30:40]
>>> y_test = target_glasses[30:40]
>>> print y_test.shape[0]
10
>>> select = np.ones(target_glasses.shape[0])
>>> select[30:40] = 0
>>> X_train = faces.data[select == 1]
>>> y_train = target_glasses[select == 1]
>>> print y_train.shape[0]
390
>>> svc_3 = SVC(kernel='linear')
>>> train_and_evaluate(svc_3, X_train, X_test, y_train, y_test)
Accuracy on training set:
1.0
Accuracy on testing set:
0.9
Classification Report:
             precision    recall  f1-score   support

          0       0.83      1.00      0.91         5
          1       1.00      0.80      0.89         5

avg / total       0.92      0.90      0.90        10
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Confusion Matrix:
[[5 0]
 [1 4]]

From the 10 images, only one error, still pretty good results, let's check out which 
one was incorrectly classified. First, we have to reshape the data from arrays to 64 x 
64 matrices:

>>> y_pred = svc_3.predict(X_test)
>>> eval_faces = [np.reshape(a, (64, 64)) for a in X_eval]

Then plot with our print_faces function:

>>> print_faces(eval_faces, y_pred, 10)

The image number 8 in the preceding figure has glasses and was classified as no 
glasses. If we look at that instance, we can see that it is different from the rest of the 
images with glasses (the border of the glasses cannot be seen clearly and the person 
is shown with closed eyes), which could be the reason it has been misclassified.

With a few lines, we created a face classifier with a linear SVM model. Usually we 
would not get such good results in the first trial. In these cases, (besides looking at 
different features) we can start tweaking the hyperparameters of our algorithm. In 
the particular case of SVM, we can try with different kernel functions; if linear does 
not give good results, we can try with polynomial or RBF kernels. Also the C and the 
gamma parameters may affect the results. For a description of the arguments and its 
values, please refer to the scikit-learn documentation.

Text classification with Naïve Bayes
Naïve Bayes is a simple but powerful classifier based on a probabilistic model 
derived from the Bayes' theorem. Basically it determines the probability that an 
instance belongs to a class based on each of the feature value probabilities. The naïve 
term comes from the fact that it assumes that each feature is independent of the rest, 
that is, the value of a feature has no relation to the value of another feature.
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Despite being very simple, it has been used in many domains with very good  
results. The independence assumption, although a naïve and strong simplification,  
is one of the features that make the model useful in practical applications. Training 
the model is reduced to the calculation of the involved conditional probabilities, 
which can be estimated by counting frequencies of correlations between feature 
values and class values.

One of the most successful applications of Naïve Bayes has been within the field  
of Natural Language Processing (NLP). NLP is a field that has been much related  
to machine learning, since many of its problems can be formulated as a classification 
task. Usually, NLP problems have important amounts of tagged data in the form  
of text documents. This data can be used as a training dataset for machine  
learning algorithms.

In this section, we will use Naïve Bayes for text classification; we will have a set of 
text documents with their corresponding categories, and we will train a Naïve Bayes 
algorithm to learn to predict the categories of new unseen instances. This simple task 
has many practical applications; probably the most known and widely used one is 
spam filtering. In this section we will try to classify newsgroup messages using a 
dataset that can be retrieved from within scikit-learn. This dataset consists of around 
19,000 newsgroup messages from 20 different topics ranging from politics and 
religion to sports and science.

As usual, we first start by importing our pylab environment:

>>> %pylab inline

Our dataset can be obtained by importing the fetch_20newgroups function from the 
sklearn.datasets module. We have to specify if we want to import a part or all of 
the set of instances (we will import all of them).

>>> from sklearn.datasets import fetch_20newsgroups
>>> news = fetch_20newsgroups(subset='all')

If we look at the properties of the dataset, we will find that we have the usual ones: 
DESCR, data, target, and target_names. The difference now is that data holds a list 
of text contents, instead of a numpy matrix:
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>>> print type(news.data), type(news.target), type(news.target_names)
<type 'list'> <type 'numpy.ndarray'> <type 'list'>
>>> print news.target_names
['alt.atheism', 'comp.graphics', 'comp.os.ms-windows.misc', 'comp.sys.
ibm.pc.hardware', 'comp.sys.mac.hardware', 'comp.windows.x', 'misc.
forsale', 'rec.autos', 'rec.motorcycles', 'rec.sport.baseball', 'rec.
sport.hockey', 'sci.crypt', 'sci.electronics', 'sci.med', 'sci.space', 
'soc.religion.christian', 'talk.politics.guns', 'talk.politics.
mideast', 'talk.politics.misc', 'talk.religion.misc']
>>> print len(news.data)
18846
>>> print len(news.target)
18846

If you look at, say, the first instance, you will see the content of a newsgroup 
message, and you can get its corresponding category:

>>> print news.data[0]
>>> print news.target[0], news.target_names[news.target[0]]

Preprocessing the data
Our machine learning algorithms can work only on numeric data, so our next 
step will be to convert our text-based dataset to a numeric dataset. Currently we 
only have one feature, the text content of the message; we need some function that 
transforms a text into a meaningful set of numeric features. Intuitively one could 
try to look at which are the words (or more precisely, tokens, including numbers or 
punctuation signs) that are used in each of the text categories, and try to characterize 
each category with the frequency distribution of each of those words. The sklearn.
feature_extraction.text module has some useful utilities to build numeric 
feature vectors from text documents.

Before starting the transformation, we will have to partition our data into training and 
testing set. The loaded data is already in a random order, so we only have to split the 
data into, for example, 75 percent for training and the rest 25 percent for testing:

>>> SPLIT_PERC = 0.75
>>> split_size = int(len(news.data)*SPLIT_PERC)
>>> X_train = news.data[:split_size]
>>> X_test = news.data[split_size:]
>>> y_train = news.target[:split_size]
>>> y_test = news.target[split_size:]
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If you look inside the sklearn.feature_extraction.text module, you 
will find three different classes that can transform text into numeric features: 
CountVectorizer, HashingVectorizer, and TfidfVectorizer. The difference 
between them resides in the calculations they perform to obtain the numeric features. 
CountVectorizer basically creates a dictionary of words from the text corpus. Then, 
each instance is converted to a vector of numeric features where each element will be 
the count of the number of times a particular word appears in the document.

HashingVectorizer, instead of constricting and maintaining the dictionary in 
memory, implements a hashing function that maps tokens into feature indexes, and 
then computes the count as in CountVectorizer.

TfidfVectorizer works like the CountVectorizer, but with a more advanced 
calculation called Term Frequency Inverse Document Frequency (TF-IDF). This is a 
statistic for measuring the importance of a word in a document or corpus. Intuitively, 
it looks for words that are more frequent in the current document, compared with 
their frequency in the whole corpus of documents. You can see this as a way to 
normalize the results and avoid words that are too frequent, and thus not useful to 
characterize the instances.

Training a Naïve Bayes classifier
We will create a Naïve Bayes classifier that is composed of a feature vectorizer  
and the actual Bayes classifier. We will use the MultinomialNB class from the 
sklearn.naive_bayes module. In order to compose the classifier with the 
vectorizer, as we saw in Chapter 1, Machine Learning – A Gentle Introduction, scikit-
learn has a very useful class called Pipeline (available in the sklearn.pipeline 
module) that eases the construction of a compound classifier, which consists of 
several vectorizers and classifiers.

We will create three different classifiers by combining MultinomialNB with the three 
different text vectorizers just mentioned, and compare which one performs better 
using the default parameters:

>>> from sklearn.naive_bayes import MultinomialNB
>>> from sklearn.pipeline import Pipeline
>>> from sklearn.feature_extraction.text import TfidfVectorizer, >>> 
HashingVectorizer, CountVectorizer
>>>
>>> clf_1 = Pipeline([
>>>     ('vect', CountVectorizer()),
>>>     ('clf', MultinomialNB()),
>>> ])
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>>> clf_2 = Pipeline([
>>>     ('vect', HashingVectorizer(non_negative=True)),
>>>     ('clf', MultinomialNB()),
>>> ])
>>> clf_3 = Pipeline([
>>>     ('vect', TfidfVectorizer()),
>>>     ('clf', MultinomialNB()),
>>> ])

We will define a function that takes a classifier and performs the K-fold cross-
validation over the specified X and y values:

>>> from sklearn.cross_validation import cross_val_score, KFold
>>> from scipy.stats import sem
>>>
>>> def evaluate_cross_validation(clf, X, y, K):
>>>     # create a k-fold croos validation iterator of k=5 folds
>>>     cv = KFold(len(y), K, shuffle=True, random_state=0)
>>>     # by default the score used is the one returned by score >>>     
method of the estimator (accuracy)
>>>     scores = cross_val_score(clf, X, y, cv=cv)
>>>     print scores
>>>     print ("Mean score: {0:.3f} (+/-{1:.3f})").format(
>>>         np.mean(scores), sem(scores))

Then we will perform a five-fold cross-validation by using each one of the classifiers.

>>> clfs = [clf_1, clf_2, clf_3]
>>> for clf in clfs:
>>>     evaluate_cross_validation(clf, news.data, news.target, 5)

These calculations may take some time; the results are as follows:

[ 0.86813478  0.86415495  0.86893075  0.85831786  0.8729443 ]
Mean score: 0.866 (+/-0.002)
[ 0.76359777  0.77182276  0.77765986  0.76147519  0.78222812]
Mean score: 0.771 (+/-0.004)
[ 0.86282834  0.85195012  0.86282834  0.85619528  0.87612732]
Mean score: 0.862 (+/-0.004)

As you can see CountVectorizer and TfidfVectorizer had similar performances, 
and much better than HashingVectorizer.
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Let's continue with TfidfVectorizer; we could try to improve the results by trying 
to parse the text documents into tokens with a different regular expression.

>>> clf_4 = Pipeline([
>>>     ('vect', TfidfVectorizer(
>>>        token_pattern=ur"\b[a-z0-9_\-\.]+[a-z][a-z0->>> 9_\- 
>>>        \.]+\b",
>>>     )),
>>>     ('clf', MultinomialNB()),
>>> ])

The default regular expression: ur"\b\w\w+\b" considers alphanumeric characters 
and the underscore. Perhaps also considering the slash and the dot could improve 
the tokenization, and begin considering tokens as Wi-Fi and site.com. The new 
regular expression could be: ur"\b[a-z0-9_\-\.]+[a-z][a-z0-9_\-\.]+\b". If 
you have queries about how to define regular expressions, please refer to the Python 
re module documentation. Let's try our new classifier:

>>> evaluate_cross_validation(clf_4, news.data, news.target, 5)
[ 0.87078801  0.86309366  0.87689042  0.86574688  0.8795756 ]
Mean score: 0.871 (+/-0.003)

We have a slight improvement from 0.86 to 0.87.

Another parameter that we can use is stop_words: this argument allows us to pass 
a list of words we do not want to take into account, such as too frequent words, or 
words we do not a priori expect to provide information about the particular topic.

We will define a function to load the stop words from a text file as follows:

>>> def get_stop_words():
>>>     result = set()
>>>     for line in open('stopwords_en.txt', 'r').readlines():
>>>         result.add(line.strip())
>>>     return result
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And create a new classifier with this new parameter as follows:

>>> clf_5 = Pipeline([
>>>     ('vect', TfidfVectorizer(
>>>                 stop_words= get_stop_words(),
>>>                 token_pattern=ur"\b[a-z0-9_\-\.]+[a-z][a-z0->>>                 
9_\-\.]+\b",    
>>>     )),
>>>     ('clf', MultinomialNB()),
>>> ])

>>> evaluate_cross_validation(clf_5, news.data, news.target, 5)
[ 0.88989122  0.8837888   0.89042186  0.88325816  0.89655172]
Mean score: 0.889 (+/-0.002)

The preceding code shows another improvement from 0.87 to 0.89.

Let's keep this vectorizer and start looking at the MultinomialNB parameters. This 
classifier has few parameters to tweak; the most important is the alpha parameter, 
which is a smoothing parameter. Let's set it to a lower value; instead of setting alpha 
to 1.0 (the default value), we will set it to 0.01:

>>> clf_7 = Pipeline([
>>>     ('vect', TfidfVectorizer(
>>>                 stop_words=stop_words,
>>>                 token_pattern=ur"\b[a-z0-9_\-\.]+[a-z][a-z0->>>                 
9_\-\.]+\b",         
>>>     )),
>>>     ('clf', MultinomialNB(alpha=0.01)),
>>> ])

>>> evaluate_cross_validation(clf_7, news.data, news.target, 5)
[ 0.92305651  0.91377023  0.92066861  0.91907668  0.92281167]
Mean score: 0.920 (+/-0.002)

The results had an important boost from 0.89 to 0.92, pretty good. At this point, 
we could continue doing trials by using different values of alpha or doing new 
modifications of the vectorizer. In Chapter 4, Advanced Features, we will show you 
practical utilities to try many different configurations and keep the best one. But for 
now, let's look a little more at our Naïve Bayes model.
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Evaluating the performance
If we decide that we have made enough improvements in our model, we are ready to 
evaluate its performance on the testing set.

We will define a helper function that will train the model in the entire training set 
and evaluate the accuracy in the training and in the testing sets. It will also print 
a classification report (precision and recall on every class) and the corresponding 
confusion matrix:

>>> from sklearn import metrics
>>>
>>> def train_and_evaluate(clf, X_train, X_test, y_train, y_test):
>>>     
>>>     clf.fit(X_train, y_train)
>>>     
>>>     print "Accuracy on training set:"
>>>     print clf.score(X_train, y_train)
>>>     print "Accuracy on testing set:"
>>>     print clf.score(X_test, y_test)    
>>>     y_pred = clf.predict(X_test)
>>>     
>>>     print "Classification Report:"
>>>     print metrics.classification_report(y_test, y_pred)
>>>     print "Confusion Matrix:"
>>>     print metrics.confusion_matrix(y_test, y_pred)

We will evaluate our best classifier.

>>> train_and_evaluate(clf_7, X_train, X_test, y_train, y_test)
Accuracy on training set:
0.99398613273
Accuracy on testing set:
0.913837011885

As we can see, we obtained very good results, and as we would expect, the accuracy 
in the training set is quite better than in the testing set. We may expect, in new 
unseen instances, an accuracy of around 0.91.

If we look inside the vectorizer, we can see which tokens have been used to create 
our dictionary:

>>> print len(clf_7.named_steps['vect'].get_feature_names())

61236
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This shows that the dictionary is composed of 61236 tokens. Let's print the  
feature names.

>>> clf_7.named_steps['vect'].get_feature_names()

The following table presents an extract of the results:

Extract of features obtained by vectorizer
u''sanctuaries'',
u''sanctuary'',
u''sanctum'',
u''sand'',
u''sandals'',
u''sandbags'',
u''sandberg'',
u''sandblasting'',
u''sanders'',

u''sanderson'',
u''sandia'',
u''sandiego.ncr.com'',
u''sanding'',
u''sandlak'',
u''sandman.caltech.edu'',
u''sandman.ece.clarkson.edu'',
u''sandra'',
u''sandro'',
u''sands''

You can see that some words are semantically very similar, for example, sand 
and sands, sanctuaries and sanctuary. Perhaps if the plurals and the singulars are 
counted to the same bucket, we would better represent the documents. This is a very 
common task, which could be solved using stemming, a technique that relates two 
words having the same lexical root.

Explaining Titanic hypothesis with 
decision trees
A common argument against linear classifiers and against statistical learning 
methods is that it is difficult to explain how the built model decides its predictions 
for the target classes. If you have a highly dimensional SVM, it is impossible for a 
human being to even imagine how the hyperplane built looks like. A Naïve Bayes 
classifier will tell you something like: "this class is the most probable, assuming 
it comes from a similar distribution as the training data, and making a few more 
assumptions" something not very useful, for example, we want to know why this or 
that mail should be considered as spam.
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decision trees are very simple yet powerful supervised learning methods, which 
constructs a decision tree model, which will be used to make predictions. The 
following figure shows a very simple decision tree to decide if an e-mail should be 
considered spam:

Does it the word “Viagra”have

Classify as Spam Does it come from your contact list?

Classify as Ham Classify as Spam

Yes No

Yes No

It first asks if the e-mail contains the word Viagra; if the answer is yes, it classifies 
it as spam; if the answer is no, it further asks if it comes from somebody in your 
contacts list; this time, if the answer is yes, it classifies the e-mail as Ham; if the 
answer is no, it classify it as spam. The main advantage of this model is that a human 
being can easily understand and reproduce the sequence of decisions (especially if 
the number of attributes is small) taken to predict the target class of a new instance. 
This is very important for tasks such as medical diagnosis or credit approval, where 
we want to show a reason for the decision, rather than just saying this is what the 
training data suggests (which is, by definition, what every supervised learning 
method does). In this section, we will show you through a working example what 
decision trees look like, how they are built, and how they are used for prediction.

The problem we would like to solve is to determine if a Titanic's passenger would 
have survived, given her age, passenger class, and sex. We will work with the 
Titanic dataset that can be downloaded from http://biostat.mc.vanderbilt.
edu/wiki/pub/Main/DataSets/titanic.txt. Like every other example in this 
chapter, we start with a dataset that includes the list of Titanic's passengers and a 
feature indicating whether they survived or not. Each instance in the dataset has the 
following form:

"1","1st",1,"Allen, Miss Elisabeth Walton",29.0000,"Southampton","St 
Louis, MO","B-5","24160 L221","2","female"
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The list of attributes is: Ordinal, Class, Survived (0=no, 1=yes), Name, Age, Port 
of Embarkation, Home/Destination, Room, Ticket, Boat, and Sex. We will start by 
loading the dataset into a numpy array.

>>> import csv
>>> import numpy as np
>>> with open('data/titanic.csv', 'rb') as csvfile:
>>>     titanic_reader = csv.reader(csvfile, delimiter=',',
>>>     quotechar='"')
>>>     
>>>     # Header contains feature names
>>>     row = titanic_reader.next()
>>>     feature_names = np.array(row)
>>>    
>>>     # Load dataset, and target classes
>>>     titanic_X, titanic_y = [], []
>>>     for row in titanic_reader:  
>>>         titanic_X.append(row)
>>>         titanic_y.append(row[2]) # The target value is
            "survived"
>>>    
>>>     titanic_X = np.array(titanic_X)
>>>     titanic_y = np.array(titanic_y)

The code shown uses the Python csv module to load the data.

>>> print feature_names
['row.names' 'pclass' 'survived' 'name' 'age' 'embarked' 'home.dest' 
'room' 'ticket' 'boat' 'sex'] 

>>> print titanic_X[0], titanic_y[0]
['1' '1st' '1' 'Allen, Miss Elisabeth Walton' '29.0000' 'Southampton' 
'St Louis, MO' 'B-5' '24160 L221' '2' 'female'] 1

Preprocessing the data
The first step we must take is to select the attributes we will use for learning:

>>> # we keep class, age and sex
>>> titanic_X = titanic_X[:, [1, 4, 10]]
>>> feature_names = feature_names[[1, 4, 10]]
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We have selected feature numbers 1, 4, and 10 that is class, age, and sex, based 
on the assumption that the remaining attributes have no effect on the passenger's 
survival. Feature selection is an extremely important step while creating a machine 
learning solution. If the algorithm does not have good features as input, it will not 
have good enough material to learn from, results won't be good, no matter even if 
we have the best machine learning algorithm ever designed.

Sometimes the feature selection will be made manually, based on our knowledge 
of the problem's domain and the machine learning method we are planning to use. 
Sometimes feature selection may be done by using automatic tools to evaluate and 
select the most promising ones. In Chapter 4, Advanced Features, we will talk a bit 
about these techniques, but for now, we will manually select our attributes. Very 
specific attributes (such as Name in our case) could result in overfitting (consider a 
tree that just asks if the name is X, she survived); attributes where there is a small 
number of instances with each value, present a similar problem (they might not be 
useful for generalization). We will use class, age, and sex because a priori, we expect 
them to have influenced the passenger's survival.

Now, our learning data looks like:

>>> print feature_names
['pclass' 'age' 'sex']

>>> print titanic_X[12],titanic_y[12]
['1st' 'NA' 'female'] 1

We have shown instance number 12 because it poses a problem to solve; one of its 
features (the age) is not available. We have missing values, a usual problem with 
datasets. In this case, we decided to substitute missing values with the mean age in 
the training data. We could have taken a different approach, for example, using the 
most common value in the training data, or the median value. When we substitute 
missing values, we have to understand that we are modifying the original problem, 
so we have to be very careful with what we are doing. This is a general rule in 
machine learning; when we change data, we should have a clear idea of what we are 
changing, to avoid skewing the final results.

>>> # We have missing values for age
>>> # Assign the mean value
>>> ages = titanic_X[:, 1]
>>> mean_age = np.mean(titanic_X[ages != 'NA', 
    1].astype(np.float))
>>> titanic_X[titanic_X[:, 1] == 'NA', 1] = mean_age
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The implementation of decision trees in scikit-learn expects as input a list of real-
valued features, and the decision rules of the model would be of the form:

Feature <= value 

For example, age <= 20.0. Our attributes (except for age) are categorical; that is, 
they correspond to a value taken from a discrete set such as male and female. So, 
we have to convert categorical data into real values. Let's start with the sex feature. 
The preprocessing module of scikit-learn includes a LabelEncoder class, whose fit 
method allows conversion of a categorical set into a 0..K-1 integer, where K is the 
number of different classes in the set (in the case of sex, just 0 or 1):

>>> # Encode sex 
>>> from sklearn.preprocessing import LabelEncoder
>>> enc = LabelEncoder()
>>> label_encoder = enc.fit(titanic_X[:, 2])
>>> print "Categorical classes:", label_encoder.classes_
Categorical classes: ['female' 'male']

>>> integer_classes = 
    label_encoder.transform(label_encoder.classes_)
>>> print "Integer classes:", integer_classes
Integer classes: [0 1]

>>> t = label_encoder.transform(titanic_X[:, 2])
>>> titanic_X[:, 2] = t 

The last two sentences transform the values of the sex attribute into 0-1 values, and 
modify the training set.

print feature_names
['pclass' 'age' 'sex']

print titanic_X[12], titanic_y[12] 
['1st' '31.1941810427' '0'] 1
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We still have a categorical attribute: class. We could use the same approach and 
convert its three classes into 0, 1, and 2. This transformation implicitly introduces an 
ordering between classes, something that is not an issue in our problem. However, 
we will try a more general approach that does not assume an ordering, and it 
is widely used to convert categorical classes into real-valued attributes. We will 
introduce an additional encoder and convert the class attributes into three new 
binary features, each of them indicating if the instance belongs to a feature value (1) 
or (0). This is called one hot encoding, and it is a very common way of managing 
categorical attributes for real-based methods:

>>> from sklearn.preprocessing import OneHotEncoder
>>>
>>> enc = LabelEncoder()
>>> label_encoder = enc.fit(titanic_X[:, 0])
>>> print "Categorical classes:", label_encoder.classes_
Categorical classes: ['1st' '2nd' '3rd']

>>> integer_classes = 
    label_encoder.transform(label_encoder.classes_).reshape(3, 1)
>>> print "Integer classes:", integer_classes
Integer classes: [[0] [1] [2]]

>>> enc = OneHotEncoder()
>>> one_hot_encoder = enc.fit(integer_classes)
>>> # First, convert classes to 0-(N-1) integers using 
    label_encoder
>>> num_of_rows = titanic_X.shape[0]
>>> t = label_encoder.transform(titanic_X[:,  
    0]).reshape(num_of_rows, 1)
>>> # Second, create a sparse matrix with three columns, each one 
    indicating if the instance belongs to the class
>>> new_features = one_hot_encoder.transform(t)
>>> # Add the new features to titanix_X
>>> titanic_X = np.concatenate([titanic_X, 
    new_features.toarray()], axis = 1)
>>> #Eliminate converted columns
>>> titanic_X = np.delete(titanic_X, [0], 1)
>>> # Update feature names
>>> feature_names = ['age', 'sex', 'first_class', 'second_class', 
    'third_class']
>>> # Convert to numerical values
>>> titanic_X = titanic_X.astype(float)
>>> titanic_y = titanic_y.astype(float)
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The preceding code first converts the classes into integers and then uses the 
OneHotEncoder class to create the three new attributes that are added to the array of 
features. It finally eliminates from training data the original class feature.

>>> print feature_names
['age', 'sex', 'first_class', 'second_class', 'third_class']

>>> print titanic_X[0], titanic_y[0] 
[29.   0.   1.   0.   0.] 1.0

We have now a suitable learning set for scikit-learn to learn a decision tree. Also, 
standardization is not an issue for decision trees because the relative magnitude of 
features does not affect the classifier performance.

The preprocessing step is usually underestimated in machine learning methods, 
but as we can see even in this very simple example, it can take some time to make 
data look as our methods expect. It is also very important in the overall machine 
learning process; if we fail in this step (for example, incorrectly encoding attributes, 
or selecting the wrong features), the following steps will fail, no matter how good the 
method we use for learning.

Training a decision tree classifier
Now to the interesting part; let's build a decision tree from our training data. As 
usual, we will first separate training and testing data.

>>> from sklearn.cross_validation import train_test_split
>>> X_train, X_test, y_train, y_test = train_test_split(titanic_X, >>> 
titanic_y, test_size=0.25, random_state=33)

Now, we can create a new DecisionTreeClassifier and use the fit method of the 
classifier to do the learning job.

>>> from sklearn import tree
>>> clf = tree.DecisionTreeClassifier(criterion='entropy', 
    max_depth=3,min_samples_leaf=5)
>>> clf = clf.fit(X_train,y_train)
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DecisionTreeClassifier accepts (as most learning methods) several 
hyperparameters that control its behavior. In this case, we used the Information 
Gain (IG) criterion for splitting learning data, told the method to build a tree of at 
most three levels, and to accept a node as a leaf if it includes at least five training 
instances. To explain this and show how decision trees work, let's visualize the 
model built. The following code assumes you are using IPython and that your 
Python distribution includes the pydot module. Also, it allows generation of 
Graphviz code from the tree and assumes that Graphviz itself is installed. For more 
information about Graphviz, please refer to http://www.graphviz.org/.

>>> import pydot,StringIO
>>> dot_data = StringIO.StringIO() 
>>> tree.export_graphviz(clf, out_file=dot_data, 
    feature_names=['age','sex','1st_class','2nd_class'
    '3rd_class']) 
>>> graph = pydot.graph_from_dot_data(dot_data.getvalue()) 
>>> graph.write_png('titanic.png') 
>>> from IPython.core.display import Image 
>>> Image(filename='titanic.png')

The decision tree we have built represents a series of decisions based on the training 
data. To classify an instance, we should answer the question at each node. For 
example, at our root node, the question is: Is sex<=0.5? (are we talking about a 
woman?). If the answer is yes, you go to the left child node in the tree; otherwise 
you go to the right child node. You keep answering questions (was she in the third 
class?, was she in the first class?, and was she below 13 years old?), until you reach a 
leaf. When you are there, the prediction corresponds to the target class that has most 
instances (that is if the answers are given to the previous questions). In our case, if 
she was a woman from second class, the answer would be 1 (that is she survived), 
and so on.
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You might be asking how our method decides which questions should be asked in 
each step. The answer is Information Gain (IG) (or the Gini index, which is a similar 
measure of disorder used by scikit-learn). IG measures how much entropy we lose 
if we answer the question, or alternatively, how much surer we are after answering 
it. Entropy is a measure of disorder in a set, if we have zero entropy, it means all 
values are the same (in our case, all instances of the target classes are the same), 
while it reaches its maximum when there is an equal number of instances of each 
class (in our case, when half of the instances correspond to survivors and the other 
half to non survivors). At each node, we have a certain number of instances (starting 
from the whole dataset), and we measure its entropy. Our method will select the 
questions that yield more homogeneous partitions (with the lowest entropy), when 
we consider only those instances for which the answer for the question is yes or no, 
that is, when the entropy after answering the question decreases.

Interpreting the decision tree
As you can see in the tree, at the beginning of the decision tree growing process, 
you have the 984 instances in the training set, 662 of them corresponding to class 
0 (fatalities), and 322 of them to class 1 (survivors). The measured entropy for this 
initial group is about 0.632. From the possible list of questions we can ask, the one 
that produces the greatest information gain is: Was she a woman? (remember that 
the female category was encoded as 0). If the answer is yes, entropy is almost the 
same, but if the answer is no, it is greatly reduced (the proportion of men who 
died was much greater than the general proportion of casualties). In this sense, 
the woman question seems to be the best to ask. After that, the process continues, 
working in each node only with the instances that have feature values that 
correspond to the questions in the path to the node.

If you look at the tree, in each node we have: the question, the initial Shannon entropy, 
the number of instances we are considering, and their distribution with respect to the 
target class. In each step, the number of instances gets reduced to those that answer 
yes (the left branch) and no (the right branch) to the question posed by that node. The 
process continues until a certain stopping criterion is met (in our case, until we have a 
fourth-level node, or the number of considered samples is lower than five).

At prediction time, we take an instance and start traversing the tree, answering the 
questions based on the instance features, until we reach a leaf. At this point, we look 
at to how many instances of each class we had in the training set, and select the class 
to which most instances belonged.
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For example, consider the question of determining if a 10-year-old girl, from  
first class would have survived. The answer to the first question (was she female?) is 
yes, so we take the left branch of the tree. In the two following questions the answers 
are no (was she from third class?) and yes (was she from first class?), so we take the 
left and right branch respectively. At this time, we have reached a leaf. In the training 
set, we had 102 people with these attributes, 97 of them survivors. So, our answer 
would be survived.

In general, we found reasonable results: the group with more casualties (449 from 
496) corresponded to adult men from second or third class, as you can check in 
the tree. Most girls from first class, on the other side, survived. Let's measure the 
accuracy of our method in the training set (we will first define a helper function to 
measure the performance of a classifier):

>>> from sklearn import metrics
>>> def measure_performance(X,y,clf, show_accuracy=True, 
    show_classification_report=True, show_confussion_matrix=True):
>>>     y_pred=clf.predict(X)   
>>>     if show_accuracy:
>>>         print "Accuracy:{0:.3f}".format(
>>>             metrics.accuracy_score(y, y_pred)
>>>         ),"\n"
>>>
>>>     if show_classification_report:
>>>         print "Classification report"
>>>         print metrics.classification_report(y,y_pred),"\n"
>>>         
>>>     if show_confussion_matrix:
>>>       print "Confussion matrix"
>>>       print metrics.confusion_matrix(y,y_pred),"\n"
        
>>> measure_performance(X_train,y_train,clf, 
    show_classification=False, show_confusion_matrix=False))
Accuracy:0.838

Our tree has an accuracy of 0.838 on the training set. But remember that this is not 
a good indicator. This is especially true for decision trees as this method is highly 
susceptible to overfitting. Since we did not separate an evaluation set, we should 
apply cross-validation. For this example, we will use an extreme case of cross-
validation, named leave-one-out cross-validation. For each instance in the training 
sample, we train on the rest of the sample, and evaluate the model built on the only 
instance left out. After performing as many classifications as training instances, 
we calculate the accuracy simply as the proportion of times our method correctly 
predicted the class of the left-out instance, and found it is a little lower (as we 
expected) than the resubstitution accuracy on the training set.



Chapter 2

[ 51 ]

>>> from sklearn.cross_validation import cross_val_score, LeaveOneOut
>>> from scipy.stats import sem
>>>
>>> def loo_cv(X_train, y_train,clf):
>>>     # Perform Leave-One-Out cross validation
>>>     # We are preforming 1313 classifications!
>>>     loo = LeaveOneOut(X_train[:].shape[0])
>>>     scores = np.zeros(X_train[:].shape[0])
>>>     for train_index, test_index in loo:
>>>         X_train_cv, X_test_cv = X_train[train_index], 
            X_train[test_index]
>>>         y_train_cv, y_test_cv = y_train[train_index], 
            y_train[test_index]
>>>         clf = clf.fit(X_train_cv,y_train_cv)
>>>         y_pred = clf.predict(X_test_cv)    
>>>         scores[test_index] = metrics.accuracy_score(
   y_test_cv.astype(int), y_pred.astype(int))
>>>     print ("Mean score: {0:.3f} (+/-{1:.3f})").format(np.
mean(scores), sem(scores))
   
   >>> loo_cv(X_train, y_train,clf)
Mean score: 0.837 (+/-0.012)

The main advantage of leave-one-out cross-validation is that it allows almost as 
much data for training as we have available, so it is particularly well suited for those 
cases where data is scarce. Its main problem is that training a different classifier for 
each instance could be very costly in terms of the computation time.

A big question remains here: how we selected the hyperparameters for our method 
instantiation? This problem is a general one, it is called model selection, and we will 
address it in more detail in Chapter 4, Advanced Features.

Random Forests – randomizing decisions
A common criticism to decision trees is that once the training set is divided after 
answering a question, it is not possible to reconsider this decision. For example, if 
we divide men and women, every subsequent question would be only about men or 
women, and the method could not consider another type of question (say, age less 
than a year, irrespective of the gender). Random Forests try to introduce some level 
of randomization in each step, proposing alternative trees and combining them to 
get the final prediction. These types of algorithms that consider several classifiers 
answering the same question are called ensemble methods. In the Titanic task, it is 
probably hard to see this problem because we have very few features, but consider 
the case when the number of features is in the order of thousands.
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Random Forests propose to build a decision tree based on a subset of the training 
instances (selected randomly, with replacement), but using a small random number 
of features at each set from the feature set. This tree growing process is repeated 
several times, producing a set of classifiers. At prediction time, each grown tree, 
given an instance, predicts its target class exactly as decision trees do. The class 
that most of the trees vote (that is the class most predicted by the trees) is the one 
suggested by the ensemble classifier.

In scikit-learn, using Random Forests is as simple as importing 
RandomForestClassifier from the sklearn.ensemble module, and fitting the 
training data as follows:

>>> from sklearn.ensemble import RandomForestClassifier
>>> clf = RandomForestClassifier(n_estimators=10, random_state=33)
>>> clf = clf.fit(X_train, y_train)
>>> loo_cv(X_train, y_train, clf)
Mean score: 0.817 (+/-0.012)

We find that results are actually worse for Random Forests. It seems that introducing 
randomization was, after all, not a good idea because the number of features was too 
small. However, for bigger datasets, with a bigger number of features, Random Forests 
is a very fast, simple, and popular method to improve accuracy, retaining the virtues of 
decision trees. Actually, in the next section, we will use them for regression.

Evaluating the performance
The final step in every supervised learning task should be to evaluate our best classifier 
on the previously unseen data, to get an idea of its prediction performance. Remember, 
this step should not be used to select among competing methods or parameters. That 
would be cheating (because again, we risk overfitting the new data). So, in our case, 
let's measure the performance of decision trees on the testing data.

>>> clf_dt = tree.DecisionTreeClassifier(criterion='entropy', max_
depth=3, min_samples_leaf=5)
>>> clf_dt.fit(X_train, y_train)
>>> measure_performance(X_test, y_test, clf_dt)
Accuracy:0.793 
Classification report
             precision    recall  f1-score   support

          0       0.77      0.96      0.85       202
          1       0.88      0.54      0.67       127

avg / total       0.81      0.79      0.78       329
Confusion matrix
[[193   9]
 [ 59  68]]



Chapter 2

[ 53 ]

From the classification results and the confusion matrix, it seems that our method 
tends to predict too much that the person did not survive.

Predicting house prices with regression
In every example we have seen so far, we have faced what in Chapter 1, Machine 
Learning – A Gentle Introduction, we called classification problems: the output we 
aimed at predicting belonged to a discrete set. But often, we would want to predict 
a value extracted from the real line. The learning schema is still the same: fit a model 
to the training data, and evaluate on new data to get the target class whose value is 
a real number. Our classifier, instead of selecting a class from a list, should act as a 
real-valued function, which for each of the (possibly infinite) combination of learning 
features returns a real number. We could consider regression as classification with an 
infinite number of target classes.

Many problems can be modeled both as classification and regression tasks, 
depending on the class we selected as the target. For example, predicting blood 
sugar level is a regression task, while predicting if somebody has diabetes or not is a 
classification task.

In the example of the first figure, we have used a line to fit the learning data 
(composed of a sole attribute and a target value), that is, we have performed linear 
regression. If we want to predict the value of a new instance, we get their real-valued 
attribute and obtain the predicted value by projecting the inferred line into the 
second axis.
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In this section, we will compare several regression methods by using the same 
dataset. We will try to predict the price of a house as a function of its attributes. 
As the dataset, we will use the Boston house-prices dataset, which includes 506 
instances, representing houses in the suburbs of Boston by 14 features, one of them 
(the median value of owner-occupied homes) being the target class (for a detailed 
reference, see http://archive.ics.uci.edu/ml/datasets/Housing). Each 
attribute in this dataset is real-valued.

The dataset is included in the standard scikit-learn distribution, so let's start  
by loading it:

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from sklearn.datasets import load_boston
>>> boston = load_boston()
>>> print boston.data.shape
(506, 13)
>>> print boston.feature_names
['CRIM' 'ZN' 'INDUS' 'CHAS' 'NOX' 'RM' 'AGE' 'DIS' 'RAD' 'TAX' 
'PTRATIO' 'B' 'LSTAT' 'MEDV']
>>> print np.max(boston.target), np.min(boston.target),  
    np.mean(boston.target)
50.0 5.0 22.5328063241

You should try printing boston.DESCR to get a feel of what each feature means. 
This is a very healthy habit: machine learning is not just number crunching, 
understanding the problem we are facing is crucial, especially to select the best 
learning model to use.

As usual, we start slicing our learning set into training and testing datasets, and 
normalizing the data:

>>> from sklearn.cross_validation import train_test_split
>>> X_train, X_test, y_train, y_test = 
    train_test_split(boston.data, boston.target, test_size=0.25, 
    random_state=33)
>>> from sklearn.preprocessing import StandardScaler
>>> scalerX = StandardScaler().fit(X_train)
>>> scalery = StandardScaler().fit(y_train)
>>> X_train = scalerX.transform(X_train)
>>> y_train = scalery.transform(y_train)
>>> X_test = scalerX.transform(X_test)
>>> y_test = scalery.transform(y_test)
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Before looking at our best classifier, let's define how we will compare our results. 
Since we want to preserve our testing set for evaluating the performance of the final 
classifier, we should find a way to select the best model while avoiding overfitting. 
We already know the answer: cross-validation. Regression poses an additional 
problem: how should we evaluate our results? Accuracy is not a good idea, since 
we are predicting real values, it is almost impossible for us to predict exactly the 
final value. There are several measures that can be used (you can look at the list of 
functions under sklearn.metrics module). The most common is the R2 score, or 
coefficient of determination that measures the proportion of the outcomes variation 
explained by the model, and is the default score function for regression methods in 
scikit-learn. This score reaches its maximum value of 1 when the model perfectly 
predicts all the test target values. Using this measure, we will build a function that 
trains a model and evaluates its performance using five-fold cross-validation and the 
coefficient of determination.

>>> from sklearn.cross_validation import *
>>> def train_and_evaluate(clf, X_train, y_train):
>>>     clf.fit(X_train, y_train)
>>>     print "Coefficient of determination on training 
        set:",clf.score(X_train, y_train)
>>>     # create a k-fold cross validation iterator of k=5 folds
>>>     cv = KFold(X_train.shape[0], 5, shuffle=True, 
        random_state=33)
>>>     scores = cross_val_score(clf, X_train, y_train, cv=cv)
>>>     print "Average coefficient of determination using 5-fold 
        crossvalidation:",np.mean(scores)

First try – a linear model
The question that linear models try to answer is which hyperplane in the 
14-dimensional space created by our learning features (including the target value)  
is located closer to them. After this hyperplane is found, prediction reduces to 
calculate the projection on the hyperplane of the new point, and returning the target 
value coordinate. Think of our first example in Chapter 1, Machine Learning – A Gentle 
Introduction, where we wanted to find a line separating our training instances.  
We could have used that line to predict the second learning attribute as a function  
of the first one, that is, linear regression.

But, what do we mean by closer? The usual measure is least squares: calculate the 
distance of each instance to the hyperplane, square it (to avoid sign problems), and 
sum them. The hyperplane whose sum is smaller is the least squares estimator (the 
hyperplane in the case if two dimensions are just a line).



Supervised Learning

[ 56 ]

Since we don't know how our data fits (it is difficult to print a 14-dimension 
scatter plot!), we will start with a linear model called SGDRegressor, which tries to 
minimize squared loss.

>>> from sklearn import linear_model
>>> clf_sgd = linear_model.SGDRegressor(loss='squared_loss', 
    penalty=None,  random_state=42)
>>> train_and_evaluate(clf_sgd,X_train,y_train)
Coefficient of determination on training set: 0.743303511411
Average coefficient of determination using 5-fold crossvalidation: 
0.715166411086

We can print the hyperplane coefficients our method has calculated, which is  
as follows:

>>> print clf_sgd.coef_
[-0.07641527  0.06963738 -0.05935062  0.10878438 -0.06356188  
0.37260998 -0.02912886 -0.20180631  0.08463607 -0.05534634 
-0.19521922 0.0653966 -0.36990842]

You probably noted the penalty=None parameter when we called the method. 
The penalization parameter for linear regression methods is introduced to avoid 
overfitting. It does this by penalizing those hyperplanes having some of their 
coefficients too large, seeking hyperplanes where each feature contributes more or less 
the same to the predicted value. This parameter is generally the L2 norm (the squared 
sums of the coefficients) or the L1 norm (that is the sum of the absolute value of the 
coefficients). Let's see how our model works if we introduce an L2 penalty.

>>> clf_sgd1 = linear_model.SGDRegressor(loss='squared_loss', 
    penalty='l2',  random_state=42)
>>> train_and_evaluate(clf_sgd1, X_train, y_train) 
Coefficient of determination on training set: 0.743300616394
Average coefficient of determination using 5-fold crossvalidation: 
0.715166962417

In this case, we did not obtain an improvement.
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Second try – Support Vector Machines  
for regression
The regression version of SVM can be used instead to find the hyperplane.

>>> from sklearn import svm
>>> clf_svr = svm.SVR(kernel='linear')
>>> train_and_evaluate(clf_svr, X_train, y_train)
Coefficient of determination on training set: 0.71886923342
Average coefficient of determination using 5-fold crossvalidation: 
0.694983285734

Here, we had no improvement. However, one of the main advantages of SVM is that 
(using what we called the kernel trick) we can use a nonlinear function, for example, 
a polynomial function to approximate our data.

>>> clf_svr_poly = svm.SVR(kernel='poly')
>>> train_and_evaluate(clf_svr_poly, X_train, y_train)
Coefficient of determination on training set: 0.904109273301
Average coefficient of determination using 5-fold cross validation: 
0.754993478137

Now, our results are six points better in terms of coefficient of determination. We can 
actually improve this by using a Radial Basis Function (RBF) kernel.

>>> clf_svr_rbf = svm.SVR(kernel='rbf')
>>> train_and_evaluate(clf_svr_rbf, X_train, y_train)
Coefficient of determination on training set: 0.900132065979
Average coefficient of determination using 5-fold cross validation: 
0.821626135903

RBF kernels have been used in several problems and have shown to be very effective. 
Actually, RBF is the default kernel used by SVM methods in scikit-learn.
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Third try – Random Forests revisited
We can try a very different approach to regression using Random Forests. We have 
previously used Random Forests for classification. When used for regression, the tree 
growing procedure is exactly the same, but at prediction time, when we arrive at a 
leaf, instead of reporting the majority class, we return a representative real value, for 
example, the average of the target values.

Actually, we will use Extra Trees, implemented in the ExtraTreesRegressor 
class within the sklearn.ensemble module. This method adds an extra level of 
randomization. It not only selects for each tree a different, random subset of features, 
but also randomly selects the threshold for each decision.

>>> from sklearn import ensemble
>>> clf_et=ensemble.ExtraTreesRegressor(n_estimators=10, 
    compute_importances=True, random_state=42)
>>> train_and_evaluate(clf_et, X_train, y_train)
Coefficient of determination on training set: 1.0
Average coefficient of determination using 5-fold cross validation: 
0.852511952001

The first thing to note is that we have not only completely eliminated underfitting 
(achieving perfect prediction on training values), but also improved the performance 
by three points while using cross-validation. An interesting feature of Extra Trees 
is that they allow computing the importance of each feature for the regression task. 
Let's compute this importance as follows:

>>> print sort(zip(clf_et.feature_importances_, 
    boston.feature_names), axis=0)

[['0.000231085384564' 'AGE']
 ['0.000909210196652' 'B']
 ['0.00162702734638' 'CHAS']
 ['0.00292361527201' 'CRIM']
 ['0.00472492264278' 'DIS']
 ['0.00489022243822' 'INDUS']
 ['0.0067481487587' 'LSTAT']
 ['0.00852353178943' 'NOX']
 ['0.00873406149286' 'PTRATIO']
 ['0.0366902590312' 'RAD']
 ['0.0982265323415' 'RM']
 ['0.385904111089' 'TAX']
 ['0.439867272217' 'ZN']]

We can see that ZN (proportion of residential land zoned for lots over 25,000 sq. ft.) 
and TAX (full-value property tax rate) are by far the most influential features on our 
final decision.



Chapter 2

[ 59 ]

Evaluation
As usual, let's evaluate the performance of our best method on the testing set 
(previously, we slightly modified our measure_performance function to show the 
coefficient of determination):

>>> from sklearn import metrics
>>> def measure_performance(X, y, clf, show_accuracy=True, 
    show_classification_report=True, show_confusion_matrix=True, 
    show_r2_score=False):
>>>     y_pred = clf.predict(X)   
>>>     if show_accuracy:
>>>         print "Accuracy:{0:.3f}".format(
>>>            metrics.accuracy_score(y, y_pred)
>>>         ),"\n"
>>>
>>>     if show_classification_report:
>>>         print "Classification report"
>>>         print metrics.classification_report(y, y_pred),"\n"
>>>         
>>>     if show_confusion_matrix:
>>>         print "Confusion matrix"
>>>         print metrics.confusion_matrix(y, y_pred),"\n"
>>>         
>>>     if show_r2_score:
>>>         print "Coefficient of determination:{0:.3f}".format(
>>>            metrics.r2_score(y, y_pred)
>>>         ),"\n"
        
>>> measure_performance(X_test, y_test, clf_et, 
    show_accuracy=False, show_classification_report=False,
    show_confusion_matrix=False, show_r2_score=True)
Coefficient of determination:0.793

Once we have selected our best method and used all the available data, we  
could train our best method on the whole training set, but we will have no way  
to measure its performance on future data, simply because we do not have any  
more data available.
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Summary
In this chapter we reviewed some of the most common supervised learning methods 
and some practical applications. We learned that supervised methods require 
instances to have both input features and a target class. In the next chapter, we 
will review unsupervised learning methods that do not require a target class to be 
learned. These methods are very useful to understand the structure of the data and 
can also be used as a previous step before utilizing a supervised learning model.



Unsupervised Learning
Nowadays, it is a common assertion that huge amounts of data are available from 
the Internet for learning. If you read the previous chapters, you will see that even 
though supervised learning methods are very powerful in predicting future values 
based on the existing data, they have an obvious drawback: data must be curated; 
a human being should have annotated the target class for a certain number of 
instances. This labor is typically done by an expert (if you want to assign the correct 
species to iris flowers, you need somebody who knows about these flowers at least); 
it will probably take some time and money to complete, and it will typically not 
produce significant amounts of data (at least not compared with the Internet!). Every 
supervised learning building must stand on as much curated data as possible.

However, there are some things we can do without annotated data. Consider the 
case when you want to assign table seats in a wedding. You want to group people, 
putting similar people at the same table (the bride's family, the groom's friends, and 
so on). Anyone that has organized a wedding knows that this task, called Clustering 
in machine learning terminology, is not an easy one. Sometimes people belong to 
more than one group, and you have to decide if not so similar people can be together 
(for example, the bride and groom's parents). Clustering involves finding groups 
where all elements in the group are similar, but objects in different groups are not. 
What does it mean to be similar is a question every clustering method must answer. 
The other critical question is how to separate clusters. Humans are very good at 
finding clusters when faced with two-dimensional data (consider identifying cities 
in a map just based on the presence of streets), but things become more difficult as 
dimensions grow.

In this chapter we will present several approximations for clustering: k-means 
(probably the most popular clustering method), affinity propagation, mean shift, 
and a model-based method called Gaussian Mixture Models.
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Another example of unsupervised learning is Dimensionality Reduction. Suppose 
we represent learning instances with a large number of attributes and want to 
visualize them to identify their principal patterns. This is very difficult when the 
number of features is more than three, simply because we cannot visualize more than 
three dimensions. Dimensionality Reduction methods present a way to represent 
data points of a high dimensional dataset in a lower dimensional space, keeping (at 
least partly) their pattern structure. These methods are also helpful in selecting the 
models we should use for learning. For example, if it is reasonable to approximate 
some supervised learning task using a linear hyperplane or should we resort to more 
complicated models.

Principal Component Analysis
Principal Component Analysis (PCA) is an orthogonal linear transformation that 
turns a set of possibly correlated variables into a new set of variables that are as 
uncorrelated as possible. The new variables lie in a new coordinate system such 
that the greatest variance is obtained by projecting the data in the first coordinate, 
the second greatest variance by projecting in the second coordinate, and so on. 
These new coordinates are called principal components; we have as many principal 
components as the number of original dimensions, but we keep only those with 
high variance. Each new principal component that is added to the principal 
components set must comply with the restriction that it should be orthogonal 
(that is, uncorrelated) to the remaining principal components. PCA can be seen 
as a method that reveals the internal structure of data; it supplies the user with a 
lower dimensional shadow of the original objects. If we keep only the first principal 
components, data dimensionality is reduced and thus it is easier to visualize the 
structure of data. If we keep, for example, only the first and second components, we 
can examine data using a two-dimensional scatter plot. As a result, PCA is useful for 
exploratory data analysis before building predictive models.

For our learning methods, PCA will allow us to reduce a high-dimensional space 
into a low-dimensional one while preserving as much variance as possible. It 
is an unsupervised method since it does not need a target class to perform its 
transformations; it only relies on the values of the learning attributes. This is very 
useful for two major purposes:

• Visualization: Projecting a high-dimensional space, for example, into  
two dimensions will allow us to map our instances into a two-dimensional 
graph. Using these graphical visualizations, we can have insights about  
the distribution of instances and look at how separable instances from  
different classes are. In this section we will use PCA to transform and 
visualize a dataset.
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• Feature selection: Since PCA can transform instances from high to lower 
dimensions, we could use this method to address the curse of dimensionality. 
Instead of learning from the original set of features, we can transform our 
instances with PCA and then apply a learning algorithm on top of the new 
feature space.

As a working example, in this section we will use a dataset of handwritten digits 
digitalized in matrices of 8x8 pixels, so each instance will consist initially of 64 
attributes. How can we visualize the distribution of instances? Visualizing 64 
dimensions at the same time is impossible for a human being, so we will use PCA  
to reduce the instances to two dimensions and visualize its distribution in a  
two-dimensional scatter graph.

We start by loading our dataset (the digits dataset is one of the sample datasets 
provided with scikit-learn).

>>> from sklearn.datasets import load_digits
>>> digits = load_digits()
>>> X_digits, y_digits = digits.data, digits.target

If we print the digits keys, we get:

>>> print digits.keys()
['images', 'data', 'target_names', 'DESCR', 'target']

We will use the data matrix that has the instances of 64 attributes each and the 
target vector that has the corresponding digit number.

Let us print the digits to take a look at how the instances will appear:

>>> import matplotlib.pyplot as plt
>>> n_row, n_col = 2, 5
>>>
>>> def print_digits(images, y, max_n=10):
>>>     # set up the figure size in inches
>>>     fig = plt.figure(figsize=(2. * n_col, 2.26 * n_row))
>>>     i=0
>>>     while i < max_n and i < images.shape[0]:
>>>         p = fig.add_subplot(n_row, n_col, i + 1, xticks=[],
              yticks=[])
>>>         p.imshow(images[i], cmap=plt.cm.bone, 
              interpolation='nearest')
>>>         # label the image with the target value
>>>         p.text(0, -1, str(y[i]))
>>>         i = i + 1
>>>
>>> print_digits(digits.images, digits.target, max_n=10)
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These instances can be seen in the following diagram:

Define a function that will plot a scatter with the two-dimensional points that 
will be obtained by a PCA transformation. Our data points will also be colored 
according to their classes. Recall that the target class will not be used to perform 
the transformation; we want to investigate if the distribution after PCA reveals the 
distribution of the different classes, and if they are clearly separable. We will use ten 
different colors for each of the digits, from 0 to 9.

>>> def plot_pca_scatter():
>>>     colors = ['black', 'blue', 'purple', 'yellow', 'white', 
          'red', 'lime', 'cyan', 'orange', 'gray']
>>>     for i in xrange(len(colors)):
>>>         px = X_pca[:, 0][y_digits == i]
>>>         py = X_pca[:, 1][y_digits == i]
>>>         plt.scatter(px, py, c=colors[i])
>>>     plt.legend(digits.target_names)
>>>     plt.xlabel('First Principal Component')
>>>     plt.ylabel('Second Principal Component')

At this point, we are ready to perform the PCA transformation. In scikit-learn, 
PCA is implemented as a transformer object that learns n number of components 
through the fit method, and can be used on new data to project it onto these 
components. In scikit-learn, we have various classes that implement different 
kinds of PCA decompositions, such as PCA, ProbabilisticPCA, RandomizedPCA, 
and KernelPCA. If you need a detailed description of each, please refer to the 
scikit-learn documentation. In our case, we will work with the PCA class from the 
sklearn.decomposition module. The most important parameter we can change is 
n_components, which allows us to specify the number of features that the obtained 
instances will have. In our case, we want to transform instances of 64 features to 
instances of just two features, so we will set n_components to 2.
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Now we perform the transformation and plot the results:

>>> from sklearn.decomposition import PCA
>>> estimator = PCA(n_components=10)
>>> X_pca = estimator.fit_transform(X_digits)
>>> plot_pca_scatter()

The plotted results can be seen in the following diagram:

From the preceding figure, we can draw a few interesting conclusions:

• We can view the 10 different classes corresponding to the 10 digits at first 
sight. We see that for most classes, their instances are clearly grouped in 
clusters according to their target class, and also that the clusters are relatively 
distinct. The exception is the class corresponding to the digit 5 with instances 
very sparsely distributed over the plane overlap with the other classes.

• At the other extreme, the class corresponding to the digit 0 is the most 
separated cluster. Intuitively, this class may be the one that is easiest to 
separate from the rest; that is, if we train a classifier, it should be the class 
with the best evaluation figures.

• Also, for topological distribution, we may predict that contiguous classes 
correspond to similar digits, which means they will be the most difficult to 
separate. For example, the clusters corresponding to digits 9 and 3 appear 
contiguous (which will be expected as their graphical representations are 
similar), so it might be more difficult to separate a 9 from a 3 than a 9 from a 
4, which is on the left-hand side, far from these clusters.
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Notice that we quickly got a graph that gave us a lot of insight into the problem. 
This technique may be used before training a supervised classifier in order to better 
understand the difficulties we may encounter. With this knowledge, we may plan 
better feature preprocessing, feature selection, select a more suitable learning model, 
and so on. As we mentioned before, it can also be used to perform dimension 
reduction to avoid the curse of dimensionality and also may allow us to use simpler 
learning methods, such as linear models.

To finish, let us look at principal component transformations. We will take the 
principal components from the estimator by accessing the components attribute. 
Each of its components is a matrix that is used to transform a vector from the original 
space to the transformed space. In the scatter we previously plotted, we only took 
into account the first two components.

We will plot all the components in the same shape as the original data (digits).

>>> def print_pca_components(images, n_col, n_row):
>>>     plt.figure(figsize=(2. * n_col, 2.26 * n_row))
>>>     for i, comp in enumerate(images):
>>>         plt.subplot(n_row, n_col, i + 1)
>>>         plt.imshow(comp.reshape((8, 8)), 
              interpolation='nearest')
>>>         plt.text(0, -1, str(i + 1) + '-component')
>>>         plt.xticks(())
>>>         plt.yticks(())

The components can be seen as follows:
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By taking a look at the first two components in the preceding figure, we can draw a 
few interesting observations:

• If you look at the second component, you can see that it mostly highlights 
the central region of the image. The digit class that is most affected by this 
pattern is 0, since its central region is empty. This intuition is confirmed by 
looking at our previous scatter plot. If you look at the cluster corresponding 
to the digit 0, you can see it is the one that has the lower values for the second 
component.

• Regarding the first component, as we see in the scatter plot, it is very 
useful to separate the clusters corresponding to the digit 4 (extreme left, 
low value) and the digit 3 (extreme right, high value). If you see the first 
component plot, it agrees with this observation. You can see that the regions 
corresponding to the zone are very similar to the digit 3, while it has color in 
the zones that are characteristic of the digit 4.

If we used additional components, we will get more characteristics to be able to 
separate the classes into new dimensions. For example, we could add the third 
principal component and try to plot our instances in a tridimensional scatter plot.

In the next section, we will show another unsupervised group of methods: clustering 
algorithms. Like dimensionality-reduction algorithms, clustering does not need to 
know a target class. However, clustering methods try to group instances, looking for 
those that are (in some way) similar. We will see, however, that clustering methods, 
like supervised methods, can use PCA to better visualize and analyze their results.

Clustering handwritten digits  
with k-means
K-means is the most popular clustering algorithm, because it is very simple and easy 
to implement and it has shown good performance on different tasks. It belongs to the 
class of partition algorithms that simultaneously partition data points into distinct 
groups called clusters. An alternative group of methods, which we will not cover in 
this book, are hierarchical clustering algorithms. These find an initial set of clusters 
and divide or merge them to form new ones.

The main idea behind k-means is to find a partition of data points such that 
the squared distance between the cluster mean and each point in the cluster is 
minimized. Note that this method assumes that you know a priori the number of 
clusters your data should be divided into.
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We will show in this section how k-means works using a motivating example, the 
problem of clustering handwritten digits. So, let us first import our dataset into our 
Python environment and show how handwritten digits look (we will use a slightly 
different version of the print_digits function we introduced in the previous section).

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>>
>>> from sklearn.datasets import load_digits
>>> from sklearn.preprocessing import scale
>>> digits = load_digits()
>>> data = scale(digits.data)
>>>
>>> def print_digits(images,y,max_n=10):
>>>     # set up the figure size in inches
>>>     fig = plt.figure(figsize=(12, 12))
>>>     fig.subplots_adjust(left=0, right=1, bottom=0, top=1,
          hspace=0.05, wspace=0.05)
>>>     i = 0
>>>     while i <max_n and i <images.shape[0]:
>>>         # plot the images in a matrix of 20x20
>>>         p = fig.add_subplot(20, 20, i + 1, xticks=[],
              yticks=[])
>>>         p.imshow(images[i], cmap=plt.cm.bone)
>>>         # label the image with the target value
>>>         p.text(0, 14, str(y[i]))
>>>         i = i + 1
>>>
>>> print_digits(digits.images, digits.target, max_n=10)

The print digits can be seen in the following:

You can see that the dataset contains the corresponding number associated as 
a target class, but since we are clustering we will not use this information until 
evaluation time. We will just see if we can group the figures based on their similarity, 
and form the ten clusters we can expect.
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As usual, we must separate train and testing sets as follows:

>>> from sklearn.cross_validation import train_test_split
>>> X_train, X_test, y_train, y_test, images_train, 
   images_test = train_test_split(
        data, digits.target, digits.images,  test_size=0.25, 
          random_state=42)
>>>
>>> n_samples, n_features = X_train.shape
>>> n_digits = len(np.unique(y_train))
>>> labels = y_train

Once we have our training set, we are ready to cluster instances. What the k-means 
algorithm does is:

1. Select an initial set of cluster centers at random.
2. Find the nearest cluster center for each data point, and assign the data point 

closest to that cluster.
3. Compute the new cluster centers, averaging the values of the cluster data 

points, and repeat until cluster membership stabilizes; that is, until a few 
data points change their clusters after each iteration.

Because of how k-means works, it can converge to local minima, and the initial 
set of cluster centers could greatly affect the clusters found. The usual approach to 
mitigate this is to try several initial sets and select the set with minimal value for the 
sum of squared distances between cluster centers (or inertia). The implementation 
of k-means in scikit-learn already does this (the n-init parameter allows us to 
establish how many different centroid configurations the algorithm will try). It also 
allows us to specify that the initial centroids will be sufficiently separated, leading to 
better results. Let's see how this works on our dataset.

>>> from sklearn import cluster
>>> clf = Cluster.KMeans(init='kmeans++',
    n_clusters=10, random_state=42)
>>> clf.fit(X_train)

The procedure is similar to the one used for supervised learning, but note that the 
fit method only takes the training data as an argument. Also observe that we need 
to specify the number of clusters. We can perceive this number because we know 
that clusters represent numbers.

If we print the value of the labels_ attribute of the classifier, we get a list of the 
cluster numbers associated to each training instance.

>>> print_digits(images_train, clf.labels_, max_n=10)
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The cluster can be seen in the following diagram:

Note that the cluster number has nothing to do with the real number value. 
Remember that we have not used the class to classify; we only grouped images by 
similarity. Let's see how our algorithm behaves on the testing data.

To predict the clusters for training data, we use the usual predict method of  
the classifier.

>>> y_pred=clf.predict(X_test)

Let us see how clusters look:

>>> def print_cluster(images, y_pred, cluster_number):
>>>      images = images[y_pred==cluster_number]
>>>      y_pred = y_pred[y_pred==cluster_number]
>>>      print_digits(images, y_pred,max_n=10)
>>> for i in range(10):
>>>      print_cluster(images_test, y_pred, i)

This code shows ten images from each cluster. Some clusters are very clear, as shown 
in the following figure:
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Cluster number 2 corresponds to zeros. What about cluster number 7?

It is not so clear. It seems cluster 7 is something like drawn numbers that look  
similar to the digit nine. Cluster number 9 only has six instances, as shown in the 
following figure:

It must be clear after reading that we are not classifying images here (as in the face 
examples in the previous chapter). We are grouping into ten classes (you can try 
changing the number of clusters and see what happens).

How can we evaluate our performance? Precision and all that stuff does not work, 
since we have no target classes to compare with. To evaluate, we need to know the 
"real" clusters, whatever that means. We can suppose, for our example, that each 
cluster includes every drawing of a certain number, and only that number. Knowing 
this, we can compute the adjusted Rand index between our cluster assignment and 
the expected one. The Rand index is a similar measure for accuracy, but it takes into 
account the fact that classes can have different names in both assignments. That is, if 
we change class names, the index does not change. The adjusted index tries to deduct 
from the result coincidences that have occurred by chance. When you have the exact 
same clusters in both sets, the Rand index equals one, while it equals zero when 
there are no clusters sharing a data point.

>>> from sklearn import metrics
>>> print "Adjusted rand score: 
    {:.2}".format(metrics.adjusted_rand_score(y_test, y_pred))
Adjusted rand score:0.57
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We can also print the confusion matrix as follows:

>>> print metrics.confusion_matrix(y_test, y_pred)
[[ 0  0 43  0  0  0  0  0  0  0]
 [20  0  0  7  0  0  0 10  0  0]
 [ 5  0  0 31  0  0  0  1  1  0]
 [ 1  0  0  1  0  1  4  0 39  0]
 [ 1 50  0  0  0  0  1  2  0  1]
 [ 1  0  0  0  1 41  0  0 16  0]
 [ 0  0  1  0 44  0  0  0  0  0]
 [ 0  0  0  0  0  1 34  1  0  5]
 [21  0  0  0  0  3  1  2 11  0]
 [ 0  0  0  0  0  2  3  3 40  0]]

Observe that the class 0 in the test set (which coincides with number 0 drawings) is 
completely assigned to the cluster number 2. We have problems with number 8: 21 
instances are assigned class 0, while 11 are assigned class 8, and so on. Not so good 
after all.

If we want to graphically show how k-means clusters look like, we must plot them 
on a two-dimensional plane. We have learned how to do that in the previous section: 
Principal Component Analysis (PCA). Let's construct a meshgrid of points (after 
dimensionality reduction), calculate their assigned cluster, and plot them.

This example is taken from the very nice scikit-learn tutorial at 
http://scikit-learn.org/.

>>> from sklearn import decomposition
>>> pca = decomposition.PCA(n_components=2).fit(X_train)
>>> reduced_X_train = pca.transform(X_train)
>>> # Step size of the mesh. 
>>> h = .01     
>>> # point in the mesh [x_min, m_max]x[y_min, y_max].
>>> x_min, x_max = reduced_X_train[:, 0].min() + 1, 
    reduced_X_train[:, 0].max() - 1
>>> y_min, y_max = reduced_X_train[:, 1].min() + 1, 
    reduced_X_train[:, 1].max() - 1
>>> xx, yy = np.meshgrid(np.arange(x_min, x_max, h), 
    np.arange(y_min, y_max, h))
>>> kmeans = cluster.KMeans(init='k-means++', n_clusters=n_digits, 
    n_init=10)
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>>> kmeans.fit(reduced_X_train)
>>> Z = kmeans.predict(np.c_[xx.ravel(), yy.ravel()])
>>> # Put the result into a color plot
>>> Z = Z.reshape(xx.shape)
>>> plt.figure(1)
>>> plt.clf()
>>> plt.imshow(Z, interpolation='nearest', 
    extent=(xx.min(), xx.max(), yy.min(), 
    yy.max()), cmap=plt.cm.Paired, aspect='auto', origin='lower')
>>> plt.plot(reduced_X_train[:, 0], reduced_X_train[:, 1], 'k.', 
    markersize=2)
>>> # Plot the centroids as a white X
>>> centroids = kmeans.cluster_centers_
>>> plt.scatter(centroids[:, 0], centroids[:, 1],marker='.', 
    s=169, linewidths=3, color='w', zorder=10)
>>> plt.title('K-means clustering on the digits dataset (PCA 
    reduced data)\nCentroids are marked with white dots')
>>> plt.xlim(x_min, x_max)
>>> plt.ylim(y_min, y_max)
>>> plt.xticks(())
>>> plt.yticks(())
>>> plt.show()

The k-means clustering on the digits dataset can be seen in the following diagram:
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Alternative clustering methods
The scikit-learn toolkit includes several clustering algorithms, all of them including 
similar methods and parameters to those we used in k-means. In this section we will 
briefly review some of them, suggesting some of their advantages.

A typical problem for clustering is that most methods require the number of 
clusters we want to identify. The general approach to solve this is to try different 
numbers and let an expert determine which works best using techniques such 
as dimensionality reduction to visualize clusters. There are also some methods 
that try to automatically calculate the number of clusters. Scikit-learn includes an 
implementation of Affinity Propagation, a method that looks for instances that are 
the most representative of others, and uses them to describe the clusters. Let's see 
how it works on our digit-learning problem:

>>> aff = cluster.AffinityPropagation()
>>> aff.fit(X_train)
>>> print aff.cluster_centers_indices_.shape
(112,)

Affinity propagation detected 112 clusters in our training set. It seems, after all, that 
the numbers are not so similar between them. You can try drawing the clusters using 
the print_digits function, and see which clusters seemed to group. The cluster_
centers_indices_ attribute represents what Affinity Propagation found as the 
canonical elements of each cluster.

Another method that calculates cluster number is MeanShift(). If we apply it to our 
example, it detects 18 clusters as follows:

>>> ms = cluster.MeanShift()
>>> ms.fit(X_train)
>>> print ms.cluster_centers_.shape
(18, 64)

In this case, the cluster_centers_ attribute shows the hyperplane cluster centroids. 
The two previous examples show that results can vary a lot depending on the 
method we are using. Which clustering method to use depends on the problem we 
are solving and the type of clusters we want to find.

Note that, for the last two methods, we cannot use the Rand score to evaluate 
performance because we do not have a canonical set of clusters to compare with. 
We can, however, measure the inertia of the clustering, since inertia is the sum 
of distances from each data point to the centroid; we expect near-zero numbers. 
Unfortunately, there is currently no way in scikit-learn to measure inertia except for 
the k-means method.
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Finally, we will try a probabilistic approach to clustering, using Gaussian Mixture 
Models (GMM). We will see, from a procedural view, that it is very similar to 
k-means, but their theoretical principles are quite different. GMM assumes that data 
comes from a mixture of finite Gaussian distributions with unknown parameters. A 
Gaussian distribution is a well-known distribution function within statistics used to 
model many phenomena. It has a bell shaped function centered in the mean value; 
you have probably seen the following drawing before:

If we take a sufficiently large sample of men and measure their height, the histogram 
(proportion of men with each specific height) can be adjusted by a Gaussian 
distribution with mean 1.774 meters and standard deviation of 0.1466 meters. Mean 
indicates the most probable value (which coincides with the peak of the curve), 
and standard deviation indicates how spread out the results are; that is, how far 
they can appear from the mean values. If we measure the area beneath the curve 
(that is, its integral) between two specific heights, we can know, given a man, how 
probable it is that his height lies between the two values, in case the distribution is 
correct. Now, why should we expect that distribution and not another? Actually, 
not every phenomenon has the same distribution, but a theorem called the Law of 
Large Numbers tells us that whenever we repeat an experiment a large number of 
times (for example, measuring somebody's height), the distribution of results can be 
approximated by a Gaussian.



Unsupervised Learning

[ 76 ]

Generally, we have a multivariate (that is, involving more than one feature) 
distribution, but the idea is the same. There is a point in the hyperplane (the mean) 
most instances will be closer to; when we move away from the mean, the probability 
of finding a point in the cluster will decrease. How far this probability decreases is 
dependent on the second parameter, the variance. As we said, GMM assumes each 
cluster has a multivariate normal distribution, and the method objective is to find 
the k centroids (estimating mean and variance from training data using an algorithm 
called Expectation-Maximization (EM)) and assign each point to the nearest mean. 
Let's see how it works on our example.

>>> from sklearn import mixture
>>> gm = mixture.GMM(n_components=n_digits, 
    covariance_type='tied', random_state=42)
>>> gm.fit(X_train)
GMM(covariance_type='tied', init_params='wmc', min_covar=0.001,n_
components=10, n_init=1, n_iter=100, params='wmc',random_
state=42,thresh=0.01)

You can observe that the procedure is exactly the same as the one we used for 
k-means. covariance_type is a method parameter that indicates how we expect 
features; that is, each pixel to be related. For example, we can suppose that they are 
independent, but we can also expect that closer points are correlated, and so on. For 
the moment, we will use the tied covariance type. In the next chapter, we will show 
some techniques to select between different parameter values.

Let's see how it performs on our testing data:

>>> # Print train clustering and confusion matrix
>>> y_pred = gm.predict(X_test)
>>> print "Adjusted rand 
    score:{:.2}".format(metrics.adjusted_rand_score(y_test,
    y_pred))
Adjusted rand score:0.65

>>> print "Homogeneity score:{:.2} 
    ".format(metrics.homogeneity_score(y_test, y_pred)) 
Homogeneity score:0.74

>>> print "Completeness score: {:.2} 
    ".format(metrics.completeness_score(y_test, y_pred))
Completeness score: 0.79 
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Compared to k-means, we achieved a better Rand score (0.65 versus 0.59), indicating 
that we have better aligned our clusters with the original digits. We also included 
two interesting measures included in sklearn.metrics. Homogeneity is a number 
between 0.0 and 1.0 (greater is better). A value of 1.0 indicates that clusters only 
contain data points from a single class; that is, clusters effectively group similar 
instances. Completeness, on the other hand, is satisfied when every data point of  
a given class is within the same cluster (meaning that we have grouped all possible 
instances of the class, instead of building several uniform but smaller clusters).  
We can see homogeneity and completeness as the unsupervised versions of  
precision and recall.

Summary
In this chapter we presented some of the most important unsupervised learning 
methods. We did not intend to provide you with an exhaustive introduction to all 
the possible methods, but instead a brief introduction to these kinds of techniques. 
We described how we can use unsupervised algorithms to perform a quick data 
analysis to understand the behavior of the dataset and also perform dimensionality 
reduction. Both applications are very useful as a step before applying a supervised 
learning method. We also applied unsupervised learning techniques such as k-means 
to resolve problems without using a target class—a very useful way to create 
applications on top of untagged data.

In Chapter 4, Advanced Features, we will look at techniques that will allow us to obtain 
better results in the application of machine learning algorithms. We will look at 
data-preprocessing and feature-selection techniques to obtain better features to learn 
from. Also, we will use grid search techniques to obtain the parameters that produce 
the best performance with our algorithms.





Advanced Features
In the previous chapters we have studied several algorithms for very different tasks, 
from classification and regression to clustering and dimensionality reduction. We 
showed how we can apply these algorithms to predict results when faced with new 
data. That is what machine learning is all about. In this last chapter, we want to show 
some important concepts and methods you should take into account if you want to 
do real-world machine learning.

• In real-world problems, usually data is not already expressed by attribute/
float value pairs, but through more complex structures or is not structured at 
all. We will learn feature extraction techniques that will allow us to extract 
scikit-learn features from data.

• From the initial set of available features, not all of them will be useful 
for our algorithms to learn from; in fact, some of them may degrade our 
performance. We will address the problem of selecting the most adequate 
feature set, a process known as feature selection.

• Finally, as we have seen in the examples in this book, many of the machine 
learning algorithms have parameters that must be set in order to use them. 
To do that, we will review model selection techniques; that is, methods to 
select the most promising hyperparameters to our algorithms.

All these steps are crucial in order to obtain decent results when working with 
machine learning applications.
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Feature extraction
The usual scenario for learning tasks such as those presented in this book include a 
list of instances (represented as feature/value pairs) and a special feature (the target 
class) that we want to predict for future instances based on the values of the remaining 
features. However, the source data does not usually come in this format. We have to 
extract what we think are potentially useful features and convert them to our learning 
format. This process is called feature extraction or feature engineering, and it is an 
often underestimated but very important and time-consuming phase in most real-
world machine learning tasks. We can identify two different steps in this task:

• Obtain features: This step involves processing the source data and extracting 
the learning instances, usually in the form of feature/value pairs where 
the value can be an integer or float value, a string, a categorical value, and 
so on. The method used for extraction depends heavily on how the data 
is presented. For example, we can have a set of pictures and generate an 
integer-valued feature for each pixel, indicating its color level, as we did 
in the face recognition example in Chapter 2, Supervised Learning. Since this 
is a very task-dependent job, we will not delve into details and assume we 
already have this setting for our examples.

• Convert features: Most scikit-learn algorithms assume as an input a set of 
instances represented as a list of float-valued features. How to get these 
features will be the main subject of this section.

We can, as we did in Chapter 2, Supervised Learning, build ad hoc procedures to 
convert the source data. There are, however, tools that can help us to obtain a 
suitable representation. The Python package pandas (http://pandas.pydata.
org/), for example, provides data structures and tools for data analysis. It aims to 
provide similar features to those of R, the popular language and environment for 
statistical computing. We will use pandas to import the Titanic data we presented in 
Chapter 2, Supervised Learning, and convert them to the scikit-learn format.

Let's start by importing the original titanic.csv data into a pandas DataFrame data 
structure (DataFrame is essentially a two-dimensional labeled data structure where 
columns can potentially include different data types and each row represents an 
instance). As usual, we previously import the numpy and pyplot packages.

>>> %pylab inline
>>> import pandas as pd
>>> import numpy as np
>>> import matplotlib.pyplot as plt
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Then we import the Titanic data with pandas.

>>> titanic = pd.read_csv('data/titanic.csv')
>>> print titanic
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1313 entries, 0 to 1312
Data columns (total 11 columns):
row.names    1313  non-null values
pclass       1313  non-null values
survived     1313  non-null values
name         1313  non-null values
age          633  non-null values
embarked     821  non-null values
home.dest    754  non-null values
room         77  non-null values
ticket       69  non-null values
boat         347  non-null values
sex          1313  non-null values
dtypes: float64(1), int64(2), object(8)

You can see that each csv column has a corresponding feature into the DataFrame, 
and that the feature type is induced from the available data. We can inspect some 
features to see what they look like.

>>> print titanic.head()[['pclass', 'survived', 'age', 'embarked', 
    'boat', 'sex']]
pclass  survived      age     embarked   boat     sex
0    1st         1  29.0000  Southampton      2  female
1    1st         0   2.0000  Southampton    NaN  female
2    1st         0  30.0000  Southampton  (135)    male
3    1st         0  25.0000  Southampton    NaN  female
4    1st         1   0.9167  Southampton     11    male
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The main difficulty we have now is that scikit-learn methods expect real numbers 
as feature values. In Chapter 2, Supervised Learning, we used the LabelEncoder and 
OneHotEncoder preprocessing methods to manually convert certain categorical 
features into 1-of-K values (generating a new feature for each possible value; valued 
1 if the original feature had the corresponding value and 0 otherwise). This time, we 
will use a similar scikit-learn method, DictVectorizer, which automatically builds 
these features from the different original feature values. Moreover, we will program 
a method to encode a set of columns in a unique step.

>>> from sklearn import feature_extraction
>>> def one_hot_dataframe(data, cols, replace=False):
>>>     vec = feature_extraction.DictVectorizer()
>>>     mkdict = lambda row: dict((col, row[col]) for col in cols)
>>>     vecData = pd.DataFrame(vec.fit_transform(
>>>         data[cols].apply(mkdict, axis=1)).toarray())
>>>     vecData.columns = vec.get_feature_names()
>>>     vecData.index = data.index
>>>     if replace:
>>>         data = data.drop(cols, axis=1)
>>>         data = data.join(vecData)
>>>     return (data, vecData)

The one_hot_dataframe method (based on the script at https://gist.github.
com/kljensen/5452382) takes a pandas DataFrame data structure and a list of 
columns and encodes each column into the necessary 1-of-K features. If the replace 
parameter is True, it will also substitute the original column with the new set. Let's 
see it applied to the categorical pclass, embarked, and sex features (titanic_n only 
contains the previously created columns):

>>> titanic,titanic_n = one_hot_dataframe(titanic, ['pclass', 
    'embarked', 'sex'], replace=True)
>>> titanic.describe()
<class 'pandas.core.frame.DataFrame'>
Index: 8 entries, count to max
Data columns (total 12 columns):
row.names               8  non-null values
survived                8  non-null values
age                     8  non-null values
embarked                8  non-null values
embarked=Cherbourg      8  non-null values
embarked=Queenstown     8  non-null values
embarked=Southampton    8  non-null values
pclass=1st              8  non-null values
pclass=2nd              8  non-null values
pclass=3rd              8  non-null values
sex=female              8  non-null values
sex=male                8  non-null values
dtypes: float64(12)
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The pclass attribute has been converted to three pclass=1st, pclass=2nd, 
pclass=3rd features, and similarly for the other two features. Note that the 
embarked feature has not disappeared, This is due to the fact that the original 
embarked attribute included NaN values, indicating a missing value; in those cases, 
every feature based on embarked will be valued 0, but the original feature whose 
value is NaN remains, indicating the feature is missing for certain instances. Next, we 
encode the remaining categorical attributes:

>>> titanic, titanic_n = one_hot_dataframe(titanic, ['home.dest', 
    'room', 'ticket', 'boat'], replace=True)

We also have to deal with missing values, since DecisionTreeClassifier we plan 
to use does not admit them on input. Pandas allow us to replace them with a fixed 
value using the fillna method. We will use the mean age for the age feature, and 0 
for the remaining missing attributes.

>>> mean = titanic['age'].mean()
>>> titanic['age'].fillna(mean, inplace=True)
>>> titanic.fillna(0, inplace=True)

Now, all of our features (except for Name) are in a suitable format. We are ready to 
build the test and training sets, as usual.

>>> from sklearn.cross_validation import train_test_split
>>> titanic_target = titanic['survived']
>>> titanic_data = titanic.drop(['name', 'row.names', 'survived'],
    axis=1)
>>> X_train, X_test, y_train, y_test =  
   train_test_split(titanic_data, titanic_target, test_size=0.25,
   random_state=33)

We decided to simply drop the name attribute, since we do not expect it to be 
informative about the survival status (we have one different value for each instance, 
so we can generalize over it). We also specified the survived feature as the target 
class, and consequently eliminated it from the training vector.

Let's see how a decision tree works with the current feature set.

>>> from sklearn import tree
>>> dt = tree.DecisionTreeClassifier(criterion='entropy')
>>> dt = dt.fit(X_train, y_train)
>>> from sklearn import metrics
>>> y_pred = dt.predict(X_test)
>>> print "Accuracy:{0:.3f}".format(metrics.accuracy_score(y_test,
    y_pred)), "\n"
Accuracy:0.839
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Feature selection
Until now, when training our decision tree, we used every available feature in our 
learning dataset. This seems perfectly reasonable, since we want to use as much 
information as there is available to build our model. There are, however, two main 
reasons why we would want to restrict the number of features used:

• Firstly, for some methods, especially those (such as decision trees) that 
reduce the number of instances used to refine the model at each step, it is 
possible that irrelevant features could suggest correlations between features 
and target classes that arise just by chance and do not correctly model the 
problem. This aspect is also related to overfitting; having certain over-specific 
features may lead to poor generalization. Besides, some features may be 
highly correlated, and will simply add redundant information.

• The second reason is a real-world one. A large number of features could 
greatly increase the computation time without a corresponding classifier 
improvement. This is of particular importance when working with Big Data, 
where the number of instances and features could easily grow to several 
thousand or more. Also, in relation to the curse of dimensionality, learning 
a generalizable model from a dataset with too many features relative to the 
number of instances can be difficult.

As a result, working with a smaller feature set may lead to better results. So we want 
to find some way to algorithmically find the best features. This task is called feature 
selection and is a crucial step when we aim to get decent results with machine 
learning algorithms. If we have poor features, our algorithm will return poor results 
no matter how sophisticated our machine learning algorithm is.

Consider, for example, our very simple Titanic example. We started with just 11 
features, but after 1-of-K encoding they grew to 581.

>>> print titanic
<class 'pandas.core.frame.DataFrame'> Int64Index: 1313 entries, 0 
to 1312 Columns: 581 entries, row.names to ticket=L15 1s dtypes: 
float64(578), int64(2), object(1)

This does not pose an important computational problem, but consider what could 
happen if, as previously demonstrated, we represent each document in a dataset as 
the number of occurrences of each possible word. Another problem is that decision 
trees suffer from overfitting. If branching is based on a very small number of 
instances, the prediction power of the built model will decrease on future data. One 
solution to this is to adjust model parameters (such as the maximum tree depth or 
the minimum required number of instances at a leaf node). In this example, however, 
we will take a different approach: we will try to limit the features to the most 
relevant ones.
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What do we mean by relevant? This is an important question. A general approach 
is to find the smallest set of features that correctly characterize the training data. If 
a feature always coincides with the target class (that is, it is a perfect predictor), it is 
enough to characterize the data. On the other hand, if a feature always has the same 
value, its prediction power will be very low.

The general approach in feature selection is to get some kind of evaluation function 
that, when given a potential feature, returns a score of how useful the feature is, 
and then keeps the features with the highest scores. These methods may have the 
disadvantage of not detecting correlations between features. Other methods may 
be more brute force: try all possible subsets of the original feature list, train the 
algorithm on each combination, and keep the combination that gets the best results.

As an evaluation method, we can, for instance, use a statistical test that measures 
how probable it is that two random variables (say, a given feature and the target 
class) are independent; that is, there is no correlation between them.

Scikit-learn provides several methods in the feature_selection module. We will 
use the SelectPercentile method that, when given a statistical test, selects a user-
specified percentile of features with the highest scoring. The most popular statistical 
test is the χ² (chi-squared) statistic. Let's see how it works for our Titanic example; we 
will use it to select 20 percent of the most important features:

>>> from sklearn import feature_selection
>>> fs = feature_selection.SelectPercentile(
        feature_selection.chi2, percentile=20)
>>> X_train_fs = fs.fit_transform(X_train, y_train)

The X_train_fs array now has the statistically more important features. We can 
now train our decision tree on this data.

>>> dt.fit(X_train_fs, y_train)
>>> X_test_fs = fs.transform(X_test)
>>> y_pred_fs = dt.predict(X_test_fs)
>>> print "Accuracy:{0:.3f}".format(metrics.accuracy_score(y_test,
    y_pred_fs)),"\n"
Accuracy:0.845

We can see that the accuracy on the training set improved half a point after feature 
selection on the training set.
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Is it possible to find the optimal number of features? If by optimal we mean with 
the best performance on the training set, it is actually possible; we can simply use 
a brute-force approach and try with different numbers of features while measuring 
their performance on the training set using cross-validation.

>>> from sklearn import cross_validation
>>>
>>> percentiles = range(1, 100, 5)
>>> results = []
>>> for i in range(1,100,5):
>>>     fs = feature_selection.SelectPercentile(
            feature_selection.chi2, percentile=i
        )
>>>     X_train_fs = fs.fit_transform(X_train, y_train)
>>>     scores = cross_validation.cross_val_score(dt, X_train_fs,  
        y_train, cv=5)
>>>     results = np.append(results, scores.mean())
>>> optimal_percentil = np.where(results == results.max())[0]
>>> print "Optimal number of features:{0}".format(
        percentiles[optimal_percentil]), "\n"
Optimal number of features:11
>>> 
>>> # Plot number of features VS. cross-validation scores
>>> import pylab as pl
>>> pl.figure()
>>> pl.xlabel("Number of features selected")
>>> pl.ylabel("Cross-validation accuracy)")
>>> pl.plot(percentiles, results)

The following figure shows how cross-validation accuracy changes with the number 
of features:
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We can see that accuracy quickly improves when we start adding features, remaining 
stable after the percentile of features turns about 10. In fact, the best accuracy is 
achieved when using 64 of the original 581 features (at the 11 percent percentile). 
Let's see if this actually improved performance on the testing set.

>>> fs = feature_selection.SelectPercentile(
             feature_selection.chi2,  
             percentile=percentiles[optimal_percentil])
>>> X_train_fs = fs.fit_transform(X_train, y_train)
>>> dt.fit(X_train_fs, y_train)
>>> X_test_fs = fs.transform(X_test)
>>> y_pred_fs = dt.predict(X_test_fs)
>>> print "Accuracy:{0:.3f}".format(metrics.accuracy_score(y_test,
    y_pred_fs)), "\n"
Accuracy:0.848

The performance improved slightly, again. Compared with our initial performance, 
we have finally improved by almost one accuracy point using only 11 percent of  
the features.

The reader may have noted that while creating our classifier, we used the default 
parameters, except for the splitting criterion, where we have used entropy. Can we 
improve our model using different parameters? This task is called model selection, 
and we will address it in detail in the next section using a different learning example. 
For now, let's just test if the alternative method (gini) would result in better 
performance for our example. To do this, we will again use cross-validation.

>>> dt = tree.DecisionTreeClassifier(criterion='entropy')
>>> scores = cross_validation.cross_val_score(dt, X_train_fs, 
    y_train, cv=5)
>>> print "Entropy criterion accuracy on 
    cv: {0:.3f}".format(scores.mean())
Entropy criterion accuracy on cv: 0.889
>>> dt = tree.DecisionTreeClassifier(criterion='gini')
>>> scores = cross_validation.cross_val_score(dt, X_train_fs, 
    y_train, cv=5)
>>> print "Gini criterion accuracy on 
    cv: {0:.3f}".format(scores.mean())
Gini criterion accuracy on cv: 0.897
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The Gini criterion performs better on our training set. How about its performance on 
the test set?

>>> dt.fit(X_train_fs, y_train)
>>> X_test_fs = fs.transform(X_test)
>>> y_pred_fs = dt.predict(X_test_fs)
>>> print "Accuracy:  
    {0:.3f}".format(metrics.accuracy_score(y_test,  
    y_pred_fs)),"\n"
Accuracy: 0.848

It seems that performance improvement on the training set did not hold for the 
evaluation set. This is always possible. In fact, performance could have decreased 
(recall overfitting). Our model is still the best. If we changed our model to use the one 
with the best performance in the testing set, we can never measure its performance, 
since the testing dataset could not be considered "unseen data" anymore.

Model selection
In the previous section we worked on ways to preprocess the data and select the 
most promising features. As we stated, selecting a good set of features is a crucial 
step to obtain good results. Now we will focus on another important step: selecting 
the algorithm parameters, known as hyperparameters to distinguish them from the 
parameters that are adjusted within the machine learning algorithm. Many machine 
learning algorithms include hyperparameters (from now on we will simply call them 
parameters) that guide certain aspects of the underlying method and have great 
impact on the results. In this section we will review some methods to help us obtain 
the best parameter configuration, a process known as model selection.

We will look back at the text-classification problem we addressed in Chapter 
2, Supervised Learning. In that example, we compounded a TF-IDF vectorizer 
alongside a multinomial Naïve Bayes (NB) algorithm to classify a set of newsgroup 
messages into a discrete number of categories. The MultinomialNB algorithm has 
one important parameter, named alpha, that adjusts the smoothing. We initially 
used the class with its default parameter values (alpha = 1.0) and obtained an 
accuracy of 0.89. But when we set alpha to 0.01, we obtained a noticeable accuracy 
improvement to 0.92. Clearly, the configuration of the alpha parameter has great 
impact on the performance of the algorithm. How can we be sure 0.01 is the best 
value? Perhaps if we try other possible values, we could still obtain better results.
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Let's start again with our text-classification problem, but for now we will only use a 
reduced number of instances. We will work only with 3,000 instances. We start by 
importing our pylab environment and loading the data.

>>> %pylab inline
>>> from sklearn.datasets import fetch_20newsgroups
>>> news = fetch_20newsgroups(subset='all')
>>> n_samples = 3000
>>> X_train = news.data[:n_samples]
>>> y_train = news.target[:n_samples]

After that, we need to import the classes to construct our classifier.

>>> from sklearn.naive_bayes import MultinomialNB
>>> from sklearn.pipeline import Pipeline
>>> from sklearn.feature_extraction.text import TfidfVectorizer

Then import the set of stop words and create a pipeline that compounds the TF-IDF 
vectorizer and the Naïve Bayes algorithms (recall that we had a stopwords_en.txt 
file with a list of stop words).

>>> def get_stop_words():
>>>     result = set()
>>>     for line in open('stopwords_en.txt', 'r').readlines():
>>>         result.add(line.strip())
>>>     return result
>>> stop_words = get_stop_words()
>>> clf = Pipeline([('vect', TfidfVectorizer(
>>>           stop_words=stop_words,
>>>           token_pattern=ur"\b[a-z0-9_\-\.]+[a-z][a-z0-9_\-
              \.]+\b",        
>>>    )),
>>>    ('nb', MultinomialNB(alpha=0.01)),
>>>])
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If we evaluate our algorithm with a three-fold cross-validation, we obtain a mean 
score of around 0.811.

>>> from sklearn.cross_validation import cross_val_score, KFold
>>> from scipy.stats import sem
>>> def evaluate_cross_validation(clf, X, y, K):
>>>     # create a k-fold croos validation iterator of k=5 folds
>>>     cv = KFold(len(y), K, shuffle=True, random_state=0)
>>>     # by default the score used is the one returned by score 
        method of the estimator (accuracy)
>>>     scores = cross_val_score(clf, X, y, cv=cv)
>>>     print scores
>>>     print ("Mean score: {0:.3f} (+/-{1:.3f})").format(
>>>         np.mean(scores), sem(scores))
>>> evaluate_cross_validation(clf, X_train, y_train, 3)
[ 0.814  0.815  0.804]
Mean score: 0.811 (+/-0.004)

It looks like we should train the algorithm with a list of different parameter values 
and keep the parameter value that achieves the best results. Let's implement a helper 
function to do that. This function will train the algorithm with a list of values, each 
time obtaining an accuracy score calculated by performing k-fold cross-validation 
on the training instances. After that, it will plot the training and testing scores as a 
function of the parameter values.

>>> def calc_params(X, y, clf, param_values, param_name, K):
>>>     # initialize training and testing scores with zeros
>>>     train_scores = np.zeros(len(param_values))
>>>     test_scores = np.zeros(len(param_values))
>>> 
>>>     # iterate over the different parameter values
>>>     for i, param_value in enumerate(param_values):
>>>         print param_name, ' = ', param_value
>>>         # set classifier parameters
>>>         clf.set_params(**{param_name:param_value})
>>>         # initialize the K scores obtained for each fold
>>>         k_train_scores = np.zeros(K)
>>>         k_test_scores = np.zeros(K)
>>>         # create KFold cross validation
>>>         cv = KFold(n_samples, K, shuffle=True, random_state=0)
>>>         # iterate over the K folds
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>>>         for j, (train, test) in enumerate(cv):
>>>             clf.fit([X[k] for k in train], y[train])
>>>             k_train_scores[j] = clf.score([X[k] for k in 
                train], y[train])
>>>             k_test_scores[j] = clf.score([X[k] for k in test], 
                y[test])
>>>         train_scores[i] = np.mean(k_train_scores)
>>>         test_scores[i] = np.mean(k_test_scores)
>>> 
>>>     # plot the training and testing scores in a log scale
>>>     plt.semilogx(param_values, train_scores, alpha=0.4, lw=2, 
        c='b')
>>>     plt.semilogx(param_values, test_scores, alpha=0.4, lw=2, 
        c='g')
>>>     plt.xlabel("Alpha values")
>>>     plt.ylabel("Mean cross-validation accuracy")
>>>     # return the training and testing scores on each parameter 

        value
>>>     return train_scores, test_scores

The function accepts six arguments: the feature array, the target array, the classifier 
object to be used, the list of parameter values, the name of the parameter to adjust, 
and the number of K folds to be used in the crossvalidation evaluation.

Let's call this function; we will use numpy's logspace function to generate a list of 
alpha values spaced evenly on a log scale.

>>> alphas = np.logspace(-7, 0, 8)
>>> print alphas
[  1.00000000e-07   1.00000000e-06   1.00000000e-05   1.00000000e-04
1.00000000e-03   1.00000000e-02   1.00000000e-01   1.00000000e+00]

We will set the values of the alpha parameter of the NB classifier within the pipeline, 
which corresponds to the parameter name nb__alpha. We will use three folds for the 
cross-validation.

>>> train_scores, test_scores = calc_params(X_train, y_train, clf, 
alphas, 'nb__alpha', 3)
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In the following figure, the line at the top corresponds to the training accuracy and 
the one at the bottom to the testing accuracy:

As expected, the training accuracy is always greater than the testing accuracy. We 
can see in the graph that the best testing accuracy is obtained with an alpha value in 
the range of 10-2 and 10-1. Below this range, the classifier shows signs of overfitting 
(the training accuracy is high but the testing accuracy is lower than it could be). 
Above this range, the classifier shows signs of underfitting (accuracy on the training 
set is lower than it could be).

It is worth mentioning that at this point a second pass could be performed in the 
range of 10-2 and 10-1with a finer grid to find an ever better alpha value.

Let's print the scores vector to look at the actual values.

>>> print 'training scores: ', train_scores
>>> print 'testing scores: ', test_scores
training scores:  [ 1. 1. 1. 1. 1. 0.99933333 0.99633333 0.96933333]
testing scores:  [ 0.75 0.75666667 0.76433333 0.77533333 0.78866667 
0.811 0.81233333 0.753]

The best results are obtained with an alpha value of 0.1 (accuracy of 0.812).
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We created a very useful function to graph and obtain the best parameter value for a 
classifier. Let's use it to adjust another classifier that uses a Support Vector Machines 
(SVM) instead of MultinomialNB:

>>> from sklearn.svm import SVC
>>>
>>> clf = Pipeline([
>>>     ('vect', TfidfVectorizer(
>>>                 stop_words=stop_words,
>>>                 token_pattern=ur"\b[a-z0-9_\-\.]+[a-z][a-z0-
                    9_\-\.]+\b",         
>>>     )),
>>>     ('svc', SVC()),
>>> ])

We created a pipeline as before, but now we use the SVC classifier with its default 
values. Now we will use our calc_params function to adjust the gamma parameter.

>>> gammas = np.logspace(-2, 1, 4)
>>> train_scores, test_scores = calc_params(X_train, y_train, clf, 
gammas,'svc__gamma', 3)

For gamma values lesser than one we have underfitting and for gamma values 
greater than one we have overfitting.
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So the best result is for a gamma value of 1, where we obtain a training accuracy of 
0.999 and a testing accuracy of 0.760.

If you take a closer look at the SVC class constructor parameters, we have other 
parameters, apart from gamma, that may also affect classifier performance. If we 
only adjust the gamma value, we implicitly state that the optimal C value is 1.0 
(the default value that we did not explicitly set). Perhaps we could obtain better 
results with a new combination of C and gamma values. This opens a new degree of 
complexity; we should try all the parameter combinations and keep the better one.

Grid search
To mitigate this problem, we have a very useful class named GridSearchCV within 
the sklearn.grid_search module. What we have been doing with our calc_
params function is a kind of grid search in one dimension. With GridSearchCV, we 
can specify a grid of any number of parameters and parameter values to traverse. It 
will train the classifier for each combination and obtain a cross-validation accuracy to 
evaluate each one.

Let's use it to adjust the C and the gamma parameters at the same time.

>>> from sklearn.grid_search import GridSearchCV

>>> parameters = {
>>>     'svc__gamma': np.logspace(-2, 1, 4),
>>>     'svc__C': np.logspace(-1, 1, 3),
>>> }
>>> clf = Pipeline([
>>>     ('vect', TfidfVectorizer(
>>>                stop_words=stop_words,
>>>                token_pattern=ur"\b[a-z0-9_\-\.]+[a-z][a-z0-
                   9_\-\.]+\b",         
>>>     )),
>>>     ('svc', SVC()),
>>> ])
>>> gs = GridSearchCV(clf, parameters, verbose=2, refit=False, cv=3)

Let's execute our grid search and print the best parameter values and scores.

>>> %time _ = gs.fit(X_train, y_train)
>>> gs.best_params_, gs.best_score_
CPU times: user 304.39 s, sys: 2.55 s, total: 306.94 s
Wall time: 306.56 s
 ({'svc__C': 10.0, 'svc__gamma': 0.10000000000000001}, 
0.81166666666666665)
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With the grid search, we obtained a better combination of C and gamma parameters, 
for values 10.0 and 0.10 respectively, with a three-fold cross-validation accuracy of 
0.811, which is much better than the best value we obtained (0.76) in the previous 
experiment by only adjusting gamma and keeping the C value at 1.0.

At this point, we could continue performing experiments by trying not only to adjust 
other parameters of the SVC but also adjusting the parameters on TfidfVectorizer, 
which is also part of the estimator. Note that this additionally increases the 
complexity. As you might have noticed, the previous grid search experiment took 
about five minutes to finish. If we add new parameters to adjust, the time will 
increase exponentially. As a result, these kinds of methods are very resource/time 
intensive; this is also the reason why we used only a subset of the total instances.

Parallel grid search
Grid search calculation grows exponentially with each parameter and its possible 
values we want to tune. We could reduce our response time if we calculate each 
of the combinations in parallel instead of sequentially, as we have done. In our 
previous example, we had four different values for gamma and three different values 
for C, summing up 12 parameter combinations. Additionally, we also needed to train 
each combination three times (in a three-fold cross-validation), so we summed up 
36 trainings and evaluations. We could try to run these 36 tasks in parallel, since the 
tasks are independent.

Most modern computers have multiple cores that can be used to run tasks in parallel. 
We also have a very useful tool within IPython, called IPython parallel, that allows 
us to run independent tasks in parallel, each task in a different core of our machine. 
Let's do that with our text classifier example.

We will first declare a function that will persist all K folds for the cross-validation 
in different files. These files will be loaded by a process that will execute the 
corresponding fold. To do that, we will use the joblib library.

>>> from sklearn.externals import joblib
>>> from sklearn.cross_validation import ShuffleSplit
>>> import os
>>> def persist_cv_splits(X, y, K=3, name='data', 
                          suffix="_cv_%03d.pkl"):
>>>     """Dump K folds to filesystem."""
>>> 
>>>     cv_split_filenames = []
>>> 
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>>>     # create KFold cross validation
>>>     cv = KFold(n_samples, K, shuffle=True, random_state=0)
>>> 
>>>     # iterate over the K folds
>>>     for i, (train, test) in enumerate(cv):
>>>         cv_fold = ([X[k] for k in train], y[train], [X[k] for 
                      k in test], y[test])
>>>         cv_split_filename = name + suffix % i
>>>         cv_split_filename = os.path.abspath(cv_split_filename)
>>>         joblib.dump(cv_fold, cv_split_filename)
>>>         cv_split_filenames.append(cv_split_filename)
>>> 
>>>     return cv_split_filenames
>>> cv_filenames = persist_cv_splits(X, y, name='news')

The following function loads a particular fold and fits the classifier with the specified 
parameter set, returning the testing score. This function will be called by each of the 
parallel tasks.

>>> def compute_evaluation(cv_split_filename, clf, params):
>>> 
>>>     # All module imports should be executed in the worker 
        namespace
>>>     from sklearn.externals import joblib
>>> 
>>>     # load the fold training and testing partitions from the    
        filesystem
>>>     X_train, y_train, X_test, y_test = joblib.load(
>>>         cv_split_filename, mmap_mode='c')
>>> 
>>>     clf.set_params(**params)
>>>     clf.fit(X_train, y_train)
>>>     test_score = clf.score(X_test, y_test)
>>>     return test_score
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Finally, the following function executes the grid search in parallel tasks. For each 
parameter combination (returned by the IterGrid iterator), it iterates over K folds 
and creates a task to compute the evaluation. It returns the parameter combinations 
alongside the tasks list.

>>> from sklearn.grid_search import IterGrid
>>> 
>>> def parallel_grid_search(lb_view, clf, cv_split_filenames, param_
grid):
>>>     all_tasks = []
>>>     all_parameters = list(IterGrid(param_grid))
>>> 
>>>     # iterate over parameter combinations
>>>     for i, params in enumerate(all_parameters):
>>>         task_for_params = []
>>>         # iterate over the K folds
>>>         for j, cv_split_filename in 
                enumerate(cv_split_filenames):    
>>>             t = lb_view.apply(
>>>                 compute_evaluation, cv_split_filename, clf, 
                    params)
>>>             task_for_params.append(t)
>>> 
>>>         all_tasks.append(task_for_params)
>>> 
>>>     return all_parameters, all_tasks

Now we use IPython parallel to get the client and a load balanced view. We must 
first create a local cluster of N engines (one for each core of your machine) using the 
Cluster tab in the IPython Notebook. Then we create the client and the view and 
execute our parallel_grid_search function.

>>> from sklearn.svm import SVC
>>> from IPython.parallel import Client
>>>
>>> client = Client()
>>> lb_view = client.load_balanced_view()
>>>
>>> all_parameters, all_tasks = parallel_grid_search(
    lb_view, clf, cv_filenames, parameters)
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IPython parallel will start to run the tasks in parallel. We can use this to monitor the 
progress of the whole task group.

>>> def print_progress(tasks):
>>>     progress = np.mean([task.ready() for task_group in tasks
                                 for task in task_group])
>>>     print "Tasks completed: {0}%".format(100 * progress)

After all the tasks are completed, use the following function:

>>> print_progress(all_tasks)
Tasks completed: 100.0%

We can define a function that computes the mean score of the completed tasks.

>>> def find_bests(all_parameters, all_tasks, n_top=5):
>>>     """Compute the mean score of the completed tasks"""
>>>     mean_scores = []
>>> 
>>>     for param, task_group in zip(all_parameters, all_tasks):
>>>         scores = [t.get() for t in task_group if t.ready()]
>>>         if len(scores) == 0:
>>>             continue
>>>         mean_scores.append((np.mean(scores), param))
>>> 
>>>     return sorted(mean_scores, reverse=True)[:n_top]
>>> print find_bests(all_parameters, all_tasks)

[(0.81733333333333336, {'svc__gamma': 0.10000000000000001, 'svc__C': 
10.0}), (0.78733333333333333, {'svc__gamma': 1.0, 'svc__C': 
10.0}), (0.76000000000000012, {'svc__gamma': 1.0, 'svc__C': 1.0}), 
(0.30099999999999999, {'svc__gamma': 0.01, 'svc__C': 10.0}), 
(0.19933333333333333, {'svc__gamma': 0.10000000000000001, 'svc__C': 
1.0})]

You can observe that we computed the same results as in the previous section,  
but in half the time (if you used two cores) or in a quarter of the time (if you used 
four cores).
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Summary
In this chapter we reviewed two important methods to improve our results when 
applying machine learning algorithms: feature selection and model selection. First, 
we used different techniques to preprocess data, extract features, and select the most 
promising features. Then we used techniques to automatically calculate the most 
promising hyperparameters of machine learning algorithms and used methods to 
parallelize these calculations.

The reader must be aware that this book covered only the main machine learning 
lines and some of their methods. Keep in mind that there is much more than 
supervised and unsupervised learning. For example:

• Semi-supervised learning methods are the middle ground between 
supervised and unsupervised learning. They combine small amounts of 
annotated data with huge amounts of unlabeled data. Usually, unlabeled 
data can reveal the underlying distribution of elements and obtain better 
results in combination with a small, labeled dataset.

• Active learning is a particular case within semi-supervised methods. Again, 
it is useful when labeled data is scarce or hard to obtain. In active learning, 
the algorithm actively queries a human expert to answer the label of certain 
unlabeled instances, and thus learn the concept over a reduced set of labeled 
instances.

• Reinforcement learning proposes methods where an agent learns from 
feedback (rewards or reinforcements) after performing actions within an 
environment. The agent learns to perform a task by trying to maximize the 
cumulative reward. These methods have been very successful in robotics and 
video games.

• Sequential classification (very commonly used in Natural Language 
Processing (NLP)) assigns a sequence of labels to a sequence of items; for 
example, the parts of speech of the words in a sentence.

Besides these, there are lots of supervised learning methods with radically different 
approaches to those we presented; for example, neural networks, maximum entropy 
models, memory-based models, and rule-based models. Machine learning is a very 
active research area with a growing literature; there are many books and courses that 
the reader can use to go deeper into the theory and details.

Scikit-learn has many of these algorithms implemented, and lacks others, but expect 
its active and enthusiastic contributors to build them soon. We encourage the reader 
to be part of the community!
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