

Learning Geospatial Analysis
with Python

Master GIS and Remote Sensing analysis using Python
with these easy to follow tutorials

Joel Lawhead

BIRMINGHAM - MUMBAI

Learning Geospatial Analysis with Python

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2013

Production Reference: 1181013

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-113-8

www.packtpub.com

Cover Image by Jarek Blaminsky (milak6@wp.pl)

Credits

Author
Joel Lawhead

Reviewers
Jorge Samuel Mendes de Jesus

Athanasios Tom Kralidis

Alessandro Pasotti

Acquisition Editor
Joanne Fitzpatrick

Lead Technical Editor
Balaji Naidu

Technical Editors
Pooja Arondekar

Anita Nayak

Anusri Ramchandran

Project Coordinator
Angel Jathanna

Proofreader
Bernadette Watkins

Indexer
Hemangini Bari

Graphics
Abhinash Sahu

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

About the Author

Joel Lawhead is a PMI-certified Project Management Professional (PMP) and the
Chief Information Officer (CIO) for NVisionSolutions.com, an award-winning firm
specializing in geospatial technology integration and sensor engineering.

He began using Python in 1997 and began combining it with geospatial software
development in 2000. He has been published in two editions of the Python
Cookbook by O'Reilly. He is also the developer of the widely used open source
Python Shapefile Library (PyShp) and maintains the geospatial technical blog
GeospatialPython.com and Twitter feed @SpatialPython discussing the use
of the Python programming language within the geospatial industry.

In 2011, he reverse engineered and published the undocumented shapefile spatial
indexing format and assisted fellow geospatial Python developer, Marc Pfister, in
reversing the algorithm used, allowing developers around the world to create
better-integrated and more robust geospatial applications involving shapefiles.

He has served as the lead architect, project manager, and co-developer for geospatial
applications used by US government agencies including NASA, FEMA, NOAA,
the US Navy, as well as many commercial and non-profit organizations. In 2002,
he received the international "Esri Special Achievment in GIS" award for work
on the Real-time Emergency Action Coordination Tool (REACT) for emergency
management using geospatial analysis.

I would like to acknowledge my loving family including my wife
Julie and four children Lauren, Will, Lillie, and Lainie who allowed
me to write this book after hours. Thank you to my parents who
inspired me through their actions to pursue computers, teaching,
and writing; all the ingredients needed for a technical book. I
would also like to acknowledge the work of the geospatial Python
pioneers whose relentless and selfless contributions over the years
in developing and publishing code to the geospatial Python body of
knowledge made the content of this book possible, including Sean
Gillies, Howard Butler, Matthew Perry, Frank Warmerdam, and
Marc Pfister.

About the Reviewers

Jorge Samuel Mendes de Jesus has 15 years of programming experience in
the field of Geoinformatics, with focus on Python programming, web services,
and spatial databases.

He has a PhD in Geography and Sustainable Development from Ben-Gurion
University and has been employed by the Joint Research Center, ISPRA, Plymouth
Marine Laboratory and currently works at ISRIC, World Soil Information.

He currently lives in Wageningen, the Netherlands and spends his time learning
combat sports and Dutch.

Athanasios Tom Kralidis is a Senior Systems Scientist for the Meteorological
Service of Canada, where he provides geospatial technical and architectural
leadership in support of MSC's data. His professional background includes key
involvement in the development and integration of geospatial web standards,
systems and services for the Canadian Geospatial Data Infrastructure (CGDI) with
Natural Resources Canada (NRCan), as well as using these principles in architecting
RésEau, Canada's water information portal.

He is active in the Open Geospatial Consortium (OGC) community, was lead
contributer to the OGC Web Map Context Documents Specification, member of
the CGDI Architecture Advisory Board, as well as part of the Canadian Advisory
Committee to ISO Technical Committee 211 Geographic Information / Geomatics.

He is a developer on the MapServer, GeoNode and OWSLib open source software
projects, and part of the MapServer Project Steering Committee. He is the founder
and lead developer of pycsw, an OGC-compliant CSW reference implementation.
He is also a charter member of the OGC.

Tom holds a Bachelor's degree in Geography from York University, GIS certification
from Algonquin College, and a Master's degree in Geography and Environmental
Studies (research and dissertation in Geospatial Web Services / Infrastructure)
from Carleton University. He is a Certified Geomatics Specialist (GIS/LIS) with
the Canadian Institute of Geomatics.

Alessandro Pasotti is the founder of ItOpen, an Italian web development
consultancy focused on web GIS development and accessible websites. He has
been programming for over two decades and he is now mainly a web application
developer, handling both frontend and backend development.

He fell in love with Linux and free software in 1994 and never turned back.
He spends most of his time developing web GIS applications in Python using
GeoDjango and JavaScript mapping libraries such as OpenLayers.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents
Preface	 1
Chapter 1: Learning Geospatial Analysis with Python	 9

Geospatial analysis and our world	 9
Beyond politics	 12

History of geospatial analysis	 13
Geographic Information Systems	 17
Remote sensing	 18
Elevation data	 24
Computer-aided drafting	 25

Geospatial analysis and computer programming	 26
Object-oriented programming for geospatial analysis	 27

Importance of geospatial analysis	 28
Geographic Information System concepts	 29

Thematic maps	 30
Spatial databases	 31
Spatial indexing	 32
Metadata	 32
Map projections	 32
Rendering	 33

Raster data concepts	 34
Images as data	 35
Remote sensing and color	 35

Common vector GIS concepts	 36
Data structures	 36
Buffer	 38
Dissolve	 38
Generalize	 39
Intersection	 40

Table of Contents

[ii]

Merge	 40
Point in polygon	 41
Union	 42
Join	 42
Geospatial rules about polygons	 43

Common raster data concepts	 43
Band math	 43
Change detection	 44
Histogram	 45
Feature extraction	 45
Supervised classification	 46
Unsupervised classification	 46

Creating the simplest possible Python GIS	 46
Getting started with Python	 46
Building SimpleGIS	 47

Summary	 55
Chapter 2: Geospatial Data	 57

Data structures	 61
Common traits	 61

Geo-location	 61
Subject information	 61
Spatial indexing	 62
Metadata	 65
File structure	 66

Vector data	 72
Shapefiles	 74
CAD files	 76
Tag and markup-based formats	 77
GeoJSON	 79

Raster data	 80
TIFF files	 81
JPEG, GIF, BMP, and PNG	 81
Compressed formats	 82
ASCII GRIDS	 82
World files	 83

Point cloud data	 85
Summary	 87

Chapter 3: The Geospatial Technology Landscape	 89
Data access	 92

GDAL	 92
OGR	 93

Table of Contents

[iii]

Computational geometry	 95
PROJ.4	 96
CGAL	 97
JTS	 98
GEOS	 100
PostGIS	 101
Other spatially-enabled databases	 104

Oracle spatial and graph	 105
ArcSDE	 107
Microsoft SQL Server	 109
MySQL	 109

SpatiaLite	 109
Routing	 110

Esri Network Analyst and Spatial Analyst	 110
pgRouting	 110

Desktop tools	 111
Quantum GIS	 112
OpenEV	 113
GRASS GIS	 115
uDig	 116
gvSIG	 118
OpenJUMP	 118
Google Earth	 118
NASA World Wind	 120
ArcGIS	 122

Metadata management	 123
GeoNetwork	 123
CatMDEdit	 124

Summary	 124
Chapter 4: Geospatial Python Toolbox	 127

Installing third-party Python modules	 128
Installing GDAL	 130

Windows	 131
Linux	 136
Mac OS X	 136

Python networking libraries for acquiring data	 136
Python urllib module	 137
FTP	 139
ZIP and TAR files	 140

Python markup and tag-based parsers	 142
The minidom module	 143
ElementTree	 145

Table of Contents

[iv]

Building XML	 146
WKT	 150

Python JSON libraries	 152
json module	 153
geojson module	 154

OGR	 155
PyShp	 155
dbfpy	 156
Shapely	 157
GDAL	 158
NumPy	 160
PIL	 162
PNGCanvas	 163
PyFPDF	 165
Spectral Python	 165
Summary	 166

Chapter 5: Python and Geographic Information Systems	 167
Measuring distance	 168

Pythagorean theorem	 171
Haversine formula	 173
Vincenty formula	 175

Coordinate conversion	 177
Reprojection	 178
Editing shapefiles	 181

Accessing the shapefile	 182
Reading shapefile attributes	 183
Reading shapefile geometry	 186
Changing a shapefile	 187

Adding fields	 188
Merging shapefiles	 188
Splitting shapefiles	 190

Subsetting spatially	 190
Performing selections	 191

Point in polygon formula	 191
Attribute selections	 193

Creating images for visualization	 194
Dot density calculations	 194
Choropleth maps	 198
Using spreadsheets	 200
Using GPS data	 202
Summary	 203

Table of Contents

[v]

Chapter 6: Python and Remote Sensing	 205
Swapping image bands	 206
Creating histograms	 208

Performing a histogram stretch	 213
Clipping images	 216
Classifying images	 220
Extracting features from images	 223
Change detection	 229
Summary	 234

Chapter 7: Python and Elevation Data	 235
ASCII Grid files	 236

Reading grids	 236
Writing grids	 238

Creating a shaded relief	 240
Creating elevation contours	 245
Working with LIDAR	 248

Creating a grid from LIDAR	 249
Using PIL to visualize LIDAR	 254
Creating a Triangulated Irregular Network (TIN)	 258

Summary	 262
Chapter 8: Advanced Geospatial Python Modelling	 263

Creating an NDVI	 263
Setting up the framework	 265
Loading the data	 266
Rasterizing the shapefile	 267
Clipping the bands	 269
Using the NDVI formula	 269
Classifying the NDVI	 270

Additional functions	 270
Loading the NDVI	 271
Creating classes	 272

Creating a flood inundation model	 274
The flood fill function	 276
Making a flood	 278

Least cost path analysis	 280
Setting up the test grid	 282
The simple A* algorithm	 283
Generating the test path	 284
Viewing the test output	 284
The real-world example	 285

Loading the grid	 287

Table of Contents

[vi]

Defining the helper functions	 287
The real-world A* algorithm	 289
Generating a real-world path	 291

Summary	 293
Chapter 9: Real-Time Data	 295

Tracking vehicles	 296
Nextbus agency list	 299
Nextbus route list	 299
Nextbus vehicle locations	 300
Mapping Nextbus locations	 302

Storm chasing	 306
Summary	 314

Chapter 10: Putting It All Together	 315
A typical GPS report	 316
Working with GPX-Reporter.py	 316

Stepping through the program	 317
Initial setup	 318
Working with utility functions	 319
Parsing the GPX	 323
Getting the bounding box	 324
Downloading OpenStreetMap images	 325
Creating the hillshade	 327
Creating maps	 328
Measuring elevation	 331
Measuring distance	 332
Retrieving weather data	 333

Summary	 337
Index	 339

Preface
The best books change the way you look at the world. They take your mind to a
different place than where you started. The transformation we experience from a
good book is the reason books have survived for centuries as a way to share the
breadth of human experience.

This book is about geospatial analysis. Geospatial analysis is the combination of
statistical analysis, computational geometry, and image processing applied to data
which is tied to the Earth (or even other planets). But that technical definition falls
short of what geospatial analysis truly is. Similar to a good book, geospatial analysis
tells a story about our world. This story is told through thematic maps, processed
satellite images, and tables of information.

These stories quite literally change your worldview by revealing patterns about
human behavior and natural processes that are otherwise difficult to discern or
are even invisible to us. The increased awareness of our world and our place in it
allows us to make better decisions about everything from agriculture to politics
to disaster management.

This book will teach you geospatial analysis using the Python programming
language. Python is a very popular and easy to learn language used in nearly every
field. Python was invented in the late 1980s by Guido van Rossum and is based on
the language "ABC" designed to teach programming to kids. The clean and intuitive
syntax allows you to think about the problem you are trying to solve and not
the language you are using. It also interfaces well with nearly every geospatial
library available.

Learning Geospatial Analysis with Python supplements the library of Packt Publishing
with a third book on geospatial technology and Python. The series offered by Packt
Publishing covers the most complete range of published knowledge in this domain.
In order to understand the scope of this book and its benefits, it helps to be familiar
with the other offerings by Packt Publishing.

Preface

[2]

Python Geospatial Development by Erik Westra covers building desktop and web
applications using Python and leading open source geospatial libraries. The focus
of the book is capturing well-defined geospatial processes as requirements and then
developing applications allowing users to interactively execute that process again
and again.

Programming ArcGIS 10.1 with Python Cookbook by Eric Pimpler teaches readers how to
automate ArcGIS 10.1, the leading Geographic Information System (GIS) software
package by Esri. ArcGIS contains a Python environment called ArcPy that provides
an interface to nearly the entire package. The book shows how to use Python to script
the ArcGIS for a variety of geoprocessing tasks.

Geospatial analysis will allow you to look at the world in a whole new way and with
new understanding. And Python will facilitate the journey and even make it fun!
This book will serve as both a guide and future reference as you move deeper into
this exciting field.

What this book covers
Chapter 1, Learning Geospatial Analysis with Python, introduces geospatial analysis as
a way of answering questions about our world. The differences between GIS and
remote sensing are explained. Common geospatial analysis processes are illustrated
and a code for a simple geographic information system in Python is introduced.

Chapter 2, Geospatial Data, discusses geospatial data, and explains the forms
geospatial data comes in. The most challenging part of geospatial analysis is
acquiring the data you need and preparing it for analysis. This chapter explains the
two major categories of data as well as several newer formats that are becoming
more and more common. Familiarity with these data types is essential to understand
geospatial analysis.

Chapter 3, The Geospatial Technology Landscape, covers the geospatial technology
ecosystem that consists of thousands of software libraries and packages. This vast
array of choices is overwhelming for newcomers to geospatial analysis. The secret
to learning geospatial analysis quickly is to understand the handful of libraries
and packages that really matter. Most other software is derived from these critical
packages. Understanding the hierarchy of geospatial software and how it's used
allows you to quickly comprehend and evaluate any geospatial tool.

Preface

[3]

Chapter 4, Geospatial Python Toolbox, explains the software and libraries introduced
which forms the basis of the book and are used throughout. In this chapter, Python's
role within the geospatial industry is elaborated: GIS scripting language, mash-up
glue language, and full-blown programming language. Code examples are used to
teach data editing concepts, and many of the basic geospatial concepts in Chapter 1,
Learning Geospatial Analysis with Python, are also demonstrated in Python.

Chapter 5, Python and Geographic Information Systems, teaches the simple yet practical
python GIS geospatial products using processes which can be applied to a variety
of problems.

Chapter 6, Python and Remote Sensing, shows readers how to work with remote
sensing geospatial data. Remote sensing includes some of the most complex and least
documented geospatial operations. This chapter will build a solid core for the reader
and demystify remote sensing using Python.

Chapter 7, Python and Elevation Data, demonstrates the most common uses of
elevation data, which can be contained in almost any geospatial format but is used
quite differently from other types of geospatial data, and will show you how to work
with its unique properties.

Chapter 8, Advanced Geospatial Python Modeling, discusses how geospatial data
editing and processing help us understand the world as it is. But the true power
of geospatial analysis is modeling. Geospatial models help us predict the future,
narrow vast fields of choices down to the best options, and visualize concepts which
cannot be directly observed in the natural world. This chapter uses Python to teach
the reader the true power of geospatial technology.

Chapter 9, Real-Time Data, introduces real-time data and examines a modern
phenomenon. A wise geospatial analyst once said, "As soon as a map is created it is
obsolete." Until recently, by the time you collected data about the earth, processed it,
and created a geospatial product, the world it represented had already changed. But
modern geospatial data shatters this notion. Data sets are available over the Internet
which are up to the minute or even the second. These data sets fundamentally
change the way we perform geospatial analysis.

Chapter 10, Putting It All Together, combines the skills from previous chapters
step-by-step to build a simple, automated geospatial analysis system which
produces a report.

Preface

[4]

What you need for this book
To follow through the various examples, you will need to download and install the
following software:

•	 Python Version 2.x (minimum Version 2.5)
•	 GDAL/OGR Version 1.7.1 or later
•	 GEOS Version 3.2.2 or later
•	 PyShp 1.1.6 or later
•	 Shapely Version 1.2 or later
•	 Proj Version 4.7 or later
•	 PyProj Version 1.8.6 or later
•	 NumPy
•	 PNGCanvas
•	 Python Imaging Library (PIL)

This book assumes at least a basic working knowledge of Python and a familiarity
with geospatial analysis. Procedures for unloading and installing these tools are
covered in the relevant chapters of this book as needed.

Who this book is for
This book is for anyone who wants to understand digital mapping and analysis and
who uses Python or another scripting language for automation or crunching data
manually. This book primarily targets Python developers, researchers, and analysts
who want to perform geospatial modeling, and GIS analysis with Python.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We created a shapefile Reader object instance and set it to the variable r".

Preface

[5]

A block of code is set as follows:

>>> import math
>>> x1 = 456456.23123582301
>>> y1 = 1279721.064356426
>>> x2 = 576628.34295886324
>>> y2 = 1071740.3328161312
>>> x_dist = x1 - x2
>>> y_dist = y1 - y2
>>> dist_sq = x_dist**2 + y_dist**2
>>> distance = math.sqrt(dist_sq)
>>> distance
240202.6667795573

Any command-line input or output is written as follows:

C:\>python

Python 2.7.2 (default, Jun 12 2011, 15:08:59) [MSC v.1500 32 bit (Intel)]
on win32

Type "help", "copyright", "credits" or "license" for more information.

>>>

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes, for example, appear in the text like this: "In the
Properties window, select the Advanced tab".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

Preface

[6]

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Preface

[7]

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Learning Geospatial
Analysis with Python

This chapter is an overview of geospatial analysis and will cover the following topics:

•	 How geospatial analysis is impacting our world
•	 A history of geospatial analysis including Geographic Information Systems

(GIS) and remote sensing
•	 Reasons for using a programming language for geospatial analysis
•	 Importance of more people learning geospatial analysis
•	 GIS concepts
•	 Remote sensing concepts
•	 Creating the simplest possible GIS using Python

This book assumes some basic knowledge of Python, some IT literacy, and at least an
awareness of geospatial analysis. This chapter provides a foundation in geospatial
analysis, needed to attack any subject in the areas of remote sensing and GIS
including the material in all the other chapters of the book.

Geospatial analysis and our world
The morning of November 7, 2012, saw political experts in the United States
scrambling to explain how incumbent Democratic President, Barack Obama, had
pulled off such a decisive election victory. They scrambled because none of them
had seen the win coming—at least not the 332 electoral college votes for Obama,
to Republican candidate Mitt Romney's anemic 206. The major political polling
organizations had also unanimously declared the race would be a photo finish
in the weeks leading up to the election.

Learning Geospatial Analysis with Python

[10]

Political experts offered broad explanations including "a better ground campaign" by
Obama, "demographic shifts" that favored the Democrats, and even accusations of
a weakened Republican Party brand. But these generalized theories fell far short of
explaining the results in any satisfying detail. The following map shows the electoral
votes received by each candidate:

The explanation for the political upset came instead from a 34 year old blogger from
Michigan, named Nate Silver. Armed with only a laptop, he had predicted the exact
outcome long before the election day, and he had done so with startling precision.

Both election campaigns calculated multiple winning scenarios which followed a
path of winning certain key battleground states. The battleground states are also
known as swing states, because neither candidate had overwhelming support from
that state going into the election. These states included Colorado, Florida, Iowa,
Nevada, New Hampshire, North Carolina, Ohio, Virginia, and Wisconsin. But
Silver had called these states accurately as if they had been known all along.

Silver's method for predicting the future can be summed up as geostatistical
profiling. He used geographic analysis to fill in gaps in polling data that caused
other analysts to have inaccurate predictions. Large polling organizations poll
states on a rolling but irregular basis leading up to elections. Furthermore, different
organizations use different polling approaches. Silver first weighted these pollsters
based on their historical accuracy and calculated an error rate.

Chapter 1

[11]

He could then average polls together and account for potential error. His second
innovation was to profile states based on historical voting trends and demographics.
He could then classify similar states and even voting districts. Anywhere he was
missing polling data from a particular state, he could find surrogate data from a
similar state and extrapolate to complete his data set. The combination of careful
weighting and extrapolation allowed Silver to run a more robust national voting
model which paid off. Interestingly, Silver's political models use many of the same
elements of probability theory used in his PECOTA software he had developed
earlier for baseball but with a geospatial twist. The following plot shows an accuracy
comparison of researchers and political experts. The analysts using geospatial
techniques led the pack by a wide margin.

Learning Geospatial Analysis with Python

[12]

It would be one thing if Nate Silver had been the only one to come up with such
an accurate prediction. But he was just the most visible due to his high-profile blog
on the New York Times, and his articulate and detailed posts about his methods.
He recognized many other analysts including Sam Wang of the Princeton Election
Consortium and David Linzer of Emory University, who used similar geostatistical
methods and achieved highly accurate results. Silver was on the crest of a wave of
geospatial analysts who were bringing the field to the forefront of national attention
through detailed, objective, and corrective spatial and statistical modeling.

An economist and statistician named Skipper Seabold attempted to
reverse engineer the FiveThirtyEight model using Python. His efforts can
be found at the following URL:
https://github.com/jseabold/538model

Beyond politics
The application of geospatial modeling to politics is one of the most recent and
visible case studies. However, the use of geospatial analysis has been increasing
steadily over the last 15 years. In 2004, the US Department of Labor declared the
geospatial industry one of 13 high-growth industries in the United States expected
to create millions of jobs in the coming decades.

Geospatial analysis can be found in almost every industry including real estate,
oil and gas, agriculture, defense, disaster management, health, transportation, and
oceanography to name a few. For a good overview of how geospatial analysis is used
in dozens of different industries visit: http://www.esri.com/what-is-gis/who-
uses-gis.

Chapter 1

[13]

History of geospatial analysis
Geospatial analysis can be traced as far back as 15,000 years ago, to the Lascaux
Cave in southwestern France. In that cave, paleolithic artists painted commonly
hunted animals and what many experts believe are astronomical star maps for
either religious ceremonies or potentially even migration patterns of prey. Though
crude, these paintings demonstrate an ancient example of humans creating abstract
models of the world around them and correlating spatial-temporal features to find
relationships. The following image shows one of the paintings with an overlay
illustrating the star maps:

Over the centuries the art of cartography and the science of land surveying
developed, but it wasn't until the 1800s that significant advances in geographic
analysis emerged. Deadly cholera outbreaks in Europe between 1830 and
1860 led geographers in Paris and London to use geographic analysis for
epidemiological studies.

Learning Geospatial Analysis with Python

[14]

In 1832, Charles Picquet used different half-toned shades of gray to represent deaths
per thousand citizens in the 48 districts of Paris, as part of a report on the cholera
outbreak. In 1854, John Snow expanded on this method by tracking a cholera
outbreak in London as it occurred. By placing a point on a map of the city each time
a case was diagnosed, he was able to analyze the clustering of cholera cases. Snow
traced the disease to a single water pump and prevented further cases. The map has
three layers with streets, an X for each pump, and dots for each cholera outbreak:

Chapter 1

[15]

A retired French engineer named Charles Minard produced some of the most
sophisticated infographics ever drawn between 1850 and 1870. The term infographics
is too generic to describe these drawings because they have strong geographic
components. The quality and detail of these maps make them fantastic examples
of geographic information analysis even by today's standards. Minard released his
masterpiece Carte figurative des pertes successives en hommes de l'Armée Française dans la
campagne de Russie 1812-1813, in 1869, depicting the decimation of Napoleon's army
in the Russian campaign of 1812. The map shows the size and location of the army
over time, along with prevailing weather conditions. The following graphic contains
four different series of information on a single theme. It is a fantastic example of
geographic analysis using pen and paper. The size of the army is represented by the
widths of the brown and black swaths at a ratio of one millimeter for every 10,000
men. The numbers are also written along the swaths. The brown-colored path shows
soldiers who entered Russia, while the black represents the ones who made it out.
The map scale is shown on the center right as one "French league" (2.75 miles or 4.4
kilometers). The chart on the bottom runs from right to left and depicts the brutal
freezing temperatures experienced by the soldiers on the return march home
from Russia.

Learning Geospatial Analysis with Python

[16]

While far more mundane than a war campaign, Minard released another compelling
map cataloguing the number of cattle sent to Paris from around France. Minard used
pie charts of varying sizes in the regions of France to show each area's variety and
volume of cattle shipped.

Chapter 1

[17]

In the early 1900s, mass printing drove the development of the concept of map
layers—a key feature of geospatial analysis. Cartographers drew different map
elements (vegetation, roads, elevation contours) on plates of glass which could then
be stacked and photographed for printing as a single image. If the cartographer
made a mistake, only one plate of glass had to be changed instead of the entire map.
Later the development of plastic sheets made it even easier to create, edit, and store
maps in this manner. However, the layering concept for maps as a benefit to analysis
would not come into play until the modern computer age.

Geographic Information Systems
Computer mapping evolved with the computer itself in the 1960s. But the origin
of the term Geographic Information System (GIS) began with the Canadian
Department of Forestry and Rural Development. Dr. Roger Tomlinson headed a
team of 40 developers in an agreement with IBM to build the Canadian Geographic
Information System (CGIS). The CGIS tracked the natural resources of Canada
and allowed profiling of these features for further analysis. The CGIS stored each
type of land cover as a different layer. The CGIS also stored data in a Canadian-
specific coordinate system suitable for the entire country devised for optimal area
calculations. While the technology used is primitive by today's standards, the system
had phenomenal capability at that time. The CGIS included software features which
seem quite modern: map projection switching, rubber sheeting of scanned images,
map scale change, line smoothing and generalization to reduce the number of points
in a feature, automatic gap closing for polygons, area measurement, dissolving and
merging of polygons, geometric buffering, creation of new polygons, scanning, and
digitizing of new features from reference data.

The National Film Board of Canada produced a 1967 documentary on the
CGIS which can be seen at the following URL:
http://video.esri.com/watch/128/data-for-decision_
comma_-1967-short-version

Tomlinson is often called "The Father of GIS". After launching the CGIS, he earned
his doctorate from the University of London with his 1974 dissertation, entitled The
application of electronic computing methods and techniques to the storage, compilation, and
assessment of mapped data, which describes GIS and geospatial analysis. Tomlinson
now runs his own global consulting firm, Tomlinson Associates Ltd., and remains an
active participant in the industry. He is often found delivering the keynote address at
geospatial conferences.

Learning Geospatial Analysis with Python

[18]

CGIS is the starting point of geospatial analysis as defined by this book. But this book
would not have been written if not for the work of Howard Fisher and the Harvard
Laboratory for Computer Graphics and Spatial Analysis, at the Harvard Graduate
School of Design. His work on the SYMAP GIS software, which outputs maps to
a line printer, started an era of development at the lab, which produced two other
important packages and as a whole permanently defined the geospatial industry.
GRID was a raster-based GIS system which used cells to represent geographic
features instead of geometry. GRID was written by Carl Steinitz and David Sinton.
The system later became IMGRID. Next came ODYSSEY. ODYSSEY was a team
effort led by Nick Chrisman and David White. It was a system of programs which
included many advanced geospatial data management features typical of modern
geodatabase systems. Harvard attempted to commercialize these packages with
limited success. However, their impact is still seen today. Virtually every existing
commercial and open source package owes something to these code bases.

Howard Fisher produced a 1967 film using output from SYMAP to show
the urban expansion of Lansing, Michigan from 1850 to 1965 by hand-
coding decades of property information into the system. The analysis took
months but would take only a few minutes to create now using modern
tools and data. You can see the film at the following URL:
http://youtu.be/xj8DQ7IQ8_o

There are now dozens of graphical user interface geospatial desktop applications
available today from companies including Esri, ERDAS, Intergraph, and ENVI to
name a few. Esri is the oldest continuously operating GIS software company, which
started in the late 1960s. In the open source realm, packages including Quantum
GIS (QGIS) and GRASS are widely used. Beyond comprehensive desktop software
packages, software libraries for building new software exist in the thousands.

Remote sensing
Remote sensing is the collection of information about an object without making
physical contact with that object. In the context of geospatial analysis, the object
is usually the Earth. Remote sensing also includes the processing of the collected
information. The potential of geographic information systems is limited only by the
available geographic data. The cost of land surveying, even using a modern GPS, to
populate a GIS has always been resource intensive. The advent of remote sensing
not only dramatically reduced that cost of geospatial analysis, but it took the field
in entirely new directions. In addition to powerful reference data for GIS systems,
remote sensing has made possible the automated and semi-automated generation
of GIS data by extracting features from images and geographic data.

Chapter 1

[19]

The eccentric French photographer Gaspard-Félix Tournachon, also known as Nadar,
took the first aerial photograph in 1858 from a hot air balloon over Paris. The value of
a true bird's eye view of the world was immediately apparent. As early as 1920, the
books on aerial photo interpretation began to appear.

Learning Geospatial Analysis with Python

[20]

When America entered the cold war with the Soviet Union after World War II, aerial
photography for monitoring military capability became prolific with the invention
of the American U2 spy plane. The U2 spy plane could fly at 75,000 feet, putting it
out of range of existing anti-aircraft weapons designed to reach only 50,000 feet. The
American U2 flights over Russia ended when the Soviets finally shot down a U2 and
captured the pilot.

But aerial photography had little impact on modern geospatial analysis. Planes
could only capture small footprints of an area. Photographs were tacked to walls
or examined on light tables but not in the context of other information. Though
extremely useful, aerial photo interpretation was simply another visual perspective.

The game changer came on October 4, 1957, when the Soviet Union launched
the Sputnik 1 satellite. The Soviets had scrapped a much more complex and
sophisticated satellite prototype because of manufacturing difficulties. Once
corrected, this prototype would later become Sputnik 3. They opted instead for a
simple metal sphere with 4 antennae and a simple radio transmitter. Other countries
including the United States were also working on satellites. The satellite initiatives
were not entirely a secret. They were driven by scientific motives as part of the
International Geophysical Year. Advancement in rocket technology made artificial
satellites a natural evolution for earth science. However, in nearly every case each
country's defense agency was also heavily involved. Like the Soviets, other countries
were struggling with complex satellite designs packed with scientific instruments.
The Soviets' decision to switch to the simplest possible device for the sole reason of
launching a satellite before the Americans was effective. Sputnik was visible in the
sky as it passed over and its radio pulse could be heard by amateur radio operators.
Despite Sputnik's simplicity, it provided valuable scientific information which could
be derived from its orbital mechanics and radio frequency physics.

The Sputnik program's biggest impact was on the American space program.
America's chief adversary had gained a tremendous advantage in the race to space.
The United States ultimately responded with the Apollo moon landings. But, before
that, the US launched a program that would remain a national secret until 1995. The
classified CORONA program resulted in the first pictures from space. The US and
Soviet Union had signed an agreement to end spy plane flights but satellites were
conspicuously absent from the negotiations. The following map shows the CORONA
process. Dashed lines are satellite flight paths, longer white tubes are the satellite, the
smaller white cones are the film canisters, and the black blobs are the control stations
that triggered the ejection of the film so a plane could catch it in the sky.

Chapter 1

[21]

The first CORONA satellite was a four year effort with many setbacks. But the
program ultimately succeeded. The difficulty of satellite imaging even today is
retrieving the images from space. The CORONA satellites used canisters of black
and white film which were ejected from the vehicle once exposed. As the film
canister parachuted to earth, a US military plane would catch the package in midair.
If the plane missed the canister it would float for a brief duration in the water before
sinking into the ocean to protect the sensitive information. The US continued to
develop the CORONA satellites until they matched the resolution and photographic
quality of the U2 spy plane photos. The primary disadvantages of the CORONA
instruments were reusability and timeliness. Once out of film a satellite could no
longer be of service. Also, the film recovery was on a set schedule making the system
unsuitable to monitor real-time situations. The overall success of the CORONA
program, however, paved the way for the next wave of satellites, which ushered
in the modern era of remote sensing.

Learning Geospatial Analysis with Python

[22]

Because of the CORONA program's secret status, its impact on remote sensing was
indirect. Photographs of the earth taken on manned US space missions inspired the
idea of a civilian-operated remote sensing satellite. The benefits of such a satellite
were clear but the idea was still controversial. Government officials questioned
whether a satellite was as cost efficient as aerial photography. The military were
worried the public satellite could endanger the secrecy of the CORONA program.
And yet other officials worried about the political consequences of imaging other
countries without permission. But the Department of the Interior finally won
permission for NASA to create a satellite to monitor earth's surface resources.

On July 23, 1972, NASA launched the Earth Resources Technology Satellite (ERTS).
The ERTS was quickly renamed to Landsat-1. The platform contained two sensors.
The first was the Return Beam Vidicon (RBV) sensor, which was essentially a
video camera. It was even built by the radio and television giant RCA. The RBV
immediately had problems including disabling the satellite's altitude guidance
system. The second attempt at a satellite was the highly experimental Multi-Spectral
Scanner or MSS. The MSS performed flawlessly and produced superior results to
the RBV. The MSS captured four separate images at four different wavelengths of the
light reflected from the earth's surface.

This sensor had several revolutionary capabilities. The first and most important
capability was the first global imaging of the planet scanning every spot on the earth
every 16 days. The following image from the US National Aeronautics and Space
Administration (NASA) illustrates this flight and collection pattern:

Chapter 1

[23]

It also recorded light beyond the visible spectrum. While it did capture green and
red light visible to the human eye, it also scanned near-infrared light at two different
wavelengths not visible to the human eye. The images were stored and transmitted
digitally to three different ground stations in Maryland, California, and Alaska.
The multispectral capability and digital format meant the aerial view provided by
Landsat wasn't just another photograph from the sky. It was beaming down data.
This data could be processed by computers to output derivative information about
the earth in the same way a GIS provided derivative information about the earth
by analyzing one geographic feature in the context of another. NASA promoted the
use of Landsat worldwide and made the data available at very affordable prices to
anyone who asked.

This global imaging capability led to many scientific breakthroughs including the
discovery of previously unknown geography as late as 1976. Using Landsat imagery
the government of Canada located a tiny uncharted island inhabited by polar bears.
They named the new landmass Landsat Island.

Landsat-1 was followed by six other missions and turned over to the National
Oceanic and Atmospheric Administration (NOAA) as the responsible agency.
Landsat-6 failed to achieve orbit due to a ruptured manifold, which disabled its
maneuvering engines. During some of those missions the satellites were managed
by the company EOSAT, now called Space Imaging, but returned to government
management by the Landsat-7 mission. The following image from NASA is a sample
of a Landsat 7 product:

Learning Geospatial Analysis with Python

[24]

The Landsat Data Continuity Mission (LDCM) launched February 13, 2013 and
began collecting images on April 27, 2013 as part of its calibration cycle to become
Landsat 8. The LDCM is a joint mission between NASA and the United States
Geological Survey (USGS).

Elevation data
A Digital Elevation Model (DEM) is a three-dimensional representation of a planet's
terrain. Within the context of this book that planet is Earth. The history of digital
elevation models is far less complicated than remotely-sensed imagery but no less
significant. Before computers, representations of elevation data were limited to
topographic maps created through traditional land surveys. Technology existed to
create 3D models from stereoscopic images or physical models from materials such
as clay or wood, but these approaches were not widely used for geography.

The concept of digital elevation models began in 1986 when the French space
agency, CNES, launched its SPOT-1 satellite which included a stereoscopic radar.
This system created the first usable DEM. Several other US and European satellites
followed this model with similar missions. In February 2000 the Space Shuttle
Endeavour conducted the Shuttle Radar Topography Mission (SRTM), which
collected elevation data over 80 percent of the earth's surface using a special radar
antenna configuration that allowed a single pass. This model was surpassed in
2009 by the joint US and Japanese mission using the ASTER sensor aboard NASA's
TERRA satellite. This system captured 99 percent of the earth's surface but has
proven to have minor data issues. SRTM remains the gold standard. The following
image from the US Geological Survey (USGS) shows a colorized DEM known as
a hillshade. Greener areas are lower elevations while yellow and brown areas are
mid-range to high elevations:

Chapter 1

[25]

Recently more ambitious attempts at a worldwide elevation data set are underway
in the form of TerraSAR-X and TanDEM-X satellites launched by Germany in 2007
and 2010, respectively. These two radar elevation satellites are working together to
produce a global DEM, called WorldDEM, planned for release in 2014. This data set
will have a relative accuracy of 2 meters and an absolute accuracy of 10 meters.

Computer-aided drafting
Computer-aided drafting (CAD) is worth mentioning, though it does not directly
relate to geospatial analysis. The history of CAD system development parallels
and intertwines with the history of geospatial analysis. CAD is an engineering tool
used to model two- and three-dimensional objects usually for engineering and
manufacturing. The primary difference between a geospatial model and a CAD
model is a geospatial model is referenced to the earth, whereas a CAD model can
possibly exist in abstract space. For example, a 3D blueprint of a building in a CAD
system would not have a latitude or longitude. But in a GIS, the same building
model would have a location on the earth. However, over the years CAD systems
have taken on many features of GIS systems and are commonly used for smaller GIS
projects. And likewise, many GIS programs can import CAD data which have been
georeferenced. Traditionally, CAD tools were designed primarily for engineering
data that were not geospatial.

Learning Geospatial Analysis with Python

[26]

However, engineers who became involved with geospatial engineering projects,
such as designing a city utility electric system, would use the CAD tools they were
familiar with to create maps. Over time both GIS software evolved to import the
geospatial-oriented CAD data produced by engineers, and CAD tools evolved to
better support geospatial data creation and better compatibility with GIS software.
AutoCAD by AutoDesk and ArcGIS by Esri were the leading commercial packages
to develop this capability and the GDAL OGR library developers added CAD
support as well.

Geospatial analysis and computer
programming
Modern geospatial analysis can be conducted with the click of a button in any of
the easy-to-use commercial or open source geospatial packages. So then why would
you want to use a programming language to learn this field? The most important
reasons are:

•	 You want complete control of the underlying algorithms, data,
and execution.

•	 You want to automate a specific, repetitive analysis task with
minimal overhead

•	 You want to create a program that's easy to share
•	 You want to learn geospatial analysis beyond pushing buttons in software

The geospatial industry is gradually moving away from the traditional workflow
in which teams of analysts use expensive desktop software to produce geospatial
products. Geospatial analysis is being pushed towards automated processes which
reside in the cloud. End user software is moving towards task-specific tools, many of
which are accessed from mobile devices. Knowledge of geospatial concepts and data
as well as the ability to build custom geospatial processes are where the geospatial
work in the near future lies.

Chapter 1

[27]

Object-oriented programming for geospatial
analysis
Object-oriented programming is a software development paradigm in which
concepts are modeled as objects which have properties and behaviors represented as
attributes and methods, respectively. The goals of this paradigm are more modular
software in which one object can inherit from one or more other objects to encourage
software reuse.

The Python programming language is known for its ability to serve multiple roles
as a well-designed, object-oriented language, a procedural scripting language, or
even a functional programming language. However, you never completely abandon
object-oriented programming in Python because even its native data types are
objects and all Python libraries, known as modules, adhere to a basic object
structure and behavior.

Geospatial analysis is the perfect activity for object-oriented programming. The
concepts modeled in geospatial analysis are, well, objects! The domain of geospatial
analysis is the Earth and everything on it. Trees, buildings, rivers, and people are all
examples of objects within a geospatial system.

A common example in literature for newcomers to object-oriented programming is
the concrete analogy of a cat. Books on object-oriented programming frequently use
some form of the following example:

Imagine you are looking at a cat. We know some information about the cat,
such as its name, age, color, and size. These features are properties of the cat.
The cat also exhibits behaviors such as eating, sleeping, jumping, and purring. In
object-oriented programming, objects have properties and behaviors too. You can
model a real-world object like the cat in our example, or something more abstract
such as a bank account.

Learning Geospatial Analysis with Python

[28]

Most concepts in object-oriented programming are far more abstract than the simple
cat paradigm or even the bank account in this common example. However, in
geospatial analysis the objects modeled remain concrete, like the simple cat analogy,
and in many cases are cats. Geospatial analysis allows you to continue with the
simple cat analogy and even visualize it. The following map represents the feral
cat population of Australia using data provided by the Atlas of Living Australia:

Importance of geospatial analysis
Geospatial analysis helps people make better decisions. It doesn't make the decision
for you, but it can answer critical questions which are at the heart of the choice to
be made and often cannot be answered any other way. Until recently geospatial
technology and data were tools available only to governments, and well-funded
researchers. But in the last decade data have become much more widely available
and software much more accessible to anyone.

Chapter 1

[29]

In addition to freely available government satellite imagery, many local
governments now conduct aerial photo surveys and make the data available online.
The ubiquitous Google Earth provides a cross-platform spinning globe view of the
Earth with satellite and aerial data, streets, points of interest, photographs, and
much more. Google Earth users can create custom KML files, which are XML files to
load and style data onto the globe. This program and similar tools are often called
geographic exploration tools, because they are excellent data viewers but provide
very limited data analysis capability.

The ambitious OpenStreetMap project (http://openstreetmap.org) is a crowd-
sourced, worldwide, geographic basemap containing most layers commonly found
in a GIS. Nearly every mobile phone contains a GPS now, along with mobile apps
to collect GPS tracks as points, lines, or polygons. Most phones will also tag photos
taken with the phone's camera with a GPS coordinate. In short, anyone can be a
geospatial analyst.

The global population has reached seven billion people. And the world is changing
faster than ever before. The planet is undergoing environmental changes never seen
before in recorded history. Faster communication and faster transportation increase
the interaction between us and the environment in which we live. Managing people
and resources safely and responsibly is more challenging than ever. Geospatial
analysis is the best approach to understanding our world more efficiently and
deeply. The more politicians, activists, relief workers, parents, teachers, first
responders, medical professionals, and small businesses harness the power of
geospatial analysis the more our potential for a better, healthier, safer, fairer
world will be realized.

Geographic Information System concepts
In order to begin geospatial analysis, it is important to understand some key
underlying concepts unique to the field. The list isn't long but nearly every
aspect of analysis traces back to one of these ideas.

Learning Geospatial Analysis with Python

[30]

Thematic maps
A thematic map portrays a specific theme as its name suggests. A general reference
map visually represents features as they relate geographically for navigation or
planning. A thematic map goes beyond location to provide the geographic context
for information around a central idea. Usually a thematic map is designed for a
targeted audience to answer specific questions. The value of thematic maps lies in
what they do not show. A thematic map will use minimal geographic features to
avoid distracting the reader from the theme. Most thematic maps include political
boundaries such as country or state borders but omit navigational features, such
as street names or points of interest beyond major landmarks which orient the
reader. The cholera map earlier in this chapter is a perfect example of a thematic
map. Common uses for thematic maps are visualizing health issues, such as disease,
election results, and environmental phenomena such as rainfall. These maps are also
the most common output of geospatial analysis. The following map from the US
Census Bureau shows cancer mortality rates by state:

Chapter 1

[31]

Thematic maps tell a story and are very useful. However, it is important to
remember that while thematic maps are models of reality like any other map, they
are also generalizations of information. Two different analysts using the same source
information will often come up with very different thematic maps depending on
how they analyze and summarize the data. The technical nature of thematic maps
often leads people to treat them as if they are scientific evidence. But geospatial
analysis is never conclusive. While the analysis may be based on scientific data the
analyst does not follow the rigor of the scientific method. In his classic book How to
Lie with Maps, Mark Monmonier demonstrates in great detail how maps are easily
manipulated models of reality, which are commonly abused. This fact doesn't
degrade the value of these tools. The legendary statistician George Box wrote in his
1987 book Empirical Model-Building and Response Surfaces, "Essentially, all models are
wrong, but some are useful." Thematic maps have been used as guides to start (and
end) wars, stop deadly disease in its tracks, win elections, feed nations, fight poverty,
protect endangered species, and rescue those impacted by disaster. Thematic maps
may be the most useful models ever created.

Spatial databases
In its purest form, a database is simply an organized collection of information.
A database management system (DBMS) is an interactive suite of software that
can interact with a database. People often use the word "database" as a catch-all term
referring to both the DBMS and the underlying data structure. Databases typically
contain alpha-numeric data and in some cases binary large objects, or blobs, which
can store binary data, such as images. Most databases also allow a relational database
structure in which entries in normalized tables can be referenced to each other to
create many-to-one and one-to-many relationships among data.

Spatial databases use specialized software to extend a traditional relational DBMS
or RDMS to store and query data defined in two-dimensional or three-dimensional
space. Some systems also account for a series of data over time. In a spatial database,
attributes about geographic features are stored and queried as traditional relational
database structures. The spatial extensions allow you to query geometries using
Structured Query Language (SQL) in a similar way to traditional database queries.
Spatial queries and attribute queries can also be combined to select results based on
both location and attributes.

Learning Geospatial Analysis with Python

[32]

Spatial indexing
Spatial indexing is a process that organizes geospatial vector data for faster retrieval.
It is a way of prefiltering the data for common queries or rendering. Indexing is
commonly used in large databases to speed up returns to queries. Spatial data
is no different. Even a moderately-sized geodatabase can contain millions of
points or objects. If you perform a spatial query, every point in the database must
be considered by the system in order to include it or eliminate it in the results.
Spatial indexing groups data in ways that allow large portions of the data set to
be eliminated from consideration by doing computationally simpler checks before
going into detailed and slower analysis of the remaining items.

Metadata
Metadata is defined as data about data. Accordingly, geospatial metadata is data
about geospatial data sets that provides traceability for the source and history of
a data set as well as summary technical details. Metadata also provides long-term
preservation of information holdings. Geospatial metadata can be represented by
several possible standards. One of the most prominent standards is international
standard ISO 19115-1, which includes hundreds of potential fields to describe a
single geospatial data set. Example fields include spatial representation, temporal
extent, and lineage. The primary use of metadata is cataloging data sets. Modern
metadata can be ingested by geographic search engines making it potentially
automatically discoverable by other systems. It also lists points of contact for
a data set if you have questions. Metadata is an important support tool for
geospatial analysts and adds credibility and accessibility to your work.

Map projections
Map projections can be a challenge for new analysts. If you take any
three-dimensional object and flatten it onto a plane, such as your screen or
a sheet of paper, the object is distorted. Many grade school geography classes
demonstrated this concept by having students peel an orange and then attempt
to lay the peel flat on their desk to understand the resulting distortion. The same
effect occurs when you take the round shape of the earth and project it onto a
computer screen.

In geospatial analysis, you can manipulate this distortion to preserve common
properties, such as area, scale, bearing, distance, or shape. There is no one-size-fits-
all solution to map projections. The choice of projection is always a compromise of
gaining accuracy in one dimension in exchange for error in another. Projections are
typically represented as a set of over 40 parameters as either XML or a text format
called Well-Known Text or WKT, used to define the transformation algorithm.

Chapter 1

[33]

The International Association of Oil and Gas Producers maintains a registry of
most known projections. The organization was formerly known as the EPSG. The
entries in the registry are still known as EPSG codes. The EPSG maintained the
registry as a common benefit for the oil and gas industry, which is a prolific user
of geospatial analysis for energy exploration. At last count that registry contained
over 5,000 entries.

As recently as 10 years ago, map projections were a primary concern for a geospatial
analyst. Data storage was expensive, high-speed Internet was rare, and cloud
computing didn't really exist. Geospatial data was typically exchanged among
small groups working in separate areas of interest. The technology constraints at the
time meant geospatial analysis was highly localized. Analysts would use the best
projection for their area of interest. Data in different projections cannot be displayed
on the same map because they represent two different models of the earth. Any time
an analyst received data from a third party it had to be reprojected before using it
with existing data. This process was tedious and time consuming. Most geospatial
data formats do not provide a way to store the projection information. That
information is stored in an ancillary file usually as text or XML. Because analysts
didn't exchange data often, many people wouldn't bother defining projection
information. Every analyst's nightmare was to come across an extremely valuable
data set missing the projection information. It rendered the data useless. The
coordinates in the file are just numbers and offer no clue to the projection.
With over 5,000 choices it was nearly impossible to guess.

But now, thanks to modern software and the Internet making data exchange easier
and more common, nearly every data format has added on a metadata format
that defines the projection or places it in the file header if supported. Advances in
technology have also allowed for global basemaps, which allow for more common
uses of projections like the common Google Mercator projection used for Google
Maps. Geospatial portal projects like OpenStreetMap.org and NationalAtlas.gov
have consolidated data sets for much of the world in common projections. Modern
geospatial software can also reproject data on the fly saving the analyst the trouble
of pre-processing the data before using it.

Rendering
The exciting part of geospatial analysis is visualization. Because geospatial analysis is
a computer-based process, it is good to be aware of how geographic data appears on
a computer screen.

Learning Geospatial Analysis with Python

[34]

Geographic data including points, lines, and polygons are stored numerically as
one or more points, which come in (x,y) pairs or (x,y,z) tuples. The x represents the
horizontal axis on a graph. The y represents the vertical axis. The z represents terrain
elevation. In computer graphics, a computer screen is represented by an x and y axis.
A z axis in not used because the computer screen is treated as a two-dimensional
plane by most graphics software APIs.

Another important factor is screen coordinates versus world coordinates. Geographic
data is stored in a coordinate system representing a grid overlaid on the earth,
which is three-dimensional and round. Screen coordinates, also known as pixel
coordinates, represent a grid of pixels on a flat, two-dimensional computer screen.
Mapping x and y world coordinates to pixel coordinates is fairly straightforward and
involves a simple scaling algorithm. However, if a z coordinate exists then a more
complicated transform must be performed to map coordinates from 3D space to a 2D
plane. These transformations can be computationally costly and therefore slow if not
handled correctly.

In the case of remote sensing data, the challenge is typically file size. Even a
moderately sized satellite image, compressed, can be tens, if not hundreds of
megabytes. Images can be compressed using lossless or lossy methods. Lossless
methods use tricks to reduce file size without discarding any data. Lossy
compression algorithms reduce file size by reducing the amount of data in the image
while avoiding a significant change in appearance of the image. Rendering an image
on the screen can be computationally intensive. Most remote sensing file formats
allow for storing multiple lower-resolution versions of the image, called overviews
or pyramids, for the sole purpose of faster rendering at different scales. When
zoomed out from the image to a scale where you couldn't see the detail of the
full resolution image, a pre-processed, lower-resolution version of the image is
displayed quickly and seamlessly.

Raster data concepts
Most of the GIS concepts described also apply to raster data. However, raster data
has some unique properties as well. Earlier in this chapter in the history of remote
sensing, the focus was on earth imaging from aerial platforms. It is important to note
that raster data can come in many forms including ground-based radar, laser range
finders, and other specialized devices for detecting gases, radiation, and other forms
of energy within a geographic context. For the purpose of this book, we will focus
on remote sensing platforms that capture large amounts of earth data. These sources
included earth imaging systems but also certain types of elevation data, and some
weather systems where applicable.

Chapter 1

[35]

Images as data
Raster data is captured digitally as square tiles. This means the data is stored on a
computer as a numerical array of rows and columns. If the data is multispectral, the
data set will usually contain multiple arrays of the same size, which are geospatially
referenced together to represent a single area on the earth. These different arrays are
called bands. Any numerical array can be represented on a computer as an image. In
fact, all computer data is ultimately numbers. It is important in geospatial analysis
to think of images as a numeric array because mathematical formulas are used to
process them.

In remotely sensed images, each pixel represents both space (location on the earth
of a certain size), and the reflectance captured as light reflected from the earth at
that location into space. So each pixel has a ground size and contains a number
representing the intensity. Because each pixel is a number, we can perform math
equations on this data to combine data from different bands and highlight specific
classes of objects in the image. And if the wavelength value is beyond the visible
spectrum we can highlight features not visible to the human eye. Substances such
as chlorophyll in plants can be greatly contrasted using a specific formula called the
normalized vegetation differential index or NDVI.

By processing remotely sensed images, we can turn these data into visual
information. Using the NDVI formula we can answer the question, What is the
relative health of the plants in this image? But you can also create new types of
digital information, which can be used as input for computer programs to output
other types of information.

Remote sensing and color
Computer screens display images as combinations of red, green, and blue (RGB) to
match the capability of the human eye. Satellites and other remote sensing imaging
devices can capture light beyond that visible spectrum. On a computer, wavelengths
beyond the visible spectrum are represented in the visible spectrum so we can
see them. In remote sensing, infrared light makes moisture highly visible. This
phenomenon has a variety of uses such as monitoring ground saturation during
a flood or finding hidden leaks in a roof or a levee.

Learning Geospatial Analysis with Python

[36]

Common vector GIS concepts
This section will discuss different types of GIS processes commonly used in
geospatial analysis. This list is not exhaustive; however, it provides the essential
operations on which all other operations are based. If you understand these
operations you can quickly understand much more complex processes as they
are either derivatives or combinations of these processes.

Data structures
GIS vector data uses coordinates consisting of, at a minimum, an x horizontal value
and a y vertical value to represent a location on the earth. In many cases a point may
also contain a z value. Other ancillary values are possible including measurements
or timestamps.

These coordinates are used to form points, lines, and polygons to model real-world
objects. Points can be a geometric feature in and of themselves, or they can connect
line segments. Closed areas created by line segments are considered polygons.
Polygons model objects such as buildings, terrain, or political boundaries.

A GIS feature can consist of a single point, line, or polygon or it can consist of
more than one shape. For example, in a GIS polygon data set containing world
country boundaries, the Philippines, which is made up of 7,107 islands, would
be represented as a single country made up of thousands of polygons.

Vector data typically represents topographic features better than raster data.
Vector data has better accuracy potential and is more precise. But vector data
is also traditionally more costly to collect on a large scale than raster data.

Two other important terms related to vector data structures are bounding box
and convex hull. The bounding box or minimum bounding box is the smallest
possible square which contains all of the points in a data set. The following
image demonstrates a bounding box for a collection of points:

Chapter 1

[37]

The convex hull of a data set is similar to the bounding box but instead of a square it
is the smallest possible polygon which can contain a data set. The bounding box of a
data set always contains its convex hull. The following image shows the same point
data as the previous example with the convex hull polygon shown in red:

Learning Geospatial Analysis with Python

[38]

Buffer
A buffer operation can be applied to spatial objects including points, lines, or
polygons. This operation creates a polygon around the object at a specified distance.
Buffer operations are used for proximity analysis, for example, establishing a safety
zone around a dangerous area. In the following image, the black shapes represent
the original geometry while the red outlines represent the larger buffer polygons
generated from the original shape:

Dissolve
A dissolve operation creates a single polygon out of adjacent polygons. A common
use for a dissolve operation is to merge two adjacent properties in a tax database
that have been purchased by a single owner. Dissolves are also used to simplify
data extracted from remote sensing.

Chapter 1

[39]

Generalize
Objects which have more points than necessary for the geospatial model can be
generalized to reduce the number of points used to represent the shape. This
operation usually requires a few attempts to get the optimal number of points
without compromising the overall shape. It is a data optimization technique to
simplify data for computing efficiency or better visualization. This technique is
useful in web-mapping applications. Computer screens have a resolution of 72
Dots Per Inch (dpi). Highly detailed point data, which would not be visible, can
be reduced so less bandwidth is used to send a visually-equivalent map to the user.

Learning Geospatial Analysis with Python

[40]

Intersection
An intersection operation is used to see if one part of a feature intersects with one or
more features. This operation is for spatial queries in proximity analysis and is often
a follow-on operation to a buffer analysis.

Merge
A merge operation combines two or more non-overlapping shapes into a single
multishape object. Multishape objects mean the shapes maintain separate geometries
but are treated as a single feature with a single set of attributes by the GIS.

Chapter 1

[41]

Point in polygon
A fundamental geospatial operation is checking to see if a point is inside a polygon.
This one operation is the atomic building block of many different types of spatial
queries. If the point is on the boundary of the polygon it is considered inside. Very
few spatial queries exist that do not rely on this calculation in some way. It can be
very slow on a large number of points, however.

The most common and efficient algorithm to detect if a point is inside a polygon is
called the Ray Casting algorithm. First a test is performed to see if the point is on
the polygon boundary. Next the algorithm draws a line from the point in question
in a single direction. The program counts the number of times the line crosses the
polygon boundary until it reaches the bounding box of the polygon. The bounding
box is the smallest box which can be drawn around the entire polygon. If the number
is odd, the point is inside. If the number of boundary intersections is even, the point
is outside.

Learning Geospatial Analysis with Python

[42]

Union
The union operation is less common but very useful for combining two or more
overlapping polygons into a single shape. It is similar to the dissolve but in this
case the polygons are overlapping as opposed to being adjacent. Usually this
operation is used to clean up automatically generated feature data sets from
remote sensing operations.

Join
A join or SQL join is a database operation used to combine two or more tables
of information. Relational databases are designed to avoid storing redundant
information for one-to-many relationships. For example, a US state may contain
many cities. Rather than creating a table for each state containing all of its cities, a
table of states with numeric IDs is created, while a table for all cities in every state is
created with a state numeric ID. In a spatial join operation the state and cities tables
could be linked by state ID. In a GIS, you can also have spatial joins which are part of
the spatial extension software for a database. In spatial joins, combine the attributes
to two features the same way you do in an SQL join, but the relation is based on the
spatial proximity of the two features. To follow the previous cities example, we could
add the county name each city resides in using a spatial join. The cities layer could be
loaded over a county polygon layer whose attributes contain the county name. The
spatial join would determine which city is in which county and perform an SQL join
to add the county name to each city's attribute row.

Chapter 1

[43]

Geospatial rules about polygons
In geospatial analysis, there are several general rules of thumb regarding polygons
which are different from mathematical descriptions of polygons:

•	 Polygons must have at least four points (no triangles)
•	 A polygon boundary should not overlap itself
•	 Polygons within a layer shouldn't overlap
•	 A polygon within a layer inside another polygon is considered a hole in the

underlying polygon

Different geospatial software packages and libraries handle exceptions to these rules
differently and can lead to confusing errors or software behavior. The safest route
is to make sure your polygons obey these rules. There is one more important piece
of information about polygons. A polygon is by definition a closed shape, meaning
the first and last vertices of the polygon are identical. Some geospatial software will
throw an error if you haven't explicitly duplicated the first point as the last point in
the polygon data set. Other software will automatically close the polygon without
complaining. The data format you use to store your geospatial data may also dictate
how polygons are defined. This issue is a gray area so it didn't make the polygon
rules but knowing this quirk will come in handy someday when you run into an
error you can't explain easily.

Common raster data concepts
Remote sensing contains thousands of operations which can be performed on data.
And this field changes on an almost daily basis as new satellites are put into space
and computer power increases. Despite its decades long history, we haven't even
scratched the surface of the knowledge this field can provide the human race. Once
again, similar to the common GIS processes, this minimal list of operations gives you
the basis to evaluate any technique used in remote sensing.

Band math
Band math is multidimensional array mathematics. In array math, arrays are treated
as single units, which are added, subtracted, multiplied, and divided. But in an
array the corresponding numbers in each row and column across multiple arrays
are computed simultaneously.

Learning Geospatial Analysis with Python

[44]

Change detection
Change detection is the process of taking two images of the same location at different
times and highlighting the changes. A change can do the addition of something
on the ground, such as a new building or the loss of a feature, such as coastal
erosion. There are many algorithms for detecting changes among images and also
determining qualitative factors, such as how long ago the change took place. The
following image from a research project by the US Oak Ridge National Laboratory
shows rainforest deforestation between 1984 and 2000 in the state of Rondonia,
Brazil. Colors are used to show how recently the forest was cut. Green represents
virgin rain forest, white is forest cut within 2 years of the end of the date range, red
within 22 years, and the other colors fall in between as described in the legend:

Chapter 1

[45]

Histogram
A histogram is the statistical distribution of values in a data set. The horizontal axis
represents a unique value in a data set while the vertical axis represents the frequency
of that unique value within the raster. A histogram is a key operation in most raster
processing. It can be used for everything from enhancing contrast in an image to
serving as a basis for object classification and image comparison. The following
example from NASA shows a histogram for a satellite image which has been
classified into different categories representing the underlying surface feature:

Feature extraction
Feature extraction is the manual or automatic digitization of features in an image
to points, lines, or polygons. This process serves as the basis for the vectorization
of images in which a raster is converted to a vector data set. An example of feature
extraction is extracting a coastline from a satellite image and saving it as a vector
data set. If this extraction is performed over several years you could monitor the
erosion or other changes along that coastline.

Learning Geospatial Analysis with Python

[46]

Supervised classification
Objects on the earth reflect different wavelengths of light depending on the material
they are made of. In remote sensing, analysts collect wavelength signatures for
specific types of land cover (for example, concrete) and build a library for a specific
area. A computer can then use that library to automatically locate classes in that
library in a new image of that same area.

Unsupervised classification
In an unsupervised classification a computer groups pixels with similar reflectance
values in an image without any other reference information other than the histogram
of the image.

Creating the simplest possible Python
GIS
Now that we have a better understanding of geospatial analysis, the next step is to
build a simple GIS using Python called SimpleGIS! This small program will be a
technically complete GIS with a geographic data model and the ability to render
the data as a visual thematic map showing population of different cities.

The data model will also be structured so that you can perform basic queries.
Our SimpleGIS will contain the state of Colorado, three cities, and population
counts for each city.

Most importantly we will demonstrate the power and simplicity of Python
programming by building this tiny system in pure Python. We will only use
modules available within the standard Python distribution without downloading
any third-party libraries.

Getting started with Python
As stated earlier, this book assumes you have some basic knowledge of Python.
The examples in this book are based on Python 2.7, which you can download here:

http://python.org/download/

Chapter 1

[47]

The only module used in the following example is the Turtle module which provides
a very simple graphics engine based on the Tkinter library included with Python.
If you used the installers for Windows or Mac OS X the Tkinter library should be
included already. If you compiled Python yourself or are using a distribution from
somewhere besides Python.org then check to make sure you can import the Turtle
module by typing the following at a command prompt to run the turtle demo script:

python –m turtle

If your Python distribution does not have Tkinter, you can find information on
installing it from the following page. The information is for Python 2.3 but the
process is still the same:

http://tkinter.unpythonic.net/wiki/How_to_install_Tkinter

The official Python wiki page for Tkinter can be found here:

https://wiki.python.org/moin/TkInter

The documentation for Tkinter is in the Python Standard Library documentation
found online here:

http://docs.python.org/2/library/tkinter.html

If you are new to Python, Dive into Python is a free online book, which covers all the
basics of Python and will bring you up to speed:

http://www.diveintopython.net/

Building SimpleGIS
The code is divided into two different sections. The first is the data model section
and the second is the map renderer that draws that data. For the data model we
will use simple Python lists. A Python list is a native data type, which serves as a
container for other Python objects in a specified order. Python lists can contain other
lists and are great for simple data structures. They also map well to more complex
structures or even databases if you decide you want to develop your script further.

Learning Geospatial Analysis with Python

[48]

The second portion of the code will render the map using the Python Turtle
graphics engine. We will have only one function in the GIS that converts the world
coordinates, in this case longitude and latitude, into pixel coordinates. All graphics
engines have an origin point of (0,0), which is usually in the top-left or lower-left
corner of the canvas. Turtle graphics are designed to teach programming visually.
The Turtle graphics canvas uses an origin of (0,0) in the center, similar to a graphing
calculator. The following image illustrates the type of Cartesian graph the Turtle
module uses. In the following graph, some points are plotted in both positive and
negative space:

This also means the Turtle graphics engine can have negative pixel coordinates,
which is uncommon for graphics canvases. But for this example the Turtle module
is the quickest and simplest way to render our map.

You can run this program interactively in the Python interpreter or you can save
the complete program as a script and run it. The Python interpreter is an incredibly
powerful way to learn new concepts because it gives you real-time feedback on
errors or unexpected program behavior. You can easily recover from these issues
and try something else until you get the results you want.

In Python, you usually import modules at the beginning of the script so we'll import
the Turtle module first. We'll use Python's import as feature to assign the module
the name t to save space and time when typing Turtle commands:

import turtle as t

Chapter 1

[49]

Next we'll set up the data model starting with some simple variables that allow us
to access list indexes by name instead of numbers to make the code easier to follow.
Python lists index the contained objects starting with the number 0. So if we want to
access the first item in a list called myList we would reference it like this:

myList[0]

But to make our code easier to read we can also use a variable name assigned to
commonly used indexes:

firstItem = 0
myList[firstItem]

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

In computer science, assigning commonly used numbers to an easy-to-remember
variable is a common practice. These variables are called constants.

So, for our example, we'll assign some constants for some common elements used for
all the cities. All cities will have a name, one or more points, and a population count:

NAME = 0
POINTS = 1
POP = 2

Now we'll set up the data for Colorado as a list with name, polygon points, and
population. Notice the coordinates are a list within a list:

state = ["COLORADO", [[-109, 37],[-109, 41],[-102, 41],[-102, 37]],
5187582]

The cities will be stored as nested lists. Each city's location consists of a single point as a
longitude and latitude pair. These entries will complete our GIS data model. We'll start
with an empty list called cities and then append the data to that list for each city:

cities = []
cities.append(["DENVER",[-104.98, 39.74], 634265])
cities.append(["BOULDER",[-105.27, 40.02], 98889])
cities.append(["DURANGO",[-107.88,37.28], 17069])

We will now render our GIS data as a map by first defining a map size. The width
and height can be anything you want up to your screen resolution:

map_width = 400
map_height = 300

Learning Geospatial Analysis with Python

[50]

In order to scale the map to the graphics canvas, we must first determine the
bounding box of the largest layer which is the state. We'll set the map bounding
box to a global scale and reduce it to the size of the state. To do so we'll loop
through the longitude and latitude of each point and compare it to the current
minimum and maximum x and y values. If it is larger than the current maximum
or smaller than the current minimum we'll make that value the new maximum or
minimum respectively:

minx = 180
maxx = -180
miny = 90
maxy = -90
for x,y in state[POINTS]:
if x < minx: minx = x
 elif x > maxx: maxx = x
 if y < miny: miny = y
 elif y > maxy: maxy = y

The second step to scaling is to calculate a ratio between the actual state and the tiny
canvas we will render it upon. This ratio is used for coordinate to pixel conversion.
We get the size along the x and y axis of the state and then we divide the map width
and height by those numbers to get our scaling ratio:

dist_x = maxx - minx
dist_y = maxy - miny
x_ratio = map_width / dist_x
y_ratio = map_height / dist_y

The following function called convert() is our only function in SimpleGIS.
It transforms a point in map coordinates from one of our data layers to pixel
coordinates using the previous calculations. You'll notice at the end, we divide the
map width and height in half and subtract it from the final conversion to account for
the unusual center origin of the Turtle graphics canvas. Every geospatial program
has some form of this function:

def convert(point):
 lon = point[0]
 lat = point[1]
 x = map_width - ((maxx - lon) * x_ratio)
 y = map_height - ((maxy - lat) * y_ratio)
 # Python turtle graphics start in the middle of the screen
 # so we must offset the points so they are centered
 x = x - (map_width/2)
 y = y - (map_height/2)
 return [x,y]

Chapter 1

[51]

Now for the exciting part! We're ready to render our GIS as a thematic map. The
Turtle module uses the concept of a cursor called a pen. And moving the cursor
around the canvas is exactly like moving a pen around a piece of paper. The cursor
will draw a line when you move it. So you'll notice throughout the code we use the
commands t.up() and t.down() to pick the pen up when we want to move to a
new location, and put it down when we're ready to draw. We have some important
steps in this section. Because the border of Colorado is a polygon, we must draw a
line between the last point and the first point to close the polygon. We could also
have left out the closing step and just added a duplicate point to the Colorado data
set. Once we draw the state, we'll use the write() method to label the polygon:

t.up()
first_pixel = None
for point in state[POINTS]:
 pixel = convert(point)
 if not first_pixel:
 first_pixel = pixel
 t.goto(pixel)
 t.down()
t.goto(first_pixel)
t.up()
t.goto([0,0])
t.write(state[NAME], align="center", font=("Arial",16,"bold"))

If we were to run the code at this point we would see a simplified map of the state of
Colorado like the following screenshot:

Learning Geospatial Analysis with Python

[52]

If you do try to run the code you'll need to temporarily add the
following line at the end, or the Tkinter window will close as soon
as it finishes drawing.

t.done()

Now we'll render the cities as point locations and label them with their name and
population. Since the cities are a group of features in a list, we'll loop through them
to render them. Instead of drawing lines by moving the pen around, we'll use the
Turtle dot() method to plot a small circle at the pixel coordinate returned by our
SimpleGIS convert() function. We'll then label the dot with the city name and add
the population. You'll notice we must convert the population number to a string
in order to use it in the Turtle write() method. To do so we use Python's built-in
function str().

for city in cities:
 pixel = convert(city[POINTS])
 t.up()
 t.goto(pixel)
 # Place a point for the city
 t.dot(10)
 # Label the city
 t.write(city[NAME] + ", Pop.: " + str(city[POP]), align="left")
 t.up()

Now we will perform one last operation to prove that we have created a real GIS.
We will perform an attribute query on our data to determine which city has the
largest population. Then we'll perform a spatial query to see which city lies the
furthest west. Finally we'll print the answers to our questions on our thematic
map page safely out of range of the map.

Chapter 1

[53]

As our query engine we'll use Python's built-in min() and max() functions. These
functions take a list as an argument and return the minimum and maximum values
of that list. Because we are dealing with nested lists in our data model we'll take
advantage of the key argument in those functions. The key argument accepts a
function that temporarily alters the list for evaluation before a final value is returned.
In this case, we want to isolate the population values for comparison and then
the points. We could write a whole new function to return the specified value but
instead we can use Python's lambda keyword. The lambda keyword defines an
anonymous function that is used inline. Other Python functions can be used inline,
for example, the string function: str(), but they are not anonymous. This temporary
function will isolate our value of interest.

So our first question is, which city has the largest population?

biggest_city = max(cities, key=lambda city:city[POP])
t.goto(0,-200)
t.write("The biggest city is: " + biggest_city[NAME])

Next question: which city lies the furthest west?

western_city = min(cities, key=lambda city:city[POINTS])
t.goto(0,-220)
t.write("The western-most city is: " + western_city[NAME])

In the preceding query, we use Python's built in min() function to select the smallest
longitude value which works because we represented our city locations as longitude,
latitude pairs. It is possible to use different representations for points including
possible representations where this code would need modification to work correctly.
But for our SimpleGIS we are using a common point representation to make it as
intuitive as possible.

These last two commands are just for clean up purposes. First we hide the cursor.
Then we call the Turtle done() method, which will keep the turtle graphics window
with our map open until we choose to close it using the close handle at the top of
the window.

t.pen(shown=False)
t.done()

Learning Geospatial Analysis with Python

[54]

Whether you followed along using the Python interpreter or you ran the complete
program as a script, you should see the following map rendered in real time:

Congratulations! You have followed in the footsteps of Palaeolithic hunters, the
"Father of GIS" Dr. Roger Tomlinson, geospatial pioneer Howard Fisher, and big-
data rock star, Nate Silver to create a functional, extensible and technically complete
geographic information system. And it took less than 60 lines of pure Python code!
You will be hard pressed to find a programming language that can create a complete
GIS using only its core libraries in such a finite amount of readable code like Python.
And even if you did, it is highly unlikely that language would survive the geospatial
Python journey you'll take through the rest of this book.

Chapter 1

[55]

As you can see there is lots of room for expansion of SimpleGIS. Here are some other
ways you might expand this simple tool using the reference material for Tkinter and
Python linked at the beginning of this section:

•	 Create an overview map in the top-right corner with a US border outline and
Colorado's location in the US

•	 Add color for visual appeal and further clarity
•	 Create a map key for different features
•	 Make a states and cities list and add more states and cities
•	 Add a title to the map
•	 Create a bar chart to compare population numbers visually

The possibilities are endless. SimpleGIS can also be used as a way to quickly test
and visualize geospatial algorithms you come across. If you wanted to add more
data layers you could create more lists but these lists would become difficult to
manage. In that case you could use another Python module included in the standard
distribution. The sqlite module provides a SQL-like database in Python that can be
saved to disk or run in memory.

Summary
Well done! You are now a geospatial analyst. In this chapter you learned:

•	 The state of the art of geospatial analysis
•	 The history of geospatial analysis and related technologies
•	 Core GIS concepts, which will guide understanding unfamiliar concepts
•	 Core remote sensing concepts applied throughout geospatial analysis
•	 Common GIS and remote sensing processes
•	 How to build the simplest possible GIS that works

In the next chapter, we'll tackle the data formats you'll encounter as geospatial
analysts. Geospatial analysts spend far more time dealing with data than actually
performing analysis. Understanding the data you're working with is essential to
working efficiently and having fun.

Geospatial Data
The most challenging aspect of geospatial analysis is the data. Geospatial data
includes dozens of file formats and database structures already and continues to
evolve and grow to include new types of data and standards. Additionally almost
any file format can technically contain geospatial information simply by adding a
location. As a geospatial analyst you may frequently encounter the following general
data types:

•	 Spreadsheets and comma or tab-delimited files (CSV files)
•	 Geo-tagged photos
•	 Lightweight binary points, lines, and polygons
•	 Multigigabyte satellite or aerial images
•	 Elevation data such as grids, point clouds, or integer-based images
•	 XML files
•	 JSON files
•	 Databases (both servers and file databases)

Each format contains its own challenges for access and processing. When you
perform analysis on data, usually you have to do some form of preprocessing first.
You might clip a satellite image of a large area down to just your area of interest.
Or you might reduce the number of points in a collection to just the ones meeting
certain criteria in your data model. A good example of this type of preprocessing
is the SimpleGIS example at the end of Chapter 1, Learning Geospatial Analysis with
Python. The state data set included just the state of Colorado rather than all 50 states.
And the city dataset included only three sample cities, demonstrating three levels of
population along with different relative locations.

Geospatial Data

[58]

The common geospatial operations in Chapter 1, Learning Geospatial Analysis
with Python, are the building blocks for this type of preprocessing. However, it
is important to note that there has been a gradual shift in the field of geospatial
analysis. Until around 2004, geospatial data was difficult to acquire and desktop
computing power was much less than it is today. Preprocessing data was an absolute
first step to any geospatial project. However, in 2004, Google released Google Maps,
not long after Google Earth. Microsoft had also been developing a technology
acquisition called TerraServer which they relaunched around that time. In 2004, the
Open Geospatial Consortium updated the version of its Web Map Service (WMS)
to 1.3.0. That same year Esri also released Version 9 of their ArcGIS server system.
These innovations were driven by Google's web map tiling model. People used map
servers on the Internet before Google Maps, most famously with the MapQuest
driving directions website. But these map servers offered only small amounts of data
at a time and usually over limited areas. The Google web tiling system converted
global maps to tiered image tiles for both images and mapping data. These were
served dynamically using JavaScript and the browser-based XMLHttpRequest API.
Google's system scaled to millions of users using ordinary web browsers. More
importantly, it allowed programmers to modify the JavaScript to create mash-ups
to use the Google Maps JavaScript API for adding additional data to the maps. The
mash-up concept is actually a "distributed geospatial layers" system. Users can
combine and recombine data from different locations onto a single map as long
as the data is web accessible. Other commercial and open source systems quickly
mimicked the idea of distributed layers. Notable examples are OpenLayers, which
provide an open source Google-like API that has now gone beyond Google's API
offering additional features. Complimentary to OpenLayers is OpenStreetMap,
which is the open source answer to the tiled-map services consumed by systems like
OpenLayers. OpenStreetMap has global, street-level vector data and other spatial
features collected from available government data sources and the contributions
of thousands of editors worldwide. OpenStreetMap's data maintenance model is
similar to the way the Wikipedia online encyclopedia crowd sources information
creation and update for articles.

Chapter 2

[59]

The mash-up revolution had interesting and beneficial side effects on data.
Geospatial data is traditionally difficult to obtain. The cost of collecting, processing,
and distributing data kept geospatial analysis constrained to those who could
afford this steep overhead cost by producing data or purchasing it. For decades,
geospatial analysis was the tool of governments, very large organizations, and
universities. Once the web mapping trend shifted to large-scale, globally-tiled maps,
organizations began essentially providing base map layers for free in order to draw
developers to their platform. The massively-scalable global map system required
massively-scalable, high-resolution data to be useful. Geospatial software producers
and data providers wanted to maintain their market share and kept up with the
technology trend.

Geospatial analysts benefited greatly from this market shift in several ways. First of
all, data providers began distributing data in a common projection called Mercator.
The Mercator projection is a nautical navigation projection introduced over 400
years ago. As mentioned in Chapter 1, Learning Geospatial Analysis with Python,
all projections have practical benefits as well as distortions. The distortion in the
Mercator projection is size. In a global view, Greenland appears bigger than the
continent of South America. But, like every projection, it also has a benefit. Mercator
preserves angles. Predictable angles allowed medieval navigators to draw straight
bearing lines when plotting a course across oceans. Google Maps didn't launch with
Mercator. However, it quickly became clear that roads in high and low latitudes met
at odd angles on the map instead of the 90 degrees in reality. Because the primary
purpose of Google Maps was street-level driving directions, Google sacrificed the
global view accuracy for far better relative accuracy among streets when viewing a
single city. Competing mapping systems followed suit. Google also standardized
on the WGS 84 datum. This datum defines a specific spherical model of the Earth
called a geoid. This model defines the normal sea level. What is significant about
this choice by Google is that the Global Positioning System (GPS) also uses this
datum. Therefore, most GPS units default to this datum as well, making Google
Maps easily compatible with raw GIS data. It should be noted that Google tweaked
the standard Mercator projection slightly for its use; however, this variation is
almost imperceptible.

The Google variation of the Mercator projection is often called Google Mercator.
The European Petroleum Survey Group (EPSG) assigns short numeric codes to
projections as an easy way to reference them. Rather than waiting for the EPSG to
approve or assign a code that was first only relevant to Google, they began calling
the projection EPSG:900913 which is "Google" spelled with numbers.

Geospatial Data

[60]

The following URL provides an image, taken from Wikipedia,
https://en.wikipedia.org/wiki/File:Tissot_mercator.png. It shows
the distortion caused by the Mercator projection using Tissot's Indicatrix,
which projects small ellipses of equal size onto a map. The distortion of the
ellipse clearly shows how the projection affects the size and distance:

Web mapping services have reduced the chore of hunting for data and much of the
preprocessing for analysts to create base maps. But to create anything of value you
must understand geospatial data and how to work with it. This chapter provides an
overview of common data types and issues you will encounter in geospatial analysis.
Throughout this chapter, two terms will be commonly used: vector data and raster
data. These are the two primary categories under which most geospatial data
sets can be grouped. Vector data includes any format that minimally represents
geo-location data using points, lines, or polygons. Raster data includes any
format that stores data in a grid of rows and columns. Raster data includes
all image formats.

Chapter 2

[61]

Data structures
Despite dozens of formats, geospatial data have common traits. Understanding these
traits can help you approach and understand unfamiliar data formats by identifying
the ingredients common to nearly all spatial data. The structure of a given data
format is usually driven by its intended use. Some data is optimized for efficient
storage or compression; some is optimized for efficient access, some is designed to
be lightweight and readable (web formats), while other data formats seek to contain
as many different data types as possible.

Interestingly, some of the most popular formats today are also some of the simplest
and even lack features found in more capable and sophisticated formats. Ease of
use is extremely important to geospatial analysts, because so much time is spent
integrating data into geographic information systems as well as exchanging data
among analysts. Simple data formats facilitate these activities the best.

Common traits
Geospatial analysis is an approach applying information processing techniques
to data with geographic context. This definition contains the most important
elements of geospatial data: geo-location data and subject information. These two
factors are present in every format that can be considered geospatial data. Another
common feature of geospatial data is spatial indexing. Also related to indexing are
overview data sets.

Geo-location
Geo-location information can be as simple as a single point on the Earth referencing
where a photo was taken. It can also be as complex as a satellite camera engineering
model and orbital mechanics information, to reconstruct the exact conditions and
location under which the satellite captured the image.

Subject information
Subject information can also cover a wide range of possibilities. Sometimes the pixels
in an image are the data in terms of a visual representation of the ground. Other
times an image may be processed using multispectral bands, such as infrared light,
to provide information not visible in the image. Processed images are often classified
using a structured color palette, linked to a key, describing the information each
color represents. Other possibilities include some form of database with rows and
columns of information for each geo-located feature.

Geospatial Data

[62]

Spatial indexing
Geospatial data sets are often very large files easily reaching hundreds of megabytes
or even several gigabytes in size. Geospatial software can be quite slow trying to
repeatedly access large files when performing analysis. As discussed briefly in
Chapter 1, Learning Geospatial Analysis with Python, spatial indexing creates a guide,
which allows software to quickly locate query results, without examining every
single feature in the data set. Spatial indexes allow software to eliminate possibilities
and perform more detailed searches or comparisons on a much smaller subset of
the data.

Indexing algorithms
Many spatial indexing algorithms are derivatives of well-established algorithms
used for decades on non-spatial information. The two most common spatial
indexing algorithms are the Quad-Tree index and the R-Tree index.

Quad-Tree index
The Quad-Tree algorithm actually represents a series of different algorithms based
on a common theme. Each node in a Quad-Tree index contains four children. These
child nodes are typically square or rectangular in shape. When a node contains
a specified number of features, the node splits if additional features are added.
The concept of dividing a space into nested squares speeds up spatial searches.
Software must only handle five points at a time and uses simple greater-than/less-
than comparisons to check if a point is inside a node. Quad-Tree indexes are most
commonly found as file-based index formats.

The following image shows a point data set sorted by a Quad-Tree algorithm. The
black points are the actual data set, while the boxes are the bounding boxes of the
index. Notice none of the bounding boxes overlap. The left image shows the spatial
representation of the index. The right image shows the hierarchical relationship
of a typical index, like the one above, which is how spatial software sees the index
and data. This structure allows a spatial search algorithm to quickly eliminate
possibilities when trying to locate one or more points in relation to some other
set of features:

Chapter 2

[63]

R-Tree index
R-Tree indexes are more sophisticated than Quad-Trees. R-Trees are designed
to handle three-dimensional data and are optimized to store the index in a way
compatible with the way databases use disk space and memory. Nearby objects
are grouped together using any of a variety of spatial algorithms. All objects in a
group are bounded by a minimum rectangle. These rectangles are aggregated into
hierarchical nodes that are balanced at each level. Unlike a Quad-Tree, the bounding
boxes of an R-Tree may overlap across nodes. Because of the relative complexity
and the database-oriented structure, R-Trees are most commonly found in spatial
databases as opposed to file-based formats.

Geospatial Data

[64]

The following diagram, from https://en.wikipedia.org/wiki/File:R-tree.
svg, shows a balanced R-Tree for a two-dimensional point data set:

Grids
Spatial indexes also often employ the concept of an integer grid. Geospatial
coordinates are usually floating point decimal numbers with anywhere from 2 to
16 decimal places. Performing comparisons on floating point numbers is far more
computationally expensive than working with integers. Indexed searching is about
eliminating possibilities first which don't require precision. Most spatial indexing
algorithms therefore map floating point coordinates to a fixed-sized integer grid.
Upon searching for a particular feature, the software can use more efficient integer
comparisons rather than working with floating point numbers. Once the results are
narrowed down, the software can access the full resolution data.

Grid sizes can be as small as 256 by 256 for simple file formats or can be as large as
3 million by 3 million in large geospatial databases designed to incorporate every
known coordinate system and possible resolution. The integer mapping technique
is very similar to the rendering technique used to plot data on a graphics canvas in
mapping programs. The SimpleGIS script in Chapter 1, Learning Geospatial Analysis
with Python, also uses this technique to render points and polygons using the built-in
Python Turtle graphics engine.

Chapter 2

[65]

Overviews
Overview data is most commonly found in raster formats. Overviews are resampled,
lower resolution versions of raster data sets, to provide thumbnail views or simply
faster loading image views at different map scales. They can also be known as
"pyramids" and the process of creating them is known as "pyramiding" an image.
These overviews are usually preprocessed and stored with the full-resolution
data either embedded with the file or in a separate file. The compromise of this
convenience is the additional images add to the overall file size of the data set;
however, they speed up image viewers. Vector data also has a concept of overviews,
usually to give a data set geographic context in an overview map. However, because
vector data is scalable, reduced-size overviews are usually created on-the-fly by
software using a generalization operation as mentioned in Chapter 1, Learning
Geospatial Analysis with Python. Occasionally, vector data is rasterized by converting
it to a thumbnail image which is stored with or embedded in the image header. The
following image demonstrates the concept of image overviews which also shows
visually why they are often called pyramids:

Metadata
Metadata is any data which describes the associated data set. Common examples of
metadata include basic elements such as the footprint of the data set on the Earth
as well as more detailed information such as spatial projection and information
describing how the data set was created. Most data formats contain the footprint
or bounding box in data format. Detailed metadata is typically stored in a separate
location in a standard format such as FGDC, ISO, or the newer European Union
initiative which includes metadata requirements called the Infrastructure for
Spatial Information in the European Community or INSPIRE.

Geospatial Data

[66]

File structure
The preceding elements can be stored in a variety of ways within a single file,
multiple files, or in a database depending on the format. The following table
shows the most frequently used storage formats for the common geospatial data
elements explained previously. The elements in this table may be found in different
combinations for different types of file formats.

Storage formats for geospatial data elements
Geo-location Subject

information
Spatial indexing Metadata Overviews

Binary File
Header

Binary File-Based
Database

Binary Index File Text File Binary File
Header

XML XML Footprint Index
Vector Data (for
Raster Data)

XML Binary File

Database Table Database Table Database Table Database Table Database
Table (blob)

Spreadsheet/
CSV

Spreadsheet/CSV

Text File Text File
Binary File Binary File

Human readable formats such as XML files, spreadsheets, and structured text
files require only a text editor to investigate. These files are also easily parsed and
processed using Python's built-in modules, data types, and string manipulation
functions. Binary-based formats are more complicated. It is typically easier to use a
third-party library to deal with binary formats.

However, you don't have to use a third-party library, especially if you just want to
investigate the data at a high level. Python's built-in struct module has everything
you need. The struct module lets you read and write binary data as strings.
When using the struct module you need to be aware of the concept of byte order.
Byte order refers to how the bytes of information that make up a file are stored in
memory. This order is usually platform specific but in some rare cases, including
shapefiles, the byte order is mixed within the file. The Python struct module uses
the greater than (>) and less than (<) symbols to specify byte order.

The following brief example demonstrates using the Python struct module
to parse the bounding box coordinates from an Esri shapefile vector data set.
You can download this shapefile as a zipped file at the following URL:

https://geospatialpython.googlecode.com/files/hancock.zip

Chapter 2

[67]

When you unzip this you will see three files. For this example we'll be using
hancock.shp. The Esri shapefile format has a fixed location and data type in the file
header from byte 36 to byte 37 for the minimum x, minimum y, maximum x, and
maximum y bounding box values. This example will execute the following steps:

•	 Import the struct module
•	 Open the hancock.zip shapefile in binary read mode
•	 Navigate to byte 36
•	 Read each 8-byte double specified as d, and unpack it using the struct

module in little-endian order as designated by the < sign.

The best way to execute this script is in the interactive Python interpreter. We
will read the minimum longitude, minimum latitude, maximum longitude, and
maximum latitude:

>>> import struct
>>> f = open("hancock.shp","rb")
>>> f.seek(36)
>>> struct.unpack("<d", f.read(8))
(-89.6904544701547,)
>>> struct.unpack("<d", f.read(8))
(30.173943486533133,)
>>> struct.unpack("<d", f.read(8))
(-89.32227546981174,)
>>> struct.unpack("<d", f.read(8))
(30.6483914869749,)

You'll notice that when the struct module unpacks a value it returns a Python
tuple with one value. You can shorten the preceding unpacking code to one line
by specifying all four doubles at once and increasing the byte length to 32 bytes as
shown in the following code:

>>> f.seek(36)
>>> struct.unpack("<dddd", f.read(32))
(-89.6904544701547, 30.173943486533133, -89.32227546981174,
30.6483914869749)

Geospatial Data

[68]

If you are examining a lot of files or are dealing with an undocumented file format,
using the seek method and the struct module can become tedious and repetitive.
The next script called fmtDecode.py attempts to make examining files a little easier.
The script gives you a listing of files in the current directory and asks you to choose
one. The script must be in the same directory as the shapefile. It then proceeds to
read the file a few bytes at a time attempting to use every known data type in both
little endian and big endian byte order. It presents you with a list of choices to pick
from. Typically, the correct data type stands out from the other incorrect choices
because it will be a simple number or character making the other choices obviously
wrong. For example, two of the choices might be:

Little double: (-89.6904544701547,)

Or;

Big double: (2.1220012415e-314,)

The first choice looks like it might be a geospatial coordinate while the second choice
clearly looks erroneous. You would type 1 and the script would move forward.

As you select the best candidate field from each part of the file, the script tracks
your results. Once you make a choice you are given the option to make a note to
capture what purpose the field may serve in the file format. If you get to the next
field and decide you made a mistake, you can go back one field. At any time you
can type exit to leave the program. When you exit, the results are saved to a text file
in the same directory. This text file creates a simple file specification. If you escape
the program, usually by typing CONTROL-C on most platforms, you can jump back
multiple records. However, in this case the program caches your location, and exits.
When you exit the program for any reason, your location in the current file is cached.
When you run the script again and choose the same file, you are given the option to
start from the location in the cache and the results are appended to the results file.

This script is a very simple brute-force script, but it does simplify the process
of stepping through an unknown data format. It has been a key tool in reverse
engineering several undocumented geospatial file formats. And like any script, you
can easily modify it to better work with a particular file format of interest, as shown
in the following code:

import struct
import pickle
import os

def export():
 print "Saving results"
 out = None
 if cached:

Chapter 2

[69]

 out = file(oname, "a")
 else:
 out = file(oname, "w")
 out.write(header)
 for record in fileDesc:
 for field in record:
 out.write("%s\t" % field)
 out.write("\n")
 out.close()
 pickle.dump(cached, file(pickleJar, "w"))

header = "POSTION\tFIELD\tSAMPLE\tTYPE\tBYTE_ORDER\n"
fileDesc = []
files = os.listdir(".")
count = 1
print "Available Files:"

for f in files:
 print " %s. %s" % (count, f)
 count += 1

fnum = raw_input("Enter the number of the file to decode: ")
fname = files[int(fnum)-1]
base = os.path.splitext(fname)[0]

pickleJar = "%s.p" % base

cached = []

if os.path.exists(pickleJar):
 print "Cached session available."
 print
 useCache = raw_input("Use it? Yes (Y), No (N)?")
 if "y" in useCache.lower() or useCache == "":
 cached = pickle.load(open(pickleJar, "r"))
 else: cached = []

oname = "%s_decode.txt" % base

f = open(fname, "rb")
loc = f.tell()
f.seek(0,2)
eof = f.tell()
f.seek(0)

Geospatial Data

[70]

prev = 0

if len(cached)>0:
 print "Using cache..."
 f.seek(cached[-1])
 prev = cached[-2]

print "Starting at byte %s..." % f.tell()

try:
 formats = {"char":{"format":"c","len":1},
 "signed char":{"format":"b","len":1},
 "unsigned char":{"format":"B","len":1},
 "_Bool":{"format":"?","len":1},
 "short":{"format":"h","len":2},
 "unsigned short":{"format":"h","len":2},
 "int":{"format":"i","len":4},
 "unsigned int":{"format":"I","len":4},
 "long":{"format":"l","len":4},
 "unsigned long":{"format":"L","len":4},
 "long long":{"format":"q","len":8},
 "unsigned long long":{"format":"Q","len":8},
 "float":{"format":"f","len":4},
 "double":{"format":"d","len":8}}

 while f.tell() < eof:
 record = []
 start = f.tell()
 record.append("%s\t" % start)
 cached.append(start)
 fields = []
 print
 count = 1
 try:
 # Little endian formats
 for fmt in formats:
 form = formats[fmt]["format"]
 bytes = formats[fmt]["len"]
 field = struct.unpack("<%s" % form, f.read(bytes))
 print "%s. Little %s: %s" % (count, fmt, field)
 count += 1
 f.seek(start)
 fields.append([str(field[0]), fmt, "little", str(bytes)])
 except: pass

Chapter 2

[71]

 try:
 # Big endian formats
 for fmt in formats:
 form = formats[fmt]["format"]
 bytes = formats[fmt]["len"]
 field = struct.unpack(">%s" % form, f.read(bytes))
 print "%s. Big %s: %s" % (count, fmt, field)
 count += 1
 f.seek(start)
 fields.append([str(field[0]), fmt, "big", str(bytes)])
 except: pass

 print "%s. Go back to previous" % count
 print
 print "Current location: %s" % f.tell()
 choice = raw_input("Enter the number of one of the above
options: ")
 choice = int(choice.strip())
 desc = ""
 if choice != count:
 desc = raw_input("Enter a field description: ")
 record.append("%s\t" % desc)
 record.append("%s\t" % fields[choice-1][0])
 record.append("%s\t" % fields[choice-1][1])
 record.append("%s\t" % fields[choice-1][2])
 f.seek(start + int(fields[choice-1][3]))
 prev = start
 fileDesc.append(record)
 elif choice == count:
 f.seek(prev)
 print "Going back to previous field."
 f.close()
 export()
except KeyboardInterrupt:
 print
 reverse = input("How many records back? ")
 for i in range(reverse):
 cached.pop()
 pickle.dump(cached, file(pickleJar, "w"))
 print "The program will exit. Restart and use cached version."

except:
export()

Geospatial Data

[72]

Using this script against the 100-byte file header "hancock.shp" file in the first
example, we get the following output:

Position Field Sample Type Byte_order
0 file code 9994 int big
4 unused1 0 int big
8 unused2 0 int big
12 unused3 0 int big
16 unused4 0 int big
20 unused5 0 int big
24 file length 11086 int big
28 version 1000 int little
32 shape type 5 int little
36 xmin -89.6905 double little
44 ymin 30.17394 double little
52 xmax -89.3223 double little
60 ymax 30.64839 double little
68 zmin 0.0 double little
76 zmax 0.0 double little
84 mmin 0.0 double little
92 mmax 0.0 double little

There are other tools to reverse engineer file specifications but the goal of this book is
to show you that, in most cases, Python is the only tool you need. And using Python
as much as possible will increase your ability with the language, making it an even
more useful tool. There are also software libraries for most data formats. But the
ability to understand your data at the byte level will make you a better and more
capable analyst.

Vector data
Vector data is by far the most common geospatial format because it is the most
efficient way to store spatial information, and in general requires less computer
resources to store and process than raster data. The Open Geospatial Consortium
(OGC) has over 16 formats directly related to vector data. Vector data stores only
geometric primitives including points, lines, and polygons. But only the points are
stored for each type of shape. For example, in the case of a simple straight vector
line shape, only the end points would be necessarily stored and defined as a line.
Software displaying that data would read the shape type, and then connect the
end points with a line dynamically.

Chapter 2

[73]

Geospatial vector data is similar to the concept of vector computer graphics with
some notable exceptions. Geospatial vector data contains positive and negative
Earth-based coordinates, while vector graphics typically store computer screen
coordinates. Geospatial vector data is also usually linked to other information about
the object represented by the geometry. This information may be as simple as a
timestamp in the case of GPS data, or an entire database table for larger geographic
information systems. Vector graphics often store styling information describing
colors, shadows, and other display related instructions, while geospatial vector data
typically do not. Another important difference is shapes. Geospatial vectors typically
only include very primitive geometries based on points, straight lines, and straight-
line polygons, while many computer graphics vector formats have concepts of curves
and circles. Geospatial vectors can model these shapes; however, using more points.

Another important point about geospatial data is that vector data is generally
considered to be in binary format. Other human readable formats such as
Comma-Separated Values (CSV), simple text strings, and XML based formats,
are technically vector data because they store geometry as opposed to rasters,
which represent all data within the bounding box of the data set. However, these
formats are typically not categorized with binary vector data formats for discussion
purposes. Until the explosion of XML beginning in the late 1990s, vector data formats
were nearly all binary. XML provided a hybrid approach that was both computer
and human readable. The compromise is XML data greatly increases file size over
binary formats. These formats are discussed later in this section.

The number of vector formats to choose from is staggering. The open source
vector library OGR (http://www.gdal.org/ogr/ogr_formats.html), lists
over 70 supported vector formats. Its commercial counterpart, SAFE Software's
Feature Manipulation Engine (FME) lists over 170 supported vector formats
(http://www.safe.com/fme/format-search/). Granted these lists do include a few
vector graphics formats, as well as human-readable geospatial formats. There are still
dozens of formats out there to at least be aware of, in case you come across them.

Geospatial Data

[74]

Shapefiles
The most ubiquitous geospatial format is the Esri shapefile. Geospatial software
company Esri released the shapefile format specification as an open format in 1998
(http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf). Esri
developed it as a format for their ArcView software, designed as a lower-end GIS
option to complement their high-end professional package, ArcIinfo, formerly
called Arc/INFO. But the open specification, efficiency, and simplicity of the format
turned it into an unofficial GIS standard, still extremely popular over 15 years later.
Virtually every piece of software labeled as geospatial software supports shapefiles
because the shapefile format is so common. For this reason, you can get by as an
analyst being intimately familiar with shapefiles and mostly ignoring other formats.
You can convert almost any other format to shapefiles through the source format's
native software or a third-party converter like the OGR library.

One of the most striking features of a shapefile is that the format consists of
multiple files. At a minimum, there are three and there can even be as many as 15
different files! The following table describes the file formats. The .shp, .shx, and
.dbf files are required for a valid shapefile.

Shapefile supporting file
extension

Supporting file purpose Notes

.shp It is the shapefile. It contains
the geometry.

Required file. Some
software needing only
geometry will accept
.shp files without the
.shx or .dbf file.

.shx It is the shape index file. It
is fixed-sized record index
referencing geometry for faster
access.

Required file. This file is
meaningless without the
.shp file.

.dbf It is the database file. It
contains the geometry
attributes.

Required file. Some
software will access
this format without the
.shp file present, as the
specification predates
shapefiles. Based on the
very old FoxPro and
Dbase formats. An open
specification exists called
Xbase. The .dbf files can
be opened by most types
of spreadsheet software.

Chapter 2

[75]

Shapefile supporting file
extension

Supporting file purpose Notes

.sbn It is the spatial bin file.
Shapefile spatial index.

Contains bounding boxes
of features mapped to a
256 by 256 integer grid.
Frequently seen.

.sbx A fixed-sized record index for
the .sbn file.

A traditional ordered
record index of a spatial
index. Frequently seen.

.prj Map projection information
stored in Well Known Text
format.

Very common file
and required for "on-
the-fly" projection by
GIS software. This
same format can also
accompany raster data.

.fbn A spatial index of read-only
features.

Very rarely seen.

.fbx A fixed-sized record index of
the .fbn spatial index. Also
rare.

Very rarely seen.

.ixs A geocoding index. Common in geocoding
applications including
driving-direction type
applications.

.mxs Another type of geocoding
index.

Less common than the
.ixs format.

.ain Attribute index. Mostly legacy format
rarely used in modern
software.

.aih Attribute index. Accompanies .ain files.

.qix Quad-Tree index. A spatial index format
created by the open
source community
because the Esri .sbn
and .sbx files were
undocumented until
recently.

.atx Attribute index. A more recent Esri-
software-specific attribute
index to speed up
attribute queries.

Geospatial Data

[76]

Shapefile supporting file
extension

Supporting file purpose Notes

.shp.xml Metadata. Geospatial metadata
.xml container. Can be
any of multiple XML
standards including
FGDC and ISO.

.cpg Code page file for .dbf. Used for
internationalization of
.dbf files.

You will probably never encounter all of these formats at once. But any shapefile you
use will have multiple files. You will commonly see .shp, .shx, .dbf, .prj, .sbn,
.sbx, and occasionally .shp.xml files. If you want to rename a shapefile you must
rename all of the associated files to the same name.

Another important feature of shapefiles is that the records are not numbered.
Records include the geometry, the .shx index record, and the .dbf record. These
records are stored in a fixed order. When you examine shapefile records using
software, they appear to be numbered. But people are often confused when they
delete a shapefile record, save the file, and reopen it; the number of the record
deleted still appears. The reason is the shapefile records are numbered dynamically
upon loading, but not saved. So if you delete record number 23 and save the
shapefile, record number 24 will become 23 next time you read the shapefile. Many
people expect to open the shapefile and see the records jump from 22 to 24. The
only way to track shapefile records that way is to create a new attribute called ID
or similar in the .dbf file and assign each record a permanent, unique identifier.

Just like renaming shapefiles, care must be taken when editing shapefiles. It's best to
use software which treats the shapefiles as a single data set. If you edit any of the the
files individually and add or delete a record without editing the accompanying files,
the shapefile will be seen as corrupt by most geospatial software.

CAD files
CAD stands for Computer-Aided Design. The primary formats for CAD data
were created by AutoDesk for their leading AutoCAD package. The two formats
commonly seen are the Drawing Exchange Format (DXF) and the AutoCAD native
Drawing format (DWG). DWG was traditionally a closed format but it has become
more open.

Chapter 2

[77]

CAD software is used for everything engineering related, from designing bicycles,
to cars, to parks, and city sewer systems. As a geospatial analyst, you don't have to
worry about mechanical engineering designs; however, civil engineering designs
become quite an issue. Most engineering firms use geospatial analysis to a very
limited degree but store nearly all of their data in CAD format. The DWG and DXF
formats can represent objects using features not found in geospatial software or
weakly supported by geospatial systems. Examples of these features include:

•	 Curves
•	 Surfaces (for objects which are different from geospatial elevation surfaces)
•	 3D solids
•	 Text (rendered as an object)
•	 Text styling
•	 Viewport configuration

These CAD and engineering-specific features make it difficult to cleanly convert
CAD data to geospatial formats. If you encounter CAD data, the easiest option is to
ask the data provider if they have shapefiles or some other geospatial-centric format.

Tag and markup-based formats
Tag-based markup formats are typically Extensible Markup Language (XML)
formats. But they also include other structured text formats such as the Well-Known
Text format used for projection information files as well as different types of data
exchange. XML formats include the Keyhole Markup Language (KML), the Open
Street Map (OSM) format, and the Garmin GPX format for GPS data, which has
become a popular exchange format. The Open Geospatial Consortium's Geographic
Markup Language (GML) standard is one of the oldest and most widely used
XML-based geographic formats. It is also the basis for the OGC Web Feature Service
standard for web applications. But GML has been largely superseded by KML and
the GeoJSON format discussed next.

XML formats often contain more than just geometry. They also contain attributes
and rendering instructions such as color, styling, and symbology. Google's KML
format has become a fully-supported Open GIS Consortium (OGC) standard.
The following is a sample of KML showing a simple place mark:

<?xml version="1.0" encoding="utf-8"?>
<kml xmlns="http://www.opengis.net/kml/2.2">
 <Placemark>
 <name>Mockingbird Cafe</name>
 <description>Coffee Shop</description>

Geospatial Data

[78]

 <Point>
 <coordinates>-89.329160,30.310964</coordinates>
 </Point>
 </Placemark>
</kml>

XML format is attractive to geospatial analysts for several reasons:

•	 It is a human-readable format
•	 It can be edited in a text editor
•	 It is well-supported by programming languages (especially Python!)
•	 It is, by definition, easily extensible

XML is not perfect though. It is an inefficient storage mechanism for very large data
formats and can quickly become cumbersome to edit. Errors in data sets are common
and most parsers do not handle errors robustly. Despite the downsides, XML is
widely used in geospatial analysis. Scalable Vector Graphics (SVG) is a widely
supported XML format for computer graphics. It is supported well by browsers
and is often used for geospatial rendering. However, SVG was not designed as a
geographic format.

The Well Known Text (WKT) format is also an older OGC standard, the most
common use for it is to define projection information usually stored in .prj
projection files alongside a shapefile or raster. The WKT string for the WGS84
coordinate system is as follows:

GEOGCS["WGS 84",
 DATUM["WGS_1984",
 SPHEROID["WGS 84",6378137,298.257223563,
 AUTHORITY["EPSG","7030"]],
 AUTHORITY["EPSG","6326"]],
 PRIMEM["Greenwich",0,
 AUTHORITY["EPSG","8901"]],
 UNIT["degree",0.01745329251994328,
 AUTHORITY["EPSG","9122"]],
 AUTHORITY["EPSG","4326"]]

The parameters defining a projection can be quite long. A standards committee
created by the EPSG created a numerical coding system to reference projections.
These codes are used as shorthand for strings like the preceding code. There are
also short names for commonly used projections like Mercator which can be used
in different software packages to reference a projection. More information on
these reference systems can be found at the Spatial Reference website at
http://spatialreference.org/ref/.

Chapter 2

[79]

GeoJSON
GeoJSON is a relatively new and brilliant text format based on the JavaScript Object
Notation (JSON) format, which has been a commonly used data exchange format
for years. Despite its short history, GeoJSON can be found embedded in all major
geospatial software systems and most websites that distribute data.

GeoJSON is a completely backwards-compatible extension to the popular JSON
format. The structure of JSON is very similar and in some cases identical to existing
data structures of common programming languages. JSON is almost identical to
Python's dictionary and list data types. Because of this similarity, parsing JSON in a
script is simple to do from scratch but there are also many libraries to make it even
easier. Python contains a built-in library aptly named json.

GeoJSON provides a standard way to define geometry, attributes, bounding boxes,
and projection information. GeoJSON has all of the advantages of XML including
human readable syntax, excellent software support, and wide use in the industry.
But it also surpasses XML. GeoJSON is far more compact than XML largely because
it uses simple symbols to define objects rather than opening and closing text-laden
tags. The compactness also helps with readability and manageability of larger data
sets. The following is a sample of GeoJSON syntax, defining a geometry collection
with both a point and a line:

{ "type": "GeometryCollection",
 "geometries": [
 { "type": "Point",
 "coordinates": [-89.33, 30.0]
 },
 { "type": "LineString",
 "coordinates": [[-89.33, 30.30], [-89.36, 30.28]]
 }
]
}

The preceding code is a valid GeoJSON, but it is also a valid Python data structure.
You can copy the preceding code sample directly into the Python interpreter as a
variable definition and it will evaluate without error as follows:

>>> gc = { "type": "GeometryCollection",
... "geometries": [
... { "type": "Point",
... "coordinates": [-89.33, 30.0]
... },
... { "type": "LineString",
... "coordinates": [[-89.33, 30.30], [-89.36, 30.28]]

Geospatial Data

[80]

... }

...]

... }
>>> gc
{'type': 'GeometryCollection', 'geometries': [{'type': 'Point',
'coordinates': [
-89.33, 30.0]}, {'type': 'LineString', 'coordinates': [[-89.33, 30.3],
[-89.36,30.28]]}]}

Because of its compact size, Internet-friendly syntax by virtue of is similarity
to JavaScript, and support from major programming languages, GeoJSON is
a key component of leading REST geospatial web APIs. It currently offers the
best compromise among the computer resource efficiency of binary formats,
the human-readability of text formats, and programmatic utility.

Raster data
Raster data consists of rows and columns of cells or pixels, with each cell
representing a single value. The easiest way to think of raster data is as images,
which is how they are typically represented by software. But raster data sets are
not necessarily stored as images. They can also be ASCII text files or Binary Large
Objects (BLOBs) in databases.

Another difference between geospatial raster data and regular digital images is
resolution. Digital images express resolution as dots-per-inch if printed at full size.
Resolution can also be expressed or the total number of pixels in the image defined
as megapixels. However, geospatial raster data uses the ground distance each cell
represents. For example, a raster data set with two-foot resolution means that a
single cell represents two feet on the ground, which also means only objects larger
than two feet can be identified visually in the data set.

Raster data sets may contain multiple bands, meaning that different wavelengths of
light can be collected at the same time over the same area. Often this range is from
3-7 bands but can be several hundred in hyper-spectral systems. These bands are
viewed individually or swapped in and out as the RGB bands of an image. They can
also be recombined using mathematics into a derivative single band image and then
recolored using a set number of classes representing like-values within the data set.

Chapter 2

[81]

Another common application of raster data is in the field of Scientific Computing
which shares many elements of geospatial remote sensing but adds some interesting
twists. Scientific Computing often uses complex raster formats, including NetCDF
and GRIB, which store entire data models. Formats like these are more like
directories in a file system and can contain multiple data sets or multiple versions
of the same data set. Oceanography and meteorology are the most common
applications of this kind of analysis. An example of a Scientific Computing data set
is the output of a weather model, where the cells of the raster data set in different
bands may represent different variables output from the model in a time series.

Like vector data, raster data can come in a variety of formats. The open-source raster
library called GDAL, which actually includes the OGR library, mentioned earlier,
lists over 130 supported raster formats (http://www.gdal.org/formats_list.
html). The FME software package, mentioned earlier, supports that many as well.
But just like shapefiles and CAD data there are a few standout raster formats.

TIFF files
The Tagged Image File Format, or TIFF, is the most common geospatial raster
format. The TIFF format's flexible tagging system allows it to store any type of data
whatsoever, in a single file. TIFFs can contain overview images, multiple bands,
integer elevation data, basic metadata, internal compression, and a variety of other
data typically stored in additional supporting files by other formats. Anyone can
extend the TIFF format unofficially by adding tagged data to the file structure. This
extensibility has benefits and drawbacks, however. A TIFF file may work fine in
one piece of software but fail when accessed in another, because the two software
packages implemented the massive TIFF specification to different degrees. An old
joke about TIFFs has a frustrating amount of truth to it: TIFF stands for "Thousands
of Incompatible File Formats". The GeoTIFF extension defines how geospatial data
is stored. Geospatial rasters stored as TIFF files may have any of the following file
extensions .tiff, .tif, .gtif.

JPEG, GIF, BMP, and PNG
These formats are common image formats in general, but can be used for basic
geospatial data storage as well. Typically, these formats rely on accompanying
supporting text files for georeferencing information to make them compatible
with the GIS software.

Geospatial Data

[82]

The JPEG format is also fairly common for geospatial data. JPEGs have a built-in
metadata tagging system similar to TIFFs called EXIF. JPEGs are commonly used
for geo-tagged photographs in addition to raster GIS layers. Bitmap images (BMP)
are used for desktop applications and document graphics. However JPEG, GIF, and
PNG are the formats used in web mapping applications.

Compressed formats
Because geospatial rasters tend to be very large, they are often stored using
advanced compression techniques. The latest open standard is the JPEG2000 format
which is an update of the JPEG format to include wavelet compression and a few
other features such as georeferencing data. MrSID (.sid) and ECW (.ecw) are two
proprietary wavelet compression formats often seen in geospatial contexts. The
TIFF format supports compression including the LZW algorithm. It must be noted
that compressed data is suitable as part of a base map but should not be used for
remote sensing processing. Compressed images are designed to look visually correct
but often alter the original cell value. Lossless compression algorithms try to avoid
degrading the source data but it's generally considered a bad idea to attempt spectral
analysis on data that has been through compression. The JPEG format is designed
to be a lossy format which sacrifices data for smaller file size. It is also commonly
encountered, so it is important to remember this fact to avoid invalid results.

ASCII GRIDS
Another means of storing raster data, often elevation data, is in ASCII GRID
files. This file format was created by ESRI but has become an unofficial standard
supported by most software packages. An ASCII GRID is a simple text file
containing (x,y) values as rows and columns. The spatial information for the
raster is contained in a simple header. The format of the file is as follows:

<NCOLS xxx>
<NROWS xxx>
<XLLCENTER xxx | XLLCORNER xxx>
<YLLCENTER xxx | YLLCORNER xxx>
<CELLSIZE xxx>
{NODATA_VALUE xxx}
row 1
row 2
.
.
.
row n

Chapter 2

[83]

While not the most efficient way to store data, ASCII GRID files are very popular
because they don't require any special data libraries to create or access geospatial
raster data. These files are often distributed as zip files. The header values in the
preceding format contain the following information:

•	 Number of columns
•	 Number of rows
•	 X-axis cell center coordinate | X-axis lower-left corner coordinate
•	 Y-axis cell center coordinate | Y-axis lower-left corner coordinate
•	 Cell size in mapping units
•	 No-data value (typically-9999)

World files
World files are simple text files which can provide geospatial referencing information
to any image externally for file formats which typically have no native support
for spatial information including JPEG, GIF, PNG, and BMP. The world file is
recognized by geospatial software due to its naming convention. The most common
way to name a world file is to use the raster file name and then alter the extension
to remove the middle letter and add w to the end. The following table shows some
examples of raster images in different formats and the associated world file name
based on the convention:

Raster file name World file name
World.jpg World.jpw

World.tif World.tfw

World.bmp World.bpw

World.png World.pgw

World.gif World.gfw

The structure of a world file is very simple. It is a six-line text file:

•	 Line 1: Cell-size along the x axis in ground units
•	 Line 2: Rotation on the y axis
•	 Line 3: Rotation on the x axis
•	 Line 4: Cell-size along the y axis in ground units
•	 Line 5: Center x coordinate of the upper left cell
•	 Line 6: Center y coordinate of the upper left cell

Geospatial Data

[84]

The following is an example of world file values:

15.0
0.0
0.0
-15.0
-89,38
45.0

The (x,y) coordinates and the (x,y) cell size contained in lines 1,4,5, and 6, allow you
to calculate the coordinate of any cell or the distance across a set of cells. The rotation
values are important for geospatial software because remotely sensed images are
often rotated due to the data collection platform. Rotating the images runs the risk of
resampling the data and therefore data loss so the rotation values allow the software
to account for the distortion. The surrounding pixels outside the image are typically
assigned a "no data" value and represented as the color black. The following image
demonstrates image rotation where the satellite collection path is oriented from
southeast to northeast but the underlying base map is north up:

Image courtesy of the USGS

Chapter 2

[85]

World files are a great tool when working with raster data in Python. Most
geospatial software and data libraries support world files so they are usually
a good choice for georeferencing.

You'll find that world files are very useful but you use them infrequently
enough that you forget what the unlabeled contents represent. A handy
quick reference for world files is available here:
http://kralidis.ca/gis/worldfile.htm

Point cloud data
Point cloud data is any data collected as the (x,y,z) location of a surface point based
on some sort of focused energy return. Point cloud data can be created using lasers,
radar waves, acoustic soundings, or other waveform generation devices. The spacing
between points is arbitrary and is dependent on the type and position of the sensor
collecting the data. In this book we will primarily be concerned with LIDAR data
and radar data. Radar point cloud data is typically collected on space missions while
LIDAR is typically collected by terrestrial or airborne vehicles. But conceptually both
types of data are similar.

LIDAR uses powerful laser range-finding systems to model the world with very high
precision. The term LIDAR or LiDAR is a combination of the words light and radar.
Some people claim it also stands for Light Detection and Ranging. LIDAR sensors
can be mounted on aerial platforms including satellites, airplanes, or helicopters.
They can also be mounted on vehicles for ground based collection.

Geospatial Data

[86]

Because of the high-speed, continuous data collection provided by LIDAR, and a
wide field of view—often 360 degrees of the sensor, LIDAR data doesn't typically
have a rectangular footprint the way other forms of raster data do. LIDAR data sets
are typically called point clouds, because the data is typically a stream of (x,y,z)
locations with z being the distance from the laser to a detected object and the (x,y)
values are the projected location of the object calculated from the location of the
sensor. The following image, courtesy of USGS, shows a point cloud LIDAR data set
in an urban area. The colors are based on the strength of the laser's energy return,
which can give a precise height to within a few centimeters:

The most common data format for LIDAR data is the LIDAR Exchange Format
called LAS which is a community standard. LIDAR data can be represented in many
ways including a simple text file with one (x,y,z) tuple per line. Sometimes LIDAR
data can be colorized by using image pixel colors collected at the same time. LIDAR
data can also be used to create 2D elevation rasters. This technique is the most
common use for LIDAR in geospatial analysis. Any other use requires specialized
software that allows the user to work in 3D. And, in that case, other geospatial data
cannot be combined with the point cloud.

Chapter 2

[87]

Summary
You now have the background needed to work with common types of geospatial
data. You also know the common traits of geospatial data sets which will allow you
to evaluate unfamiliar types of data and identify key elements as follows:

•	 Geo-location information
•	 Subject information
•	 Spatial indexing
•	 Metadata
•	 Basic file structure

In Chapter 3, The Geospatial Technology Landscape, we'll examine the modules and
libraries available to work with these data sets. And as with all code in this book,
whenever possible, pure Python and standard libraries will be used.

The Geospatial
Technology Landscape

The geospatial technology ecosystem consists of hundreds of software libraries
and packages. This vast array of choices is overwhelming for newcomers to
geospatial analysis. The secret to learning geospatial analysis quickly is to
understand the handful of libraries and packages that really matter. Most
software, both commercial and open source, is derived from these critical
packages. Understanding the ecosystem of geospatial software and how it's
used allows you to quickly comprehend and evaluate any geospatial tool.

The major categories for geospatial software are:

•	 Data access
•	 Computational geometry (including data reprojection)
•	 Visualization
•	 Metadata tools

These categories contain core capabilities, which are widely used by most geospatial
software. Another important category is image processing; however, this category
is very fragmented, containing dozens of software packages which are rarely
integrated into derivative software if at all. Most image processing software for
remote sensing is based on the same data access libraries with custom image
processing algorithms.

These libraries are mostly written in either C or C++ for speed and cross-platform
compatibility. Speed is important due to the commonly large sizes of geospatial data
sets. However, you will also see many packages written in Java. Well written, pure
Java can approach speeds acceptable for processing large vector or raster data sets
and are usually acceptable for most applications.

The Geospatial Technology Landscape

[90]

The following concept map shows the major geospatial software libraries and
packages and how they are related. The libraries in bold represent root libraries
that are actively maintained and not significantly derived from any other libraries.
These root libraries represent geospatial operations, which are sufficiently difficult
to implement, that the vast majority of people choose to use one of these libraries
rather than create a competing one. As you can see, a handful of libraries make up a
disproportionate amount of geospatial analysis software. And the following diagram
is by no means exhaustive:

Chapter 3

[91]

The libraries GDAL, OGR, GEOS, and PROJ.4 are the heart and soul of the geospatial
analysis community on both the commercial and open-source side. It is important
to note these libraries are all written in C or C++. There is also significant work done
in Java in the form of the GeoTools and JTS core libraries, which are used across
a range of desktops, servers, and mobile software. Given there are hundreds of
geospatial packages available and nearly all relying on these libraries to do anything
meaningful, you begin to get an idea of the complexity of geospatial data access
and computational geometry. Compare this software domain to that of text editors,
which return over 5,000 options when searched on the open-source project site
SourceForge.net.

Geospatial analysis is a truly worldwide community with significant contributions
to the field coming from every corner of the globe. But as you learn more about
the heavy-hitting packages at the center of the software landscape, you'll see that
these programs tend to come from Canada or are contributed heavily by Canadian
developers. Credited as the birthplace of modern GIS, geospatial analysis is a
matter of national pride. Also, the Canadian government and the public-private
GeoConnections program have invested heavily in research and companies both
to fuel the industry for economic reasons and out of necessity, to better manage
the country's vast natural resources and the needs of its population.

In this chapter we examine the packages which have had the largest impact on
geospatial analysis and also those which you are likely to frequently encounter.
However, as with any filtering of information, you are encouraged to do your
own research and draw your own conclusions. The following websites offer
more information on software not included in this chapter:

•	 Wikipedia list of GIS software: http://en.wikipedia.org/wiki/List_of_
geographic_information_systems_software

•	 OSGeo project list and Incubator projects: http://osgeo.org
•	 FreeGIS.org software database: http://freegis.org/database/?cat=0&_

ZopeId=18853465A58XbR1fIKo

The Geospatial Technology Landscape

[92]

Data access
As described in Chapter 2, Geospatial Data, geospatial data sets are typically large,
complex, and varied. This challenge makes libraries, which efficiently read, and
in some cases write, this data essential to geospatial analysis. These libraries are
also the most important. Without access to data, geospatial analysis doesn't begin.
Furthermore, accuracy and precision are key factors in geospatial analysis. An image
library that resamples data without permission, or a computational geometry library
that rounds a coordinate even a couple of decimal places, can adversely affect the
quality of analysis. Also, these libraries must manage memory efficiently. A complex
geospatial process can last for hours or even days. If a data access library has a
memory fault, it can delay an entire project or even an entire workflow involving
dozens of people dependent on the output of that analysis.

GDAL
The Geospatial Data Abstraction Library (GDAL) does the most heavy lifting in
the geospatial industry. The GDAL website lists over 80 pieces of software using the
library and this list is by no means complete. Many of these packages are industry
leading, open source, and commercial tools. This list doesn't include hundreds of
smaller projects and individual analysts using the library for geospatial analysis.

A list of projects using GDAL can be found at the following URL:
http://trac.osgeo.org/gdal/wiki/SoftwareUsingGdal

GDAL provides a single, abstract data model for the vast array of raster data types
found in the geospatial industry. It consolidates unique data access libraries for
different formats and provides a common API for reading and writing data. Before
developer Frank Warmerdam created GDAL in the late 1990s, each data format
required a separate data access library with a different API to read data or
worse—developers often wrote custom data access routines.

Chapter 3

[93]

The following diagram provides a visual description of how GDAL abstracts
raster data:

In the software concept map earlier in this chapter, you can see that GDAL has had
the greatest impact of any single piece of geospatial software. Combine GDAL with
its sister library OGR for vector data and the impact almost doubles. The PROJ.4
library has also had tremendous impact but it is usually accessed via OGR or GDAL.

The GDAL homepage can be found at http://www.gdal.org.

OGR
The OGR Simple Features Library is the vector data companion to GDAL. The OGR
lists at least partial support for over 70 vector data formats. OGR originally stood
for Open GIS Simple Features Reference Implementation; however, it did not evolve
into a reference implementation for the Simple Features standard even though the
name stuck.

OGR serves the exact same purpose for vector data as GDAL does for raster data. It
is also almost as prolific in the geospatial industry. Part of the success of the GDAL/
OGR package is the X11/MIT open-source license. This license is both commercial
and open-source friendly. The GDAL/OGR library can be included in proprietary
software without proprietary source code to any open-source requirements.

The Geospatial Technology Landscape

[94]

OGR has the following capability:

•	 Uniform vector data and modeling abstraction
•	 Vector data re-projection
•	 Vector data format conversion
•	 Attribute data filtering
•	 Basic geometry filtering including clipping and point-in-polygon testing

Like GDAL, OGR has several command-line utility programs, which demonstrate its
capability. This capability can also be accessed through its programming API. The
following diagram outlines the OGR architecture:

The OGR architecture is fairly concise considering this model is able to represent
over 70 different data formats. The Geometry object represents the OGC
Simple Features Specification data model for points, linestrings, polygons,
geometrycollections, multipolygons, multipoints, and multilinestrings. The Feature
Definition object contains the attribute definitions of a group of related features.
The Feature object ties the Geometry and Feature Definition information together.
The Spatial Reference object contains an OGC Spatial Reference definition. The
Layer object represents features grouped as layers within a data source. The Data
Source is the file or database object accessed by OGR. The Driver object contains the
translators for the 70 plus data formats available to OGR.

Chapter 3

[95]

This architecture works smoothly with one minor quirk. The Layer concept is used
even for data formats that only contain a single layer. For example, shapefiles can
only represent a single layer. But when you access a shapefile using OGR, after you
open the data source you must still invoke a new Layer object using the base name of
the shapefile without file extension. The design feature is only a minor inconvenience
heavily outweighed by the power that OGR provides.

The official OGR web page is located at http://www.gdal.org/ogr/.

Computational geometry
Computational geometry encompasses the algorithms needed to perform operations
on vector data. The field is very old in computer science; however, most of the
libraries used for geospatial operations are separate from computer graphics libraries
because of geospatial coordinate systems. As described near the end of Chapter 1,
Learning Geospatial Analysis with Python, computer screen coordinates are almost
always expressed in positive numbers, while geospatial coordinate systems often use
negative numbers when moving west and south. The Turtle graphics module used
in the SimpleGIS example in Chapter 1, Learning Geospatial Analysis with Python, does
use negative coordinates when moving left or down from the center of the canvas.
This feature makes converting from world to screen coordinates a little easier, but is
not typical of computer graphics libraries.

Several different geospatial libraries fit into the category but serve a wide range of
uses from spatial selection to rendering. It should be noted that some features of the
OGR Simple Features Library described previously move it beyond the category of
data access and into the realm of computational geometry. But it was included in the
prior category because that is its primary purpose.

Computational geometry is a fascinating subject. When writing a simple script
to automate a geospatial operation you inevitably need some spatial algorithm.
The question then arises do you try to implement this algorithm yourself or go
through the overhead of using a third-party library? The choice is always
deceptive because some tasks are visually easy to understand and easy to
implement, some look complex but turn out to be easy, and some are trivial
to comprehend but extraordinarily difficult. One such example is a geospatial
buffer operation. The concept is easy enough but the algorithm turns out to be
quite difficult. The following libraries in this section are the major packages for
computational geometry algorithms.

The Geospatial Technology Landscape

[96]

PROJ.4
US Geological Survey analyst Jerry Evenden created what is now the PROJ.4
projection library in the mid 1990s while working at the USGS. It has since become
a project of the Open Source Geospatial Foundation with contributions from many
other developers. PROJ.4 accomplishes the herculean task of transforming data
among thousands of coordinate systems. The math to convert points among that
many coordinate systems is extremely complex. No other library comes close to the
capability PROJ.4. That fact, and the routine need by applications to convert data sets
from different sources to a common projection, make PROJ.4 the undisputed leader
in this area.

The following plot is an example of how specific projections supported by PROJ.4
can be. This image from OSGeo.org represents the Line/Station coordinate system
of the California Cooperative Oceanic Fisheries Investigations program pseudo-
projection used only by NOAA, the University of California Scripps Oceanographic
Institute, and California Department of Fish and Game to collect oceanographic and
fisheries data over the last 60 years along the California coastline:

Chapter 3

[97]

PROJ.4 can be found in virtually every major GIS package, which provides
reprojection support. It is available through both GDAL and OGR for vector and
raster data. However, it is often useful to access the library directly because it gives
you the ability to reproject individual points. Most of the libraries which incorporate
PROJ.4 only let you reproject entire data sets.

For more information on PROJ.4 visit: https://trac.osgeo.org/proj/.

CGAL
The Computational Geometry Algorithms Library (CGAL), originally released in
the late 1990's, is a robust and well-established open source computational geometry
library. It is not specifically designed for geospatial analysis but is commonly used in
the field.

CGAL is often referenced as a source for reliable geometry processing algorithms.
The following image from the CGAL User and Reference Manual provides a
visualization of one of the often referenced algorithms from CGAL called a
polygon straight skeleton needed to accurately grow or shrink a polygon:

The Geospatial Technology Landscape

[98]

The straight skeleton algorithm is complex and important because shrinking or
growing a polygon isn't just a matter of making it bigger or smaller. The polygon
actually changes shape. As a polygon shrinks, non-adjacent edges collide and
eliminate connecting edges. As a polygon grows, adjacent edges separate and
new edges are formed to connect them. This process is key to buffering geospatial
polygons. The following image, also from the CGAL User and Reference Manual,
shows this effect using insets on the preceding polygon:

CGAL can be found online at: http://www.cgal.org/.

JTS
The Java Topology Suite (JTS) is a geospatial computational geometry library
written in 100 percent pure Java. JTS separates itself from other computational
geometry libraries by implementing the Open GIS Consortium Simple Features
Specification for SQL. Interestingly, other developers have ported JTS to other
languages including C++, Microsoft .NET, and even JavaScript.

JTS includes a fantastic test program called the JTS Test Builder, which provides
a GUI to test out functions without setting up an entire program. One of the most
frustrating aspects of geospatial analysis concerns bizarre geometry shapes that
break algorithms which work most of the time. Another common issue is unexpected
results due to tiny errors in data such as polygons that intersect themselves in very
small areas not easily visible. The JTS Test Builder lets you interactively test JTS
algorithms to verify data or just visually understand a process:

Chapter 3

[99]

This tool is handy even if you aren't using JTS but one of the several ports to
another language. It should be noted that Vivid Solutions, the maintainer of
JTS, hasn't released a new version since JTS Version 1.8 in December 2006. The
package is quite stable and still in active use. The JTS homepage is available at
http://www.vividsolutions.com/jts/JTSHome.htm.

The Geospatial Technology Landscape

[100]

GEOS
GEOS, which stands for Geometry Engine – Open Source, is the C++ port of the JTS
library explained previously. It is mentioned here because this port has had a much
larger impact on the geospatial analysis than the original JTS. The C++ version can
be compiled on many platforms as it avoids any platform-specific dependencies.
Another factor in the popularity of GEOS is that a fair amount of infrastructure exists
to create automated or semi-automated bindings to various scripting languages
including Python. Yet another factor is that the majority of geospatial analysis
software is written in C or C++. The most common use of GEOS is through other
APIs, which include it.

GEOS provides the following capabilities:

•	 OGC Simple Features
•	 Geospatial Predicate Functions

°° Intersects
°° Touches
°° Disjoint
°° Crosses
°° Within
°° Contains
°° Overlaps
°° Equals
°° Covers

•	 Geospatial Operations
°° Union
°° Distance
°° Intersection
°° Symmetric Difference
°° Convex Hull
°° Envelope
°° Buffer
°° Simplify

Chapter 3

[101]

°° Polygon Assembly
°° Polygon validation
°° Area
°° Length

•	 Spatial indexing
•	 OGC Well Known Text (WKT) and Well Known Binary (WKB) input/output
•	 C and C++ API
•	 Thread safety

GEOS can be compiled with GDAL to give OGR all of its capability. GEOS can be
found online at: http://trac.osgeo.org/geos/.

PostGIS
As far as open source geospatial databases go, PostGIS is the most commonly
used spatial database. PostGIS is essentially a module on top of the well-known
PostgreSQL relational database. Much of the power of PostGIS comes from the GEOS
library mentioned earlier. Like JTS, it also implements the OGC Simple Features
Specification for SQL. The combination of computational geometry ability in a
geospatial context sets PostGIS in a category on its own.

PostGIS allows you to execute both attribute and spatial queries against a data set.
Remember from Chapter 2, Geospatial Data, that a typical spatial data set is comprised
of multiple data types including geometry, attributes (one or more columns of data
in a row), and in most cases, indexing data. In PostGIS, you can query attribute
data as you would any database table using SQL. This capability is not surprising
as attribute data is stored in a traditional database structure. However, you can also
query geometry using SQL syntax. Spatial operations are available through SQL
functions, which you include as part of queries. The following sample PostGIS SQL
statement creates a 14.5 kilometer buffer around the state of Florida:

SELECT ST_Buffer(the_geom, 14500)

FROM usa_states

WHERE state = 'Florida'

The Geospatial Technology Landscape

[102]

The FROM clause designates the usa_states layer as the location of the query. We
filter that layer by isolating Florida in the WHERE clause. Florida is a value in the
column state of the usa_states layer. The SELECT clause performs the actual
spatial selection on the geometry of Florida normally contained in the column
the_geom using the PostGIS ST_Buffer() function. The column the_geom is the
geometry column for the PostGIS layer in this instance. The ST in the function name
stands for Spatial Type. The ST_Buffer() function accepts a column containing
spatial geometries and a distance in the map units of the underlying layer. The map
units in usa_states layer are expressed in meters so 14.5 km would be 14,500 meters
in the preceding example. Recall from Chapter 1, Learning Geospatial Analysis with
Python, buffers like this query are used for proximity analysis. It just so happens, the
State of Florida water boundary expands 9 nautical miles or approximately 17 km
into the Gulf of Mexico from the state's western and northwestern coastlines.

The following image shows the official Florida state water boundary as a dotted line
which is labelled on the map:

Chapter 3

[103]

After applying the 9 nautical mile buffer, you can see that the result, highlighted in
orange, is quite close to the official legal boundary:

The website GISTutor.com has an excellent interactive, online tutorial,
which allows you to execute spatial queries against a continental US map
and see the result immediately on a web map. You can find this tutorial at
the following URL:
http://www.gistutor.com/postgresqlpostgis/10-
intermediate-postgresqlpostgis-tutorials/75-
understanding-postgis-spatial-queries.html

Another good introductory PostGIS tutorial can be found at:
http://workshops.boundlessgeo.com/postgis-intro/

The Geospatial Technology Landscape

[104]

Currently, PostGIS maintains the following feature set:

•	 Geospatial geometry types including points, linestrings, polygons,
multipoints, multilinestrings, multipolygons, and geometry collections,
which can store different types of geometries including other collections

•	 Spatial functions for testing geometric relationships (for example,
point-in-polygon or unions)

•	 Spatial functions for deriving new geometries (for example,
buffers, intersects)

•	 Spatial measurements including perimeter, length, and area
•	 Spatial indexing using an R-Tree algorithm
•	 A basic geospatial raster data type
•	 Topology data types
•	 US Geocoder based on TIGER census data

The PostGIS feature set is competitive among all geodatabases and the most
extensive among any open source or free geodatabase. The active momentum of
the PostGIS development community is another reason this system is best of breed.
PostGIS is maintained at: http://postgis.net/.

Other spatially-enabled databases
PostGIS is the gold standard among free and open source geospatial databases.
However, there are several other systems you should be aware of as a geospatial
analyst. This list includes both commercial and open source systems with varying
degrees of geospatial support.

Geodatabases have evolved in parallel to geospatial software, standards, and the
Web. The Internet has driven the need for large, multiuser geospatial database
servers able to serve large amounts of data. The following image, courtesy of
www.OSGeo.org, shows how geospatial architectures have evolved with a
significant portion of this evolution happening at the database level:

Chapter 3

[105]

Oracle spatial and graph
The Oracle relational database is a widely used database system typically used by
very large organizations because of its cost and large scalability. It is also extremely
stable and fast. It runs some of the largest and most complicated databases in the
world. It is often found in hospitals, banks, and government agencies managing
millions of critical records.

Geospatial data capability first appeared at Oracle Version 4 as a modification by
the Canadian Hydrographic Service (CHS). CHS also implemented Oracle's first
spatial index in the form of an unusual but efficient three-dimensional helical spiral.
Oracle subsequently incorporated the modification and released the Oracle Spatial
Database Option (SDO) at Version 7 of the main database. The SDO system became
Oracle Spatial at Oracle Version 8. The database schema of Oracle Spatial still has
the SDO prefix on some column and table names similar to how PostGIS uses the
OGC convention ST (spatial type) to separate spatial information from traditional
relational database tables and functions at the schema level.

The Geospatial Technology Landscape

[106]

As of 2012, Oracle began calling the package Oracle Spatial and Graph to emphasize
the network data module. This module is used for analysing networked data sets,
such as transportation or utilities. However, the module can also be used against
abstract networks such as social networks. The analysis of social network data is
a common target for big data analysis, which is a growing trend. Big data social
network analysis is likely the reason Oracle changed the name of the product.

As a spatial engine Oracle Spatial has the following capabilities:

•	 A geospatial data schema
•	 A spatial indexing system which is now based on an R-Tree index
•	 A SQL API for performing geometric operations
•	 A spatial data tuning API to optimize a particular data set
•	 A topology data model
•	 A network data model
•	 A GeoRaster data type to store, index, query, and retrieve raster data
•	 Three-dimensional data types including Triangulated Irregular Networks

(TINs) and LIDAR point clouds
•	 A geocoder to search location names and return coordinates
•	 A routing engine for driving direction-type queries
•	 Open Geospatial Consortium-compliance

Oracle Spatial and PostGIS are reasonably comparable and are both commonly used.
You will see these two systems sooner or later as data sources when performing
geospatial analysis.

Oracle Spatial and Graph is sold separately from Oracle itself. A
little-known fact is that the SDO data type is native to the main Oracle
database. If you have a simple enough application which simply inputs
points and retrieves them, for example, you can use the main Oracle API
to add, update, and retrieve \SDOs without Oracle Spatial and Graph.

The US Bureau of Ocean Energy, Management, Regulation, and Enforcement
(BOEMRE) uses Oracle to manage environmental, business, and geospatial data for
billions of dollars' worth of oil, gas, and mineral rights in one of the largest geospatial
systems in the world. The following map is courtesy of US BOEMRE:

Chapter 3

[107]

Oracle Spatial and Graph can be found online at: http://www.oracle.com/us/
products/database/options/spatial/overview.

ArcSDE
ArcSDE is Esri's spatial data engine (SDE). It is now rolled into Esri's ArcGIS Server
product after over a decade of being a standalone product. What makes ArcSDE
interesting is the engine is mostly database independent supporting multiple
database backends. ArcSDE supports IBM DB2, Informix, Microsoft SQL Server,
Oracle and PostgreSQL as data storage systems. While ArcSDE has the ability to
create and manage a spatial schema from scratch on systems such as Microsoft SQL
Server and Oracle, it uses native spatial engines if available. This arrangement is the
case for IBM DB2, Oracle, and PostGreSQL. For Oracle, ArcSDE manages the table
structure but can rely on the Oracle SDO data type for feature storage.

The Geospatial Technology Landscape

[108]

Like the previous mentioned geodatabases, ArcSDE also has a rich spatial
selection API and can handle raster data. However, ArcSDE does not have as rich
a SQL spatial API as do Oracle and PostGIS. Esri technically supports basic SQL
functionality related to ArcSDE but encourages users and developers to use Esri
software or programming APIs to manipulate data stored through ArcSDE as it is
designed to be a datasource for Esri software. Esri does provide software libraries for
developers to build applications outside of Esri software using ArcSDE or Esri's file-
based geodatabase called a personal geodatabase. But these libraries are black boxes
and the communication protocol ArcSDE uses has never been reverse engineered.
Typically, interaction happens between ArcSDE and third party applications at the
web services level using the ArcGIS Server API, which supports OGC services to
some degree and a fairly straight forward REST API service that returns geoJSON.

The following screenshot is of the US federal site http://geo.data.gov, a very
large geospatial data catalog based on ArcSDE, which in turn networks US federal
data holding including other ArcSDE installations from other federal agencies:

Chapter 3

[109]

ArcSDE is integrated into ArcGIS Server; however, information on it remains at:
http://www.esri.com/software/arcgis/arcsde.

Microsoft SQL Server
Microsoft added spatial data support to its flagship database product in Microsoft
SQL Server 2008. It has gradually improved since that version, but still is nowhere
near as sophisticated as Oracle Spatial or PostGIS. Microsoft supports the same data
types as PostGIS with slightly different naming conventions, with the exception of
rasters, which are not directly supported. It also supports output to WKT and
WKB formats.

It offers some very basic support for spatial selection but it is obviously not a priority
for Microsoft at the moment. This limited support is likely the case because it is all
that can be used for Microsoft software mapping components and several third party
engines can provide spatial support on top of SQL Server.

Microsoft's support for spatial data in SQL Server is documented at:

http://msdn.microsoft.com/en-us/library/bb933790.aspx

MySQL
MySQL, another highly popular free database, provides nearly the exact same
support as Microsoft SQL Server. The OGC Geometry types are supported with basic
spatial relationship functions. Through a series of buyouts MySQL has become the
property of Oracle. While Oracle currently remains committed to MySQL as an open
source database, this purchase has brought the ultimate future of the world's most
popular open source database into question. But as far as geospatial analysis
is concerned, MySQL is barely a contender and unlikely to be the first choice for
any project.

For more information on MySQL spatial support visit:

http://dev.mysql.com/doc/refman/5.6/en/spatial-extensions.html

SpatiaLite
SpatiaLite is an extension for the open source SQLite database engine. SQLite uses a
file database and is designed to be integrated into applications instead of the typical
client server model used by most relational database servers. SQLite has spatial data
types and spatial indexing already, but SpatiaLite adds support for the OGC Simple
Features Specification as well as map projections.

The Geospatial Technology Landscape

[110]

SpatiaLite can be found at the following URL:

http://www.gaia-gis.it/gaia-sins/

Routing
Routing is a very niche area of computational geometry. It is also a very rich field of
study that goes far beyond the familiar driving directions use case. The requirements
for a routing algorithm are simply a networked data set and impedance values which
affect the speed of travel on that network. Typically, the data set is vector based but
raster data can also be used for certain applications. The two major contenders in this
area are Esri's Network Analyst and the open source PgRouting engine for PostGIS.
The most common routing problem is the most efficient way to visit a number of
point locations. This problem is called the travelling salesman problem (TSP). The
TSP is one of the most intensely studied problems in computational geometry. It is
often considered the benchmark for any routing algorithm. More information on the
TSP can be found here:

http://en.wikipedia.org/wiki/Travelling_salesman_problem

Esri Network Analyst and Spatial Analyst
Esri's entry into the routing arena, Network Analyst, is a truly generic routing
engine, which can tackle most routing applications regardless of context. Spatial
Analyst is another Esri extension that is raster focused and can perform least cost
path analysis on raster terrain data.

The ArcGIS Network Analyst product page is located on Esri's website at:

http://www.esri.com/software/arcgis/extensions/networkanalyst

pgRouting
The pgRouting extension for PostGIS adds routing functionality to the geodatabase.
It is oriented towards road networks but can be adapted to work with other types of
networked data. The following image shows a driving distance radius calculation
output by pgRouting and displayed in QGIS. The points are color-coded from
green to red based on proximity to the starting location. The points are nodes
in the network data set, courtesy of QGIS.org, which in this case are roads:

Chapter 3

[111]

The pgRouting PostGIS extension is maintained at: http://pgrouting.org/.

Desktop tools
Geospatial analysis requires the ability to visualize output in order to be complete.
This fact makes tools, which can visualize data absolutely critical to the field. There
are two categories of geospatial visualization tools. The first is geospatial viewers
and the second is geospatial analysis software. The first category, geospatial viewers,
allows you to access, query, and visualize data but not edit data in any way. The
second category allows you to perform those items as well but also edit data. The
main advantage of viewers is that they are typically lightweight pieces of software
that launch and load data quickly. Geospatial analysis software requires far more
resources to be able to edit complex geospatial data, so it loads slower and often
renders data more slowly to provide dynamic editing functionality.

The Geospatial Technology Landscape

[112]

Quantum GIS
Quantum GIS, more commonly known as QGIS, is a complete open source
geographic information system. QGIS falls well within the geospatial analysis
category in the two categories of visualization software. Development of the
system began in 2002 and Version 1.0 was released in 2009.

It is the best showcase of most of the libraries mentioned earlier in this chapter. QGIS
is written in C++ using the Qt library for the GUI. The GUI is well designed and
easy to use. In fact, a geospatial analyst trained on a proprietary package like Esri's
ArcGIS or Manifold System will be right at home using QGIS. The tools and menu
system are logical and typical of a GIS system. The overall speed of QGIS is as good
as or better than any other system available.

A nice feature of QGIS is that the underlying libraries and utility programs are just
below the surface. Modules can be written by any third party in Python and added to
the system. QGIS also has a robust online package management system to search for,
install, and update these extensions. The Python integration includes a console that
allows you to issue commands at the console and see the results in the GUI. QGIS
isn't the only software to offer this capability.

Like most geospatial software packages, with Python integration it installs a
complete version of Python if you use the automated installer. There's no reason to
worry if you already have Python installed. Having multiple versions of Python on
a single machine is fairly common and well supported. Many people have multiple
versions of Python on their computers for testing software or because it is such a
common scripting environment for so many different software packages. When the
Python console is running in QGIS the entire program API is available through an
automatically loaded object called qgis.utils.iface. The following screenshot
shows QGIS with the Python console running:

Chapter 3

[113]

Because QIS is based on GDAL/OGR, GEOS, and can use PostGIS, it supports
all of the data sources offered by those packages. It also has nice raster processing
features too. QGIS works well for producing paper maps or entire map books using
available extensions.

QGIS is well documented through the QGIS website at:
http://www.qgis.org/en/documentation.html

You can also find numerous online and video tutorials by searching for QGIS and a
particular operation.

OpenEV
OpenEV is an open source geospatial viewer originally developed by Atlantis
Scientific around 2002, which became Vexcel before a buyout by Microsoft. Vexcel
developed OpenEV as a freely downloadable satellite image viewer for the Canadian
Geospatial Data Infrastructure. It is built using GDAL and Python and is partially
maintained by GDAL-creator Frank Warmerdam.

The Geospatial Technology Landscape

[114]

OpenEV is one of the fastest raster viewers available. Despite being originally
designed as a viewer, OpenEV offers all of the utility of GDAL/OGR and PROJ.4.
While created as a raster tool, it can overlay vector data such as shapefiles and
even supports basic editing. Raster images can also be altered using the built-in
raster calculator, and data formats can be converted, reprojected, and clipped.
The following screenshot shows a 25 megabyte, 16-bit, integer geotiff elevation
file in an OpenEV viewer window:

OpenEV is built largely in Python and offers a Python console with access to the full
capability of the program. The OpenEV GUI isn't as sophisticated as other tools like
QGIS. For example, you cannot drag-and-drop geospatial data sets into the viewer
like you can in QGIS. But the raw speed of OpenEV makes it very attractive for
simple raster viewing or basic processing and data conversion.

The OpenEV homepage is available at: http://openev.sourceforge.net/.

Chapter 3

[115]

GRASS GIS
The Geographic Resources Analysis System (GRASS) is one of the oldest
continuously developed geospatial systems in existence. The US Army Corps of
Engineers began GRASS development in 1982. It was originally designed to run
on UNIX systems. In 1995, the Army released the last patch and the software was
transferred to community development where it has remained ever since.

Even though the user interface was redesigned, GRASS still feels somewhat
esoteric to modern GIS users. However, because of its decades-old legacy and
non-existent price tag, many geospatial workflows and highly specialized modules
have been implemented in GRASS over the years, making it highly relevant to many
organizations and individuals especially in research communities. For these reasons
GRASS is still actively developed.

GRASS has also been integrated with QGIS so the more modern and familiar
QGIS GUI can be used to run GRASS functions. GRASS is also deeply integrated
with Python and can be used as a library or command line tool. The following
screenshot shows some landform analysis in the native GRASS GUI built using
the WxPython library:

GRASS is housed online at: http://grass.osgeo.org/.

The Geospatial Technology Landscape

[116]

uDig
The program uDig is a Java-based GIS viewer. It is built on top of the Eclipse
platform originally created by IBM. Eclipse is designed as an integrated development
environment (IDE) for programmers. But there are a lot of interface similarities
between and IDE and a GIS so the modification works quite well. The following
screenshot shows the core Eclipse IDE platform as typically used by programmers:

Chapter 3

[117]

The following screenshot demonstrates the uDig GIS built on top of Eclipse:

uDig is designed primarily as a thick client viewer for web services and common
data types. Because of the Eclipse platform, the developers encourage third party
plugins or even full-blown application development on top of uDig. The program
does support more advanced analysis by using the GRASS GIS program and its Java
bindings called JGRASS.

The uDig homepage is located at: http://udig.refractions.net/.

The Geospatial Technology Landscape

[118]

gvSIG
Another Java-based desktop GIS is gvSIG. The gvSIG project began in 2004 as part of
a larger project to migrate the IT systems of the Regional Ministry of Infrastructure
and Transport of Valencia, Spain to free software. The result was gvSIG which has
continued to mature. The feature set is mostly comparable to QGIS with some unique
capabilities as well. The official gvSIG project has a very active fork called gvSIG
Community Edition or gvSIG CE. There is also a mobile version called gvSIG mobile.
The gvSIG code base is open source. The official homepage for gvSIG is available at:
http://www.gvsig.org/web/.

OpenJUMP
OpenJUMP is another open source Java-based Desktop GIS. JUMP stands for
Java Unified Mapping Platform and was originally created by Vivid Solutions
for the government of British Columbia. After Vivid Solutions delivered JUMP,
development stopped. Vivid Solutions eventually released JUMP to the open source
community where it was renamed OpenJUMP. OpenJUMP has the ability to read
and write shapefiles, OGC GML, and supports PostGIS databases. It can also
display some image formats and data from OGC WMS and WFS services. It has
a plugin architecture and can also serve as a development platform for custom
applications. You can find out more about OpenJUMP on the official web page
at: http://www.openjump.org/.

Google Earth
Google Earth is so ubiquitous it hardly seems worth mentioning. But as you learn
more about geospatial analysis, you'll discover there is a lot of misinformation
surrounding Google Earth. The first release of EarthViewer 3D came in 2001 and was
created by a company called Keyhole, Inc. Keyhole and the EarthViewer 3D project
were funded by the non-profit venture capital firm In-Q-Tel, which in turn is funded
by the US Central Intelligence agency. This cloak-and-dagger spy agency lineage and
the subsequent purchase of Keyhole by Google to create and distribute Google Earth,
brought global attention to the geospatial analysis field.

Since the first release of the software as Google Earth in 2005, Google has continually
refined the software. Some of the notable additions are creating Google Moon,
Google Mars, Google Sky, and Google Oceans. These are virtual globe applications,
which feature data from the Moon and Mars with the exception of Google Oceans,
which adds sea-floor elevation mapping known as bathymetry to Google Earth.
Google also released a Google Earth browser plugin allowing a simplified version
of the globe in a browser. The plugin has a JavaScript API, which allows reasonably
sophisticated control over the data and position of the view for the plug-in.

Chapter 3

[119]

Google Earth introduced the idea of the spinning virtual globe concept for
exploration of geographic data. After centuries of looking at 2D maps or low-
resolution physical globes, flying around the Earth virtually and dropping into a
street corner anywhere in the world was mind blowing—especially for geospatial
analysts and other geography enthusiasts, as depicted in the following screenshot
of Google Earth overlooking the New Orleans, Louisiana Central Business District.

Just as Google had revolutionized web mapping with its tile-based mapping
approach, the virtual globe concept was a major boost to geospatial visualization.

After the initial excitement wore off, geospatial analysts realized Google Earth was a
very animated and fun geographic exploration tool but really had very limited utility
for any kind of meaningful geospatial analysis. Google Earth falls squarely into the
realm of geospatial viewer software. The only data format it consumes is its native
Keyhole Markup Language (KML), which is an all-in-one data and styling format
discussed in Chapter 2, Geospatial Data. Granted this format is now an OGC standard,
consuming only one data format immediately limits the utility of any tool. Any
project involving Google Earth must first begin with complete data conversion
and styling in KML, reminiscent of geospatial analysis from 10-20 years ago.

The Geospatial Technology Landscape

[120]

Google Earth's native data set has global coverage but it is a mixture of data
sets spanning several years and sources. Google has greatly improved the inline
metadata in the tool, which identifies the source and approximate date of the current
view. But this method creates confusion among lay people. Many people believe that
the data in Google Earth is updated far more frequently than it really is. The Google
StreetView system showing street-level, 360-degree views of much of the world
has helped correct this misperception somewhat. People are able to easily identify
images of familiar locations as several years old. Another common misperception
created by Google Earth is that the entire world has been mapped in detail and
therefore creating a base map for geospatial analysis should be trivial. As discussed
in Chapter 2, Geospatial Data, mapping an area of interest is far easier than even a
few years ago using modern data and software, but it is still a complex and labor
intensive endeavor. This misperception is one of the first customer expectations a
geospatial analyst must manage when starting a project.

Despite these misperceptions, the impact Google has had on geospatial analysis is
almost entirely positive. For decades, one of the most difficult challenges to growing
the geospatial industry was to convince potential stakeholders that geospatial
analysis is almost always the best approach when making decisions about people,
resources, and the environment. This hurdle stands in sharp contrast to a car dealer.
When a potential customer comes to a car lot, the salesman doesn't have to convince
the buyer they need a car, just which car. Geospatial analysts had to first educate
project sponsors on the technology, then convince them the geospatial approach
was the best way to address a challenge. Google has largely eliminated those steps
for analysts.

Google Earth can be found online at: http://www.google.com/earth/index.html.

NASA World Wind
NASA World Wind is an open source, virtual globe, geospatial viewer, originally
released by the US National Aeronautics and Space Administration (NASA) in 2004.
It was originally based on Microsoft's .NET framework making it a Windows-centric
application. The following screenshot of NASA World Wind looks similar to
Google Earth:

Chapter 3

[121]

In 2007, a Java-based software development kit (SDK) was released called World
Wind Java, which made World Wind more cross platform. The transition to Java
also led to the creation of a browser plugin for World Wind.

The World Wind Java SDK is considered an SDK, and not a desktop application like
the .NET version. However, the demos included with the SDK provide a viewer
without any additional development. While NASA World Wind was originally
inspired by Google Earth, its status as an open source project takes it in an entirely
different direction. Google Earth is a generalist tool bounded by the limits of the
KML specification. NASA World Wind is now a platform upon which anyone can
develop without limits. As new types of data become available and computing
resources grow, the potential of the virtual globe paradigm certainly holds more
potential for geospatial visualization, which has not been explored yet.

NASA World Wind is online at: http://worldwind.arc.nasa.gov/java/.

The Geospatial Technology Landscape

[122]

ArcGIS
Esri's ArcGIS is a gold standard in the geospatial world. Esri walks the line of one
of the greatest promoters of the geospatial analytical approach to understanding
our world and a privately-held, profit-making business, which must look out for its
own interests to a certain degree. The ArcGIS software suite represents every type of
geospatial visualization known including vector, raster, globes, and 3D. It is also a
market leader in many countries. As described in the geospatial software map earlier
in this chapter, Esri has increasingly incorporated open source software into its suite
of tools including GDAL for raster display and Python as the scripting language
for ArcGIS.

The following screenshot shows the core ArcGIS application ArcMap with marine
tracking density data analysis. The interface shares a lot in common with QGIS:

Image courtesy of MarineCadastre.gov

The ArcGIS product page is online at: http://www.esri.com/software/arcgis.

Chapter 3

[123]

Metadata management
Internet distribution of data has increased the importance of metadata. Data
custodians are able to release a data set to the entire world for download without
any personal interaction. The metadata record of a geospatial data set can follow it
to help ensure the integrity and accountability for that data is maintained. Properly
formatted metadata also allows for automated cataloguing, search indexing, and
integration of data sets. Metadata has become so important that a common mantra
within the geospatial community is "Data without metadata isn't data", meaning that
a geospatial data set cannot be fully utilized and understood without metadata. The
following section will list some of the common metadata tools which are available.

GeoNetwork
GeoNetwork is an open source, Java-based catalog server to manage geospatial
data. It includes a metadata editor and search engine, as well as an interactive web
map viewer. The system is designed to connect spatial data infrastructures globally.
It can publish metadata through the web using the metadata editing tools. It can
publish the spatial data as well through the embedded Geoserver map server. It has
user and group security permissions and web and desktop configuration utilities.
GeoNetwork can also be configured to harvest metadata from other catalogs at
scheduled intervals. The following screenshot is from the United Nations Food
and Agriculture Organization's implementation of the GeoNetwork:

The Geospatial Technology Landscape

[124]

You can find out more about GeoNetwork at:
http://geonetwork-opensource.org/.

CatMDEdit
CatMDEdit is another Java-based metadata editor focused on the geospatial
data from the National Geographic Institute of Spain and several collaborators.
CatMDEdit can exchange metadata records using XML and RDF standards, style,
and transform metadata for viewing in different formats, visualization of geospatial
data, integration with gvSIG, and many other features. The CatMDEdit website is
located at: http://catmdedit.sourceforge.net/.

Summary
In this chapter you learned the hierarchy of geospatial analysis software including
the following key elements:

•	 Hundreds of geospatial software packages and libraries exist
•	 All geospatial software can be categorized as:

°° Data access
°° Computational geometry
°° Raster processing
°° Desktop tools
°° Metadata management

•	 Nearly all significant geospatial software is dependent on four libraries
°° GDAL – raster data access
°° OGR – vector data access
°° PROJ.4 – geospatial data reprojection
°° GEOS – computational geometry

•	 Raster processing software is very fragmented with many packages and
frequent custom solutions

•	 If you come across new software trace it to the four core libraries and ask
"what is the value added?"

•	 If you can't trace the software to one of the four core libraries then ask
"Is this a well maintained new solution or is it destined for obscurity?"

Chapter 3

[125]

Python was only mentioned a few times in this chapter to avoid any distraction
in understanding the geospatial software landscape. But, as we will see, Python is
interwoven into every single piece of software in this chapter and is a fully capable
geospatial tool in its own right. It is no coincidence that Python is the official
scripting language of ArcGIS, QGIS, GRASS, and OpenEV. It is also not by chance
that GDAL, OGR, PROJ.4, CGAL, JTS, GEOS, and PostGIS all have Python bindings.
And as for the packages not mentioned, they are all within Python's grasp as well
through the Jython Java distribution, the IronPython .NET distribution, Python's
various database APIs, and the built-in ctypes module. As a geospatial analyst, if
there's one technology you can't afford to pass up, it's Python.

Geospatial Python Toolbox
The first three chapters of this book covered the history of geospatial analysis, the
types of geospatial data used by analysts, and the major software and libraries found
within the geospatial industry. We used some simple Python examples here and
there to illustrate certain points but we focused mainly on the field of geospatial
analysis independent of any specific technology.

Starting here, we will be using Python to conquer geospatial analysis and we will
continue with that approach for the rest of the book. In this chapter, we'll discover
the Python libraries used to access the different types of data found in the Vector data
and Raster data sections of Chapter 2, Geospatial Data. Some of these libraries are pure
Python and some are bindings to the different software packages found in Chapter 3,
The Geospatial Technology Landscape.

We will examine pure Python solutions whenever possible. Python is a very capable
programming language but some operations, particularly in remote sensing, are too
computationally intensive and therefore impractical using pure Python. Fortunately,
nearly every aspect of geospatial analysis is addressed in some way through Python
even if it is binding to a highly efficient C or C++ library.

We will avoid using broad scientific libraries which cover other domains beyond
geospatial analysis to keep solutions as simple as possible. There are many reasons
to use Python for geospatial analysis but one of the strongest arguments is its
portability. Python is a ubiquitous programming language officially available as a
compiled installation on over 20 platforms according to the python.org website.
It comes as standard with most Linux distributions and is available on most major
smart phone operating systems as well. The Python source distribution usually
compiles on any platform supporting C.

Geospatial Python Toolbox

[128]

Furthermore, Python has been ported to Java as the Jython distribution and the .NET
Common Language Runtime (CLR) as IronPython. Python also has versions such
as Stackless Python for massively concurrent programs. There are also versions of
Python designed to run on cluster computers for distributed processing. Python is
also available on many hosted application servers which do not allow you to install
custom executables such as the Google App Engine platform which has a Python
API. Modules written in pure Python using the standard library will almost always
run on any of the platforms that we just mentioned.

Each time you add a third-party module which relies on bindings to external
libraries in other languages, you reduce Python's inherent portability. You also
add a layer of complexity to fundamentally change the code by adding another
language to the mix. Pure Python keeps things simple. Also Python bindings to
external libraries tend to be automatically or semi-automatically generated. These
automatically-generated bindings are very generic, esoteric and simply connect
Python to a C or C++ API using the method names from that API instead of
following best practices for Python. There are of course notable exceptions to this
approach driven by project requirements which may include speed, unique library
features, or frequently updated libraries where an automatically generated interface
is preferable.

Installing third-party Python modules
We'll make a distinction between modules which are included as part of Python's
standard library and modules which must be installed. To install libraries, you either
get them from the Python Package Index (PyPI) or in the case of a lot of geospatial
modules, you download a specialized installer. PyPI acts as the official software
repository for libraries and offers some easy-to-use setup programs which simplify
installing packages. You can use the easy_install program which is especially
good on Windows or the pip program more commonly found on Linux and Unix
systems. Once installed, you can install third-party packages simply by running:

easy_install <package name>

Or for pip you run:

pip install <package name>

Links will be provided to installers and instructions for packages not available on
PyPI. You can manually install third-party Python modules by downloading the
Python source code and putting it in your current working directory, or you can put
it in your Python site-packages directory. These two directories are in Python's
search path when you try to import a module. If you put a module in your current
working directory, it is only available when you start Python from that directory.

Chapter 4

[129]

If you put it in your site-packages directory, it is available every time you start
Python. The site-packages directory is specifically for third-party modules.
To locate the site-packages directory for your installation, you ask Python's
sys module. The sys module has a path attribute that is a list of all directories in
Python's search path. The site-packages directory should be the last one which
we can locate by specifying an index of -1:

>>> sys.path[-1]
'C:\\Python27\\lib\\site-packages'

If that call doesn't return the site-packages path, just look at the entire list
to locate it:

>>> sys.path
['', 'C:\\WINDOWS\\system32\\python27.zip', 'C:\\Python27\\DLLs',
'C:\\Python27\\lib', 'C:\\Python27\\lib\\plat-win
', 'C:\\Python27\\lib\\lib-tk', 'C:\\Python27', 'C:\\Python27\\lib\\
site-packages']

It is recommended that you use Python 2.7.x for geospatial analysis but not Python
3.x. The Python 2.7 series has some important bug fixes to standard library modules.
And Python 3 is not backward compatible with previous Python versions. Most
geospatial Python libraries have not been ported to Python 3 yet. These installation
methods will be used for the rest of the book. You can find the latest Python
version, source code for your platform installation and compilation instructions
at http://python.org/download/.

The Python virtualenv module allows you to easily create an isolated
copy of Python for a specific project without affecting your main Python
installation or other projects. Using this module, you can have different
projects with different versions of the same library. Once you have a
working code base, you can then keep it isolated from changes to the
modules you used or even Python itself. The virtualenv module is
simple to use and can be used for any example in this book; however,
explicit instructions on its use are not included. To get started with
virtualenv, follow this simple guide:
http://docs.python-guide.org/en/latest/dev/virtualenvs/

Geospatial Python Toolbox

[130]

Installing GDAL
The Geospatial Data Abstraction Library (GDAL), which includes OGR, is critical
to many of the examples in this book and is also one of the more complicated Python
setups as well. For these reasons, we'll discuss it separately here. The latest GDAL
bindings are available on PyPI, however the installation requires a few more steps
because of additional resources needed by the GDAL library.

There are three ways to install GDAL for use with Python:

•	 Compile it from source code
•	 Install it as part of a larger software package
•	 Install a binary distribution and then Python bindings

If you have experience with compiling C libraries as well as the required compiler
software, then the first option gives you the most control. However it is not
recommended if you just want to get going as quickly as possible because even
experienced software developers can find compiling GDAL and the associated
Python bindings challenging. Instructions for compiling GDAL on leading
platforms can be found at http://trac.osgeo.org/gdal/wiki/BuildHints.
There are also basic build instructions on the PyPI GDAL page. Have a look at
https://pypi.python.org/pypi/GDAL.

The second option is by far the quickest and easiest. The Open Source Geospatial
Foundation (OSGeo) distributes an installer called OSGeo4W which installs all of the
top open source geospatial packages on Windows at the click of a button. If you are on
Linux, there is another package with distributions for both Linux and Windows called
FWTools. OSGeo4W can be found at http://trac.osgeo.org/osgeo4w/.

FWTools is available online at http://fwtools.maptools.org/.

While these packages are the easiest to work with, they come with their own
version of Python. If you already have Python installed, then having another
Python distribution just to use certain libraries may be problematic. In that case
the third option may be for you.

The third option installs a pre-compiled binary specific to your Python version.
This method is the best compromise between ease of installation and customization.
The catch is you must make sure the binary distributions and corresponding Python
bindings are compatible with each other, your Python version, and in many cases
your operating system configuration.

Chapter 4

[131]

Windows
To install GDAL this way on Windows, you must first check which version of Visual
Studio is used to compile your Python distribution as well as your Python version.
To do so, just start your Python interpreter at a command prompt:

C:\>python

Python 2.7.2 (default, Jun 12 2011, 15:08:59) [MSC v.1500 32 bit (Intel)]
on win32

Type "help", "copyright", "credits" or "license" for more information.

>>>

So, based on this instance, we see Python is Version 2.7.2 and the Microsoft
Compiler (MSC) version is 1500 for 32 bit machines. Once you have this information,
go to the following URL: http://www.gisinternals.com/sdk/

On that web page, in the first table of downloads, look in the Downloads column
and scroll down until you find a download that matches the format "release-<MSC
version>-gdal-mapserver", where <MSC version> matches the version used for
your Python distribution. In the example that we just saw, we would click on
the download link for release-1500-gdal-1-10-mapserver-6-2 as circled in the
following screenshot:

Geospatial Python Toolbox

[132]

If you are on a 64-bit Windows computer, you'll notice each download also as
Version x64, specified as release-<MSC version>-x64-gdal-mapserver. Once
you click on that link, scroll down to download the Python bindings installer
that best matches your distribution. For our example, we would download
GDAL-1.10.0.win32-py2.7.msi. Then scroll down and download the link with
the description Generic installer for the GDAL core components. In this example,
that file would be gdal-110-1500-core.msi. These two downloads are circled in the
following screenshot:

You'll also notice there are installers for various GDAL plugins for different
optional data types which you might need someday. Unzip the ZIP file and run
the installer. Once the installation of the GDAL core is complete, run the Python
bindings installer.

Chapter 4

[133]

Finally you'll need to set a GDAL_DATA environment variable. First locate
the gdal-data folder in your GDAL core installation which should be
located in your Program Files folder. Have a look at the following path:
C:\Program Files\GDAL\gdal-data.

Next, right-click on your My Computer icon on your desktop or on the Start menu
and select Properties. In the Properties window, select the Advanced tab. In the
Advanced tab, click on the Environment Variables button near the bottom of the
window as circled in the following screenshot:

Geospatial Python Toolbox

[134]

Next, in the top section of the window labeled User variables…, click on the New
button to create a new environment variable. Enter GDAL_DATA in all caps as the
variable name and the gdal-data folder path as the variable value as follows:

Click on OK to save the variable. Next, append the PATH variable in the same panel
by selecting it and clicking on the Edit button. Add the path to the main GDAL folder
as shown in the following screenshot. This screenshot uses the abbreviated path
name of the Program Files folder:

Chapter 4

[135]

Click on OK on each window until all of the system properties-related windows are
closed. Now open a new command window and try to import gdal, ogr, and check
GDAL's version:

>>> import gdal
>>> import ogr
>>> gdal.VersionInfo()
'1100000'

In the version number in the previous code snippet, the first digit is the major
version, the second two digits are the minor version, and further digits represent
incremental updates.

Geospatial Python Toolbox

[136]

Linux
GDAL installation on Linux varies widely by distribution. The gdal.org
binaries page lists installation instructions for several distributions:
http://trac.osgeo.org/gdal/wiki/DownloadingGdalBinaries

Typically your package manager will install both GDAL and the Python bindings.
For example, on Ubuntu, to install GDAL you run:

sudo apt-get install gdal-bin

Then to install the Python bindings, you run:

sudo apt-get install python-gdal

Also, most Linux distributions are set up to compile software already and the
instructions are much simpler than on Windows. Depending on your installation
you may have to import gdal and ogr as part of the osgeo package as follows:

>>> from osgeo import gdal
>>> from osgeo import ogr

Mac OS X
The best bet for Mac users outside of compiling from source is the well-maintained
binaries found at http://www.kyngchaos.com/software:frameworks.

Python networking libraries for acquiring
data
The vast majority of geospatial data sharing is accomplished via the Internet. And
Python is well-equipped when it comes to networking libraries for almost any
protocol. Automated data downloads are often an important step in automating a
geospatial process. Data is typically retrieved from a website Uniform Resource
Locator (URL) or a File Transfer Protocol (FTP) server. And because geospatial
data sets often contain multiple files, data is often distributed as ZIP files.

A nice feature of Python is its concept of a file-like object. Most Python libraries
which read and write data use a standard set of methods which allow you to access
data from all different types of resources as if you were writing a simple file on disk.
The networking modules in the Python standard library use this convention as well.
The benefit of this approach is it allows you to pass file-like objects to other libraries
and methods which recognize the convention without a lot of setup for different
types of data distributed in different ways.

Chapter 4

[137]

Python urllib module
The Python urllib module is designed for simple access to any file with a
URL address. The urllib module implements some of Python's file-like object
conventions starting with its open()method. When you call open() it prepares a
connection to the resource but does not access any data. Sometimes you just want
to grab a file and save it to disk instead of accessing it in memory. This function is
available through the urllib.retrieve()method.

The following example uses the urllib.retrieve() method to download the
zipped shapefile, hancock.zip used in other examples. We define the URL and
the local file name as variables. The URL is passed as an argument as well as the
file name we want to use to save it to our local machine which in this case is just
hancock.zip:

>>> import urllib
>>> url = "https://geospatialpython.googlecode.com/files/hancock.zip"
>>> fileName = "hancock.zip"
>>> urllib.urlretrieve(url, fileName)
('hancock.zip', <httplib.HTTPMessage instance at 0x00CAD378>)

The message from the underlying httplib module confirms that the file was
downloaded to the current directory. The URL and file name could have been
passed to the retrieve() method directly as strings as well. If you specify just the
file name, the download saves to the current working directory. You can also specify
a fully qualified path name to save it somewhere else. You can also specify a callback
function as a third argument which will receive download status information for
the file so you can create a simple download status indicator or perform some
other action.

The urllib.urlopen() method allows you to access an online resource with more
precision and control. As mentioned previously, it implements most of the Python
file-like object methods with the exception of the seek() method which allows you
to jump to arbitrary locations within a file. You can read a file online one line at a
time, read all lines as a list, read a specified number of bytes, or iterate through each
line of the file. All of these functions are performed in memory so you don't have to
store the data on disk. This ability is useful for accessing frequently updated data
online which you may not want process without saving to disk.

Geospatial Python Toolbox

[138]

In the following example, we demonstrate this concept by accessing the United
States Geological Survey (USGS) earthquake feed to view all of the earthquakes
in the world which have occurred within the last hour. This data is distributed as
a Comma-Separated Value (CSV) file which we can read line by line like a text
file. CSV files are similar to spreadsheets and can be opened in a text editor or
spreadsheet program. First we will open the URL, read the header with the
column names in the file, and then read the first line containing a record of a
recent earthquake:

>>> url = "http://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/
all_hour.csv
"
>>> earthquakes = urllib.urlopen(url)
>>> earthquakes.readline()
'time,latitude,longitude,depth,mag,magType,nst,gap,dmin,rms,net,id,up
dated,place
\n'
>>> earthquakes.readline()
'2013-06-14T14:37:57.000Z,64.8405,-147.6478,13.1,0.6,Ml,6,180,0.09701
805,0.2,ak,
ak10739050,2013-06-14T14:39:09.442Z,"3km E of Fairbanks, Alaska"\n'

We can also iterate through this file which is a memory efficient way to read through
large files. If you are running this example in the Python interpreter as shown, you
will need to press the Enter or Return key twice to execute the loop. This action is
necessary because it signals to the interpreter that you are done building the loop.
In the following example, we abbreviate the output:

>>> for record in earthquakes: print record
2013-06-14T14:30:40.000Z,62.0828,-145.2995,22.5,1.6,Ml,8,108,0.081746
69,0.86,ak,
ak10739046,2013-06-14T14:37:02.318Z,"13km ESE of Glennallen, Alaska"
...
2013-06-14T13:42:46.300Z,38.8162,-122.8148,3.5,0.6,Md,,126,0.00898315
,0.07,nc,nc
72008115,2013-06-14T13:53:11.592Z,"6km NW of The Geysers, California"

The urllib module lets you focus on your data without worrying about how to get
to it. Most online geospatial data sets are straightforward to access. If you are dealing
with a more complicated server, the urllib2 module provides a more sophisticated
access allowing for authentication, server URL redirection, browser cookies, and
other techniques which make accessing data more complicated than just specifying a
URL. The urllib2 module does not have the urlretrieve() method like urllib.

Chapter 4

[139]

FTP
FTP allows you to browse an online directory and download data using FTP client
software. Until around 2004, when geospatial web services became very common,
FTP was one of the most common ways to distribute geospatial data. FTP is less
common now but you occasionally encounter it when searching for data. Once again
Python's "batteries included" standard library has a reasonable FTP module called
ftplib with a main class called FTP().

In the following example, we will access an FTP server hosted by the US National
Oceanic and Atmospheric Administration (NOAA) to access a text file containing
data from the Deep-ocean Assessment and Reporting of Tsunamis (DART) buoy
network used to watch for tsunamis around the world. This particular buoy is off
the coast of Peru. We will define the server and the directory path. Then we will
access the server. All FTP servers require a user name and password. Most public
servers have a user called anonymous with the password anonymous as this one
does. Using Python's ftplib you can just call the login() method without any
arguments to login in as the default anonymous user. Otherwise you can add the
username and password as string arguments. Once logged in, we'll change to the
directory containing the DART data file. To download the file, we open up a local file
called out and pass its write() method as a callback function to the ftplib.ftp.
retrbinary() method which simultaneously downloads the file and writes it to our
local file. Once the file is downloaded we can close it to save it. Then we'll read the
file and look for the line containing the latitude and longitude of the buoy to make
sure the data was downloaded successfully:

>>> import ftplib
>>> server = "ftp.ngdc.noaa.gov"
>>> dir = "hazards/DART/20070815_peru"
>>> fileName = "21415_from_20070727_08_55_15_tides.txt"
>>> ftp = ftplib.FTP(server)
>>> ftp.login()
'230 Login successful.'
>>> ftp.cwd(dir)
'250 Directory successfully changed.'
>>> out = open(fileName, "wb")
>>> ftp.retrbinary("RETR " + fileName, out.write)
'226 Transfer complete.'
>>> out.close()
>>> dart = open(fileName)
>>> for line in dart:
... if "LAT," in line:
... print line
... break
...
 LAT, LON 50.1663 171.8360

Geospatial Python Toolbox

[140]

In this example, we opened the local file in binary write mode and we used the
retrbinary() ftplib method as opposed to retrlines() which uses ASCII mode.
Binary mode works for both ASCII and binary files so it's always a safe bet. In fact,
in Python, the binary read and write modes for a file are only required on Windows.

If you are just downloading a simple file from an FTP server, many FTP
servers have a web interface as well. In that case you could use urllib
to read the file. FTP URLs use the following format to access data:
ftp://username:password@server/directory/file

This format is insecure for password-protected directories because you are
transmitting your login information over the Internet. But for anonymous FTP
servers there is no additional security risk. To demonstrate this, the following
example accesses the same file that we just saw but using urllib instead of ftplib:

>>> dart = urllib.urlopen(ftpURL + server + "/" + dir + "/" +
fileName)
>>> for line in dart:
... if "LAT," in line:
... print line
... break
...
 LAT, LON 50.1663 171.8360

ZIP and TAR files
Geospatial data sets often consist of multiple files. For this reason they are often
distributed as ZIP or TAR file archives. These formats can also compress data
but their ability to bundle multiple files is the primary reason they are used for
geospatial data. While the TAR format doesn't contain a compression algorithm,
it incorporates the gzip compression and offers it as a program option. Python
has standard modules for reading and writing both ZIP and TAR archives. These
modules are called zipfile and tarfile respectively.

The following example extracts the hancock.shp, hancock.shx, and hancock.dbf
files contained in the hancock.zip file we downloaded using urllib for use in
previous examples. This example assumes the ZIP file is in the current directory:

>>> import zipfile
>>> zip = open("hancock.zip", "rb")
>>> zipShape = zipfile.ZipFile(zip)
>>> shpName, shxName, dbfName = zipShape.namelist()
>>> shpFile = open(shpName, "wb")
>>> shxFile = open(shxName, "wb")
>>> dbfFile = open(dbfName, "wb")

Chapter 4

[141]

>>> shpFile.write(zipShape.read(shpName))
>>> shxFile.write(zipShape.read(shxName))
>>> dbfFile.write(zipShape.read(dbfName))
>>> shpFile.close()
>>> shxFile.close()
>>> dbfFile.close()

This example is more verbose than necessary for clarity. We can shorten this example
and make it more robust by using a for loop around the zipfile.namelist()
method without explicitly defining the different files as variables. This method is
a more flexible and pythonic approach which could be used on ZIP archives with
unknown contents:

>>> import zipfile
>>> zip = open("hancock.zip", "rb")
>>> zipShape = zipfile.ZipFile(zip)
>>> for fileName in zipShape.namelist():
... out = open(fileName, "wb")
... out.write(zipShape.read(fileName))
... out.close()
>>>

Now that we understand the basics of the zipfile module, let's take the files
we just unzipped and create a TAR archive with them. In this example, when we
open the TAR archive for writing, we specify the write mode as w:gz for gzipped
compression. We also specify the file extension as tar.gz to reflect this mode:

>>> import tarfile
>>> tar = tarfile.open("hancock.tar.gz", "w:gz")
>>> tar.add("hancock.shp")
>>> tar.add("hancock.shx")
>>> tar.add("hancock.dbf")
>>> tar.close()

We can extract the files using the simple tarfile.extractall() method. First we
open the file using the tarfile.open() method, and then extract it:

>>> tar = tarfile.open("hancock.tar.gz", "r:gz")
>>> tar.extractall()
>>> tar.close()

Geospatial Python Toolbox

[142]

We'll do one more example by combining elements we've learned in this chapter as
well as the elements in the Vector data section of Chapter 2, Geospatial Data. We'll read
the bounding box coordinates from the hancock.zip file without ever saving it to
disk. We'll use the power of Python's file-like object convention to pass around the
data. Then we'll use Python's struct module to read the bounding box as we did in
Chapter 2, Geospatial Data. In this case, we read the unzipped .shp file into a variable
and access the data using Python array slicing by specifying the starting and ending
indexes of the data separated by a colon (":"). We are able to use list slicing because
Python allows you to treat strings as lists. In this example, we also use Python's
StringIO module to temporarily store data in memory in a file-like object that
implements all methods including the seek() method which is absent from most
Python networking modules:

>>> import urllib
>>> import zipfile
>>> import StringIO
>>> import struct
>>> url = "https://geospatialpython.googlecode.com/files/hancock.zip"
>>> cloudshape = urllib.urlopen(url)
>>> memoryshape = StringIO.StringIO(cloudshape.read())
>>> zipshape = zipfile.ZipFile(memoryshape)
>>> cloudshp = zipshape.read("hancock.shp")
>>> struct.unpack("<dddd", cloudshp[36:68])
(-89.6904544701547, 30.173943486533133, -89.32227546981174,
30.6483914869749)

As you can see from the examples so far, Python's standard library packs a lot of
punch. Most of the time, you don't have to download a third-party library just to
access a file online. In the previous example, we use Python's StringIO module
which is a pure Python module. The cStringIO module is also in the standard
library and is a faster implementation written in C. It works the same way and is
faster and better suited for larger tasks.

Python markup and tag-based parsers
Tag-based data, particularly different XML dialects, have become a very popular
way to distribute geospatial data. Formats which are both machine and human
readable are generally easy to work with though they sacrifice storage efficiency for
usability. These formats can become unmanageable for very large data sets but work
very well in most cases.

Chapter 4

[143]

While most formats are some form of XML (such as KML or GML), there is a notable
exception. The Well-Known Text (WKT) format is fairly common but uses external
markers and square brackets ("[]") to surround data instead of tags in angled brackets
around data like XML does.

Python has standard library support for XML as well as some excellent third-party
libraries available. Proper XML formats all follow the same structure so you can use
a generic XML library to read it. Because XML is text-based, it is often easy to write it
as a string instead of using an XML library. The vast majority of applications which
output XML do so in this way. The primary advantage of using XML libraries for
writing XML is your output is usually validated. It is very easy when creating your
own XML format to create an error. A single missing quotation mark can derail an
XML parser and throw an error for somebody trying to read your data. When these
errors happen, they virtually render your data set useless. You will find this problem
is very common among XML-based geospatial data. What you'll discover is that
some parsers are more forgiving with incorrect XML than others. Often, reliability is
more important than speed or memory efficiency. The following analysis provides
benchmarks for memory and speed among the different Python XML parsers:

http://lxml.de/performance.html

The minidom module
The Python minidom module is a very old and simple to use XML parser. It is part
of Python's built-in set of XML tools in the xml package. It can parse XML files or
XML fed in as a string. The minidom module is best for small to medium-sized XML
documents of less than about 20 megabytes before speed begins to decrease.

To demonstrate the minidom module, we'll use a sample KML file which is part
of Google's KML documentation that you can download. This data represents
time-stamped point locations transferred from a GPS device:

http://kml-samples.googlecode.com/svn/trunk/kml/time/time-stamp-
point.kml

First we'll parse this data by reading it in from the file and creating a minidom parser
object. The file contains a series of <Placemark> tags which contain a point and a
timestamp at which that point was collected. So we'll get a list of all of Placemarks
in the file and count them by checking the length of that list:

>>> from xml.dom import minidom
>>> kml = minidom.parse("time-stamp-point.kml")
>>> Placemarks = kml.getElementsByTagName("Placemark")
>>> len(Placemarks)
361

Geospatial Python Toolbox

[144]

As you can see, we retrieved all Placemarks which totaled 361. Now let's take a look
at the first Placemark element in the list:

>>> Placemarks[0]
<DOM Element: Placemark at 0x2045a30>

Each <Placemark> tag is now a DOM Element data type. To really see what that
element is, we call the toxml() method:

>>> Placemarks[0].toxml()
u'<Placemark>\n <TimeStamp>\n \<when>2007-01-14T21:05:02Z</when>\n
</TimeStamp>\n <styleUrl>#paddle-a</styleUrl>\n <Point>\n
<coordinates>-122.536226,37.86047,0</coordinates>\n </Point>\n </
Placemark>'

The toxml() function outputs everything contained in the Placemark tag as a
string object. If we wanted to print this information to a text file, we could call the
toprettyxml() method which would add additional indentation to make the xml
more readable.

Now what if we want to grab just the coordinates from this Placemark? The
coordinates are buried inside the coordinates tag which is contained in the Point
tag and nested inside the Placemark tag. Each element of a minidom object is called a
node. Nested nodes are called children or child nodes. The child nodes include more
than just tags. They can also include whitespace separating tags as well as the data
inside tags. So we can drill down to the coordinates tag using the tag name, but
then we'll need to access the data node. All the minidom elements have a childNodes
list as well as a firstChild() method to access the first node. We'll combine these
methods to get to the data attribute of the first coordinates data node which we
reference using index 0 in the list of coordinates tags:

>>> coordinates = Placemarks[0].getElementsByTagName("coordinates")
>>> point = coordinates[0].firstChild.data
>>> point
u'-122.536226,37.86047,0'

If you're new to Python, you'll notice that the text output in these examples is tagged
with the letter u. This markup is how Python denotes Unicode strings which support
internationalization to multiple languages with different character sets.

We can go a little further and convert this point string into usable data by splitting
the string and converting the resulting strings as Python float types:

>>> x,y,z = point.split(",")
>>> x
u'-122.536226'
>>> y

Chapter 4

[145]

u'37.86047'
>>> z
u'0'
>>> x = float(x)
>>> y = float(y)
>>> z = float(z)
>>> x,y,z
(-122.536226, 37.86047, 0.0)

Using a Python list comprehension, we can perform this operation in a single step:

>>> x,y,z = [float(c) for c in point.split(",")]
>>> x,y,z
(-122.536226, 37.86047, 0.0)

This example scratches the surface of what the minidom library can do. For a great
tutorial on this library, have a look at the 9.3. Parsing XML section of Mark Pilgrim's
excellent book Dive Into Python, available in print or online at:

http://www.diveintopython.net/xml_processing/parsing_xml.html

ElementTree
The minidom module is pure Python, easy to work with, and has been around since
Python 2.0. However Python 2.5 added a more efficient yet high-level XML parser to
the standard library called ElementTree. ElementTree is interesting because it has
been implemented in multiple versions. There is a pure Python version and a faster
version written in C called cElementTree. You should use cElementTree wherever
possible but it's possible you may be on a platform that doesn't include the C-based
version. When you import cElementTree, you can test to see if it's available and fall
back to the pure Python version if necessary:

try:
 import xml.etree.cElementTree as ET
except ImportError:
 import xml.etree.ElementTree as ET

One of the great features of ElementTree is its implementation of a subset of the
XPath query language. XPath is short for XML Path and allows you to search an
XML document using a path-style syntax. If you work with XML frequently,
learning XPath is essential. You can learn more about XPath at the following link:

http://www.w3schools.com/xpath/

Geospatial Python Toolbox

[146]

One catch with this feature is if the document specifies a namespace, as most XML
documents do, you must insert that namespace into queries. ElementTree does not
automatically handle the namespace for you. Your options are to manually specify it
or try to extract it using string parsing from the root element's tag name.

We'll repeat the minidom XML parsing example using ElementTree. First we'll
parse the document, then we'll manually define the KML namespace, then we'll use
an XPath expression and the find()method to find the first Placemark element.
Finally we'll find the coordinates, child node and grab the text containing the latitude
and longitude. In both cases, we could have searched directly for the coordinates
tag. But by grabbing the Placemark element, it gives us the option of grabbing the
corresponding timestamp child element later, if we choose:

>>> tree = ET.ElementTree(file="time-stamp-point.kml")
>>> ns = "{http://www.opengis.net/kml/2.2}"
>>> placemark = tree.find(".//%sPlacemark" % ns)
>>> coordinates = placemark.find("./%sPoint/%scoordinates" % (ns,ns))
>>> coordinates.text
'-122.536226,37.86047,0'

In this example, notice that we used the Python string formatting syntax which is
based on the string formatting concept found in C. When we defined the XPath
expression for the placemark variable we used the %s placeholder to specify the
insertion of a string. Then after the string we use the % operator followed by a
variable name to insert the ns namespace variable where the placeholder is. In the
coordinates variable we use the ns variable twice so we specify a tuple containing
ns twice after the string.

String formatting is a simple yet extremely powerful and useful tool in
Python that is worth learning. You can find more information in Python's
documentation online at:
http://docs.python.org/2/library/stdtypes.html#string-
formatting

Building XML
Most of the time, XML can be built by concatenating strings:

xml = """<?xml version="1.0" encoding="utf-8"?>"""
xml += """<kml xmlns="http://www.opengis.net/kml/2.2">"""
xml += """ <Placemark>"""
xml += """ <name>Office</name>"""
xml += """ <description>Office Building</description>"""
xml += """ <Point>"""

Chapter 4

[147]

xml += """ <coordinates>"""
xml += """ -122.087461,37.422069"""
xml += """ </coordinates>"""
xml += """ </Point>"""
xml += """ </Placemark>"""
xml += """</kml>"""

But this method can be quite prone to typos, which create invalid XML documents.
A safer way is to use an XML library. Let's build this simple KML document using
ElementTree. We'll define the root KML element and assign it a namespace. Then
we'll systematically append subelements to the root, and finally, wrap the elements
as an ElementTree object, declare the XML encoding, and write it out to a file called
placemark.xml:

>>> root = ET.Element("kml")
>>> root.attrib["xmlns"] = "http://www.opengis.net/kml/2.2"
>>> placemark = ET.SubElement(root, "Placemark")
>>> office = ET.SubElement(placemark, "name")
>>> office.text = "Office"
>>> point = ET.SubElement(placemark, "Point")
>>> coordinates = ET.SubElement(point, "coordinates")
>>> coordinates.text = "-122.087461,37.422069"
>>> tree = ET.ElementTree(root)
>>> tree.write("placemark.kml", xml_declaration=True,encoding='utf-
8',method="xml")

The output is identical to the previous string building example except that
ElementTree does not indent the tags but rather writes it as one long string.
The minidom module has a similar interface which is documented in Mark Pilgrim's
book Dive Into Python referenced in the minidom example that we just saw.

XML parsers such as minidom and ElementTree work very well on perfectly
formatted XML documents. Unfortunately, the vast majority of XML documents
out there don't follow the rules and contain formatting errors or invalid characters.
You will find you are often forced to work with this data and must resort to
extraordinary string parsing techniques to get the small subset of data you actually
need. But thanks to Python and BeautifulSoup, you can elegantly work with bad,
even terrible, tag-based data.

BeautifulSoup is a module specifically designed to robustly handle broken XML.
It is oriented towards HTML, which is notorious for incorrect formatting, but works
with other XML dialects too. BeautifulSoup is available on PyPI, so use either
easy_install or pip to install it:

easy_install BeautifulSoup

Geospatial Python Toolbox

[148]

Or:

pip install BeautifulSoup

Then, to use it, you simply import it:

>>> import BeautifulSoup

To try it out, we'll use a GPS Exchange Format (GPX) tracking file from a
smartphone application, which has a glitch and exports slightly broken data.
You can download this sample file which is available at:

https://geospatialpython.googlecode.com/files/broken_data.gpx

This 2,347 line data file is in pristine condition except it is missing a closing </
trkseg> tag which should be located at the very end of the file just before the closing
</trk> tag. This error was caused by a data export function in the source program.
This defect is most likely a result of the original developer manually generating the
GPX XML on export and forgetting the line of code that adds this closing tag. Watch
what happens if we try to parse this file with minidom:

>>> gpx = minidom.parse("broken_data.gpx")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "C:\Python27\lib\xml\dom\minidom.py", line 1914, in parse
 return expatbuilder.parse(file)
 File "C:\Python27\lib\xml\dom\expatbuilder.py", line 924, in parse
 result = builder.parseFile(fp)
 File "C:\Python27\lib\xml\dom\expatbuilder.py", line 207, in
parseFile
 parser.Parse(buffer, 0)
xml.parsers.expat.ExpatError: mismatched tag: line 2346, column 2

As you can see from the last line in the error message, the underlying XML parser
in minidom knows exactly what the problem is—a mismatched tag right at the end
of the file. But it refused to do anything more than report the error. You must have
perfectly formed XML or none at all.

Now let's try the more sophisticated and efficient ElementTree module with the
same data:

>>> ET.ElementTree(file="broken_data.gpx")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "C:\Python27\lib\xml\etree\ElementTree.py", line 611, in __
init__
 self.parse(file)

Chapter 4

[149]

 File "C:\Python27\lib\xml\etree\ElementTree.py", line 653, in parse
 parser.feed(data)
 File "C:\Python27\lib\xml\etree\ElementTree.py", line 1624, in feed
 self._raiseerror(v)
 File "C:\Python27\lib\xml\etree\ElementTree.py", line 1488, in _
raiseerror
 raise err
xml.etree.ElementTree.ParseError: mismatched tag: line 2346, column 2

As you can see, different parsers face the same problem. Poorly-formed XML is an
all-too-common reality in geospatial analysis and every XML parser assumes all
the XML in the world is perfect, except for one. Enter BeautifulSoup. This library
shreds bad XML into usable data without a second thought. And it can handle far
worse defects than missing tags. It will work despite missing punctuation or other
syntax and will give you the best data it can. It was originally developed for parsing
HTML, which is notoriously horrible for being poorly formed, but it works fairly
well with XML as well. The library has a class called BeautifulStoneSoup for XML:

>>> from BeautifulSoup import BeautifulStoneSoup
>>> gpx = open("broken_data.gpx")
>>> soup = BeautifulStoneSoup(gpx.read())
>>>

No complaints from BeautifulSoup! Just to make sure the data is actually usable,
let's try and access some of the data. One of the fantastic features of BeautifulSoup
is it turns tags into attributes of the parse tree. If there are multiple tags with the
same name, it grabs the first one. Our sample data file has hundreds of the <trkpt>
tags. Let's access the first one:

>>> soup.trkpt
<trkpt lat="30.307267000" lon="-89.332444000"><ele>10.7</
ele><time>2013-05-16T04:39:46Z</time></trkpt>

We're now certain that the data has been parsed correctly and we can access it.
If we want to access all of the <trkpt> tags, we can use the findAll() method
to grab them and then use the built-in Python len() function to count them:

>>> tracks = soup.findAll("trkpt")
>>> len(tracks)
2321

If we write the parsed data back out to a file, BeautifulSoup outputs the corrected
version. We'll save the fixed data as a new GPX file using BeautifulSoup module's
prettify() method to format the XML with nice indentation:

>>> fixed = open("fixed_data.gpx", "w")
>>> fixed.write(soup.prettify())
>>> fixed.close()

Geospatial Python Toolbox

[150]

BeautifulSoup is a very rich library with many more features. To explore it further,
visit the BeautifulSoup documentation online at: http://www.crummy.com/
software/BeautifulSoup/bs3/documentation.html

While minidom, ElementTree, and cElementTree come with the
Python standard library, there is an even more powerful and popular
XML library for Python called lxml. The lxml module provides a
pythonic interface to the libxml2 and libxslt C libraries using the
ElementTree API. Even better, lxml also works with BeautifulSoup
to parse bad tag-based data. The lxml module is available via PyPI but
requires some additional steps for the C libraries. More information is
available on the lxml homepage available at:
http://lxml.de/

WKT
The WKT format has been around for years and is a simple text-based format for
representing geometries and spatial reference systems. It is primarily used as a data
exchange format by systems which implement the OGC Simple Features for SQL
specification. A sample WKT representation of a polygon would be:

POLYGON((0 0,4 0,4 4,0 4,0 0),(1 1, 2 1, 2 2, 1 2,1 1))

Currently the best way to read and write WKT is the Shapely library. Shapely
provides a very Python-oriented, or pythonic interface to the GEOS library
described in Chapter 3, The Geospatial Technology Landscape.

You can install Shapely using either easy_install or pip. Shapely has a WKT
module which can load and export this data. Let's use Shapely to load the previous
polygon sample and then verify it has been loaded as a polygon object by calculating
its area:

>>> import shapely.wkt
>>> wktPoly = "POLYGON((0 0,4 0,4 4,0 4,0 0),(1 1, 2 1, 2 2, 1 2,1
1))"
>>> poly = shapely.wkt.loads(wktPoly)
>>> poly.area
15.0
We can convert any Shapely geometry back to a WKT by simply call its
"wkt" attribute. Notice Shapely stores the coordinates as doubles
with 16 decimal places before creating the WKT string:
>>> poly.wkt
'POLYGON ((0.0000000000000000 0.0000000000000000, 4.0000000000000000
0.000000000

Chapter 4

[151]

0000000, 4.0000000000000000 4.0000000000000000, 0.0000000000000000
4.00000000000
00000, 0.0000000000000000 0.0000000000000000), (1.0000000000000000
1.00000000000
00000, 2.0000000000000000 1.0000000000000000, 2.0000000000000000
2.0000000000000
000, 1.0000000000000000 2.0000000000000000, 1.0000000000000000
1.000000000000000
0))'

Shapely can also handle the WKT binary counterpart called Well-Known Binary
(WKB) used to store WKT strings as binary objects in databases. Shapely loads WKB
using its wkb module in the same way as the wkt module and can convert geometries
by calling that object's wkb attribute.

Shapely is the most pythonic way to work with WKT data but you can also use the
Python bindings to the OGR library which we installed earlier in this chapter.

For this example, we'll use shapefile with one simple polygon which can be
downloaded as a ZIP file, available at: https://geospatialpython.googlecode.
com/files/polygon.zip

In this example, we'll open the polygon.shp file from the shapefile data set, call
the required GetLayer() method, get the first (and only) feature, and then export it
to WKT:

>>> from osgeo import ogr
>>> shape = ogr.Open("polygon.shp")
>>> layer = shape.GetLayer()
>>> feature = layer.GetNextFeature()
>>> geom = feature.GetGeometryRef()
>>> wkt = geom.ExportToWkt()
>>> wkt
' POLYGON ((-99.904679362176353 51.698147686745074,-75.010398603076666
46.56036851832075,-75.010398603076666 46.56036851832075,-
75.010398603076666 46.56036851832075,-76.975736557742451
23.246272688996914,-76.975736557742451 23.246272688996914,-
76.975736557742451 23.246272688996914,-114.31715769639194
26.220870210283724,-114.31715769639194 26.220870210283724,-
99.904679362176353 51.698147686745074))'

Geospatial Python Toolbox

[152]

Note that with OGR, you would have to read access each feature and export it
individually as the ExporttoWkt() method is at the feature level. We can now turn
around and read a WKT string using the wkt variable containing the export. We'll
import it back into ogr and get the bounding box, also known as an envelope,
of the polygon:

>>> poly = ogr.CreateGeometryFromWkt(wkt)
>>> poly.GetEnvelope()
(-114.31715769639194, -75.01039860307667, 23.246272688996914,
51.698147686745074)

Shapely and OGR are basically used as far as reading and writing WKT strings.
Of course, just like XML which is also text, you could manipulate small amounts
of WKT as strings in a pinch.

Python JSON libraries
JavaScript Object Notation (JSON) is rapidly becoming the number one data
exchange format across a lot of fields and, no, it's no different. The lightweight
syntax and the similarity to existing data structures makes it a perfect match
for Python.

We'll use the following geoJSON sample document for this section from the
Wikipedia article on GeoJSON found at: http://en.wikipedia.org/wiki/GeoJSON

The document contains a single point:

{
 "type": "Feature",
 "id": "OpenLayers.Feature.Vector_314",
 "properties": {},
 "geometry": {
 "type": "Point",
 "coordinates": [
 97.03125,
 39.7265625
]
 },
 "crs": {
 "type": "name",
 "properties": {
 "name": "urn:ogc:def:crs:OGC:1.3:CRS84"
 }
 }
}

Chapter 4

[153]

This sample is just a simple point with new attributes which would be stored in the
properties data structure of the geometry. First we'll compact the sample document
into a single string to make it easier to handle:

>>> jsdata = """{ "type": "Feature", "id": "OpenLayers.Feature.
Vector_314", "pro
perties": {}, "geometry": { "type": "Point", "coordinates": [
97.03125, 39.72656
25] }, "crs": { "type": "name", "properties": { "name":
"urn:ogc:def:crs:OGC:1.
3:CRS84" } } }"""

json module
GeoJSON looks so much like a nested set of Python's dictionaries and lists. Just for
fun, let's just try and use Python's eval() function to parse it as Python code:

>>> point = eval(jsdata)
>>> point["geometry"]
{'type': 'Point', 'coordinates': [97.03125, 39.7265625]}

Wow! That just worked! We turned that random GeoJSON string into native Python
data in one easy step. Keep in mind, the JSON data format is based on JavaScript
syntax which happens to be similar to Python. Also, as you get deeper into GeoJSON
data and work with larger data, you'll find that JSON allows characters that Python
does not. Using Python's eval() function is considered very insecure as well. But as
far as keeping things simple, it doesn't get any simpler than that.

Thanks to Python's drive towards simplicity, the more advanced method doesn't
get much more complicated. Let's use Python's json module which is part of the
standard library to turn the same string into Python the right way:

>>> import json
>>> json.loads(jsdata)
{u'geometry': {u'type': u'Point', u'coordinates': [97.03125,
39.7265625]}, u'crs
': {u'type': u'name', u'properties': {u'name': u'urn:ogc:def:crs:OGC:
1.3:CRS84'}
}, u'type': u'Feature', u'id': u'OpenLayers.Feature.Vector_314',
u'properties':
{}}

Geospatial Python Toolbox

[154]

As a side note, in the previous example the CRS84 property is a synonym for the
common WGS84 coordinate system. The json module adds some nice features such
as safer parsing and conversion of strings to Unicode. We can export Python data
structures to JSON in almost the same way:

>>> pydata = json.loads(jsdata)
>>> json.dumps(pydata)
'{"geometry": {"type": "Point", "coordinates": [97.03125,
39.7265625]}, "crs": {
"type": "name", "properties": {"name": "urn:ogc:def:crs:OGC:1.3:C
RS84"}}, "type"
: "Feature", "id": "OpenLayers.Feature.Vector_314", "properties": {}}'

geojson module
We could happily go on reading and writing GeoJSON data using the json module
forever, but there's an even better way. The geojson module available on PyPI offers
some distinct advantages. For starters, it knows the requirements of the GeoJSON
specification which can save a lot of typing. Let's create a simple point using this
module and export it to GeoJSON:

>>> import geojson
>>> p = geojson.Point([-92, 37])
>>> geojs = geojson.dumps(p)
>>> geojs
'{"type": "Point", "coordinates": [-92, 37]}'

Notice the geojson module has an interface for different data types and saves us
from setting the type and coordinates attributes manually. Now imagine if you
had a geographic object with hundreds of features. You could programmatically
build this data structure instead of building a very large string. The geojson module
is also the reference implementation for the Python __geo_interface__ convention.
This interface allows cooperating programs to exchange data seamlessly and in a
pythonic way without the programmer explicitly exporting and importing GeoJSON
strings. So if we wanted to feed the point we created with the geojson module to
the Shapely module, we could do the following which reads the geojson module's
point object straight into Shapely, then we'll export it as WKT:

>>> from shapely.geometry import asShape
>>> point = asShape(p)
>>> point.wkt
'POINT (-92.0000000000000000 37.0000000000000000)'

More and more geospatial Python libraries are implementing both the geojson and
__geo_interface__ functionality.

Chapter 4

[155]

OGR
We touched on OGR as a way to handle WKT strings but its real power is as a
universal vector library. This book strives for pure Python solutions but no single
library even comes close to the variety of formats OGR can process.

Let's read a sample point shapefile using the OGR Python API. The sample shapefile
can be downloaded as a ZIP file here: https://geospatialpython.googlecode.
com/files/point.zip

This point shapefile has five points with single digit, positive coordinates. The
attributes list the order in which the points were created, making it useful for testing.
This simple example will read in the point shapefile, loop through each feature, and
then print the x and y value of each point plus the value of the first attribute field:

>>> from osgeo import ogr
>>> shp = ogr.Open("point.shp")
>>> layer = shp.GetLayer()
>>> feature = layer.GetNextFeature()
>>> for feature in layer:
... geometry = feature.GetGeometryRef()
... print geometry.GetX(), geometry.GetY(), feature.
GetField("FIRST_FLD")
...
1.0 1.0 First
3.0 1.0 Second
4.0 3.0 Third
2.0 2.0 Fourth
0.0 0.0 Appended

This example is quite simple but OGR can become quite verbose as your script
becomes more complex.

PyShp
PyShp is a simple, pure Python library that reads and writes shapefiles. It doesn't do
any geometry operations and only uses Python's standard library. It's contained in a
single file that's easy to move around, squeeze onto small embedded platforms, and
modify. It is also compatible with Python 3. It also implements __geo_interface__.
The PyShp module is available on PyPI.

Geospatial Python Toolbox

[156]

Let's repeat the previous OGR example with PyShp:

>>> import shapefile
>>> shp = shapefile.Reader("point")
>>> for feature in shp.shapeRecords():
... point = feature.shape.points[0]
... rec = feature.record[0]
... print point[0], point[1], rec
...
1.0 1.0 First
3.0 1.0 Second
4.0 3.0 Third
2.0 2.0 Fourth
0.0 0.0 Appended

dbfpy
Both OGR and PyShp read and write the dbf files because they are part of the
shapefile specification. However, both libraries have a very basic dbf support.
Occasionally you will need to do some heavier duty dbf work. The dbfpy module
is a pure Python module dedicated to working with dbf files. It is hosted on
sourceforge.net but has an entry on PyPI. However, the PyPI entry is not correctly
configured and you have to force easy_install to find the download by specifying
the download directory:

easy_install -f http://sourceforge.net/projects/dbfpy/files/
dbfpy/2.2.5/dbfpy

If you are using pip to install packages, use the following command:

pip install http://downloads.sourceforge.net/project/dbfpy/
dbfpy/2.2.5/dbfpy-2.2.5.tar.gz

The following shapefile has over 600 dbf records representing US
Census Bureau tracts which make it a good sample for trying out dbfpy:
https://geospatialpython.googlecode.com/files/GIS_CensusTract.zip

Let's open up the dbf file of this shapefile and look at the first record:

>>> from dbfpy import dbf
>>> db = dbf.Dbf("GIS_CensusTract_poly.dbf")
>>> db[0]
 GEODB_OID: 4029 (<type 'int'>)
 OBJECTID: 4029 (<type 'int'>)
 PERMANE0: 61be9239-8f3b-4876-8c4c-0908078bc597 (<type 'str'>)
 SOURCE_1: NA (<type 'str'>)

Chapter 4

[157]

 SOURCE_2: 20006 (<type 'str'>)
 SOURCE_3: Census Tracts (<type 'str'>)
 SOURCE_4: Census Bureau (<type 'str'>)
 DATA_SE5: 5 (<type 'str'>)
 DISTRIB6: E4 (<type 'str'>)
 LOADDATE: 2007-03-13 (<type 'datetime.date'>)
 QUALITY: 2 (<type 'str'>)
 SCALE: 1 (<type 'str'>)
 FCODE: 1734 (<type 'str'>)
 STCO_FI7: 22071 (<type 'str'>)
STATE_NAME: 22 (<type 'str'>)
 COUNTY_8: 71 (<type 'str'>)
 CENSUST9: 22071001734 (<type 'str'>)
 POPULAT10: 1760 (<type 'int'>)
 AREASQKM: 264.52661934 (<type 'float'>)
 GNIS_ID: NA (<type 'str'>)
 POPULAT11: 1665 (<type 'int'>)
 DB2GSE_12: 264526619.341 (<type 'float'>)
 DB2GSE_13: 87406.406192 (<type 'float'>)

The module very quickly and easily gives us both the column names and data
values. Now let's increment the population field contained in POPULAT10 by 1:

>>> rec = db[0]
>>> field = rec["POPULAT10"]
>>> rec["POPULAT10"] = field
>>> rec["POPULAT10"] = field+1
>>> rec.store()
>>> del rec
>>> db[0]["POPULAT10"]
1761

Keep in mind both OGR and PyShp can do this same procedure but dbfpy makes it a
little easier if you are making a lot of changes to the dbf files only.

Shapely
Shapely was mentioned in the WKT section for import and export ability. But its true
purpose is a generic geometry library. Shapely is a high-level, pythonic interface
to the GEOS library for geometric operations. In fact, Shapely intentionally avoids
reading or writing files. It relies completely on data import and export and maintains
focus on geometry manipulation.

Geospatial Python Toolbox

[158]

Let's do a quick Shapely demonstration in which we'll define a single WKT polygon
and then import it into Shapely. Then we'll measure the area. Our computational
geometry will consist of buffering that polygon by a measure of 5 which will return
a new, bigger polygon for which we'll measure the area:

>>> from shapely import wkt, geometry
>>> wktPoly = "POLYGON((0 0,4 0,4 4,0 4,0 0))"
>>> poly = wkt.loads(wktPoly)
>>> poly.area
16.0
>>> buf = poly.buffer(5.0)
>>> buf.area
174.41371226364848

We can then do a difference on the area of the buffer and the original polygon area:

>>> print buf.difference(poly).area
158.413712264

If you can't have pure Python, a pythonic API as clean as Shapely that packs such a
punch is certainly the next best thing.

GDAL
GDAL is the dominant geospatial library. Its raster capability is so significant
that it is a part of virtually every geospatial toolkit in any language and Python
is no exception. To see the basics of how GDAL works in Python, download
the following sample raster satellite image as a ZIP file and unzip it:
https://geospatialpython.googlecode.com/files/SatImage.zip

Let's open this image and see how many bands it has and how many pixels
along each axis:

>>> from osgeo import gdal
>>> raster = gdal.Open("SatImage.tif")
>>> raster.RasterCount
3
>>> raster.RasterXSize
2592
>>> raster.RasterYSize
2693

Chapter 4

[159]

So we see this image has three bands, 2,592 columns of pixels, and 2,693 rows of
pixels, as shown in OpenEV:

Geospatial Python Toolbox

[160]

GDAL is an extremely fast geospatial raster reader and writer within Python. It can
also reproject images quite well plus a few other tricks. However, the true value of
GDAL comes from its interaction with the next Python module that we'll examine.

NumPy
NumPy is an extremely fast, multidimensional Python array processor designed
specifically for Python and scientific computing but written in C. It is available
via PyPI and installs easily. In addition to its amazing speed, the magic of NumPy
includes its interaction with other libraries. NumPy can exchange data with GDAL,
Shapely, the Python Imaging Library (PIL), and many other scientific computing
Python libraries in other fields.

As a quick example of NumPy's ability, we'll combine it with GDAL to read in our
sample satellite image and create a histogram of it. The interface between GDAL and
NumPy is a GDAL module called gdalnumeric which has NumPy as a dependency.
Numeric is the legacy name of the NumPy module. The gdalnumeric module
imports NumPy.

In this example, we'll use gdalnumeric, which imports NumPy, to read the image in
as an array, grab the first band, and save it back out as a JPEG image:

>>> from osgeo import gdalnumeric
>>> srcArray = gdalnumeric.LoadFile("SatImage.tif")
>>> band1 = srcArray[0]
>>> gdalnumeric.SaveArray(band1, "band1.jpg", format="JPEG")

Chapter 4

[161]

This operation gives us the following grayscale image in OpenEV:

Geospatial Python Toolbox

[162]

PIL
The PIL was originally developed for remote sensing but has evolved as a general
image editing library for Python. Like NumPy, it is written in C for speed, but is
designed specifically for Python. In addition to image creation and processing,
it also has a useful raster drawing module. PIL is also available via PyPI.

In this example, we'll combine PyShp and PIL to rasterize the hancock shapefile from
previous examples and save it as an image. We'll use a "world to pixel" coordinate
transformation similar to our SimpleGIS from Chapter 1, Learning Geospatial Analysis
with Python. We'll create an image to use as a canvas in PIL and then use the PIL
ImageDraw module to render the polygon. Finally we'll save it as a PNG image:

>>> import shapefile
>>> import Image, ImageDraw
>>> r = shapefile.Reader("hancock.shp")
>>> xdist = r.bbox[2] - r.bbox[0]
>>> ydist = r.bbox[3] - r.bbox[1]
>>> iwidth = 400
>>> iheight = 600
>>> xratio = iwidth/xdist
>>> yratio = iheight/ydist
>>> pixels = []
>>> for x,y in r.shapes()[0].points:
... px = int(iwidth - ((r.bbox[2] - x) * xratio))
... py = int((r.bbox[3] - y) * yratio)
... pixels.append((px,py))
...
>>> img = Image.new("RGB", (iwidth, iheight), "white")
>>> draw = ImageDraw.Draw(img)
>>> draw.polygon(pixels, outline="rgb(203, 196, 190)", fill="rgb(198,
204, 189)")
>>> img.save("hancock.png")

Chapter 4

[163]

This example creates the following image:

PNGCanvas
Sometimes you may find PIL is overkilled for your purposes, or you are not
allowed to install PIL because you do not have administrative rights to the
machine you're using. In those cases, you can usually get away with the lightweight,
pure Python PNGCanvas module. This module must be manually installed to
your current working directory or site-packages directory from this page:
http://the.taoofmac.com/space/projects/PNGCanvas

Note the source code has a .txt extension which you must delete when
you save the file.

Geospatial Python Toolbox

[164]

Using this module we can repeat the raster shapefile example we performed using
PIL but in pure Python:

>>> import shapefile
>>> import pngcanvas
>>> r = shapefile.Reader("hancock.shp")
>>> xdist = r.bbox[2] - r.bbox[0]
>>> ydist = r.bbox[3] - r.bbox[1]
>>> iwidth = 400
>>> iheight = 600
>>> xratio = iwidth/xdist
>>> yratio = iheight/ydist
>>> pixels = []
>>> for x,y in r.shapes()[0].points:
... px = int(iwidth - ((r.bbox[2] - x) * xratio))
... py = int((r.bbox[3] - y) * yratio)
... pixels.append([px,py])
...
>>> c = pngcanvas.PNGCanvas(iwidth,iheight)
>>> c.polyline(pixels)
>>> f = file("hancock_pngcvs.png", "wb")
>>> f.write(c.dump())
>>> f.close()

This example gives us a simple outline as PNGCanvas does not have a built-in
fill method:

Chapter 4

[165]

PyFPDF
The pure Python PyFPDF library is a lightweight way to create PDFs including
maps. Because the PDF format is a widely-used standard, PDFs are commonly
used to distribute maps. You can install it via PyPI as fpdf. The official name of the
software is PyFPDF because it is a part of the PHP language module called fpdf.
This module uses a concept called a cell to layout items at specific locations on a
page. As a quick example, we'll import our hancock.png image created from the
PIL example into a PDF called map.pdf to create a simple PDF map. The map will
have header text at the top that says Hancock County Boundary followed by the
map image:

import fpdf

>>> # PDF constructor:
>>> # Portrait, millimeter units, A4 page size
>>> pdf=fpdf.FPDF("P", "mm", "A4")
>>> # create a new page
>>> pdf.add_page()
>>> # Set font: arial, bold, size 20
>>> pdf.set_font('Arial','B',20)
>>> # Layout cell: 160 x 25mm, title, no border, centered
>>> pdf.cell(160,25,'Hancock County Boundary', \
>>> border=0, align="C")
>>> pdf.image("hancock.png",25,50,150,160)
>>> # Save the file: filename, F = to file System
>>> pdf.output('map.pdf','F')

If you open the PDF file, map.pdf in Adobe Acrobat Reader or another PDF reader
such as SumatraPDF, you'll see the image is now centered on an A4 page. Geospatial
products are often included as part of larger reports and the PyFPDF module
simplifies automatically generating reports as PDFs.

Spectral Python
Spectral Python (SPy) is a very advanced Python package for remote sensing. It goes
far beyond what you would typically do with GDAL and NumPy and focuses on
hyperspectral processing for images which may have hundreds of bands. The basic
package installs easily via PyPI but SPy can provide a fully windowed processing
environment if you install some additional dependencies. The remote sensing
we'll do in the rest of this book won't require SPy but it is worth mentioning here
because it is a well-maintained, powerful package that is competitive with many
commercial software products in this domain. You can find out more about SPy at
the homepage here:
http://spectralpython.sourceforge.net/index.html

Geospatial Python Toolbox

[166]

Summary
In this chapter, we surveyed the Python-specific tools for geospatial analysis. Many
of these tools included bindings to the libraries discussed in Chapter 3, The Geospatial
Technology Landscape for best-of-breed solutions for specific operations like GDAL's
raster access functions. We also included pure Python libraries as much as possible
and will continue to include pure Python algorithms as we work through the
upcoming chapters. In the next chapter, we will begin applying these tools to
GIS analysis.

Python and Geographic
Information Systems

This chapter will focus on applying Python to functions typically performed by a
Geographic Information System (GIS) such as QGIS or ArcGIS. We will continue to
use as few external dependencies as possible outside Python itself, so you have tools
which are as reusable as possible in different environments.

As with other chapters in this book, the items presented here are core functions
which serve as building blocks which can be recombined to solve challenges which
you will encounter beyond this book. Topics include:

•	 Measuring distance
•	 Converting coordinates
•	 Reprojecting vector data
•	 Editing shapefiles
•	 Selecting data from within larger data sets
•	 Creating thematic maps
•	 Conversion of non-GIS data types

This chapter contains many code samples. In addition to the text, code comments are
included as guides within the samples.

Python and Geographic Information Systems

[168]

Measuring distance
The essence of geospatial analysis is discovering the relationships of objects on the
Earth. Items which are closer together tend to have a stronger relationship than
those which are farther apart. Therefore measuring distance is a critical function
of geospatial analysis.

As we have learned, every map is a model of the Earth and they are all wrong to
some degree. For this reason, measuring accurate distance between two points on
the Earth while sitting in front of a computer is impossible. Even professional land
surveyors who go out in the field with both traditional sighting equipment and
very precise GPS equipment fail to account for every anomaly in the Earth's surface
between point A and point B. So in order to measure distance, we must look at what
we are measuring, how much we are measuring, and how much accuracy we need.

There are three models of the Earth we can use to calculate distance:

•	 Flat plane
•	 Spherical
•	 Ellipsoid

In the flat plane model, standard Euclidean geometry is used. The Earth is
considered a flat plane with no curvature as shown in the following figure:

Chapter 5

[169]

This model makes math quite simple because you work with straight lines. The most
common format for geospatial coordinates is decimal degrees. However, decimal
degree coordinates are reference measurements on a sphere taken as angles between
the longitude and the prime meridian, and the latitude and equator. Furthermore,
the lines of longitude converge towards zero at the poles. The circumference of each
line of latitude becomes smaller towards the poles as well. These facts mean decimal
degrees are not a valid coordinate system for Euclidean geometry, which uses
infinite planes.

Map projections attempt to simplify the issues of dealing with a three-dimensional
ellipsoid in a two-dimensional plane; either paper or a computer screen. As
discussed in Chapter 1, Learning Geospatial Analysis with Python, map projections
flatten a round model of the Earth to a plane and introduce distortion in exchange
for the convenience of a map. Once this projection is in place and decimal degrees
are traded for a Cartesian coordinate system with x and y coordinates, we can use
the simplest forms of Euclidean geometry—namely, the Pythagorean theorem.

At a small enough scale, a sphere or ellipsoid like the Earth, appears more like a
plane than a sphere. In fact, for centuries, everyone thought the Earth was flat!
If the difference in degrees of longitude is small enough, you can often get away
with using Euclidean geometry and then converting the measurements to meters,
kilometers, or miles. This method is generally not recommended but the decision is
ultimately up to you and your requirements for accuracy as an analyst.

The spherical model approach tries to better approximate reality by avoiding
the problems resulting from smashing the Earth onto a flat surface. As the name
suggests, this model uses a perfect sphere for representing the Earth (similar to a
physical globe) which allows us to work with degrees directly. This model ignores
the fact that the Earth is really more of an egg-shaped ellipsoid with varying degrees
of thickness in its crust. But by working with distance on the surface of a sphere,
we can begin to measure longer distances with more accuracy. The following
figure illustrates this concept:

Python and Geographic Information Systems

[170]

Using the ellipsoid model of the Earth, analysts strive for the best model of the
Earth's surface. There are several ellipsoid models which are called datums. A datum
is a set of values which define an estimated shape for the Earth, also known as a
geodetic system. Like any other georeferencing system, a datum can be optimized for
a localized area. The most commonly used datum is called WGS84 which is designed
for global use. You should be aware that the WGS84 is occasionally updated as
assessment techniques and technology improves. The most recent revision occurred
in 2004. In North America, the NAD83 datum is used to optimize referencing over
the continent. In the Eastern Hemisphere, the European Terrestrial Reference
System 1989 (ETRS89) is used more frequently. ETRS89 is fixed to the stable part
of the Eurasian Plate. Maps of Europe based on ETRS89 are immune to continental
drift which changes up to 2.5 cm per year as the Earth's crust shifts.

An ellipsoid does not have a constant radius from the center. This fact means
the formulas used in the spherical model of the Earth begin to have issues in the
ellipsoid model. Though not a perfect approximation, it is much closer to reality than
the spherical model. The following figure shows a generic ellipsoid model denoted
by a black line contrasted against a representation of the Earth's uneven crust using
the red line to represent the geoid. Although we will not use it for these examples,
another model is the geoid model. The geoid is the most precise and accurate model
of the Earth which is based on the Earth's surface with no influences except gravity
and rotation. The following graphic is a representation of a geoid, ellipsoid, and
spherical model to demonstrate the differences:

Geoid

Spheroid

Ellipsoid

N

S

Chapter 5

[171]

Pythagorean theorem
Now that we've discussed these different models of the Earth and the issues in
measuring them, let's look at some solutions using Python. We'll start measuring
with the simplest method using the Pythagorean theorem, also known as Euclidean
distance. If you remember your geometry lessons from school, the Pythagorean
theorem asserts the following:

a2+b2=c2

In this assertion, the variables a, b, and c are all sides of a triangle. You can solve
for any one side if you know the other two. In this example, we'll start with two
projected points in the Mississippi Transverse Mercator (MSTM) projection. The
units of this projection are in meters. The x axis locations are measured in from
the central meridian defined by the westernmost location in the state. The y axis
is defined from the NAD83 horizontal datum. The first point, defined as (x1,y1),
represents Jackson, the state capital of Mississippi. The second point, defined as
(x2,y2) represents the city of Biloxi, which is a coastal town, as shown in the
following figure:

In the following example, the double asterisk (**) in Python is the syntax
for exponents which we'll use to square the distances.

Python and Geographic Information Systems

[172]

We'll import the Python math module for its square root function called sqrt().
Then we'll calculate the x axis and y axis distances. Finally we'll use these variables
to execute the Euclidean distance formula to get the distance across the bounding
box in meters:

>>> import math
>>> x1 = 456456.23123582301
>>> y1 = 1279721.064356426
>>> x2 = 576628.34295886324
>>> y2 = 1071740.3328161312
>>> x_dist = x1 - x2
>>> y_dist = y1 - y2
>>> dist_sq = x_dist**2 + y_dist**2
>>> distance = math.sqrt(dist_sq)
>>> distance
240202.6667795573

So the distance is approximately 2,40,202 meters which is around 240.2 kilometers or
150 miles. This calculation is reasonably accurate, because this projection is optimized
for measuring distance and area in Mississippi using Cartesian coordinates.

Now, just for fun, let's see what happens if we use the same cities but this time
insert decimal degrees without worrying about the fact that they are angles in a
sphere. Notice in the last step, we'll multiply the result 6,371 times, which is the
circumference of the Earth in kilometers, to compare with our last measurement:

>>> import math
>>> x1 = -90.212452861859035
>>> y1 = 32.316272202663704
>>> x2 = -88.952170968942525
>>> y2 = 30.438559624660321
>>> x_dist = x1 - x2
>>> y_dist = y1 - y2
>>> dist_sq = x_dist**2 + y_dist**2
>>> dist_deg = math.sqrt(dist_sq)
>>> dist_deg * 6371
14407.640017584708

This time the distance was around 144 kilometers, which is horribly wrong!
The degrees are nonsensical in this context. In order to measure using degrees,
we must first convert the angles to radians, which accounts for the curved
surface distance between the coordinates. You can read more about radians
at http://en.wikipedia.org/wiki/Radian.

Chapter 5

[173]

We'll perform this conversion using the Python math.radians() method when we
calculate the x and y distances:

>>> import math
>>> x1 = -90.212452861859035	
>>> y1 = 32.316272202663704
>>> x2 = -88.952170968942525
>>> y2 = 30.438559624660321
>>> x_dist = math.radians(x1 - x2)
>>> y_dist = math.radians(y1 - y2)
>>> dist_sq = x_dist**2 + y_dist**2
>>> dist_rad = math.sqrt(dist_sq)
>>> dist_rad * 6371
251.4607557489469

Ok, this time we came up with around 251 kilometers which is 11 kilometers
more than our first measurement. So, as you can see, your choice of measurement
algorithm and Earth model can have significant consequences. Using the same
equation, we come up with radically different answers, depending on our choice
of coordinate system and Earth model.

You can read more about Euclidean distance at:
http://mathworld.wolfram.com/Distance.html

Haversine formula
Part of the problem with just "plugging in" unprojected decimal degrees into the
Pythagorean theorem is the concept of Great Circle distance. A Great Circle is the
shortest distance between two points on a sphere. Another important feature which
defines a Great Circle is the circle, if followed all the way around the sphere, will
bisect the sphere into two equal halves, as shown in the following Wikipedia figure
(Jhbdel, Wikipedia):

Python and Geographic Information Systems

[174]

So what is the right way to measure in decimal degrees? The most popular method
is the Haversine Formula which uses trigonometry to calculate the Great Circle
distance using coordinates defined in decimal degrees as input. Once again, we'll
convert the axis distances from degrees to radians before we apply the formula,
just like the previous example. But this time we'll also convert the latitude (y axis)
coordinates to radians separately:

>>> import math
>>> x1 = -90.212452861859035
>>> y1 = 32.316272202663704
>>> x2 = -88.952170968942525
>>> y2 = 30.438559624660321
>>> x_dist = math.radians(x1 - x2)
>>> y_dist = math.radians(y1 - y2)
>>> y1_rad = math.radians(y1)
>>> y2_rad = math.radians(y2)
>>> a = math.sin(y_dist/2)**2 + math.sin(x_dist/2)**2 \
... * math.cos(y1_rad) * math.cos(y2_rad)
>>> c = 2 * math.asin(math.sqrt(a))
>>> distance = c * 6371 # kilometers
>>> distance
240.6359762909508

Wow! 240.6 kilometers using the Haversine formula compared to 240.2 kilometers
using the optimized and more accurate projection. This difference is less than half
a kilometer which is not bad for a distance calculation of two cities 150 miles apart.
The Haversine formula is the most commonly used distance measuring formula
because it is relatively lightweight from a coding perspective and reasonably
accurate in most cases. It is considered to be accurate to within about a meter.

To summarize what we've learned so far, most of the point coordinates you
encounter as an analyst are in unprojected decimal degrees. So your options
for measurement are:

•	 Reproject to a distance-accurate Cartesian projection and measure
•	 Just use the Haversine formula and see how far it takes you for your analysis
•	 Or use the even more precise Vincenty formula

That's right! there's another formula which seeks to provide an even better
measurement than Haversine.

Chapter 5

[175]

Vincenty formula
So we've examined distance measurement using the Pythagorean theorem (flat
Earth model) and the Haversine formula (spherical Earth model). The Vincenty
formula accounts for the ellipsoid model of the Earth. And if you are using a
localized ellipsoid, it can be accurate to within far less than a meter. In the following
implementation of this formula, you can change the semi-major axis value and
flattening ratio to fit the definition of any ellipsoid. Let's see what the distance is
when we measure using the Vincenty formula on the NAD83 ellipsoid:

import math
distance = None
x1 = -90.212452861859035
y1 = 32.316272202663704
x2 = -88.952170968942525
y2 = 30.438559624660321
Ellipsoid Parameters
Example is NAD83
a = 6378137 #semi-major axis
f = 1/298.257222101 # inverse flattening
b = abs((f*a)-a) # semi-minor axis
L = math.radians(x2-x1)
U1 = math.atan((1-f) * math.tan(math.radians(y1)))
U2 = math.atan((1-f) * math.tan(math.radians(y2)))
sinU1 = math.sin(U1)
cosU1 = math.cos(U1)
sinU2 = math.sin(U2)
cosU2 = math.cos(U2)
for i in range(100):
 sinL = math.sin(L)
 cosL = math.cos(L)
 sinSigma = math.sqrt((cosU2*sinL)**2 + \
 (cosU1*sinU2-sinU1*cosU2*cosL)**2)
 if (sinSigma==0):
 distance = 0 #coincident points
 break
 cosSigma = sinU1*sinU2 + cosU1*cosU2*cosL
 sigma = math.atan2(sinSigma, cosSigma)
 sinAlpha = cosU1 * cosU2 * sinL / sinSigma
 cosSqAlpha = 1 - sinAlpha**2
 cos2SigmaM = cosSigma - 2*sinU1*sinU2/cosSqAlpha
 if math.isnan(cos2SigmaM): cos2SigmaM = 0 # equatorial line
 C = f/16*cosSqAlpha*(4+f*(4-3*cosSqAlpha))
 LP = L

Python and Geographic Information Systems

[176]

 lam = L + (1-C) * f * sinAlpha * \
 (sigma + C*sinSigma*(cos2SigmaM+C * \
 cosSigma*(-1+2*cos2SigmaM*cos2SigmaM)))
 if not abs(lam-LP) > 1e-12:
 break
uSq = cosSqAlpha * (a**2 - b**2) / b**2
A = 1 + uSq/16384*(4096+uSq*(-768+uSq*(320-175*uSq)))
B = uSq/1024 * (256+uSq*(-128+uSq*(74-47*uSq)))
deltaSigma = B*sinSigma*(cos2SigmaM+B/4*(cosSigma * \
(-1+2*cos2SigmaM*cos2SigmaM) - \
B/6*cos2SigmaM*(-3+4*sinSigma*sinSigma) * \
(-3+4*cos2SigmaM*cos2SigmaM)))
distance = b*A*(sigma-deltaSigma)
distance
240091.456274

Using the Vincenty formula, our measurement came to 240.1 kilometers, only 100
meters off from our projected measurement using Euclidean distance. Impressive!
While many times more mathematically complex than the Haversine formula, you
can see that it is also much more accurate.

The pure Python geopy module includes an implementation of the
Vincenty formula and has the ability to geocode locations as well,
by turning place names into latitude and longitude coordinates:
https://code.google.com/p/geopy/wiki/GettingStarted

The points used in these examples are reasonably close to the equator. As you move
towards the poles or work with larger distances or extremely small distances, the
choices you make become increasingly more important. If you're just trying to make
a radius around a city to select locations for a marketing campaign promoting a
concert, then an error of a few kilometers is probably ok. However, if you're trying
to estimate fuel required for an airplane to make a flight between two airports,
then you want to be spot on!

If you'd like to learn more about issues with measuring distance and direction,
and how to work around them with programming, visit the following site:

http://www.movable-type.co.uk/scripts/latlong.html

On this site, Chris Veness goes into great detail on this topic and provides online
calculators, as well as examples written in JavaScript, which are easily ported to
Python. The Vincenty formula implementation that we just saw is ported from
the JavaScript on this site.

Chapter 5

[177]

Coordinate conversion
When you start working with multiple data sets you'll inevitably end up with data
in different coordinate systems and projections. You can convert back and forth
between UTM and latitude/longitude using a pure Python module called utm.
You can install it using easy_install or pip from PyPI:

https://pypi.python.org/pypi/utm

The utm module is straightforward to use. To convert from UTM to latitude
and longitude:

>>> import utm
>>> y = 479747.0453210057
>>> x = 5377685.825323031
>>> zone = 32
>>> band = 'U'
>>> utm.to_latlon(y,x,zone,band)
(48.55199390882121, 8.725555729071763)

The UTM zones are numbered horizontally. However, vertically, the bands of
latitude are ordered by English alphabets with a few exceptions. The letters A, B, Y,
and Z cover the poles. The letters I and O are omitted because they look too much
like 1 and 0. Letters N through X are in the northern hemisphere while C through M
are in the southern hemisphere. The following figure from the website, Atlas Florae
Europaeae, illustrates the UTM zones over Europe:

Python and Geographic Information Systems

[178]

Converting from latitude and longitude is even easier. We just pass the latitude
and longitude to the from_latlon() method which returns a tuple with the same
parameters accepted by the to_latlon() method:

>>> import utm
>>> utm.from_latlon(48.55199390882121, 8.725555729071763)
(479747.04524576373, 5377691.373080335, 32, 'U')

Algorithms used in this Python implementation are described in detail available at:

http://www.uwgb.edu/dutchs/UsefulData/UTMFormulas.HTM

Reprojection
While reprojection is less common these days, because of more advanced methods
of data distribution, sometimes you need to reproject a shapefile. The pure Python
utm module works for reference system conversion, but for a full reprojection we
need some help from the OGR Python API.

As an example we'll use a point shapefile containing museum and gallery locations
in the Lambert conformal projection. We'll reproject it to WGS84 geographic
(or unproject it rather). You can download this zipped shapefile at:

https://geospatialpython.googlecode.com/files/NYC_MUSEUMS_LAMBERT.zip

The following minimalist script reprojects the shapefile. The geometry is transformed
and then written to the new file, but the dbf file is simply copied to the new name as
we aren't changing it. The standard Python shutil module, short for shell utilities,
is used to copy dbf. The source and target shapefile names are variables at the
beginning of the script. The target projection is also near the top which is set using
an EPSG code. The script assumes there is a .prj projection file which defines the
source projection. If not, you could manually define it using the same syntax as the
target projection. Each section is marked with comments:

import ogr
import osr
import os
import shutil

Source and target file names
srcName = "NYC_MUSEUMS_LAMBERT.shp"
tgtName = "NYC_MUSEUMS_GEO.shp"

Target spatial reference
tgt_spatRef = osr.SpatialReference()

Chapter 5

[179]

tgt_spatRef.ImportFromEPSG(4326)

Source shapefile
driver = ogr.GetDriverByName("ESRI Shapefile")
src = driver.Open(srcName, 0)
srcLyr = src.GetLayer()

Source spatial reference
src_spatRef = srcLyr.GetSpatialRef()

Target shapefile -
delete if it's already
there.
if os.path.exists(tgtName):
 driver.DeleteDataSource(tgtName)
tgt = driver.CreateDataSource(tgtName)
lyrName = os.path.splitext(tgtName)[0]
tgtLyr = tgt.CreateLayer(lyrName, geom_type=ogr.wkbPoint)

Layer definition
featDef = srcLyr.GetLayerDefn()

Spatial Transform
trans = osr.CoordinateTransformation(src_spatRef, tgt_spatRef)

Reproject and copy features
srcFeat = srcLyr.GetNextFeature()
while srcFeat:
 geom = srcFeat.GetGeometryRef()
 geom.Transform(trans)
 feature = ogr.Feature(featDef)
 feature.SetGeometry(geom)
 tgtLyr.CreateFeature(feature)
 feature.Destroy()
 srcFeat.Destroy()
 srcFeat = srcLyr.GetNextFeature()
src.Destroy()
tgt.Destroy()

Create the prj file
tgt_spatRef.MorphToESRI()
prj = open(lyrName + ".prj", "w")
prj.write(tgt_spatRef.ExportToWkt())
prj.close()

Python and Geographic Information Systems

[180]

Just copy dbf contents over rather
than rebuild the dbf using the
ogr API since we're not changing
anything.
srcDbf = os.path.splitext(srcName)[0] + ".dbf"
tgtDbf = lyrName + ".dbf"
shutil.copyfile(srcDbf, tgtDbf)

The following figure shows the reprojected points in QGIS with satellite imagery in
the background:

As you can see, there is a lot of boilerplate code required for OGR because
of its legacy as a C library and the API abstractions needed to support the
massive number of formats it addresses. There is another python-oriented
library called Fiona which seeks to make the OGR API more Pythonic.
You can learn more about it from its author Sean Gillies, which is
available at:
http://toblerity.github.io/fiona/

Also, if you are working with a set of points, you can reproject them
programmatically instead of reprojecting a shapefile using PyProj:
http://pyproj.googlecode.com/svn/trunk/docs/index.html

Chapter 5

[181]

Editing shapefiles
Shapefiles are a fundamental data format in GIS both for exchanging data as well
as performing GIS analysis. In this section, we'll learn how to work with these files
extensively. In Chapter 2, Geospatial Data, we discussed shapefiles as a format which can
have many different file types associated with it. For editing shapefiles, and most other
operations, we are only concerned with two types: the .shp file and the .dbf file.

The .shp file contains the geometry while the .dbf file contains the attributes of the
corresponding geometry. For each geometry record in a shapefile, there is one dbf
record. The records aren't numbered or identified in any way. This means when
adding and deleting information from a shapefile, you must be careful to remove
or add a record to each file type to match.

As discussed in Chapter 4, Geospatial Python Toolbox, there are two libraries to edit
shapefiles in Python. One is the the Python bindings to the OGR library. The other
is the PyShp library which is written in pure Python. We'll use PyShp in sticking
with the "pure Python when possible" theme of this book. To install PyShp, use
easy_install or pip. You can also download the latest source available at:
https://pyshp.googlecode.com/svn/trunk/shapefile.py

To begin editing shapefiles, we'll start with a point shapefile containing
cities for the state of Mississippi, which you can download as a ZIP file.
Download the following file to your working directory and unzip it:
https://geospatialpython.googlecode.com/files/MSCities_Geo_Pts.zip

The points we are working with can be seen in the following figure:

Python and Geographic Information Systems

[182]

Accessing the shapefile
Let's use PyShp to open this shapefile:

>>> import shapefile
>>> r = shapefile.Reader("MSCities_Geo_Pts")
>>> r
<shapefile.Reader instance at 0x00BCB760>

We created a shapefile Reader object instance and set it to the variable r. Notice that
when we passed the file name to the Reader class, we didn't use any file extensions.
Remember that we are dealing with at least two different files ending in .shp and
.dbf. So the base file name without the extension that is common to these two files
is all we really need.

You can, however, use a file extension. PyShp will just ignore it and use the base
filename. So why would you add an extension? Most operating systems allow an
arbitrary number of periods in a filename. For example, you might have a shapefile
with the following base name: myShapefile.version.1.2.

In this case, PyShp will try to interpret the characters after the last period as a file
extension which would be .2. This issue will prevent you from opening the shapefile.
So, if your shapefile has periods in the base name, you would need to add a file
extension such as .shp or .dbf to the filename.

Once you have opened a shapefile and created a Reader object, you can get some
information about the geographic data. In the following sample, we'll get the
bounding box, shape type, and the number of records in the shapefile from our
Reader object. The bounding box contains the lower-left and upper-right points
in the shapefile representing its maximum extent:

>>> r.bbox
[-91.38804855553174, 30.29314882296931, -88.18631833931401,
34.96091138678437]
>>> r.shapeType
1
>>> r.numRecords
298

The bounding box, stored in the bbox property, is returned as a list containing the
minimum x value, minimum y value, maximum x value, and maximum y value. The
shape type, available as the shapeType property, is a numeric code defined by the
official shapefile specification. In this case, 1 represents a point shapefile, 3 represents
lines, and 5 represents polygons. And finally, the property numRecords tells us there
are 298 records in this shapefile. Because it is a simple point shapefile, we then know
there are 298 points, each with its own dbf record.

Chapter 5

[183]

Reading shapefile attributes
The dbf file is a simple database format which is structured in a similar way
to a spreadsheet with rows and columns, each column as a label defining what
information it contains. We can view that information by checking the fields
property of the Reader object:

>>> r.fields
[('DeletionFlag', 'C', 1, 0), ['STATEFP10', 'C', 2, 0], ['PLACEFP10',
'C', 5, 0], ['PLACENS10', 'C', 8, 0], ['GEOID10', 'C', 7, 0],
['NAME10', 'C', 100, 0], ['NAMELSAD10', 'C', 100, 0], ['LSAD10',
'C', 2, 0], ['CLASSFP10', 'C', 2, 0], ['PCICBSA10', 'C', 1, 0],
['PCINECTA10', 'C', 1, 0], ['MTFCC10', 'C', 5, 0], ['FUNCSTAT10',
'C', 1, 0], ['ALAND10', 'N', 14, 0], ['AWATER10', 'N', 14,0],
['INTPTLAT10', 'C', 11, 0], ['INTPTLON10', 'C', 12, 0]]

The fields property returns quite a bit of information. The fields are a list with
information about each field called field descriptors. For each field, the following
information is presented:

1.	 Field name: This is the name of the field as text which can be no longer
than 10 characters for shapefiles.

2.	 Field type: This is the type of the field which can be text, number, date,
floating point number, or Boolean represented as C, N, D, F, and L,
respectively. The shapefile specification says it uses the dbf format
specified as dBASE III but most GIS software seems to support dBASE IV.
In Version IV (4), the number and floating point types are equivalent.

3.	 Field length: This is the length of the data in characters or digits.
4.	 Decimal length: This is the number of decimal places in a number or

floating point field.

The first field descriptor outlines a hidden field which is part of the dbf file format
specification. DeletionFlag allows software to mark records for deletion without
actually deleting them. That way the information is still in the file but can be
removed from the displayed record list or search queries.

Python and Geographic Information Systems

[184]

If we just want the field name and not the other metadata, we can use Python list
comprehensions to return just the first item in the descriptor and also ignore the
DeletionFlag field. This example creates a list comprehension that returns the first
item in each descriptor (Field name) starting with the second descriptor to ignore the
deletion flag:

>>> [item[0] for item in r.fields[1:]]
['STATEFP10', 'PLACEFP10', 'PLACENS10', 'GEOID10', 'NAME10',
'NAMELSAD10', 'LSAD10', 'CLASSFP10', 'PCICBSA10', 'PCINECTA10',
'MTFCC10', 'FUNCSTAT10', 'ALAND10',
 'AWATER10', 'INTPTLAT10', 'INTPTLON10']

Now we have just the field names which are much easier to read. For clarity,
the field names all contain the number 10 because this is the Version 2010 of this
shapefile which is created as a part of each census. These kinds of abbreviations
are common in shapefile dbf files due to the 10 character limit on the field names.

Next, let's examine some of the records which these fields describe. We can view an
individual record using the r.record() method. We know from the first example
that there are 298 records. So let's examine the third record. The records are accessed
using list indexes. In Python, indexes start at 0, so we have to subtract one from the
desired record number to get the index. For record 3, the index would be 2. You just
pass the index to the record() method:

>>> r.record(2)
['28', '16620', '02406337', '2816620', 'Crosby', 'Crosby town',
'43', 'C1', 'N','N', 'G4110', 'A', 5489412, 21336, '+31.2742552',
'-091.0614840']

As you can see, the field names are stored separately from the actual records. If you
want to select a record value, you need its index. The index of the city name in each
record is 4:

>>> r.record(2)[4]
'Crosby'

But counting indexes is tedious. It's much easier to reference a value by the
field name. There are several ways we can associate a field name with the value
of a particular record. The first is to use the index() method in Python lists to
programmatically get the index using the field name:

>>> fieldNames = [item[0] for item in r.fields[1:]]
>>> name10 = fieldNames.index("NAME10")
>>> name10
4
>>> r.record(2)[name10]
'Crosby'

Chapter 5

[185]

Another way we can associate field names to values is by using the Python's built-in
zip() method which matches corresponding items in two or more lists and merges
them into a list of tuples. Then we can loop through that list, check the name, and
then grab the associated value:

>>> fieldNames = [item[0] for item in r.fields[1:]]
>>> fieldNames
['STATEFP10', 'PLACEFP10', 'PLACENS10', 'GEOID10', 'NAME10',
'NAMELSAD10', 'LSAD10', 'CLASSFP10', 'PCICBSA10', 'PCINECTA10',
'MTFCC10','FUNCSTAT10', 'ALAND10','AWATER10', 'INTPTLAT10',
'INTPTLON10']
>>> rec = r.record(2)
>>> rec
['28', '16620', '02406337', '2816620', 'Crosby', 'Crosby town',
'43', 'C1', 'N','N', 'G4110', 'A', 5489412, 21336, '+31.2742552',
'-091.0614840']
>>> zipRec = zip(fieldNames, rec)
>>> zipRec
[('STATEFP10', '28'), ('PLACEFP10', '16620'), ('PLACENS10',
'02406337'), ('GEOID10', '2816620'), ('NAME10', 'Crosby'),
('NAMELSAD10', 'Crosby town'), ('LSAD10', '43'), ('CLASSFP10',
'C1'), ('PCICBSA10','N'),('PCINECTA10','N'), ('MTFCC10', 'G4110'),
('FUNCSTAT10', 'A'), ('ALAND10', 5489412),('AWATER10', 21336), ('IN
TPTLAT10', '+31.2742552'), ('INTPTLON10', '-091.0614840')]
>>> for z in zipRec:
... if z[0] == "NAME10": print z[1]
...
Crosby

We can also loop through dbf records using the r.records() method. In this
example, we'll loop through the list returned by the records() method but limit
using Python array slicing to the first 3 records. As mentioned previously, shapefiles
don't contain record numbers so we'll also enumerate the records list and create a
record number on the fly, so the output is a little easier to read. In this example,
we'll use the enumerate() method which will return tuples containing index
and the record:

>>> for rec in enumerate(r.records()[:3]):
... print rec[0]+1, ": ", rec[1]
...
1 : ['28', '59560', '02404554', '2859560', 'Port Gibson', 'Port
Gibson city', '
25', 'C1', 'N', 'N', 'G4110', 'A', 4550230, 0, '+31.9558031',
'-090.9834329']

Python and Geographic Information Systems

[186]

2 : ['28', '50440', '02404351', '2850440', 'Natchez', 'Natchez city',
'25', 'C1', 'Y', 'N', 'G4110', 'A', 34175943, 1691489, '+31.5495016',
'-091.3887298']
3 : ['28', '16620', '02406337', '2816620', 'Crosby', 'Crosby town',
'43', 'C1','N', 'N', 'G4110', 'A', 5489412, 21336, '+31.2742552',
'-091.0614840']

This kind of enumeration trick is what most GIS software packages use when
displaying records in a table. Many GIS analysts assume shapefiles store the record
number because every GIS program displays one. But if you delete a record, for
example record number 5 in ArcGIS or QGIS, and save the file, when you open it
again, you'll find what was formerly record number 6 is now record 5. Some spatial
databases may assign a unique identifier to records. Many times a unique identifier
is helpful. You can always create another field and column in dbf and assign your
own number which remains constant even when records are deleted.

If you are working with very large shapefiles, PyShp has iterator methods which
access data more efficiently. The default records() method reads all records into
the RAM at once, which is fine for the small dbf files, but becomes difficult to
manage even with a few thousand records. Any time you'd use the records()
method, you can also use the r.iterRecords() method the same way. This method
holds the minimum amount of information needed to provide the record at hand
rather than the whole data set. In this quick example, we use the iterRecords()
method to count the number of records to verify the count in the file header:

>>> counter = 0
>>> for rec in r.iterRecords():
... counter += 1
>>> counter
298

Reading shapefile geometry
Now let's take a look at the geometry. Earlier we looked at the header information
and determined this shapefile was a point shapefile. So we know that each record
contains a single point. Let's examine the first geometry record:

>>> geom = r.shape(0)
>>> geom.points
[[-90.98343326763826, 31.9558035947602]]

In each geometry record, also known as shape, the points are stored in a list called
points, even if there is only one point, as in this case. Points are stored as x, y pairs,
so longitude comes before latitude if that coordinate system is used.

Chapter 5

[187]

The shapefile specification also allows for three-dimensional shapes. Elevation
values are along the z axis and often called z values. So a three-dimensional point is
typically described as x, y, z. In the shapefile format, z values are stored in a separate
z attribute if allowed by the shape type. If the shape type doesn't allow for z values,
then that attribute is never set when the records are read by PyShp. Shapefiles with
z values also contain measure values or m values. A measure is a user-assigned
value which may be associated with a shape. An example would be a temperature
recorded at a given location. There is another class of shape types which allow for
adding m values to each shape but not z values. This class of shape types is called
an M shape type. Just like the z values, if the data is there, the m attribute is created;
otherwise it's not. You don't typically run into shapefiles with z values and you
almost never come across shapefiles with m values set. But sometimes you do, so it's
good to be aware of them. And just like our fields and records dbf example, if you
don't like having the z and m values stored in separate lists, from the points list you
can use the zip() method to combine them. The zip method can take multiple lists
as parameters separated by commas.

Changing a shapefile
When you create a Reader object with PyShp, it is read-only. You can change any
values in the Reader object but they are not written to the original shapefile. To
create a shapefile, you need to also create a Writer object. You can change values
in either a Reader or Writer object; they are just dynamic Python data types, but at
some point you must copy the values from Reader to Writer. PyShp automatically
handles all of the header information such as the bounding box and record count.
You only need to worry about the geometry and attributes.

To demonstrate this concept, we'll read in a point shapefile with units in degrees
and convert it to the UTM reference system in a Writer object before saving it. We'll
use PyShp and the UTM module discussed earlier in this chapter. The shapefile we'll
use is New York City museums shapefile which we reprojected earlier to WGS84
geographic. You can also just download it as a ZIP file which is available at:
https://geospatialpython.googlecode.com/files/NYC_MUSEUMS_GEO.zip

>>> import shapefile
>>> import utm
>>> r = shapefile.Reader("NYC_MUSEUMS_GEO")
>>> w = shapefile.Writer(r.shapeType)
>>> w.fields = list(r.fields)
>>> w.records.extend(r.records())
>>> for s in r.iterShapes():
... lon,lat = s.points[0]
... y,x,zone,band = utm.from_latlon(lat,lon)
... w.point(x,y)
>>> w.save("NYC_MUSEUMS_UTM")

Python and Geographic Information Systems

[188]

Adding fields
A very common operation on shapefiles is to add additional fields. This operation is
easy but there's one important element to remember. When you add a field you must
also loop through the records and either create an empty cell or add a value for that
column. As an example, let's add a reference latitude and longitude column to the
UTM version of the New York City museums shapefile. First we'll open the shapefile
and also create a new Writer object. Next we'll add the fields as float types with a
length of 8 for the entire field and a maximum precision of 5 decimal places. Next
we'll open the geographic version of the shapefile and grab the coordinates from
each record and add it to the corresponding attribute record in the UTM version's
dbf. Finally we'll save over the original file:

import shapefile
r = shapefile.Reader("NYC_MUSEUMS_UTM")
w = shapefile.Writer(r.shapeType)
w.fields = list(r.fields)
w.records.extend(r.records())
w.field("LAT","F",8,5)
w.field("LON","F",8,5)
geo = shapefile.Reader("NYC_MUSEUMS_GEO")
for i in range(geo.numRecords):
 lon, lat = geo.shape(i).points[0]
 w.records[i].extend([lat,lon])
w._shapes.extend(r.shapes())
w.save("NYC_MUSEUMS_UTM")

Merging shapefiles
Aggregating multiple related shapefiles of the same type into one larger shapefile
is another very useful technique. You might be working as part of a team that
divides up an area of interest and then assembles the data at the end of the day.
Or you might aggregate data from a series of sensors out in the field such as
weather stations. For this example, we'll use a set of building footprints for a
county which are maintained separately in four different quadrants (northwest,
northeast, southwest and southeast). You can download these shapefiles as a
single ZIP file available at:

https://geospatialpython.googlecode.com/files/tiled_footprints.zip

Chapter 5

[189]

When you unzip these files, you'll see they are named by quadrant. The following
script uses PyShp to merge them into a single shapefile:

import glob
import shapefile
files = glob.glob("footprints_*shp")
w = shapefile.Writer()
r = None
for f in files:
 r = shapefile.Reader(f)
 w._shapes.extend(r.shapes())
 w.records.extend(r.records())
w.fields = list(r.fields)
w.save("Merged")

As you can see, merging a set of shapefiles is very straightforward. However,
we didn't do any sanity checks to make sure the shapefiles were all of the same type
which you might want to do if this script was used for a repeated automated process,
instead of just a quick one-off process. Another note about this example is how we
invoked the Writer object. In other examples, we used a numeric code to define a
shape type. You can define that number directly (for example: 1 for point shapefiles)
or call one of the PyShp constants. The constants are the type of shapefile in all caps.
For example, a polygon is:

shapefile.POLYGON

In this case, the value of that constant is 5. When copying data from a Reader
to a Writer object, you'll notice the shape type definition is simply referenced.
For example:

r = shapefile.Reader("myShape")
w = shapefile.Writer(r.shapeType)

Python and Geographic Information Systems

[190]

This last method makes your script more robust, as the script has one less variable to
be changed if you later change the script or the data set. In the merging example, we
don't have the benefit of having a Reader object available when we invoke Writer.
We could open the first shapefile in the list and check its type but that would add
several more lines of code. An easier way is just to omit the shape type. If the Writer
shape type isn't saved, PyShp will ignore it until you save the shapefile. At that time
it will check the individual header of a geometry record and determine it from that.
While you can use this method in special cases, it's better to define the shape type
explicitly when you can, for clarity, and just to be safe to prevent any outlier case
errors. The following figure is a sample of this data set to get a better idea of what
the data looks like, as we will be using it further:

Splitting shapefiles
Sometimes you may also need to split larger shapefiles to make it easier to focus on a
subset of interest. This splitting, or subsetting, can be done spatially or by attributes
depending on which aspect of the data is of interest.

Subsetting spatially
In the following example, we'll subset one of the quadrant files we merged. We'll
filter the building footprint polygons by area and export any buildings with a 100
square meters or less (about 1000 square feet) profile to a new shapefile. We'll use
the footpints_se shapefile. PyShp has a signed area method which accepts a list of
coordinates and returns either a positive or negative area. We'll use the utm module
to convert the coordinates to meters. The positive or negative area denotes whether
the point order of the polygon is clockwise or counterclockwise, respectively. But
point order doesn't matter here so we'll use the absolute value:

Chapter 5

[191]

import shapefile
import utm
r = shapefile.Reader("footprints_se")
w = shapefile.Writer(r.shapeType)
w.fields = list(r.fields)
for sr in r.shapeRecords():
... utmPoints = []
... for p in sr.shape.points:
... x,y,band,zone = utm.from_latlon(p[1],p[0])
... utmPoints.append([x,y])
... area = abs(shapefile.signed_area(utmPoints))
... if area <= 100:
... w._shapes.append(sr.shape)
... w.records.append(sr.record)
w.save("footprints_185")
Let's see the difference in the number of records between the original
and the subset:
r = shapefile.Reader("footprints_se")
subset = shapefile.Reader("footprints_185")
r.numRecords
26447
subset.numRecords
13331

We now have some substantial building blocks for geospatial analysis with
vector data.

Performing selections
The previous subsetting example is one way to select data. There are many other
ways to subset data for further analysis. In this section we'll examine some of them.

Point in polygon formula
We briefly discussed the point in polygon formula in Chapter 1, Learning Geospatial
Analysis with Python as a common type of geospatial operation. You'll find it is one
of the most useful formulas out there. The formula is relatively straightforward. The
following function performs this check using the Ray Casting method. This method
draws a line from the test point all the way through the polygon and counts the
number of times it crosses the polygon boundary. If the count is even, the point is
outside the polygon. If it is odd, then it's inside. This particular implementation also
checks to see if the point is on the edge of the polygon:

def point_in_poly(x,y,poly):
 # check if point is a vertex
 if (x,y) in poly: return True

Python and Geographic Information Systems

[192]

 # check if point is on a boundary
 for i in range(len(poly)):
 p1 = None
 p2 = None
 if i==0:
 p1 = poly[0]
 p2 = poly[1]
 else:
 p1 = poly[i-1]
 p2 = poly[i]
 if p1[1] == p2[1] and p1[1] == y and x > min(p1[0], \
p2[0]) and x < max(p1[0], p2[0]):
 return True

 n = len(poly)
 inside = False

 p1x,p1y = poly[0]
 for i in range(n+1):
 p2x,p2y = poly[i % n]
 if y > min(p1y,p2y):
 if y <= max(p1y,p2y):
 if x <= max(p1x,p2x):
 if p1y != p2y:
 xints = (y-p1y)*(p2x-p1x)/(p2y-p1y)+p1x
 if p1x == p2x or x <= xints:
 inside = not inside
 p1x,p1y = p2x,p2y

 if inside: return True
 return False

Now let's use the point_in_poly() function to test a point:

>>> # Test a point for inclusion
>>> myPolygon = [(-70.593016,-33.416032), (-70.589604,-33.415370),
(-70.589046,-33.417340), (-70.592351,-33.417949),
(-70.593016,-33.416032)]
>>> # Point to test
>>> lon = -70.592000
>>> lat = -33.416000
>>> print point_in_poly(lon, lat, myPolygon)
True

The point is inside. Let's also verify that edge points will be detected:

>>> # test an edge point
>>> lon = -70.593016
>>> lat = -33.416032
>>> print point_in_poly(lon, lat, myPolygon)
True

Chapter 5

[193]

You'll find new uses for this function all the time. It's definitely one to keep in
your toolbox.

Attribute selections
We've now seen two different ways of subsetting a larger data set resulting in a
smaller one based on spatial relationships. Now let's examine a quick way to subset
vector data using the attribute table. In this example, we'll use a polygon shapefile
that has densely populated urban areas within Mississippi. You can download this
zipped shapefile, which is available at:

https://geospatialpython.googlecode.com/files/MS_UrbanAnC10.zip

This script is really quite simple. It creates the Reader and Writer objects, copies the
dbf fields, loops through the records for matching attributes, and then adds them to
Writer. We'll select urban areas with a population of less than 5,000:

>>> import shapefile
>>> # Create a reader instance
>>> r = shapefile.Reader("MS_UrbanAnC10")
>>> # Create a writer instance
>>> w = shapefile.Writer(r.shapeType)
>>> # Copy the fields to the writer
>>> w.fields = list(r.fields)
>>> # Grab the geometry and records from all features
>>> # with the correct population
>>> selection = []
>>> for rec in enumerate(r.records()):
... if rec[1][15] < 5000:
... selection.append(rec)
>>> # Add the geometry and records to the writer
>>> for rec in selection:
... w._shapes.append(r.shape(rec[0]))
... w.records.append(rec[1])
>>> # Save the new shapefile
>>> w.save("MS_Urban_Subset")

Python and Geographic Information Systems

[194]

Attribute selections are typically fast. Spatial selections are computationally
expensive. Whenever possible, make sure you are unable to use attribute selection
to subset first. The following figure shows the starting shapefile containing all urban
areas on the left with a state boundary, and the urban areas with less than 5,000
people on the right, after the previous attribute selection:

Creating images for visualization
In Chapter 1, Learning Geospatial Analysis with Python, we visualized our SimpleGIS
program using the Tkinter module included with Python. In Chapter 4, Geospatial
Python Toolbox, we examined a few other methods for creating images. Now we'll
examine these tools in more depth by creating two specific types of thematic maps.
The first is a dot density map and the second is a choropleth map.

Dot density calculations
A dot density map shows concentrations of subjects within a given area. If an area
is divided up into poylgons containing statistical information, you can model that
information using randomly distributed dots within that area using a fixed ratio
across the data set. This type of map is commonly used for population density
maps. The cat map in Chapter 1, Learning Geospatial Analysis with Python, is a dot
density map. Let's create a dot density map from scratch using pure Python. For
this example, we'll use a US Census Bureau Tract shapefile along the US Gulf Coast
which contains population data. We'll also use the point in polygon algorithm to
ensure the randomly distributed points are with the proper census tract. Finally,
we'll use the PNGCanvas module to write out our image.

Chapter 5

[195]

The PNGCanvas module is excellent and fast. However, it doesn't have the ability to
fill in polygons beyond simple rectangles. You can implement a fill algorithm but it is
very slow in pure Python. However, for a quick outline and point plot, it does a great
job. As a reminder, you can download the PNGCanvas module as a text file, as it's not
in PyPI:

http://the.taoofmac.com/media/projects/PNGCanvas/pngcanvas.py.txt

You'll also see the screen2world() method similar to the coordinates-to-mapping
algorithm we used in SimpleGIS in Chapter 1, Learning Geospatial Analysis
with Python:

import shapefile
import random
import pngcanvas

def point_in_poly(x,y,poly):
 """Boolean: is a point inside a polygon?"""
 # check if point is a vertex
 if (x,y) in poly: return True
 # check if point is on a boundary
 for i in range(len(poly)):
 p1 = None
 p2 = None
 if i==0:
 p1 = poly[0]
 p2 = poly[1]
 else:
 p1 = poly[i-1]
 p2 = poly[i]
 if p1[1] == p2[1] and p1[1] == y and \
 x > min(p1[0], p2[0]) and x < max(p1[0], p2[0]):
 return True
 n = len(poly)
 inside = False
 p1x,p1y = poly[0]
 for i in range(n+1):
 p2x,p2y = poly[i % n]
 if y > min(p1y,p2y):
 if y <= max(p1y,p2y):
 if x <= max(p1x,p2x):
 if p1y != p2y:
 xints = (y-p1y)*(p2x-p1x)/(p2y-p1y)+p1x
 if p1x == p2x or x <= xints:

Python and Geographic Information Systems

[196]

 inside = not inside
 p1x,p1y = p2x,p2y
 if inside: return True
 else: return False

def world2screen(bbox, w, h, x, y):
 """convert geospatial coordinates to pixels"""
 minx,miny,maxx,maxy = bbox
 xdist = maxx - minx
 ydist = maxy - miny
 xratio = w/xdist
 yratio = h/ydist
 px = int(w - ((maxx - x) * xratio))
 py = int((maxy - y) * yratio)
 return (px,py)

Open the census shapefile
inShp = shapefile.Reader("GIS_CensusTract_poly")
Set the output image size
iwidth = 600
iheight = 400
Get the index of the population field
pop_index = None
dots = []
for i,f in enumerate(inShp.fields):
 if f[0] == "POPULAT11":
 # Account for deletion flag
 pop_index = i-1
Calculate the density and plot points
for sr in inShp.shapeRecords():
 population = sr.record[pop_index]
 # Density ratio - 1 dot per 100 people
 density = population / 100
 found = 0
 # Randomly distribute points until we
 # have the correct density
 while found < density:
 minx, miny, maxx, maxy = sr.shape.bbox
 x = random.uniform(minx,maxx)
 y = random.uniform(miny,maxy)
 if point_in_poly(x,y,sr.shape.points):
 dots.append((x,y))
 found += 1

Chapter 5

[197]

Set up the PNG output image
c = pngcanvas.PNGCanvas(iwidth,iheight)
Draw the red dots
c.color = (255,0,0,0xff)
for d in dots:
 x,y = world2screen(inShp.bbox, iwidth, iheight, *d)
 c.filledRectangle(x-1,y-1,x+1,y+1)
Draw the census tracts
c.color = (0,0,0,0xff)
for s in inShp.iterShapes():
 pixels = []
 for p in s.points:
 pixel = world2screen(inShp.bbox, iwidth, iheight, *p)
 pixels.append(pixel)
 c.polyline(pixels)
Save the image
img = open("DotDensity.png","wb")
img.write(c.dump())
img.close()

This script outputs an outline of the census tract with the density dots to show
population concentration very effectively:

Python and Geographic Information Systems

[198]

Choropleth maps
Choropleth maps also show concentration, however, they use different shades of
color to show concentration. Darker colors have higher concentration and lighter
colors have lower concentration. This method is useful if related data spans multiple
polygons. For example, in a worldwide population density map by country, many
countries have disconnected polygons (for example, Hawaii is an island state of
the US). In this example, we'll use the PIL discussed in Chapter 3, The Geospatial
Technology Landscape. PIL is not purely Python but is designed specifically for
Python. We'll recreate our previous dot density example as a choropleth map.
We'll calculate a density ratio based on the number of people (population) per
square kilometer and use that value to adjust the color. Dark is more densely
populated and lighter is less:

import math
import shapefile
import Image
import ImageDraw

def world2screen(bbox, w, h, x, y):
 """convert geospatial coordinates to pixels"""
 minx,miny,maxx,maxy = bbox
 xdist = maxx - minx
 ydist = maxy - miny
 xratio = w/xdist
 yratio = h/ydist
 px = int(w - ((maxx - x) * xratio))
 py = int((maxy - y) * yratio)
 return (px,py)

Open our shapefile
inShp = shapefile.Reader("GIS_CensusTract_poly")
iwidth = 600
iheight = 400
PIL Image
img = Image.new("RGB", (iwidth,iheight), (255,255,255))
PIL Draw module for polygon fills
draw = ImageDraw.Draw(img)
Get the population AND area index
pop_index = None
area_index = None
Shade the census tracts
for i,f in enumerate(inShp.fields):

Chapter 5

[199]

 if f[0] == "POPULAT11":
 # Account for deletion flag
 pop_index = i-1
 elif f[0] == "AREASQKM":
 area_index = i-1
Draw the polygons
for sr in inShp.shapeRecords():
 density = sr.record[pop_index]/sr.record[area_index]
 weight = min(math.sqrt(density/80.0), 1.0) * 50
 R = int(205 - weight)
 G = int(215 - weight)
 B = int(245 - weight)
 pixels = []
 for x,y in sr.shape.points:
 (px,py) = world2screen(inShp.bbox, iwidth, iheight, x, y)
 pixels.append((px,py))
 draw.polygon(pixels, outline=(255,255,255), fill=(R,G,B))
img.save("choropleth.png")

This script produces the following figure. You can adjust the color using the R, G,
and B variables:

Python and Geographic Information Systems

[200]

Using spreadsheets
Spreadsheets such as Microsoft Office Excel and Open Office Calc are inexpensive
(even free), ubiquitous, easy to use, and great for recording structured data. For these
reasons, spreadsheets are widely used to collect data for entry into a GIS format. As
an analyst, you will find yourself working with spreadsheets frequently. In previous
chapters, we discussed the CSV format which is a text file with the same basic rows
and columns data structure as a spreadsheet. For CSV files, you use Python's built-in
csv module. But most of the time people don't bother exporting a true spreadsheet to
a generic CSV file. That's where the pure Python xlrd module comes into play. The
name xlrd is short for Excel Reader and is available from PyPI as it is accompanying
the xlwt (Excel Writer) module. These two modules make reading and writing Excel
spreadsheets as snap. Combine it with PyShp and you can move back and forth
between spreadsheets and shapefiles with ease.

This example demonstrates converting a spreadsheet to a shapefile. We'll use a
spreadsheet version of the New York City museums point data available at:

https://geospatialpython.googlecode.com/files/NYC_MUSEUMS_GEO.xls

The spreadsheet contains the attribute data followed by an x column with
the longitude and a y column with the latitude. To export it to a shapefile,
we'll execute the following steps:

1.	 Open the spreadsheet.
2.	 Create a shapefile Writer object.
3.	 Capture the first row of the spreadsheet as the dbf columns.
4.	 Loop through each row of the spreadsheet and copy the attributes to dbf.
5.	 Create a point from the x and y spreadsheet columns.

The script is as follows:

import xlrd
import shapefile

Open the spreadsheet reader
xls = xlrd.open_workbook("NYC_MUSEUMS_GEO.xls")
sheet = xls.sheet_by_index(0)

Open the shapefile writer
w = shapefile.Writer(shapefile.POINT)

Move data from spreadsheet to shapefile

Chapter 5

[201]

for i in range(sheet.ncols):
 w.field(str(sheet.cell(0,i).value), "C", 40)
for i in range(1, sheet.nrows):
 values = []
 for j in range(sheet.ncols):
 values.append(sheet.cell(i,j).value)
 w.record(*values)
 w.point(float(values[-2]),float(values[-1]))
w.save("NYC_MUSEUMS_XLS2SHP")

Converting a shapefile is a much less common operation, though not difficult.
To convert a shapefile to a spreadsheet, you would make sure you have an x and
y column using the Adding fields example from the Editing shapefiles section in
this chapter. You would loop through the shapes and add the x,y values to those
columns. Then you would read the field names and column values from dbf into an
xlwt spreadsheet object or a CSV file using the csv module. The coordinate columns
are labeled in the following screenshot:

Python and Geographic Information Systems

[202]

Using GPS data
The most common type of GPS data these days is the Garmin GPX format.
We covered this XML format in Chapter 4, Geospatial Python Toolbox, which has
become an unofficial industry standard. Because it is an XML format, all of the
well-documented rules of XML apply. However, there is another type of GPS
data that pre-dates XML and GPX, called National Marine Electronics Association
(NMEA). These data are ASCII text sentences designed to be streamed. You
occasionally bump into this format from time to time because even though it is
older and esoteric, it is still very much alive and well. But as usual, you have a
good option in pure Python. The pynmea module is available on PyPI.

The following is a small sample of NMEA sentences:

$GPRMC,012417.859,V,1856.599,N,15145.602,W,12.0,7.27,020713,,E*4F
$GPGGA,012418.859,1856.599,N,15145.602,W,0,00,,,M,,M,,*54
$GPGLL,1856.599,N,15145.602,W,012419.859,V*35
$GPVTG,7.27,T,,M,12.0,N,22.3,K*52
$GPRMC,012421.859,V,6337.596,N,12330.817,W,66.2,23.41,020713,,E*74

Install the pynmea module from PyPI and download the complete sample file
available at:

https://geospatialpython.googlecode.com/files/nmea.txt

Then you can run the following sample which will parse the NMEA sentences into
objects. The NMEA sentences contain a wealth of information:

from pynmea.streamer import NMEAStream
nmeaFile = open("nmea.txt")
nmea_stream = NMEAStream(stream_obj=nmeaFile)
next_data = nmea_stream.get_objects()
nmea_objects = []
while next_data:
 nmea_objects += next_data
 next_data = nmea_stream.get_objects()
The NMEA stream is parsed!
Let's loop through the
Python object types:
for nmea_ob in nmea_objects:
 if hasattr(nmea_ob, "lat"):
 print "Lat/Lon: (%s, %s)" % (nmea_ob.lat, nmea_ob.lon)

Chapter 5

[203]

The latitude and longitude are stored in a format called degrees decimal minutes. For
example, 4533.35 is 45 degrees and 33.35 minutes. And ".35" of a minute is exactly 21
seconds. In another example, 16708.033 is 167 degrees and 8.033 minutes. And ".033"
of a minute is approximately 2 seconds. You can find more information about the
uncommon NMEA format at:

http://aprs.gids.nl/nmea/

Summary
This chapter covered the critical components of GIS analysis including:

•	 The challenges of measuring on the curved surface of the Earth and solutions
•	 The basics of coordinate conversion between the geographic and UTM

reference systems
•	 Reprojection using OGR (pretty much the only game in town worthwhile!)
•	 Details about editing shapefiles in pure Python using PyShp
•	 Performing spatial selections on data using geometry or attributes
•	 Creating thematic maps from scratch using only Python
•	 Importing data from spreadsheets
•	 Parsing GPS data from NMEA or GPX

As a geospatial analyst, you may be familiar with both GIS and remote sensing, but
most analysts specialize in one field or the other. That is why this book approaches
the fields in separate chapters, to focus on their differences. In Chapter 6, Python and
Remote Sensing, we'll tackle remote sensing. In GIS, we have been able to explore the
field using pure Python modules. In remote sensing, we'll become more dependent
on bindings to compiled modules written in C due to the sheer size and complexity
of the data.

Python and Remote Sensing
In this chapter, we will discuss Remote Sensing. This field grows more exciting
every day as more satellites are launched and the distribution of data becomes
easier. The high availability of satellite and aerial images, as well as interesting new
types of sensors launching each year is changing the role remote sensing plays in
understanding our world.

And in this field, Python is quite capable. However, in this chapter we will rely more
on Python bindings to C libraries than we have in the previous chapters, where the
focus was more on using pure Python. The only reason for this change is the size and
complexity of remotely sensed data. In remote sensing, we step through each pixel
in an image and perform some form of query or mathematical process. An image can
be thought of as a large numerical array. And in remote sensing these arrays can be
quite large on the order of tens of megabytes to several gigabytes. While Python is
fast, only C-based libraries can provide the speed needed to loop through arrays at a
tolerable speed.

The compromise that we make in this chapter is that whenever possible we'll use
the Python Imaging Library (PIL) for image processing and NumPy which provides
multi-dimensional array mathematics. While written in C for speed, these libraries
are designed for Python and provide a pythonic API.

In this chapter we'll start with basic image manipulation and build on each exercise
all the way to automatic change detection. Here are the topics we'll cover:

•	 Swapping image bands
•	 Creating image histograms
•	 Classifying images
•	 Extracting features from images
•	 Change detection

Python and Remote Sensing

[206]

Swapping image bands
Our eyes can only see colors in the visible spectrum as combinations of red,
green, and blue (RGB). Air and space-borne sensors can collect wavelengths of the
energy outside of the visible spectrum. In order to view this data we move images
representing different wavelengths of light reflectance in and out of the RGB
channels to make color images. These images often end up as bizarre and alien color
combinations that can make visual analysis difficult. An example of a typical satellite
image is seen in the following Landsat 7 satellite scene near the NASA Stennis Space
Center in Mississippi along the Gulf of Mexico, which is a leading center for Remote
Sensing and Geospatial Analysis in general:

Most of the vegetation appears red, and water appears almost black. This image is
one type of "false color" image meaning the color of the image is not based on RGB
light. However we can change the order of the bands or swap out certain bands to
create another type of false-color image that looks more like the world we are used
to seeing. In order to do so, you first need do download this image as a ZIP file
from here:

http://geospatialpython.googlecode.com/files/FalseColor.zip

http://geospatialpython.googlecode.com/files/FalseColor.zip
http://geospatialpython.googlecode.com/files/FalseColor.zip

Chapter 6

[207]

We installed the GDAL library with Python bindings in Chapter 4, Geospatial Python
Toolbox, in the Installing GDAL and NumPy sections. The GDAL library includes a
module called gdalnumeric that loads and saves remotely-sensed images to and
from NumPy arrays for easy manipulation. GDAL itself is a data access library and
does not provide much in the name of processing. So in this chapter we will rely
heavily on NumPy to actually change images.

In this example we'll load the image into a NumPy array using gdalnumeric and
then we'll immediately save it back to a new .tiff file. However upon saving,
we'll use NumPy's advanced array-slicing feature to change the order of the bands.
Images in NumPy are multi-dimensional arrays in the order of band, height, and
width. So an image with 3 bands will be an array of length 3 containing an array
for each band the height and width of the image. It's important to note that NumPy
references array locations as y,x (row, column) instead of the usual column, row
format we work with in spreadsheets and other software:

Module within the GDAL python package
import gdalnumeric
name of our source image
src = "SatImage.tif"
load the source image into an array
arr = gdalnumeric.LoadFile(src)
swap bands 1 and 2 for a natural color image.
We will use numpy "advanced slicing" to reorder the bands.
Using the source image
gdalnumeric.SaveArray(arr[[1,0,2],:], "swap.tif", \
format="GTiff", prototype=src)

Also in the SaveArray method the last argument is called prototype. This argument
lets you specify another image for GDAL from which to copy spatial reference
information and some other image parameters. Without this argument we'd end
up with an image without georeferencing information, which could not be used in
a GIS. In this case we specified our input image file name because the images are
identical except for the band order.

Python and Remote Sensing

[208]

The result of this example produces the swap.tif image, which is a much more
visually appealing image with green vegetation and blue water:

There's only one problem with this image. It's kind of dark and difficult to see.
Let's see if we can figure out why.

Creating histograms
A histogram shows the statistical frequency of data distribution within a data set.
In the case of remote sensing, the data set is an image, the data distribution is the
frequency of pixels in the range of 0 to 255, which is the range of 8-byte numbers
used to store image information on computers. In an RGB image, color is represented
as a 3-digit tuple with (0,0,0) being black, and (255,255,255) being white. We can
graph the histogram of an image with the frequency of each value along the y-axis
and the range of 255 possible pixel values along the x-axis.

Chapter 6

[209]

Remember in Chapter 1, Creating the Simplest Possible Python GIS, when we used the
Turtle graphics engine included with Python to create a simple GIS? Well we can
also use it to easily graph histograms. Histograms are usually a one-off product
that makes a quick script, like this example, great. Also histograms are typically
displayed as a bar graph with the width of the bars representing the size of grouped
data bins. But in an image, each bin is only one value so we'll create a line graph.
We'll use the histogram function in this example, and create a red, green, and blue
line for each respective band. The graphing portion of this example also defaults to
scaling the y-axis values to the max RGB frequency found in the image. Technically
the y-axis represents the maximum frequency, which is the number of pixels in
the image, which would be the case if the image was all of one color. We'll use the
turtle module again, but this example could be easily converted to any graphical
output module. But this format makes the distribution harder to see. Let's take a look
at our swap.tif image:

import gdalnumeric
import turtle as t

def histogram(a, bins=range(0,256)):
 """
 Histogram function for multi-dimensional array.
 a = array
 bins = range of numbers to match
 """
 fa = a.flat
 n = gdalnumeric.numpy.searchsorted(gdalnumeric.numpy.sort(fa),
bins)
 n = gdalnumeric.numpy.concatenate([n, [len(fa)]])
 hist = n[1:]-n[:-1]
 return hist

def draw_histogram(hist, scale=True):
 t.color("black")
 # Draw the axes
 axes = ((-355, -200),(355, -200),(-355, -200),(-355, 250))
 t.up()
 for p in axes:
 t.goto(p)
 t.down()
 # Labels
 t.up()
 t.goto(0, -250)
 t.write("VALUE",font=("Arial,",12,"bold"))
 t.up()
 t.goto(-400, 280)
 t.write("FREQUENCY",font=("Arial,",12,"bold"))
 # Tick marks
 # x axis

Python and Remote Sensing

[210]

 x = -355
 y = -200
 t.up()
 for i in range(1,11):
 x = x+65
 t.goto(x,y)
 t.down()
 t.goto(x,y-10)
 t.up()
 t.goto(x,y-25)
 t.write("%s" % (i*25), align="center")
 # y axis
 x = -355
 y = -200
 t.up()
 pixels = sum(hist[0])
 if scale:
 max = 0
 for h in hist:
 hmax = h.max()
 if hmax > max:
 max = hmax
 pixels = max
 label = pixels/10
 for i in range(1,11):
 y = y+45
 t.goto(x,y)
 t.down()
 t.goto(x-10,y)
 t.up()
 t.goto(x-15,y-6)
 t.write("%s" % (i*label), align="right")
 # Plot each histogram as a colored line
 x_ratio = 709.0 / 256
 y_ratio = 450.0 / pixels
 # Add more colors to this list if comparing
 # more than 3 bands or 1 image
 colors = ["red", "green", "blue"]
 for j in range(len(hist)):
 h = hist[j]
 x = -354
 y = -199
 t.up()
 t.goto(x,y)
 t.down()
 t.color(colors[j])
 for i in range(256):
 x = i * x_ratio

Chapter 6

[211]

 y = h[i] * y_ratio
 x = x - (709/2)
 y = y + -199
 t.goto((x,y))

im = "swap.tif"
histograms = []
arr = gdalnumeric.LoadFile(im)
for b in arr:
 histograms.append(histogram(b))
draw_histogram(histograms)

Hide our pen
t.pen(shown=False)
t.done()

Here's what the histogram for swap.tif looks like after running the example:

Python and Remote Sensing

[212]

As you can see, all the three bands are grouped closely towards the left side of the
graph and all have values less than 125 or so. As these values approach zero the
image becomes darker, which is not surprising. Just for fun let's run the script again
and when we call the draw_histogram() function, we'll add the scale=False
option to get a sense of the size of the image and provide an absolute scale. So
change the following line from:

draw_histogram(histograms)

to:

draw_histogram(histograms, scale=False)

This change will produce the following histogram graph:

As you can see, it's harder to see the details of the value distribution. However this
absolute-scale approach is useful if you are comparing multiple histograms from
different products produced from the same-source image.

So, now that we understand the basics of looking at an image statistically using
histograms, how do we make our image brighter?

Chapter 6

[213]

Performing a histogram stretch
A histogram stretch operation does exactly what the name says. It distributes
the pixel values across the whole scale. By doing so, we have more values at the
higher-intensity level and the image becomes brighter. So in this example we'll use
our histogram function, but we'll add another function called stretch() that takes
an image array, creates the histogram, and then spreads out the range of values for
each band. We'll run these functions on swap.tif and save the result in an image
called stretched.tif.

import gdalnumeric
import operator

def histogram(a, bins=range(0,256)):
 """
 Histogram function for multi-dimensional array.
 a = array
 bins = range of numbers to match
 """
 fa = a.flat
 n = gdalnumeric.numpy.searchsorted(gdalnumeric.numpy.sort(fa), \
bins)
 n = gdalnumeric.numpy.concatenate([n, \
[len(fa)]])
 hist = n[1:]-n[:-1]
 return hist

def stretch(a):
 """
 Performs a histogram stretch on a gdalnumeric array image.
 """
 hist = histogram(a)
 lut = []
 for b in range(0, len(hist), 256):
 # step size
 step = reduce(operator.add, hist[b:b+256]) / 255
 # create equalization lookup table
 n = 0
 for i in range(256):
 lut.append(n / step)
 n = n + hist[i+b]
 gdalnumeric.numpy.take(lut, a, out=a)
 return a

src = "swap.tif"

Python and Remote Sensing

[214]

arr = gdalnumeric.LoadFile(src)
stretched = stretch(arr)
gdalnumeric.SaveArray(arr, "stretched.tif", \
format="GTiff", prototype=src)

The stretch algorithm will produce the following image. Look how much brighter
and visually appealing it is!

And we can run our turtle graphics histogram script on stretched.tif by
changing the file name in the variable im to stretched.tif:

im = "stretched.tif"

Chapter 6

[215]

This run will give us the following histogram:

And as you can see all three bands are distributed evenly now. Their relative
distribution to each other is the same, but within the image they are now spread
across the spectrum.

Python and Remote Sensing

[216]

Clipping images
Very rarely is an analyst interested in an entire satellite scene, which can easily
cover hundreds of square miles. And given the size of satellite data we are highly
motivated to reduce the size of an image to only our area of interest. The best way to
accomplish this reduction is to clip an image to a boundary which defines our study
area. We can use shapefiles (or other vector data) as our boundary definition and
basically get rid of all the data outside that boundary. The following image contains
our stretched.tif image with a county boundary file layered on top, visualized in
Quantum GIS (QGIS):

In order to clip the image, our next example executes the following steps:

1.	 Load the image into an array using gdalnumeric.
2.	 Create a shapefile reader using PyShp.
3.	 Rasterize the shapefile into a georeferenced image.
4.	 Turn the shapefile image into a binary mask.
5.	 Filter the satellite image through the mask.
6.	 Discard satellite image data outside the mask.
7.	 Save the clipped satellite image as clip.tif.

Chapter 6

[217]

We installed PyShp in Chapter 4, PyShp, so you should already have it installed
from PyPi. We also add a couple of useful new utility functions in this script.
The first is world2ixel() that uses the GDAL GeoTransform object to do the
world-coordinate to image-coordinate conversion for us. It's still the same process
we've used throughout the book, but it's better integrated with GDAL. We also
add the imageToArray() function which converts a PIL image to a NumPy array.
The county boundary shapefile is the hancock.shp boundary we've used in the
previous chapters but you can also download it here:

http://geospatialpython.googlecode.com/files/hancock.zip

We use PIL because it is the easiest way to rasterize our shapefile as a mask image to
filter out the pixels beyond the shapefile boundary:

import operator
import gdal, gdalnumeric, osr
import shapefile
import Image, ImageDraw

Raster image to clip
raster = "stretched.tif"

Polygon shapefile used to clip
shp = "hancock.shp"

Name of clipped raster file(s)
output = "clip"

def imageToArray(i):
 """
 Converts a Python Imaging Library array to a gdalnumeric image.
 """
 a=gdalnumeric.numpy.fromstring(i.tostring(),'b')
 a.shape=i.im.size[1], i.im.size[0]
 return a

def world2Pixel(geoMatrix, x, y):
 """
 Uses a gdal geomatrix (gdal.GetGeoTransform()) to calculate
 the pixel location of a geospatial coordinate
 """
 ulX = geoMatrix[0]
 ulY = geoMatrix[3]
 xDist = geoMatrix[1]

Python and Remote Sensing

[218]

 yDist = geoMatrix[5]
 rtnX = geoMatrix[2]
 rtnY = geoMatrix[4]
 pixel = int((x - ulX) / xDist)
 line = int((ulY - y) / xDist)
 return (pixel, line)

Load the source data as a gdalnumeric array
srcArray = gdalnumeric.LoadFile(raster)

Also load as a gdal image to get geotransform (world file) info
srcImage = gdal.Open(raster)
geoTrans = srcImage.GetGeoTransform()

Use pyshp to open the shapefile
r = shapefile.Reader("%s.shp" % shp)

Convert the layer extent to image pixel coordinates
minX, minY, maxX, maxY = r.bbox
ulX, ulY = world2Pixel(geoTrans, minX, maxY)
lrX, lrY = world2Pixel(geoTrans, maxX, minY)

Calculate the pixel size of the new image
pxWidth = int(lrX - ulX)
pxHeight = int(lrY - ulY)

clip = srcArray[:, ulY:lrY, ulX:lrX]

Create a new geomatrix for the image
geoTrans = list(geoTrans)
geoTrans[0] = minX
geoTrans[3] = maxY

Map points to pixels for drawing the county boundary
on a blank 8-bit, black and white, mask image.
pixels = []
for p in r.shape(0).points:
 pixels.append(world2Pixel(geoTrans, p[0], p[1]))
rasterPoly = Image.new("L", (pxWidth, pxHeight), 1)
Create a blank image in PIL to draw the polygon.
rasterize = ImageDraw.Draw(rasterPoly)
rasterize.polygon(pixels, 0)
Convert the PIL image to a NumPy array
mask = imageToArray(rasterPoly)

Chapter 6

[219]

Clip the image using the mask
clip = gdalnumeric.numpy.choose(mask, (clip, 0)).astype(gdalnumeric.
numpy.uint8)

Save ndvi as tiff
gdalnumeric.SaveArray(clip, "%s.tif" % output, \
format="GTiff", prototype=raster)

This script produces the following clipped image. The areas remaining outside the
county boundary which appear as black are actually called NoData values and are
displayed as black, but ignored by most geospatial software. Because images are
rectangles the NoData values are common:

You have now walked through an entire workflow which is used by geospatial
analysts around the world every day to prepare multispectral satellite and aerial
images for use in a Geographic Information System. Now let's look at how we can
actually analyze images as information.

Python and Remote Sensing

[220]

Classifying images
Automated Remote Sensing (ARS) is rarely ever done in the visible spectrum. The
most commonly available wavelengths outside of the visible spectrum are infrared
and near-infrared. The following scene is a thermal image (band 10) from a fairly
recent Landsat 8 flyover of the US Gulf Coast from New Orleans, Louisiana to
Mobile, Alabama. Major natural features in the image are labeled so you can
orient yourself:

Because every pixel in that image has a reflectance value, it is information. Python
can "see" those values and pick out features the same way we intuitively do by
grouping related pixel values. We can colorize pixels based on their relation to
each other to simplify the image and view related features. This technique is called
classification. Classifying can range from fairly simple groupings based only on
some value distribution algorithm derived from the histogram to complex methods
involving training data sets and even computer learning and artificial intelligence.
The simplest forms are called unsupervised classifications, whereas methods
involving some sort of training data to guide the computer are called supervised.
It should be noted that classification techniques are used across many fields, from
medical doctors trying to spot cancerous cells in a patient's body scan, to casinos
using facial-recognition software on security videos to automatically spot known
con-artists at blackjack tables.

Chapter 6

[221]

To introduce remote sensing classification we'll just use the histogram to group
pixels with similar colors and intensities and see what we get. First you'll need to
download the Landsat 8 scene here:

http://geospatialpython.googlecode.com/files/thermal.zip

Instead of our histogram() function from previous examples, we'll use the version
included with NumPy that allows you to easily specify a number of bins and returns
two arrays with the frequency as well as the ranges of the bin values. We'll use
the second array with the ranges as our class definitions for the image. The lut or
look-up table is an arbitrary color palette used to assign colors to classes. You can
use any colors you want.

import gdalnumeric

Input file name (thermal image)
src = "thermal.tif"

Output file name
tgt = "classified.jpg"

Load the image into numpy using gdal
srcArr = gdalnumeric.LoadFile(src)

Split the histogram into 20 bins as our classes
classes = gdalnumeric.numpy.histogram(srcArr, bins=20)[1]

Color look-up table (LUT) - must be len(classes)+1.
Specified as R,G,B tuples
lut = [[255,0,0],[191,48,48],[166,0,0],[255,64,64],
[255,115,115],[255,116,0],[191,113,48],[255,178,115],
[0,153,153],[29,115,115],[0,99,99],[166,75,0],
[0,204,0],[51,204,204],[255,150,64],[92,204,204],[38,153,38],\
[0,133,0],[57,230,57],[103,230,103],[184,138,0]]

Starting value for classification
start = 1

Set up the RGB color JPEG output image
rgb = gdalnumeric.numpy.zeros((3, srcArr.shape[0],
srcArr.shape[1],), gdalnumeric.numpy.float32)

Process all classes and assign colors
for i in range(len(classes)):

http://geospatialpython.googlecode.com/files/thermal.zip
http://geospatialpython.googlecode.com/files/thermal.zip

Python and Remote Sensing

[222]

 mask = gdalnumeric.numpy.logical_and(start <= \
 srcArr, srcArr <= classes[i])
 for j in range(len(lut[i])):
 rgb[j] = gdalnumeric.numpy.choose(mask, (rgb[j], \
lut[i][j]))
 start = classes[i]+1

Save the image
gdalnumeric.SaveArray(rgb.astype(gdalnumeric.numpy.uint8), \
tgt, format="JPEG")

The following image is our classification output, which we just saved as a JPEG.
We didn't specify the prototype argument when saving as an image, so it has
no georeferencing information.

This result isn't bad for a very simple unsupervised classification. The islands and
coastal flats show up as different shades of green. The clouds were isolated as shades
of orange and dark blues. We did have some confusion inland where the land
features were colored the same as the Gulf of Mexico. We could further refine this
process by defining the class ranges manually instead of just using the histogram.

Chapter 6

[223]

Extracting features from images
The ability to classify an image leads us to another remote-sensing capability.
Now that you've worked with shapefiles over the last few chapters, have you
ever wondered where they come from? Vector GIS data such as shapefiles are
typically extracted from remotely-sensed images like the examples we've seen
so far. Extraction normally involves an analyst clicking around each object in an
image and drawing the feature to save it as data. But it is also possible with good
remotely-sensed data and proper pre-processing to automatically extract features
from an image.

For this example we'll take a subset of our Landsat 8 thermal image to isolate a group
of barrier islands as seen in the following screenshot:

You can download this image here:

http://geospatialpython.googlecode.com/files/islands.zip

Our goal with this example is to automatically extract the three islands in the image
as a shapefile. But before we can do that, we need to mask out any data we aren't
interested in. For example, the water has a wide range of pixel values, as do the
islands themselves. If we just want to extract the islands themselves, we need to push
all pixel values into just two bins to make the image black and white. This technique
is called thresholding. The islands in the image have enough contrast with the water
in the background such that thresholding should isolate them nicely.

http://geospatialpython.googlecode.com/files/islands.zip
http://geospatialpython.googlecode.com/files/islands.zip

Python and Remote Sensing

[224]

In the following script we will read the image into an array and then histogram the
image using only two bins. We will then use the colors black and white to color the
two bins. This script is simply a modified version of our classification script with a
very limited output:

import gdalnumeric

Input file name (thermal image)
src = "islands.tif"

Output file name
tgt = "islands_classified.tiff"

Load the image into numpy using gdal
srcArr = gdalnumeric.LoadFile(src)

Split the histogram into 20 bins as our classes
classes = gdalnumeric.numpy.histogram(srcArr, bins=2)[1]

lut = [[255,0,0],[0,0,0],[255,255,255]]

Starting value for classification
start = 1

Set up the output image
rgb = gdalnumeric.numpy.zeros((3, srcArr.shape[0],
srcArr.shape[1],), gdalnumeric.numpy.float32)

Process all classes and assign colors
for i in range(len(classes)):
 mask = gdalnumeric.numpy.logical_and(start <= srcArr, srcArr
<= classes[i])
 for j in range(len(lut[i])):
 rgb[j] = gdalnumeric.numpy.choose(mask, (rgb[j],
lut[i][j]))
 start = classes[i]+1

Save the image
gdalnumeric.SaveArray(rgb.astype(gdalnumeric.numpy.uint8), tgt,
format="GTIFF", prototype=src)

Chapter 6

[225]

The output looks great as seen in the following screenshot:

The islands are clearly isolated so our extraction script will be able to identify them
as polygons and save them to a shapefile. The GDAL library has a method called
Polygonize() that does exactly that. It groups all sets of isolated pixels in an image
and saves them out as a feature data set. One interesting technique we will use in this
script is to use our input image as a mask. The Polygonize() method allows you
to specify a mask that will use the color black as a filter that will prevent the water
from being extracted as a polygon, so we'll end up with just the islands. Another area
to note in the script is that we copy the georeferencing information from our source
image to our shapefile to geolocate it properly:

import gdal
import ogr, osr

Thresholded input raster name
src = "islands_classified.tiff"
Output shapefile name
tgt = "extract.shp"
OGR layer name
tgtLayer = "extract"
Open the input raster

Python and Remote Sensing

[226]

srcDS = gdal.Open(src)
Grab the first band
band = srcDS.GetRasterBand(1)
Force gdal to use the band as a mask
mask = band
Set up the output shapefile
driver = ogr.GetDriverByName("ESRI Shapefile")
shp = driver.CreateDataSource(tgt)
Copy the spatial reference
srs = osr.SpatialReference()
srs.ImportFromWkt(srcDS.GetProjectionRef())
layer = shp.CreateLayer(tgtLayer, srs=srs)
Set up the dbf file
fd = ogr.FieldDefn("DN", ogr.OFTInteger)
layer.CreateField(fd)
dst_field = 0
Automatically extract features from an image!
extract = gdal.Polygonize(band, mask, layer, dst_field, [], None)

The output shapefile is simply called extract.shp. If you remember in Chapter 4,
PNGCanvas, we created a quick pure-Python script using PyShp and PNGCanvas to
visualize shapefiles. We'll bring that script back here to look at our shapefile, but
we'll add something to it. The largest island has a small lagoon which shows up as
a hole in the polygon. In order to properly render it, we have to deal with parts in
a shapefile record. The previous example using that script did not do that, so we'll
add that piece as we loop through the shapefile features. The code comments in the
following code outline the technique:

import shapefile
import pngcanvas
Open the extracted islands
r = shapefile.Reader("extract.shp")
Setup the world to pixels conversion
xdist = r.bbox[2] - r.bbox[0]
ydist = r.bbox[3] - r.bbox[1]
iwidth = 800
iheight = 600
xratio = iwidth/xdist
yratio = iheight/ydist
polygons = []
Loop through all shapes
for shape in r.shapes():
 # Loop through all parts to catch
 # polygon holes!
 for i in range(len(shape.parts)):

Chapter 6

[227]

 pixels=[]
 pt = None
 if i<len(shape.parts)-1:
 pt = shape.points[shape.parts[i]:shape.parts[i+1]]
 else:
 pt = shape.points[shape.parts[i]:]
 for x,y in pt:
 px = int(iwidth - ((r.bbox[2] - x) * xratio))
 py = int((r.bbox[3] - y) * yratio)
 pixels.append([px,py])
 polygons.append(pixels)
Set up the output canvas
c = pngcanvas.PNGCanvas(iwidth,iheight)
Loop through the polygons and draw them
for p in polygons:
 c.polyline(p)
Save the image
f = file("extract.png", "wb")
f.write(c.dump())
f.close()

The following screenshot shows our automatically extracted island features!
Commercial packages that do this kind of work can easily cost tens of thousands of
dollars. While these packages are very robust, it is still fun to see how far you can get
with simple Python scripts and a few open source packages. In many cases you can
do everything you need to do.

Python and Remote Sensing

[228]

The western-most island contains the polygon hole as shown in the following
screenshot, which is zoomed to that area:

If you want to see what would happen if we didn't deal with the polygon
holes, then just run the version of the script from Chapter 4, Geospatial
Python Toolbox, on this same shapefile to compare the difference. The
lagoon is not easy to see, but you will find it is if you use the other script.

Automated feature extraction is a holy grail within geospatial analysis because of
the cost and tedious effort required to manually extract features. The key to feature
extraction is proper image classification. Automated feature extraction works well
with water bodies (and islands), roads, farm fields, buildings, and other features
that tend to have high-contrast pixel values with their background.

Chapter 6

[229]

Change detection
You now have a good grasp of working with remote sensing data using GDAL,
NumPy, and PIL. It's time to move on to our most complex example: change
detection. Change detection is the process of taking two geo-registered images of the
exact same area from two different dates and automatically identifying differences.
It is really just another form of image classification. And just like our previous
classification examples, it can range from trivial techniques like those used here, to
highly-sophisticated algorithms that provide amazingly precise and accurate results.

For this example we'll use two images from a coastal area. These images show
a populated area before and after a major hurricane, so there are significant
differences, many of which are easy to visually spot, making these samples good
for learning change detection. Our technique is to simply subtract the first image
from the second to get a simple image difference using NumPy. This is a valid and
often used technique. The advantages are it is comprehensive and very reliable.
The disadvantages of this overly simple algorithm are it doesn't isolate the type of
change. Many changes are insignificant for analysis (such as the waves on the ocean).
In this example we'll mask the water fairly effectively to avoid that distraction and
only focus on the higher reflectance values towards the right side of the difference
image histogram.

You can download the before image from:
http://geospatialpython.googlecode.com/files/before.zip

You can download the after image from:
http://geospatialpython.googlecode.com/files/after.zip

Note these images are quite large—24 MB and 64 MB respectively!

http://geospatialpython.googlecode.com/files/after.zip
http://geospatialpython.googlecode.com/files/after.zip

Python and Remote Sensing

[230]

These images are displayed on the following pages. The before image is
panchromatic, while the after image is false color. Panchromatic images are created
by sensors that capture all visible light and are typically higher resolution than
multi-spectral sensors that capture bands containing restricted wavelengths.
Normally you would use two identical band combinations, but these samples
will work for our purposes. The visual markers we can use to evaluate the change
detection include a bridge in the southeast quadrant of the image that spans from the
peninsula to the edge of the image. This bridge is clearly visible in the before image
and is reduced to pilings by the hurricane. Another marker is a boat in the northwest
quadrant which appears in the after image as a white trail but is not in the before
image. A neutral marker is the water and the state highway which runs through
town and connects to the bridge. This feature is easily visible concrete which does
not change significantly between the two images. The following is a screenshot of
the before image:

To view these images up close yourself, you should use QGIS or OpenEV (FWTools)
described in the sections Quantum GIS and OpenEv in Chapter 3, The Geospatial
Technology Landscape to view them easily. The next image is the after image:

Chapter 6

[231]

So, to perform a change detection, our example script will execute the following steps:

1.	 Read both images into NumPy arrays with gdalnumeric.
2.	 Subtract the before from the after image (difference = after – before).
3.	 Divide the image into 5 classes.
4.	 Set our color table to use black to mask the lower classes to filter water

and roads.
5.	 Assign the colors to the classes.
6.	 Save the image.
7.	 The script is relatively short:

import gdal, gdalnumeric
import numpy as np

"Before" image
im1 = "before.tif"
"After" image
im2 = "after.tif"
Load before and after into arrays
ar1 = gdalnumeric.LoadFile(im1).astype(np.int8)
ar2 = gdalnumeric.LoadFile(im2)[1].astype(np.int8)

Python and Remote Sensing

[232]

Perform a simple array difference on the images
diff = ar2 - ar1
Set up our classification scheme to try
and isolate significant changes
classes = np.histogram(diff, bins=5)[1]
The color black is repeated to mask insignificant changes
lut = [[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,255,0],[255,0,0]]
Starting value for classification
start = 1
Set up the output image
rgb = np.zeros((3, diff.shape[0], diff.shape[1],), np.int8)
Process all classes and assign colors
for i in range(len(classes)):
 mask = np.logical_and(start <= diff, diff <= classes[i])
 for j in range(len(lut[i])):
 rgb[j] = np.choose(mask, (rgb[j], lut[i][j]))
 start = classes[i]+1
Save the output image
gdalnumeric.SaveArray(rgb, "change.tif", format="GTiff",\
prototype=im2)

Here's what our initial difference image looks like:

Chapter 6

[233]

For the most part, the green classes represent areas where something was added. The
red would be a darker value where something was probably removed. We can see
that the boat trail is green in the northwest quadrant. We also see in the image a lot
of change in vegetation, as would be expected probably from seasonal differences.
The bridge is an anomaly because the exposed pilings are brighter than the darker
surface of the original bridge. Concrete is a major indicator in change detection
because it is very bright in sunlight and is usually a sign of new development.
Conversely, if a building is torn down and the concrete removed, the difference is
also easy to identify. So our simple difference algorithm used here isn't perfect, but it
could be greatly improved using thresholding, masking, better class definitions, and
other techniques.

To really appreciate our change detection product you can overlay it on the before or
after image in QGIS and set the color black to be transparent as seen in this image:

Python and Remote Sensing

[234]

Summary
In this chapter we covered the foundations of remote sensing including:

•	 Band swapping
•	 Histograms
•	 Image classification
•	 Feature extraction
•	 Change detection

As in the other chapters, we stayed as close to pure Python as possible, and where
we compromised on this goal for processing speed, we limited the software libraries
as much as possible to keep things simple. But, if you have the tools from this
chapter installed, you really have a complete remote sensing package that is
limited only by your desire to learn.

The authors of GDAL have a set of Python examples, which cover some
advanced topics that may be of interest: http://svn.osgeo.org/
gdal/trunk/gdal/swig/python/samples

In the next chapter we'll investigate elevation data. Elevation data doesn't fit squarely
in GIS or remote sensing, as it has elements of both types of processing.

http://svn.osgeo.org/gdal/trunk/gdal/swig/python/samples
http://svn.osgeo.org/gdal/trunk/gdal/swig/python/samples

Python and Elevation Data
Elevation data is one of the most fascinating types of geospatial data. It represents
many different types of data sources and formats. Elevation data can display
properties of both vector and raster data resulting in unique data products.
Elevation data can serve the following purposes:

•	 Terrain visualization
•	 Land cover classification
•	 Hydrology modelling
•	 Transportation routing
•	 Feature Extraction

You can't perform all of these options with both raster and vector data but because
elevation data is three dimensional, containing x, y, and z coordinates, you can often
get more out of these data than any other type.

In this chapter, we're going to learn to read and write elevation data in both raster
and vector point formats. We'll also create some derivative products. The topics
we'll cover are:

•	 ASCII Grid elevation data files
•	 Shaded-relief images
•	 Elevation contours
•	 Gridding LIDAR data
•	 Creating a 3D mesh

Python and Elevation Data

[236]

ASCII Grid files
For most of this chapter we'll use ASCII Grid files or ASCIIGRID. These files are
a type of raster data usually associated with elevation data. This grid format stores
data as text in equally sized square rows and columns with a simple header. Each
cell in a row/column stores a single numeric value, which can represent some
feature of terrain, such as elevation, slope, or flow direction. The simplicity makes it
an easy-to-use, platform independent raster format. This format is described in the
ASCII GRIDS section in Chapter 2, Geospatial Data.

Throughout the book we've relied on GDAL and to some extent PIL to read and
write geospatial raster data including the gdalnumeric module to load raster data
into NumPy arrays. But ASCIIGRID allows us to read and write rasters using only
Python or even NumPy.

As a reminder, some elevation data sets use image formats to store
elevation data. Most image formats only support 8-bit values ranging
between 0-255; however, some formats, including TIFF, can store larger
values. Geospatial software can typically display these data sets; however,
traditional image software and libraries usually do not. For simplicity in
this chapter, we'll stick to the ASCIIGRID format for data, which is both
human and machine readable, as well as being widely supported.

Reading grids
NumPy has the ability to read the ASCIIGRID format directly using its loadtxt()
method designed to read arrays from text files. The first six lines consist of the
header, which are not part of the array. The following lines are a sample of a
grid header:

ncols 250
nrows 250
xllcorner 277750.0
yllcorner 6122250.0
cellsize 1.0
NODATA_value -9999

Chapter 7

[237]

Line 1 contains the number of columns in the grid, which is synonymous with the
x axis. Line 2 represents the y axis described as a number of rows. Line 3 represents
the x coordinate of the lower left corner, which is the minimum x value. Line 4
is the corresponding minimum y value in the lower left corner of the grid. Line
5 is the cell size or resolution of the raster. Because the cells are square, only one
size value is needed, as opposed to the separate x and y resolution values in most
geospatial rasters. The fifth line is no data value, which is a number assigned to any
cell for which a value is not provided. Geospatial software ignores these cells for
calculations and often allows special display settings for it, such as coloring them
black. The value -9999 is a common no data placeholder value used in the industry,
which is easy to detect in software. In some examples, we'll use the number zero;
however, zero can often also be a valid data value.

The numpy.loadtxt() method includes an argument called skiprows, which allows
you to specify a number of lines in the file to be skipped before reading array values.
To try this technique out you can download a sample grid file called myGrid.asc at
the following URL:

https://geospatialpython.googlecode.com/files/myGrid.asc

So for myGrid.asc we would use the following code:

myArray = numpy.loadtxt("myGrid.asc", skiprows=6)

This line results in the variable myArray containing a numpy array derived from the
ASCIIGRID file myGrid.asc. The ASC file name extension is used by the ASCIIGRID
format. This code works great but there's one problem. NumPy allows us to skip
the header but not keep it. And we need to keep it to have a spatial reference for
our data for processing, as well as for saving this grid or creating a new one.

To solve this problem we'll use Python's built-in linecache module to grab the
header. We could open the file, loop through the lines, store each one in a variable,
and then close the file. But linecache reduces the solution to a single line. The
following line reads the first line in the file into a variable called line1:

import linecache
line1 = linecache.getline("myGrid.asc", 1)

In the examples in this chapter we'll use this technique to create a simple header
processor that can parse these headers into python variables in just a few lines.

Python and Elevation Data

[238]

Writing grids
Writing grids in Numpy is just as easy as reading them. We use the corresponding
numpy.savetxt() function to save a grid to a text file. The only catch is, we must
build and add the six lines of header information before we dump the array to the
file. This process is slightly different depending on if you are using NumPy versions
before 1.7 or after. In either case, you build the header as a string first. If you are
using NumPy 1.7 or later, the savetext() method has an optional argument called
header, which lets you specify a string as an argument. You can quickly check your
NumPy version from the command line using the following command:

python -c "import numpy;print numpy.__version__"

1.6.1

The backwards compatible method is to open a file, write the header then dump the
array. Here is a sample of the Version 1.7 approach to save an array called myArray
to an ASCIIGRID file called myGrid.asc:

header = "ncols %s\n" % myArray.shape[1]
header += "nrows %s\n" % myArray.shape[0]
header += "xllcorner 277750.0\n"
header += "yllcorner 6122250.0\n"
header += "cellsize 1.0\n"
header += "NODATA_value -9999\n"
numpy.savetxt("myGrid.asc", myArray, header=header, fmt="%1.2f")

We make use of python format strings, which allow you to put placeholders in a
string to format python objects to be inserted. The %s format variable turns whatever
object you reference into a string. In this case we are referencing the number of
columns and rows in the array. In NumPy, an array has both a size and shape
property. The size property returns an integer for the number of values in the
array. The shape property returns a tuple with the number of rows and columns,
respectively. So, in the preceding example, we use the shape property tuple to add
the row and column counts to the header of our ASCII Grid. Notice we also add a
trailing newline character for each line (\n). There is no reason to change the x and y
values, cell size, or nodata value unless we altered them in the script. The savetxt()
method also has a fmt argument, which allows you to use Python format strings to
specify how the array values are written. In this case the %1.2f value specifies floats
with at least one number and no more than two decimal places.

Chapter 7

[239]

The backwards compatible version for NumPy, before 1.6, builds the header string in
the same way but creates the file handle first:

import numpy
f = open("myGrid.asc", "w")
f.write(header)
numpy.savetxt(f, myArray, fmt="%1.2f")
f.close()

In the examples in this chapter, we'll introduce Python with an approach for writing
files, which provides more graceful file management by ensuring files are closed
properly. If any exceptions are thrown, the file is still closed cleanly:

with open("myGrid.asc", "w") as f:
 f.write(header)
 numpy.savetxt(f, myArray, fmt="%1.2f")

As you'll see in the upcoming examples, this ability to produce valid geospatial data
files using only NumPy is quite powerful. In the next couple of examples we'll be
using an ASCIIGRID Digital Elevation Model (DEM) of a mountainous area near
Vancouver, British Columbia in Canada. You can download this sample as a ZIP file
at the following URL:

https://geospatialpython.googlecode.com/files/dem.zip

The following image is the raw DEM colorized using QGIS with a color ramp that
makes lower elevation values dark blue and higher elevation values bright red:

Python and Elevation Data

[240]

While we can conceptually understand the data this way, it is not an intuitive way to
visualize the data. Let's see if we can do better.

Creating a shaded relief
Shaded relief maps color elevation in a way that it looks as if the terrain is cast in a
low-angle light, which creates bright spots and shadows. The aesthetic styling creates
an almost photographic illusion, which is easy to grasp to understand the variation
in terrain. It is important to note that this style is truly an illusion as the light is often
physically inaccurate and the elevation is usually exaggerated to increase contrast.

In this example, we'll use the ASCII DEM referenced previously to create another
grid, which represents a shaded relief version of the terrain in NumPy. This terrain is
quite dynamic so we won't need to exaggerate the elevation; however, the script has
a variable called z, which can be increased from 1.0 to scale the elevation up.

After we define all the variables including input and output file names, you'll see
the header parser based on the linecache module, which also uses a python list
comprehension to loop and parse the lines that are then split from a list into the six
variables. We also create a y cell size called ycell, which is just the inverse of the cell
size. If we don't do this the resulting grid will be transposed.

Note we define file names for slope and aspect grids, which are two intermediate
products that are combined to create the final product. These intermediate grids
are output as well, just to take a look. They can also serve as inputs to other types
of products.

This script uses a three by three windowing method to scan the image and smooth
out the center value in these mini grids. But because we are using NumPy, we can
process the entire array at once, as opposed to a lengthy series of nested loops. This
technique is based on the excellent work of a developer called Michal Migurski, who
implemented the clever NumPy version of Matthew Perry's C++ implementation,
which served as the basis for the DEM tools in the GDAL suite.

After the slope and aspect are calculated, they are used to output the shaded relief.
Finally, everything is saved to disk from NumPy. In the savetxt() method we
specify a 4 integer format string, as the peak elevations are several thousand feet:

from linecache import getline
import numpy as np

File name of ASCII digital elevation model
source = "dem.asc"
File name of the slope grid

Chapter 7

[241]

slopegrid = "slope.asc"
File name of the aspect grid
aspectgrid = "aspect.asc"
Output file name for shaded relief
shadegrid = "relief.asc"
Shaded elevation parameters
Sun direction
azimuth=315.0
Sun angle
altitude=45.0
Elevation exageration
z=1.0
Resolution
scale=1.0
No data value for output
NODATA = -9999

Needed for numpy conversions
deg2rad = 3.141592653589793 / 180.0
rad2deg = 180.0 / 3.141592653589793

Parse the header using a loop and
the built-in linecache module
hdr = [getline(source, i) for i in range(1,7)]
values = [float(h.split(" ")[-1].strip()) \
 for h in hdr]
cols,rows,lx,ly,cell,nd = values
xres = cell
yres = cell * -1

Load the dem into a numpy array
arr = np.loadtxt(source, skiprows=6)

Exclude 2 pixels around the edges which are usually NODATA.
Also set up structure for a 3x3 window to process the slope
throughout the grid
window = []
for row in range(3):
 for col in range(3):
 window.append(arr[row:(row + arr.shape[0] - 2), \
 col:(col + arr.shape[1] - 2)])

Process each cell
x = ((z * window[0] + z * window[3] + z * \

Python and Elevation Data

[242]

 window[3] + z * window[6]) - \
 (z * window[2] + z * window[5] + z * \
 window[5] + z * window[8])) / (8.0 * xres * scale);

y = ((z * window[6] + z * window[7] + z * window[7] + z * window[8]) \
 - (z * window[0] + z * window[1] + z * window[1] + z *
 window[2])) \
 / (8.0 * yres * scale);

Calculate slope
slope = 90.0 - np.arctan(np.sqrt(x*x + y*y)) * rad2deg

Calculate aspect
aspect = np.arctan2(x, y)

Calculate the shaded relief
shaded = np.sin(altitude * deg2rad) * np.sin(slope * deg2rad) \
 + np.cos(altitude * deg2rad) * np.cos(slope * deg2rad) \
 * np.cos((azimuth - 90.0) * deg2rad - aspect);
shaded = shaded * 255

Rebuild the new header
header = "ncols %s\n" % shaded.shape[1]
header += "nrows %s\n" % shaded.shape[0]
header += "xllcorner %s\n" % (lx + (cell * (cols -
 shaded.shape[1])))
header += "yllcorner %s\n" % (ly + (cell * (rows -
 shaded.shape[0])))
header += "cellsize %s\n" % cell
header += "NODATA_value %s\n" % NODATA

Set no-data values
for pane in window:
 slope[pane == nd] = NODATA
 aspect[pane == nd] = NODATA
 shaded[pane == nd] = NODATA

Open the output file, add the header, save the slope grid
with open(slopegrid, "wb") as f:
 f.write(header)
 np.savetxt(f, slope, fmt="%4i")

Chapter 7

[243]

Open the output file, add the header, save the slope grid
with open(aspectgrid, "wb") as f:
 f.write(header)
 np.savetxt(f, aspect, fmt="%4i")

Open the output file, add the header, save the array
with open(shadegrid, "wb") as f:
 f.write(header)
 np.savetxt(f, shaded, fmt="%4i")

If we load the output grid into QGIS and specify the styling to stretch the
image to the min and max, we see the following image. You can also open the
image in the FWTools OpenEV application discussed in the Installing GDAL section
in Chapter 4, Geospatial Python Toolbox, which will automatically stretch the image
for optimal viewing.

Python and Elevation Data

[244]

As you can see, the preceding image is much easier to comprehend than the original
pseudo-color representation we examined originally. Next, let's look at the slope
raster used to create the shaded relief:

The slope shows the gradual decline in elevation from high points to low points in
all directions of the data set. Slope is an especially useful input for many types of
hydrology models.

Chapter 7

[245]

The aspect shows the maximum rate of downslope change from one cell to its
neighbors. If you compare the aspect image to the shaded relief image you can see
the red and gray values of the aspect image correspond to shadows in the shaded
relief. So the slope is primarily responsible for turning the DEM into a terrain relief
while the aspect is responsible for the shading.

Creating elevation contours
Now let's look at another way to better visualize elevation using contours. A contour
is an isoline along the same elevation in a data set. Contours are usually stepped
at intervals to create an intuitive way to represent elevation data, both visually
and numerically, using a resource efficient vector data set.

The input for generating contours is our DEM and the output is a shapefile. The
algorithm for generating contours is fairly complex and very difficult to implement
using NumPy's linear algebra. So our solution in this case is to fall back on the
GDAL library, which has a contouring method available through the Python API.
In fact, the majority of this script is just setting up the OGR library code needed
to output shapefile. The actual contouring is a single method call named gdal.
ContourGenerate(). Just before that call, there are comments defining the
method's arguments. The most important ones are as follows:

•	 contourInterval: It is the distance in data set units between contours
•	 contourBase: It is the starting elevation for contouring
•	 fixedLevelCount: It specifies a fixed number of contours as opposed

to distance
•	 idField: It is a name for a required shapefile dbf field, usually just called ID
•	 elevField: It is a name for a required shapefile dbf field for the elevation

value useful for labeling in maps

You should have GDAL and OGR installed from Installing GDAL section in Chapter
4, Geospatial Python Toolbox, In the following code we will define the input DEM file
name, the output shapefile name, create the shapefile data source with OGR, get the
OGR layer, open the DEM, and generate contours on the OGR layer:

import gdal
import ogr

Elevation DEM
source = "dem.asc"
Output shapefile
target = "contour"

Python and Elevation Data

[246]

ogr_ds = ogr.GetDriverByName('ESRI Shapefile').CreateDataSource(target
+ ".shp")
ogr_lyr = ogr_ds.CreateLayer(target, geom_type = ogr.wkbLineString25D)
field_defn = ogr.FieldDefn('ID', ogr.OFTInteger)
ogr_lyr.CreateField(field_defn)
field_defn = ogr.FieldDefn('ELEV', ogr.OFTReal)
ogr_lyr.CreateField(field_defn)

gdal.ContourGenerate() arguments
Band srcBand,
double contourInterval,
double contourBase,
double[] fixedLevelCount,
int useNoData,
double noDataValue,
Layer dstLayer,
int idField,
int elevField

ds = gdal.Open('dem.asc')
gdal.ContourGenerate(ds.GetRasterBand(1), \
 400, 10, [], 0, 0, ogr_lyr, 0, 1)

Now let's draw the contour shapefile we just created using PNGCanvas, introduced in
the PNGCanvas section of Chapter 4, Geospatial Python Toolbox.

import shapefile
import pngcanvas
Open the contours
r = shapefile.Reader("contour.shp")
Setup the world to pixels conversion
xdist = r.bbox[2] - r.bbox[0]
ydist = r.bbox[3] - r.bbox[1]
iwidth = 800
iheight = 600
xratio = iwidth/xdist
yratio = iheight/ydist
contours = []
Loop through all shapes
for shape in r.shapes():
 # Loop through all parts
 for i in range(len(shape.parts)):
 pixels=[]

Chapter 7

[247]

 pt = None
 if i<len(shape.parts)-1:
 pt = shape.points[shape.parts[i]:shape.parts[i+1]]
 else:
 pt = shape.points[shape.parts[i]:]
 for x,y in pt:
 px = int(iwidth - ((r.bbox[2] - x) * xratio))
 py = int((r.bbox[3] - y) * yratio)
 pixels.append([px,py])
 contours.append(pixels)
Set up the output canvas
canvas = pngcanvas.PNGCanvas(iwidth,iheight)
PNGCanvas accepts rgba byte arrays for colors
red = [0xff,0,0,0xff]
canvas.color = red
Loop through the polygons and draw them
for c in contours:
 canvas.polyline(c)
Save the image
f = open("contours.png", "wb")
f.write(canvas.dump())
f.close()

We end up with the following image:

Python and Elevation Data

[248]

If we bring our shaded relief ASCIIGRID and the shapefile into a GIS, such as QGIS,
we can create a simple topographic map as follows. You can use the elevation dbf
field you specified in the script to label the contour lines with the elevation.

The techniques in these NumPy grid examples provide the building blocks for all
kinds of elevation products. The USGS has an excellent web page, with sample
elevation-based data layers, including the examples we created as well as some
more advanced types:

http://edna.usgs.gov/Edna/datalayers.asp

Next we'll work with one of the most complex elevation data types: LIDAR data.

Working with LIDAR
LIDAR stands for Light Detection and Ranging. It is similar to radar-based images
but uses finite laser beams, which hit the ground hundreds of thousands of times
per second to collect a huge amount of very fine (x,y,z) locations as well as time and
intensity. The intensity value is what really separates LIDAR from other data types.
For example, but the asphalt roof top of a building may be the same elevation as the
top of a nearby tree, the intensities will be different. And just like remote sensing
radiance values in a multispectral satellite image allow us to build classification
libraries, the intensity values of LIDAR data allow us to classify and colorize
LIDAR data as well.

Chapter 7

[249]

The high volume and precision of LIDAR actually make it difficult to use. A LIDAR
data set is referred to as a point cloud because the shape of the data set is usually
irregular, as the data is three dimensional with outlying points. There are not
many software packages which effectively visualize point clouds. Furthermore,
an irregular shaped collection of finite points is just hard to interact with, even
when using appropriate software.

For these reasons, one of the most common operations on LIDAR data is to
project the data and resample it to a regular grid. We'll do exactly that using a small
LIDAR data set. This data set is approximately 7 mb uncompressed, and contains
over 600,000 points. The data captures some easily identifiable features, such as
buildings, trees, and cars in parking lots. You can download the zipped data set
at the following URL:

https://geospatialpython.googlecode.com/files/lidar.zip

The file format is a very common binary format specific to LIDAR called LAS.
Unzip this file to your working directory. In order to read this format, we'll use
a pure Python library called Laspy. You can install it from PyPI:

easy_install laspy

Or

pip install laspy

Creating a grid from LIDAR
With laspy installed, we are ready to create a grid from LIDAR. This script is fairly
straightforward. We loop through the (x,y) point locations in the LIDAR data and
project them onto our grid with a cell size of 1 meter. Because of the precision of the
LIDAR data, we'll end up with multiple points in a single cell. We average these
points to create a common elevation value. Another issue we have to deal with is
data loss. Any time you resample data, you lose information. In this case we'll end
up with no data holes in the middle of the raster. To deal with this issue, we fill these
holes with average values from surrounding cells, which is a form of interpolation.

We only need two modules, both available on PyPI, as shown in the following code:

from laspy.file import File
import numpy as np
Source LAS file
source = "lidar.las"

Output ASCII DEM file

Python and Elevation Data

[250]

target = "lidar.asc"

Grid cell size (data units)
cell = 1.0

No data value for output DEM
NODATA = 0

Open LIDAR LAS file
las = File(source, mode="r")

#xyz min and max
min = las.header.min
max = las.header.max

Get the x axis distance
xdist = max[0] - min[0]

Get the y axis distance
ydist = max[1] - min[1]

Number of columns for our grid
cols = int(xdist) / cell

Number of rows for our grid
rows = int(ydist) / cell

cols += 1
rows += 1

Track how many elevation
values we aggregate
count = np.zeros((rows, cols)).astype(np.float32)
Aggregate elevation values
zsum = np.zeros((rows, cols)).astype(np.float32)

Y resolution is negative
ycell = -1 * cell

Project x,y values to grid
projx = (las.x - min[0]) / cell
projy = (las.y - min[1]) / ycell
Cast to integers and clip for use as index
ix = projx.astype(np.int32)

Chapter 7

[251]

iy = projy.astype(np.int32)

Loop through x,y,z arrays, add to grid shape,
and aggregate values for averaging
for x,y,z in np.nditer([ix, iy, las.z]):
 count[y, x]+=1
 zsum[y, x]+=z

Change 0 values to 1 to avoid numpy warnings,
and NaN values in array
nonzero = np.where(count>0, count, 1)
Average our z values
zavg = zsum/nonzero

Interpolate 0 values in array to avoid any
holes in the grid
mean = np.ones((rows,cols)) * np.mean(zavg)
left = np.roll(zavg, -1, 1)
lavg = np.where(left>0,left,mean)
right = np.roll(zavg, 1, 1)
ravg = np.where(right>0,right,mean)
interpolate = (lavg+ravg)/2
fill=np.where(zavg>0,zavg,interpolate)

Create our ASCII DEM header
header = "ncols %s\n" % fill.shape[1]
header += "nrows %s\n" % fill.shape[0]
header += "xllcorner %s\n" % min[0]
header += "yllcorner %s\n" % min[1]
header += "cellsize %s\n" % cell
header += "NODATA_value %s\n" % NODATA

Open the output file, add the header, save the array
with open(target, "wb") as f:
 f.write(header)
 # The fmt string ensures we output floats
 # that have at least one number but only
 # two decimal places
 np.savetxt(f, fill, fmt="%1.2f")

Python and Elevation Data

[252]

The result of our script is an ASCIIGRID, which looks like the following image when
viewed in OpenEV. Higher elevations are lighter while lower elevations are darker.
Even in this form you can see buildings, trees, and cars.

If we assigned a heat map color ramp, the colors give you a sharper sense of the
elevation differences:

Chapter 7

[253]

So what happens if we run this output DEM through our shaded relief script
from earlier? There's a big difference between straight-sided buildings and sloping
mountains. If you change the input and output names in the shaded relief script
to process the LIDAR DEM we get the following result:

The gently rolling slope of the mountainous terrain is reduced to outlines of major
features in the image. And in the aspect image the changes are so sharp and over
such short distances that the output image is very chaotic to view as shown in the
following screenshot:

Python and Elevation Data

[254]

But despite the difference in these images and the coarser but smoother mountain
versions, we still get a very nice shaded relief, which somewhat visually resembles
a black and white photograph:

Using PIL to visualize LIDAR
The previous DEM images in this chapter were visualized using QGIS and OpenEV.
But we can also create output images in Python by introducing some new functions
of the Python Imaging Library (PIL), which we didn't use in previous chapters. In
this example we'll use the PIL.ImageOps module, which has functions for histogram
equalization and automatic contrast enhancement. We'll use PIL's fromarray()
method to import the data from NumPy. Let's see how close we can get to the
output of the desktop GIS programs pictured in this chapter with the help of the
following code:

import numpy as np
import Image
import ImageOps

Source LAS file
source = "relief.asc"

Output ASCII DEM file
target = "relief.bmp"

Chapter 7

[255]

Load the ASCII DEM into a numpy array
arr = np.loadtxt(source, skiprows=6)

Convert array to numpy image
im = Image.fromarray(arr).convert('RGB')

Enhance the image:
equalize and increase contrast
im = ImageOps.equalize(im)
im = ImageOps.autocontrast(im)

Save the image
im.save(target)

As you can see in the following screenshot, the enhanced shaded relief has a sharper
relief than the previous version:

Python and Elevation Data

[256]

Now let's colorize our shaded relief. We'll use the built-in Python colorsys module
for color space conversion. Normally, we specify colors as RGB values. But to create
a color ramp for a heat map scheme we'll use HSV values, which stand for Hue,
Saturation, Value to generate our colors. The advantage of HSV is you can tweak the
H value as a degree between zero and 360 on a color wheel. Using a single value for
hue allows you to use a linear ramping equation, which is much easier than trying to
deal with combinations of three separate RGB values. The following image from the
online magazine Qt Quarterly illustrates the HSV color model:

The colorsys module lets you switch back and forth between HSV and RGB values.
The module returns percentages for RGB values, which then must be mapped to the
0-255 scale for each color.

In the following code we'll convert the ASCII DEM to a PIL image, build our color
palette, apply the color palette to the grayscale image, and save the image:

import numpy as np
import Image
import ImageOps
import colorsys

Source LIDAR file
source = "lidar.asc"

Output image file
target = "lidar.bmp"

Load the ASCII DEM into a numpy array

Chapter 7

[257]

arr = np.loadtxt(source, skiprows=6)

Convert the numpy array to a PIL image
im = Image.fromarray(arr).convert('L')

Enhance the image
im = ImageOps.equalize(im)
im = ImageOps.autocontrast(im)

Begin building our color ramp
palette = []

Hue, Saturaction, Value
color space
h = .67
s = 1
v = 1

We'll step through colors from:
blue-green-yellow-orange-red.
Blue=low elevation, Red=high-elevation
step = h/256.0

Build the palette
for i in range(256):
 rp,gp,bp = colorsys.hsv_to_rgb(h,s,v)
 r = int(rp*255)
 g = int(gp*255)
 b = int(bp*255)
 palette.extend([r,g,b])
 h-=step

Apply the palette to the image
im.putpalette(palette)

Save the image
im.save(target)

Python and Elevation Data

[258]

The code produces the following image with higher elevations in warmer colors and
lower elevations in cooler colors:

In this image we actually get more variation than the QGIS version. We could
potentially improve this image with a smoothing algorithm. But as you can see,
we have the full range of our color ramp expressed from cool to warm colors as
the elevation change increases.

Creating a Triangulated Irregular Network
(TIN)
The following example is our most sophisticated example yet. A Triangulated
Irregular Network or TIN is a vector representation of a point data set in a vector
surface of points connected as triangles. The most common type of TIN is based on
Delaunay triangulation, which includes all points without redundant triangles.
The purpose of the TIN is to use vector data that requires storing fewer points
than an equivalent raster data set. It can also be generated on the fly for streaming
applications in which you move around interactively in the data set, so the entire
terrain isn't visible all at once.

Chapter 7

[259]

The Delaunay triangulation is very complex. We'll use a pure Python library
written by Bill Simons as a part of Steve Fortune's Delaunay triangulation
algorithm called voronoi.py to calculate the triangles in our LIDAR data.
You can download the script to your working directory from the following
URL: https://geospatialpython.googlecode.com/files/voronoi.py

This script reads the LAS file, generates the triangles, then loops through them and
writes out a shapefile. For this example, we'll use a clipped version of our LIDAR
data to reduce the area for processing. If we run our entire data set of 600,000 plus
points, the script will run for hours and generate over half a million triangles. You
can download the clipped LIDAR data set as a zip file at the following URL:

https://geospatialpython.googlecode.com/files/clippedLAS.zip

We have several status messages, which print while the script runs. We also use the
Python built-in cPickle module to save our triangles, and shapefile objects to speed
up future runs. Unzip the LAS file and run the following code to generate a shapefile
called mesh.shp:

import cPickle
import os
import time
import math
Third-party Python modules:
import numpy as np
import shapefile
from laspy.file import File
import voroni

Source LAS file
source = "clippedLAS.las"

Output shapefile
target = "mesh"

Triangles archive
archive = "triangles.p"

Pyshp archive
pyshp = "mesh_pyshp.p"

Point class required by
the voroni module
class Point:
 def __init__(self,x,y):
 self.px = x
 self.py = y

Python and Elevation Data

[260]

 def x(self):
 return self.px

 def y(self):
 return self.py

This will be the triangle
array. Load it from a pickle
file or use the voroni module
to create the triangles.
triangles = None

if os.path.exists(archive):
 print "Loading triangle archive..."
 f = open(archive, "rb")
 triangles = cPickle.load(f)
 f.close()
 # Open LIDAR LAS file
 las = File(source, mode="r")
else:
 # Open LIDAR LAS file
 las = File(source, mode="r")
 points = []
 print "Assembling points..."
 # Pull points from LAS file
 for x,y in np.nditer((las.x,las.y)):
 points.append(Point(x,y))
 print "Composing triangles..."
 # Delaunay Triangulation
 triangles = voroni.computeDelaunayTriangulation(points)
 # Save the triangles to save time if we write more than
 # one shapefile.
 f = open(archive, "wb")
 cPickle.dump(triangles, f, protocol=2)
 f.close()

print "Creating shapefile..."
w = None
if os.path.exists(pyshp):
 f = open(pyshp, "rb")
 w = cPickle.load(f)
 f.close()
else:
 # PolygonZ shapefile (x,y,z,m)
 w = shapefile.Writer(shapefile.POLYGONZ)
 w.field("X1", "C", "40")
 w.field("X2", "C", "40")
 w.field("X3", "C", "40")
 w.field("Y1", "C", "40")
 w.field("Y2", "C", "40")

Chapter 7

[261]

 w.field("Y3", "C", "40")
 w.field("Z1", "C", "40")
 w.field("Z2", "C", "40")
 w.field("Z3", "C", "40")
 tris = len(triangles)
 # Loop through shapes and
 # track progress every 10 percent
 last_percent = 0
 for i in range(tris):
 t = triangles[i]
 percent = int((i/(tris*1.0))*100.0)
 if percent % 10.0 == 0 and percent > last_percent:
 last_percent = percent
 print "%s %% done - Shape %s/%s at %s" % (percent, i, tris,
time.asctime())
 part=[]
 x1 = las.x[t[0]]
 y1 = las.y[t[0]]
 z1 = las.z[t[0]]
 x2 = las.x[t[1]]
 y2 = las.y[t[1]]
 z2 = las.z[t[1]]
 x3 = las.x[t[2]]
 y3 = las.y[t[2]]
 z3 = las.z[t[2]]
 # Check segments for large triangles
 # along the convex hull which is an common
 # artificat in Delaunay triangulation
 max = 3
 if math.sqrt((x2-x1)**2+(y2-y1)**2) > max: continue
 if math.sqrt((x3-x2)**2+(y3-y2)**2) > max: continue
 if math.sqrt((x3-x1)**2+(y3-y1)**2) > max: continue
 part.append([x1,y1,z1,0])
 part.append([x2,y2,z2,0])
 part.append([x3,y3,z3,0])
 w.poly(parts=[part])
 w.record(x1,x2,x3,y1,y2,y3,z1,z2,z3)
 print "Saving shapefile..."
 # Pickle the Writer in case something
 # goes wrong. Be sure to delete this
 # file to recreate teh shapefile.
 f = open(pyshp, "wb")
 cPickle.dump(w, f, protocol=2)
 f.close()
w.save(target)
print "Done."

Python and Elevation Data

[262]

The following image shows a zoomed in version of the TIN over the colorized
LIDAR data:

Summary
Elevation data can often provide a complete data set for analysis and derivative
products without any other data. In this chapter we learned to:

•	 Read/write ASCII Grids using only NumPy
•	 Create shaded reliefs, slope grids, and aspect grids
•	 Create elevation contours
•	 Transform LIDAR data into a grid
•	 Visualize LIDAR data with PIL
•	 Create a TIN

In the next chapter we'll combine the building blocks from the previous three chapters
to do some advanced modeling and actually create some information products.

Advanced Geospatial
Python Modelling

In this chapter, we'll build on the data processing concepts we've learned up
to this point to create some full-scale information products. We will introduce
some important geospatial algorithms commonly used in agriculture, emergency
management, logistics, and other industries.

The products we will create are:

•	 A crop health map
•	 A flood inundation model
•	 A terrain routing map

While these products are task specific, the algorithms used to create them are widely
applied in geospatial analysis. The examples in this chapter are longer and more
involved than in the previous chapters. For that reason, there are far more code
comments to make the programs easier to follow. We will also use more functions in
these examples. In previous chapters, functions were mostly avoided for clarity. But
these examples are sufficiently complex, such that certain functions make the code
easier to read.

Creating an NDVI
Our first example will be a Normalized Differential Vegetative Index or NDVI.
NDVIs are used to show the relative health of plants in an area of interest. An NDVI
algorithm shows relative health by highlighting chlorophyll density in plants. NDVIs
use only the red and infrared bands. The formula is:

NDVI = (Infrared – Red) / (Infrared + Red)

Advanced Geospatial Python Modelling

[264]

The goal of this analysis is to begin with a multispectral image containing those
two bands and end up with a pseudo-color image using seven classes that color the
healthier plants darker green, less-healthy plants lighter green, and bare soil brown.

Because the health index is relative, it is important to localize the area of interest.
You could perform a relative index for the entire globe, but vast areas like the Sahara
Desert on the low-vegetation extreme and densely forested areas like the Amazon
Jungle skew the results for vegetation in the middle range. However, that being said,
climate scientists do routinely create global NDVIs to study worldwide trends. The
more common application, though, is for managed areas such as a forest or a farm
field, as in this example.

We will begin with analysis of a single farm field. To do so we'll start with a
multispectral image of a fairly large area and use a shapefile to isolate a single
field. The image in the following screenshot is our broad area with the field of
interest highlighted in yellow:

You can download this image and the shapefile for the farm field as a zip file here:

https://geospatialpython.googlecode.com/files/NDVI.zip

For this example, we'll use GDAL, OGR, gdalnumeric/NumPy, and PIL to clip and
process the data. In the other examples in this chapter we'll use simple ASCII grids
and NumPy only, as we'll be using ASCII elevation grids, so GDAL isn't required. In all
examples, the scripts use the following convention:

1.	 Import libraries.
2.	 Define functions.

Chapter 8

[265]

3.	 Define global variables such as filenames.
4.	 Execute the analysis.
5.	 Save the output.

Our approach to the crop health example is split into two scripts. The first script
creates the index image, which is a grayscale image. The second script classifies
the index and outputs a colored image.

In this first script we will execute the following steps:

1.	 Read the red band.
2.	 Read the infrared band.
3.	 Read the field boundary shapefile.
4.	 Rasterize the shapefile to an image.
5.	 Convert the shapefile image to a NumPy array.
6.	 Use the NumPy array to clip the red band to the field.
7.	 Do the same for the infrared band.
8.	 Use the band arrays to execute the NDVI algorithm in NumPy.
9.	 Save the resulting indexing algorithm to a GeoTiff using gdalnumeric.

We will discuss this script in sections to make it easier to follow. The code comments
will also tell you what is going on at each step of the way.

Setting up the framework
This section imports the modules we need and sets up the functions that we'll use
for the preceding steps 1 to 5. The imageToArray() function converts a PIL image
to a NumPy array and is dependent on the gdalnumeric and PIL modules. The
world2Pixel() function converts geospatial coordinates to the pixel coordinates of
our target image. This function uses the georeferencing information presented by the
gdal module. These functions are fairly generic and can serve a role in a variety of
different remote sensing processes beyond this example:

import gdal, gdalnumeric, ogr
import Image, ImageDraw

def imageToArray(i):
 """
 Converts a Python Imaging Library
 array to a gdalnumeric image.
 """

Advanced Geospatial Python Modelling

[266]

 a=gdalnumeric.numpy.fromstring(i.tostring(),'b')
 a.shape=i.im.size[1], i.im.size[0]
 return a

def world2Pixel(geoMatrix, x, y):
 """
 Uses a gdal geomatrix (gdal.GetGeoTransform())
 to calculate the pixel location of a
 geospatial coordinate
 """
 ulX = geoMatrix[0]
 ulY = geoMatrix[3]
 xDist = geoMatrix[1]
 yDist = geoMatrix[5]
 rtnX = geoMatrix[2]
 rtnY = geoMatrix[4]
 pixel = int((x - ulX) / xDist)
 line = int((ulY - y) / xDist)
 return (pixel, line)

Loading the data
In this section we load the source image of a farm field using gdalnumeric that
takes it straight into a NumPy array. We also define the name of our output image,
which will be ndvi.tif. One interesting piece of this section is that we load the
source image a second time using the gdal module as opposed to gdalnumeric.
This second call is to capture the georeferencing data for the image that is available
through gdal and not gdalnumeric. Fortunately, gdal only loads raster data on
demand, so this approach avoids loading the complete data set into memory twice.
Once we have the data as a multi-dimensional NumPy array, we split out the red
and infrared bands, as they will both be used in the NDVI equation:

Multispectral image used
to create the NDVI. Must
have red and infrared
bands
source = "farm.tif"

Output geotiff file name
target = "ndvi.tif"

Load the source data as a gdalnumeric array
srcArray = gdalnumeric.LoadFile(source)

Chapter 8

[267]

Also load as a gdal image to
get geotransform (world file) info
srcImage = gdal.Open(source)
geoTrans = srcImage.GetGeoTransform()

Red and infrared (or near infrared) bands
r = srcArray[1]
ir = srcArray[2]

Rasterizing the shapefile
This section begins the process of clipping. However, the first step is to rasterize
the shapefile—in other words, convert it from vector data to raster data. But we
also want to fill in the polygon when we convert it, so it can be used as an image
mask. The pixels in the mask will be correlated to the pixels in the red and infrared
arrays. Any pixels outside the mask will be turned to NODATA pixels, so they are not
processed as part of the NDVI. To make this correlation we'll need the solid polygon
to be a NumPy array just like the raster bands. This approach will make sure our
NDVI calculation will be limited to the farm field. The easiest way to convert the
shapefile polygon into a filled polygon as a NumPy array is to plot it as a polygon in
a PIL image, fill that polygon in, and then convert it to a NumPy array using existing
methods in both PIL and NumPy that allow that conversion. In this example we
use the ogr module to read the shapefile because we already have GDAL available.
But we could have also used PyShp to read the shapefile just as easily. If our farm
field image was available as an ASCII Grid, we could have avoided using the gdal,
gdalnumeric, and ogr modules altogether:

Clip a field out of the bands using a
field boundary shapefile

Create an OGR layer from a Field boundary shapefile
field = ogr.Open("field.shp")
Must define a "layer" to keep OGR happy
lyr = field.GetLayer("field")
Only one polygon in this shapefile
poly = lyr.GetNextFeature()

Convert the layer extent to image pixel coordinates
minX, maxX, minY, maxY = lyr.GetExtent()
ulX, ulY = world2Pixel(geoTrans, minX, maxY)
lrX, lrY = world2Pixel(geoTrans, maxX, minY)

Calculate the pixel size of the new image

Advanced Geospatial Python Modelling

[268]

pxWidth = int(lrX - ulX)
pxHeight = int(lrY - ulY)

Create a blank image of the correct size
that will serve as our mask
clipped = gdalnumeric.numpy.zeros((3, pxHeight, pxWidth), \
gdalnumeric.numpy.uint8)
#mmask = gdalnumeric.zeros((3, pxHeight, pxWidth), gdalnumeric.
UnsignedInt8)
#rgb = rgb.astype(gdalnumeric.UnsignedInt8)
rClip = r[ulY:lrY, ulX:lrX]
irClip = ir[ulY:lrY, ulX:lrX]

Create a new geomatrix for the image
geoTrans = list(geoTrans)
geoTrans[0] = minX
geoTrans[3] = maxY

Map points to pixels for drawing
the field boundary on a blank
8-bit, black and white, mask image.
points = []
pixels = []

Grab the polygon geometry
geom = poly.GetGeometryRef()
pts = geom.GetGeometryRef(0)
Loop through geometry and turn
the points into an easy-to-manage
Python list
for p in range(pts.GetPointCount()):
 points.append((pts.GetX(p), pts.GetY(p)))
Loop through the points and map to pixels.
Append the pixels to a pixel list
for p in points:
 pixels.append(world2Pixel(geoTrans, p[0], p[1]))
Create the raster polygon image
rasterPoly = Image.new("L", (pxWidth, pxHeight), 1)
Create a PIL drawing object
rasterize = ImageDraw.Draw(rasterPoly)
Dump the pixels to the image
rasterize.polygon(pixels, 0)
Hand the image back to gdal/gdalnumeric
so we can use it as an array mask
mask = imageToArray(rasterPoly)

Chapter 8

[269]

Clipping the bands
Now that we have our image mask, we can clip the red and infrared bands to the
boundary of the mask. For this process we use NumPy's choose() method that
correlates the mask cell to the raster band cell and returns that value or returns 0.
The result is a new array that is clipped to the mask, but with the correlated values
from the raster band:

Clip the red band using the mask
rClip = gdalnumeric.numpy.choose(mask, \
 (rClip, 0)).astype(gdalnumeric.numpy.uint8)
Clip the infrared band using the mask
irClip = gdalnumeric.numpy.choose(mask, \
 (irClip, 0)).astype(gdalnumeric.numpy.uint8)

Using the NDVI formula
Our final process for creating the NDVI is to execute the equation that is infrared –
red / infrared + red. The first step we perform silences any not-a-number also
known as NaN values in NumPy that might occur during division. And before we
save the output we'll convert any NaN values to 0. We'll save the output as ndvi.
tif that will be the input for the next script to classify and colorize the NDVI:

We don't care about numpy warnings
due to NaN values from clipping
gdalnumeric.numpy.seterr(all="ignore")

NDVI equation: (infrared - red) / (infrared + red)
*1.0 converts values to floats,
+1.0 prevents ZeroDivisionErrors
ndvi = 1.0 * (irClip - rClip) / irClip + rClip + 1.0

Remove any NaN values from the final product
ndvi = gdalnumeric.numpy.nan_to_num(ndvi)

Save ndvi as tiff
gdalnumeric.SaveArray(ndvi, target, \
 format="GTiff", prototype=source)

Advanced Geospatial Python Modelling

[270]

Following is the output of this example. The lighter the shade of gray, the healthier
the plant is within that field:

Classifying the NDVI
We now have a valid index but it is not easy to understand because it is a grayscale
image. If we color the image in an intuitive way, then even a child can identify the
healthier plants. The following example reads in this grayscale index and classifies
it from brown to dark green using seven classes. The classification and image
processing routines, such as the histogram and stretching functions, are almost
identical to what we used in the Creating Histograms section, in Chapter 6, Python and
Remote Sensing, but this time we are applying them in a much more specific way.
The output of this example will be another GeoTiff but this time it will be a colorful
RGB image.

Additional functions
We won't need any of the functions from our previous NDVI script, but we do need
to add a function for creating and stretching a histogram. Both of these functions
work with NumPy arrays. We'll also shorten the reference to gdalnumeric in this
script to gd because it is a long name and we need it throughout this script:

import gdalnumeric as gd
import operator

Chapter 8

[271]

def histogram(a, bins=range(0,256)):
 """
 Histogram function for multi-dimensional array.
 a = array
 bins = range of numbers to match
 """
 fa = a.flat
 n = gd.numpy.searchsorted(gd.numpy.sort(fa), bins)
 n = gd.numpy.concatenate([n, [len(fa)]])
 hist = n[1:]-n[:-1]
 return hist

def stretch(a):
 """
 Performs a histogram stretch on a gdalnumeric array image.
 """
 hist = histogram(a)
 lut = []
 for b in range(0, len(hist), 256):
 # step size
 step = reduce(operator.add, hist[b:b+256]) / 255
 # create equalization lookup table
 n = 0
 for i in range(256):
 lut.append(n / step)
 n = n + hist[i+b]
 gd.numpy.take(lut, a, out=a)
 return a

Loading the NDVI
Next we'll load the output of our NDVI script back into a NumPy array. We'll also
define the name of our output image as ndvi_color.tif and create a zero-filled
multi-dimensional array as a placeholder for the red, green, and blue bands of the
colorized NDVI image:

NDVI output from ndvi script
source = "ndvi.tif"
Target file name for classified
image image
target = "ndvi_color.tif"

Load the image into an array
ndvi = gd.LoadFile(source).astype(gd.numpy.uint8)

Advanced Geospatial Python Modelling

[272]

Peform a histogram stretch so we are able to
use all of the classes
ndvi = stretch(ndvi)

Create a blank 3-band image the same size as the ndvi
rgb = gd.numpy.zeros((3, len(ndvi), len(ndvi[0])), gd.numpy.uint8)

Creating classes
In this part, we set up the ranges for our NDVI classes that are broken up across a
range from 0 to 255. We'll use seven classes. You can change the number of classes
by adding or removing values from the classes list. Next we create a look-up table
or LUT to assign colors for each class. The number of colors must match the number
of classes. The colors are defined as RGB values. The start variable defines the
beginning of the first class. In this case zero is a nodata value, which we designated
in the previous script, so begin the class at 1. We then loop through the classes,
extract the ranges, and use the color assignments to add the RGB value to our
placeholder array. Finally we save the colorized image as a GeoTiff:

Class list with ndvi upper range values.
Note the lower and upper values are listed on the ends
classes = [58,73,110,147,184,220,255]

Color look-up table (lut)
The lut must match the number of classes
Specified as R,G,B tuples from dark brown to dark green
lut = [[120,69,25], [255,178,74], [255,237,166], [173,232,94],
 [135,181,64], [3,156,0], [1,100,0]]

Starting value of the first class
start = 1

Process all classes.
for i in range(len(classes)):
 mask = gd.numpy.logical_and(\
 start <= ndvi, ndvi <= classes[i])
 for j in range(len(lut[i])):
 rgb[j] = gd.numpy.choose(mask, \
 (rgb[j], lut[i][j]))
 start = classes[i]+1

Save a geotiff of the colorized ndvi.
gd.SaveArray(rgb, target, format="GTiff", prototype=source)

Chapter 8

[273]

Here is the image we output. This is our final product for this example. Farmers can
use this data to determine how to effectively spray chemicals such as fertilizers and
pesticides in a targeted, more effective, and more environment-friendly way. In fact,
these classes can even be turned into a vector shapefile, which is then loaded into
a GPS driven computer on a field sprayer, which automatically applies the right
amount of chemicals in the right place as a sprayer is driven around the field or
in some cases even flown over the field in an airplane with a sprayer attachment.

Notice as well, even though we clipped the data to the field, the image is still a
square. The black areas are the nodata values that are converted to black. In
display software you can make the nodata color transparent without affecting
the rest of the image.

Though we created a very specific type of product, a classified NDVI, the framework
of this script can be altered to implement any remote sensing analysis algorithm.
There are different types of NDVIs but with relatively minor changes you can turn
this script into a tool to look for harmful algae blooms in the ocean or smoke in the
middle of a forest indicating a forest fire.

Advanced Geospatial Python Modelling

[274]

This book attempts to limit the use of GDAL as much as possible to focus
on what can be accomplished with pure Python and tools easily installed
from PyPI. However, it is helpful to remember there is a wealth of
information on using GDAL and its associated utilities to do similar
tasks. For another tutorial on clipping a raster with GDAL see:
http://linfiniti.com/2009/09/clipping-rasters-with-
gdal-using-polygons/

Creating a flood inundation model
In this next example, we'll begin to enter the world of hydrology. Flooding is one
of the most common and devastating natural disasters which affects nearly every
population on the globe. Geospatial models are a powerful tool in estimating the
impact of a flood and mitigating that impact before it happens. We often hear on the
news that a river is reaching flood stage. But that information is meaningless if we
can't understand the impact. Hydrological flood models are expensive to develop
and can be infinitely complex. These models are essential for engineers building
flood control systems. However, first responders and potential flood victims are
only interested in the impact of an impending flood.

We can begin to understand the flooding impact in an area using a very simple
and easy-to-comprehend tool called a flood inundation model. This model starts
with a single point and floods an area with the maximum volume of water that a
flood basin can hold at a particular flood stage. Usually this analysis is worst-case
scenario. Hundreds of other factors go into calculating how much water will enter
into a basin from a river topping flood stage. But we can still learn a lot from this
simple first-order model.

The following image is a Digital Elevation Model (DEM) with a source
point displayed as a yellow star. In real-world analysis this point would
likely be a stream gauge where you would have data about the river's
water level.
As mentioned in the Elevation data section in Chapter 1, Learning
Geospatial Analysis with Python, the SRTM dataset provides a nearly
global DEM that you can use for these types of models. More on SRTM
data can be found here:
http://www2.jpl.nasa.gov/srtm/

Chapter 8

[275]

You can download the data and a shapefile containing the point as a zip file
from here:

https://geospatialpython.googlecode.com/files/FloodFill.zip

The shapefile is just for reference and has no role in this model:

The algorithm we are introducing in this example is called, not surprisingly, a flood
fill algorithm. This algorithm is well known in the field of Computer Science and
is used in the classic computer game Mine Sweeper to clear empty squares on the
board when a user clicks a square. It is also the method used for the well-known
paint bucket tool in graphics programs such as Adobe Photoshop used to fill an
area of adjacent pixels of the same color with a different color. There are many
ways to implement this algorithm. One of the oldest and most common ways is
to recursively crawl through each pixel of the image. The problem with recursion
is that you end up processing pixels more than once and creating an unnecessary
amount of work. The resource usage for a recursive flood fill can easily crash a
program on even a moderately-sized image.

This script uses a four-way queue-based flood fill that may visit a cell more than
once but ensures we only process a cell once. The queue only contains unique,
unprocessed cells by using Python's built-in set type which only holds unique
values. We use two sets called "fill" which contain the cells we need to fill, and
"filled" which contain processed cells.

Advanced Geospatial Python Modelling

[276]

This example executes the following steps:

1.	 Extract the header information from the ASCII DEM.
2.	 Open the DEM as a numpy array.
3.	 Define our starting point as row and column in the array.
4.	 Declare a flood elevation value.
5.	 Filter the terrain to only the desired elevation value and below.
6.	 Process the filtered array.
7.	 Create a 1,0 array with flooded pixels as 1.
8.	 Save the flood inundation array as an ASCII GRID.

Note because this example can take a minute or two to run on a slower machine,
we'll use print statements throughout the script as a simple way to track progress.
Once again we'll break this script up with explanations for clarity.

The flood fill function
We use ASCII Grids in this example, which means the engine for this model is
completely in NumPy. We start off defining the floodFill() function, which is the
heart and soul of this model. The Wikipedia article on flood fill algorithms provides
an excellent overview of the different approaches:
http://en.wikipedia.org/wiki/Flood_fill

Flood fill algorithms start at a given cell and begin checking the neighboring cells
for similarity. The similarity factor might be color or, in our case, elevation. If the
neighboring cell is of the same or lower elevation as the current cell, then that cell
is marked for checks of its neighbor until the entire grid is checked. NumPy isn't
designed to crawl over an array in this way, but it is still efficient in handling
multi-dimensional arrays overall. We step through each cell and check its
neighbors to the north, south, east, and west. Any of those cells which can
be flooded are added to the filled set and their neighbors added to the fill
set to be checked by the algorithm.

One trick we use in this algorithm is avoiding recursive calls and redundant checks.
Many flood fill algorithms call the same function repeatedly for each cell. This
method can be fast but only works on small arrays with a few hundred cells before
Python throws OutOfMemory exceptions. Because the algorithm crawls over the
grid asymmetrically, we run the risk of checking a cell more than once, which wastes
resources and time. We use Python's built-in set data type to store unique cells that
have been added to our flooded set and cells which need to be checked. If you try
to add the same value to a set twice it just ignores the duplicate entry and maintains
a unique list. By using sets in an array, we only check a cell once because the fill set
contains unique cells:

Chapter 8

[277]

import numpy as np
from linecache import getline

def floodFill(c,r,mask):
 """
 Crawls a mask array containing
 only 1 and 0 values from the
 starting point (c=column,
 r=row - a.k.a. x,y) and returns
 an array with all 1 values
 connected to the starting cell.
 This algorithm performs a 4-way
 check non-recursively.
 """
 # cells already filled
 filled = set()
 # cells to fill
 fill = set()
 fill.add((c,r))
 width = mask.shape[1]-1
 height = mask.shape[0]-1
 # Our output inundation array
 flood = np.zeros_like(mask, dtype=np.int8)
 # Loop through and modify the cells which
 # need to be checked.
 while fill:
 # Grab a cell
 x,y = fill.pop()
 if y == height or x == width or x < 0 or y < 0:
 # Don't fill
 continue
 if mask[y][x] == 1:
 # Do fill
 flood[y][x]=1
 filled.add((x,y))
 # Check neighbors for 1 values
 west =(x-1,y)
 east = (x+1,y)
 north = (x,y-1)
 south = (x,y+1)
 if not west in filled:
 fill.add(west)
 if not east in filled:
 fill.add(east)
 if not north in filled:
 fill.add(north)
 if not south in filled:
 fill.add(south)
 return flood

Advanced Geospatial Python Modelling

[278]

Making a flood
In the remainder of the script we load our terrain data from an ASCII Grid, define
our output grid file name, and execute the algorithm on the terrain data. The seed of
the flood-fill algorithm is an arbitrary point as sx and sy within the lower elevation
areas. In a real-world application, these points would likely be a known location such
as a stream gauge or a breach in a dam. In the final step we save the output grid:

source = "terrain.asc"
target = "flood.asc"

print "Opening image..."
img = np.loadtxt(source, skiprows=6)
print "Image opened"

a = np.where(img<70, 1,0)
print "Image masked"

Parse the headr using a loop and
the built-in linecache module
hdr = [getline(source, i) for i in range(1,7)]
values = [float(h.split(" ")[-1].strip()) for h in hdr]
cols,rows,lx,ly,cell,nd = values
xres = cell
yres = cell * -1

Starting point for the
flood inundation
sx = 2582
sy = 2057

print "Beginning flood fill"
fld = floodFill(sx,sy, a)
print "Finished Flood fill"

header=""
for i in range(6):
 header += hdr[i]

print "Saving grid"
Open the output file, add the hdr, save the array
with open(target, "wb") as f:
 f.write(header)
 np.savetxt(f, fld, fmt="%1i")
print "Done!"

Chapter 8

[279]

The image in the following screenshot shows the flood inundation output over a
classified version of the DEM with lower elevation values in brown, mid-range
values in green, and higher values in gray and white. The flood raster is colored blue.
This image was created with QGIS but could be displayed in ArcGIS. You could
also use GDAL to save flood raster grid as an 8-bit TIFF or JPEG just like the NDVI
example to view it in a standard graphics program.

This image in the following screenshot is nearly identical except for the filtered mask
from which the inundation was derived, which is displayed in yellow, to show the
non-contiguous regions, which were not included as part of a flood. These areas are
not connected to the source point, so would unlikely be reached during a flood event:

Advanced Geospatial Python Modelling

[280]

By changing the elevation value you can create additional flood inundation rasters.
We started with an elevation of 70. If we increase that value to 90 we can expand the
flood. The following screenshot shows a flood event at both 70 and 90 meters. The
90-meter inundation is the lighter blue polygon. You can take bigger or smaller steps
and show different impacts as different layers:

This model is an excellent and useful visualization. However, you could take this
analysis even further by using GDAL's polygonize() method on the flood mask,
as we did with the island in the Extracting features from images section in Chapter 6,
Python and Remote Sensing. This operation would give you a vector flood polygon.
Then you could use the principles we discussed in the Performing selections section
in Chapter 5, Python and Geographic Information Systems, to select buildings using the
polygon to determine population impact. You could also combine that flood polygon
with the dot-density example in Chapter 5, Dot Density Calculations, to assess potential
population impact of a flood. The possibilities are endless.

Least cost path analysis
Calculating driving directions is the most commonly used geospatial function in the
world. Typically these algorithms calculate the shortest path between point A and
B or they may take into account the speed limit of the road or even current traffic
conditions to choose a route by drive time.

Chapter 8

[281]

But what if your job is to build a new road? Or what if you are in charge of deciding
where to run power transmission lines or water lines across a remote area? In a
terrain-based setting, the shortest path might cross a difficult mountain or run
through a lake. In this case we need to account for obstacles and avoid them if
possible. However, if avoiding a minor obstacle takes us too far out of our way,
the cost of implementing that route may be more expensive than just going
over a mountain.

This type of advanced analysis is called Least Cost Path analysis. We search an area
for the route that is the best compromise of distance versus the cost of following the
route. The algorithm we use for this process is called the A-Star or A* algorithm. The
oldest routing method is called the Dijkstra Algorithm, which calculates the shortest
path in a network such as a road network. The A* method can do that as well but it is
also better suited for traversing a grid like a DEM. You can find out more about these
algorithms on the following web pages:

•	 Dijkstra's Algorithm:
http://en.wikipedia.org/wiki/Dijkstra's_algorithm

•	 A* Algorithm: http://en.wikipedia.org/wiki/A-star_algorithm

This example is the most complex in this chapter. To better understand it we have
a simple version of the program, which is text based and operates on a 5 x 5 grid
with randomly generated values. You can actually see how this program follows
the algorithm before trying it on an elevation grid with thousands of values:

This program executes the following steps:

1.	 Create a simple grid with randomly-generated pseudo-elevation values
between 1 and 16.

2.	 Define a start location in the lower-left corner of the grid.
3.	 Define the end point as the upper-right corner of the grid.
4.	 Create a cost grid that has the elevation of each cell plus the cell's distance to

the finish.
5.	 Examine each neighboring cell from the start and choose the one with the

lowest cost.
6.	 Repeat the evaluation using the chosen cell until we get to the end.
7.	 Return the set of chosen cells as the least-cost path.

Advanced Geospatial Python Modelling

[282]

Setting up the test grid
You simply run this program from the command line and view its output. The
first section of this script sets up our artificial terrain grid as a randomly-generated
NumPy array with notional elevation values between 1 and 16. We also create a
distance grid which calculates the distance for each cell to the destination cell.
This value is the cost of each cell:

import numpy as np

Width and height
of grids
w = 5
h = 5

Start location:
Lower left of grid
start = (h-1, 0)

End location:
Top right of grid
dx = w-1
dy = 0

Blank grid
a = np.zeros((w,h))

Distance grid
dist = np.zeros(a.shape, dtype=np.int8)

Calculate distance for all cells
for y,x in np.ndindex(a.shape):
 dist[y][x] = abs((dx-x)+(dy-y))

"Terrain" is a random value between 1-16.
Add to the distance grid to calculate
The cost of moving to a cell
cost = np.random.randint(1,16,(w,h)) + dist

print "COST GRID (Value + Distance)"
print cost
print

Chapter 8

[283]

The simple A* algorithm
The A* search algorithm implemented here crawls the grid in a similar fashion to our
flood fill algorithm in the previous example. Once again we use sets to avoid using
recursion and to avoid duplication of cell checks. But this time, instead of checking
elevation, we check the distance cost of routing through a cell in question. If the
move raises the cost of getting to the end, then we go with a lower-cost option:

Our A* search algorithm
def astar(start, end, h, g):
 cset = set()
 oset = set()
 path = set()
 oset.add(start)
 while oset:
 cur = oset.pop()
 if cur == end:
 return path
 cset.add(cur)
 path.add(cur)
 options = []
 y1 = cur[0]
 x1 = cur[1]
 if y1 > 0:
 options.append((y1-1, x1))
 if y1 < h.shape[0]-1:
 options.append((y1+1, x1))
 if x1 > 0:
 options.append((y1, x1-1))
 if x1 < h.shape[1]-1:
 options.append((y1, x1+1))
 if end in options:
 return path
 best = options[0]
 cset.add(options[0])
 for i in range(1,len(options)):
 option = options[i]
 if option in cset:
 continue
 elif h[option] <= h[best]:
 best = option
 cset.add(option)
 elif g[option] < g[best]:
 best = option
 cset.add(option)
 else:
 cset.add(option)
 print best, ", ", h[best], ", ", g[best]
 oset.add(best)
 return []

Advanced Geospatial Python Modelling

[284]

Generating the test path
Finally, we output the least cost path on a grid. The path is represented by 1 values
and all other cells as 0 values:

print "(Y,X), HEURISTIC, DISTANCE"
Find the path
path = astar(start,(dy,dx),cost, dist)
print

Create and populate the path grid
path_grid = np.zeros(cost.shape, dtype=np.uint8)
for y,x in path:
 path_grid[y][x]=1
path_grid[dy][dx]=1

print "PATH GRID: 1=path"
print path_grid

Viewing the test output
When you run this program you get a sample output like the following:

COST GRID (Value + Distance)
[[13 10 5 15 9]
 [15 13 16 5 16]
 [17 8 9 9 17]
 [4 1 11 6 12]
 [2 7 7 11 8]]

(Y,X), HEURISTIC, DISTANCE
(3, 0) , 4 , 1
(3, 1) , 1 , 0
(2, 1) , 8 , 1
(2, 2) , 9 , 0
(2, 3) , 9 , 1
(1, 3) , 5 , 0
(0, 3) , 15 , 1

PATH GRID: 1=path
[[0 0 0 1 1]
 [0 0 0 1 0]
 [0 1 1 1 0]
 [1 1 0 0 0]
 [1 0 0 0 0]]

Chapter 8

[285]

The grid is small enough such that you can easily trace the algorithm's
steps manually. This implementation uses Manhattan Distance which
means the distance does not use diagonal lines—only left, right, up, and
down measurements. The search also does not move diagonally to keep
things simple.

The real-world example
Now that we have a basic understanding of the A* algorithm let's move to a more
complex example. We'll use the same DEM we used in Chapter 7, Python and Elevation
Data, Creating a Shaded Relief, for the relief example. You can download the DEM,
relief, and start and end points of the shapefile as a zipped package here:

https://geospatialpython.googlecode.com/files/LeastCostPath.zip

We'll actually use the shaded relief for visualization. Our goal in this exercise will be
to move from the start to the finish point in the lowest-cost way possible:

Advanced Geospatial Python Modelling

[286]

Just looking at the terrain there are two paths that follow low-elevation routes
without much change in direction. These two routes are illustrated in the
following screenshot:

So we would expect that when we used the A* algorithm, it would be close. Keep in
mind the algorithm is only looking in the immediate vicinity, so it can't look at the
whole image like we can and make adjustments early in the route based on a known
obstacle ahead.

We will expand this implementation from our simple example and use Euclidian
Distance or "as the crow flies" measurements and also allow the search to look in
eight directions instead of four. We will prioritize terrain as the primary-decision
point. We will also use distance, both to the finish and from the start, as lower
priorities to make sure we are moving forward towards the goal and not getting
too far off track. Other than those differences, the steps are identical to the simple
example. The output will be a raster with the path values set to one and the other
values set to zero.

Chapter 8

[287]

Loading the grid
The script starts out simply enough. We load the grid into a NumPy array from an
ASCII Grid. We name our output path grid and then we define the starting cell and
end cell:

import numpy as np
import math
from linecache import getline

Our terrain data
source = "dem.asc"

Output file name
for the path raster
target = "path.asc"

print "Opening %s..." % source
cost = np.loadtxt(source, skiprows=6)
print "Opened %s." % source

Parse the header
hdr = [getline(source, i) for i in range(1,7)]
values = [float(ln.split(" ")[-1].strip()) for ln in hdr]
cols,rows,lx,ly,cell,nd = values

Starting column, row
sx = 1006
sy = 954

Ending column, row
dx = 303
dy = 109

Defining the helper functions
We need three functions to route over terrain. One is the A* algorithm and the other
two assist the algorithm in choosing the next step. We'll briefly discuss these helper
functions. First we have a simple Euclidian Distance function named e_dist, which
returns the straight-line distance between two points as map units. Next we have an
important function called weighted_score, which returns a score for a neighboring
cell based on the elevation change between the neighbor and the current cell as well
as the distance to the destination.

Advanced Geospatial Python Modelling

[288]

This function is better than distance or elevation alone because it reduces the chance
of there being a tie between two cells making it easier to avoid back-tracking. This
scoring formula is loosely based on a concept called the Nisson Score, commonly
used in these types of algorithms and referenced in the Wikipedia articles mentioned
earlier in this chapter. What's great about this function is it can score the neighboring
cell with any values you wish. You might also use a real-time feed to look at the
current weather in the neighboring cell and avoid cells with rain or snow:

def e_dist(p1,p2):
 """
 Takes two points and returns
 the euclidian distance
 """
 x1,y1=p1
 x2,y2=p2
 distance = math.sqrt((x1-x2)**2+(y1-y2)**2)
 return int(distance)

def weighted_score(cur, node, h, start, end):
 """
 Provides a weighted score by comparing the
 current node with a neighboring node. Loosely
 based on the Nisson score concept: f=g+h
 In this case, the "h" value, or "heuristic",
 is the elevation value of each node.
 """
 score = 0
 # current node elevation
 cur_h = h[cur]
 # current node distance from end
 cur_g = e_dist(cur,end)
 # current node distance from
 cur_d = e_dist(cur,start)
 # neighbor node elevation
 node_h = h[node]
 # neighbor node distance from end
 node_g = e_dist(node,end)
 # neighbor node distance from start
 node_d = e_dist(node, start)
 # Compare values with the highest
 # weight given to terrain followed
 # by progress towards the goal.
 if node_h < cur_h:
 score += cur_h-node_h
 if node_g < cur_g:
 score += 10
 if node_d > cur_d:
 score += 10
 return score

Chapter 8

[289]

The real-world A* algorithm
This algorithm is more involved than the simple version in our previous example.
We use sets to avoid redundancy. It also implements our more advanced scoring
algorithm and checks to make sure we aren't at the end of the path before doing
additional calculations. Unlike our last example, this more advanced version also
checks cells in eight directions so the path can move diagonally. There is a print
statement at the end of this function that is commented out. You can uncomment
it to watch the search crawl through the grid:

def astar(start, end, h):
 """
 A-Star (or A*) search algorithm.
 Moves through nodes in a network
 (or grid), scores each node's
 neighbors, and goes to the node
 with the best score until it finds
 the end. A* is an evolved Dijkstra
 algorithm.
 """
 # Closed set of nodes to avoid
 cset = set()
 # Open set of nodes to evaluate
 oset = set()
 # Output set of path nodes
 path = set()
 # Add the starting point
 # to begin processing
 oset.add(start)
 while oset:
 # Grab the next node
 cur = oset.pop()
 # Return if we're at the end
 if cur == end:
 return path
 # Close off this node to future
 # processing
 cset.add(cur)
 # The current node is always
 # a path node by definition
 path.add(cur)
 # List to hold neighboring
 # nodes for processing
 options = []
 # Grab all of the neighbors
 y1 = cur[0]
 x1 = cur[1]
 if y1 > 0:
 options.append((y1-1, x1))

Advanced Geospatial Python Modelling

[290]

 if y1 < h.shape[0]-1:
 options.append((y1+1, x1))
 if x1 > 0:
 options.append((y1, x1-1))
 if x1 < h.shape[1]-1:
 options.append((y1, x1+1))
 if x1 > 0 and y1 > 0:
 options.append((y1-1, x1-1))
 if y1 < h.shape[0]-1 and x1 < h.shape[1]-1:
 options.append((y1+1, x1+1))
 if y1 < h.shape[0]-1 and x1 > 0:
 options.append((y1+1, x1-1))
 if y1 > 0 and x1 < h.shape[1]-1:
 options.append((y1-1, x1+1))
 # If the end is a neighbor, return
 if end in options:
 return path
 # Store the best known node
 best = options[0]
 # Begin scoring neighbors
 best_score = weighted_score(cur, best, h, start, end)
 # process the other 7 neighbors
 for i in range(1,len(options)):
 option = options[i]
 # Make sure the node is new
 if option in cset:
 continue
 else:
 # Score the option and compare it to the best known
 option_score = weighted_score(cur, option, h, start, end)
 if option_score > best_score:
 best = option
 best_score = option_score
 else:
 # If the node isn't better seal it off
 cset.add(option)
 # Uncomment this print statement to watch
 # the path develop in real time:
 # print best, e_dist(best,end)

 # Add the best node to the open set
 oset.add(best)
 return []

Chapter 8

[291]

Generating a real-world path
Finally we create our real-world path as a chain of ones in a grid of zeros. This
raster can then be brought into an application such as QGIS and visualized over
the terrain grid:

print "Searching for path..."
p = astar((sy,sx),(dy,dx),cost)
print "Path found."
print "Creating path grid..."
path = np.zeros(cost.shape)
print "Plotting path..."
for y,x in p:
 path[y][x]=1
path[dy][dx]=1
print "Path plotted."

print "Saving %s..." % target
header=""
for i in range(6):
 header += hdr[i]

Open the output file, add the hdr, save the array
with open(target, "wb") as f:
 f.write(header)
 np.savetxt(f, path, fmt="%4i")
print "Done!"

Here is the output route of our search:

Advanced Geospatial Python Modelling

[292]

As you can see, the A* search came very close to one of our manually selected routes.
In a couple of cases the algorithm chose to tackle some terrain instead of trying to
go around it. You can see examples of that choice in this zoomed-in portion of the
upper-right section of the route.

We only used two values: terrain and distance. But you could also add hundreds of
factors such as soil type, water bodies, and existing roads. All of these items could
serve as impedance or an outright wall. You would just modify the scoring function
in the example to account for any additional factors. Keep in mind, the more factors
you add, the more difficult it is to trace what the A* implementation was "thinking"
when it chose the route.

An obvious future direction for this analysis would be to create a vector version
of this route as a line. The process would include mapping each cell to a point and
then using nearest neighbor analysis to order the points properly before saving as a
shapefile or GeoJSON.

Chapter 8

[293]

Summary
In this chapter we learned how to create three very real-world products used in
government, science, and industry every day. Except where this analysis is typically
done with "black box" packages costing thousands of dollars, we were able to use
very minimal and free cross-platform Python tools. And in addition to the examples
in this chapter you now have some more reusable functions, algorithms, and
processing frameworks for other advanced analysis.

In the next chapter we'll move into a relatively new area of geospatial analysis:
real-time and near-real time data.

Real-Time Data
A common saying among geospatial analysts is, "A map is out-dated as soon as it's
created". This saying reflects the fact that the Earth and everything on it is constantly
changing. For most of the history of geospatial analysis and through most of this
book, geospatial products are relatively static. Raw data sets are typically updated
anywhere from a few months to a few years. Data currency has traditionally not
been the primary focus because of the time and expense needed to collect data.

Web mapping, wireless cellular modems, and low-cost GPS antennas have changed
that focus. It is now logistically feasible and even quite affordable to monitor a
rapidly changing object or system and broadcast those changes to millions of people
online. This change is revolutionizing geospatial technology and taking it in new
directions. The most direct evidence of this revolution is web-mapping mash-ups
using systems such as Google Maps or OpenLayers and web-accessible data formats.

The term real-time data typically means near-real-time. While devices that capture
real-time data may update as often as several times a second, the limitations of the
infrastructure that broadcasts that data may constrain the output to every 10 seconds,
or even several minutes or longer. Weather radar is a perfect example. A Doppler
weather radar sweeps continuously but data is typically available online every five
minutes. But, given the contrast to traditional geospatial data updates, a refresh of a
few minutes is real-time enough.

Real-Time Data

[296]

Web mash-ups often use real-time data. Web mash-ups are amazing and have
changed the way many different industries operate. But they are typically limited
in that they usually just display some data on a map and give developers access to
a JavaScript API. But what if you want to process the data in some way? What if
you want to filter it, change it, and then send it to another system? To use real-time
data for geospatial analysis you need to be able to access it as point data or a
geo-referenced raster.

In this chapter, we'll learn to work with real-time geospatial data. We'll tackle the
following high-level goals:

•	 Accessing a real-time, point-location data source
•	 Plotting the point on a map
•	 Accessing a real-time raster data source
•	 Combining the discrete real-time data sources into more meaningful

products using only Python

As with examples in the previous chapters, the scripts are as simple as possible
and designed to be read from start to finish without much mental looping. When
functions are used they are listed first, followed by the script variable declarations,
and finally the main program execution.

Tracking vehicles
For our first real-time data source, we'll use the excellent Nextbus API. Nextbus.com
is a commercial service that tracks public transportation for municipalities including
buses, trolleys, and trains. People riding these transit lines can then track the arrival
time of the "next bus". What's even better is, with the customer's permission, Nextbus
publishes tracking data through a Representational State Transfer or REST API.
Using URL API calls developers can request information about a vehicle and receive
an XML document about its location. This API is a straightforward way to begin
using real-time data.

Chapter 9

[297]

If you go to Nextbus.com, there is a web interface to the data as well, as shown in the
following screenshot, of the city of Thunder Bay transit system in Ontario, Canada:

Real-Time Data

[298]

The system lets you select several parameters to learn the current location and time
prediction for the next stop. On the right side of the screen is a link to a Google Maps
mash-up showing the transit tracking data for the particular route as shown in the
following screenshot:

This is a very useful website but it gives us no control over how the data is displayed
and used. Let's access the raw data directly using Python and the Nextbus REST API
to start working with real-time data.

For the examples in this chapter we'll use the documented Nextbus API found here:

http://www.nextbus.com/xmlFeedDocs/NextBusXMLFeed.pdf

Chapter 9

[299]

Nextbus agency list
Nextbus customers are called "agencies". In our examples we are going to track the
"Mainline" bus route for Thunder Bay. First we need to get some information about
the agency. The Nextbus API consists of a web service named publicXMLFeed in
which you set a parameter named command. We'll call the command agencyList
in a browser to get an XML document containing agency info using the following
REST URL:

http://webservices.nextbus.com/service/publicXMLFeed?command=agencyList

When we go to that link in a browser it returns an XML document containing the
<agency/> tag. The tag for Thunder Bay looks like this:

<agency tag="thunderbay" title="Thunder Bay"
regionTitle="Ontario"/>

Nextbus route list
The tag attribute is the ID for Thunder Bay that we need for other Nextbus API
commands. The other attributes are human-readable metadata. The next piece
of information we need is the details about the Mainline bus route. To get this
information we'll use the agency ID and the REST command routeList to get
another XML document by pasting the URL into our web browser. Note the
agency ID is set to the parameter a in the REST URL:

http://webservices.nextbus.com/service/publicXMLFeed?command=routeLis
t&a=thunderbay

When we call this URL in a browser we get the following XML document:

<?xml version="1.0" encoding="utf-8" ?>
<body copyright="All data copyright Thunder Bay 2013.">
<route tag="1" title="1 Mainline"/>
<route tag="3" title="3AP Airport"/>
<route tag="4" title="3M Memorial"/>
<route tag="5" title="3NW Northwood"/>
<route tag="6" title="3CP County Park"/>
<route tag="7" title="3JG Jumbo Gardens"/>
<route tag="8" title="13JJ John-Jumbo"/>
<route tag="9" title="4 Neebing"/>

Real-Time Data

[300]

<route tag="10" title="11 John"/>
<route tag="11" title="12 East End"/>
<route tag="13" title="7 Hudson"/>
<route tag="14" title="8 James"/>
<route tag="15" title="9 Junot"/>
<route tag="16" title="6 Mission"/>
<route tag="19" title="98 Memorial Shuttle"/>
<route tag="20" title="2S Crosstown Summer"/>
</body>

Nextbus vehicle locations
So the Mainline route ID stored in the tag attribute is simply 1, according to
these results. So now we have all the information we need to track buses along
the Thunder Bay Mainline route. The agency is thunderbay and the route is 1.

There is only one more required parameter called t that is milliseconds since the
1970 Epoch date. The epoch date is simply a computer standard used by machines to
track time. The easiest thing to do within the Nextbus API is specify 0 for this value
that returns data for the last 15 minutes.

There is an optional direction tag that allows you to specify a terminating bus stop
in case a route has multiple buses running the route in opposite directions. But if we
don't specify that, the API will return the first one, which suits our needs. The REST
URL to get the Mainline route for Thunder Bay looks like the following:

http://webservices.nextbus.com/service/publicXMLFeed?command=vehicleL
ocations&a=thunderbay&r=1&t=0

Calling this REST URL in a browser returns the following XML document:

<?xml version="1.0" encoding="utf-8" ?>
<body copyright="All data copyright Thunder Bay 2013.">
<vehicle id="173" routeTag="1" dirTag="1_1_var1" lat="48.43014"
lon="-89.22441" secsSinceReport="16" predictable="true" heading="233"
speedKmHr="42"/>
<vehicle id="174" routeTag="1" dirTag="1_0_var0" lat="48.36519"
lon="-89.28156" secsSinceReport="16" predictable="true" heading="175"
speedKmHr="0"/>
<vehicle id="149" routeTag="1" dirTag="1_0_var0" lat="48.44138"
lon="-89.2118799" secsSinceReport="8" predictable="true"
heading="139" speedKmHr="0"/>
<lastTime time="1377447123178"/>
</body>

Chapter 9

[301]

Each vehicle tag represents a location within the last 15 minutes. The last tag is the
most recent location (even though XML is technically unordered).

These public transportation systems do not run all of the time. Many
close down at 10:00 pm (22:00) local time. If you encounter an error in the
script, use the Nextbus.com website to locate a system that is running
and change the agency and route variables to that system.

We can now write a Python script that returns the locations for a bus on a given
route. If we don't specify the direction tag, Nextbus returns the first one. In this
example we are going to poll the Nextbus tracking API by calling the REST URL
using the built-in Python urllib demonstrated in previous chapters. We'll parse
the returned XML document using the simple built-in minidom module also shown
in the The minidom module section, in Chapter 4, Python Geospatial Toolbox. This script
simply outputs the latest latitude and longitude of the Mainline bus. You will see the
agency and route variables near the top:

import urllib
from xml.dom import minidom

Nextbus API command mode
command = "vehicleLocations"

Nextbus customer to query
agency = "thunderbay"

Bus we want to query
route = "1"

Time in milliseconds since the
1970 epoch time. All tracks
after this time will be returned.
0 only returns data for the last
15 minutes
epoch = "0"

Build our query url
#
webservices base url
url = "http://webservices.nextbus.com"
web service path

Real-Time Data

[302]

url += "/service/publicXMLFeed?"
service command/mode
url += "command=" + command
agency
url += "&a=" + agency
url += "&r=" + route
url += "&t=" + epoch

Access the REST URL
feed = urllib.urlopen(url)

if feed:
 # Parse the xml feed
 xml = minidom.parse(feed)
 # Get the vehicle tags
 vehicles = xml.getElementsByTagName("vehicle")
 # Get the most recent one. Normally there will
 # be only one.
 if vehicles:
 bus = vehicles.pop()
 # Print the bus latitude and longitude
 att = bus.attributes
 print att["lon"].value, ",", att["lat"].value
 else:
print "No vehicles found."

The output of this script is simply a latitude and longitude value that implies that we
now have control of the API and understand it. The output should look similar to the
following but with different coordinates:

-89.21585 , 48.43829

Mapping Nextbus locations
Now we are ready to use this information to create our own map. The best source of
freely available street mapping data is the OpenStreetMap (OSM) project:

http://www.openstreetmap.org

OSM also has a publicly available REST API for creating static map images
called StaticMap:

http://ojw.dev.openstreetmap.org/StaticMap/?mode=API

Chapter 9

[303]

The OSM StaticMap API provides a REST API, geoJSON API, and a simple web
interface to create simple map images with a limited number of point markers and
lines. We'll use the REST API to create our own Nextbus API map on demand with
a blue dot for the bus location.

In the next example we have condensed the previous script down to a compact
function named nextbus(). The nextbus() function accepts an agency, route,
command, and epoch as arguments. The command defaults to vehicleLocations
and the epoch defaults to 0 to get the last 15 minutes of data. In this script we'll pass
in the Thunder Bay mainline route info and use the default command that returns
the most recent latitude/longitude of the bus.

We have a second function named nextmap() that creates a map with a blue dot on
the current location of the bus each time it is called. The map is created by building a
REST URL for the OSM StaticMap API, which centers on the location of the bus and
uses a zoom level between 1-18 and map size to determine the map extent. You can
access the REST API directly in a browser to see an example of what the nextmap()
function does:

http://ojw.dev.openstreetmap.org/StaticMap/?mode=API&show=1&fmt=png&a
tt=none&w=800&h=600&lon=-89.21585&lat=48.43829&zoom=16&mlat0=48.43829
&mlon0=-89.21585&mico0=30326

The nextmap() function accepts a Nextbus agency ID, route ID, and string for the
base image name for the map. The function calls the nextbus() function to get
the latitude/longitude pair. The execution of this program loops through at timed
intervals, creates a map on the first pass, and then overwrites the map on subsequent
passes. The program also outputs a time stamp each time a map is saved. The
requests variable specifies the number of passes and the freq variable represents
the time in seconds between each loop:

import urllib
from xml.dom import minidom
import time

def nextbus(a, r, c="vehicleLocations", e=0):
 """Returns the most recent latitude and
 longitude of the selected bus line using
 the NextBus API (nbapi)"""
 nbapi = "http://webservices.nextbus.com"
 nbapi += "/service/publicXMLFeed?"
 nbapi += "command=%s&a=%s&r=%s&t=%s" % (c,a,r,e)
 xml = minidom.parse(urllib.urlopen(nbapi))
 bus=xml.getElementsByTagName("vehicle")
 if bus:
 at = bus.attributes
 return(at["lat"].value, at["lon"].value)

Real-Time Data

[304]

 else: return (False, False)

def nextmap(a, r, mapimg):
 """Plots a nextbus location on a map image
 and saves it to disk using the OpenStreetMap
 Static Map API (osmapi)"""
 # Fetch the latest bus location
 lat, lon = nextbus(a, r)
 if not lat:
 return False
 # Base url + service path
 osmapi = "http://ojw.dev.openstreetmap.org/"
 osmapi += "StaticMap/?mode=API&"
 # Show=1 returns an image
 osmapi += "show=1" + "&"
 # fmt can be "png" or "jpg" map image format
 osmapi += "fmt=png" + "&"
 # Remove the map image attribute label
 osmapi += "att=none" + "&"
 # Map Image width and height in pixels
 osmapi += "w=800" + "&"
 osmapi += "h=600" + "&"
 # Center the map on the bus location
 osmapi += "lat=%s&" % lat
 osmapi += "lon=%s&" % lon
 # Map zoom level (between 1-18)
 osmapi += "zoom=16" + "&"
 # Bus mark location
 osmapi += "mlat0=%s&" % lat
 osmapi += "mlon0=%s&" % lon
 # Bus marker OpenStreetMap icon id
 # (blue dot id=30326)
 osmapi += "mico0=30326"
 img = urllib.urlopen(osmapi)
 # Save the map image
 with open(mapimg + ".png", "wb") as f:
 f.write(img.read())
 return True

Nextbus API agency and bus line variables
agency = "thunderbay"
route = "1"

Name of map image to save as PNG
nextimg = "nextmap"

Number of updates we want to make
requests = 3

How often we want to update (seconds)

Chapter 9

[305]

freq = 5

Map the bus location every few seconds
for i in range(requests):
 success = nextmap(agency, route, nextimg)
 if not success:
 print "No data available."
 continue
 print "Saved map %s at %s" % (i, time.asctime())
 time.sleep(freq)

While the script runs you'll see an output similar to the following, showing at what
time the script saved each map:

Saved map 0 at Sun Aug 25 09:41:38 2013

Saved map 1 at Sun Aug 25 09:41:44 2013

Saved map 2 at Sun Aug 25 09:41:51 2013

This script saves a map image similar to the following:

Real-Time Data

[306]

This map is an excellent example of using an API to create a custom mapping
product. But it is a very basic tracking application. To begin to develop it into a more
interesting geospatial product we need to combine it with some other real-time data
source which gives us more situational awareness.

Storm chasing
So far we have created a simpler version of what the Nextbus website already does.
But we have done it in a way that ultimately gives us complete control over the
output. Now we want use this control to go beyond what the Nextbus Google Maps
mash-up does. We'll add another real-time data source which is very important to
both travellers and bus-line operators: weather.

OpenWeatherMap.org (OWM) provides free, polished weather data for
applications. They also have an excellent website for exploring data sets. The
following screenshot is a snapshot of the weather over the Thunder Bay area.
The area of our Nextbus tracking feed is circled in black:

Chapter 9

[307]

We use this data to create a real-time weather map for our bus location map. We'll
need to use a different approach to create this geospatial product because the
OSM StaticMap API does not allow blended overlays like the image shown in the
preceding screenshot. Both the OSM and OWM data are typically served out in small
tiles to speed up the web display. We need a single image whose extent is unlikely to
land exactly inside a given tile. If we use the Open Geospatial Consortium (OGC)
Web Mapping Service (WMS) standard, we can easily request a single image
over our area of interest. A WMS is an OGC standard for serving geo-referenced
map images through the web, which are generated by a map server through an
HTTP request.

The OWM system provides an excellent web mapping service that returns a
subsetted image from a global precipitation mosaic based on a properly-formatted
WMS request. An example of such a request is the following query:

http://wms.openweathermap.org/service?LAYERS=precipitation&FORMAT=
image%2Fpng&SRS=EPSG%3A900913&EXCEPTIONS=application%2Fvnd.ogc.se_inim
age&TRANSPARENT=TRUE&SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&STYLES=
&BBOX=-19830020.029583,-5123956.1910155,-19455172.842873,-
4757058.4552467&WIDTH=613&HEIGHT=600

Because the examples in this chapter rely on real-time data, the specific requests
listed may produce blank weather images if there is no activity in the area of interest.
You can visit OpenWeatherMap.org to find an area where a storm is occurring. These
images are transparent PNG images similar to the following sample:

Real-Time Data

[308]

The OSM site, on the other hand, no longer provides data via WMS—only as tiles.
They do, however, allow other organizations to download tiles or raw data to extend
the free service. The US National Oceanic and Atmospheric Administration (NOAA)
has done just that and provided a WMS interface to the OSM data allowing requests
to retrieve the single base map image we need for our bus route:

Chapter 9

[309]

We now have data sources to get the base map and weather data. We want to
combine these images and plot the current location of the bus. Instead of a simple
dot we'll get a little more sophisticated and add the following bus icon this time:

You will need to download this icon, busicon.png, to your working directory
from here:

https://geospatialpython.googlecode.com/files/busicon.png

Now we'll combine our previous scripts and our new data sources to create a real-
time weather bus map. Because we are going to blend the street map and weather
map we'll need the Python Imaging Library (PIL) used in previous chapters. We'll
replace our nextmap() function from the previous example with a simple wms()
function that can grab a map image by bounding box from any WMS service.
We'll also add a function that converts decimal degrees to meters named ll2m().

The script gets the bus location, converts the location to meters, creates a 2-mile
(3.2 km) rectangle around the location, and then downloads a street and weather
map. The map images are then blended together using PIL. PIL then shrinks the
bus icon image to 20 x 20 pixels and pastes it in the center of the map, which is the
bus location:

import sys
import urllib
from xml.dom import minidom
import math
import Image

def nextbus(a, r, c="vehicleLocations", e=0):
 """Returns the most recent latitude and

Real-Time Data

[310]

 longitude of the selected bus line using
 the NextBus API (nbapi)"""
 nbapi = "http://webservices.nextbus.com"
 nbapi += "/service/publicXMLFeed?"
 nbapi += "command=%s&a=%s&r=%s&t=%s" % (c,a,r,e)
 xml = minidom.parse(urllib.urlopen(nbapi))
 bus=xml.getElementsByTagName("vehicle")
 if bus:
 at = bus.attributes
 return(at["lat"].value, at["lon"].value)
 else: return (False, False)

def ll2m(lat,lon):
 """Lat/lon to meters"""
 x = lon * 20037508.34 / 180.0
 y = math.log(math.tan((90.0 + lat) * \
 math.pi / 360.0)) / (math.pi / 180.0)
 y = y * 20037508.34 / 180
 return (x,y)

def wms(minx, miny, maxx, maxy, service, lyr, img, w, h):
 """Retrieve a wms map image from
 the specified service and saves it as a PNG."""
 wms = service
 wms += "?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&"
 wms += "LAYERS=%s" % lyr
 wms += "&STYLES=&"
 wms += "SRS=EPSG:900913&"
 wms += "BBOX=%s,%s,%s,%s&" % (minx,miny,maxx,maxy)
 wms += "WIDTH=%s&" % w
 wms += "HEIGHT=%s&" % h
 wms += "FORMAT=image/png"
 print wms
 wmsmap = urllib.urlopen(wms)
 with open(img + ".png", "wb") as f:
 f.write(wmsmap.read())

Nextbus agency and route ids
agency = "thunderbay"
route = "1"

NOAA OpenStreetMap WMS service
basemap = "http://osm.woc.noaa.gov/mapcache"

Chapter 9

[311]

Name of the WMS street layer
streets = "osm"

Name of the basemap image to save
mapimg = "basemap"

OpenWeatherMap.org WMS Service
weather = "http://wms.openweathermap.org/service"

Type of weather: precipitation|snow|rain|clouds
sky = "precipitation"

Name of the weather image to save
skyimg = "weather"

Name of the finished map to save
final = "next-weather"

Transparency level for weather layer
when we blend it with the base map.
0 = invisible, 1 = no transparency
opacity = .5

Pixel width and height of the
output map images
w = 600
h = 600

Pixel width/height of the
bus marker icon
icon = 30

Get the bus location
lat, lon = nextbus(agency, route)
if not lat:
 print "No bus data available."
 print "Please try again later"
 sys.exit()

Convert the degrees to meters
to match the WMS maps
x,y = ll2m(lat, lon)

Real-Time Data

[312]

Create a bounding box 1 mile (1600 m)
in each direction around the bus
minx = x - 1600
maxx = x + 1600
miny = y - 1600
maxy = y + 1600

Download the street map
wms(minx, miny, maxx, maxy, basemap, streets, mapimg, w, h)

Download the weather map
wms(minx, miny, maxx, maxy, weather, sky, skyimg, w, h)

Open the basemap image in PIL
im1 = Image.open("basemap.png")

Open the weather image in PIL
im2 = Image.open("weather.png")

Convert the weather image mode
to "RGB" from an indexed PNG
so it matches the basemap image
im2 = im2.convert(im1.mode)

Create a blended image combining
the base map with the weather map
im3 = Image.blend(im1,im2,opacity)

Open up the bus icon image to
use as a location marker
im4 = Image.open("busicon.png")

Shrink the icon to the desired
size
im4.thumbnail((icon,icon))

Use the blended map image
and icon sizes to place
the icon in the center of
the image since the map
is centered on the bus
location.
w,h = im3.size
w2,h2 = im4.size

Chapter 9

[313]

Paste the icon in the center of the image
im3.paste(im4, ((w/2)-(w2/2), (h/2)-(h2/2)), im4)

Save the finished map
im3.save(final + ".png")This script will produce a map similar to the
following:

Real-Time Data

[314]

The map shows us that the bus is experiencing moderate precipitation at its current
location. The color ramp, as shown in the OWM website screenshot earlier, ranges
from light blue for light precipitation, then green, yellow, orange, to red as rain gets
heavier. So at the time this map was created the bus-line operator could use this
image to tell their drivers to go a little slower, and bus riders would know they
may want to get an umbrella before heading to the bus stop.

Because we wanted to learn the Nextbus API at a low level we used
the API directly using built-in Python modules. But several third-party
Python modules exist for the API including one on PyPi simply called
"nextbus" which allows you to work with higher-level objects for all of
the Nextbus commands and provides more robust error handling not
included in the simple examples in this chapter.

Summary
Real-time data is an exciting way to do new types of geospatial analysis only
recently made possible by the advances in several different technologies including
web mapping, GPS, and wireless communications. In this chapter you learned
the following:

•	 How to access raw feeds for real-time location data
•	 How to acquire a subset of a real-time raster data source
•	 How to combine different types of real-time data into a custom map analysis

product using only Python

As with the previous chapters, these examples contain building blocks that will let
you build new types of applications using Python that go far beyond the typical
popular and ubiquitous JavaScript-based mash up.

In Chapter 10, Putting It All Together, the final chapter, we will combine everything
we've learned so far into a complete geospatial application which applies the
algorithms and concepts in a realistic scenario.

Putting It All Together
In this book we have touched all the important aspects of geospatial analysis. And
we've used a variety of different techniques in Python to analyze different types of
geospatial data. In this final chapter, we will draw on nearly all of the topics we have
covered to produce one real-world product that has become very popular: A GPS
route analysis report.

These reports are common to dozens of mobile-app services, GPS watches, in-car
navigation systems, and other GPS-based tools. A GPS typically records location,
time, and elevation. From these values we can derive a vast amount of ancillary
information about what happened along the route on which that data was recorded.
Fitness apps including RunKeeper.com, MapMyRun.com, Endomondo.com, and Nike
Plus all use similar reports to present GPS-tracked exercise data from running,
hiking, biking, or walking to users.

We will create one of these reports using Python. This program is nearly 500 lines
of code, our longest yet, so we will step through it in pieces. We will combine the
following techniques:

•	 Accessing online data services
•	 Combining vector and raster data
•	 Parsing data sets and data feeds
•	 Processing raster data
•	 Producing graphics and reports

As we step through this program, all of the techniques used will be familiar but we
will be using them in new ways.

Putting It All Together

[316]

A typical GPS report
A typical GPS report has common elements including a route map, elevation profile,
and speed profile. The following screenshot is a report from a typical route logged
through RunKeeper.com:

Our report will be similar but we'll add a twist. We'll include the route map and
elevation profile like this service but we'll also add the weather conditions that
occurred on that route when it was recorded.

Working with GPX-Reporter.py
The name of our program is GPX-Reporter.py. If you remember from the section
Tag and markup-based formats, in Chapter 2, Geospatial Data, the GPX format is the most
common way to store GPS route information. Nearly every program and device
relying on GPS data can convert to and from GPX.

Chapter 10

[317]

For this example you can download a sample GPX file from here:

https://geospatialpython.googlecode.com/files/route.gpx

You will also need to install a few Python libraries from PyPi. If you've worked
through the rest of this book you'll have most of them already:

•	 PIL: the Python Imaging Library
•	 Numpy: multi-dimensional, array-processing library, which uses linear algebra
•	 Srtm.py: a utility for working with near-global elevation data
•	 Pygooglechart: A Python wrapper for the excellent Google Chart API
•	 Fpdf: a simple, pure-python PDF writer

Simply use easy_install or pip to install these tools.

You will also need to register for a free WeatherUnderground.com developer
account. This free service provides unique tools. It is the only service that provides
global, historical weather data for nearly any point location:

http://www.wunderground.com/weather/api/?apiref=d7797a6597c63624

WeatherUnderground will provide you with a text key that you insert into a variable
called api_key in the GPX-Reporter program before running it.

Finally, as per WeatherUnderground's terms of service, you'll need to download a
logo image to be inserted into the report:

http://icons.wxug.com/logos/images/wundergroundLogo_black_horz.
jpg?apiref=d7797a6597c63624

Stepping through the program
Now we're ready to work through the GPX-Reporter program. Like other scripts
in this book, this program tries to minimize functions so you can mentally trace the
program better and modify it with less effort. The following bullets contain the major
steps in the program:

•	 Setting up the Python logging module
•	 Establishing our helper functions
•	 Parsing the GPX data file
•	 Calculating the route bounding box
•	 Buffering the bounding box

https://geospatialpython.googlecode.com/files/route.gpx
https://geospatialpython.googlecode.com/files/route.gpx
https://geospatialpython.googlecode.com/files/route.gpx
http://www.wunderground.com/weather/api/?apiref=d7797a6597c63624
http://www.wunderground.com/weather/api/?apiref=d7797a6597c63624
http://icons.wxug.com/logos/images/wundergroundLogo_black_horz.jpg?apiref=d7797a6597c63624
http://icons.wxug.com/logos/images/wundergroundLogo_black_horz.jpg?apiref=d7797a6597c63624
http://icons.wxug.com/logos/images/wundergroundLogo_black_horz.jpg?apiref=d7797a6597c63624
http://icons.wxug.com/logos/images/wundergroundLogo_black_horz.jpg?apiref=d7797a6597c63624

Putting It All Together

[318]

•	 Converting the box to meters
•	 Downloading the base map
•	 Downloading the elevation data
•	 Hillshading the elevation data
•	 Increasing the hillshade contrast
•	 Blending the hillshade and base map
•	 Drawing the GPX track on a separate image
•	 Blending the track image and base map
•	 Drawing the start and finish points
•	 Saving the map image
•	 Calculating the route mile markers
•	 Building the elevation profile chart
•	 Getting the weather data for the route time period
•	 Generating the PDF report

Initial setup
The beginning of the program is import statements followed by the Python logging
module. The logging module provides a more robust way to track and log program
status than simple print statements. In this part of the program we configure it:

from xml.dom import minidom
import json
import urllib
import math
import time
import logging
import Image
import ImageFilter
import ImageEnhance
import ImageDraw
import numpy as np
import srtm
import sys
from pygooglechart import SimpleLineChart
from pygooglechart import Axis
import fpdf

Python logging module.

Chapter 10

[319]

Provides a more advanced way
to track and log program progress.
Logging level - everything at or below
this level will output. INFO is below.
level = logging.DEBUG
The formatter formats the log message.
We print the local time, logger name, and message
formatter = logging.Formatter("%(asctime)s - %(name)s - %(message)s")
Establish a logging object and name it
log = logging.getLogger("GPX-Reporter")
Configure our logger
log.setLevel(level)
Print to the command line
console = logging.StreamHandler()
console.setLevel(level)
console.setFormatter(formatter)
log.addHandler(console)

This logger prints to the console, but with a few simple modifications you can have
it print to a file, or even a database just by altering the configuration in this section.
This module is built into Python and documented here:

http://docs.python.org/2/howto/logging.html

Working with utility functions
Next we have several utility functions that are used several times throughout
the program. All of these, except the functions related to time, have been used
in previous chapters in some form. The ll2m() function converts latitude and
longitude to meters. The world2pixel() function converts geospatial coordinates
to pixel coordinates on our output map image. Then we have two functions named
get_utc_epoch() and get_local_time() that convert the UTC time stored in the
GPX file to local time along the route. Finally we have a haversine distance function
and our simple wms function to retrieve map images:

def ll2m(lat,lon):
 """Lat/lon to meters"""
 x = lon * 20037508.34 / 180.0
 y = math.log(math.tan((90.0 + lat) * \
 math.pi / 360.0)) / (math.pi / 180.0)
 y = y * 20037508.34 / 180
 return (x,y)

def world2pixel(x,y,w,h,bbox):

http://docs.python.org/2/howto/logging.html
http://docs.python.org/2/howto/logging.html

Putting It All Together

[320]

 """Converts world coordinates
 to image pixel coordinates"""
 # Bounding box of the map
 minx,miny,maxx,maxy=bbox
 # world x distance
 xdist=maxx-minx
 # world y distance
 ydist=maxy-miny
 # scaling factors for x,y
 xratio = w/xdist
 yratio = h/ydist
 # Calculate x,y pixel coordinate
 px = w - ((maxx - x) * xratio)
 py = (maxy-y) * yratio
 return int(px),int(py)

def get_utc_epoch(timestr):
 """Converts a GPX timestamp to Unix epoch seconds
 in Greenwich Mean Time to make time math easier"""
 # Get time object from ISO time string
 utctime = time.strptime(timestr, '%Y-%m-%dT%H:%M:%SZ')
 # Convert to seconds since epoch
 secs = int(time.mktime(utctime))
 return secs

def get_local_time(timestr, utcoffset = None):
 """Converts a GPX timestamp to Unix epoch
 seconds in the local time zone"""
 secs = get_utc_epoch(timestr)
 if not utcoffset:
 # Get local timezone offset
 if time.localtime(secs).tm_isdst:
 utcoffset = time.altzone
 pass
 else:
 utcoffset = time.timezone
 pass
 pass
 return time.localtime(secs - utcoffset)

def haversine(x1,y1,x2,y2):
 """Haversine distance formula"""
 x_dist = math.radians(x1 - x2)
 y_dist = math.radians(y1 - y2)

Chapter 10

[321]

 y1_rad = math.radians(y1)
 y2_rad = math.radians(y2)
 a = math.sin(y_dist/2)**2 + math.sin(x_dist/2)**2 \
 * math.cos(y1_rad) * math.cos(y2_rad)
 c = 2 * math.asin(math.sqrt(a))
 # Distance in miles. Just use c * 6371
 # for kilometers
 distance = c * (6371/1.609344) # Miles
 return distance

def wms(minx, miny, maxx, maxy, service, lyr, \
epsg, style, img, w, h):
 """Retrieve a wms map image from
 the specified service and saves it as a JPEG."""
 wms = service
 wms += "?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&"
 wms += "LAYERS=%s" % lyr
 wms += "&STYLES=%s&" % style
 wms += "SRS=EPSG:%s&" % epsg
 wms += "BBOX=%s,%s,%s,%s&" % (minx,miny,maxx,maxy)
 wms += "WIDTH=%s&" % w
 wms += "HEIGHT=%s&" % h
 wms += "FORMAT=image/jpeg"
 wmsmap = urllib.urlopen(wms)
 with open(img + ".jpg", "wb") as f:
 f.write(wmsmap.read())

Next we have our program variables. We will be accessing the OpenStreetMap
WMS service provided by NOAA as well as the SRTM data provided by NASA.

We access the WMS services in this book using Python's urllib library
for simplicity, but if you plan to use OGC web services frequently,
you should use the Python package OWSLib available through PyPI:
https://pypi.python.org/pypi/OWSLib

We will output several intermediate products and images. These variables are used
in those steps. The route.gpx file is defined in this section as the variable gpx:

Needed for numpy conversions in hillshading
deg2rad = 3.141592653589793 / 180.0
rad2deg = 180.0 / 3.141592653589793

Program Variables

Name of the gpx file containing a route

https://pypi.python.org/pypi/OWSLib
https://pypi.python.org/pypi/OWSLib

Putting It All Together

[322]

gpx = "route.gpx"

NOAA OpenStreetMap Basemap

NOAA OSM WMS service
osm_WMS = "http://osm.woc.noaa.gov/mapcache"

Name of the WMS street layer
#streets = "osm"
osm_lyr = "osm"

Name of the basemap image to save
osm_img = "basemap"

OSM EPSG code (spatial reference system)
osm_epsg = 3857

Optional WMS parameter
osm_style = ""

Shaded elevation parameters
#
Sun direction
azimuth=315.0
Sun angle
altitude=45.0
Elevation exageration
z=5.0
Resolution
scale=1.0
No data value for output
no_data = 0
Output elevation image name
elv_img = "elevation"

RGBA color of the SRTM minimum elevation
min_clr=(255,255,255,0)
RGBA color of the SRTM maximum elevation
max_clr=(0,0,0,0)
No data color
zero_clr = (255, 255, 255, 255)

Pixel width and height of the
output images
w = 800
h = 800

Chapter 10

[323]

Parsing the GPX
Now we'll parse the GPX file, which is just XML, using the built-in xml.dom.
minidom module. We'll extract latitude, longitude, elevation, and timestamps.
We'll store them in a list for later use. The timestamps are converted to
struct_time objects using Python's time module, which makes them
easier to work with:

Parse the gpx file and extract the coordinates
log.info("Parsing GPX file: %s" % gpx)
xml = minidom.parse(gpx)
Grab all of the "trkpt" elements
trkpts = xml.getElementsByTagName("trkpt")
Latitude list
lats = []
Longitude list
lons = []
Elevation list
elvs = []
GPX timestamp list
times = []
Parse lat/long, elevation and times
for trkpt in trkpts:
 # Latitude
 lat = float(trkpt.attributes["lat"].value)
 # Longitude
 lon = float(trkpt.attributes["lon"].value)
 lats.append(lat)
 lons.append(lon)
 # Elevation
 elv = trkpt.childNodes[0].firstChild.nodeValue
 elv = float(elv)
 elvs.append(elv)
 # Times
 t = trkpt.childNodes[1].firstChild.nodeValue
 # Convert to local time epoch seconds
 t = get_local_time(t)
 times.append(t)

Putting It All Together

[324]

Getting the bounding box
We're going to need the bounding box of the route to download data from other
geospatial services. When we download data, we want the data set to cover more
area than the route so the map is not cropped too closely around the edges of the
route. So we'll buffer the bounding box by 10% on each side. Finally, we'll need
the data in Eastings and Northings to work with the WMS service. Eastings and
Northings are the x and y coordinates of points in the Cartesian coordinate system.
They are commonly used in the UTM coordinate system:

Find Lat/Long bounding box of the route
minx = min(lons)
miny = min(lats)
maxx = max(lons)
maxy = max(lats)

Buffer the GPX bounding box by 20%
so the track isn't too close to
the edge of the image.
xdist = maxx - minx
ydist = maxy - miny
x10 = xdist * .2
y10 = ydist *.2
10% expansion on each side
minx -= x10
miny -= x10
maxx += x10
maxy += x10

Store the bounding box in a single
variable to streamline function calls
bbox = [minx,miny,maxx,maxy]

We need the bounding box in meters
for the OSM WMS service. We will
download it in degrees though to
match the SRTM file. The WMS spec
says the input SRS should match the
output but this custom service just
doesn't work that way
mminx, mminy = ll2m(miny,minx)
mmaxx, mmaxy = ll2m(maxy,maxx)

Chapter 10

[325]

Downloading OpenStreetMap images
We'll download the OSM base map first, which has streets and labels:

Download the OSM basemap
log.info("Downloading basemap")
wms(mminx, mminy, mmaxx, mmaxy, osm_WMS, osm_lyr, \
 osm_epsg, osm_style, osm_img, w, h)

This section will produce an intermediate image, as shown in the following screenshot:

Putting It All Together

[326]

Next we'll download some elevation data from the SRTM dataset. SRTM is
nearly-global and provides a 30-90 m resolution. The Python module SRTM.py
makes working with this data easy. SRTM.py downloads the data sets it needs to
make a request. So if you download data from different areas you may need to clean
out the cache located in your home directory (~/.srtm). This part of the script can also
take up to 2-3 minutes to complete depending on your computer:

Download the SRTM image
srtm.py downloader
log.info("Retrieving SRTM elevation data")
The SRTM module will try to use a local cache
first and if needed download it.
srt = srtm.get_data()
Get the image and return a PIL Image object
image = srt.get_image((w,h), (miny,maxy), (minx,maxx), \
 300, zero_color=zero_clr, min_color=min_clr, max_color=max_clr)
Save the image
image.save(elv_img + ".jpg")

This portion of the script also outputs an intermediate elevation image as shown in
the following screenshot:

Chapter 10

[327]

Creating the hillshade
We can run this data through the same hillshade algorithm used in the Creating a
shaded-relief section, in Chapter 7, Python and Elevation Data:

Hillshade the elevation image
log.info("Hillshading elevation data")
im = Image.open(elv_img + ".jpg").convert("L")
dem = np.asarray(im)
Set up structure for a 3x3 windows to
process the slope throughout the grid
window = []
x,y resolutions
xres = (maxx-minx)/w
yres = (maxy-miny)/h
Create the windows
for row in range(3):
 for col in range(3):
 window.append(dem[row:(row + dem.shape[0]-2), \
 col:(col + dem.shape[1]-2)])
Process each cell
x = ((z * window[0] + z * window[3] + z * window[3] + z * window[6]) \
 - (z * window[2] + z * window[5] + z * window[5] + z * window[8]))
\
 / (8.0 * xres * scale);

y = ((z * window[6] + z * window[7] + z * window[7] + z * window[8]) \
 - (z * window[0] + z * window[1] + z * window[1] + z * window[2]))
\
 / (8.0 * yres * scale);

Calculate slope
slope = 90.0 - np.arctan(np.sqrt(x*x + y*y)) * rad2deg

Calculate aspect
aspect = np.arctan2(x, y)

Calculate the shaded relief
shaded = np.sin(altitude * deg2rad) * np.sin(slope * deg2rad) \
 + np.cos(altitude * deg2rad) * np.cos(slope * deg2rad) \
 * np.cos((azimuth - 90.0) * deg2rad - aspect);
shaded = shaded * 255

Putting It All Together

[328]

Creating maps
We have the data we need to begin building the map for our report. Our approach
will be the following:

•	 Enhancing the elevation and base map images with filters
•	 Blending the images together to provide a hillshaded OSM map
•	 Creating a translucent layer to draw the street route
•	 Blending the route layer with the hillshaded map

These tasks will all be accomplished using the PIL Image and ImageDraw modules:

Convert the numpy array back to an image
relief = Image.fromarray(shaded).convert("L")
Smooth the image several times so it's not pixelated
for i in range(10):
 relief = relief.filter(ImageFilter.SMOOTH_MORE)

log.info("Creating map image")
Increase the hillshade contrast to make
it stand out more
e = ImageEnhance.Contrast(relief)
relief = e.enhance(2)

Crop the image to match the SRTM image. We lose
2 pixels during the hillshade process
base = Image.open(osm_img + ".jpg").crop((0,0,w-2,h-2))
Enhance base map contrast before blending
e = ImageEnhance.Contrast(base)
base = e.enhance(1)
Blend the map and hillshade at 90% opacity
topo = Image.blend(relief.convert("RGB"), base, .9)

Draw the GPX tracks
Convert the coordinates to pixels
points = []
for x,y in zip(lons,lats):
 px,py = world2pixel(x,y,w,h,bbox)
 points.append((px,py))

Chapter 10

[329]

Crop the image size values to match the map
w -= 2
h -= 2

Set up a translucent image to draw the route.
This technique allows us to see the streets
and street names under the route line.

track = Image.new('RGBA', (w,h))
track_draw = ImageDraw.Draw(track)
Route line will be red at 50% transparency (255/2=127)
track_draw.line(points, fill=(255,0,0,127), width=4)
Paste onto the base map using the drawing layer itself
as a mask.
topo.paste(track,mask=track)

Now we'll draw start and end points directly on top
of our map - no need for transparency
topo_draw = ImageDraw.Draw(topo)
Starting circle
start_lon, start_lat = (lons[0], lats[0])
start_x,start_y = world2pixel(start_lon, start_lat, w, h, bbox)
start_point = [start_x-10,start_y-10,start_x+10,start_y+10]
topo_draw.ellipse(start_point, fill="lightgreen", outline="black")
start_marker = [start_x-4,start_y-4,start_x+4,start_y+4]
topo_draw.ellipse(start_marker, fill="black", outline="white")
Starting circle
end_lon, end_lat = (lons[-1],lats[-1])
end_x,end_y = world2pixel(end_lon, end_lat, w, h, bbox)
end_point = [end_x-10,end_y-10,end_x+10,end_y+10]
topo_draw.ellipse(end_point, fill="red", outline="black")
end_marker = [end_x-4,end_y-4,end_x+4,end_y+4]
topo_draw.ellipse(end_marker, fill="black", outline="white")

Save the topo map
topo.save("%s_topo.jpg" % osm_img)

Putting It All Together

[330]

While not saved to the filesystem the hillshaded elevation looks like the following:

The blended topographic map looks like the following screenshot:

Chapter 10

[331]

While hillshade mapping gives us an idea of the elevation, it doesn't' give us any
quantitative data. To get more detailed we'll create a simple elevation chart.

Measuring elevation
Using the excellent Google Chart API, we can quickly build a nice elevation profile
chart showing how the elevation changes across the route:

Build the elevation chart using the Google Charts API
log.info("Creating elevation profile chart")
chart = SimpleLineChart(600, 300, y_range=[min(elvs),max(elvs)])

API quirk - you need 3 lines of data to color
in the plot so we add a line at the minimum value
twice.
chart.add_data([min(elvs)]*2)
chart.add_data(elvs)
chart.add_data([min(elvs)]*2)

Black lines
chart.set_colours(['000000'])

fill in the elevation area with a hex color
chart.add_fill_range('80C65A', 1,2)

Set up labels for the minimum elevation, halfway value, and max
value
elv_labels = int(round(min(elvs))), int(min(elvs)+((max(elvs)-
min(elvs)/2))), int(round(max(elvs)))

Assign the labels to an axis
elv_label = chart.set_axis_labels(Axis.LEFT, elv_labels)

Label the axis
elv_text = chart.set_axis_labels(Axis.LEFT, ["FEET"])
Place the label at 30% the distance of the line
chart.set_axis_positions(elv_text, [30])

Calculate distances between track segments
distances = []
measurements=[]
coords = zip(lons,lats)
for i in range(len(coords)-1):

Putting It All Together

[332]

 x1,y1 = coords[i]
 x2,y2 = coords[i+1]
 d = haversine(x1,y1,x2,y2)
 distances.append(d)
total = sum(distances)
distances.append(0)
j=-1

Measuring distance
In order to understand the elevation data chart, we need reference points along the
x-axis to help us determine the elevation along the route. We will calculate the mile
splits along the route and place those at the appropriate location on the x-axis of
our charts:

Locate the mile markers
for i in range(1,int(round(total))):
 mile = 0
 while mile < i:
 j+=1
 mile += distances[j]
 measurements.append((int(mile),j))
 j=-1

Set up labels for the mile points
positions = []
miles = []
for m,i in measurements:
 pos = ((i*1.0)/len(elvs)) * 100
 positions.append(pos)
 miles.append(m)

Position the mile marker labels along the x axis
miles_label = chart.set_axis_labels(Axis.BOTTOM, miles)
chart.set_axis_positions(miles_label, positions)

Label the x axis as "Miles"
miles_text = chart.set_axis_labels(Axis.BOTTOM, ["MILES",])
chart.set_axis_positions(miles_text, [50,])

Save the chart
chart.download('%s_profile.png' % elv_img)

Chapter 10

[333]

Our chart should now look like this:

Retrieving weather data
Next we will retrieve our final data element—weather. As mentioned earlier,
we will use the WeatherUnderground service that allows us to gather historical
weather reports for any place in the world. The weather API is REST- and
JSON-based, so we'll use the urllib module to request data and the json library
to parse it. Of note in this section is that, we cache the data locally, so you can run
the script offline for testing if need be. Early on in this section is where you place
your WeatherUnderground API key that is flagged by the text YOUR KEY HERE:

log.info("Creating weather summary")

Get the bounding box centroid for
georeferencing weather data
centx = minx + ((maxx-minx)/2)
centy = miny + ((maxy-miny)/2)

WeatherUnderground API key
You must register for free at wunderground.com
to get a key to insert here.
api_key = "YOUR KEY HERE"

Get the location id of the route using the bounding box
centroid and the geolookup api

Putting It All Together

[334]

geolookup_req = "http://api.wunderground.com/api/%s" % api_key
geolookup_req += "/geolookup/q/%s,%s.json" % (centy,centx)
request = urllib.urlopen(geolookup_req)
geolookup_data = request.read()
Cache lookup data for testing if needed
with open("geolookup.json","w") as f:
 f.write(geolookup_data)
js = json.loads(open("geolookup.json").read())
loc = js["location"]
route_url = loc["requesturl"]
Grab the latest route time stamp to query weather history
t = times[-1]
history_req = "http://api.wunderground.com/api/%s" % api_key
history_req += "/history_%s%02d%02d/q/%s.json" % (t.tm_year,t.tm_
mon,t.tm_mday,route_url.split(".")[0])
request = urllib.urlopen(history_req)
weather_data = request.read()

Cache weather data for testing
with open("weather.json","w") as f:
 f.write(weather_data)

Retrieve weather data
js = json.loads(open("weather.json").read())
history = js["history"]

Grab the weather summary data.
First item in a list.
daily = history["dailysummary"][0]

Max temperature in Imperial units (Farenheit).
Celsius would be metric: "maxtempm"
maxtemp = daily["maxtempi"]
Minimum temperature
mintemp = daily["mintempi"]
Maximum humidity
maxhum = daily["maxhumidity"]
Minimum humidity
minhum = daily["minhumidity"]
Precipitation in inches (cm = precipm)
precip = daily["precipi"]

Now that we have the weather data stored in variables, we can complete the final
step: adding it all to a PDF report.

Chapter 10

[335]

The fpdf library has no dependencies except PIL in some cases. For our purposes, it
will work quite well. We are going to proceed down the page and add the elements.
fpdf.ln() separates rows, while fpdf.cells contains text and allows for more
precise layouts:

Simple fpdf.py library for our report.
New pdf, portrait mode, inches, letter size
(8.5 in. x 11 in.)
pdf=fpdf.FPDF("P", "in", "Letter")
Add our one report page
pdf.add_page()
Set up the title
pdf.set_font('Arial','B',20)
Cells contain text or space items horizontally
pdf.cell(6.25,1,'GPX Report',border=0, align="C")
Lines space items vertically (units are in inches)
pdf.ln(h=1)
pdf.cell(1.75)
Create a horizontal rule line
pdf.cell(4,border="T")
pdf.ln(h=0)
pdf.set_font('Arial',style='B', size=14)
Set up the route map
pdf.cell(w=1.2,h=1, txt="Route Map", border=0,align="C")
pdf.image("%s_topo.jpg" % osm_img,1,2,4,4)
pdf.ln(h=4.35)
Add the elevation chart
pdf.set_font('Arial',style='B', size=14)
pdf.cell(w=1.2,h=1, txt="Elevation Profile", border=0,align="C")
pdf.image("%s_profile.png" % elv_img,1,6.5,4,2)
pdf.ln(h=2.4)
Write the weather summary
pdf.set_font('Arial',style='B', size=14)
pdf.cell(1.2,1,"Weather Summary",align="C")
pdf.ln(h=.25)
pdf.set_font('Arial',style='', size=12)
pdf.cell(1.2,1,"Min. Temp.: %s" % (mintemp),align="C")
pdf.cell(1.2,1,"Max. Hum.: %s" % maxhum,align="C")
pdf.ln(h=.25)
pdf.cell(1.2,1,"Max. Temp.: %s" % maxtemp,align="C")
pdf.cell(1.2,1,"Precip.: %s" % precip,align="C")
pdf.ln(h=.25)
pdf.cell(1.2,1,"Min. Hum.: %s" % minhum,align="C")
Give WeatherUnderground credit for a great service

Putting It All Together

[336]

pdf.image("wundergroundLogo_black_horz.jpg",3.5,9,1.75,.25)
Save the report
log.info("Saving report pdf")
pdf.output('report.pdf','F')

You should have a PDF document in your working directory called
report.pdf containing your finished product. It should look like the
image shown in the following screenshot:

Chapter 10

[337]

Summary
Congratulations! In this book, you pulled together the most essential tools and
skills needed to be a modern geospatial analyst. Whether you use geospatial data
occasionally or use it all the time, you will be better equipped to make the most of
geospatial analysis. This book focuses on using open-source tools almost entirely
found within the PyPI directory for ease of installation and integration. But even if
you are using Python as a driver for a commercial GIS package or a popular library
such as GDAL, the ability to test out new concepts in pure Python will always come
in handy.

Index
A
A* algorithm 281
Adobe Photoshop 275
ArcGIS

about 122
URL 122

ArcSDE 107-109
ASCIIGRID 236
ASCIIGRID Digital Elevation Model

(DEM) 239
ASCII Grid files

about 236
reading 236, 237
writing 238, 239

ASCII GRIDS 82, 83
attribute selections

performing 193, 194
AutoCAD native Drawing format. See DWG
Automated Remote Sensing (ARS) 220

B
band math 43
BeautifulSoup library 149
binary large objects (BLOBs) 80
buffer operation 38

C
CAD

about 25, 76
using 77

Canadian Geographic Information System.
See CGIS

Canadian Hydrographic Service (CHS) 105

CatMDEdit
about 124
URL 124

cElementTree 145
CGAL

about 97, 98
URL 98

CGIS 17
change detection

about 44, 229
example 229
performing 229-233

choropleth maps 198
Comma-Separated Values (CSV) 73
common raster data concepts

band math 43
change detection 44
feature extraction 45
histogram 45
supervised classification 46
unsupervised classification 46

common vector GIS concepts
buffer operation 38
data structures 36, 37
dissolve operation 38
generalize operation 39
intersection operation 40
join operation 42
merge operation 40
point in polygon operation 41
union operation 42

computational geometry
about 95
CGAL 97, 98
GEOS 100
JTS 98

[340]

PostGIS 101
PROJ.4 96, 97
routing 110
SpatiaLite 109
spatially-enabled databases 104

Computational Geometry Algorithms
Library. See CGAL

Computer-Aided Design. See CAD
coordinate conversion

performing 177, 178
CORONA process 20
CORONA satellites 21
cStringIO module 142

D
data access

about 92
GDAL 92
OGR 93, 95

data structures 61
datum 170
dbfpy module 156, 157
DEM 24, 274
desktop tools

about 111
ArcGIS 122
Google Earth 118
GRASS GIS 115
gvSIG 118
NASA World Wind 120
OpenEV 113
OpenJUMP 118
Quantum GIS 112
uDig 116, 117

digital elevation model. See DEM
Dijkstra Algorithm 281
dissolve operation 38
distance

measuring 168-170
distance calculation methods

Haversine formula 173, 174
Pythagorean theorem 171
Vincenty formula 175, 176

distance calculation models
ellipsoid model 170
flat plane model 168

spherical model 169
dot density map 194
draw_histogram() function 212
Drawing Exchange Format (DXF) 76
DWG 76

E
Earth Resources Technology Satellite

(ERTS) 22
Eastings 324
ElementTree

about 145, 146
XML, building 146-150

elevation contours
creating 245-248

elevation data
about 235
ASCII Grid files 236
purposes 235

ellipsoid model 170
enumerate() method 185
epoch date 300
Esri Network Analyst 110
Esri shapefile format 67
Esri Spatial Analyst 110
ETRS89 170
Eurasian Plate 170
European Petroleum Survey Group (EPGS)

59
eval() function 153
Extensible Markup Language formats. See

XML formats

F
feature extraction 45
file structure 66
findAll() method 149
flat plane model 168
flood fill algorithm 275
floodFill() function

defining 276
flood inundation model

creating 274, 275
floodFill() function 276
flood, making 278-280

FTP 139, 140

[341]

ftplib.ftp.retrbinary() method 139
FWTools

about 130
URL 130

G
GDAL

about 81, 92, 158-160
home page 93
installing, for Python 130
installing, on Linux 136
installing, on Mac OS X 136
installing, on Windows 131-135
raster data, abstracting 93

gdal.ContourGenerate() method 245
gdalnumeric module 236
generalize operation 39
geographic information system concepts

map projections 32, 33
metadata 32
rendering 33, 34
spatial databases 31
spatial indexing 32
thematic map 30, 31

Geographic Information Systems (GIS) 9,
17, 18

Geographic Markup Language (GML) 77
geoid model 170
GeoJSON 79, 80, 152
geojson module 154
geo-location 61
Geometry Engine - Open Source. See GEOS
GeoNetwork

about 123
URL 124

GEOS
about 100
capabilities 100
operations 100
spatial indexing 101
URL 101

geospatial analysis
common raster data concepts 43
common vector GIS concepts 36
computer programming, using 26
features 28, 29

history 13, 15
object oriented programming, using 27
overview 9-12
uses 12

geospatial data
about 57
data structures 61
file structure 66
geo-location 61
metadata 65
overview 60
point cloud data 85
raster data 80
spatial indexing 62
subject information 61
vector data 73

geospatial data elements
storage formats 66

geospatial Python modelling
flood inundation model, creating 274
Least Cost Path analysis 280
NDVI, creating 263

geospatial Python toolbox
about 128
Python JSON libraries 152
Python networking libraries 136
Python XML parsers 143
third-party Python modules, installing 128

geospatial rules, polygons 43
geospatial software libraries

relating, with packages 90, 91
geospatial technology

about 89
categories 89
computational geometry 95
data access 92
desktop tools 111
metadata management 123

Global Positioning System (GPS) 59
Google Earth

about 118-120
URL 120

GPS data
about 202
using 202

GPX-Reporter.py
bounding box 324

[342]

distance, measuring 332
elevation, measuring 331
GPX file, parsing 323
hillshade, creating 327
initial setup 318, 319
maps, creating 328-331
OpenStreetMap images, downloading

325, 326
steps 317
utility functions 319, 321
weather data, retrieving 333-336
working with 316

GRASS GIS
about 115
URL 115

Great Circle distance 173
grid

about 64
creating, from LIDAR 249, 252, 253

gvSIG
about 118
URL 118

H
Haversine formula 173, 174
histograms

about 45
creating 208-212
histogram stretch, performing 213-215

history, geospatial analysis
about 13-17
computer-aided drafting (CAD) 25
digital elevation model 24
Geographic Information Systems 17, 18
Remote sensing 18

HSV values 256

I
image bands

swapping 206, 207
images

classifying 220, 222
clipping 216-219
creating, for visualization 194
features, extracting from 223-228

imageToArray() function 265
indexing algorithms

about 62
Quad-Tree index 62
R-Tree index 63

index() method 184
intersection operation 40
iterRecords() method 186

J
Java Topology Suite. See JTS
join operation 42
json module 153
JTS

about 98, 99
URL 99

K
Keyhole Markup Language (KML) 77, 119

L
Landsat Data Continuity Mission (LDCM)

24
LAS 86
Least Cost Path analysis

A* algorithm, implementing 283
about 281
real-world example 285
test grid, setting up 282
test output, viewing 284, 285
test path, generating 284

LIDAR (Light Detection and Ranging)
about 85
grid, creating from 249-254
TIN, creating 258-262
visualizing, PIL used 254-258
working with 248, 249

linecache module 237
Linux

GDAL, installing 136
loadtxt() method 236
login() method 139

[343]

M
Mac OS X

GDAL, installing 136
map projections 32, 33
mash-ups 58
math.radians() method 173
Mercator 59
merge operation 40
metadata 32, 65
metadata management

about 123
CatMDEdit 124
GeoNetwork 123

Microsoft SQL Server
about 109
URL 109

minidom module
about 143
demonstrating 143, 144

Mississippi Transverse Mercator (MSTM)
projection 171

M shape type 187
Multi-Spectral Scanner (MSS) 22
MySQL 109

N
NASA World Wind

about 120, 121
URL 121

National Marine Electronics Association
(NMEA) 202

National Oceanic and Atmospheric
Administration (NOAA) 23

NDVI
about 35, 263
bands, clipping 269
classes, creating 272, 273
classifying 270
creating 264, 265
data, loading 266
formula, using 269, 270
framework, setting up 265
functions 270
loading 271
shapefile, rasterizing 267

near-real-time 295

Nextbus API
about 296
agency list 299
locations, mapping 302, 303
route list 299
Thunder Bay transit system example 296
URL 298
using 296, 298
vehicle locations 300

nextbus() function 303
Nextbus vehicle locations

mapping 302-306
tracking 300-302

Nisson Score 288
Normalized Differential Vegetative Index.

See NDVI
Northings 324
NumPy 160
numpy.loadtxt() method 237
numpy.savetxt() function 238

O
object oriented programming

about 27
example 27

OGR
about 93, 155
architecture 94
capability 94
downloading 155
URL 73
web page 95

OpenEV
about 113, 114
URL 114

Open Geospatial Consortium (OGC) 72
Open GIS Consortium (OGC) 77
OpenJUMP

about 118
URL 118

OpenLayers 58
OpenStreetMap 58
OpenStreetMap images, GPX-Reporter.py

downloading 325
Open Street Map (OSM) format 77

[344]

OpenStreetMap project
URL 29

OpenStreetMap WMS 321
OpenWeatherMap.org (OWM) 306
Oracle spatial and graph

about 105, 106
capabilities 106
URL 107

Oracle Spatial Database Option (SDO) 105
OSGeo4W 130
OSM StaticMap API 303
overviews data 65

P
paint bucket tool 275
pgRouting extension

about 110
URL 111

PIL
about 162
used, for visualizing LIDAR 254-256

PNGCanvas 163
point cloud data 85, 86
point in polygon operation 41
PostGIS

about 101, 102
features 104

PROJ.4
about 96, 97
URL 97

PyFPDF 165
PyPI GDAL page

URL 130
PyShp

about 155
used, for accessing shapefile 182

Pythagorean theorem 169-172
Python

about 46
downloading 46
remote sensing 205
tag-based parsers 142
Turtle module 47
URL 46

Python 2.7.x 129
Python 3.x 129

pythonic API 205
Python JSON libraries

about 152
geojson module 154
json module 153

Python logging module 318
Python networking libraries

about 136
FTP 139
Python urllib module 137
TAR files 140
ZIP files 140

Python Package Index (PyPI) 128
Python programming language 27
Python struct module

about 66
example 66, 68, 72

Python urllib module 137, 138
Python XML parsers

ElementTree 145, 146
minidom module 143-145
URL 143
WKT format 150-152

Q
Quad-Tree index 62
Quantum GIS (QGIS)

about 18, 112, 113
URL 113

queue-based flood 275

R
raster data

about 60, 80
ASCII GRIDS 82
BMP 82
compressed formats 82
GIF 81
JPEG 81
PNG 82
TIFF files 81
world files 83

raster data concepts
about 34
images, processing as data 35
remote sensing 35

[345]

Ray Casting method 191
real-time data

about 295
vehicles, tracking 296
weather, adding 306

real-time weather map
creating 307-309, 314

real-world example, Least Cost Path
analysis

A* algorithm 289
about 285, 286
grid, loading 287
helper functions, defining 287, 288
real-world path, generating 291, 292

records() method 185
recursion 275
remote sensing

about 18-21, 205
change detection 229
features, extracting from images 223, 224
histograms, creating 208
image bands, swapping 206
images, classifying 220

reprojection 178
retrbinary() ftplib method 140
retrieve() method 137
Return Beam Vidicon (RBV) sensor 22
r.iterRecords() method 186
routing

about 110
Esri Network Analyst extension 110
Esri Spatial Analyst extension 110
Spatial Analyst extension 110

r.record() method 184
R-Tree index 63

S
savetext() method 238
selections

attribute selections 193, 194
performing 191
point in polygon formula 191, 192

shaded relief
creating 240-245

shapefiles
about 74, 181

accessing 182
attributes, reading 183-186
changing 187
editing 181
field descriptors 183
fields, adding 188
file formats 74, 75
geometry, reading 186, 187
merging 188, 189
reprojecting 178-180
splitting 190
subsetting spatially 190, 191

Shapely 157
Shuttle Radar Topography Mission (SRTM)

24
SimpleGIS

creating, Python used 46-55
SimpleGIS convert() function 52
skiprows 237
spatial databases 31
spatial indexing

about 32, 62
algorithms 62
grid 64
overviews 65

SpatiaLite
about 109
URL 110

spatially-enabled databases
ArcSDE 107, 108
Microsoft SQL Server 109
MySQL 109
Oracle Spatial and Graph 105-107
PostGIS 104

Spatial Reference website
URL 78

Spectral Python (SPy)
about 165
URL 165

spherical model 169
spreadsheets

about 200
using 200

sqlite module 55
SRTM dataset 326
StaticMap 302
ST_Buffer() function 102

[346]

StringIO module 142
subsetting 190
supervised classification 46

T
Tagged Image File Format. See TIFF files
tarfile.extractall() method 141
tarfile.open() method 141
thematic map 30, 31
third-party Python modules

GDAL, installing 130
installing 128, 129

Thunder Bay transit system example
about 297
real-time weather map, creating 306
vehicles, tracking 296

TIFF files 81
TIN

about 258
creating 258-262

Tkinter
URL 47

travelling salesman problem (TSP)
about 110
URL 110

Triangulated Irregular Network. See TIN
typical GPS report 316

U
uDig

about 116, 117
URL 117

union operation 42
unsupervised classification 46
urllib.retrieve() method 137
urllib.urlopen() method 137
US BOEMRE map 106
US Geological Survey (USGS) 24
utility functions, GPX-Reporter.py

get_local_time() 319
get_utc_epoch() 319
ll2m() function 319
world2pixel() function 319

V
vector data

about 60, 72, 73
CAD files 76
GeoJSON 79
shapefiles 74
tag-based markup formats 77

Vincenty formula 175, 176

W
WeatherUnderground 317
web mash-ups 296
Well-Known Binary (WKB) 151
Well Known Text (WKT) format 78, 143, 150
Windows

GDAL, installing 131
world2Pixel() function 265
WorldDEM 25
world files

about 83
example 84
structure 83

X
XML formats

about 77
features 78
Keyhole Markup Language (KML) 77
Open Street Map (OSM) format 77

XMLHttpRequest API 58

Y
ycell 240

Z
zipfile.namelist() method 141

Thank you for buying
Learning Geospatial Analysis with Python

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Python Geospatial Development -
Second Edition
ISBN: 978-1-78216-152-3 Paperback: 508 pages

Learn to build sophisticated mapping applications
from scratch using Python tools for geospatial
development

1.	 Build your own complete and sophisticated
mapping applications in Python.

2.	 Walks you through the process of building
your own online system for viewing and
editing geospatial data

3.	 Practical, hands-on tutorial that teaches you all
about geospatial development in Python

Python Data Visualization
Cookbook
ISBN: 978-1-78216-336-7 Paperback: 254 pages

Over 60 recipes that will enable you to learn how to
create attractive visualizations using Python's most
popular libraries

1.	 Learn how to set up an optimal Python
environment for data visualization

2.	 Understand the topics such as importing
data for visualization and formatting data for
visualization

3.	 Understand the underlying data and how to
use the right visualizations

Please check www.PacktPub.com for information on our titles

wxPython 2.8 Application
Development Cookbook
ISBN: 978-1-84951-178-0 Paperback: 308 pages

Quickly create robust, reliable, and reusable
wxPython applications

1.	 Develop flexible applications in wxPython

2.	 Create interface translatable applications that
will run on Windows, Macintosh OSX, Linux,
and other UNIX like environments

3.	 Learn basic and advanced user interface
controls

4.	 Packed with practical, hands-on cookbook
recipes and plenty of example code, illustrating
the techniques to develop feature rich
applications using wxPython.

Instant Pygame for Python Game
Development How-to
ISBN: 978-1-78216-286-5 Paperback: 76 pages

Create engaging and fun games with Pygame,
Python's Game development library

1.	 Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results

2.	 Quickly develop interactive games by utilizing
features that give you a great user experience

3.	 Create your own games with realistic examples
and easy to follow instructions

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Learning Geospatial

Analysis with Python
	Geospatial analysis and our world
	Beyond politics

	History of geospatial analysis
	Geographic Information Systems
	Remote sensing
	Elevation data
	Computer-aided drafting

	Geospatial analysis and computer programming
	Object-oriented programming for geospatial analysis

	Importance of geospatial analysis
	Geographic Information System concepts
	Thematic maps
	Spatial databases
	Spatial Indexing
	Metadata
	Map projections
	Rendering

	Raster data concepts
	Images as data
	Remote sensing and color

	Common vector GIS concepts
	Data structures
	Buffer
	Dissolve
	Generalize
	Intersection
	Merge
	Point in polygon
	Union
	Join
	Geospatial rules about polygons

	Common raster data concepts
	Band math
	Change detection
	Histogram
	Feature extraction
	Supervised classification
	Unsupervised classification

	Creating the simplest possible Python GIS
	Getting started with Python
	Building SimpleGIS

	Summary

	Chapter 2
: Geospatial Data
	Data structures
	Common traits
	Geo-location
	Subject information
	Spatial indexing
	Metadata
	File structure

	Vector data
	Shapefiles
	CAD files
	Tag and markup-based formats
	GeoJSON

	Raster data
	TIFF files
	JPEG, GIF, BMP, PNG
	Compressed formats
	ASCII GRIDS
	World files

	Point cloud data
	Summary

	Chapter 3
: The Geospatial
Technology Landscape
	Data access
	GDAL
	OGR

	Computational geometry
	PROJ.4
	CGAL
	JTS
	GEOS
	PostGIS
	Other spatially-enabled databases
	Oracle spatial and graph
	ArcSDE
	Microsoft SQL Server
	MySQL

	SpatiaLite
	Routing
	Esri Network Analyst and Spatial Analyst
	pgRouting

	Desktop tools
	Quantum GIS
	OpenEV
	GRASS GIS
	uDig
	gvSIG
	OpenJUMP
	Google Earth
	NASA World Wind
	ArcGIS

	Metadata management
	GeoNetwork
	CatMDEdit

	Summary

	Chapter 4
: Geospatial Python Toolbox
	Installing third-party Python modules
	Installing GDAL
	Windows
	Linux
	Mac OS X

	Python networking libraries for acquiring data
	Python urllib module
	FTP
	ZIP and TAR files

	Python markup and tag-based parsers
	The minidom module
	ElementTree
	Building XML

	WKT

	Python JSON libraries
	json module
	geojson module

	OGR
	PyShp
	dbfpy
	Shapely
	GDAL
	NumPy
	PIL
	PNGCanvas
	PyFPDF
	Spectral Python
	Summary

	Chapter 5
: Python and Geographic Information Systems
	Measuring distance
	Pythagorean theorem
	Haversine formula
	Vincenty formula

	Coordinate conversion
	Reprojection
	Editing shapefiles
	Accessing the shapefile
	Reading shapefile attributes
	Reading shapefile geometry
	Changing a shapefile
	Adding fields

	Merging shapefiles
	Splitting shapefiles
	Subsetting spatially

	Performing selections
	Point in polygon formula
	Attribute selections

	Creating images for visualization
	Dot density calculations
	Choropleth maps
	Using spreadsheets
	Using GPS data
	Summary

	Chapter 6
: Python and Remote Sensing
	Swapping image bands
	Creating histograms
	Performing a histogram stretch

	Clipping images
	Classifying images
	Extracting features from images
	Change detection
	Summary

	Chapter 7
: Python and Elevation Data
	ASCII Grid files
	Reading grids
	Writing grids

	Creating a shaded relief
	Creating elevation contours
	Working with LIDAR
	Creating a grid from LIDAR
	Using PIL to visualize LIDAR
	Creating a Triangulated Irregular Network (TIN)

	Summary

	Chapter 8
: Advanced Geospatial
Python Modelling
	Creating an NDVI
	Setting up the framework
	Loading the data
	Rasterizing the shapefile
	Clipping the bands
	Using the NDVI formula
	Classifying the NDVI
	Additional functions
	Loading the NDVI
	Creating classes

	Creating a flood inundation model
	The flood fill function
	Making a flood

	Least cost path analysis
	Setting up the test grid
	The simple A* algorithm
	Generating the test path
	Viewing the test output
	The real-world example
	Loading the grid
	Defining the helper functions
	The real-world A* algorithm
	Generating a real-world path

	Summary

	Chapter 9
: Real-Time Data
	Tracking vehicles
	Nextbus agency list
	Nextbus route list
	Nextbus vehicle locations
	Mapping Nextbus locations

	Storm chasing
	Summary

	Chapter 10
: Putting It All Together
	A typical GPS report
	Working with GPX-Reporter.py
	Stepping through the program
	Initial setup
	Working with utility functions
	Parsing the GPX
	Getting the bounding box
	Downloading OpenStreetMap images
	Creating the hillshade
	Creating maps
	Measuring elevation
	Measuring distance
	Retrieving weather data

	Summary

	Index

