

Building Probabilistic Graphical
Models with Python

Solve machine learning problems using probabilistic
graphical models implemented in Python with
real-world applications

Kiran R Karkera

BIRMINGHAM - MUMBAI

[FM-2]

Building Probabilistic Graphical Models with Python

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2014

Production reference: 1190614

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-900-4

www.packtpub.com

Cover image by Manju Mohanadas (manju.mohanadas@gmail.com)

[FM-3]

Credits

Author
Kiran R Karkera

Reviewers
Mohit Goenka

Shangpu Jiang

Jing (Dave) Tian

Xiao Xiao

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Nikhil Chinnari

Content Development Editor
Madhuja Chaudhari

Technical Editor
Krishnaveni Haridas

Copy Editors
Alisha Aranha

Roshni Banerjee

Mradula Hegde

Project Coordinator
Melita Lobo

Proofreaders
Maria Gould

Joanna McMahon

Indexers
Mariammal Chettiyar

Hemangini Bari

Graphics
Disha Haria

Yuvraj Mannari

Abhinash Sahu

Production Coordinator
Alwin Roy

Cover Work
Alwin Roy

[FM-4]

About the Author

Kiran R Karkera is a telecom engineer with a keen interest in machine learning.
He has been programming professionally in Python, Java, and Clojure for more than
10 years. In his free time, he can be found attempting machine learning competitions
at Kaggle and playing the flute.

I would like to thank the maintainers of Libpgm and OpenGM
libraries, Charles Cabot and Thorsten Beier, for their help with
the code reviews.

[FM-5]

About the Reviewers

Mohit Goenka graduated from the University of Southern California (USC) with
a Master's degree in Computer Science. His thesis focused on game theory and
human behavior concepts as applied in real-world security games. He also received
an award for academic excellence from the Office of International Services at the
University of Southern California. He has showcased his presence in various realms
of computers including artificial intelligence, machine learning, path planning,
multiagent systems, neural networks, computer vision, computer networks, and
operating systems.

During his tenure as a student, Mohit won multiple competitions cracking codes
and presented his work on Detection of Untouched UFOs to a wide range of audience.
Not only is he a software developer by profession, but coding is also his hobby. He
spends most of his free time learning about new technology and grooming his skills.

What adds a feather to Mohit's cap is his poetic skills. Some of his works are part
of the University of Southern California libraries archived under the cover of the
Lewis Carroll Collection. In addition to this, he has made significant contributions by
volunteering to serve the community.

Shangpu Jiang is doing his PhD in Computer Science at the University of Oregon.
He is interested in machine learning and data mining and has been working in
this area for more than six years. He received his Bachelor's and Master's
degrees from China.

[FM-6]

Jing (Dave) Tian is now a graduate researcher and is doing his PhD in Computer
Science at the University of Oregon. He is a member of the OSIRIS lab. His research
direction involves system security, embedded system security, trusted computing,
and static analysis for security and virtualization. He is interested in Linux kernel
hacking and compilers. He also spent a year on AI and machine learning direction
and taught the classes Intro to Problem Solving using Python and Operating Systems in
the Computer Science department. Before that, he worked as a software developer
in the Linux Control Platform (LCP) group at the Alcatel-Lucent (former Lucent
Technologies) R&D department for around four years. He got his Bachelor's and
Master's degrees from EE in China.

Thanks to the author of this book who has done a good job for both
Python and PGM; thanks to the editors of this book, who have made
this book perfect and given me the opportunity to review such a nice
book.

Xiao Xiao is a PhD student studying Computer Science at the University of Oregon.
Her research interests lie in machine learning, especially probabilistic graphical
models. Her previous project was to compare two inference algorithms' performance
on a graphical model (relational dependency network).

[FM-7]

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents
Preface 1
Chapter 1: Probability 5

The theory of probability 5
Goals of probabilistic inference 8
Conditional probability 9
The chain rule 9
The Bayes rule 9
Interpretations of probability 11
Random variables 13
Marginal distribution 13
Joint distribution 14
Independence 14
Conditional independence 15
Types of queries 16

Probability queries 16
MAP queries 16

Summary 18
Chapter 2: Directed Graphical Models 19

Graph terminology 19
Python digression 20

Independence and independent parameters 20
The Bayes network 23

The chain rule 24
Reasoning patterns 24

Causal reasoning 25
Evidential reasoning 27
Inter-causal reasoning 27

Table of Contents

[ii]

D-separation 29
The D-separation example 31
Blocking and unblocking a V-structure 33

Factorization and I-maps 34
The Naive Bayes model 34

The Naive Bayes example 36
Summary 37

Chapter 3: Undirected Graphical Models 39
Pairwise Markov networks 39
The Gibbs distribution 41
An induced Markov network 43
Factorization 43
Flow of influence 44
Active trail and separation 45
Structured prediction 45

Problem of correlated features 46
The CRF representation 46
The CRF example 47

The factorization-independence tango 48
Summary 49

Chapter 4: Structure Learning 51
The structure learning landscape 52
Constraint-based structure learning 52

Part I 52
Part II 53
Part III 54
Summary of constraint-based approaches 60

Score-based learning 60
The likelihood score 61
The Bayesian information criterion score 62
The Bayesian score 63
Summary of score-based learning 68

Summary 68
Chapter 5: Parameter Learning 69

The likelihood function 71
Parameter learning example using MLE 72
MLE for Bayesian networks 74
Bayesian parameter learning example using MLE 75
Data fragmentation 77

Table of Contents

[iii]

Effects of data fragmentation on parameter estimation 77
Bayesian parameter estimation 79

An example of Bayesian methods for parameter learning 80
Bayesian estimation for the Bayesian network 85
Example of Bayesian estimation 85
Summary 91

Chapter 6: Exact Inference Using Graphical Models 93
Complexity of inference 93

Real-world issues 94
Using the Variable Elimination algorithm 94

Marginalizing factors that are not relevant 97
Factor reduction to filter evidence 98

Shortcomings of the brute-force approach 100
Using the Variable Elimination approach 100

Complexity of Variable Elimination 106
Graph perspective 107

Learning the induced width from the graph structure 109
The tree algorithm 110

The four stages of the junction tree algorithm 111
Using the junction tree algorithm for inference 112

Stage 1.1 – moralization 113
Stage 1.2 – triangulation 114
Stage 1.3 – building the join tree 114
Stage 2 – initializing potentials 115
Stage 3 – message passing 115

Summary 119
Chapter 7: Approximate Inference Methods 121

The optimization perspective 121
Belief propagation in general graphs 122
Creating a cluster graph to run LBP 123
Message passing in LBP 124

Steps in the LBP algorithm 125
Improving the convergence of LBP 126
Applying LBP to segment an image 126

Understanding energy-based models 128
Visualizing unary and pairwise factors on a 3 x 3 grid 129
Creating a model for image segmentation 130

Applications of LBP 135
Sampling-based methods 136

Forward sampling 136
The accept-reject sampling method 137

Table of Contents

[iv]

The Markov Chain Monte Carlo sampling process 138
The Markov property 138
The Markov chain 139
Reaching a steady state 140
Sampling using a Markov chain 140

Gibbs sampling 141
Steps in the Gibbs sampling procedure 141
An example of Gibbs sampling 142

Summary 145
Appendix: References 147
Index 151

Preface
In this book, we start with an exploratory tour of the basics of graphical models,
their types, why they are used, and what kind of problems they solve. We then
explore subproblems in the context of graphical models, such as their representation,
building them, learning their structure and parameters, and using them to answer
our inference queries.

This book attempts to give just enough information on the theory, and then use
code samples to peep under the hood to understand how some of the algorithms are
implemented. The code sample also provides a handy template to build graphical
models and answer our probability queries. Of the many kinds of graphical
models described in the literature, this book primarily focuses on discrete Bayesian
networks, with occasional examples from Markov networks.

What this book covers
Chapter 1, Probability, covers the concepts of probability required to understand the
graphical models.

Chapter 2, Directed Graphical Models, provides information about Bayesian
networks, their properties related to independence, conditional independence,
and D-separation. This chapter uses code snippets to load a Bayes network and
understand its independence properties.

Chapter 3, Undirected Graphical Models, covers the properties of Markov networks,
how they are different from Bayesian networks, and their independence properties.

Chapter 4, Structure Learning, covers multiple approaches to infer the structure of the
Bayesian network using a dataset. We also learn the computational complexity of
structure learning and use code snippets in this chapter to learn the structures given
in the sampled datasets.

Preface

[2]

Chapter 5, Parameter Learning, covers the maximum likelihood and Bayesian
approaches to parameter learning with code samples from PyMC.

Chapter 6, Exact Inference Using Graphical Models, explains the Variable Elimination
algorithm for accurate inference and explores code snippets that answer our
inference queries using the same algorithm.

Chapter 7, Approximate Inference Methods, explores the approximate inference for
networks that are too large to run exact inferences on. We will also go through the
code samples that run approximate inferences using loopy belief propagation on
Markov networks.

Appendix, References, includes all the links and URLs that will help to easily
understand the chapters in the book.

What you need for this book
To run the code samples in the book, you'll need a laptop or desktop with IPython
installed. We use several software packages in this book, most of them can be
installed using the Python installation procedure such as pip or easy_install. In
some cases, the software needs to be compiled from the source and may require a
C++ compiler.

Who this book is for
This book is aimed at developers conversant with Python and who wish to explore
the nuances of graphical models using code samples.

This book is also ideal for students who have been theoretically introduced to
graphical models and wish to realize the implementations of graphical models and
get a feel for the capabilities of different (graphical model) libraries to deal with real-
world models.

Machine-learning practitioners familiar with classification and regression models
and who wish to explore and experiment with the types of problems graphical
models can solve will also find this book an invaluable resource.

This book looks at graphical models as a tool that can be used to solve problems
in the machine-learning domain. Moreover, it does not attempt to explain the
mathematical underpinnings of graphical models or go into details of the steps for
each algorithm used.

Preface

[3]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can do the same by creating a TfidfVectorizer object."

A block of code is set as follows:

clf = MultinomialNB(alpha=.01)
print "CrossValidation Score: ", np.mean(cross_validation.cross_val_
score(clf,vectors, newsgroups.target, scoring='f1'))
CrossValidation Score: 0.954618416381

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

[4]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Probability
Before we embark on the journey through the land of graphical models, we must
equip ourselves with some tools that will aid our understanding. We will first start
with a tour of probability and its concepts such as random variables and the types
of distributions.

We will then try to understand the types of questions that probability can help
us answer and the multiple interpretations of probability. Finally, we will take a
quick look at the Bayes rule, which helps us understand the relationships between
probabilities, and also look at the accompanying concepts of conditional probabilities
and the chain rule.

The theory of probability
We often encounter situations where we have to exercise our subjective belief about
an event's occurrence; for example, events such as weather or traffic that
are inherently stochastic. Probability can also be understood as the degree of
subjective belief.

When we talk about the weather (for example, this evening), it is understood that
the weather can have multiple outcomes such as rainy, sunny, or cloudy. The space
of all the possible outcomes is said to be an event (also called the sample space).
For example, the outcomes of a throw of a dice would be a set of numbers from 1 to
6. While dealing with measurable outcomes such as the throw of a dice or today's
weather (which can be rainy, sunny, or cloudy), we can assign a probability value
to each outcome to encapsulate our degree of belief in those outcomes. An example
of the notation used to express our belief is P(rainy)=0.3, which can be read as the
probability of rain is 0.3 or 30 percent.

Probability

[6]

The axioms of probability that have been formulated by Kolmogorov are stated
as follows:

• The probability of an event is a non-negative real number (that is, the
probability that it will rain today may be small, but nevertheless will be greater
than or equal to 0). This is explained in mathematical terms as follows:

(E) , (E) 0P P E F where F is the event space� � � ��

• The probability of the occurrence of some event in the sample space is 1 (that
is, if the weather events in our sample space are rainy, sunny, and cloudy,
then one of these events has to occur), as shown in the following formula:

() 1P where is the sample spaceΩ = Ω

• The sum of the probabilities of mutually exclusive events gives their union,
as given in the following formula:

() ()1 2
1

... i
i

P E E P E
∞

=

=∑

When we discuss about the fairness (or unfairness) of a dice or a coin flip, we are
discussing another key aspect of probability, that is, model parameters. The idea
of a fair coin translates to the fact that the controlling parameter has a value of 0.5
in favor of heads, which also translates to the fact that we assume all the outcomes
to be equally likely. Later in the book, we shall examine how many parameters are
required to completely specify a probability distribution. However, we are getting
ahead of ourselves. First let's learn about probability distribution.

A probability distribution consists of the probabilities associated with each
measurable outcome. In the case of a discrete outcome (such as a throw of a dice or a
coin flip), the distribution is specified by a probability mass function, and in the case
of a continuous outcome (such as the height of students in a class), it is specified by a
probability density function.

Let us see discrete distributions with an example. A coin flip has two outcomes:
heads and tails, and a fair coin assigns equal probabilities to all outcomes. This
means that the probability distribution is simple—for heads, it is 0.5 and for tails, it
is 0.5. A distribution like this (for example, heads 0.3 and tails 0.7) would be the one
that corresponds to a biased coin. The following graph shows the discrete probability
distribution for the sum of values when two dice are thrown:

Chapter 1

[7]

A distribution that assigns equal probabilities to all outcomes is called a uniform
distribution. This is one of the many distributions that we will explore.

Let's look at one of the common distributions associated with continuous outcomes,
that is, the Gaussian or normal distribution, which is in the shape of a bell and hence
called a bell curve (though there are other distributions whose shapes are similar to
the bell shape). The following are some examples from the real world:

• Heights of students in a class are log-normally distributed (if we take the
logarithm of the heights of students and plot it, the resulting distribution is
normally distributed)

• Measurement errors in physical experiments

A Gaussian distribution has two parameters: mean (µ) and variance (2σ). The
parameters mean and variance determine the middle point and the dispersion of the
distribution away from the mean, respectively.

Probability

[8]

The following graph shows multiple Gaussian distributions with different values
of mean and variance. It can be seen that the more variance there is, the broader the
distribution, whereas the value of the mean shifts the peak on the x axis, as shown in
the following graph:

Goals of probabilistic inference
Now that we have understood the concept of probability, we must ask ourselves
how this is used. The kind of questions that we ask fall into the following categories:

• The first question is parameter estimation, such as, is a coin biased or fair?
And if biased, what is the value of the parameter?

• The second question is that given the parameters, what is the probability of
the data? For example, what is the probability of five heads in a row if we flip
a coin where the bias (or parameter) is known.
The preceding questions depend on the data (or lack of it). If we have a set
of observations of a coin flip, we can estimate the controlling parameter
(that is, parameter estimation). If we have an estimate of the parameter, we
would like to estimate the probability of the data generated by the coin flips
(the second question). Then, there are times when we go back and forth to
improve the model.

• Is the model well-suited to the problem, is the third question that we may
enquire about. Is there a single parameter that controls the results of the coin
flipping experiment? When we wish to model a complicated phenomena
(such as the traffic or weather prediction), there certainly exist several
parameters in the model, where hundreds or even thousands of parameters
are not unusual. In such cases, the question that we're trying to ask is, which
model fits the data better? We shall see some examples in the later chapters
on different aspects of model fit.

Chapter 1

[9]

Conditional probability
Let us use a concrete example, where we have a population of candidates who are
applying for a job. One event (x) could be a set of all candidates who get an offer,
whereas another event (y) could be the set of all highly experienced candidates. We
might want to reason about the set of a conjoint event (x y∩), which is the set of
experienced candidates who got an offer (the probability of a conjoint event P()x y∩
is also written as P(,)x y). The question that raises is that if we know that one event
has occurred, does it change the probability of occurrence of the other event. In this
case, if we know for sure that a candidate got an offer, what does it tell us about
their experience?

Conditional probability is formally defined as
()
()

P(|)
p x y

x y
p y
∩

= , which can be read as
the probability of x given that y occurred. The denominator (P y) is the sum of all
possible outcomes of the joint distribution with the value of x summed out,
that is, (x, y) (y)

x
P P=∑ .

The chain rule
The chain rule allows us to calculate the joint distribution of a set of random
variables using their conditional probabilities. In other words, the joint distribution
is the product of individual conditional probabilities. Since () () ()|P x y P x P y x∩ = , and if
1 2, na a aK are events, 1 1 2 1 1() () (|) (|)n n nP a a P a P a a P a a−∩ ∩ =K K .

We shall return to this in detail in graphical models, where the chain rule helps us
decompose a big problem (computing the joint distribution) by splitting it into smaller
problems (conditional probabilities).

The Bayes rule
The Bayes rule is one of the foundations of the probability theory, and we won't go
into much detail here. It follows from the definition of conditional probability, as
shown in the following formula:

(|) ()(|)
()

P y x P xP x y
P y

=

Probability

[10]

From the formula, we can infer the following about the Bayes rule—we entertain
prior beliefs about the problem we are reasoning about. This is simply called the
prior term. When we start to see the data, our beliefs change, which gives rise to our
final belief (called the posterior), as shown in the following formula:

posterior prior likelihoodα ×

Let us see the intuition behind the Bayes rule with an example. Amy and Carl are
standing at a railway station waiting for a train. Amy has been catching the same
train everyday for the past year, and it is Carl's first day at the station. What would
be their prior beliefs about the train being on time?

Amy has been catching the train daily for the past year, and she has always seen
the train arrive within two minutes of the scheduled departure time. Therefore, her
strong belief is that the train will be at most two minutes late. Since it is Carl's first
day, he has no idea about the train's punctuality. However, Carl has been traveling
the world in the past year, and has been in places where trains are not known to be
punctual. Therefore, he has a weak belief that the train could be even 30 minutes late.

On day one, the train arrives 5 minutes late. The effect this observation has on both
Amy and Carl is different. Since Amy has a strong prior, her beliefs are modified a
little bit to accept that the train can be as late as 5 minutes. Carl's beliefs now change
in the direction that the trains here are rather punctual.

In other words, the posterior beliefs are influenced in multiple ways: when
someone with a strong prior sees a few observations, their posterior belief does not
change much as compared to their prior. On the other hand, when someone with a
weak prior sees numerous observations (a strong likelihood), their posterior belief
changes a lot and is influenced largely by the observations (likelihood) rather than
their prior belief.

Let's look at a numerical example of the Bayes rule. D is the event that an
athlete uses performance-enhancing drugs (PEDs). T is the event that the drug test
returns positive. Throughout the discussion, we use the prime (') symbol to notate
that the event didn't occur; for example, D' represents the event that the athlete
didn't use PEDs.

P(D|T) is the probability that the athlete used PEDs given that the drug test returned
positive. P(T|D) is the probability that the drug test returned positive given that the
athlete used PEDs.

Chapter 1

[11]

The lab doing the drug test claims that it can detect PEDs 90 percent of the time. We
also learn that the false-positive rate (athletes whose tests are positive but did not use
PEDs) is 15 percent, and that 10 percent of athletes use PEDs. What is the probability
that an athlete uses PEDs if the drug test returned positive?

From the basic form of the Bayes rule, we can write the following formula:

() ()()
() () () ()

P T | D P DP D|T
P T | D P D P T | D P D

=
′ ′+

Now, we have the following data:

• P(T|D): This is equal to 0.90
• P(T|D'): This is equal to 0.15 (the test that returns positive given that the

athlete didn't use PEDs)
• P(D): This is equal to 0.1

When we substitute these values, we get the final value as 0.4, as shown in
the following formula:

0.9 0.1() 0.4
0.9 0.1 0.15 0.9

P D|T ×
= =

× + ×

This result seems a little counterintuitive in the sense that despite testing positive for
PEDs, there's only a 40 percent chance that the athlete used PEDs. This is because
the use of PEDs itself is quite low (only 10 percent of athletes use PEDs), and that the
rate of false positives is relatively high (0.15 percent).

Interpretations of probability
In the previous example, we noted how we have a prior belief and that the
introduction of the observed data can change our beliefs. That viewpoint, however,
is one of the multiple interpretations of probability.

The first one (which we have discussed already) is a Bayesian interpretation, which
holds that probability is a degree of belief, and that the degree of belief changes
before and after accounting for evidence.

The second view is called the Frequentist interpretation, where probability measures
the proportion of outcomes and posits that the prior belief is an incorrect notion that
is not backed up by data.

Probability

[12]

To illustrate this with an example, let's go back to the coin flipping experiment,
where we wish to learn the bias of the coin. We run two experiments, where we
flip the coin 10 times and 10000 times, respectively. In the first experiment, we get 7
heads and in the second experiment, we get 7000 heads.

From a Frequentist viewpoint, in both the experiments, the probability of getting
heads is 0.7 (7/10 or 7000/10000). However, we can easily convince ourselves that
we have a greater degree of belief in the outcome of the second experiment than that
of the first experiment. This is because the first experiment's outcome has a Bayesian
perspective that if we had a prior belief, the second experiment's observations would
overwhelm the prior, which is unlikely in the first experiment.

For the discussion in the following sections, let us consider an example of a company
that is interviewing candidates for a job. Prior to inviting the candidate for an
interview, the candidate is screened based on the amount of experience that the
candidate has as well as the GPA score that the candidate received in his graduation
results. If the candidate passes the screening, he is called for an interview. Once the
candidate has been interviewed, the company may make the candidate a job offer
(which is based on the candidate's performance in the interview). The candidate is
also evaluating going for a postgraduate degree, and the candidate's admission to
a postgraduate degree course of his choice depends on his grades in the bachelor's
degree. The following diagram is a visual representation of our understanding of
the relationships between the factors that affect the job selection (and postgraduate
degree admission) criteria:

Job Offer

Degree
score

Job
Interview

Experience

Postgraduate
degree

admission

Chapter 1

[13]

Random variables
The classical notion of a random variable is the one whose value is subject to
variations due to chance (Wikipedia). Most programmers have encountered random
numbers from standard libraries in programming languages. From a programmer's
perspective, unlike normal variables, a random variable returns a new value every
time its value is read, where the value of the variable could be the result of a new
invocation of a random number generator.

We have seen the concept of events earlier, and how we could consider the
probability of a single event occurring out of the set of measurable events. It may be
suitable, however, to consider the attributes of an outcome.

In the candidate's job search example, one of the attributes of a candidate is his
experience. This attribute can take multiple values such as highly relevant or not
relevant. The formal machinery for discussing attributes and their values in different
outcomes is called random variables [Koller et al, 2.1.3.1].

Random variables can take on categorical values (such as {Heads, Tails} for the
outcomes of a coin flip) or real values (such as the heights of students in a class).

Marginal distribution
We have seen that the job hunt example (described in the previous diagram) has five
random variables. They are grades, experience, interview, offer, and admission. These
random variables have a corresponding set of events.

Now, let us consider a subset X of random variables, where X contains only the
Experience random variable. This subset contains the events highly relevant and
not relevant.

If we were to enlist the probabilities of all the events in the subset X, it would
be called a marginal distribution, an example of which can be found in the
following formula:

() ()0.4, 0.6P Experience Highly relevant P Experience Not Relevant′ ′ ′= = = =

Like all valid distributions, the probabilities should sum up to 1.

The set of random variables (over which the marginal distribution is described) can
contain just one variable (as in the previous example), or it could contain several
variables, such as {Experience, Grades, Interview}.

Probability

[14]

Joint distribution
We have seen that the marginal distribution is a distribution that describes a subset
of random variables. Next, we will discuss a distribution that describes all the
random variables in the set. This is called a joint distribution. Let us look at the joint
distribution that involves the Degree score and Experience random variables in the job
hunt example:

Degree
score

Relevant Experience
Highly
relevant

Not relevant

Poor 0.1 0.1 0.2
Average 0.1 0.4 0.5
Excellent 0.2 0.1 0.3

0.4 0.6 1

The values within the dark gray-colored cells are of the joint distribution, and the
values in the light gray-colored cells are of the marginal distribution (sometimes called
that because they are written on the margins). It can be observed that the individual
marginal distributions sum up to 1, just like a normal probability distribution.

Once the joint distribution is described, the marginal distribution can be found by
summing up individual rows or columns. In the preceding table, if we sum up the
columns, the first column gives us the probability for Highly relevant, and the second
column for Not relevant. It can be seen that a similar tactic applied on the rows gives
us the probabilities for degree scores.

Independence
The concept of independent events can be understood by looking at an example.
Suppose we have two dice, and when we roll them together, we get a score of 2
on one die and a score of 3 on the other. It is not difficult to see that the two events
are independent of each other because the outcome of a roll of each dice does not
influence or interact with the other one.

We can define the concept of independence in multiple ways. Assume that we have
two events a and b and the probability of the conjunction of both events is simply the
product of their probabilities, as shown in the following formula:

() () (),P a b P a P b=

Chapter 1

[15]

If we were to write the probability of (),P a b as () ()| aP a P b (that is, the product of
probability of a and probability of b given that the event a has happened), if the
events a and b are independent, they resolve to () ()P a P b .

An alternate way of specifying independence is by saying that the probability of a
given b is simply the probability of a, that is, the occurrence of b does not affect the
probability of a, as shown in the following formula:

() () () ()| 0P a b if P a b P a or if P b= ⊥ = =

It can be seen that the independence is symmetric, that is, () ()a b implies b a⊥ ⊥ . Although
this definition of independence is in the context of events, the same concept can be
generalized to the independence of random variables.

Conditional independence
Given two events, it is not always obvious to determine whether they are
independent or not. Consider a job applicant who applied for a job at two companies,
Facebook and Google. It could result in two events, the first being that a candidate
gets an interview call from Google, and another event that he gets an interview call
from Facebook. Does knowing the outcome of the first event tell us anything about
the probability of the second event? Yes, it does, because we can reason that if a
candidate is smart enough to get a call from Google, he is a promising candidate,
and that the probability of a call from Facebook is quite high.

What has been established so far is that both events are not independent. Supposing
we learn that the companies decide to send an interview invite based on the
candidate's grades, and we learn that the candidate has an A grade, from which we
infer that the candidate is fairly intelligent. We can reason that since the candidate
is fairly smart, knowing that the candidate got an interview call from Google does
not tell us anything more about his perceived intelligence, and that it doesn't change
the probability of the interview call from Facebook. This can be formally annotated
as the probability of a Facebook interview call, given a Google interview call AND
grade A, is equal to the probability of a Facebook interview call given grade A, as
shown in the following formula:

() ()| , |Pr Facebook Google GradeA Pr Facebook GradeA=

In other words, we are saying that the invite from Facebook is conditionally
independent of the invite from Google, given the candidate has grade A.

Probability

[16]

Types of queries
Having learned about joint and conditional probability distributions, let us turn our
attention to the types of queries we can pose to these distributions.

Probability queries
This is the most common type of query, and it consists of the following two parts:

• The evidence: This is a subset E of random variables which have
been observed

• The query: This is a subset Y of random variables

We wish to compute the value of the probability ()|P Y E e= , which is the posterior
probability or the marginal probability over Y. Using the job seeker example again,
we can compute the marginal distribution over an interview call, conditioned on the
fact that Degree score = Grade A.

MAP queries
Maximum a posteriori (MAP) is the highest probability joint assignment to some
subsets of variables. In the case of the probability query, it is the value of the
probability that matters. In the case of MAP, calculating the exact probability value
of the joint assignment is secondary as compared to the task of finding the joint
assignment to all the random variables.

It is possible to return multiple joint assignments if the probability values are equal.
We shall see from an example that in the case of the joint assignment, it is possible
that the highest probability from each marginal value may not be the highest joint
assignment (the following example is from Koller et al).

Consider two non-independent random variables X and Y, where Y is dependent on
X. The following table shows the probability distribution over X:

X0 X1

0.4 0.6

Chapter 1

[17]

We can see that the MAP assignment for the random variable X is X1 since it has a
higher value. The following table shows the marginal distribution over X and Y:

P(Y|X) Y0 Y1

X0 0.1 0.9

X1 0.5 0.5

The joint distribution over X and Y is listed in the following table:

Assignment Value

X0, Y0 0.04

X0, Y1 0.36

X1, Y0 0.3

X1, Y1 0.3

In the joint distribution shown in the preceding table, the MAP assignment to
random variables (X, Y) is (X0, Y1), and that the MAP assignment to X (X1) is not a
part of the MAP of the joint assignment. To sum up, the MAP assignment cannot
be obtained by simply taking the maximum probability value in the marginal
distribution for each random variable.

A different type of MAP query is a marginal MAP query where we only have a subset
of the variables that forms the query, as opposed to the joint distribution. In the
previous example, a marginal MAP query would be MAP (Y), which is the maximum
value of the MAP assignment to the random variable Y, which can be read by looking
at the joint distribution and summing out the values of X. From the following table, we
can read the maximum value and determine that the MAP (Y) is Y1:

Assignment Value

Y0 0.34

Y1 0.66

Probability

[18]

The data for the marginal query has been obtained from
Querying Joint Probability Distributions by Sargur Srihari.
You can find it at http://www.cedar.buffalo.
edu/~srihari/CSE574/Chap8/Ch8-PGM-Directed/8.1.2-
QueryingProbabilityDistributions.pdf.

Summary
In this chapter, we looked at the concepts of basic probability, random variables,
and the Bayes theorem. We also learned about the chain rule and joint and marginal
distributions with the use of a candidate job search example, which we shall return
to in the later chapters. Having obtained a good grasp on these topics, we can now
move on to exploring Bayes and Markov networks in the forthcoming chapters,
where we will formally describe these networks to answer some of the probability
queries we discussed in this chapter. While this chapter was completely theoretical,
from the next chapter, we shall implement the Python code to seek answers to
our questions.

Directed Graphical Models
In this chapter, we shall learn about directed graphical models, which are also
known as Bayesian networks. We start with the what (the problem we are trying to
solve), the how (graph representation), the why (factorization and the equivalence of
CPD and graph factorization), and then move on to using the Libpgm Python library
to play with a small Bayes net.

Graph terminology
Before we jump into Bayes nets, let's learn some graph terminology. A graph G
consists of a set of nodes (also called vertices) { }1 2, , nV V V V= K and another set of edges

{ }1 2, , nE E E E= K . An edge that connects a pair of nodes ,i jV V can be of two types:
directed (represented by i jV V→) and undirected (represented by i jV V−). A graph can
also be represented as an adjacency matrix, which in the case of an undirected graph,
if the position G(i,j) contains 1, indicates an edge between i and j vertices. In the case
of a directed graph, a value of 1 or -1 indicates the direction of the edge.

In many cases, we are interested in graphs in which all the edges are either
directed or undirected, leading to them being called directed graphs or
undirected graphs, respectively.

The parents of a 1V node in a directed graph are the set of nodes that have outgoing
edges that terminate at 1V .

The children of the 1V node are the set of nodes that have incoming edges
which leave 1.V

The degree of a node is the number of edges it participates in.

A clique is a set of nodes where every pair of nodes is connected by an edge. A
maximal clique is the one that loses the clique property if it includes any other node.

Directed Graphical Models

[20]

If there exists a path from a node that returns to itself after traversing the other
nodes, it is called a cycle or loop.

A Directed Acyclic Graph (DAG) is a graph with no cycles.

A Partially Directed Acyclic Graph (PDAG) is a graph that can contain both
directed and undirected edges.

A forest is a set of trees.

Python digression
We will soon start to explore GMs using Python, and this is a good time to review
your Python installation. The recommended base Python installation for the
examples in this book is IPython, which is available for all platforms. Refer to the
IPython website for platform-specific documentation.

We shall also use multiple Python libraries to explore various areas of graphical
models. Unless otherwise specified, the usual way to install Python libraries is using
pip install <packagename> or easy_install <packagename>.

To use the code in this chapter, please install Libpgm (https://pypi.python.org/
pypi/libpgm) and scipy (http://scipy.org/).

Independence and independent
parameters
One of the key problems that graphical models solve is in defining the joint
distribution. Let's take a look at the job interview example where a candidate with a
certain amount of experience and education is looking for a job. The candidate is also
applying for admission to a higher education program.

We are trying to fully specify the joint distribution over the job offer, which
(according to our intuition) depends on the outcome of the job interview, the
candidate's experience, and his grades (we assume that the candidate's admission
into a graduate school is not considered relevant for the job offer). Three random
variables {Offer, Experience, Grades} take two values (such as yes and no for the job
offer and highly relevant and not relevant for the job experience) and the interview
takes on three values, and the joint distribution will be represented by a table that
has 24 rows (that is, 2 x 2 x 2 x 3).

Chapter 2

[21]

Each row contains a probability for the assignment of the random variables in that
row. While different instantiations of the table might have different probability
assignments, we will need 24 parameters (one for each row) to encode the
information in the table. However, for calculation purposes, we will need only 23
independent parameters. Why do we remove one? Since the sum of probabilities
equals 1, the last parameter can be calculated by subtracting one from the sum of the
23 parameters already found.

Experience Grades Interview Offer Probability

0 0 0 0 0 0.7200

1 0 0 0 1 0.0800

2 0 0 1 0 0.0720

3 0 0 1 1 0.1080

.

.

Rows elided

21 1 1 1 1 0.1200

22 1 1 2 0 0.0070

23 1 1 2 1 0.6930

The preceding joint distribution is the output of the printjointdistribution.
ipynb IPython Notebook, which prints all permutations of the random variables'
experience, grades, interview, and offer, along with their probabilities.

It should be clear on observing the preceding table that acquiring a fully specified
joint distribution is difficult due to the following reasons:

• It is too big to store and manipulate from a computational point of view
• We'll need large amounts of data for each assignment of the joint distribution

to correctly elicit the probabilities
• The individual probabilities in a large joint distribution become vanishingly

small and are no longer meaningful to human comprehension

How can we avoid having to specify the joint distribution? We can do this by
using the concept of independent parameters, which we shall explore in the
following example.

Directed Graphical Models

[22]

The joint distribution P over Grades and Admission is (throughout this book, the
superscript 0 and 1 indicate low and high scores) as follows:

Grades Admission Probability (S,A)

S0 A0 0.665

S0 A1 0.035

S1 A0 0.06

S1 A1 0.24

When we reason about graduate admissions from the perspective of causality, it is
clear that the admission depends on the grades, which can also be represented using
the conditional probability as follows:

() () (), | SP S A P S P A=

The number of parameters required in the preceding formula is three, one parameter
for ()P S and two each for ()0|P A S and ()1|P A S . Since this is a simple distribution,
the number of parameters required is the same for both conditional and joint
distributions, but let's observe the complete network to see if the conditional
parameterization makes a difference:

Offer

GradesExperience

E=0

E=1

0.6

0.4

Assgn Prob

G=0

G=1

0.7

0.3

Assgn Prob

Interview E=0, G=0
E=0, G=1
E=1, G=0
E=1, G=1

I=0 I=1 I=2

.8

.3

.3

.1

.18

.6

.4

.2

.02

.1

.3

.7

I=0
I=1
I=2

O=0 O=1

.9

.4

.01

.1

.6

.99

Chapter 2

[23]

How do we calculate the number of parameters in the Bayes net in the preceding
diagram? Let's go through each conditional probability table, one parameter at a
time. Experience and Grades take two values, and therefore need one independent
parameter each. The Interview table has 12 (3 x 4) parameters. However, each row
sums up to 1, and therefore, we need two independent parameters per row. The
whole table needs 8 (2 x 4) independent parameters. Similarly, the Offer table has six
entries, but only 1 independent parameter per row is required, which makes 3 (1 x 3)
independent parameters. Therefore, the total number of parameters is 1 (Experience)
+ 1 (Grades)+ 12 (Interview) + 3 (Offer) amount to 17, which is a lot lesser than
24 parameters to fully specify the joint distribution. Therefore, the independence
assumptions in the Bayesian network helps us avoid specifying the joint distribution.

The Bayes network
A Bayes network is a structure that can be represented as a directed acyclic graph,
and the data it contains can be seen from the following two points of view:

• It allows a compact and modular representation of the joint distribution
using the chain rule for Bayes network

• It allows the conditional independence assumptions between vertices to
be observed

We shall explore the two ideas in the job interview example that we have seen so far
(which is a Bayesian network, by the way).

The modular structure of the Bayes network is the set of local probability models
that represent the nature of the dependence of each variable on its parents (Koller
et al 3.2.1.1). One probability distribution each exists for Experience and Grades, and
a conditional probability distribution (CPD) each exists for Interview and Offer.
A CPD specifies a distribution over a random variable, given all the combinations
of assignments to its parents. Thus, the modular representation for a given Bayes
network is the set of CPDs for each random variable.

The conditional independence viewpoint flows from the edges (our intuition draws)
between different random variables, where we presume that a call for a job interview
must be dependent on a candidate's experience as well as the score he received in his
degree course, and the probability of a job offer depends solely on the outcome of the
job interview.

Directed Graphical Models

[24]

The chain rule
The chain rule allows us to define the joint distribution as a product of factors. In
the job interview example, using the chain rule for probability, we can write the
following formula:

() () () () (), , , | | , O | , ,P E G I O P E P G E P I E G P E G I= × × ×

In the preceding formula, E, G, I, and O stand for Experience, Grades, Interview, and
Offer respectively. However, we can use the conditional independence assumptions
encoded by the graph to rewrite the joint distribution as follows:

() () () () (), , , | , O |P E G I O P E P G P I E G P I= × × ×

This is an example of the chain rule for Bayesian networks. More generally, we can
write it as follows:

() ()()1 2, , , |n i G iP X X X i P X Par X=∏K

Here, is a node in the graph G and GPar are the parents of the node in
the graph G.

Reasoning patterns
In this section, we shall look at different kinds of reasoning used in a Bayes network.
We shall use the Libpgm library to create a Bayes network. Libpgm reads the
network information such as nodes, edges, and CPD probabilities associated with
each node from a JSON-formatted file with a specific format. This JSON file is read
into the NodeData and GraphSkeleton objects to create a discrete Bayesian network
(which, as the name suggests, is a Bayes network where the CPDs take discrete
values). The TableCPDFactorization object is an object that wraps the discrete
Bayesian network and allows us to query the CPDs in the network. The JSON file
for this example, job_interview.txt, should be placed in the same folder as the
IPython Notebook so that it can be loaded automatically.

The following discussion uses integers 0, 1, and 2 for discrete outcomes of each
random variable, where 0 is the worst outcome. For example, Interview = 0 indicates
the worst outcome of the interview and Interview = 2 is the best outcome.

Chapter 2

[25]

Causal reasoning
The first kind of reasoning we shall explore is called causal reasoning. Initially,
we observe the prior probability of an event unconditioned by any evidence (for
this example, we shall focus on the Offer random variable). We then introduce
observations of one of the parent variables. Consistent with our logical reasoning, we
note that if one of the parents (equivalent to causes) of an event is observed, then we
have stronger beliefs about the child random variable (Offer).

We start by defining a function that reads the JSON data file and creates an object
we can use to run probability queries. The following code is from the Bayes net-
Causal Reasoning.ipynb IPython Notebook:

from libpgm.graphskeleton import GraphSkeleton
from libpgm.nodedata import NodeData
from libpgm.discretebayesiannetwork import DiscreteBayesianNetwork
from libpgm.tablecpdfactorization import TableCPDFactorization

def getTableCPD():
 nd = NodeData()
 skel = GraphSkeleton()
 jsonpath="job_interview.txt"
 nd.load(jsonpath)
 skel.load(jsonpath)
 # load bayesian network
 bn = DiscreteBayesianNetwork(skel, nd)
 tablecpd=TableCPDFactorization(bn)
 return tablecpd

We can now use the specificquery function to run inference queries on the
network we have defined. What is the prior probability of getting a ()1P Offer = Offer?
Note that the probability query takes two dictionary arguments: the first one being
the query and the second being the evidence set, which is specified by an empty
dictionary, as shown in the following code:

tcpd=getTableCPD()
tcpd.specificquery(dict(Offer='1'),dict())

The following is the output of the preceding code:

0.432816

It is about 43 percent, and if we now introduce evidence that the candidate has poor
grades, how does it change the probability of getting an offer? We will evaluate the
value of ()1| 0P Offer Grades= = , as shown in the following code:

tcpd=getTableCPD()
tcpd.specificquery(dict(Offer='1'),dict(Grades='0'))

Directed Graphical Models

[26]

The following is the output of the preceding code:

0.35148

As expected, it decreases the probability of getting an offer since we
reason that students with poor grades are unlikely to get an offer. Adding
further evidence that the candidate's experience is low as well, we evaluate
()1| 0, 0P Offer Grades Experience= = = , as shown in the following code:

tcpd=getTableCPD()
tcpd.specificquery(dict(Offer='1'),dict(Grades='0',Experience='0'))

The following is the output of the preceding code:

0.2078

As expected, it drops even lower on the additional evidence, from 35 percent to
20 percent.

What we have seen is that the introduction of the observed parent random variable
strengthens our beliefs, which leads us to the name causal reasoning.

In the following diagram, we can see the different paths taken by causal and
evidential reasoning:

Dark Gray: Query Node
Gray: Observed Node
Arrow: Direction of inference

Evidential Reasoning

Job Offer

Job
Interview

Experience Degree
score

Causal Reasoning

Job Offer

Degree
score

Job
Interview

Experience

Chapter 2

[27]

Evidential reasoning
Evidential reasoning is when we observe the value of a child variable, and we
wish to reason about how it strengthens our beliefs about its parents. We will
evaluate the prior probability of high Experience ()1P Experience = , as shown in the
following code:

tcpd=getTableCPD()
tcpd.specificquery(dict(Experience='1'),dict())

The output of the preceding code is as follows:

0.4

We now introduce evidence that the candidate's interview was good and evaluate
the value for P(Experience=1|Interview=2), as shown in the following code:

tcpd=getTableCPD()
print tcpd.specificquery(dict(Experience='1'),dict(Interview='2'))

The output of the preceding code is as follows:

0.864197530864

We see that if the candidate scores well on the interview, the probability that the
candidate was highly experienced increases, which follows the reasoning that the
candidate must have good experience or education, or both. In evidential reasoning,
we reason from effect to cause.

Inter-causal reasoning
Inter-causal reasoning, as the name suggests, is a type of reasoning where multiple
causes of a single effect interact. We first determine the prior probability of having
high, relevant experience; thus, we will evaluate P(Experience=1), as shown in the
following code:

tcpd=getTableCPD()
tcpd.specificquery(dict(Experience='1'),dict())

The following is the output of the preceding code:

0.4

Directed Graphical Models

[28]

By introducing evidence that the interview went extremely well, we think that
the candidate must be quite experienced. We will now evaluate the value for
()1| 2P Experience Interview= = , as shown in the following code:

tcpd=getTableCPD()
tcpd.specificquery(dict(Experience='1'),dict(Interview='2'))

The following is the output of the preceding code:

0.864197530864

The Bayes network confirms what we think is true (the candidate is experienced),
and the probability of high experience goes up from 0.4 to 0.86. Now, if we
introduce evidence that the candidate didn't have good grades and still managed
to get a good score in the interview, we may conclude that the candidate must be
so experienced that his grades didn't matter at all. We will evaluate the value for
()1| 2, 0P Experience Interview Grades= = = , as shown in the following code:

tcpd=getTableCPD()
tcpd.specificquery(dict(Experience='1'),dict(Interview='2',Grad
es='0'))

The output of the preceding code is as follows:

0.909090909091

This confirms our hunch that even though the probability of high experience went
up only a little, it strengthens our belief about the candidate's high experience. This
example shows the interplay between the two parents of the Job interview node,
which are Experience and Degree Score, and shows us that if we know one of the
causes behind an effect, it reduces the importance of the other cause. In other words,
we have explained the poor grades on observing the experience of the candidate.
This phenomenon is commonly called explaining away.

The following diagram shows the path of interaction between nodes involved in
inter-causal reasoning:

Chapter 2

[29]

Dark Gray: Query Node
Gray: Observed Node
Arrow: Direction of inference

Fig x.x Intercausal Reasoning

Job Offer

Degree
score

Job
Interview

Experience

Bayes networks are usually drawn with the independent events on top and the
influence flows from top to bottom (similar to the job interview example). It may be
useful to recall causal reasoning flows from top to bottom, evidential reasoning flows
from bottom to top, and inter-causal reasoning flows sideways.

D-separation
Having understood that the direction of arrows indicate that one node can influence
another node in a Bayes network, let's see how exactly influence flows in a Bayes
network. We can see that the grades eventually influence the job offer, but in the
case of a very big Bayes network, it would not help to state that the leaf node is
influenced by all the nodes at the top of the Bayes network. Are there conditions
where influence does not flow? We shall see that there are simple rules that explain
the flow of influence in the following table:

No variables observed Y has been observed

X Y Z← ← J X Y← ← L

X Y Z→ → J X Y Z→ → L

X Y Z← → J X Y Z← → L

X Y Z→ ← L X Y Z→ ← J

Directed Graphical Models

[30]

The preceding table depicts the open and closed active trails between three nodes
X, Y, and Z. In the first column, no variables are observed, whereas in the second
column, Y has been observed.

We shall first consider the case where no random variables have been observed.
Consider the chains of nodes in the first column of the preceding table. Note that the
rules in the first three rows allow the influence to flow from the first to the last node.

Influence can flow along the path of the edges, even if these chains are extended for
longer sequences. It must be pointed out that the flow of influence is not restricted by
the directionality of the links that connect them.

However, there is one case we should watch out for, which is called the V-structure,
X Y Z→ ← —probably called so because the direction of edges is pointed inwards.

In this case, the influence cannot flow from X to Z since it is blocked by Y. In longer
chains, the influence will flow unless it is obstructed by a V-structure.

In this case, A B X Y Z→ → ← → because of the V-structure at X the influence can
flow from A B X→ → and X Y Z← → but not across the node X.

We can now state the concept of an active trail (of influence). A trail is active if it
contains no V-structures, in the event that no evidence is observed. In case multiple
trails exist between two variables, they are conditionally independent if none of the
trails are active.

Job Offer
(Jo)

Degree
score (S)

Job
Interview

(Ji)

Flow of influence without
any variable being observed.

Experience
(E)

Influence flows
through:
E->Ji
E->Ji->Jo
S->Ji
S->Ji->Jo
S->A

Doesn’t flow
through:
E->Ji<-S
E->Ji<-S->A

Postgraduate
degree

admission (A)

Chapter 2

[31]

Let's now look at the second case where we do have observed evidence variables. It
is easier to understand if we compare the case with the previous chains, where we
observe the random variable Y.

The smiley trails shown in the previous table indicate an active trail, and the
others indicate a blocked trail. It can be observed that the introduction of evidence
simply negates a previously active trail, and it opens up if a previously blocking
V-structure existed.

We can now state that a trail given some evidence will be active if the middle
node or any of its descendants in any V-structure (for example, Y or its descendants
in X Y Z→ ←) is present in the evidence set . In other words, observing Y or any
of its children will open up the blocking V-structure, making it an active trail.
Additionally, as seen in the the following table, an open trail gets blocked by
introduction of evidence and vice versa.

Job Offer
(Jo)

Degree
score (S)

Job
Interview

(Ji)

Flow of influence with ‘Job
Interview’ variable being observed.

Experience
(E)

Influence doesn’t flows
through:
E->Ji->Jo
S->Ji->Jo

Flow through:
E->Ji<-S
E->Ji<-S->A

Postgraduate
degree

admission (A)

The D-separation example
In this section, we shall look at using the job candidate example to understand
D-separation. In the process of performing causal reasoning, we will query for the
job offer and shall introduce the observed variables in the parents of the job offer to
verify the concepts of active trails, which we have seen in the previous section. The
following code is from the D-separation.ipynb IPython Notebook.

Directed Graphical Models

[32]

We first query the job offer with no other observed variables, as shown in the
following code:

getTableCPD().specificquery(dict(Offer='1'),dict())

The output of the preceding code is as follows:

0.432816

We know from the active trail rules that observing Experience should change the
probability of the offer, as shown in the following code:

getTableCPD().specificquery(dict(Offer='1'),dict(Experience='1'))

The output of the preceding code is as follows:

0.6438

As per the output, it changes. Now, let's add the Interview observed variable, as
shown in the following code:

getTableCPD().specificquery(dict(Offer='1'),dict(Interview='1'))

The output of the preceding code is as follows:

0.6

We get a slightly different probability for Offer. We know from the D-separation
rules that observing Interview should block the active trail from Experience to
Offer, as shown in the following code:

getTableCPD().specificquery(dict(Offer='1'),dict(Interview='1',Experi
ence='1'))

The output of the preceding code is as follows:

0.6

Observe that the probability of Offer does not change from 0.6, despite the addition
of the Experience variable being observed. We can add other values of Interview
object's parent variables, as shown in the following code:

query=dict(Offer='1')
results=[getTableCPD().specificquery(query,e) for e in [dict(Interview
='1',Experience='0'),
dict(Interview='1',Experience='1'),
dict(Interview='1',Grades='1'),
dict(Interview='1',Grades='0')]]
print results

Chapter 2

[33]

The output of the preceding code is as follows:

[0.6, 0.6, 0.6, 0.6]

The preceding code shows that once the Interview variable is observed, the active
trail between Experience and Offer is blocked. Therefore, Experience and Offer
are conditionally independent when Interview is given, which means observing
the values of the interview's parents, Experience and Grades, do not contribute to
changing the probability of the offer.

Blocking and unblocking a V-structure
Let's look at the only V-structure in the network, Experience → Interview ← Grades,
and see the effect observed evidence has on the active trail.

getTableCPD().specificquery(dict(Grades='1'),dict(Experience='0'))
getTableCPD().specificquery(dict(Grades='1'),dict())

The result of the preceding code is as follows:

0.3
0.3

According to the rules of D-separation, the interview node is a V-structure between
Experience and Grades, and it blocks the active trails between them. The preceding
code shows that the introduction of the observed variable Experience has no effect
on the probability of the grades.

getTableCPD().specificquery(dict(Grades='1'),dict(Interview='1'))

The following is the output of the preceding code:

0.413016270338

The following code should activate the trail between Experience and Grades:

getTableCPD().specificquery(dict(Grades='1'),dict(Interview='1',Exper
ience='0'))
getTableCPD().specificquery(dict(Grades='1'),dict(Interview='1',Exper
ience='1'))

The output of the preceding code is as follows:
0.588235294118
0.176470588235

The preceding code now shows the existence of an active trail between Experience
and Grades, where changing the observed Experience value changes the
probability of Grades.

Directed Graphical Models

[34]

Factorization and I-maps
So far, we have understood that a graph G is a representation of a distribution P. We
can formally define the relationship between a graph G and a distribution P in the
following way.

If G is a graph over random variables 1 2, , , nX X XK , we can state that a distribution
P factorizes over G if () ()()1 2 1, , , |n i G iP X X X P X Par X= ∏K . Here, ()G iPar X are the parent
nodes of . In other words, a joint distribution can be defined as a product of each
random variable when its parents are given.

The interplay between factorization and independence is a useful phenomenon that
allows us to state that if the distribution factorizes over a graph and given that two
nodes , |X Y Z are D-separated, the distribution satisfies those independencies (, |X Y Z).

Alternately, we can state that the graph G is an Independency map (I-map)
for a distribution P, if P factorizes over G because of which we can read the
independencies from the graph, regardless of the parameters. An I-map may not
encode all the independencies in the distribution. However, if the graph satisfies all
the dependencies in the distribution, it is called a Perfect map (P-map). The graph of
the job interview is an example of an I-map.

The Naive Bayes model
We can sum this up by saying that a graph can be seen from the following
two viewpoints:

• Factorization: This is where a graph allows a distribution to be represented
• I-map: This is where the independencies encoded by the graph hold in

the distribution

The Naive Bayes model is the one that makes simplistic independence assumptions.
We use the Naive Bayes model to perform binary classification Here, we are given
a set of instances, where each instance consists of a set of features 1 2, , , nX X XK and a
class y. The task in classification is to predict the correct class of y when the rest of
the features 1 2, , , nX X XK ... are given.

For example, we are given a set of newsgroup postings that are drawn from two
newsgroups. Given a particular posting, we would like to predict which newsgroup
that particular posting was drawn from. Each posting is an instance that consists
of a bag of words (we make an assumption that the order of words doesn't matter,
just the presence or absence of the words is taken into account), and therefore, the
1 2, , , nX X XK features indicate the presence or absence of words.

Here, we shall look at the Naive Bayes model as a classifier.

Chapter 2

[35]

The difference between Naive Bayes and the job candidate example is that Naive
Bayes is so called because it makes naïve conditional independence assumptions,
and the model factorizes as the product of a prior and individual conditional
probabilities, as shown in the following formula:

() () ()1 2 2
, , , |n

n ii
P C X X X P C P X C

=
= ∏K

Although the term on the left is the joint distribution that needs a huge number of
independent parameters (2n+1 - 1 if each feature is a binary value), the Naive Bayes
representation on the right needs only 2n+1 parameters, thus reducing the number of
parameters from exponential (in a typical joint distribution) to linear (in Naive Bayes).

In the context of the newsgroup example, we have a set of words such as {atheist,
medicine, religion, anatomy} drawn from the alt.atheism and sci.med newsgroups.
In this model, you could say that the probability of each word appearing is only
dependent on the class (that is, the newsgroup) and independent of other words in
the posting. Clearly, this is an overly simplified assumption, but it has been shown
to have a fairly good performance in domains where the number of features is large
and the number of instances is small, such as text classification, which we shall see
with a Python program.

Word n-
1

Word n

Class

Word 1 Word 2

Once we see a strong correlation among features, a hierarchical Bayes network can
be thought of as an evolved version of a Naive Bayes model.

Directed Graphical Models

[36]

The Naive Bayes example
In the Naive Bayes example, we will use the Naive Bayes implementation from Scikit-
learn—a machine learning library to classify newsgroup postings. We have chosen two
newsgroups from the datasets provided by Scikit-learn (alt.atheism and sci.med),
and we shall use Naive Bayes to predict which newsgroup a particular posting is from.
The following code is from the Naive Bayes.ipynb file:

from sklearn.datasets import fetch_20newsgroups
import numpy as np
from sklearn.naive_bayes import MultinomialNB
from sklearn import metrics,cross_validation
from sklearn.feature_extraction.text import TfidfVectorizer

cats = ['alt.atheism', 'sci.med']
newsgroups= fetch_20newsgroups(subset='all',remove=('headers',
'footers', 'quotes'), categories=cats)

We first load the newsgroup data using the utility function provided by Scikit-
learn (this downloads the dataset from the Internet and may take some time). The
newsgroup object is a map, the newsgroup postings are saved against the data key,
and the target variables are in newsgroups.target, as shown in the following code:

newsgroups.target

The output of the preceding code is as follows:

array([1, 0, 0, ..., 0, 0, 0], dtype=int64)

Since the features are words, we transform them to another representation using
Term Frequency-Inverse Document Frequency (Tfidf). The purpose of Tfidf is to
de-emphasize words that occur in all postings (such as "the", "by", and "for") and
instead emphasize words that are unique to a particular class (such as religion and
creationism, which are from the alt.atheism newsgroup). We can do the same by
creating a TfidfVectorizer object and then transforming all the newsgroup data to
a vector representation, as shown in the following code:

vectorizer = TfidfVectorizer()
vectors = vectorizer.fit_transform(newsgroups.data)

Vectors now contain features that we can use as the input data to the Naive Bayes
classifier. A shape query reveals that it contains 1789 instances, and each instance
contains about 24 thousand features, as shown in the following code. However,
many of these features can be 0, indicating that the words do not appear in that
particular posting:

vectors.shape

Chapter 2

[37]

The output of the preceding code is as follows:

(1789, 24202)

Scikit-learn provides a few versions of the Naive Bayes classifier, and the one we will
use is called MultinomialNB. Since using a classifier typically involves splitting the
dataset into train, test, and validation sets, then training on the train set and testing
the efficacy on the validation set, we can use the utility provided by Scikit-learn to do
the same for us. The cross_validation.cross_val_score function automatically
splits the data into multiple sets and returns the f1 score (a metric that measures a
classifier's accuracy), as shown in the following code:

clf = MultinomialNB(alpha=.01)
print "CrossValidation Score: ", np.mean(cross_validation.cross_val_
score(clf,vectors, newsgroups.target, scoring='f1'))

The output of the preceding code is as follows:

CrossValidation Score: 0.954618416381

We can see that despite the assumption that all features are conditionally independent
when the class is given, the classifier maintains a decent f1 score of 95 percent.

Summary
In this chapter, we learned how conditional independence properties allow a joint
distribution to be represented as the Bayes network. We then took a tour of types of
reasoning and understood how influence can flow through a Bayes network, and we
explored the same concepts using Libpgm. Finally, we used a simple Bayes network
(Naive Bayes) to solve a real-world problem of text classification.

In the next chapter, we shall learn about the undirected graphical models or
Markov networks.

Undirected Graphical Models
We shall now look at models where the interaction between variables is such that
the directionality cannot be ascribed to them. We shall see how to represent these
undirected models and their properties in terms of their distribution and D-separation.

Pairwise Markov networks
We shall use the following example to motivate our discussions in this chapter.
We have four colleagues (Amar, Bob, Charlie, and Deepak) who meet at an office
party. There's been a rumor at the party that one of the senior managers may leave
the organization. These four colleagues bump into each other and have one-on-one
conversations, possibly about the rumor. We know that Charlie and Bob bond really
well, but the same cannot be said of Charlie and Deepak. In short, each of the pairs
influences the other and has a certain amount of like or dislike for each other. We
would like the model to capture instances of whether each person either knows or
does not know about the rumor. A model of their interactions can be seen in the
graph in the following diagram. We will use the Markov network to model whether
the four colleagues get to know about the rumor.

Amar Bob

Charlie Deepak

Fig 1: Markov network for party rumor

Undirected Graphical Models

[40]

While modeling the problem, you may recall the Bayesian network, and we can try
to model the party example using that. It would appear that the interactions between
the variables are symmetric; one cannot ascribe a direction to the affinity between
two people. We can model this type of interaction using a Markov network, where
the nodes represent random variables and the edges represent affinities, interactions,
or likes/dislikes between two nodes.

The interactions between two variables can be represented by a function called a factor,
which will quantify the degree of likes or dislikes between the variables in its scope. A
factor has a set of input variables called the scope of the factor. The values in a factor
are in the set of real numbers, where zero indicates a low affinity and vice versa.

We can represent the preceding network using factors () () (), , , ,A B B C C Dφ φ φ , and
(),D Aφ , the values of which can be considered as compatibility factors (or local

happiness) for Amar and Bob, Bob and Charlie, Charlie and Deepak, and Deepak
and Amar, respectively. The values in the following table depict that both Amar
and Bob bond quite well and share information, so the possibility of both of them
either knowing or not knowing about the rumor is high, and the possibility that one
gets to know and doesn't share it with the other person is quite low:

 (),A Bφ

0A B0 20

0A B1 2

1A B0 5

1A B1 10

So, we can see that the graph is broken down into small factors, but how do we
define the overall joint distribution? We will do this by using a product of factors
defined as follows:

() () () () (), , , , , , ,P A B C D A B B C C D D Aφ φ φ φ= × × ×%

However, you might say, this isn't a valid probability distribution since it doesn't sum
up to one, which it rightly doesn't (hence, the tilde P%). This is rectified by dividing all
the terms by Z , which is also called the partition function and is defined as follows:

() ()1, , , , , ,P A B C D P A B C D
Z

= %

Chapter 3

[41]

Here, Z is simply the sum of values in all the factors, as shown in the
following formula:

(), , ,
, , ,

A B C D
Z P A B C D=∑ %

Since we have learned about the Bayesian network already, a natural question
that might arise—is the factor (,)A Bφ some marginal probability (,)P A B or some
conditional probability (, | ,)P A B C D or some combination thereof? Unfortunately,
there isn't direct mapping between those marginal or conditional probabilities and
that of a factor. All we can state is that the factor (,)A Bφ is an aggregate of the other
factors that comprise the Markov network. Consequently, there is no direct mapping
between the probability distributions encoded by the Markov network and the
factors that the network is composed of, which is a little different from what we've
encountered in the Bayesian network.

We can define a pairwise Markov network as an undirected graph composed of
nodes that represent random variables 1 2, , nX X XK , which are connected by edges
between two nodes (a bX X→). This indicates the factor (or potential) between the
two nodes, that is, (),ab A Bφ .

The Gibbs distribution
In the pairwise Markov network, our factors had only two variables in its scope.
If we expanded the network so that each node connects to all other nodes in the
network, we would get edges as in the following diagram:

Fig 2: Fully connected Markov network for party rumor

Amar Bob

Charlie Deepak

Undirected Graphical Models

[42]

Would P(A, B, C, D) from a pairwise Markov network represent any probability
distribution over random variables A, B, C, D? No, because the parameters in this
network are not enough to describe a joint probability distribution over n random
variables (which would need nd parameters, if each random variable takes on d
values). An observant reader might have noticed that for the preceding pairwise
Markov network (with four variables), the number of parameters (as compared
to the joint distribution) are indeed equal. Let's look at the following table for the
number of parameters required when each random variable takes binary values:

Number of random
variables

Number of
edges (factors)

Parameters in a
pairwise Markov
network

Parameters in a joint
distribution ()nd

4 (2 x 2 grid) 4 16 42 =16

9 (3 x 3 grid) 12 48 92 =512

We can see that, in a general case, the number of parameters in a pairwise Markov
network is insufficient to represent a joint distribution. One way out of this problem
is to allow a φ factor to have an unlimited number of variables in its scope, unlike just
two in a pairwise case. This is called a Gibbs distribution and is defined as follows:

() () (){ }1 1 2 2, .. k kD D Dφ φ φΦ =

Each iφ factor might have several variables in its scope ()iD , and the Gibbs distribution
is a set of such factors. Just as we have seen for the pairwise case, the unnormalized
distribution is a product of its factors, as shown in the following formula:

() ()1 1
,.. k

n i ii
P X X Dφ

=
=∏%

And to make it a probability distribution that sums up to 1 (since factors are not
constrained in the values they can take), we have to normalize by dividing it by the
partition function Z. We get () ()1 1

1,.. k
n i ii

P X X D
Zφ

φ
=

= ∏ , where Zφ is ()
1

1..
,..

n
nX X

P X X∑ % .

So, what does this Gibbs distribution really give us? It simply gives us a valid
probability distribution (that sums up to 1), and it seems similar to a probability
distribution that could be mapped to a graph as in a Bayesian network.

Chapter 3

[43]

An induced Markov network
What would the Markov network look like if we have factors that involve multiple
variables? In the pairwise case, the (),A Bφ factor meant an edge between random
variables A and B. It is indeed logical to assume that the (), ,A B Cφ factor would have
an edge among all the pairs. This is called an Induced Markov network, where the
figure contains edges for the two factors (), ,A B Cφ and (), ,B C Dφ , which can be seen in
the following diagram:

Amar Bob

Charlie Deepak

Fig 3: Induced markov network

Factor (A,B,C) in and factor (B,C,D) in .

Factorization
Throughout the representation section of the Bayesian network, we have
encountered two representations: one being a graph, and the other being a
probability distribution. We asked ourselves questions such as are they equivalent
and when we switch from one view to the other, do we lose or gain information? We
will now examine these questions in the context of a Markov network.

What is the equivalency of a distribution D and graph G? When does D factorize
over G? In other words, when can D be represented using G? One way to understand
factorization is to think of it as a decomposition problem. We have a problem (a huge
joint distribution, for example), and we want to decompose it into smaller pieces
(such as conditional probability distributions in the case of the Bayesian network).

We can state that the distribution D factorizes over G if we have a set of factors Φ
(which is a product of its individual factors), and that G is the induced graph for the
set of factors Φ .

Undirected Graphical Models

[44]

Unlike in the Bayesian network, however, if we are given a graph G, there is no
single unique set of factors that can be read from the graph. Let's take a look at
the following diagram:

Fig 4: Markov network corresponding to a Gibbs distribution

Amar Bob

Charlie Deepak

We know that all (pairs of) variables in the scope of a factor are connected by edges.
For example, in the ()2 , ,B C Dφ factor, there's an edge between () () (), , , ,B C C D and B D . The
same is true for all the other factors.

Now consider two sets of factors: () (){ }1 1 2: , , , , ,S A B C B C Dφ φ and
() () (){ }2 1 2 3: , , , , , ,S A B C C D B Dφ φ φ . We can see that in both sets, each individual factor

satisfies the condition that all the variables in its scope are connected by an edge.
If we were to draw a diagram with the four vertices , , ,A B C D and then connect
the edges as described by the factor set 1S or 2S , we would find the diagram that
materializes is the same.

Therefore, different sets of factors can induce the same graph, and the factorization,
or splitting into individual factors, cannot be read from the graph. That should not
be read as not good enough compared to the Bayesian network, but that a graph can
have multiple factorizations, all of which are correct.

Flow of influence
How does influence flow along a Markov network? We have already seen that there
is no single unique factorization in a given graph G, and the flow of influence doesn't
depend on the form of the factors.

Two variables can influence each other as long as they are connected through a set of
edges. In the preceding diagram, Amar, Bob, and Charlie are connected through a
set of edges and can influence each other, and the factorization, whether ()1 , ,A B Cφ or

() (){ }1 2, , ,A B B Cφ φ , doesn't really matter.

Chapter 3

[45]

Active trail and separation
Unlike the detailed rules of active trails in Bayesian networks, in Markov networks,
the rule is simple: an influence can flow between any two random variables that are
connected by edges. A node is blocked if it has been observed. We can see this in the
example in the following diagram.

We can thus state the concept of separation in Markov networks (note that we don't
call it D-separation because this is not a directed graph). The random variables X and
Y, given the evidence set Z, are separated in a graph G if there is no active trail in G
between X and Y. That is, there should be no evidence or observed nodes in one of
the trails that connects X and Y.

Amar Bob

Charlie Deepak

Amar Bob

Charlie Deepak

Fig 5a: Active trails in Markov network

Nothing observed, active trails between

andA-B-D A-C-D

Fig 5b: Active trails in Markov network

B and C observed, no active trails between

A-B-D and A-C-D

Structured prediction
In typical applications of machine learning classifiers, the classifier predicts a class
for the target variable, such as spam/non-spam to classify an e-mail. Usually, each
instance (such as an individual e-mail) is independent of the next or previous e-mail.

However, there are several classes of applications where the target variable is related
to its neighbors. Take the case of image segmentation where a typical problem is
that in a picture of a cow on a pasture, we want to classify each pixel (or super
pixel, which is a contiguous group of pixels as described by the image processing
literature) as cow or grass. Each super pixel has a few neighbors, and if the super
pixel Sp is at the stomach region of the cow and surrounded by other super pixels
already classified as cow, it is quite obvious that the super pixel Sp should also be
classified as cow. The task of classifying the super pixel Sp is made much easier by
using the local structure rather than by classifying it independently, ignoring the
nearby super pixels.

Undirected Graphical Models

[46]

Similarly, in the field of natural language processing, the task called Part of Speech
tagging (POS tagging) involves tagging each word in a sentence with a word category
such as noun, pronoun, or verb. Here too, tagging a word as a noun or a verb is much
easier if we look at the whole sentence rather than each word in isolation.

In such cases, where we wish to perform task-specific prediction, and there exists a
local structure that we can exploit, we can use models such as Hidden Markov Models
(HMMs) and Conditional Random Fields (CRFs). The local structure can be words
located nearby in a sequence of words or pixels situated nearby in a grid of pixels.

Problem of correlated features
If we are trying to predict the class of super pixels, the features (such as the color
histogram for each super pixel) are highly correlated with each other. In a generative
model such as Naive Bayes, the same feature gets counted multiple times, which
gives a highly skewed probability towards a class. Correcting the independence
assumptions requires adding edges between features because features that are
correlated are not conditionally independent. It is hard to figure out how they
are correlated, and the models get densely connected, which means lots of edges
between lots of vertices.

One solution to this problem is to model |Y X instead of (,X Y), that is, model the
conditional distribution instead of the joint distribution (where Y is the set of target
variables, and X is the set of observed variables). We aren't concerned about how the
features vary (or don't vary together); we only care about the target variable. A CRF
differs from an MRF by trying to model the conditional distribution |Y X rather than
the joint distribution (,X Y).

The CRF representation
A CRF can be represented by a set of factors () () (){ }1 1 2 2, .. k kD D Dφ φ φΦ = , which seems
similar to the Gibbs distribution. The difference is that the normalization constant Z
only sums over all the values of Y.

If the joint distribution has two variables A and B, as shown in the following formula:

() ()
1

,
k

i i
i

P A B Dφ
=

=∏%

Chapter 3

[47]

Then, the conditional distribution is normalized by dividing by aZ , as shown in the
following formula:

() ()1| ,
a

P B A P A B
Z

= %

Here, (),a a
Z P A B=∑ % is the joint distribution with the values for A, summed out.

The Naive Bayes model is an example of a generative model (the one that models the
joint distribution), and the conditional equivalent of it is a logistic regression model
(one that models the conditional distribution).

The CRF example
The use of CRFs can be understood better with this example:

Given a set of images that correspond to handwritten characters in words, we need
to predict the character in each image. We can imagine that the solution we build
will start with the simplest possible one, and then work toward improving it. The
simplest model we can start with is the one that has singleton factors, that is, each
character's predicted value will depend only on the image features, as depicted
in the following diagram. The images I1 to I4 have been observed, and we want
to recognize the class variables c1 to c4 (which can take on 26 values, one for each
character from A to Z).

Fig 6: Singleton features for OCR

l1 l2 l3 l4

c1 c2 c3 c4

q u i t

We can get fairly good predictive scores using the singleton features by using a
strong classifier such as logistic regression or random forests.

Undirected Graphical Models

[48]

However, we can see that this model can be improved. Consider the character l2 in
the previous diagram. We know that the most common character following the letter
q is u, and the other characters are extremely uncommon. Similarly, the characters
that follow qui are likely to be t or d (quid or quit). We can encode knowledge by
adding pairwise features (between two character classes), triplet features (between
three character classes), or even more. Observe the following diagram that depicts
edges for the added features:

Fig 7: Singleton features, pairwise

and triplet features for OCR

l1 l2 l3 l4

c1 c2 c3 c4

q u i t

The singleton factors that capture the potential between the class C and the image I
can be represented as (),i i iC Iφ , and the pairwise and triplet factors can be represented
as ()1,i i iC Cφ + and ()1 2, ,i i i iC C Cφ + + . The pairwise features for English characters would be
for all combinations such as {A - A}, {A - B}, {A - C} all the way up to {Z - Z}, and
similarly for the triplet factors {A - A A}, {A - A B}, and so on. Given that we have 26
characters in English, we will need 262 and 263 factors, respectively, to represent all
the combinations for pairwise and triplet factors. We have to learn the parameters for
these factors from the data. For example, to learn the parameters for {X-Y-Z}, we can
count the number of occurrences of the characters {X-Y-Z} in a large corpus of words.
We might expect that many of such factors occur extremely rarely (for example, the
combination xmq).

It may be tempting to add larger factors that have more than three variables in its
scope, but given the exponential growth, it becomes difficult to store, manipulate,
and run inference on a network with an exponential number of factors.

The factorization-independence tango
In the previous chapter, we understood that the two concepts of a graph and a
distribution are both encoded in a graphical model. We now turn to the equivalence
of factorization and independence, and we would like to know whether they are
both respected in both the views, in the context of Markov nets.

Chapter 3

[49]

The following are the questions that we wish to address:

• The first one is if the two nodes are conditionally independent in the graph,
does the distribution respect that independence?

• The second one is that is the factorization (or decomposition) of a distribution
into a graph a valid decomposition?

This is a theorem that has parallels from Bayesian networks. If a distribution P
factorizes over a graph G, and suppose that two random variables X and Y are
separated (in the graph G) given ()1 2, ,i i i iC C Cφ + + , then the distribution P satisfies the
independence statement, and X is conditionally independent of Y given Z.

In other words, the independence defined by the graph H by the separation
properties is preserved by the distribution P that represents the graph. Similar to the
Bayesian network, the graph H is an I-map of the distribution P.

The converse of this relationship is independence of factorization—if the distribution
P satisfies the independencies described by the graph G, P factorizes over the graph
G. Unlike the case of the Bayesian network, this is true only for positive distributions,
that is, the probabilities have to be greater than zero for all assignments to the
random variables. This relationship follows from the Hammersley-Clifford theorem.

To sum up, just as in the case of the Bayesian network, we have two equivalent views
of the Markov network. Factorization enables a graph G to represent a (positive)
distribution, and I-map enables the independencies described by the graph G to be
respected in the (positive) distribution.

Summary
In this chapter, we learned about Markov random fields, which are an alternative
representation of graphical models. We learned about their properties, their
similarities, and dissimilarities with Bayesian networks. We also looked at some real-
world applications where MRFs are being used. We also learned about conditional
random fields and how they can be used for structured prediction.

Having learned the concepts and means to represent PGMs, in the next part of the
book, we shall learn how to convert representations to artifacts that can be consumed
by software tools to solve real-world problems.

Structure Learning
The common path we may take while using a PGM to solve a problem is that we
start with a dataset, and then we run some types of inference queries on this dataset.
We may have some domain knowledge of the structure of the network, as well as the
knowledge of the parameters of this network. Often times, we may not have prior
knowledge of either the network structure or parameter priors, and all that we have
is a dataset.

Given a dataset, we have the following tasks at hand:

• Learn the structure of the network. This can be achieved by learning from
the data alone, or by also providing some domain knowledge (of connections
between edges).

• Learn the parameters of the network. Again, domain knowledge can help us
with parameter priors, or it can be learned entirely from data.

• Use an inference engine to run conditional probability queries or
MAP queries.

There is an implicit need for a tool that can help us do all of the preceding tasks,
structure and parameter learning, as well as inference.

In the next part of the book, we will explore structure, parameter learning, and
finally inference, in the same order.

In this chapter, we will learn how to learn the structure of a PGM.

When we wish to use a PGM, one task is to determine the structure of the graphical
model. Sometimes, we have a domain expert who can arrange a suitable hierarchical
model. Unfortunately, this is not always the case, and we may want to learn the
structure of the network given the data without any prior domain knowledge.
Even with some domain expertise available, we would like to verify or improve the
structure of the network.

Structure Learning

[52]

Another use of structure learning is when the goal is to discover the structure
(and not necessarily discover it just to run inference queries). For example, causal
Bayesian networks have been used to model protein signaling networks, where
discovering the network structure is applied to understand drug interactions and
dysfunctional signaling in diseased cells.

The structure learning landscape
The tour of structure learning goes in this fashion: the algorithms that we discuss
can be divided into two areas, one that uses constraints and the other that focuses on
score-based approaches.

We will also discuss the kind of structures that are found, such as trees, forests, and
graphs. We will explore the pros and cons of algorithms in each set, and also try out
some simple examples that exercise some algorithms.

Constraint-based structure learning
In this approach, we start with a set of vertices that represent random variables in the
data, and then we test for conditional dependence (and independence) in the data.
The goal of this approach is to read the conditional dependence and independence of
the data from the Bayesian network structure. The constraints are essentially tests of
conditional independencies between the random variables.

The algorithm can be logically divided into three parts.

Part I
For each variable Xi, the algorithm attempts to find a subset of witness variables (say,
X1 to Xn) in the presence of which Xi is independent of the other variables. However,
examining all subsets of the random variables will require searching over an
exponential number. To remedy this, the algorithm uses only a polynomial number
of independence tests by doing the following task:

It restricts the number of parents for each vertex. This depends on our intuition
about the size of the network. A larger network may need a larger subset of
witness variables.

Chapter 4

[53]

The procedure used to determine conditional independence also merits some
discussion. This problem is commonly solved in statistics literature using hypothesis
testing. Assuming that we have a distribution over variables A and B, we wish to know
whether the joint distribution is the product of individual probabilities, () () (),P A B P A P B= .
A distribution where the variables are not independent may be () () (), |P A B P A P B A= .

A suitable test to accept or reject the null hypothesis (the null hypothesis states that
the two variables are independent), for discrete valued random variables, is the
chi-squared test. The chi-squared test is likely to return a value of 0 when two
variables are independent, and it will return a high value when they are not. The
Pearson chi-square test statistic is calculated by using the following formula:

()2
2

1

n
i i

i i

O E
x

E=

−
=∑

In this formula, the parameters are as follows:

• 2x : This is the Pearson cumulative test statistic
• iO : This is the observed frequency
• iE : This is the expected or theoretical frequency given by the null hypothesis
• n: This is the degree of freedom

With the chi-squared test, we can build a set of independencies in the network.
However, when running multiple hypothesis tests, statistical errors can accumulate
and result in incorrect independence assumptions due to sparse data as well as
statistical noise. On a small network with a large number of instances, these errors
will not affect the correctness of the structure, but this cannot be said for a large
network. A large network with insufficient data may have spurious independencies
generated, which will result in an incorrect structure being built.

Part II
It is known that the graph of independencies (I-map) in a distribution P is not
unique, which means that there are multiple graphs G* that can represent the
distribution, and these graphs can be called I-equivalent. The goal of this algorithm is
to find any one network that is a member of the I-equivalent class of G*.

Structure Learning

[54]

In the second part, we will create an undirected graph or a graph skeleton where we
add edges between X and Y nodes if they are adjacent in the graph. By adjacency, we
mean that the final graph will have a directed edge of the form X Y→ or X Y← . We
can use independence queries of the form |X Y U⊥ to conclude if they are adjacent. If
we find any witness nodes U, it will block the active trail between X and Y, leading
to the conclusion that X and Y are conditionally independent. On the other hand, if
we do not find any witness nodes U, we conclude that they must be conditionally
dependent and therefore we add an edge that connects X and Y.

Given that we have a set of independencies, we add edges between the nodes that
are not independent using the tests mentioned previously.

Part III
Now that we have a skeleton, we wish to convert the undirected edges into directed
edges. A theorem (Koller 3.8) posits that all directed graphs that are I-equivalent to
G* have the same set of immoralities. Assume a node has two parents; the parents
are immoral if they are not connected by an edge (possibly an analogy to being
unmarried). The algorithm proceeds to test and verify potential immoralities in the
skeleton. The potential immorality, which is currently represented as X Z Y− − , has to
change to one of the following ones:

• X Z Y→ →

• X Z Y← ←

• X Z Y→ ←

• X Z Y← →

For each of these four destinations, we have the rules that determine the correct
destination given an undirected triplet of nodes. For a description of the rules, please
refer to Koller 3.4.3.2 onwards.

We will now look at the constraint-based.ipynb IPython Notebook, where we
attempt to learn the structure of a Bayesian network by using constraint-based
approaches. We will first load the network, as shown in the following code:

from libpgm.nodedata importNodeData
from libpgm.graphskeleton importGraphSkeleton
from libpgm.discretebayesiannetwork importDiscreteBayesianNetwork
from libpgm.pgmlearner importPGMLearner

nd=NodeData()
skel=GraphSkeleton()

Chapter 4

[55]

fpath="job_interview.txt"
nd.load(fpath)
skel.load(fpath)
skel.toporder()

bn=DiscreteBayesianNetwork(skel,nd)

It may seem strange that we are loading a network with existing structure and
parameters (which are defined in the job_interview.txt file). For this example, we
will be using synthetic data, which are the samples drawn from an existing network.
This helps us compare our results with the known network that we started with. To
start with, we will draw two random samples from the job_interview network,
which we have seen in the previous chapters, as shown in the following code:

bn.randomsample(2)

The output of the preceding code is as follows:

[{u'Admission': u'admitted',
u'Experience': u'high',
u'Grades': u'poor',
u'Interview': u'good',
u'Offer': u'no'},
 {u'Admission': u'admitted',
u'Experience': u'low',
u'Grades': u'poor',
u'Interview': u'poor',
u'Offer': u'yes'}]

We can see that the random sample is one specific assignment to each random
variable, which is drawn from the joint distribution. It could also be thought of as a
random assignment for all the nodes in the network.

Let's discuss how the algorithm proceeds. We first inquire about the conditional
independence of all pairs of nodes. This is achieved by running the chi-squared test.
The null hypothesis states that nodes X and Y are conditionally independent, given Z.

The following discrete_condind method returns the value of chi-square as well
as the p-values, which is the probability that the independence is due to chance.
We choose a threshold value for the p-value (say, 0.05). If the chi-square test
statistic returns a p-value greater than the threshold, it means that the probability of
independence between X and Y is too high to have occurred by chance. So, we can
conclude that X and Y are indeed independent.

learner = PGMLearner()
data = bn.randomsample(200)

X,Y='Grades','Offer'

Structure Learning

[56]

c,p,w=learner.discrete_condind(data,X,Y,[])
print "independence between X and Y: ",c," p-value",p," witness node:
",w

The output of the preceding code is as follows:

independence between X and Y: 8184619.56996 p-value 0.0
witness node: []

We will run independence queries from the job interview network described in the
following diagram:

Experience Grades

Interview Admission

Offer

In the query from the preceding code snippet, we can see that the p-value is less than
0.05, and the Grades and Offer variables can be considered not independent. Since
the D-separation rules state that given the job interview network, Grades and Offer
have an active trail between them, which gets blocked if the Interview variable is
observed. What happens if we observe the Interview variable that lies between
Grades and Offer?:

X,Y='Grades','Offer'
c,p,w=learner.discrete_condind(data,X,Y,['Interview'])
print "Independence between X and Y: ",c," p-value",p," witness node
",w

The output of the preceding code is as follows:

Now, Grades and Offer are conditionally independent (because the p-value is much
greater than 0.05). The first stage of the algorithm essentially tries to determine the
conditional independence for all the pairs of nodes in the network, given other witness
variables. We are then left with a set of undirected dependencies between nodes.

Independence between X and Y: 2.79444519518 p-value 0.993172910586
witness node ['Interview']

Chapter 4

[57]

The second and third stages of the algorithm are essentially contained in the
discrete_constraint_estimatestruct method, where the set of dependencies are
converted into an undirected graph. Then, the directionalities are resolved. This is
shown in the following code:

result=learner.discrete_constraint_estimatestruct(data)
print result.E

The output of the preceding code is as follows:

[[u'Grades', u'Admission'], [u'Experience', u'Interview'], [u'Grades',
u'Interview'], [u'Interview', u'Offer']]

The result.E variable returns the directed edges learned in the network, and each
edge is a list containing the starting and finishing node for the edge. We can see that
the four original edges in the job interview network have been found. However, this
is a small network. Will this algorithm scale to a larger network?

We will now look at the alarm_network.ipynb IPython Notebook, in which we
attempt constraint-based approaches on a larger dataset. The logical alarm reduction
mechanism network is a Bayesian network designed to provide an alarm message
system to monitor patients. This network has 37 vertices and 46 edges, considerably
larger than the job interview network we have been using so far, which had 5
vertices and 4 edges.

The dataset can be found at http://www.cs.ru.nl/~peterl/BN/alarm.csv
and is commonly referred to as the alarm network. More information on the
dataset (such as column descriptions) can be found at http://www.bnlearn.com/
documentation/man/alarm.html.

Let us load the alarm.csv file by using the pandas library, as shown in the
following code:

import pandas as pd
import numpy as np
df=pd.read_csv("alarm.csv")

The alarm.csv file has records that we should convert into a format that libpgm can
consume. Each instance should be a dictionary, where keys are column names and
values are column values. The following function performs the format conversion
and returns a list of dictionaries that are sampled without replacement from the
original dataset. This is shown in the following code:

from random import randint,sample

def rand_index(dframe,n_samples=100):

Structure Learning

[58]

rindex = np.array(sample(xrange(len(dframe)) ,n_samples if n_
samples<=len(dframe) else len(dframe)))
 return [{i:j.values()[0] for i,j in dframe.iloc[[k]].to_dict().
items()} for k in rindex]

#Lets examine a single sample:
rand_index(df,n_samples=1)

The preceding code gives the following output:

 [{'Anaphylaxis': 'b',

 'ArtCOb': 'b',

 'BP': 'c',

 'CO': 'a',

 'CVP': 'a',

 ….<rows elided>

}]

Let's load the data, create an instance of the learner object, and estimate the structure
with a small number of samples (100), as shown in the following code:

from libpgm.nodedata import NodeData
from libpgm.graphskeleton import GraphSkeleton
from libpgm.discretebayesiannetwork import DiscreteBayesianNetwork
from libpgm.pgmlearner import PGMLearner

data=rand_index(df,n_samples=100)
learner = PGMLearner()
result=learner.discrete_constraint_estimatestruct(data)
print result.E

The output of the preceding code is as follows:

[['VentLung', 'MinVol'], ['HR', 'HRBP'], ['LVFailure', 'History'],
['BP', 'TPR'], ['SaOb', 'Shunt'], ['Intubation', 'Shunt'], ['PCWP',
'LVEDVolume'], ['Hypovolemia', 'LVEDVolume']]

To compare the performance of the structure learned by libpgm with the correct
alarm network, let's load the correct alarm network described in the parent-child.
txt file. Each line of this file contains the parent vertex, followed by the child vertices
(in some cases, some nodes are leaf nodes that have no children). This is shown in
the following code:

file = open('parent-child.txt', 'r')

def edges(line):

Chapter 4

[59]

st=line.strip('\n').strip(' ').split(' ')
 #print st
 return [[st[0],i] for i in st[1:]]

all_edges=[l for line in file for l in edges(line)]
#a set containing the correct edges
ground_truth=set([tuple(i) for i in all_edges])
print all_edges[:5]

The output of the preceding code is as follows:

[['HISTORY', 'LVFAILURE'], ['CVP', 'LVEDVOLUME'], ['PCWP', 'LVEDVOLUME'],
['LVEDVOLUME', 'HYPOVOLEMIA'], ['LVEDVOLUME', 'LVFAILURE']]

Let's define a diagnostic function that compares the found network with the correct
network. We wish to enquire about the number of edges in both, as well as the
number of edges with right directedness and the edges that connect nodes correctly
but have wrong directionality. The code is as follows:

def printdiag(result):
 found=set([tuple([j.upper() for j in i]) for i in result.E])
 correct=ground_truth.intersection(found)
 undirected_common_edges=[(i,j) for i,j in found for k,l in
 ground_truth if i.find(k)!=-1 and j.find(l)!=-1]
 print "Number of edges in learnt network ",len(found)
 print "Total number of edges in true network ",len(ground_truth)
 print "Number of edges with correct directionality ",len(correct)
 print "Number of edges with incorrect directionality
",len(undirected_common_edges)

Let's define a function that prints the resulting statistics when the dataset picks a
specific number of samples as follows:

def learn_structure(n_samples):
 data=rand_index(df,n_samples)
 learner = PGMLearner()

result1=learner.discrete_constraint_estimatestruct(data)
printdiag(result1)

learn_structure(1000)

The output of the preceding code is as follows:

Number of edges in learnt 36

Total number of edges in true network 46

Number of edges with correct directionality 6

Number of edges with incorrect directionality 7

Structure Learning

[60]

Let's examine the performance of the learn_structure method when provided
with 1000 samples, as shown in the following code. It finds less than half of the
edges, and only a few edges correctly connect nodes. Does increasing the sample size
help? (This may take a few minutes to run.):

learn_structure(10000)

The output of the preceding code is as follows:

Number of edges in learnt network 30

Total number of edges in true network 46

Number of edges with correct directionality 2

Number of edges with incorrect directionality 3

We can see that the number of samples is still not enough to improve the number
of edges that are correctly identified. It is not surprising that the algorithm did not
learn the correct structure, since the complexity grows exponentially. The number
of nodes feasible for exact methods is said to be about 30 (Cassio de Campos,
ICML 2009). The complexity of the algorithm has a running time of O(nd+2) where
n is the number of vertices and d is the upper bound on the witness set. Various
versions of this algorithm try to constrain the witness set to improve its performance
(this is described in Chapter 2, Directed Graphical Models (http://arxiv.org/
pdf/1111.6925.pdf)).

Summary of constraint-based approaches
The constraint-based approach is a method that can learn the structure for both
directed and undirected graphical models. These methods are quite sensitive to noise
in the data, which can give rise to the mistaken independence assumptions and cause
the network to miss out on finding the I-equivalent structure. They do not scale to
networks with large number of nodes, which can be improved by setting the bounds
to the size of the witness set.

Score-based learning
A score-based approach is one that assigns a score that indicates how well a graph
fits the data and then searches over the space of all the possible network structures to
find a graph that maximizes the score. The score-based approaches enforce sparsity
(fewer edges). This causes an optimization problem, where we have an exponential
number of network structures to search over.

Chapter 4

[61]

The likelihood score
The likelihood score is a score that maximizes the likelihood of the data, given a
particular graph structure G. The maximum likelihood estimates the parameters of
G. Often, the log of the likelihood score is used. The likelihood score decomposes to
the following formula:

() () ()ˆ ˆ1
: ;

i

n G
l p i X i p ii

score G D M I X Pa M H X
=

= −∑ ∑

The right-hand side of the equation consists of two terms:

The first term ()ˆ1
;

i

n G
p i Xi

M I X Pa
=∑ is the sum over mutual information (denoted by)p̂I

between a node iX and its parents i

G
XPa in the graph. Mutual information is an

information-theoretic criterion that can be understood as the average distance
between the joint distribution ()1 2,XP X and the product of marginal distributions
() ()1 2P X P X× for two random variables X1 and X2.

The second term ()ˆi p iM H X∑ is the sum of entropy of each random variable. It may
be observed that it is independent of its parents (and thus independent of the graph
structure). M is the number of samples.

The intuition behind the likelihood score is that a network's structure is better if a
variable is correlated with its parents. In other words, a graph with a better score will
put a variable and its parents together.

Let's compare the scores obtained for the simple network involving two random
variables, as shown in the following diagram:

X Y X Y

Graph G0 Graph G1

To compare scores between the two networks, we can subtract their scores (using the
previous equation).

We can see that when we subtract the scores, the (second) entropy term cancels out,
leaving only the first term ()ˆ ;pI X Y , which is the mutual information between X and Y.
This is shown in the following formula:

()ˆ0 1 ;pG G MI X Y− =

Structure Learning

[62]

The mutual information score is always greater than or equal to zero. When two
random variables X and Y are independent, the mutual information should be zero.
However, in the real world where we may encounter statistical noise in the dataset,
given enough samples, there will always be some dependence between random
variables resulting in a nonzero value of mutual information.

Why is this important to us? It is important because the mutual information term
rewards a network for adding an edge and seldom for removing an edge, and thus
the resulting networks that are densely connected get higher scores than sparsely
connected networks.

This phenomenon is known as overfitting, and as we know from the machine
learning literature, it is something to avoid (because it complicates parameter
learning in a PGM). The methods to avoid overfitting can involve restricting the
number of parents and parameters. Other scoring functions (which we will see in
the further sections) have provisions to penalize overfitting and can build a tradeoff
between a network that is connected enough and its fit to the data.

The Bayesian information criterion score
Scoring functions that try to improve on the likelihood score try to penalize
complexity in various ways. The Bayesian information criterion (BIC) and the
Akaike information criterion (AIC) are information-theoretic scores that measure
that quality of a statistical model's fit to the data. The approach the BIC score takes is
that it subtracts a penalty term (the second term in the following equation) from the
likelihood (the first term), as shown in the following formula:

() () []log: :
2BIG g
Mscore G D D Dim Gθ= −l

Here, M is the number of training instances and Dim[G] is the number of
independent parameters in the distribution (in a joint distribution, the number of
independent parameters is the total number of rows in the joint distribution minus
one). The second term tries to restrict the likelihood term's propensity to add edges
as a function of the number of parameters and training instances.

The second term is just one approach to balance the tradeoff between model
complexity and its fit to data. If the log2

M is replaced by 1, it is called AIC. The negation
of the BIC score is called the Minimum description length (MDL) criterion.

It has been shown that the BIC score has a property called consistency. As the
number of data instances increases asymptotically, the correct structure of the graph
G (or any other I-equivalent structure) gets the maximum score.

Chapter 4

[63]

The Bayesian score
Another class of scoring functions uses Bayesian principles to average out over both
the space of possible structures as well as possible parameters to find the graph
structure that best fits the data and the parameters. Scoring functions such as BDE
and BDEU (variants of Bayesian Dirichlet) exist under the Bayesian umbrella, but they
use different priors over structures and parameters.

As with all Bayesian approaches, the prior (both structure and parameters) will have
a larger effect when the number of data instances is low. However, as the number of
instances increases, the amount of data decreases the strength of the prior. Thus, for
a low number of data instances, the Bayesian scores underfit the data.

The asymptotic behavior of Bayesian approaches begets scores that are similar to the
BIC score, and they seldom overfit to the data.

In the following notebook (bnfinder.ipynb), we will now use the BNFinder library
to learn the structure of a Bayesian network using score-based approaches.

The BNFinder tool has implementations of multiple score-based approaches
such as BDE, MIT, and MDL. BNFinder can be installed using the pip install
BNFinder command.

The BNFinder tool allows us to add prior information such as prospective parents
and the known edges to the model prior to finding the relationships using a dataset.

Let's load the necessary imports and create the score function we will use (BDe). We
will use the default parameter values, as shown in the following code:

fromBNfinder.BDEimportBDE
fromBNfinder.dataimportdataset

score=eval("BDE")(data_factor=1.0,chi_alpha=.9999,sloops=False)
score

The output of the preceding code is as follows:

<BNfinder.BDE.BDE instance at 0x00000000124EB688>

We created a dataset object and loaded it from a file. The job_interview_samples.
txt file contains samples generated from the libpgm'srandomsample() method.
The code that generated the samples can be found in the IPython Notebook job _
interview_samples.ipynb.

Structure Learning

[64]

The dataset format that the BNFinder tool uses is the transpose of a normal dataset.
If a normal dataset has three columns, each instance row contains three values.
However, the BNFinder dataset format will have three rows, and one row will
contain all the values for that column.

Let's create the following method that reads in a dataset, performs structure learning,
and saves the output in a .bif format, as well as writes out the CPDs. The Bayesian
Interchange format (BIF) is used by other tools that do Bayesian inference.

def learn_structure(sample_data,dataset_name):
 d = dataset(dataset_name).fromNewFile(open(sample_data))
 score2,g,subpars = d.learn(score=score,data_factor=1.0)
 d.write_bif(g,dataset_name+".bif")
 d.write_cpd(g,file(dataset_name+"_cpd.txt","w"))
 return score2,g,subpars

We'll now attempt to learn the structure from the sample data of the job interview
network, as shown in the following code:

s,g,sp=learn_structure("job_interview_samples.txt","job_interview")
g

The graph information is as follows:

 Admission(Admission) => Grades(-),

 Experience(Experience) => Grades(+), Interview(+),

 Grades(Grades) => Admission(-), Experience(+), Interview(+),

 Interview(Interview) => Experience(+), Grades(+), Offer(+),

 Offer(Offer) => Interview(+),

The output of the graph is a list of edges, with the parent on the left and the
children on the right. The plus/minus signs indicate positive/negative
correlations between nodes.

Although the code terminates quickly, it doesn't find the correct edges, with the
exception of the edges between Interview-Offer and Grades-Admissions. The
BNFinder tool does give the opportunity to add our intuitions/domain knowledge
to the structure finding process by using the two methods: we can either define the
known list of parents for a given vertex or specify a regulator (a technical term from
the BNFinder tool's roots in biological network reconstruction), which will constrain
the network to allow only listed nodes as root nodes or potential parents of all vertices.

Chapter 4

[65]

We could add the regulator to the preamble section of the sample data file, which
is saved in job_interview_samples_preamble1.txt. The following commands
should work if you have the head command in your system shell.

The first line of the preamble section suggests that Experience and Grades are at
the root of the network and have no parents, as shown in the following code:

!head -1 job_interview_samples_preamble1.txt

#regulators Experience Grades

s,g,sp=learn_structure("job_interview_samples_preamble1.txt","job_
interview")
g

The graph information is as follows:

 Admission(Admission) =>

 Experience(Experience) => Interview(+), Offer(+),

 Grades(Grades) => Admission(-), Interview(+), Offer(+),

 Interview(Interview) =>

 Offer(Offer) =>

This time we see other kinds of errors, where the edge between Interview and
Offer is gone. We add the following line to the preamble section (starting with
the parents macro). This specifies that the parents for the Interview vertex are
Experience and Grades, as shown in the following output:

!head -2 job_interview_samples_preamble2.txt

#regulators Experience Grades

#parents Interview Experience Grades

s,g,sp=learn_structure("job_interview_samples_preamble2.txt","job_
interview")
g

The graph information is as follows:

 Admission(Admission) =>

 Experience(Experience) => Interview(+), Offer(+),

 Grades(Grades) => Admission(-), Interview(+), Offer(+),

 Interview(Interview) =>

 Offer(Offer) =>

Structure Learning

[66]

The edges obtained are missing an edge for Interview-Offer.

We can add three constraints, specifying the parents of Experience and Offer as
well as the regulators. The code is as follows:

!head -3 job_interview_samples_preamble3.txt

#regulators Experience Grades

#parents Interview Experience Grades

#parents Offer Interview

s,g,sp=learn_structure("job_interview_samples_preamble3.txt","job_
interview")
#save the file to open in cytoscape
net_str=g.to_SIF()
f=open("job_interview_sif.txt","w")
f.write(net_str)
f.close()
g

The graph information is as follows:

 Admission(Admission) =>

 Experience(Experience) => Interview(+),

 Grades(Grades) => Admission(-), Interview(+),

 Interview(Interview) => Offer(+),

 Offer(Offer) =>

After specifying the preceding elements in the preamble section, we arrive at the
correct network.

We can view the created network using the Cytoscape tool, which also allows us to
export the nodes and edges found. The viewing and saving of the file in Cytoscape
is done offline, and it is presented here. Cytoscape reads the .sif file created (in the
preceding snippet) and can export a .png image, as shown in the following code:

Image("job_net.png")

Experience Grades

Interview Admission

Offer

Chapter 4

[67]

We can apply the BNFinder tool's score-based approach to larger datasets too.
It is more efficient than the constraint-based approach in libpgm, but it needs
handholding (by adding known edges) to prevent acyclicity and to complete quicker.

In the next snippet, we will attempt to learn the structure of a real-world network.
This dataset consists of measurements of the states of a protein signaling network
under different perturbations. While some of the signaling relationships are known
prior to applying the structure learning algorithm, the learned structure is used to
elucidate the traditionally reported relationships, as well as to infer novel network
causalities, in the form of the Bayesian network.

The following example is taken from the BNFinder project documentation:

s,g,sp=learn_structure("sachs.inp","sachs")
net_str=g.to_SIF()
f=open("sachs_cpd.sif","w")
f.write(net_str)
f.close()

The following is the image generated by Cytoscape for the network. This network
extracts 11 correct edges out of the 17 edges in the true dataset.

Image(filename='sachs_network.png')

plcg

praf

pmek

p44/42

pakts473

PIP2

PKC

PKA

P38pjnk

Structure Learning

[68]

We can conclude that it is not realistic to learn the perfect network structure from
a dataset derived from a real-world network, especially if the number of random
variables is greater than a small number. The structure learning algorithm is often
employed by first incorporating the domain knowledge (the known edges between
nodes) and then using the data to either empirically validate the plausibility of these
edges or learn about new edges unknown to the domain experts.

Summary of score-based learning
From a computational perspective, the optimization perspective that the score-
based approaches use are NP-hard, as compared to the constraint-based approaches
that have low-polynomial time complexity. The other approaches gaining ground
to avoid the NP hardness complexity are the heuristic search algorithms (such as
greedy hill climbing, tabu search, and simulated annealing) to perform a local search
of graph structures. These approaches use similar scoring functions to evaluate the
structure's fit to data, and their efficiency is derived from the reduction of the space
of graph structures to search in.

Since we use often use the learned structure to run inference queries, we must
recall that inference in Bayesian networks is NP-hard. Even approximate inference
is NP-hard. Therefore, we strive to learn graph structures that will allow us to get
quick inference. The PGM community has therefore gravitated to learning specific
classes of structure (such as trees and forests) for which both structure learning and
inference is a bit more manageable.

Trees have been preferred due to their desirable features. Their structure can be
learned using optimization approaches even in high dimensions, and the number of
parameters can be kept low.

Summary
In this chapter, we had a first look at learning the structure of a network from
data. We looked at two approaches, one based on constraints and another based
on scoring functions. Also, we ran some Python samples to see these algorithms
in action. We learned that to find the best structure, we have to search over an
exponentially large number of structures, and therefore trees and forests are
preferred structures over general graphs.

In the next chapter, we will learn about parameter learning and how to define the
parameters for graph structures that we already know.

Parameter Learning
In this chapter, we will learn about the methods to estimate the parameters of a PGM.
We start with toy examples such as estimating the bias in a coin flipping experiment.

Our journey, so far, on the PGM trail can be compared to the task of a sales person
(let's call him Jake) trying to sell a software package to a large scale company. He
may attempt to identify the different people involved, such as the end users of
the software, managers, and the procurement department, among others. This is
akin to finding random variables (including latent or hidden random variables)
in a graphical model. Jake will try to make connections with people who could
be interested or by identifying, for example, who influences whom, who are the
decision makers, and what is the organizational hierarchy. This is similar to making
connections between random variables in a graphical model, something we explored
in the previous chapter.

Also important to Jake is the degree of influence between people, considering
some people exert a greater degree of influence than others. He finds out that the
purchasing decision is made by Bob, and that Alice and Charlie have a personal
connection with Bob, but Bob trusts Alice's opinion far more than Charlie's (in other
words, Alice's degree of influence on Bob is greater than that of Charlie). Thus, Jake
has a higher chance of a sale if he provides Alice with a demo of the software he is
selling, as opposed to Charlie.

This task of determining the degree of influence between the connections is called
parameter learning, which we will discuss later in the chapter. Parameter learning is
required for both directed (Bayesian) and undirected (Markov) networks.

Parameter Learning

[70]

The parameter learning landscape we will explore consists of two broad areas. The
first is called maximum likelihood estimates (MLEs). Despite the complicated
sounding name, MLEs are often easy to calculate by taking counts of event occurrences
(depending on the type of distribution). The second approach uses Bayesian statistics.
The choice of approach is debatable (and many references can be found online for
Bayesian versus Frequentist) and each approach has its pros and cons.

We start with a toy example. We toss a thumbtack a number of times to learn the
probability of it landing on its head using the Bayesian and MLE approaches. The
following image shows a thumbtack:

The tosses of the thumbtack can be modeled using the Bernoulli distribution, which
is a probability distribution that takes the values of 1 (heads) with probability θ and
0 (tails) with probability 1 θ− , where θ is the bias of the thumbtack.

If we toss the thumbtack 100 times and record the results, we get a sequence of
100 events similar to {H,H,T,H,H….}. This sequence of results is referred to as
independent and identically distributed (i.i.d.) samples that are drawn from the
same distribution and independent of each other.

The Bayesian network for the thumbtack flips is seen in the following diagram. (It is
similar to the Naive Bayesian network in Chapter 2, Directed Graphical Models).

0

X[1] X[2] X[k]

Chapter 5

[71]

We expect that, with a sufficiently large number of flips, we get close to the true
estimate of the bias. Let's consider the case of the following results: {H, T, H, T}. The
probability of the first heads is theta, ()P H θ= , and that of the second tails is (|)P T H .
Since the tosses are independent, ()() 1P T θ= − .

Therefore, the probability of achieving the sequence {H, T, H, T}, which contains two
heads and two tails, is ()22 1θ θ− . We can generalize further and state that a sequence
containing heads (h) and tails (t) will have a probability equal to ()1 thθ θ− .

The likelihood function
In probability, we start with a known parameter and predict the data. The concept
of likelihood is starting with the data and predicting the parameter. The maximum
likelihood is the value of the parameter that maximizes the possibility of the data, or
in other words, maximizes the value of the likelihood function.

The value of the maximum likelihood in the case of the Bernoulli distribution is
as follows:

ˆ number of heads
number of heads number of tails

θ =
+

We see that the ordering of the sequence has no effect, and all we need are the counts
of the number of heads and tails.

There is one shortcoming to the MLE approach: the parameter estimate does not
indicate our confidence in the parameter. The value for theta can be 0.7, regardless
of the number of flips (7 heads from 10 flips or 7000 heads from 10000 flips). It is
clear that we have more confidence when the result is obtained from 10000 flips as
opposed to 10; however, MLE does not give us that picture.

The number of heads and tails from the thumbtack (Bernoulli) experiment is called
sufficient statistics. This is because to get the maximum likelihood estimate, we
only need the number (of heads and tails) and not the sequence. Different types of
distributions require different sufficient statistics. For example, for a multinomial
distribution (such as throwing a six-sided dice), sufficient statistics are the count of
times the result is one of these values: {1, 2, 3, 4, 5, 6}.

Parameter Learning

[72]

Parameter learning example using MLE
In the Chap5_thumbtack_mle.ipynb IPython Notebook, we will examine the
parameters of a thumbtack using maximum likelihood estimation.

We first import the bernoulli distribution. Working backwards, we set the bias of
the thumbtack (by choosing a value for the parameter θ) and then flip the thumbtack
a number of times (by sampling random values), as shown in the following code:

from scipy.stats import bernoulli
import numpy as np
import matplotlib.pyplot as plt
import matplotlib

param_theta=0.3
num_flips=100

To generate the flips of the thumbtack, we simply call the rvs function (random
variates) on the bernoulli object. To generate 10 flips, we run the following code:

bernoulli.rvs(0.3,size=10)

The output of the preceding code is as follows:

array([0, 1, 0, 0, 1, 1, 1, 1, 1, 0])

The sufficient statistics required to estimate the parameters are simply the counts
of the heads and tails. Let's write a function that generates some flips, counts the

number of heads, and gives us an estimate of the parameter , by dividing the
number of heads by the total number of flips.

The following function returns a tuple. The first is the cumulative estimate and the
second is the final estimate.

def estimate_param(param, num_flips):
 res=bernoulli.rvs(param,size=num_flips)

 r_est=[np.sum(res[:i])/float(i) for i in range(1,len(res)+1)]

 final_estimate=ones/float(num_flips)

 return r_est,final_estimate

print estimate_param(param_theta,num_flips=10)

Chapter 5

[73]

The output of the preceding code is as follows:

([0.0, 0.0, 0.0, 0.0, 0.2, 0.16, 0.14, 0.125, 0.11, 0.1], 0.1)

The actual value you see when this is executed can be quite different due to the
random nature of the flipping process. The following code determines the bias for
an ever increasing number of samples. The generated plot shows that as the number
of samples increase, the estimate is closer to the true value (0.3), as described by the
horizontal line. Each of the individual subplots shows that the estimate improves as
the number of samples increases.

x=[10,100,1000]

colors = matplotlib.rcParams['axes.color_cycle']

f, axarr = plt.subplots(len(x), 1)
f.tight_layout()
plt.subplots_adjust(hspace = 1)

for i, samples in enumerate(x):
 est,res=estimate_param(param_theta,samples)
 ax1 = plt.subplot(len(x),1,i+1)
 ax1.plot(range(samples),est , label=samples, alpha=0.4, lw=3)
 msg="number of samples ",samples

 ax1.set_title(msg)
 ax1.set_xlabel("x")

 ax1.set_ylim([0,0.8])
 ax1.axhline(y=res, xmin=0, xmax=1,linewidth=1, color='r')
 ax1.axhline(y=param_theta, xmin=0, xmax=1,linewidth=1, color='b')

plt.show()

Parameter Learning

[74]

The output of the preceding code is as follows:

MLE for Bayesian networks
Now that we have seen how to estimate using MLE, we will try to apply the same in
a Bayesian network. We have seen how the structure of the Bayesian network allows
us to decompose a large joint distribution into a smaller set of CPDs, and the same
decomposability comes to our rescue during parameter estimation.

Let's take the example of a small Bayesian network with two binary random
variables, X and Y, which are connected thus X Y→ . This network has two CPDs that
are parameterized by xθ (for X0 and X1) and |y xθ (for the four entries in the CPD for Y
given X). The dataset we are provided with is a set of instances of the form ,a bX Y< >.

Our goal (in MLE) is to find the (set of) parameters θ that maximize the likelihood
of the data.

It turns out that the likelihood function (:)L Dθ (that is, the likelihood of parameter
θ given D) decomposes into a set of two terms, one for each random variable X and
Y. Each term is called the local likelihood function, which measures how it can be
predicted given its parents.

Chapter 5

[75]

For the random variable X, similar to what we have seen from the earlier section, the
values of parameters are as follows:

0
0

0 1
x

M x

M x M x
θ

 =
 + and

1
1

0 1
x

M x

M x M x
θ

 =
 + .

Where M is the sufficient statistics, for example, 0M x is the number of times we
have seen 0x .

Similarly, the values of the four parameters of |y xθ are acquired by taking similar
counts. The specific value of 1 0|y xθ is as follows:

1 0
0 1 0 1

|
0 1 0 0 0

, ,

, ,
y x

M x y M x y

M x y M x y M x
θ

 = =
 +

Here 0 1,M x y is the number of times we see 0 1,x y in the dataset and 0M x is the
number of times we see 0x , regardless of the value of Y.

For larger networks, the MLE parameter estimates are obtained by independently
estimating the parameters for each CPD using the local likelihood function. These
can then be combined to form the MLE solution for the whole network.

For each random variable X with parents U, the MLE parameter is []
[]

| ,x u M x u
M u

θ = , where
[] [],

x
M u M u x=∑ .

Bayesian parameter learning example
using MLE
In the job_interview_libpgm.ipynb IPython Notebook, we will use the libpgm
implementation of maximum likelihood estimates to learn the parameters of the
CPDs in the job interview network.

Here is the code from libpgm that loads the CPDs, as shown before:

from libpgm.graphskeleton import GraphSkeleton
from libpgm.nodedata import NodeData
from libpgm.discretebayesiannetwork import DiscreteBayesianNetwork
from libpgm.tablecpdfactor import TableCPDFactor
from libpgm.pgmlearner import PGMLearner
import pandas as pd

Parameter Learning

[76]

nd = NodeData()
skel = GraphSkeleton()
jsonpath="job_interview.txt"
nd.load(jsonpath)
skel.load(jsonpath)
skel.toporder()

We can create the Bayesian network and get random samples using the
following code:

bn = DiscreteBayesianNetwork(skel, nd)
samples=bn.randomsample(2000)

In the following code, we instantiate the PGMLearner class. The discrete_mle_
estimateparams method already knows the structure of the network. As discussed
in the earlier section, the estimates for each CPD only needs information from the
parents, and this decomposition makes it possible to learn the parameters of each CPD:

learner = PGMLearner()
result = learner.discrete_mle_estimateparams(skel, samples)

The following are the results for the CPD from the samples for the Interview node.
The leftmost column consisting of the values 0 and 1 are those from the parent's
assignments ([0,0]) indicates Experience = 0 and Grades = 0), and the columns with
headings 0, 1, and 2 indicate probabilities for the Interview node taking the values
of 0, 1, and 2.

pd.DataFrame(result.Vdata['Interview']['cprob']).transpose()

The output of the preceding code is as follows:

 0 1 2

['0', '0'] 0.809582 0.165848 0.024570

['0', '1'] 0.321678 0.396853 0.281469

['1', '0'] 0.323204 0.591160 0.085635

['1', '1'] 0.115079 0.182540 0.702381

The following result is the CPD parameters from the original network. Some values
in the result are a reasonably close approximation to each other, while other values
have errors in the range of 20 percent.

pd.DataFrame(bn.Vdata['Interview']['cprob']).transpose()

Chapter 5

[77]

The output of the preceding code is as follows:

 0 1 2

['0', '0'] 0.8 0.18 0.02

['0', '1'] 0.3 0.60 0.10

['1', '0'] 0.3 0.40 0.30

['1', '1'] 0.1 0.20 0.70

Data fragmentation
For a network with a large number of random variables, with each random variable
taking on a large number of values, we see that the number of data instances for each
unique assignment to the parent and child variables becomes vanishingly small. In
some cases, we have no instances at all. Therefore, the parameters estimated from a
few data instances available, usually overfit the data or return the value zero where
there are no instances available.

Therefore, as the dimensionality of the parent set increases, it becomes progressively
harder to reliably estimate the parameters. This becomes a limiting factor in our
ability to learn Bayesian networks from data.

Effects of data fragmentation on
parameter estimation
In this following data_segmentation.ipynb IPython Notebook, we will see the effect
of data segmentation on parameter estimation using maximum likelihood. We have
a small network defined in small_network.txt, which has two random variables,
X Y→ , connected by an arc. The parent X takes five values and the child Y takes two.

We first load the network from the file and create a DiscreteBayesianNetwork file
as shown in the following code:

from libpgm.graphskeleton import GraphSkeleton
from libpgm.nodedata import NodeData
from libpgm.discretebayesiannetwork import DiscreteBayesianNetwork
from libpgm.pgmlearner import PGMLearner

nd = NodeData()
skel = GraphSkeleton()
jsonpath="small_network.txt"
nd.load(jsonpath)

Parameter Learning

[78]

skel.load(jsonpath)
skel.toporder()

bn = DiscreteBayesianNetwork(skel, nd)

In the following code, we will create a function that learns the parameters of the
network with data sampled from it. We print the estimated parameter value of the
assignment X = 3 and Y = 0 after drawing 50 samples. We run the same function
a few times to compare the results we get. Since sampling is random, you can get
different results when you run the following:

def learn_param(num_samp=50):
 data = bn.randomsample(num_samp)
 # instantiate learner
 learner = PGMLearner()

 # estimate parameters from data and skeleton
 result = learner.discrete_mle_estimateparams(skel, data)
 numer=len([1 for m in data if m["X"]=='3' and m["Y"]=='0'])
 denom=len([1 for m in data if m["X"]=='3'])

 print "numerator:",numer," denominator:",denom," result=",numer/
float(denom)

[learn_param() for _ in range(5)]

The output of the preceding code is as follows:

numerator: 1 denominator: 6 result= 0.166666666667

numerator: 2 denominator: 6 result= 0.333333333333

numerator: 2 denominator: 10 result= 0.2

numerator: 1 denominator: 4 result= 0.25

numerator: 2 denominator: 12 result= 0.166666666667

We see that the result varies a lot because the number of interesting samples (X == 3
and Y == 0) is low in the sampled dataset. The actual value that we've set in the
file is 0.2.

nd.Vdata["Y"]["cprob"]["['3']"][0]

The following is the output of the preceding code:

0.2

Chapter 5

[79]

It is only when we increase the number of samples that we get the values that are
close, as shown in the following code:

[learn_param(5000) for _ in range(3)]

The following is the output of the preceding code:

numerator: 160 denominator: 720 result= 0.222222222222

numerator: 156 denominator: 763 result= 0.204456094364

numerator: 156 denominator: 757 result= 0.20607661823

Although it is a small network with a single parent, the parent takes on an increasing
number of discrete values and we get poor maximum likelihood estimates. Data
fragmentation can be avoided by modeling networks as follows:

• Restricting the number of parents for a given node
• Restricting the number of discrete values for the parent nodes,

wherever possible

Bayesian parameter estimation
In the MLE example, the data alone was used to estimate the parameter under
observation. However, in many situations, we have a fairly good idea about the
parameter being observed. If we were asked about the fairness of a coin, we are often
fairly certain that the value of the parameter is 0.5, that is, heads and tails are equally
likely. Bayesian statistics allows us to take this prior intuition into account and find a
posterior that is informed by both the prior as well as the data. Even though we think
the coin is fair, if we get 30,000 heads out of 100,000 flips, we will be convinced that
the parameter is close to 0.3 and not 0.5, as surmised earlier.

We start the analysis by reversing our assumptions that each flip is independent and
θ is a fixed quantity. We assume that θ is a random variable and each successive
flip tells us more about the value of θ . We assume that the flips are conditionally
independent given θ .

The joint distribution of the tosses and θ is as follows:

[] []() () [] []()1 , , 1 , |P x x k P P x x kθ θ θ=K K

Assuming conditional independence between tosses, ensuing is the right-hand term:
() []()

1

|
k

i
P P x iθ θ

=

= ∏ () ()1 THP θ θ θ= −

Parameter Learning

[80]

Here H and T are the number of heads and tails, respectively.

We can use this joint distribution to specify the posterior over θ , as shown in
the formula:

[] []() () [] []()
[] []()

1 , |
| 1 ,

1 ,
P P x x k

P x x k
P x x k

θ θ
θ= =

K
K

K

The first two terms in the numerator are the prior and likelihood, while the
denominator is a normalizing constant that makes the right-hand side a
proper density function.

The Bayesian methods, of course, allow us to use informative priors (unlike
say, the uniform prior) in cases where we have a strong intuition about the
probability distribution.

An example of Bayesian methods for
parameter learning
In the thumbtack_Bayesian.ipynb IPython Notebook, we will use the Bayesian
methods to determine the bias of the thumbtack, obtained from parameter θ .

We will use the excellent PyMC library for the same. Please install PyMC using
easy_install PyMC.

We shall avoid going into the finer details of PyMC at the moment. Excellent
documentation for PyMC can be found both in the PyMC docs as well as in the
book, Probabilistic Programming and Bayesian Methods for Hackers, Cam Davidson-
Pilon, available at http://camdavidsonpilon.github.io/Probabilistic-
Programming-and-Bayesian-Methods-for-Hackers/.

For estimating theta, we will first generate 30 samples from the Bernoulli
distribution, where the controlling parameter takes the value of 0.3 (which
corresponds to roughly 30 percent of the generated values of 1, and the rest being 0).

We attempt to find the parameters of the posterior distribution, and learned that the
posterior depends on the prior as well as the data. There are many choices of prior
available to us. In this case, we will use the uniform prior. Since we have little idea
about the bias of the thumbtack, we believe it can lie anywhere between 0 and 1.

The PyMC model contains two variables. The first is a uniform prior, which
represents our belief that the value of the parameter can be anywhere between 0 and
1. The second is the Bernoulli variable, to which we provide data.

Chapter 5

[81]

The two variables are linked in a parent-child relationship; the uniform prior is the
designated parent of the Bernoulli variable.

We use the following types of PyMC variables:

• Stochastic: This is the uni_prior variable that can take different values
based on the parameter theta

• Deterministic: This is the bern variable, whose values are decided by
its parents

Finally, all the variables in the model are wrapped in a model object.

For all the variables whose values are not true, PyMC's simulations will marginally
affect the variable's value during the simulation. The value (of the uni_prior
variable in our case) will start to approximate its posterior values, as shown in the
following code:

from pymc import *
from scipy.stats import bernoulli
import matplotlib.pyplot as plt
import pymc.Matplot as plott

def create_model(data):
 #create a uniform prior, the lower and upper limits of which are 0
and 1
 uni_prior = Uniform('uni_prior', lower=0,upper=1.0)
 bern = Bernoulli('bern',p=uni_prior, value=data,observed=True)
 model=Model([uni_prior,bern])
 return model

Samples drawn from the prior distribution show that the prior is uniformly
distributed between 0 and 1 on the x axis, as shown in the following code:

uni_prior = Uniform('uni_prior', lower=0,upper=1.0)

samples = [uni_prior.random() for i in range(20000)]
plt.hist(samples, bins=100, normed=True)
plt.title("Prior distribution for $\ theta$")
plt.show()

Parameter Learning

[82]

The output of the preceding code is as follows:

In the following snippet, we use the sampling method Markov Chain Monte Carlo
(MCMC). MCMC is a method used to draw samples from the posterior distribution.
We draw 5000 samples and a histogram of the samples (called traces in MCMC
parlance). In Bayesian statistics, the parameter theta is represented as a random
variable and not a single value.

sample_size=30

def get_traces(sample_size):
 data=bernoulli.rvs(0.3,size=sample_size)
 model=create_model(data)
 model.seed()
 mc1 = MCMC(model)
 mc1.sample(iter=5000,burn=1000)
 return mc1,mc1.trace('uni_prior')[:]

mc1,traces=get_traces(sample_size)
plott.histogram(traces,"uni_prior")

Chapter 5

[83]

The output of the preceding code is as follows:

We plot the posterior distribution of the parameter theta. Note that the distribution
has quite a bit of variance, and the peak of the distribution (indicated by a black
vertical line) does not correspond to 0.3, which is the true value of the parameter
theta. The peak of the distribution hill is called a point estimate in Bayesian parlance,
which is analogous to the best estimate if we want to represent the parameter theta
as a single value.

In the following code snippet, we plot the posterior distribution for an increasing
number of samples. We used only 30 samples for the initial model. Can increasing
the number of samples help improve the estimate for the parameter?

num_samples=[20,50,100,500,5000]
for i in num_samples:
 m,traces=get_traces(i)
 plott.histogram(traces,"num samples = "+str(i),datarange=(0,0.6))

Parameter Learning

[84]

The output of the preceding code is as follows:

We see that an increasing number of samples makes the distribution hill sharper,
which indicates its growing confidence in its estimate of the parameter theta.

We use PyMC's graphing capabilities to create an image of the hierarchical model.
We also need to install a few python libraries such as pydot and pygraphviz (and
install base graphviz as well).

We create the dot format graph representation using this simple one-line code:

gdot=pymc.graph.dag(mc1)

Chapter 5

[85]

Viewing the file is also quite simple. We just write the dot object to a .png file and
view it as shown in the following code:

from IPython.display import Image
gdot.write_png('thumbtack_graph.png')
Image(filename='thumbtack_graph.png')

The output of the preceding code is as follows:

uni_prior

p

bern

Bayesian estimation for the
Bayesian network
Similar to the Bayesian case for the estimation of a single parameter, using the
Bayesian framework requires us to specify the joint distribution for all the data
instances and unknown parameters.

For the parameters we are trying to estimate, if we decide to have the parameters
priori independent (which may not be applicable in all cases), then calculating
the posterior becomes easier (which is analogous to likelihood decomposition
in MLE). If we have a network comprising two nodes (X Y→), then we can
calculate the posterior of independently of the posterior over |y xθ , and the same
decomposability can be generalized to larger networks.

Example of Bayesian estimation
In the learn_cpd_Bayesian.ipynb IPython Notebook, we'll use PyMC to estimate
the parameters of one CPD from the job interview network, as shown in the
following code:

from libpgm.graphskeleton import GraphSkeleton
from libpgm.nodedata import NodeData
from libpgm.discretebayesiannetwork import DiscreteBayesianNetwork
import pandas as pd

from pymc import *

Parameter Learning

[86]

import matplotlib.pyplot as plt
from pymc.Matplot import plot

nd = NodeData()
skel = GraphSkeleton()
jsonpath="job_interview.txt"
nd.load(jsonpath)
skel.load(jsonpath)
skel.toporder()
bn = DiscreteBayesianNetwork(skel, nd)

The CPD that we are trying to learn is the Interview CPD, as shown in the
following code:

pd.DataFrame(bn.Vdata['Interview']['cprob']).transpose()

The output for the preceding code is as follows:

 0 1 2
['0', '0'] 0.8 0.18 0.02
['0', '1'] 0.3 0.60 0.10
['1', '0'] 0.3 0.40 0.30
['1', '1'] 0.1 0.20 0.70

The CPD has 12 unique probabilities. Each row in the preceding output corresponds
to one particular assignment to its parents (Experience and Grades) and can be
represented by a multinomial distribution. In this particular case, Interview takes
three values, and therefore the multinomial representing each row can be likened to
a three-sided dice.

Since there are four unique assignments of the parent variables, we'll need to learn
the parameters for four Multinomial variables.

Finally, we run MCMC sampling on this model and observe the posterior as follows:

def create_model(data,num_draws):
 partial_dirich = pymc.Dirichlet(name="partial_dirich",theta=[1.0,
1.0, 1.0])
 full_dirich=pymc.CompletedDirichlet(name="full_dirich",D=partial_
dirich)
 multi = pymc.Multinomial(
 name="multi",
 value=data,
 n=num_draws,
 p=full_dirich,
 observed=True)

Chapter 5

[87]

 model=Model([partial_dirich,full_dirich,multi])
 return model

def run_mcmc(model,**kwargs):
 mcmc = pymc.MCMC(model)
 mcmc.sample(**kwargs)
 return mcmc

The preceding snippet contains a PyMC model, consisting of the following three
variables in a tree:

• Dirichlet: The prior is represented by this distribution, which allows us an
initial prior comprising a set of three probability values that sum up to 1. In
PyMC, the Dirichlet stochastic variable only stores k - 1 probabilities (for a
multinomial with k outcomes) because the kth value can be calculated since
the probabilities sum to 1.

• CompletedDirichlet: For simplicity, we define it as a child of the
Dirichlet variable, and this makes it easier to represent all the k values (k =
3 in this case).

• Multinomial: This is the last variable and is a child of the
CompletedDirichlet object. We will sample data from the job interview
network and pass it to the Multinomial variable.

Note that in the thumbtack estimation problem, we learned the estimate of just one
Bernoulli distribution. In this case, we have to learn the parameter estimates of four
separate multinomial distributions.

Therefore, we sample the job interview network four times, once with each
assignment to its parents. We'll start with the first parent assignment: { Experience = 0,
Grades = 0}, which helps us learn the parameters of the first row of the CPD.

The samples that can be consumed by PyMC need a specific format, consisting of the
results of a series of experiments.

Let's first understand the term experiment. In the single run of an experiment,
sampling from the network is done n times (similar to n throws of the three-sided
dice). This will give us a sequence of 0s, 1s, and 2s of length n. We prune this
sequence to get the frequencies of occurrence of 0, 1, and 2 (performed in the get_
counts method), as shown in the following code:

def get_counts(vals):
 b = {0:0,1:0,2:0}
 for item in vals:
 b[item] = b.get(item, 0) + 1

Parameter Learning

[88]

 return np.array(b.values())
get_counts([0,1,2,0,1])

The output of the preceding code is as follows:

array([2, 2, 1])

The resulting array tells us that 0 and 1 appeared twice and 2 appeared once.

We perform several such experiments (10 in this specific case), collate the
frequencies, and pass this as data to the Multinomial variable in our PyMC model.

We then run MCMC sampling on the PyMC model, and as during a random walk,
the value in the full_dirich variable in the PyMC model starts to approximate the
true multinomial distribution, as shown in the following code:

def get_relevant_samples(experiments,evidence,num_samples=10):
 ''' for n experiments, sample and add the frequencies obtained.'''
 res=[]
 for i in xrange(experiments):
 vals=[float(i['Interview']) for i in bn.randomsample(num_
samples,evidence)]
 res.append(get_counts(vals))
 return res

def plot_traces(traces):
 colors = ["#348ABD", "#A60628","#884732"]

 plt.plot(np.arange(len(traces)), traces[:,:, 0], c=colors[0])
 plt.plot(np.arange(len(traces)), traces[:,:, 1], c=colors[1])
 plt.plot(np.arange(len(traces)), traces[:,:, 2], c=colors[2])
 plt.title("traces of posterior ")
 plt.show()

def estimate_parameters(evidence,**kwargs):
 ''' run a few experiments, get the data, and estimate the
parameter '''
 experiments=10
 samples=get_relevant_samples(experiments,evidence,num_samples=10)
 model=create_model(samples,experiments)
 mc=run_mcmc(model,**kwargs)

 traces=mc.trace('full_dirich')[:]
 return [np.mean(traces[:, :,0]),np.mean(traces[:,:, 1]),np.
mean(traces[:,:, 2])],traces

Chapter 5

[89]

We first determine the parameters for the parent assignment, {Experience = 0, Grades
= 0}, as shown in the following code, and plot the traces. We see three separate plot
lines. These are the values for the three probabilities in the multinomial distribution,
which should sum up to 1.

means,traces=estimate_parameters(dict(Grades='0',Experience='0'),it
er=5000)
plot_traces(traces)

The output of the preceding code is as follows:

In the preceding plot, we take the first 5000 traces. We see that the posterior moves
around initially and then settles down a bit. If we add a burn parameter to PyMC
prior to the sampling, the algorithm discards the first n samples specified by the burn
value and collects the next traces. Since the MCMC algorithm takes time doing a
random walk starting from the prior, specifying a burn value allows the algorithm to
discard traces that are ostensibly not from the true posterior distribution, as shown
in the following code:

means,traces=estimate_parameters(dict(Grades='0',Experience='0'),iter=
20000,burn=1000)
plot_traces(traces)

Parameter Learning

[90]

The output of the preceding code is as follows:

We see that the individual probabilities have converged. We first determined
the parameters for the parent assignment {Experience = 0, Grades = 0}. To learn
the values for all the joint assignments to the parent variable, we run the
following snippet:

all_parent_assignments=[['0','0'],['0','1'],['1','0'],['1','1']]
res=[]
for i,j in all_parent_assignments:
 evidence=dict(Grades=i,Experience=j)
 means,traces=estimate_parameters(evidence,iter=50000,burn=10000)
 res.append([[i,j]]+means)

pd.DataFrame(res,columns=['parent_assignment',0,1,2])

The output of the preceding code is as follows:

 par_assign 0 1 2

0 [0, 0] 0.835853 0.144636 0.019511

1 [0, 1] 0.303323 0.464297 0.232380

2 [1, 0] 0.291015 0.563842 0.145143

3 [1, 1] 0.126254 0.223568 0.650178

Chapter 5

[91]

We compare the preceding posterior means with the true probabilities specified in
the following job interview network. Some of the learned values are very close to the
true values, while others differ from the ground truth by as much as 16 percent.

pd.DataFrame(bn.Vdata['Interview']['cprob']).transpose()

The output of the preceding code is as follows:

par_assign 0 1 2

['0', '0'] 0.8 0.18 0.02

['0', '1'] 0.3 0.60 0.10

['1', '0'] 0.3 0.40 0.30

['1', '1'] 0.1 0.20 0.70

Summary
In this chapter, we have learned about the parameter estimation problem. We first
estimated the parameters of a thumbtack using two approaches, MLE and Bayesian.
We then extended those foundations to determine the parameters of a Bayesian
network using MLE.

Having walked through the basics of the structure and parameter learning, in the
next set of chapters, we will use networks to answer our queries using various types
of inference approaches.

Exact Inference Using
Graphical Models

So far we have learned about the methods to build graphical models. In this chapter,
we shall employ over fully specified graphical models to various inference engines to
obtain answers to the questions.

Before we start on the inference trail, we shall learn about the complexity of the
inference problem. Using different types of inference is appropriate in certain
contexts, and we will learn which type is applicable where, and then experiment
with both approaches.

Complexity of inference
A graphical model can be used to answer both probability queries and MAP queries.
The most straightforward way to use this model is to generate the joint distribution
and sum out all the variables, except the ones we are interested in. However, we need
to determine and specify the joint distribution where an exponential blowup happens.

In worst-case scenarios, we need to determine the exact inference in NP-hard. By
the word exact, we mean specifying the probability values with a certain precision
(say, five digits after the decimals). Suppose we tone down our precision
requirements (for example, only up to two digits after the decimals). Now, is the
(approximate) inference task any easier? Unfortunately not—even approximate
inference is NP-hard, that is, getting values is far better than random guessing
(50 percent or a probability of 0.5), which takes exponential time.

Exact Inference Using Graphical Models

[94]

It might seem like inference is a hopeless task, but that is only in the worst case.
In general cases, we can use exact inference to solve certain classes of real-world
problems (such as Bayesian networks that have a small number of discrete random
variables). Of course, for larger problems, we have to resort to approximate inference.

Since this book is about graphical models in Python, let's digress into the choice of
tools we can use to run inference.

Real-world issues
Since inference is a task that is NP-hard, inference engines are written in languages
that are as close to bare metal as possible; usually in C or C++. Since this is a book
about PGMs in Python, we have a few choices to make:

• Use Python implementations of inference algorithms. Complete and mature
packages for these are uncommon.

• Use inference engines that have a Python interface, such as Stan (mc-stan.
org). This choice serves a good balance between running the Python code
and a fast inference implementation.

• Use inference engines that do not have a Python interface, which is true for
majority of the inference engines out there. A fairly comprehensive list can be
found at http://en.wikipedia.org/wiki/Bayesian_network#Software.
The use of Python here is limited to creating a file that describes the model in
a format that the inference engine can consume.

In the chapters on inference, we will stick to the first two choices in the list. We will use
native Python implementations (of inference algorithms) to peek into the interiors of
the inference algorithms while running toy-sized problems, and then use an external
inference engine with Python interfaces to try out a more real-world problem.

Using the Variable Elimination algorithm
In this section, we shall learn the Variable Elimination algorithm. In the
VarElim_asia.ipynb IPython Notebook, we shall use the Asia network to
understand the details of this algorithm.

The Asia network (http://www.bnlearn.com/bnrepository/#asia) is a toy
Bayesian network used for patient diagnosis. The network tries to elicit the
possibility of lung cancer or tuberculosis based on factors such as travel to Asia,
smoking history, and X-ray results. Further details on the Asia network can be
found at http://www.norsys.com/tutorials/netica/secA/tut_A1.htm.

http://www.norsys.com/tutorials/netica/secA/tut_A1.htm

Chapter 6

[95]

The following is the diagram of the Asia network (courtesy of http://www.
bnlearn.com/bnrepository/asia/asia.png):

smokeasia

brono

lung

dyspxray

tub

either

The goal of this code snippet is to compare two approaches to inference. The first
approach is brute force, where we first list the entire joint distribution and then
enquire about our probabilities. The second approach uses Variable Elimination,
and we will study how it improves on the brute-force approach.

Suppose we wish to infer the probability that the patient has bronchitis
()P bronc True= ; henceforth, this will be written as .

Let's first understand how we arrived at the value of using the product rule,
 If we know , we can calculate

() () (), ,P bronc yes P bronc yes smoke yes P bronc yes smoke no= = = = + = = . Also, can be
calculated in a similar fashion, and then the probabilities have to be normalized.

Exact Inference Using Graphical Models

[96]

We will load the network from a file where the network definition is stored
as follows:

from libpgm.graphskeleton import GraphSkeleton
from libpgm.nodedata import NodeData
from libpgm.discretebayesiannetwork import DiscreteBayesianNetwork
from libpgm.tablecpdfactor import TableCPDFactor
import itertools
import pandas as pd
from libpgm.tablecpdfactorization import TableCPDFactorization

def loadbn(jsonpath):
 nd = NodeData()
 skel = GraphSkeleton()
 nd.load(jsonpath)
 skel.load(jsonpath)
 skel.toporder()

 bn = DiscreteBayesianNetwork(skel, nd)
 return bn

bn=loadbn("asia1.txt")

Our first attempt to compute marginal probabilities will use the joint distribution
over all variables, and then sum out the variables we don't require. To list the joint
distribution, we will multiply all the factors. The joint distribution computed from
the product of factors is listed in the following code, and its complete specification
has 255 entries:

#a method that prints the distribution as a table.
def printdist(jd,bn,normalize=False):
 x=[bn.Vdata[i]["vals"] for i in jd.scope]
 zipover=[i/sum(jd.vals) for i in jd.vals] if normalize else
jd.vals
 #creates the cartesian product
 k=[a + [b] for a,b in zip([list(i) for i in itertools.
product(*x[::-1])],zipover)]
 df=pd.DataFrame.from_records(k,columns=[i for i in reversed(jd.
scope)]+['probability'])
 return df

#instantiate TableCPDs for all the nodes and multiply them. The result
is in the factor that calls the methods.
jc=TableCPDFactor("asia",bn)
[jc.multiplyfactor(TableCPDFactor(i,bn)) for i in bn.V if i != "asia"]

Chapter 6

[97]

df=printdist(jc,bn,normalize=True)
print "values in joint distribution ",len(jc.vals)
#print the first few values in the table
df.head()

values in joint distribution 256

The output of the preceding code is as follows:

Rows dysp xray either tub lung bronc smoke asia probability

0 yes yes yes yes yes yes yes yes 0.000013

1 yes yes yes yes yes yes yes no 0.000262

2 yes yes yes yes yes yes no yes 0.000001

3 yes yes yes yes yes yes no no 0.000013

4 yes yes yes yes yes no yes yes 0.000007

The preceding table lists the first five rows out of the 255 rows in the joint distribution.

Throughout this discussion, we will also overload the notation a bit. Since all
the variables are binary, means that the evidence variable smoke
is true, unless otherwise mentioned, that is, is the same
as

Marginalizing factors that are not relevant
From the joint distribution, we can get the desired marginal probabilities by
performing the following operations. We are interested in data from the bronc
column alone. So, we first collapse the other columns (and the data in them), in an
operation called factor marginalization.

We shall use the Pandas data analysis library to manipulate the CPDs, which are
akin to tables. After loading the joint distribution into a Pandas data frame, we
will group only the columns we want and sum out the values in the probability
column, as shown in the following code:

t2=df.groupby(['bronc','smoke'],as_index=False)
t3=t2['probability'].sum()
t3

Exact Inference Using Graphical Models

[98]

The output of the preceding code is as follows:

Rows bronc smoke probability

0 no no 0.35

1 no yes 0.20

2 yes no 0.15

3 yes yes 0.30

How does this operation happen? Let's take the 0th row in the preceding table
(bronc == no, smoke == no) as an example and see how the value is obtained. The
value of 0.35 is obtained by summing up all the values of the other columns. We
will select rows of the table where all the values of bronc and smoke are no, as shown
in the following code:

df.loc[(df["smoke"] == 'no') & (df["bronc"] == 'no'), :].head()

The output of the preceding code is as follows:

 dysp xray either tub lung bronc smoke asia probability

6 yes yes yes yes yes no no yes 0.000001

7 yes yes yes yes yes no no no 0.000024

14 yes yes yes yes no no no yes 0.000119

15 yes yes yes yes no no no no 0.002353

22 yes yes yes no yes no no yes 0.000023

We will select all the rows from the preceding table and only choose the probability
column. Then, we will sum up the values, as shown in the following code:

df.loc[(df["bronc"] == 'no') & (df["smoke"] == 'no'), "probability"].
sum()

The output of the preceding code is as follows:

0.34999999999999998

We can see how the factor marginalization operation gives us a probability of 0.35
for the assignment (bronc == no, smoke ==no).

Factor reduction to filter evidence
Let's digress a bit to observe the case where the query had observed variables
such as . Then, we only need the first and the third rows from
the previous table (with columns bronc, smoke, and probability). These rows
correspond to

Chapter 6

[99]

This operation is called factor reduction, where the other rows are removed because
they do not have the specific assignment for smoke(that is, the values are not yes), as
shown in the following code:

t4=t3.loc[(t3["smoke"] == 'yes'), :]
t4

The output of the preceding code is as follows:

Rows bronc smoke probability

1 no yes 0.2

3 yes yes 0.3

This is almost the probability set that we require, except that the probabilities do not
sum up to 1. We will, therefore, normalize by dividing each probability by the sum
of all probabilities, as shown in the following code:

psum=t4['probability'].sum()
t4['probability']=t4['probability']/psum
t4

The output of the preceding code is as follows:

 bronc smoke probability

1 no yes 0.4

3 yes yes 0.6

Let's return to the original query that we had— . We've seen that the
preceding table represents the conditional probability distribution of bronc when
there is smoke. Now, we will simply sum out the value of smoke to get the value of

, as shown in the following code:

t5=t3.groupby(['bronc'],as_index=False)
t5['probability'].sum()

The output of the preceding code is as follows:

 bronc probability

0 no 0.55

1 yes 0.45

The preceding table gives the desired result of the inference query .

Exact Inference Using Graphical Models

[100]

Shortcomings of the brute-force approach
What we have discussed previously is the brute-force method to arrive at the value
of a probability query. This method is inefficient because of the following reasons:

• It does not use any of the conditional independencies that are present in the
model. Let's say we want to know the probability of and whether
nodes X and Y are conditionally independent of A and B, then there is no
point in calculating the joint distribution, which includes X and Y, and then
summing out the values.

• We already know that eliciting the probability values in the joint
distribution is not an easy task, nor is storing and manipulating the large
joint distribution. For just eight binary variables in the alarm example, the
joint distribution had 255 rows (or 28), and for larger networks, it becomes
impossible to learn, store, and manipulate the joint distribution. Even after
having the joint distribution, summing out the other values has a time
complexity of .

Using the Variable Elimination approach
We shall now look at the Variable Elimination algorithm, which is an efficient
method to calculate probabilities. The efficiency results from avoiding duplicate
operations as well as avoiding calculation of probabilities that are conditionally
independent. This algorithm can be used to calculate the marginal probabilities even
if any evidence/observed variables exist.

We will use Factors, which are similar to the tables we have seen previously. The
operations of Factor product (which is a Cartesian product between elements of two
sets), Factor Marginalization, and Factor Reductions are the calculus by means of
which we can manipulate Factors.

Each Factor has a scope. If we think of a Factor as a table, the variables in the
scope are the table's column names. The eight CPDs defined in asia.txt are the
initial factors. For example, the factor has the variables tub and asia
in its scope, and it corresponds to the CPD. Similarly, the
factor corresponds to the CPD. A CPD with multiple parents, such as

, converts to the factor, which has all the parents
as well as the child nodes in the scope of the factor.

Chapter 6

[101]

We list the factors in the asia network in the following list, along with the
corresponding CPD they were derived from. The joint distribution involving all the
variables will be the product of the factors in the list.

•

•
•
•
•

•

•
•

We will use the Variable Elimination algorithm to infer the conditional probability of
, which corresponds to a factor that has the same variables in its scope:

On scanning the preceding list of factors, we will see that there is no factor that has
 in its scope. Therefore, to create we have to use the Factor

product operation, where the variables in the scope of the resulting factor should
appear in one of the factors being multiplied.

For example, the set of factors has three variables
in its combined scope: . Therefore, the product of factors

 will give us a (), ,smoke lung broncφ factor, where the
probability values are derived by multiplying the row in the factor where the
assignments match.

As the name suggests, in Variable Elimination, we eliminate variables one at a time.
Each step consists of the following operations:

• Multiplying factors
• Marginalizing a variable (which is in the scope of all multiplied factors)
• Producing a new factor

Exact Inference Using Graphical Models

[102]

We will arrive at the (),bronc xrayφ factor in the following manner. Each row in the
following table details one step of the algorithm, that is, the Factor product, the
Eliminated variable, and the New Factor created, in pursuit of (),bronc xrayφ .

Step
No

Factor product Eliminated
variable

New Factor
created

1 () (),asia tub asiaφ φ× asia ()1 tubφ

2 () () (), ,smoke smoke lung smoke broncφ φ φ× × smoke ()2 ,lung broncφ

3 () (), , 1 ,either lung tub tubφ φ× tub ()3 ,either lungφ

4 () ()2 , 3 , ,lung bronc either lungφ φ× lung ()4 , .bronc eitherφ

5 () () ()4 , , , , ,bronc either dysp bronc either xray eitherφ φ φ× × either ()5 , ,dysp bronc xrayφ

6 ()5 , , ,dysp bronc xrayφ dysp ()6 ,xray broncφ

Out of the eight nodes in the graph, six are eliminated in each step, which leaves us
with the factor we desire, ()6 ,xray broncφ .

We will use the libpgm library to walk through each step of the algorithm. The
libpgm library gives us the multiplyfactor and sumout methods to create a new
factor at each step. We have covered the first step in the following code:

asia=TableCPDFactor("asia",bn)
phi_1=TableCPDFactor("tub",bn)

phi_1.multiplyfactor(asia)
printdist(phi_1,bn)

The output of the preceding code is as follows:

Rows asia tub probability

0 yes yes 0.0005

1 yes no 0.0095

2 no yes 0.0099

3 no no 0.9801

Since the starting factors are simply CPDs, when we create
TableCPDFactor("tub",bn), it is the factor that involves both tub and asia, which
is calculated from the CPD for |tub asia. We will now eliminate asia by using the
following code:

phi_1.sumout("asia")
printdist(phi_1,bn)

Chapter 6

[103]

The output of the preceding code is as follows:

 tub probability

0 yes 0.0104

1 no 0.9896

In the second step, we will multiply factors () () (), ,smoke smoke lung smoke broncφ φ φ× × , and
eliminate smoke to produce ()2 ,lung broncφ , as shown in the following code:

phi_2=TableCPDFactor("smoke",bn)
[phi_2.multiplyfactor(TableCPDFactor(i,bn)) for i in ["lung","bronc"]]
phi_2.sumout("smoke")
printdist(phi_2,bn)

The output of the preceding code is as follows:

 bronc lung probability

0 yes yes 0.0315

1 yes no 0.4185

2 no yes 0.0235

3 no no 0.5265

In the third step, multiply factors () (), , 1 ,either lung tub tubφ φ× and eliminate tub to
produce ()3 ,either lungφ , as shown in the following code:

phi_3=TableCPDFactor("either",bn)
phi_3.multiplyfactor(phi_1)
phi_3.sumout("tub")
printdist(phi_3,bn)

The output of the preceding code is as follows:

Rows lung either probability

0 yes yes 1.0000

1 yes no 0.0000

2 no yes 0.0104

3 no no 0.9896

In the fourth step, multiply factors () ()2 , 3 , ,lung bronc either lungφ φ× to eliminate lung and
produce the ()4 , .bronc eitherφ factor, as shown in the following code ()4 , .bronc eitherφ We
are not printing the CPD since we've seen what it looks like.

phi_4=phi_3
phi_4.multiplyfactor(phi_2)
phi_4.sumout("lung")
print "variables in scope ",phi_4.scope

Exact Inference Using Graphical Models

[104]

The output of the preceding code is as follows:

variables in scope ['either', 'bronc']

In the fifth step, multiply factors () () ()4 , , , , ,bronc either dysp bronc either xray eitherφ φ φ× ×
to eliminate either and produce the ()5 , ,dysp bronc xrayφ factor, as shown in the
following code:

phi_5=TableCPDFactor("xray",bn)
phi_5.multiplyfactor(phi_4)
phi_5.multiplyfactor(TableCPDFactor("dysp",bn))
phi_5.sumout("either")
print "variables in scope ",phi_5.scope

The output of the preceding code is as follows:

variables in scope ['xray', 'bronc', 'dysp']

In the final step, from the ()5 , ,dysp bronc xrayφ factor, we will eliminate dysp to
produce the ()6 ,xray broncφ factor, as shown in the following code:

phi_6=phi_5
phi_6.sumout("dysp")
printdist(phi_6,bn)

The output of the preceding code is as follows:

Rows bronc xray probability

0 yes yes 0.055843

1 yes no 0.394157

2 no yes 0.054447

3 no no 0.495553

The preceding factor has the xray and bronc variables in its scope, which we need,
and since we need only a specific assignment of xray=yes, we can reduce the factor
by the given evidence, as shown in the following code:

phi_6.reducefactor("xray",'yes')
printdist(phi_6,bn)

The output of the preceding code is as follows:

Rows bronc probability

0 yes 0.055843

1 no 0.054447

Chapter 6

[105]

Since this is not a valid probability distribution, we have to normalize the probability
by dividing it by the sum, as shown in the following code:

summ = sum(phi_6.vals)
phi_6.vals=[i/float(summ) for i in phi_6.vals]
printdist(phi_6,bn)

The output of the preceding code is as follows:

 bronc probability

0 yes 0.506326

1 no 0.493674

The preceding code snippet details the steps involved in arriving at the required CPD.

When using the libpgm library, all the algorithmic steps are contained within the
condprobve method; so, we just have to load the network and use that method, as
shown in the following code:

bn = loadbn("asia1.txt")
evidence = {"xray":'yes'}
query = {"bronc":'yes'}
fn = TableCPDFactorization(bn)
result = fn.condprobve(query, evidence)
printdist(result,bn)

The output of the preceding code is as follows (observe that we get the same values
obtained in the step by step procedure):

Rows bronc probability

0 yes 0.506326

1 no 0.493674

The Variable Elimination algorithm can be summed up as follows:

• The starting factors that are CPDs at each node
• Eliminate the nonquery variable Z from factors
• Multiply the remaining factors
• Repeat the same steps for all nonquery variables until only the query

variables (and evidence/observed variables, if any) are left

Exact Inference Using Graphical Models

[106]

The Variable Elimination algorithm works for both the Bayes as well as Markov
networks. The algorithm completes once the set of nonquery variables in Z have
been eliminated from the scope of all factors. While the variables in Z can be
eliminated in any order (it results in the same final CPD), in the next section, we shall
learn that optimized elimination ordering can help the algorithm terminate quickly.

Complexity of Variable Elimination
In the beginning of the previous section, we claimed that for inference queries,
using the Variable Elimination algorithm is an improvement over querying the joint
distribution. To better understand why variable inference is an improvement, we
need to understand the algorithmic complexity of the algorithm.

We will start with m factors, and at each elimination step, we will generate one factor
(by eliminating a nonquery variable). If we have n variables, we have, at the most, n
rounds of elimination. The total number of factors generated, that is, m*, will be less
than m + n (factors we start with, in addition to the eliminated n variables).

Let N stand for the size of the largest factor (the factor with the maximum number of
variables in its scope).

Each step in the algorithm consists of deducing a Factor product and then summing
out a variable, which is called a sum-product operation.

Therefore, the complexity is proportional to the number of sum-product operations.
The product operations turn out to be less than N x m*, and the sum operations turn
out to be N x n. Therefore, the complexity is linear in terms of N and m*, the size of
the largest factor and the total number of factors generated.

Although the linear term appears, in truth, calculating the largest factor N requires
exponential time. If a factor has four variables and all of them are binary valued, its
complexity is ()42O . In the general case, kv is the computational cost of computing
a factor, if v is the maximum number of values a variable has in its scope (called its
cardinality) and k is the number of variables.

Why does elimination ordering matter?
Although the Variable Elimination algorithm does not specify the order in which
(non-query, non-evidence) the variables are eliminated, elimination ordering plays a
role in the complexity. Let's look at the Markov network in the following diagram:

Chapter 6

[107]

B1 B2 B3

A

Bn

C

In the preceding network, suppose we choose to sum out or eliminate the variable A.
We need to first have a product of factors { }1 2, , .. nA B B B and then sum out the variable.
The factor that is created has a scope { }1 2, , .. nA B B B , and it is exponential in n.

Instead, if we choose to sum out the variable 1B first, the factor product results in
a factor with scope { }1, , ,A B C which has only three variables. We've learned in the
previous section that the complexity contains the term N (the size of the largest
factor). Assuming that all the variables are binary, the difference in elimination
orderings results in a complexity of 2n for the first case and 32 for the second.

Since the complexity of the Variable Elimination algorithm is largely dependent on
the size of the largest factor generated (which is exponential in scope), it is up to the
elimination ordering to generate small intermediate factors to improve the runtime
of the Variable Elimination algorithm. This example is taken from the Coursera PGM
course, which can be accessed at https://www.coursera.org/course/pgm.

Graph perspective
While we were busy performing factor manipulation, the graph structure also
changes with every factor multiplication and marginalization. We know that the
factors and graph are just different representations of the same information; so, how
does the elimination and creation of new factors affect the graph?

Since both directed and undirected graphs work the same way in the Variable
Elimination algorithm, we can proceed with the analysis by assuming that the graph
is undirected (even for a Bayes network).

Exact Inference Using Graphical Models

[108]

We'll look at an example of graph changes in the Asia network from the previous
section. When we multiply to eliminate a variable, that is, the parent of the nodes
in a scope, the resulting factor adds a link between the children in a process
called moralization.

For example, in the second step of running the Variable Elimination algorithm for the
Asia network, we will multiply factors () () (), ,smoke smoke lung smoke broncφ φ φ× × and
eliminate smoke to produce a new factor: ()2 ,lung broncφ . This new factor represents
the addition of a new link between the two nodes, as seen in the following diagram
(the left-hand and right-hand sides indicate the variables before and after the second
step is complete):

smoke

bronc

lung

bronc

lung

Why should the creation of a new factor require us to connect previously unconnected
nodes? Since a factor encodes some independencies, the same independencies have to
exist in the graph too. Therefore, as the process of Factor elimination and (new) Factor
creation continues in the Variable Elimination algorithm, we add new edges to the
graph to encode the same independencies. The Markov network created as a result of
moralization is called the Induced Markov network.

For each factor that is generated in the Variable Elimination algorithm, the variables
in the scope of the factor are connected by edges (that is, edges are added if they
don't exist) called fill edges. The fully connected subgraph that corresponds to each
factor is a minimal I-map for the distribution over the variables in that factor. You
can recall that a graph G is a minimal I-map of a distribution P if the following
conditions are satisfied:

• G is an I-map of P
• If 'G G⊂ and 'G is not an I-map of P

Chapter 6

[109]

In other words, a minimal I-map is a set of independencies, and the removal of any
edge from G causes it to cease being an I-map.

The edges added depend on the order of Variable Elimination (which determines the
factors created as well).

Learning the induced width from the graph
structure
Before we proceed to the discussion on the induced width, let's digress to remind
ourselves about some terms used to describe the graph structure. A clique is a
maximal, fully connected subgraph. Let's look at the following Markov network
with four nodes:

A

B C

D

The nodes B, C, and D form a clique since they are all connected to each other. The
clique is maximally connected since it cannot add any more nodes. The addition of A
to the clique will fail the fully connected property.

Why does induced width matter?
The induced width is the number of nodes in the largest clique minus one. The
minimal induced width is the least induced width obtained over all the VE
orderings, which will be the lower bound on the best performance.

It turns out that every new factor created during a run of the VE algorithm is a
clique in the Induced Markov network. Thus, the induced graph's cliques give us
a quick approximation of the runtime of the VE algorithm. Even if we did find the
best VE ordering (an NP-hard problem in itself), inference will still take exponential
time, even with optimal ordering. Therefore, if we use optimal ordering and find
that the clique in the induced graph has many (it's a relative number based on your
hardware) variables in its scope, it may be time to ditch the exact inference methods
in favor of approximate methods.

Exact Inference Using Graphical Models

[110]

Finding VE orderings
Greedy algorithms are a fairly effective mechanism to find the best VE ordering.
Several cost functions can be used, such as choosing the smallest factor first (a node
with the least number of neighbors).

The tree algorithm
We will now look at another class of exact inference algorithms based on
message passing.

Message passing is a general mechanism, and there exist many variations of
message passing algorithms. We shall look at a short snippet of the clique tree-
message passing algorithm (which is sometimes called the junction tree algorithm
too). Other versions of the message passing algorithm are used in approximate
inference as well.

We initiate the discussion by clarifying some of the terms used.

A cluster graph is an arrangement of a network where groups of variables are
placed in the cluster. It is similar to a factor where each cluster has a set of
variables in its scope.

The message passing algorithm is all about passing messages between clusters. As
an analogy, consider the gossip going on at a party, where Shelly and Clair are in a
conversation. If Shelly knows B, C, and D, and she is chatting with Clair who knows
D, E, and F (note that the only person they know in common is D), they can share
information (or pass messages) about their common friend D.

In the message passing algorithm, two clusters are connected by a Separation Set
(sepset), which contains variables common to both clusters. Using the preceding
example, the two clusters { }, , ,Shelly B C D and { }, , ,Clair D E F are connected by the
sepset { }D , which contains the only variable common to both clusters.

In the next section, we shall learn about the implementation details of the junction
tree algorithm. We will first understand the four stages of the algorithm and then use
code snippets to learn about it from an implementation perspective.

Chapter 6

[111]

The four stages of the junction tree algorithm
In this section, we will discuss the four stages of the junction tree algorithm.

In the first stage, the Bayes network is converted into a secondary structure called a
join tree (alternate names for this structure in the literature are junction tree, cluster
tree, or a clique tree). The transformation from the Bayes network to junction tree
proceeds as per the following steps:

• We will construct a moral graph by changing all the directed edges to
undirected edges. All nodes that have V-structures that enter the said node
have their parents connected with an edge. We have seen an example of
this process (in the VE algorithm) called moralization, which is a possible
reference to connect (apparently unmarried) parents that have a child (node).

• Then, we will selectively add edges to the moral graph to create a
triangulated graph. A triangulated graph is an undirected graph where the
maximum cycle length between the nodes is 3.

• From the triangulated graph, we will identify the subsets of nodes
(called cliques).

• Starting with the cliques as clusters, we will arrange the clusters to form an
undirected tree called the join tree, which satisfies the running intersection
property. This property states that if a node appears in two cliques, it should
also appear in all the nodes on the path that connect the two cliques.

In the second stage, the potentials at each cluster are initialized. The potentials are
similar to a CPD or a table. They have a list of values against each assignment to a
variable in their scope. Both clusters and sepsets contain a set of potentials. The term
potential is used as opposed to probabilities because in Markov networks, unlike
probabilities, the values of the potentials are not obliged to sum to 1.

This stage consists of message passing or belief propagation between neighboring
clusters. Each message consists of a belief the cluster has about a particular variable.

Each message can be passed asynchronously, but it has to wait for information from
other clusters before it collates that information and passes it to the next cluster. It
can be useful to think of a tree-structured cluster graph, where the message passing
happens in two stages: an upward pass stage and a downward pass stage. Only after
a node receives messages from the leaf nodes, will it send the message to its parent
(in the "upward pass"), and only after the node receives a message from its parents
will it send a message to its children (in the "downward pass").

Exact Inference Using Graphical Models

[112]

The message passing stage completes when each cluster sepset has consistent beliefs.
Recall that a cluster connected to a sepset has common variables. For example, cluster
C and sepset S have (),x y and (),y z variables in its scope. Then, the potential against
y obtained from either the cluster or the sepset has the same value, which is why it is
said that the cluster graph has consistent beliefs or that the cliques are calibrated.

Once the whole cluster graph has consistent beliefs, the fourth stage is marginalization,
where we can query the marginal distribution for any variable in the graph.

We will now proceed to study an implementation of the junction tree algorithm.

Using the junction tree algorithm for inference
In the JunctionTreeAlgorithm.ipynb IPython Notebook, we shall use the
Bayesian Belief Network (BBN) library to run exact inference using the junction
tree algorithm. The library is available on Github (https://github.com/eBay/
bayesian-belief-networks), and the documentation to install the library is
mentioned on the Github page.

BBN has functionalities to load networks stored in the Bayesian Interchange Format
(bif), which is developed by the Bayesian community to foster easier data sharing
among different inference tools.

Once more, we shall use the asia network that we have seen earlier in this chapter.

After the mandatory imports, we parse the .bif format file with the bif_parser
module, which returns a Bayes network object, as shown in the following code:

import bif_parser
import prettytable
import pydot
from IPython.core.display import Image
from bayesian.bbn import *

name = 'asia'

module_name = bif_parser.parse(name)
module = __import__(module_name)
bg = module.create_bbn()

Chapter 6

[113]

We can view the Bayes network using the graphviz functionality offered by BBN
(graphviz is a tool for graph visualization), as shown in the following code:

def show_graphgiz_image(graphviz_data):
 graph = pydot.graph_from_dot_data(graphviz_data)
 graph.write_png('temp.png')
 return 'temp.png'

sf=bg.get_graphviz_source()
Image(filename=show_graphgiz_image(sf))

f_asia f_tub

f_xray

f_dysp

f_either

f_bronc

f_lung
f_smoke

The preceding diagram shows us the network structure encoded in the .bif file. It is
the same asia network that we saw earlier in this chapter.

Stage 1.1 – moralization
In the following snippet, we will view the moralization phase. Note that the
V-structures, for example (), _ _ _f tub f either f lung→ ← , have their parents
moralized or joined with a new link.

gu=make_undirected_copy(bg)
m1=make_moralized_copy(gu,bg)
s2=m1.get_graphviz_source()
Image(filename=show_graphgiz_image(s2))

f_bronc

f_xray

f_dysp

f_asia

f_lung

f_either f_tub

f_smoke

Exact Inference Using Graphical Models

[114]

Stage 1.2 – triangulation
In the triangulation phase, the undirected graph is triangulated, which is the
addition of edges between nodes if there is a cycle whose length is greater than 4.
Note that in the preceding diagram, _ , _ , _ , _f bronc f either f lung f smoke forms a cycle
with four nodes. In the following snippet, a link is added between _f either and
_f smoke to triangulate it, which reduces the maximum length of the cycle to 3:

cliques, elimination_ordering = triangulate(m1, priority_func)
s2=m1.get_graphviz_source()
Image(filename=show_graphgiz_image(s2))

The output of the preceding code is as follows:

f_bronc

f_xray

f_asia

f_lungf_dysp f_either

f_tub

f_smoke

Stage 1.3 – building the join tree
Next, we will create the clique and the sepsets, which is done completely within the
build_join_tree method. This method creates cliques according to the preceding
graph and creates the sepsets which are the intersection points between every pair
of cliques.

Note that the naming convention for the nodes in the generated graph is not exactly
pretty. The Clique_EITHERLUNGTUB clique has the variables either, lung, and tub
all smashed together.

jt=bg.build_join_tree()
sf=jt.get_graphviz_source()

Image(filename=show_graphgiz_image(sf))

Chapter 6

[115]

SepSet_TUB

SepSet_EITHERLUNG

SepSet_BRONCEITHER

SepSet_EITHERSMOKE

SepSet_EITHER

Clique_ASIATUB

Clique_EITHERLUNGTUB

Clique_EITHERLUNGSMOKE

Clique_EITHERXRAY

Clique_BRONCYSPEITHER

Clique_BRONCEITHERSMOKE

We can see from the variable names that the sepsets contain the intersection points
of variables from the cliques that they connect with. For example, the variables in
the cliques { }, ,Bronc Either Smoke and { }, ,Bronc Dysp Either are the variables in the
{ },Bronc Either sepset.

Stage 2 – initializing potentials
The next step is to create the initial clusters (which are usually the cliques) and
initialize potentials, as shown in the following code:

assignments = jt.assign_clusters(bg)
jt.initialize_potentials(assignments,bg)

Stage 3 – message passing
Having built the structure required to run message passing, we proceed to the next
stage. In this stage, there are two messages sent between each pair of cliques: one in a
forward and another in a reverse pass.

Exact Inference Using Graphical Models

[116]

The details of the message passing are contained within the propagate() method
in the junction tree object. The sequence of messages in the network is shown in the
following diagram:

Image(filename="../book/chapter6/images/9004OS_06_05.png")

Either, Xray

Bronc,Lung Either,Lung,Smoke

Either,Smoke

Bronc,Either

Bronc,Dysp,Either

Either

Either,Lung,Tub

Asia, Tub

Tub

Bronc,Either,Smoke

7

38

2

9

1

10

4

5

6

So what exactly happens when a message is passed? There are three actors in a
message pass: the source cluster, the intervening sepset, and the destination cluster.
Each of these has a set of potentials (very similar to a CPD along with the associated
probabilities, except that it need not be a valid probability distribution).

For example, a message from (), ,x bronc either smokeφ to (), ,y either lung smokeφ would
pass the (),r either smokeφ sepset, where the variables are in the scope of each cluster
or sepset.

The message will modify the potentials at rφ and yφ , that is, the sepset potential and
the destination cluster potential.

Chapter 6

[117]

The first assignment to the sepset R are the potentials in the source with the variables
not in the sepset marginalized out, as shown in the following formula:

\X R
R xφ φ= ∑

The second assignment to the cluster Y is as follows:

old
R

RY Y φφ φ
φ

=

Let's run the message passing bit using the propagate() method, as shown in the
following code. This will run message passing between all the variables and will stop
when the beliefs have converged.

jt.propagate()

Once all the message passing is done, we are left with a tree that has consistent
beliefs in all its clusters.

On querying for a particular variable (for example, bronc), we just have to find a
cluster (or a sepset) that has bronc in its scope and marginalize the other variables.
The cluster printed here has bronc, dysp, and either variables in its scope. We
printed all the potentials associated with this cluster. We can observe that each row
lists the specific assignment to bronc, dysp, and either.

bronc_clust=[i for i in jt.clique_nodes for v in i.variable_names if v
=='bronc']
bronc_clust[0].potential_tt

The output of the preceding code is as follows:

{(('bronc', 'no'), ('dysp', 'no'), ('either', 'no')): 0.4689219599,

 (('bronc', 'no'), ('dysp', 'no'), ('either', 'yes')): 0.008692680,

 (('bronc', 'no'), ('dysp', 'yes'), ('either', 'no')): 0.05210244,

 (('bronc', 'no'), ('dysp', 'yes'), ('either', 'yes')): 0.020282,

 (('bronc', 'yes'), ('dysp', 'no'), ('either', 'no')): 0.08282951999,

 (('bronc', 'yes'), ('dysp', 'no'), ('either', 'yes')): 0.003585240,

 (('bronc', 'yes'), ('dysp', 'yes'), ('either', 'no')): 0.3313180799,

 (('bronc', 'yes'), ('dysp', 'yes'), ('either', 'yes')): 0.032267160}

Exact Inference Using Graphical Models

[118]

Let's try to find the marginal for bronc by marginalizing the dysp and either
variables in the cluster by using the following code:

pot=bronc_clust[0].potential_tt

#a function to return the sum for a specific assignment, such as
'bronc,yes'
sum_assignments=lambda imap,tup:sum([v for k,v in imap.iteritems() for
i in k if i == tup])

#get the sum for bronc=yes and bronc=no
yes,no=[sum_assignments(pot,('bronc',i)) for i in ['yes','no']]

print 'bronc: yes ', yes/float(yes+no)," no ", no/float(yes+no)

bronc: yes 0.45 no 0.55

Since we claim that the junction tree is consistent, will other clusters that contain
bronc return the same marginal values? Let's use the second cluster with bronc in its
scope and marginalize on its potentials, as given in the following code:

pot2=bronc_clust[1].potential_tt
yes,no=[sum_assignments(pot2,('bronc',i)) for i in ['yes','no']]

print 'bronc: yes ', yes/float(yes+no)," no ", no/float(yes+no)
bronc: yes 0.45 no 0.55

We can see that we can obtain the same values of the marginal of bronc from two
different clusters, indicating that the beliefs for all the variables are consistent across
all clusters and sepsets.

For an exhaustive introduction to the junction tree algorithm, refer to
Inference in Belief networks: A procedural guide, by Huang and Darwiche at
http://www.cs.iastate.edu/~honavar/bayes2.pdf.

In summary, both the algorithms presented in this chapter are similar in the principle
that they use the same factor product and factor marginalization operations. Cliques
in the clique tree are similar to factors used in Variable Elimination.

The junction tree algorithm has some advantages, such as the ability to answer
several marginal queries in a single computation of a calibrated tree. Since the
message passing is asynchronous, the algorithm can be parallelized and can return
results quicker.

http://www.cs.iastate.edu/~honavar/bayes2.pdf
http://www.cs.iastate.edu/~honavar/bayes2.pdf

Chapter 6

[119]

The disadvantage of the algorithm is that it is more expensive in terms of space. In
Variable Elimination, the intermediate factors are not stored, but they are stored in
the case of the junction tree.

Summary
We first explored the inference problem where we studied the types of inference. We
then learned that inference is NP-hard and understood that, for large networks, exact
inference is infeasible.

We then explored a couple of exact inference algorithms, such as Variable
Elimination, and message passing, along with code samples that explain their
fundamentals. We looked at the complexity of Variable Elimination and the
ways to reduce its complexity.

In the next chapter, we shall look at the means of running approximate
inference algorithms.

Approximate
Inference Methods

In the previous chapter, we have learned that as the tree width of a graphical
model increases, the exact inference becomes infeasible. The motivation to pursue
approximate inference comes from real-world networks where the exact inference
is intractable.

In this chapter, we will learn about the methods to calculate approximate inference.
We will revisit message passing algorithms mentioned in the previous chapter
and learn how they can also be used to calculate approximate inference when the
network is not tree structured. We shall explore inference from the perspective of
optimization and learn about sampling methods. We will also look at some code
samples to understand how algorithms implement the approximate inference.

There are two general classes of approximate inference methods. In the first section,
we explore inference as optimization, and in the second, we will explore particle-
based inference methods.

The optimization perspective
In approximate inference, we seek to find or construct an approximation to the target
distribution. Suppose we have the true target distribution Pφ , we seek to find a set
of distributions Q that are easy to run the inference on, and then search among these
easy distributions for the one that is "close" to the target distribution. The methods
used seek to optimize the functions used to measure the distance or similarity
between Q and P.

Approximate Inference Methods

[122]

Casting the inference problem as an optimization allows us to draw on methods
from the well-studied field of constrained optimization. One of the most used
methods is to produce a set of equations that describe the optima of our objective
function. In the context of graphical models, this method takes the form of a set of
equations where each variable is defined in terms of other variables. It turns out
that the equations that cast the problem as a type of a constrained optimization are
equivalent to message passing over graphs.

In this section, we shall explore the belief propagation algorithm. In the earlier
chapter, we ran belief propagation on tree-structured networks, whereas here we
want to expand the discussion to networks that have other kinds of graph structures.
This algorithm is called Loopy Belief Propagation (LBP) and is named thus because
the cluster graphs can contain cycles and are sometimes called loopy.

Belief propagation in general graphs
Belief propagation is one of the message passing algorithms used for performing
inference. Although it was first designed to run on tree-structured networks, it was
discovered that it can also be used on general graphs that have loops or cycles.

There are a few differences in running the algorithm on a graph structure as
opposed to a tree.

Tree-structured network Graph-structured network
A node has to first receive messages from
all its leaf nodes and only then send a
message to its parents, and the whole
process repeats in a downward direction.

While a node in a tree-structured network
has the luxury of waiting for a message from
its children before sending a message to its
parent, in a network with loops, there is no
straightforward procedure for a node to wait
for messages before sending one out.

Only two messages are required to be
passed between each node and its parent
for convergence of beliefs to happen.

Message passing continues until the
convergence is reached.

Message passing results in convergence
of beliefs in the clusters and sepsets.

Convergence happens in most cases, but it
is not guaranteed. Some networks might see
oscillations and some might never converge.

The estimated marginals converge to the
true marginals.

Even at convergence, the marginals might
be incorrect, or the cluster beliefs need not
necessarily be equal to the true marginals.

Chapter 7

[123]

Creating a cluster graph to run LBP
The first task in running an LBP is to create a cluster graph when a set of factors is
given. Each factor must be assigned to a cluster, but it is possible for one cluster to
have multiple factors assigned to it. The conversion from a set of factors to a cluster
graph is not unique. However, for a cluster graph to perform belief propagation, it
must satisfy the following properties:

• Running the intersection property: If a variable X is present in two clusters,
it should also be present in (all the clusters) the unique path that connects
the two clusters.

• Family preservation: For every factor assigned to a cluster, the cluster's
scope must include all the variables in the factor's scope.

Let's look at an example of a cluster graph creation.

We have the set of factors (along with the variables in the scope of each factor)
shown in the following formula:

() () () () () () (){ }1 2 3 4 5 6 7, , , , , , , , , , , , , ,Z F A B C F C D F E F F B D F E D F D F F D H=

One possible cluster graph representation is shown in the following diagram. The
variables in the sepsets are annotated on the edges that connect each cluster.

1:A,B,C

5:B,E,D

2:C,D

4:E,F

3:D,F,HB D

E

D

F

C

Note how the two properties mentioned previously are satisfied in the cluster graph.

• Running the intersection: The clusters 5, 2, and 3 contain the variable D in
their scope. Running the intersection requires that, if 5 and 3 contain D in
their scope, the cluster(s) between them should also contain D (cluster 2).

Approximate Inference Methods

[124]

• Family preservation: The cluster-factor assignment is described in the
following table (note that the cluster's scope includes all the variables in the
scope of its assigned factors):

Clusters Factors
1:A,B,C ()1 , ,F A B C

2:C,D ()2 ,F C D

3:D,F,H () ()6 7, , ,F D F F D H

4:E,F ()3 ,F E F

5:B,E,D () ()4 5, , ,F B D F E D

Message passing in LBP
Before any messages are passed, the initial beliefs at each cluster are simply the
product of all the factors assigned to it.

Message passing proceeds in a similar fashion as we've seen in the previous chapter.
First, all the messages are assigned a value 1. We shall denote xyM as the message
passed from the source cluster X to the destination cluster Y. We shall examine the

12M and 21M messages passed between the C1 and C2 clusters and other messages
sent in that context in detail.

• 51M : These are the beliefs about the variable B sent from C5 to C1.
• 12M : These are the beliefs about the variable C sent from C1 to C2. This is

done by performing the following steps:
 ° Taking the existing beliefs at C1
 ° Multiplying the incoming message 51M

 ° Summing out variables A and B and calculating the message
as follows:

() ()12 1 51
a,b

F A, B, C M BM =∑

 ° Sending 12M to C2

• We will fast forward to a few time periods later, during which the following
messages were sent:

 ° 52M : These are the beliefs about the variable D sent from C5 to C2
 ° 32M : These are the beliefs about the variable D sent from C3 to C2

Chapter 7

[125]

• We are now ready to send a return message 21M from C2 to C1. Recall that
earlier, cluster 1 had sent its beliefs (about the common variable C) learned
from its part of the network to cluster 2, which now responds with its beliefs
about the variable C. It creates the message in the following manner:

 ° Taking the existing beliefs at C2
 ° Multiplying the incoming messages 52M and 32M

 ° Summing out variable D and calculating the message by using the
following formula:

() () ()21 2 32 52
d

F C, D M D M DM =∑

 ° Sending 21M to C1

Note that when the message is returned from cluster 2 to 1, it avoids sending the
information that cluster 1 sent in the first place, else the beliefs that were sent from
cluster 1 are simply echoed back and forth (double counting), and they get stronger
in the process.

The message passing continues in the same fashion described previously and is
stopped at convergence. The cluster graph can be assumed to have converged when
the sepset beliefs changes across time steps are within a predecided tolerance value.
Also, each pair of cluster beliefs agree with the sepset beliefs (for the edge that lies
between the pair of clusters).

Steps in the LBP algorithm
We can summarize the steps in the LBP algorithm as follows:

• Assign factors to clusters
• Construct initial potentials (multiply all the factors in a cluster)
• Initialize beliefs at each cluster
• Repeat the message passing step: choose a cluster pair and pass a message

between them
• Test whether the convergence has occurred or stopped after n repeats
• Summarize beliefs at each cluster by multiplying all the messages received

with their initial beliefs as follows:

()
i

i i i k->ik N
â C M

∈
= Ψ ∏

Approximate Inference Methods

[126]

Here, the belief in the ith cluster is the product of initial belief iΨ and the product of
all messages k->iM from all k neighboring clusters.

Improving the convergence of LBP
The LBP algorithm is one of the algorithms in the general framework of message
passing algorithms. Variants of LBP attempt to optimize the performance by tuning
the following:

• The duration of message passing.
• The timing of messages (synchronous/asynchronous): Asynchronous

message passing has been shown to have faster convergence as compared to
synchronous message passing. It must be understood that convergence is a
local property. Some clusters/sepsets converge sooner than others. If we are
interested in marginals from a given sepset or cluster, we need not wait for
the whole cluster graph to converge.

• Paths along which messages are sent: Variants of BP such as TRWBP (tree
weighted) by Wainwright and TRW-S (a sequential tree-weighted BP) by
Kolmogorov try to find a set of minimum spanning trees within a cluster
graph, and for each spanning tree, pass only messages on those trees. These
have convergence guarantees in certain conditions, which are improvements in
the original LBP, which does not provide any convergence guarantees.

• Smoothing or damping of messages: This prevents oscillations and increases
the chances of convergence.

Applying LBP to segment an image
Let's look at applying LBP to perform image segmentation in the LBP_image_
segmentation.ipynb IPython Notebook.

Image segmentation is the process of partitioning an image into multiple segments
(called super pixels). The outcome of an image segmentation algorithm will be
assigning a class label to every pixel in the image. Image segmentation is useful
in several fields such as object detection (pedestrian detection), medical imaging
(locating tumors), and several others.

In this notebook, we will use the OpenGM library (https://github.com/opengm/
opengm) implementation of the loopy belief propagation to segment an image.

Chapter 7

[127]

OpenGM is a C++ library with Python wrappers that has several implementations
of inference algorithms. Please refer to the OpenGM website for installation
instructions. For the Python wrapper, OpenGM requires installation of HDF5
(http://www.hdfgroup.org/HDF5/) libraries as well.

We will first load the image and convert it into a grayscale image by using the
following code:

import opengm
from matplotlib import pyplot as plt
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import Image

fname = 'cow_image.jpg'
image = Image.open(fname).convert("L")
arr = np.asarray(image).astype(float)/255
plt.imshow(arr, cmap = cm.Greys_r)
plt.show()

The following is the original image that we attempted to segment. A successful
segmentation algorithm should be able to differentiate between the pixels assigned
to the cow and those assigned to the background.

The image is stored in a numpy array, whose dimensions are 183 x 275 pixels. Each
pixel contains a value between 0 and 1, where 0 is for black and 1 for white.

We will digress a bit to understand the energy-based models that OpenGM uses.

Approximate Inference Methods

[128]

Understanding energy-based models
We have 183 x 275 pixels in the image, and each pixel can take one of the two
labels. Assigning a label to a pixel is called labeling. We wish to choose the correct
segmentation out of the total number of labelings in this image. Given the size of the
image, the number of possible labelings are ()2183 275× .

The probability of a labeling ω , given the observed image features f , is ()|P fω .
We wish to find the optimal labeling ω̂, which is the MAP estimate, using the
following formula:

()ˆ |argmax P fω ω=

The probability of a particular labeling is defined as follows:

() ()()1 expP U
Z

ω ω= −

Here, ()U ω is the energy of the configuration ω .

In this discussion, we shall use the following kinds of potentials:

The first potential called the unary potential is a factor that has only one pixel in its
scope. Each pixel gets its own unary potential.

The second potential is a pairwise potential, which is a factor that has neighboring
pixels in its scope. The diagrams, which we will see later, will clarify these potentials.

Given that we are using unary and pairwise potentials, the sum of potentials in the
whole image represents the energy ()U ω of an image, when a particular labeling ω is
given, as shown in the following formula:

() () ()
1 2

1 2,
,c i c i ji C i j C

U V Vω ω ω ω
∈ ∈

= +∑ ∑

Here, the first term and the second term at the right-hand side indicate the unary
and pairwise potentials. 1 2 C and C indicate factors that have 1 and 2 pixels in their
scope, respectively.

Thus, an optimum labeling or configuration is the one that has the least energy given
a particular assignment of labels to pixels. The goal of image segmentation is to find
this optimum configuration.

For a detailed introduction on MRFs for image segmentation, please refer to
http://www.inf.u-szeged.hu/~kato/teaching/emm/multi-layer-mrf.pdf.

Chapter 7

[129]

Visualizing unary and pairwise factors on
a 3 x 3 grid
Before you attempt image segmentation, let's try to understand the structure of the
Markov network using OpenGM's model visualization.

In the following snippet, we will create a Markov network with nine nodes, arranged
in a 3 x 3 grid.

The following diagram is the Markov network, where the random variables
numbered from 0 to 8 are indicated in white unfilled circles, and unary and pairwise
potentials in black squares:

13
2

2

1 1

12

10

0

0
9

11

5

5

17

4

15

3

3

4

18

16

14

8

8

20

7 7

19

6

6

The grid2d2Order method creates the following sets of factors:

• The first set of factors includes unary potentials associated with each
variable, and these are indicated in black squares numbered from 0 to 8,
which are attached to each node. A unary factor's scope contains only the
current node.

• The second set of factors includes pairwise potentials that connect adjacent
nodes. These are also indicated in black squares numbered from 9 to 20. A
pairwise factor's scope contains two adjacent nodes. For example, the factor
13 in the diagram can be represented by ()13 2,5φ , which indicates that 2 and
5 are the nodes in its scope. This factor models the interaction between two
neighboring nodes in a grid.
numLabels=2
shape=(3,3)

Approximate Inference Methods

[130]

unaries=numpy.random.rand(shape[0],shape[1],numLabels)
potts=opengm.PottsFunction([numLabels,numLabels],0.0,0.5)
gm=opengm.grid2d2Order(unaries=unaries,regularizer=potts)
opengm.visualizeGm(gm,plotFunctions=False,
 plotNonShared=True,relNodeSize=0.9)

To compute the energy of the entire network, we need to evaluate the energy at each
factor. In OpenGM, this is done by associating a function with each factor. We have
used a potts function in the preceding snippet, which takes a value of 0 if the input
variables (in the scope of the factor) agree, and a value of 0.5 if they do not.

The network has 21 factors, and the node on the edge (0) has three factors associated
with it, its unary potential (0), and its pairwise potentials (9, 10). Similarly, the node
in the middle (4) will have four pairwise potentials (11, 15, 16, 17), in addition to the
unary potential (4).

print "number of factors:",gm.numberOfFactors
print "number of factors of node 0: ",gm.numberOfFactorsOfVariable(0)
print "number of factors of node 4: ",gm.numberOfFactorsOfVariable(4)

The output of the preceding code is as follows:

number of factors: 21

number of factors of node 0: 3

number of factors of node 4: 5

Creating a model for image segmentation
We'll create a Markov network with unary and pairwise potentials in the same
manner as we did for the previously discussed 3 x 3 network. Instead of a 3 x 3 grid,
we'll now have a grid that has the size = length x breadth of the image in pixels.

shape=img.shape
dimx,dimy=shape[0],shape[1]
numVar=dimx*dimy
numLabels=2
beta=0.1

numberOfStates=numpy.ones(numVar,dtype=opengm.index_type)*numLabels
gm=opengm.graphicalModel(numberOfStates)

#add Unary factors, assign Potts function to the factors
for y in range(dimy):
 for x in range(dimx):
 f=numpy.ones(2,dtype=numpy.float32)

Chapter 7

[131]

 f[0]=img[x,y]
 f[1]=1.0-img[x,y]
 fid=gm.addFunction(f)
 gm.addFactor(fid,(x*dimy+y,))

#Adding binary function and factors

#create the pairwise function (Potts function)
f=numpy.ones(pow(numLabels,2),dtype=numpy.float32).reshape(numLabels,n
umLabels)*beta
for l in range(numLabels):
 f[l,l]=0
fid=gm.addFunction(f)

#create pairwise factors for the whole grid, and
#assign the Potts function created above, to each new factor.
for y in range(dimy):
 for x in range(dimx):
 #add a factor between each pair of neighboring nodes.
 if(x+1<dimx):
 #add a factor between a node and its neighbor on the right
 gm.addFactor(fid,numpy.array([x*dimy+y,(x+1)*dimy+y],dtype=op
engm.index_type))
 if(y+1<dimy):
 #add a factor between a node and its neighbor above.
 gm.addFactor(fid,[x*dimy+y,x*dimy+(y+1)])

The preceding code snippet does the following:

• Creates a graphical model that has the image height x, image width x, and
number of labels in its label space

• Creates unary factors, one for each pixel
• Assigns a potts function to each factor
• Creates pairwise factors, one factor for each pair of pixels that are adjacent on

the x axis, and similarly for the y axis
 ° Assign a potts function to each pairwise factor

Approximate Inference Methods

[132]

We are almost ready to start running inference on the Markov network. OpenGM
allows us to create a visitor class that can observe the process of inference. In the
visit method, which is called at intervals, we can observe the energy minimization
in progress. We can also observe how the label assignments to each pixel improve as
the overall energy of the Markov network is reduced.

We then create an instance of the BeliefPropagation class and run inference on it.
The LBP algorithm will pass messages between pixels, and beliefs are computed at
each node. When the callback method is invoked, we view the energy of the current
configuration by using the following code:

imgplot=[]

class PyCallback(object):
 def appendLabelVector(self,labelVector):
 #save the labels at each iteration, to examine later.
 labelVector=labelVector.reshape(self.shape)
 imgplot.append([labelVector])
 def __init__(self,shape,numLabels):
 self.shape=shape
 self.numLabels=numLabels
 matplotlib.interactive(True)
 def checkEnergy(self,inference):
 gm=inference.gm()
 #the arg method returns the (class) labeling at each pixel.
 labelVector=inference.arg()
 #evaluate the energy of the graph given the current labeling.
 print "energy ",gm.evaluate(labelVector)
 self.appendLabelVector(labelVector)
 def begin(self,inference):
 print "beginning of inference"
 self.checkEnergy(inference)
 def end(self,inference):
 print "end of inference"
 def visit(self,inference):
 self.checkEnergy(inference)

inf=opengm.inference.BeliefPropagation(gm,parameter=opengm.
InfParam(damping=0.05))

Chapter 7

[133]

#parameter=opengm.InfParam(damping=0.1)
callback=PyCallback(shape,numLabels)
visitor=inf.pythonVisitor(callback,visitNth=1)

inf.infer(visitor)

The output of the preceding code is as follows:

beginning of inference

energy 21002.9691286

energy 16100.9689678

energy 16082.888577

energy 16069.1768137

energy 16051.5650505

energy 16032.2630915

<rows elided>

..

energy 15824.9003709

end of inference

We saved the labelings at each intermediate step, and we will now view the first six
class label vectors to observe how the algorithm proceeds to segment the image. We
can see that the cow's shape is easily identified from the labels assigned to each pixel
using the following code:

fig = plt.figure(figsize=(16, 12))
for (counter, im) in enumerate(imgplot[0:6]):
 a=fig.add_subplot(3,2,counter+1)
 plt.imshow(im[0],cmap=cm.gray, interpolation="nearest")

plt.draw()

Approximate Inference Methods

[134]

The output of the preceding code is as follows:

Finally, we will plot the final label assignment for each pixel, which is the Maximum
a posteriori (MAP) assignment of class labels to pixels, along with the original
image. This is the configuration that corresponds to the minimum energy.

fig = plt.figure(figsize=(16, 12))
a=fig.add_subplot(1,2,1)
plt.imshow(imgplot[-1][0],cmap=cm.gray, interpolation="nearest")
a=fig.add_subplot(1,2,2)
plt.imshow(img,cmap=cm.gray, interpolation="nearest")
plt.draw()

Chapter 7

[135]

The following image is generated from the preceding code snippet:

Applications of LBP
In the 90s, new methods of the high-performance code were discovered, which were
close to the Shannon Limit (the theoretical maximum carrying capacity of a channel
at which reliable communication is possible for a specific noise level). It turns out
that the new code, called turbo code (http://en.wikipedia.org/wiki/Turbo_
code), was implementing the LBP to achieve this improved performance, which
resulted in a surge of interest in LBP and its variants in the field of approximate
inference. As a result, LBP is now used in many fields that use the high-performance
code such as mobile telephony standards, digital video broadcasting, mobile
television, and deep space communications.

In summary, message passing is a widely used method for approximate inference.
Inference is reasonably efficient for networks that are not densely connected.
Although algorithms like LBP are not theoretically guaranteed to converge, its
empirical performance is often quite good.

Approximate Inference Methods

[136]

Sampling-based methods
We will now proceed to examine another approach to perform approximate inference.

In sampling-based methods, we use samples drawn from the distribution to estimate
statistics from the overall distribution. The samples drawn are independent and
identically distributed.

In the chapter on parameter estimation, we have drawn samples from the posterior
distribution to estimate the probabilities of a CPD using methods such as maximum
likelihood and Bayesian approaches.

In this section, we will learn to sample from a Bayesian network, which is slightly
different from sampling a distribution.

Forward sampling
A sampling method that uses the topological ordering of a Bayes network is called
forward sampling. A topological ordering in a Bayes network is an ordering of the
nodes in the form 1,2..n such that for every edge (),i j , we have j i> . If we traverse
the graph in a topological order, all edges point forward. In other words, we sample
the parents first and then descend to the leaves.

Let's look at the sampling procedure using the job interview network as an example:

Experience Grades

Interview

Offer

Assgn Prob
G=0 0.7
G=1 0.3

Prob
I=0

O=0 O=1
.9 .1

I=1 0.3.4 .6
I=2 0.3.01 .99

Assgn Prob
G=0 0.6
G=1 0.4

.3

.1

I=0

.7

.3
.4

.2

I=1

.18

.6

.3

.7

I=2

.02

.1
E=1,G=0

E=1,G=1

E=0,G=0

E=0,G=1

Chapter 7

[137]

Note that the sampled entities are in bold text in the preceding diagram.

The following table shows an example of the sampling procedure. Each row of
the table lists:

• The node we are sampling from
• The parent's sampled values (if any)
• The value sampled for the current node

Number CPD Evidence from parent's
samples

The sampled value

1 Experience - 0E =
2 Grades - 0G =
3 Interview Experience = 0, Grades

= 0,
1| 0, 0I E G= = =

4 Offer Interview = 1 0 | 1O I= =

We thus arrive at a sample { }0, 0, 1Experience Grades Interview= = = 0}Offer = using
one run of forward sampling.

To run an inference query such as ()1| 1 ,P Offer Interview= = we can use the
samples to estimate the marginal probability using maximum likelihood. This can
be achieved by taking the fraction of samples that satisfy the 1, 1Offer Interview= =
assignment, divided by the partition function.

The accept-reject sampling method
The accept-reject sampling method improves the forward sampling method to
include evidence variables.

When we introduce evidence variables, we modify the sampling procedure in
this manner: we first draw a sample, test whether it satisfies the assignment to the
evidence variable, and reject it if it doesn't (and accept it if it does).

We know that to infer the marginal probability within a certain error tolerance,
we'll have to draw a large number of samples. We can see that this method is
wasteful, as it draws samples to reject a (possibly large) number of samples.
Therefore to accumulate a large number of samples that satisfy the evidence is a
time-consuming procedure.

Approximate Inference Methods

[138]

Let's take an example of cancer testing. Suppose we wish to create a sample of
patients who have breast cancer. The prevalence rate for breast cancer is about 125
per 100,000 patients (http://seer.cancer.gov/statfacts/html/breast.html).
So, if we draw 100000 samples, we have to reject 99.875 percent of these samples
since they do not conform to the observed evidence. If we were to have additional
observed variables such as an age group between 20 and 30, Asian ancestry, male
gender and so on, the chance of finding samples that satisfy these assignments
becomes vanishingly small.

Thus, sampling for inference is a method that provides acceptable results in low
dimensions. However, as the number of dimensions increases, or if the sampled
assignments have a low probability, we'll need to turn to more efficient methods
for inference.

The Markov Chain Monte Carlo sampling
process
So far in our sampling methods, we have entertained the idea that each sample is
independent. We can think of a dartboard as the surface we wish to sample, and each
random sample is a hole left by a dart thrown at the dartboard.

We know that some of the sampling methods we have learned so far are quite
inefficient, and therefore, designing efficient methods of sampling are critical to infer
any statistics from distributions that are hard to sample from.

We can use an iterative sampling process called Markov Chain Monte Carlo
(MCMC). Using the dartboard analogy again, consider a grasshopper that is hopping
on the dartboard. Every new spot the grasshopper jumps on can be considered a
new sample. Samples drawn using such an iterative process are not independent and
correlated with each other; however, we can encourage the grasshopper to proceed
to the area where the samples of our interest lie.

We digress a bit to learn about a few properties of Markov chains before we learn
about MCMC.

The Markov property
The Markov property states that if we have a sequence of states 1y to ky , then the
transitioning to state 1k + depends solely on the state k . This is known as the first
order Markov property.

Chapter 7

[139]

The Markov chain
To understand a Markov chain, let's take the case of our friendly grasshopper.

The grasshopper has five stashes of food of varying sizes and constantly wanders
around from one stash to another. Each transition (say from stash 1 to stash 2) has
a probability associated with it, and there are also self-transitions (the grasshopper
might start at stash 1, wander around, and come back to stash 1).

The following diagram depicts the transitions made by the grasshopper. Each edge
has a non-negative transition probability associated with it.

Stash 5 Stash 1 Stash 3

Stash 2

Stash 4

You may ask the question: what is the probability of finding the grasshopper at
stash 1?

Approximate Inference Methods

[140]

Reaching a steady state
It turns out that if we observe the grasshopper long enough, we'll arrive at what's
called the stationary distribution. If we only observe the grasshopper for a short
time, we can see that it spends 20 percent of the time at stash 1, 30 percent of the
time at stash 2, and so on. However, if you observe the grasshopper long enough,
regardless of which stash the grasshopper starts at, it will settle down to a stationary
distribution, where the probability at time t is almost the same as at time t + 1 (the
stationary distribution is also at the heart of Google's PageRank algorithm, where the
grasshopper is replaced by a web surfer).

The grasshopper is an example of a Markov chain; it defines a transition model
()T x x′→ over all the states x. For all the states, the sum of their transition

probabilities sum up to 1, ()T x x
x

′→∑ is equal to 1.

The transitions from states are defined in a transition matrix, and the eigenvectors
of the transition matrix correspond to the unique stationary distribution over that
set of states.

For a Markov chain to converge to a stationary distribution, it needs to adhere to the
following set of properties:

• It is regular, that is, the probability of travel from any two pairs of states, say
state x to y, in exactly k steps should be greater than 0

• The probability of transiting out of state x should be greater than 0, or there
shouldn't be nodes that you can't transition out of

• All states should have self-transition.

Sampling using a Markov chain
What does building a Markov Chain give us? Using the grasshopper stash
distribution analogy, we can think of our initial beliefs as the uninformative prior
distribution (say, since the grasshopper has five stashes, the probability of finding
the grasshopper at any stash is equal, that is, at 20 percent), and after the Markov
chain achieves convergence (the grasshopper has wandered long enough), we can
draw samples from the true posterior distribution.

Chapter 7

[141]

A logical question at this point is just how long is "walking long enough".
Unfortunately, there is no easy test to determine whether we have reached the
stationary distribution (when we reach the stationary distribution, we can say that
the chain has "mixed"). We can, however, use some statistical tests to find out if a
chain hasn't mixed, and when those tests return negative answers, we can believe
that the chain has indeed mixed.

To sample using a Markov chain, we first let the chain burn-in, which is the period
where we believe the chain has not mixed yet, and once we are convinced that the
mixing has occurred, we can collect samples and compute statistics.

To sum up, sampling using a Markov chain is easy to implement and has good
theoretical properties, but in practice, the algorithm has many tunables. It is
sometimes slow to converge, and determining whether a chain has mixed is a bit
of an art.

Gibbs sampling
The Gibbs chain is a general-purpose sampler from the MCMC stable that can be
used to draw samples from graphical models. This method is applicable when the
conditional distribution of each variable is known or is easy to sample from. We will
demonstrate one step of the sampling procedure in the next table, which describes
the process of moving from one sample (x) to a new sample (x').

We start with a Gibbs distribution, that is, a product of factors, either from a Bayes
network or a Markov network. The state space is the complete set of assignments to
all random variables. The following is the example network that we intend to sample
and contains three random variables that are connected as a V-structure:

1 2 3X X X→ ←

Steps in the Gibbs sampling procedure
The following are the steps involved in the Gibbs sampling procedure:

• Start with the current assignment to all variables
• For j = 1 to number of variables, sample each jX variable, while the other

variables hold their previous values

Approximate Inference Methods

[142]

In the following table, we follow each step of the sampling process for obtaining
one Gibbs sample. We assume that the three random variables 1, 2, 3X X X are binary
valued and the current assignment is { }1 0, 2 0, 3 0X X X= = = . The cells in gray indicate
that the value is fixed from the previous row, and the cell in white is being sampled.

Iteration X1 X2 X3

Starting values (x) 0 0 0
Sample 1| 2 0, 3 0X X X= = 1 0 0 Flip a coin to select a value for

1| 2 0, 3 0X X X= = , we get 1

Sample 2 | 1 1, 3 0X X X= = 1 0 0 Flip a coin to select a value for
2 | 1 1, 3 0X X X= = , we get 0

Sample 3 | 1 1, 3 0X X X= = 1 0 1 Flip a coin to select a value for
3 | 1 1, 3 0X X X= = , we get 1

x' 1 0 1 This is the new Gibbs sample x'

The last row is the new state x', and the preceding table shows a single step of the
Gibbs chain to generate the next state x'.

In summary, the Gibbs chain is the simplest Markov chain for graphical models.
A Gibbs chain may not always be regular, that is, it may not arrive at a stationary
distribution, but under certain conditions (such as positive factors), it is guaranteed
to mix. It is one of the simplest Markov chains for PGMs but is slow to mix,
especially when probabilities are peaked. It is only applicable when we can sample
from a product of factors.

An example of Gibbs sampling
Let's look at a code snippet that compares random sampling and Gibbs sampling in
the Comparing Gibbs and Random Sampling IPython Notebook.

In the following snippet, we'll first understand what it means to arrive at the
stationary distribution for a discrete distribution and what methods we can use to
get there faster.

We'll use the familiar job interview example to anchor the discussion.

The job interview network has five variables, and the joint distribution has 48 rows
(2 x 2 x 3 x 2 x 2, the number of values each variable takes). We are interested in
a marginal distribution over a subset of variables, and we have some observed
evidence too.

Chapter 7

[143]

We are interested in the marginal probability (), , | , ,P Offer Grades Interview Admission Experience
where we have observed the values of the Admission and Experience random variables.

In the following snippet, we use exact inference (Variable Elimination) to determine
the conditional probability, and then print the CPD for the same:

tcpd,bn,skel=getTableCPD()
query={'Offer':'0','Grades':'0','Interview':'0'}
evidence={'Admission':'0','Experience':'0'}
fac=tcpd.condprobve(query,evidence)
df=printdist(fac,bn)
df

The output of the preceding code is as follows:

 Offer Interview Grades Probability

0 0 0 0 0.641455

1 0 0 1 0.029455

2 0 1 0 0.064145

3 0 1 1 0.026182

4 0 2 0 0.000178

5 0 2 1 0.000109

6 1 0 0 0.071273

7 1 0 1 0.003273

8 1 1 0 0.096218

9 1 1 1 0.039273

10 1 2 0 0.017640

11 1 2 1 0.010800

To get the desired distribution, that is, (), , | 0, 0 ,P Offer Grades Interview Admission Experience= =
we first have to draw samples, and reject those that do not satisfy the evidence.

The libpgm library allows us to draw samples using random sampling and Gibbs
sampling. In both cases, we can condition by the evidence ()0, 0Admission Experience= = .

In the following code, we draw 5000 samples using Gibbs and random sampling, and
compare the marginal probabilities that are learned from the samples:

def estimate_distrib(skel,samples):
 learner=PGMLearner()
 #learn the parameters of the network from the samples, given
skeleton
 #returns a new bayes net.

Approximate Inference Methods

[144]

 bayesnet=learner.discrete_mle_estimateparams(skel,samples)
 tablecpd=TableCPDFactorization(bayesnet)
 #run a conditional probability query for
 #P(Offer,Grades,Interview| Admission=0,Experience=0)
 fac=tablecpd.condprobve(query,evidence)
 #create a dataframe listing the marginals
 df2=printdist(fac,bayesnet)
 return df2

#learn the marginals from gibbs samples
def gibbs_marginals(num_samples=5000):
 tcpd,bn,skel=getTableCPD()
 samples=tcpd.gibbssample(evidence,num_samples)
 df2=estimate_distrib(skel,samples)
 return df2['probability']

#learn the marginals from random samples
def random_sample_marginals(num_samples=5000):
 tcpd,bn,skel=getTableCPD()
 samples=bn.randomsample(num_samples,evidence)
 df2=estimate_distrib(skel,samples)
 return df2['probability']

df['prob from gibbs']=gibbs_marginals()
df['prob from random samples']=random_sample_marginals()
df

The output of the preceding code is as follows:

Offer Interview Grades probability P: Gibbs P: random samples

0 0 0 0 0.641455 0.645444 0.078557

1 0 0 1 0.029455 0.025156 0.113443

2 0 1 0 0.064145 0.065997 0.058145

3 0 1 1 0.026182 0.026203 0.008655

4 0 2 0 0.000178 0.000000 0.013869

5 0 2 1 0.000109 0.000000 0.028531

6 1 0 0 0.071273 0.072956 0.048443

7 1 0 1 0.003273 0.002844 0.069957

8 1 1 0 0.096218 0.096203 0.504855

9 1 1 1 0.039273 0.038197 0.075145

10 1 2 0 0.017640 0.016400 0.000131

11 1 2 1 0.010800 0.010600 0.000269

Chapter 7

[145]

The last three columns list the true probability (obtained from exact inference), the
probability from Gibbs samples, and the probability from random samples. We
can see that the probabilities from Gibbs samples are reasonably close to the true
marginal values, and the random samples differ quite a bit from the true probability.

It is obvious that Gibbs sampling is a much more efficient sampling process than
random sampling. Yet, for larger dimensions, Gibbs sampling will also struggle to
obtain the marginal values that are close to the true marginal values.

Summary
In this chapter, we've learned the approach to solve problems that were deemed
intractable by exact inference. The first method was inference as optimization, one of
which was based on message passing.

The second method we studied was the particle-based inference (also called
sampling). We learned how sampling struggles once the dimensions increase, and
we also learned methods such as MCMC that allow us to use samples to get to the
desired posterior distribution.

References

Chapter 1
• For the Bayes rule example on athletes using drugs, visit http://www.

zweigmedia.com/RealWorld/tutorialsf3/frames6_6.html.
• Sargur Srihari. Querying Joint Probability Distributions (http://www.cedar.

buffalo.edu/~srihari/CSE574/Chap8/Ch8-PGM-Directed/8.1.2-
QueryingProbabilityDistributions.pdf).

Chapter 2
• For Libpgm, visit https://pypi.python.org/pypi/libpgm

Chapter 3
• The Coursera PGM course can be accessed at https://www.coursera.org/

course/pgm

Chapter 4
• Yang Zhou. Structure Learning of Probabilistic Graphical Models: A Comprehensive

Survey (http://arxiv.org/pdf/1111.6925.pdf).
• Cassio P. de Campos, Zhi Zengat, and Qiang Ji. Structure Learning of Bayesian

Networks using Constraints (http://www.machinelearning.org/archive/
icml2009/papers/246.pdf).

References

[148]

• BNFinder project location at http://bioputer.mimuw.edu.pl/software/
bnf/.

• K. Sachs, O. Perez, D. Pe'er, D. Lauffenburger, and G. Nolan. "Causal Protein-
Signaling Networks Derived from Multiparameter Single-Cell Data" (http://
www.c2b2.columbia.edu/danapeerlab/html/pub/science2005.pdf).

Chapter 5
• PyMC documentation at http://pymc-devs.github.io/pymc/.
• Probabilistic Programming & Bayesian Methods for Hackers at http://

camdavidsonpilon.github.io/Probabilistic-Programming-and-
Bayesian-Methods-for-Hackers/.

• Chapters on Parameter Estimation, Probabilistic Graphical Models. Daphne Koller
and Nir Friedman, The MIT Press.

Chapter 6
• Inference in Belief Networks: A Procedural Guide. Huang and Darwiche (the

junction tree algorithm) at http://www.cs.iastate.edu/~honavar/
bayes2.pdf.

• DAGs, I-Maps, Factorization, d-Separation, Minimal I-Maps, Bayesian Networks.
Nir Friedman (http://classes.soe.ucsc.edu/cmps290c/Spring04/paps/
nir2.pdf).

• Bayesian Belief networks project page at https://github.com/eBay/
bayesian-belief-networks.

Chapter 7
• For information on OpenGM, visit https://github.com/opengm/opengm.
• Loopy Belief Propagation for Approximate Inference: An Empirical Study.

Kevin P. Murphy, Yair Weiss, and Michael I. Jordan (http://www.cs.ubc.
ca/~murphyk/Papers/loopy_uai99.pdf).

Appendix

[149]

Other references
• Machine Learning, A Probabilistic Perspective. Kevin Murphy.
• Probabilistic Graphical Models. Daphne Koller and Nir Friedman.
• Coursera PGM course at https://www.coursera.org/course/pgm.
• Bayesian Artificial Intelligence. Kevin B. Korb and Ann E. Nicholson at http://

www.csse.monash.edu.au/bai/book/about.php.

Index
A
accept-reject sampling method 137, 138
active trails, Markov network 45
Akaike information criterion (AIC) 62
alarm.csv file 57
approximate inference methods

LBP algorithm 125
optimization 121-122
sampling-based methods 136

Asia network
about 94
URL 94

B
Bayesian Belief Network (BBN)

about 112
URL, for documentation 112

Bayesian information criterion. See BIC
Bayesian Interchange Format (BIF) 64, 112
Bayesian interpretation 11
Bayesian parameter estimation

about 79, 80
example 80-85
example, for Bayes network 85-91
for Bayes network 85

Bayesian score 63-68
Bayes network

about 23
chain rule 24

Bayes rule 9-11
belief propagation algorithm 122
BIC 62
BIC score 62
BNFinder tool 63

brute-force method
about 100
shortcomings 100

C
causal reasoning 25, 26
chain rule 24
clique 19, 109
clique tree-message passing algorithm. See

junction tree algorithm
cluster graph

about 110
creating, for LBP 123
example 123, 124
family preservation 123
intersection property 123

CompletedDirichlet variable 87
complexity, Variable Elimination algorithm

eliminating 106, 107
conditional independence 15
conditional probability 9
conditional probability

distribution (CPD) 23
Conditional Random Field. See CRF
constraint-based structure learning

subset, finding of random variables 52, 53
summary 60
undirected edges, converting 54-60
undirected graph, creating 54

convergence, LBP
performance, optimizing 126

correlated features
issues, in structured prediction 46

Coursera PGM course
URL 107

[152]

CRF
about 46
example 47, 48
representation 46, 47

cycle 20

D
data fragmentation

about 77
effecting, on parameter estimation 77, 78

Deterministic variable 81
Directed Acyclic Graph (DAG) 20
Dirichlet stochastic variable 87
discrete distribution 6
D-separation

about 29, 31
example 31, 32
V-structure, blocking 33
V-structure, unblocking 33

E
edge 19
eliminated variable 102
evidential reasoning 27

F
factorization

about 34, 43, 44
and independence 48

factor marginalization 97-100
factor product 100, 102
factor reduction

about 98-100
brute-force method, shortcomings 100
calculating, Variable Elimination algorithm

used 100-106
Factors

manipulating 100
fill edges 108
flow of influence 44
forward sampling

about 136, 137
procedure 137

Frequentist interpretation 11

G
Gaussian distribution 7
Gibbs distribution 41, 42
Gibbs sampling

about 141
example 142-145
steps 141, 142

graph structure
about 107-109
graph-structured network 122
induced width 109
tree-structured network 122
VE ordering 110

graph terminology 19, 20
graphviz 113
grid2d2Order method 129

H
Hidden Markov Models (HMMs) 46

I
image segmentation

about 126
energy-based models 128
Markov network, creating 129
model, creating 130-134
performing, LBP used 126, 127
unary and pairwise factors, visualizing

on 3 x 3 grid 129, 130
I-map 34, 35
independence

about 14, 15, 20-23
and factorization 48
conditional independence 15

Independency map. See I-map
independent and identically distributed

(i.i.d.) 70
independent parameters 20-23
Induced Markov network 43, 108
induced width 109
inference

about 94
complexity 93, 94
real-world issues 94

[153]

installation, Python 20
inter-causal reasoning 27, 28
interpretations of probability

about 11, 12
Bayesian interpretation 11
Frequentist interpretation 11

J
joint distribution 14
junction tree algorithm

about 110
join tree, building 114, 115
message passing 115-118
moralization 113
potentials, initializing 115
stages 111
triangulation 114
using, for inference 112, 113

L
LBP algorithm

about 125
applications 135
applying, to image segmentation 126, 127
convergence, improving 126
steps 125

libpgm library
about 102, 143
URL, for installation 20

likelihood function 71
likelihood score 61, 62

M
MAP 16, 134
MAP queries 16, 17
marginal distribution 13
Markov chain

about 139
used, for sampling 140, 141

Markov Chain Monte Carlo (MCMC) 82
Markov chain Monte Carlo sampling

process. See MCMC sampling process
Markov network

about 39-41
active trails 45

flow of influence 44
induced Markov network 43
pairwise Markov network 39-41
separation 45

Markov property 138
Maximum a posteriori. See MAP
maximum likelihood estimate. See MLE
MCMC sampling process

about 138
Markov chain 139
Markov chain, used for sampling 140, 141
Markov property 138
steady state, reaching 140

message passing 110, 115-119, 124
message passing algorithm 110
Minimum description length (MDL) 62
MLE

about 70
used, for parameter estimation in Bayes

network 74, 75
moralization, junction tree algorithm 113
Multinomial variable 87

N
Naive Bayes example 36, 37
nodes 19

O
OpenGM

about 127
URL 126

optimization, approximate inference
about 122
belief propagation algorithm 122
cluster graph, creating for LBP 123
constrained optimization 122
message passing, in LBP 124, 125

P
pairwise Markov network 39-41
parameter estimation

Bayesian parameter estimation 79, 80
data fragmentation, effecting on 77, 78
using MLE, for Bayes network 74, 75

[154]

parameter learning. See also parameter
estimation

about 69-71
example 72, 73
example, using MLE for Bayes

network 75, 76
Partially Directed Acyclic

Graph (PDAG) 20
Part of Speech tagging (POS tagging) 46
Perfect map. See P-map
performance-enhancing drugs (PEDs) 10
PGM

references 147, 148
structure learning 51, 52

P-map 34
potentials, junction tree algorithm

initializing 115
probabilistic inference

goals 8
probability

about 5
axioms 6
conditional probability 9

probability distribution
about 6
discrete distributions 6
Gaussian distribution 7
uniform distribution 7

probability queries
about 16
evidence 16
query 16

propagate() method 116
PyMC variables, types

Deterministic 81
Stochastic 81

Python
installation 20

Q
queries 16
queries, types

MAP queries 16, 17
probability queries 16

R
random variables 13
reasoning, types

causal reasoning 25, 26
evidential reasoning 27
inter-causal reasoning 27, 28

S
sampling

performing, Markov chain used 140
sampling-based methods

about 136
accept-reject sampling method 137, 138
forward sampling 136, 137
Gibbs sampling 141
Markov chain Monte Carlo

sampling process 138
scipy

URL, for installation 20
score-based learning

about 60
Bayesian score 63-68
BIC score 62
likelihood score 61, 62
summary 68

separation, Markov network 45
Separation Set (sepset) 110
Stan

about 94
URL 94

Stochastic variable 81
structured prediction

about 45, 46
correlated features, issues 46
CRF, example 47, 48
CRF, representation 46, 47

structure learning
about 51, 52
constraint-based structure learning 52
overview 52
score-based learning 60

sufficient statistics 71
sum-product operation 106

[155]

T
Term Frequency-Inverse Document

Frequency (Tfidf) 36
tree algorithm

about 110
junction tree algorithm 110

triangulation, junction tree algorithm 114

U
uniform distribution 7

V
Variable Elimination algorithm

complexity 106
complexity, eliminating 106, 107

factor marginalization 97, 98
factor reduction 98, 99
graph structure 107-109
used, for calculating factor

reduction 100-106
using 94-97

VE ordering
finding 110

vertices. See nodes
V-structure

about 30
blocking 33
unblocking 33

Thank you for buying
Building Probabilistic Graphical Models

with Python

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

[158]

Mastering Python Regular
Expressions
ISBN: 978-1-78328-315-6 Paperback: 110 pages

Leverage regular expressions in Python even for the
most complex features

1. Explore the workings of Regular Expressions
in Python.

2. Learn all about optimizing regular expressions
using RegexBuddy.

3. Full of practical and step-by-step examples,
tips for performance, and solutions for
performance-related problems faced by users
all over the world.

Parallel Programming with Python
ISBN: 978-1-78328-839-7 Paperback: 107 pages

Develop efficient parallel systems using the robust
Python environment

1. Demonstrates the concepts of Python
parallel programming.

2. Boosts your Python computing capabilities.

3. Contains easy-to-understand explanations and
plenty of examples.

Please check www.PacktPub.com for information on our titles

[159]

Python 2.6 Graphics Cookbook
ISBN: 978-1-84951-384-5 Paperback: 260 pages

Over 100 great recipes for creating and animating
graphics using Python

1. Create captivating graphics with ease and bring
them to life using Python.

2. Apply effects to your graphics using powerful
Python methods.

3. Develop vector as well as raster graphics
and combine them to create wonders in the
animation world.

4. Create interactive GUIs to make your creation
of graphics simpler.

Machine Learning with R
ISBN: 978-1-78216-214-8 Paperback: 396 pages

Learn how to use R to apply powerful machine
learning methods and gain an insight into
real-world applications

1. Harness the power of R for statistical
computing and data science.

2. Use R to apply common machine learning
algorithms with real-world applications.

3. Prepare, examine, and visualize data
for analysis.

4. Understand how to choose between machine
learning models.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Probability
	The theory of probability
	Goals of probabilistic inference
	Conditional probability
	The chain rule
	The Bayes rule
	Interpretations of probability
	Random variables
	Marginal distribution
	Joint distribution
	Independence
	Conditional independence
	Types of queries
	Probability queries
	MAP queries

	Summary

	Chapter 2: Directed Graphical Models
	Graph terminology
	Python digression

	Independence and independent parameters
	The Bayes network
	The chain rule

	Reasoning patterns
	Causal reasoning
	Evidential reasoning
	Inter-causal reasoning

	D-separation
	The D-separation example
	Blocking and unblocking a V-structure

	Factorization and I-maps
	The Naive Bayes model
	The Naïve Bayes example

	Summary

	Chapter 3: Undirected Graphical Models
	Pairwise Markov networks
	The Gibbs distribution
	An induced Markov network
	Factorization
	Flow of influence
	Active trail and separation
	Structured prediction
	Problem of correlated features
	The CRF representation
	The CRF example

	The factorization-independence tango
	Summary

	Chapter 4: Structure Learning
	The structure learning landscape
	Constraint-based structure learning
	Part I
	Part II
	Part III
	Summary of constraint-based approaches

	Score-based learning
	The likelihood score
	The Bayesian information criterion score
	The Bayesian score

	Summary of score-based learning

	Summary

	Chapter 5: Parameter Learning
	The likelihood function
	Parameter learning example using MLE
	MLE for Bayesian networks
	Bayesian parameter learning example using MLE
	Data fragmentation
	Effect of data fragmentation on parameter estimation
	Bayesian parameter estimation
	An example of Bayesian methods for parameter learning

	Bayesian estimation for the
Bayesian network
	Example of Bayesian estimation
	Summary

	Chapter 6: Exact Inference Using Graphical Models
	Complexity of inference
	Real-world issues

	Using the Variable Elimination algorithm
	Marginalizing factors that are not relevant
	Factor reduction to filter on evidence
	Shortcomings of the brute-force approach
	Using the Variable Elimination approach

	Complexity of Variable Elimination
	Graph perspective
	Learning the induced width from the graph structure

	The tree algorithm
	The four stages of the junction tree algorithm
	Using the junction tree algorithm for inference
	Stage 1.1 – moralization
	Stage 1.2 – triangulation
	Stage 1.3 – building the join tree
	Stage 2 – initializing potentials
	Stage 3 – message passing

	Summary

	Chapter 7: Approximate Inference Methods
	The optimization perspective
	Belief propagation on general graphs
	Creating a cluster graph to run LBP
	Message passing in LBP

	Steps in the LBP algorithm
	Improving the convergence of LBP
	Applying LBP to segment an image
	Understanding energy-based models
	Visualizing unary and pairwise factors on
a 3 x 3 grid
	Creating the model for image segmentation

	Applications of LBP

	Sampling-based methods
	Forward sampling
	The accept-reject sampling method
	The Markov Chain Monte Carlo sampling process
	The Markov property
	The Markov chain
	Reaching a steady state
	Sampling using a Markov chain

	Gibbs sampling
	Steps in the Gibbs sampling procedure
	An example of Gibbs sampling

	Summary

	Appendix: References
	Index

