

ArcPy and ArcGIS – Geospatial
Analysis with Python

Use the ArcPy module to automate the analysis and
mapping of geospatial data in ArcGIS

Silas Toms

BIRMINGHAM - MUMBAI

ArcPy and ArcGIS – Geospatial Analysis with Python

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2015

Production reference: 1210215

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-866-2

www.packtpub.com

Credits

Author
Silas Toms

Reviewers
Alessio Di Lorenzo

Dara O'Beirne

Mark Pazolli

Marjorie Roswell

Commissioning Editor
Ashwin Nair

Acquisition Editor
Harsha Bharwani

Content Development Editor
Akashdeep Kundu

Technical Editor
Deepti Tuscano

Copy Editors
Aarti Saldanha

Adithi Shetty

Project Coordinator
Milton Dsouza

Proofreaders
Simran Bhogal

Joanna McMahon

Bernadette Watkins

Indexer
Priya Sane

Production Coordinator
Alwin Roy

Cover Work
Alwin Roy

About the Author

Silas Toms is a geospatial programmer and analyst with a love of geography,
history, food, and sports. He resides in the San Francisco Bay Area and can't
decide which side of the Bay is more beautiful. He received a bachelor's degree in
Geography from Humboldt State University and is currently pursuing a master's
degree in GIS at San Francisco State University. With a background in GIS analysis
for city governments and environmental consulting, Silas loves the combination of
GIS and Python for analysis automation and data manipulation.

Working for Arini Geographics, Silas is helping governments understand how GIS
can organize and simplify the management of infrastructure and the environment.
This dual role as a programmer and analyst allows him to use Python and GIS to
quickly produce geospatial data and tools. Combined with web mapping, these
tools are transforming how governments work to serve the public. He also teaches
workshops on ArcPy and web mapping at the City College of San Francisco, while
hoping to one day finish his master's thesis.

Silas has worked as a reviewer on the book Python Geospatial Analysis, Packt
Publishing and is working on the book Python Geospatial Development, Packt Publishing
to be published in 2015.

I would like to thank my girlfriend, Christine, for her encouragement
and patience. I would like to thank my boss, Gabriel Paun, for his
inspiration and for pushing me to become a true GIS professional. I
would like to thank the faculty at HSU and SFSU for their help along
the way, and I would like to thank my family for their belief in me
and for never asking me if I was going to become a teacher with my
geography degree (even though I have and I love it!).

About the Reviewers

Alessio Di Lorenzo is a marine biologist and has an MSc in Geographical
Information Systems (GIS) and Remote Sensing. Since 2006, he has been dealing with
the analysis and development of GIS applications dedicated to the study and spread
of environmental and epidemiological data. He is experienced in the use of the main
proprietary and open source GIS software and programming languages.

Dara O'Beirne is a certified GIS Professional (GISP) with over eight years of GIS
and Python experience. Dara earned both his Bachelors and Masters of Arts degrees
in geography from San Francisco State University. Dara is currently a GIS Analyst
working at Arini Geographics in Santa Clara, CA. Before joining Arini Geographics,
Dara was a GIS Analyst and technical lead at Towill Inc., a GIS and Land Surveying
company in Northern California. At Towill, Dara played a central role in developing
and implementing procedures related to the collection and analysis of LiDAR data
for environmental and engineering applications. Prior to Towill, Dara gained his
professional GIS experience working for the Golden Gate National Recreation Area
managed by the National Park Service, one of the largest urban park systems in
the world, which includes National treasures, such as Alcatraz, Muir Woods, and
the Marin Headlands. His Master's Thesis examined the errors associated with
measuring tree heights in an urban environment with both traditional field methods
and airborne LiDAR data.

I would like to thank my wife, Kate, and daughter, Anya O'Beirne,
for their patience and assistance during the review of this book.

Marjorie Roswell is a web developer and map maker from Baltimore, MD. She
purchased her first GIS in 1991, and built an application to assist citizen callers to the
Baltimore Office of Recycling. Recent projects include interactive maps of legislative
scores, political endorsements, committees, election data, and advocacy interests.

Her site http://committeemaps.org/ details Congressional committee
membership, while the site http://farmbillprimer.org/ is devoted to mapping
and charting federal food and farm policy.

Marjorie is the author of Drupal 5 Views Recipes, Packt Publishing. She was the technical
reviewer of jQuery UI 1.10, The User Interface Library for jQuery, Packt Publishing.

Mark Pazolli is an engineer and data scientist who uses ArcGIS and Python to help
his employers decipher the mountains of data they keep on the assets of the Western
Australian electrical network. He has qualifications in Electrical Engineering,
Computer Science, and Applied Mathematics. He appreciates excellent design and
enjoys building interesting things.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on
Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

Table of Contents
Preface	 1
Chapter 1: Introduction to Python for ArcGIS	 7

Overview of Python	 7
Python as a programming language	 8

Interpreted language	 8
Standard (built-in) library	 9
The glue language	 9
Wrapper modules	 9
The basics of Python	 10

Import statements	 11
Variables	 12
For loops	 13
If/Elif/Else statements	 14
While statements	 14
Comments	 15

Data types	 15
Strings	 16
Integers	 16
Floats	 17
Lists	 17
Tuples	 18
Dictionaries	 18
Iterable data types	 19

Other important concepts	 20
Indentation	 20
Functions	 21
Keywords	 21
Namespaces	 21
Zero-based indexing	 22

Table of Contents

[ii]

Important Python Modules for GIS Analysis	 22
The ArcPy module	 22
The Operating System (OS) module	 23
The Python System (SYS) module	 23
The XLRD and XLWT modules	 23
Commonly used built-in functions	 24
Commonly used standard library modules	 24

Summary	 24
Chapter 2: Configuring the Python Environment	 25

What is a Python script?	 25
How Python executes a script	 26

What is the Python interpreter?	 26
Where is the Python interpreter located?	 27
Which Python interpreter should be used?	 27
How does the computer know where the interpreter is?	 28

Make Python scripts executable when clicked on	 29
Integrated Development Environments	 30

IDLE	 30
PythonWin	 31
Aptana Studio 3	 33
IDE summary	 35

Python folder structure	 36
Where modules reside	 37
Using Python's sys module to add a module	 37

The sys.path.append() method	 38
Summary	 39

Chapter 3: Creating the First Python Script	 41
Prerequisites	 41

ModelBuilder	 42
Creating a model and exporting to Python	 42

Modeling the Select and Buffer tools	 43
Adding the Intersect tool	 44
Tallying the analysis results	 45

Exporting the model and adjusting the script	 46
The automatically generated script	 46

File paths in Python	 48
Continuing the script analysis: the ArcPy tools	 49

The Intersect tool and string manipulation	 50
The string manipulation method 1–string addition	 51
The string manipulation method 2–string formatting #1	 52
The string manipulation method 3–string formatting #2 	 53

Table of Contents

[iii]

Adjusting the Script	 54
Adding the CSV module to the script	 54

Accessing the data: Using a cursor	 55
The final script	 57
Summary	 59

Chapter 4: Complex ArcPy Scripts and Generalizing Functions	 61
Python functions–Avoid repeating code	 61

Technical definition of functions	 62
A first function	 63
Functions with parameters	 63
Using functions to replace repetitive code	 65
More generalization of the functions	 74

Summary	 80
Chapter 5: ArcPy Cursors – Search, Insert, and Update	 81

The data access module	 82
Attribute field interactions	 85
Update cursors	 86
Updating the shape field	 87
Adjusting a point location	 87
Deleting a row using an Update Cursor	 88
Using an Insert Cursor	 89

Inserting a polyline geometry	 90
Inserting a polygon geometry	 91
Summary	 93

Chapter 6: Working with ArcPy Geometry Objects	 95
ArcPy geometry object classes	 96

ArcPy Point objects	 97
ArcPy Array objects	 98
ArcPy Polyline objects	 99
ArcPy Polygon objects	 100

Polygon object buffers	 101
Other Polygon object methods	 102

ArcPy geometry objects	 103
ArcPy PointGeometry objects	 104

Summary	 107
Chapter 7: Creating a Script Tool	 109

Adding dynamic parameters to a script	 109
Displaying script messages using arcpy.AddMessage	 110
Adding dynamic components to the script	 111

Table of Contents

[iv]

Creating a Script tool	 112
Labelling and defining parameters 	 115

Adding data types	 116
Adding the Bus Stop feature class as a parameter	 117
Adding the Census Block feature class as a parameter	 118
Adding the Census Block field as a parameter	 118
Adding the output spreadsheet as a parameter	 119
Adding the spreadsheet field names as a parameter	 120
Adding the SQL Statement as a parameter	 121
Adding the bus stop fields as a parameter	 122

Inspecting the final script	 123
Running the Script Tool	 125

Summary	 126
Chapter 8: Introduction to ArcPy.Mapping	 127

Using ArcPy with map documents	 128
Inspecting and replacing layer sources	 128

Fixing the broken links	 129
Fixing the links of individual layers	 130
Exporting to PDF from an MXD	 131
Adjusting map document elements	 131

Automated map document adjustment	 135
The variables	 138
The map document object and the text elements	 138

The layer objects	 139
Replacing the data sources	 140

Adjusting layer visibility	 140
Generating a buffer from the bus stops feature class	 141
Intersecting the bus stop buffer and census blocks	 141

Populating the selected bus stop and buffer feature classes	 142
Updating the text elements	 143

Exporting the adjusted map to PDF	 143
Running the script in the Python Window	 144
Summary	 145

Chapter 9: More ArcPy.Mapping Techniques	 147
Using arcpy.mapping to control Layer objects	 147

Layer object methods and properties	 148
Definition queries	 149
Controlling the data frame window extent and scale	 152

Adding a Layer object	 153
Exporting the maps	 154

Summary	 156

Table of Contents

[v]

Chapter 10: Advanced Geometry Object Methods	 157
Creating a Python module	 157

The __init__.py file	 158
Adding advanced analysis components	 161

Advanced Polygon object methods	 161
Generating random points to represent population	 163
Using the functions within a script	 164
Creating an XLS using XLWT	 170

Summary	 173
Chapter 11: Network Analyst and Spatial Analyst with ArcPy	 175

The Network Analyst extension	 175
Using Network Analyst	 176

Creating a Feature Dataset	 176
Importing the datasets	 177
Creating the Network Dataset	 178
Accessing the Network Dataset using ArcPy	 179

Breaking down the script	 179
The Network Analyst module	 181
Accessing the Spatial Analyst Extension	 182

Adding elevation to the bus stops	 183
Using Map Algebra to generate elevation in feet	 184
Adding in the bus stops and getting elevation values	 184

The final result	 185
Summary	 186

Chapter 12: The End of the Beginning	 187
Getting field information from feature classes	 187

Accessing the ListFields' properties	 188
List comprehensions	 188

Creating the field information functions	 189
Querying feature class information	 191
Generating File Geodatabases and feature classes	 193
Generating a feature class	 194
Setting up the script tool parameters	 196
Environmental settings	 199

Resolution and tolerance settings	 199
Summary	 200

Index	 201

Preface
ArcGIS, the GIS software from industry leader ESRI, allows for the analysis and
presentation of geospatial data.

The integration of Python into ArcGIS has made the ArcPy module an important
tool for GIS students and professionals. The ArcPy module provides a powerful way
to improve productivity when performing geospatial analysis. From basic Python
scripting through advanced ArcPy methods and properties, ArcPy and other Python
modules will improve the speed and repeatability of any GIS work flow.

This book will guide you from basic Python scripting to advanced scripting tools.
It focuses on geospatial analysis scripting and touches on automating cartographic
output. By the end of this book, you will be able to create reusable modules, add
repeatable analyses as script tools in ArcToolbox, and export maps automatically. By
reducing the time-consuming nature of GIS from days to hours, one GIS professional
can become as powerful as a whole team.

What this book covers
Chapter 1, Introduction to Python for ArcGIS, offers a quick introduction to the basics of
Python, including other uses for the programming language. It covers Python data
types and important modules used throughout the book.

Chapter 2, Configuring the Python Environment, is an introduction to how Python
works: its folder structure, executables, and modules. It also explains importing
modules into scripts, the built-in modules, and covers Integrated Development
Environments (IDEs), which are powerful programming aids.

Chapter 3, Creating the First Python Script, demonstrates how to use ArcGIS
ModelBuilder to model the first analysis and then export it as a Python script.
String manipulations and how to use file paths in Python are also introduced.

Preface

[2]

Chapter 4, Complex ArcPy Scripts and Generalizing Functions, examines how to perform
analyses and produce outputs that are not possible using ModelBuilder. By using
functions, or reusable code blocks, repeating code is avoided.

Chapter 5, ArcPy Cursors – Search, Insert, and Update, covers ArcPy data access cursors
and how they are used to search, update, or insert records in feature classes and
tables. It explains the quirks of iterating using cursors, and how to only select or
update the records of interest.

Chapter 6, Working with ArcPy Geometry Objects, explores ArcPy Geometry objects
and how they are combined with cursors to perform spatial analysis. It demonstrates
how to buffer, clip, reproject, and more using the data cursors and the Arcpy
geometry types without using ArcToolbox.

Chapter 7, Creating a Script Tool, explains how to make scripts into tools that appear
in ArcToolbox and are dynamic in nature. It explains how the tools and scripts
communicate and how to set up the ArcTool dialog to correctly pass parameters to
the script.

Chapter 8, Introduction to ArcPy.Mapping, explores the powerful Arcpy.Mapping
module and how to fix broken layer links, turn layers on and off, and dynamically
adjust titles and text. It shows how to create dynamic map output based on a
geospatial analysis.

Chapter 9, More ArcPy.Mapping Techniques, introduces Layer objects, and their
methods and properties. It demonstrates how to control map scales and extents
for data frames, and covers automated map export.

Chapter 10, Advanced Geometry Object Methods, expands on the ArcPy Geometry
object methods and properties. It also explains how to create a module to save code
for reuse in subsequent scripts, and demonstrates how to create Excel spreadsheets
containing results from a geospatial analysis.

Chapter 11, Network Analyst and Spatial Analyst with ArcPy, introduces the basics of
using ArcPy for advanced geospatial analysis using the ArcGIS for Desktop Network
Analyst and Spatial Analyst Extensions.

Chapter 12, The End of the Beginning, covers other important topics that need to be
understood to have a full grasp of ArcPy. These topics include the Environment
Settings, XY values and Z and M resolutions, Spatial Reference Systems (Projections),
the Describe functions, and more.

Preface

[3]

What you need for this book
You will need the proprietary or free version of ArcGIS 10.1/10.2/10.3. To support
your environment, you will need 2GB RAM, 32-bit or 64 bit machine hardware
configuration, and Windows 7/8. Python 2.7 is required to do the programming and
is installed along with ArcGIS.

Who this book is for
This book is intended for GIS students and professionals who need an understanding
of how to use ArcPy to reduce repetitive tasks and perform analysis faster. It is also
a valuable book for Python programmers who would like to understand how to
automate geospatial analysis using the industry standard ArcGIS software and its
ArcPy module.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The two data pieces, the BusStopID and the averatePop variable are then added
to a list."

A block of code is set as follows:

with arcpy.da.SearchCursor(Intersect71Census, ["STOPID","POP10"]) as
cursor:
 for row in cursor:
 busStopID = row[0]
 pop10 = row[1]
 if busStopID not in dataDictionary.keys():
 dataDictionary[busStopID] = [pop10]
 else:
 dataDictionary[busStopID].append(pop10)

Any command-line input or output is written as follows:

>>> aString = "This is a string"

>>> bString = " and this is another string"

>>> aString + bString

Preface

[4]

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Select it by clicking on it, and then clicking on the Edit button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[5]

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from http://www.packtpub.com/
sites/default/files/downloads/8662OS_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Introduction to Python
for ArcGIS

In this chapter, we will discuss the development of Python as a programming
language, from its beginning in the late 1980s to its current state. We will discuss the
philosophy of design that spurred its development, and touch on important modules
that will be used throughout the book, especially focusing on the modules built into
the Python standard library. This overview of the language and its features will help
explain what makes Python a great language for ArcGIS automation.

This chapter will cover:

•	 A quick overview of Python: What it is and does, who created it, and
where it is now

•	 The ArcPy module and other important modules
•	 Python as a general purpose programming language

Overview of Python
Python, created by Guido van Rossum in 1989, was named after his favorite comedy
troupe, Monty Python. His work group at the time had a tradition of naming
programs after TV shows, and he wanted something irreverent and different from
its predecessors - ABC, Pascal, Ada, Eiffel, FORTRAN, and others. So he settled on
Python, feeling it was a bit edgy and catchy as well. It's certainly more fun to say
than C, the language on which Python is based.

Introduction to Python for ArcGIS

[8]

Today, Python is a major programming language. It is used in web development,
database administration, and even to program robots. Most importantly to GIS
Analysts, Python can be used to control ArcGIS tools and Map Documents to
produce geospatial data and maps in an organized and speedy manner using the
excellent ArcPy module.

ArcPy is installed with ArcGIS for desktop and ArcGIS for server. ArcPy has been
the official ArcGIS scripting language since ArcGIS 10.0 and has steadily improved
in functionality and implementation. This book will target ArcGIS for Desktop
10.1 and later, and will demonstrate how to make use of Python and its powerful
programming libraries (or modules) when crafting complex geospatial analyses.

Python as a programming language
Over the past 40 years, programming languages have developed from assembly
and machine code towards high-level abstracted languages that are much closer to
English. The Python programming language was designed to overcome many issues
that programmers were complaining about in the 1980s: slow development time,
overly complicated syntax, and horrible readability. Van Rossum wanted to develop
a language that could enable rapid code development and testing, have simple or at
least readable) syntax, and produce results with fewer lines of code, in less time. The
first version of Python (0.9.0) was released in 1991 and was freely obtainable from the
start; Python was open source before the term open source was invented.

Interpreted language
Python is an interpreted language. It is written in C, a compiled language, and the code
is interpreted from Python into C before it is executed. Practically, this means that the
code is executed as soon as it is converted and compiled. While code interpretation
can have speed implications for the execution of Python-based programs, the faster
development time allowed by Python makes this drawback easy to ignore. Testing
of code snippets is much faster in an interpretive environment, and it is perfect to
create scripts to automate basic, repeatable computing tasks. Python scripts have
the .py extentions. Once the code has been interpreted, a second Python script (with
the .pyc extentions) is generated to save the compiled code. The .pyc script will be
automatically recompiled when changes are made in the original .py script.

Chapter 1

[9]

Standard (built-in) library
Python, when installed, has a basic set of functionality that is referred to as the
standard library. These tools allow Python to perform string manipulations, math
computations, and HTTP calls and URL parsing, along with many other functions.
Some of the tool libraries, known to Python programmers as modules, are built-in
and available as soon as Python is started, while others must be explicitly called
using the import keyword to make their functions and classes available. Other
modules have been developed by third parties and can be downloaded and installed
onto the Python installation as needed.

Many new programmers wonder if Python is a real programming language, which
is a loaded question. The answer is yes; Python can be used to create complete
programs, build websites, run computer networks, and much more. The built-in
modules and add-on modules make Python very powerful, and it can be (and has
been) used for nearly any part of a computer—operating systems, databases, web
servers, desktop applications, and so on. It is not always the best choice for the
development of these tools, but that has not stopped programmers from trying and
even succeeding.

The glue language
Python is at its best when it is used as a glue language. This term describes the use
of Python to control other programs, sending inputs to them and collecting outputs,
which are then sent to another program or written to disk. An ArcGIS example
would be to use Python to download zipped shapefiles from a website, unzipping
the files, processing the files using ArcToolbox, and compiling the results into an
Excel spreadsheet. All of this is accomplished using freely available modules that are
either included in Python's standard library, or added when ArcGIS is installed.

Wrapper modules
The ArcPy module is a wrapper module. Wrapper modules are common in Python,
and are so named because they wrap Python onto the tools we will need. They allow
us to use Python to interface with other programs written in C or other programming
languages, using the Application Programming Interface (API) of those programs.
For example, wrappers make it possible to extract data from an Excel spreadsheet and
transform or load the data into another program, such as ArcGIS. Not all modules are
wrappers; some modules are written in pure Python and perform their analysis and
computations using the Python syntax. Either way, the end result is that a computer
and its programs are available to be manipulated and controlled using Python.

Introduction to Python for ArcGIS

[10]

The Zen of Python was created to be straightforward, readable, and simplified,
compared to other languages that existed previously. This governing philosophy
was organized into a poem by Tim Peters, an early Python developer called the Zen
of Python; it is an Easter egg (a hidden feature) included in every Python installation
and is shown when import this is typed in the Python interpreter:

The Zen of Python, by Tim Peters:

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one --obvious way to do

Although that way may not be obvious at first unless you're Dutch.

Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.

Namespaces are one honking great idea -- let's do more of those!

Go to https://www.python.org/doc/humor/
for more information.

The basics of Python
Python has a number of language requirements and conventions that allow for the
control of modules and structuring of code. The following are a number of important
basic concepts, which will be used throughout this book and when crafting scripts
for use with geospatial analyses.

https://www.python.org/doc/humor/
https://www.python.org/doc/humor/
https://www.python.org/doc/humor/

Chapter 1

[11]

Import statements
Import statements are used to augment the power of Python by calling other
modules for use in the script. These modules can be part of the standard Python
library of modules, such as the math module (used to do higher mathematical
calculations) or, importantly, ArcPy, which will allow us to interact with ArcGIS.

Import statements can be located anywhere before the
module is used, but by convention, they are located at the
top of a script.

There are three ways to create an import statement. The first, and most standard, is
to import the whole module as follows:

import arcpy

•	 Using this method, we can even import more than one module on the same
line. The following imports three modules: arcpy, os (the operating system
module), and sys (the Python system module):
import arcpy, os, sys

•	 The next method of importing a script is to import a specific portion of a
module, instead of importing the entire module, using the from <module>
import <submodule> syntax:
from arcpy import mapping

•	 This method is used when only a portion of the code from ArcPy will be
needed; it has the practical effect of limiting the amount of memory used by
the module when it is called. We can also import multiple portions of the
module in the same fashion:
from arcpy import mapping, da

•	 The third way to import a module is the from <module> import
<submodule> syntax, but by using an asterisk to import all parts of
the module:
from arcpy import *

Introduction to Python for ArcGIS

[12]

This last method is still used but it is discouraged as it can have unforeseen
consequences. For instance, the names of the variables in the module might conflict
with another variable in another module if they are not explicitly imported. For this
reason, it is best to avoid this third method. However, lots of existing scripts include
import statements of this type so be aware of these consequences.

Variables
Variables are a part of all programming languages. They are used to reference data
and store it in memory for use later in a script. There are a lot of arguments over the
best method to name variables. No standard has been developed for Python scripting
for ArcGIS. The following are some best practices to use when naming variables.

•	 Make them descriptive: Don't just name a variable x; that variable will
be useless later when the script is reviewed and there is no way to know
what it is used for, or why. They should be longer rather than shorter, and
should hint at the data they reference or even the data type of the object they
reference:
shapefilePath = 'C:/Data/shapefile.shp'

•	 Use camel case to make the variable readable: Camel case is a term used for
variables that start with a lower case letter but have upper case letters in the
middle, resembling a camel's hump:
camelCase = 'this is a string'

•	 Include the data type in the variable name: If the variable contains a string,
call it variableString. This is not required, and will not be used dogmatically
in this book, but it can help organize the script and is helpful for others
who will read these scripts. Python is dynamically typed instead of statically.
A programming language distinction means that a variable does not have
to be declared before it can be used, unlike Visual Basic or other statically
typed languages. This improves the speed of writing a script, but it can be
problematic in long scripts as the data type of a variable will not be obvious.

The ArcGIS does not use camel case when it exports Python
scripts, and many examples will not include it; nevertheless,
it is recommended when writing new scripts. Also, variables
cannot start with a number.

Chapter 1

[13]

For loops
Built into programming languages is the ability to iterate, or perform a repeating
process, over a dataset to transform or extract data that meets specific criteria.
Python's main iteration tool is known as a for loop. The term for loop means that
an operation will loop, or iterate, over the items in a dataset to perform the operation
on each item. The dataset must be iterable to be used in a for loop, a distinction
discussed further ahead.

We will be using for loops throughout this book. Here is a simple example that uses
the Python Interpreter to take string values and print them in an uppercase format,
using a for loop:

>>> newlist = ['a' , 'b' , 'c' , 'd']

>>> for item in newlist:

 print item.upper()

The output is shown as follows:

A

B

C

D

The variable item is a generic variable assigned to each object as it is entered into
the for loop, and not a term required by Python. It could have been x or value
instead. Within the loop, the first object (a) is assigned to the generic variable item
and has the upper string function applied to it to produce the output A. Once this
action has been performed, the next object (b) is assigned to the generic variable
to produce an output. This loop is repeated for all members of the dataset newlist;
once completed, the variable item will still carry the value of the last member of the
dataset (d in this case).

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Introduction to Python for ArcGIS

[14]

If/Elif/Else statements
Conditional statements, called if/else statements in Python, are also standard
in programming languages. They are used when evaluating data; when certain
conditions are met, one action will be taken (the initial if statement; if another
condition is met, another action is taken; this is an elif statement), and if the data
does not meet the condition, a final action is assigned to deal with those cases (the
else statement). These are similar to a where conditional in a SQL statement used
with the Select tool in ArcToolbox. Here is an example of how to use an if/else
statement to evaluate data in a list (a data type discussed further ahead) and find the
remainder when divided using the modulus operator (%) and Python's is equal to
operator (==):

>>> data = [1,2,4,5,6,7,10]

>>> for val in data:

 if val % 2 == 0:

 print val,"no remainder"

 elif val % 3 == 2:

 print val, "remainder of two"

 else:

 print "final case"

The output is shown as follows:

final case

2 no remainder

4 no remainder

5 remainder of two

6 no remainder

final case

10 no remainder

While statements
Another important evaluation tool is the while statement. It is used to perform an
action while a condition is true; when the condition is false, the evaluation will stop.
Note that the condition must become false, or the action will be always performed,
creating an infinite loop that will not stop until the Python interpreter is shut off
externally. Here is an example of using a while loop to perform an action until a true
condition becomes false:

Chapter 1

[15]

>>> x = 0

>>> while x < 5:

 print x

 x+=1

The output is shown as follows:

0

1

2

3

4

Comments
Comments in Python are used to add notes within a script. They are marked by
a pound sign, and are ignored by the Python interpreter when the script is run.
Comments are useful to explain what a code block does when it is executed, or to
add helpful notes that script authors would like future script users to read:

This is a comment

While it is a programming truism that good code is well-commented code, many
programmers skip this valuable step. Also, too many comments can reduce their
usefulness and the script's readability. If variables are descriptive enough, and code
is well-organized, comments are less necessary; writing the code as verbose and as
well-organized as possible will require less time to be spent on comments.

Data types
GIS uses points, lines, polygons, coverages, and rasters to store data. Each of these
GIS data types can be used in different ways when performing an analysis and have
different attributes and traits. Python, similar to GIS, has data types that organize
data. The main data types in Python are strings, integers, floats, lists, tuples, and
dictionaries. They each have their own attributes and traits (or properties), and
are used for specific parts of code automation. There are also built-in functions
that allow for data types to be converted (or casted) from one type to another; for
instance, the integer 1 can be converted to the string 1 using the str() function:

>>> variable = 1

>>> newvar = str(variable)

>>> newvar

Introduction to Python for ArcGIS

[16]

The output is shown as follows:

1

Strings
Strings are used to contain any kind of character. They begin and end with quotation
marks, with either single or double quotes used, though the string must begin and
end with the same type of quotation marks. Within a string, quoted text can appear;
it must use the opposite quotation marks to avoid conflicting with the string.Check
the following example:

>>> quote = 'This string contains a quote: "Here is the quote" '

A third type of string is also employed, a multiple line string that starts and ends
with three single quote marks:

>>> multiString = '''This string has

multiple lines and can go for

as long as I want it too'''

Integers
Integers are whole numbers that do not have any decimal places. There is a special
consequence to the use of integers in mathematical operations; if integers are used
for division, an integer result will be returned. Check out this code snippet below to
see an example of this:

>>> 5 / 2

The output is shown as follows:

2

Instead of an accurate result of 2.5, Python will return the floor value, or the lowest
whole integer for any integer division calculation. This can obviously be problematic
and can cause small bugs in scripts that can have major consequences.

Please be aware of this issue when writing scripts and use floats to
avoid it as described in the following section.

Chapter 1

[17]

Floats
Floating point values, or floats, are used by Python to represent decimal values. The
use of floats when performing division is recommended:

>>> 5.0 / 2

The output is shown as follows:

2.5

Because computers store values in a base 2 binary system, there can be issues
representing a floating value that would normally be represented in a base 10
system. Read docs.python.org/2/tutorial/floatingpoint.html for a further
discussion of the ramifications of this limitation.

Lists
Lists are ordered sets of data that are contained in square brackets ([]). Lists can
contain any other type of data, including other lists. Data types can be mixed
within a single list. Lists also have a set of methods that allow them to be extended,
reversed, sorted, summed, or extract the maximum or minimum value, along with
many other methods. Data pieces within a list are separated by commas.

List members are referenced by their index, or position in the list, and the index
always starts at zero. Look at the following example to understand this better:

>>> alist = ['a','b','c','d']

>>> alist[0]

The output is shown as follows:

'a'

This example shows us how to extract the first value (at the index 0) from the list
called alist. Once a list has been populated, the data within it is referenced by its
index, which is passed to the list in square brackets. To get the second value in a list
(the value at index 1), the same method is used:

>>> alist[1]

The output is shown as follows:

'b'

docs.python.org/2/tutorial/floatingpoint.html

Introduction to Python for ArcGIS

[18]

To merge two lists, the extend method is used:

>>> blist = [2,5,6]

>>> alist.extend(blist)

>>> alist

The output is shown as follows:

['a', 'b', 'c', 'd', 2, 5, 6]

Tuples
Tuples are related to lists and are denoted by parentheses (()). Unlike lists, tuples are
immutable—they cannot be adjusted or extended once they have been created. Data
within a tuple is referenced in the same way as a list, using index references starting
at zero:

>>> atuple = ('e','d','k')

>>> atuple[0]

The output is shown as follows:

'e'

Dictionaries
Dictionaries are denoted by curly brackets ({}) and are used to create key:value
pairs. This allows us to map values from a key to a value, so that the value can
replace the key and data from the value can be used in processing. Here is a
simple example:

>>> adic = {'key':'value'}

>>> adic['key']

The output is shown as follows:

'value'

Note that instead of referring to an index position, such as lists or tuples, the values
are referenced using a key. Also, keys can be any other type of data except lists
(because lists are mutable).

Chapter 1

[19]

This can be very valuable when reading a shapefile or feature class. Using an
ObjectID as a key, the value would be a list of row attributes associated with
ObjectID. Look at the following example to better understand this behavior:

>>> objectIDdic = { 1 : ['100' , 'Main' , 'St'] }
>>> objectIDdic[1]

The output is shown as follows:

['100', 'Main', 'St']

Dictionaries are very valuable for reading in feature classes and easily parsing
through the data by calling only the rows of interest, among other operations. They
are great for ordering and reordering data for use later in a script, so be sure to pay
attention to them moving forward.

Iterable data types
Lists, tuples, and strings are all iterable data types that can be used in for loops.
When entered into a for loop, these data types are operated on in order, unless
otherwise specified. For lists and tuples, this is easy to understand, as they have
an obvious order:

>>> aList = [1,3,5,7]

>>> for value in aList:

 print value * 2

The output is shown as follows:

2

6

10

14

For strings, each character is looped:

>>> aString = "esri"

>>> for value in aString:

 print value.upper()

Introduction to Python for ArcGIS

[20]

The output is shown as follows:

E

S

R

I

Dictionaries are also iterable, but with a specific implementation that will only allow
direct access to the keys of the dictionary (which can then be used to access the
values). Also, the keys are not returned in a specific order:

>>> aDict = {"key1":"value1",

 "key2":"value2"}

>>> for value in aDict:

 print value, aDict[value]

The output is shown as follows:

key2 value2

key1 value1

Other important concepts
The use of Python for programming requires an introduction to a number of
concepts that are either unique to Python but required or common programming
concepts that will be invoked repeatedly when creating scripts. Included following
are a number of these concepts that must be covered to be fluent in Python.

Indentation
Python, unlike most other programming languages, enforces strict rules on indenting
lines of code. This concept is derived again from Guido's desire to produce clean,
readable code. When creating functions or using for loops, or if/else statements,
indentation is required on the succeeding lines of code. If a for loop is included inside
an if/else statement, there will be two levels of indentation. Veteran programmers of
other languages have complained about the strict nature of Python's indentation. New
programmers generally find it to be helpful as it makes it easy to organize code. Note
that a lot of programmers new to Python will create an indentation error at some point,
so make sure to pay attention to the indentation levels.

Chapter 1

[21]

Functions
Functions are used to take code that is repeated over and over within a script, or
across scripts, and make formal tools out of them. Using the keyword def, short for
the define function, functions are created with defined inputs and outputs. The idea
of a function in computing is that it takes data in one state and converts it into data in
another state, without affecting any other part of the script. This can be very valuable
to automate a GIS analysis.

Here is an example of a function that returns the square of any number supplied:

def square(inVal):

 return inVal ** 2

>>> square(3)

The output is shown as follows:

9

While this of course duplicates a similar function built into the math module, it
shows the basics of a function. A function (generally) accepts data, transforms it as
needed, and then returns the new state of the data using the return keyword.

Keywords
There are a number of keywords built into Python that should be avoided when
naming variables. These include max, min, sum, return, list, tuple, def,
del, from, not, in, as, if, else, elif, or, while, and, with, among
many others. Using these keywords will result in an error.

Namespaces
Namespaces are a logical way to organize variable names when a variable inside a
function (a local variable) shares the same name as a variable outside of the function
(a global variable). Local variables contained within a function (either in the script or
within an imported module) and global variables can share a name as long as they
do not share a namespace.

This issue often arises when a variable within an imported module unexpectedly
has the same name of a variable in the script. Python Interpreter will use namespace
rules to decide which variable has been called, which can lead to undesirable results.

Introduction to Python for ArcGIS

[22]

Zero-based indexing
As mentioned in the preceding section that describes lists and tuples, Python
indexing and counting starts at zero, instead of one. This means that the first member
of a group of data is at the zero position, and the second member is at the first
position, and so on till the last position.

This rule also applies when there is a for loop iteration within a script. When the
iteration starts, the first member of the data being iterated is in the zero position.

Also, indexing can be performed when counting from the last member of an iterable
object. In this case, the index of the last member is -1, and the second to last is -2, and
so on back to the first member of the object.

Important Python Modules for GIS
Analysis
Modules, or code libraries that can be called by a script to increase its programming
potential, are either built into Python or are created by third parties and added
later to Python. Most of these are written in Python, but a number of them are also
written in other programming languages and then wrapped in Python to make them
available within Python scripts. Modules are also used to make other programs
available to Python, such as the tools built in Microsoft Word.

The ArcPy module
The ArcPy module is both a wrapper module used to interact with the ArcGIS tools,
which are then executed by ArcGIS in its internal code format, and a code base that
allows for additional control of geospatial analyses and map production. ArcPy is
used to control the tools in ArcToolbox, but the tools have not been rewritten in
Python; instead, we are able to use the ArcGIS tools using ArcPy. ArcPy also gives
us the ability to control ArcGIS Map Documents(MXDs) and the objects that MXDs
include: legends, titles, images, layers, and the map view itself. ArcPy also has tools
that are not available in ArcToolbox. The most powerful of these are the data cursors,
especially the new Data Analysis Cursors that create a more Pythonic interface with
GIS data. The data cursors, covered extensively in Chapters 5, ArcPy Cursors: Search,
Insert and Update and Chapter 6, Working with ArcPy Geometry Objects are very useful
to extract rows of data from data sources for analysis.

Chapter 1

[23]

The ability to control geospatial analyses using ArcPy allows for the integration of
ArcGIS tools into workflows that contain other powerful Python modules. Python's
glue language abilities increase the usefulness of ArcGIS by reducing the need to
treat geospatial data in a special manner.

The Operating System (OS) module
The OS module, part of the standard library, allows Python to access operating
system functionality. A common use of the module is to use the os.path method
to control file paths by dividing them into directory paths (that is, folders) and base
paths (that is, files). There is also a useful method, os.walk, which will walk-through
a directory and return all files within the folders and subfolders. The OS module is
accessed constantly when performing GIS analysis.

The Python System (SYS) module
The sys module, part of the standard library, refers to the Python installation itself.
It has a number of methods that will get information about the version of Python
installed, as well as information about the script and any arguments (or parameters)
supplied to the script, using the sys.argv method. The sys.path method is very
useful to append the Python file path; practically, this means that folders containing
scripts can be referenced by other scripts to make the functions they contain
importable to other scripts.

The XLRD and XLWT modules
The XLRD and XLWT modules are used to read and write Excel spreadsheets,
respectively. The modules can be very useful to extract data from legacy
spreadsheets and convert them into usable data for GIS analysis, or to write analysis
results when a geospatial analysis is completed. They are not part of the Python
standard library, but are installed along with ArcGIS 10.2 and Python 2.7.

Introduction to Python for ArcGIS

[24]

Commonly used built-in functions
There are a number of built-in functions that we will use throughout the book. The
main ones are listed as follows:

•	 str: The string function is used to convert any other type of data into a string
•	 int: The integer function is used to convert a string or float into an integer.

To not create an error, any string passed to the integer function must be a
number such as 1.

•	 float: The float function is used to convert a string or an integer into a float,
much like the integer function.

Commonly used standard library modules
The following standard library modules must be imported:

•	 datetime: The datetime module is used to get information about the date
and time, and convert string dates into Python dates.

•	 math: The math module is used for higher level math functions that are
necessary at times, such as getting a value for Pi or calculating the square
of a number.

•	 string: The string module is used for string manipulations.
•	 csv: The CSV module is used to create and edit comma-separated value

type files.

Check out https://docs.python.org/2/library for a complete list of the built-in
modules in the standard library.

Summary
In this chapter, we discussed about the Zen of Python and covered the basics of
programming using Python. We began our exploration of ArcPy and how it can
be integrated with other Python modules to produce complete workflows. We also
discussed the Python standard library and the basic data types of Python.

Next, we will discuss how to configure Python for use with ArcGIS, and explore how
to use Integrated Development Environments (IDEs) to write scripts.

https://docs.python.org/2/library

Configuring the Python
Environment

In this chapter, we will configure both Python and our computer to work together to
execute Python scripts. Path variables and environment variables will be configured
to ensure that import statements work as expected, and that scripts run when
they are clicked on. The structure of the Python folder will be discussed, as will
the location of the ArcPy module within the ArcGIS folder structure. We will also
discuss Integrated Development Environments (IDEs), programs designed to assist
in code creation and code execution, and compare and contrast existing IDEs to
determine what benefits each IDE can offer when scripting Python code.

This chapter will cover:

•	 The location of the Python interpreter, and how it is called to execute a script
•	 Adjusting the computer's environment variables to ensure correct

code execution
•	 Integrated Development Environments
•	 Python's folder structure, with a focus on where modules are stored

What is a Python script?
Let's start with the very basics of writing and executing a Python script. What is a
Python script? It is a simple text file that contains a series of organized commands
written in a formalized language. The text file has the extension .py, but other than
that, there is nothing to distinguish it from any other text file. It can be opened using
a text editor such as Notepad or Wordpad, but the magic that is Python does not
reside in a Python script. Without the Python interpreter, a Python script cannot be
run and the commands it contains cannot be executed.

Configuring the Python Environment

[26]

How Python executes a script
Understanding how Python works to interpret a script and then execute the
commands within is as important as understanding the Python language itself.
Hours of debugging and error checking can be avoided by taking the time to set up
Python correctly. The interpretive nature of Python means that a script will have to
be first converted into bytecode before it can be executed. We will cover the steps
that Python takes to achieve our goal of automating GIS analysis.

What is the Python interpreter?
The Python interpreter, on a Windows environment, is a program that has been
compiled into a Windows executable, which has the extension .exe. The Python
interpreter, python.exe, has been written in C, an older and extensively used
programming language with a more difficult syntax.

Programs written in C, which are also initially written as text files, must be converted
into executables by a compiler, a specialized program that converts the text
commands into machine code to create executable programs. This is a slow process
that can make producing simple programs in C a laborious process. The benefit is
that the programs produced are standalone programs capable of running without
any dependencies. Python, on the other hand, interprets and executes the Python
commands quickly, which makes it a great scripting language, but the scripts must
be run through an interpreter and cannot be executed by themselves.

The Python interpreter, as its name implies, interprets commands contained within a
Python script. When a Python script is run, or executed, the syntax is first checked to
make sure that it conforms to the rules of Python (for example, indentation rules are
followed and the variables follow naming conventions). Then, if the script is valid,
the commands contained within are converted into bytecode, a specialized code that
is executed by the bytecode interpreter, a virtual machine written in C. The bytecode
interpreter further converts the bytecode (which is contained within files that end
with the extension .pyc) into the correct machine code for the computer being
used, and then the CPU executes the script. This is a complex process, which allows
Python to maintain a semblance of simplicity.

There are other versions of the Python interpreter that have been written in Java
(known as Jython) and in .NET (known as IronPython); these variants are used to
write Python scripts in other computing environments and will not be addressed
in this book. The ArcGIS installer includes the standard implementation of Python,
which is also called CPython to distinguish it from these variants.

Chapter 2

[27]

Where is the Python interpreter located?
The location of the Python interpreter within the folder structure of a computer is an
important detail to master. Python is often downloaded directly from www.python.
org and installed separately from ArcGIS. However, each ArcGIS version will
require a specific version of Python; given this requirement, the inclusion of Python
within the ArcGIS installation package is helpful. For this book, we will be using
ArcGIS 10.2, and this will require Python 2.7.

On a Windows machine, the Python folder structure is placed directly on the C:
drive, unless it is explicitly loaded on another drive. The installation process for
ArcGIS 10.2 will create a folder at C:\Python27, which will contain another folder
called either ArcGIS10.2 or ArcGIS10.2x64, depending on the operating system and
the version of ArcGIS that has been installed. For this book, I will be using the 32-bit
version of ArcGIS, so the final folder path will be at C:\Python27\ArcGIS10.2.

Within this folder are a number of subfolders, as well as python.exe (the Python
interpreter). Also included is a second version of the interpreter called pythonw.
exe. Pythonw.exe will execute a script without a terminal window with program
feedback appearing. Both python.exe and pythonw.exe contain complete copies of
all Python commands and can be used to execute a script.

Which Python interpreter should be used?
The general rule to execute a script directly using the Python interpreters is to use
pythonw.exe, as no terminal window will appear. When there is a need to test
code snippets, or to see the output within a terminal window, start python.exe by
double-clicking on the executable.

When python.exe is started, a Python interpreter console will appear:

www.python.org
www.python.org

Configuring the Python Environment

[28]

Note the distinctive three chevrons (>>>) that appear below the header explaining
version information. That is the Python prompt, where code is entered to be executed
line by line, instead of in a completed script. This direct access to the interpreter is
useful to test code snippets and understand syntax. A version of this interpreter, the
Python Window, has been built into ArcMap and ArcCatalog since ArcGIS 10. It will
be discussed more in later chapters.

How does the computer know where the
interpreter is?
To be able to execute Python scripts directly (that is, to make the scripts run by
double-clicking on them), the computer will also need to know where the interpreter
sits within its folder structure. To accomplish this requires both administrative
account access and advanced knowledge of how Windows searches for a program.
We will have to adjust an environment variable within the advanced system settings
dialogue to register the interpreter with the system path.

On a Windows 7 machine, click on the start menu and right-click on Computer,
then select Properties from the menu. On a Windows 8 machine, click on Windows
explorer and right click on This PC, and select Properties from the menu. These
commands are shortcuts to get to the Control Panel's System and Security/System
menus. Select Advanced system settings from the panel on the left. Click on the
Environment Variables button at the bottom of the System Properties menu that
appears. In the lower portion of the Environment Variables menu, scroll through the
System variables window until the Path variable appears. Select it by clicking on it,
and then clicking on the Edit button. The following window will appear:

Chapter 2

[29]

This variable has two components: Variable name (path) and Variable value. The
value is a series of folder paths separated by semicolons. This is the path that is
searched when Windows looks for specific executables that have been associated with
a file extension. In our case, we will be adding the folder path that contains the Python
interpreter. Type C:\Python27\ArcGIS10.2 (or the equivalent on your machine)
into the Variable value field, making sure to separate it from the value before it with
a semicolon. Click on OK to exit the Edit dialogue, and OK to exit the Environment
Variables menu, and OK to exit the System Properties menu. The machine will now
know where the Python interpreter is, as it will search all folders contained within the
Path variable to look for an executable called Python. To test that the path adjustment
worked correctly, open up a command window (Start menu/run cmd) and type
python. The interpreter should directly run in the command window:

If the Python header with version information and the triple chevron appears, the
path adjustment has worked correctly.

If there is no admin access available, there is a work around.
In a command-line window, pass the entire path to the
Python interpreter (C:\Python27\ArcGIS10.2\python.
exe) to start the interpreter.

Make Python scripts executable when
clicked on
The final step in making the scripts run when double-clicked (which also means
they can run outside of the ArcGIS environment, saving lots of memory overhead)
is to associate files with the .py extension with the Python interpreter. If the scripts
have not already been associated with the interpreter, they will appear as files of an
unknown type or as a text file.

Configuring the Python Environment

[30]

To change this, right-click on a Python script. Select Open With, and then select
Choose Default Program. If python.exe or pythonw.exe does not appear as a
choice, navigate to the folder that holds them (C:\Python27\ArcGIS10.2, in this
case) and select either python.exe or pythonw.exe. Again, the difference between
the two is the appearance of a terminal window when the scripts are run using
python.exe, which will contain any output from the script (but this window
will disappear when the script is done). I recommend using pythonw.exe when
executing scripts, and python.exe to test code.

Python scripts can also explicitly call pythonw.exe by adjusting the
extension to .pyw instead of .py.

Integrated Development Environments
(IDEs)
The Python interpreter contains everything that is needed to execute a Python script
or to test Python code by interacting with the Python interpreter. However, writing
scripts requires a text editor. There are usually at least two simple text editors
included on a Windows machine (Notepad and Wordpad) and they work in an
emergency to edit a script or even write a whole script. Unfortunately, they are very
simple and do not allow the user functionality that would make it easier to write
multiple scripts or very long scripts.

To bridge the gap, a series of programs collectively known as Integrated
Development Environments have been developed. IDEs exist for all programming
languages, and include functions such as variable listing, code assist, and more,
that make them ideal to craft programming scripts. We will review a few of them to
assess their usefulness to write Python scripts. The three discussed as follows are all
free and well-established within different Python communities.

IDLE
Python includes an IDE when it is installed. The IDE is called IDLE, which is a word
play on both IDE and the name of a prominent member of Monty Python, Eric Idle.
It can be started in Windows 7 by going to the Start menu and finding the ArcGIS
folder within the Programs menu. Within the Python folder, IDLE will be one of the
choices within that folder. Select it to start IDLE.

Chapter 2

[31]

IDLE contains an interactive interpreter (i.e. the triple chevron) and the ability to
run complete Python scripts. It is also written using Python's built-in GUI module,
called Tkinter, so it has the advantage of being written in the same language that
it executes.

Another advantage of using IDLE over the Python console (python.exe) is that any
print statements or other script output is directed to the IDLE interactive window,
which does not disappear after executing the script. IDLE is also lightweight with
respect to memory use. Scripts are opened using a file dialogue contained within the
File menu, and recently run scripts are listed within the File menu's, Recent Files.

Disadvantages of IDLE include a limited code assist (or code auto-complete), a
useful IDE tool, and having no way to organize scripts into logical projects. There
is no way to find all variables contained within a script, another useful feature of
other IDEs. Also, the Recent Files menu has a limit on the number of scripts that it
will list, making it harder to find a script that has not been run in months (which is
a common occurrence, believe me!). IDLE is a passable IDE that is useful if no other
programs can be installed on the machine. It is also very useful for rapid testing of
code snippets. While it is not my main IDE, I find myself using IDLE almost daily.

PythonWin
PythonWin (short for Python for Windows) is available at http://sourceforge.
net/projects/pywin32/files/pywin32, and includes both an IDE and helpful
modules to use Python in a Windows environment. Select the newest build of
PythonWin, and then select the correct version 32 module based on the installed
version of Python (for my machine, I selected pywin32-218.win32-py2.7.exe, the
correct version for my 32-bit Python 2.7 installation). Run the executable, and if the
correct version has been downloaded, the installation GUI will recognize Python 2.7
in the system registry and will install itself.

http://sourceforge.net/projects/pywin32/files/pywin32
http://sourceforge.net/projects/pywin32/files/pywin32

Configuring the Python Environment

[32]

PythonWin includes an Interactive Window where the user can directly interact with
the Python interpreter. Scripts can also be opened within PythonWin, and it includes
a set of tiling commands in the Windows menu that allows the user to organize the
display of all open scripts and the Interactive Window.

Another nice advantage that PythonWin has over IDLE is the ability to display
different portions of a script within the same script window. If a script has grown
too long, it can be a pain to scroll up and down the script when editing. PythonWin
allows the user to pull down from the top of the script to create a second script
window, which can focus on a separate part of the script. Also, on the left side,
another window can be opened that will list Python classes and variables, making it
easier to navigate to a particular section of the script.

One small but helpful feature built into PythonWin's Interactive Window is the
ability to search through previously entered code statements. At the triple chevron
prompt, hold down the Ctrl key and use the up and down arrow keys to navigate
through the lines to find one of interest. This saves a lot of time when testing a
particular snippet of code.

Chapter 2

[33]

All in all, PythonWin is a useful and easy-to-use IDE, and most ArcGIS professionals
who create Python scripts use PythonWin. The drawbacks I find with PythonWin
include its lack of ability to organize scripts into projects, and its lack of a list of
variables that exist within the script, which can be very helpful when navigating
larger scripts.

Aptana Studio 3
Sometimes the tools of the greater programming community can seem daunting to
new scripters, who are more focused on simply creating a script that will save time
on a GIS analysis than using the correct tool for programming daily. It reminds me of
inexperienced computer users, who don't feel like they need the full power of a top-
of-the-line computer because they only want to browse the internet and send e-mails.

However, the exact opposite is true: the computer adverse is better off having an
easier to use top-of-the-line computer, while an experienced computer user could
make do with a net book.

The same can be said for programmers and scripters. Sometimes, it's better to have
an over-the-top IDE that will actually make a scripter more productive, while an
experienced programmer could make do with Notepad. All of the bells and whistles
included in an IDE such as Aptana Studio 3 will save scripters time and take
remarkably little time to learn.

Aptana Studio 3 is available at http://aptana.com. Download and run the installer
provided to install it. Choose a default main project folder that can contain all of the
scripts projects; for this book, I created a folder called C:\Projects. For each project
created, Aptana will create a project file holding information about each project.
When using Aptana Studio at work, using a network folder can be useful as others
can then access the projects with their respective Aptana installations.

http://aptana.com

Configuring the Python Environment

[34]

Once it has been installed, the next step is to create a PyDev project. Go to the File
menu and select New, and then select PyDev project. When creating this first project,
Python Interpreter will have to be added to Aptana's Python path. Aptana can
support more than one interpreter; for our purposes, one will do. Go to the bottom
of the PyDev project menu and click on Click here to configure an interpreter. When
the Preferences/Python Interpreters menu appears, make sure to select Interpreter-
Python on the left, and then click on New in the top-right menu.

Once New has been selected, a small dialog will appear asking for a name for the
interpreter and the path to the executable. Click on browse and navigate to the folder
with python.exe. No terminal window will be generated when running a Python
script using Aptana Studio as all output is redirected to the Aptana Studio console.
Select python.exe and click on OK. Next, click on OK in the Select Interpreter
menu, and then click on OK in the Preferences menu. Back in the PyDev Project
menu, give the project a name, and either use the default workspace location or a
custom one (for example, C:\Projects).

Chapter 2

[35]

All of this configuration only has to happen the first time; once that is done, creating
a PyDev project will only require giving a name and location. Now, all of the scripts
associated with that project will always be listed in the left menu (PyDev Package
Explorer), which is a very powerful way to organize projects and scripts.

Making sure that Aptana Studio is in the PyDev perspective (in the Windows/Open
Perspective/Other menu, choose PyDev) will give three main windows–Package
Explorer on the left, Script window in the middle, and Outline window on the right,
where variables contained within a script are listed. Clicking on one of the variables
on the right will move the script window to that section of the code, making script
navigation fast. Also, I like to add the Console window in the middle below the
Script window, where the output of the script can be displayed.

Open scripts each have a tab within the Script window, making it easy to switch
between the scripts. Also, the windows can be closed to give more room to the Script
window as needed. Hovering over a variable within a script will call up a pop-up
menu that describes where the variable was first created, which can be a lifesaver as
it is easy to forget at times which variable is which (unless, of course, they are clearly
named according to the rules described in the previous chapter; even then, it can be a
pain at times).

IDE summary
There are many other IDEs, both commercial and free, available for coding in
Python. In the end, each GIS analyst must choose the tool that makes them feel
productive and comfortable. This may change as programming becomes a bigger
part of their daily work flow. Be sure to test out a few different IDEs to find one that
is easy to use and intuitive.

Configuring the Python Environment

[36]

Python folder structure
Python's folder structure holds more than just the Python Interpreter. Within the
subfolders reside a number of important scripts, digital link libraries, and even C
language modules. Not all of the scripts are used all the time, but each has a role in
making the Python programming environment possible. The most important folder
to know about is the site-packages folder, where most modules that will be imported
in Python scripts are contained.

Chapter 2

[37]

Where modules reside
Within every Python folder is a folder called Lib, and within that folder is a
folder called site-packages. On my machine, the folder sits at C:\Python27\
ArcGIS10.2\Lib\site-packages. Almost all third-party modules are copied
into this folder to be imported as needed. The main exception to this rule, for
our purposes, is the ArcPy module, which is stored within the ArcGIS folder in
the Program Files folder (for example, C:\Program Files (x86)\ArcGIS\
Desktop10.2\arcpy). To make that possible, the ArcGIS installer adjusts the Python
system path (using the sys module) to make the arcPy module importable.

Using Python's sys module to add a module
Python's sys module is a module that allows the user to take advantage of system tools
built into the Python Interpreter. One of the most useful of the functions in the sys
module is sys.path. It is a list of file paths, which the user can modify to adjust where
Python will look for a module to import, without needing administrative access.

When Python 2.7 is installed by the ArcGIS 10.2 installer, the installer takes
advantage of the sys.path functions to add C:\Program Files (x86)\ArcGIS\
Desktop10.2\arcpy to the system path. To test this, start the Python Interpreter or
an IDE and type the following:

>>> import sys

>>> print sys.path

The output is as follows:

['', 'C:\\WINDOWS\\SYSTEM32\\python27.zip', 'C:\\Python27\\ArcGIS10.2\\
Dlls', 'C:\\Python27\\ArcGIS10.2\\lib', 'C:\\Python27\\ArcGIS10.2\\lib\\
plat-win', 'C:\\Python27\\ArcGIS10.2\\lib\\lib-tk', 'C:\\Python27\\
ArcGIS10.2\\Lib\\site-packages\\pythonwin', 'C:\\Python27\\ArcGIS10.2',
'C:\\Python27\\ArcGIS10.2\\lib\\site-packages', 'C:\\Program Files
(x86)\\ArcGIS\\Desktop10.2\\bin', 'C:\\Program Files (x86)\\ArcGIS\\
Desktop10.2\\arcpy', 'C:\\Program Files (x86)\\ArcGIS\\Desktop10.2\\
ArcToolbox\\Scripts', 'C:\\Python27\\ArcGIS10.2\\lib\\site-packages\\
win32', 'C:\\Python27\\ArcGIS10.2\\lib\\site-packages\\win32\\lib']

The system path (stored in the variable sys.path) includes all of the folders that
ArcPy requires to automate ArcGIS. The system path incorporates all directories
listed in the PYTHONPATH environment variable (if one has been created); this is
separate from the Windows path environment variable discussed previously. The
two separate path variables work together to help Python locate modules.

Configuring the Python Environment

[38]

The sys.path.append() method
The sys.path function is a list (did you notice the square brackets in the preceding
code output?) and as such can be appended or extended to include new file paths
that will point to modules the user wants to import. To avoid the need to adjust sys.
path, copy the module into the site-packages folder. When this is not possible, use
the sys.path.append() method instead:

>>> sys.path.append("C:\\Projects\\Requests")

>>> sys.path

['', 'C:\\WINDOWS\\SYSTEM32\\python27.zip',

 'C:\\Python27\\ArcGIS10.2\\Dells',

 'C:\\Python27\\ArcGIS10.2\\lib',

..'C:\\Python27\\ArcGIS10.2\\lib\\plat-win',

..'C:\\Python27\\ArcGIS10.2\\lib\\lib-tk',

..'C:\\Python27\\ArcGIS10.2\\Lib\\site-packages\\pythonwin',

..'C:\\Python27\\ArcGIS10.2',

..'C:\\Python27\\ArcGIS10.2\\lib\\site-packages', 'C:\\Program

..Files (x86)\\ArcGIS\\Desktop10.2\\bin', 'C:\\Program Files

..(x86)\\ArcGIS\\Desktop10.2\\arcpy', 'C:\\Program Files

..(x86)\\ArcGIS\\Desktop10.2\\ArcToolbox\\Scripts',

..'C:\\Python27\\ArcGIS10.2\\lib\\site-packages\\win32',

..'C:\\Python27\\ArcGIS10.2\\lib\\site-packages\\win32\\lib',

..'C:\\Projects\\Requests']

When the sys.path.append() method is used, the adjustment is temporary. Adjust
the PYTHONPATH environment variable in the Windows System Properties menu
(discussed in the path environment variable section) to make a permanent change
(and create the PYTHONPATH if it has not been created).

One last note is that to import a module without adjusting the system path or
copying the module into the site-packages folder, place the module in the folder
with the script that is importing it. As long as the module is configured correctly, it
will work normally. This is useful when there is no administrative access available
to a machine.

Chapter 2

[39]

Summary
In this chapter, we covered a lot about how Python works to execute scripts and
commands, and about development environments used to craft scripts. In particular,
we discussed how a Python script is read and executed by the Python Interpreter,
where the Python Interpreter is located within the Python folder structure, and what
the different Python script extensions mean (.py, .pyc,.pyw). We also covered
Integrated Development Environments and how they compare and contrast.

In the next chapter, we will cover how to use ModelBuilder to convert a modeled
analysis into a Python script, and how to make it more powerful than the
exported version.

Creating the First
Python Script

Now that we have Python configured to fit our needs, we can create Python scripts.
This chapter will explore how to use ArcGIS ModelBuilder to model a simple
analysis as the basis for our script. ModelBuilder is very useful on its own and for
creating Python scripts as it has an operational and a visual component, and all
models can be outputted as Python scripts. This will allow us to compare how the
more familiar ModelBuilder utilizes tools in the ArcToolbox to how Python handles
the same tools. We will also discuss iteration and when it is best to use Python over
ModelBuilder.

In this chapter, we will cover the following topics:

•	 Modeling a simple analysis using ModelBuilder
•	 Exporting the model out to a Python script

Prerequisites
"Along with ArcGIS ModelBuilder, a data set and scripts are required."

For this chapter, the accompanying data and scripts should be downloaded from
Packt Publishing's website. The completed scripts are available for comparison
purposes and the data will be used for this chapter's analysis.

Creating the First Python Script

[42]

ModelBuilder
ArcGIS has been in development since the 1970s. During that time, it included a
variety of programming languages and tools to help GIS analysts automate analyses
and map production. These include the Avenue scripting language in the ArcGIS 3x
series and the ARC Macro Language (AML) in the ARC/Info workstation days, as
well as VBScript up until ArcGIS 10x when Python was introduced. Another useful
tool introduced in ArcGIS 9x was ModelBuilder, a visual programming environment
used for both modeling analysis and creating tools that can be used repeatedly with
different input feature classes.

Another useful feature of ModelBuilder is an export function that allows modelers
to create Python scripts directly from a model. This will make it easier to compare
how inputs in a ModelBuilder tool are accepted versus how a Python script calls the
same tool and supplies the inputs to it, or how the feature classes that are created
are named and placed within the file structure. ModelBuilder is a fantastic tool that
will make it easy for a GIS analyst to bridge the gap from normal GIS workflows to
automated Python-based workflows.

Creating a model and exporting to
Python
This chapter will depend on the downloadable SanFrancisco.gdb file geodatabase,
available from the Packt Publishing website. The San Francisco GDB contains data
downloaded from data.sfgov.org and the US Census' American Factfinder website
available at factfinder2.census.gov. All census and geographic data included
in the geodatabase is from the 2010 census. The data is contained within a feature
dataset called SanFrancisco. The data in this feature dataset is in NAD 83 California
State Plane Zone 3 and the linear unit of measure is the US Foot (this corresponds to
SRID 2227 in the European Petroleum Survey Group, or EPSG, format).

The analysis we will create with the model, and eventually export to Python for
further refinement, will use bus stops along a specific line in San Francisco. These
bus stops will be buffered to create a representative region around each bus stop.
The buffered areas will then be intersected with census blocks to find out how many
people are within each representative region around the bus stops.

data.sfgov.org
factfinder2.census.gov

Chapter 3

[43]

Modeling the Select and Buffer tools
Using ModelBuilder, we will first model the basis of the bus stop analysis. Once it
has been modeled, it will be exported as an automatically generated Python script.
Follow these steps to begin the analysis:

1.	 Open up ArcCatalog and create a folder connection to the folder containing
SanFrancisco.gdb. Right-click on geodatabase and add a new toolbox
called Chapter3Tools.

2.	 Next, open ModelBuilder and create a Model, saving it in the Chapter3Tools
toolbox as Chapter3Model1.

3.	 Drag the Bus_Stops feature class and the Select tool from the Analysis/
Extract toolset in ArcToolbox.

4.	 Open the Select tool and name the output feature class Inbound71. Make
sure that the feature class is written to the Chapter3Results feature dataset
into the model.

5.	 Open the Expression SQL Query Builder and create the following SQL
expression: NAME = '71 IB' AND BUS_SIGNAG = 'Ferry Plaza'.

6.	 The next step is to add a Buffer tool from the Analysis/Proximity toolset. The
Buffer tool will be used to create buffers around each bus stop. The buffered
bus stops allow us to intersect with census data in the form of census blocks,
creating the representative regions around each bus stop.

Creating the First Python Script

[44]

7.	 Connect the output of the Select tool (Inbound71) to the Buffer tool. Open
up the Buffer tool and add 400 to the Distance field, and make the units Feet.
Leave the rest of the options blank. Click on OK and return to the model.

Adding the Intersect tool
Now that we have selected the bus line of interest, and buffered the stops to create
representative regions, we will need to intersect the regions with the census blocks to
find the population of each representative region:

1.	 First, add the CensusBlocks2010 feature class from the SanFrancisco feature
dataset to the model.

2.	 Next, add the Intersect tool, located in the Analysis/Overlay toolset in
ArcToolbox. While we could use Spatial Join to achieve a similar result, I
am using the Intersect tool to capture the area of intersect for use later in the
model and script.

Chapter 3

[45]

At this point, our model should look like this:

Tallying the analysis results
After we created this simple analysis, the next step is to determine the results for
each bus stop. Finding the number of people that live in census blocks touched
by the 400 feet buffer of each bus stop involves examining each row of data in the
final feature class and selecting rows that correspond to the bus stop. Once these
are selected, a sum of the selected rows would be calculated either using the Field
Calculator or the Summarize tool. All of these methods will work, and yet none
are perfect. They take too long, and worse, are not repeatable automatically if an
assumption in the model is adjusted (if the buffer is adjusted from 400 feet to 500
feet, for instance).

This is where the traditional uses of ModelBuilder begin to fail analysts. It should
be easy to instruct the model to select all rows associated with each bus stop, and
then generate a summed population figure for each bus stop's representative region.
It would be even better to have the model create a spreadsheet to contain the final
results of the analysis. It's time to use Python to take this analysis to the next level.

Creating the First Python Script

[46]

Exporting the model and adjusting the
script
While modeling analysis in ModelBuilder has its drawbacks, there is one fantastic
option built into ModelBuilder; the ability to create a model and then export the
model to Python. Along with the ArcGIS help documentation, it is the best way to
discover the correct Python syntax to use when writing ArcPy scripts.

Create a folder that can hold the exported scripts next to the SanFrancisco
geodatabase (for example, C:\Projects\Scripts). This will hold both the exported
scripts that ArcGIS automatically generates, and the versions that we will build from
those generated scripts.

Open the model called Chapter3Model1 and click on the Model menu in the upper
left. Select Export from the menu, and then select To Python Script. Save the script in
the script folder as Chapter3Model1.py.

Note that there is also the option to export the model as a graphic.
Creating a graphic of the model is a good way to share what the model
is doing with other analysts without the need to share the model and the
data, and can also be useful when sharing Python scripts as well.

The automatically generated script
Open the automatically generated script in an IDE. It should look like this:

-*- coding: utf-8 -*-

8662_Chapter3Model1.py

Created on: 2014-04-22 21:59:31.00000

(generated by ArcGIS/ModelBuilder)

Description:

Import arcpy module

import arcpy

Chapter 3

[47]

Local variables:

Bus_Stops = "C:\\Projects\\PacktDB.gdb\\SanFrancisco\\Bus_Stops"

CensusBlocks2010 = "C:\\Projects\\PacktDB.gdb\\SanFrancisco\\
CensusBlocks2010"

Inbound71 = "C:\\Projects\\PacktDB.gdb\\Chapter3Results\\Inbound71"

Inbound71_400ft_buffer = "C:\\Projects\\PacktDB.gdb\\Chapter3Results\\
Inbound71_400ft_buffer"

Intersect71Census = "C:\\Projects\\PacktDB.gdb\\Chapter3Results\\
Intersect71Census"

Process: Select

arcpy.Select_analysis(Bus_Stops,

 Inbound71,

 "NAME = '71 IB' AND BUS_SIGNAG = 'Ferry Plaza'")

Process: Buffer

arcpy.Buffer_analysis(Inbound71,

 Inbound71_400ft_buffer,

 "400 Feet", "FULL", "ROUND", "NONE", "")

Process: Intersect

arcpy.Intersect_analysis("C:\\Projects\\PacktDB.gdb\\Chapter3Results\\
Inbound71_400ft_buffer #;C:\\Projects\\PacktDB.gdb\\SanFrancisco\\
CensusBlocks2010 #", Intersect71Census, "ALL", "", "INPUT")

Let's examine this script line by line. The first line is preceded by a pound sign (#),
which again means that this line is a comment; however, it is not ignored by the
Python interpreter when the script is executed as usual but is used to help Python
interpret the encoding of the script as described here: http://legacy.python.org/
dev/peps/pep-0263.

The second commented line and the third line are included for decorative purposes.
The next four lines, all commented, are used to provide readers with information
about the script, what it is called and when it was created, along with a description
that is pulled from the model's properties. Another decorative line is included to
separate out the informative header from the body of the script visually. While the
commented information section is nice to include in a script for other users of the
script, it is not necessary.

http://legacy.python.org/dev/peps/pep-0263
http://legacy.python.org/dev/peps/pep-0263

Creating the First Python Script

[48]

The body of the script, or the executable portion of the script, starts with the import
arcpy line. Import statements are, by convention, included at the top of the body of
the script. In this instance, the only module that is being imported is ArcPy.

ModelBuilder's export function creates not only an executable script, but also
comments each section to help mark the different sections of the script. The comments
let the user know where the variables are located and where the ArcToolbox tools are
being executed. The comments will grow to be superfluous as the reader grows to
understand the code, but it was nice of ESRI to include the comments.

Below the import statements are the variables. In this case, the variables represent
the file paths to the input and output feature classes. The variable names are derived
from the names of the feature classes (the base names of the file paths). The file paths
are assigned to the variables using the assignment operator (=), and the parts of the
file paths are separated by two backslashes.

File paths in Python
It would be good to review how file paths are used in Python compared to how they
are represented in Windows. In Python, file paths are strings, and strings in Python
have special characters used to represent tabs (\t), newlines (\n), or carriage returns
(\r), among many others. These special characters all incorporate single backslashes,
making it very hard to create a file path that uses single backslashes. This would not
be a big deal, except that file paths in Windows Explorer all use single backslashes.

There are a number of methods used to avoid this issue. Python was developed
within the Linux environment, where file paths have forward slashes. This more
Pythonic representation is also available when using Python in a Windows
environment, demonstrated as follows:

Windows Explorer: "C:\Projects\PacktDB.gdb\Chapter3Results\
Intersect71Census"
Pythonic version: "C:/Projects/PacktDB.gdb/Chapter3Results/
Intersect71Census"

Within a Python script, the file path with the forward slashes will work, while the
Windows Explorer version might cause the script to throw an exception.

Another method used to avoid the issue with special characters is the one employed
by ModelBuilder when it automatically creates the Python scripts from a model. In
this case, the backslashes are escaped using a second backslash. The preceding script
uses this second method to produce the following results:

Python escaped version: "C:\\Projects\\PacktDB.gdb\\Chapter3Results\\
Intersect71Census"

Chapter 3

[49]

The third method, which I prefer, is to create what is known as a raw string.
This is the same as a regular string, but it includes an r before the script begins.
This r alerts the Python Interpreter that the following script does not contain any
special characters or escape characters. Here is an example of how it is used:

Python raw string: r"C:\Projects\PacktDB.gdb\Chapter3Results\
Intersect71Census"

Using raw strings will make it easier to grab a file path from Windows Explorer
and add it to a string inside a script. It will also make it easier to avoid accidentally
forgetting to include a set of double backslashes in a file path, which happens all the
time and is the cause of many script bugs.

Continuing the script analysis:
the ArcPy tools
The next, and most important, section of the script is where the analysis is executed.
The same tools that we created in the model, the Select, the Buffer, and the Intersect
tools, are included in this section. The same parameters that we supplied in the
model are also included here: the inputs and outputs, plus the SQL statement in the
Select tool, and the buffer distance in the Buffer tool.

The tool parameters are supplied to the tools in the script in the same order as they
appear in the tool interfaces in the model. Here is the Select tool in the script:

arcpy.Select_analysis(Bus_Stops, Inbound71, "NAME = '71 IB' AND BUS_
SIGNAG = 'Ferry Plaza'")

It works like this. The arcPy module has a method, or a special property, called
Select_analysis. This method, when called, requires three parameters: the input
feature class (or shapefile), the output feature class, and the SQL statement. In this
example, the input is represented by the variable Bus_Stops and the output feature
class is represented by the variable Inbound71, both of which are defined in the
variable section. The SQL statement is included as the third parameter. Note that it
could also be represented by a variable, if the variable was defined above this line;
the SQL statement, as a string, could be assigned to a variable and the variable could
replace the SQL statement as the third parameter. Here is an example of parameter
replacement using a variable:

sqlStatement = "NAME = '71 IB' AND BUS_SIGNAG = 'Ferry Plaza'"

arcpy.Select_analysis(Bus_Stops, Inbound71, sqlStatement)

Creating the First Python Script

[50]

While ModelBuilder is good about assigning input and output feature classes to
variables, it does not assign variables to every portion of the parameter. This will be
an important thing to correct when we adjust and build our own scripts.

The Buffer tool accepts a similar set of parameters as the Select tool. There is an
input feature class represented by a variable, an output feature class variable, and
the distance that we provided (400 feet in this case), along with a series of parameters
that are supplied by default. Note that the parameters rely on keywords, and
these key words can be adjusted within the text of the script to adjust the resulting
buffer output. For instance, Feet could be adjusted to Meters and the buffer would
much larger. Check the help section of the tool to better understand how the other
parameters will affect the buffer and to find the key words arguments that will be
accepted by the Buffer tool in ArcPy. Also, as noted earlier, all of the parameters
could be assigned to variables, which can save time if the same parameters are used
repeatedly throughout a script.

Sometimes the supplied parameter is merely an empty string, as is the case here with
the last parameter:

arcpy.Buffer_analysis(Inbound71,Inbound71_400ft_buffer,

 "400 Feet", "FULL", "ROUND", "NONE", "")

The empty string, which in this case signifies that there is not a dissolve field for
this buffer, is found quite frequently within ArcPy. It could also be represented
by two single quotes, but ModelBuilder has been built to use double quotes to
encase strings.

The Intersect tool and string manipulation
The last tool, the Intersect tool, uses a different method to represent the files that
need to be intersected together when the tool is executed. Because the tool accepts
multiple files in the input section (meaning there is no limit to the number of files
that can be intersected together in one operation), it stores all of the file paths within
one string. The string uses the hash or pound sign (#) to separate the file paths
within the input string. This slight deviation must be dealt with if we are to use the
Intersect tool in a Script tool. If we are building a tool from this script, we will not
know the files that will be intersected before they are run, so we need to know the
methods to deal with inserting variables into strings.

There are three methods to insert variables into strings. Each method has different
advantages and disadvantages of a technical nature. It's good to know about all three
of them as they have uses beyond our needs here, so let's review them.

Chapter 3

[51]

The string manipulation method 1–string addition
String addition is an odd concept at first as it would not seem possible to add strings
together, unlike integers or floats, which are numbers. However, within Python and
other programming languages, this is a normal step. Using the plus sign (+), strings
are added together to make longer strings or allow variables to be added to the
middle of existing strings. Here are some examples of this process:

>>> aString = "This is a string"

>>> bString = " and this is another string"

>>> aString + bString

The output is as follows:

'This is a string and this is another string'

>>> cString = aString + bString

>>> cString

The output is as follows:

'This is a string and this is another string'

Two or more strings can be added together, and can even be assigned to a third
variable. This process can be useful for situations such as the input string for the
Intersect tool. The string can be broken up and variables representing the file paths
can be inserted into the middle of the string:

filePath1 = r"C:\Projects\Inbound71_400ft_buffer"

filePath2 = r"C:\Projects\CensusBlocks2010"

arcpy.Intersect_analysis(filePath1 + " #;" + filePath2 + " #",
Intersect71Census, "ALL", "", "INPUT")

This is a powerful and useful way to insert the file paths into the input string. As
long as the separators are still included in the string, the string will still be valid and
the Intersect tool will run as expected. Here is what the string will look like when the
string addition is completed:

>>> filePath1 = r"C:\Projects\Inbound71_400ft_buffer"

>>> filePath2 = r"C:\Projects\CensusBlocks2010"

>>> inputString = filePath1 + " #;" + filePath2 + " #"

>>> print inputString

Creating the First Python Script

[52]

The output is as follows:

C:\Projects\Inbound71_400ft_buffer #;C:\Projects\CensusBlocks2010 #

Another similar offshoot of string addition is string multiplication, where strings are
multiplied by an integer to produce repeated versions of the string:

>>>"string" * 3

The output is as follows:

'stringstringstring'

The string manipulation method 2–string
formatting #1
The second method of string manipulation, known as string formatting, involves
adding placeholders into the string that will accept specific kinds of data. This means
that these special strings can accept other strings as well as integers and float values.
These placeholders use the modulo (%) and a key letter to indicate the type of data
to expect. Strings are represented using %s, floats are represented using %f, and
integers are represented using %d. The floats can also be adjusted to limit the digits
included by adding a modifying number after the modulo. If there is more than one
placeholder in a string, the values are passed to the string in a tuple.

This method has become less popular since the third method discussed in the
following section was introduced in Python 2.6, but it is still valuable to know as
many older scripts use it. Here is an example of this method:

>>> origString = "This string has as a placeholder %s"

>>> newString = origString % "and this text was added"

>>> print newString

The output is as follows:

This string has as a placeholder and this text was added

Here is an example when using a float placeholder:

>>> floatString1 = "This string has a float here: %f"

>>> newString = floatString1 % 1.0

>>> print newString

The output is as follows:

This string has a float here: 1.000000

>>> floatString2 = "This string has a float here: %.1f"

Chapter 3

[53]

>>> newString2 = floatString2 % 1.0

>>> print newString2

The output is as follows:

This string has a float here: 1.0

Here is an example using an integer placeholder:

>>> intString = "Here is an integer: %d"

>>> newString = intString % 1

>>> print newString

The output is as follows:

Here is an integer: 1

For the Intersect tool, the %s symbol can be used to accept the file path string
variables:

filePath1 = r"C:\Projects\Inbound71_400ft_buffer"

filePath2 = r"C:\Projects\CensusBlocks2010"

arcpy.Intersect_analysis("%s #;%s #" % (filePath1,filePath2),
Intersect71Census, "ALL", "", "INPUT")

The string manipulation method 3–string
formatting #2
The final method, the most recently introduced, is also known as string formatting.
It is similar to the string formatting discussed earlier, with the added benefit of not
requiring a specific type of placeholder. The placeholders, or tokens as they are also
known, are only required to be in order to be accepted. The format function is built
into strings; by adding .format to the string, and passing in parameters, the string
accepts the values:

>>> formatString = "This string has 3 tokens: {0}, {1}, {2}"

>>> newString = formatString.format("String", 2.5, 4)

>>> print newString

The output is as follows:

This string has 3 tokens: String, 2.5, 4

The tokens don't have to be in order within the string, and can even be repeated. The
order is derived from the parameters supplied to the .format function that passes
the values to the string.

Creating the First Python Script

[54]

For the Intersect tool, the string formatting would look like this:

filePath1 = r"C:\Projects\Inbound71_400ft_buffer"

filePath2 = r"C:\Projects\CensusBlocks2010"

arcpy.Intersect_analysis("{0} #;{1} #".format(filePath1,filePath2),
Intersect71Census, "ALL", "", "INPUT")

The third method has become my go-to method for string manipulation because of
the ability to add the values repeatedly and make it possible to avoid supplying the
wrong type of data to a specific placeholder, unlike the second method.

Adjusting the Script
Now is the time to take the automatically generated script and adjust it to fit our
needs. We want the script to both produce the output data, and to have it analyze the
data and tally the results into a spreadsheet. This spreadsheet will hold an averaged
population value for each bus stop. The average will be derived from each census
block that the buffered representative region surrounding the stops intersected. Save
the original script as Chapter3Model1Modified.py.

Adding the CSV module to the script
For this script, we will use the CSV module, a useful module to create Comma
Separated Value spreadsheets. Its simple syntax will make it a useful tool to create
script outputs. It should be noted that ArcGIS for Desktop also installs the xlrd
and xlwt modules, used to read or generate Excel spreadsheets respectively, when
it is installed.

Just below the import arcPy line, add import csv. This will allow us to use the csv
module to create the spreadsheet:

Import arcpy module

import arcpy

import csv

Chapter 3

[55]

The next adjustment is made to the Intersect tool. Notice that the two paths included
in the input string are also defined as variables in the variable section. Remove
the file paths from the input strings and replace them with numbered placeholder
tokens, and then add the format function and supply the variables as placeholders:

Process: Intersect
arcpy.Intersect_analysis("{0} #;{1}#".format(..............
Inbound71_400ft_buffer,CensusBlocks2010),
 Intersect71Census, "ALL", "", "INPUT")

Accessing the data: Using a cursor
Now that the script is in place to generate the raw data we need, we need a way to
access the data held in the output feature class from the Intersect tool. This access
will allow us to aggregate the rows of data representing each bus stop. We also need
something to hold the aggregate data in the memory, to be written to the spreadsheet.

To accomplish the second part, we will use a Python dictionary. To accomplish
the first part, we will use a method built into the ArcPy module: the Data Access
Search Cursor.

The Python dictionary will be added below the Intersect tool. A dictionary in Python
is created using curly brackets. Add the following line to the script:

dataDictionary = {}

This script will use the Bus Stop IDs as keys for the dictionary. The values will be
lists, which will hold all of the population values associated with each Bus Stop ID.
Add the following lines to generate a Data Cursor:

with arcpy.da.SearchCursor(Intersect71Census, ["STOPID","POP10"]) as
cursor:
 for row in cursor:
 busStopID = row[0]
 pop10 = row[1]
 if busStopID not in dataDictionary.keys():
 dataDictionary[busStopID] = [pop10]
 else:
 dataDictionary[busStopID].append(pop10)

This iteration combines a few ideas in Python and ArcPy. The with … as statement is
used to create a variable (cursor) that represents the arcpy.da.SearchCursor object.
It could also be written like this:

cursor = arcpy.da.SearchCursor(Intersect71Census, ["STOPID","POP10"])

Creating the First Python Script

[56]

The advantage of the with ... as structure is that the cursor object
is erased from memory when the iteration is completed, which
eliminates locks on the feature classes being evaluated.

The arcpy.da.SearchCursor() function requires an input feature class, and a
list of fields to be returned. Optionally, a SQL statement can limit the number of
rows returned.

The next line, for row in cursor, is the iteration through the data. It is not a
normal Pythonic iteration, a distinction that will have ramifications in certain
instances. For instance, however, it does allow for row-by-row access to data
contained within the supplied feature class. Note that when using a Search Cursor,
each row of data is returned as a tuple, which cannot be modified. The data can be
accessed using indexes, as shown in the preceding code, where the two members of
the tuple are assigned to variables.

The if/else conditional allows the data to be sorted. As noted earlier, the Bus Stop
IDs, which are the first member of the data included in the tuple, will be used
as a key. The conditional evaluates whether the Bus Stop ID is included in the
dictionary's existing keys (which are contained in a list and accessed using the
dictionary.keys() method). If it is not, it is added to the keys, and assigned
a value that is a list containing (at first) one piece of data, the population value
contained in that row. If it does exist in the keys, the list is appended with the next
population value associated with that Bus Stop ID. With this code, we have now
sorted each census block population according to the Bus Stop with which it
is associated.

Next, we need to add code to create the spreadsheet. This code will use the same
with ... as structure, and will generate an average population value by using two
built-in Python functions, sum, which creates a sum from a list of numbers, and len,
which will get the length of a list, tuple, or string:

with open(r'C:\Projects\Output\Averages.csv', 'wb') as csvfile:
 csvwriter = csv.writer(csvfile, delimiter=',')
 for busStopID in dataDictionary.keys():
 popList = dataDictionary[busStopID]
 averagePop = sum(popList)/len(popList)
 data = [busStopID, averagePop]
 csvwriter.writerow(data)

Chapter 3

[57]

The average population value is retrieved from the dictionary using the Bus Stop
ID key, and then assigned to the variable averagePop. The two data pieces, the
BusStopID and the averatePop variable are then added to a list, which is supplied
to a CSVwriter object, which knows how to accept the data and write it to a file
located at the file path supplied to the built-in Python the open() function, used to
create simple files.

The script is complete, although it is nice to add one more line at the end to give us
visual confirmation that the script has run:

print "Data Analysis Complete"

This will create an output indicating that the script has run. Once it is done, go to the
location of the output csv file and open it, using Excel or Notepad, and see the results
of the analysis. Our first script is complete!

The final script
Here is how the script should look in the end:

-*- coding: utf-8 -*-

8662_Chapter3Model1.py

Created on: 2014-04-22 21:59:31.00000

(generated by ArcGIS/ModelBuilder)

Description:

Import arcpy module

import arcpy

import csv

Local variables:

Bus_Stops = r"C:\Projects\PacktDB.gdb\SanFrancisco\Bus_Stops"

CensusBlocks2010 = r"C:\Projects\PacktDB.gdb\SanFrancisco\
CensusBlocks2010"

Inbound71 = r"C:\Projects\PacktDB.gdb\Chapter3Results\Inbound71"

Inbound71_400ft_buffer = r"C:\Projects\PacktDB.gdb\Chapter3Results\
Inbound71_400ft_buffer"

Intersect71Census = r"C:\Projects\PacktDB.gdb\Chapter3Results\
Intersect71Census"

Process: Select

Creating the First Python Script

[58]

arcpy.Select_analysis(Bus_Stops,

 Inbound71,

 "NAME = '71 IB' AND BUS_SIGNAG = 'Ferry Plaza'")

Process: Buffer

arcpy.Buffer_analysis(Inbound71,

 Inbound71_400ft_buffer,

 "400 Feet", "FULL", "ROUND", "NONE", "")

Process: Intersect

arcpy.Intersect_analysis("{0} #;{1} #".format(Inbound71_400ft_
buffer,CensusBlocks2010),

 Intersect71Census, "ALL", "", "INPUT")

dataDictionary = {}

with arcpy.da.SearchCursor(Intersect71Census, ["STOPID","POP10"]) as
cursor:

 for row in cursor:

 busStopID = row[0]

 pop10 = row[1]

 if busStopID not in dataDictionary.keys():

 dataDictionary[busStopID] = [pop10]

 else:

 dataDictionary[busStopID].append(pop10)

with open(r'C:\Projects\Output\Averages2.csv', 'wb') as csvfile:

 spamwriter = csv.writer(csvfile, delimiter=',')

 for busStopID in dataDictionary.keys():

 popList = dataDictionary[busStopID]

 averagePop = sum(popList)/len(popList)

 data = [busStopID, averagePop]

 spamwriter.writerow(data)

print "Data Analysis Complete"

Chapter 3

[59]

Summary
In this chapter, we covered how to craft a model of an analysis and export it to a
script. After discussing the script, we adjusted the script to include a results analysis
and summation, which was outputted to a CSV file. In particular, we discussed how
to use ModelBuilder to create an analysis and export it as a script, and how to adjust
the script to be more Pythonic. We also briefly touched on the use of Search Cursors,
which will be covered in greater detail in Chapter 5, ArcPy Cursors – Search, Insert,
and Update. Also, we saw how built-in modules such as the CSV module can be used
along with ArcPy to capture analysis output in formatted spreadsheets.

In the next chapter, we will discuss how to create more complex scripts and build
functions to avoid repeating code. These functions will make it possible to write
code once and use it forever. This reuse of code will demonstrate how Python goes
beyond automation of analysis to become a new productivity toolset.

Complex ArcPy Scripts and
Generalizing Functions

In this chapter, we will move from creating simple scripts based on autogenerated
scripts from ModelBuilder to complex scripts that incorporate advanced Python and
ArcPy concepts, such as functions. Functions can improve code and save time when
writing scripts. They are also useful when creating modules or other reusable code,
allowing for standard programming operations to be scripted and ready for future use.

In this chapter, will cover the following topics:

•	 Creating functions to avoid repeating code
•	 Creating helper functions to work with ArcPy limitations
•	 Generalizing functions to make them reusable

Python functions–Avoid repeating code
Programming languages share a concept that has aided programmers for decades:
functions. The idea of a function, loosely speaking, is to create blocks of code
that will perform an action on a piece of data, transforming it as required by the
programmer and returning the transformed data back to the main body of code.
We've already been introduced to some of Python's built-in functions in the last few
chapters, the int function, for instance, will convert a string or a floating number
into an integer; now it's time to write our own.

Complex ArcPy Scripts and Generalizing Functions

[62]

Functions are used because they solve many different needs within programming.
Functions reduce the need to write repetitive code, which in turn reduces the time
needed to create a script. They can be used to create ranges of numbers (the range()
function), or to determine the maximum value of a list (the max function), or to create
a SQL statement to select a set of rows from a feature class. They can even be copied
and used in another script or included as part of a module that can be imported
into scripts. Function reuse has the added bonus of making programming more
useful and less of a chore. When a scripter starts writing functions, it is a major step
towards making programming part of a GIS workflow.

Technical definition of functions
Functions, also called subroutines or procedures in other programming languages,
are blocks of code that have been designed to either accept input data and transform
it, or provide data to the main program when called without any input required. In
theory, functions will only transform data that has been provided to the function
as a parameter; it should not change any other part of the script that has not been
included in the function. To make this possible, the concept of namespaces is
invoked. As discussed in Chapter 1, Introduction to Python for ArcGIS, namespaces
are used to isolate variables within a script; variables are either global, and available
to be used in the main body of a script as well as in a function, or are local and only
available within a function.

Namespaces make it possible to use a variable name within a function, and allow it to
represent a value, while also using the same variable name in another part of the script.
This becomes especially important when importing modules from other programmers;
within that module and its functions, the variables that it contains might have a
variable name that is the same as a variable name within the main script.

In a high-level programming language such as Python, there is built-in support for
functions, including the ability to define function names and the data inputs (also
known as parameters). Functions are created using the keyword def plus a function
name, along with parentheses that may or may not contain parameters. Parameters
can also be defined with default values, so parameters only need to be passed to the
function when they differ from the default. The values that are returned from the
function are also easily defined.

Chapter 4

[63]

A first function
Let's create a function to get a feel for what is possible when writing functions. First,
we need to invoke the function by providing the def keyword and providing a name
along with the parentheses. The firstFunction() will return a string when called:

def firstFunction():

 'a simple function returning a string'

 return "My First Function"

>>>firstFunction()

The output is as follows:

'My First Function'

Notice that this function has a documentation string or doc string (a simple function
returning a string) that describes what the function does; this string can be called
later to find out what the function does, using the __doc__ internal function:

>>>print firstFunction.__doc__

The output is as follows:

'a simple function returning a string'

The function is defined and given a name, and then the parentheses are added
followed by a colon. The following lines must then be indented (a good IDE will
add the indention automatically). The function does not have any parameters, so the
parentheses are empty. The function then uses the keyword return to return a value,
in this case a string, from the function.

Next, the function is called by adding parentheses to the function name. When it is
called, it will do what it has been instructed to do: return the string.

Functions with parameters
Now let's create a function that accepts parameters and transforms them as needed.
This function will accept a number and multiply it by 3:

def secondFunction(number):

 'this function multiples numbers by 3'

 return number *3

>>> secondFunction(4)

Complex ArcPy Scripts and Generalizing Functions

[64]

The output is as follows:

12

The function has one flaw, however; there is no assurance that the value passed to
the function is a number. We need to add a conditional to the function to make sure
it does not throw an exception:

def secondFunction(number):

 'this function multiples numbers by 3'

 if type(number) == type(1) or type(number) == type(1.0):

 return number *3

>>> secondFunction(4.0)

The output is as follows:

12.0

>>>secondFunction(4)

The output is as follows:

12

>>>secondFunction("String")

>>>

The function now accepts a parameter, checks what type of data it is, and returns
a multiple of the parameter whether it is an integer or a function. If it is a string or
some other data type, as shown in the last example, no value is returned.

There is one more adjustment to the simple function that we should discuss:
parameter defaults. By including default values in the definition of the function, we
avoid having to provide parameters that rarely change. If, for instance, we wanted a
different multiplier than 3 in the simple function, we would define it like this:

def thirdFunction(number, multiplier=3):

 'this function multiples numbers by 3'

 if type(number) == type(1) or type(number) == type(1.0):

 return number *multiplier

>>>thirdFunction(4)

Chapter 4

[65]

The output is as follows:

12

>>>thirdFunction(4,5)

The output is as follows:

20

The function will work when only the number to be multiplied is supplied, as the
multiplier has a default value of 3. However, if we need another multiplier, the value
can be adjusted by adding another value when calling the function. Note that the
second value doesn't have to be a number as there is no type checking on it. Also,
the default value(s) in a function must follow the parameters with no defaults (or
all parameters can have a default value and the parameters can be supplied to the
function in order or by name).

These simple functions combine many of the concepts that we discussed in earlier
chapters, including built-in functions such as type, conditionals, parameters,
parameter defaults, and function returns. We can now move on to creating
functions with ArcPy.

Using functions to replace repetitive code
One of the main uses of functions is to ensure that the same code does not have to be
written over and over. Let's return to our example from the last chapter and make a
function from the script to make it possible to perform the same analysis for any bus
line in San Francisco.

The first portion of the script that we could convert into a function is the three ArcPy
functions. Doing so will allow the script to be applicable to any of the stops in the
Bus Stop feature class and have an adjustable buffer distance:

bufferDist = 400

buffDistUnit = "Feet"

lineName = '71 IB'

busSignage = 'Ferry Plaza'

sqlStatement = "NAME = '{0}' AND BUS_SIGNAG = '{1}'"

def selectBufferIntersect(selectIn,selectOut,bufferOut,
 intersectIn, intersectOut, sqlStatement,
 bufferDist, buffDistUnit, lineName,
 busSignage):

 'a function to perform a bus stop analysis'

Complex ArcPy Scripts and Generalizing Functions

[66]

 arcpy.Select_analysis(selectIn, selectOut, sqlStatement.
 format(lineName, busSignage))

 arcpy.Buffer_analysis(selectOut, bufferOut,
 "{0} {1}".format(bufferDist),
 "FULL", "ROUND", "NONE", "")

 arcpy.Intersect_analysis("{0} #;{1} #".format(bufferOut,
 intersectIn), intersectOut, "ALL", "",
 "INPUT")

 return intersectOut

This function demonstrates how the analysis can be adjusted to accept the input and
output feature class variables as parameters, along with some new variables.

The function adds a variable to replace the SQL statement and variables to adjust
the bus stop, and also tweaks the buffer distance statement so that both the distance
and the unit can be adjusted. The feature class name variables, defined earlier in the
script, have all been replaced with local variable names; while the global variable
names could have been retained, it reduces the portability of the function.

The next function will accept the result of the selectBufferIntersect() function
and search it using the Search Cursor, passing the results into a dictionary. The
dictionary will then be returned from the function for later use:

def createResultDic(resultFC):

 'search results of analysis and create results dictionary'

 dataDictionary = {}

 with arcpy.da.SearchCursor(resultFC, ["STOPID","POP10"])
 as cursor:

 for row in cursor:

 busStopID = row[0]

 pop10 = row[1]

 if busStopID not in dataDictionary.keys():

 dataDictionary[busStopID] = [pop10]

 else:

 dataDictionary[busStopID].append(pop10)

 return dataDictionary

This function only requires one parameter: the feature class returned from the
searchBufferIntersect() function. The results holding dictionary is first created,
then populated by the search cursor, with the busStopid attribute used as a key, and
the census block population attribute added to a list assigned to the key.

Chapter 4

[67]

The dictionary, having been populated with sorted data, is returned from the
function for use in the final function, createCSV(). This function accepts the
dictionary and the name of the output CSV file as a string:

def createCSV(dictionary, csvname):
 'a function takes a dictionary and creates a CSV file'
 with open(csvname, 'wb') as csvfile:
 csvwriter = csv.writer(csvfile, delimiter=',')
 for busStopID in dictionary.keys():
 popList = dictionary[busStopID]
 averagePop = sum(popList)/len(popList)
 data = [busStopID, averagePop]
 csvwriter.writerow(data)

The final function creates the CSV using the csv module. The name of the file, a
string, is now a customizable parameter (meaning the script name can be any valid
file path and text file with the extension .csv). The csvfile parameter is passed to
the CSV module's writer method and assigned to the variable csvwriter, and the
dictionary is accessed and processed, and passed as a list to csvwriter to be written
to the CSV file. The csv.writer() method processes each item in the list into the
CSV format and saves the final result. Open the CSV file with Excel or a text editor
such as Notepad.

To run the functions, we will call them in the script following the function definitions:

analysisResult = selectBufferIntersect(Bus_Stops,Inbound71,
 Inbound71_400ft_buffer,
 CensusBlocks2010,
 Intersect71Census,
 bufferDist,
 lineName,
 busSignage)

dictionary = createResultDic(analysisResult)

createCSV(dictionary,r'C:\Projects\Output\Averages.csv')

Now, the script has been divided into three functions, which replace the code of the
first modified script. The modified script looks like this:

-*- coding: utf-8 -*-

8662_Chapter4Modified1.py

Created on: 2014-04-22 21:59:31.00000

(generated by ArcGIS/ModelBuilder)

Description:

Adjusted by Silas Toms

Complex ArcPy Scripts and Generalizing Functions

[68]

2014 05 05

Import arcpy module

import arcpy

import csv

Local variables:

Bus_Stops = r"C:\Projects\PacktDB.gdb\SanFrancisco\Bus_Stops"

CensusBlocks2010 = r"C:\Projects\PacktDB.gdb\SanFrancisco\
CensusBlocks2010"

Inbound71 = r"C:\Projects\PacktDB.gdb\Chapter3Results\Inbound71"

Inbound71_400ft_buffer = r"C:\Projects\PacktDB.gdb\Chapter3Results\
Inbound71_400ft_buffer"

Intersect71Census = r"C:\Projects\PacktDB.gdb\Chapter3Results\
Intersect71Census"

bufferDist = 400

lineName = '71 IB'

busSignage = 'Ferry Plaza'

def selectBufferIntersect(selectIn,selectOut,bufferOut,intersectIn,

 intersectOut, bufferDist,lineName, busSignage
):

 arcpy.Select_analysis(selectIn,

 selectOut,

 "NAME = '{0}' AND BUS_SIGNAG = '{1}'".
format(lineName, busSignage))

 arcpy.Buffer_analysis(selectOut,

 bufferOut,

 "{0} Feet".format(bufferDist),

 "FULL", "ROUND", "NONE", "")

 arcpy.Intersect_analysis("{0} #;{1} #".format(bufferOut,intersectIn),

 intersectOut, "ALL", "", "INPUT")

 return intersectOut

def createResultDic(resultFC):

 dataDictionary = {}

 with arcpy.da.SearchCursor(resultFC,

 ["STOPID","POP10"]) as cursor:

 for row in cursor:

 busStopID = row[0]

 pop10 = row[1]

Chapter 4

[69]

 if busStopID not in dataDictionary.keys():

 dataDictionary[busStopID] = [pop10]

 else:

 dataDictionary[busStopID].append(pop10)

 return dataDictionary

def createCSV(dictionary, csvname):

 with open(csvname, 'wb') as csvfile:

 csvwriter = csv.writer(csvfile, delimiter=',')

 for busStopID in dictionary.keys():

 popList = dictionary[busStopID]

 averagePop = sum(popList)/len(popList)

 data = [busStopID, averagePop]

 csvwriter.writerow(data)

analysisResult = selectBufferIntersect(Bus_Stops,Inbound71,
Inbound71_400ft_buffer,CensusBlocks2010,Intersect71Census,
bufferDist,lineName, busSignage)

dictionary = createResultDic(analysisResult)

createCSV(dictionary,r'C:\Projects\Output\Averages.csv')

print "Data Analysis Complete"

Further generalization of the functions, while we have created functions from the
original script that can be used to extract more data about bus stops in San Francisco,
our new functions are still very specific to the dataset and analysis for which they
were created. This can be very useful for long and laborious analysis for which
creating reusable functions is not necessary. The first use of functions is to get rid
of the need to repeat code. The next goal is to then make that code reusable. Let's
discuss some ways in which we can convert the functions from one-offs into reusable
functions or even modules.

First, let's examine the first function:

def selectBufferIntersect(selectIn,selectOut,bufferOut,intersectIn,
 intersectOut, bufferDist,lineName, busSignage
):
 arcpy.Select_analysis(selectIn,
 selectOut,
 "NAME = '{0}' AND BUS_SIGNAG = '{1}'".
format(lineName, busSignage))
 arcpy.Buffer_analysis(selectOut,
 bufferOut,
 "{0} Feet".format(bufferDist),
 "FULL", "ROUND", "NONE", "")
 arcpy.Intersect_analysis("{0} #;{1} #".format(bufferOut,intersectIn),
 intersectOut, "ALL", "", "INPUT")
 return intersectOut

Complex ArcPy Scripts and Generalizing Functions

[70]

This function appears to be pretty specific to the bus stop analysis. It's so specific,
in fact, that while there are a few ways in which we can tweak it to make it more
general (that is, useful in other scripts that might not have the same steps involved),
we should not convert it into a separate function. When we create a separate
function, we introduce too many variables into the script in an effort to simplify it,
which is a counterproductive effort. Instead, let's focus on ways to generalize the
ArcPy tools themselves.

The first step will be to split the three ArcPy tools and examine what can be adjusted
with each of them. The Select tool should be adjusted to accept a string as the SQL
select statement. The SQL statement can then be generated by another function or
by parameters accepted at runtime (for example, passed to the script by a Script tool,
which will be discussed in a later chapter).

For instance, if we wanted to make the script accept multiple bus stops for each run
of the script (for example, the inbound and outbound stops for each line), we could
create a function that would accept a list of the desired stops and a SQL template,
and would return a SQL statement to plug into the Select tool. Here is an example of
how it would look:

def formatSQLIN(dataList, sqlTemplate):

 'a function to generate a SQL statement'

 sql = sqlTemplate #"OBJECTID IN "

 step = "("

 for data in dataList:

 step += str(data)

 sql += step + ")"

 return sql

def formatSQL(dataList, sqlTemplate):

 'a function to generate a SQL statement'

 sql = ''

 for count, data in enumerate(dataList):

 if count != len(dataList)-1:

 sql += sqlTemplate.format(data) + ' OR '

 else:

 sql += sqlTemplate.format(data)

 return sql

>>> dataVals = [1,2,3,4]

>>> sqlOID = "OBJECTID = {0}"

>>> sql = formatSQL(dataVals, sqlOID)

>>> print sql

Chapter 4

[71]

The output is as follows:

OBJECTID = 1 OR OBJECTID = 2 OR OBJECTID = 3 OR OBJECTID = 4

This new function, formatSQL(), is a very useful function. Let's review what it does
by comparing the function to the results following it. The function is defined to
accept two parameters: a list of values and a SQL template. The first local variable
is the empty string sql, which will be added to using string addition. The function
is designed to insert the values into the variable sql, creating a SQL statement by
taking the SQL template and using string formatting to add them to the template,
which in turn is added to the SQL statement string (note that sql += is equivelent
to sql = sql +). Also, an operator (OR) is used to make the SQL statement inclusive
of all data rows that match the pattern. This function uses the built-in enumerate
function to count the iterations of the list; once it has reached the last value in the list,
the operator is not added to the SQL statement.

Note that we could also add one more parameter to the function to make it possible
to use an AND operator instead of OR, while still keeping OR as the default:

def formatSQL2(dataList, sqlTemplate, operator=" OR "):
 'a function to generate a SQL statement'
 sql = ''
 for count, data in enumerate(dataList):
 if count != len(dataList)-1:
 sql += sqlTemplate.format(data) + operator
 else:
 sql += sqlTemplate.format(data)
 return sql

>>> sql = formatSQL2(dataVals, sqlOID," AND ")
>>> print sql

The output is as follows:

OBJECTID = 1 AND OBJECTID = 2 AND OBJECTID = 3 AND OBJECTID = 4

While it would make no sense to use an AND operator on ObjectIDs, there are other
cases where it would make sense, hence leaving OR as the default while allowing
for AND. Either way, this function can now be used to generate our bus stop SQL
statement for multiple stops (ignoring, for now, the bus signage field):

>>> sqlTemplate = "NAME = '{0}'"

>>> lineNames = ['71 IB','71 OB']

>>> sql = formatSQL2(lineNames, sqlTemplate)

>>> print sql

Complex ArcPy Scripts and Generalizing Functions

[72]

The output is as follows:

NAME = '71 IB' OR NAME = '71 OB'

However, we can't ignore the Bus Signage field for the inbound line, as there are
two starting points for the line, so we will need to adjust the function to accept
multiple values:

def formatSQLMultiple(dataList, sqlTemplate, operator=" OR "):
 'a function to generate a SQL statement'
 sql = ''
 for count, data in enumerate(dataList):
 if count != len(dataList)-1:
 sql += sqlTemplate.format(*data) + operator
 else:
 sql += sqlTemplate.format(*data)
 return sql

>>> sqlTemplate = "(NAME = '{0}' AND BUS_SIGNAG = '{1}')"

>>> lineNames = [('71 IB', 'Ferry Plaza'),('71 OB','48th Avenue')]

>>> sql = formatSQLMultiple(lineNames, sqlTemplate)

>>> print sql

The output is as follows:

(NAME = '71 IB' AND BUS_SIGNAG = 'Ferry Plaza') OR (NAME = '71 OB' AND
BUS_SIGNAG = '48th Avenue')

The slight difference in this function, the asterisk before the data variable, allows the
values inside the data variable to be correctly formatted into the SQL template by
exploding the values within the tuple. Notice that the SQL template has been created
to segregate each conditional by using parentheses. The function(s) are now ready
for reuse, and the SQL statement is now ready for insertion into the Select tool:

sql = formatSQLMultiple(lineNames, sqlTemplate)
arcpy.Select_analysis(Bus_Stops, Inbound71, sql)

Next up is the Buffer tool. We have already taken steps towards making it
generalized by adding a variable for the distance. In this case, we will only add one
more variable to it, a unit variable that will make it possible to adjust the buffer unit
from feet to meter or any other allowed unit. We will leave the other defaults alone.

Here is an adjusted version of the Buffer tool:

bufferDist = 400

bufferUnit = "Feet"

Chapter 4

[73]

arcpy.Buffer_analysis(Inbound71,

 Inbound71_400ft_buffer,

 "{0} {1}".format(bufferDist, bufferUnit),

 "FULL", "ROUND", "NONE", "")

Now, both the buffer distance and buffer unit are controlled by a variable defined
in the previous script, and this will make it easily adjustable if it is decided that the
distance was not sufficient and the variables might need to be adjusted.

The next step towards adjusting the ArcPy tools is to write a function, which will
allow for any number of feature classes to be intersected together using the Intersect
tool. This new function will be similar to the formatSQL functions as previous, as
they will use string formatting and addition to allow for a list of feature classes
to be processed into the correct string format for the Intersect tool to accept them.
However, as this function will be built to be as general as possible, it must be
designed to accept any number of feature classes to be intersected:

def formatIntersect(features):
 'a function to generate an intersect string'
 formatString = ''
 for count, feature in enumerate(features):
 if count != len(features)-1:
 formatString += feature + " #;"
 else:
 formatString += feature + " #"
 return formatString

>>> shpNames = ["example.shp","example2.shp"]

>>> iString = formatIntersect(shpNames)

>>> print iString

The output is as follows:

example.shp #;example2.shp #

Now that we have written the formatIntersect() function, all that needs to be
created is a list of the feature classes to be passed to the function. The string returned
by the function can then be passed to the Intersect tool:

intersected = [Inbound71_400ft_buffer, CensusBlocks2010]
iString = formatIntersect(intersected)
Process: Intersect
arcpy.Intersect_analysis(iString,
 Intersect71Census, "ALL", "", "INPUT")

Complex ArcPy Scripts and Generalizing Functions

[74]

Because we avoided creating a function that only fits this script or analysis, we now
have two (or more) useful functions that can be applied in later analyses, and we
know how to manipulate the ArcPy tools to accept the data that we want to supply
to them.

More generalization of the functions
The other functions that we initially created to search the results, and generate the
spreadsheet of results, can also be manipulated into being more generalized with a
few tweaks.

If we want to generate more information about each census block within a distance
to a bus stop (for example, if we had a census block dataset with income data as well
as population data), we would pass to the function a list of attributes to be extracted
from the final feature class. To make this possible, it would be necessary to adjust the
createResultDic() function to accept this list of attributes:

def createResultDic(resultFC, key, values):
 dataDictionary = {}
 fields = [key]
 fields.extend(values)
 with arcpy.da.SearchCursor(resultFC, fields) as cursor:
 for row in cursor:
 busStopID = row[0]
 data = row[1:]
 if busStopID not in dataDictionary.keys():
 dataDictionary[busStopID] = [data]
 else:
 dataDictionary[busStopID].append(data)
 return dataDictionary

This new version of the createResultDic() function will generate a list of lists (that
is, the values from each row are contained within a list and are added to a master list)
for each bus stop, which can then be parsed later by knowing the position of each
value in the list. This solution is useful when needing to sort data into a dictionary.

However, this is an unsatisfactory way to sort the results. What if the list of fields is
not passed on to the dictionary and there is no way of knowing the order of the data
in the lists? Instead, we want to be able to use the functionality of Python dictionaries
to sort the data by field name. In this case, we will use nested dictionaries to create
lists of results accessible by the type of data they contain (that is, population, income,
or another field):

def createResultDic(resultFC, key, values):
 dataDic = {}

Chapter 4

[75]

 fields = []
 if type(key) == type((1,2)) or type(key) == type([1,2]):
 fields.extend(key)
 length = len(key)
 else:
 fields = [key]
 length = 1
 fields.extend(values)
 with arcpy.da.SearchCursor(resultFC, fields) as cursor:
 for row in cursor:
 busStopID = row[:length]
 data = row[length:]
 if busStopID not in dataDictionary.keys():

 dataDictionary[busStopID] = {}

 for counter,field in enumerate(values):
 if field not in dataDictionary[busStopID].keys():
 dataDictionary[busStopID][field] = [data[counter]]
 else:
 dataDictionary[busStopID][field].
append(data[counter])
 return dataDictionary

>>> rFC = r'C:\Projects\PacktDB.gdb\Chapter3Results\Intersect71Census'

>>> key = 'STOPID'

>>> values = 'HOUSING10','POP10'

>>> dic = createResultDic(rFC, key, values)

>>> dic[1122023]

The output is as follows:

{'HOUSING10': [104, 62, 113, 81, 177, 0, 52, 113, 0, 104, 81, 177, 52],
'POP10': [140, 134, 241, 138, 329, 0, 118, 241, 0, 140, 138, 329, 118]}

In this example, the function is passed as parameters to a feature class, the STOPID,
and the fields to be conglomerated. The fields variable is created to pass the
required fields on to the Search Cursor. The cursor returns each row as a tuple; the
first member of the tuple is busStopID, and the rest of the tuple is the data associated
with that bus stop. The function then uses a condition to assess whether the bus
stop has been previously analyzed; if not, it is added to the dictionary and assigned
a second internal dictionary, which will be used to store the results associated with
that stop. By using a dictionary, we can then sort through the results and assign them
to the correct field to which they belong.

Complex ArcPy Scripts and Generalizing Functions

[76]

The previous example shows the results of requesting data for one particular bus
stop (1122023). As there are two fields passed here, the data has been organized into
two sets, and the field names are now keys for the internal dictionary. Because of this
organization, we can now create averages for each field instead of just one.

Speaking of averages, we left the job of averaging the results of the search cursor
analysis to the createCSV() function. This should also be avoided, as it reduces the
usefulness of the createCSV() function by adding additional data manipulation
duties that should be the responsibility of another function. Let's address this issue
by adjusting the createCSV() function first:

def createCSV(data, csvname, mode ='ab'):
 with open(csvname, mode) as csvfile:
 csvwriter = csv.writer(csvfile, delimiter=',')
 csvwriter.writerow(data)

This is a stripped down version of the function, but it is infinitely more useful. By
adjusting the function like this, we are limiting it to only doing two things: opening
the CSV file and adding a row of data to it. Because we used the ab mode, if the CSV
file exists, we will only be adding data to it instead of writing over it (if it doesn't
exist, it will be created). This adding mode can be overridden by passing wb as the
mode, which will generate a new script each time.

Now we can sort through the results of the analysis, average them, and pass them to
our new createCSV script. To do this, we will iterate through the dictionary created
by the createResultDic() function:

csvname = r'C:\Projects\Output\Averages.csv'
dataKey = 'STOPID'
fields = 'HOUSING10','POP10'
dictionary = createResultDic(Intersect71Census, dataKey, fields)

header = [dataKey]
for field in fields:
 header.append(field)

createCSV(header,csvname, 'wb')

for counter, busStop in enumerate(dictionary.keys()):
 datakeys = dictionary[busStop]
 averages = [busStop]
 for key in datakeys:
 data = datakeys[key]
 average = sum(data)/len(data)
 averages.append(average)
 createCSV(averages,csvname)

Chapter 4

[77]

This last step shows how the CSV file is created: by iterating through the data
contained in the dictionary and then averaging the values for each bus stop. Then,
these averages are added to a list that contains the name of each bus stop (and the
line it belongs to in this instance) and passed to the createCSV() function to be
written into the CSV file.

Here is the final code. Note that I have converted many of the autogenerated
comments into print statements to give some feedback on the state of the script:

-*- coding: utf-8 -*-

8662_Chapter4Modified2.py
Created on: 2014-04-22 21:59:31.00000
(generated by ArcGIS/ModelBuilder)
Description:
Adjusted by Silas Toms
2014 04 23

Import arcpy module
import arcpy
import csv

Bus_Stops = r"C:\Projects\PacktDB.gdb\SanFrancisco\Bus_Stops"
CensusBlocks2010 = r"C:\Projects\PacktDB.gdb\SanFrancisco\
CensusBlocks2010"
Inbound71 = r"C:\Projects\PacktDB.gdb\Chapter4Results\Inbound71"
Inbound71_400ft_buffer = r"C:\Projects\PacktDB.gdb\Chapter4Results\
Inbound71_400ft_buffer"
Intersect71Census = r"C:\Projects\PacktDB.gdb\Chapter4Results\
Intersect71Census"
bufferDist = 400
bufferUnit = "Feet"
lineNames = [('71 IB', 'Ferry Plaza'),('71 OB','48th Avenue')]
sqlTemplate = "NAME = '{0}' AND BUS_SIGNAG = '{1}'"
intersected = [Inbound71_400ft_buffer, CensusBlocks2010]
dataKey = 'NAME','STOPID'
fields = 'HOUSING10','POP10'
csvname = r'C:\Projects\Output\Averages.csv'

def formatSQLMultiple(dataList, sqlTemplate, operator=" OR "):
 'a function to generate a SQL statement'

Complex ArcPy Scripts and Generalizing Functions

[78]

 sql = ''
 for count, data in enumerate(dataList):
 if count != len(dataList)-1:
 sql += sqlTemplate.format(*data) + operator
 else:
 sql += sqlTemplate.format(*data)
 return sql

def formatIntersect(features):
 'a function to generate an intersect string'
 formatString = ''
 for count, feature in enumerate(features):
 if count != len(features)-1:
 formatString += feature + " #;"
 else:
 formatString += feature + " #"
 return formatString

def createResultDic(resultFC, key, values):
 dataDictionary = {}
 fields = []
 if type(key) == type((1,2)) or type(key) == type([1,2]):
 fields.extend(key)
 length = len(key)
 else:
 fields = [key]
 length = 1
 fields.extend(values)
 with arcpy.da.SearchCursor(resultFC, fields) as cursor:
 for row in cursor:
 busStopID = row[:length]
 data = row[length:]
 if busStopID not in dataDictionary.keys():

 dataDictionary[busStopID] = {}

 for counter,field in enumerate(values):
 if field not in dataDictionary[busStopID].keys():
 dataDictionary[busStopID][field] = [data[counter]]
 else:

Chapter 4

[79]

 dataDictionary[busStopID][field].
append(data[counter])

 return dataDictionary

def createCSV(data, csvname, mode ='ab'):
 with open(csvname, mode) as csvfile:
 csvwriter = csv.writer(csvfile, delimiter=',')
 csvwriter.writerow(data)

sql = formatSQLMultiple(lineNames, sqlTemplate)

print 'Process: Select'
arcpy.Select_analysis(Bus_Stops,
 Inbound71,
 sql)

print 'Process: Buffer'
arcpy.Buffer_analysis(Inbound71,
 Inbound71_400ft_buffer,
 "{0} {1}".format(bufferDist, bufferUnit),
 "FULL", "ROUND", "NONE", "")

iString = formatIntersect(intersected)
print iString

print 'Process: Intersect'
arcpy.Intersect_analysis(iString,
 Intersect71Census, "ALL", "", "INPUT")

print 'Process Results'
dictionary = createResultDic(Intersect71Census, dataKey, fields)

print 'Create CSV'
header = [dataKey]
for field in fields:
 header.append(field)
createCSV(header,csvname, 'wb')

for counter, busStop in enumerate(dictionary.keys()):

Complex ArcPy Scripts and Generalizing Functions

[80]

 datakeys = dictionary[busStop]
 averages = [busStop]

 for key in datakeys:
 data = datakeys[key]
 average = sum(data)/len(data)
 averages.append(average)
 createCSV(averages,csvname)

print "Data Analysis Complete"

Summary
In this chapter, we discussed how to take autogenerated code and make it
generalized, while adding functions that can be reused in other scripts and will
make the generation of the necessary code components, such as SQL statements,
much easier. We also addressed when it is best not to go too far with the creation
of functions to avoid making them too specific.

In the next chapter, we will investigate the powerful Data Access module and its
Search Cursors, Update Cursors, and Insert Cursors.

ArcPy Cursors – Search,
Insert, and Update

Now that we understand how to interact with ArcToolbox tools using ArcPy, and we
have also covered using Python to create functions and import modules, we have a
basic understanding of how to improve GIS workflows using Python. In this chapter
we will cover data cursors and the Data Access module, introduced in 10.1. These
data access cursors are a vast improvement on the cursors used in the arcgisscripting
module (the precursor to ArcPy) and in earlier versions of ArcPy. Not only can the
cursors search data, as we have seen, but they can update data using the Update
Cursors and can add new rows of data using the Insert Cursor.

Data cursors are used to access data records contained within data tables, using a row
by row iterative approach. The concept was borrowed from relational databases, where
data cursors are used to extract data from tables returned from a SQL expression.
Cursors are used to search for data, but also to update data or to add new data.

When we discuss creating data searches using ArcPy cursors, we are not just talking
about attribute information. The new data access model cursors can interact directly
with the shape field, and when combined with ArcPy Geometry objects, can perform
geospatial functions and replace the need to pass data to ArcToolbox tools. Data
access cursors represent the most useful innovation yet in the realm of Python
automation for GIS.

In this chapter we will cover:

•	 Using Search Cursors to access attribute and spatial data
•	 Using Update Cursors to adjust values within rows
•	 Using insert cursors to add new data to a dataset
•	 Using cursors and the ArcPy Geometry object types to perform geospatial

analyses in memory

ArcPy Cursors – Search, Insert, and Update

[82]

The data access module
Introduced with the release of ArcGIS 10.1, the new data access module known as
arcpy.da has made data interaction easier, and faster, than allowed by previous data
cursors. By allowing for direct access to the shape field in a variety of forms (shape
object, X values, Y values, centroid, area, length, and more), and a variety of formats
(JavaScript Object Notation (JSON), Keyhole Markup Language (KML), Well Known
Binary (WKB), Well-Known Text (WKT)), the data access module greatly increases
the ability of a GIS analyst to extract and control shape field data.

The data access cursors accept a number of required and optional parameters.
The required parameters are the path to the feature class as a string (or a variable
representing the path) and the fields to be returned. If all fields are desired, using
the asterisk notation and provide a list with an asterisk as a string as the field's
parameter ([*]). If only a few fields are required, provide those fields as string
fieldnames (for example ["NAME", "DATE"]).

The other parameters are optional but are very important, for both search and Update
Cursors. A where clause in the form of a SQL expression can be provided next; this
clause will limit the number of rows returned from the data set (as demonstrated by
the SQL expression in the scripts in the last chapter). The SQL expressions used by the
search and update cursors are not complete SQL expressions, as the SELECT or UPDATE
commands are provided automatically by the choice of cursor. Only the where clause
of the SQL expression is required for this parameter.

A spatial reference can be provided next in the ArcPy Spatial Reference format;
this is not necessary if the data is in the correct format but can be used to transform
data into another projection on the fly. There is no way to specify the spatial
transformation used, however. The third optional parameter is a Boolean (or True/
False) value that declares whether data should be returned in exploded points (that
is, a list of the individual vertices) or in the original geometry format. The final
optional parameter is another list that can be used to organize the data returned by
the cursor; this list would include SQL keywords such as DISTINCT, ORBER BY, or
GROUP BY. However, this final parameter is only available when working with a
geodatabase.

Chapter 5

[83]

Let's take a look at using arcpy.da.SearchCursor for shape field interactions. If
we needed to produce a spreadsheet listing all bus stops along a particular route,
and include the location of the data in an X/Y format, we could use the Add XY tool
from the ArcToolbox. However, this has the effect of adding two new fields to our
data, which is not always allowed, especially when the data is stored in enterprise
geodatabases with fixed schemas. Instead, we'll use the SHAPE@XY token built into
the data access module to easily extract the data and pass it to the createCSV()
function from Chapter 4, Complex ArcPy Scripts and Generalizing Functions, along with
the SQL expression limiting results to the stops of interest:

csvname = "C:\Projects\Output\StationLocations.csv"

headers = 'Bus Line Name','Bus Stop ID', 'X','Y'

createCSV(headers, csvname, 'wb')

sql = "(NAME = '71 IB' AND BUS_SIGNAG = 'Ferry Plaza') OR (NAME = '71 OB'
AND BUS_SIGNAG = '48th Avenue')"

with arcpy.da.SearchCursor(Bus_Stops,['NAME', 'STOPID', 'SHAPE@XY'], sql)
as cursor:

 for row in cursor:

 linename = row[0]

 stopid = row[1]

 locationX = row[2][0]

 locationY = row[2][1]

 locationY = row[2][1]

 data = linename, stopid, locationX, locationY

 createCSV(data, csvname)

Note that each row of data is returned as a tuple; this makes sense as the Search
Cursor does not allow any data manipulation and tuples are immutable as soon as
they are created. In contrast, data returned from Update Cursors is in list format, as
lists can be updated. Both can be accessed using the indexing as shown previously.

Each row returned by the cursor is a tuple with three objects: the name of the bus
stop, the bus stop ID, and finally another tuple containing the X/Y location of the
stop. The objects in the tuple, contained in the variable row, are accessible using
indexing: the bus stop name is at index 0, the ID is at index 1, and the location tuple
is at index 2.

ArcPy Cursors – Search, Insert, and Update

[84]

Within the location tuple, the X value is at index 0 and the Y value is at index 1; this
makes it easy to access the data in the location tuple by passing a value as shown in
the following:

 locationX = row[2][0]

The ability to add lists and tuples and even dictionaries to another list or tuple or
dictionary is a strong component of Python, making data access logical and data
organization easy.

However, the spreadsheet returned from the previous code has a few issues: the
location is returned in the native projection of the feature class (in this case, a State
Plane projection), and there are rows of data that are repeated. It would be much
more helpful if we could provide latitude and longitude values in the spreadsheet
and the duplicate values were removed. Let's use the optional spatial reference
parameter and a list to sort the data before we pass it to the createCSV() function:

spatialReference = arcpy.SpatialReference(4326)

sql = "(NAME = '71 IB' AND BUS_SIGNAG = 'Ferry Plaza') OR (NAME = '71 OB'
AND BUS_SIGNAG = '48th Avenue')"

dataList = []

with arcpy.da.SearchCursor(Bus_Stops, ['NAME','STOPID','SHAPE@XY'], sql,
spatialReference) as cursor:

 for row in cursor:

 linename = row[0]

 stopid = row[1]

 locationX = row[2][0]

 locationY = row[2][1]

 data = linename, stopid, locationX, locationY

 if data not in dataList:

 dataList.append(data)

csvname = "C:\Projects\Output\StationLocations.csv"

headers = 'Bus Line Name','Bus Stop ID', 'X','Y'

createCSV(headers, csvname, 'wb')

for data in dataList:

Chapter 5

[85]

The spatial reference is created by passing a code representing the desired projection
system. In this case the code for the WGS 1984 Latitude and Longitude geographic
system is 4326 and is passed to the arcpy.SpatialReference() method to create
a spatial reference object that can be passed to the Search Cursor. Also, the if
conditional is used to filter the data, accepting only one list per stop into the list
called dataList. This new version of the code will produce a CSV file with the desired
data. This CSV could then be converted into a KML with the service provided by
www.convertcsv.com/csv-to-kml.htm, or even better, using Python. Use string
formatting and loops to insert the data into pre-built KML strings.

Attribute field interactions
Apart from the shape field interactions, another improvement offered by the
data access module cursors is the ability to call the fields in a feature class by using
a list, as discussed previously. Earlier data cursors required the use of a less efficient
get value function call, or required the fields to be called as if they were methods
available to the function. The new method allows for all fields to be called by passing
an asterisk, a valuable method to access fields in feature classes that have not been
inspected previously.

One of the more valuable improvements is the ability to access the Unique ID field
without needing to know whether the data set is a feature class or a shapefile.
Because shapefiles had a feature ID or FID, and feature classes had an object ID, it
was harder to program a Script tool to access the unique ID field. Data access module
cursors allow for the use of the OID@ string to request the unique ID from either type
of input. This makes the need to know the type of unique ID irrelevant.

As demonstrated previously, other attribute fields are requested by a string in a list.
The field names must match the true name of the field; alias names cannot be passed
to the cursor. The fields can be in the list in any order desired, and will be returned in
the order requested. Only the required fields have to be included in the list.

Here is a demonstration of requesting field information:

sql = "OBJECTID = 1"

with arcpy.da.SearchCursor(Bus_Stops,

 ['STOPID','NAME', 'OID@'],

 sql) as cursor:

for row in cursor:

If the fields in the fields list were adjusted, the data in the resulting row would reflect
the adjustment. Also, all of the members of the tuple returned by the cursor are
accessible by zero-based indexing.

www.convertcsv.com/csv-to-kml.htm

ArcPy Cursors – Search, Insert, and Update

[86]

Update cursors
Update cursors are used to adjust data within existing rows of data. Updates become
very important when calculating data or converting null values to a non-null value.
Combined with specific SQL expressions, data can be targeted for updating with
newly collected or calculated values.

Note that running code containing an Update Cursor will change, or update, the data
on which it operates. It is a good idea to make a copy of the data to test out the code
before running it on the original data.

All data access module Search Cursor parameters discussed previously are valid
for Update Cursors. The main difference is that data rows returned by Update
Cursors are returned as lists. Because lists are mutable, they can be adjusted
using a list value assignment.

As an example, let's imagine that the bus line 71 will be renamed to the 75. Both
inbound and outbound lines will be affected, so a SQL expression must be included
to get all rows of data associated with the line. Once the data cursor is created,
the rows returned must have the name adjusted, added back into the list, and the
Update cursor's updateRow method must be invoked. Here is how this scenario
would look in code:

sql = "NAME LIKE '71%'"

with arcpy.da.UpdateCursor(Bus_Stops, ['NAME'],sql),) as cursor:

 for row in cursor:

 lineName = row[0]

 newName = lineName.replace('71','75')

 row[0] = newName

The SQL expression will return all rows of data with a name starting with 71; this
will include 71 IB and 71 OB. Note that the SQL expression must be enclosed in
double quotes, as the attribute value needs to be in single quotes.

For each row of data, the name at position zero in the row returned is assigned to the
variable lineName. This variable, a string, uses the replace() method to replace the
characters 71 with the characters 75. This could also just be replacing 1 with 5 but I
wanted to be explicit as to what is being replaced.

Chapter 5

[87]

Once the new string has been generated, it is assigned to the variable newName. This
variable is then added to the list returned by the cursor using list assignment; this
will replace the data value that initially occupied the zero position in the list. Once
the row value has been assigned, it is then passed to the cursor's updateRow()
method. This method accepts the row and updates the value in the feature class for
that particular row.

Updating the shape field
For each row, all values included in the list returned by the cursor are available for
update, except the unique ID (while no exception will be thrown, the UID values will
not be updated). Even the shape field can be adjusted, with a few caveats. The main
caveat is that the updated shape field must be the same geometry type as the original
row, a point can be replaced with a point, a line with a line, and a polygon with
another polygon.

Adjusting a point location
If a bus stop was moved down the street from its current position, it would need to
be updated using an Update Cursor. This operation will require a new location in
an X/Y format, preferably in the same projection as the feature class to avoid any
loss of location fidelity in a spatial transformation. There are two methods available
to us for creating a new point location, depending on the method used to access the
data. The first method is used when the location data is requested using the SHAPE@
tokens, and requires the use of an ArcPy Geometry type, in this case the Point type.
The ArcPy Geometry types are discussed in detail in the next chapter.

sql = 'OBJECTID < 5'

with arcpy.da.UpdateCursor(Bus_Stops, ['OID@', 'SHAPE@'],sql) as cursor:

 for row in cursor:

 row[1] = arcpy.Point(5999783.78657, 2088532.563956)

By passing an X and Y value to the ArcPy Point Geometry, a Point shape object is
created and passed to the cursor in the updated list returned by the cursor. Assigning
a new location to the shape field in a tuple, then using the cursor's updateRow()
method allows the shape field value to be adjusted to the new location. Because the
first four bus stops are at the same location, they are all moved to the new location.

ArcPy Cursors – Search, Insert, and Update

[88]

The second method applies to all other forms of shape field interactions, including
the SHAPE@XY, SHAPE@JSON, SHAPE@KML, SHAPE@WKT, and SHAPE@WKB tokens. These
are updated by passing the new location in the format requested back to the cursor
and updating the list:

sql = 'OBJECTID < 5'

with arcpy.da.UpdateCursor(Bus_Stops, ['OID@', 'SHAPE@XY'],sql) as
cursor:

 for row in cursor:

 row[1] =(5999783.786500007, 2088532.5639999956)

Here is the same code using the SHAPE@JSON keyword and a JSON representation of
the data:

sql = 'OBJECTID < 5'

with arcpy.da.UpdateCursor(Bus_Stops, ['OID@', 'SHAPE@JSON'],sql) as
cursor:

 for row in cursor:

 print row

 row[1] = u'{"x":5999783.7865000069, "y":2088532.5639999956,

 "spatialReference":{"wkid":102643}}'

As long as the keyword, the data format, and the geometry type match, the location
is updated to the new coordinates. The keyword method is very useful when
updating points, however, the SHAPE@XY keyword does not work with lines or
polygons as the location returned represents the centroid of the requested geometry.

Deleting a row using an Update Cursor
If we need to remove a row of data, the UpdateCursor has a deleteRow method
that works to remove the row. Note that this will completely remove the data row,
making it unrecoverable. This method does not require a parameter to be passed to
it; instead, it will remove the current row:

sql = 'OBJECTID < 2'

Bus_Stops = r'C:\Projects\PacktDB.gdb\Bus_Stops'

with arcpy.da.UpdateCursor(Bus_Stops,

 ['OID@',

 'SHAPE@XY'],sql) as cursor:

 for row in cursor:

Chapter 5

[89]

Using an Insert Cursor
Now that we have a grasp on how to update existing data, let's investigate using
Insert Cursors to create new data and add it to a feature class. The methods involved
are very similar to using other data access cursors, except that we do not need to
create an iterable cursor to extract rows of data; instead, we will create a cursor that
will have the special insertRow method that is capable of adding data to the feature
class row by row.

The Insert Cursor can be called using the same with..as syntax but generally it is
created as a variable in the flow of the script.

Note that only one cursor can be invoked at a time; an exception (a
Python error) will be generated when creating two insert (or update)
cursors without first removing the initial cursor using the Python del
keyword to remove the cursor variable from memory. This is why the
with..as syntax is preferred by many.

The data access module's Insert Cursor requires some of the same parameters as
the other cursors. The feature class to be written to and the list of fields that will
have data inserted (this includes the shape field) are required. The spatial reference
will not be used as the new shape data must be in the same spatial reference as the
feature class. No SQL expression is allowed for an Insert Cursor.

The data to be added to the feature class will be in the form of a tuple or a list, in
the same order as the fields that are listed in the fields list parameter. Only fields of
interest need to be included in the list of fields, meaning not every field needs a value
in the list to be added. When adding a new row of data to a feature class, the unique
ID will automatically be generated, making it unnecessary to explicitly include the
unique ID (in the form of the OID@ keyword) in the list of fields to be added.

Let's explore code that could be used to generate a new bus stop. We'll write to a test
dataset called TestBusStops. We are only interested in the Name and Stop ID fields,
so those fields along with the shape field (which is in a State Plane projection system)
will be included in the data list to be added:

Bus_Stops = r'C:\Projects\PacktDB.gdb\TestBusStops'

insertCursor = arcpy.da.InsertCursor(Bus_Stops,
['SHAPE@', 'NAME','STOPID'])

coordinatePair = (6001672.5869999975, 2091447.0435000062)

newPoint = arcpy.Point(*coordinatePair)

dataList = [newPoint,'NewStop1',112121]

insertCursor.insertRow(dataList)

del insertCursor

ArcPy Cursors – Search, Insert, and Update

[90]

If there is an iterable list of data to be inserted into the feature class, create the Insert
Cursor variable before entering the iteration, and delete the Insert Cursor variable
once the data has been iterated through, or use the with..as method to automatically
delete the Insert Cursor variable when the iteration is complete:

Bus_Stops = r'C:\Projects\PacktDB.gdb\TestBusStops'

listOfLists = [[(6002672.58675, 2092447.04362),'NewStop2',112122],

 [(6003672.58675, 2093447.04362),'NewStop3',112123],

 [(6004672.58675, 2094447.04362),'NewStop4',112124]

]

with arcpy.da.InsertCursor(Bus_Stops,

 ['SHAPE@',

 'NAME',

 'STOPID']) as iCursor:

 for dataList in listOfLists:

 newPoint = arcpy.Point(*dataList[0])

 dataList[0] = newPoint

As a list, the listOfLists variable is iterable. Each list within it is considered as
dataList in the iteration, and the first value in dataList (the coordinate pair) is passed
to the arcpy.Point() function to create a Point object. The arcpy.Point() function
requires two parameters, X and Y; these are extracted from the coordinate pair tuple
using the asterisk, which 'explodes' the tuple and passes the values it contains to the
function. The Point object is then added back into dataList using an index-based list
assignment, which would not be available to us if the dataList variable was a tuple
(we would instead have to create a new list and add in the Point object and the other
data values).

Inserting a polyline geometry
To create and insert a polyline-type shape field from a series of points, it's best to use
the SHAPE@ keyword. We will also further explore the ArcPy Geometry types, which
will be discussed in the next chapter. When working with the SHAPE@ keyword, we
have to work with data in ESRI's spatial binary formats, and the data must be written
back to the field in the same format using the ArcPy Geometry types.

Chapter 5

[91]

To create a polyline, there is one requirement, at least two valid points made of two
coordinate pairs. When working with the SHAPE@ keyword, there is a methodology
to converting the coordinate pairs into an ArcPy Point and then adding it to an
ArcPy Array, which is then converted into an ArcPy Polyline to be written back to
the shape field:

listOfPoints = [(6002672.58675, 2092447.04362),

 (6003672.58675, 2093447.04362),

 (6004672.58675, 2094447.04362)

]

line = 'New Bus Line'

lineID = 12345

busLine = r'C:\Projects\PacktDB.gdb\TestBusLine'

insertCursor = arcpy.da.InsertCursor(busLine, ['SHAPE@',
'LINE', 'LINEID'])

lineArray = arcpy.Array()

for pointsPair in listOfPoints:

 newPoint = arcpy.Point(*pointsPair)

 lineArray.add(newPoint)

newLine = arcpy.Polyline(lineArray)

insertData = newLine, line, lineID

The three coordinate pairs in tuples are iterated and converted into Point objects,
which are in turn added to the Array object called lineArray. The Array object is
then added to the Polyline object called newLine, which is then added to a tuple with
the other data attributes and inserted into the feature class by the InsertCursor.

Inserting a polygon geometry
Polygons are also inserted, or updated, using cursors. The ArcPy Polygon Geometry
type does not require the coordinate pairs to include the first point twice (that is,
as the first point and as the last point). The polygon is closed automatically by the
arcpy.Polygon() function:

listOfPoints = [(6002672.58675, 2092447.04362),

 (6003672.58675, 2093447.04362),

 (6004672.58675, 2093447.04362),

 (6004672.58675, 2091447.04362)

]

polyName = 'New Polygon'

ArcPy Cursors – Search, Insert, and Update

[92]

polyID = 54321

blockPoly = r'C:\Projects\PacktDB.gdb\Chapter5Results\TestPolygon'

insertCursor = arcpy.da.InsertCursor(blockPoly,
['SHAPE@', 'BLOCK', 'BLOCKID'])

polyArray = arcpy.Array()

for pointsPair in listOfPoints:

 newPoint = arcpy.Point(*pointsPair)

 polyArray.add(newPoint)

newPoly = arcpy.Polygon(polyArray)

insertData = newPoly, polyName, polyID

insertCursor.insertRow(insertData)

Here is a visualization of the result of the insert operation:

Chapter 5

[93]

Summary
In this chapter we covered the basic uses of data access module cursors. Search,
update and Insert Cursors were explored and demonstrated, and a special focus was
placed on the use of these cursors for extracting shape data from the shape field.
Cursor parameters were also introduced, including the spatial reference parameter
and the SQL expression where clause parameter. In the next chapter, we will further
explore the use of cursors, especially with the use of ArcPy Geometry types.

Working with ArcPy
Geometry Objects

The essence of geospatial analysis is using geometric shapes – points, lines, and
polygons – to model the geography of real world objects and their location-based
relationships. The simple shapes and their geometric properties of location, length
and area are processed using geospatial operations to generate analysis results. It is
the combination of modeled geographic data and the associated attribute information
that separate geospatial information systems from all other information systems.

Until ArcPy, processing the feature class geometry using the geospatial operations
was depended on the pre-built tools within ArcToolbox. ArcPy has made it
possible to directly access the geometric shapes which are stored as mathematical
representations in the shape field of feature classes. Once accessed, this geometric
data is loaded into ArcPy geometry objects to make the data available for analysis
within an ArcPy script. Because of this advance, writing scripts that access geometry
fields and use them to perform analysis has transformed ArcGIS geospatial analysis.
In this chapter, we'll explore how to generate and use the ArcPy geometry objects to
perform geospatial operations, and apply them to the bus stops analysis.

In this chapter, we will cover: Point and Array constructor objects and
PointGeometry, Polyline, and Polygon geometry objects

•	 How to use the geometry objects to perform geospatial operations
•	 How to integrate the geometry objects into scripts
•	 How to perform common geospatial operations using the geometry objects
•	 How to replace the use of ArcToolbox tools in the script with geometry

object methods

Working with ArcPy Geometry Objects

[96]

ArcPy geometry object classes
In designing geometry objects, the authors of ArcPy made it possible to perform
geospatial operations in memory, reducing the need to use tools in the ArcToolbox
for these operations. This will result in speed gains as there is no need to write the
results of the calculations to disk at each step of the analysis. Instead, the results of
the steps can be passed from function to function within the script. The final results
of the analysis can be written to the hard drive as a feature class, or they can be
written into a spreadsheet or passed to another program.

The geometry objects are written as Python classes- special blocks of code that
contain internal functions. The internal functions are the methods and properties of
the geometry objects; when called they allow the object to perform an operation (a
method) or to reveal information about the geometry object (a property). Python
classes are written with a main class that contains shared methods and properties,
and with sub-classes that reference the main class but also have specific methods and
properties that are not shared. Here, the main class is the ArcPy Geometry object, while
the sub-classes are the PointGeometry, Multipoint, Polyline and Polygon objects.

The geometry objects are generated in three ways. The first requires using data cursors
to read existing feature classes and passing a special keyword as a field name. The
shape data returned by the cursor is a geometry object. The second method is to create
new data by passing raw coordinates to a constructor object (either a Point or Array
object), which is then passed to a geometry object. The third method is to read data
from a feature class using the Copy Features tool from the ArcToolbox.

Each geometry object has methods that allow for read access and write access. The
read access methods are important for accessing the coordinate points that constitute
the points, lines and polygons. The write access methods are important when
generating new data objects that can be analyzed or written to disk.

The PointGeometry, Multipoint, Polyline, and Polygon geometry objects are used
for performing analysis upon their respective geometry types. The generic geometry
object can accept any geometry type and an optional spatial reference to perform
geospatial operations when there is no need to discern the geometry type.

Two other ArcPy classes will be used for performing geospatial operations in
memory: the Array object and the Point object. They are constructor objects, as
they are not sub-classed from the geometry class, but are instead used to construct
the geometry objects. The Point object is used to create coordinate points from raw
coordinates. The Array object is a list of coordinate points that can be passed to a
Polyline or Polygon object, as a regular Python list of ArcPy Point objects cannot
be used to generate those geometry objects.

Chapter 6

[97]

ArcPy Point objects
Point objects are the building blocks used to generate geometry objects. Also, all of the
geometry objects will return component coordinates as Point objects when using read
access methods. Point objects allow for simple geometry access using its X, Y and Z
properties, and a limited number of geospatial methods, such as contains, overlaps,
within, touches, crosses, equals, and disjoint. Let's use IDLE to explore some of
these methods with two Point geometry objects with the same coordinates:

>>> Point = arcpy.Point(4,5)

>>> point1 = arcpy.Point(4,5)

>>> Point.equals(point1)

True

>>> Point.contains(point1)

True

>>> Point. crosses(point1)

False

>>> Point.overlaps(point1)

False

>>> Point.disjoint(point1)

False

>>> Point.within(point1)

True

>>> point.X, Point.Y

(4.0, 5.0)

In these examples, we see some of the idiosyncrasies of the Point object. With two
points that have the same coordinates, the results of the equals method and the
disjoint method are as expected. The disjoint method will return True when
the two objects do not share coordinates, while the opposite is true with the equals
method. The contains method will work with the two Point objects and return True.
The crosses method and overlaps method are somewhat surprising results, as the
two Point objects do overlap in location and could be considered to cross; however,
those methods do not return the expected result as they are not built to compare
two points.

Working with ArcPy Geometry Objects

[98]

ArcPy Array objects
Before we progress up to Polyline and Polygon objects, we need to understand the
ArcPy Array object. It is the bridge between the Point objects and those geometry
objects that require multiple coordinate points. Array objects accept Point objects as
parameters, and the Array object is in turn passed as a parameter to the geometry
object to be created. Let's use Point objects with an Array object to understand better
how they work together.

The Array object is similar to a Python list, with extend, append, and replace
methods, and also has unique methods such as add and clone. The add method will
be used to add Point objects individually:

>>> Point = arcpy.Point(4,5)

>>> point1 = arcpy.Point(7,9)

>>> Array = arcpy.Array()

>>> Array.add(point)

>>> Array.add(point1)

The extend() method would add a list of Point objects all at once:

>>> Point = arcpy.Point(4,5)

>>> point1 = arcpy.Point(7,9)

>>> pList = [Point,point1]

>>> Array = arcpy.Array()

>>> Array.extend(pList)

The insert method will put a Point object in the Array at a specific index, while the
replace method is used to replace a Point object in an Array by passing an index
and a new Point object:

>>> Point = arcpy.Point(4,5)

>>> point1 = arcpy.Point(7,9)

>>> point2 = arcpy.Point(11,13)

>>> pList = [Point,point1]

>>> Array = arcpy.Array()

 >>> Array.extend(pList)

>>> Array.replace(1,point2)

>>> point3 = arcpy.Point(17,15)

>>> Array.insert(2,point3)

Chapter 6

[99]

The Array object, when loaded with Point objects, can then be used to generate the
other geometry objects.

ArcPy Polyline objects
The Polyline object is generated with an Array object that has at least two Point
objects. As given in the following IDLE example, once an Array object has been
generated and loaded with the Point objects, it can then be passed as a parameter to
a Polyline object:

>>> Point = arcpy.Point(4,5)

>>> point1 = arcpy.Point(7,9)

>>> pList = [Point,point1]

>>> Array = arcpy.Array()

>>> Array.extend(pList)

>>> pLine = arcpy.Polyline(Array)

Now that the Polyline object has been created, its methods can be accessed. This
includes methods to reveal the constituent coordinate points within the polyline, and
other relevant information:

>>> pLine.firstPoint

<Point (4.0, 5.0, #, #)>

>>> pLine.lastPoint

<Point (7.0, 9.0, #, #)>

pLine.getPart()

<Array [<Array [<Point (4.0, 5.0, #, #)>, <Point (7.0, 9.0, #, #)>]>]>

>>> pLine.trueCentroid

<Point (5.5, 7.0, #, #)>

>>> pLine.length

5.0

>>> pLine.pointCount

2

This example Polyline object has not been assigned a spatial reference system, so
the length is unitless. When a geometry object does have a spatial reference system,
the linear and areal units will be returned in the linear unit of the system.

Working with ArcPy Geometry Objects

[100]

The Polyline object is also our first geometry object with which we can invoke
geometry class methods that perform geospatial operations, such as buffers, distance
analyses, and clips:

>>> bufferOfLine = pLine.buffer(10)

>>> bufferOfLine.area

413.93744395

>>> bufferOfLine.contains(pLine)

True

>>> newPoint = arcpy.Point(25,19)

>>> pLine.distanceTo(newPoint)

20.591260281974

Another useful method of Polyline objects is the positionAlongLine method. It
is used to return a PointGeometry object, discussed in the following, at a specific
position along the line. This position along the line can either be a numeric distance
from the first Point or as a percentage (expressed as a float from 0-1), when using the
optional second parameter:

>>> nPoint = pLine.positionAlongLine(3)

>>> nPoint.firstPoint.X, nPoint.firstPoint.Y

(5.8, 7.4)>>> pPoint = pLine.positionAlongLine(.5,True)

 >>> pPoint.firstPoint.X,pPoint.firstPoint.Y

(5.5, 7.0)

There are a number of other methods available to Polyline objects. More
information is available here: http://resources.arcgis.com/en/help/
main/10.2/index.html#//018z00000008000000

ArcPy Polygon objects
To create a Polygon object, an Array object must be loaded with Point objects and
then passed as a parameter to the Polygon object. Once the Polygon object has been
generated, the methods available to it are very useful for performing geospatial
operations. The geometry objects can also be saved to disk using the ArcToolbox
CopyFeatures tool. This IDLE example demonstrates how to generate a shapefile
by passing a Polygon object and a raw string filename to the tool:

>>> import arcpy
>>> point1 = arcpy.Point(12,16)
>>> point2 = arcpy.Point(14, 18)
>>> point3 = arcpy.Point(11, 20)

http://resources.arcgis.com/en/help/main/10.2/index.html#//018z00000008000000
http://resources.arcgis.com/en/help/main/10.2/index.html#//018z00000008000000

Chapter 6

[101]

>>> Array = arcpy.Array()
>>> Points = [point1,point2,point3]
>>> Array.extend(points)
>>> Polygon = arcpy.Polygon(array)
>>> arcpy.CopyFeatures_management(polygon, r'C:\Projects\Polygon.shp')
<Result 'C:\\Projects\\Polygon.shp'>

Polygon object buffers
Polygon objects, like Polyline objects, have methods that make it easy to perform
geospatial operations such as buffers. By passing a number to the buffer method
as a parameter, a buffer will be generated in memory. The unit of the number is
determined by the SpatialReference system. Internal buffers can be generated
by supplying negative buffer numbers; the buffer generated being the area within
the Polygon object at the specified distance from the Polygon perimeter. Clips,
unions, symmetrical differences, and more operations are available as methods,
as are within or contains operations; even projections can be performed using the
Polygon object methods as long as it has a SpatialReference system object passed
as a parameter. Following is a script that will create two shapefiles with two separate
SpatialReference systems, each identified by a numeric code (2227 and 4326) from
the EPSG coding system:

import arcpyPoint = arcpy.Point(6004548.231,2099946.033)

point1 = arcpy.Point(6008673.935,2105522.068)

point2 = arcpy.Point(6003351.355,2100424.783)Array = arcpy.Array()

Array.add(point1)

Array.add(point)

array.add(point2)

Polygon = arcpy.Polygon(array, 2227)

buffPoly = Polygon.buffer(50)

features = [Polygon,buffPoly]

arcpy.CopyFeatures_management(features,

 r'C:\Projects\Polygons.shp')

spatialRef = arcpy.SpatialReference(4326)

polygon4326 = Polygon.projectAs(spatialRef)

arcpy.CopyFeatures_management(polygon4326,

 r'C:\Projects\polygon4326.shp')

Working with ArcPy Geometry Objects

[102]

Here is how the second shapefile looks in the ArcCatalog Preview window:

Other Polygon object methods
Unlike the clip tool in the ArcToolbox, which can clip a Polygon using another
polygon, the clip method requires an extent object (another ArcPy class) and is
limited to a rectangular envelope around the area to be clipped. To remove areas
from a polygon, the difference method can work like the clip or erase tool in
the ArcToolbox:

buffPoly = Polygon.buffer(500)
donutHole =buffPoly.difference(Polygon)
features = [Polygon,donutHole]
arcpy.CopyFeatures_management(features,
 r"C:\Projects\Polygons2.shp")

Chapter 6

[103]

Here is the donut hole-like result of the buffer and difference operation. The buffer
with the donut hole surrounds the original Polygon object:

ArcPy geometry objects
The generic geometry object is quite useful for creating in memory a copy of the
geometry of a feature class, without first needing to know which type of geometry
the feature class contains. Like all of the ArcPy geometry objects, its read methods
include the extraction of the data in many formats such as JSON, WKT, and WKB.
The area (if it is a polygon), the centroid, the extent, and the constituent points of
each geometry are also available, as demonstrated previously.

Working with ArcPy Geometry Objects

[104]

Here is an example of reading the geometry of a feature class into memory using the
CopyFeatures tool:

import arcpy

cen2010 = r'C:\Projects\ArcPy.gdb\SanFrancisco\CensusBlocks2010'

blockPolys = arcpy.CopyFeatures_management(cen2010,

 arcpy.Geometry())

The variable blockPolys is a Python list containing all of the geometries loaded into
it; in this case it is census blocks. The list can then be iterated to be analyzed.

ArcPy PointGeometry objects
The PointGeometry object is very useful for performing these same geospatial
operations with points, which are not available with the Point objects. When a
cursor is used to retrieve shape data from a feature class with a PointGeometry
type, the shape data is returned as a PointGeometry object. While Point objects are
required to construct all other geometry objects when a cursor is not used to retrieve
data from a feature class, it's the PointGeometry object that is used to perform point
geospatial operations.

Let's explore getting PointGeometry objects from a data access module
SearchCursor and using the returned data rows to create buffered points. In our bus
stop analysis, this will replace the need to use the ArcToolbox Buffer tool to create
the 400 foot buffers around each stop. The script in the following uses a dictionary
to collect the buffer objects and then searches the census blocks using another Search
Cursor. To access the shape field using the SearchCursor() method, the SHAPE@
token is passed as one of the fields. Then, the script will iterate through the bus stops
and find all census blocks with which each stop intersects:

Generate 400 foot buffers around each bus stop

import arcpy,csv

busStops = r"C:\Projects\PacktDB.gdb\SanFrancisco\Bus_Stops"

censusBlocks2010 = r"C:\Projects\PacktDB.gdb\SanFrancisco\
CensusBlocks2010"

sql = "NAME = '71 IB' AND BUS_SIGNAG = 'Ferry Plaza'"

dataDic = {}

with arcpy.da.SearchCursor(busStops, ['NAME','STOPID','SHAPE@'], sql) as
cursor:

 for row in cursor:

 linename = row[0]

Chapter 6

[105]

 stopid = row[1]

 shape = row[2]

 dataDic[stopid] = shape.buffer(400), linename

Now that the data has been retrieved and the buffers have been generated using the
buffer method of the PointGeometry objects, the buffers can be compared against
the census block geometry using iteration and a Search Cursor. There will be two
geospatial methods used in this analysis: overlap and intersect. The overlaps
method is a boolean operation, returning a value of true or false when one geometry
is compared against another. The intersect method is used to get the actual area of
the intersect as well as identifying the population of each block. Using the intersect
requires two parameters: a second geometry object, and an integer indicating which
type of geometry to return (1 for point, 2 for line, 4 for polygon). We want the
polygonal area of intersect returned to have an area of intersection available along
with the population data:

Intersect census blocks and bus stop buffers

processedDataDic = {} = {}

for stopid in dataDic.keys():

 values = dataDic[stopid]

 busStopBuffer = values[0]

 linename = values[1]

 blocksIntersected = []

 with arcpy.da.SearchCursor(censusBlocks2010,
 ['BLOCKID10','POP10','SHAPE@']) as cursor:

for row in cursor:

 block = row[2]

 population = row[1]

 blockid = row[0]

 if busStopBuffer.overlaps(block) ==True:

 interPoly = busStopBuffer.intersect(block,4)

 data = row[0],row[1],interPoly, block

 blocksIntersected.append(data)

 processedDataDic[stopid] = values, blocksIntersected

Working with ArcPy Geometry Objects

[106]

This portion of the script iterates through the blocks and intersects against the
buffered bus stops. Now that we can identify the blocks that touch the buffer around
each stop and the data of interest has been collected into the dictionary, it can be
processed and the average population of all of the blocks touched by the buffer can
be calculated:

Create an average population for each bus stop

dataList = []

for stopid in processedDataDic.keys():

 allValues = processedDataDic[stopid]

 popValues = []

 blocksIntersected = allValues[1]

 for blocks in blocksIntersected:

 popValues.append(blocks[1])

 averagePop = sum(popValues)/len(popValues)

 busStopLine = allValues[0][1]

 busStopID = stopid

 finalData = busStopLine, busStopID, averagePop

 dataList.append(finalData)

Now that the data has been created and added to a list, it can be outputted to a
spreadsheet using the createCSV module we created in Chapter 4, Complex ArcPy
Scripts and Generalizing Functions:

Generate a spreadsheet with the analysis results

def createCSV(data, csvname, mode ='ab'):

 with open(csvname, mode) as csvfile:

 csvwriter = csv.writer(csvfile, delimiter=',')

 csvwriter.writerow(data)

csvname = "C:\Projects\Output\StationPopulations.csv"

headers = 'Bus Line Name','Bus Stop ID', 'Average Population'

createCSV(headers, csvname, 'wb')

for data in dataList:

 createCSV(data, csvname)

Chapter 6

[107]

The data has been processed and written to the spreadsheet. There is one more step
that we can take with the data and that is to use the area of the intersection to create
a proportional population value for each buffer. Let's redo the processing of the data
to include the proportional areas:

dataList = []

for stopid in processedDataDic.keys():

 allValues = processedDataDic[stopid]

 popValues = []

 blocksIntersected = allValues[1]

 for blocks in blocksIntersected:

 pop = blocks[1]

 totalArea = blocks[-1].area

 interArea = blocks[-2].area

 finalPop = pop * (interArea/totalArea)

 popValues.append(finalPop)

 averagePop = round(sum(popValues)/len(popValues),2)

 busStopLine = allValues[0][1]

 busStopID = stopid

 finalData = busStopLine, busStopID, averagePop

 dataList.append(finalData)

Now the script is taking full advantage of the power of ArcPy geometry objects,
and the script is running completely in memory which avoids producing any
intermediate datasets.

Summary
In this chapter, we discussed in detail the use of ArcPy geometry objects. These
varied objects have similar methods and are, in fact, sub-classed from the same
Python class. They are useful for performing in-memory geospatial analyses, which
avoids having to read and write data from the hard drive and also skips creating any
intermediate data.

ArcPy geometry objects will become an important part of automating geospatial
workflows. Combining them with Search Cursors makes ArcPy more useful than any
earlier implementation of Python scripting tools for ArcGIS. Next, we will convert
the raw script into a script tool that can be executed directly from the ArcToolbox or
a personal toolbox in a geodatabase.

Creating a Script Tool
Now that the basics of creating and executing ArcPy scripts have been covered, we
need to take the next step and create re-useable Script tools. Creating Script tools will
allow for greater code reuse, and will make it easy to create custom tools for other GIS
analysts and customers. With a Python script backend or code, and a familiar ArcGIS
tool frontend or user interface, the particulars of the code are hidden from the user; it
becomes just another tool, albeit a tool that can save days and weeks of work.

This chapter will cover the following topics:

•	 Adding parameters to scripts to accept input and produce output as required
by the user

•	 Creating a custom tool frontend and a custom toolbox
•	 Setting the parameters of the tool frontend to allow it to pass arguments to

the code backend

Adding dynamic parameters to a script
The scripts we have generated in previous chapters have all had hard-coded inputs.
The input values were written in the script as strings or numbers and assigned to
variables. While they can be updated manually to replace the input and output file
paths and SQL statements, programmers should aim to create scripts that will not
require editing each time they are used. Instead, scripts should be designed to be
dynamic and accept file paths and other inputs as parameters or arguments, in much
the same manner that the functions we have created accept parameters.

Creating a Script Tool

[110]

Python was designed with this in mind, and the sys module has a method called
sys.argv that accepts inputs passed to the script when it is executed. While the
designers of ArcPy and its predecessor arcgisscripting module initially took
advantage of the sys.argv method, in time they designed an ArcPy method
for accepting script parameters. As either method can be used when writing
ArcPy scripts, and both are found in example scripts on the web, it is important
to recognize the minute differences between the sys.argv method and arcpy.
GetParameterAsText(). The major difference between the two methods is that sys.
argv accepts the dynamic arguments as a list. Members of the list are accessed using
list indexing and assigned to variables. Arcpy.GetParameterAsText() is a function
that accepts an index number parameter. The index number passed reflects the order
of the parameter within the tool's frontend; the first parameter is zero, the next is
one, and so on.

If the order of the parameters is adjusted in the tool frontend,
this adjustment must be reflected in the code backend.

Displaying script messages using arcpy.
AddMessage
It is important to receive feedback from scripts to assess the progress of the
script as it performs an analysis. As basic as this would seem, Python scripts and
programming languages in general do not, by default, provide any feedback except
for errors and the termination of the script. This can be a bit discouraging to the
novice programmer, as all built-in feedback is negative.

To alleviate this lack of feedback, the use of print statements allows the script to
give reports on the progress of the analysis as it runs. However, when using a Script
tool, print statements do not have any effect. They will not be displayed anywhere,
and are ignored by the Python executable. To display messages in the script console
when Script tools are executed, ArcPy has a arcpy.AddMessage() method.

Arcpy.AddMessage statements are added to scripts wherever feedback is required by
the programmer. The feedback required is passed to the method as a parameter and
displayed; whether it be a list, string, float or integer. Arcpy.AddMessage makes it
easy to check on the results of analysis calculations, to ensure that the correct inputs
are used and that the correct outputs are produced. As this feedback from the script
can be a powerful debugging tool, use arcpy.AddMessage whenever there is a need
for feedback from the Script tool.

Chapter 7

[111]

Note that statements passed to arcpy.AddMessage will only
display when the script is run as a Script tool.

Adding dynamic components to the script
To start making the script into a Script tool, we should first copy the script that
we created in Chapter 6, Working with ArcPy Geometry Objects Chapter6_1.py, as
Chapter7_1.py in a new folder called Chapter7. We can then start replacing the
hard-coded variables with dynamic variables using arcpy.GetParameterAsText.
There is another ArcPy method called GetParameter that accepts the inputs as an
object, but for our purposes, GetParameterAsText is the method to use.

By adding arcpy.GetParameterAsText and arcpy.AddMessage to the script, we will
have taken the first step towards creating a Script tool. Care must be taken to ensure
that the variables created from the dynamic parameters are in the correct order, as
reordering them can be time-consuming. Once the parameters are added to the script
and the hard-coded portions of the script replaced with variables, the script is ready
to become a Script tool.

First, move all of the variables that are hard-coded into the top of the script. Then,
replace all of the assigned values with arcpy.GetParameterAsText, making them
dynamic values. Each parameter is referred to using zero-based indexing; however,
they are passed to a function individually instead of as a member of a list:

#Chapter 7.py

import arcpy, csv

busStops = arcpy.GetParameterAsText(0)

censusBlocks2010 = arcpy.GetParameterAsText(1)

censusBlockField = arcpy.GetParameterAsText(2)

csvname = arcpy.GetParameterAsText(3)

headers = arcpy.GetParameterAsText(4).split(',')

sql = arcpy.GetParameterAsText(5)

keyfields = arcpy.GetParameterAsText(6).split(';')

dataDic = {}

censusFields = ['BLOCKID10',censusBlockField, 'SHAPE@']

if "SHAPE@" not in keyfields:

Creating a Script Tool

[112]

 keyfields.append("SHAPE@")

arcpy.AddMessage(busStops)

arcpy.AddMessage(censusBlocks2010)

arcpy.AddMessage(censusBlockField)

arcpy.AddMessage(csvname)

arcpy.AddMessage(sql)

arcpy.AddMessage(keyfields)

As you can see from the variable keyfields and the variable headers, some further
processing must be applied to certain variables, as not all of them are going to be
used as strings. In this case, a list is created from the string passed to the variable
keyfields by using the string functions split and splitting the string on every
semi-colon, while the headers variable is created by splitting on the commas. To
other variables, such as the censusBlockField variable and the variable keyfields,
the SHAPE@ keyword is added because it will be required each time the analysis is
run. If a particular field is required for each run of the data, such as the BLOCKID10
field, it can remain hard-coded in the script, or optionally could become its own
selectable field parameter in the Script tool.

The variables will then be added to the remainder of the script in the correct places,
making the script ready for the Script tool to become part of a custom Toolbox in
a geodatabase or in ArcToolbox. However, we must first create the tool part of the
Script tool for the values to be collected and passed to the script.

Creating a Script tool
Creating a script tool is a powerful combination of the power of ArcPy and the ease
of use of the tools in ArcToolbox.

The first step is to create a custom toolbox to hold the script tool. To achieve this, do
the following:

1.	 Open up ArcCatalog and right click in the SanFrancisco.gdb
File Geodatabase.

2.	 Select New and then Toolbox from the menu.
3.	 Call the toolbox Chapter8Tools.
4.	 Right click on Chapter8Tools, select Add, and then select Script.

Chapter 7

[113]

The following menu will appear allowing you to set up the script tool. Add a title
with no spaces and a label, as well as a description. I prefer to run script tools in the
foreground to see the messages it passes, but it is not necessary and can be annoying
when needing to start a script and still work on other tasks. Click Next once the
menu has been filled out.

Creating a Script Tool

[114]

The next menu contains an entry field and a file dialog button, allowing the user
to find the script to which the parameters collected will be passed. Use the file
dialog to navigate to and select the script, and make sure that Run Python
script in process is checked.

Chapter 7

[115]

Now, push Next once the script has been identified.

Labelling and defining parameters
The next dialog box is the most important one. It is where the parameters to be
passed are labeled and their data types are defined. Care must be taken to choose
the correct data type for each parameter as there are multiple data types that can
be supplied for some of the parameters. Also, properties for each parameter will be
defined; this information will characterize the data to be collected and help to make
it possible for the data to be in the correct format as well as the correct data type.

Start by adding the display name for each parameter to be collected. The display
name should explain the type of input that is required. For instance, the first
parameter will be the bus stop's feature class, so the display name could be
Bus Stop Feature Class.

Creating a Script Tool

[116]

Make sure to add the display names in the order that they
will be passed to variables in the script.

Adding data types
Next, add in the Data Types for each parameter. This is intricate because there will
be a large list of data types to choose from, and often there are a few types that
would work for many parameters. For instance, if a shapefile parameter is created, it
would allow the user to select a shapefile as expected. However, it might be better to
use the Feature Class data type, as then both shapefiles and feature classes could be
used in the analysis.

Chapter 7

[117]

Adding the Bus Stop feature class as a parameter
The first parameter is the Bus Stop feature class, and it should be a Feature Class
data type. Click on the Data Type Field next to the display name and a drop-down
list will appear. Once the data type is selected, check out the parameter properties
below the list of parameters. For the Bus Stop feature class, the defaults will be
acceptable, as the feature class is required, is not a multi-value, has no default or
environment settings, and is not obtained from any other parameter.

Some of the parameters will require another parameter to be
selected first as they are derived values obtained from the first
parameter. The Census Block Field parameter and the SQL
statement parameter derive values from the Census Block feature
class and Bus Stop feature class parameters, respectively.

Creating a Script Tool

[118]

Adding the Census Block feature class as a
parameter
The Census Block feature class is similar to the Bus Stop feature class. It will be a
Feature Class data type, allowing both shapefiles and feature classes to be selected,
and there is no need to adjust the default parameter properties. Once the data type
has been set, the Census Block parameter is ready for use.

Adding the Census Block field as a parameter
The Census Block field parameter has a new twist; it is obtained from the Census
Block feature class parameter, and will only be populated once that first parameter
has been created. To make this possible, the Obtained from parameter property will
have to be set. Select Field as the data type, and then click on the blank area next to
the Obtained from parameter property and select Census_Block_Feature_Class.
This will create a list of the fields contained within the Census Block feature class.

Chapter 7

[119]

Adding the output spreadsheet as a parameter
As the spreadsheet that will be produced from the analysis run by the script tool is
a Comma Separated Value (CSV) file, select Text File as the Data Type. Setting the
Default parameter property to a file name can save time, and will make the required
file extension easier to identify. Also, as the spreadsheet will be produced by the
Script tool as an output, the Direction parameter property should be Output.

Creating a Script Tool

[120]

Adding the spreadsheet field names as a parameter
The field names chosen as headers for the output spreadsheet should be a String
data type, with the field names separated by commas and no spaces. The script uses
the string data type's split method to separate the field names. Passing a comma
to the split method separates the parameter by splitting the input string on the
commas to create a list of field names. The list of field names will be used as a header
by the csv module when creating the spreadsheet.

Chapter 7

[121]

Adding the SQL Statement as a parameter
The SQL Statement parameter will require the helpful SQL Expression Builder
menu and should therefore be a SQL Expression data type. The SQL Expression
Builder will use a field obtained from the Bus Stop feature class. Set the Obtained
from parameter property to the Bus Stop feature class by clicking on that property
and selecting Bus_Stop_Feature_Class from the drop-down list.

Creating a Script Tool

[122]

Adding the bus stop fields as a parameter
The final parameter is the bus stop fields parameter, which is a Field data type that
will be obtained from the Bus Stop feature class. Change the MultiValue parameter
property from No to Yes to allow the user to select multiple fields. Also remember
to set the Obtained from parameter property to Bus_Stop_Feature_Class so that the
fields are populated from the Bus Stop feature class parameter.

Now that all the parameters have been described and their properties have been set,
the script tool is ready. Click on Finish to close the menu.

Chapter 7

[123]

Inspecting the final script
Once all of the parameters have been collected, the variables are then used to replace
the hard-coded field lists or other static script elements with the new dynamic
parameters collected from the script tool. In this manner, the script has become a
valuable tool that can be used for multiple data analyses, as the fields to be analyzed
are now dynamic:

import arcpy, csv

busStops = arcpy.GetParameterAsText(0)

censusBlocks2010 = arcpy.GetParameterAsText(1)

censusBlockField = arcpy.GetParameterAsText(2)

csvname = arcpy.GetParameterAsText(3)

headers = arcpy.GetParameterAsText(4).split(',')

sql = arcpy.GetParameterAsText(5)

keyfields = arcpy.GetParameterAsText(6).split(';')

dataDic = {}

censusFields = ['BLOCKID10',censusBlockField,'SHAPE@']

if "SHAPE@" not in keyfields:

 keyfields.append("SHAPE@")

arcpy.AddMessage(busStops)

arcpy.AddMessage(censusBlocks2010)

arcpy.AddMessage(censusBlockField)

arcpy.AddMessage(csvname)

arcpy.AddMessage(sql)

arcpy.AddMessage(keyfields)

x = 0

with arcpy.da.SearchCursor(busStops, keyfields, sql) as cursor:

 for row in cursor:

 stopid = x

 shape = row[-1]

 dataDic[stopid] = []

 dataDic[stopid].append(shape.buffer(400))

 dataDic[stopid].extend(row[:-1])

 x+=1

processedDataDic = {}

Creating a Script Tool

[124]

for stopid in dataDic.keys():

 values = dataDic[stopid]

 busStopBuffer = values[0]

 blocksIntersected = []

 with arcpy.da.SearchCursor(censusBlocks2010, censusFields) as cursor:

 for row in cursor:

 block = row[-1]

 population = row[1]

 blockid = row[0]

 if busStopBuffer.overlaps(block) ==True:

 interPoly = busStopBuffer.intersect(block,4)

 data = population,interPoly, block

 blocksIntersected.append(data)

 processedDataDic[stopid] = values, blocksIntersected

dataList = []

for stopid in processedDataDic.keys():

 allValues = processedDataDic[stopid]

 popValues = []

 blocksIntersected = allValues[-1]

 for blocks in blocksIntersected:

 pop = blocks[0]

 totalArea = blocks[-1].area

 interArea = blocks[-2].area

 finalPop = pop * (interArea/totalArea)

 popValues.append(finalPop)

 averagePop = round(sum(popValues)/len(popValues),2)

 busStopLine = allValues[0][1]

 busStopID = stopid

 finalData = busStopLine, busStopID, averagePop

 dataList.append(finalData)

def createCSV(data, csvname, mode ='ab'):

Chapter 7

[125]

 with open(csvname, mode) as csvfile:

 csvwriter = csv.writer(csvfile, delimiter=',')

 csvwriter.writerow(data)

headers.insert(0,"ID")

createCSV(headers, csvname, 'wb')

for data in dataList:

 createCSV(data, csvname)

The variable x was added to keep track of the members of the dictionary dataDic,
which in the script in Chapter 6, Working with ArcPy Geometry Objects had relied on
the STOPID field. To eliminate this dependency, x was introduced.

Running the Script Tool
Now that the frontend has been designed to accept parameters from a user, and
the backend script is ready to accept the parameters from the frontend, the tool is
ready to be executed. Double click on the Script Tool in the toolbox to open the
tool dialog box.

Creating a Script Tool

[126]

Select the parameters as with any ArcToolbox tool (for example using the file dialog
to navigate a file tree to the Bus Stop feature class). Once the parameters have been
set, click on OK to execute the script.

One optional adjustment would be to add an arcpy.AddMessage line where the
average population is calculated. By doing this, the individual block population
would be displayed and the script console would give feedback about the progress
of the script.

Insert in the script just below the line where the variable finalData is defined:

arcpy.AddMessage(finalData)

The feedback provided by this line will make it obvious that the script is working,
which is useful when the script executes a long analysis. When performing long
analyses, it is good practice to provide feedback to the user so that they can see that the
script is working as expected. Pass newline characters (\n) as parameters to arcpy.
AddMessage when there is a large amount of data being passed to arcpy.AddMessage.
This will break up the data into discrete chunks and make it easier to read.

Summary
In this chapter, we learned how to convert a script into a permanent and sharable
script tool that can be used by an ArcGIS user with no programming experience.
By creating a frontend using the familiar ArcGIS tool interface, and then passing
parameters to custom built tools that employ ArcPy, GIS programmers can combine
the ease of use of the ArcToolbox with the power of Python.

In the next chapter, we will explore how to use ArcPy to control the export of maps
from map documents. By adjusting map elements such as titles and legends, we
can create dynamic map outputs to reflect the nature of the data produced by map
analysis. In Chapter 9, More Arcpy.Mapping Techniques we will add the output of maps
to our script tool created in this chapter.

Introduction to
ArcPy.Mapping

Creating maps is an art, one that can be learned through years of dedicated study
of cartography. The visual display of information is both exciting and difficult, and
can be a rewarding part of the daily workflow of geospatial professionals. Once the
basics have been learned and mastered, cartographic output becomes a constant
battle to produce more maps at a faster pace. ArcPy, once again, has a powerful
solution: the arcpy.mapping module.

By allowing for the automatic manipulation of all map components, including the
map window, the layers, the legend, and all text elements, arcpy.mapping makes
creating, modifying, and outputting multiple maps fast and simple. Map book
creation – another important skill for geospatial professionals, is also made easy
using the module. In this chapter we will discuss some basic functionalities available
through arcpy.mapping and use it to output a map book of bus stops and their
surrounding census blocks.

This chapter will cover the following topics:

•	 Inspecting and updating Map Document (MXD) layer data sources
•	 Exporting MXDs to PDF or other image formats
•	 Adjusting map document elements

Introduction to ArcPy.Mapping

[128]

Using ArcPy with map documents
Recognizing the limitations of the previous arcgisscripting module, ESRI
designed the ArcPy module to not only work with data but also included the arcpy.
mapping module to allow direct interaction with map documents (MXDs) and the
layers they contain. This new module opened up a multitude of map automation
possibilities. A script might aid in identifying broken layer links, update the data
source of these layers, and apply new color schemes to layers. Another script
might use a map template and create a set of maps, one from each feature class in
a feature dataset. A third script could create a map book from an MXD, moving
from cell to cell in a grid layer to output the pages of the book, or even calculating
the coordinates on the fly. Dynamically created maps, based on data from a fresh
analysis, can be outputted at the same time the data is produced. Arcpy.mapping
moves the ArcPy module from helpful to instrumental, in any geospatial workflow.

To investigate the utility of the arcpy.mapping module, we'll need the help of an
MXD template. I've prepared a map package containing the data and MXD that we
will use for the exercises in this chapter. It includes the data from our San Francisco
bus stop's analysis, which we will continue and extend to include maps.

Inspecting and replacing layer sources
The first and most important arcpy.mapping module use is to identify and fix
the broken links between layers in a map document and their data sources. Layer
symbology and GIS data storage are separated, meaning that layer data sources are
often moved. Arcpy.mapping offers a quick solution, though imperfect.

This solution depends on a number of methods included in the arcpy.mapping
module. First, we will need to identify the broken links, and then we will fix them.
To identify the broken links we will use the ListBrokenDataSources() method
included in arcpy.mapping.

The ListBrokenDataSources() method requires an MXD path to be passed to the
MapDocument() method of arcpy.mapping. Once the map document object has been
created, it is passed to the ListBrokenDataSources() method, and a list will be
generated containing layer objects, one for each layer with a broken link. The layer
objects have a number of properties available to them. Using these properties, let's
print out the name and data source of each layer using the name and data source
properties of each object:

import arcpy

mxdPath = 'C:\Projects\MXDs\Chapter8\BrokenLinks.mxd'

mxdObject = arcpy.mapping.MapDocument(mxdPath)

Chapter 8

[129]

brokenLinks = arcpy.mapping.ListBrokenDataSources(mxdObject)

for link in brokenLinks:

 print link.name, link.dataSource

Fixing the broken links
Now that we have identified the broken links, the next step is to fix them. In this case,
it was revealed that the data sources should be in a folder called Data, but they are not
contained within that folder. The script must then be stepped up to replace the data
sources of each layer, so that they point at the actual location of the data source.

There are methods included in both layer objects and map document objects that can
accomplish this next step. If all of the data sources for an MXD have been moved,
it is better to use the MXD object and its methods to fix the sources. In the example
MXD, the data sources have all been moved into a new folder called NewData, so we
will employ the findAndReplaceWorkspacePaths() method to repair the links:

oldPath = r'C:\Projects\MXDs\Data'

newPath = r'C:\Projects'

mxdObject.findAndReplaceWorkspacePaths(oldPath,newPath)

mxdObject.save()

As long as the data sources are still in the same format (such that
shapefiles are still shapefiles or feature classes are still feature classes), the
findAndReplaceWorkspacePaths() method will work. If the data source types
have been changed (such that, shapefiles are imported into a file geodatabase), the
replaceWorkspaces() method will have to be used instead as it requires workspace
type as a parameter:

oldPath = r'C:\Projects\MXDs\Data'

oldType = 'SHAPEFILE_WORKSPACE'

newPath = r'C:\Projects'

newType = 'FILEGDB_WORKSPACE'

mxdObject.replaceWorkspaces(oldPath,oldType,newPath,newType)

mxdObject.save()

Introduction to ArcPy.Mapping

[130]

Fixing the links of individual layers
If the individual layers do not share a data source, the layer objects will need to be
adjusted using the findAndReplaceWorkspacePath() method available to layers.
This method is similar to the method used previously, but it will only replace the
data source of the layer object it is applied to instead of all of the layers. When
combined with a dictionary, the layer data sources can be updated using the layer
name property:

import arcpy

layerDic = {'Bus_Stops':[r'C:\Projects\OldDataPath', r'C:\Projects'],

 'stclines_streets': [r'C:\Projects\OtherPath',
 r'C:\Projects']}

mxdPath = r'C:\Projects\MXDs\Chapter8\BrokenLinks.mxd'

mxdObject = arcpy.mapping.MapDocument(mxdPath)

brokenLinks = arcpy.mapping.ListBrokenDataSources(mxdObject)

for layer in brokenLinks:

 oldPath, newPath = layerDic[layer.name]

 layer.findAndReplaceWorkspacePath(oldPath, newPath)

 mxdObject.save()

These solutions work well for individual map documents and layers. They can
also be extended to folders full of MXDs by using the glob.glob() method of the
built-in glob module (which helps to generate a list of files that match a certain file
extension) and the os.path.join() method of the os module:

import arcpy, glob, os

oldPath = r'C:\Projects\MXDs\Data'

newPath = r'C:\Projects'

folderPath = r'C:\Projects\MXDs\Chapter8'

mxdPathList = glob.glob(os.path.join(folderPath, '*.mxd'))

for path in mxdPathList:

 mxdObject = arcpy.mapping.MapDocument(mxdPath)

 mxdObject.findAndReplaceWorkspacePaths(oldPath,newPath)

 mxdObject.save()

Chapter 8

[131]

Exporting to PDF from an MXD
The next most important use of arcpy.mapping is to automatically export MXDs.
The following code will highlight the export of PDFs, but note that the module also
supports the export of JPEGs and other image formats. Using arcpy.mapping for this
process is a joy, as the usual process of opening and exporting the MXDs involves a
lot of waiting for ArcMap to start and the map to load, which can be a time sink:

import arcpy, glob, os

mxdFolder = r'C:\Projects\MXDs\Chapter8'

pdfFolder = r'C:\Projects\PDFs\Chapter8'

mxdPathList = glob.glob(os.path.join(mxdFolder, '*.mxd'))

for mxdPath in mxdPathList:

 mxdObject = arcpy.mapping.MapDocument(mxdPath)

 arcpy.mapping.ExportToPDF(mxdObject,

 os.path.join(pdfFolder,

 basepath(

 mxdPath.replace('mxd','pdf')

)))

Note that the output folder must exist for this code to run correctly.
While there are os module methods to check whether a path exists (os.
path.exists) and to create a folder (os.mkdir), that is not included
in this code snippet and the arcpy.mapping.ExportToPDF()
method will throw an exception if the input or output paths do not exist.

This example code is very useful and can be converted into a function that would
accept the folder path as a parameter. The function could then be added to a script
tool, as discussed in the last chapter.

Adjusting map document elements
Arcpy.mapping includes important methods that will facilitate the automation of
map document manipulation. These include the ability to add new layers or turn
layers on and off within MXDs, the ability to adjust the scale of the data frame
or move a data frame to focus on a specific region, and the ability to adjust text
components of the map (such as titles or subtitles). These methods will be addressed
as we continue our bus stop analysis.

Introduction to ArcPy.Mapping

[132]

Open up the MXD called MapAdjust.mxd. This represents our base map document,
with layers and elements that we will adjust to our needs. It contains layers that we
have generated from our analysis, and the base layers that fill out the map. There are
also a number of text elements that will be automatically replaced by the script to fit
the specific needs of each map. However, it does not do a good job of representing
the results of the analysis as the census blocks that intersect the bus stop buffers
overlap, making it hard to interpret the cartography.

The script will replace the data source of the census block layer and the bus stop
layer to make it possible to only produce one map for each bus stop, and the census
blocks that are intersected with each buffer surrounding the stops.

Chapter 8

[133]

To make this possible, we will have to create two empty feature classes: one,
with all of the attributes of the census blocks, and the other, with the attributes
of the bus stops. This will allow the data source to be replaced with the data
produced by the analysis.

Open up the SanFrancisco.gdb File Geodatabase and right click on the
Chapter8Results feature dataset. Select New from the drop-down menu and then
select Feature Class. Name the first feature class SelectedCensusBlocks and make it
a polygon. Select the defaults keyword on the next menu, and then on the following
menu, push the import button. Select the CensusBlocks feature class from the
SanFrancisco feature dataset; this will load the fields into the new feature class. Do the
same thing for a second feature class called SelectedBusStops, but make sure that
it is a point geometry type and import the schema from the BusStops feature class.
Repeat the same process for a third feature class called SelectedStopBuffers, but
make sure that it is a point geometry type and import the schema from the Buffers
feature class.

Once the feature classes have been created, it is now possible to use them to load the
results of the analysis. We will be redoing the analysis in memory and writing out
the results to the newly created feature classes, so that the entire census block will be
captured, instead of only the portion that intersects with the buffer, as it will better
illustrate the results of the analysis.

The initial state of the MapAdjust.mxd map document features a number of feature
classes with which we are now familiar: the downloaded feature class Bus_Stops,
the generated feature class Buffers, the intersected and clipped Census Blocks, and
four feature classes used for cartographic purposes, namely the Streets feature
class, the Parks feature class, a Neighborhoods feature class, and an outline of San
Francisco. There are two data frames, one with the default name Layers and another
called Inset, that are used to create the small inset that will show the position of the
Layers data frame as it moves around San Francisco. The small rectangle that depicts
the extent of the Layers data frame is an Extent frame created in the properties of the
Inset data frame.

Introduction to ArcPy.Mapping

[134]

Here is an exported view of the initial state of the map document:

The idea here, is to use the initial results of our analysis to generate the symbology
of the population layer as well as the bus stop layer and the buffer layer. Once they
have been set and saved, they can be used as a basis for the individual map pages
that we will be producing from this basic map document.

Note the text elements that make up the title and subtitle, as well
as the legend and attribution text at the bottom of the right pane.
These elements are available for adjustment along with the layers
and data sources that make up the map document by using the
arcpy.mapping.ListElements() method.

Chapter 8

[135]

Automated map document adjustment
Now that we understand the initial configuration of the map document, we will
introduce a script that will automate the adjustment. This script will include a
number of concepts that we have covered in this chapter and earlier chapters, and
will also introduce some new methods for map document adjustments that we will
detail in the following:

import arcpy, os

dirpath = os.path.dirname

basepath = os.path.basename

Bus_Stops = r"C:\Projects\SanFrancisco.gdb\Bus_Stops"

selectedBusStop = r'C:\Projects\SanFrancisco.gdb\Chapter8Results\
SelectedBusStop'

selectedStopBuffer = r'C:\Projects\SanFrancisco.gdb\Chapter8Results\
SelectedStopBuffer'

CensusBlocks2010 = r"C:\Projects\SanFrancisco.gdb\CensusBlocks2010"

selectedBlock = r'C:\Projects\SanFrancisco.gdb\Chapter8Results\
SelectedCensusData'

pdfFolder = r'C:\Projects\PDFs\Chapter8\Map_{0}'

bufferDist = 400

sql = "(NAME = '71 IB' AND BUS_SIGNAG = 'Ferry Plaza')"

mxdObject = arcpy.mapping.MapDocument("CURRENT")

dataFrame = arcpy.mapping.ListDataFrames(mxdObject, "Layers")[0]

elements = arcpy.mapping.ListLayoutElements(mxdObject)

for el in elements:

 if el.type =="TEXT_ELEMENT":

 if el.text == 'Title Element':

 titleText = el

 elif el.text == 'Subtitle Element':

 subTitleText = el

arcpy.MakeFeatureLayer_management(CensusBlocks2010, 'blocks_lyr')

layersList = arcpy.mapping.ListLayers(mxdObject,"",dataFrame)

layerStops = layersList[0]

layerCensus = layersList[1]

layerBuffer = layersList[2]

layerBlocks = layersList[3]

if layerBlocks.dataSource != selectedBlock:

Introduction to ArcPy.Mapping

[136]

 layerBlocks.replaceDataSource(dirpath(dirpath(layerBlocks.
dataSource)),

 'FILEGDB_WORKSPACE',basepath
 (selectedBlock))

if layerStops.dataSource != selectedBusStop:

 layerStops.replaceDataSource(dirpath(dirpath(layerStops.dataSource)),

 'FILEGDB_WORKSPACE',basepath
 (selectedBusStop))

if layerBuffer.dataSource != selectedStopBuffer:

 layerBuffer.replaceDataSource(dirpath(dirpath(layerBuffer.
 dataSource)),

 'FILEGDB_WORKSPACE',basepath
 (selectedStopBuffer))

layerStops.visible = True

layerBuffer.visible = True

layerCensus.visible = False

with arcpy.da.SearchCursor(Bus_Stops,['SHAPE@','STOPID','NAME',

 'BUS_SIGNAG' ,'OID@','SHAPE@
 XY'],sql) as cursor:

 for row in cursor:

 stopPointGeometry = row[0]

 stopBuffer = stopPointGeometry.buffer(bufferDist)

 with arcpy.da.UpdateCursor(layerBlocks,['OID@']) as dcursor:

 for drow in dcursor:

 dcursor.deleteRow()

 arcpy.SelectLayerByLocation_management('blocks_lyr', 'intersect',
 stopBuffer, "",
 "NEW_SELECTION")

 with arcpy.da.SearchCursor('blocks_lyr',['SHAPE@','POP10','OID@'])
 as bcursor:

 inCursor = arcpy.da.InsertCursor(selectedBlock,['SHAPE@',
 'POP10'])

 for drow in bcursor:

 data = drow[0],drow[1]

 inCursor.insertRow(data)

 del inCursor

 with arcpy.da.UpdateCursor(selectedBusStop,['OID@']) as dcursor:

 for drow in dcursor:

 dcursor.deleteRow()

Chapter 8

[137]

 inBusStopCursor = arcpy.da.InsertCursor(selectedBusStop,
 ['SHAPE@'])

 data = [row[0]]

 inBusStopCursor.insertRow(data)

 del inBusStopCursor

 with arcpy.da.UpdateCursor(selectedStopBuffer,['OID@']) as
dcursor:

 for drow in dcursor:

 dcursor.deleteRow()

 inBufferCursor = arcpy.da.InsertCursor(selectedStopBuffer,
 ['SHAPE@'])

 data = [stopBuffer]

 inBufferCursor.insertRow(data)

 del inBufferCursor

 layerStops.name = "Stop #{0}".format(row[1])

 arcpy.RefreshActiveView()

 dataFrame.extent = arcpy.Extent(row[-1][0]-1200,row[-1][1]-1200,

 row[-1][0]+1200,row[-1][1]-1200)

 subTitleText.text = "Route {0}".format(row[2])

 titleText.text = "Bus Stop {0}".format(row[1])

 outPath = pdfFolder.format(str(row[1])+ "_" + str(row[-2])) +
'.pdf'

 print outPath

 arcpy.mapping.ExportToPDF(mxdObject,outPath)

 titleText.text = 'Title Element'

 subTitleText.text = 'Subtitle Element'

 arcpy.RefreshActiveView()

Wow! That's a lot of code. Let's review it section by section to address what each part
of the script is doing.

This code will be run in the Python Window of the MXD, so make sure to open the
MXD. Once it is, open the Python Window and right click in it, and then select Load
from the right-click menu. Using the file navigation browser, find the script called
Chapter8_6_AdjustmapCURRENT.py and select it by clicking on it. Push OK and it
will load in the Python Window. Pushing Enter will execute the script, or use the
scroll bar to peruse the loaded lines.

Introduction to ArcPy.Mapping

[138]

The variables
Within the script, a number of variables are first created to hold the string file
paths, the integer buffer distance, and the sql statement used to identify the
bus line of interest:

import arcpy, os

Bus_Stops = r"C:\Projects\SanFrancisco.gdb\Bus_Stops"

selectedBusStop = r'C:\Projects\SanFrancisco.gdb\Chapter8Results\
 SelectedBusStop'

selectedStopBuffer = r'C:\Projects\SanFrancisco.gdb\Chapter8Results\
 SelectedStopBuffer'

CensusBlocks2010 = r"C:\Projects\SanFrancisco.gdb\CensusBlocks2010"

selectedBlock = r'C:\Projects\SanFrancisco.gdb\Chapter8Results\
 SelectedCensusData'

pdfFolder = r'C:\Projects\PDFs\Chapter8\Map_{0}'

bufferDist = 400

sql = "(NAME = '71 IB' AND BUS_SIGNAG = 'Ferry Plaza')"

These will be used later to allow us to search the layers and perform analysis on them.

The map document object and the text
elements
Because this code will be executed in an open map document, we don't have to
pass an MXD file path to the arcpy.mapping.MapDocument() method. Instead,
we will use the keyword CURRENT to indicate that we are referencing the open
map document:

mxdObject = arcpy.mapping.MapDocument("CURRENT")

dataFrame = arcpy.mapping.ListDataFrames(mxdObject, "Layers")[0]

elements = arcpy.mapping.ListLayoutElements(mxdObject)

for el in elements:

 if el.type =="TEXT_ELEMENT":

 if el.text == 'Title Element':

 titleText = el

 elif el.text == 'Subtitle Element':

 subTitleText = el

Chapter 8

[139]

Once the map document object has been created, the Layers data frame is selected
from a list of data frames using the ListDataFrames() method and passed to the
variable called dataFrame.

Next, the layout elements are passed as a list to the elements variable using the
ListLayoutElements() method. The layout elements include the various elements of
the map document layout view: the legend, the neat lines, the north arrow, the scale
bar, and the text elements used as titles and descriptions. Unfortunately, there is no
nice order to the list returned, as their position throughout the layout is undetermined.
Access to the text elements, which we would like to assign to a variable for later
use, must be identified using two properties of the element objects: the type and the
text. We want to adjust the title and subtitle elements, so a for loop is used to search
through the list of elements and the properties are used to find the elements of interest.

The layer objects
The Make Feature Layer tool, part of the Data Management toolset, is used to copy
data from disk into memory as a layer. ArcGIS requires the generation of layers
to perform selections and operations on data, instead of operating on the feature
classes directly. By using layers to perform these operations, the source feature
classes are protected.

The Make Feature Layer tool is accessed using ArcPy's MakeFeatureLayer_
management() method. When using this tool in the Python Window, the result is
added to the map document as a layer that will be visible in the Table of Contents.
When the tool is not used in the Python Window in ArcMap, the resulting layer is
only generated in memory and is not added to the map document.

In the portion of the following code, a layer called blocks_lyr is generated in
memory by passing the file path of the census blocks feature class. The layer objects
contained within the initial MXD are then accessed using the ListLayers() method
of the arcpy.mapping() module. They are returned in the order that they are listed
in the Table of Contents of the map document and are assigned to variables using list
indexing, including the newly created blocks_lyr:

arcpy.MakeFeatureLayer_management(CensusBlocks2010, 'blocks_lyr')

layersList = arcpy.mapping.ListLayers(mxdObject,"",dataFrame)

layerStops = layersList[0]

layerCensus = layersList[1]

layerBuffer = layersList[2]

layerBlocks = layersList[3]

Introduction to ArcPy.Mapping

[140]

Replacing the data sources
Now that we have assigned the layer objects to variables, we will check whether
their data sources are the correct feature classes that we use for map production.
Using the dataSource property of each layer object, they are compared to the file
path variables that we want to use as data sources:

if layerBlocks.dataSource != selectedBlock:

 layerBlocks.replaceDataSource(dirpath(dirpath
 (layerBlocks.dataSource)),

 'FILEGDB_WORKSPACE',
 basepath(selectedBlock))

if layerStops.dataSource != selectedBusStop:

 layerStops.replaceDataSource(dirpath(dirpath
 (layerStops.dataSource)),

 'FILEGDB_WORKSPACE',
 basepath(selectedBusStop))

if layerBuffer.dataSource != selectedStopBuffer:

 layerBuffer.replaceDataSource(dirpath(dirpath(
 layerBuffer.dataSource)),

 'FILEGDB_WORKSPACE',
 basepath(selectedStopBuffer))

If statements are used to check whether the data sources are correct. If not, they
are replaced with the correct data sources using the replaceDataSource() layer
method. This method requires three parameters: the workspace (in this case, the
File Geodatabase), the workspace type, and the name of the new feature class data
source, which must be in the same workspace for the replaceDataSource() method
to work (though it does not need to be in the same feature dataset).

Adjusting layer visibility
The layer objects have a property that allows us to adjust their visibility. Setting
this Boolean property to True or False will adjust the layer's visibility on (True)
or off (False):

layerStops.visible = True

layerBuffer.visible = True

layerCensus.visible = False

We want the layer variable layerCensus, which is the new blocks_lyr object, to be
turned off, so it is set to False, but the bus stops and buffer layer objects need to be
visible, so they are set to True.

Chapter 8

[141]

Generating a buffer from the bus stops
feature class
All of the variables have been generated or assigned, so the next step is to use a
SearchCursor to search through the selected bus stops. For each bus stop, buffer
objects will be generated to find census blocks that intersect with these individual
bus stops:

with arcpy.da.SearchCursor(Bus_Stops,['SHAPE@','STOPID','NAME',

 'BUS_SIGNAG' ,'OID@',
 'SHAPE@XY'],sql) as cursor:

 for row in cursor:

 stopPointGeometry = row[0]

 stopBuffer = stopPointGeometry.buffer(bufferDist)

 with arcpy.da.UpdateCursor(layerBlocks,['OID@']) as
dcursor:

 for drow in dcursor:

 dcursor.deleteRow()

For each row of data retrieved from the Bus Stops feature class, a number of
attributes are returned, contained in a tuple. The first of these, row[0], is a
PointGeometry object. This object has a buffer method that is used to generate a
buffer Polygon object in memory, which is then assigned to the stopBuffer variable.
Once the buffer object is created, the data access UpdateCursor's deleteRow()
method is used to erase the rows in the census blocks layer. Once the rows have been
deleted, the layer can then be repopulated with newly selected census blocks that
will be identified in the next section.

Intersecting the bus stop buffer and census
blocks
To identify the census blocks intersecting with the buffer around each bus stop,
the ArcToolbox tool SelectLayerByLocation is invoked using the ArcPy method
SelectLayerByLocation_management():

arcpy.SelectLayerByLocation_management('blocks_lyr', 'intersect',
 stopBuffer, "", "NEW_SELECTION")

 with arcpy.da.SearchCursor('blocks_lyr', ['SHAPE@',
 'POP10','OID@']) as bcursor:

 inCursor = arcpy.da.InsertCursor(selectedBlock,
 ['SHAPE@', 'POP10'])

Introduction to ArcPy.Mapping

[142]

 for drow in bcursor:

 data = drow[0],drow[1]

 inCursor.insertRow(data)

 del inCursor

This method requires the in-memory blocks_lyr layer object and the newly created
buffer object assigned to the variable stopBuffer. It also requires the type of selection
intersect and another parameter that controls whether the selection will be added to
an existing selection or will be a new selection. In this case, we want a new selection, as
only the census blocks that intersect the current bus stop are needed.

Once the census blocks have been selected and identified, the shape data
and population data is passed to the feature class represented by the variable
selectedBlock using an InsertCursor. The InsertCursor must be deleted using the
del keyword, as only one InsertCursor or UpdateCursor can be in memory at a time.

Populating the selected bus stop and buffer feature
classes
In a similar manner, the next step is to populate the bus stop and buffer feature
classes that will be used in the map production. The bus stops feature class is first
made blank using the deleteRow() method, and then the selected bus stop shape
field data is inserted into the feature class. The same steps are then taken with the
bus stop buffers feature class and the buffer geometry object:

 with arcpy.da.UpdateCursor(selectedBusStop,['OID@']) as dcursor:

 for drow in dcursor:

 dcursor.deleteRow()

 inBusStopCursor = arcpy.da.InsertCursor(selectedBusStop,['SHAPE@'])

 data = [row[0]]

 inBusStopCursor.insertRow(data)

 del inBusStopCursor

 with arcpy.da.UpdateCursor(selectedStopBuffer,['OID@']) as dcursor:

 for drow in dcursor:

 dcursor.deleteRow()

 inBufferCursor = arcpy.da.InsertCursor(selectedStopBuffer,
 ['SHAPE@'])

 data = [stopBuffer]

Chapter 8

[143]

 inBufferCursor.insertRow(data)

 del inBufferCursor

Updating the text elements
Now that the data has been generated and written to the feature classes created to hold
them, the next step is to update the layout elements. This includes layer properties that
will affect the legend, the extent of the data frame, and the text elements:

layerStops.name = "Stop #{0}".format(row[1])

dataFrame.extent = arcpy.Extent(row[-1][0]-1200,row[-1][1]-1200,

 row[-1][0]+1200,row[-1][1]-1200)

subTitleText.text = "Route {0}".format(row[2])

titleText.text = "Bus Stop {0}".format(row[1])

arcpy.RefreshActiveView()

The name of the bus stops layer is adjusted using its name property to reflect the
current bus stop. The data frame extent is adjusted by creating an arcpy.Extent
object and passing it four parameters: Xmin, Ymin, Xmax, Ymax. To generate these
values I have used the somewhat arbitrary value of 1200 feet to create a square
around the bus stop. The text elements are updated using their text property.
Finally, the RefreshActiveView() method is used to ensure that the map document
window is correctly updated to the new extent.

Exporting the adjusted map to PDF
The final step is to pass the newly adjusted map document object to ArcPy's
ExportToPDF method. This method requires two parameters, the map document
object and a string that represents the file path of the PDF:

outPath = pdfFolder.format(str(row[1])+"_"+ str(row[-2]))+'.pdf'

arcpy.mapping.ExportToPDF(mxdObject,outPath)

titleText.text = 'Title Element'

subTitleText.text = 'Subtitle Element'

arcpy.RefreshActiveView()

The PDF file path string is generated from the pdfFolder string template and the ID
of the bus stop, along with the object ID and the file extension .pdf. Once that and
the map document object represented by the variable mxdObject are passed to the
ExportToPDF method, the PDF will be generated. The text elements are then reset
and the view is refreshed to ensure that the map document will be ready for the next
time the script is used.

Introduction to ArcPy.Mapping

[144]

Running the script in the Python Window
Open up the map document called MapAdjust.mxd if it is not open already. Open the
Python Window and right click in the window. Select Load from the menu. When
the file dialog opens, find the script called Chapter8_6_AdjustmapCURRENT.py and
select it, making sure that the file paths within it are correct. Push OK and it will load
in the Python Window. Push Enter once the script is loaded to run the script. It can
take a few seconds or more for it to be obvious that the script is running.

Note that the Python Window is not a great place to execute ArcPy
scripts in most cases, as it is somewhat limited when compared to IDEs.
Using it to load and execute a script that performs these map document
adjustments is one of the best uses of the Python Window.

Once the script is running, the adjustments to the map document will begin to
appear and repeat. This is a fascinating process, as the effects of running the script
are visible in a manner that is not readily available when running Python scripts.
Once the PDFs begin to be generated, open one up to view the output. The script will
generate a map for each bus stop on the selected bus line, so feel free to shut down
the map document after generating a set number of the PDFs.

Here is an example of the output:

Chapter 8

[145]

The maps generated by the script show each bus stop at the center, surrounded by
the buffer and the symbolized census blocks with which the buffer intersects. The
title, subtitle and the legend have been adjusted to indicate the bus stop depicted in
the map. With ArcPy, we are now in control of both the parts of geospatial analysis:
the analysis itself, and the cartographic production depicting the result of the output.

Summary
In this chapter arcpy.mapping was introduced and used to control the elements of
map documents that need to be adjusted to create custom maps. By joining geospatial
analysis and map production together, we are closer to utilizing the full power
of ArcPy.

In the next chapter, we will go further with arcpy.mapping and create a script tool
that can be added to ArcToolbox, which will run the analysis as well as generate
maps from the resulting data. We will also refine the script and introduce Data
Driven Pages to discuss how that powerful tool can be used in an ArcPy script.

More ArcPy.Mapping
Techniques

The ability to control map document cartography, while also running geospatial
analyses, increases the power and usefulness of ArcPy. The properties and methods
of arcpy.mapping can be utilized to manipulate layer objects, map scales and data
frame extents, or even to set definition queries. By combining automated geospatial
analysis with dynamic map production, scripted mapping systems are made
possible. This chapter will cover the following topics:

•	 Arcpy.mapping Layer objects
•	 Layer object definition queries and extents
•	 Arcpy.mapping Data Frame objects
•	 Creating dynamically scaled maps

Using arcpy.mapping to control Layer
objects
Arcpy.mapping Layer objects are used to control the properties of layers within map
document data frames. Turning layer visibility on and off, adding new layers, and
adjusting layer order can all be accomplished using Layer object properties.

More ArcPy.Mapping Techniques

[148]

Creating Layer objects involves passing parameters to the arcpy.mapping.
ListLayers() method. As discussed in Chapter 8, Introduction to ArcPy.Mapping,
when referencing an arcpy.mapping.MapDocument object, the layers within the map
document can be accessed using zero-based indexing. This code will print the list of
Layer objects contained within the data frame called Layers in an MXD:

import arcpy

mxdPath = r'C:\Projects\MXDs\Chapter9\MapDocument1.mxd'

mxdObject = arcpy.mapping.MapDocument(mxdPath)

dataFrame = arcpy.mapping.ListDataFrames(mxdObject, "Layers")[0]

layersList = arcpy.mapping.ListLayers(mxdObject,"",dataFrame)

print layersList

The layers within the data frame called Layers, have been assigned to the variable
layersList using the ListLayers() method. Each layer in layersList can be
accessed using zero-based indexing. Once the layers have been accessed within the
list and either assigned to a variable or placed inside a for loop, the properties and
methods of the Layer objects can be utilized.

The second parameter of the ListLayers method is empty here,
but does not have to be. It is a wild card parameter that will limit the
returned Layer objects to those that match the pattern of the wild card.
For instance, *Stops would return all layers with the name Stops at the
end. Multiple asterisks can be used to find layers with the word at the
beginning, middle, or end of the layer name.

Layer object methods and properties
Layer object properties and methods can either be read only, meaning they can be
checked but not adjusted, or they are read and write, meaning they can be adjusted
within the script. Let's explore a number of these properties and methods, and see
how they can be used to control the look and feel of the maps produced from the
map document, as well as the data from the script analysis.

Chapter 9

[149]

Definition queries
An important property of Layer objects is the ability to dynamically set definition
queries. A definition query is a SQL statement where clause that limits the data
available for display, query, or other data operations (buffers, intersections, etc.) to
only the rows that match the where clause. Definition queries could be set in an MXD
by opening a layer's properties menu and using the Definition Query tab, but here
we are concerned with how to add them programmatically. Following is an example
of how to do this:

layersList = arcpy.mapping.ListLayers(mxdObject,"",dataFrame)

busStops = layersList[0]

busStops.definitionQuery = "NAME = '71 IB' AND BUS_SIGNAG = 'Ferry
Plaza'"

This valuable property can be utilized to reformat the code from Chapter 8,
Introduction to ArcPy.Mapping. Remember the complicated second portion of the
Chapter8_6.py script, where each bus stop along the 71 Inbound line is selected
and its geometry is written to another feature class? Instead, we can use Layer
objects and definition queries to perform the same type of geometry operation. Let's
examine how the first part of that operation (selecting the bus stop geometry and
creating a buffer around it) looks when a definition query is used:

import arcpy

bufferDist = 400

mxdPath = r'C:\Projects\MXDs\Chapter9\MapDocument1.mxd'

mxdObject = arcpy.mapping.MapDocument(mxdPath)

dataFrame= arcpy.mapping.ListDataFrames(mxdObject, "Layers")[0]

layersList = arcpy.mapping.ListLayers(mxdObject,"",dataFrame)

busStops = layersList[0]

defQuery = "NAME = '71 IB' AND BUS_SIGNAG = 'Ferry Plaza'"

busStops.definitionQuery = defQuery

idList =[]

with arcpy.da.SearchCursor(busStops,['OID@']) as cursor:

 for row in cursor:

 idList.append(row[0])

for oid in idList:

 newQuery = "OBJECTID = {0}".format(oid)

 print newQuery

 busStops.definitionQuery = newQuery

More ArcPy.Mapping Techniques

[150]

 with arcpy.da.SearchCursor(busStops,['SHAPE@','STOPID','NAME',
 'BUS_SIGNAG','OID@','SHAPE@XY'])
 as cursor:

 for row in cursor:

 stopPointGeometry = row[0]

 stopBuffer = stopPointGeometry.buffer(bufferDist)

In this example, the definition query is used to limit the potential results from
the SearchCursor to the bus stop specified by the query. However, this is
overly cumbersome and the definition query doesn't add much, as first another
SearchCursor is needed to extract the ObjectID information from the busStops
layer. This complicates the code when only one SearchCursor is necessary.

Definition queries should be used to select the blocks that intersect with the buffer,
as this will eliminate the need to use the complicated Search Cursor and Insert
Cursor setup that was employed in Chapter 8, Introduction to ArcPy.Mapping. Let's
reformulate the code so that definition queries are properly used on the census block
Layer object.

The first step is to add some code that will generate the SQL statement that will be
used as the definition query:

import arcpy

bufferDist = 400

mxdPath = r'C:\Projects\MXDs\Chapter9\MapDocument1.mxd'

mxdObject = arcpy.mapping.MapDocument(mxdPath)

dataFrame = arcpy.mapping.ListDataFrames(mxdObject,

 "Layers")[0]

layersList = arcpy.mapping.ListLayers(mxdObject,
 "",dataFrame)

busStops = layersList[0]

censusBlocks = layersList[3]

sql = "NAME = '71 IB' AND BUS_SIGNAG = 'Ferry Plaza'"

with arcpy.da.SearchCursor(busStops,['SHAPE@',
 'STOPID',
 'NAME',
 'BUS_SIGNAG',
 'OID@'],sql) as cursor:

 for row in cursor:

 bus Query = 'OBJECTID = {0}'.format(row[-1])

 busStops.definitionQuery = bus Query

Chapter 9

[151]

 stopPointGeometry = row[0]

 stop Buffer = stopPointGeometry. Buffer(bufferDist)

 arcpy.SelectLayerByLocation_management(censusBlocks,
 'intersect',
 stopBuffer,
 "",
 "NEW_SELECTION")

 blockList = []

 with arcpy.da.SearchCursor(censusBlocks,

 ['OID@']) as bcursor:

 for brow in bcursor:

 blockList.append(brow[0])

 newQuery = 'OBJECTID IN ('
 for COUNTER, oid in enumerate(blockList):

 if COUNTER < len(blockList)-1:

 newQuery += str(oid) + ','

 else:

 newQuery += str(oid)+ ')'

 print newQuery

In this section, the code assigns the census blocks layer in the MXD to the variable
censusBlocks. The bus stops SearchCursor is then created, and the 400 foot buffer
is generated for each row to select the census blocks surrounding the bus stop.
Once the correct blocks have been selected, a second SearchCursor is used on
the censusBlocks Layer object to find the ObjectID (using the OID@ token) of the
selected blocks. The ObjectIDs are then appended to the list called blockList.

This list is then iterated in a for loop to generate a string SQL statement. Using the
initial string assigned to the variable newQuery, the for loop will add the ObjectIDs
of each select block to the string to create a valid SQL statement. The for loop uses
the function enumerate to count the number of loops that the for loop performs;
this allows for an if/then statement to be used. The if/then statement determines
what comes after the ObjectID in the string, as each ObjectID must be separated
by a comma, except for the final ObjectID, which must be followed by the closing
parenthesis. The for loop produces a SQL statement similar to this example:

OBJECTID IN (910,1664,1812,1813,2725,6382)

More ArcPy.Mapping Techniques

[152]

The print statement at the end is used to demonstrate the results of this section
of the code, and also to give that warm fuzzy feeling that comes from seeing the
results of the code working. Once we are sure that the code is generating valid SQL
statements (closed parenthesis and comma separated ObjectIDs), the next step is to
assign the definition query to the censusBlocks Layer object and use the result to
generate a map of the area.

Controlling the data frame window extent
and scale
In Chapter 8, Introduction to ArcPy.Mapping we started to explore the properties and
methods of the data frame. Using the arcpy.Extent object, we were able to set the
extent of the data frame to an extent that was hard-coded into the script. However,
this does not always capture the entire extent of large census blocks. Using a
combination of definition queries and the data frame extent and scale properties, we
can avoid these unwanted results.

There are two data frame object methods used to shift the data frame window to
the area of interest, in this case the selected census blocks. The first, which we are
not using here, is dataFrame.zoomToSelectedFeatures. The second, is to assign
the data frame's extent property to the extent of the census block layer after the
definition query has been assigned to it.

I prefer the second method, as it will work even when there is no selected census
blocks. Also, as the maps that are produced by this script should not show the
selection of the blocks, we will have to add code to explicitly clear the selection once
the correct census blocks have been identified:

 censusBlocks.definitionQuery = newQuery

 dataFrame.extent = censusBlocks.getExtent()

 arcpy.SelectLayerByAttribute_management(censusBlocks,

 "CLEAR_SELECTION")

The definition query has made it easy to move the data frame window to the area
of interest, as the extent rectangle (or envelope) of the layer is now only around the
specified blocks and the dataFrame extent property can be set to the extent rectangle.
However, this is not always cartographically desirable as it seems better to move the
data frame window back from the extent rectangle. To do that, we'll access the data
frame the object's scale property.

Chapter 9

[153]

The scale property can be set to be a multiplier of the current scale to avoid hard-
coding any specific distances when adjusting the data frame extent. When using the
scale property, it is important to remember to use the arcpy.RefreshActiveView()
method, as it will refresh the data frame window to the new scale.

dataFrame.scale = dataFrame.scale * 1.1

arcpy.RefreshActiveView()

As the data frame extent was set in the few lines before this, the current scale
represents the envelope of the selected census blocks. To adjust it, assess the
property and apply a multiplier. In this case, the multiplier is 1.1, but it could
be any value. This makes the resulting map look better by giving the analysis
results some background context.

Adding a Layer object
The last step before exporting out the maps is to add the 400 foot buffers created
above as a layer to the data frame object. To accomplish this, we need to create
a symbolized layer ahead of time and copy its symbology to ensure it looks as
desired. This will be added to the MXD as a placeholder layer, and assigned
to the bufferLayer variable in the script.

1.	 Open up an MXD and add the bus stop feature class.
2.	 Run the Buffer Tool in the Proximity toolset in the Analysis toolset of the

ArcToolbox, adding the bus stop feature class as the input and setting the
buffer size to 400 feet. After the tool has run, open the properties of the
buffer layer and symbolize the layer as desired.

3.	 Once the layer has been symbolized, right-click on the layer and select Save
As Layer File.

4.	 Save the layer in a folder and close the MXD.
5.	 Open up the MapDocument1.mxd map document and add the layer using

the Add Data button.
6.	 Make sure to change the name to 400 Foot Buffer and to add it to the legend

above the Population section.

More ArcPy.Mapping Techniques

[154]

7.	 In the script, assign the buffer layer to the variable bufferLayer.
8.	 Lower in the script, in the bus stop SearchCursor, add these lines below

where the buffer is generated around the bus stop geometry:
arcpy.CopyFeatures_management(stopBuffer,
r"C:\Projects\Output\400Buffer.shp")

bufferLayer.replaceDataSource(r"C:\Projects\Output","SHAPEFILE_
WORKSP
ACE","400Buffer")

These two lines copy the buffer generated to disk as a shapefile and then replace the
data source of the bufferLayer Layer object with the newly created buffer. Note
that the name of the shapefile does not include the .shp extension; the SHAPEFILE_
WORKSPACE parameter makes this unnecessary.

To make sure that each new buffer shapefile can be written over an
existing shapefile, add the following line below the import arcpy
line to make sure that files can be overwritten:
 arcpy.env.overwriteOutput = 1

Exporting the maps
The final step of this script is to export the maps of the area surrounding each bus
stop. To do this, we will borrow some code from the script Chapter8_6_AdjustMap.
py and add the whole script to a file called Chapter9.py. This code will identify
and adjust the title and subtitle elements, making it possible to customize each
resulting PDF:

import arcpy

arcpy.env.overwriteOutput = 1

bufferDist = 400

pdfFolder = r'C:\Projects\PDFs\Chapter9\Map_{0}'

mxdPath = r'C:\Projects\MXDs\Chapter9\MapDocument1.mxd'

mxdObject = arcpy.mapping.MapDocument(mxdPath)

dataFrame = arcpy.mapping.ListDataFrames(mxdObject,
 "Layers")[0]

elements = arcpy.mapping.ListLayoutElements(mxdObject)

for el in elements:

 if el.type =="TEXT_ELEMENT":

 if el.text == 'Title Element':

 titleText = el

Chapter 9

[155]

 elif el.text == 'Subtitle Element':

 subTitleText = el

layersList = arcpy.mapping.ListLayers(mxdObject,

 "",dataFrame)

busStops = layersList[0]

bufferLayer = layersList[2]

censusBlocks = layersList[4]

sql = "NAME = '71 IB' AND BUS_SIGNAG = 'Ferry Plaza'"

with arcpy.da.SearchCursor(busStops,['SHAPE@',

 'STOPID',

 'NAME',

 'BUS_SIGNAG',

 'OID@'],sql) as cursor:

 for row in cursor:

 busQuery = 'OBJECTID = {0}'.format(row[-1])

 busStops.definitionQuery = busQuery

 stopPointGeometry = row[0]

 stopBuffer = stopPointGeometry.buffer(bufferDist)

 arcpy.CopyFeatures_management(stopBuffer,r"C:\Projects\
 Output\400Buffer.shp")

 bufferLayer.replaceDataSource(r"C:\Projects\Output",

 "SHAPEFILE_WORKSPACE",

 "400Buffer")

 arcpy.SelectLayerByLocation_management(censusBlocks,

 'intersect',

 stopBuffer,

 "",

 "NEW_SELECTION")

 blockList = []

 with arcpy.da.SearchCursor(censusBlocks,

 ['OID@']) as bcursor:

 for brow in bcursor:

 blockList.append(brow[0])

 newQuery = 'OBJECTID IN ('

 for COUNTER, oid in enumerate(blockList):

More ArcPy.Mapping Techniques

[156]

 if COUNTER < len(blockList)-1:

 newQuery += str(oid) + ','

 else:

 newQuery += str(oid)+ ')'

 print newQuery

 censusBlocks.definitionQuery = newQuery

 dataFrame.extent = censusBlocks.getExtent()

 arcpy.SelectLayerByAttribute_management(censusBlocks,

 "CLEAR_SELECTION")

 dataFrame.scale = dataFrame.scale * 1.1

 arcpy.RefreshActiveView()

 subTitleText.text = "Route {0}".format(row[2])

 titleText.text = "Bus Stop {0}".format(row[1])

 outPath = pdfFolder.format(str(row[1])) + '.pdf'

 print outPath

 arcpy.mapping.ExportToPDF(mxdObject,outPath)

 titleText.text = 'Title Element'

 subTitleText.text = 'Subtitle Element'

 censusBlocks.definitionQuery = ''

 busStops.definitionQuery = ''

Summary
In this chapter, we covered the use of layer definition queries, data frame extents
and scales, and layer source replacement to ease the production of maps. By using
definition queries, the layers can be modified to new extents, making it easier to zoom
into the layer extent and to set the scale of the data frame. The definition queries also
limit which members of a layer are displayed within the data frame. Layer source
replacement was used as a cartographic control, allowing us to pre-generate the style
of a layer and adjust the data that it represented dynamically.

In the next chapter, we will combine the lessons from the last three chapters,
allowing us to create a script tool that will run analysis and produce spreadsheets
and maps from the analysis results.

Advanced Geometry
Object Methods

In this chapter, we will discuss advanced Geometry object methods, previously
discussed in Chapter 6, Working with ArcPy Geometry Objects. The goal of this book is
to give an introduction to ArcPy and its modules, while also demonstrating how to
apply these tools when creating enduring GIS workflows. Performing an analysis
once is good, but doing it over and over, with the click of a button, is better. Making
the analysis results sharable in an industry standard format is also desirable. In
the ArcGIS world, the best way to do this is with ArcPy and script tools that take
advantage of Geometry object methods.

This chapter will cover the following topics:

•	 Adding common functions to a module in the Python path
•	 Making the analysis more advanced by adding point generation
•	 Advanced Polygon object methods
•	 Using the XLWT to create Excel spreadsheets

Creating a Python module
An important step towards creating reusable code is to package its component
functions into a module that can be called from the Python path by any script. To
start, we need to create a folder in the site-packages folder where Python modules
are placed when downloaded and extracted using the Python module process, or
when running the setup.py script included with shared modules.

Advanced Geometry Object Methods

[158]

Modules package together functions in one or more scripts into a folder that can be
shared with others (though they often depend on other modules to run). We have
used some of the built-in modules such as the csv module and third-party modules
such as ArcPy. Let's explore their construction to get a feel of how a module is
packaged for use and sharing.

Many modules are not placed within the site-packages folder,
but they require the Python path to be modified to make them
importable. Placing modules within the site-packages folder
eliminates this requirement.

Open up the site-packages folder in Windows Explorer by navigating to C:\
Python27\ArcGIS10.2\Lib\site-packages (or C:\Python27\Lib\site-packages
if you're using the standard Python 2.7 installation) folder. Once in the folder, create
a new folder called common, as shown in the following screenshot:

The __init__.py file
Within this folder, a special file needs to be added to let Python recognize the folder
as a module. This file, called __init__.py, takes advantage of the special property
of Python called magic objects or attributes that are built into Python. These magic
objects use the leading and trailing double underscore to avoid any confusion with
custom functions.

Chapter 10

[159]

Note that these are double underscores; single underscores
are usually used for so-called private functions within
custom Python classes.

The __init__.py file is used to indicate that the folder is a module (making it
importable using the import keyword), and to initiate the module by calling any
modules that it may in turn rely on. However, there is no requirement to add import
commands to the __init__.py file; it can be an empty file and will still perform the
module recognition functionality that we require.

1.	 Open up IDLE or Aptana or your favorite IDE, and in the folder called
common, add a new Python file and call it __init__.py. This file will
remain empty for now.

2.	 Now that we have initiated the module, we need to create a script that will
hold our common functions. Let's call it useful.py because these functions
will be most useful for this analysis and others.

3.	 The next step is to transfer functions that we had created in earlier chapters.
These valuable functions are locked into those scripts, so by adding them to
useful.py, we will make them available to all other scripts we craft.

Advanced Geometry Object Methods

[160]

One important function is the formatSQLMultiple from
Chapter 4, Complex ArcPy Scripts and Generalizing Functions,
which generates SQL statements using a template and a list of
data. By adding it to useful.py, we will be able to call the
function anytime a SQL statement is required.

4.	 Open the script Chapter4Modified2.py and copy the function, and then
paste it into useful.py. It has no dependencies, so it does not have to
be modified.

Another useful function from that script is the formatIntersect function that
generates a string of file paths that are used when running the ArcToolbox Intersect
tool. While we have reached deeper into ArcPy since that function was designed,
and no longer need to call the Intersect tool in our bus stop analysis, it does not mean
that we will never need to call it in the future. It is still useful and should be added to
useful.py.

The last function that we can raid is the createCSV() function. Copy and paste it
from Chapter4Modified.py into useful.py. However, to avoid the need to import
the CSV module separately, we will need to modify the function slightly. Here is
how it should look:

def createCSV(data, csvname, mode ='ab'):

 'creates a csv file'

 import csv

 with open(csvname, mode) as csvfile:

 csvwriter = csv.writer(csvfile, delimiter=',')

 csvwriter.writerow(data)

 del csv

By importing and then deleting the csv module, we are able to use it to generate the
csv file and then remove the module from memory using the del keyword.

Now that we have the functions we will be reusing saved in the useful.py script,
inside the common module, let's explore how to call them using Python's import
method. Open up a Python executable, using either Python.exe or IDLE, or
the built-in terminal in Aptana. At the triple chevron prompt (>>>), write the
following line:

>>> from common.useful import createCSV
>>>

Chapter 10

[161]

If the second triple chevron-shaped prompt appears, the function was correctly
imported from the module. To import the functions in this module in a script,
use the same import structure and list the functions desired, separating them
using a comma:

from common.useful import createCSV, formatSQLMultiple

The functions in the script useful.py were called using Python dot notation. This
is made possible because the __init__.py file indicates to Python that the folder
common is now a module, and that it should expect a method called useful to be
present, with the functions createCSV and formatSQLMultiple inside it.

Adding advanced analysis components
The bus stop analysis we have used to introduce ArcPy can be further extended
to generate more refined results. To better estimate the true number of people
that each bus stop serves, let's add a function that will generate random points
within the blocks considered, while eliminating parks and other areas that do
not contain housing.

To do this, we need to introduce a new data set from the San Francisco
geodatabase, the RPD_Parks feature class. By using this feature class to reduce the
area considered for our analysis, we can generate a more realistic assessment of the
service area population for each bus stop.

While using the ArcToolbox Erase tool to erase the area represented in the RPD_
Parks polygons would be a usual step when running a spatial analysis, there are
drawbacks to this option. The first is that the Erase tool is only available with the
ArcGIS for Desktop Advanced license level, making it available only to certain users.
The second drawback is that the tool produces an intermediate data set, something
to be avoided wherever possible.

Using ArcPy will give us the ability to avoid both of these drawbacks. We can create
a script that will generate random points only within the fraction of the census block
polygons that do not intersect with the RPD_Parks feature class. To do this, we will
reach deeper into the methods of the ArcPy Polygon object.

Advanced Polygon object methods
In Chapter 6, Working with ArcPy Geometry Objects we started exploring the ArcPy
Geometry objects and how to use their methods to perform in-memory spatial
analysis. The Buffer and Intersect methods of these objects were introduced and
used to generate analysis results. Next, we will discuss more of these methods and
show how they can help improve in-memory spatial analysis.

Advanced Geometry Object Methods

[162]

The Polygon object has a method called Difference that allows us to find the area
of non-intersection when two polygons intersect. Passing a census block polygon
and a park polygon as parameters will return (as a polygon object) the fraction of
the first parameter where no overlap occurs. Another important method is called
Overlaps, which is called to test whether two Geometry objects (points, lines, or
polygons) intersect. If there is an overlap, the Overlaps method will return True,
while returning False if there is no overlap between the two objects. Union is also an
important method that will be used within this chapter, it allows for two Geometry
objects to be unioned into one object.

Let's explore these important methods. To find the non-intersect area of two polygon
objects, the following function combines the Overlaps and Difference methods:

def nonIntersect(poly1,poly2):

 'returns area of non-intersect between two polygons'

 if poly1.overlaps(poly2) == True:

 return poly1.difference(poly2)

The function nonIntersect accepts two Polygon objects as parameters. The first
parameter, poly1, is the polygon of intersect (the census block polygon) and the
second parameter, poly2, is the polygon to be checked for overlap. The if conditional
uses the Overlaps method and returns True if there is an overlap between the two
parameters. If there is any overlap, the difference() method returns the non-
intersect area as a polygon object. However, this function should be extended to
cover situations where the Overlaps() method returns False:

def nonIntersect(poly1,poly2):

 'returns area of non-intersect between two polygons'

 if poly1.overlaps(poly2) == True:

 return poly1.difference(poly2)

 else:

 return poly1

The function will now return the first parameter when the Overlaps method
returns False, indicating that there is no overlap between the two polygon objects.
This function is now complete and available to be used in an analysis. Because
nonIntersect() is a function that can be used in other spatial analyses, copy it and
add it to useful.py.

Chapter 10

[163]

Generating random points to represent
population
The next step to improve the bus stop analysis is to generate points to represent the
population of each census block. While random points will not provide a perfect
representation of the population, it will serve as a good model of the population
and allow us to avoid area averaging to find the rough population of each census
block served by a bus stop. The CreateRandomPoints tool in the ArcToolbox Data
Management toolset makes it simple to generate the points.

The CreateRandomPoints tool accepts a number of required and optional
parameters. As the tool generates a feature class, the required parameters are the
workspace where the feature class will be placed and the name of the feature class.
The optional parameters of interest are the constraining feature class and the number
of points to be generated. As we are looking to avoid creating new feature classes
in the intermediate steps of our analysis, we can utilize the in_memory workspace,
which allows feature classes to be generated in memory, meaning they are not
written to the hard drive.

Because there is a need to generate a specific number of random points for each
census block, we should create a function that will accept a constraining polygon
and population figure that represents each census block. The in_memory workspace
won't work for every situation, however, so we'll provide the workspace parameter
with a default value:

def generatePoints(fc, pop,constrant, workspace='in_memory'):

 'generate random points'

 import os, arcpy

 arcpy.CreateRandomPoints_management(workspace, fc,
constrant, "", pop, "")

 return os.path.join(workspace, fc)

The function will create the feature class in the workspace desired and will return the
path (joined using the os module) to the feature class for use in the rest of the script.
This function is also reusable and should be copied into useful.py.

Advanced Geometry Object Methods

[164]

Using the functions within a script
Now that we have created the functions that will help us to run a more advanced
spatial analysis, let's add them to a script along with some SearchCursors to iterate
through the data:

Import the necessary modules

import arcpy, os

from common.useful import nonIntersect, generatePoints,createCSV

Add an overwrite statement

arcpy.env.overwriteOutput = True

Define the data inputs

busStops = r'C:\Projects\SanFrancisco.gdb\SanFrancisco\Bus_Stops'

parks = r'C:\Projects\SanFrancisco.gdb\SanFrancisco\RPD_Parks'

censusBlocks = r'C:\Projects\SanFrancisco.gdb\SanFrancisco\
CensusBlocks2010'

csvName = r'C:\Projects\Output\Chapter10Analysis.csv'

Create the spreadsheet in memory and add field headers

headers = 'Line Name','Stop ID', 'Total Population Served'

createCSV(headers,csvName,mode='wb')

Copy the census block data into a feature layer

arcpy.MakeFeatureLayer_management(censusBlocks,'census_lyr')

Copy the park data geometries into a list and union them allparkGeoms =
arcpy.CopyFeatures_management(parks,arcpy.Geometry())

parkUnion = parkGeoms[0]

for park in parkGeoms[1:]:

 parkUnion = parkUnion.union(park)

Create a search cursor to iterate the bus stop data

sql = "NAME = '71 IB' AND BUS_SIGNAG = 'Ferry Plaza'"

with arcpy.da.SearchCursor(busStops, ['NAME','STOPID',
 'SHAPE@'],sql) as cursor:

 for row in cursor:

Chapter 10

[165]

 lineName = row[0]

 stopID = row[1]

 stop = row[2]

 busBuf = stop.buffer(400)

 # Select census blocks that intersect the bus buffer

 arcpy.SelectLayerByLocation_management("census_lyr","intersect",
 busBuf,'','NEW_SELECTION')

 # Use a second Cursor to find the selected population

 totalPopulation = 0

 with arcpy.da.SearchCursor("census_lyr",['SHAPE@','POP10',

 'BLOCKID10']) as ncursor:

 for nrow in ncursor:

 block = nrow[0]

 checkedBlock = nonIntersect(block, parkUnion)

 blockName = nrow[2]

 population = nrow[1]

 if population != 0:

 points = generatePoints("PopPoints",

 population,checkedBlock)

 pointsGeoms = arcpy.CopyFeatures_management(points,
 arcpy.Geometry())

 pointsUnion = pointsGeoms[0]

 for point in pointsGeoms[1:]:

 pointsUnion = pointsUnion.union(point)

 pointsInBuffer=busBuf.intersect(pointsUnion, 1)

 intersectedPoints = pointsInBuffer.pointCount

 totalPopulation += intersectedPoints

 # Add the tallied data to the spreadsheet

 data = lineName, stopID, totalPopulation

 print 'data written', data

 createCSV(data, csvName)

#Start the spreadsheet to see the results

os.startfile(csvName)

Advanced Geometry Object Methods

[166]

Let's review the code, section by section, as that is a lot to take in at first.

The import portion is where we call the usual modules, arcpy and os, along with our
custom functions in the common module:

import arcpy, os

from common.useful import nonIntersect

from common.useful import generatePoints

from common.useful import formatSQLMultiple

from common.useful import nonIntersectcreateCSV

As discussed previously, the functions in the common module's useful method
are called using the Python dot notation and the from … import ... importation
style, making them available directly. Many functions can be imported on one line,
separated by commas, or individually as shown here.

The next line, which sets the ArcPy Environment overwrite property to True, is
very important because it allows us to overwrite the results of the Create random
points operation. If the results were not overwritten, the function results, which
otherwise would use all available memory and cause the script to fail:

arcpy.env.overwriteOutput = True

It is important to be careful with this overwrite setting because
it will allow for any feature class to be overwritten. All of our
output is in memory and only generated for the analysis, so there
is little need to worry here, but take care to make sure that nothing
important is overwritten when running a script.

The next portion is the set of variables that will be used in this script, and will initiate
the spreadsheet that will be used to collect the results of the analysis:

busStops = r'C:\PacktDB.gdb\SanFrancisco\Bus_Stops'

parks = r'C:\PacktDB.gdb\SanFrancisco\RPD_Parks'

censusBlocks = r'C:\PacktDB.gdb\SanFrancisco\CensusBlocks2010'

csvName = r'C:\Projects\Output\Chapter10Analysis.csv'

headers = 'Line Name','Stop ID', 'Total Population Served'

createCSV(headers,csvName,mode='wb')

The file paths assigned to variables here could be replaced with ArcPy parameters
if we were to turn this into a script tool, but for now, the hard-coded paths are fine.
Below the variables, the results spreadsheet is created and the column field headers
are added.

Chapter 10

[167]

It is worth noting that the spreadsheet is created using the wb mode. This mode
of binary file opening, known as wb (write binary), is used for creating a new file.
It must be explicitly passed into the createCSV() function as the default mode
parameter is ab (append binary), which will create a new file if it does not exist, or
add to one that already exists (a third binary mode is rb or read binary, which is
used for opening an existing file).

The next few lines make data in the feature classes available in memory. The census
block data is converted into a Feature Layer, while the RPD_Parks data is read
into memory as a list of Polygon objects that is then unioned into a single, unified
Polygon object called parkUnion:

arcpy.MakeFeatureLayer_management(censusBlocks,'census_lyr')
parkGeoms = arcpy.CopyFeatures_management(parks,
 arcpy.Geometry())

parkUnion = parkGeoms[0]

for park in parkGeoms[1:]:

 parkUnion = parkUnion.union(park)

By using the CopyFeatures tool in the Data Management toolset, the parkGeoms
variable is passed a list of the geometries for each row of data in the RPD_Parks
feature class. However, we don't want to have to iterate through the park geometries
to compare them to each census block, so the Union method is invoked to create one
Polygon object from the entire list. By assigning the first member of the list to the
parkUnion variable, and then iterating through the parkGeoms list to union the other
geometries one by one, the result is one Polygon object that represents all parks
within the RPD_Parks dataset.

Once all of the modules have been imported and the variables have been assigned,
we can enter the for loop of the data access SearchCursor to begin the analysis.
However, we don't want to run this for all of the bus stops, so we will use a SQL
statement where clause, to limit the analysis to a single bus line:

sql = "NAME = '71 IB' AND BUS_SIGNAG = 'Ferry Plaza'"

with arcpy.da.SearchCursor(busStops, ['NAME','STOPID',
 'SHAPE@'],sql) as cursor:

 for row in cursor:

 lineName = row[0]

 stopID = row[1]

 stop = row[2]

 busBuf = stop.buffer(400)

Advanced Geometry Object Methods

[168]

 arcpy.SelectLayerByLocation_management("census_lyr",
 "intersect,busBuf,'',
 'NEW_SELECTION')

 totalPopulation = 0

The first portion of the iteration involves entering the for loop and assigning the
values of each row to a variable. A Polygon object buffer of 400 feet is created
around the PointGeometry object returned by the SearchCursor. This buffer is then
used to intersect with the census blocks Feature Layer to find and select all of the
census blocks that intersect the buffer. To tally the population served by each buffer,
the variable totalPopulation is created.

Once the selection has been performed, a second SearchCursor can be used to
iterate through the selected blocks to retrieve their population values and Polygon
objects for random point generation:

with arcpy.da.SearchCursor("census_lyr",['SHAPE@','POP10',

 'BLOCKID10']) as ncursor:

 for nrow in ncursor:

 block = nrow[0]

 checkedBlock = nonIntersect(block, parkUnion)

 blockName = nrow[2]

 population = nrow[1]

In this iteration, once each census block has been retrieved (in the form of a Polygon
object), the block is then checked against the unioned park geometry using the
nonIntersect function created previously. This ensures that the points will only be
created within areas that are not parks, that is, more likely to represent where people
would live. The population values are also retrieved.

Once the constraining polygon (for example the census block) has been evaluated and
any potential park portion has been removed, and the population value is available,
the random points can be generated using the generatePoints() function:

if population != 0:

 points = generatePoints("PopPoints",population,checkedBlock)

 pointsGeoms = arcpy.CopyFeatures_management(points,arcpy.Geometry())

Chapter 10

[169]

 pointsUnion = pointsGeoms[0]

 for point in pointsGeoms[1:]:

 pointsUnion = pointsUnion.union(point)

 pointsInBuffer = busBuf.intersect(pointsUnion,1)

 intersectedPoints = pointsInBuffer.pointCount

 totalPopulation += intersectedPoints

The generatePoints() function requires three parameters. The first is the name of
the feature class to be generated; this will be overwritten each time it is generated,
thus avoiding the overuse of memory by creating an in_memory feature class for
each census block. The other two parameters are the population value and the
constraining Polygon object.

Once these have been passed to the function, it returns a file path to the newly created
feature class and assigns the file path to the variable points. The geometries in points
are then extracted using the CopyFeatures tool and assigned to the variable points.
The Union method is again used to create a single, unified population PointGeometry
object that will be intersected with the bus stop buffer. Once this intersection has
been run, the resulting geometries are assigned to the pointsInBuffer variable and
the pointCount method is used to find the number of points that were generated
within the buffered area. This is our estimate of population within the census block,
and this value is added to the totalPopulation variable to eventually yield the total
estimated population within 400 feet of the bus stop.

The final lines of the script demonstrate how the data is collected into a tuple and
passed to the createCSV() module to be written to our final spreadsheet:

 data = lineName, stopID,totalPopulation

 print 'data written', data

 createCSV(data, csvName)

os.startfile(csvName)

Advanced Geometry Object Methods

[170]

The last line, os.startfile(csvName), uses the startfile method of the os
module to automatically open the spreadsheet once the analysis is completed. In
this case, the spreadsheet C:\Projects\Output\Chapter10Analysis.csv has been
populated with the results of the analysis and is opened to display these results.
However, the user may have to indicate that the lines are comma separated values to
open the script.

Instead of creating a comma separated value, we can take advantage of another
Python module that is installed when ArcGIS 10.2 and ArcPy is installed. This
module, called XLWT, is used to generate Excel spreadsheets, and along with the Excel
spreadsheet reading module XLRD, is one of the most useful modules available to
users of Python.

Creating an XLS using XLWT
XLWT is a powerful module that allows for a multitude of styling options. However,
for our purposes we can ignore those options and create a function that will generate
a spreadsheet with the results of our spatial analysis. This function can of course be
added to common.useful:

def generateXLS(indatas, sheetName, fileName):

 import xlwt

 workbook = xlwt.Workbook()

Chapter 10

[171]

 sheet = workbook.add_sheet(sheetName)

 for YCOUNTER, data in enumerate(indatas):

 for XCOUNTER, value in enumerate(data):

 sheet.write(YCOUNTER, XCOUNTER, value)

 workbook.save(fileName)

This function requires three parameters, indatas- a list containing rows of iterable
data, a string sheet name, and a string file name that ends with the .xls extension.

To use this function, add it to common.useful. Once it has been added, copy and
rename the older analysis script so that it can be adjusted:

import arcpy, os

from common.useful import nonIntersect, generatePoints, generateXLS

arcpy.env.overwriteOutput = True

busStops = r'C:\Projects\PacktDB.gdb\SanFrancisco\Bus_Stops'

parks = r'C:\Projects\PacktDB.gdb\SanFrancisco\RPD_Parks'

censusBlocks =
r'C:\Projects\PacktDB.gdb\SanFrancisco\CensusBlocks2010'

xlsName = r'C:\Projects\Output\Chapter10Analysis.xls'

headers = 'Line Name','Stop ID', 'Total Population Served'

indatas = [headers]

arcpy.MakeFeatureLayer_management(censusBlocks,'census_lyr')parkGeoms =
arcpy.CopyFeatures_management(parks,arcpy.Geometry())

parkUnion = parkGeoms[0]

for park in parkGeoms[1:]:

 parkUnion = parkUnion.union(park)

sql = "NAME = '71 IB' AND BUS_SIGNAG = 'Ferry Plaza'"

with arcpy.da.SearchCursor(busStops, ['NAME','STOPID',

 'SHAPE@'],sql) as cursor:

 for row in cursor:

 lineName = row[0]

 stopID = row[1]

Advanced Geometry Object Methods

[172]

 stop = row[2]

 busBuf = stop.buffer(400)

 arcpy.SelectLayerByLocation_management("census_lyr","intersect",
 busBuf,'','NEW_SELECTION')

 totalPopulation = 0

 with arcpy.da.SearchCursor("census_lyr", ['SHAPE@','POP10',

 'BLOCKID10']) as ncursor:

 for nrow in ncursor:

 block = nrow[0]

 checkedBlock = nonIntersect(block, parkUnion)

 blockName = nrow[2]

 population = nrow[1]

 if population != 0:

 points = generatePoints("PopPoints",
 population,checkedBlock)

 pointsGeoms = arcpy.CopyFeatures_management(points,
 arcpy.Geometry())

 pointsUnion = pointsGeoms[0]

 for point in pointsGeoms[1:]:

 pointsUnion = pointsUnion.union(point)

 pointsInBuffer = busBuf.intersect(pointsUnion,1)

 intersectedPoints = pointsInBuffer.pointCount

 totalPopulation += intersectedPoints

 data = lineName, stopID, totalPopulation

 indatas.append(data)

generateXLS(indatas, "Results", xlsName)

os.startfile(xlsName)

We can now generate Excel spreadsheets just as easily as we have generated CSV files
while employing a reusable function. We now have the ability to perform repeatable
spatial analysis fast and can produce results in industry standard formats.

Chapter 10

[173]

Summary
In this chapter, we have explored how to create modules and reusable functions that
will save scripting time in the future by allowing us to avoid rewriting these useful
functions. We further explored the methods available through ArcPy Geometry
objects, including the Intersect, Overlaps, and Union methods. We created a
spatial analysis that writes no feature classes to disk, making it so that the analysis
time is reduced and unnecessary files are avoided. Finally, we explored how to
generate Excel spreadsheets using the XLWT module so that analysis results can be
shared in industry standard formats.

In the next chapter, we will explore how to use ArcPy to interact with the ArcGIS for
desktop extensions such as Network Analyst and Spatial Analyst. By incorporating
their functionality within a script, we further increase our ability to create fast and
repeatable spatial analysis workflows.

Network Analyst and Spatial
Analyst with ArcPy

Use of the ArcGIS for Desktop extensions also benefits from the power of Python
and ArcPy. The ability to model routes using a streets dataset or a bus routes dataset
using ArcPy will help us convert entire workflows into script tools. Both Network
Analysts and Spatial Analysts have access modules built into ArcPy for improved
control of their available tools, methods, and properties.

This chapter will cover the following topics:

•	 Creating a simple network dataset
•	 Checking out the extensions
•	 The ArcPy Network Analyst module
•	 The ArcPy Spatial Analyst module

The Network Analyst extension
The ESRI's Network Analyst extension is a powerful tool to enable routing and
network connectivity functionality within ArcGIS. The extension, when used for
street routing, allows users to find the quickest path between two points along a road
network. The route can be constrained by a number of factors, such as traffic or left
turns, to better model road travel. Similar analysis can be run using other types of
networks, such as water pipe networks or electrical networks.

Network Analyst and Spatial Analyst with ArcPy

[176]

Using Network Analyst
To use the Network Analyst extension, the ArcGIS for Desktop Advanced license
is required. In ArcCatalog or ArcMap, click on the Customize menu and select
Extensions. Once the Extensions menu is open, click on the checkbox next to turn on
the Network Analyst Extension.

Creating a Feature Dataset
The first step to using a network dataset is to create one within a feature dataset. To
do so, we will generate a feature dataset to hold the data of interest. Right-click on
the File geodatabase that houses the Bus Stop data and select New, and then select
Feature Dataset from the New menu. Name it Chapter11Results and click on Next.

Chapter 11

[177]

Next, select the Spatial Reference System (SRS). In this case, we will be using
the SRS of the local State Plane zone for San Francisco. It is a projected coordinate
system, so select that folder, and then click on the State Plane folder. Once it is
opened, select the folder called NAD 1983(US Feet). From the available reference
systems, select the one called NAD 1983 StatePlane California III FIPS 0403 (US
Feet). Click on Next to go to the next menu.

This system is also known as 2227 in Well Known ID (WKID) or
European Petroleum Survey Group (EPSG) systems. More information
about these codes is available at http://spatialreference.org,
a website used to find the thousands of spatial reference systems used
throughout the world.

Click on the Vertical Coordinate Systems folder and then select the North America
folder. Select the North American Vertical Datum of 1988 in feet (NAVD 1988 US
survey feet). This will make it possible to have the vertical and horizontal linear
units in the same measurement system. Click on Next to go to the next menu.

The tolerances on the next page are also very important, but we will not cover them
in detail here. Accept the defaults and click on Finish to finalize the Feature Dataset.

Importing the datasets
Import the bus stops, streets, and bus routes feature classes into the Chapter 11
Results Feature Dataset. Right-click on the dataset and select Import, and then
Feature Class (Single). Add the feature classes one by one to give them a new name
that will keep them separated from the versions contained within the SanFrancisco
Feature Dataset. Importing them will make sure that they are in the correct SRS and
that a network dataset can be created.

http://spatialreference.org

Network Analyst and Spatial Analyst with ArcPy

[178]

Creating the Network Dataset
Now that we have a data container, we can create a network dataset from the streets
feature class. Right-click on the Chapter11Results feature dataset and select New,
and then choose Network Dataset.

Call the Network Dataset Street_Network and click on Next. Select the Streets
feature class as the class that will participate in the network dataset and click on
Next to move to the next menu. Select Global Turns to model turns within the
network. In the next menu, use the default connectivity settings. Then, accept
the Using Z Coordinate Values from Geometry setting. Accept the default cost
restriction and driving directions settings, and finally click on Finish to generate the
network dataset. Then, build the network dataset using the final menu. The network
dataset is ready to be used.

Chapter 11

[179]

Accessing the Network Dataset using ArcPy
Now that the necessary setup has been completed, the street_network network
dataset can be added to a script for use in generating routes. Because this is a
simple analysis, the only impedance value to be used will be the length of the street
segments. Through the use of a SearchCursor, PointGeometry objects from the bus
stops can be accessed and added as locations to be searched:

import arcpy

arcpy.CheckOutExtension("Network")

busStops = r'C:\Projects\PacktDB.gdb\Chapter11Results\BusStops'

networkDataset =
r'C:\Projects\PacktDB.gdb\Chapter11Results\street_network'

networkLayer = "streetRoute"

impedance = "Length"

routeFile = "C:\Projects\Layer\{0}.lyr".format(networkLayer)

arcpy.MakeRouteLayer_na(networkDataset,

 networkLayer, impedance)

print 'layer created'

sql = "NAME = '71 IB' AND BUS_SIGNAG = 'Ferry Plaza'"

with arcpy.da.SearchCursor(busStops,['SHAPE@',
 'STOPID'],sql) as cursor:

 for row in cursor:

 stopShape = row[0]

 print row[1]

 arcpy.AddLocations_na(networkLayer,'Stops',
 stopShape, "", "")

 arcpy.Solve_na(networkLayer,"SKIP")

arcpy.SaveToLayerFile_management(networkLayer,
 routeLayerFile,"RELATIVE")

print 'finished'

Breaking down the script
Let's dissect the script, which once finished, will generate a layer file containing
the added Stops, and the Routes along streets to best get from the origin stop to the
destination stop.

Network Analyst and Spatial Analyst with ArcPy

[180]

The script begins by importing the arcPy module. The next line allows us to use the
Network Analyst extension:

arcpy.CheckOutExtension("Network")

Using the arcpy.CheckOutExtension() method to invoke the Network Analyst
extension involves passing the correct keyword to the method as a parameter. Once it
has been invoked, the tools of the extension can be called and executed in the script.

Assigning the bus stops feature class and the street_network network dataset to
variables, they can then be passed to ArcPy's MakeRouteLayer_na() method, along
with a variable representing the impedance value:

arcpy.MakeRouteLayer_na(networkDataset,

 networkLayer, impedance)

The MakeRouteLayer_na tool produces a RouteLayer in memory. This blank layer
needs to be populated with stops to produce the route(s) between them. For this
purpose, we need a SearchCursor to access the PointGeometry objects and a SQL
statement that will limit the returned results to the line of interest:

sql = "NAME = '71 IB' AND BUS_SIGNAG = 'Ferry Plaza'"

with arcpy.da.SearchCursor(busStops,['SHAPE@',
 'STOPID'],sql) as
cursor:

 for row in cursor:

 stopShape = row[0]

 print row[1]

 arcpy.AddLocations_na(networkLayer,'Stops',stopShape,"", "")

The Search Cursor will allow the Stops sublayer of the layer produced by
the MakeRouteLayer tool to be populated when used in conjunction with the
AddLocations tool. Once populated, the RouteLayer can be passed to the Solve
tool to find the routes between the points of interest. Again, the routes are solved
based on finding the lowest impedance between the two points. In this example, the
only impedance is the segment length, but it could be traffic or elevation or other
restriction types, if that data is available:

 arcpy.Solve_na(networkLayer,"SKIP")

arcpy.SaveToLayerFile_management(networkLayer,
 routeLayerFile,"RELATIVE")

Chapter 11

[181]

The final result is a layer file that is written to disk using the SaveToLayerFile tool.

The Network Analyst module
In an effort to make the use of the Network Analyst extension more Pythonic, the
newer Network Analyst (na) module adjusts how the methods that correspond to the
ArcToolbox Network Analyst tools are accessed. Instead of calling the tools directly
from ArcPy, the tools are now methods of the na module. Removing the initials of
the Network Analyst toolset also reduces confusion and makes it easier to remember
the name of the method. See the difference as follows:

import arcpy

arcpy.CheckOutExtension("Network")

busStops = r'C:\Projects\SanFrancisco.gdb\SanFrancisco\Bus_Stops

networkDataset =
r'C:\Projects\SanFrancisco.gdb\Chapter11Results\street_network'

Network Analyst and Spatial Analyst with ArcPy

[182]

networkLayer = "streetRoute"

impedance = "Length"

routeLayerFile =
"C:\Projects\Layer\{0}_2.lyr".format(networkLayer)arcpy.na.MakeRouteL
ayer(networkDataset, networkLayer,impedance)

print 'layer created'

sql = "NAME = '71 IB' AND BUS_SIGNAG = 'Ferry Plaza'"

with arcpy.da.SearchCursor(busStops,['SHAPE@',
 'STOPID'],sql) as cursor:

 for row in cursor:

 stopShape = row[0]

 print row[1]

 arcpy.na.AddLocations(networkLayer,'Stops', stopShape, "", "")

arcpy.na.Solve(networkLayer,"SKIP")

arcpy.management.SaveToLayerFile(networkLayer,routeLayerFile,"RELATIVE")

print 'finished'

The tool will produce the same layer output as the original script, but the
reorganization of the Network Analyst tools into the na module has made the
code more logical. For instance, it makes more sense to call Solve using arcpy.
na.Solve(), instead of arcpy.Solve_na(), as it reinforces that Solve is a method
of the Network Analyst (na) module. As ArcPy continues to be developed, I expect
more Pythonic code reorganization to occur.

Accessing the Spatial Analyst Extension
The Spatial Analyst Extension is very important to perform analysis on both raster
and vector datasets, but it is generally used to perform surface analysis and raster
math. These operations are made even easier by the use of ArcPy, as all of the tools
available in the Spatial Analyst Toolbox are exposed with the Spatial Analyst access
module. This includes the Raster Calculator tools, making map algebra easy by using
the tools and operators in simple expressions.

Chapter 11

[183]

Adding elevation to the bus stops
The elevation raster "sf_elevation" has been downloaded from NOAA and added to
the File Geodatabase. However, it covers the entire Bay Area, and we should write
a script to only extract an area of the city of San Francisco as it will reduce the time
needed to run our scripts. We'll use a SQL statement as the where clause to limit the
results to the South of Market (SoMa) neighborhood. To do so, let's take advantage of a
Search Cursor and the Spatial Analyst access module's Extract by Polygon property:

import arcpy

arcpy.CheckOutExtension("Spatial")

busStops = r'C:\Projects\PacktDB.gdb\SanFrancisco\Bus_Stops'

sanFranciscoHoods = r'C:\Projects\PacktDB.gdb\SanFrancisco\SFFind_
Neighborhoods'

sfElevation = r'C:\Projects\PacktDB.gdb\sf_elevation'

somaGeometry = []

sql = "name = 'South of Market'"

with arcpy.da.SearchCursor(sanFranciscoHoods,['SHAPE@XY'],
 sql,None, True) as cursor:

 for row in cursor:

 X = row[0][0]

 Y = row[0][1]

 somaGeometry.append(arcpy.Point(X,Y))

somaElev = arcpy.sa.ExtractByPolygon(sfElevation,somaGeometry,
"INSIDE")

somaOutPath = sfElevation.replace('sf_elevation','SOMA_elev')

somaElev.save(somaOutPath)

print 'extraction finished'

The ExtractByPolygon() method is a bit misleading, as it does not accept a
Polygon object as a parameter. Instead, it requires a list of Point objects that
represent the vertices of the area that we want to extract. As the SearchCursor is
iterating through the neighborhoods dataset, a Polygon object is returned by the
cursor. Fortunately, the SearchCursor has a final parameter, which we have not
yet explored, that allows us to extract the individual points or vertices that make up
the Soma neighborhood polygon. By setting the Search Cursor's optional Explode
to Points parameter (which converts Polygon objects into coordinate pairs for each
vertex) to True, Point objects can be generated by passing the XY values of each
returned vertex to the arcpy.Point method. These Point() objects are appended
to the somaGeometry list and then passed to the Spatial Analyst access module's
ExtractByPolygon method.

Network Analyst and Spatial Analyst with ArcPy

[184]

Passing a Polygon Object instead of Point Objects will return an error.

Using Map Algebra to generate elevation in
feet
We now have a raster to use to extract elevation values. However, both the original
raster and the generated SoMa neighborhood raster contain elevation values in
meters, and it would be better to convert them to feet to keep them consistent with
the projection of the bus stops. Let's use raster math and the Times() method to
convert the values from meters to feet:

somaOutPath = sfElevation.replace('sf_elevation','SOMA_elev')

outTimes = arcpy.sa.Times(somaOutPath, 3.28084)

somaFeetOutPath = sfElevation.replace('sf_elevation','SOMA_feet')

outTimes.save(somaFeetOutPath)

The Times() method generates a new raster to glean the elevation values we need
for the bus stops of interest.

Adding in the bus stops and getting elevation
values
Now that we have generated a raster that we can use to find elevation values
in feet, we need to add a new arcpy.sa() method to generate the points. The
ExtractValuesToPoints() method will generate a new bus stops feature class
with a new field that holds the elevation values:

with arcpy.da.SearchCursor(sanFranciscoHoods,['SHAPE@'],sql) as cursor:

 for row in cursor:

 somaPoly = row[0]

arcpy.MakeFeatureLayer_management(busStops, 'soma_stops')

arcpy.SelectLayerByLocation_management("soma_stops",
 "INTERSECT",somaPoly)

outStops = r'C:\Projects\PacktDB.gdb\Chapter11Results\SoMaStops'

arcpy.sa.ExtractValuesToPoints("soma_stops", somaOutFeet,
 outStops,"INTERPOLATE",
 "VALUE_ONLY")

print 'points generated'

Chapter 11

[185]

The final result
We produced a subset feature class of the bus stops that has the elevation values
added as a field. This process could be repeated for the entire city, one neighborhood
at a time, or it could be performed with the original elevation raster on the entire bus
stops feature class to generate a value for each stop:

import arcpy

arcpy.CheckOutExtension("Spatial")

arcpy.env.overwriteOutput = True

busStops = r'C:\Projects\PacktDB.gdb\SanFrancisco\Bus_Stops'

sanFranciscoHoods = r'C:\Projects\SanFrancisco.gdb\SanFrancisco\SFFind_
Neighborhoods'

sfElevation = r'C:\Projects\SanFrancisco.gdb\sf_elevation'

somaGeometry = []

sql = "name = 'South of Market'"

with arcpy.da.SearchCursor(sanFranciscoHoods,['SHAPE@XY'],
 sql,None, True) as cursor:

 for row in cursor:

 somaGeometry.append(arcpy.Point(row[0][0],row[0][1]))

somaElev = arcpy.sa.ExtractByPolygon(sfElevation, somaGeometry,
 "INSIDE")

somaOutput = sfElevation.replace('sf_elevation','SOMA_elev')

somaElev.save(somaOutput)

print 'extraction finished'

somaOutput = sfElevation.replace('sf_elevation','SOMA_elev')

outTimes = arcpy.sa.Times(somaOutput, 3.28084)

somaOutFeet = sfElevation.replace('sf_elevation','SOMA_feet')

outTimes.save(somaOutFeet)

print 'conversion complete'

with arcpy.da.SearchCursor(sanFranciscoHoods,['SHAPE@'],sql) as cursor:

 for row in cursor:

 somaPoly = row[0]

arcpy.MakeFeatureLayer_management(busStops, 'soma_stops')

Network Analyst and Spatial Analyst with ArcPy

[186]

arcpy.SelectLayerByLocation_management("soma_stops", "INTERSECT",
 somaPoly)

outStops = r'C:\Projects\SanFrancisco.gdb\Chapter11Results\SoMaStops'

arcpy.sa.ExtractValuesToPoints("soma_stops", somaOutFeet,
 outStops,"INTERPOLATE",
 "VALUE_ONLY")

print 'points generated'

This script demonstrates well the value of accessing the advanced extensions
in ArcPy and combining them with SearchCursors and Geometry objects. The
script could be taken even further by adding a SearchCursor to look through the
outstops dataset and exporting the results to a spreadsheet, or even adding a new
field to the original bus stops dataset to populate with the elevation values. It could
even be used as impedance values to be entered into a Network Analyst extension
analysis—a fun coding task that I hope you will attempt.

Summary
In this chapter, we covered the basics of using common ArcGIS for Desktop
Advanced extensions within ArcPy, with a focus on the Network Analyst access
module and the Spatial Analyst access module. We explored how to generate a
network and how to create network paths using ArcPy. We also explored how to
access Spatial Analyst tools and use them in conjunction with SearchCursors to
work with rasters and vectors for spatial analysis.

In the next chapter, we will explore some final pieces to the ArcPy puzzle that will
allow the creation of advanced scripts and script tools.

The End of the Beginning
This book is almost done, but there is so much more to know about writing code in
Python and ArcPy. Unfortunately, I can't fit it all into one book, but that also means
that you get to have fun exploring all of the methods and properties of ArcPy. As a
conclusion to the book, we will cover some other important topics that can crop up
when writing ArcPy scripts. Combined with the lessons from earlier chapters, I hope
you'll soon be using ArcPy at work, at school, or just for fun (why not?).

This chapter will cover the following topics:

•	 Working with field information – types, aliases, domains, spatial types,
and more

•	 Accessing information describing a Feature Class
•	 Automatically generating a Feature Class and populating it with fields
•	 Automatically creating File Geodatabases and Feature Datasets
•	 Creating a Script tool that will run the bus stop analysis and generate

results in an automatically generated File Geodatabase, Feature Dataset,
and Feature Class

Getting field information from feature
classes
When creating script tools, or just running a script, there can be times that extracting
field information from a feature class (or shapefile) is necessary. This information can
include field names and aliases, field type and length, scale, domains, or subtypes.
These are all properties available through the arcpy.ListFields method. We'll
explore the many properties, how to extract them, and how to use them in a script.

The End of the Beginning

[188]

By organizing the ArcPy methods into a function, the data is organized in a form that
we prefer, instead of relying on the default organization used by the designers of
ArcPy. It's important to remember that scripts you create should reflect your needs,
and creating these function wrappers is one step forward towards polishing the raw
ArcPy tools to work in your workflows.

Accessing the ListFields' properties
The List Fields tool is available as an ArcPy method. Arcpy.ListFields accepts only
one parameter, a feature class, or shapefile. Once the parameter has been passed,
a series of important properties are available using dot notation. To take further
advantage of these properties, we will create functions that make it easy to get the
information we want, in the format we require.

List comprehensions
Within these field information functions, we will take advantage of a Python data
structure known as list comprehensions. They simplify the for loop structure to
make it easier to populate a list with the values required (the field information
in this case).

To create a list comprehension, a for loop is generated inside a set of brackets,
and the list is populated with the generated values. Here is an example of a list
comprehension that creates a list with the square values of the numbers from 1 to 10,
as run in the Python interpreter:

>>>originalList = range(1,11)

>>>print originalList

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>>newList = [x**2 for x in originalList]

>>>print newList

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

List comprehensions are used because they are faster and easier to write, though
it may take some time to get used to the syntax. Experiment with them to better
understand their use and limitations, and also consult some of the many resources
available online.

Chapter 12

[189]

Creating the field information functions
Each of the functions will be a separate entity, but they will all have a similar
structure. One parameter will be accepted by each function, the feature class of
interest. ArcPy will be imported, and later deleted from memory, to make sure that
the ListFields() method can be called without an error. Once the feature class is
passed to the ListFields() method, the values desired will populate a list inside
a list comprehension. Once it has been populated, it is returned from the function
using the return keyword.

Here is the set of functions for the field names:

def returnfieldnames(fc):

 import arcpy

 fieldnames = [f.name for f in arcpy.ListFields(fc)]

 del arcpy

 return fieldnames

def returnfieldalias(fc):

 import arcpy

 fieldalias = [f.aliasName for f in arcpy.ListFields(fc)]

 del arcpy

 return fieldalias

def returnfieldbasename(fc):

 import arcpy

 fieldtypes = [f.baseName for f in arcpy.ListFields(fc)]

 del arcpy

 return fieldtypes

These name functions are useful when creating a new feature class based on another
feature class. Sometimes there is a need to preserve the exact names and aliases from
the original feature class, and using these functions will make this possible. When
doing this, there is a need to provide other field information as well. Here are the
functions related to field types, lengths, precision, and scale:

def returnfieldtypes(fc):

 import arcpy

 fieldtypes = [f.type for f in arcpy.ListFields(fc)]

 del arcpy

The End of the Beginning

[190]

 return fieldtypes

def returnfieldlength(fc):

 import arcpy

 fieldlengths = [f.length for f in arcpy.ListFields(fc)]

 del arcpy

 return fieldlengths

def returnfieldprecision(fc):

 import arcpy

 fieldprecise = [f.precision for f in arcpy.ListFields(fc)]

 del arcpy

 return fieldprecise

def returnfieldscale(fc):

 import arcpy

 fieldscales = [f.scale for f in arcpy.ListFields(fc)]

 del arcpy

 return fieldscales

There is even a property used to request domain information:

def returnfielddomain(fc):

 import arcpy

 fielddomains = [f.domain for f in arcpy.ListFields(fc)]

 del arcpy

 return fielddomains

These functions all share the structure discussed earlier, and have the advantage of
being simple to use and easy to search throughout. Because fields in a feature class
have a specific order, each list returned by the functions will have an order to the
information returned, accessible by a specific index number.

The fieldsubtypes are also available through the data access module. Because they
are related to the fields, they are returned as a dictionary:

def returnfieldsubtypes(fc):

 import arcpy

 fieldsubdic = {}

 subtypes = arcpy.da.ListSubtypes(fc)

Chapter 12

[191]

 for stcode, stdict in subtypes.iteritems():

 for stkey in stdict.iterkeys():

 if stkey == 'FieldValues':

 fields = stdict[stkey]

 for field, fieldvals in fields.iteritems():

 sub = fieldvals[0]

 desc = fieldvals[1]

 fieldsubdic[field] = sub, desc

 del arcpy

 return fieldsubdic

Adding these functions to the useful.py script in the common module
will make them available to any script or script tool. Use the import
keyword to add them to any new script. They are self-contained
functions that only require the file path to the feature class of interest.

Querying feature class information
Some important pieces of information about an incoming feature class cannot be
accessed using the ListFields() method. Instead, a number of different methods
will be used to find the Geometry type, or Spatial Reference, or the field subtype of
each feature class. Some of these are discovered using ArcPy's Describe method,
built to provide

For the Geometry type, we will use the shapeType property of the Describe()
method:

def returngeometrytype(fc):

 import arcpy

 arcInfo = arcpy.Describe(fc)

 geomtype = arcInfo.shapeType

 del arcpy

 return str(geomtype)

The name of the Shape field (which usually defaults to Shape) can also be requested
using the Describe method and returns a string data type:

def returngeometryname(fc):

 import arcpy

The End of the Beginning

[192]

 arcInfo = arcpy.Describe(fc)

 geomname = arcInfo.shapeFieldName

 del arcpy

 return str(geomname)

The feature class spatial_reference is also available through the Describe
method. The data is returned as a spatial_reference object:

def returnspatialreference(fc):

 import arcpy

 spatial_reference = arcpy.Describe(fc).spatialReference

 del arcpy

 return spatial_reference

A spatial_reference object has a number of important properties. The
projectionname and projectioncode are among the important

def returnprojectioncode(fc):

 import arcpy

 spatial_reference = arcpy.Describe(fc).spatialReference

 proj_code = spatial_reference.projectionCode

 del arcpy

 return proj_code

def returnprojectionname(fc):

 import arcpy

 spatial_reference = arcpy.Describe(fc).spatialReference

 proj_name = spatial_reference.name

 del arcpy

 return proj_name

Many other properties and methods can be similarly utilized to make them available
within scripts or script tools. Explore the ArcGIS help documents for further insights
into the properties available through the Describe method.

Chapter 12

[193]

Generating File Geodatabases and feature
classes
File Geodatabases do not have to exist before a script is run; instead, they can be
generated when a script is executed using the CreateFileGDB tool, which is also an
ArcPy method. Once the File Geodatabase has been created, Feature Datasets
can be added.

Generating the File Geodatabase is very easy. The only parameters are the folders to
place it inside, and the name of the Geodatabase:

import arcpy

folderPath = r"C:\Projects"

gdbName = "ArcPy.gdb"

arcpy.CreateFileGDB_management(folderPath, gdbName)

The Feature Datasets are more difficult to create, as there is an optional spatial
reference parameter that requires a Spatial Reference object to be generated. While
the Spatial Reference object is optional, it is highly recommended.

There are a few options to generate the SpatialReference object. One of them
uses the return specialReference() function defined earlier; by passing a
feature class to the function, a Spatial Reference object is created. Another method
would be to pass a file path to a projection file .prj as the optional third parameter.
A third method is to generate a Spatial Reference object by using the arcpy.
SpatialReference method and passing it a projection code or a projection string:

spatialReference = arcpy.SpatialReference(2227)

However it is generated, it is then passed to the arcpy.CreateFeatureDataset
method along with the file path of the File Geodatabase and the name of the
Feature Dataset:

spatialReference = arcpy.SpatialReference(2227)

fileGDB = r"{0}\{1}".format(folderPath,gdbName)

featureDataset = "Chapter12Results"

arcpy.CreateFeatureDataset_management(fileGDB, featureDataset,
 spatialReference)

The End of the Beginning

[194]

Generating a feature class
Now that a File Geodatabase and a Feature Dataset have been created, let's
generate a Feature Class inside the Feature Dataset. This is done using the arcpy.
CreateFeatureClass method. This method has a number of optional parameters,
including a Feature Class to use as a template and a Spatial Reference. For this
example, there is no need to use the Spatial Reference parameter as it is being
written to a Feature Dataset, which dictates the Spatial Reference used. The template
parameter will copy the fields of the template Feature Class, but for now, we will
only create the Shape field:

featureClass = "BufferArea"

geometryType = "POLYGON"

featurePath = r"{0}\{1}".format(fileGDB,featureDataset)

arcpy.CreateFeatureclass_management(featurePath, featureClass,
 geometryType)

The created Feature Class will need some fields with the attribute information that
will be populated later. The fields have a number of parameters that depend on the
field type, including length, precision, and alias, among others:

fieldName = "STOPID"

fieldAlias = "Bus Stop Identifier"

fieldType = "LONG"

fieldPrecision = 9

featureClassPath = r"{0}\{1}".format(featurePath,featureClass)

arcpy.AddField_management(featureClassPath, fieldName,
 fieldType, fieldPrecision,"", "", fieldAlias)

Let's add a second field to hold the averaged population values produced by the Bus
Stop analysis:

fieldName2 = "AVEPOP"

fieldAlias2 = "Average Census Population"

fieldType2 = "FLOAT"

featureClassPath = r"{0}\{1}".format(featurePath,featureClass)

arcpy.AddField_management(featureClassPath, fieldName2, fieldType2, "",
 "", "", fieldAlias2)

Chapter 12

[195]

The File Geodatabase, Feature Dataset, and Feature Class fields have now been
generated. Let's extend the script into a script tool by adding the Bus Stop analysis
functions, while writing the results to the generated Feature Class. Creating, a script
tool that populates a feature class.

This script tool will borrow from the ideas outlined in Chapter 10, Advanced Geometry
Object Methods and will create a union of the Polygon Geometry objects that intersect
with the buffered bus stops to populate the Shape field, along with the bus stop ID
and the averaged population for the blocks intersected with each buffer.

Open the script Chapter12_3.py and explore its contents. Coupled with the code
snippets mentioned earlier and the use of arcpy.GetParameterAsText to get data
from the script tool, the data generated will be written in a feature class by the
following code:

arcpy.AddMessage("Beginning Analysis")

insertCursor = arcpy.da.InsertCursor(featureClassPath,
 ['SHAPE@',fieldName, fieldName2])

arcpy.MakeFeatureLayer_management(censusBlocks2010,"census_lyr")

with arcpy.da.SearchCursor(busStops, ['SHAPE@', busStopField],sql) as
cursor:

 for row in cursor:

 stop = row[0]

 stopID = row[1]

 busBuffer = stop.buffer(400)

 arcpy.SelectLayerByLocation_management("census_lyr","intersect",
 busBuffer,'',
 'NEW_SELECTION')

 censusShapes = []

 censusPopList = []

 with arcpy.da.SearchCursor("census_lyr", ['SHAPE@',
 censusBlockPopField]) as ncursor:

 for nrow in ncursor:

 censusShapes.append(nrow[0])

 censusPopList.append(nrow[1])

 censusUnion = censusShapes[0]

 for block in censusShapes[1:]:

The End of the Beginning

[196]

 censusUnion = censusUnion.union(block)

 censusPop = sum(censusPopList)/len(censusPopList)

 finalData = (censusUnion,stopID, censusPopulation)

 insertCursor.insertRow(finalData)

arcpy.AddMessage("Analysis Complete")

The script combines many of the ideas that have been introduced throughout the
book to allow the user to run a complete workflow that generates a feature class
containing the results of the analysis. By adding only the fields of interest and
populating them with the unioned Polygon objects, the script eliminates most of
the cruft, normally created when running a spatial analysis, and produces a results
dataset that can be viewed in ArcMap.

Setting up the script tool parameters
Here is how the parameters of the script tool look when set up:

Chapter 12

[197]

The list of parameters is long, so I am using two images to portray them. It is
important to choose the correct data type for each parameter as it will control the
dialog generated to retrieve the data.

The bus stop ID field and the Population field are both obtained from their
respective feature classes. The File Geodatabase name is a string and the code
will append .gdb to the end of the input string if it is not entered initially, to make
sure that it can be correctly generated. It should not already exist; it will not be
generated if it does (if desired, this can be changed by setting the arcpy.env.
overwriteOutput property to True after the import statement).

Once the parameters have been set, and the tool has a name and description, save it
and then open the tool. It should look like this once it has been filled out:

The End of the Beginning

[198]

Click on OK to run the tool. Open ArcMap and add the results, along with the San
Francisco polygon and the Inbound71 feature class from Chapter 4, Complex ArcPy
Scripts and Generalizing Functions. The results will look similar to this, after a bit of
cartographic symbolizing:

The final result will have one row per bus stop selected, along with the averaged
population and the bus stop ID value. Instead of using a spreadsheet as an output,
the feature class will allow to make maps or produce further spatial analysis.
Producing custom data using custom script tools puts you in the driver's seat when
performing geospatial analyses and makes your tools, and you, a valuable asset to
any team.

Chapter 12

[199]

Environmental settings
The ArcPy module allows for the control of global settings that controls input and
output processes using ArcPy's env class. These settings will have an effect on the
accuracy of data produced using geospatial analysis tools. Resolution and tolerance
settings for X, Y, Z, and M coordinates can be controlled, along with output extent,
raster cell size, analysis workspace, and many other settings.

To access the environmental settings using ArcPy, the class env is imported
from arcpy:

>>> from arcpy import env

It can also be called using dot notation shown as follows. Setting the workspace
removes the need to pass a file path to any subsequent methods called on
the workspace. Here is an example of setting the workspace and calling the
ListDatasets() method without passing a file path as a parameter:

>>> import arcpy

>>> arcpy.env.workspace = r"C:\Projects\SanFrancisco.gdb"

>>> arcpy.ListDatasets()

[u'SanFrancisco', u'Chapter3Results', u'Chapter4Results',
u'Chapter5Results', u'Chapter7Results', u'Chapter11Results']

Resolution and tolerance settings
The resolution and tolerance settings control the accuracy of the output of any data
produced by a tool in ArcToolbox or when running a script using ArcPy. These
can (and should) be set for Feature Datasets in File Geodatabases or Enterprise
Geodatabases, but it is important to set them for analysis run in the memory or when
using shapefiles, or if the geospatial analysis requires greater accuracy than used by
those Geodatabases.

Setting the resolutions and tolerances require an understanding of the accuracy
required for your projects. These settings will limit the ability to snap to a line or find
points that intersect with a line. The linear unit will need to reflect the coordinate
system of choice:

import arcpy

arcpy.env.MResolution = 0.0005

arcpy.env.MTolerance = 0.005

arcpy.env.ZResolution = "0.0025 Feet"

The End of the Beginning

[200]

arcpy.env.ZTolerance = "0.001 Feet"

arcpy.env.XYResolution = "0.00025 Feet"

arcpy.env.XYTolerance = "0.0005 Feet"

Other important environmental settings include:

•	 The Extent setting, which limits the extent of any data produced from an
analysis by setting a rectangle of interest using an Extent object, or a string
with space delimited coordinates (Xmin, Ymin, Xmax, Ymax) in the current
coordinate system.

•	 The Mask setting, which limits raster analysis to areas that intersect with a
feature class or a raster passed as a string file path parameter to the setting.

•	 The Cell Size setting, which controls the cell size of the data produced using
raster analysis.

Take time and explore the powerful ArcPy Environmental Settings to reduce the
time needed to write code and ensure high-quality data production.

Summary
This chapter and this book have demonstrated some of the many ways that ArcPy
can be used to automate geospatial analysis. By applying the lessons, and by being
creative with the many methods and properties of ArcPy, repetitive and slow
geospatial processes can be scripted and made into custom tools that will save a lot
of time.

I hope that you enjoyed learning the basics of scripting with ArcPy and Python. I
really hope that you've even come to like the idea of programming, as it is powerful
and empowering. There is much more to master, but I think you will find that the
more scripting you do, the easier it is to understand.

The best resource for further understanding of ArcPy is the ArcGIS Help Documents,
available through the Help menu in ArcCatalog or ArcMap. The documentation is
also available at http://resources.arcgis.com/en/help/main/10.2/index.
html. Working on entering the correct question into Google can be very helpful as
well. Programming forums such as Stack Exchange (http://gis.stackexchange.
com/) or ESRI's GeoNet (https://geonet.esri.com/welcome) are valuable
resources to ask all kinds of programming questions. There is an answer for almost
every question you may have (but never be afraid to ask questions yourself!).

Have fun creating solutions and tools, and good luck in all your future geospatial
programming challenges!

http://resources.arcgis.com/en/help/main/10.2/index.html
http://resources.arcgis.com/en/help/main/10.2/index.html
http://gis.stackexchange.com/
http://gis.stackexchange.com/
https://geonet.esri.com/welcome

Index
A
adjusted map

exporting, to PDF 143
analysis components

adding 161
functions used, within script 164-170
Polygon object methods 161, 162
random points, generating to represent

population 163
XLS creating, XLWT used 170-172

analysis results
tallying 45

Application Programming Interface (API) 9
Aptana Studio 3

about 33-35
URL 33

ARC Macro Language (AML) 42
ArcPy

about 8
used, for accessing network dataset 179
used, with map documents 128

arcpy.AddMessage
used, for displaying script messages 110

ArcPy geometry object classes
about 96-99
geometry objects 103, 104
PointGeometry objects 104-107
Polygon objects 100-103

arcpy.mapping
used, for controlling Layer objects 147, 148

ArcPy module 8, 22, 23
arcpy.Point function 90
arcpy.SpatialReference() method 85
attribute field interactions 85

automated map document adjustment
about 135-137
buffer, generating from bus stops feature

class 141
bus stop buffer and census blocks,

intersecting 141
layer visibility, adjusting 140
map document object 138
text elements 138
text elements, updating 143
variables 138

B
broken links

fixing 129
buffer

generating, from bus stops feature class 141
Buffer tool

modeling 43
built-in functions

float 24
int 24
str 24

built-in modules
URL 24

bus stop buffer block
and census block, intersecting 141

bus stop class
and buffer feature class, populating 142

Bus Stop feature class
adding, as parameter 117

bus stop fields
adding, as parameter 122

[202]

C
census block

and bus stop buffer block, intersecting 141
Census Block feature class

adding, as parameter 118
Census Block field

adding, as parameter 118
Comma Separated Value (CSV) 119
CSV module

adding, to script 54, 55
cursor

used, for accessing data 55-57

D
data

accessing, cursor used 55-57
data access module

about 82-85
attribute field interactions 85
insert cursor, using 89, 90
point location, adjusting 87, 88
row, deleting with update cursor 88
shape field, updating 87
update cursor 86

data frame window extent
controlling 152

datasets
importing 177

data sources
replacing 140

data types
about 15
adding 116
dictionaries 18, 19
floats 17
integers 16
iterable data types 19, 20
lists 17
strings 16
tuples 18

definition query 149-151
def keyword 21
deleteRow method 88
dictionaries 18, 19

dynamic components
adding, to script 111, 112

dynamic parameters
adding, to script 109, 110

E
environmental settings

about 199
Cell Size setting 200
Extent setting 200
Mask setting 200
resolution setting 199, 200
tolerance setting 199, 200

F
feature classes

environmental settings 199
feature class information, querying 191, 192
field information functions,

creating 189, 190
field information, obtaining from 187, 188
File Geodatabases, generating 193
generating 193-195
List comprehensions 188
List Fields tool 188
script tool parameters, setting up 196-198

feature class information
querying 191, 192

Feature Dataset
creating 176, 177

field information
obtaining, from feature classes 187, 188

field information functions
creating 189, 190

file paths, in Python 48
final script

about 57
inspecting 123-126

floats 17
for loops 13
functions

about 21
used, within script 164-170

[203]

G
geometry objects 103, 104
GIS 15

H
hard-coded inputs 109

I
IDEs

about 30, 35
Aptana Studio 3 33-35
automatically generated script 46, 47
IDLE 30, 31
PythonWin 31, 32

IDLE 30, 31
individual layers

fixing 130, 131
insert cursor

using 89, 90
integers 16
Integrated Development

Environments. See IDEs
Intersect tool

adding 44
iterable data types 19, 20

K
keyword method 88
keywords 21

L
Layer object

adding 153, 154
controlling, arcpy.mapping used 147, 148
methods 148
properties 148

layer sources
broken links, fixing 129
individual layers, fixing 130, 131
inspecting 128

map document elements,
adjusting 131-134

replacing 128
layer visibility

adjusting 140

M
map documents

ArcPy, using with 128
elements, adjusting 131-134

maps
creating 127
exporting 154

model
analysis results, tallying 45
Buffer tool, modeling 43
creating 42
exporting 46
exporting, to Python 42
Intersect tool, adding 44
Select tool, modeling 43

module
adding, sys module used 37
residing 37

N
namespaces 21
naming variables

using, best practices 12
Network Analyst

datasets, importing 177
extension 175
Feature Dataset, creating 176, 177
module 181, 182
network dataset access, ArcPy used 179
network dataset, creating 178
using 176

network dataset
creating 178

O
Operating System (OS) module 23
output spreadsheet

adding, as parameter 119

[204]

P
parameter

Bus Stop feature class, adding as 117
bus stop fields, adding as 122
Census Block feature class, adding as 118
Census Block field, adding as 118
data types, adding 116
output spreadsheet, adding as 119
spreadsheet field names, adding as 120
SQL Statement, adding as 121

PDF
adjusted map, exporting to 143

PointGeometry objects 104-107
point location

adjusting 87
polygon geometry

inserting 91, 92
Polygon object methods 161, 162
Polygon objects 100-103
polyline geometry

inserting 90, 91
Python, as programming language

about 8
glue language 9
interpreted language 8
standard (built-in) library 9
wrapper modules 9

Python, basics
about 10
comments 15
for loops 13
import statements 11
variables 12
while statement 14

Python folder structure
about 36
modules, residing 37
sys module used, for adding module 37

Python functions
about 61
defining 62
generalization 74-77
used, for replacing repetitive code 65-73
with parameters 63, 64
writing 63

Python interpreter
about 26
locating 28, 29
location 27
using 27

Python module
__init__.py file 158-161
creating 157, 158

Python script
about 25
executing 26

PythonWin
about 31, 32
URL 31

Python window
script, running in 144

R
random points

generating, to represent population 163
replace() method 86
row

deleting, with update cursor 88

S
scale properties

controlling 152
script

adjusting 46, 54
breaking 179, 180
CSV module, adding to 54, 55
dynamic components, adding to 111, 112
dynamic parameters, adding to 109, 110
running, in Python Window 144

script analysis, ArcPy Tools
continuing 49
Intersect Tool 50
string manipulation 50

script messages
displaying, arcpy.AddMessage used 110

script tool
creating 112-115
parameters, defining 115
parameters, labeling 115

[205]

script tool parameters
setting up 196-198

Select tool
modeling 43

shape field
updating 87

Spatial Analyst Extension
accessing 182
bus stops, adding 184-186
elevation, adding to bus stops 183
elevation values, obtaining 184-186
Map Algebra used, for generating elevation

in feet 184
spreadsheet field names

adding, as parameter 120
SQL Statement

adding, as parameter 121
standard library modules

csv 24
datetime 24
math 24
string 24

string addition 51
string formatting 52, 53
string manipulation

string addition 51
string formatting 52, 53

strings 16
subroutines 62
sys module

used, for adding module 37

T
text elements

adjusted map, exporting to PDF 143
updating 143

Tkinter 31
tuples 18

U
update cursor

about 86, 87
used, for deleting row 88

updateRow() method 87

W
while statement 14

X
XLRD module 23
XLS

creating, XLWT used 170-172
XLWT module 23

Z
zero-based indexing 22

Thank you for buying
ArcPy and ArcGIS – Geospatial Analysis

with Python

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Learning ArcGIS Geodatabases
ISBN: 978-1-78398-864-8 Paperback: 158 pages

An all-in-one start up kit to author, manage, and
administer ArcGIS geodatabases

1.	 Covers the basics of building Geodatabases,
using ArcGIS, from scratch.

2.	 Model the Geodatabase to an optimal state
using the various optimization techniques.

3.	 Packed with real-world examples showcasing
ArcGIS Geodatabase to build mapping
applications in web, desktop, and mobile.

Programming ArcGIS 10.1 with
Python Cookbook
ISBN: 978-1-84969-444-5 Paperback: 304 pages

Over 75 recipes to help you automate geoprocessing
tasks, create solutions, and solve problems for
ArcGIS with Python

1.	 Learn how to create geoprocessing scripts
with ArcPy.

2.	 Customize and modify ArcGIS with Python.

3.	 Create time-saving tools and scripts for ArcGIS.

Please check www.PacktPub.com for information on our titles

Building Web and Mobile
ArcGIS Server Applications with
JavaScript
ISBN: 978-1-84969-796-5 Paperback: 274 pages

Master the ArcGIS API for JavaScript, and build
exciting, custom web and mobile GIS applications
with the ArcGIS Server

1.	 Develop ArcGIS Server applications with
JavaScript, both for traditional web browsers as
well as the mobile platform.

2.	 Acquire in-demand GIS skills sought by
many employers.

Administering ArcGIS for Server
ISBN: 978-1-78217-736-4 Paperback: 246 pages

Installing and configuring ArcGIS for Server to
publish, optimize, and secure GIS services

1.	 Configure ArcGIS for Server to achieve
maximum performance and response time.

2.	 Understand the product mechanics to build up
good troubleshooting skills.

3.	 Filled with practical exercises, examples, and
code snippets to help facilitate your learning.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to Python for ArcGIS
	Overview of Python
	Python as a programming language
	Interpreted language
	Standard (built-in) library
	The glue language
	Wrapper modules
	The basics of Python
	Import statements
	Variables
	For loops
	If/Elif/Else statements
	While statements
	Comments

	Data types
	Strings
	Integers
	Floats
	Lists
	Tuples
	Dictionaries
	Iterable data types

	Other important concepts
	Indentation
	Functions
	Keywords
	Namespaces
	Zero-based indexing

	Important Python Modules for GIS Analysis
	The ArcPy module
	The Operating System (OS) module
	The Python System (SYS) module
	The XLRD and XLWT modules
	Commonly used built-in functions
	Commonly used standard library modules

	Summary

	Chapter 2: Configuring the Python Environment
	What is a Python script?
	How Python executes a script

	What is the Python interpreter?
	Where is the Python interpreter located?
	Which Python interpreter should be used?
	How does the computer know where the interpreter is?

	Make Python scripts executable when clicked on
	Integrated Development Environments
	IDLE
	PythonWin
	Aptana Studio 3
	IDE summary

	Python folder structure
	Where modules reside
	Using Python's sys module to add a module

	The sys.path.append() method
	Summary

	Chapter 3: Creating the First Python Script
	Prerequisites
	ModelBuilder

	Creating a model and exporting to Python
	Modeling the Select and Buffer tools
	Adding the Intersect tool
	Tallying the analysis results

	Exporting the model and adjusting the script
	The automatically generated script

	File paths in Python
	Continuing the script analysis: the arcPy tools
	The intersect tool and string manipulation
	The string manipulation method 1–string addition
	The string manipulation method 2–string
formatting #1
	The string manipulation method 3–string formatting#2

	Adjusting the Script
	Adding the CSV Module to the script
	Accessing the data: Using a cursor

	The final script
	Summary

	Chapter 4: Complex ArcPy Scripts and Generalizing Functions
	Python functions–Avoid repeating code
	Technical definition of functions
	A first function
	Functions with parameters
	Using functions to replace repetitive code
	More generalization of the functions

	Summary

	Chapter 5: ArcPy Cursors: Search, Insert and Update
	The data access module
	Attribute field interactions
	Update cursors
	Updating the shape field
	Adjusting a point location
	Deleting a row using an Update Cursor
	Using an Insert Cursor

	Inserting a polyline geometry
	Inserting a polygon geometry
	Summary

	Chapter 6: Working with ArcPy Geometry Objects
	ArcPy geometry object classes
	ArcPy Point objects
	ArcPy Array objects
	ArcPy Polyline objects

	ArcPy Polygon objects
	Polygon object buffers
	Other Polygon object methods

	ArcPy geometry objects
	ArcPy PointGeometry objects

	Summary

	Chapter 7: Creating a Script Tool
	Adding dynamic parameters to a script
	Displaying script messages using arcpy.AddMessage
	Adding dynamic components to the script

	Creating a Script tool
	Labelling and defining parameters
	Adding data types
	Adding the Bus Stop feature class as a parameter
	Adding the Census Block feature class as a parameter
	Adding the Census Block field as a parameter
	Adding the output spreadsheet as a parameter
	Adding the spreadsheet field names as a parameter
	Adding the SQL Statement as a parameter
	Adding the bus stop fields as a parameter

	Inspecting the final script
	Running the Script Tool

	Summary

	Chapter 8: Introduction to ArcPy.Mapping
	Using ArcPy with map documents
	Inspecting and replacing layer sources
	Fixing the broken links
	Fixing the links of individual layers
	Exporting to PDF from an MXD
	Adjusting map document elements

	Automated map document adjustment
	The variables
	The map document object and the text elements
	The layer objects
	Replacing the data sources

	Adjusting layer visibility
	Generating a buffer from the bus stops feature class
	Intersecting the bus stop buffer and census blocks
	Populating the selected bus stop and buffer feature classes

	Updating the text elements
	Exporting the adjusted map to PDF

	Running the script in the Python Window
	Summary

	Chapter 9: More Arcpy.Mapping Techniques
	Using arcpy.mapping to control Layer objects
	Layer object methods and properties

	Definition queries
	Controlling the data frame window extent and scale
	Adding a Layer object
	Exporting the maps

	Summary

	Chapter 10: Advanced Geometry Object Methods
	Creating a Python module
	The __init__.py file

	Adding advanced analysis components
	Advanced Polygon object methods
	Generating random points to represent population
	Using the functions within a script
	Creating an XLS using XLWT

	Summary

	Chapter 11: Network Analyst and Spatial Analyst with ArcPy
	The Network Analyst extension
	Using Network Analyst
	Creating a Feature Dataset
	Importing the datasets
	Creating the Network Dataset
	Accessing the Network Dataset using ArcPy
	Breaking down the script

	The Network Analyst module
	Accessing the Spatial Analyst Extension
	Adding elevation to the bus stops
	Using Map Algebra to generate elevation in feet
	Adding in the bus stops and getting elevation values
	The final result

	Summary

	Chapter 12: The End of the Beginning
	Getting field information from feature classes
	Accessing the ListFields' properties
	List comprehensions

	Creating the field information functions
	Querying feature class information
	Generating File Geodatabases and feature classes
	Generating a feature class
	Setting up the script tool parameters
	Environmental settings
	Resolution and tolerance settings

	Summary

	Index

