




©2011 O’Reilly Media, Inc. O’Reilly logo is a registered trademark of O’Reilly Media, Inc. 

Learn how to turn 
data into decisions.

From startups to the Fortune 500, 
smart companies are betting on  
data-driven insight, seizing the 
opportunities that are emerging  
from the convergence of four 
powerful trends:

n New methods of collecting, managing, and analyzing data

n Cloud computing that offers inexpensive storage and flexible,  
 on-demand computing power for massive data sets

n Visualization techniques that turn complex data into images 
 that tell a compelling story

n Tools that make the power of data available to anyone

Get control over big data and turn it into insight with  
O’Reilly’s Strata offerings. Find the inspiration and  
information to create new products or revive existing ones, 
understand customer behavior, and get the data edge.

Visit oreilly.com/data to learn more.





Andrew Collette

Python and HDF5



Python and HDF5
by Andrew Collette

Copyright © 2014 Andrew Collette. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Meghan Blanchette and Rachel Roumeliotis
Production Editor: Nicole Shelby
Copyeditor: Charles Roumeliotis
Proofreader: Rachel Leach

Indexer: WordCo Indexing Services
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Kara Ebrahim

November 2013: First Edition

Revision History for the First Edition:

2013-10-18: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449367831 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. Python and HDF5, the images of Parrot Crossbills, and related trade dress are trademarks of
O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-36783-1

[LSI]

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449367831


Table of Contents

Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xi

1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1
Python and HDF5                                                                                                              2

Organizing Data and Metadata                                                                                    2
Coping with Large Data Volumes                                                                                3

What Exactly Is HDF5?                                                                                                     4
HDF5: The File                                                                                                               5
HDF5: The Library                                                                                                         6
HDF5: The Ecosystem                                                                                                   6

2. Getting Started. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7
HDF5 Basics                                                                                                                        7
Setting Up                                                                                                                            8

Python 2 or Python 3?                                                                                                   8
Code Examples                                                                                                               9
NumPy                                                                                                                           10
HDF5 and h5py                                                                                                            11
IPython                                                                                                                          11
Timing and Optimization                                                                                           12

The HDF5 Tools                                                                                                               14
HDFView                                                                                                                       14
ViTables                                                                                                                         15
Command Line Tools                                                                                                  15

Your First HDF5 File                                                                                                       17
Use as a Context Manager                                                                                           18
File Drivers                                                                                                                    18

v



The User Block                                                                                                              19

3. Working with Datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21
Dataset Basics                                                                                                                   21

Type and Shape                                                                                                             21
Reading and Writing                                                                                                    22
Creating Empty Datasets                                                                                             23
Saving Space with Explicit Storage Types                                                                 23
Automatic Type Conversion and Direct Reads                                                        24
Reading with astype                                                                                                     25
Reshaping an Existing Array                                                                                      26
Fill Values                                                                                                                      26

Reading and Writing Data                                                                                              27
Using Slicing Effectively                                                                                              27
Start-Stop-Step Indexing                                                                                             29
Multidimensional and Scalar Slicing                                                                         30
Boolean Indexing                                                                                                         31
Coordinate Lists                                                                                                           32
Automatic Broadcasting                                                                                              33
Reading Directly into an Existing Array                                                                   34
A Note on Data Types                                                                                                  35

Resizing Datasets                                                                                                              36
Creating Resizable Datasets                                                                                        37
Data Shuffling with resize                                                                                           38
When and How to Use resize                                                                                     39

4. How Chunking and Compression Can Help You. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41
Contiguous Storage                                                                                                         41
Chunked Storage                                                                                                              43
Setting the Chunk Shape                                                                                                 45

Auto-Chunking                                                                                                            45
Manually Picking a Shape                                                                                           45

Performance Example: Resizable Datasets                                                                   46
Filters and Compression                                                                                                 48

The Filter Pipeline                                                                                                        48
Compression Filters                                                                                                     49
GZIP/DEFLATE Compression                                                                                  50
SZIP Compression                                                                                                       50
LZF Compression                                                                                                         51
Performance                                                                                                                  51

Other Filters                                                                                                                      52
SHUFFLE Filter                                                                                                            52

vi | Table of Contents



FLETCHER32 Filter                                                                                                    53
Third-Party Filters                                                                                                           54

5. Groups, Links, and Iteration: The “H” in HDF5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  55
The Root Group and Subgroups                                                                                    55
Group Basics                                                                                                                     56

Dictionary-Style Access                                                                                               56
Special Properties                                                                                                         57

Working with Links                                                                                                         57
Hard Links                                                                                                                     57
Free Space and Repacking                                                                                           59
Soft Links                                                                                                                       59
External Links                                                                                                               61
A Note on Object Names                                                                                            62
Using get to Determine Object Types                                                                        63
Using require to Simplify Your Application                                                             64

Iteration and Containership                                                                                           65
How Groups Are Actually Stored                                                                              65
Dictionary-Style Iteration                                                                                           66
Containership Testing                                                                                                  67

Multilevel Iteration with the Visitor Pattern                                                                68
Visit by Name                                                                                                                68
Multiple Links and visit                                                                                               69
Visiting Items                                                                                                                70
Canceling Iteration: A Simple Search Mechanism                                                  70

Copying Objects                                                                                                               71
Single-File Copying                                                                                                      71

Object Comparison and Hashing                                                                                  72

6. Storing Metadata with Attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  75
Attribute Basics                                                                                                                75

Type Guessing                                                                                                               77
Strings and File Compatibility                                                                                    78
Python Objects                                                                                                             80
Explicit Typing                                                                                                              80

Real-World Example: Accelerator Particle Database                                                  82
Application Format on Top of HDF5                                                                        82
Analyzing the Data                                                                                                       84

7. More About Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87
The HDF5 Type System                                                                                                  87
Integers and Floats                                                                                                           88

Table of Contents | vii



Fixed-Length Strings                                                                                                       89
Variable-Length Strings                                                                                                  89

The vlen String Data Type                                                                                           90
Working with vlen String Datasets                                                                            91
Byte Versus Unicode Strings                                                                                       91
Using Unicode Strings                                                                                                 92
Don’t Store Binary Data in Strings!                                                                           93
Future-Proofing Your Python 2 Application                                                            93

Compound Types                                                                                                             93
Complex Numbers                                                                                                           95
Enumerated Types                                                                                                           95
Booleans                                                                                                                            96
The array Type                                                                                                                  97
Opaque Types                                                                                                                   98
Dates and Times                                                                                                               99

8. Organizing Data with References, Types, and Dimension Scales. . . . . . . . . . . . . . . . . .  101
Object References                                                                                                          101

Creating and Resolving References                                                                         101
References as “Unbreakable” Links                                                                         102
References as Data                                                                                                      103

Region References                                                                                                          104
Creating Region References and Reading                                                              104
Fancy Indexing                                                                                                           105
Finding Datasets with Region References                                                              106

Named Types                                                                                                                  106
The Datatype Object                                                                                                  107
Linking to Named Types                                                                                           107
Managing Named Types                                                                                            108

Dimension Scales                                                                                                           108
Creating Dimension Scales                                                                                       109
Attaching Scales to a Dataset                                                                                    110

9. Concurrency: Parallel HDF5, Threading, and Multiprocessing. . . . . . . . . . . . . . . . . . . . .  113
Python Parallel Basics                                                                                                   113
Threading                                                                                                                        114
Multiprocessing                                                                                                              116
MPI and Parallel HDF5                                                                                                119

A Very Quick Introduction to MPI                                                                         120
MPI-Based HDF5 Program                                                                                      121
Collective Versus Independent Operations                                                            122

viii | Table of Contents



Atomicity Gotchas                                                                                                     123

10. Next Steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  127
Asking for Help                                                                                                              127
Contributing                                                                                                                   127

Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  129

Table of Contents | ix





Preface

Over the past several years, Python has emerged as a credible alternative to scientific
analysis environments like IDL or MATLAB. Stable core packages now exist for han‐
dling numerical arrays (NumPy), analysis (SciPy), and plotting (matplotlib). A huge
selection of more specialized software is also available, reducing the amount of work
necessary to write scientific code while also increasing the quality of results.

As Python is increasingly used to handle large numerical datasets, more emphasis has
been placed on the use of standard formats for data storage and communication. HDF5,
the most recent version of the “Hierarchical Data Format” originally developed at the
National Center for Supercomputing Applications (NCSA), has rapidly emerged as the
mechanism of choice for storing scientific data in Python. At the same time, many
researchers who use (or are interested in using) HDF5 have been drawn to Python for
its ease of use and rapid development capabilities.

This book provides an introduction to using HDF5 from Python, and is designed to be
useful to anyone with a basic background in Python data analysis. Only familiarity with
Python and NumPy is assumed. Special emphasis is placed on the native HDF5 feature
set, rather than higher-level abstractions on the Python side, to make the book as useful
as possible for creating portable files.

Finally, this book is intended to support both users of Python 2 and Python 3. While
the examples are written for Python 2, any differences that may trip you up are noted
in the text.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.
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Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex‐
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Python and HDF5 by Andrew Collette
(O’Reilly). Copyright 2014 Andrew Collette, 978-1-449-36783-1.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that delivers
expert content in both book and video form from the world’s lead‐
ing authors in technology and business.
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Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/python-HDF5.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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CHAPTER 1

Introduction

When I was a graduate student, I had a serious problem: a brand-new dataset, made up
of millions of data points collected painstakingly over a full week on a nationally rec‐
ognized plasma research device, that contained values that were much too small.

About 40 orders of magnitude too small.

My advisor and I huddled in his office, in front of the shiny new G5 Power Mac that ran
our visualization suite, and tried to figure out what was wrong. The data had been
acquired correctly from the machine. It looked like the original raw file from the ex‐
periment’s digitizer was fine. I had written a (very large) script in the IDL programming
language on my Thinkpad laptop to turn the raw data into files the visualization tool
could use. This in-house format was simplicity itself: just a short fixed-width header
and then a binary dump of the floating-point data. Even so, I spent another hour or so
writing a program to verify and plot the files on my laptop. They were fine. And yet,
when loaded into the visualizer, all the data that looked so beautiful in IDL turned into
a featureless, unstructured mush of values all around 10-41.

Finally it came to us: both the digitizer machines and my Thinkpad used the “little-
endian” format to represent floating-point numbers, in contrast to the “big-endian”
format of the G5 Mac. Raw values written on one machine couldn’t be read on the other,
and vice versa. I remember thinking that’s so stupid (among other less polite variations).
Learning that this problem was so common that IDL supplied a special routine to deal
with it (SWAP_ENDIAN) did not improve my mood.

At the time, I didn’t care that much about the details of how my data was stored. This
incident and others like it changed my mind. As a scientist, I eventually came to rec‐
ognize that the choices we make for organizing and storing our data are also choices
about communication. Not only do standard, well-designed formats make life easier
for individuals (and eliminate silly time-wasters like the “endian” problem), but they
make it possible to share data with a global audience.
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Python and HDF5
In the Python world, consensus is rapidly converging on Hierarchical Data Format
version 5, or “HDF5,” as the standard mechanism for storing large quantities of nu‐
merical data. As data volumes get larger, organization of data becomes increasingly
important; features in HDF5 like named datasets (Chapter 3), hierarchically organized
groups (Chapter 5), and user-defined metadata “attributes” (Chapter 6) become essen‐
tial to the analysis process.

Structured, “self-describing” formats like HDF5 are a natural complement to Python.
Two production-ready, feature-rich interface packages exist for HDF5, h5py, and PyT‐
ables, along with a number of smaller special-purpose wrappers.

Organizing Data and Metadata
Here’s a simple example of how HDF5’s structuring capability can help an application.
Don’t worry too much about the details; later chapters explain both the details of how
the file is structured, and how to use the HDF5 API from Python. Consider this a taste
of what HDF5 can do for your application. If you want to follow along, you’ll need
Python 2 with NumPy installed (see Chapter 2).

Suppose we have a NumPy array that represents some data from an experiment:

>>> import numpy as np
>>> temperature = np.random.random(1024)
>>> temperature
array([ 0.44149738,  0.7407523 ,  0.44243584, ...,  0.19018119,
        0.64844851,  0.55660748])

Let’s also imagine that these data points were recorded from a weather station that
sampled the temperature, say, every 10 seconds. In order to make sense of the data, we
have to record that sampling interval, or “delta-T,” somewhere. For now we’ll put it in
a Python variable:

>>> dt = 10.0

The data acquisition started at a particular time, which we will also need to record. And
of course, we have to know that the data came from Weather Station 15:

>>> start_time = 1375204299  # in Unix time
>>> station = 15

We could use the built-in NumPy function np.savez to store these values on disk. This
simple function saves the values as NumPy arrays, packed together in a ZIP file with
associated names:

>>> np.savez("weather.npz", data=temperature, start_time=start_time, station=
station)

We can get the values back from the file with np.load:
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>>> out = np.load("weather.npz")
>>> out["data"]
array([ 0.44149738,  0.7407523 ,  0.44243584, ...,  0.19018119,
        0.64844851,  0.55660748])
>>> out["start_time"]
array(1375204299)
>>> out["station"]
array(15)

So far so good. But what if we have more than one quantity per station? Say there’s also
wind speed data to record?

>>> wind = np.random.random(2048)
>>> dt_wind = 5.0   # Wind sampled every 5 seconds

And suppose we have multiple stations. We could introduce some kind of naming con‐
vention, I suppose: “wind_15” for the wind values from station 15, and things like
“dt_wind_15” for the sampling interval. Or we could use multiple files…

In contrast, here’s how this application might approach storage with HDF5:

>>> import h5py
>>> f = h5py.File("weather.hdf5")
>>> f["/15/temperature"] = temperature
>>> f["/15/temperature"].attrs["dt"] = 10.0
>>> f["/15/temperature"].attrs["start_time"] = 1375204299
>>> f["/15/wind"] = wind
>>> f["/15/wind"].attrs["dt"] = 5.0
---
>>> f["/20/temperature"] = temperature_from_station_20
---

(and so on)

This example illustrates two of the “killer features” of HDF5: organization in hierarchical
groups and attributes. Groups, like folders in a filesystem, let you store related datasets
together. In this case, temperature and wind measurements from the same weather
station are stored together under groups named “/15,” “/20,” etc. Attributes let you attach
descriptive metadata directly to the data it describes. So if you give this file to a colleague,
she can easily discover the information needed to make sense of the data:

>>> dataset = f["/15/temperature"]
>>> for key, value in dataset.attrs.iteritems():
...     print "%s: %s" % (key, value)
dt: 10.0
start_time: 1375204299

Coping with Large Data Volumes
As a high-level “glue” language, Python is increasingly being used for rapid visualization
of big datasets and to coordinate large-scale computations that run in compiled lan‐
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guages like C and FORTRAN. It’s now relatively common to deal with datasets hundreds
of gigabytes or even terabytes in size; HDF5 itself can scale up to exabytes.

On all but the biggest machines, it’s not feasible to load such datasets directly into
memory. One of HDF5’s greatest strengths is its support for subsetting and partial I/O.
For example, let’s take the 1024-element “temperature” dataset we created earlier:

>>> dataset = f["/15/temperature"]

Here, the object named dataset is a proxy object representing an HDF5 dataset. It
supports array-like slicing operations, which will be familiar to frequent NumPy users:

>>> dataset[0:10]
array([ 0.44149738,  0.7407523 ,  0.44243584,  0.3100173 ,  0.04552416,
        0.43933469,  0.28550775,  0.76152561,  0.79451732,  0.32603454])
>>> dataset[0:10:2]
array([ 0.44149738,  0.44243584,  0.04552416,  0.28550775,  0.79451732])

Keep in mind that the actual data lives on disk; when slicing is applied to an HDF5
dataset, the appropriate data is found and loaded into memory. Slicing in this fashion
leverages the underlying subsetting capabilities of HDF5 and is consequently very fast.

Another great thing about HDF5 is that you have control over how storage is allocated.
For example, except for some metadata, a brand new dataset takes zero space, and by
default bytes are only used on disk to hold the data you actually write.

For example, here’s a 2-terabyte dataset you can create on just about any computer:

>>> big_dataset = f.create_dataset("big", shape=(1024, 1024, 1024, 512), 
dtype='float32')

Although no storage is yet allocated, the entire “space” of the dataset is available to us.
We can write anywhere in the dataset, and only the bytes on disk necessary to hold the
data are used:

>>> big_dataset[344, 678, 23, 36] = 42.0

When storage is at a premium, you can even use transparent compression on a dataset-
by-dataset basis (see Chapter 4):

>>> compressed_dataset = f.create_dataset("comp", shape=(1024,), dtype='int32', 
compression='gzip')
>>> compressed_dataset[:] = np.arange(1024)
>>> compressed_dataset[:]
array([   0,    1,    2, ..., 1021, 1022, 1023])

What Exactly Is HDF5?
HDF5 is a great mechanism for storing large numerical arrays of homogenous type, for
data models that can be organized hierarchically and benefit from tagging of datasets
with arbitrary metadata.
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It’s quite different from SQL-style relational databases. HDF5 has quite a few organi‐
zational tricks up its sleeve (see Chapter 8, for example), but if you find yourself needing
to enforce relationships between values in various tables, or wanting to perform JOINs
on your data, a relational database is probably more appropriate. Likewise, for tiny 1D
datasets you need to be able to read on machines without HDF5 installed. Text formats
like CSV (with all their warts) are a reasonable alternative.

HDF5 is just about perfect if you make minimal use of relational features and have a
need for very high performance, partial I/O, hierarchical organization, and arbitrary
metadata.

So what, specifically, is “HDF5”? I would argue it consists of three things:

1. A file specification and associated data model.
2. A standard library with API access available from C, C++, Java, Python, and others.
3. A software ecosystem, consisting of both client programs using HDF5 and “analysis

platforms” like MATLAB, IDL, and Python.

HDF5: The File
In the preceding brief examples, you saw the three main elements of the HDF5 data
model: datasets, array-like objects that store your numerical data on disk; groups, hier‐
archical containers that store datasets and other groups; and attributes, user-defined
bits of metadata that can be attached to datasets (and groups!).

Using these basic abstractions, users can build specific “application formats” that orga‐
nize data in a method appropriate for the problem domain. For example, our “weather
station” code used one group for each station, and separate datasets for each measured
parameter, with attributes to hold additional information about what the datasets mean.
It’s very common for laboratories or other organizations to agree on such a “format-
within-a-format” that specifies what arrangement of groups, datasets, and attributes are
to be used to store information.

Since HDF5 takes care of all cross-platform issues like endianness, sharing data with
other groups becomes a simple matter of manipulating groups, datasets, and attributes
to get the desired result. And because the files are self-describing, even knowing about
the application format isn’t usually necessary to get data out of the file. You can simply
open the file and explore its contents:

>>> f.keys()
[u'15', u'big', u'comp']
>>> f["/15"].keys()
[u'temperature', u'wind']
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Anyone who has spent hours fiddling with byte-offsets while trying to read “simple”
binary formats can appreciate this.

Finally, the low-level byte layout of an HDF5 file on disk is an open specification. There
are no mysteries about how it works, in contrast to proprietary binary formats. And
although people typically use the library provided by the HDF Group to access files,
nothing prevents you from writing your own reader if you want.

HDF5: The Library
The HDF5 file specification and open source library is maintained by the HDF Group,
a nonprofit organization headquartered in Champaign, Illinois. Formerly part of the
University of Illinois Urbana-Champaign, the HDF Group’s primary product is the
HDF5 software library.

Written in C, with additional bindings for C++ and Java, this library is what people
usually mean when they say “HDF5.” Both of the most popular Python interfaces,
PyTables and h5py, are designed to use the C library provided by the HDF Group.

One important point to make is that this library is actively maintained, and the devel‐
opers place a strong emphasis on backwards compatibility. This applies to both the files
the library produces and also to programs that use the API. File compatibility is a must
for an archival format like HDF5. Such careful attention to API compatibility is the
main reason that packages like h5py and PyTables have been able to get traction with
many different versions of HDF5 installed in the wild.

You should have confidence when using HDF5 for scientific data storage, including
long-term storage. And since both the library and format are open source, your files
will be readable even if a meteor takes out Illinois.

HDF5: The Ecosystem
Finally, one aspect that makes HDF5 particularly useful is that you can read and write
files from just about every platform. The IDL language has supported HDF5 for years;
MATLAB has similar support and now even uses HDF5 as the default format for its
“.mat” save files. Bindings are also available for Python, C++, Java, .NET, and LabView,
among others. Institutional users include NASA’s Earth Observing System, whose
“EOS5” format is an application format on top of the HDF5 container, as in the much
simpler example earlier. Even the newest version of the competing NetCDF format,
NetCDF4, is implemented using HDF5 groups, datasets, and attributes.

Hopefully I’ve been able to share with you some of the things that make HDF5 so exciting
for scientific use. Next, we’ll review the basics of how HDF5 works and get started on
using it from Python.
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CHAPTER 2

Getting Started

HDF5 Basics
Before we jump into Python code examples, it’s useful to take a few minutes to address
how HDF5 itself is organized. Figure 2-1 shows a cartoon of the various logical layers
involved when using HDF5. Layers shaded in blue are internal to the library itself; layers
in green represent software that uses HDF5.

Most client code, including the Python packages h5py and PyTables, uses the native C
API (HDF5 is itself written in C). As we saw in the introduction, the HDF5 data model
consists of three main public abstractions: datasets (see Chapter 3), groups (see Chap‐
ter 5), and attributes (see Chapter 6)in addition to a system to represent types. The C
API (and Python code on top of it) is designed to manipulate these objects.

HDF5 uses a variety of internal data structures to represent groups, datasets, and at‐
tributes. For example, groups have their entries indexed using structures called “B-trees,”
which make retrieving and creating group members very fast, even when hundreds of
thousands of objects are stored in a group (see “How Groups Are Actually Stored” on
page 65). You’ll generally only care about these data structures when it comes to perfor‐
mance considerations. For example, when using chunked storage (see Chapter 4), it’s
important to understand how data is actually organized on disk.

The next two layers have to do with how your data makes its way onto disk. HDF5
objects all live in a 1D logical address space, like in a regular file. However, there’s an
extra layer between this space and the actual arrangement of bytes on disk. HDF5 drivers
take care of the mechanics of writing to disk, and in the process can do some amazing
things.
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Figure 2-1. The HDF5 library: blue represents components inside the HDF5 library;
green represents “client” code that calls into HDF5; gray represents resources provided
by the operating system.

For example, the HDF5 core driver lets you use files that live entirely in memory and
are blazingly fast. The family driver lets you split a single file into regularly sized pieces.
And the mpio driver lets you access the same file from multiple parallel processes, using
the Message Passing Interface (MPI) library (“MPI and Parallel HDF5” on page 119). All
of this is transparent to code that works at the higher level of groups, datasets, and
attributes.

Setting Up
That’s enough background material for now. Let’s get started with Python! But which
Python?

Python 2 or Python 3?
A big shift is under way in the Python community. Over the years, Python has accu‐
mulated a number of features and misfeatures that have been deemed undesirable. Ex‐
amples range from packages that use inconsistent naming conventions all the way to
deficiencies in how strings are handled. To address these issues, it was decided to launch
a new major version (Python 3) that would be freed from the “baggage” of old decisions
in the Python 2 line.

8 | Chapter 2: Getting Started



Python 2.7, the most recent minor release in the Python series, will also be the last 2.X
release. Although it will be updated with bug fixes for an extended period of time, new
Python code development is now carried out exclusively on the 3.X line. The NumPy 
package, h5py, PyTables, and many other packages now support Python 3. While (in
my opinion) it’s a little early to recommend that newcomers start with Python 3, the
future is clear.

So at the moment, there are two major versions of Python widely deployed simultane‐
ously. Since most people in the Python community are used to Python 2, the examples
in this book are also written for Python 2. For the most part, the differences are minor;
for example, on Python 3, the syntax for print is print(foo), instead of print foo.
Wherever incompatibilities are likely to occur (mainly with string types and certain
dictionary-style methods), these will be noted in the text.

“Porting” code to Python 3 isn’t actually that hard; after all, it’s still Python. Some of the
most valuable features in Python 3 are already present in Python 2.7. A free tool is also
available (2to3) that can accomplish most of the mechanical changes, for example
changing print statements to print() function calls. Check out the migration guide
(and the 2to3 tool) at http://www.python.org.

Code Examples
To start with, most of the code examples will follow this form:

>>> a = 1.0
>>> print a
1.0

Or, since Python prints objects by default, an even simpler form:

>>> a
1.0

Lines starting with >>> represent input to Python (>>> being the default Python prompt);
other lines represent output. Some of the longer examples, where the program output
is not shown, omit the >>> in the interest of clarity.

Examples intended to be run from the command line will start with the Unix-style "$"
prompt:

$ python --version
Python 2.7.3

Finally, to avoid cluttering up the examples, most of the code snippets you’ll find here
will assume that the following packages have been imported:

>>> import numpy as np      # Provides array object and data type objects
>>> import h5py             # Provides access to HDF5
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NumPy
“NumPy” is the standard numerical-array package in the Python world. This book as‐
sumes that you have some experience with NumPy (and of course Python itself), in‐
cluding how to use array objects.

Even if you’ve used NumPy before, it’s worth reviewing a few basic facts about how
arrays work. First, NumPy arrays all have a fixed data type or “dtype,” represented by
dtype objects. For example, let’s create a simple 10-element integer array:

>>> arr = np.arange(10)
>>> arr
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

The data type of this array is given by arr.dtype:

>>> arr.dtype
dtype('int32')

These dtype objects are how NumPy communicates low-level information about the
type of data in memory. For the case of our 10-element array of 4-byte integers (32-bit
or “int32” in NumPy lingo), there is a chunk of memory somewhere 40 bytes long that
holds the values 0 through 9. Other code that receives the arr object can inspect the
dtype object to figure out what the memory contents represent.

The preceding example might print dtype('int64') on your system.
All this means is that the default integer size available to Python is 64
bits long, instead of 32 bits.

HDF5 uses a very similar type system; every “array” or dataset in an HDF5 file has a
fixed type represented by a type object. The h5py package automatically maps the HDF5
type system onto NumPy dtypes, which among other things makes it easy to interchange
data with NumPy. Chapter 3 goes into more detail about this process.

Slicing is another core feature of NumPy. This means accessing portions of a NumPy
array. For example, to extract the first four elements of our array arr:

>>> out = arr[0:4]
>>> out
array([0, 1, 2, 3])

You can also specify a “stride” or steps between points in the slice:

>>> out = arr[0:4:2]
>>> out
array([0, 2])

When talking to HDF5, we will borrow this “slicing” syntax to allow loading only por‐
tions of a dataset.
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In the NumPy world, slicing is implemented in a clever way, which generally creates
arrays that refer to the data in the original array, rather than independent copies. For
example, the preceding out object is likely a “view” onto the original arr array. We can
test this:

>>> out[:] = 42
>>> out
array([42, 42])
>>> arr
array([42,  1, 42,  3,  4,  5,  6,  7,  8,  9])

This means slicing is generally a very fast operation. But you should be careful to ex‐
plicitly create a copy if you want to modify the resulting array without your changes
finding their way back to the original:

>>> out2 = arr[0:4:2].copy()

Forgetting to make a copy before modifying a “slice” of the array is a
very common mistake, especially for people used to environments like
IDL. If you’re new to NumPy, be careful!

As we’ll see later, thankfully this doesn’t apply to slices read from HDF5 datasets. When
you read from the file, since the data is on disk, you will always get a copy.

HDF5 and h5py
We’ll use the “h5py” package to talk to HDF5. This package contains high-level wrappers
for the HDF5 objects of files, groups, datasets, and attributes, as well as extensive low-
level wrappers for the HDF5 C data structures and functions. The examples in this book
assume h5py version 2.2.0 or later, which you can get at http://www.h5py.org.

You should note that h5py is not the only commonly used package for talking to HDF5.
PyTables is a scientific database package based on HDF5 that adds dataset indexing and
an additional type system. Since we’ll be talking about native HDF5 constructs, we’ll
stick to h5py, but I strongly recommend you also check out PyTables if those features
interest you.

If you’re on Linux, it’s generally a good idea to install the HDF5 library via your package
manager. On Windows, you can download an installer from http://www.h5py.org, or
use one of the many distributions of Python that include HDF5/h5py, such as PythonXY,
Anaconda from Continuum Analytics, or Enthought Python Distribution.

IPython
Apart from NumPy and h5py/HDF5 itself, IPython is a must-have component if you’ll
be doing extensive analysis or development with Python. At its most basic, IPython is
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a replacement interpreter shell that adds features like command history and Tab-
completion for object attributes. It also has tons of additional features for parallel pro‐
cessing, MATLAB-style “notebook” display of graphs, and more.

The best way to explore the features in this book is with an IPython prompt open,
following along with the examples. Tab-completion alone is worth it, because it lets you
quickly see the attributes of modules and objects. The h5py package is specifically de‐
signed to be “explorable” in this sense. For example, if you want to discover what prop‐
erties and methods exist on the File object (see “Your First HDF5 File” on page 17), type
h5py.File. and bang the Tab key:

>>> h5py.File.<TAB>
h5py.File.attrs           h5py.File.get             h5py.File.name
h5py.File.close           h5py.File.id              h5py.File.parent
h5py.File.copy            h5py.File.items           h5py.File.ref
h5py.File.create_dataset  h5py.File.iteritems       h5py.File.require_dataset
h5py.File.create_group    h5py.File.iterkeys        h5py.File.require_group
h5py.File.driver          h5py.File.itervalues      h5py.File.userblock_size
h5py.File.fid             h5py.File.keys            h5py.File.values
h5py.File.file            h5py.File.libver          h5py.File.visit
h5py.File.filename        h5py.File.mode            h5py.File.visititems
h5py.File.flush           h5py.File.mro

To get more information on a property or method, use ? after its name:

>>> h5py.File.close?
Type:       instancemethod
Base Class: <type 'instancemethod'>
String Form:<unbound method File.close>
Namespace:  Interactive
File:       /usr/local/lib/python2.7/dist-packages/h5py/_hl/files.py
Definition: h5py.File.close(self)
Docstring:  Close the file.  All open objects become invalid

By default, IPython will save the output of your statements in special
hidden variables. This is generally OK, but can be surprising if it hangs
on to an HDF5 object you thought was discarded, or a big array that
eats up memory. You can turn this off by setting the IPython config‐
uration value cache_size to 0. See the docs at http://ipython.org for
more information.

Timing and Optimization
For performance testing, we’ll use the timeit module that ships with Python. Examples
using timeit will assume the following import:

>>> from timeit import timeit
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The timeit function takes a (string or callable) command to execute, and an optional
number of times it should be run. It then prints the total time spent running the com‐
mand. For example, if we execute the “wait” function time.sleep five times:

>>> import time
>>> timeit("time.sleep(0.1)", number=5)
0.49967818316434887

If you’re using IPython, there’s a similar built-in “magic” function called %timeit that
runs the specified statement a few times, and reports the lowest execution time:

>>> %timeit time.sleep(0.1)
10 loops, best of 3: 100 ms per loop

We’ll stick with the regular timeit function in this book, in part because it’s provided
by the Python standard library.

Since people using HDF5 generally deal with large datasets, performance is always a
concern. But you’ll notice that optimization and benchmarking discussions in this book
don’t go into great detail about things like cache hits, data conversion rates, and so forth.
The design of the h5py package, which this book uses, leaves nearly all of that to HDF5.
This way, you benefit from the hundreds of man years of work spent on tuning HDF5
to provide the highest performance possible.

As an application builder, the best thing you can do for performance is to use the API
in a sensible way and let HDF5 do its job. Here are some suggestions:

1. Don’t optimize anything unless there’s a demonstrated performance problem.
Then, carefully isolate the misbehaving parts of the code before changing anything.

2. Start with simple, straightforward code that takes advantage of the API features.
For example, to iterate over all objects in a file, use the Visitor feature of HDF5 (see
“Multilevel Iteration with the Visitor Pattern” on page 68) rather than cobbling to‐
gether your own approach.

3. Do “algorithmic” improvements first. For example, when writing to a dataset (see
Chapter 3), write data in reasonably sized blocks instead of point by point. This lets
HDF5 use the filesystem in an intelligent way.

4. Make sure you’re using the right data types. For example, if you’re running a
compute-intensive program that loads floating-point data from a file, make sure
that you’re not accidentally using double-precision floats in a calculation where
single precision would do.

5. Finally, don’t hesitate to ask for help on the h5py or NumPy/Scipy mailing lists,
Stack Overflow, or other community sites. Lots of people are using NumPy and
HDF5 these days, and many performance problems have known solutions. The
Python community is very welcoming.
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The HDF5 Tools
We’ll be creating a number of files in later chapters, and it’s nice to have an independent
way of seeing what they contain. It’s also a good idea to inspect files you create profes‐
sionally, especially if you’ll be using them for archiving or sharing them with colleagues.
The earlier you can detect the use of an incorrect data type, for example, the better off
you and other users will be.

HDFView
HDFView is a free graphical browser for HDF5 files provided by the HDF Group. It’s a
little basic, but is written in Java and therefore available on Windows, Linux, and Mac.
There’s a built-in spreadsheet-like browser for data, and basic plotting capabilities.

Figure 2-2. HDFView

Figure 2-2 shows the contents of an HDF5 file with multiple groups in the left-hand
pane. One group (named “1”) is open, showing the datasets it contains; likewise, one
dataset is opened, with its contents displayed in the grid view to the right.

HDFView also lets you inspect attributes of datasets and groups, and supports nearly
all the data types that HDF5 itself supports, with the exception of certain variable-length
structures.
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ViTables
Figure 2-3 shows the same HDF5 file open in ViTables, another free graphical browser.
It’s optimized for dealing with PyTables files, although it can handle generic HDF5 files
perfectly well. One major advantage of ViTables is that it comes preinstalled with such
Python distributions as PythonXY, so you may already have it.

Figure 2-3. ViTables

Command Line Tools
If you’re used to the command line, it’s definitely worth installing the HDF command-
line tools. These are generally available through a package manager; if not, you can get
them at www.hdfgroup.org. Windows versions are also available.

The program we’ll be using most in this book is called h5ls, which as the name suggests
lists the contents of a file. Here’s an example, in which h5ls is applied to a file containing
a couple of datasets and a group:

$ h5ls demo.hdf5
array                    Dataset {10}
group                    Group
scalar                   Dataset {SCALAR}

We can get a little more useful information by using the option combo -vlr, which
prints extended information and also recursively enters groups:
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$ h5ls -vlr demo.hdf5
/                        Group
    Location:  1:96
    Links:     1
/array                   Dataset {10/10}
    Location:  1:1400
    Links:     1
    Storage:   40 logical bytes, 40 allocated bytes, 100.00% utilization
    Type:      native int
/group                   Group
    Location:  1:1672
    Links:     1
/group/subarray          Dataset {2/2, 2/2}
    Location:  1:1832
    Links:     1
    Storage:   16 logical bytes, 16 allocated bytes, 100.00% utilization
    Type:      native int
/scalar                  Dataset {SCALAR}
    Location:  1:800
    Links:     1
    Storage:   4 logical bytes, 4 allocated bytes, 100.00% utilization
    Type:      native int

That’s a little more useful. We can see that the object at /array is of type “native int,”
and is a 1D array 10 elements long. Likewise, there’s a dataset inside the group named
group that is 2D, also of type native int.

h5ls is great for inspecting metadata like this. There’s also a program called h5dump,
which prints data as well, although in a more verbose format:

$ h5dump demo.hdf5
HDF5 "demo.hdf5" {
GROUP "/" {
   DATASET "array" {
      DATATYPE  H5T_STD_I32LE
      DATASPACE  SIMPLE { ( 10 ) / ( 10 ) }
      DATA {
      (0): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
      }
   }
   GROUP "group" {
      DATASET "subarray" {
         DATATYPE  H5T_STD_I32LE
         DATASPACE  SIMPLE { ( 2, 2 ) / ( 2, 2 ) }
         DATA {
         (0,0): 2, 2,
         (1,0): 2, 2
         }
      }
   }
   DATASET "scalar" {
      DATATYPE  H5T_STD_I32LE
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      DATASPACE  SCALAR
      DATA {
      (0): 42
      }
   }
}
}

Your First HDF5 File
Before we get to groups and datasets, let’s start by exploring some of the capabilities of
the File object, which will be your entry point into the world of HDF5.

Here’s the simplest possible program that uses HDF5:

>>> f = h5py.File("name.hdf5")
>>> f.close()

The File object is your starting point; it has methods that let you create new datasets
or groups in the file, as well as more pedestrian properties such as .filename and .mode.

Speaking of .mode, HDF5 files support the same kind of read/write modes as regular
Python files:

>>> f = h5py.File("name.hdf5", "w")   # New file overwriting any existing file
>>> f = h5py.File("name.hdf5", "r")   # Open read-only (must exist)
>>> f = h5py.File("name.hdf5", "r+")  # Open read-write (must exist)
>>> f = h5py.File("name.hdf5", "a")   # Open read-write (create if doesn't exist)

There’s one additional HDF5-specific mode, which can save your bacon should you
accidentally try to overwrite an existing file:

>>> f = h5py.File("name.hdf5", "w-")

This will create a new file, but fail if a file of the same name already exists. For example,
if you’re performing a long-running calculation and don’t want to risk overwriting your
output file should the script be run twice, you could open the file in w- mode:

>>> f = h5py.File("important_file.hdf5", "w-")
>>> f.close()
>>> f = h5py.File("important_file.hdf5", "w-")
IOError: unable to create file (File accessability: Unable to open file)

By the way, you’re free to use Unicode filenames! Just supply a normal Unicode string
and it will transparently work, assuming the underlying operating system supports the
UTF-8 encoding:

>>> name = u"name_eta_\u03b7"
>>> f = h5py.File(name)
>>> print f.filename
name_eta_η
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You might wonder what happens if your program crashes with open
files. If the program exits with a Python exception, don’t worry! The
HDF library will automatically close every open file for you when the
application exits.

Use as a Context Manager
One of the coolest features introduced in Python 2.6 is support for context managers.
These are objects with a few special methods called on entry and exit from a block of
code, using the with statement. The classic example is the built-in Python file object:

>>> with open("somefile.txt", "w") as f:
...     f.write("Hello!")

The preceding code opens a brand-new file object, which is available in the code block
with the name f. When the block exits, the file is automatically closed (even if an ex‐
ception occurs!).

The h5py.File object supports exactly this kind of use. It’s a great way to make sure the
file is always properly closed, without wrapping everything in try/except blocks:

>>> with h5py.File("name.hdf5", "w") as f:
...     print f["missing_dataset"]
KeyError: "unable to open object (Symbol table: Can't open object)"
>>> print f
<Closed HDF5 file>

File Drivers
File drivers sit between the filesystem and the higher-level world of HDF5 groups, da‐
tasets, and attributes. They deal with the mechanics of mapping the HDF5 “address
space” to an arrangement of bytes on disk. Typically you won’t have to worry about
which driver is in use, as the default driver works well for most applications.

The great thing about drivers is that once the file is opened, they’re totally transparent.
You just use the HDF5 library as normal, and the driver takes care of the storage me‐
chanics.

Here are a couple of the more interesting ones, which can be helpful for unusual prob‐
lems.

core driver

The core driver stores your file entirely in memory. Obviously there’s a limit to how
much data you can store, but the trade-off is blazingly fast reads and writes. It’s a great
choice when you want the speed of memory access, but also want to use the HDF5
structures. To enable, set the driver keyword to "core":
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>>> f = h5py.File("name.hdf5", driver="core")

You can also tell HDF5 to create an on-disk “backing store” file, to which the file image
is saved when closed:

>>> f = h5py.File("name.hdf5", driver="core", backing_store=True)

By the way, the backing_store keyword will also tell HDF5 to load any existing image
from disk when you open the file. So if the entire file will fit in memory, you need to
read and write the image only once; things like dataset reads and writes, attribute cre‐
ation, and so on, don’t take any disk I/O at all.

family driver
Sometimes it’s convenient to split a file up into multiple images, all of which share a
certain maximum size. This feature was originally implemented to support filesystems
that couldn’t handle file sizes above 2GB.

>>> # Split the file into 1-GB chunks
>>> f = h5py.File("family.hdf5", driver="family", memb_size=1024**3)

The default for memb_size is 231-1, in keeping with the historical origins of the driver.

mpio driver
This driver is the heart of Parallel HDF5. It lets you access the same file from multiple
processes at the same time. You can have dozens or even hundreds of parallel computing
processes, all of which share a consistent view of a single file on disk.

Using the mpio driver correctly can be tricky. Chapter 9 covers both the details of this
driver and best practices for using HDF5 in a parallel environment.

The User Block
One interesting feature of HDF5 is that files may be preceeded by arbitrary user data.
When a file is opened, the library looks for the HDF5 header at the beginning of the
file, then 512 bytes in, then 1024, and so on in powers of 2. Such space at the beginning
of the file is called the “user block,” and you can store whatever data you want there.

The only restrictions are on the size of the block (powers of 2, and at least 512), and that
you shouldn’t have the file open in HDF5 when writing to the user block. Here’s an
example:

>>> f = h5py.File("userblock.hdf5", "w", userblock_size=512)
>>> f.userblock_size    # Would be 0 if no user block present
512
>>> f.close()

>>> with open("userblock.hdf5", "rb+") as f:    # Open as regular Python file
...     f.write("a"*512)
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Let’s move on to the first major object in the HDF5 data model, one that will be familiar
to users of the NumPy array type: datasets.
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CHAPTER 3

Working with Datasets

Datasets are the central feature of HDF5. You can think of them as NumPy arrays that
live on disk. Every dataset in HDF5 has a name, a type, and a shape, and supports random
access. Unlike the built-in np.save and friends, there’s no need to read and write the
entire array as a block; you can use the standard NumPy syntax for slicing to read and
write just the parts you want.

Dataset Basics
First, let’s create a file so we have somewhere to store our datasets:

>>> f = h5py.File("testfile.hdf5")

Every dataset in an HDF5 file has a name. Let’s see what happens if we just assign a new
NumPy array to a name in the file:

>>> arr = np.ones((5,2))
>>> f["my dataset"] = arr
>>> dset = f["my dataset"]
>>> dset
<HDF5 dataset "my dataset": shape (5, 2), type "<f8">

We put in a NumPy array but got back something else: an instance of the class
h5py.Dataset. This is a “proxy” object that lets you read and write to the underlying
HDF5 dataset on disk.

Type and Shape
Let’s explore the Dataset object. If you’re using IPython, type dset. and hit Tab to see
the object’s attributes; otherwise, do dir(dset). There are a lot, but a few stand out:

>>> dset.dtype
dtype('float64')



Each dataset has a fixed type that is defined when it’s created and can never be changed.
HDF5 has a vast, expressive type mechanism that can easily handle the built-in NumPy
types, with few exceptions. For this reason, h5py always expresses the type of a dataset
using standard NumPy dtype objects.

There’s another familiar attribute:

>>> dset.shape
(5, 2)

A dataset’s shape is also defined when it’s created, although as we’ll see later, it can be
changed. Like NumPy arrays, HDF5 datasets can have between zero axes (scalar, shape
()) and 32 axes. Dataset axes can be up to 263-1 elements long.

Reading and Writing
Datasets wouldn’t be that useful if we couldn’t get at the underlying data. First, let’s see
what happens if we just read the entire dataset:

>>> out = dset[...]
>>> out
array([[ 1.,  1.],
       [ 1.,  1.],
       [ 1.,  1.],
       [ 1.,  1.],
       [ 1.,  1.]])
>>> type(out)
<type 'numpy.ndarray'>

Slicing into a Dataset object returns a NumPy array. Keep in mind what’s actually hap‐
pening when you do this: h5py translates your slicing selection into a portion of the
dataset and has HDF5 read the data from disk. In other words, ignoring caching, a slicing
operation results in a read or write to disk.

Let’s try updating just a portion of the dataset:

>>> dset[1:4,1] = 2.0
>>> dset[...]
array([[ 1.,  1.],
       [ 1.,  2.],
       [ 1.,  2.],
       [ 1.,  2.],
       [ 1.,  1.]])

Success!
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Because Dataset objects are so similar to NumPy arrays, you may be
tempted to mix them in with computational code. This may work for
a while, but generally causes performance problems as the data is on
disk instead of in memory.

Creating Empty Datasets
You don’t need to have a NumPy array at the ready to create a dataset. The method
create_dataset on our File object can create empty datasets from a shape and type,
or even just a shape (in which case the type will be np.float32, native single-precision
float):

>>> dset = f.create_dataset("test1", (10, 10))
>>> dset
<HDF5 dataset "test1": shape (10, 10), type "<f4">
>>> dset = f.create_dataset("test2", (10, 10), dtype=np.complex64)
>>> dset
<HDF5 dataset "test2": shape (10, 10), type "<c8">

HDF5 is smart enough to only allocate as much space on disk as it actually needs to
store the data you write. Here’s an example: suppose you want to create a 1D dataset
that can hold 4 gigabytes worth of data samples from a long-running experiment:

>>> dset = f.create_dataset("big dataset", (1024**3,), dtype=np.float32)

Now write some data to it. To be fair, we also ask HDF5 to flush its buffers and actually
write to disk:

>>> dset[0:1024] = np.arange(1024)
>>> f.flush()

Looking at the file size on disk:

$ ls -lh testfile.hdf5
-rw-r--r-- 1 computer computer 66K Mar  6 21:23 testfile.hdf5

Saving Space with Explicit Storage Types
When it comes to types, a few seconds of thought can save you a lot of disk space and
also reduce your I/O time. The create_dataset method can accept almost any NumPy
dtype for the underlying dataset, and crucially, it doesn’t have to exactly match the type
of data you later write to the dataset.

Here’s an example: one common use for HDF5 is to store numerical floating-point data
—for example, time series from digitizers, stock prices, computer simulations—any‐
where it’s necessary to represent “real-world” numbers that aren’t integers.

Often, to keep the accuracy of calculations high, 8-byte double-precision numbers will
be used in memory (NumPy dtype float64), to minimize the effects of rounding error.
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However, it’s common practice to store these data points on disk as single-precision, 4-
byte numbers (float32), saving a factor of 2 in file size.

Let’s suppose we have such a NumPy array called bigdata:

>>> bigdata = np.ones((100,1000))
>>> bigdata.dtype
dtype('float64')
>>> bigdata.shape
(100, 1000)

We could store this in a file by simple assignment, resulting in a double-precision dataset:

>>> with h5py.File('big1.hdf5','w') as f1:
...     f1['big'] = bigdata

$ ls -lh big1.hdf5
-rw-r--r-- 1 computer computer 784K Apr 13 14:40 foo.hdf5

Or we could request that HDF5 store it as single-precision data:

>>> with h5py.File('big2.hdf5','w') as f2:
...     f2.create_dataset('big', data=bigdata, dtype=np.float32)

$ ls -lh big2.hdf5
-rw-r--r-- 1 computer computer 393K Apr 13 14:42 foo.hdf5

Keep in mind that whichever one you choose, your data will emerge from the file in that
format:

>>> f1 = h5py.File("big1.hdf5")
>>> f2 = h5py.File("big2.hdf5")
>>> f1['big'].dtype
dtype('float64')
>>> f2['big'].dtype
dtype('float32')

Automatic Type Conversion and Direct Reads
But exactly how and when does the data get converted between the double-precision
float64 in memory and the single-precision float32 in the file? This question is im‐
portant for performance; after all, if you have a dataset that takes up 90% of the memory
in your computer and you need to make a copy before storing it, there are going to be
problems.

The HDF5 library itself handles type conversion, and does it on the fly when saving to
or reading from a file. Nothing happens at the Python level; your array goes in, and the
appropriate bytes come out on disk. There are built-in routines to convert between many
source and destination formats, including between all flavors of floating-point and in‐
teger numbers available in NumPy.

24 | Chapter 3: Working with Datasets



But what if we want to go the other direction? Suppose we have a single-precision float
dataset on disk, and want to read it in as double precision? There are a couple of reasons
this might be useful. The result might be very large, and we might not have the memory
space to hold both single- and double-precision versions in Python while we do the
conversion. Or we might want to do the type conversion on the fly while reading from
disk, to reduce the application’s runtime.

For big arrays, the best approach is to read directly into a preallocated NumPy array of
the desired type. Let’s say we have the single-precision dataset from the previous ex‐
ample, and we want to read it in as double precision:

>>> dset = f2['big']
>>> dset.dtype
dtype('float32')
>>> dset.shape
(100, 1000)

We allocate our new double-precision array on the Python side:

>>> big_out = np.empty((100, 1000), dtype=np.float64)

Here np.empty creates the array, but unlike np.zeros or np.ones it doesn’t bother to
initialize the array elements. Now we request that HDF5 read directly into our output
array:

>>> dset.read_direct(big_out)

That’s it! HDF5 fills up the empty array with the requested data. No extra arrays or time
spent converting.

When using read_direct, you don’t always have to read the whole
dataset. See “Reading Directly into an Existing Array” on page 34 for
details.

Reading with astype
You may not always want to go through the whole rigamarole of creating a destination
array and passing it to read_direct. Another way to tell HDF5 what type you want is
by using the Dataset.astype context manager.

Let’s suppose we want to read the first 1000 elements of our “big” dataset in the previous
example, and have HDF5 itself convert them from single to double precision:

>>> with dset.astype('float64'):
...     out = dset[0,:]
>>> out.dtype
dtype('float64')
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Finally, here are some tips to keep in mind when using HDF5’s automatic type conver‐
sion. They apply both to reads with read_direct or astype and also to writing data
from NumPy into existing datasets:

1. Generally, you can only convert between types of the same “flavor.” For example,
you can convert integers to floats, and floats to other floats, but not strings to floats
or integers. You’ll get an unhelpful-looking IOError if you try.

2. When you’re converting to a “smaller” type (float64 to float32, or "S10" to
"S5"), HDF5 will truncate or “clip” the values:

>>> f.create_dataset('x', data=1e256, dtype=np.float64)
>>> print f['x'][...]
1e+256
>>> f.create_dataset('y', data=1e256, dtype=np.float32)
>>> print f['y'][...]
inf

There’s no warning when this happens, so it’s in your interest to keep track of the types
involved.

Reshaping an Existing Array
There’s one more trick up our sleeve with create_dataset, although this one’s a little
more esoteric. You’ll recall that it takes a “shape” argument as well as a dtype argument.
As long as the total number of elements match, you can specify a shape different from
the shape of your input array.

Let’s suppose we have an array that stores 100 640×480-pixel images, stored as 640-
element “scanlines”:

>>> imagedata.shape
(100, 480, 640)

Now suppose that we want to store each image as a “top half ” and “bottom half ” without
needing to do the slicing when we read. When we go to create the dataset, we simply
specify the new shape:

>>> f.create_dataset('newshape', data=imagedata, shape=(100, 2, 240, 640))

There’s no performance penalty. Like the built-in np.reshape, only the indices are
shuffled around.

Fill Values
If you create a brand-new dataset, you’ll notice that by default it’s zero filled:

>>> dset = f.create_dataset('empty', (2,2), dtype=np.int32)
>>> dset[...]
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array([[0, 0],
       [0, 0]])

For some applications, it’s nice to pick a default value other than 0. You might want to
set unmodified elements to -1, or even NaN for floating-point datasets.

HDF5 addresses this with a fill value, which is the value returned for the areas of a dataset
that haven’t been written to. Fill values are handled when data is read, so they don’t cost
you anything in terms of storage space. They’re defined when the dataset is created, and
can’t be changed:

>>> dset = f.create_dataset('filled', (2,2), dtype=np.int32, fillvalue=42)
>>> dset[...]
array([[42, 42],
       [42, 42]])

A dataset’s fill value is available on the fillvalue property:

>>> dset.fillvalue
42

Reading and Writing Data
Your main day-to-day interaction with Dataset objects will look a lot like your inter‐
actions with NumPy arrays. One of the design goals for the h5py package was to “recycle”
as many NumPy metaphors as possible for datasets, so that you can interact with them
in a familiar way.

Even if you’re an experienced NumPy user, don’t skip this section! There are important
performance differences and implementation subtleties between the two that may trip
you up.

Before we dive into the nuts and bolts of reading from and writing to datasets, it’s
important to spend a few minutes discussing how Dataset objects aren’t like NumPy
arrays, especially from a performance perspective.

Using Slicing Effectively
In order to use Dataset objects efficiently, we have to know a little about what goes on
behind the scenes. Let’s take the example of reading from an existing dataset. Suppose
we have the (100, 1000)-shape array from the previous example:

>>> dset = f2['big']
>>> dset
<HDF5 dataset "big": shape (100, 1000), type "<f4">

Now we request a slice:
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>>> out = dset[0:10, 20:70]
>>> out.shape
(10, 50)

Here’s what happens behind the scenes when we do the slicing operation:

1. h5py figures out the shape (10, 50) of the resulting array object.
2. An empty NumPy array is allocated of shape (10, 50).
3. HDF5 selects the appropriate part of the dataset.
4. HDF5 copies data from the dataset into the empty NumPy array.
5. The newly filled in NumPy array is returned.

You’ll notice that this implies a certain amount of overhead. Not only do we create a
new NumPy array for each slice requested, but we have to figure out what size the array
object should be, check that the selection falls within the bounds of the dataset, and have
HDF5 perform the selection, all before we’ve read a single byte of data.

This leads us to the first and most important performance tip when using datasets: take
reasonably sized slices.

Here’s an example: using our (100, 1000)-shape dataset, which of the following do you
think is likely to be faster?

# Check for negative values and clip to 0
for ix in xrange(100):
     for iy in xrange(1000):
         val = dset[ix,iy]               # Read one element
         if val < 0: dset[ix, iy] = 0    # Clip to 0 if needed

or

# Check for negative values and clip to 0
for ix in xrange(100):
     val = dset[ix,:]        # Read one row
     val[ val < 0 ] = 0      # Clip negative values to 0
     dset[ix,:] = val        # Write row back out

In the first case, we perform 100,000 slicing operations. In the second, we perform only
100.

This may seem like a trivial example, but the first example creeps into real-world code
frequently; using fast in-memory slices on NumPy arrays, it is actually reasonably quick
on modern machines. But once you start going through the whole slice-allocate-HDF5-
read pipeline outlined here, things start to bog down.

The same applies to writing, although fewer steps are involved. When you perform a
write operation, for example:

>>> some_dset[0:10, 20:70] = out*2
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The following steps take place:

1. h5py figures out the size of the selection, and determines whether it is compatible
with the size of the array being assigned.

2. HDF5 makes an appropriately sized selection on the dataset.
3. HDF5 reads from the input array and writes to the file.

All of the overhead involved in figuring out the slice sizes and so on, still applies. Writing
to a dataset one element at a time, or even a few elements at a time, is a great way to get
poor performance.

Start-Stop-Step Indexing
h5py uses a subset of the plain-vanilla slicing available in NumPy. This is the most
familiar form, consisting of up to three indices providing a start, stop, and step.

For example, let’s create a simple 10-element dataset with increasing values:

>>> dset = f.create_dataset('range', data=np.arange(10))
>>> dset[...]
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

One index picks a particular element:

>>> dset[4]
4

Two indices specify a range, ending just before the last index:

>>> dset[4:8]
array([4,5,6,7])

Three indices provide a “step,” or pitch, telling how many elements to skip:

>>> dset[4:8:2]
array([4,6])

And of course you can get all the points by simply providing :, like this:

>>> dset[:]
array([0,1,2,3,4,5,6,7,8,9])

Like NumPy, you are allowed to use negative numbers to “count back” from the end of
the dataset, with -1 referring to the last element:

>>> dset[4:-1]
array([4,5,6,7,8])

Unlike NumPy, you can’t pull fancy tricks with the indices. For example, the traditional
way to reverse an array in NumPy is this:
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>>> a = np.arange(10)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> a[::-1]
array([9, 8, 7, 6, 5, 4, 3, 2, 1, 0])

But if you try it on a dataset, you get the following:

>>> dset[::-1]
ValueError: Step must be >= 1 (got -1)

Multidimensional and Scalar Slicing
By now you’ve gotten used to seeing the expression “...,” which is used as a slice in
examples. This object has the built-in name Ellipsis in the Python world. You can use
it as a “stand-in” for axes you don’t want to bother specifying:

>>> dset = f.create_dataset('4d', shape=(100, 80, 50, 20))
>>> dset[0,...,0].shape
(80, 50)

And of course you can get the entire contents by using Ellipsis by itself:

>>> dset[...].shape
(100, 80, 50, 20)

There is one oddity we should discuss, which is that of scalar datasets. In NumPy, there
are two flavors of array containing one element. The first has shape (1,), and is an
ordinary one-dimensional array. You can get at the value inside by slicing or simple
indexing:

>>> dset = f.create_dataset('1d', shape=(1,), data=42)
>>> dset.shape
(1,)
>>> dset[0]
42
>>> dset[...]
array([42])

Note, by the way, how using Ellipsis provides an array with one element, whereas
integer indexing provides the element itself.

The second flavor has shape () (an empty tuple) and can’t be accessed by indexing:

>>> dset = f.create_dataset('0d', data=42)
>>> dset.shape
()
>>> dset[0]
ValueError: Illegal slicing argument for scalar dataspace
>>> dset[...]
array(42)

Note how using Ellipsis has again returned an array, in this case a scalar array.
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How can we get the value itself, without it being wrapped in a NumPy array? It turns
out there’s another way to slice into NumPy arrays (and Dataset objects). You can index
with a somewhat bizarre-looking empty tuple:

>>> dset[()]
42

So keep these in your toolkit:

1. Using Ellipsis gives you all the elements in the dataset (always as an array object).
2. Using an empty tuple "()" gives you all the elements in the dataset, as an array object

for 1D and higher datasets, and as a scalar element for 0D datasets.

To make things even more confusing, you may see code in the wild
that uses the .value attribute of a dataset. This is a historical wart that
is exactly equivalent to doing dataset[()]. It’s long deprecated and
not available in modern versions of h5py.

Boolean Indexing
In an earlier example, we used an interesting expression to set negative entries in a
NumPy array val to zero:

>>> val[ val < 0 ] = 0

This is an idiom in NumPy made possible by Boolean-array indexing. If val is a NumPy
array of integers, then the result of the expression val < 0 is an array of Booleans. Its
entries are True where the corresponding elements of val are negative, and False
elsewhere. In the NumPy world, this is also known as a mask.

Crucially, in both the NumPy and HDF5 worlds, you can use a Boolean array as an
indexing expression. This does just what you’d expect; it selects the dataset elements
where the corresponding index entries are True, and de-selects the rest.

In the spirit of the previous example, let’s suppose we have a dataset initialized to a set
of random numbers distributed between -1 and 1:

>>> data = np.random.random(10)*2 - 1
>>> data
array([ 0.98885498, -0.28554781, -0.17157685, -0.05227003,  0.66211931,
        0.45692186,  0.07123649, -0.40374417,  0.22059144, -0.82367672])
>>> dset = f.create_dataset('random', data=data)

Let’s clip the negative values to 0, by using a Boolean array:

>>> dset[data<0] = 0
>>> dset[...]
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array([ 0.98885498,  0.        ,  0.        ,  0.        ,  0.66211931,
        0.45692186,  0.07123649,  0.        ,  0.22059144,  0.        ])

On the HDF5 side, this is handled by transforming the Boolean array into a list of
coordinates in the dataset. There are a couple of consequences as a result.

First, for very large indexing expressions with lots of True values, it may be faster to,
for example, modify the data on the Python side and write the dataset out again. If you
suspect a slowdown it’s a good idea to test this.

Second, the expression on the right-hand side has to be either a scalar, or an array with
exactly the right number of points. This isn’t quite as burdensome a requirement as it
might seem. If the number of elements that meet the criteria is small, it’s actually a very
effective way to “update” the dataset.

For example, what if instead of clipping the negative values to zero, we wanted to flip
them and make them positive? We could modify the original array and write the entire
thing back out to disk. Or, we could modify just the elements we want:

>>> dset[data<0] = -1*data[data<0]
>>> dset[...]
array([ 0.98885498,  0.28554781,  0.17157685,  0.05227003,  0.66211931,
        0.45692186,  0.07123649,  0.40374417,  0.22059144,  0.82367672])

Note that the number of elements (five, in this case) is the same on the left- and righthand
sides of the preceding assignment.

Coordinate Lists
There’s another feature borrowed from NumPy, with a few modifications. When slicing
into a dataset, for any axis, instead of a x:y:z-style slicing expression you can supply a
list of indices. Let’s use our 10-element range dataset again:

>>> dset = f['range']
>>> dset[...]
array([0,1,2,3,4,5,6,7,8,9])

Suppose we wanted just elements 1, 2, and 7. We could manually extract them one at a
time as dset[1], dset[2], and dset[7]. We could also use a Boolean indexing array
with its values set to True at locations 1, 2, and 7.

Or, we could simply specify the elements desired using a list:

>>> dset[ [1,2,7] ]
array([1,2,7])

This may seem trivial, but it’s implemented in a way that is much more efficient than
Boolean masking for large datasets. Instead of generating a laundry list of coordinates
to access, h5py breaks the selection down into contiguous “subselections,” which are
much faster when multiple axes are involved.
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If you’re seaching for documentation on the exotic NumPy methods
of accessing an array, they are collectively called fancy indexing.

Of course, the trade-off is that there are a few differences from the native NumPy
coordinate-list slicing approach, which rule out some of the fancier tricks from the
NumPy world:

1. Only one axis at a time can be sliced with a list.
2. Repeated elements are not allowed.
3. Indices in the list must be given in increasing order.

Automatic Broadcasting
In a couple of examples so far, we’ve made slicing assignments in which the number of
elements on the left- and right-hand sides were not equal. For example, in the Boolean
array example:

>>> dset[data<0] = 0

This kind of expression is handled by broadcasting, similar to the built-in NumPy
broadcasting that handles such things where arrays are involved. Used judiciously, it
can give your application a performance boost.

Let’s consider our (100, 1000)-shape array from earlier; suppose it contained 100 time
traces, each 1000 elements long:

>>> dset = f2['big']
>>> dset.shape
(100, 1000)

Now suppose we want to copy the trace at dset[0,:] and overwrite all the others in the
file. We might do this with a for loop:

>>> data = dset[0,:]
>>> for idx in xrange(100):
...     dset[idx,:] = data

This will work, but it does require us to write the loop, get the boundary conditions
right, and of course perform 100 slicing operations.

There’s an even easier way, which exploits the built-in efficient broadcasting of h5py:

>>> dset[:,:] = dset[0,:]

The shape of the array on the righthand side is (1000,); the shape of the selection on the
lefthand side is (100, 1000). Since the last dimensions match, h5py repeatedly copies
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the data across all 100 remaining indices. It’s as efficient as you can get; there’s only one
slicing operation, and the remainder of the time is spent writing data to disk.

Reading Directly into an Existing Array
Finally we come full circle back to read_direct, one of the most powerful methods
available on the Dataset object. It’s as close as you can get to the “traditional” C interface
of HDF5, without getting into the internal details of h5py.

To recap, you can use read_direct to have HDF5 “fill in” data into an existing array,
automatically performing type conversion. Last time we saw how to read float32 data
into a float64 NumPy array:

>>> dset.dtype
dtype('float32')
>>> out = np.empty((100, 1000), dtype=np.float64)
>>> dset.read_direct(out)

This works, but requires you to read the entire dataset in one go. Let’s pick a more useful
example. Suppose we wanted to read the first time trace, at dset[0,:], and deposit it
into the out array at out[50,:]. We can use the source_sel and dest_sel keywords, 
for source selection and destination selection respectively:

>>> dset.read_direct(out, source_sel=np.s_[0,:], dest_sel=np.s_[50,:])

The odd-looking np.s_ is a gadget that takes slices, in the ordinary array-slicing syntax,
and returns a NumPy slice object with the corresponding information.

By the way, you don’t have to match the shape of your output array to the dataset. Suppose
our application wanted to compute the mean of the first 50 data points in each time
trace, a common scenario when estimating DC offsets in real-world experimental data.
You could do this using the standard slicing techniques:

>>> out = dset[:,0:50]
>>> out.shape
(100, 50)
>>> means = out.mean(axis=1)
>>> means.shape
(100,)

Using read_direct this would look like:

>>> out = np.empty((100,50), dtype=np.float32)
>>> dset.read_direct(out, np.s_[:,0:50])  # dest_sel can be omitted
>>> means = out.mean(axis=1)

This may seem like a trivial case, but there’s an important difference between the two
approaches. In the first example, the out array is created internally by h5py, used to
store the slice, and then thrown away. In the second example, out is allocated by the
user, and can be reused for future calls to read_direct.
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There’s no real performance difference when using (100, 50)-shape arrays, but what
about (10000, 10000)-shape arrays?

Let’s check the real-world performance of this. We’ll create a test dataset and two func‐
tions. To keep things simple and isolate just the performance difference related to the
status of out, we’ll always read the same selection of the dataset:

dset = f.create_dataset('perftest', (10000, 10000), dtype=np.float32)
dset[:] = np.random.random(10000)  # note the use of broadcasting!

def time_simple():
     dset[:,0:500].mean(axis=1)

out = np.empty((10000, 500), dtype=np.float32)
def time_direct():
     dset.read_direct(out, np.s_[:,0:500])
     out.mean(axis=1)

Now we’ll see what effect preserving the out array has, if we were to put the read in a
for loop with 100 iterations:

>>> timeit(time_simple, number=100)
14.04414987564087
>>> timeit(time_direct, number=100)
12.045655965805054

Not too bad. The difference is 2 seconds, or about a 14% improvement. Of course, as
with all optimizations, it’s up to you how far you want to go. This “simple” approach is
certainly more legible. But when performing multiple reads of data with the same shape,
particularly with larger arrays, it’s hard to beat read_direct.

For historical reasons, there also exists a write_direct method. It does
the same in reverse; however, in modern versions of h5py it’s no more
efficient than regular slicing assignment. You’re welcome to use it if
you want, but there’s no performance advantage.

A Note on Data Types
HDF5 is designed to preserve data in any format you want. Occasionally, this means
you may get a file whose contents differ from the most convenient format for processing
on your system. One example we discussed before is endianness, which relates to how
multibyte numbers are represented. You can store a 4-byte floating-point number, for
example, in memory with the least significant byte first (little-endian), or with the most
significant byte first (big-endian). Modern Intel-style x86 chips use the little-endian
format, but data can be stored in HDF5 in either fashion.
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Because h5py doesn’t know whether you intend to process the data you retrieve or ship
it off somewhere else, by default data is returned from the file in whatever format it’s
stored. In the case of “endianness,” this is mostly transparent because NumPy supports
both flavors. However, there are performance implications. Let’s create two NumPy
arrays, one little-endian and one big-endian, and see how they perform on an x86 sys‐
tem:

>>> a = np.ones((1000,1000), dtype='<f4')  # Little-endian 4-byte float
>>> b = np.ones((1000,1000), dtype='>f4')  # Big-endian 4-byte float
>>> timeit(a.mean, number=1000)
1.684128999710083
>>> timeit(b.mean, number=1000)
3.1886370182037354

That’s pretty bad, about a factor of 2. If you’re processing data you got from somebody
else, and your application does lots of long-running calculations, it’s worth taking a few
minutes to check.

To convert to “native” endianness in this example you basically have three choices: use
read_direct with a natively formatted array you create yourself, use the astype context
manager, or convert the array manually in place after you read it. For the latter, there’s
a quick way to convert NumPy arrays in place without making a copy:

>>> c = b.view("float32")
>>> c[:] = b
>>> b = c
>>> timeit(b.mean, number=1000)
1.697857141494751

This is a general performance issue, not limited to endian considerations. For example,
single- versus double-precision floats have performance implications, and even integers
can be problematic if you end up using 16-bit integers with code that has values greater
than 216. Keep track of your types, and where possible use the features HDF5 provides
to do conversion for you.

Resizing Datasets
So far, we’ve established that datasets have a shape and type, which are set when they’re
created. The type is fixed and can never be changed. However, the shape can be changed,
within certain limits.

Let’s create a new four-element dataset to investigate:

>>> dset = f.create_dataset('fixed', (2,2))

Looking at the attributes of dset, we see in addition to the .shape attribute, there’s an
odd one called maxshape:
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>>> dset.shape
(2, 2)
>>> dset.maxshape
(2, 2)

There’s also a resize method on the Dataset object. Let’s see what happens if we try to
shrink our dataset from (2,2) to (1,1):

>>> dset.resize((1,1))
TypeError: Only chunked datasets can be resized

Evidently something is missing. How can we make a dataset resizable?

Creating Resizable Datasets
When you create a dataset, in addition to setting its shape, you have the opportunity to
make it resizable up to a certain maximum set of dimensions, called its maxshape on
the h5py side.

Like shape, maxshape is specified when the dataset is created, but can’t be changed. As
you saw earlier, if you don’t explicitly choose a maxshape, HDF5 will create a non-
resizable dataset and set maxshape = shape. The dataset will also be created with what’s
called contiguous storage, which prevents the use of resize. Chapter 4 has more infor‐
mation on contiguous versus chunked storage; for now, it’s a detail we can ignore.

Let’s try again, this time specifying a maxshape for the dataset:

>>> dset = f.create_dataset('resizable', (2,2), maxshape=(2,2))
>>> dset.shape
(2, 2)
>>> dset.maxshape
(2, 2)
>>> dset.resize((1,1))
>>> dset.shape
(1, 1)

Success! What happens if we change back?

>>> dset.resize((2,2))
>>> dset.shape
(2, 2)
>>> dset.resize((2,3))
ValueError: unable to set extend dataset (Dataset: Unable to initialize object)

As the name suggests, you can’t make the dataset bigger than maxshape. But this is
annoying. What if you don’t know when you create the dataset how big it should be?
Should you just provide a very large number in maxshape to get around this limitation?

Thankfully, that isn’t necessary. HDF5 has the concept of “unlimited” axes to deal with
this situation. If an axis is declared as “unlimited,” you can make it as big as you want.
Simply provide None for that axis in the maxshape tuple to turn this feature on:
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>>> dset = f.create_dataset('unlimited', (2,2), maxshape=(2, None))
>>> dset.shape
(2, 2)
>>> dset.maxshape
(2, None)
>>> dset.resize((2,3))
>>> dset.shape
(2, 3)
>>> dset.resize((2, 2**30))
>>> dset.shape
(2, 1073741824)

You can mark as many axes as you want as unlimited.

Finally, no matter what you put in maxshape, you can’t change the total number of axes.
This value, the rank of the dataset, is fixed and can never be changed:

>>> dset.resize((2,2,2))
TypeError: New shape length (3) must match dataset rank (2)

Data Shuffling with resize
NumPy has a set of rules that apply when you change the shape of a dataset. For example,
take a simple four-element square array with shape (2, 2):

>>> a = np.array([ [1, 2], [3, 4] ])
>>> a.shape
(2, 2)
>>> print a
[[1, 2]
 [3, 4]]

If we now resize it to (1, 4), keeping the total number of elements unchanged, the values
are still there but rearrange themselves:

>>> a.resize((1,4))
>>> print a
[[1, 2, 3, 4]]

And finally if we resize it to (1, 10), adding new elements, the new ones are initialized
to zero:

>>> a.resize((1,10))
>>> print a
[[1 2 3 4 0 0 0 0 0 0]]

If you’ve reshaped NumPy arrays before, you’re likely used to this reshuffling behavior.
HDF5 has a different approach. No reshuffling is ever performed. Let’s create a Data
set object to experiment on, which has both axes set to unlimited:

>>> dset = f.create_dataset('sizetest', (2,2), dtype=np.int32, maxshape=(None,
    None))
>>> dset[...] = [ [1, 2], [3, 4] ]

38 | Chapter 3: Working with Datasets



>>> dset[...]
array([[1, 2],
       [3, 4]])

We’ll try the same resizing as in the NumPy example:

>>> dset.resize((1,4))
>>> dset[...]
array([[1, 2, 0, 0]])
>>> dset.resize((1,10))
>>> dset[...]
array([[1, 2, 0, 0, 0, 0, 0, 0, 0, 0]])

What’s going on here? When we changed the shape from (2, 2) to (1, 4), the data at
locations dset[1,0] and dset[1,1] didn’t get reshuffled; it was lost. For this reason,
you should be very careful when using resize; the reshuffling tricks you’ve learned in
the NumPy world will quickly lead to trouble.

Finally, you’ll notice that in this case the new elements are initialized to zero. In general,
they will be set to the dataset’s fill value (see “Fill Values” on page 26).

When and How to Use resize
One of the most common questions about HDF5 is how to “append” to a dataset. With
resize, this can be done if care is taken with respect to performance.

For example, let’s say we have another dataset storing 1000-element time traces. How‐
ever, this time our application doesn’t know how many to store. It could be 10, or 100,
or 1000. One approach might be this:

dset1 = f.create_dataset('timetraces', (1,1000), maxshape=(None, 1000))
def add_trace_1(arr):
     dset1.resize( (dset1.shape[0]+1, 1000) )
     dset1[-1,:] = arr

Here, every time a new 1000-element array is added, the dataset is simply expanded by
a single entry. But if the number of resize calls is equal to the number of insertions,
this doesn’t scale well, particularly if traces will be added thousands of times.

An alternative approach might be to keep track of the number of insertions and then
“trim” the dataset when done:

dset2 = f.create_dataset('timetraces2', (5000, 1000), maxshape=(None, 1000))

ntraces = 0
def add_trace_2(arr):
     global ntraces
     dset2[ntraces,:] = arr
     ntraces += 1
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def done():
    dset2.resize((ntraces,1000))

In the real world, it takes a little more work than this to get the best performance. We’ve
gone about as far as we can go without discussing how the data is actually stored by
HDF5. It’s time to talk about storage, and more precisely, chunks, in Chapter 4. 
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CHAPTER 4

How Chunking and Compression
Can Help You

So far we have avoided talking about exactly how the data you write is stored on disk.
Some of the most interesting features in HDF5, including per-dataset compression, are
tied up in the details of how data is arranged on disk.

Before we get down to the nuts and bolts, there’s a more fundamental issue we have to
discuss: how multidimensional arrays are actually handled in Python and HDF5.

Contiguous Storage
Let’s suppose we have a four-element NumPy array of strings:

>>> a = np.array([ ["A","B"], ["C","D"] ])
>>> print a
[['A' 'B']
 ['C' 'D']]

Mathematically, this is a two-dimensional object. It has two axes, and can be indexed
using a pair of numbers in the range 0 to 1:

>>> a[1,1]
'D'

However, there’s no such thing as “two-dimensional” computer memory, at least not in
common use. The elements are actually stored in a one-dimensional buffer:

'A' 'B' 'C' 'D'

This is called contiguous storage, because all the elements of the array, whether it’s stored
on disk or in memory, are stored one after another. NumPy uses a simple set of rules to
turn an indexing expression into the appropriate offset into this one-dimensional buffer.
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In this case, indexing along the first axis advances us into the buffer in steps (strides, in
NumPy lingo) of 2, while indexing along the second axis advances us in steps of 1.

For example, the indexing expression a[0,1] is handled as follows:

offset = 2*0 + 1*1 -> 1
buffer[offset] -> value "B"

You might notice that there are two possible conventions here: wheth‐
er the “fastest-varying” index is the last (as previously shown), or the
first. This choice is the difference between row-major and column-
major ordering. Python, C, and HDF5 all use row-major ordering, as
in the example.

By default, all but the smallest HDF5 datasets use contiguous storage. The data in your
dataset is flattened to disk using the same rules that NumPy (and C, incidentally) uses.

If you think about it, this means that certain operations are much faster than others.
Consider as an example a dataset containing one hundred 640×480 grayscale images.
Let’s say the shape of the dataset is (100, 480, 640):

>>> f = h5py.File("imagetest.hdf5")
>>> dset = f.create_dataset("Images", (100, 480, 640), dtype='uint8')

A contiguous dataset would store the image data on disk, one 640-element “scanline”
after another. If we want to read the first image, the slicing code would be:

>>> image = dset[0, :, :]
>>> image.shape
(480, 640)

Figure 4-1(A) shows how this works. Notice that data is stored in “blocks” of 640 bytes
that correspond to the last axis in the dataset. When we read in the first image, 480 of
these blocks are read from disk, all in one big block.

This leads us to the first rule (really, the only one) for dealing with data on disk, locali‐
ty: reads are generally faster when the data being accessed is all stored together. Keeping
data together helps for lots of reasons, not the least of which is taking advantage of
caching performed by the operating system and HDF5 itself.
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Figure 4-1. Contiguous storage on disk, accessing (A) an entire image all at once, and
(B) a 64x64 image tile. Gray regions are the data being retrieved.

It’s easy to see that applications reading a whole image, or a series of whole images, will
be efficient at reading the data. The advantage of contiguous storage is that the layout
on disk corresponds directly to the shape of the dataset: stepping through the last index
always means moving through the data in order on disk.

But what if, instead of processing whole images one after another, our application deals
with image tiles? Let’s say we want to read and process the data in a 64×64 pixel slice in
the corner of the first image; for example, say we want to add a logo.

Our slicing selection would be:

>>> tile = dset[0,0:64,0:64]
>>> tile.shape
(64, 64)

Figure 4-1(B) shows how the data is read in this case. Not so good. Instead of reading
one nice contiguous block of data, our application has to gather data from all over the
place. If we wanted the 64×64 tile from every image at once (dset[:,0:64,0:64]), we’d
have to read all the way to the end of the dataset!

The fundamental problem here is that the default contiguous storage mechanism does
not match our access pattern.

Chunked Storage
What if there were some way to express this in advance? Isn’t there a way to preserve
the shape of the dataset, which is semantically important, but tell HDF5 to optimize the
dataset for access in 64×64 pixel blocks?

That’s what chunking does in HDF5. It lets you specify the N-dimensional “shape” that
best fits your access pattern. When the time comes to write data to disk, HDF5 splits
the data into “chunks” of the specified shape, flattens them, and writes them to disk. The
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chunks are stored in various places in the file and their coordinates are indexed by a
B-tree.

Here’s an example. Let’s take the (100, 480, 640)-shape dataset just shown and tell HDF5
to store it in chunked format. We do this by providing a new keyword, chunks, to the
create_dataset method:

>>> dset = f.create_dataset('chunked', (100,480,640), dtype='i1', chunks=
(1,64,64))

Like a dataset’s type, this quantity, the chunk shape, is fixed when the dataset is created
and can never be changed. You can check the chunk shape by inspecting the chunks
property; if it’s None, the dataset isn’t using chunked storage:

>>> dset.chunks
(1, 64, 64)

The chunk shape always has the same number of elements as the dataset shape; in this
example, three. Let’s repeat the 64×64-pixel slice, as before:

>>> dset[0,0:64,0:64]

Figure 4-2 shows how this is handled. Much better. In this example, only one chunk is
needed; HDF5 tracks it down and reads it from disk in one continuous lump.

Figure 4-2. HDF5 chunk tree

Even better, since chunked data is stored in nice uniformly sized packets of bytes, you
can apply all kinds of operations to it when writing or reading from the file. For example,
this is how compression works in HDF5; on their way to and from the disk, chunks are
run through a compressor or decompressor. Such filters in HDF5 (see “Filters and
Compression” on page 48) are completely transparent to the reading application.

Keep in mind that chunking is a storage detail only. You don’t need to do anything special
to read or write data in a chunked dataset. Just use the normal NumPy-style slicing
syntax and let HDF5 deal with the storage.
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Setting the Chunk Shape
You are certainly free to pick your own chunk shape, although be sure to read about the
performance implications later in this chapter. Most of the time, chunking will be au‐
tomatically enabled by using features like compression or marking a dataset as resizable.
In that case, the auto-chunker in h5py will help you pick a chunk size.

Auto-Chunking
If you don’t want to sit down and figure out a chunk shape, you can have h5py try to
guess one for you by setting chunks to True instead of a tuple:

>>> dset = f.create_dataset("Images2", (100,480,640), 'f', chunks=True)
>>> dset.chunks
(13, 60, 80)

The “auto-chunker” tries to keep chunks mostly “square” (in N dimensions) and within
certain size limits. It’s also invoked when you specify the use of compression or other
filters without explicitly providing a chunk shape.

By the way, the reason the automatically generated chunks are “square” in N dimensions
is that the auto-chunker has no idea what you’re planning to do with the dataset, and is
hedging its bets. It’s ideal for people who just want to compress a dataset and don’t want
to bother with the details, but less ideal for those with specific time-critical access pat‐
terns.

Manually Picking a Shape
Here are some things to keep in mind when working with chunks. The process of picking
a chunk shape is a trade-off between the following three constraints:

1. Larger chunks for a given dataset size reduce the size of the chunk B-tree, making
it faster to find and load chunks.

2. Since chunks are all or nothing (reading a portion loads the entire chunk), larger
chunks also increase the chance that you’ll read data into memory you won’t use.

3. The HDF5 chunk cache can only hold a finite number of chunks. Chunks bigger
than 1 MiB don’t even participate in the cache.

So here are the main points to keep in mind:
Do you even need to specify a chunk size?

It’s best to restrict manual chunk sizing to cases when you know for sure your dataset
will be accessed in a way that’s likely to be inefficient with either contiguous storage
or an auto-guessed chunk shape. And like all optimizations, you should benchmark!
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Try to express the “natural” access pattern your dataset will have
As in our example, if you are storing a bunch of images in a dataset and know that
your application will be reading particular 64×64 “tiles,” you could use N×64×64
chunks (or N×128×128) along the image axes.

Don’t make them too small
Keep in mind that HDF5 has to use indexing data to keep track of things; if you use
something pathological like a 1-byte chunk size, most of your disk space will be
taken up by metadata. A good rule of thumb for most datasets is to keep chunks
above 10KiB or so.

Don’t make them too big
The key thing to remember is that when you read any data in a chunk, the entire
chunk is read. If you only use a subset of the data, the extra time spent reading from
disk is wasted. Keep in mind that chunks bigger than 1 MiB by default will not
participate in the fast, in-memory “chunk cache” and will instead be read from disk
every time.

Performance Example: Resizable Datasets
In the last example of Chapter 3, we discussed some of the performance aspects of
resizable datasets. It turns out that with one or two exceptions, HDF5 requires that
resizable datasets use chunked storage. This makes sense if you think about how con‐
tiguous datasets are stored; expanding any but the last axis would require rewriting the
entire dataset!

There are some chunk-related pitfalls when using resizable datasets, one of which il‐
lustrates why you have to be careful of using the auto-chunker where performance is
critical. It may make decisions that don’t match your idea of how the dataset will be
used.

Revisiting the example in Chapter 3, let’s create two datasets to store a collection of 1000-
element-long time traces. The datasets will both be created as expandable along their
first axes, and differ only in their initial sizes:

>>> dset1 = f.create_dataset('timetraces1', (1, 1000), maxshape=(None, 1000))
>>> dset2 = f.create_dataset('timetraces2', (5000, 1000), maxshape=(None, 1000))

Recall that we had two different approaches to “appending” data to these arrays: simple
appending (add_trace_1) and overallocate-and-trim (add_trace_2 and done). The
second approach was supposed to be faster, as it involved fewer calls to resize:

def add_trace_1(arr):
     """ Add one trace to the dataset, expanding it as necessary """
     dset1.resize( (dset1.shape[0]+1, 1000) )
     dset1[-1,:] = arr
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ntraces = 0
def add_trace_2(arr):
     """ Add one trace to the dataset, keeping count of the # of traces
            written """
     global ntraces
     dset2[ntraces,:] = arr
     ntraces += 1

def done():
     """ After all calls to add_trace_2, trim the dataset to size """
     dset2.resize((ntraces,1000))

Now, let’s actually test the performance with timeit:

def setup():
     """ Re-initialize both datasets for the tests """
     global data, N, dset1, dset2, ntraces
     data = np.random.random(1000)
     N = 10000    # Number of iterations
     dset1.resize((1,1000))
     dset2.resize((10001,1000))
     ntraces = 0

def test1():
     """ Add N traces to the first dataset """
     for idx in xrange(N):
         add_trace_1(data)

def test2():
     """ Add N traces to the second dataset, and then trim it """
     for idx in xrange(N):
         add_trace_2(data)
     done()

>>> timeit(test1, setup=setup, number=1)
3.0431830883026123
>>> timeit(test2, setup=setup, number=1)
3.3972668647766113

Not quite what we expected. What’s going on? One clue comes from inspecting the
chunk shape for each dataset:

>>> dset1.chunks
(1, 1000)
>>> dset2.chunks
(63, 125)

What happened? It turns out that the chunk shape is determined by, among other things,
the initial size of the dataset. Let’s manually specify a chunk shape and try again. This
time we’ll set both of them to a shape of (1, 1000), giving us 4k chunks in both cases
(1000 elements × 4 bytes):

>>> dset1 = f.create_dataset('timetraces3', (1, 1000), maxshape=(None, 1000),
chunks=(1,1000))
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>>> dset2 = f.create_dataset('timetraces4', (5000, 1000), maxshape=(None, 1000),
chunks=(1,1000))
>>> timeit(test1, setup=setup, number=1)
3.0520598888397217
>>> timeit(test2, setup=setup, number=1)
2.5036721229553223

Much better. Next, we explore the “killer app” for chunks, arguably even more important
than their role in boosting performance: filters.

Filters and Compression
If you wanted to compress a contiguous dataset, you would quickly realize that the entire
thing would have to be decompressed and recompressed every time you wrote an ele‐
ment. That’s because there’s no simple way to index into a compressed dataset using
offsets, like you can with an uncompressed contiguous dataset. After all, the point of
compression is that you end up with a variable-sized output depending on the values
involved.

With chunking, it becomes possible to transparently perform compression on a dataset.
The initial size of each chunk is known, and since they’re indexed by a B-tree they can
be stored anywhere in the file, not just one after another. In other words, each chunk is
free to grow or shrink without banging into the others.

The Filter Pipeline
HDF5 has the concept of a filter pipeline, which is just a series of operations performed
on each chunk when it’s written. Each filter is free to do anything it wants to the data in
the chunk: compress it, checksum it, add metadata, anything. When the file is read, each
filter is run in “reverse” mode to reconstruct the original data.

Figure 4-3 shows schematically how this works. You’ll notice that since the atomic unit
of data here is the chunk, reading or writing any data (even a single element) will result
in decompression of at least one entire chunk. This is one thing to keep in mind when
selecting a chunk shape, or choosing whether compression is right for your application.

Finally, you have to specify your filters when the dataset is created, and they can never
change.
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Figure 4-3. HDF5 data pipeline, showing a dataset with GZIP and SHUFFLE filters ap‐
plied

Compression Filters
A number of compression filters are available in HDF5. By far the most commonly used
is the GZIP filter. (You’ll also hear this referred to as the “DEFLATE” filter; in the HDF5
world both names are used for the same filter.)

Here’s an example of GZIP compression used on a floating-point dataset:

>>> dset = f.create_dataset("BigDataset", (1000,1000), dtype='f', compres
sion="gzip")
>>> dset.compression
'gzip'

By the way, you’re not limited to floats. The great thing about GZIP compression is that
it works with all fixed-width HDF5 types, not just numeric types.

Compression is transparent; data is read and written normally:

>>> dset[...] = 42.0
>>> dset[0,0]
42.0

Investigating the Dataset object, we find a few more properties:

>>> dset.compression_opts
4
>>> dset.chunks
(63, 125)

The compression_opts property (and corresponding keyword to create_dataset) re‐
flects any settings for the compression filter. In this case, the default GZIP level is 4.

Filters and Compression | 49



You’ll notice that the auto-chunker has selected a chunk shape for us: (63, 125). Data
is broken up into chunks of 63*125*(4 bytes) = 30KiB blocks for the compressor.

The following sections cover some of the available compression filters, and details about
each.

Lots of filters exist for HDF5, and lots more are on the way. If you’re
archiving data or sharing it with people, it’s best to limit yourself to the
plain-vanilla GZIP, SHUFFLE, and FLETCHER32 filters, since they are
included with HDF5 itself.

GZIP/DEFLATE Compression
As we just saw, GZIP compression is by far the simplest and most portable compressor
in HDF5. It ships with every installation of HDF5, and has the following benefits:

• Works with all HDF5 types
• Built into HDF5 and available everywhere
• Moderate to slow speed compression
• Performance can be improved by also using SHUFFLE (see “SHUFFLE Filter” on

page 52)

For the GZIP compressor, compression_opts may be an integer from 0 to 9, with a
default of 4.

>>> dset = f.create_dataset("Dataset", (1000,), compression="gzip")

It’s also invoked if you specify a number as the argument to compression:

>>> dset = f.create_dataset("Dataset2", (1000,), compression=9)
>>> dset.compression
'gzip'
>>> dset.compression_opts
9

SZIP Compression
SZIP is a patented compression technology used extensively by NASA. Generally you
only have to worry about this if you’re exchanging files with people who use satellite
data. Because of patent licensing restrictions, many installations of HDF5 have the
compressor (but not the decompressor) disabled.

>>> dset= myfile.create_dataset("Dataset3", (1000,), compression="szip")

SZIP features:
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• Integer (1, 2, 4, 8 byte; signed/unsigned) and floating-point (4/8 byte) types only
• Fast compression and decompression
• A decompressor that is almost always available

LZF Compression
For files you’ll only be using from Python, LZF is a good choice. It ships with h5py; C
source code is available for third-party programs under the BSD license. It’s optimized
for very, very fast compression at the expense of a lower compression ratio compared
to GZIP. The best use case for this is if your dataset has large numbers of redundant data
points. There are no compression_opts for this filter.

>>> dset = myfile.create_dataset("Dataset4", (1000,), compression="lzf")

LZF compression:

• Works with all HDF5 types
• Features fast compression and decompression
• Is only available in Python (ships with h5py); C source available

Performance
As always, you should run your own performance tests to see what parts of your appli‐
cation would benefit from attention. However, here are some examples to give you an
idea of how the various filters stack up. In this experiment (see h5py.org/lzf for details),
a 4 MB dataset of single-precision floats was tested against the LZF, GZIP, and SZIP
compressors. A 190 KiB chunk size was used.

First, the data elements were assigned their own indices (see Table 4-1):

>>> data[...] = np.arange(1024000)

Table 4-1. Compression of trivial data
Compressor Compression time (ms) Decompression time (ms) Compressed by

None 10.7 6.5 0.00%

LZF 18.6 17.8 96.66%

GZIP 58.1 40.5 98.53%

SZIP 63.1 61.3 72.68%

Next, a sine wave with added noise was tested (see Table 4-2):

>>> data[...] = np.sin(np.arange(1024000)/32.) + (np.random(1024000)*0.5-0.25)
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Table 4-2. Compression of noisy data
Compressor Compression time (ms) Decompression time (ms) Compressed by

None 10.8 6.5 0.00%

LZF 65.5 24.4 15.54%

GZIP 298.6 64.8 20.05%

SZIP 115.2 102.5 16.29%

Finally, random float values were used (see Table 4-3):

>>> data[...] = np.random(1024000)

Table 4-3. Compression of random float data
Compressor Compression time (ms) Decompression time (ms) Compressed by

None 9.0 7.8 0.00%

LZF 67.8 24.9 8.95%

GZIP 305.4 67.2 17.05%

SZIP 120.6 107.7 15.56%

Again, don’t take these figures as gospel. Other filters (BLOSC, for example, see “Third-
Party Filters” on page 54) are even faster than LZF. It’s also rare for an application to spend
most of its time compressing or decompressing data, so try not to get carried away with
speed testing.

Other Filters
HDF5 includes some extra goodies like consistency check filters and a rearrangement
(SHUFFLE) filter to boost compression performance. These filters, and any compres‐
sion filters you specify, are assembled by HDF5 into the filter pipeline and run one after
another.

SHUFFLE Filter
This filter is only ever used in conjunction with a compression filter like GZIP or LZF.
It exploits the fact that, for many datasets, most of the entropy occurs in only a few bytes
of the type. For example, if you have a 4-byte unsigned integer dataset but your values
are generally zero to a few thousand, most of the data resides in the lower two bytes.
The first three integers of a dataset might look like this (big-endian format):

(0x00 0x00 0x02 0x3E) (0x00 0x00 0x01 0x42) (0x00 0x00 0x01 0x06) ...

The SHUFFLE filter repacks the data in the chunk so that all the first bytes of the integers
are together, then all the second bytes, and so on. So you end up with a chunk like this:
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(0x00 0x00 0x00 ... ) (0x00 0x00 0x00 ... ) (0x02 0x01 0x01 ... ) (0x3E 0x42 
0x06 ...)

For dictionary-based compressors like GZIP and LZF, it’s much more efficient to com‐
press long runs of identical values, like all the zero values collected from the first two
bytes of the dataset’s integers. There are also savings from the repeated elements at the
third byte position. Only the fourth byte position looks really hard to compress.

Here’s how to enable the SHUFFLE filter (in conjunction with GZIP):

>>> dset = myfile.create_dataset("Data", (1000,), compression="gzip",
shuffle=True)

To check if a dataset has SHUFFLE enabled, use the following:

>>> dset.shuffle
True

The SHUFFLE filter is:

• Available with all HDF5 distributions
• Very, very fast (negligible compared to the compression time)
• Only useful in conjunction with filters like GZIP or LZF

FLETCHER32 Filter
Accidents happen. When you’re storing or transmitting a multiterabyte dataset, you’d
like to be sure that the bytes that come out of the file are the same ones you put in. HDF5
includes a checksum filter for just this purpose. It uses a 32-bit implementation of
Fletcher’s checksum, hence the name FLETCHER32.

A checksum is computed when each chunk is written to the file, and recorded in the
chunk’s metadata. When the chunk is read, the checksum is computed again and com‐
pared to the old one. If they don’t match, an error is raised and the read fails.

Here’s how to enable checksumming for a new dataset:

>>> dset = myfile.create_dataset("Data2", (1000,), fletcher32=True)

To see if a dataset has checksumming enabled, use the following:

>>> dset.fletcher32
True

The FLETCHER32 filter is:

• Available with all HDF5 distributions
• Very fast
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• Compatible with all lossless filters

Third-Party Filters
Many other filters exist for HDF5. For example, the BLOSC compressor used by the
PyTables project is highly tuned for speed. Other filters also exist that are based on the
LZO compression system, BZIP2, and more. You can find the most recent list (and
contact information for the filter developers) at the HDF Group website.

There’s one more thing to mention, and it’s a very new feature (introduced in HDF5
1.8.11): dynamically loaded filters. For the filters listed previously, you have to man‐
ually “register” them with the HDF5 library before they can be used. For example, h5py
registers the LZF filter when it starts up. Newer versions of HDF5 will automatically
load filter modules from disk when they encounter an unknown filter type in a dataset.
Dynamic loading is a new technology in HDF5 and support for it in h5py and PyTables
is still evolving. Your best bet is to check the h5py and PyTables websites for the most
up-to-date information.

And one final reminder: when you use a filter, be sure the people you intend to share
the data with also have access to it. 
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CHAPTER 5

Groups, Links, and Iteration:
The “H” in HDF5

So far we’ve seen how to create Dataset objects by giving them a name in the file like
myfile["dataset1"] or myfile["dataset2"]. Unless you’re one of those people who
stores all their documents on the desktop, you can probably see the flaw in this approach.

Groups are the HDF5 container object, analagous to folders in a filesystem. They can
hold datasets and other groups, allowing you to build up a hierarchical structure with
objects neatly organized in groups and subgroups.

The Root Group and Subgroups
You may have guessed by now that the File object is itself a group. In this case, it also
serves as the root group, named /, our entry point into the file.

The more general group object is h5py.Group, of which h5py.File is a subclass. Other
groups are easily created by the method create_group:

>>> f = h5py.File("Groups.hdf5")
>>> subgroup = f.create_group("SubGroup")
>>> subgroup
<HDF5 group "/SubGroup" (0 members)>
>>> subgroup.name
u'/SubGroup'

Of course, groups can be nested also. The create_group method exists on all Group
objects, not just File:

>>> subsubgroup = subgroup.create_group("AnotherGroup")
>>> subsubgroup.name
u'/SubGroup/AnotherGroup'

55



By the way, you don’t have to manually create nested groups one at a time. If you supply
a full path, HDF5 will create all the intermediate groups for you:

>>> out = f.create_group('/some/big/path')
>>> out
<HDF5 group "/some/big/path" (0 members)>

The same goes for creating datasets; just supply the full path you want and HDF5 will
fill in the missing pieces.

Group Basics
If you remember nothing else from this chapter, remember this: groups work mostly like
dictionaries. There are a couple of holes in this abstraction, but on the whole it works
surprisingly well. Groups are iterable, and have a subset of the normal Python dictionary
API.

Let’s add another few objects to our file for the examples that follow:

>>> f["Dataset1"] = 1.0
>>> f["Dataset2"] = 2.0
>>> f["Dataset3"] = 3.0
>>> subgroup["Dataset4"] = 4.0

Dictionary-Style Access
You got a hint of this dictionary-like behavior from the syntax group[name] = object.
Objects can be retrieved from a group by name:

>>> dset1 = f["Dataset1"]

Unlike normal Python dictionaries, you can also use POSIX-style paths to directly access
objects in subgroups, without having to tediously open all the groups between here and
there:

>>> dset4 = f["SubGroup/Dataset4"]     # Right
>>> dset4 = f["SubGroup"]["Dataset4"]  # Works, but inefficient

Attempting to access an empty group raises KeyError, although one irritating thing
about h5py is that you don’t get the name of the missing object in the exception:

>>> f['BadName']
KeyError: "unable to open object (Symbol table: Can't  open object)"

There’s also the familar get method, which is handy if you don’t want to raise an ex‐
ception:

>>> out = f.get("BadName")
>>> print out
None
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You can take the length of a group—note that this measures the number of objects
directly attached to the group rather than all the objects in nested subgroups:

>>> len(f)
5
>>> len(f["SubGroup"])
2

Pythonic iteration is also supported using the familiar iteritems() and friends (see
“Iteration and Containership” on page 65).

Special Properties
There are a few widgets attached to groups (and datasets) that are very useful when
working with the hierarchy in a file.

First is the .file property. Attached to every object, this gives you a handy way to
retrieve a File object for the file in which your object resides:

>>> f = h5py.File('propdemo.hdf5','w')
>>> grp = f.create_group('hello')
>>> grp.file == f
True

This is great when you want to check whether a file is read/write, or just get the filename.

Second is the .parent property. This returns the Group object that contains your object:

>>> grp.parent
<HDF5 group "/" (1 members)>

With these two properties, you can avoid most of the path-formatting headaches asso‐
ciated with filesystem work.

Working with Links
What does it mean to give an object a name in the file? From the preceding examples,
you might think that the name is part of the object, in the same way that the dtype or
shape are part of a dataset.

But this isn’t the case. There’s a layer between the group object and the objects that are
its members. The two are related by the concept of links.

Hard Links
Links in HDF5 are handled in much the same way as in modern filesystems. Objects
like datasets and groups don’t have an intrinsic name; rather, they have an address (byte
offset) in the file that HDF5 has to look up. When you assign an object to a name in a
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group, that address is recorded in the group and associated with the name you provided
to form a link.

Among other things, this means that objects in an HDF5 file can have more than one
name; in fact, they have as many names as there exist links pointing to them. The number
of links that point to an object is recorded, and when no more links exist, the space used
for the object is freed.

This kind of a link, the default in HDF5, is called a hard link to differentiate it from
other kinds of links discussed later in this chapter.

Here’s an example of the multiple-name behavior. We’ll create a simple file containing
a group, and create a hard link to it at /x:

>>> f = h5py.File('linksdemo.hdf5','w')
>>> grpx = f.create_group('x')
>>> grpx.name
u'/x'

Now we’ll create a second link pointing to the group. You can do this using standard
Python dictionary-style item assignment:

>>> f['y'] = grpx

When we retrieve an object from location /y, we get the same group back:

>>> grpy = f['y']
>>> grpy == grpx
True

You might wonder what happens to the .name property if objects in a file don’t have a
unique name. Let’s see:

>>> grpx.name
u'/x'
>>> grpy.name
u'/y'

HDF5 makes a best effort to return the name used to retrieve an object. But there’s no
guarantee. If the object has a name, then you’ll generally get one when accessing .name,
but it may not be the one you expect.

What does that mean, “if the object has a name”? It’s perfectly legal in HDF5 to create
an object without a name; just supply None:

>>> grpz = f.create_group(None)
>>> print grpz.name
None

The group grpz in this case exists in the file, but there’s no way to get there from the
root group. If we were to get rid of the Python object grpz, the group would be deleted
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and the space in the file reclaimed. To avoid this we can simply link the group into the
file structure at our leisure:

>>> f['z'] = grpz
>>> grpz.name
u'/z'

The multiple names issue also affects the behavior of the .parent property. To address
this, in h5py, obj.parent is defined to be the “parent” object according to obj.name.
For example, if obj.name is /foo/bar, obj.parent.name will be /foo.

One way to express this is with the posixpath package built into Python:

>>> import posixpath
>>> parent = obj.file[posixpath.dirname(obj.name)]

To remove links, we use the dictionary-style syntax del group[name]:

>>> del f['y']

Once all hard links to an object are gone (and the object isn’t open somewhere in
Python), it’s destroyed:

>>> del f['x']   # Last hard link; the group is deleted in the file

Free Space and Repacking
When an object (for example, a large dataset) is deleted, the space it occupied on disk
is reused for new objects like groups and datasets. However, at the time of writing, HDF5
does not track such “free space” across file open/close cycles. So if you don’t end up
reusing the space by the time you close the file, you may end up with a “hole” of unusable
space in the file that can’t be reclaimed.

This issue is a high development priority for the HDF Group. In the meantime, if your
files seem unusually large you can “repack” them with the h5repack tool, which ships
with HDF5:

$ h5repack bigfile.hdf5 out.hdf5

Soft Links
Those of you who have used Linux or Mac OS X will be familiar with “soft” links. Unlike
“hard” links, which associate a link name with a particular object in the file, soft links
instead store the path to an object.

Here’s an example. Let’s create a file and populate it with a single group containing a
dataset:

>>> f = h5py.File('test.hdf5','w')
>>> grp = f.create_group('mygroup')
>>> dset = grp.create_dataset('dataset', (100,))
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If we were to create a hard link in the root group to the dataset, it would always point
to that particular object, even if the dataset were moved or unlinked from mygroup:

>>> f['hardlink'] = dset
>>> f['hardlink'] == grp['dataset']
True
>>> grp.move('dataset', 'new_dataset_name')
>>> f['hardlink'] == grp['new_dataset_name']
True

Let’s move the dataset back, and then create a soft link that points to the
path /mygroup/dataset. To tell HDF5 that we want to create a soft link, assign an
instance of the class h5py.SoftLink to a name in the file:

>>> grp.move('new_dataset_name', 'dataset')
>>> f['softlink'] = h5py.SoftLink('/mygroup/dataset')
>>> f['softlink'] == grp['dataset']
True

SoftLink objects are very simple; they only have one property, .path, holding the path
provided when they are created:

>>> softlink = h5py.SoftLink('/some/path')
>>> softlink
<SoftLink to "/some/path">
>>> softlink.path
'/some/path'

Keep in mind that instances of h5py.SoftLink are purely a Python-side convenience,
not a wrapper around anything in HDF5. Nothing happens until you assign one of them
to a name in the file.

Returning to our example, since only the path is stored, if we move the dataset and
replace it with something else, /softlink would then point to the new object:

>>> grp.move('dataset', 'new_dataset_name')
>>> dset2 = grp.create_dataset('dataset', (50,))
>>> f['softlink'] == dset
False
>>> f['softlink'] == dset2
True

Soft links are therefore a great way to refer to “the object which resides at /some/partic
ular/path,” rather than any specific object in the file. This can be very handy if, for
example, a particular dataset represents some information that needs to be updated
without breaking all the links to it elsewhere in the file.

The value of a soft link is not checked when it’s created. If you supply an invalid path
(or the object is later moved/deleted), accessing will fail with an exception. Because of
how HDF5 reports such an error, you will get the same exception as you would when
trying to access a nonexistent name in the group, KeyError:
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>>> f['broken'] = h5py.SoftLink('/some/nonexistent/object')
>>> f['broken']
KeyError: "unable to open object"

By the way, since soft links only record a path, they don’t participate in the reference
counting that hard links do. So if you have a soft link /softlink pointing at an object
hard-linked at /a, if you delete the object (del f["/a"]) it will be destroyed and the
soft link will simply break.

You may be wondering what happens when a broken soft link ap‐
pears in items() or values(). The answer is that object None is used
as the value instead.

External Links
Starting with HDF5 1.8, there’s an additional type of link in addition to the file-local
hard and soft links. External links allow you to refer to objects in other files. They’re one
of the coolest features of HDF5, but one of the most troublesome to keep track of because
of their transparency.

An external link has two components: the name of a file, and then the (absolute) name
of an object within that file. Like soft links, you create them with a “marker” object, in
this case an instance of h5py.ExternalLink.

Let’s create a file with a single object inside, and then link to it from another file:

>>> with h5py.File('file_with_resource.hdf5', 'w') as f1:
...     f1.create_group('mygroup')

>>> f2 = h5py.File('linking_file.hdf5', 'w')
>>> f2['linkname'] = h5py.ExternalLink('file_with_resource.hdf5', 'mygroup')

Like soft links, external links are transparent, in the sense that if they’re not broken, we
get back the group or dataset they point to instead of some intermediate object. So if we
access the link we just created, we get a group back:

>>> grp = f2['linkname']
>>> grp.name
u'/mygroup'

However, if we look more closely we discover that this object resides in a different file:

>>> grp.file
<HDF5 file "file_with_resource.hdf5" (mode r+)>
>>> f2
<HDF5 file "linking_file.hdf5" (mode r+)>

Working with Links | 61



Keep in mind that this can lead to odd-looking consequences. For example, when you
use the .parent property on the retrieved object, it points to the root group of the
external file, not the file in which the link resides:

>>> f2['/linkname'].parent == f2['/']
False

Both the file and object names are checked when you create the external link. So if HDF5
can’t find the file, or the specified object within the file, you’ll get an exception:

>>> f2['anotherlink'] = h5py.ExternalLink('missing.hdf5','/')
ValueError: unable to create link (Links: Unable to initialize object)

The two main hazards when dealing with external links are (1) that the file the link
points to won’t be around when it’s accessed, and (2) by simply traversing the links in
the file, you can “wander” into a different file.

There’s not too much we can do about (1); it’s up to you to keep files organized and be
mindful of what links to what. Hazard (2) is a little more dangerous, particularly since
all the “Pythonic” methods of accessing group members, like iteration, items(), and so
on, will include external links. If it’s undesirable for your application to cross file bound‐
aries, be sure to check the .file property to see where the objects actually reside.

At the moment, there’s no way to set a “search path” from h5py. When an external link
is encountered, HDF5 will first look for the destination file in the same directory as the
file with the link, and then in the current working directory. That’s it.

A Note on Object Names
You might have noticed that when you retrieve the name of an object, it comes out as a
Python Unicode object:

>>> f['/foo'].name
u'/foo'

This is intentional, and following the improved Unicode support of HDF5 1.8 (and
Python 3) it was introduced in h5py version 2.0. Object names in the file are always
treated as “text” strings, which means they represent sequences of characters. In con‐
trast, “byte” strings are sequences of 8-bit numbers that can often but not always store
ASCII or Latin-1 encoded text.

The great thing about this is that international characters are supported for all object
names in the file; you don’t have to “ASCII-ize” anything to fit it into the HDF5 system.
Names are stored using the most-compatible storage strategy possible for maximum
compatibility with older versions (1.6) of HDF5.

To take advantage of this, simply supply a Unicode string when creating an object or
making a new link:
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>>> grp = f.create_group(u'e_with_accent_\u00E9')
>>> print grp.name
/e_with_accent_é

On the backend, h5py converts your string to the HDF5-approved UTF-8 encoding
before storing it. When you supply a “regular” or “byte” string (as in most of the previous
examples), h5py uses your string as is. It’s technically possible to store non-UTF-8 strings
like this, although such use is strongly discouraged. If you do happen to receive a file
with such “noncompliant” object names, h5py will simply pass back the raw byte string
and let you figure it out.

Using get to Determine Object Types
We mentioned that the familiar dictionary-style method get was also available on Group
objects, and showed how to handle missing group members without raising KeyError.
But this version of get is a little more capable than the Python get.

There are two additional keywords in addition to the dictionary-style default: get
class and getlink. The getclass keyword lets you retrieve the type of an object without
actually having to open it. At the HDF5 level, this only requires reading some metadata
and is consequently very fast.

Here’s an example: first we’ll create a file containing a single group and a single dataset:

>>> f = h5py.File('get_demo.hdf5','w')
>>> f.create_group('subgroup')
>>> f.create_dataset('dataset', (100,))

Using get, the type of object can be retrieved:

>>> for name in f:
...     print name, f.get(name, getclass=True)
dataset <class 'h5py._hl.dataset.Dataset'>
subgroup <class 'h5py._hl.group.Group'>

The second keyword, getlink, lets you determine the properties of the link involved:

>>> f['softlink'] = h5py.SoftLink('/subgroup')
>>> with h5py.File('get_demo_ext.hdf5','w') as f2:
...    f2.create_group('egroup')
>>> f['extlink'] = h5py.ExternalLink('get_demo_ext.hdf5','/egroup')

>>> for name in f:
...     print name, f.get(name, getlink=True)
dataset <h5py._hl.group.HardLink object at 0x047277F0>
extlink <ExternalLink to "/egroup" in file "get_demo_ext.hdf5"
softlink <SoftLink to "/subgroup">
subgroup <h5py._hl.group.HardLink object at 0x047273B0>
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You’ll notice that instances of SoftLink and ExternalLink were returned, complete
with path information. This is the official way to retrieve such information after the link
is created.

For the hard links at subgroup and dataset, there’s also an instance of something called
h5py.HardLink. This exists solely to support the use of get; it has no other function and
no properties or methods.

Finally, if all you care about is the kind of link involved, and not the exact values of the
paths and files involved, you can combine the getclass and getlink keywords to return
the link class:

>>> for name in f:
...     print name, f.get(name, getclass=True, getlink=True)
dataset <class 'h5py._hl.group.HardLink'>
extlink <class 'h5py._hl.group.ExternalLink'>
softlink <class 'h5py._hl.group.SoftLink'>
subgroup <class 'h5py._hl.group.HardLink'>

For many of the classes involved here, you may notice that they were
originally defined in the subpackage h5py._hl, for example
h5py._hl.group.SoftLink shown earlier. This is an implementation
detail that may change; when doing isinstance checks, etc., use the
names directly attached to the h5py package (e.g., h5py.SoftLink).

Using require to Simplify Your Application
Unlike Python dictionaries, you can’t directly overwrite the members of a group:

>>> f = h5py.File('require_demo.hdf5','w')
>>> f.create_group('x')
>>> f.create_group('y')
>>> f.create_group('y')
ValueError: unable to create group (Symbol table: Unable to initialize object)

This also holds true for manually hard-linking objects:

>>> f['y'] = f['x']
ValueError: unable to create link (Links: Unable to initialize object)

This is an intentional feature designed to prevent data loss. Since objects are immediately
deleted when you unlink them from a group, you have to explicitly delete the link rather
than having HDF5 do it for you:

>>> del f['y']
>>> f['y'] = f['x']

This leads to some headaches in real-world code. For example, a fragment of analysis
code might create a file and write the results to a dataset:
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>>> data = do_large_calculation()
>>> with h5py.File('output.hdf5') as f:
...     f.create_dataset('results', data=data)

If there are many datasets and groups in the file, it might not be appropriate to overwrite
the entire file every time the code runs. But if we don’t open in w mode, then our program
will only work the first time, unless we manually remove the output file every time it
runs.

To deal with this, create_group and create_dataset have companion methods called
require_group and require_dataset. They do exactly the same thing, only first they
check for an existing group or dataset and return it instead.

Both versions take exactly the same arguments and keywords. In the case of require_da
taset, h5py also checks the requested shape and dtype against any existing dataset and
fails if they don’t match:

>>> f.create_dataset('dataset', (100,), dtype='i')
>>> f.require_dataset('dataset', (100,), dtype='f')
TypeError: Datatypes cannot be safely cast (existing int32 vs new f)

There’s a minor detail here, in that a conflict is only deemed to occur if the shapes don’t
match, or the requested precision of the datatype is higher than the existing precision.
So if there’s a preexisting int64 dataset, then require_dataset will succeed if int32 is
requested:

>>> f.create_dataset('int_dataset', (100,), dtype='int64')
>>> f.require_dataset('int_dataset', (100,), dtype='int32')

The NumPy casting rules are used to check for conflicts; you can test the types yourself
using np.can_cast. 

Iteration and Containership
Iteration is a core Python concept, key to writing “Pythonic” code that runs quickly and
that your colleagues can understand. It’s also a natural way to explore the contents of
groups.

How Groups Are Actually Stored
In the HDF5 file, group members are indexed using a structure called a “B-tree.” This
isn’t a computer science text, so we won’t spend too long on the subject, but it’s valuable
to have a rough understanding of what’s going on behind the scenes, especially if you’re
dealing with groups that have thousands or hundreds of thousands of items.

“B-trees” are data structures that are great for keeping track of large numbers of items,
while still making retrieval (and addition) of items fast. They work by taking a collection
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of items, each of which is orderable according to some scheme like a string name or
numeric identifier, and building up a tree-like “index” to rapidly retrieve an item.

For example, if you have an HDF5 group with a single member, and another group with
a million members, it doesn’t take a million times as long to open an object in the latter
group. Group members are indexed by name, so if you know the name of an object then
HDF5 can traverse the index and quickly retrieve the item. The same is true when
creating a new group member; HDF5 doesn’t have to “insert” the member into the
middle of a big table somewhere, shuffling all the entries around.

Of course, all of this is transparent to the user. Every group in an HDF5 file comes with
an index that tracks members in alphabetical order. Keep in mind this means “C-style”
alphabetical order (whimsically called “ASCIIbetical” order):

>>> f = h5py.File('iterationdemo.hdf5','w')
>>> f.create_group('1')
>>> f.create_group('2')
>>> f.create_group('10')
>>> f.create_dataset('data', (100,))
>>> f.keys()
[u'1', u'10', u'2', u'data']

Files can also contain other optional indices, for example those that track object creation
time, but h5py doesn’t expose them.

This brings us to the first point: h5py will generally iterate over objects in the file in
alphabetical order (especially for small groups), but you shouldn’t rely on this behavior.
Behind the scenes, HDF5 is actually retrieving objects in so-called native order, which
basically means “as fast as possible.” The only thing that’s guaranteed is that if you don’t
modify the group, the order will remain the same.

Dictionary-Style Iteration
In keeping with the general convention that groups work like dictionaries, iterating over
a group in HDF5 provides the names of the members. Remember, these will be supplied
as Unicode strings:

>>> [x for x in f]
[u'1', u'10', u'2', u'data']

There are also iterkeys (equivalent to the preceding), itervalues, and iteritems
methods, which do just what you’d expect:

>>> [y for y in f.itervalues()]
[<HDF5 group "/1" (0 members)>,
 <HDF5 group "/10" (0 members)>,
 <HDF5 group "/2" (0 members)>,
 <HDF5 dataset "data": shape (100,), type "<f4">]
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>>> [(x,y) for x, y in f.iteritems()]
[(u'1', <HDF5 group "/1" (0 members)>),
 (u'10', <HDF5 group "/10" (0 members)>),
 (u'2', <HDF5 group "/2" (0 members)>),
 (u'data', <HDF5 dataset "data": shape (100,), type "<f4">)]

There are also the standard keys, items, and values methods, which produce lists
equivalent to the three preceding examples. This brings us to the first performance tip
involving iteration and groups: unless you really want to produce a list of the 10,000
objects in your group, use the iter* methods.

If you’re using Python 3, you’ll notice that you have only the keys,
values, and items methods. That’s OK; like dictionaries, under Python
3 these return iterables, not lists.

Containership Testing
This is another seemingly obvious performance issue that crops up from time to time.
If you’re writing code like this, DON’T:

>>> if 'name' in group.keys():

This creates and throws away a list of all your group members every time you use it. By
instead using the standard Python containership test, you can leverage the underlying
HDF5 index on object names, which will go very, very fast:

>>> if 'name' in group:

Critically, you can also use paths spanning several groups, although it’s very slightly
slower since the intermediate groups have to be inspected by HDF5:

>>> if 'some/big/path' in group:

Very handy. Keep in mind that like accessing group members, the POSIX-style “parent
directory” symbol ".." won’t work. You won’t even get an error message; HDF5 will look
for a group named ".." and determine it’s not present:

>>> '../1' in f['/1']
False

If you’re manipulating POSIX-style strings and run into this problem, consider “nor‐
malizing” your paths using the posixpath package:

>>> grp = f['/1']
>>> path = "../1"

>>> import posixpath as pp
>>> path = pp.normpath(pp.join(grp.name, path))
>>> path
u'/1'
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>>> path in grp
True

Multilevel Iteration with the Visitor Pattern
Basic iteration works fine for the contents of a single group. But what if you want to
iterate over every single object in the file? Or all objects “below” a certain group?

In the HDF5 world, this is accomplished by visitor iteration. Rather than HDF5 sup‐
plying you with an iterable, you provide a callable and HDF5 calls it with an argument
or two for every object.

Visit by Name
Your entry point is the visit method on the Group class. Let’s create a simple file to test
it out:

>>> f = h5py.File('visit_test.hdf5', 'w')

>>> f.create_dataset('top_dataset', data=1.0)

>>> f.create_group(  'top_group_1' )
>>> f.create_group(  'top_group_1/subgroup_1' )
>>> f.create_dataset('top_group_1/subgroup_1/sub_dataset_1', data=1.0)

>>> f.create_group(  'top_group_2' )
>>> f.create_dataset('top_group_2/sub_dataset_2', data=1.0)

We can supply any callable to visit, which takes one argument, the object name:

>>> def printname(name):
...     print name

>>> f.visit(printname)
top_dataset
top_group_1
top_group_1/subgroup_1
top_group_1/subgroup_1/sub_dataset_1
top_group_2
top_group_2/sub_dataset_2

No particular order is guaranteed, except that when visit enters a subgroup, all the
members will be visited before moving on to the next subgroup. For example, everything
under top_group_1 is listed together, and so is everything under top_group_2.

You’re not required to visit the entire file; visit works just fine on subgroups:

>>> grp = f['top_group_1']
>>> grp.visit(printname)
subgroup_1
subgroup_1/sub_dataset_1
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The visitor pattern is a little different from standard Python iteration, but is quite pow‐
erful once you get used to it. For example, here’s a simple way to get a list of every single
object in the file:

>>> mylist = []
>>> f.visit(mylist.append)

As with all object names in the file, the names supplied to visit are
“text” strings (unicode on Python 2, str on Python 3). Keep this in
mind when writing your callbacks.

Multiple Links and visit
Of course, we know that an HDF5 file is not just a simple tree. Hard links are a great
way to share objects between groups. But how do they interact with visit?

Let’s add a hard link to the subgroup we just explored (top_group_1), and run visit
again to see what happens:

>>> grp['hardlink'] = f['top_group_2']
>>> grp.visit(printname)
hardlink
hardlink/sub_dataset_2
subgroup_1
subgroup_1/sub_dataset_1

Not bad. The group at /top_group_2 is effectively “mounted” in the file
at /top_group_1/hardlink, and visit explores it correctly.

Now let’s try something a little different. We’ll undo that last hard link, and try to trick
visit into visiting sub_dataset_1 twice:

>>> del grp['hardlink']
>>> grp['hardlink_to_dataset'] = grp['subgroup_1/sub_dataset_1']
>>> grp.visit(printname)
hardlink_to_dataset
subgroup_1

What happened? We didn’t see sub_dataset_1 in the output this time.

By design, each object in a file will be visited only once, regardless of how many links
exist to the object. Among other things, this eliminates the possibility of getting stuck
in an endless loop, as might happen if some clever person were to try the following:

>>> f['/root'] = f['/']

There is a trade-off. As we saw in our initial discussion of hard links, there’s no such
thing as the “original” or “real” name for an object. So if multiple links point to your
dataset, when visit supplies a name it may not be the one you expect.
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Visiting Items
Given the name supplied to your callback, you could retrieve the object by simply using
getitem on the group you’re iterating over:

>>> def printobj(name):
...     print grp[name]

But that’s a pain; since the name argument supplied by visit is a relative path, your
function has to know in advance what group it’ll be applied to. The previous example
will work properly only when applied to grp.

Thankfully, HDF5 provides a more general way to deal with this. The method visit
items supplies both the relative name and an instance of each object:

>>> def printobj2(name, obj):
...    print name, obj

>>> grp.visititems(printobj2)
hardlink_to_dataset <HDF5 dataset "hardlink_to_dataset": shape (), type "<f8">
subgroup_1 <HDF5 group "/top_group_1/subgroup_1" (1 members)>

Since each object has to be opened, there is some overhead involved. You’re better off
using visititems only in the case where you really need access to each object; for
example, if you need to inspect attributes.

One way to make visit a little more generic is by using the built-in Python widget
functools.partial. For example, here’s a trivial function that prints the absolute path
of each object in the group:

>>> import posixpath
>>> from functools import partial

>>> def print_abspath(somegroup, name):
...     """ Print *name* as an absolute path
...         somegroup: HDF5 base group (*name* is relative to this)
...         name:      Object name relative to *somegroup*
...     """
...     print posixpath.join(somegroup.name, name)

>>> grp.visit(partial(print_abspath, grp))
/top_group_1/hardlink_to_dataset
/top_group_1/subgroup_1

Using this technique, you can avoid “embedding” the group you intend to iterate over
in the function itself.

Canceling Iteration: A Simple Search Mechanism
There’s a simple way to “bail out” when visiting items. You might notice that our print
name function has no explicit return value; in Python that means that the function re‐
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turns None. If you return anything else, the visit or visititems method will immedi‐
ately stop and return that value.

Let’s suppose that we want to find a dataset that has an attribute with a particular value:

>>> f['top_group_2/sub_dataset_2'].attrs['special'] = 42

Here’s a function that will find such an object, when supplied to visititems:

>>> def findspecial(name, obj):
...     if obj.attrs.get('special') == 42:
...         return obj

>>> out = f.visititems(findspecial)
>>> out
<HDF5 dataset "sub_dataset_2": shape (), type "<f8">

Copying Objects
HDF5 includes built-in facilities for copying objects from one place to another, freeing
you from the tedious job of recursively walking the HDF5 tree, checking for duplicate
links, copying over attributes, etc.

Single-File Copying
Let’s create a simple file to test this, with two groups and a dataset:

>>> f = h5py.File('copytest','w')
>>> f.create_group('mygroup')
>>> f.create_group('mygroup/subgroup')
>>> f.create_dataset('mygroup/apples', (100,))

Copying a dataset is straightforward, and results in a brand-new dataset, not a reference
or link to the old one:

>>> f.copy('/mygroup/apples', '/oranges')
>>> f['oranges'] == f['mygroup/apples']
False

The great thing about the built-in HDF5 copy() is that it correctly handles recursively
copying groups:

>>> f.copy('mygroup', 'mygroup2')
>>> f.visit(printname)
oranges
mygroup
mygroup/apples
mygroup/subgroup
mygroup2
mygroup2/apples
mygroup2/subgroup
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You’re not limited to using paths for source and destination. If you already have an open
Dataset object, for example, you can copy it to a Group or File object:

>>> dset = f['/mygroup/apples']
>>> f.copy(dset, f)
>>> f.visit(printname)
apples
oranges
mygroup
mygroup/dataset
mygroup/subgroup
mygroup2
mygroup2/dataset
mygroup2/subgroup

Since the destination is a group, the dataset is created with its “base name” of apples,
analagous to how files are moved with the UNIX cp command.

There’s no requirement that the source and destination be the same file. This is one of
the advantages of using File or Group objects instead of paths; the corresponding objects
will be copied regardless of which file they reside in. If you’re trying to write generic
code, it’s good to keep this in mind.

Object Comparison and Hashing
Let’s take a break from links and iteration to discuss a more subtle aspect of how HDF5
behaves. In lots of the preceding examples, we used Python’s equality operator to see if
two groups are “the same thing”:

>>> f = h5py.File('objectdemo.hdf5','w')
>>> grpx = f.create_group('x')
>>> grpy = f.create_group('y')
>>> grpx == f['x']
True
>>> grpx == grpy
False

If we investigate further, we discover that this kind of equality testing is independent of
whether the Python objects are one and the same:

>>> id(grpx)  # Uniquely identifies the Python object "grpx"
73399280
>>> id(f['x'])
73966416

In h5py, equality testing uses the low-level HDF5 facilities to determine which refer‐
ences (identifiers, in the HDF5 lingo) point to the same groups or datasets on disk. This
information is also used to compute the hash of an object, which means you can safely
use Group, File, and Dataset objects as dictionary keys or as the members of sets:
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>>> hash(grpx)
587327447
>>> hash(f['x'])
587327447

There’s one more wrinkle for equality testing, and you may bump into it when using
the .file property on objects: File and Group instances will compare equally when the
Group instance represents the root group:

>>> f == f['/']
True

This is a consequence of the “double duty” File instances perform, representing both
your file on disk and also the root group on the HDF5 side.

Finally, the truth value of an HDF5 object lets you see whether it’s alive or dead:

>>> bool(grpx)
True
>>> f.close()
>>> grpx
<Closed HDF5 group>
>>> bool(grpx)
False

Next, we discuss one thing that makes HDF5 so useful in real-world science: the ability
to store data and metadata together side by side using attributes.
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CHAPTER 6

Storing Metadata with Attributes

Groups and datasets are great for keeping data organized in a file. But the feature that
really turns HDF5 into a scientific database, instead of just a file format, is attributes.

Attributes are pieces of metadata you can stick on objects in the file. They can hold
equipment settings, timestamps, computation results, version numbers, virtually any‐
thing you want. They’re a key mechanism for making self-describing files. Unlike simple
binary formats that just hold arrays of numbers, judicious use of metadata makes your
files scientifically useful all on their own.

Attribute Basics
You can attach attributes to any kind of object that is linked into the HDF5 tree structure:
groups, datasets, and even named datatypes. To demonstrate, let’s create a new file con‐
taining a single dataset:

>>> f = h5py.File('attrsdemo.hdf5','w')
>>> dset = f.create_dataset('dataset',(100,))

Looking at the properties attached to the dset object, there’s one called .attrs:

>>> dset.attrs
<Attributes of HDF5 object at 73767504>

This is a little proxy object (an instance of h5py.AttributeManager) that lets you in‐
teract with attributes in a Pythonic way. As was the case with groups, the main thing to
keep in mind here is that the attrs object works mostly like a Python dictionary.

For example, you can create a new attribute simply by assigning a name to a value:

>>> dset.attrs['title'] = "Dataset from third round of experiments"
>>> dset.attrs['sample_rate'] = 100e6    # 100 MHz digitizer setting
>>> dset.attrs['run_id'] = 144
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When retrieving elements, we get back the actual value, not an intermediate object like
a Dataset:

>>> dset.attrs['title']
'Dataset from third round of experiments'
>>> dset.attrs['sample_rate']
100000000.0
>>> dset.attrs['run_id']
144

Like groups (and Python dictionaries), iterating over the .attrs object provides the
attribute names:

>>> [x for x in dset.attrs]
[u'title', u'sample_rate', u'run_id']

You’ll notice that like object names, the names of attributes are always returned as “text”
strings; this means unicode on Python 2, which explains the u prefix.

Attributes don’t have the same strict rules as groups for item deletion. You can freely
overwrite attributes just by reusing the name:

>>> dset.attrs['another_id'] = 42
>>> dset.attrs['another_id'] = 100

Trying to access missing attributes raises KeyError, although as with Group you don’t
get the name of the missing attribute:

>>> del dset.attrs['another_id']
>>> dset.attrs['another_id']
KeyError: "can't open attribute (Attribute: Can't open object)"

There are also the usual methods like iterkeys, iteritems, values, and so on. They
all do what you expect:

>>> [(name, val) for name, val in dset.attrs.iteritems()]
[(u'title', 'Dataset from third round of experiments'),
 (u'sample_rate', 100000000.0),
 (u'run_id', 144)]

There generally aren’t that many attributes attached to an object, so worrying about
items versus iteritems, etc., is less important from a performance perspective.

There is also a get method that (unlike the Group version) is a dictionary-style get:

>>> dset.attrs.get('run_id')
144
>>> print dset.attrs.get('missing')
None
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Type Guessing
When you create a dataset, you generally specify the data type you want by providing a
NumPy dtype object. There are exceptions; for example, you can get a single-
precision float by omitting the dtype when calling create_dataset. But every dataset
has an explicit dtype, and you can always discover what it is via the .dtype property:

>>> dset.dtype
dtype('float32')

In contrast, with attributes h5py generally hides the type from you. It’s important to
remember that there is a definite type in the HDF5 file. The dictionary-style interface
to attributes just means that it’s usually inferred from what you provide.

Let’s flush our file to disk with:

>>> f.flush()

and look at it with h5ls:

$ h5ls -vlr attrsdemo.hdf5
Opened "attrsdemo.hdf5" with sec2 driver.
/                        Group
    Location:  1:96
    Links:     1
/dataset                 Dataset {100/100}
    Attribute: run_id    scalar
        Type:      native int
        Data:  144
    Attribute: sample_rate scalar
        Type:      native double
        Data:  1e+08
    Attribute: title     scalar
        Type:      variable-length null-terminated ASCII string
        Data:  "Dataset from third round of experiments"
    Location:  1:800
    Links:     1
    Storage:   400 logical bytes, 0 allocated bytes
    Type:      native float

In most cases, the type is determined by simply passing the value to np.array and then
storing the resulting object. For integers on 32-bit systems you would get a 32-bit (“na‐
tive”) integer:

>>> np.array(144).dtype
dtype('int32')

This explains the “native int” type for run_id.

You’re not limited to scalar values, by the way. There’s no problem storing whole NumPy
arrays in the file:
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>>> dset.attrs['ones'] = np.ones((100,))
>>> dset.attrs['ones']
array([ 1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,
        1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,
        1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,
        1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,
        1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,
        1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,
        1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,
        1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.])

There are limits, though. In HDF5, with the default settings (“compact” storage, as
opposed to “dense” storage), attributes are limited to a size of 64k. For example, if we
try to store a (100, 100) array, it complains:

>>> dset.attrs['ones'] = np.ones((100, 100))
ValueError: unable to create attribute (Attribute: Unable to initialize object)

Most regrettably, we discover that in this case the previous attribute was wiped out:

>>> dset.attrs['ones']
KeyError: "can't open attribute (Attribute: Can't open object)"

This is one of the (very few) cases where h5py’s interaction with the
file is not atomic. Exercise caution with larger array attributes.

One way around this limitation is simply to store the data in a dataset, and link to it
with an object reference (see Chapter 8):

>>> ones_dset = f.create_dataset('ones_data', data=np.ones((100,100)))
>>> dset.attrs['ones'] = ones_dset.ref
>>> dset.attrs['ones']
<HDF5 object reference>

To access the data, use the reference to retrieve the dataset and read it out:

>>> ones_dset = f[dset.attrs['ones']]
>>> ones_dset[...]
array([[ 1.,  1.,  1., ...,  1.,  1.,  1.],
       [ 1.,  1.,  1., ...,  1.,  1.,  1.],
       [ 1.,  1.,  1., ...,  1.,  1.,  1.],
       ...,
       [ 1.,  1.,  1., ...,  1.,  1.,  1.],
       [ 1.,  1.,  1., ...,  1.,  1.,  1.],
       [ 1.,  1.,  1., ...,  1.,  1.,  1.]])

Strings and File Compatibility
There are a couple of types that have special handling. First, there is a subtle difference
in HDF5 regarding the type of a string. In the previous example, we assigned a Python
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string as an attribute. That created a variable-length ASCII string (“Variable-Length
Strings” on page 89).

In contrast, an instance of np.string_ would get stored as a fixed-length string in the
file:

>>> dset.attrs['title_fixed'] = np.string_("Another title")

This generally isn’t an issue, but some older FORTRAN-based programs can’t deal with
variable-length strings. If this is a problem for your application, use np.string_, or
equivalently, arrays of NumPy type S.

By the way, you can also store Unicode strings in the file. They’re written out with the
HDF5-approved UTF-8 encoding:

>>> dset.attrs['Yet another title'] = u'String with accent (\u00E9)'
>>> f.flush()

Here’s what the file looks like now, with our fixed-length and Unicode strings inside:

$ h5ls -vlr attrsdemo.hdf5/dataset
Opened "attrsdemo.hdf5" with sec2 driver.
dataset                  Dataset {100/100}
    Attribute: Yet\ another\ title scalar
        Type:      variable-length null-terminated UTF-8 string
        Data:  "String with accent (\37777777703\37777777651)"
    Attribute: ones      scalar
        Type:      object reference
        Data:  DATASET-1:70568
    Attribute: run_id    scalar
        Type:      native int
        Data:  144
    Attribute: sample_rate scalar
        Type:      native double
        Data:  1e+08
    Attribute: title     scalar
        Type:      variable-length null-terminated ASCII string
        Data:  "Dataset from third round of experiments"
    Attribute: title_fixed scalar
        Type:      13-byte null-padded ASCII string
        Data:  "Another title"
    Location:  1:800
    Links:     1
    Storage:   400 logical bytes, 0 allocated bytes
    Type:      native float

There is one more thing to mention about strings, and it has to do with the strict sep‐
aration in Python 3 between byte strings and text strings.

When you read an attribute from a file, you generally get an object with the same type
as in HDF5. So if we were to store a NumPy int32, we would get an int32 back.
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In Python 3, this means that most of the HDF5 strings “in the wild” would be read as
byte strings, which are very awkward to deal with. So in Python 3, scalar strings are
always converted to text strings (type str) when they are read.

Python Objects
The question of storing generic Python objects in HDF5 comes up now and then. You’ll
notice that you can’t store an arbitrary object as an attribute (or indeed, as a dataset) in
HDF5:

>>> dset.attrs['object'] = {}
TypeError: Object dtype dtype('object') has no native HDF5 equivalent

This is intentional. As the error message suggests, HDF5 has no “native,” built-in type
to represent a Python object, and serialized objects in a portability-oriented format like
HDF5 are generally recognized as bad news. Storing data in “blob” form defeats the
wonderful type system and interoperability of HDF5.

However, I can’t tell you how to write your application. If you really want to store Python
objects, the best way to do so is by “pickling” (serializing) them to a string:

>>> import pickle
>>> pickled_object = pickle.dumps({'key': 42}, protocol=0)
>>> pickled_object
"(dp0\nS'key'\np1\nI42\ns."
>>> dset.attrs['object'] = pickled_object
>>> obj = pickle.loads(dset.attrs['object'])
>>> obj
{'key': 42}

You will have to manually keep track of which strings are pickled objects. Technically
strings created in this fashion support only ASCII characters, so it’s best to stick with
pickle protocol “0.”

Explicit Typing
Sometimes, for external compatibility, you may need to create attributes with very pre‐
cise data types and the default type guessing won’t do. Or, you may have received a file
from a colleague and don’t want to change the types of attributes by overwriting them.

There are a couple of mechanisms to deal with this. The .attrs proxy object has a
method create, which takes a name, value, and a dtype:

>>> f = h5py.File('attrs_create.hdf5','w')
>>> dset = f.create_dataset('dataset', (100,))
>>> dset.attrs.create('two_byte_int', 190, dtype='i2')
>>> dset.attrs['two_byte_int']
190
>>> f.flush()
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Looking at the file in h5ls:

$ h5ls -vlr attrs_create.hdf5
Opened "attrs_create.hdf5" with sec2 driver.
/                        Group
    Location:  1:96
    Links:     1
/dataset                 Dataset {100/100}
    Attribute: two_byte_int scalar
        Type:      native short
        Data:  190
    Location:  1:800
    Links:     1
    Storage:   400 logical bytes, 0 allocated bytes
    Type:      native float

This is a great way to make sure you get the right flavor of string. Unlike scalar strings,
by default when you provide an array-like object of strings, they get sent through NumPy
and end up as fixed-length strings in the file:

>>> dset.attrs['strings'] = ["Hello", "Another string"]
>>> dset.attrs['strings']
array(['Hello', 'Another string'],
      dtype='|S14')

In contrast, if you specify the “variable-length string” special dtype (see Chapter 7):

>>> dt = h5py.special_dtype(vlen=str)
>>> dset.attrs.create('more_strings', ["Hello", "Another string"], dtype=dt)
>>> dset.attrs['more_strings']
array([Hello, Another string], dtype=object)

Looking at the file, the two attributes have subtly different storage techniques. The
original attribute is stored as a pair of 14-byte fixed-length strings, while the other is
stored as a pair of variable-length strings:

$ h5ls -vlr attrs_create.hdf5
Opened "attrs_create.hdf5" with sec2 driver.
/                        Group
    Location:  1:96
    Links:     1
/dataset                 Dataset {100/100}
    Attribute: more_strings {2}
        Type:      variable-length null-terminated ASCII string
        Data:  "Hello", "Another string"
    Attribute: strings   {2}
        Type:      14-byte null-padded ASCII string
        Data:  "Hello" '\000' repeats 8 times, "Another string"
    Attribute: two_byte_int scalar
        Type:      native short
        Data:  190
    Location:  1:800
    Links:     1
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    Storage:   400 logical bytes, 0 allocated bytes
    Type:      native float

It may seem like a small distinction, but when talking to third-party code this can be
the difference between a working program and an error message.

Finally, there’s another convenience method called modify, which as the name suggests
preserves the type of the attribute:

>>> dset.attrs.modify('two_byte_int', 33)
>>> dset.attrs['two_byte_int']
33

Keep in mind this may have unexpected consequences when the type of the attribute
can’t hold the value you provide. In this case, the value will clip: 

>>> dset.attrs.modify('two_byte_int', 40000)
>>> dset.attrs['two_byte_int']
32767

Real-World Example: Accelerator Particle Database
Here’s an example of how the groups, datasets, and attributes in HDF5 can be combined
to solve a real-world data management problem. Recently, the University of Colorado
installed a new electrostatic dust accelerator facility under a grant from NASA. This
device fires charged micrometer-sized dust grains into a target chamber at speeds rang‐
ing from 1–100 km/s, to simulate the impact of dust grains on surfaces and hardware
in space.

Application Format on Top of HDF5
The machine generates huge quantities of data. Every particle, and there can be up to
10 per second for hours on end, generates three digitized waveforms 100,000 points
long. A computer system analyzes these waveforms to figure out what the mass of the
particle is and how fast it’s going. The resulting waveforms and speed/mass estimates
are recorded in an HDF5 file for use by the project scientists.

So the basic unit is a particle “event,” which has three floating-point waveforms, each of
which has some other properties like sampling rate, digitizer range, etc. Then for each
event we have metadata estimating particle mass and speed, as well as some top-level
metadata like a file timestamp.

Let’s use h5ls to peek inside one of these files:

Opened "November_Run3.hdf5" with sec2 driver.
/                        Group
    Attribute: timestamp scalar
        Type:      native long long
        Data:  1352843341201
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    Attribute: version_number scalar
        Type:      native int
        Data:  1
    Location:  1:96
    Links:     1
/0                       Group
    Attribute: experiment_name scalar
        Type:      5-byte null-terminated ASCII string
        Data:  "Run3"
    Attribute: id_dust_event scalar
        Type:      native long long
        Data:  210790
    Attribute: mass      scalar
        Type:      native float
        Data:  3.81768e-17
    Attribute: velocity  scalar
        Type:      native float
        Data:  9646.3
    Location:  1:11637136
    Links:     1

/0/first_detector        Dataset {100000/100000}
    Attribute: dt        scalar
        Type:      native float
        Data:  2e-08
    Location:  1:16048056
    Links:     1
    Storage:   400000 logical bytes, 400000 allocated bytes, 100.00% utilization
    Type:      native float

/0/second_detector       Dataset {100000/100000}
    Attribute: dt        scalar
        Type:      native float
        Data:  2e-08
    Location:  1:16449216
    Links:     1
    Storage:   400000 logical bytes, 400000 allocated bytes, 100.00% utilization
    Type:      native float

/0/third_detector        Dataset {100000/100000}
    Attribute: dt        scalar
        Type:      native float
        Data:  2e-08
    Location:  1:16449616
    Links:     1
    Storage:   400000 logical bytes, 400000 allocated bytes, 100.00% utilization
    Type:      native float

/1                       Group
...
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There’s a lot going on here, but it’s pretty straightforward. The root group has attributes
for a timestamp (when the file was written), along with a version number for the “format”
used to structure the file using groups, datasets, and attributes.

Then each particle that goes down the beamline has its own group. The group attributes
record the analyzed mass and velocity, along with an integer that uniquely identifies the
event. Finally, the three waveforms with our original data are recorded in the particle
group. They also have an attribute, in this case giving the sampling interval of the time
series.

Analyzing the Data
The crucial thing here is that the metadata required to make sense of the raw waveforms
is stored right next to the data. For example, time series like our waveforms are useless
unless you also know the time spacing of the samples. In the preceding file, that time
interval (dt) is stored as an attribute on the waveform dataset. If we wanted to plot a
waveform with the correct time scaling, all we have to do is:

import pyplot as p
f = h5py.File("November_Run3.hdf5",'r')

# Retrieve HDF5 dataset
first_detector = f['/0/first_detector']

# Make a properly scaled time axis
x_axis = np.arange(len(first_detector))*first_detector.attrs['dt']

# Plot the result
p.plot(x_axis, first_detector[...])

There’s another great way HDF5 can simplify your analysis. With other formats, it’s
common to have an input file or files, a code that processes them, and a “results” file
with the output of your computation. With HDF5, you can have one file containing both
the input data and the results of your analysis.

For example, suppose we wrote a piece of code that determined the electrical charge on
the particle from the waveform data. We can store this right in the file next to the
estimates for mass and velocity:

from some_science_package import charge_estimator

def update_particle_group(grp):

     # Retrieve waveform data
     first_det = grp['first_detector'][...]
     second_det = grp['second_detector'][...]

     # Retrieve time scaling data
     dt = grp['first_detector'].attrs['dt']
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     # Perform charge estimation
     charge = charge_estimator(first_det, second_det, interval=dt)

     # Write charge to file
     grp.attrs['charge'] = charge
     print "For group %s, got charge %.2g" % (grp.name, charge)

>>> for grp in f.itervalues():
...     update_particle_group(grp)

The same goes for analysis that creates output datasets instead of just scalars. The key
point here is to transition from thinking of the HDF5 container as a file to treating it as
a database.

Don’t get carried away. Keep backups of your data in case you acci‐
dentally do something wrong.

We’ve covered the four main objects in the HDF5 universe: files, groups, datasets, and
attributes. Now it’s time to take a break and talk about the HDF5 type system, and what
it can do for you.
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CHAPTER 7

More About Types

One of the best features of HDF5 is the huge variety of datatypes it supports. In some
cases, the HDF5 feature set goes beyond NumPy. To maintain performance and create
interoperable files, it’s important to understand exactly what’s going on when you use
each type.

The HDF5 Type System
As with NumPy, all data in HDF5 has an associated type. The HDF5 type system is quite
flexible and includes the usual suspects like integers and floats of various precisions, as
well as strings and vector types.

Table 7-1 shows the native HDF5 datatypes and how they map to NumPy. Keep in mind
that most of the types (integers and floats, for example) support a number of different
precisions. For example, on most NumPy installations integers come in 1-, 2-, 4-, and
8-byte widths.

Table 7-1. HDF5 types
Native HDF5 type NumPy equivalent

Integer dtype("i")

Float dtype("f")

Strings (fixed width) dtype("S10")

Strings (variable width) h5py.special_dtype(vlen=bytes)

Compound dtype([ ("field1": "i"), ("field2": "f") ])

Enum h5py.special_dtype(enum=("i",{"RED":0, "GREEN":1, "BLUE":2}))

Array dtype("(2,2)f")

Opaque dtype("V10")

Reference h5py.special_dtype(ref=h5py.Reference)
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The h5py package (and PyTables) implement a few additional types on top of this sys‐
tem. Table 7-2 lists additions made by h5py that are described in this chapter.

Table 7-2. Additional Python-side types
Python type NumPy expression Stored as

Boolean np.dtype("bool") HDF5 enum with FALSE=0, TRUE=1

Complex np.dtype("complex") HDF5 compound with fields r and i

Integers and Floats
HDF5 supports all the NumPy integer sizes (1 byte to 8 bytes), signed and unsigned,
little-endian and big-endian. Keep in mind that the default behavior for HDF5 when
storing a too-large value in a too-small dataset is to clip, not to “roll over” like some
versions of NumPy:

>>> f = h5py.File("typesdemo.hdf5")
>>> dset = f.create_dataset('smallint', (10,), dtype=np.int8)
>>> dset[0] = 300
>>> dset[0]
127
>>> a = np.zeros((10,), dtype=np.int8)
>>> a[0] = 300
>>> a[0]
-44

For floating-point numbers, HDF5 supports both single- and double-precision floats
(4 and 8 bytes respectively) out of the box.

The HDF5 type representation system is very powerful, and among other things it can
represent unusual floating-point precisions. “Half-precision” floats are an interesting
case. These tiny 2-byte floats, available in NumPy as float16, are used for storage in
applications like image and video processing, since they consume only half the space of
the equivalent single-precision float. They’re great where precision isn’t that important
and more dynamic range is needed than a 16-bit integer can provide.

>>> dset = f.create_dataset('half_float', (100,100,100), dtype=np.float16)

Keep in mind this is a storage format only; trying to do math on half-precision floats in
NumPy will require casting and therefore be slow. Use Dataset.read_direct, the Da
taset.astype context manager, or simply convert them after reading:

>>> a = dset[...]
>>> a = a.astype(np.float32)

But if you have values roughly between 10-8 and 60,000, and aren’t too bothered about
precision, they’re a great way to save disk space.
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Fixed-Length Strings
Strings in HDF5 are a bit of a pain; you got a taste of that in Chapter 6.

As we’ll see in the next section, most real-world strings don’t fit neatly into a constant
amount of storage. But fixed-width strings have been around since the FORTRAN days
and fit nicely into the NumPy world.

In NumPy, these are generally created using the “S” dtype. This is a flexible dtype that
lets you set the string length when you create the type. HDF5 supports fixed-length
strings natively:

>>> dt = np.dtype("S10")  # 10-character byte string
>>> dset = f.create_dataset('fixed_string', (100,), dtype=dt)
>>> dset[0] = "Hello"
>>> dset[0]
'Hello'

Like NumPy fixed-width strings, HDF5 will truncate strings that are too big:

>>> dset[0] = "thisstringhasmorethan10characters"
>>> dset[0]
'thisstring'

Technically, these are fixed-length byte strings, which means they use one byte per
character. In HDF5, they are assumed to store ASCII text only. NumPy also supports
fixed-width Unicode strings, which use multiple bytes to store each character and can
represent things outside the ASCII range. The NumPy dtype for this is kind “U,” as in
dtype("U10").

Unfortunately, HDF5 does not support such “wide-character” Unicode strings, so
there’s no way to directly store “U” strings in a file. However, you aren’t out of luck on
the Unicode front. First, we’ll have to take a detour and discuss one of the best features
in HDF5: variable-length strings.

Variable-Length Strings
If you’ve used NumPy for a while, you’re used to one subtle but important aspect of its
design: all elements in an array have the same size. There are a lot of advantages to this
design; for example, to locate the 115th element of a dataset containing 4-byte floats,
you know to look 460 bytes from the beginning of the array. And most types you use in
everyday computation are of a fixed size—once you’ve chosen to work with double-
precision floats, for example, they’re all 8 bytes wide.

This begins to break down when you come to string types. As we saw earlier, NumPy
natively includes two string types: one 8-bit “ASCII” string type and one 32-bit “Uni‐
code” string type. You have to explicitly set the size of the string when you create the
type. For example, let’s create a length-3 ASCII string array and initialize it:
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>>> dt = np.dtype('S3')
>>> a = np.array( [ "a", "ab", "abc", "abcd" ], dtype=dt)
>>> a
array(['a', 'ab', 'abc', 'abc'],
      dtype='|S3')

The limitation is obvious: elements with more than three characters are simply trun‐
cated, and the information is lost. It’s tempting to simply increase the length of the string
type, say to 100, or 256. But we end up wasting a lot of memory, and there’s still no
guarantee our guess will be large enough:

# Read first 5 lines from file
# Ed M. 4/3/12: Increased max line size from 100 to 256 per issue #344
# Ed M. 5/1/12: Increased to 1000 per issue #345
# Ed M. 6/2/12: Fixed.
# TODO: mysterious crashes with MemoryError when many threads running (#346)

a = np.empty((5,), dtype='S100000')
for idx in xrange(5):
     a[idx] = textfile.readline()

This isn’t a problem in every application, of course. But there’s no getting around the
fact that strings in real-world data can have virtually any length.

Fortunately, HDF5 has a mechanism to handle this: variable-length strings. Like native
Python strings (and strings in C), these can be any width that fits in memory. Here’s
how to take advantage of them.

The vlen String Data Type
First, since NumPy doesn’t support variable-length strings at all, we need to use a special
dtype provided by h5py:

>>> dt = h5py.special_dtype(vlen=str)
>>> dt
dtype(('|O4', [(({'type': <type 'str'>}, 'vlen'), '|O4')]))

That looks like a mess. But it’s actually a standard NumPy dtype with some metadata
attached. In this case, the underlying type is the NumPy object dtype:

>>> dt.kind
'O'

NumPy arrays of kind "O" hold ordinary Python objects. So the dtype effectively says,
“This is an object array, which is intended to hold Python strings.”
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Depending on your version of h5py, you may see a different result
when you print the dtype; the details of how the “special” data is at‐
tached vary. Don’t depend on any specific implementation. Always use
the special_dtype function and don’t try to piece one together your‐
self.

Working with vlen String Datasets
You can use a “special” dtype to create an array in the normal fashion. Here we create a
100-element variable-length string dataset:

>>> dset = f.create_dataset('vlen_dataset', (100,), dtype=dt)

You can write strings into it from anything that looks “string-shaped,” including ordi‐
nary Python strings and fixed-length NumPy strings:

>>> dset[0] = "Hello"
>>> dset[1] = np.string_("Hello2")
>>> dset[3] = "X"*10000

Retrieving a single element, you get a Python string:

>>> out = dset[0]
>>> type(out)
str

Retrieving more than one, you get an object array full of Python strings:

>>> dset[0:2]
array([Hello, Hello2], dtype=object)

There’s one caveat here: for technical reasons, the array returned has a plain-vanilla
“object” dtype, not the fancy dtype we created from h5py.special_dtype:

>>> out = dset[0:1]
>>> out.dtype
dtype('object')

This is one of very few cases where dset[...].dtype != dset.dtype.

Byte Versus Unicode Strings
The preceding examples, like the rest of this book, are written assuming you are using
Python 2. However, in both Python 2 and 3 there exist two “flavors” of string you should
be aware of. They are stored in the file slightly differently, and this has implications for
both internationalized applications and data portability.

A complete discussion of the bytes/Unicode mess in Python is beyond the scope of this
book. However, it’s important to discuss how the two types interact with HDF5.

Variable-Length Strings | 91



The Python 2 str type, used earlier, is more properly called a byte string in the Python
world. As the name implies, these are sequences of single-byte elements. They’re avail‐
able on both Python 2 and 3 under the name bytes (it’s a simple alias for str on Python
2, and a separate type on Python 3). They’re intended to hold strictly binary strings,
although in the Python 2 world they play a dual role, generally representing ASCII or
Latin-1 encoded text.

In the HDF5 world, these represent “ASCII” strings. Although no checking is done, they
are expected to contain values in the range 0-127 and represent plain-ASCII text. When
you create a dataset on Python 2 using:

>>> h5py.special_dtype(vlen=str)

or the equivalent-but-more-readable:

>>> h5py.special_dtype(vlen=bytes)

the underlying dataset is created with an ASCII character set. Since there are many third-
party applications for HDF5 that understand only ASCII strings, this is by far the most
compatible configuration.

Using Unicode Strings
The Python 2 unicode type properly represents “text” strings, in contrast to the str/
bytes “byte” strings just discussed. On Python 3, “byte” strings are called bytes and the
equivalent “text” strings are called—wait for it—str. Wonderful.

These strings hold sequences of more abstract Unicode characters. You’re not supposed
to worry about how they’re actually represented. Before you can store them somewhere,
you need to explicitly encode them, which means translating them into byte sequences.
The rules that translate these “text” strings into byte strings are called encodings. HDF5
uses the UTF-8 encoding, which is very space-efficient for strings that contain mainly
Western characters.

You can actually store these “Unicode” or “text” strings directly in HDF5, by using a
similar “special” dtype:

>>> dt = h5py.special_dtype(vlen=unicode)
>>> dt
dtype(('|O4', [(({'type': <type 'unicode'>}, 'vlen'), '|O4')]))

Like before, you can create datasets and interact with them. But now you can use non-
ASCII characters:

>>> dset = f.create_dataset('vlen_unicode', (100,), dtype=dt)
>>> dset[0] = "Hello"
>>> dset[1] = u"Accent: \u00E9"
>>> dset[0]
u'Hello'
>>> dset[1]
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u'Accent: \xe9'
>>> print dset[1]
Accent: é

When you create this kind of a dataset, the underlying HDF5 character set is set to
“UTF-8.” The only disadvantage is that some older third-party applications, like IDL,
may not be able to read your strings. If compatibility with legacy code like this is essential
for your application, make sure you test!

Remember the default string on Python 3, str, is actually a Unicode
string. So on Python 3, h5py.special_dtype(vlen=str) will give you
a UTF-8 dataset, not the compatible-with-everything ASCII dataset.
Use vlen=bytes instead to get an ASCII dataset.

Don’t Store Binary Data in Strings!
Finally, note that HDF5 will allow you to store raw binary data using the “ASCII” dataset
dtype created with special_dtype(vlen=bytes). This may work, but is generally con‐
sidered evil. And because of how the strings are handled internally, if your binary string
has NULLs in it ("\x00"), it will be silently truncated!

The best way to store raw binary data is with the “opaque” type (see “Opaque Types” on
page 98).

Future-Proofing Your Python 2 Application
Finally, here are some simple rules you can follow to keep the bytes/Unicode mess from
driving you mad. They will also help you when porting to Python 3, using the context-
free translation tool 2to3 that ships with Python.

1. Keep the text-versus-bytes distinction clear in your mind, and cleanly separate the
two in code.

2. Always use the alias bytes instead of str when you’re sure you want a byte string.
For literals, you can even use the “b” prefix, for example, b"Hello". In particular,
when calling special_dtype to create a byte string, always use bytes.

3. For text strings use str, or better yet, unicode. Unicode literals are entered with a
leading “u”: u"Hello".

Compound Types
For some kinds of data, it makes sense to bundle closely related values together into a
single element. The classic example is a C struct: multiple pieces of data that are handled
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together but can individually be accessed. Another example would be tables in a SQL-
style database or a CSV file with multiple column names; each element of data (a row)
consists of several related pieces of data (the column values).

NumPy supports this feature through structured arrays, which are similar to (but not
the same as) the recarray class. The dtype for these arrays contains a series of fields,
each of which has a name and its own sub-dtype. Here’s an example: suppose we wanted
to store 100 data elements from a weather-monitoring experiment, which periodically
gives us values for temperature, pressure, and wind speed:

>>> dt = np.dtype([("temp", np.float), ("pressure", np.float), ("wind", 
np.float)])
>>> a = np.zeros((100,), dtype=dt)

In NumPy, you can use a single field name (e.g., "temp") as an index, which in this
example would return a shape-(100,) array of floats:

>>> out = a["temp"]
>>> out.shape
(100,)
>>> out.dtype
dtype('float64')

When you access a single element, you get back an object that supports dictionary-style
access on the field names:

>>> out = a[0]
>>> out
(0.0, 0.0, 0.0)
>>> out["temp"]
0.0

With HDF5, you have a little more flexibility. Let’s use the same dtype to create a dataset
in our file:

>>> dset = f.create_dataset("compound", (100,), dtype=dt)

You’re not limited to a single field when slicing into the dataset. We can access both the
"temp" and pressure fields:

>>> out = dset["temp","pressure"]
>>> out.shape
(100,)
>>> out.dtype
dtype([('temp', '<f8'), ('pressure', '<f8')])

We can even mix field names and slices, for example to retrieve only the last 10 tem‐
perature points:

>>> out = dset["temp", 90:100]
>>> out.shape
(10,)
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>>> out.dtype
dtype('float64')

This process is very efficient; HDF5 only reads the fields you request from disk. Likewise,
you can choose to “update” only those fields you wish. If we were to set all the temper‐
atures we just read to a new value and write back out:

>>> out[...] = 98.6
>>> dset["temp", 90:100] = out

HDF5 updates only the temp field in each record. So if, for example, you want to modify
only the temperature or pressure part of the dataset, you can cut your memory use by
a factor of three.

Complex Numbers
Both NumPy and Python itself support complex numbers. These objects consist of two
floating-point numbers pasted together, one representing the real part, and one the
imaginary part of the number. In NumPy, you can have single precision (8 bytes total),
double precision (16 bytes total), or extended precision (24 bytes total):

>>> dset = f.create_dataset('single_complex', (100,), dtype='c8')

While HDF5 has no out-of-the-box representation for complex numbers, a standard of
sorts has arisen, to which h5py adheres. Complex numbers are stored as a two-element
compound, the real part labelled r, and the imaginary part labelled i. Keep this in mind
if you want to access the data in other programs like IDL or MATLAB. Here’s what the
dataset we created looks like with h5ls:

Opened "test.hdf5" with sec2 driver.
/                        Group
    Location:  1:96
    Links:     1
/single_complex          Dataset {100/100}
    Location:  1:800
    Links:     1
    Storage:   800 logical bytes, 0 allocated bytes
    Type:      struct {
                   "r"                +0    native float
                   "i"                +4    native float
               } 8 bytes

Enumerated Types
Those of you who have used C will recognize this next datatype. In the HDF5 world,
enumerated types or enums are integer datatypes for which certain values are associated
with text tags. For example, for a dataset of type np.uint8 you might define 0 to mean
RED, 1 to mean GREEN, and 2 to mean BLUE.
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The point of all this is to store the “semantic” meaning of these values as close as possible
to the data itself, rather than, for example, in Appendix G of a manual that nobody reads.

There’s no native concept for this in the NumPy world, so we fall back again to our
friend h5py.special_dtype. In this case, we use a different keyword, enum, and supply
both a base type and dictionary mapping names to values:

>>> mapping = {"RED": 0, "GREEN": 1, "BLUE": 2}
>>> dt = h5py.special_dtype( enum=(np.int8, mapping) )

Datasets you create with this type work just like regular integer datasets:

>>> dset = f.create_dataset('enum', (100,), dtype=dt)
>>> dset[0]
0

Like variable-length strings, data you read from the dataset will have the extra “special
dtype” information stripped off:

>>> dset[0].dtype
dtype('int8')

Keep in mind that in both HDF5 and NumPy, no checking is performed to make sure
you keep to values specified in the enum. For example, if you were to assign one element
to a different value, HDF5 will happily store it:

>>> dset[0] = 100
>>> dset[0]
100

It’s strictly on the honor system.

HDF5 itself doesn’t like to convert between integers and enums. So if
you create an enum dataset, keep in mind that people who read your
data will have to explicitly read it as an enum. Generally this works
fine, but as always, if you’re interacting with third-party code it’s a good
idea to test.

Booleans
When storing Boolean (True/False) flags, people often resort to simply using integers.
In Chapter 3, we saw that NumPy natively supports arrays of Booleans. They have their
own data type, np.bool. NumPy hides the storage type from you, but behind the scenes,
arrays of type bool are stored as single-byte integers.

There’s no native HDF5 Boolean type, but like complex numbers, h5py automatically
provides one for you (in this case using an enum). The base type is np.int8 and the
mapping is {"FALSE": 0, "TRUE": 1}. Let’s create a Boolean dataset:
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>>> with h5py.File('bool.hdf5','w') as f2:
...     f.create_dataset('bool', (100,), dtype=np.bool)

And now let’s see how it looks in the file, again using h5ls:

Opened "bool.hdf5" with sec2 driver.
/                        Group
    Location:  1:96
    Links:     1
/bool                    Dataset {100/100}
    Location:  1:800
    Links:     1
    Storage:   100 logical bytes, 0 allocated bytes
    Type:      enum native signed char {
                   FALSE            = 0
                   TRUE             = 1
               }

The array Type
Not often encountered in NumPy code, the array type is a good choice when you want
to store multiple values of the same type in a single element. Unlike compound types,
there are no separate “fields”; rather, each element is itself a multidimensional array.

There are a couple of pitfalls associated with this type and with some “helpful” behavior
from NumPy, which can be confusing. Let’s start with an example, in which our elements
are 2×2 arrays of floats:

>>> dt = np.dtype('(2,2)f')
>>> dt
dtype(('float32',(2, 2)))

Now let’s create an HDF5 dataset with this dtype that has 100 data points:

>>> dset = f.create_dataset('array', (100,), dtype=dt)
>>> dset.dtype
dtype(('float32',(2, 2)))
>>> dset.shape
(100,)

Retrieving a single element gives us a 2x2 NumPy array:

>>> out = dset[0]
>>> out
array([[ 0.,  0.],
       [ 0.,  0.]], dtype=float32)

You might have expected a NumPy scalar with our original dtype, but it doesn’t work
that way. NumPy automatically “promotes” the array-type scalar into a full-fledged array
of the base type. This is convenient, but it’s another case where dset[…].dtype !=
dset.dtype.
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Likewise, if we were to create a native NumPy array with our type it would get “eaten”
and the extra axes tacked on to the main array’s shape:

>>> a = np.zeros((100,), dtype=dt)
>>> a.dtype
dtype('float32')
>>> a.shape
(100, 2, 2)

So what’s the array type good for? Generally it’s best used as an element of a compound
type. For example, if we had an experiment that reported an integer timestamp along
with the output from a 2×2 light sensor, one choice for a data type would be:

>>> dt_timestamp = np.dtype('uint64')
>>> dt_sensor = np.dtype('(2,2)f')
>>> dt = np.dtype([ ('time', dt_timestamp), ('sensor', dt_sensor) ])

Creating a dataset with this compound type, it’s easy to store and retrieve individual
outputs from the experiment:

>>> import time
>>> dset = f.create_dataset('mydata', (100,), dtype=dt)
>>> dset["time", 0] = time.time()
>>> dset["sensor", 0] = ((1,2), (3,4))
>>> out = dset[0]
>>> out
(1368217143, [[1.0, 2.0], [3.0, 4.0]])
>>> out["sensor"]
array([[ 1.,  2.],
       [ 3.,  4.]], dtype=float32)

When your data contains “packets” of values like this, it’s generally better to use the
array type than, say, add extra dimensions to the dataset. Not only does it make access
easier, but it’s semantically more meaningful.

Opaque Types
It’s rare, but some data simply can’t be represented in any of the NumPy forms (for
example, disk images or other binary data that isn’t numeric). There’s a mechanism for
dealing with this in HDF5, which you should consider a last resort for data that needs
to be stored, bit for bit, in the file.

The NumPy void "V" type is used to store such “opaque” data. Like the string type "S"
this is a fixed-width flexible type. For example, to store opaque fields 200 bytes long in
NumPy:

>>> dt = np.dtype('V200')
>>> a = np.zeros((10,), dtype=dt)  # 10 elements each 200 bytes long

When you provide such a dtype to create_dataset, the underlying dataset is created
with the HDF5 opaque datatype:
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>>> dset = f.create_dataset('opaque', (10,), dtype=dt)
>>> dset.dtype
dtype('|V200')
>>> dset.shape
(10,)

You should seriously consider using opaque types for storing raw binary data. It may
be tempting simply to store the data in a string, but remember that strings in HDF5 are
reserved either for ASCII or Unicode text.

Here’s an example of how to “round-trip” a Python byte string through the HDF5 opaque
type, in this case to store binary data in an attribute:

>>> binary_blob = b"A\x00B\x00"     # Try storing this directly! It won't work.
>>> obj.attrs["name"] = np.void(binary_blob)  # "Void" type maps to HDF5 opaque
>>> out = obj.attrs["name"]
>>> binary_blob = out.tostring()

Dates and Times
One frequently asked question is how to express time information in HDF5. At one
point there was a datetime type in HDF5, although to my knowledge nobody in the
Python world ever used it. Typically dates and times are expressed in HDF5 on an ad-
hoc basis.

One way to represent time is by a count of seconds (including fractional seconds) since
some time in the past, called the “epoch.” For example, “Unix time” or “POSIX time”
counts the number of seconds since midnight Jan. 1, 1970 UTC.

If you need only seconds of resolution, an integer works well:

>>> timestamp = np.dtype('u8')

You can also use a double-precision float to represent fractional time, as provided by
the built-in time.time():

>>> import time, datetime
>>> time.time()
1377548506.627

datetime objects can be used to provide a string in “ISO” format, which yields a nicer-
looking result:

>>> datetime.datetime.now().isoformat()
'2013-08-26T14:30:02.633000'

Such timestamps are also called “naive” timestamps, because they don’t include infor‐
mation on the time zone or leap seconds. If your application is purely working in one
time zone, or only dealing in time differences (and can ignore leap seconds for this
purpose), this is likely OK. Otherwise, you will have to store appropriate data on the
time zone somewhere close by (like in another member of a compound type).

Dates and Times | 99



There’s one last type to discuss, and it’s important enough to warrant its own chapter in
this book. We have come to references: the HDF5 pointer type.
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CHAPTER 8

Organizing Data with References, Types,
and Dimension Scales

Your files aren’t just a collection of groups, datasets, and attributes. Some of the best
features in HDF5 are those that help you to express relationships between pieces of your
data.

Maybe one of your datasets provides the x-axis for another, and you’d like to express
that in a way your colleagues can easily figure out. Maybe you want to record which
regions of a particular dataset are of interest for further processing. Or maybe you just
want to store a bunch of links to datasets and groups in the file, without having to worry
about getting all the paths right.

This chapter covers three of the most useful constructs in HDF5 for linking your various
objects together into a scientifically useful whole. References, the HDF5 “pointer” type,
are a great way to store links to objects as data. Named types let you enforce type con‐
sistency across datasets. And Dimension Scales, an HDF5 standard, let you attach phys‐
ically meaningful axes to your data in a way third-party programs can understand.

Let’s get started with the simplest relational widget in HDF5: object references.

Object References
We’ve already seen how links in a group serve to locate objects. But there’s another
mechanism that can do this, and crucially, this kind can be stored as data in things like
attributes and datasets.

Creating and Resolving References
Let’s create a simple file with a couple of groups and a dataset:
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>>> f = h5py.File('refs_demo.hdf5','w')
>>> grp1 = f.create_group('group1')
>>> grp2 = f.create_group('group2')
>>> dset = f.create_dataset('mydata', shape=(100,))

Looking at the group grp1, we notice an interesting property called ref:

>>> grp1.ref
<HDF5 object reference>

The object returned from accessing .ref is an HDF5 object reference. These are basically
pointers to objects in the file. You can “dereference” them by using the same syntax as
we used for string names:

>>> out = f[grp1.ref]
>>> out == grp1
True

By the way, the Python type for these objects is available at h5py.Reference, in case you
want to use isinstance:

>>> isinstance(grp1.ref, h5py.Reference)
True

Since the reference is an “absolute” way of locating an object, you can use any group in
the file for dereferencing, not just the root group:

>>> out = grp2[grp1.ref]
>>> out == grp1
True

But keep in mind they’re local to the file. Trying to dereference them in the context of
another file will fail:

>>> with h5py.File('anotherfile.hdf5','w') as f2:
...    out = f2[grp1.ref]
ValueError: unable dereference object

References as “Unbreakable” Links
So far there seems to be no improvement over using links. But there’s an important
difference: you can store them as data, and they’re independent of later renaming of the
objects involved.

Here’s an example: suppose we wanted to add an attribute on one of our groups pointing
to the dataset mydata. We could simply record the name as an attribute:

>>> grp1.attrs['dataset'] = dset.name
>>> grp1.attrs['dataset']
u'/mydata'
>>> out = f[grp1.attrs['dataset']]
>>> out == dset
True
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But if we rename the dataset, this quickly breaks:

>>> f.move('mydata', 'mydata2')
>>> out = f[grp1.attrs['dataset']]
KeyError: "unable to open object"

Using object references instead, we have:

>>> grp1.attrs['dataset'] = dset.ref
>>> grp1.attrs['dataset']
<HDF5 object reference>
>>> out = f[grp1.attrs['dataset']]
>>> out == dset
True

Moving the dataset yet again, the reference still resolves:

>>> f.move('mydata2','mydata3')
>>> out = f[grp1.attrs['dataset']]
>>> out == dset
True

When you open an object by dereferencing, every now and then it’s
possible that HDF5 won’t be able to figure out the object’s name. In
that case, obj.name will return None. It’s less of a problem than it used
to be (HDF5 1.8 has gotten very good at figuring out names), but don’t
be alarmed if you happen to get None.

References as Data
References are full-fledged types in HDF5; you can freely use them in both attributes
and datasets. Obviously there’s no native type in NumPy for references, so we once again
call on special_dtype for help, this time with the ref keyword:

>>> dt = h5py.special_dtype(ref=h5py.Reference)
>>> dt
dtype(('|O4', [(({'type': <type 'h5py.h5r.Reference'>}, 'ref'), '|O4')]))

That’s a lot of metadata. But don’t be dismayed; just like variable-length strings, this is
otherwise a regular object dtype:

>>> dt.kind
'O'

We can easily create datasets of Reference type:

>>> ref_dset = f.create_dataset("references", (10,), dtype=dt)

What’s in such a dataset? If we retrieve an uninitialized element, we get a zeroed or “null”
reference:
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>>> out = ref_dset[0]
>>> out
<HDF5 object reference (null)>

Like a null pointer in C, this reference doesn’t point to anything. Like trying to deref‐
erence against the wrong file, dereferencing a null reference just results in ValueError:

>>> f[out]
ValueError: Invalid HDF5 object reference

There’s a simple way to check for a null reference, without having to catch exceptions.
The truth value of a reference indicates whether or not it’s null:

>>> bool(out)
False
>>> bool(grp1.ref)
True

Keep in mind that a value of True doesn’t mean that the reference
actually resolves to something, just that it isn’t null. If, for example, you
create a reference and then delete the object, the reference will evalu‐
ate as True but you will still get ValueError when you attempt to
dereference it.

Region References
Region references are one of the coolest features of HDF5. These let you store a reference
to part of a dataset. For example, you might want to store a region of interest (ROI) on
photographs stored in an HDF5 file, so that during later analysis you don’t have to
process the whole thing.

Creating Region References and Reading
You can think of region references as effectively storing your slicing arguments for dataset
access. Here’s an example: looking at the dataset created in the previous example, we
notice a property named regionref:

>>> dset.name
u'/mydata3'
>>> dset.shape
(100,)
>>> dset.regionref
<h5py._hl.dataset._RegionProxy at 0x459d6d0>

This is a little proxy object which we can use to store our selections. You create a new
region reference by applying the standard NumPy slicing syntax to this object:
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>>> ref_out = dset.regionref[10:90]
>>> ref_out
<HDF5 region reference>

Like object references, region references are generally opaque. The only useful aspects
are the shape of the dataspace (the same as the parent dataset), and the shape of your
selection:

>>> dset.regionref.shape(ref_out)(100,)
>>> dset.regionref.selection(ref_out)(80,)

This represents the shape of your selection; in other words, if you had applied your
slicing arguments directly to the dataset, it’s the shape of the array that would have been
returned from HDF5.

Once you’ve got a region reference, you can use it directly as a slicing argument to
retrieve data from the dataset:

>>> data = dset[ref_out]
>>> data
array([ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
        0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
        0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
        0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
        0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
        0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
        0.,  0.], dtype=float32)
>>> data.shape
(80,)

Fancy Indexing
Keep in mind that if you’re using “fancy” indexing methods (like Boolean arrays), then
the shape will always be one-dimensional. This mimics the behavior of NumPy for such
selections.

For example, suppose we had a little two-dimensional array, which we populated with
some random numbers:

>>> dset_random = f.create_dataset('small_example', (3,3))
>>> dset_random[...] = np.random.random((3,3))
>>> dset_random[...]
array([[ 0.32391435,  0.070962  ,  0.57038087],
       [ 0.1530778 ,  0.22476801,  0.7758832 ],
       [ 0.75768745,  0.73156554,  0.3228527 ]], dtype=float32)

We could create a Boolean array representing the entries greater than 0.5:

>>> index_arr = dset_random[...] > 0.5
>>> index_arr
array([[False, False,  True],
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       [False, False,  True],
       [ True,  True, False]], dtype=bool)

You can create a region reference from this array:

>>> random_ref = dset_random.regionref[index_arr]
>>> dset_random.regionref.selection(random_ref)
(4,)

There were a total of four elements that matched, so the selection result is “packed” into
a four-element 1D buffer.

There is a rule to the order in which such elements are retrieved. If we apply our selection
to the dataset:

>>> data = dset_random[random_ref]
>>> data
array([ 0.57038087,  0.7758832 ,  0.75768745,  0.73156554], dtype=float32)

Looking closely, it appears that the elements retrieved are at [0,2], [1,2], [2,0],
[2,1], in that order. You’ll recognize this as “C” order; the selection advances through
the last index, then the next to last, and so on.

Unfortunately, list-based selections will also be returned as 1D ar‐
rays, unlike NumPy (try it!). This is a limitation of the HDF5 library.

Finding Datasets with Region References
There’s one more trick region references can do. If you have a region reference, say our
shape-(80,) selection ref_out from earlier, you can use it as an object reference to re‐
trieve the dataset:

>>> f[ref_out]
<HDF5 dataset "mydata3": shape (100,), type "<f4">

This can come in handy when you’ve stored a region reference as an attribute some‐
where. It means you don’t have to also store an object reference to figure out where to
apply the selection.

And if you’re just after the data and don’t care about the dataset itself, all you have to
do is: 

>>> selected_data = f[ref_out][ref_out]

Named Types
There’s one more “linking” concept in HDF5, and it’s much more subtle than either
object or region references. We’ve already seen that when you create a dataset (or an
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attribute), it’s created with a fixed data type. Suppose you have multiple data products
in a file (for example, many datasets containing image data), and you want to be sure
each has exactly the same type.

HDF5 provides a native way to ensure this, by allowing you to save a data type to the
file independently of any particular dataset or attribute. When you call create_data
set, you supply the stored type and HDF5 will “link” the type to the brand new dataset.

The Datatype Object
You can create such an independent, or “named” type, by simply assigning a NumPy
dtype to a name in the file:

>>> f['mytype'] = np.dtype('float32')

When we open the named type, we don’t get a dtype back, but something else:

>>> out = f['mytype']
>>> out
<HDF5 named type "mytype" (dtype <f4)>

Like the Dataset object, this h5py.Datatype object is a thin proxy that allows access to
the underlying HDF5 datatype. The most immediately obvious property is Data
type.dtype, which returns the equivalent NumPy dtype object:

>>> out.dtype
dtype('float32')

Since they’re full-fledged objects in the file, you have a lot of other properties as well:

>>> out.name
u'/mytype'
>>> out.parent
<HDF5 group "/" (6 members)>

Also available are .file (h5py.File instance containing the type), .ref (object refer‐
ence to the type), and attributes, just like Dataset and Group objects:

>>> out.attrs['info'] = "This is an attribute on a named type object"

In the HDF5 world, for technical reasons named types are now called
committed types. You may hear both terms; for our purposes, they
mean the same thing.

Linking to Named Types
It’s simple to create a dataset or attribute that refers to a named type object; just supply
the Datatype instance as the dtype:

>>> dset = f.create_dataset("typedemo", (100,), dtype=f['mytype'])
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When you do this, HDF5 doesn’t copy the type into the dataset; it actually makes a
reference to the named type object elsewhere in the file. So on top of helping you keep
data organized, it saves disk space as well.

For attributes, remember you’ll have to explicitly supply the type via the create method.
For example, to create an attribute on the root group that uses our named type:

>>> f.attrs.create("attribute_demo", 1.0, dtype=f['mytype'])

Managing Named Types
You can’t modify named types once they’re created, although you can unlink them from
the file:

>>> del f['mytype']

But don’t try to trick HDF5 by replacing it with a new, different type. The stored type
information can’t be unlinked from the datasets and attributes that point to it. It’ll hang
around in the shadows until every dataset and attribute that used it is deleted from the
file: 

>>> f['mytype'] = np.dtype('int16')
>>> dset = f['typedemo']
>>> dset.dtype
dtype('float32')

Dimension Scales
Real-world data comes with units attached. Suppose we have a 3D dataset that is the
output from an atmospheric simulation, representing temperatures at various points
within a volume:

>>> dset = f.create_dataset('temperatures', (100,100,100), dtype='f')

It’s easy enough to recognize that dataset records “temperature”—we could even add an
attribute to record the scale:

>>> dset.attrs['temp_units'] = "C"

But there’s a more subtle problem. Suppose our simulation is focused on a convection
process, and has much greater resolution in the z direction than either the x or y direc‐
tions; for example, the steps in the vertical direction might be 100 meters while the steps
in the horizontal direction might be 10 kilometers. We could add more attributes, per‐
haps by having a “step” attribute like so:

>>> dset.attrs['steps'] = [10000,10000,100]

By the way, which axis is which? Does the first axis represent the x direction, as we might
expect? Or does the simulation output z first? We could add another attribute, I guess,
which records this:

108 | Chapter 8: Organizing Data with References, Types, and Dimension Scales



>>> dset.attrs['axes'] = ["x", "y", "z"]

We would have to tell all of our colleagues about this convention, of course, and it would
look “squished” in viewers that don’t know about our ad hoc naming convention, and
I suppose if we change to variable-sized steps in the z direction it would break…

It turns out this situation is common enough that a standard has arisen: the HDF5
Dimension Scales specification. Like the ad hoc system of attributes earlier, it’s a feature
built on top of HDF5, using the machinery of datasets, attributes, and references in a
standardized way to build a more expressive object.

There are a lot of features like this, all standardized by the HDF Group (authors and
maintainers of the HDF5 software suite) in a series of RFCs. The big advantage of this
approach is that third-party applications know what to do with certain specific combi‐
nations of groups, datasets, attributes, and references. For example, a viewer program
would render our simulation “unsquished” by honoring the axes we create. Or, in the
case of the HDF5 Image standard, the viewer could determine the appropriate palette
to render an astronomical photograph.

Creating Dimension Scales
Let’s revisit our dataset with 3D temperature measurements. First, we’ll erase the at‐
tributes we applied, before using Dimension Scales to do it right:

>>> for name in dset.attrs:
...     del dset.attrs[name]

There’s a property attached to our dataset, which up until now we’ve ignored:

>>> dset.dims
<Dimensions of HDF5 object at 74374048>

This is our entry point for Dimension Scales. In HDF5, a “dimension scale” is a separate
“axis” dataset with some metadata, linked to the main dataset using references. In our
example, we want to create three dimension scales: one for x, with steps of 10 km, one
for y, also with steps of 10 km, and one for z, in steps of 100 m.

To record this, we first create three datasets in the file which will hold our Dimension
Scale “axes”:

>>> f.create_dataset('scale_x', data=np.arange(100)*10e3)
>>> f.create_dataset('scale_y', data=np.arange(100)*10e3)
>>> f.create_dataset('scale_z', data=np.arange(100)*100.0)

Now, we ask HDF5 to turn them into official “Dimension Scale” datasets by using the
create_scale method on dset.dims:

>>> dset.dims.create_scale(f['scale_x'], "Simulation X (North) axis")
>>> dset.dims.create_scale(f['scale_y'], "Simulation Y (East) axis")
>>> dset.dims.create_scale(f['scale_z'], "Simulation Z (Vertical) axis")
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It’s worth taking a moment to see what actually happens when we do this. Let’s inspect
the attributes of the scale_x dataset and see what’s there:

>>> for key, val in f['scale_x'].attrs.iteritems():
...     print key, ':', val
CLASS : DIMENSION_SCALE
NAME : Simulation X (North) axis

That’s really it. All create_scale did was attach a few attributes with standardized
names and values.

Attaching Scales to a Dataset
Now that we have our three scales, we can associate them with our dataset. Note, how‐
ever, that we have to associate each scale with a particular axis of the dataset. This is
expressed by using indexing on the Dataset.dims object:

>>> dset.dims[0].attach_scale(f['scale_x'])
>>> dset.dims[1].attach_scale(f['scale_y'])
>>> dset.dims[2].attach_scale(f['scale_z'])

The object at dims[N] is yet another little proxy, in this case keeping track of which
dimension scales are attached to the first axis of the dataset. Yes, you can have multiple
scales attached to a single axis! Good news for those of you who create plots with an
axis on every side.

The dims[N] proxy works like an ordered dictionary and supports access by both name
and index. In this case, the index refers to the order in which scales were added. For
example, to get the dataset containing our x scale, we could ask for the first scale asso‐
ciated with dimension 0 of the dataset:

>>> dset.dims[0][0]
<HDF5 dataset "scale_x": shape (100,), type "<f8">

And to get the actual axis values, simply slice into the dataset:

>>> dset.dims[0][0][...]
array([      0.,   10000.,   20000.,   30000.,   40000.,   50000.,
         60000.,   70000.,   80000.,   90000.,  100000.,  110000.,
        120000.,  130000.,  140000.,  150000.,  160000.,  170000.,
        180000.,  190000.,  200000.,  210000.,  220000.,  230000.,
        240000.,  250000.,  260000.,  270000.,  280000.,  290000.,
        300000.,  310000.,  320000.,  330000.,  340000.,  350000.,
        360000.,  370000.,  380000.,  390000.,  400000.,  410000.,
        420000.,  430000.,  440000.,  450000.,  460000.,  470000.,
        480000.,  490000.,  500000.,  510000.,  520000.,  530000.,
        540000.,  550000.,  560000.,  570000.,  580000.,  590000.,
        600000.,  610000.,  620000.,  630000.,  640000.,  650000.,
        660000.,  670000.,  680000.,  690000.,  700000.,  710000.,
        720000.,  730000.,  740000.,  750000.,  760000.,  770000.,
        780000.,  790000.,  800000.,  810000.,  820000.,  830000.,
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        840000.,  850000.,  860000.,  870000.,  880000.,  890000.,
        900000.,  910000.,  920000.,  930000.,  940000.,  950000.,
        960000.,  970000.,  980000.,  990000.])

We could also use dictionary-style access using the name we supplied when creating the
scale:

>>> dset.dims[0]["Simulation X (North) axis"]
<HDF5 dataset "scale_x": shape (100,), type "<f8">

There are a couple of other dictionary-like methods too, including items, keys, and
values.

Finally, you can label each axis of the dataset. This is the correct place to record which
axis is x, y, z, etc.:

>>> dset.dims[0].label = "x"
>>> dset.dims[1].label = "y"
>>> dset.dims[2].label = "z"

Now that we’ve covered all the basic constructs, it’s time to talk about one of the thorniest
issues when programming with HDF5: concurrency. 
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CHAPTER 9

Concurrency: Parallel HDF5, Threading,
and Multiprocessing

Over the past 10 years or so, parallel code has become crucial to scientific programming.
Nearly every modern computer has at least two cores; dedicated workstations are readily
available with 12 or more. Plunging hardware prices have made 100-core clusters fea‐
sible even for small research groups.

As a rapid development language, and one with easy access to C and FORTRAN libra‐
ries, Python is increasingly being used as a top-level “glue” language for such platforms.
Scientific programs written in Python can leverage existing “heavy-lifting” libraries
written in C or FORTRAN using any number of mechanisms, from ctypes to Cython
to the built-in NumPy routines.

This chapter discusses the various mechanisms in Python for writing parallel code, and
how they interact with HDF5.

Python Parallel Basics
Broadly speaking, there are three ways to do concurrent programming in Python:
threads, the multiprocessing module, and finally by using bindings for the Message
Passing Interface (MPI).

Thread-based code is fine for GUIs and applications that call into external libraries that
don’t tie up the Python interpreter. As we’ll see in a moment, you can’t use more than
one core’s worth of time when running a pure-Python program. There’s also no per‐
formance advantage on the HDF5 side to using threads, since the HDF5 library serializes
all calls.

multiprocessing is a more recent built-in module available with Python, which pro‐
vides support for basic fork()-based parallel processing. The main restriction is that
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your parallel processes can’t share a single HDF5 file, even if the file is opened read-
only. This is a limitation of the HDF5 library. multiprocessing-based code is great for
long-running, CPU-bound problems in which data I/O is a relatively small component
handled by the master process. It’s the simplest way in Python to write parallel code that
uses more than one core, and strongly recommended for general-purpose computation.

For anything else, MPI-based Parallel HDF5 is by far the best way to go. MPI is the
official “flavor” of parallelism supported by the HDF5 library. You can have an unlimited
number of processes, all of which share the same open HDF5 file. All of them can read
and write data, and modify the file’s structure. Programs written this way require a little
more care, but it’s the most elegant and highest-performance way to use HDF5 in a
parallel context.

By the way, there’s even a fourth mechanism for parallel computing, which is becoming
increasingly popular. IPython, which you’re probably already using as a more conve‐
nient interpreter interface, has its own clustering capabilities designed around the
ZeroMQ networking system. It can even use MPI on the back end to improve the per‐
formance of parallel code. At the moment, not much real-world use of h5py in the
IPython parallel model is known to the author. But you should definitely keep an eye
on it, if for no other reason than the very convenient interface that IPython provides
for clustering.

Threading
HDF5 has no native support for thread-level parallelism. While you can safely use HDF5
(and h5py) from threaded programs, there will be no performance advantage. But for
a lot of applications, that’s not a problem. GUI apps, for example, spend most of their
time waiting for user input.

Before we start, it’s important to review a few basics about threaded programming in
the Python world. Python itself includes a single master lock that governs access to the
interpreter’s functions, called the Global Interpreter Lock or GIL. This lock serializes
access from multiple threads to basic resources like object reference counting. You can
have as many threads as you like in a Python program, but only one at a time can use
the interpreter.

This isn’t such a big deal, particularly when writing programs like GUIs or web-based
applications that spend most of their time waiting for events. In these situations, the
GIL is “released” and other threads can use the interpreter while an I/O-bound thread
is waiting.

h5py uses a similar concept. Access to HDF5 is serialized using locking, so only one
thread at a time can work with the library. Unlike other I/O mechanisms in Python, all
use of the HDF5 library is “blocking”; once a call is made to HDF5, the GIL is not released
until it completes.
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Figure 9-1 shows schematically how this works. If you have multiple threads running,
if one of them calls into HDF5 (for example, to write a large dataset to disk), the others
will not proceed until the call completes.

Figure 9-1. Outline of a threading-based program using HDF5

The h5py package is “thread-safe,” in that you can safely share objects between threads
without corruption, and there’s no global state that lets one thread stomp on another.
However, certain high-level operations are not yet guaranteed to be atomic. Therefore,
it’s recommended that you manage access to your HDF5 objects by using recursive locks.

Here’s an example: we’ll create a single shared HDF5 file and two threads that do some
computation and write to it. Access to the file is managed using an instance of the
threading.RLock class:

import threading
import time
import random
import numpy as np
import h5py

f = h5py.File("thread_demo.hdf5", "w")
dset = f.create_dataset("data", (2, 1024), dtype='f')

lock = threading.RLock()

class ComputeThread(threading.Thread):

    def __init__(self, axis):
        self.axis = axis   # One thread does dset[0,:], the other dset[1, :].
        threading.Thread.__init__(self)

    def run(self):
        """ Perform a series of (simulated) computations and save to dataset.
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        """
        for idx in xrange(1024):
            random_number = random.random()*0.01
            time.sleep(random_number)               # Perform computation
            with lock:
                dset[self.axis, idx] = random_number     # Save to dataset

thread1 = ComputeThread(0)
thread2 = ComputeThread(1)

thread1.start()
thread2.start()

# Wait until both threads have finished
thread1.join()
thread2.join()

f.close()

There’s also something out there called “thread-safe” HDF5. This is a
compile-time option for the HDF5 library itself. Using it won’t hurt
anything, but it’s not required for thread-safe use of h5py.

Multiprocessing
Because of the GIL, a threading-based Python program can never use more than the
equivalent of one processor’s time. This is an annoyance when it comes to writing native-
Python programs for parallel processing. Historically, people have used ad hoc solutions
involving multiple instances of Python, communicating through the filesystem.

Since version 2.6, Python has included an “entry-level” parallel-processing package
called multiprocessing. It provides a threading-like way to manage multiple instances
of Python.

It is possible to use multiprocessing with HDF5, provided some precautions are taken.
The most important thing to remember is that new processes inherit the state of the HDF5
library from the parent process. It’s very easy to end up in a situation where multiple
processes end up “fighting” each other over an open file. At the time of writing (October
2013), this is even true for files that are opened read-only. This has to do with the gory
details of how multiprocessing is implemented, using the fork() system call on Linux/
Unix operating systems. The HDF Group is aware of this limitation; you should check
the most recent documentation for h5py/PyTables to see if it has been resolved.

In the meantime, to avoid problems, here are some things to try:
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1. Do all your file I/O in the main process, but don’t have files open when you invoke
the multiprocessing features.

2. Multiple subprocesses can safely read from the same file, but only open it once the
new process has been created.

3. Have each subprocess write to a different file, and merge them when finished.

Figure 9-2 shows workflow (1). The initial process is responsible for file I/O, and com‐
municates with the subprocesses through queues and other multiprocessing
constructs.

Figure 9-2. Multiprocessing-based approach to using HDF5

One mechanism for “Pythonic” parallel computation is to use “process pools” that dis‐
tribute the work among worker processes. These are instances of multiprocess
ing.Pool, which among other things have a parallel equivalent of the built-in map():

>>> import string
>>> from multiprocessing import Pool

>>> p = Pool(2)     # Create a 2-process pool

>>> words_in = ['hello', 'some', 'words']
>>> words_out = p.map(string.upper, words_in)
>>> print words_out
['HELLO', 'SOME', 'WORDS']

Here’s an example of using HDF5 with Pool. Suppose we had a file containing a 1D
dataset of coordinate pairs, and we wanted to compute their distance from the origin.
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This is the kind of problem that is trivial to parallelize, since each computation doesn’t
depend on the others. First, we create our file, containing a single coords dataset:

with h5py.File('coords.hdf5', 'w') as f:
    dset = f.create_dataset('coords', (1000, 2), dtype='f4')
    dset[...] = np.random.random((1000,2))

Our program will use a simple one-liner for the distance measurement, and a four-
process Pool to carry out the 1,000 conversions required. Note that we don’t have any
files open when invoking map:

import numpy as np
from multiprocessing import Pool
import h5py

def distance(arr):
    """ Compute distance from origin to the point (arr is a shape-(2,) array)
    """
    return np.sqrt(np.sum(arr**2))

# Load data and close the input file
with h5py.File('coords.hdf5', 'r') as f:
    data = f['coords'][...]

# Create a 4-process pool
p = Pool(4)

# Carry out parallel computation
result = np.array(p.map(distance, data))

# Write the result into a new dataset in the file
with h5py.File('coords.hdf5') as f:
    f['distances'] = result

Doing anything more complex with multiprocessing and HDF5 gets complicated.
Your processes can’t all access the same file. Either you do your I/O explicitly in the main
process (as shown), or you have each process generate a bunch of smaller “shard” files
and join them together when you’re done:

import os
import numpy as np
from multiprocessing import Pool
import h5py

def distance_block(idx):
    """ Read a 100-element coordinates block, compute distances, and write
    back out again to a process-specific file.
    """
    with h5py.File('coords.hdf5','r') as f:
        data = f['coords'][idx:idx+100]

    result = np.sqrt(np.sum(data**2, axis=1))
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    with h5py.File('result_index_%d.hdf5'%idx, 'w') as f:
        f['result'] = result

# Create out pool and carry out the computation
p = Pool(4)
p.map(distance_block, xrange(0, 1000, 100))

with h5py.File('coords.hdf5') as f:
    dset = f.create_dataset('distances', (1000,), dtype='f4')

    # Loop over our 100-element "chunks" and merge the data into coords.hdf5
    for idx in xrange(0, 1000, 100):

        filename = 'result_index_%d.hdf5'%idx
        with h5py.File(filename, 'r') as f2:
            data = f2['result'][...]

        dset[idx:idx+100] = data
        os.unlink(filename)  # no longer needed

That looks positively exhausting, mainly because of the limitations on passing open files
to child processes. What if there were a way to share a single file between processes,
automatically synchronizing reads and writes? It turns out there is: Parallel HDF5.

MPI and Parallel HDF5
Figure 9-3 shows how an application works using Parallel HDF5, in contrast to the
threading and multiprocessing approaches earlier. MPI-based applications work by
launching multiple parallel instances of the Python interpreter. Those instances com‐
municate with each other via the MPI library. The key difference compared to multi
processing is that the processes are peers, unlike the child processes used for the Pool
objects we saw earlier.
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Figure 9-3. MPI-based approach using Parallel HDF5

Of course, this also means that all file access has to be coordinated though the MPI
library as well. If not, multiple processes would “fight” over the same file on disk.
Thankfully, HDF5 itself handles nearly all the details involved with this. All you need
to do is open shared files with a special driver, and follow some constraints for data
consistency.

Let’s take a look at how MPI-based programs work in Python before diving into Parallel
HDF5.

A Very Quick Introduction to MPI
MPI-based programs work a little differently from thread-based or multiprocessing
programs. Since there’s no explicit creation of processes on the Python side, you write
a Python script and launch it with the special program mpiexec. Here’s the “Hello World”
example for MPI:

from mpi4py import MPI

comm = MPI.COMM_WORLD

print "Hello World (from process %d)" % comm.rank

To run it with four processes, we launch Python via mpiexec:

$ mpiexec -n 4 python demo.py
Hello World (from process 0)
Hello World (from process 1)
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Hello World (from process 3)
Hello World (from process 2)

The COMM_WORLD object is an MPI communicator. Communication between processes
all happens though the MPI library, via these objects. In addition to “send” and “receive”
methods, communicators in MPI support a variety of advanced “scatter” operations to
distribute work among processes. Since a complete treatment of MPI features is beyond
the scope of this book, we will limit ourselves to a few basic features.

The COMM_WORLD attribute rank is an integer that identifies the running process. You’ll
notice that the output statements print “out of order” with respect to rank. As with
threads, since our four processes run in parallel there’s no guarantee as to which will
finish first. Later on we’ll examine some basic methods for interprocess synchronization.

Check out the mpi4py website for a great introduction to using MPI
from Python, and a large number of examples.

MPI-Based HDF5 Program
Building h5py in MPI mode is simple. The tricky bit is getting access to a version of
HDF5 compiled in “parallel” mode; increasingly, this is available as a built-in package
on most Linux distributions. Then, when you build h5py, just enable the --mpi option:

$ python setup.py build --mpi [--hdf5=/path/to/parallel/hdf5]
$ [sudo] python setup.py install

If you have installation problems, consult the guide at www.h5py.org
for tips and additional examples. The examples shown here use an
OpenMPI build of HDF5, running on Linux.

On the Python side, all you have to do is open your file with the mpio driver. You have
to supply an MPI communicator as well; COMM_WORLD does nicely:

from mpi4py import MPI
import h5py

f = h5py.File("foo.hdf5", "w", driver="mpio", comm=MPI.COMM_WORLD)

In contrast to the other file drivers, a file opened with mpio can safely be accessed from
multiple processes.

Here’s the MPI equivalent of our distance-calculation code. Note that the division of
work is done implicitly (in this case using the process rank) in contrast to the explicit
map()-based approach we saw in the multiprocessing example:
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import numpy as np
import h5py
from mpi4py import MPI

comm = MPI.COMM_WORLD   # Communicator which links all our processes together
rank = comm.rank        # Number which identifies this process.  Since we'll
                        # have 4 processes, this will be in the range 0-3.

f = h5py.File('coords.hdf5', driver='mpio', comm=comm)

coords_dset = f['coords']
distances_dset = f.create_dataset('distances', (1000,), dtype='f4')

idx = rank*250  # This will be our starting index.  Rank 0 handles coordinate
                # pairs 0-249, Rank 1 handles 250-499, Rank 2 500-749, and
                # Rank 3 handles 750-999.

coords = coords_dset[idx:idx+250]  # Load process-specific data

result = np.sqrt(np.sum(coords**2, axis=1))  # Compute distances

distances_dset[idx:idx+250] = result  # Write process-specific data

f.close()

Collective Versus Independent Operations
MPI has two flavors of operation: collective, which means that all processes have to
participate (and in the same order), and independent, which means each process can
perform the operation (or not) whenever and in whatever order it pleases.

With HDF5, the main requirement is this: modifications to file metadata must be done
collectively. Here are some things that qualify:

• Opening or closing a file
• Creating or deleting new datasets, groups, attributes, or named types
• Changing a dataset’s shape
• Moving or copying objects in the file

Generally this isn’t a big deal. What it means for your code is the following: when you’re
executing different code paths depending on the process rank (or as the result of an
interprocess communication), make sure you stick to data I/O only. In contrast to met‐
adata operations, data operations (meaning reading from and writing to existing HDF5)
are OK for processes to perform independently.

Here are some simple examples:

from mpi4py import MPI
import h5py
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comm = MPI.COMM_WORLD
rank = comm.rank

f = h5py.File('collective_test.hdf5', 'w', driver='mpio', comm=comm)

# RIGHT: All processes participate when creating an object
dset = f.create_dataset('x', (100,), 'i')

# WRONG: Only one process participating in a metadata operation
if rank == 0:
    dset.attrs['title'] = "Hello"

# RIGHT: Data I/O can be independent
if rank == 0:
    dset[0] = 42

# WRONG: All processes must participate in the same order
if rank == 0:
    f.attrs['a'] = 10
    f.attrs['b'] = 20
else:
    f.attrs['b'] = 20
    f.attrs['a'] = 10

When you violate this requirement, generally you won’t get an exception; instead, var‐
ious Bad Things will happen behind the scenes, possibly endangering your data.

Note that “collective” does not mean “synchronized.” Although all processes in the pre‐
ceding example call create_dataset, for example, they don’t pause until the others
catch up. The only requirements are that every process has to make the call, and in the
same order.

Atomicity Gotchas
Sometimes, it’s necessary to synchronize the state of multiple processes. For example,
you might want to ensure that the first stage of a distributed calculation is finished before
moving on to the next part. MPI provides a number of mechanisms to deal with this.
The simplest is called “barrier synchronization”—from the Python side, this is simply
a function called Barrier that blocks until every process has reached the same point in
the program.

Here’s an example. This program generally prints “A” and “B” statements out of order:

from random import random
from time import sleep
from mpi4py import MPI

comm = MPI.COMM_WORLD
rank = comm.rank
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sleep(random()*5)
print "A (rank %d)" % rank
sleep(random()*5)
print "B (rank %d)" % rank

Running it, we get:

$ mpiexec -n 4 python demo2.py
A (rank 2)
B (rank 2)
A (rank 1)
A (rank 0)
B (rank 1)
A (rank 3)
B (rank 3)
B (rank 0)

Our COMM_WORLD communicator includes a Barrier function. If we add a barrier for all
processes just before the “B” print statement, we get:

from random import random
from time import sleep
from mpi4py import MPI

comm = MPI.COMM_WORLD
rank = comm.rank

sleep(random()*5)
print "A (rank %d)" % rank

comm.Barrier()  # Blocks until all processes catch up

sleep(random()*5)
print "B (rank %d)" % rank

$ mpiexec -n 4 python demo3.py
A (rank 2)
A (rank 3)
A (rank 0)
A (rank 1)
B (rank 2)
B (rank 0)
B (rank 1)
B (rank 3)

Now that you know about Barrier, what do you think the following two-process pro‐
gram outputs?

import h5py
from mpi4py import MPI

comm = MPI.COMM_WORLD
rank = comm.rank
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with h5py.File('atomicdemo.hdf5', 'w', driver='mpio', comm=comm) as f:

    dset = f.create_dataset('x', (1,), dtype='i')

    if rank == 0:
        dset[0] = 42

    comm.Barrier()

    if rank == 1:
        print dset[0]

If you answered “42,” you’re wrong. You might get 42, and you might get 0. This is one
of the most irritating things about MPI from a consistency standpoint. The default write
semantics do not guarantee that writes will have completed before Barrier returns and
the program moves on. Why? Performance. Since MPI is typically used for huge,
thousand-processor problems, people are willing to put up with relaxed consistency
requirements to get every last bit of speed possible.

Starting with HDF5 1.8.9, there is a feature to get around this. You can enable MPI
“atomic” mode for your file. This turns on a low-level feature that trades performance
for strict consistency requirements. Among other things, it means that Barrier (and
other MPI synchronization methods) interact with writes the way you expect. This
modified program will always print “42”:

import h5py
from mpi4py import MPI

comm = MPI.COMM_WORLD
rank = comm.rank

with h5py.File('atomicdemo.hdf5', 'w', driver='mpio', comm=comm) as f:

    f.atomic = True  # Enables strict atomic mode (requires HDF5 1.8.9+)

    dset = f.create_dataset('x', (1,), dtype='i')

    if rank == 0:
        dset[0] = 42

    comm.Barrier()

    if rank == 1:
        print dset[0]

The trade-off, of course, is reduced performance. Generally the best solution is to avoid
passing data from process to process through the file. MPI has great interprocess com‐
munication tools. Use them! 
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CHAPTER 10

Next Steps

Now that you have a firm introduction to HDF5, it’s up to you to put that knowledge
to use! Here are some resources to help you on your way.

Asking for Help
The Python community is very open, and this extends to users of h5py, NumPy, and
SciPy. Don’t be afraid to ask for help on the h5py (h5py@googlegroups.com), NumPy
(numpy-discussions@scipy.org), or SciPy (scipy-user@scipy.org) mailing lists. Stack
Overflow is also a great place to ask specific technical questions if you’re getting started
with the NumPy world.

You can find technical documentation for h5py, including API reference material, at
www.h5py.org. The HDF Group’s website also has an extensive reference manual and
user guide (from a C programmer’s perspective).

If you’re working on an “application” of HDF5, like EOS5, get in touch with that com‐
munity for more information on how files are structured. For general questions on
HDF5 (as opposed to h5py or Python), you can post to the HDF Group’s public forum
at hdf-forum@lists.hdfgroup.org. The HDF Group can also be reached directly for bug
reports, technical questions, and so on at help@hdfgroup.org.

Finally, if you’re craving more information on using Python for scientific coding, Python
for Data Analysis (McKinney, 2012) is a great place to start. Tutorials and reference
materials are also available on the SciPy website for those seeking a quick introduction
to analysis in Python, or just looking for the fft function.

Contributing
As you continue to use HDF5, you may occasionally have a bug to report or a feature
request. Both the h5py and PyTables projects are on GitHub and welcome user bug
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reports and features. Using the git revision control system and GitHub’s “pull requests”
feature, you can even contribute code directly to the projects. Read more about how to
contribute at www.h5py.org.
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We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.
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