mika mcgrath

makes programming fun!

PLAIN ENGLISH

EASY TO FOLLOW

FULLY ILLLISTRATED

Mike McGrath

In easy steps is an imprint of In Easy Steps Limited
16 Hamilton Terrace - Holly Walk - Leamington Spa
Warwickshire - CV32 4LY

www.ineasysteps.com

Copyright © 2014 by In Easy Steps Limited. All rights reserved. No part of this book may be reproduced or transmitted
in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without prior written permission from the publisher.

Notice of Liability

Every effort has been made to ensure that this book contains accurate and current information. However, In Easy Steps
Limited and the author shall not be liable for any loss or damage suffered by readers as a result of any information
contained herein.

Trademarks

All trademarks are acknowledged as belonging to their respective companies.

http://www.ineasysteps.com

1 Getting started

Introducing Python

Installing Python on Windows
Installing Python on Linux
Meeting the interpreter
Writing your first program
Employing variables
Obtaining user input
Correcting errors

Summary

2 Performing operations

Doing arithmetic
Assigning values
Comparing values
Assessing logic
Examining conditions
Setting precedence
Casting data types
Manipulating bits

Summary

3 Making statements

Writing lists
Manipulating lists
Restricting lists
Associating list elements
Branching with if
Looping while true
Looping over items
Breaking out of loops

Summary

4 Defining functions

Understanding scope
Supplying arguments
Returning values

Using callbacks

Adding placeholders
Producing generators
Handling exceptions
Debugging assertions

Summary

5 Importing modules

Storing functions
Owning function names
Interrogating the system
Performing mathematics
Calculating decimals
Telling the time
Running a timer
Matching patterns

Summary
6 Managing strings

Manipulating strings
Formatting strings
Modifying strings
Converting strings
Accessing files

Reading and writing files
Updating file strings
Pickling data

Summary

7 Programming objects

Encapsulating data

Creating instance objects
Addressing class attributes
Examining built-in attributes
Collecting garbage
Inheriting features
Overriding base methods
Harnessing polymorphism

Summary

8 Processing requests

Sending responses

Handling values
Submitting forms
Providing text areas
Checking boxes
Choosing radio buttons
Selecting options
Uploading files

Summary

9 Building interfaces

Launching a window
Responding to buttons
Displaying messages
Gathering entries
Listing options
Polling radio buttons
Checking boxes
Adding images

Summary

10 Developing applications

Generating random numbers
Planning the program
Designing the interface
Assigning static properties
Initializing dynamic properties
Adding runtime functionality
Testing the program

Freezing the program
Deploying the application

Summary

Preface

The creation of this book has been for me, Mike McGrath, an exciting personal journey in
discovering how Python can be used today for procedural and object-oriented
programming, to develop applications and to provide online functionality. Example code
listed in this book describes how to produce Python programs in easy steps — and the
screenshots illustrate the actual results. I sincerely hope you enjoy discovering the exciting
possibilities of Python and have as much fun with it as I did in writing this book.

In order to clarify the code listed in the steps given in each example I have adopted certain
colorization conventions. Components of the Python programming language are colored
blue, programmer-specified names are red, numeric and string data values are black, and
comments are green, like this:

Write the traditional greeting.

greeting = ‘Hello World!’

print(greeting)

Additionally, in order to identify each source code file described in the steps, a colored
icon and file name appears in the margin alongside the steps:

i

FI
=3

script.py

page.html

image.gif

For convenience I have placed source code files from the examples featured in this book
into a single ZIP archive. You can obtain the complete archive by following these easy
steps:
Open the web browser and navigate to www.ineasysteps.com then navigate to the
“Resources” tab and choose the “Downloads” section

Find “Python in easy steps™ in the list, then click on the hyperlink entitled “All
Code Examples” to download the archive

Next, extract the MyScripts and MyProjects folders to your home directory (such as c:\
) and copy all contents of the htdecs folder to your web server’s documents

http://www.ineasysteps.com

directory

Now, follow the steps to call upon the Python interpreter and see the output

1

Getting started

Welcome to the exciting world of the Python programming language. This chapter demonstrates how to install

Python and create your first program.
Introducing Python

Installing Python on Windows
Installing Python on Linux
Meeting the interpreter
Writing your first program
Employing variables
Obtaining user input
Correcting errors

Summary

Introducing Python

Python is a high-level (human-readable) programming language that is processed by the
Python “interpreter” to produce results. Python includes a comprehensive standard library
of tested code modules that can be easily incorporated into your own programs.

The Python language was developed by Guido van Rossum in the late eighties and early
nineties at the National Research Institute for Mathematics and Computer Science in the
Netherlands. Python is derived from many other languages, including C, C++, the Unix
shell and other programming languages. Today, Python is maintained by a core
development team at the Institute, although Guido van Rossum still holds a vital role in
directing its progress.

Discover all the latest Python news online at www.python.org

The basic philosophy of the Python language is readability, which makes it particularly
well-suited for beginners in computer programming, and it can be summarized by these
principles:

Beautiful is better than ugly
Explicit is better than implicit
Simple is better than complex
Complex is better than complicated
Readability counts

As Python is intended to be highly readable it uses English keywords frequently where
other languages may use punctuation. Most significantly, it uses indentation to group
together statements into code “blocks” whereas other languages may use keywords or
punctuation for this purpose. For example, in the Pascal programming language blocks
start with the keyword begin and end with the keyword end, and in the C programming
language blocks are enclosed within curly brackets ({ } braces). Grouping blocks of
statements by indentation is sometimes criticized by programmers familiar with languages
that group by punctuation but the use of indentation in Python certainly produces code that
has an uncluttered visual layout.

Hot tip ‘_

Programming languages that group blocks by indentation are said to adhere to the “offside
rule” — a pun on the offside rule in soccer.

http://www.python.org

Some of Python’s key distinguishing features that make it an attractive choice of language
for the beginner include:

Python is free — is open source distributable software
Python is easy to learn — has a simple language syntax
Python is easy to read — is uncluttered by punctuation
Python is easy to maintain — is modular for simplicity

Python is “batteries included” — provides a large standard library for easy integration
into your own programs

Python is interactive — has a terminal for debugging and testing snippets of code

Python is portable — runs on a wide variety of hardware platforms and has the same
interface on all platforms

Python is interpreted — there is no compilation required
Python is high-level — has automatic memory management

Python is extensible — allows the addition of low-level modules to the interpreter for
customization

Python is versatile — supports both procedure-orientated programming and object-
orientated programming (OOP)

Python is flexible — can create console programs, windowed GUI (Graphical User
Interface) applications, and CGI (Common Gateway Interface) scripts to process web
data

Don’t forget

Python is named after the British television comedy series “Monty Python’s Flying
Circus” — you may encounter references to this in the Python documentation.

As development of Python continues newer versions are released as with most software.
Currently, the final 2.7 version is out, with a statement of extended support for this end-of-
life release. The 2.x branch will see no new major releases after that.

The 3.x branch is under active development and has already seen several stable releases.
This means that all recent standard library improvements, for example, are only available
in Python 3.x. This book describes and demonstrates features of the present and the future
of Python with the latest 3.x version.

Beware g

Python 3.x is not backward compatible with Python 2.7.

Installing Python on Windows

Before you can begin programming in the Python language you need to install on your
computer the Python interpreter and the standard library of tested code modules that
comes along with it. This is available as a free download at http://python.org/downloads For
Windows users there is an MSI installer available in both 32-bit and 64-bit versions.

Installers for Mac OS X in both 32-bit and 64-bit versions are also available for download
at python.org/downloads
- Launch a web browser then navigate to python.org/downloads and download the
appropriate installer version for your system — in this example it’s an installer file
snappily named “Python 3.3.2 Windows X86-64 MSI Installer”
When the download completes run the installer and choose whether to install for
all users or just yourself, then click the Next button to proceed

Now, accept the suggested default installation location, which will be a directory

on your root C:\ drive named “Python” and version number — in this example it’s a
directory at C:\Python33 for Python version 3.3.2

Select Destination Directory

Please select a directory for the Python 3.3.2 files.

&k Python33 viup| New

python

2 |C:\Python33)\
windows

Hot tip _

Support for MSI installer files is included with all recent versions of Windows and free
from microsoft.com/downloads — search for “Windows Installer”.

http://python.org/downloads
http://python.org/downloads
http://python.org/downloads/
http://microsoft.com/downloads

0 Click the Next button to proceed, then be sure to select the feature to “Add
python.exe to Path”

Customize Python 3.3.2

Select the way you want features to be instzlled.
Click on the icons in the tree below to change the
way features will be installed.

n

Register Extensions
Td/Tk

Documentation

Utility Scripts

Test suite

Add python.exe to Path

Prepend C:\Python33\ to the system Path variable.
This allows you to type "python’ into 3 command
p thon prompt without needing the full path.

for This feature requires 0KB on your hard drive.
windows

| DiskUsage | | Advanced | <Back | Nec>[y | Cancd |

9 Click on Next to begin copying files onto your computer then click the Finish
button to complete the installation

o To confirm Python is now available restart your computer, launch a Command

Prompt window (run cmd.exe) and enter the exact command python -V — the Python
interpreter should respond with its version number

C:\Users\Mike McGrath>python -V
Python 3.3.2

C:\Users\Mike McGrath>g

Don't forget I

Ensure that all features in the Customize Python dialog are selected for installation — as
illustrated here.

@

The letter V in the command must be uppercase. Ensure the command responds with the
version number before proceeding to the examples in this book.

Installing Python on Linux

Linux distributions will, typically, include Python but generally have the 2.7 version as
their default. For development on the 3.x branch of Python releases you will probably
have to install the latest release alongside the default version.

Consult your Linux distro’s documentation for further help on installing Python.

Launch a terminal window and precisely enter this command to reveal the
installed default Python version pythen -v

mike@ubunktu: ~

Next, precisely enter this command to reveal the default version of a Python 3.x
branch, if any is installed python3 -v

mike@ubunktu: ~

mike@ubuntu:~5 python3 -V
Python 3.2.3
mike@ubuntu:~5 |

Now, launch your Linux system’s package manager to see if a later Python version

is available for installation — for example use the Software Center on Ubuntu
systems

. Ubuntu Software Center

Beware g

Don’t remove the default 2.7 version of Python from your system in case some
applications depend upon it.

Search for “python” in the package manager to see what Python versions and

components are installed or if later versions are available for installation

Ubuntu Software Center

All Software By Relevance

#dl Interactive high-level object-oriented language (default version) * &

B python i i I

p IDLE (using Python-3.3)
Inbegrated Development Environment for Pythnn {using Python-3.3)

ﬂ IDLE (using Python-2.7) & 2
Integrated Development Environment For P!ﬁhon {using Python-2.T)

ﬂ IDLE (using Python-3.2)
Integrated Development Environment fw Pwhon {using Python-3.2)

Python (v3.3) ddd b (1)
e Pythen Interpreter (v33)

[, |

"I Python (v3.2) k& (1)
Python Interpreter (v} 2]

Show 2786 technical items

Finally, install the latest version of the Python 3.x branch — in this case it’s Python
3.3

To confirm the latest version of Python is now available on your computer launch

a Terminal window and precisely enter this explicit command python3.3 -V

mike@ubuntu: ~
mikegubuntu:~5 python3.3 -v

Hot tip

You may also, optionally, install IDLE for Python 3.3 but this is not an absolute
requirement as the Python programming examples in this book are all created in a plain
text editor such as Nano.

Don‘t forget

You can now use the command python3.3 to have that version of the Python interpreter
process your programs.

Meeting the interpreter

The Python interpreter processes text-based program code and also has an interactive
mode where you can test snippets of code and is useful for debugging code. Python’s
interactive mode can be entered in a number of ways:

+ From a regular Command Prompt — simply enter the command pythen to produce the
Python primary prompt >>> where you can interact with the interpreter

C:\Users\Mike McGrath>python

Python 3.3.2

SC v.16088 32 bit (Intel) on win32

Type "help", "copyright", "credits" or "license" for more

P

Command
Prompt

+ From the Start Menu — choose “Python (command line)” to open a window containing
the Python >>> primary prompt

Python 3.3.2
SC v.16088 32 bit (Intel) on win32
"help", "copyright", "credits" or "license" for more

(command line)

* From the Start Menu — choose “IDLE (Python GUI)” to launch a Python Shell window
containing the Python >>> primary prompt

Eile Edit Shell Debug Options Windows Help
Python 3.3.2

[M5C v.1600 32 bit (Intel)] on win3Z
Type "copyright®, "credit=" or "licens=e ()™ for more info

>33 |

E

IDLE (Python
GUI)

Irrespective of the method used to enter interactive mode the Python interpreter will
respond in the same way to commands entered at its >>> primary prompt. In its simplest
form the interpreter can be used as a calculator.

0 Enter Python interactive mode, using any method outlined opposite, then type a
simple addition and hit Return to see the interpreter print out the sum total

SC v.1688 32 bit (Intel) on win32

". "copyright". "credits” or "license" for more
Hot tip _

Spaces in expressions are ignored so 8+4 can be also be entered with added spaces for
clarity — as illustrated here.

The Python interpreter also understands expressions so parentheses can be used to give
higher precedence — the part of the expression enclosed within parentheses will be
calculated first.

@ Next, at the Python prompt enter an expression with three components without
specifiyng any precedence order

@ Now, at the Python prompt enter the same expression but add parentheses to
specify precedence order

Don’t forget 1

Interactive mode is mostly used to test snippets of code and for debugging code.

W

“IDLE” is an acronym for Python’s Integrated DeveLopment Environment but has limited
features so is not used to demonstrate examples in this book.

Writing your first program

Python’s interactive mode is useful as a simple calculator but you can create programs for
more extensive functionality. A Python program is simply a plain text file script created
with an editor, such as Windows’ Notepad, that has been saved with a “.py” file extension.
Python programs can be executed by stating the script file name after the python command
at a terminal prompt.

The traditional first program to create when learning any programming language simply
prints out a specified greeting message. In Python, the print() function is used to specify the
message within its parentheses. This must be a string of characters enclosed between
quote marks. These may be «” double quote marks or ¢’ single quote marks — but not a
mixture of both.

Beware g

Don’t use a word processor to create program files as they add format information to the
file.

A,

On Windows, launch any plain text editor such as the Notepad application

Next, precisely type the following statement into the empty text editor window

print(‘Hello World!’)

Now, create a new directory at C:\MyScripts and save the file in it as hello.py

B F% tpwow Sow beb

print(‘Hello World!®')

Finally, launch a Command Prompt window, navigate to the new directory and

precisely enter the command python hello.py — to see the Python interpreter run your
program and print out the specified greeting message

:\MyScripts>python hello.py
ello World!

\MyScripts>g

Hot tip _

The directory created at C:\MyScripts will be used to contain all Windows examples in this
book.

The procedure to create the traditional first Python program is identical on Linux systems
to that on Windows systems. It is, however, important to be aware, on any platform, where
different versions of Python are installed; you must use the correct command to call upon
the particular Python interpreter required. This is especially important on Linux systems
that often ship with the Python 2.7 version installed as their default. This means that the
command python Will assume you want to call that interpreter. Where Python 3.3 is
installed, and you want to call that particular interpreter to process a script, you must use
the command python3.3 to explicitly call upon that version’s interpreter.

On Linux, launch any plain text editor such as the Nano application
w
hello.py

Next, precisely type the following statement into the empty text editor window
print(‘Hello World!’)

Now, save the file in your home directory as hello.py

mike@ubunku: ~

GNU nano 2.2.6 New Buffer Modified

print{ 'Hello World!')

Finally, launch a Terminal window and navigate to your home directory and

precisely enter the command python3.3 hello.py - to see the Python interpreter run
your program and print out the specified greeting message

mike @ubuntu: ~

mikegubuntu:~5 python3.3 hello.py
Hello World!
mikegubuntu:~3%

Don‘t forget t

All further examples in this book are illustrated on Windows (simply because that
platform has most users) but they can also be created and executed on Linux.

Employing variables

In programming, a “variable” is a container in which a data value can be stored within the
computer’s memory. The stored value can then be referenced using the variable’s name.
The programmer can choose any name for a variable, except the Python keywords listed
on the inside front cover of this book, and it is good practice to choose meaningful names
that reflect the variable’s content.

Don‘t forget

String data must be enclosed within quote marks to denote the start and end of the string.

Data to be stored in a variable is assigned in a Python program declaration statement with
the = assignment operator. For example, to store the numeric value eight in a variable
named “a”:

a=8

The stored value can then be referenced using the variable’s name, so that the statement
print(a) will output the stored value 8. That variable can subsequently be assigned a
different value, so its value can vary as the program proceeds — hence the term “variable”.

In Python programming, a variable must be assigned an initial value (“initialized”) in the
statement that declares it in a program — otherwise the interpreter will report a “not
defined” error.

Multiple variables can be initialized with a common value in a single statement using a
sequence of = assignments. For example, to initialize variables named “a”, “b” and “c”
each with a numeric value of eight like this:

a=b=c=8

Alternatively, multiple variables can be initialized with differing values in a single
statement using comma separators. For example, to initialize variables named “a”, “b” and
“c” with numeric values of one, two and three respectively like this:

a,b,c=1,2,3

Some programming languages, such as Java, demand you specify what type of data a
variable may contain in its declaration. This reserves a specific amount of memory space
and is known as “static typing”. Python variables, on the other hand, have no such
limitation and adjust the memory allocation to suit the various data values assigned to
their variables (“dynamic typing”). This means they can store integer whole numbers,
floating-point numbers, text strings, or Boolean values of True or False as required.

Hot tip ‘_

Programming languages that require variable types to be specified are alternatively known
as “strongly typed” whereas those that do not are alternatively known as “loosely typed”.

Optionally, comments can be added to your Python scripts to describe the purpose of
statements or sections of code if preceded by a # hash character. Everything following the

hash character up to the end of the line is ignored by the Python interpreter. It is useful to
comment your code to make its purpose clear to others or when revisiting the code
yourself later.

Launch a plain text editor then declare and initialize a variable — then display its
stored value

Initialize a variable with an integer value.

var = 8

print(var)

Next, assign a new value and display that stored value

Assign a float value to the variable.

var = 3.142

print(var)

Now assign a different value and display the stored value
Assign a string value to the variable.

var = ‘Python in easy steps’

print(var)

Finally, assign another value and display the stored value

Assign a boolean value to the variable.
var = True
print(var)

Save the file in your scripts directory then open a Command Prompt window there
and run the program — to see the stored values output as the program proceeds

C:\MyScripts»python var.py
I3}

3.142

Python in easy steps

True

C:\MyScripts>g

Hot tip _

Multi-line comments can be added to a script if enclosed between triple quote marks

11114

33353

Obtaining user input

Just as a data value can be assigned to a variable in a Python script, a user-specified value
can be assigned to a variable with the Python input() function. This accepts a string within
its parentheses that will prompt the user for input by displaying that string then wait to
read a line of input.

User input is read as a text string, even when it’s numeric, and can be assigned to a
variable using the = assignment operator as usual. Like any other variable value, that
assigned by a user can be displayed by specifying the variable name to the print() function
— to reference that variable’s stored value.

Multiple values to be displayed can be specified to the print() function as a comma-
separated list within its parentheses.

Launch a plain text editor then declare and initialize a variable by requesting user

input
Initialize a variable with a user-specified value.
user = input(‘I am Python. What is your name? : <)

input.py
| Next, display a response message confirming the input by referencing the stored

user name
Output a string and a variable value.
print(‘Welcome’, user)

Now, save the file in your scripts directory then open a Command Prompt window

there and run this program — enter your name then hit Return to see the response
message include your name

C:\MyScriptsrpython input.py
I am Python. What is your name? : Mike

elcome Mike

Hot tip _

Notice that the prompt string ends with a space that is displayed in output — so the user
entry is separated from the colon when typed in.

When multiple values are specified to the print() function it will display each value in

output separated by a single space by default. An alternative separator can, however, be
specified by adding a sep parameter to the comma-separated list. For example sep = ** will
display each value in output separated by an asterisk character.

Don‘t forget 1

You can explicitly specify a newline to the end parameter, for example end="\w> adds both
an exclamation mark and a newline character.

Output displayed by the print() function will, by default, add an invisible \n newline
character at the end of the line to automatically move the print head to the next line. An
alternative line ending can, however, be specified by adding an end parameter to the
comma-separated list. For example, end =’ will display each value in output then end the
line with an exclamation mark.

i

Edit the script to declare and initialize a second variable by requesting more user

input
Initialize another variable with a user-specified value.
lang = input(‘Favorite programming language? : ‘)

Next, display a response message confirming the input by referencing the stored

language name — and specifying a custom separator and a custom line ending
Output a string and a variable value.
print(lang , ‘Is’, ‘Fun’,sep = * * ¢, end = ‘\n’)

Now, save the file once more, then open a Command Prompt window there and

run this program again — enter your name and a programming language then hit
Return to see the response message include your user input

IC: \MyScripts>python input.py

I am Python. What is your name? : Mike
elcome Mike

Favorite programming language? : Python

Python * Is * Fun!

C:\MyScripts>_

Hot tip _

You can include space characters around the separator character for clarity — like those
shown around the asterisk character in this example.

Correcting errors

In Python programming there are three types of error that can occur. It is useful to
recognize the different error types so they can be corrected more easily:

Syntax Error — occurs when the interpreter encounters code that does not conform to
the Python language rules. For example, a missing quote mark around a string. The
interpreter halts and reports the error without executing the program

Runtime Error — occurs during execution of the program, at the time when the
program runs. For example, when a variable name is later mis-typed so the variable
cannot be recognized. The interpreter runs the program but halts at the error and
reports the nature of the error as an “Exception”

Semantic Error — occurs when the program performs unexpectedly. For example,
when order precedence has not been specified in an expression. The interpreter runs
the program and does not report an error

Programming errors are often called “bugs” and the process of tracking them down is
often called “debugging”.

Correcting syntax and runtime errors is fairly straightforward, as the interpreter reports
where the error occurred or the nature of the error type, but semantic errors require code
examination.

Launch a plain text editor then add a statement to output a string that omits a

closing quote mark
print(‘Python in easy steps)

syntax.py

Save the file in your scripts directory then open a Command Prompt window there

and run this program — to see the interpreter report the syntax error and indicate
the position in the code where the error occurs

:\MyScripts>python syntax.py
File "syntax.py”, line 1
print(*Python in easy steps)

M

SyntaxError: EOL while scanning string literal

:\MyScripts>_

Beware

Typically, the syntax error indicator points to the next character after an omission in the

code.

9 Insert a quote mark before the closing parenthesis to terminate the string then save
the file and run the program again — to see the error has been corrected

Q Next, begin a new program by initializing a variable then try to output its value

with an incorrect variable name — to see the interpreter report a runtime error
title = ‘Python in easy steps’
print(titel)

C:\MyScripts>python runtime.py
raceback (most recent call last):
File "runtime.py”, line 2, in <module>

print{ titel)
NameError: name 'titel’ is not defined

C:\MyScripts>_

runtime.py

Amend the variable name to match that in the variable declaration then save the

D

file and run the program again — to see the error has been corrected

Now, begin a new program by initializing a variable then try to output an

o

expression using its value without explicit precedence — to see a possibly

unexpected result of 28
num =3
print(num * 8 + 4)

:\MyScripts>python semantic.py
28

:\MyScripts>o

semantic.py

o Add parentheses to group the expression as 3 * (8 + 4) then save the file and run the
program again — to see the expected result of 36, correcting the semantic error

Hot tip _

Details of how to handle runtime Exception errors in your script code are provided here.

Summary

Python is a high-level programming language that is processed by the Python
interpreter to produce results

Python uses indentation to group statements into code blocks, where other languages
use keywords or punctuation

Python 2.7 is the final version of the 2.x branch of development but the 3.x branch has
the latest improvements

Windows users can install Python with an MSI installer and Linux users can install
Python with their package manager

The Python interpreter has an interactive mode where you can test snippets of code and
is useful for debugging code

A Python program is simply a text file created with a plain text editor and saved with a
“.py” file extension

The Python print() function outputs the string specified within its parentheses
String values must be enclosed between quote marks

Where multiple versions of Python are installed on the same system it is important to
explicitly call the desired interpreter

A Python variable is a named container whose stored value can be referenced via that
variable’s name

A Python variable can contain any data type but must be given an initial value when it
is declared

The Python input() function outputs the string specified within its parentheses then
waits to read a line of input

Syntax errors due to incorrect code are recognized by the interpreter before execution
of the program

Runtime errors due to exceptions are recognized by the interpreter during execution of
the program

Semantic errors due to unexpected performance are not recognized by the interpreter

2

Performing operations
This chapter introduces the Python operators and demonstrates the operations they can perform.
Doing arithmetic
Assigning values
Comparing values
Assessing logic
Examining conditions
Setting precedence
Casting data types
Manipulating bits

Summary

Doing arithmetic

The arithmetical operators commonly used in Python programming are listed in the table
below, together with the operation they perform:

+ Addition

= Subtraction

* Multiplication
/ Division

% Modulus

7 Floor division
Hox Exponent

The operators for addition, subtraction, multiplication, and division act as you would
expect. Care must be taken, however, to group expressions where more than one operator
is used to clarify the expression — operations within innermost parentheses are performed
first. For example, with this expression:

a=b*c-d%e/f

Hot tip _

Values used with operators to form expressions are called “operands” — in the expression 2
+ 3 the numerical values 2 and 3 are the operands.

The desired order in which the operations should be performed is unclear but can be
clarified by adding parentheses like this:

a=(b*c)-((d%e)/f)
The % modulus operator will divide the first given number by the second given number

and return the remainder of the operation. This is useful to determine if a number has an
odd or even value.

The / floor division operator performs just like the / division operator but truncates the
result at the decimal point — removing any floating point value.

The ** exponent operator returns the result of the first operand raised to the power of the
second operand.

Start a new Python script by initializing two variables with integer values

arithmetic.py
: Next, display the result of adding the variable values
print(‘Addition:\t’, a, “+’,b,“=>,a+b)
Now, display the result of subtracting the variable values
print(‘Subtraction:\', a, >, b, ‘= ,a-b)
Then, display the result of multiplying the variable values
print(‘Multiplication:\t’ , a, X’ , b, ‘=", a* b))

Display the result of dividing the variable values both with and without the
floating-point value

print(‘Division:\t’, a, “+’,b,“=’,a/b)

print(‘Floor Division:\t’, a, ‘’,b, ‘=>,a//b)

Next, display the remainder after dividing the values

print(‘Modulus:\t’, a, “%’,b,‘=>,a%b)

Finally, display the result of raising the first operand to the power of the second

operand

print(‘Exponent:\t ,a, 2=’,a**b,sep=*)

Save the file in your scripts directory then open a Command Prompt window there
and run this program — to see the result of the arithmetical operations

C:\MyScripts>python arithmetic.py
. = 1e

2=1
2=6

2 =16
r 4.0
2 =4

2 =8

4

[
L}
o

Hot tip _

The \t escape sequence shown here adds an invisible tab character to format the output.

Don’t forget I

You can use the sep parameter to explicitly specify the separation between output — here it
specifies no spaces by assigning two unspaced single quote marks.

Assigning values

The operators that are used in Python programming to assign values are listed in the table
below. All except the simple = assignment operator are a shorthand form of a longer
expression so each equivalent is given for clarity:

= a=b a=b

+= at+=b a=(a+b)
= a-=b a=(a-b)

= a=b a=(a*b)
/= a/=b a=(a/b)

%= a%=b a=(a%b)
/1= a/l=b a=(a//b)
*ok— a**=b a=(a**b)

In the example above, the variable named “a” is assigned the value that is contained in the
variable named “b” — so that becomes the new value stored in the a variable.

Don‘t forget 1

It is important to regard the = operator to mean “assign” rather than “equals” to avoid
confusion with the == equality operator.

The += operator is useful to add a value onto an existing value that is stored in the a
variable.

In the table example the += operator first adds the value contained in variable a to the value
contained in variable b. It then assigns the result to become the new value stored in
variable a.

All the other operators work in the same way by making the arithmetical operation
between the two values first, then assigning the result of that operation to the first variable
— to become its new stored value.

With the %= operator, the first operand a is divided by the second operand b then the
remainder of that operation is assigned to the a variable.

Start a new Python script that initializes two variables by assigning integer values
and displays both assigned values

a=8

b=4

print(‘Assign Values:\t\t’,’a=",a, \tb=",b)

assign.py
0 Next, add and assign a new value to the first variable and display its stored value

at+=b

print(‘Add & Assign:\t\t’ ,’a=",a, ‘(8 +=4)’)

Now, subtract and assign a new value to the first variable and display its stored

value, then multiply and assign a value to the first variable and display its stored
value

a-=b

print(‘Subtract & Assign:\t’,’a=",a, ‘ (12-4)’)

a*=b

print(‘Multiply & Assign:\t’,’a=",a, ‘(8 x 4)’)

Finally, divide and assign a new value to the first variable and display its stored

value, then modulus and assign a value to the first variable and display its stored
value

a/=b

print(‘Divide & Assign:\t’,’a=",a, ‘(32 +4)’)

a%=b

print(‘Modulus & Assign:\t’,’a=’,a, ‘(8 % 4)’)

Save the file in your scripts directory then open a Command Prompt window there
and run this program — to see the result of the assignment operations

-

8 b=4

12 (8 += 4)
8 (12 - 4)
32 (8 x 4)

8.0 (32 + 4)
e.e (8 % 4)

p

Unlike the = assign operator the == equality operator compares operands and is described
here.

Comparing values

The operators that are commonly used in Python programming to compare two operand
values are listed in the table below:

== Equality
1= Inequality
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to

The == equality operator compares two operands and will return True if both are equal in
value, otherwise it will return a False value. If both are the same number they are equal, or
if both are characters their ASCII code values are compared numerically to achieve the
comparison result.

Conversely, the != inequality operator returns True if two operands are not equal, using the
same rules as the == equality operator, otherwise it returns False. Equality and inequality
operators are useful in testing the state of two variables to perform conditional branching
in a program according to the result.

Hot tip _

A-Z uppercase characters have ASCII code values 65-90 and a-z lowercase characters
have ASCII code values 97-122.

The > “greater than” operator compares two operands and will return True if the first is
greater in value than the second, or it will return False if it is equal or less in value. The <
“less than” operator makes the same comparison but returns True if the first operand is less
in value than the second, otherwise it returns False. A > “greater than” or < “less than”
operator is often used to test the value of an iteration counter in a loop.

Adding the = operator after a > “greater than” or < “less than” operator makes it also return
True if the two operands are exactly equal in value.

Start a new Python script by initializing five variables with values for comparison

nil=0

num =0
max =1
cap = ‘A’

low = ‘@’

comparison.py

“@% Next, add statements to display the results of numeric and character equality
comparisons
print(‘Equality :\t’, nil , ‘==", num , nil == num)

print(‘Equality :\t’, cap, ‘==, low, cap == low)
»@fy}jﬁ Now, add a statement to display the result of an inequality comparison
print(‘Inequality :\t’, nil , ‘!=", max , nil != max)
4%@& Then, add statements to display the results of greater and lesser comparisons

print(‘Greater :\t’, nil , >’ , max , nil > max)

print(‘Lesser :\t’, nil , ‘<’, max , nil < max)

fﬁo& Finally, add statements to display the results of greater or equal and lesser or equal
comparisons
print(‘More Or Equal :\t’, nil, >=’, num, nil >= num)

print(‘Less or Equal :\t’, max , ‘<=", num , max <= num)

@ Save the file in your scripts directory then open a Command Prompt window there
and run this program — to see the result of comparison operations

C:\MyScripts>python comparison.py
@ == @ True
== a False
=1 True

1 True
= 8 True
= B False

More Or Equal :
Less or Equal :

A
8
(] 1 False
8
e
1

:\MyScripts>_

A 4

The \t escape sequence shown here adds an invisible tab character to format the output.

A 4

The ASCII code value for uppercase “A” is 65 but for lowercase “a” it’s 97 — so their

Don’t forget

Don’t forget

comparison here returns False.

Assessing logic

The logical operators most commonly used in Python programming are listed in the table
below:

and Logical AND
or Logical OR
not Logical NOT

The logical operators are used with operands that have Boolean values of True or False, or
are values that convert to True Or False.

The (logical AND) and operator will evaluate two operands and return True only if both
operands themselves are True. Otherwise the and operator will return False. This is used in
conditional branching where the direction of a program is determined by testing two
conditions — if both conditions are satisfied, the program will go in a certain direction,
otherwise it will take a different direction.

Unlike the and operator that needs both operands to be True, the (logical OR) or operator
will evaluate its two operands and return True if either one of the operands itself returns
True. If neither operand returns True then the or operator will return False. This is useful in
Python programming to perform a certain action if either one of two test conditions has
been met.

The (logical NOT) net operator is a unary operator that is used before a single operand. It
returns the inverse value of the given operand so if the variable a had a value of True then
not a would have a value of False. The not operator is useful in Python programs to toggle
the value of a variable in successive loop iterations with a statement like a = not a. This
ensures that on each iteration of the loop, the Boolean value is reversed, like flicking a
light switch on and off.

Hot tip _

The term “Boolean” refers to a system of logical thought developed by the English
mathematician George Boole (1815-1864).

Start a new Python script by initializing two variables with Boolean values for
logical evaluation
a = True

b = False

logic.py

Next, add statements to display the results of logical AND evaluations

print(‘AND Logic:’)

print(‘aanda=’,aanda)
print(‘aandb =’,aandb)
print(‘band b =’,bandb)

@ Now, add statements to display the results of logical OR evaluations

print(“‘nOR Logic:’)
print(‘aora=’,aora)
print(‘aorb=",aorb)

print(‘borb=",borb)

Finally, add statements to display the results of logical NOT evaluations

print(‘nNOT Logic:’)
print(‘a=’,a, ‘‘tnota =", nota)

print(‘b =’, b, ‘‘tnot b =’ , not b)

Save the file in your scripts directory then open a Command Prompt window there
and run this program — to see the result of logic operations

:\MyScripts>python logic.py
AND Logic:
a and a = True
a and b = False
b and b = False

OR Logic:

a or a = True
a or b = True
b or b = False

NOT Logic:
a True not a = False
b = False not b = True

:\MyScripts>_

Hot tip _

In Python programming Boolean values can also be represented numerically where True is
1 and False is 0 (zero).

Don’t forget 1

Note that the expression False and False returns False, not True — perhaps demonstrating the

maxim “two wrongs don’t make a right”.

Examining conditions

Many programming languages, such as C++ or Java, have a ?: “ternary” operator that
evaluates an expression for a True or False condition then returns one of two specified
values depending on the result of the evaluation. A ?: ternary operator has this syntax:

(test-expression) ? if-true-return-this : if-false-return-this

Hot tip ‘_

In general programming terms an “expression” always returns a value whereas a
“statement” need not — but a statement may include one or more expressions.

Unlike other programming languages, Python does not have a ?: ternary operator but has
instead a “conditional expression” that works in a similar way using if and else keywords
with this syntax:

if-true-return-this if (test-expression) else if-false-return-this

Although the conditional expression syntax can initially appear confusing, it is well worth
becoming familiar with this expression as it can execute powerful program branching with
minimal code. For example, to branch when a variable is not a value of one:

if-true-do-this if (var != 1) else if-false-do-this

The conditional expression can be used in Python programming to assign the maximum or
minimum value of two variables to a third variable. For example, to assign a minimum
like this:

c=aif(a<b)elseb

The expression in parentheses returns True when the value of variable a is less than that of
variable b — so in this case the lesser value of variable a gets assigned to variable c.

Don‘t forget

The conditional expression has in effect three operands — the test expression and two
possible return values.

Similarly, replacing the < less than operator in the test expression with the > greater than
operator would assign the greater value of variable b to variable c.

Another common use of the conditional expression incorporates the % modulus operator
in the test expression to determine if the value of a variable is an odd number or an even
number:

if-true(odd)-do-this if (var % 2 != 0) else if-false(even)-do-this

Where the result of dividing the variable value by two does leave a remainder the number
is odd — where there is no remainder the number is even. The test expression (var % 2==1)
would have the same effect but it is preferable to test for inequality — it’s easier to spot
when something is different than when it’s identical.

Start a new Python script by initializing two variables with integer values for
conditional evaluation

condition.py

Next, add statements to display the results of conditional evaluation — describing
the first variable’s value

print(‘\nVariable a Is :’, ‘One’ if (a == 1) else ‘Not One’)

print(‘Variable aIs :’, ‘Even’if (a % 2 ==0) else ‘Odd’)

Now, add statements to display the results of conditional evaluation — describing
the second variable’s value

print(‘\nVariable b Is :’, ‘One’ if (b == 1) else ‘Not One’)

print(‘Variable b Is :*, ‘Even’ if (b % 2 == 0) else ‘Odd’)

Then, add a statement to assign the result of a conditional evaluation to a new
variable

max =aif(a>b)elseb

Finally, add a statement to display the assigned result — identifying the greater of
the two variable values

print(‘nGreater Value Is:’, max)

Save the file in your scripts directory then open a Command Prompt window there
and run this program — to see the result of conditional expression operations

: One
: 0dd

: Mot One
: Even

reater Value Is: 2

C:\MyScripts>_

Beware g

You may find that some Python programmers dislike conditional expressions as they
consider their syntax contradicts the principle of easy readability.

Setting precedence

Operator precedence determines the order in which the Python interpreter evaluates
expressions. For example, in the expression 3 * 8 + 4 the default order of precedence
determines that multiplication is completed first, so the result is 28 (24 + 4).

Don‘t forget 1

The * multiply operator is on a higher row than the + addition operator — so in the
expression 3 * 8 + 4 multiplication is completed first, before the addition.

The table below lists operator precedence in descending order — those on the top row have
highest precedence, those on lower rows have successively lower precedence. The
precedence of operators on the same row is chained Left-To-Right:

ok

1

%

>>

Exponent

Positive

Negative

Bitwise NOT

Multiplication

Division

Floor division

Modulus

Addition

Subtraction

Bitwise OR

Bitwise XOR

Bitwise AND

Bitwise right shift

<< Bitwise left shift
> >=, < <=, =5, 1= Comparison
=, %=,/=,/[=,-=,+=, %= *¥= Assignment
is , is not Identity

in, not in Membership

not Boolean NOT

and Boolean AND
or Boolean OR

Hot tip _

The bitwise, identity, and membership operators are introduced later in this book — but are
included here for completeness.
Start a new Python script by initializing three variables with integer values for
precedence comparison
a=2
b=4
c=8

L

el
precedence.py

Next, add statements to display the results of default precedence and forcing
addition before multiplication

print(‘\nDefault Order:\t’, a, “*’, ¢,’+’, b, ‘=>,a*c+b)

print(‘Forced Order:\t’, a, ‘* (%, ¢,’+’, b,)=",a*(c+b))

Now, add statements to display the results of default precedence and forcing
subtraction before division

print(‘\nDefault Order:\t’, c, *//’, b, >, a, “=’,c//b-a)

print(‘Forced Order:\t’, ¢, ‘/ (, b,’-’, a,)=’,c//(b-a))

Finally, add statements to display the results of default precedence and forcing

addition before modulus operation and before exponent operation

print(“‘\nDefault Order:\t’, c, ‘%’, a, ‘+’, b, ‘=", c % a+bh)

print(‘Forced Order:\t’, ¢, ‘% (%, a, ‘+’,b,) =", c % (a+b))

print(“‘\nDefault Order:\t’, c, “**’, a, ‘+>, b, ‘=", c**a+b)

print(‘Forced Order:\t’, ¢, “** (, a, ‘+’, b,)=, c** (a+b))

Save the file in your scripts directory then open a Command Prompt window there
and run this program — to see the results of default and explicit precedence

:\MyScripts>python precedence.py

Default Order:
Forced Order:

\MyScripts>_

Don’t forget 1

The / floor division operator truncates floating point values at the decimal point — but the /
division operator retains them.

Beware

Do not rely upon default precedence — always use parentheses to clarify your expressions.

Casting data types

Although Python variables can store data of any data type it is important to recognize the
different types of data they contain to avoid errors when manipulating that data in a
program. There are several Python data types but by far the most common ones are str
(string), int (integer), and float (floating-point).

Data type recognition is especially important when assigning numeric data to variables
from user input as it is stored by default as a str (string) data type. String values cannot be
used for arithmetical expressions as attempting to add string values together simply
concatenates (joins) the values together rather than adding them numerically. For example
Y+ 4=,

Fortunately, the data type of stored values can be easily converted (“cast”) into a different
data type using built-in Python functions. The value to be converted is specified within the
parentheses that follow the function name. Casting str (string) values to become int
(integer) values allows them to be used for arithmetical expressions, for example, 8 + 4 = 12.

Python’s built-in data type conversion functions return a new object representing the
converted value and those conversion functions most frequently used are listed in the table
below:

int(x) Converts x to an integer whole number
float(x) Converts x to a floating-point number

str(x) Converts x to a string representation
chr(x) Converts integer x to a character

unichr(x) Converts integer x to a Unicode character
ord(x) Converts character x to its integer value
hex(x) Converts integer x to a hexadecimal string
oct(x) Converts integer x to an octal string

Beware g

Converting a float (floating-point) data type to an int (integer) data type will truncate the
number at the decimal point losing the fraction.

The Python built-in type() function can be used to determine to which data type class the
value contained in a variable belongs, simply by specifying that variable’s name within its
parentheses.

Start a new Python script by initializing two variables with numeric values from

user input

a = input(‘Enter A Number:)

b = input(‘Now Enter Another Number: ¢)

.

cast.py

Next, add statements to add the variable values together then display the
combined result and its data type — to see a concatenated string value result
sum=a+b

print(‘\nData Type sum :’, sum, type(sum))

Now, add statements to add cast variable values together then display the result
and its data type — to see a total integer value result

sum =int(a) +int(b)

print(‘Data Type sum :’, sum, type(sum))

Then, add statements to cast a variable value then display the result and its data
type — to see a total float value

sum = float(sum)

print(‘Data Type sum :’, sum , type(sum))

Finally, add statements to cast an integer representation of a variable value then
display the result and its data type — to see a character string value
sum = chr(int(sum))

print(‘Data Type sum :’, sum , type(sum))

Save the file in your scripts directory then open a Command Prompt window there
and run this program — to see the result of casting as various data types

it:\MyScripts>python cast.py
Enter A Number: 6@
iNow Enter Another Number: 5

iData Type sum : 685 <class 'str'>

iData Type sum : 65 <class "int">»
Data Type sum : 65.0 <class "float'>
iData Type sum : A <class 'str’'>

IC: \MyScripts>,

Don’t forget 1

The number 65 is the ASCII character code for uppercase letter A.

Manipulating bits

In computer terms each byte comprises eight bits that can each contain a 1 or a 0 to store a
binary number representing decimal values from 0 to 255. Each bit contributes a decimal
component only when that bit contains a 1. Components are designated right-to-left from
the “Least Significant Bit” (LSB) to the “Most Significant Bit” (MSB). The binary
number in the bit pattern below is 00110010 and represents the decimal number 50
(2+16+32):

Decimal

Binary 0 0 1 1 0 0 1 0

Don‘t forget 1

Many Python programmers never use bitwise operators but it is useful to understand what
they are and how they may be used.

It is possible to manipulate individual parts of a byte using the Python “bitwise” operators
listed and described below:

Binary number operation:
| OR Return a 1 in each bit where either of two compared bits is a 1
Example: 1010 | 0101 = 1111
& AND Return a 1 in each bit where both of two compared bits is a 1
Example: 1010 & & 1100 = 1000
. NOT Return a 1 in each bit where neither of two compared bits is a 1
Example: 1010 ~ 0011 = 0100
A XOR Return a 1 in each bit where only one of two compared bits is a 1
Example: 1010 A 0100 = 1110
<< Shift Move each bit that is a 1 a specified number of bits to the left
left Example: 0010 << 2 =1000
o Shift Move each bit that is a 1 a specified number of bits to the right
right Example: 1000 >> 2 = 0010

Hot tip ‘_

Each half of a byte is known as a “nibble” (4 bits). The binary numbers in the examples in
the table describe values stored in a nibble.

Unless programming for a device with limited resources there is seldom a need to utilize
bitwise operators, but they can be useful. For instance, the XOR (eXclusive OR) operator
lets you exchange values between two variables without the need for a third variable.

w

Y

bitwise.py

Start a new Python script by initializing two variables with numeric values and
display these initial values

a=10

b=5

print(‘a=’,a,“\tb=“,b)

Next, add a statement to change the first variable’s decimal value by binary bit
manipulation

#1010 A 0101 = 1111 (decimal 15)

a=a’b

Now, add a statement to change the second variable’s decimal value by binary bit
manipulation

#1111 A 0101 = 1010 (decimal 10)

b=aAb

Then, add a statement to change the first variable’s decimal value once more by
further bit manipulation

#1111 A 1010 = 0101 (decimal 5)

a=a’b

Finally, add a statement to display the exchanged values

print(‘a=",a,“\tb=‘,b)

Save the file in your scripts directory then open a Command Prompt window there
and run this program — to see the result of bitwise operations

:\MyScripts»>python bitwise.py

:\MyScripts>_

Do not confuse bitwise operators with logical operators. Bitwise operators compare binary
numbers, whereas logical operators evaluate Boolean values.

Summary

Arithmetical operators can form expressions with two operands for addition +,
subtraction -, multiplication *, division /, floor division //, modulus %, or exponent **

The assignment = operator can be combined with an arithmetical operator to perform
an arithmetical calculation then assign its result

Comparison operators can form expressions comparing two operands for equality ==,
inequality !=, greater >, lesser <, greater or equal >=, and lesser or equal <= values

Logical and and or operators form expressions evaluating two operands to return a
Boolean value of True or False

The logical not operator returns the inverse Boolean value of a single operand

A conditional if-else expression evaluates a given expression for a Boolean True or False
value then returns one of two operands depending on its result

Expressions containing multiple operators will execute their operations in accordance
with the default precedence rules unless explicitly determined by the addition of
parentheses ()

The data type of a variable value can be converted to a different data type by the built-
in Python functions int(), fleat(), and str() to return a new converted object

Python’s built-in type() function determines to which data type class a specified variable
belongs

Bitwise operators OR |, AND &, NOT ~, and XOR ~ each return a value after
comparison of the values within two bits, whereas the Shift left << and Shift right >>
operators move the bit values a specified number of bits in their direction

3

Making statements

This chapter demonstrates how statements can evaluate expressions to determine the direction in which a Python

program proceeds.

Writing lists
Manipulating lists
Restricting lists
Associating list elements
Branching with if
Looping while true
Looping over items
Breaking out of loops

Summary

Writing lists

In Python programming, a variable must be assigned an initial value (initialized) in the
statement that declares it in a program, otherwise the interpreter will report a “not defined”
error.

Multiple variables can be initialized with a common value in a single statement using a
sequence of = assignments. For example, to simultaneously assign a common value to
three variables:

a=b=c=10

Alternatively, multiple variables can be initialized with differing values in a single
statement using comma separators. For example, to simultaneously assign different values
to three variables:

a,b,c=1,2,3

Unlike regular variables, which can only store a single item of data, a Python “list” is a
variable that can store multiple items of data. The data is stored sequentially in list
“elements” that are index numbered starting at zero. So the first value is stored in element
zero, the second value is stored in element one, and so on.

A list is created much like any other variable but is initialized by assigning values as a
comma-separated list between square brackets. For example, creating a list named “nums”
like this:

nums=[0,1,2,3,4,5]
An individual list element can be referenced using the list name followed by square
brackets containing that element’s index number. This means that nums[1] references the
second element in the example above — not the first element, as element numbering starts
at zero.

1 [[2

(0]

[1]

Lists can have more than one index — to represent multiple dimensions, rather than the
single dimension of a regular list. Multi-dimensional lists of three indices and more are
uncommon but two-dimensional lists are useful to store grid-based information such as
X,Y coordinates.

A list of string values can even be considered to be a multi-dimensional list as each string
is itself a list of characters. So each character can be referenced by its index number within
its particular string.
Start a new Python script by initializing a list of three elements containing string
values

quarter = [‘January’, ‘February’, ‘March’ |

Next, add statements to individually display the value contained in each list
element

print(‘First Month :’, quarter[0])

print(‘Second Month :’, quarter[1])

print(‘Third Month :’, quarter[2])

Add a statement to create a multi-dimensional list of two elements, which

themselves are lists that each have three elements containing integer values
coords=[[1,2,3]1,[4,5,6]]

Now, add statements to display the values contained in two specific inner list

elements
print(“\nTop Left 0,0 :, coords[0][0])
print(‘Bottom Right 1,2 :’, coords[1][2])

Finally, add a statement to display just one character of a string value

print(‘nSecond Month First Letter :’, quarter[1][0])

Save the file in your scripts directory then open a Command Prompt window there

and run this program — to see the list element values get displayed

IC:\MyScripts>python list.py
First Month : January
Second Month : February
Third Month : March

iTop Left 0,0 : 1
Bottom Right 1,2 : 6

iSecond Month First Letter : F

C:\MyScripts>,

Hot tip _

String indices may also be negative numbers — to start counting from the right where -1
references the last letter.

Don‘t forget 1

Loop structures, which are introduced later in this chapter, are often used to iterate through
list elements.

Manipulating lists

List variables, which can contain multiple items of data, are widely used in Python
programming and have a number of “methods” that can be “dot-suffixed” to the list name
for manipulation:

list.append(x) Adds item x to the end of the list

list.extend(L) Adds all items in list L to the end of the list
list.insert(i,x) Inserts item x at index position i

list.remove(x) Removes first item x from the list

list.pop(i) Removes item at index position i and returns it
list.index(x) Returns the index position in the list of first item x
list.count(x) Returns the number of times x appears in the list
list.sort() Sort all list items, in place

list.reverse() Reverse all list items, in place

Hot tip _

For lists that contain both numerical and string values the sort() method returns the list
elements sorted first numerically then alphabetically — for example as 1,2,3,A,B,C.

Python also has a useful len(z) function that returns the length of the list L as the total
number of elements it contains. Like the index() and count() methods, the returned value is
numeric so cannot be directly concatenated to a text string for output.

String representation of numeric values can, however, be produced by Python’s str(n)
function for concatenation to other strings, which returns a string version of the numeric n
value. Similarly, a string representation of an entire list can be returned by the str(L)
function for concatenation to other strings. In both cases, remember that the original
version remains unchanged as the returned versions are merely copies of the original
version.

Individual list elements can be deleted by specifying their index number to the Python
del(i) function. This can remove a single element at a specified i index position, or a “slice”
of elements can be removed using slice notation i1:i2 to specify the index number of the

first and last element. In this case i1 is the index number of the first element to be removed
and all elements up to, but not including, the element at the i2 index number will be
removed.

Hot tip ‘_

Python also has an int(s) function that returns a numeric version of the string s value.

Start a new Python script by initializing two lists of three elements each
containing string values

basket = [‘Apple’, ‘Bun’, ‘Cola’]

crate = [‘Egg’, ‘Fig’, ‘Grape’ |

pop.py
Next, add statements to display the contents of the first list’s elements and its
length
print(‘Basket List:”, basket)

print(‘Basket Elements:’, len(basket))

Now, add statements to add an element and display all list elements, then remove
the final element and display all list elements once more

basket.append(‘Damson’)

print(‘Appended:’, basket)

print(‘Last Item Removed:’, basket.pop())

print(‘Basket List:*, basket)

Finally, add statements to add all elements of the second list to the first list and
display all the first list elements, then remove elements and display the first list
again

basket.extend(crate)

print(‘Extended:’, basket)

del basket[1]

print(‘Item Removed:¢, basket)

del basket[1:3]

print(‘Slice Removed:’, basket)

Save the file in your scripts directory then open a Command Prompt window there
and run this program — to see the lists get manipulated

:\MyScripts>python pop.py
Basket List: ["Apple’, ‘Bun’, 'Cola’]
Basket Elements: 3
Appended: ['Apple’, "Bun’, 'Cola’, 'Damson']
Last Item Removed: Damson
Basket List: ["Apple’, 'Bun’', 'Cola']
Extended: ['Apple”, °"Bun’, ‘Cola’, 'Egg’', 'Fig', 'Grape’]
‘Cola’, "Egg’, 'Fig', 'Grape']

Slice Removed: [‘Apple’, ‘Fig’, ‘Grape’]

C:\MyScripts>,

The last index number in the slice denotes at what point to stop removing elements but the
element at that position does not get removed.

Restricting lists

Tuple

The values in a regular list can be changed as the program proceeds (they are “mutable™)
but a list can be created with fixed “immutable” values that cannot be changed by the
program. A restrictive immutable Python list is known as a “tuple” and is created by
assigning values as a comma-separated list between parentheses in a process known as
“tuple packing”:

colors-tuple = (‘Red’, ‘Green’, ‘Red’, ‘Blue’, ‘Red’)

Don‘t forget 1

Like index numbering with lists, the items in a tuple sequence are numbered from zero.

An individual tuple element can be referenced using the tuple name followed by square
brackets containing that element’s index number. Usefully, all values stored inside a tuple
can be assigned to individual variables in a process known as “sequence unpacking”:

a,b,c,d, e= colors-tuple

Beware g

There must be the same number of variables as items to unpack a tuple.

Set

The values in a regular list can be repeated in its elements, as in the tuple above, but a list
of unique values can be created where duplication is not allowed. A restrictive Python list
of unique values is known as a “set” and is created by assigning values as a comma-
separated list between curly brackets (braces):

phonetic-set = { ‘Alpha’, ‘Brave’, ‘Charlie’ }
Individual set elements cannot be referenced using the set name followed by square

brackets containing an index number, but instead sets have methods that can be dot-
suffixed to the set name for manipulation and comparison:

set.add(x) Adds item x to the set

set.update(x,y,z) Adds multiple items to the set
set.copy() Returns a copy of the set

set.pop() Removes one random item from the set

set.discard(i) Removes item at position i from the set

setl.intersection(set2) Returns items that appear in both sets

setl.difference(set2) Returns items in setl but not in set2

Hot tip K_

More set methods can be found in the Python documentation.

The Python type() function can be used to ascertain these lists’ data structure class and the
Python built-in membership operator in can be used to find values in a set.
Start a new Python script by initializing a tuple then display its contents, length,
and type
zoo = (‘Kangaroo’, ‘Leopard’, ‘Moose’)
print(‘Tuple:’, zoo , “\tLength:’, len(zoo))

print(type(zoo))

Next, initialize a set and add another element, then display its contents, length,
and type

bag = { ‘Red’, ‘Green’, ‘Blue’ }

bag.add(“Yellow’)

print(‘\nSet:’, bag , “\tLength’, len(bag))

print(type(bag))

Now, add statements to seek two values in the set

print(‘‘\nIs Green In bag Set?:’, ‘Green’ in bag)

print(‘Is Orange In bag Set?:’, ‘Orange’ in bag)

Finally, initialize a second set and display its contents, length, and all common
values found in both sets

box = { ‘Red’, ’Purple’, ‘Yellow’ }

print(‘\nSet:’, box , ‘\t\tLength’, len(box))

print(‘Common To Both Sets:’, bag.intersection(box))

Save the file in your scripts directory then open a Command Prompt window there
and run this program — to see the tuple and set values

:\MyScripts>python set.py
uple: (‘Kangaroo', ‘Leopard’, ‘Moose’) Length: 3
class ‘tuple’>

Set: {'Red’, 'Yellow', 'Blue’, 'Green'} Length 4
class ‘set’>

Is Green In bag Set?: True
s Orange In bag Set?: False

Set: {'Purple’, 'Red’, 'Yellow'} Length 3
Common To Both Sets: {'Yellow', 'Red’}

C:\MyScripts>

A set may also be created by specifying the brace-enclosed list within the parentheses of a
set() constructor and an immutable set can be created using a frozenset() constructor.

Associating list elements

In Python programming a “dictionary” is a data container that can store multiple items of
data as a list of key:value pairs. Unlike regular list container values, which are referenced
by their index number, values stored in dictionaries are referenced by their associated key.
The key must be unique within that dictionary and is typically a string name although
numbers may be used.

Hot tip ‘_

In other programming languages a list is often called an “array” and a dictionary is often
called an “associative array”.

Creating a dictionary is simply a matter of assigning the key:value pairs as a comma-
separated list between curly brackets (braces) to a name of your choice. Strings must be
enclosed within quotes, as usual, and a : colon character must come between the key and
its associated value.

A key:value pair can be deleted from a dictionary by specifying the dictionary name and
the pair’s key to the del keyword. Conversely, a key:value pair can be added to a dictionary
by assigning a value to the dictionary’s name and a new key.

Python dictionaries have a keys() method that can be dot-suffixed to the dictionary name to
return a list, in random order, of all the keys in that dictionary. If you prefer the keys to be
sorted into alphanumeric order, simply enclose the statement within the parentheses of the
Python sorted() function.

A dictionary can be searched to see if it contains a particular key with the Python in
operator, using the syntax key in dictionary. The search will return a Boolean True value when
the key is found in the specified dictionary, otherwise it will return False.

Hot tip ‘_

Data is frequently associated as key:value pairs — for example, when you submit a web
form a text value typed into an input field is typically associated with that text field’s
name as its key.

Dictionaries are the final type of data container available in Python programming. In
summary, the various types are:

Variable — stores a single value

List — stores multiple values in an ordered index

Tuple — stores multiple fixed values in a sequence

Set — stores multiple unique values in an unordered collection

Dictionary — stores multiple unordered key:value pairs

Start a new Python script by initializing a dictionary then display its key:value

contents

dict = { ‘name’ : ‘Bob’, ‘ref’ : ‘Python’, ‘sys’: “Win’ }

dict.py

2

Next, display a single value referenced by its key

print(‘Dictionary:’, dict)

print(“‘\nReference:’, dict[‘ref’])

Now, display all keys within the dictionary

print(‘\nKeys:’, dict.keys())

Delete one pair from the dictionary and add a replacement pair then display the

new key:value contents

del dict[‘name’]

dict[‘user’ | = ‘Tom’

print(‘\nDictionary:’, dict)

Finally, search the dictionary for a specific key and display the result of the search

print(‘\nlIs There A name Key?:’ ’name’ in dict)

Save the file in your scripts directory then open a Command Prompt window there

and run this program — to see the dictionary keys and values

Beware

IC:\MyScripts>python dict.py

Dictionary: {'sys’: "Win’, 'name’: "Bob", ‘ref’:

Reference: Python

Keys: dict_keys(['sys’, 'name’, "ref'])

Dictionary: {'user’: 'Tom', 'sys’: ‘Win’, 'ref’:

Is There A name Key?: False

\MyScripts>_

"Python”}

'Python”}

Notice that quotes must be preceded by a backslash escape character within a string — to
prevent the string being prematurely terminated.

Branching with if

The Python if keyword performs the basic conditional test that evaluates a given
expression for a Boolean value of True or False. This allows a program to proceed in
different directions according to the result of the test and is known as “conditional
branching”.

The tested expression must be followed by a : colon, then statements to be executed when
the test succeeds should follow below on separate lines and each line must be indented
from the if test line. The size of the indentation is not important but it must be the same for
each line. So the syntax looks like this:

if test-expression :
statements-to-execute-when-test-expression-is-True

statements-to-execute-when-test-expression-is-True

Beware g

Indentation of code is very important in Python as it identifies code blocks to the
interpreter — other programming languages use braces.

Optionally, an if test can offer alternative statements to execute when the test fails by
appending an else keyword after the statements to be executed when the test succeeds. The
else keyword must be followed by a : colon and aligned with the if keyword but its
statements must be indented in a likewise manner, so its syntax looks like this:

if test-expression :

statements-to-execute-when-test-expression-is-True

statements-to-execute-when-test-expression-is-True
else :

statements-to-execute-when-test-expression-is-False

statements-to-execute-when-test-expression-is-False
An if test block can be followed by an alternative test using the elif keyword (“else if”) that
offers statements to be executed when the alternative test succeeds. This too must be
aligned with the if keyword, followed by a : colon, and its statements indented. A final else

keyword can then be added to offer alternative statements to execute when the test fails.
The syntax for the complete if-elif-else structure looks like this:

if test-expression-1 :
statements-to-execute-when-test-expression-1-is-True
statements-to-execute-when-test-expression-1-is-True

elif test-expression-2 :
statements-to-execute-when-test-expression-2-is-True
statements-to-execute-when-test-expression-2-is-True

else :

statements-to-execute-when-test-expressions-are-False

statements-to-execute-when-test-expressions-are-False

Don‘t forget t

The if: elif: else: Sequence is the Python equivalent of the switch or case statements found in
other languages.

Start a new Python script by initializing a variable with user input of an integer
value

num = int(input(‘Please Enter A Number: ¢))

. P
3 PRt

if.py
Next, test the variable and display an appropriate response

if num>5:

print(‘Number Exceeds 5’)
elif num <5:

print(‘Number is Less Than 5°)
else :

print(‘Number Is 5’)

Now, test the variable again using two expressions and display a response only
upon success
if num>7and num<9:
print(‘Number is 8’)
if num == 1 or num ==

print(‘Number Is 1 or 3’)

Save the file in your scripts directory then open a Command Prompt window there
and run this program — to see conditional branching

C:\MyScripts>python if.py
Please Enter A Number: 4
umber is Less Than 5

C:\MyScripts>python if.py
Please Enter A Number: 6
umber Exceeds 5

:\MyScripts>python if.py

:\MyScripts>python if.py
IPlease Enter A Number: 3
Number is Less Than S

umber Is 1 or 3

:\MyScripts>,

The user input is read as a string value by default so must be cast as an int data type with
int() for arithmetical comparison.

The and keyword ensures the evaluation is True only when both tests succeed, whereas the
or keyword ensures the evaluation is True when either test succeeds.

Looping while true

A loop is a piece of code in a program that automatically repeats. One complete execution
of all statements within a loop is called an “iteration” or a “pass”. The length of the loop is
controlled by a conditional test made within the loop. While the tested expression is found
to be True the loop will continue — until the tested expression is found to be False, at which
point the loop ends.

Don‘t forget |

Unlike other Python keywords the keywords True and False begin with uppercase letters.

In Python programming, the while keyword creates a loop. It is followed by the test
expression then a : colon character. Statements to be executed when the test succeeds
should follow below on separate lines and each line must be indented the same space from
the while test line. This statement block must include a statement that will at some point
change the result of the test expression evaluation — otherwise an infinite loop is created.

Indentation of code blocks must also be observed in Python’s interactive mode — like this
example that produces a Fibonacci sequence of numbers from a while loop:

@ C:\Python33\python.exe - o [EN
Python 3.3.2 Al
»3 8 ; b= 3 X

>»>> while b < 160 :
print(b)
a,b=b,a+h

W

Loops can be nested, one within another, to allow complete execution of all iterations of
an inner nested loop on each iteration of the outer loop. A “counter” variable can be
initialized with a starting value immediately before each loop definition, included in the
test expression, and incremented on each iteration until the test fails — at which point the
loop ends.

Hot tip K_

The interpreter provides a ... continuation prompt when it expects further statements. Hit
Tab to indent each statement then hit Return to continue. Hit Return directly at the
continuation prompt to discontinue.

Start a new Python script by initializing a “counter” variable and define an outer
loop using that variable in its test expression

i=1

whilei<4:

while.py

@ Next, add indented statements to display the counter’s value and increment its
value on each iteration of the loop
print(‘\nOuter Loop Iteration:’, i)
i+=1
@ Now, (still indented) initialize a second “counter” variable and define an inner
loop using this variable in its test expression
j=1
while j<4:

Finally, add further-indented statements to display this counter’s value and

increment its value on each iteration
print(‘\tInner Loop Iteration:¢, j)
i+=1
@f@ Save the file in your scripts directory then open a Command Prompt window there
and run this program — to see the output displayed on each loop iteration

:\MyScripts>python while.py

Outer Loop Iteration: 1
Inner Loop Iteration:
Inner Loop Iteration:
Inner Loop Iteration:

Quter Loop Iteration: 2
Inner Loop Iteration:
Inner Loop Iteration:
Inner Loop Iteration:

Outer Loop Iteration: 3
Inner Loop Iteration:
Inner Loop Iteration:
Inner Loop Iteration:

:\MyScripts>,

Hot tip

The output printed from the inner loop is indented from that of the outer loop by the \t tab
character.

Hot tip

The += assignment statement i += 1 is simply a shorthand way to say i = i+1 — you can also
use *= /= -= shorthand to assign values to variables.

Looping over items

In Python programming the for keyword loops over all items in any list specified to the in
keyword. This statement must end with a : colon character and statements to be executed
on each iteration of the loop must be indented below, like this:

for each-item in list-name :
statements-to-execute-on-each-iteration

statements-to-execute-on-each-iteration

Don‘t forget

The range() function can generate a sequence that decreases, counting down, as well as
those that count upward.

As a string is simply a list of characters, the for in statement can loop over each character.
Similarly, a for in sStatement can loop over each element in a list, each item in a tuple, each
member of a set, or each key in a dictionary.

A for in loop iterates over the items of any list or string in the order that they appear in the
sequence but you cannot directly specify the number of iterations to make, a halting
condition, or the size of iteration step. You can, however, use the Python range() function to
iterate over a sequence of numbers by specifying a numeric end value within its
parameters. This will generate a sequence that starts at zero and continues up to, but not
including, the specified end value. For example, range(5) generates 0,1,2,3,4.

Optionally, you can specify both a start and end value within the parentheses of the range()
function, separated by a comma. For example, range(1,5) generates 1,2,3,4. Also, you can
specify a start value, end value, and a step value to the range() function as a comma-
separated list within its parentheses. For example, range(1,14,4) generates 1,5,9,13.

Beware g

The for loop in Python is unlike that in other languages such as C as it does not allow step
size and end to be specified.

You can specify the list’s name within the parentheses of Python’s enumerate() function to
display each element’s index number and its associated value.

When looping through multiple lists simultaneously, the element values of the same index
number in each list can be displayed together by specifying the list names as a comma-
separated list within the parentheses of Python’s zip() function.

When looping through a dictionary you can display each key and its associated value
using the dictionary items() method and specifying two comma-separated variable names to
the for keyword — one for the key name and the other for its value.

Start a new Python script by initializing a list, a tuple, and a dictionary

chars = [‘A’, ‘B’, ‘C’]

fruit = (‘Apple’, ‘Banana’, ‘Cherry’)

dict = { ‘name’ : "Mike’, ‘ref’ : "Python’, ‘sys’: "Win’ }

for.py
f&% Next, add statements to display all list element values

print(“‘\nElements:\t’ , end = ¢ ¢)
for item in chars :

print(item, end = ¢)

»@fy}jﬁ Now, add statements to display all list element values and their relative index
number
print(‘\nEnumerated:\t’, end = ¢ ¢)
for item in enumerate(chars) :
print(item, end = ¢)
4%@& Then, add statements to display all list and tuple elements
print(‘\nZipped:\t’, end = ¢ ¢)
for item in zip(chars , fruit) :

print(item , end = ¢ ¢)

Jf% Finally, add statements to display all dictionary key names and associated element
AL

values

print(‘\nPaired:’)

for key , value in dict.items() :

print(key, ‘=’, value)

@ Save the file in your scripts directory then open a Command Prompt window there
and run this program — to see the items displayed by the loop iterations

IC:\MyScripts>python for.py

ABC
(8, "A°) (1, 'B") (2, 'C")
('C', "Cherry")

('A', 'Apple’) ('B', 'Banana’)

IC:\MyScripts>,

Hot tip _

In Python programming anything that contains mutiple items that can be looped over is

described as “iterable”.

Breaking out of loops

The Python break keyword can be used to prematurely terminate a loop when a specified
condition is met. The break statement is situated inside the loop statement block and is
preceded by a test expression. When the test returns True the loop ends immediately and
the program proceeds on to the next task. For example, in a nested inner loop it proceeds
to the next iteration of the outer loop.

Start a new Python script with a statement creating a loop that iterates three times

foriinrange(1,4):

Y

nest.py

Next, add an indented statement creating a “nested” inner loop that also iterates
three times

for jin range(1,4):
Now, add a further-indented statement in the inner loop to display the counter

numbers (of both the outer loop and the inner loop) on each iteration of the inner
loop

print(‘Running i=’,i, ‘j=’,j)
Save the file in your scripts directory then open a Command Prompt window there
and run this program — to see the counter values on each loop iteration

] Command Prompt - oIEN|
| ~|

IC:\MyScripts>python nest.py
Running i =1 j =
IRunning
!Running
Running
Running
IRunning
!Running
Running
iRunning
IC: \MyScripts>_

| bl

Hot tip ‘_

Compare these nested for loops with the nested while loops example here

(PR VP VR P W W g P
[T |
WWWNNN R
Wononomowonowon
Wb b RS L A

L A R W W A

Now, insert this break statement at the very beginning of the inner loop block, to
break out of the inner loop — then save the file and run the program once more
ifi==2andj==1:

print(‘Breaks inner loop at i=2 j=1’)

break

:\MyScripts>_

break.py

Don't forget I

Here, the break statement halts all three iterations of the inner loop when the outer loop
tries to run it the second time.

The Python continue keyword can be used to skip a single iteration of a loop when a
specified condition is met. The continue statement is situated inside the loop statement
block and is preceded by a test expression. When the test returns True that one iteration
ends and the program proceeds to the next iteration.
0 Insert this continue statement at the beginning of the inner loop block, to skip the

first iteration of the inner loop — then save the file and run the program again

ifi==landj==1:
print(‘Continues inner loop at i=1 j=1’)

continue

:\MyScripts>python continue.py
ontinues inner loop at i=1 j=1
Running i =1 j =2
Running i =1 j =3

Breaks inner loop at i=2 j=1

:\MyScripts>_,

continue.py

Don‘t forget I

Here, the continue statement just skips the first iteration of the inner loop when the outer

loop tries to run it for the first time.

Summary

In Python, multiple assignments can be used to initialize several variables in a single
statement

A Python list is a variable that can store multiple items of data in sequentially-
numbered elements that start at zero

Data stored in a list element can be referenced using the list name followed by an
index number in [] square brackets

The len() function returns the length of a specified list

A Python tuple is an immutable list whose values can be assigned to individual
variables by “sequence unpacking”

Data stored in a tuple element can be referenced using the tuple name followed by an
index number in [] square brackets

A Python set is an ordered collection of unique elements whose values can be
compared and manipulated by its methods

Data stored in a set cannot be referenced by index number

A Python dictionary is a list of key:value pairs of data in which each key must be
unique

Data stored in a dictionary element can be referenced using the dictionary name
followed by its key in [] square brackets

The Python if keyword performs a conditional test on an expression for a Boolean
value of True or False

Conditional branching provides alternatives to an if test with the else and elif keywords
A while loop repeats until a test expression returns False
A forin loop iterates over each item in a specified list or string

The range() function generates a numerical sequence that can be used to specify the
length of a for in loop

The break and continue keywords interrupt loop iterations

4

Defining functions

This chapter demonstrates how to create functions that can be called to execute statements when the program

requires them.

Understanding scope
Supplying arguments
Returning values
Using callbacks
Adding placeholders
Producing generators
Handling exceptions
Debugging assertions

Summary

Understanding scope

Previous examples in this book have used built-in functions of the Python programming
language, such as the print() function. However, most Python programs contain a number
of custom functions that can be called as required when the program runs.

Don‘t forget

Function statements must be indented from the definition line by the same amount so the
Python interpreter can recognize the block.

A custom function is created using the def (definition) keyword followed by a name of
your choice and () parentheses. The programmer can choose any name for a function
except the Python keywords listed on the inside front cover of this book, and the name of
an existing built-in function. This line must end with a : colon character, then the
statements to be executed whenever the function gets called must appear on lines below
and indented. Syntax of a function definition, therefore, looks like this:

def function-name () :
statements-to-be-executed
statements-to-be-executed
Once the function statements have been executed, program flow resumes at the point

directly following the function call. This modularity is very useful in Python programming
to isolate set routines so they can be called upon repeatedly.

To create custom functions it is necessary to understand the accessibility (“scope”) of
variables in a program:

Variables created outside functions can be referenced by statements inside functions —
they have “global” scope

Variables created inside functions cannot be referenced from outside the function in
which they have been created — these have “local” scope

The limited accessibility of local variables means that variables of the same name can
appear in different functions without conflict.

If you want to coerce a local variable to make it accessible elsewhere it must first be
declared with the Python global keyword followed by its name only. It may subsequently be
assigned a value that can be referenced from anywhere in the program. Where a global
variable and a local variable have the same name the function will use the local version.

Beware g

Avoid using global variables in order to prevent accidental conflict — use only local
variables where possible.

Start a new Python script by initalizing a global variable

global_var =1

scope.py

Next, create a function named “my_vars” to display the value contained within the
global variable
def my_vars() :

print(‘Glebal Variable:’, global_var)

Now, add indented statements to the function block to initialize a local variable
and display the value it contains
local_var =2

print(‘Local variable:’, local_var)
Then, add indented statements to the function block to create a coerced global
variable and assign an initial value

global inner_var

inner_var = 3
Add a statement after the function to call upon that function to execute the
statements it contains
my_vars()
Finally, add a statement to display the value contained in the coerced global
variable
print(‘Coerced Global:’, inner_var)

Save the file in your scripts directory then open a Command Prompt window there
and run this program — to see the custom function display the variable values

iC : \MyScripts>python scope.py

Hot tip _

Variables that are not global but appear in some outer scope can be addressed using the
nonlocal keyword.

Supplying arguments

When defining a custom function in Python programming you may, optionally, specify an
“argument” name between the function’s parentheses. A value can then be passed to that
argument by specifying the value in the parentheses of the call to the function. The
function can now use that passed in value during its execution by referencing it via the
argument name. For example, defining a function to accept an argument to print out like
this:

def echo(user) :

print(‘User:’, user)

Don‘t forget |

Argument-naming follows the same conventions as variables and functions.

A call to this function must specify a value to be passed to the argument within its
parentheses so it can be printed out:

echo(‘Mike’)
Multiple arguments (a.k.a. “parameters™) can be specified in the function definition by
including a comma-separated list of argument names within the function parentheses:
def echo(user, lang , sys) :

print(User:’, user , ‘Language:’, lang , ‘Platform:’, sys)
When calling a function whose definition specifies arguments, the call must include the

same number of data values as arguments. For example, to call this example with multiple
arguments:

echo(‘Mike’, ‘Python’, ‘Windows’)
The passed values must appear in the same order as the arguments list unless the caller
also specifies the argument names like this:

echo(lang = ‘Python’, user = ‘Mike’, sys = “‘Windows’)

Hot tip ‘_

Name arguments the same as variables passed to them to make the data movement
obvious.

Optionally, a default value may be specified in the argument list when defining a function.
This will be overridden when the caller specifies a value for that argument but will be used
by the function when no value gets passed by the caller:
def echo(user, lang , sys = ‘Linux’) :

print(User:’, user , ‘Language:’, lang , ‘Platform:’, sys)
This means you may call the function passing fewer values than the number of arguments

specified in the function definition, to use the default argument value, or pass the same
number of values as specified arguments to override the default value.

Start a new Python script by defining a function to accept three arguments that
will print out their passed in values
def echo(user , lang, sys) :

print(‘User:’, user, ‘Language:’, lang, ‘Platform:’, sys)

w

I -,
e o

args.py
Next, call the function passing string values to the function arguments in the order
they appear
echo(‘Mike’, ‘Python’, “Windows’)
Now, call the function passing string values to the function arguments by
specifying the argument names

echo(lang = ‘Python’, sys = ‘Mac OS’, user = ‘Anne’)

Then, define another function to accept two arguments with default values that
will print out argument values
def mirror(user = ‘Carole’, lang = ‘Python’) :

print(‘\nUser:’, user , ‘Language:’, lang)

Finally, add statements to call the second function both using and overriding
default values

mirror()

mirror(lang = ‘Java’)

mirror(user = “Tony’)

mirror(‘Susan’, ‘C++’)

Save the file in your scripts directory then open a Command Prompt window there
and run this program — to see the function display the argument values

- —— =1 -

C:\MyScripts>python args.py

lUser: Mike Language: Python Platform: Windows
User: Anne Language: Python Platform: Mac 0S
User: Carole Language: Python

\User: Carole Language: Java

User: Tony Language: Python

User: Susan Language: C++

C:\MyScripts>_

Returning values

Like Python’s built-in str() function, which returns a string representation of the value
specified as its argument by the caller, custom functions can also return a value to their
caller by using the Python return keyword to specify a value to be returned. For example,
to return to the caller the total of adding two specified argument values like this:

def sum(a,b):
returna+b
The returned result may be assigned to a variable by the caller for subsequent use by the
program like this:
total =sum(8,4)
print(‘Eight Plus Four Is:’, total)
Or the returned result may be used directly “in-line” like this:
print(‘Eight Plus Four Is:’, sum(8,4))
Typically, a return statement will appear at the very end of a function block to return the
final result of executing all statements contained in that function.

A return statement may, however, appear earlier in the function block to halt execution of
all subsequent statements in that block. This immediately resumes execution of the
program at the caller. Optionally, the return statement may specify a value to be returned to
the caller or the value may be omitted. Where no value is specified, a default value of None
is assumed. Typically, this is used to halt execution of the function statements after a
conditional test is found to be False. For example, where a passed argument value is below
a specified number:
def sum(a,b):

ifa<5:

return

returna+b

Don‘t forget ‘

You can specify a default value for an argument in the function definition.

In this case, the function will return the default value None when the first passed argument
value is below five and the final statement will not be executed.

Where the function is to perform arithmetic, user input can be validated for integer values
with the built-in isdigit() function.

Start a new Python script by initializing a variable with user input of an integer
value for manipulation

num = input(‘Enter An Integer:’)

return.py

%Z‘i:“;; Next, add a function definition that accepts a single argument value to be passed

from the caller

def square(num) :

~ Now, insert into the function block an indented statement to validate the passed
value as an integer or halt further execution of the function’s statements
if not num.isdigit() :

return ‘Invalid Entry’

(' Then, add indented statements to cast the passed value as an int data type then
return the sum of squaring that value to the caller
num = int(num)
return num * num
”%;5 Finally, add a statement to output a string and the returned value from the function
call

print(num , ‘Squared Is:’, square(num))

. Save the file in your scripts directory then open a Command Prompt window there
and run this program — to see the function display the returned values

iC:\MyScripts>python return.py
Enter An Integer:8
8 Squared Is: 64

:\MyScripts>python return.py
Enter An Integer:8.0
8.0 Squared Is: Invalid Entry

iC: \MyScripts>python return.py
iEnter An Integer:Eight
Eight Squared Is: Invalid Entry

iC: \MyScripts>,

Beware

Remember that user input is read as a str data type — so must be cast into an int or float data
type for arithmetic.

Using callbacks

In Python, a named function is created using the def keyword to specify a function name,
which can be used to call that function at any time in the program to execute the
statements it contains. Optionally, the named function can return a value to the caller.

Python also allows an anonymous un-named function to be created using the lambda
keyword. An anonymous function may only contain a single expression which must
always return a value.

Unlike the usual creation of a function with the def keyword, the creation of a function
with the lambda keyword returns a “function object”. This can be assigned to a variable,
which can then be used to reference (“call back”) the function at any time in the program
to execute the expression it contains.

The lambda keyword, therefore, offers the programmer an alternative syntax for the
creation of a function. For example:

def square(x) :
return x ** 2
can alternatively be written more succinctly as...

square = lambda x : x ** 2
In either case, the call square(5) returns the result 25 by passing in an integer argument to
the function. Note that the lambda keyword is followed by an argument without parentheses

and the specified expression does not require the return keyword as all functions created
with lambda must implicitly return a value.

Hot tip ‘_

In-line lambda callbacks are often used to define the behavior of buttons in a GUI program.

While the lambda keyword offers an alternative way to create a function it is mostly used to
embed a function within the code. For instance, callbacks are frequently coded as inline
lambda expressions embedded directly in a caller’s arguments list — instead of being
defined with the def keyword elsewhere in the program and referenced by name. For
example:

def function_1 : statements-to-be-executed
def function_2 : statements-to-be-executed

callbacks = [function_1 , function_2]

can alternatively be written more succinctly as...

callbacks = [lambda : expression , lambda : expression]
Start a new Python script by defining three functions to return a passed argument
raised to various powers
def function_1(x) : return x ** 2

def function_2(x) : return x ** 3

def function_3(x) : return x ** 4

Next, add a statement to create a list of callbacks to each of the functions by

referencing their names

callbacks = [function_1, function_2 , function_3]

Now, display a heading and the result of passing a value to each of the named

functions
print(“‘nNamed Functions:”)

for function in callbacks : print(‘Result:’, function(3))

Then, add a statement to create a list of callbacks to inline anonymous functions
that return a passed argument raised to various powers
callbacks =\

[lambda x : x ** 2 , Jambda x : x ** 3, lambda x : x ** 4]

Finally, display a heading and the result of passing a value to each of the

anonymous functions
print(‘nAnonymous Functions:’)

for function in callbacks : print(‘Result:’, function(3))

Save the file in your scripts directory then open a Command Prompt window there

and run this program — to see returns from regular and anonymous functions

Ic: \MyScripts>python lambda.py

Mamed Functions:

Hot tip

Function definitions that contain just one statement can be written on just one line — as
seen here.

Hot tip

The \ backslash character can be used to allow code to continue on the next line — as seen

here.

Adding placeholders

The Python pass keyword is useful when writing program code as a temporary placeholder
that can be inserted into the code at places where further code needs to be added later. The
pass keyword is inserted where a statement is required syntactically but it merely performs
a “null” operation — when it is executed nothing happens and no code needs to be
executed. This allows an incomplete program to be executed for testing by simulating
correct syntax so the interpreter does not report errors.

Start a new Python script by initializing a variable with a Boolean value then add

an incomplete conditional test
bool = True
if bool :

print(‘Python In Easy Steps’)
else :

Statements to be inserted here.

Save the file in your scripts directory then open a Command Prompt window there

and run this program — to see the interpreter report an error

:\MyScripts>python incomplete.py
File "incomplete.py”, line 7

A

iISyntaxError: unexpected EOF while parsing

\MyScripts>

@ Replace the comment with the pass keyword then save the file and run the program
again — to see the program execute as the interpreter does not now find an error

:\MyScripts>python pass.py
Python In Easy Steps

\MyScripts>g

pass.py

In loop structures it is important not to confuse the pass keyword, which allows the
interpreter to process all subsequent statements on that iteration, with the continue keyword,
which skips subsequent statements on that iteration of the loop only.

e

Start a new Python script by initializing a variable with a string value

title = ‘\nPython In Easy Steps\n’

A

skip.py

Next, add a loop to print each character of the string
for char in title : print(char,end = ¢ ¢)

Now, add a loop that prints each string character but replaces any ‘y’ character
then skips to the next iteration
for char in title :
if char == ‘y’:
print(“*’,end = ¢ ¢)
continue

print(char,end = ¢ ¢)

Finally, add a loop that prints each string character but inserts an asterisk before
each ‘y’ character
for char in title :
if char ==y’ :
print(‘“*’,end = ¢’)
pass

print(char,end = ¢ ¢)

Save the file in your scripts directory then open a Command Prompt window there
and run this program — to see a different output from each loop

IC:\MyScripts>python skip.py

Python In Easy Steps
P*thon In Eas* Steps
P*ython In Eas®*y Steps

1C: \MyScripts>,

Don‘t forget 1

In a loop the continue keyword continues on the next iteration, whereas the pass keyword

passes on to the next statement of the same iteration.

Producing generators

When a Python function is called, it executes the statements it contains and may return
any value specified to the return keyword. After the function ends, control returns to the
caller and the state of the function is not retained. When the function is next called, it will
process its statements from start to finish once more.

A Python generator, on the other hand, is a special function that returns a “generator
object” to the caller rather than a data value. This, effectively, retains the state of the
function when it was last called so it will continue from that point when next called.

Generator functions are produced by defininition just like regular functions but contain a
“yield” statement. This begins with the Python yield keyword and specifies the generator
object to be returned to the caller. When the yield statement gets executed, the state of the
generator object is frozen and the current value in its “expression list” is retained. The
generator object returned by the yield statement can be conveniently assigned to a
variable. Python’s built-in next() function can then specify that variable name within its
parentheses to continue execution of the function from the point at which it was frozen —
exactly as if the yield statement were just another external call.

Repeatedly calling the generator object with the next() function continues execution of the
function until it raises an exception. This can be avoided by enclosing the yield statement
within an infinite loop so it will return successive values on each iteration. For example, to
yield an incremented value on each call:

def incrementer() :
i=1
while True :
yield i
i+=1
inc = incrementer()
print(next(inc))
print(next(inc))
print(next(inc))
These calls display the integer value 1, then 2, then 3.

Perhaps more usefully, the generator object can be referenced from a loop to successively
iterate through values.

Beware g

Changing the conditional test in this loop to read while i < 3 will cause a Stoplteration error
when called for the third time.

Start a new Python script by defining a function that begins by initializing two
variables with an integer of one

def fibonacci_generator() :

a=b=1

yield.py
@ Next, in the function body insert an indented infinite loop to yield the addition of
two previous values
while True :
yield a
a,b=b,a+b
@ Now, assign the returned generator object to a variable

fib = fibonacci_generator()

Finally, add a loop to successively call the generator function and display its value
on each iteration

foriin fib :
ifi>100:
break
else :

print(‘Generated:’, i)

@ Save the file in your scripts directory then open a Command Prompt window there
and run this program — to see the loop display increasing generated values

IC:\MyScripts>python yield.py

C:\MyScripts>_

Don‘t forget 1

Here, the variables are initialized with a common value in a single statement.

Hot tip _

You can use the in-built type() function to confirm the object type — here, type(fib) is

confirmed as a generator class object.

Handling exceptions

Sections of a Python script in which it is possible to anticipate errors, such as those
handling user input, can be enclosed in a try except block to handle “exception errors”. The
statements to be executed are grouped in a try : block and exceptions are passed to the
ensuing except : block for handling. Optionally, this may be followed by a finally : block
containing statements to be executed after exceptions have been handled.

Hot tip ‘_

Discover more built-in exceptions online at http://docs.python.org/3/library/exceptions.html

Python recognizes many built-in exceptions such as the NameError which occurs when a
variable name is not found, the IndexError which occurs when trying to address a non-
existent list index, and the valueError which occurs when a built-in operation or function
receives an argument that has an inappropriate value.

Each exception returns a descriptive message that can, usefully, be assigned to a variable
with the as keyword. This can then be used to display the nature of the exception when it
occurs.

Start a new Python script by initializing a variable with a string value

title = ‘Python In Easy Steps’

ry.py
Next, add a try statement block that attempts to display the variable value — but
specifies the name incorrectly
try :
print(titel)
Now, add an except statement block to display an error message when a
NameError occurs
except NameError as msg :
print(msg)
Save the file in your scripts directory then open a Command Prompt window there
and run this program — to see how the error gets handled

= Command Prompt - o IEN]

| Al
IC:\MyScripts>python try.py

name ‘titel' is not defined

C:\MyScripts>_
|

http://docs.python.org/3/library/exceptions.html

Multiple exceptions can be handled by specifying their type as a comma-separated list in
parentheses within the except block:

except (NameError , IndexError) as msg :
print(msg)

You can also compel the interpreter to report an exception by using the raise keyword to
specify the type of exception to be recognized and a custom descriptive message in
parentheses.

Start a new Python script by initializing a variable with an integer value

day = 32

3 PRt

raise.py

Next, add a try statement block that tests the variable value then specifies an
exception and custom message
try :
if day > 31 :
raise ValueError(‘Invalid Day Number’)

More statements to execute get added here.

Now, add an except statement block to display an error message when a
ValueError occurs
except ValueError as msg :

print(‘The Program found An’, msg)
Then, add a finally statement block to display a message after the exception has
been handled successfully
finally :

print(‘But Today Is Beautiful Anyway.’)

Save the file in your scripts directory then open a Command Prompt window there
and run this program — to see the raised error get handled

= Command Prompt - olEN|
2 -
IC:\MyScripts>python raise.py

iThe Program Found An Invalid Day Number

But Today Is Beautiful Anyway.

IC: \MyScripts>_

Don‘t forget t

Statements in the try block are all executed unless or until an exception occurs.

Debugging assertions

When tracking down (debugging) errors in your code it is often useful to “comment-out”
one or more lines of code by prefixing each line with the # hash character — as used for
your comments. The Python interpreter will then omit execution of those lines so helps to
localize where a problem lies. For example, where you suspect a variable assignment
problem it can be excluded like this:

elem = elem / 2

If the program now runs without errors the commented-out assignment can be assumed to
be problematic.

Another useful debugging technique employs the Python assert keyword to add error-
checking code to your script. This examines a specified test expression for a Boolean True
or False result and reports an “AssertionError” when the test fails. Optionally, an assert
statement can include a descriptive message to supply when reporting an AssertionError,
and has this syntax:

assert test-expression , descriptive-message
When the test expression fails, the interpreter reports the AssertionError and halts

execution of the script but when the test succeeds, the assert statement does nothing and
execution of the script continues.

Employing assert statements is an effective way to document your script as their
descriptive messages provide commentary and their tests alert you when your code is
erroneous.

Hot tip ‘_

You can have the interpreter ignore all assert statements using a -0 switch in the run
command — for example python -O assert.py.

Assert versus Exception

At first glance an AssertionError can appear confusingly similar to an Exception but it is
important to recognize their distinctions:

Exceptions provide a way to handle errors that may legitimately occur at runtime

AssertionErrors provide a way to alert the programmer to mistakes during
development

Typically, assert statements will be removed from release versions of a program after

debugging is complete, whereas except statements will remain to handle runtime errors.

. Start a new Python script by initializing a list with several string values

chars = [‘Alpha’, ‘Beta’, ‘Gamma’, ‘Delta’, ‘Epsilon’]

assert.py

Next, define a function to accept a single argument
def display(elem) :

Now, add indented statements in the function body to ensure the passed argument
value is an integer then display a list element of that index number
assert type(elem) is int , ‘Argument Must Be Integer!’

print(‘List Element’, elem , ‘=’ , chars[elem])

. Then, initialize a variable with an integer value and call the function, passing this
variable value as its argument
elem =4

display(elem)

Finally, change the variable value then call the function once more, passing the
new variable value as its argument
elem = elem / 2

display(elem)

Save the file in your scripts directory then open a Command Prompt window there
and run this program — to see an AssertionError reported

IC:\MyScripts>python assert.py
iList Element 4 = Epsilon
ITraceback (most recent call last):
| File "assert.py”, line 12, in <module>
display(elem)
File "assert.py”, line 5, in display
assert type(elem) is int , 'Argument Must Be Integer!

AssertionError: Argument Must Be Integer!

IC:\MyScripts>,

Don‘t forget 1

This AssertionError occurs because the division operation returns a float value, not an
integer value.

Summary

Functions are defined using the def keyword and contain indented statements to execute
when the function gets called

Variables with global scope can be referenced from anywhere, but variables with local
scope can only be referenced from within the function in which they are declared

Arguments are declared as a comma-separated list within the parentheses of a function
definition

Function calls must supply data for each function argument unless a default value is
specified in their declaration

Optionally, a function can include a return statement to return a value to the caller

An anonymous function containing a single expression is created with the lambda
keyword and returns a function object

Callbacks are frequently coded as inline lambda expressions embedded directly in a
caller’s argument list

Placeholders can be created by inserting the pass keyword where a statement is required
syntactically

A generator function is created when a statement using the yield keyword appears in its
function block

Generator functions retain the state of the function when last called and return a
generator object to the caller

The built-in next() function can be used to continue execution of a generator function
from the point where it was frozen

Anticipated runtime exception errors can be handled by enclosing statements in a try
except block

Optionally, a finally statement can be used to specify statements to be executed after
exceptions have been handled

Error-checking code can be added to scripts using the assert keyword to report
development errors

This chapter demonstrates how to use Python modules in your programs.
Storing functions

Owning function names
Interrogating the system

Performing mathematics

Calculating decimals

Telling the time

Running a timer

Matching patterns

Summary

Storing functions

Python function definitions can, usefully, be stored in one or more separate files for easier
maintenance and to allow them to be used in several programs without copying the
definitions into each one. Each file storing function definitions is called a “module” and
the module name is the file name without the “.py” extension.

Functions stored in the module are made available to a program using the Python import
keyword followed by the module name. Although not essential, it is customary to put any
import Statements at the beginning of the program.

Imported functions can be called using their name dot-suffixed after the module name. For
example, a “steps” function from an imported module named “ineasy” can be called with

ineasy.steps().

Where functions stored in a module include arguments, it is often useful to assign a default
value to the argument in the definition. This makes the function more versatile as it
becomes optional for the call to specify an argument value.

Start a new Python module by defining a function that supplies a default string

value to its argument for display
def purr(pet = ‘ACat’) :

print(pet , ‘Says MEOW!”)

cat.py

Next, add two more function definitions that also supply default string values to

their arguments for display
def lick(pet = ‘ACat’) :

print(pet , ‘Drinks Milk’)
def nap(pet = ‘ACat’) :
print(pet , ‘Sleeps By The Fire’)
Now, save the file as “cat.py” so the module is named “cat”

Start a new Python script with a statement to make the “cat” module functions
available

import cat

kitty.py

@ Next, call each function without supplying an argument

cat.purr()
cat.lick()

cat.nap()

Now, call each function again and pass an argument to each, then save the file
cat.purr(‘Kitty’)

catlick(‘Kitty’)

cat.nap(‘Kitty’)

@ Start another Python script by making the “cat” module functions available once
more

import cat

tiger.py

@k Then, request the user enters a name to overwrite the default argument value

pet = input(‘Enter A Pet Name: ¢)

Finally, call each function, passing the user-defined value as the argument

cat.purr(pet)
catlick(pet)
cat.nap(pet)

Save the file in your scripts directory then open a Command Prompt window there

and run these programs — to see output from the imported module

IC:\MyScripts>python kitty.py
A Cat Says MEOW!

A Cat Drinks Milk

A Cat Sleeps By The Fire

Kitty Sleeps By The Fire

C:\MyScripts>python tiger.py
Enter A Pet Name: Tiger
Tiger Says MEOW!

Tiger Drinks Milk

Tiger Sleeps By The Fire

IC: \MyScripts>_,

Don’t forget 1

You can create an alias when importing a module using import as keywords. For example

import cat as tom allows you to use tom as the function prefix in calls.

Owning function names

Internally, each Python module and program has its own “symbol table” which is used by
all functions defined in that context only. This avoids possible conflicts with functions of
the same name in another module if both modules were imported into one program.

When you import a module with an import statement, that module’s symbol table does not
get added to the program’s symbol table — only the module’s name gets added. That is why
you need to call the module’s functions using their module name prefix. Importing a
“steps” function from a module named “ineasy” and another “steps” function from a
module named “dance” means they can be called without conflict as ineasy.steps() and

dance.steps().

Don‘t forget

Where you import individual function names, the module name does not get imported — so
it cannot be used as a prefix.

Generally, it is preferable to avoid conflicts by importing the module name and calling its
functions with the module name prefix but you can import individual function names
instead with a from import statement. The module name is specified after the from keyword,
and functions to import are specified as a comma-separated list after the import keyword.
Alternatively, the * wildcard character can be specified after import to import all function
names into the program’s own symbol table. This means the functions can be called
without a module name prefix.

Start a new Python module by defining a function that supplies a default string
value to its argument

def bark(pet = ‘ADog’) :

print(pet , ‘Says WOOF!’)

dog.py
Next, add two more function definitions that also supply default string values to
their arguments

def lick(pet = ‘ADog’) :
print(pet , ‘Drinks water’)
def nap(pet = ‘ADog’) :
print(pet , ¢ Sleeps In The Sun’)

Save the file as “dog.py” so the module is named “dog”.

Start a new Python script with a statement to make individual “dog” module

functions available

from dog import bark , lick , nap

pooch.py

Next, call each function without supplying an argument

bark()

lick()

nap()

Now, call each function again and pass an argument value to each then save the
file

bark(“Pooch’)

lick(“Pooch’)

nap(‘Pooch’)

Start another Python script by making all “dog” module functions available

from dog import *

fido.py
Then, request the user enters a name to overwrite the default argument value

pet = input(‘Enter A Pet Name: ¢)

Finally, call each function, passing the user-defined value as the argument

bark(pet)
lick(pet)
nap(pet)

Save the file in your scripts directory then open a Command Prompt window there
and run these programs — to see output from the imported functions

IC:\MyScripts>python pooch.py
A Dog Says WOOF!

A Dog Drinks Water

A Dog Sleeps In The Sun
Pooch Says WOOF!

Pooch Drinks Water

Pooch Sleeps In The Sun

\MyScripts>python fido.py
Enter A Pet Name: Fido

ido Says WOOF!
Fido Drinks Water

Fido Sleeps In The Sun

For larger programs you can import modules into other modules to build a module
hierarchy.

Interrogating the system

Python includes “sys” and “keyword” modules that are useful for interrogating the Python
system itself. The keyword module contains a list of all Python keywords in its kwlist
attribute and provides an iskeyword() method if you want to test a word.

You can explore the many features of the “sys” module and indeed any feature of Python
using the Interactive Mode help system. Just type help() at the >>> prompt to start the help
system then type sys at the help> prompt that appears.

Perhaps most usefully, the “sys” module has attributes that contain the Python version
number, interpreter location on your system, and a list of all directories where the
interpreter seeks module files — so if you save module files in any of these directories you
can be sure the interpreter will find them.

Start a new Python script by importing the “sys” and “keyword” modules to make

their features available
import sys , keyword

system.py

Next, add a statement to display the Python version

print(‘Python Version:* , sys.versi