

Mike	McGrath

Python

In	easy	steps	is	an	imprint	of	In	Easy	Steps	Limited

16	Hamilton	Terrace	·	Holly	Walk	·	Leamington	Spa

Warwickshire	·	CV32	4LY

www.ineasysteps.com

Copyright	©	2014	by	In	Easy	Steps	Limited.	All	rights	reserved.	No	part	of	this	book	may	be	reproduced	or	transmitted
in	any	form	or	by	any	means,	electronic	or	mechanical,	including	photocopying,	recording,	or	by	any	information
storage	or	retrieval	system,	without	prior	written	permission	from	the	publisher.

Notice	of	Liability

Every	effort	has	been	made	to	ensure	that	this	book	contains	accurate	and	current	information.	However,	In	Easy	Steps
Limited	and	the	author	shall	not	be	liable	for	any	loss	or	damage	suffered	by	readers	as	a	result	of	any	information
contained	herein.

Trademarks

All	trademarks	are	acknowledged	as	belonging	to	their	respective	companies.

http://www.ineasysteps.com

Contents
1	Getting	started

Introducing	Python

Installing	Python	on	Windows

Installing	Python	on	Linux

Meeting	the	interpreter

Writing	your	first	program

Employing	variables

Obtaining	user	input

Correcting	errors

Summary

2	Performing	operations
Doing	arithmetic

Assigning	values

Comparing	values

Assessing	logic

Examining	conditions

Setting	precedence

Casting	data	types

Manipulating	bits

Summary

3	Making	statements
Writing	lists

Manipulating	lists

Restricting	lists

Associating	list	elements

Branching	with	if

Looping	while	true

Looping	over	items

Breaking	out	of	loops

Summary

4	Defining	functions
Understanding	scope

Supplying	arguments

Returning	values

Using	callbacks

Adding	placeholders

Producing	generators

Handling	exceptions

Debugging	assertions

Summary

5	Importing	modules
Storing	functions

Owning	function	names

Interrogating	the	system

Performing	mathematics

Calculating	decimals

Telling	the	time

Running	a	timer

Matching	patterns

Summary

6	Managing	strings
Manipulating	strings

Formatting	strings

Modifying	strings

Converting	strings

Accessing	files

Reading	and	writing	files

Updating	file	strings

Pickling	data

Summary

7	Programming	objects
Encapsulating	data

Creating	instance	objects

Addressing	class	attributes

Examining	built-in	attributes

Collecting	garbage

Inheriting	features

Overriding	base	methods

Harnessing	polymorphism

Summary

8	Processing	requests
Sending	responses

Handling	values

Submitting	forms

Providing	text	areas

Checking	boxes

Choosing	radio	buttons

Selecting	options

Uploading	files

Summary

9	Building	interfaces
Launching	a	window

Responding	to	buttons

Displaying	messages

Gathering	entries

Listing	options

Polling	radio	buttons

Checking	boxes

Adding	images

Summary

10	Developing	applications
Generating	random	numbers

Planning	the	program

Designing	the	interface

Assigning	static	properties

Initializing	dynamic	properties

Adding	runtime	functionality

Testing	the	program

Freezing	the	program

Deploying	the	application

Summary

Preface
The	creation	of	this	book	has	been	for	me,	Mike	McGrath,	an	exciting	personal	journey	in
discovering	how	Python	can	be	used	today	for	procedural	and	object-oriented
programming,	to	develop	applications	and	to	provide	online	functionality.	Example	code
listed	in	this	book	describes	how	to	produce	Python	programs	in	easy	steps	–	and	the
screenshots	illustrate	the	actual	results.	I	sincerely	hope	you	enjoy	discovering	the	exciting
possibilities	of	Python	and	have	as	much	fun	with	it	as	I	did	in	writing	this	book.

In	order	to	clarify	the	code	listed	in	the	steps	given	in	each	example	I	have	adopted	certain
colorization	conventions.	Components	of	the	Python	programming	language	are	colored
blue,	programmer-specified	names	are	red,	numeric	and	string	data	values	are	black,	and
comments	are	green,	like	this:
#	Write	the	traditional	greeting.

greeting	=	‘Hello	World!’

print(greeting)

Additionally,	in	order	to	identify	each	source	code	file	described	in	the	steps,	a	colored
icon	and	file	name	appears	in	the	margin	alongside	the	steps:

script.py

page.html

image.gif

For	convenience	I	have	placed	source	code	files	from	the	examples	featured	in	this	book
into	a	single	ZIP	archive.	You	can	obtain	the	complete	archive	by	following	these	easy
steps:

Open	the	web	browser	and	navigate	to	www.ineasysteps.com	then	navigate	to	the
“Resources”	tab	and	choose	the	“Downloads”	section

Find	“Python	in	easy	steps”	in	the	list,	then	click	on	the	hyperlink	entitled	“All
Code	Examples”	to	download	the	archive

Next,	extract	the	MyScripts	and	MyProjects	folders	to	your	home	directory	(such	as	C:\
)	and	copy	all	contents	of	the	htdocs	folder	to	your	web	server’s	documents

http://www.ineasysteps.com

directory

Now,	follow	the	steps	to	call	upon	the	Python	interpreter	and	see	the	output

1

Getting	started
Welcome	to	the	exciting	world	of	the	Python	programming	language.	This	chapter	demonstrates	how	to	install

Python	and	create	your	first	program.

Introducing	Python

Installing	Python	on	Windows

Installing	Python	on	Linux

Meeting	the	interpreter

Writing	your	first	program

Employing	variables

Obtaining	user	input

Correcting	errors

Summary

Introducing	Python
Python	is	a	high-level	(human-readable)	programming	language	that	is	processed	by	the
Python	“interpreter”	to	produce	results.	Python	includes	a	comprehensive	standard	library
of	tested	code	modules	that	can	be	easily	incorporated	into	your	own	programs.

The	Python	language	was	developed	by	Guido	van	Rossum	in	the	late	eighties	and	early
nineties	at	the	National	Research	Institute	for	Mathematics	and	Computer	Science	in	the
Netherlands.	Python	is	derived	from	many	other	languages,	including	C,	C++,	the	Unix
shell	and	other	programming	languages.	Today,	Python	is	maintained	by	a	core
development	team	at	the	Institute,	although	Guido	van	Rossum	still	holds	a	vital	role	in
directing	its	progress.

Discover	all	the	latest	Python	news	online	at	www.python.org

The	basic	philosophy	of	the	Python	language	is	readability,	which	makes	it	particularly
well-suited	for	beginners	in	computer	programming,	and	it	can	be	summarized	by	these
principles:

• Beautiful	is	better	than	ugly

• Explicit	is	better	than	implicit

• Simple	is	better	than	complex

• Complex	is	better	than	complicated

• Readability	counts

As	Python	is	intended	to	be	highly	readable	it	uses	English	keywords	frequently	where
other	languages	may	use	punctuation.	Most	significantly,	it	uses	indentation	to	group
together	statements	into	code	“blocks”	whereas	other	languages	may	use	keywords	or
punctuation	for	this	purpose.	For	example,	in	the	Pascal	programming	language	blocks
start	with	the	keyword	begin	and	end	with	the	keyword	end,	and	in	the	C	programming
language	blocks	are	enclosed	within	curly	brackets	({	}	braces).	Grouping	blocks	of
statements	by	indentation	is	sometimes	criticized	by	programmers	familiar	with	languages
that	group	by	punctuation	but	the	use	of	indentation	in	Python	certainly	produces	code	that
has	an	uncluttered	visual	layout.

Programming	languages	that	group	blocks	by	indentation	are	said	to	adhere	to	the	“offside
rule”	–	a	pun	on	the	offside	rule	in	soccer.

http://www.python.org

Some	of	Python’s	key	distinguishing	features	that	make	it	an	attractive	choice	of	language
for	the	beginner	include:

• Python	is	free	–	is	open	source	distributable	software

• Python	is	easy	to	learn	–	has	a	simple	language	syntax

• Python	is	easy	to	read	–	is	uncluttered	by	punctuation

• Python	is	easy	to	maintain	–	is	modular	for	simplicity

• Python	is	“batteries	included”	–	provides	a	large	standard	library	for	easy	integration
into	your	own	programs

• Python	is	interactive	–	has	a	terminal	for	debugging	and	testing	snippets	of	code

• Python	is	portable	–	runs	on	a	wide	variety	of	hardware	platforms	and	has	the	same
interface	on	all	platforms

• Python	is	interpreted	–	there	is	no	compilation	required

• Python	is	high-level	–	has	automatic	memory	management

• Python	is	extensible	–	allows	the	addition	of	low-level	modules	to	the	interpreter	for
customization

• Python	is	versatile	–	supports	both	procedure-orientated	programming	and	object-
orientated	programming	(OOP)

• Python	is	flexible	–	can	create	console	programs,	windowed	GUI	(Graphical	User
Interface)	applications,	and	CGI	(Common	Gateway	Interface)	scripts	to	process	web
data

Python	is	named	after	the	British	television	comedy	series	“Monty	Python’s	Flying
Circus”	–	you	may	encounter	references	to	this	in	the	Python	documentation.

As	development	of	Python	continues	newer	versions	are	released	as	with	most	software.
Currently,	the	final	2.7	version	is	out,	with	a	statement	of	extended	support	for	this	end-of-
life	release.	The	2.x	branch	will	see	no	new	major	releases	after	that.

The	3.x	branch	is	under	active	development	and	has	already	seen	several	stable	releases.
This	means	that	all	recent	standard	library	improvements,	for	example,	are	only	available
in	Python	3.x.	This	book	describes	and	demonstrates	features	of	the	present	and	the	future
of	Python	with	the	latest	3.x	version.

Python	3.x	is	not	backward	compatible	with	Python	2.7.

Installing	Python	on	Windows
Before	you	can	begin	programming	in	the	Python	language	you	need	to	install	on	your
computer	the	Python	interpreter	and	the	standard	library	of	tested	code	modules	that
comes	along	with	it.	This	is	available	as	a	free	download	at	http://python.org/downloads	For
Windows	users	there	is	an	MSI	installer	available	in	both	32-bit	and	64-bit	versions.

Installers	for	Mac	OS	X	in	both	32-bit	and	64-bit	versions	are	also	available	for	download
at	python.org/downloads

Launch	a	web	browser	then	navigate	to	python.org/downloads	and	download	the
appropriate	installer	version	for	your	system	–	in	this	example	it’s	an	installer	file
snappily	named	“Python	3.3.2	Windows	X86-64	MSI	Installer”

When	the	download	completes	run	the	installer	and	choose	whether	to	install	for
all	users	or	just	yourself,	then	click	the	Next	button	to	proceed

Now,	accept	the	suggested	default	installation	location,	which	will	be	a	directory
on	your	root	C:\	drive	named	“Python”	and	version	number	–	in	this	example	it’s	a
directory	at	C:\Python33	for	Python	version	3.3.2

Support	for	MSI	installer	files	is	included	with	all	recent	versions	of	Windows	and	free
from	microsoft.com/downloads	–	search	for	“Windows	Installer”.

http://python.org/downloads
http://python.org/downloads
http://python.org/downloads/
http://microsoft.com/downloads

Click	the	Next	button	to	proceed,	then	be	sure	to	select	the	feature	to	“Add
python.exe	to	Path”

Click	on	Next	to	begin	copying	files	onto	your	computer	then	click	the	Finish
button	to	complete	the	installation

To	confirm	Python	is	now	available	restart	your	computer,	launch	a	Command
Prompt	window	(run	cmd.exe)	and	enter	the	exact	command	python	-V	–	the	Python
interpreter	should	respond	with	its	version	number

Ensure	that	all	features	in	the	Customize	Python	dialog	are	selected	for	installation	–	as
illustrated	here.

The	letter	V	in	the	command	must	be	uppercase.	Ensure	the	command	responds	with	the
version	number	before	proceeding	to	the	examples	in	this	book.

Installing	Python	on	Linux
Linux	distributions	will,	typically,	include	Python	but	generally	have	the	2.7	version	as
their	default.	For	development	on	the	3.x	branch	of	Python	releases	you	will	probably
have	to	install	the	latest	release	alongside	the	default	version.

Consult	your	Linux	distro’s	documentation	for	further	help	on	installing	Python.

Launch	a	terminal	window	and	precisely	enter	this	command	to	reveal	the
installed	default	Python	version	python	-V

Next,	precisely	enter	this	command	to	reveal	the	default	version	of	a	Python	3.x
branch,	if	any	is	installed	python3	-V

Now,	launch	your	Linux	system’s	package	manager	to	see	if	a	later	Python	version
is	available	for	installation	–	for	example	use	the	Software	Center	on	Ubuntu
systems

Don’t	remove	the	default	2.7	version	of	Python	from	your	system	in	case	some
applications	depend	upon	it.

Search	for	“python”	in	the	package	manager	to	see	what	Python	versions	and
components	are	installed	or	if	later	versions	are	available	for	installation

Finally,	install	the	latest	version	of	the	Python	3.x	branch	–	in	this	case	it’s	Python
3.3

To	confirm	the	latest	version	of	Python	is	now	available	on	your	computer	launch
a	Terminal	window	and	precisely	enter	this	explicit	command	python3.3	-V

You	may	also,	optionally,	install	IDLE	for	Python	3.3	but	this	is	not	an	absolute
requirement	as	the	Python	programming	examples	in	this	book	are	all	created	in	a	plain
text	editor	such	as	Nano.

You	can	now	use	the	command	python3.3	to	have	that	version	of	the	Python	interpreter
process	your	programs.

Meeting	the	interpreter
The	Python	interpreter	processes	text-based	program	code	and	also	has	an	interactive
mode	where	you	can	test	snippets	of	code	and	is	useful	for	debugging	code.	Python’s
interactive	mode	can	be	entered	in	a	number	of	ways:

• From	a	regular	Command	Prompt	–	simply	enter	the	command	python	to	produce	the
Python	primary	prompt	>>>	where	you	can	interact	with	the	interpreter

• From	the	Start	Menu	–	choose	“Python	(command	line)”	to	open	a	window	containing
the	Python	>>>	primary	prompt

• From	the	Start	Menu	–	choose	“IDLE	(Python	GUI)”	to	launch	a	Python	Shell	window
containing	the	Python	>>>	primary	prompt

Irrespective	of	the	method	used	to	enter	interactive	mode	the	Python	interpreter	will
respond	in	the	same	way	to	commands	entered	at	its	>>>	primary	prompt.	In	its	simplest
form	the	interpreter	can	be	used	as	a	calculator.

Enter	Python	interactive	mode,	using	any	method	outlined	opposite,	then	type	a
simple	addition	and	hit	Return	to	see	the	interpreter	print	out	the	sum	total

Spaces	in	expressions	are	ignored	so	8+4	can	be	also	be	entered	with	added	spaces	for
clarity	–	as	illustrated	here.

The	Python	interpreter	also	understands	expressions	so	parentheses	can	be	used	to	give
higher	precedence	–	the	part	of	the	expression	enclosed	within	parentheses	will	be
calculated	first.

Next,	at	the	Python	prompt	enter	an	expression	with	three	components	without
specifiyng	any	precedence	order

Now,	at	the	Python	prompt	enter	the	same	expression	but	add	parentheses	to
specify	precedence	order

Interactive	mode	is	mostly	used	to	test	snippets	of	code	and	for	debugging	code.

“IDLE”	is	an	acronym	for	Python’s	Integrated	DeveLopment	Environment	but	has	limited
features	so	is	not	used	to	demonstrate	examples	in	this	book.

Writing	your	first	program
Python’s	interactive	mode	is	useful	as	a	simple	calculator	but	you	can	create	programs	for
more	extensive	functionality.	A	Python	program	is	simply	a	plain	text	file	script	created
with	an	editor,	such	as	Windows’	Notepad,	that	has	been	saved	with	a	“.py”	file	extension.
Python	programs	can	be	executed	by	stating	the	script	file	name	after	the	python	command
at	a	terminal	prompt.

The	traditional	first	program	to	create	when	learning	any	programming	language	simply
prints	out	a	specified	greeting	message.	In	Python,	the	print()	function	is	used	to	specify	the
message	within	its	parentheses.	This	must	be	a	string	of	characters	enclosed	between
quote	marks.	These	may	be	“	”	double	quote	marks	or	‘	’	single	quote	marks	–	but	not	a
mixture	of	both.

Don’t	use	a	word	processor	to	create	program	files	as	they	add	format	information	to	the
file.

On	Windows,	launch	any	plain	text	editor	such	as	the	Notepad	application

hello.py

Next,	precisely	type	the	following	statement	into	the	empty	text	editor	window
print(‘Hello	World!’)

Now,	create	a	new	directory	at	C:\MyScripts	and	save	the	file	in	it	as	hello.py

Finally,	launch	a	Command	Prompt	window,	navigate	to	the	new	directory	and
precisely	enter	the	command	python	hello.py	–	to	see	the	Python	interpreter	run	your
program	and	print	out	the	specified	greeting	message

The	directory	created	at	C:\MyScripts	will	be	used	to	contain	all	Windows	examples	in	this
book.

The	procedure	to	create	the	traditional	first	Python	program	is	identical	on	Linux	systems
to	that	on	Windows	systems.	It	is,	however,	important	to	be	aware,	on	any	platform,	where
different	versions	of	Python	are	installed;	you	must	use	the	correct	command	to	call	upon
the	particular	Python	interpreter	required.	This	is	especially	important	on	Linux	systems
that	often	ship	with	the	Python	2.7	version	installed	as	their	default.	This	means	that	the
command	python	will	assume	you	want	to	call	that	interpreter.	Where	Python	3.3	is
installed,	and	you	want	to	call	that	particular	interpreter	to	process	a	script,	you	must	use
the	command	python3.3	to	explicitly	call	upon	that	version’s	interpreter.

On	Linux,	launch	any	plain	text	editor	such	as	the	Nano	application

hello.py

Next,	precisely	type	the	following	statement	into	the	empty	text	editor	window
print(‘Hello	World!’)

Now,	save	the	file	in	your	home	directory	as	hello.py

Finally,	launch	a	Terminal	window	and	navigate	to	your	home	directory	and
precisely	enter	the	command	python3.3	hello.py	–	to	see	the	Python	interpreter	run
your	program	and	print	out	the	specified	greeting	message

All	further	examples	in	this	book	are	illustrated	on	Windows	(simply	because	that
platform	has	most	users)	but	they	can	also	be	created	and	executed	on	Linux.

Employing	variables
In	programming,	a	“variable”	is	a	container	in	which	a	data	value	can	be	stored	within	the
computer’s	memory.	The	stored	value	can	then	be	referenced	using	the	variable’s	name.
The	programmer	can	choose	any	name	for	a	variable,	except	the	Python	keywords	listed
on	the	inside	front	cover	of	this	book,	and	it	is	good	practice	to	choose	meaningful	names
that	reflect	the	variable’s	content.

String	data	must	be	enclosed	within	quote	marks	to	denote	the	start	and	end	of	the	string.

Data	to	be	stored	in	a	variable	is	assigned	in	a	Python	program	declaration	statement	with
the	=	assignment	operator.	For	example,	to	store	the	numeric	value	eight	in	a	variable
named	“a”:
a	=	8

The	stored	value	can	then	be	referenced	using	the	variable’s	name,	so	that	the	statement
print(a)	will	output	the	stored	value	8.	That	variable	can	subsequently	be	assigned	a
different	value,	so	its	value	can	vary	as	the	program	proceeds	–	hence	the	term	“variable”.

In	Python	programming,	a	variable	must	be	assigned	an	initial	value	(“initialized”)	in	the
statement	that	declares	it	in	a	program	–	otherwise	the	interpreter	will	report	a	“not
defined”	error.

Multiple	variables	can	be	initialized	with	a	common	value	in	a	single	statement	using	a
sequence	of	=	assignments.	For	example,	to	initialize	variables	named	“a”,	“b”	and	“c”
each	with	a	numeric	value	of	eight	like	this:
a	=	b	=	c	=	8

Alternatively,	multiple	variables	can	be	initialized	with	differing	values	in	a	single
statement	using	comma	separators.	For	example,	to	initialize	variables	named	“a”,	“b”	and
“c”	with	numeric	values	of	one,	two	and	three	respectively	like	this:
a	,	b	,	c	=	1	,	2	,	3

Some	programming	languages,	such	as	Java,	demand	you	specify	what	type	of	data	a
variable	may	contain	in	its	declaration.	This	reserves	a	specific	amount	of	memory	space
and	is	known	as	“static	typing”.	Python	variables,	on	the	other	hand,	have	no	such
limitation	and	adjust	the	memory	allocation	to	suit	the	various	data	values	assigned	to
their	variables	(“dynamic	typing”).	This	means	they	can	store	integer	whole	numbers,
floating-point	numbers,	text	strings,	or	Boolean	values	of	True	or	False	as	required.

Programming	languages	that	require	variable	types	to	be	specified	are	alternatively	known
as	“strongly	typed”	whereas	those	that	do	not	are	alternatively	known	as	“loosely	typed”.

Optionally,	comments	can	be	added	to	your	Python	scripts	to	describe	the	purpose	of
statements	or	sections	of	code	if	preceded	by	a	#	hash	character.	Everything	following	the

#	hash	character	up	to	the	end	of	the	line	is	ignored	by	the	Python	interpreter.	It	is	useful	to
comment	your	code	to	make	its	purpose	clear	to	others	or	when	revisiting	the	code
yourself	later.

Launch	a	plain	text	editor	then	declare	and	initialize	a	variable	–	then	display	its
stored	value
#	Initialize	a	variable	with	an	integer	value.
var	=	8
print(var)

var.py

Next,	assign	a	new	value	and	display	that	stored	value
#	Assign	a	float	value	to	the	variable.
var	=	3.142
print(var)

Now	assign	a	different	value	and	display	the	stored	value
#	Assign	a	string	value	to	the	variable.
var	=	‘Python	in	easy	steps’
print(var)

Finally,	assign	another	value	and	display	the	stored	value
#	Assign	a	boolean	value	to	the	variable.
var	=	True
print(var)

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	the	program	–	to	see	the	stored	values	output	as	the	program	proceeds

Multi-line	comments	can	be	added	to	a	script	if	enclosed	between	triple	quote	marks
“““…”””	.

Obtaining	user	input
Just	as	a	data	value	can	be	assigned	to	a	variable	in	a	Python	script,	a	user-specified	value
can	be	assigned	to	a	variable	with	the	Python	input()	function.	This	accepts	a	string	within
its	parentheses	that	will	prompt	the	user	for	input	by	displaying	that	string	then	wait	to
read	a	line	of	input.

User	input	is	read	as	a	text	string,	even	when	it’s	numeric,	and	can	be	assigned	to	a
variable	using	the	=	assignment	operator	as	usual.	Like	any	other	variable	value,	that
assigned	by	a	user	can	be	displayed	by	specifying	the	variable	name	to	the	print()	function
–	to	reference	that	variable’s	stored	value.

Multiple	values	to	be	displayed	can	be	specified	to	the	print()	function	as	a	comma-
separated	list	within	its	parentheses.

Launch	a	plain	text	editor	then	declare	and	initialize	a	variable	by	requesting	user
input
#	Initialize	a	variable	with	a	user-specified	value.
user	=	input(‘I	am	Python.	What	is	your	name?	:	‘)

input.py

Next,	display	a	response	message	confirming	the	input	by	referencing	the	stored
user	name
#	Output	a	string	and	a	variable	value.
print(‘Welcome’	,	user)

Now,	save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window
there	and	run	this	program	–	enter	your	name	then	hit	Return	to	see	the	response
message	include	your	name

Notice	that	the	prompt	string	ends	with	a	space	that	is	displayed	in	output	–	so	the	user
entry	is	separated	from	the	colon	when	typed	in.

When	multiple	values	are	specified	to	the	print()	function	it	will	display	each	value	in

output	separated	by	a	single	space	by	default.	An	alternative	separator	can,	however,	be
specified	by	adding	a	sep	parameter	to	the	comma-separated	list.	For	example	sep	=	’*’	will
display	each	value	in	output	separated	by	an	asterisk	character.

You	can	explicitly	specify	a	newline	to	the	end	parameter,	for	example	end=’!\n’	adds	both
an	exclamation	mark	and	a	newline	character.

Output	displayed	by	the	print()	function	will,	by	default,	add	an	invisible	\n	newline
character	at	the	end	of	the	line	to	automatically	move	the	print	head	to	the	next	line.	An
alternative	line	ending	can,	however,	be	specified	by	adding	an	end	parameter	to	the
comma-separated	list.	For	example,	end	=	’!’	will	display	each	value	in	output	then	end	the
line	with	an	exclamation	mark.

Edit	the	script	to	declare	and	initialize	a	second	variable	by	requesting	more	user
input
#	Initialize	another	variable	with	a	user-specified	value.
lang	=	input(‘Favorite	programming	language?	:	‘)

Next,	display	a	response	message	confirming	the	input	by	referencing	the	stored
language	name	–	and	specifying	a	custom	separator	and	a	custom	line	ending
#	Output	a	string	and	a	variable	value.
print(lang	,	‘Is’	,	‘Fun’	,	sep	=	‘	*	‘	,	end	=	‘!\n’)

Now,	save	the	file	once	more,	then	open	a	Command	Prompt	window	there	and
run	this	program	again	–	enter	your	name	and	a	programming	language	then	hit
Return	to	see	the	response	message	include	your	user	input

You	can	include	space	characters	around	the	separator	character	for	clarity	–	like	those
shown	around	the	asterisk	character	in	this	example.

Correcting	errors
In	Python	programming	there	are	three	types	of	error	that	can	occur.	It	is	useful	to
recognize	the	different	error	types	so	they	can	be	corrected	more	easily:

• Syntax	Error	–	occurs	when	the	interpreter	encounters	code	that	does	not	conform	to
the	Python	language	rules.	For	example,	a	missing	quote	mark	around	a	string.	The
interpreter	halts	and	reports	the	error	without	executing	the	program

• Runtime	Error	–	occurs	during	execution	of	the	program,	at	the	time	when	the
program	runs.	For	example,	when	a	variable	name	is	later	mis-typed	so	the	variable
cannot	be	recognized.	The	interpreter	runs	the	program	but	halts	at	the	error	and
reports	the	nature	of	the	error	as	an	“Exception”

• Semantic	Error	–	occurs	when	the	program	performs	unexpectedly.	For	example,
when	order	precedence	has	not	been	specified	in	an	expression.	The	interpreter	runs
the	program	and	does	not	report	an	error

Programming	errors	are	often	called	“bugs”	and	the	process	of	tracking	them	down	is
often	called	“debugging”.

Correcting	syntax	and	runtime	errors	is	fairly	straightforward,	as	the	interpreter	reports
where	the	error	occurred	or	the	nature	of	the	error	type,	but	semantic	errors	require	code
examination.

Launch	a	plain	text	editor	then	add	a	statement	to	output	a	string	that	omits	a
closing	quote	mark
print(‘Python	in	easy	steps)

syntax.py

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	–	to	see	the	interpreter	report	the	syntax	error	and	indicate
the	position	in	the	code	where	the	error	occurs

Typically,	the	syntax	error	indicator	points	to	the	next	character	after	an	omission	in	the
code.

Insert	a	quote	mark	before	the	closing	parenthesis	to	terminate	the	string	then	save
the	file	and	run	the	program	again	–	to	see	the	error	has	been	corrected

Next,	begin	a	new	program	by	initializing	a	variable	then	try	to	output	its	value
with	an	incorrect	variable	name	–	to	see	the	interpreter	report	a	runtime	error
title	=	‘Python	in	easy	steps’
print(titel)

runtime.py

Amend	the	variable	name	to	match	that	in	the	variable	declaration	then	save	the
file	and	run	the	program	again	–	to	see	the	error	has	been	corrected

Now,	begin	a	new	program	by	initializing	a	variable	then	try	to	output	an
expression	using	its	value	without	explicit	precedence	–	to	see	a	possibly
unexpected	result	of	28
num	=	3
print(num	*	8	+	4)

semantic.py

Add	parentheses	to	group	the	expression	as	3	*	(8	+	4)	then	save	the	file	and	run	the
program	again	–	to	see	the	expected	result	of	36,	correcting	the	semantic	error

Details	of	how	to	handle	runtime	Exception	errors	in	your	script	code	are	provided	here.

Summary
• Python	is	a	high-level	programming	language	that	is	processed	by	the	Python

interpreter	to	produce	results

• Python	uses	indentation	to	group	statements	into	code	blocks,	where	other	languages
use	keywords	or	punctuation

• Python	2.7	is	the	final	version	of	the	2.x	branch	of	development	but	the	3.x	branch	has
the	latest	improvements

• Windows	users	can	install	Python	with	an	MSI	installer	and	Linux	users	can	install
Python	with	their	package	manager

• The	Python	interpreter	has	an	interactive	mode	where	you	can	test	snippets	of	code	and
is	useful	for	debugging	code

• A	Python	program	is	simply	a	text	file	created	with	a	plain	text	editor	and	saved	with	a
“.py”	file	extension

• The	Python	print()	function	outputs	the	string	specified	within	its	parentheses

• String	values	must	be	enclosed	between	quote	marks

• Where	multiple	versions	of	Python	are	installed	on	the	same	system	it	is	important	to
explicitly	call	the	desired	interpreter

• A	Python	variable	is	a	named	container	whose	stored	value	can	be	referenced	via	that
variable’s	name

• A	Python	variable	can	contain	any	data	type	but	must	be	given	an	initial	value	when	it
is	declared

• The	Python	input()	function	outputs	the	string	specified	within	its	parentheses	then
waits	to	read	a	line	of	input

• Syntax	errors	due	to	incorrect	code	are	recognized	by	the	interpreter	before	execution
of	the	program

• Runtime	errors	due	to	exceptions	are	recognized	by	the	interpreter	during	execution	of
the	program

• Semantic	errors	due	to	unexpected	performance	are	not	recognized	by	the	interpreter

2

Performing	operations
This	chapter	introduces	the	Python	operators	and	demonstrates	the	operations	they	can	perform.

Doing	arithmetic

Assigning	values

Comparing	values

Assessing	logic

Examining	conditions

Setting	precedence

Casting	data	types

Manipulating	bits

Summary

Doing	arithmetic
The	arithmetical	operators	commonly	used	in	Python	programming	are	listed	in	the	table
below,	together	with	the	operation	they	perform:

Operator: Operation:

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

// Floor	division

** Exponent

The	operators	for	addition,	subtraction,	multiplication,	and	division	act	as	you	would
expect.	Care	must	be	taken,	however,	to	group	expressions	where	more	than	one	operator
is	used	to	clarify	the	expression	–	operations	within	innermost	parentheses	are	performed
first.	For	example,	with	this	expression:
a	=	b	*	c	-	d	%	e	/	f

Values	used	with	operators	to	form	expressions	are	called	“operands”	–	in	the	expression	2
+	3	the	numerical	values	2	and	3	are	the	operands.

The	desired	order	in	which	the	operations	should	be	performed	is	unclear	but	can	be
clarified	by	adding	parentheses	like	this:
a	=	(b	*	c)	-	((d	%	e)	/	f)

The	%	modulus	operator	will	divide	the	first	given	number	by	the	second	given	number
and	return	the	remainder	of	the	operation.	This	is	useful	to	determine	if	a	number	has	an
odd	or	even	value.

The	//	floor	division	operator	performs	just	like	the	/	division	operator	but	truncates	the
result	at	the	decimal	point	–	removing	any	floating	point	value.

The	**	exponent	operator	returns	the	result	of	the	first	operand	raised	to	the	power	of	the
second	operand.

Start	a	new	Python	script	by	initializing	two	variables	with	integer	values

a	=	8

b	=	2

arithmetic.py

Next,	display	the	result	of	adding	the	variable	values

print(‘Addition:\t’	,	a	,	‘+’	,	b	,	‘=’	,	a	+	b)

Now,	display	the	result	of	subtracting	the	variable	values

print(‘Subtraction:\t’	,	a	,	‘-’	,	b	,	‘=’	,	a	-	b)

Then,	display	the	result	of	multiplying	the	variable	values

print(‘Multiplication:\t’	,	a	,	‘x’	,	b	,	‘=’	,	a	*	b)

Display	the	result	of	dividing	the	variable	values	both	with	and	without	the
floating-point	value
print(‘Division:\t’	,	a	,	‘÷’	,	b	,	‘=’	,	a	/	b)

print(‘Floor	Division:\t’	,	a	,	‘÷’	,	b	,	‘=’	,	a	//	b)

Next,	display	the	remainder	after	dividing	the	values

print(‘Modulus:\t’	,	a	,	‘%’	,	b	,	‘=’	,	a	%	b)

Finally,	display	the	result	of	raising	the	first	operand	to	the	power	of	the	second
operand
print(‘Exponent:\t	‘	,	a	,	‘²	=	’	,	a	**	b	,	sep	=	‘’)

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	–	to	see	the	result	of	the	arithmetical	operations

The	\t	escape	sequence	shown	here	adds	an	invisible	tab	character	to	format	the	output.

You	can	use	the	sep	parameter	to	explicitly	specify	the	separation	between	output	–	here	it
specifies	no	spaces	by	assigning	two	unspaced	single	quote	marks.

Assigning	values
The	operators	that	are	used	in	Python	programming	to	assign	values	are	listed	in	the	table
below.	All	except	the	simple	=	assignment	operator	are	a	shorthand	form	of	a	longer
expression	so	each	equivalent	is	given	for	clarity:

Operator: Example: Equivalent:

= a	=	b a	=	b

+= a	+=	b a	=	(a	+	b)

-= a	-=	b a	=	(a	-	b)

*= a	*=	b a	=	(a	*	b)

/= a	/=	b a	=	(a	/	b)

%= a	%=	b a	=	(a	%	b)

//= a	//=	b a	=	(a	//	b)

**= a	**=	b a	=	(a	**	b)

In	the	example	above,	the	variable	named	“a”	is	assigned	the	value	that	is	contained	in	the
variable	named	“b”	–	so	that	becomes	the	new	value	stored	in	the	a	variable.

It	is	important	to	regard	the	=	operator	to	mean	“assign”	rather	than	“equals”	to	avoid
confusion	with	the	==	equality	operator.

The	+=	operator	is	useful	to	add	a	value	onto	an	existing	value	that	is	stored	in	the	a
variable.

In	the	table	example	the	+=	operator	first	adds	the	value	contained	in	variable	a	to	the	value
contained	in	variable	b.	It	then	assigns	the	result	to	become	the	new	value	stored	in
variable	a.

All	the	other	operators	work	in	the	same	way	by	making	the	arithmetical	operation
between	the	two	values	first,	then	assigning	the	result	of	that	operation	to	the	first	variable
–	to	become	its	new	stored	value.

With	the	%=	operator,	the	first	operand	a	is	divided	by	the	second	operand	b	then	the
remainder	of	that	operation	is	assigned	to	the	a	variable.

Start	a	new	Python	script	that	initializes	two	variables	by	assigning	integer	values
and	displays	both	assigned	values
a	=	8

b	=	4

print(‘Assign	Values:\t\t’	,	’a	=’	,	a	,	‘\tb	=’	,	b)

assign.py

Next,	add	and	assign	a	new	value	to	the	first	variable	and	display	its	stored	value

a	+=	b

print(‘Add	&	Assign:\t\t’	,’a	=’	,	a	,	‘(8	+=	4)’)

Now,	subtract	and	assign	a	new	value	to	the	first	variable	and	display	its	stored
value,	then	multiply	and	assign	a	value	to	the	first	variable	and	display	its	stored
value
a	-=	b

print(‘Subtract	&	Assign:\t’	,	’a	=’	,	a	,	‘	(12	-	4)’)

a	*=	b

print(‘Multiply	&	Assign:\t’	,	’a	=’	,	a	,	‘(8	×	4)’)

Finally,	divide	and	assign	a	new	value	to	the	first	variable	and	display	its	stored
value,	then	modulus	and	assign	a	value	to	the	first	variable	and	display	its	stored
value
a	/=	b

print(‘Divide	&	Assign:\t’	,	’a	=’	,	a	,	‘(32	÷	4)’)

a	%=	b

print(‘Modulus	&	Assign:\t’	,	’a	=’	,	a	,	‘(8	%	4)’)

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	–	to	see	the	result	of	the	assignment	operations

Unlike	the	=	assign	operator	the	==	equality	operator	compares	operands	and	is	described
here.

Comparing	values
The	operators	that	are	commonly	used	in	Python	programming	to	compare	two	operand
values	are	listed	in	the	table	below:

Operator: Comparative	test:

== Equality

!= Inequality

> Greater	than

< Less	than

>= Greater	than	or	equal	to

<= Less	than	or	equal	to

The	==	equality	operator	compares	two	operands	and	will	return	True	if	both	are	equal	in
value,	otherwise	it	will	return	a	False	value.	If	both	are	the	same	number	they	are	equal,	or
if	both	are	characters	their	ASCII	code	values	are	compared	numerically	to	achieve	the
comparison	result.

Conversely,	the	!=	inequality	operator	returns	True	if	two	operands	are	not	equal,	using	the
same	rules	as	the	==	equality	operator,	otherwise	it	returns	False.	Equality	and	inequality
operators	are	useful	in	testing	the	state	of	two	variables	to	perform	conditional	branching
in	a	program	according	to	the	result.

A-Z	uppercase	characters	have	ASCII	code	values	65-90	and	a-z	lowercase	characters
have	ASCII	code	values	97-122.

The	>	“greater	than”	operator	compares	two	operands	and	will	return	True	if	the	first	is
greater	in	value	than	the	second,	or	it	will	return	False	if	it	is	equal	or	less	in	value.	The	<
“less	than”	operator	makes	the	same	comparison	but	returns	True	if	the	first	operand	is	less
in	value	than	the	second,	otherwise	it	returns	False.	A	>	“greater	than”	or	<	“less	than”
operator	is	often	used	to	test	the	value	of	an	iteration	counter	in	a	loop.

Adding	the	=	operator	after	a	>	“greater	than”	or	<	“less	than”	operator	makes	it	also	return
True	if	the	two	operands	are	exactly	equal	in	value.

Start	a	new	Python	script	by	initializing	five	variables	with	values	for	comparison

nil	=	0

num	=	0

max	=	1

cap	=	‘A’

low	=	‘a’

comparison.py

Next,	add	statements	to	display	the	results	of	numeric	and	character	equality
comparisons
print(‘Equality	:\t’	,	nil	,	‘==’	,	num	,	nil	==	num)

print(‘Equality	:\t’	,	cap	,	‘==’	,	low	,	cap	==	low)

Now,	add	a	statement	to	display	the	result	of	an	inequality	comparison

print(‘Inequality	:\t’	,	nil	,	‘!=’	,	max	,	nil	!=	max)

Then,	add	statements	to	display	the	results	of	greater	and	lesser	comparisons

print(‘Greater	:\t’	,	nil	,	‘>’	,	max	,	nil	>	max)

print(‘Lesser	:\t’	,	nil	,	‘<’	,	max	,	nil	<	max)

Finally,	add	statements	to	display	the	results	of	greater	or	equal	and	lesser	or	equal
comparisons
print(‘More	Or	Equal	:\t’	,	nil	,	‘>=’	,	num	,	nil	>=	num)

print(‘Less	or	Equal	:\t’	,	max	,	‘<=’	,	num	,	max	<=	num)

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	–	to	see	the	result	of	comparison	operations

The	\t	escape	sequence	shown	here	adds	an	invisible	tab	character	to	format	the	output.

The	ASCII	code	value	for	uppercase	“A”	is	65	but	for	lowercase	“a”	it’s	97	–	so	their

comparison	here	returns	False.

Assessing	logic
The	logical	operators	most	commonly	used	in	Python	programming	are	listed	in	the	table
below:

Operator: Operation:

and Logical	AND

or Logical	OR

not Logical	NOT

The	logical	operators	are	used	with	operands	that	have	Boolean	values	of	True	or	False,	or
are	values	that	convert	to	True	or	False.

The	(logical	AND)	and	operator	will	evaluate	two	operands	and	return	True	only	if	both
operands	themselves	are	True.	Otherwise	the	and	operator	will	return	False.	This	is	used	in
conditional	branching	where	the	direction	of	a	program	is	determined	by	testing	two
conditions	–	if	both	conditions	are	satisfied,	the	program	will	go	in	a	certain	direction,
otherwise	it	will	take	a	different	direction.

Unlike	the	and	operator	that	needs	both	operands	to	be	True,	the	(logical	OR)	or	operator
will	evaluate	its	two	operands	and	return	True	if	either	one	of	the	operands	itself	returns
True.	If	neither	operand	returns	True	then	the	or	operator	will	return	False.	This	is	useful	in
Python	programming	to	perform	a	certain	action	if	either	one	of	two	test	conditions	has
been	met.

The	(logical	NOT)	not	operator	is	a	unary	operator	that	is	used	before	a	single	operand.	It
returns	the	inverse	value	of	the	given	operand	so	if	the	variable	a	had	a	value	of	True	then
not	a	would	have	a	value	of	False.	The	not	operator	is	useful	in	Python	programs	to	toggle
the	value	of	a	variable	in	successive	loop	iterations	with	a	statement	like	a	=	not	a.	This
ensures	that	on	each	iteration	of	the	loop,	the	Boolean	value	is	reversed,	like	flicking	a
light	switch	on	and	off.

The	term	“Boolean”	refers	to	a	system	of	logical	thought	developed	by	the	English
mathematician	George	Boole	(1815-1864).

Start	a	new	Python	script	by	initializing	two	variables	with	Boolean	values	for
logical	evaluation
a	=	True

b	=	False

logic.py

Next,	add	statements	to	display	the	results	of	logical	AND	evaluations

print(‘AND	Logic:’)

print(‘a	and	a	=’	,	a	and	a)

print(‘a	and	b	=’	,	a	and	b)

print(‘b	and	b	=’	,	b	and	b)

Now,	add	statements	to	display	the	results	of	logical	OR	evaluations

print(‘\nOR	Logic:’)

print(‘a	or	a	=’	,	a	or	a)

print(‘a	or	b	=’	,	a	or	b)

print(‘b	or	b	=’	,	b	or	b)

Finally,	add	statements	to	display	the	results	of	logical	NOT	evaluations

print(‘\nNOT	Logic:’)

print(‘a	=’	,	a	,	‘\tnot	a	=’	,	not	a)

print(‘b	=’	,	b	,	‘\tnot	b	=’	,	not	b)

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	–	to	see	the	result	of	logic	operations

In	Python	programming	Boolean	values	can	also	be	represented	numerically	where	True	is
1	and	False	is	0	(zero).

Note	that	the	expression	False	and	False	returns	False,	not	True	–	perhaps	demonstrating	the

maxim	“two	wrongs	don’t	make	a	right”.

Examining	conditions
Many	programming	languages,	such	as	C++	or	Java,	have	a	?:	“ternary”	operator	that
evaluates	an	expression	for	a	True	or	False	condition	then	returns	one	of	two	specified
values	depending	on	the	result	of	the	evaluation.	A	?:	ternary	operator	has	this	syntax:
(test-expression)	?	if-true-return-this	:	if-false-return-this

In	general	programming	terms	an	“expression”	always	returns	a	value	whereas	a
“statement”	need	not	–	but	a	statement	may	include	one	or	more	expressions.

Unlike	other	programming	languages,	Python	does	not	have	a	?:	ternary	operator	but	has
instead	a	“conditional	expression”	that	works	in	a	similar	way	using	if	and	else	keywords
with	this	syntax:
if-true-return-this	if	(test-expression)	else	if-false-return-this

Although	the	conditional	expression	syntax	can	initially	appear	confusing,	it	is	well	worth
becoming	familiar	with	this	expression	as	it	can	execute	powerful	program	branching	with
minimal	code.	For	example,	to	branch	when	a	variable	is	not	a	value	of	one:
if-true-do-this	if	(var	!=	1)	else	if-false-do-this

The	conditional	expression	can	be	used	in	Python	programming	to	assign	the	maximum	or
minimum	value	of	two	variables	to	a	third	variable.	For	example,	to	assign	a	minimum
like	this:
c	=	a	if	(a	<	b)	else	b

The	expression	in	parentheses	returns	True	when	the	value	of	variable	a	is	less	than	that	of
variable	b	–	so	in	this	case	the	lesser	value	of	variable	a	gets	assigned	to	variable	c.

The	conditional	expression	has	in	effect	three	operands	–	the	test	expression	and	two
possible	return	values.

Similarly,	replacing	the	<	less	than	operator	in	the	test	expression	with	the	>	greater	than
operator	would	assign	the	greater	value	of	variable	b	to	variable	c.

Another	common	use	of	the	conditional	expression	incorporates	the	%	modulus	operator
in	the	test	expression	to	determine	if	the	value	of	a	variable	is	an	odd	number	or	an	even
number:
if-true(odd)-do-this	if	(var	%	2	!=	0)	else	if-false(even)-do-this

Where	the	result	of	dividing	the	variable	value	by	two	does	leave	a	remainder	the	number
is	odd	–	where	there	is	no	remainder	the	number	is	even.	The	test	expression	(var	%	2	==	1)
would	have	the	same	effect	but	it	is	preferable	to	test	for	inequality	–	it’s	easier	to	spot
when	something	is	different	than	when	it’s	identical.

Start	a	new	Python	script	by	initializing	two	variables	with	integer	values	for
conditional	evaluation
a	=	1

b	=	2

condition.py

Next,	add	statements	to	display	the	results	of	conditional	evaluation	–	describing
the	first	variable’s	value
print(‘\nVariable	a	Is	:’	,	‘One’	if	(a	==	1)	else	‘Not	One’)

print(‘Variable	a	Is	:’	,	‘Even’	if	(a	%	2	==	0)	else	‘Odd’)

Now,	add	statements	to	display	the	results	of	conditional	evaluation	–	describing
the	second	variable’s	value
print(‘\nVariable	b	Is	:’	,	‘One’	if	(b	==	1)	else	‘Not	One’)

print(‘Variable	b	Is	:’	,	‘Even’	if	(b	%	2	==	0)	else	‘Odd’)

Then,	add	a	statement	to	assign	the	result	of	a	conditional	evaluation	to	a	new
variable
max	=	a	if	(a	>	b)	else	b

Finally,	add	a	statement	to	display	the	assigned	result	–	identifying	the	greater	of
the	two	variable	values
print(‘\nGreater	Value	Is:’	,	max)

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	–	to	see	the	result	of	conditional	expression	operations

You	may	find	that	some	Python	programmers	dislike	conditional	expressions	as	they
consider	their	syntax	contradicts	the	principle	of	easy	readability.

Setting	precedence
Operator	precedence	determines	the	order	in	which	the	Python	interpreter	evaluates
expressions.	For	example,	in	the	expression	3	*	8	+	4	the	default	order	of	precedence
determines	that	multiplication	is	completed	first,	so	the	result	is	28	(24	+	4).

The	*	multiply	operator	is	on	a	higher	row	than	the	+	addition	operator	–	so	in	the
expression	3	*	8	+	4	multiplication	is	completed	first,	before	the	addition.

The	table	below	lists	operator	precedence	in	descending	order	–	those	on	the	top	row	have
highest	precedence,	those	on	lower	rows	have	successively	lower	precedence.	The
precedence	of	operators	on	the	same	row	is	chained	Left-To-Right:

Operator: Description:

** Exponent

+ Positive

- Negative

~ Bitwise	NOT

* Multiplication

/ Division

// Floor	division

% Modulus

+ Addition

- Subtraction

| Bitwise	OR

^ Bitwise	XOR

& Bitwise	AND

>> Bitwise	right	shift

<< Bitwise	left	shift

>,	>=,	<,	<=,	==,	!= Comparison

=	,	%=	,	/=	,	//=	,	-=	,	+=	,	*=	,	**= Assignment

is	,	is	not Identity

in	,	not	in Membership

not Boolean	NOT

and Boolean	AND

or Boolean	OR

The	bitwise,	identity,	and	membership	operators	are	introduced	later	in	this	book	–	but	are
included	here	for	completeness.

Start	a	new	Python	script	by	initializing	three	variables	with	integer	values	for
precedence	comparison
a	=	2

b	=	4

c	=	8

precedence.py

Next,	add	statements	to	display	the	results	of	default	precedence	and	forcing
addition	before	multiplication
print(‘\nDefault	Order:\t’,	a,	‘*’,	c,’+’,	b,	‘=’,	a	*	c	+	b)

print(‘Forced	Order:\t’,	a,	‘*	(‘,	c,’+’,	b,	‘)	=’,	a	*	(c	+	b))

Now,	add	statements	to	display	the	results	of	default	precedence	and	forcing
subtraction	before	division
print(‘\nDefault	Order:\t’,	c,	‘//’,	b,	‘-’,	a,	‘=’,	c	//	b	-	a)

print(‘Forced	Order:\t’,	c,	‘//	(‘,	b,’-’,	a,	‘)	=’,	c	//	(b	-	a))

Finally,	add	statements	to	display	the	results	of	default	precedence	and	forcing

addition	before	modulus	operation	and	before	exponent	operation
print(‘\nDefault	Order:\t’,	c,	‘%’,	a,	‘+’,	b,	‘=’,	c	%	a	+	b)

print(‘Forced	Order:\t’,	c,	‘%	(‘,	a,	‘+’,	b,	‘)	=’,	c	%	(a	+	b))

print(‘\nDefault	Order:\t’,	c,	‘**’,	a,	‘+’,	b,	‘=’,	c	**	a	+	b)

print(‘Forced	Order:\t’,	c,	‘**	(‘,	a,	‘+’,	b,	‘)	=’,	c	**	(a	+	b))

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	–	to	see	the	results	of	default	and	explicit	precedence

The	//	floor	division	operator	truncates	floating	point	values	at	the	decimal	point	–	but	the	/
division	operator	retains	them.

Do	not	rely	upon	default	precedence	–	always	use	parentheses	to	clarify	your	expressions.

Casting	data	types
Although	Python	variables	can	store	data	of	any	data	type	it	is	important	to	recognize	the
different	types	of	data	they	contain	to	avoid	errors	when	manipulating	that	data	in	a
program.	There	are	several	Python	data	types	but	by	far	the	most	common	ones	are	str
(string),	int	(integer),	and	float	(floating-point).

Data	type	recognition	is	especially	important	when	assigning	numeric	data	to	variables
from	user	input	as	it	is	stored	by	default	as	a	str	(string)	data	type.	String	values	cannot	be
used	for	arithmetical	expressions	as	attempting	to	add	string	values	together	simply
concatenates	(joins)	the	values	together	rather	than	adding	them	numerically.	For	example
‘8’	+	‘4’	=	‘84’.

Fortunately,	the	data	type	of	stored	values	can	be	easily	converted	(“cast”)	into	a	different
data	type	using	built-in	Python	functions.	The	value	to	be	converted	is	specified	within	the
parentheses	that	follow	the	function	name.	Casting	str	(string)	values	to	become	int
(integer)	values	allows	them	to	be	used	for	arithmetical	expressions,	for	example,	8	+	4	=	12.

Python’s	built-in	data	type	conversion	functions	return	a	new	object	representing	the
converted	value	and	those	conversion	functions	most	frequently	used	are	listed	in	the	table
below:

Function: Description:

int(x) Converts	x	to	an	integer	whole	number

float(x) Converts	x	to	a	floating-point	number

str(x) Converts	x	to	a	string	representation

chr(x) Converts	integer	x	to	a	character

unichr(x) Converts	integer	x	to	a	Unicode	character

ord(x) Converts	character	x	to	its	integer	value

hex(x) Converts	integer	x	to	a	hexadecimal	string

oct(x) Converts	integer	x	to	an	octal	string

Converting	a	float	(floating-point)	data	type	to	an	int	(integer)	data	type	will	truncate	the
number	at	the	decimal	point	losing	the	fraction.

The	Python	built-in	type()	function	can	be	used	to	determine	to	which	data	type	class	the
value	contained	in	a	variable	belongs,	simply	by	specifying	that	variable’s	name	within	its
parentheses.

Start	a	new	Python	script	by	initializing	two	variables	with	numeric	values	from
user	input
a	=	input(‘Enter	A	Number:	‘)

b	=	input(‘Now	Enter	Another	Number:	‘)

cast.py

Next,	add	statements	to	add	the	variable	values	together	then	display	the
combined	result	and	its	data	type	–	to	see	a	concatenated	string	value	result
sum	=	a	+	b

print(‘\nData	Type	sum	:’	,	sum	,	type(sum))

Now,	add	statements	to	add	cast	variable	values	together	then	display	the	result
and	its	data	type	–	to	see	a	total	integer	value	result
sum	=	int(a)	+	int(b)

print(‘Data	Type	sum	:’	,	sum	,	type(sum))

Then,	add	statements	to	cast	a	variable	value	then	display	the	result	and	its	data
type	–	to	see	a	total	float	value
sum	=	float(sum)

print(‘Data	Type	sum	:’	,	sum	,	type(sum))

Finally,	add	statements	to	cast	an	integer	representation	of	a	variable	value	then
display	the	result	and	its	data	type	–	to	see	a	character	string	value
sum	=	chr(int(sum))

print(‘Data	Type	sum	:’	,	sum	,	type(sum))

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	–	to	see	the	result	of	casting	as	various	data	types

The	number	65	is	the	ASCII	character	code	for	uppercase	letter	A.

Manipulating	bits
In	computer	terms	each	byte	comprises	eight	bits	that	can	each	contain	a	1	or	a	0	to	store	a
binary	number	representing	decimal	values	from	0	to	255.	Each	bit	contributes	a	decimal
component	only	when	that	bit	contains	a	1.	Components	are	designated	right-to-left	from
the	“Least	Significant	Bit”	(LSB)	to	the	“Most	Significant	Bit”	(MSB).	The	binary
number	in	the	bit	pattern	below	is	00110010	and	represents	the	decimal	number	50
(2+16+32):

Bit	No. 8
MSB 7 6 5 4 3 2 1

LSB

Decimal 128 64 32 16 8 4 2 1

Binary 0 0 1 1 0 0 1 0

Many	Python	programmers	never	use	bitwise	operators	but	it	is	useful	to	understand	what
they	are	and	how	they	may	be	used.

It	is	possible	to	manipulate	individual	parts	of	a	byte	using	the	Python	“bitwise”	operators
listed	and	described	below:

Operator: Name: Binary	number	operation:

| OR Return	a	1	in	each	bit	where	either	of	two	compared	bits	is	a	1
Example:	1010	|	0101	=	1111

& AND Return	a	1	in	each	bit	where	both	of	two	compared	bits	is	a	1
Example:	1010	&&	1100	=	1000

~ NOT Return	a	1	in	each	bit	where	neither	of	two	compared	bits	is	a	1
Example:	1010	~	0011	=	0100

^ XOR Return	a	1	in	each	bit	where	only	one	of	two	compared	bits	is	a	1
Example:	1010	^	0100	=	1110

<< Shift
left

Move	each	bit	that	is	a	1	a	specified	number	of	bits	to	the	left
Example:	0010	<<	2	=	1000

>> Shift
right

Move	each	bit	that	is	a	1	a	specified	number	of	bits	to	the	right
Example:	1000	>>	2	=	0010

Each	half	of	a	byte	is	known	as	a	“nibble”	(4	bits).	The	binary	numbers	in	the	examples	in
the	table	describe	values	stored	in	a	nibble.

Unless	programming	for	a	device	with	limited	resources	there	is	seldom	a	need	to	utilize
bitwise	operators,	but	they	can	be	useful.	For	instance,	the	XOR	(eXclusive	OR)	operator
lets	you	exchange	values	between	two	variables	without	the	need	for	a	third	variable.

bitwise.py

Start	a	new	Python	script	by	initializing	two	variables	with	numeric	values	and
display	these	initial	values
a	=	10

b	=	5

print(‘a	=’	,	a	,	‘\tb	=	‘	,	b)

Next,	add	a	statement	to	change	the	first	variable’s	decimal	value	by	binary	bit
manipulation
#	1010	^	0101	=	1111	(decimal	15)

a	=	a	^	b

Now,	add	a	statement	to	change	the	second	variable’s	decimal	value	by	binary	bit
manipulation
#	1111	^	0101	=	1010	(decimal	10)

b	=	a	^	b

Then,	add	a	statement	to	change	the	first	variable’s	decimal	value	once	more	by
further	bit	manipulation
#	1111	^	1010	=	0101	(decimal	5)

a	=	a	^	b

Finally,	add	a	statement	to	display	the	exchanged	values

print(‘a	=’	,	a	,	‘\tb	=	‘	,	b)

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	–	to	see	the	result	of	bitwise	operations

Do	not	confuse	bitwise	operators	with	logical	operators.	Bitwise	operators	compare	binary
numbers,	whereas	logical	operators	evaluate	Boolean	values.

Summary
• Arithmetical	operators	can	form	expressions	with	two	operands	for	addition	+,

subtraction	-,	multiplication	*,	division	/,	floor	division	//,	modulus	%,	or	exponent	**

• The	assignment	=	operator	can	be	combined	with	an	arithmetical	operator	to	perform
an	arithmetical	calculation	then	assign	its	result

• Comparison	operators	can	form	expressions	comparing	two	operands	for	equality	==,
inequality	!=,	greater	>,	lesser	<,	greater	or	equal	>=,	and	lesser	or	equal	<=	values

• Logical	and	and	or	operators	form	expressions	evaluating	two	operands	to	return	a
Boolean	value	of	True	or	False

• The	logical	not	operator	returns	the	inverse	Boolean	value	of	a	single	operand

• A	conditional	if-else	expression	evaluates	a	given	expression	for	a	Boolean	True	or	False
value	then	returns	one	of	two	operands	depending	on	its	result

• Expressions	containing	multiple	operators	will	execute	their	operations	in	accordance
with	the	default	precedence	rules	unless	explicitly	determined	by	the	addition	of
parentheses	()

• The	data	type	of	a	variable	value	can	be	converted	to	a	different	data	type	by	the	built-
in	Python	functions	int(),	float(),	and	str()	to	return	a	new	converted	object

• Python’s	built-in	type()	function	determines	to	which	data	type	class	a	specified	variable
belongs

• Bitwise	operators	OR	|,	AND	&,	NOT	~,	and	XOR	^	each	return	a	value	after
comparison	of	the	values	within	two	bits,	whereas	the	Shift	left	<<	and	Shift	right	>>
operators	move	the	bit	values	a	specified	number	of	bits	in	their	direction

3

Making	statements
This	chapter	demonstrates	how	statements	can	evaluate	expressions	to	determine	the	direction	in	which	a	Python

program	proceeds.

Writing	lists

Manipulating	lists

Restricting	lists

Associating	list	elements

Branching	with	if

Looping	while	true

Looping	over	items

Breaking	out	of	loops

Summary

Writing	lists
In	Python	programming,	a	variable	must	be	assigned	an	initial	value	(initialized)	in	the
statement	that	declares	it	in	a	program,	otherwise	the	interpreter	will	report	a	“not	defined”
error.

Multiple	variables	can	be	initialized	with	a	common	value	in	a	single	statement	using	a
sequence	of	=	assignments.	For	example,	to	simultaneously	assign	a	common	value	to
three	variables:
a	=	b	=	c	=	10

Alternatively,	multiple	variables	can	be	initialized	with	differing	values	in	a	single
statement	using	comma	separators.	For	example,	to	simultaneously	assign	different	values
to	three	variables:
a	,	b	,	c	=	1	,	2	,	3

Unlike	regular	variables,	which	can	only	store	a	single	item	of	data,	a	Python	“list”	is	a
variable	that	can	store	multiple	items	of	data.	The	data	is	stored	sequentially	in	list
“elements”	that	are	index	numbered	starting	at	zero.	So	the	first	value	is	stored	in	element
zero,	the	second	value	is	stored	in	element	one,	and	so	on.

A	list	is	created	much	like	any	other	variable	but	is	initialized	by	assigning	values	as	a
comma-separated	list	between	square	brackets.	For	example,	creating	a	list	named	“nums”
like	this:
nums	=	[0	,	1	,	2	,	3	,	4	,	5]

An	individual	list	element	can	be	referenced	using	the	list	name	followed	by	square
brackets	containing	that	element’s	index	number.	This	means	that	nums[1]	references	the
second	element	in	the	example	above	–	not	the	first	element,	as	element	numbering	starts
at	zero.

Lists	can	have	more	than	one	index	–	to	represent	multiple	dimensions,	rather	than	the
single	dimension	of	a	regular	list.	Multi-dimensional	lists	of	three	indices	and	more	are
uncommon	but	two-dimensional	lists	are	useful	to	store	grid-based	information	such	as
X,Y	coordinates.

A	list	of	string	values	can	even	be	considered	to	be	a	multi-dimensional	list	as	each	string
is	itself	a	list	of	characters.	So	each	character	can	be	referenced	by	its	index	number	within
its	particular	string.

Start	a	new	Python	script	by	initializing	a	list	of	three	elements	containing	string
values
quarter	=	[‘January’	,	‘February’	,	‘March’]

list.py

Next,	add	statements	to	individually	display	the	value	contained	in	each	list
element
print(‘First	Month	:’	,	quarter[0])

print(‘Second	Month	:’	,	quarter[1])

print(‘Third	Month	:’	,	quarter[2])

Add	a	statement	to	create	a	multi-dimensional	list	of	two	elements,	which
themselves	are	lists	that	each	have	three	elements	containing	integer	values
coords	=	[[1	,	2	,	3]	,	[4	,	5	,	6]]

Now,	add	statements	to	display	the	values	contained	in	two	specific	inner	list
elements
print(‘\nTop	Left	0,0	:’	,	coords[0][0])

print(‘Bottom	Right	1,2	:’	,	coords[1][2])

Finally,	add	a	statement	to	display	just	one	character	of	a	string	value

print(‘\nSecond	Month	First	Letter	:’	,	quarter[1][0])

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	–	to	see	the	list	element	values	get	displayed

String	indices	may	also	be	negative	numbers	–	to	start	counting	from	the	right	where	-1
references	the	last	letter.

Loop	structures,	which	are	introduced	later	in	this	chapter,	are	often	used	to	iterate	through
list	elements.

Manipulating	lists
List	variables,	which	can	contain	multiple	items	of	data,	are	widely	used	in	Python
programming	and	have	a	number	of	“methods”	that	can	be	“dot-suffixed”	to	the	list	name
for	manipulation:

List	Method: Description:

list.append(x) Adds	item	x	to	the	end	of	the	list

list.extend(L) Adds	all	items	in	list	L	to	the	end	of	the	list

list.insert(i,x) Inserts	item	x	at	index	position	i

list.remove(x) Removes	first	item	x	from	the	list

list.pop(i) Removes	item	at	index	position	i	and	returns	it

list.index(x) Returns	the	index	position	in	the	list	of	first	item	x

list.count(x) Returns	the	number	of	times	x	appears	in	the	list

list.sort() Sort	all	list	items,	in	place

list.reverse() Reverse	all	list	items,	in	place

For	lists	that	contain	both	numerical	and	string	values	the	sort()	method	returns	the	list
elements	sorted	first	numerically	then	alphabetically	–	for	example	as	1,2,3,A,B,C.

Python	also	has	a	useful	len(L)	function	that	returns	the	length	of	the	list	L	as	the	total
number	of	elements	it	contains.	Like	the	index()	and	count()	methods,	the	returned	value	is
numeric	so	cannot	be	directly	concatenated	to	a	text	string	for	output.

String	representation	of	numeric	values	can,	however,	be	produced	by	Python’s	str(n)
function	for	concatenation	to	other	strings,	which	returns	a	string	version	of	the	numeric	n
value.	Similarly,	a	string	representation	of	an	entire	list	can	be	returned	by	the	str(L)
function	for	concatenation	to	other	strings.	In	both	cases,	remember	that	the	original
version	remains	unchanged	as	the	returned	versions	are	merely	copies	of	the	original
version.

Individual	list	elements	can	be	deleted	by	specifying	their	index	number	to	the	Python
del(i)	function.	This	can	remove	a	single	element	at	a	specified	i	index	position,	or	a	“slice”
of	elements	can	be	removed	using	slice	notation	i1:i2	to	specify	the	index	number	of	the

first	and	last	element.	In	this	case	i1	is	the	index	number	of	the	first	element	to	be	removed
and	all	elements	up	to,	but	not	including,	the	element	at	the	i2	index	number	will	be
removed.

Python	also	has	an	int(s)	function	that	returns	a	numeric	version	of	the	string	s	value.

Start	a	new	Python	script	by	initializing	two	lists	of	three	elements	each
containing	string	values
basket	=	[‘Apple’	,	‘Bun’	,	‘Cola’]

crate	=	[‘Egg’	,	‘Fig’	,	‘Grape’]

pop.py

Next,	add	statements	to	display	the	contents	of	the	first	list’s	elements	and	its
length
print(‘Basket	List:’	,	basket)

print(‘Basket	Elements:’	,	len(basket))

Now,	add	statements	to	add	an	element	and	display	all	list	elements,	then	remove
the	final	element	and	display	all	list	elements	once	more
basket.append(‘Damson’)

print(‘Appended:’	,	basket)

print(‘Last	Item	Removed:’	,	basket.pop())

print(‘Basket	List:’	,	basket)

Finally,	add	statements	to	add	all	elements	of	the	second	list	to	the	first	list	and
display	all	the	first	list	elements,	then	remove	elements	and	display	the	first	list
again
basket.extend(crate)

print(‘Extended:’	,	basket)

del	basket[1]

print(‘Item	Removed:‘	,	basket)

del	basket[1:3]

print(‘Slice	Removed:’	,	basket)

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	–	to	see	the	lists	get	manipulated

The	last	index	number	in	the	slice	denotes	at	what	point	to	stop	removing	elements	but	the
element	at	that	position	does	not	get	removed.

Restricting	lists
Tuple

The	values	in	a	regular	list	can	be	changed	as	the	program	proceeds	(they	are	“mutable”)
but	a	list	can	be	created	with	fixed	“immutable”	values	that	cannot	be	changed	by	the
program.	A	restrictive	immutable	Python	list	is	known	as	a	“tuple”	and	is	created	by
assigning	values	as	a	comma-separated	list	between	parentheses	in	a	process	known	as
“tuple	packing”:
colors-tuple	=	(‘Red’	,	‘Green’	,	‘Red’	,	‘Blue’,	‘Red’)

Like	index	numbering	with	lists,	the	items	in	a	tuple	sequence	are	numbered	from	zero.

An	individual	tuple	element	can	be	referenced	using	the	tuple	name	followed	by	square
brackets	containing	that	element’s	index	number.	Usefully,	all	values	stored	inside	a	tuple
can	be	assigned	to	individual	variables	in	a	process	known	as	“sequence	unpacking”:
a	,	b	,	c	,	d	,	e	=	colors-tuple

There	must	be	the	same	number	of	variables	as	items	to	unpack	a	tuple.

Set

The	values	in	a	regular	list	can	be	repeated	in	its	elements,	as	in	the	tuple	above,	but	a	list
of	unique	values	can	be	created	where	duplication	is	not	allowed.	A	restrictive	Python	list
of	unique	values	is	known	as	a	“set”	and	is	created	by	assigning	values	as	a	comma-
separated	list	between	curly	brackets	(braces):
phonetic-set	=	{	‘Alpha’	,	‘Bravo’	,	‘Charlie’	}

Individual	set	elements	cannot	be	referenced	using	the	set	name	followed	by	square
brackets	containing	an	index	number,	but	instead	sets	have	methods	that	can	be	dot-
suffixed	to	the	set	name	for	manipulation	and	comparison:

Set	Method: Description:

set.add(x) Adds	item	x	to	the	set

set.update(x,y,z) Adds	multiple	items	to	the	set

set.copy() Returns	a	copy	of	the	set

set.pop() Removes	one	random	item	from	the	set

set.discard(i) Removes	item	at	position	i	from	the	set

set1.intersection(set2) Returns	items	that	appear	in	both	sets

set1.difference(set2) Returns	items	in	set1	but	not	in	set2

More	set	methods	can	be	found	in	the	Python	documentation.

The	Python	type()	function	can	be	used	to	ascertain	these	lists’	data	structure	class	and	the
Python	built-in	membership	operator	in	can	be	used	to	find	values	in	a	set.

Start	a	new	Python	script	by	initializing	a	tuple	then	display	its	contents,	length,
and	type
zoo	=	(‘Kangaroo’	,	‘Leopard’	,	‘Moose’)

print(‘Tuple:’	,	zoo	,	‘\tLength:’	,	len(zoo))

print(type(zoo))

set.py

Next,	initialize	a	set	and	add	another	element,	then	display	its	contents,	length,
and	type
bag	=	{	‘Red’	,	‘Green’	,	‘Blue’	}

bag.add(‘Yellow’)

print(‘\nSet:’	,	bag	,	‘\tLength’	,	len(bag))

print(type(bag))

Now,	add	statements	to	seek	two	values	in	the	set

print(‘\nIs	Green	In	bag	Set?:’	,	‘Green’	in	bag)

print(‘Is	Orange	In	bag	Set?:’	,	‘Orange’	in	bag)

Finally,	initialize	a	second	set	and	display	its	contents,	length,	and	all	common
values	found	in	both	sets
box	=	{	‘Red’	,	’Purple’	,	‘Yellow’	}

print(‘\nSet:’	,	box	,	‘\t\tLength’	,	len(box))

print(‘Common	To	Both	Sets:’	,	bag.intersection(box))

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	–	to	see	the	tuple	and	set	values

A	set	may	also	be	created	by	specifying	the	brace-enclosed	list	within	the	parentheses	of	a
set()	constructor	and	an	immutable	set	can	be	created	using	a	frozenset()	constructor.

Associating	list	elements
In	Python	programming	a	“dictionary”	is	a	data	container	that	can	store	multiple	items	of
data	as	a	list	of	key:value	pairs.	Unlike	regular	list	container	values,	which	are	referenced
by	their	index	number,	values	stored	in	dictionaries	are	referenced	by	their	associated	key.
The	key	must	be	unique	within	that	dictionary	and	is	typically	a	string	name	although
numbers	may	be	used.

In	other	programming	languages	a	list	is	often	called	an	“array”	and	a	dictionary	is	often
called	an	“associative	array”.

Creating	a	dictionary	is	simply	a	matter	of	assigning	the	key:value	pairs	as	a	comma-
separated	list	between	curly	brackets	(braces)	to	a	name	of	your	choice.	Strings	must	be
enclosed	within	quotes,	as	usual,	and	a	:	colon	character	must	come	between	the	key	and
its	associated	value.

A	key:value	pair	can	be	deleted	from	a	dictionary	by	specifying	the	dictionary	name	and
the	pair’s	key	to	the	del	keyword.	Conversely,	a	key:value	pair	can	be	added	to	a	dictionary
by	assigning	a	value	to	the	dictionary’s	name	and	a	new	key.

Python	dictionaries	have	a	keys()	method	that	can	be	dot-suffixed	to	the	dictionary	name	to
return	a	list,	in	random	order,	of	all	the	keys	in	that	dictionary.	If	you	prefer	the	keys	to	be
sorted	into	alphanumeric	order,	simply	enclose	the	statement	within	the	parentheses	of	the
Python	sorted()	function.

A	dictionary	can	be	searched	to	see	if	it	contains	a	particular	key	with	the	Python	in
operator,	using	the	syntax	key	in	dictionary.	The	search	will	return	a	Boolean	True	value	when
the	key	is	found	in	the	specified	dictionary,	otherwise	it	will	return	False.

Data	is	frequently	associated	as	key:value	pairs	–	for	example,	when	you	submit	a	web
form	a	text	value	typed	into	an	input	field	is	typically	associated	with	that	text	field’s
name	as	its	key.

Dictionaries	are	the	final	type	of	data	container	available	in	Python	programming.	In
summary,	the	various	types	are:

• Variable	–	stores	a	single	value

• List	–	stores	multiple	values	in	an	ordered	index

• Tuple	–	stores	multiple	fixed	values	in	a	sequence

• Set	–	stores	multiple	unique	values	in	an	unordered	collection

• Dictionary	–	stores	multiple	unordered	key:value	pairs

Start	a	new	Python	script	by	initializing	a	dictionary	then	display	its	key:value

contents
dict	=	{	‘name’	:	‘Bob’	,	‘ref’	:	‘Python’	,	‘sys’	:	‘Win’	}

print(‘Dictionary:’	,	dict)

dict.py

Next,	display	a	single	value	referenced	by	its	key

print(‘\nReference:’	,	dict[‘ref’])

Now,	display	all	keys	within	the	dictionary

print(‘\nKeys:’	,	dict.keys())

Delete	one	pair	from	the	dictionary	and	add	a	replacement	pair	then	display	the
new	key:value	contents
del	dict[‘name’]

dict[‘user’]	=	‘Tom’

print(‘\nDictionary:’	,	dict)

Finally,	search	the	dictionary	for	a	specific	key	and	display	the	result	of	the	search

print(‘\nIs	There	A	name	Key?:’	,’name’	in	dict)

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	–	to	see	the	dictionary	keys	and	values

Notice	that	quotes	must	be	preceded	by	a	backslash	escape	character	within	a	string	–	to
prevent	the	string	being	prematurely	terminated.

Branching	with	if
The	Python	if	keyword	performs	the	basic	conditional	test	that	evaluates	a	given
expression	for	a	Boolean	value	of	True	or	False.	This	allows	a	program	to	proceed	in
different	directions	according	to	the	result	of	the	test	and	is	known	as	“conditional
branching”.

The	tested	expression	must	be	followed	by	a	:	colon,	then	statements	to	be	executed	when
the	test	succeeds	should	follow	below	on	separate	lines	and	each	line	must	be	indented
from	the	if	test	line.	The	size	of	the	indentation	is	not	important	but	it	must	be	the	same	for
each	line.	So	the	syntax	looks	like	this:
if	test-expression	:

				statements-to-execute-when-test-expression-is-True

				statements-to-execute-when-test-expression-is-True

Indentation	of	code	is	very	important	in	Python	as	it	identifies	code	blocks	to	the
interpreter	–	other	programming	languages	use	braces.

Optionally,	an	if	test	can	offer	alternative	statements	to	execute	when	the	test	fails	by
appending	an	else	keyword	after	the	statements	to	be	executed	when	the	test	succeeds.	The
else	keyword	must	be	followed	by	a	:	colon	and	aligned	with	the	if	keyword	but	its
statements	must	be	indented	in	a	likewise	manner,	so	its	syntax	looks	like	this:
if	test-expression	:

				statements-to-execute-when-test-expression-is-True

				statements-to-execute-when-test-expression-is-True

else	:

				statements-to-execute-when-test-expression-is-False

				statements-to-execute-when-test-expression-is-False

An	if	test	block	can	be	followed	by	an	alternative	test	using	the	elif	keyword	(“else	if”)	that
offers	statements	to	be	executed	when	the	alternative	test	succeeds.	This	too	must	be
aligned	with	the	if	keyword,	followed	by	a	:	colon,	and	its	statements	indented.	A	final	else
keyword	can	then	be	added	to	offer	alternative	statements	to	execute	when	the	test	fails.
The	syntax	for	the	complete	if-elif-else	structure	looks	like	this:
if	test-expression-1	:

				statements-to-execute-when-test-expression-1-is-True

				statements-to-execute-when-test-expression-1-is-True

elif	test-expression-2	:

				statements-to-execute-when-test-expression-2-is-True

				statements-to-execute-when-test-expression-2-is-True

else	:

				statements-to-execute-when-test-expressions-are-False

				statements-to-execute-when-test-expressions-are-False

The	if:	elif:	else:	sequence	is	the	Python	equivalent	of	the	switch	or	case	statements	found	in
other	languages.

Start	a	new	Python	script	by	initializing	a	variable	with	user	input	of	an	integer
value
num	=	int(input(‘Please	Enter	A	Number:	‘))

if.py

Next,	test	the	variable	and	display	an	appropriate	response

if	num	>	5	:

														print(‘Number	Exceeds	5’)

elif	num	<	5	:

														print(‘Number	is	Less	Than	5’)

else	:

														print(‘Number	Is	5’)

Now,	test	the	variable	again	using	two	expressions	and	display	a	response	only
upon	success
if	num	>	7	and	num	<	9	:

														print(‘Number	is	8’)

if	num	==	1	or	num	==	3	:

														print(‘Number	Is	1	or	3’)

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	–	to	see	conditional	branching

The	user	input	is	read	as	a	string	value	by	default	so	must	be	cast	as	an	int	data	type	with
int()	for	arithmetical	comparison.

The	and	keyword	ensures	the	evaluation	is	True	only	when	both	tests	succeed,	whereas	the
or	keyword	ensures	the	evaluation	is	True	when	either	test	succeeds.

Looping	while	true
A	loop	is	a	piece	of	code	in	a	program	that	automatically	repeats.	One	complete	execution
of	all	statements	within	a	loop	is	called	an	“iteration”	or	a	“pass”.	The	length	of	the	loop	is
controlled	by	a	conditional	test	made	within	the	loop.	While	the	tested	expression	is	found
to	be	True	the	loop	will	continue	–	until	the	tested	expression	is	found	to	be	False,	at	which
point	the	loop	ends.

Unlike	other	Python	keywords	the	keywords	True	and	False	begin	with	uppercase	letters.

In	Python	programming,	the	while	keyword	creates	a	loop.	It	is	followed	by	the	test
expression	then	a	:	colon	character.	Statements	to	be	executed	when	the	test	succeeds
should	follow	below	on	separate	lines	and	each	line	must	be	indented	the	same	space	from
the	while	test	line.	This	statement	block	must	include	a	statement	that	will	at	some	point
change	the	result	of	the	test	expression	evaluation	–	otherwise	an	infinite	loop	is	created.

Indentation	of	code	blocks	must	also	be	observed	in	Python’s	interactive	mode	–	like	this
example	that	produces	a	Fibonacci	sequence	of	numbers	from	a	while	loop:

Loops	can	be	nested,	one	within	another,	to	allow	complete	execution	of	all	iterations	of
an	inner	nested	loop	on	each	iteration	of	the	outer	loop.	A	“counter”	variable	can	be
initialized	with	a	starting	value	immediately	before	each	loop	definition,	included	in	the
test	expression,	and	incremented	on	each	iteration	until	the	test	fails	–	at	which	point	the
loop	ends.

The	interpreter	provides	a	…	continuation	prompt	when	it	expects	further	statements.	Hit
Tab	to	indent	each	statement	then	hit	Return	to	continue.	Hit	Return	directly	at	the
continuation	prompt	to	discontinue.

Start	a	new	Python	script	by	initializing	a	“counter”	variable	and	define	an	outer
loop	using	that	variable	in	its	test	expression

i	=	1

while	i	<	4	:

while.py

Next,	add	indented	statements	to	display	the	counter’s	value	and	increment	its
value	on	each	iteration	of	the	loop
												print(‘\nOuter	Loop	Iteration:’	,	i)

												i	+=	1

Now,	(still	indented)	initialize	a	second	“counter”	variable	and	define	an	inner
loop	using	this	variable	in	its	test	expression
												j	=	1

												while	j	<	4	:

Finally,	add	further-indented	statements	to	display	this	counter’s	value	and
increment	its	value	on	each	iteration

												print(‘\tInner	Loop	Iteration:‘	,	j)

												j	+=	1

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	–	to	see	the	output	displayed	on	each	loop	iteration

The	output	printed	from	the	inner	loop	is	indented	from	that	of	the	outer	loop	by	the	\t	tab
character.

The	+=	assignment	statement	i	+=	1	is	simply	a	shorthand	way	to	say	i	=	i+1	–	you	can	also
use	*=	/=	-=	shorthand	to	assign	values	to	variables.

Looping	over	items
In	Python	programming	the	for	keyword	loops	over	all	items	in	any	list	specified	to	the	in
keyword.	This	statement	must	end	with	a	:	colon	character	and	statements	to	be	executed
on	each	iteration	of	the	loop	must	be	indented	below,	like	this:
for	each-item	in	list-name	:

								statements-to-execute-on-each-iteration

								statements-to-execute-on-each-iteration

The	range()	function	can	generate	a	sequence	that	decreases,	counting	down,	as	well	as
those	that	count	upward.

As	a	string	is	simply	a	list	of	characters,	the	for	in	statement	can	loop	over	each	character.
Similarly,	a	for	in	statement	can	loop	over	each	element	in	a	list,	each	item	in	a	tuple,	each
member	of	a	set,	or	each	key	in	a	dictionary.

A	for	in	loop	iterates	over	the	items	of	any	list	or	string	in	the	order	that	they	appear	in	the
sequence	but	you	cannot	directly	specify	the	number	of	iterations	to	make,	a	halting
condition,	or	the	size	of	iteration	step.	You	can,	however,	use	the	Python	range()	function	to
iterate	over	a	sequence	of	numbers	by	specifying	a	numeric	end	value	within	its
parameters.	This	will	generate	a	sequence	that	starts	at	zero	and	continues	up	to,	but	not
including,	the	specified	end	value.	For	example,	range(5)	generates	0,1,2,3,4.

Optionally,	you	can	specify	both	a	start	and	end	value	within	the	parentheses	of	the	range()
function,	separated	by	a	comma.	For	example,	range(1,5)	generates	1,2,3,4.	Also,	you	can
specify	a	start	value,	end	value,	and	a	step	value	to	the	range()	function	as	a	comma-
separated	list	within	its	parentheses.	For	example,	range(1,14,4)	generates	1,5,9,13.

The	for	loop	in	Python	is	unlike	that	in	other	languages	such	as	C	as	it	does	not	allow	step
size	and	end	to	be	specified.

You	can	specify	the	list’s	name	within	the	parentheses	of	Python’s	enumerate()	function	to
display	each	element’s	index	number	and	its	associated	value.

When	looping	through	multiple	lists	simultaneously,	the	element	values	of	the	same	index
number	in	each	list	can	be	displayed	together	by	specifying	the	list	names	as	a	comma-
separated	list	within	the	parentheses	of	Python’s	zip()	function.

When	looping	through	a	dictionary	you	can	display	each	key	and	its	associated	value
using	the	dictionary	items()	method	and	specifying	two	comma-separated	variable	names	to
the	for	keyword	–	one	for	the	key	name	and	the	other	for	its	value.

Start	a	new	Python	script	by	initializing	a	list,	a	tuple,	and	a	dictionary

chars	=	[‘A’	,	‘B’,	‘C’]

fruit	=	(‘Apple’	,	‘Banana’	,	‘Cherry’)

dict	=	{	‘name’	:	’Mike’	,	‘ref’	:	’Python’	,	‘sys’	:	’Win’	}

for.py

Next,	add	statements	to	display	all	list	element	values

print(‘\nElements:\t’	,	end	=	‘	‘)

for	item	in	chars	:

												print(item	,	end	=	‘	‘)

Now,	add	statements	to	display	all	list	element	values	and	their	relative	index
number
print(‘\nEnumerated:\t’	,	end	=	‘	‘)

for	item	in	enumerate(chars)	:

												print(item	,	end	=	‘	‘)

Then,	add	statements	to	display	all	list	and	tuple	elements

print(‘\nZipped:\t’	,	end	=	‘	‘)

for	item	in	zip(chars	,	fruit)	:

												print(item	,	end	=	‘	‘)

Finally,	add	statements	to	display	all	dictionary	key	names	and	associated	element
values
print(‘\nPaired:’)

for	key	,	value	in	dict.items()	:

												print(key	,	‘=’	,	value)

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	–	to	see	the	items	displayed	by	the	loop	iterations

In	Python	programming	anything	that	contains	mutiple	items	that	can	be	looped	over	is

described	as	“iterable”.

Breaking	out	of	loops
The	Python	break	keyword	can	be	used	to	prematurely	terminate	a	loop	when	a	specified
condition	is	met.	The	break	statement	is	situated	inside	the	loop	statement	block	and	is
preceded	by	a	test	expression.	When	the	test	returns	True	the	loop	ends	immediately	and
the	program	proceeds	on	to	the	next	task.	For	example,	in	a	nested	inner	loop	it	proceeds
to	the	next	iteration	of	the	outer	loop.

Start	a	new	Python	script	with	a	statement	creating	a	loop	that	iterates	three	times

for	i	in	range(1,	4)	:

nest.py

Next,	add	an	indented	statement	creating	a	“nested”	inner	loop	that	also	iterates
three	times
												for	j	in	range(1,	4)	:

Now,	add	a	further-indented	statement	in	the	inner	loop	to	display	the	counter
numbers	(of	both	the	outer	loop	and	the	inner	loop)	on	each	iteration	of	the	inner
loop
																print(‘Running	i=’	,	i	,	‘	j=’	,	j)

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	–	to	see	the	counter	values	on	each	loop	iteration

Compare	these	nested	for	loops	with	the	nested	while	loops	example	here

Now,	insert	this	break	statement	at	the	very	beginning	of	the	inner	loop	block,	to
break	out	of	the	inner	loop	–	then	save	the	file	and	run	the	program	once	more
																if	i	==	2	and	j	==	1	:

																				print(‘Breaks	inner	loop	at	i=2	j=1’)

																				break

break.py

Here,	the	break	statement	halts	all	three	iterations	of	the	inner	loop	when	the	outer	loop
tries	to	run	it	the	second	time.

The	Python	continue	keyword	can	be	used	to	skip	a	single	iteration	of	a	loop	when	a
specified	condition	is	met.	The	continue	statement	is	situated	inside	the	loop	statement
block	and	is	preceded	by	a	test	expression.	When	the	test	returns	True	that	one	iteration
ends	and	the	program	proceeds	to	the	next	iteration.

Insert	this	continue	statement	at	the	beginning	of	the	inner	loop	block,	to	skip	the
first	iteration	of	the	inner	loop	–	then	save	the	file	and	run	the	program	again

												if	i	==	1	and	j	==	1	:

															print(‘Continues	inner	loop	at	i=1	j=1’)

															continue

continue.py

Here,	the	continue	statement	just	skips	the	first	iteration	of	the	inner	loop	when	the	outer

loop	tries	to	run	it	for	the	first	time.

Summary
• In	Python,	multiple	assignments	can	be	used	to	initialize	several	variables	in	a	single

statement

• A	Python	list	is	a	variable	that	can	store	multiple	items	of	data	in	sequentially-
numbered	elements	that	start	at	zero

• Data	stored	in	a	list	element	can	be	referenced	using	the	list	name	followed	by	an
index	number	in	[]	square	brackets

• The	len()	function	returns	the	length	of	a	specified	list

• A	Python	tuple	is	an	immutable	list	whose	values	can	be	assigned	to	individual
variables	by	“sequence	unpacking”

• Data	stored	in	a	tuple	element	can	be	referenced	using	the	tuple	name	followed	by	an
index	number	in	[]	square	brackets

• A	Python	set	is	an	ordered	collection	of	unique	elements	whose	values	can	be
compared	and	manipulated	by	its	methods

• Data	stored	in	a	set	cannot	be	referenced	by	index	number

• A	Python	dictionary	is	a	list	of	key:value	pairs	of	data	in	which	each	key	must	be
unique

• Data	stored	in	a	dictionary	element	can	be	referenced	using	the	dictionary	name
followed	by	its	key	in	[]	square	brackets

• The	Python	if	keyword	performs	a	conditional	test	on	an	expression	for	a	Boolean
value	of	True	or	False

• Conditional	branching	provides	alternatives	to	an	if	test	with	the	else	and	elif	keywords

• A	while	loop	repeats	until	a	test	expression	returns	False

• A	for	in	loop	iterates	over	each	item	in	a	specified	list	or	string

• The	range()	function	generates	a	numerical	sequence	that	can	be	used	to	specify	the
length	of	a	for	in	loop

• The	break	and	continue	keywords	interrupt	loop	iterations

4

Defining	functions
This	chapter	demonstrates	how	to	create	functions	that	can	be	called	to	execute	statements	when	the	program

requires	them.

Understanding	scope

Supplying	arguments

Returning	values

Using	callbacks

Adding	placeholders

Producing	generators

Handling	exceptions

Debugging	assertions

Summary

Understanding	scope
Previous	examples	in	this	book	have	used	built-in	functions	of	the	Python	programming
language,	such	as	the	print()	function.	However,	most	Python	programs	contain	a	number
of	custom	functions	that	can	be	called	as	required	when	the	program	runs.

Function	statements	must	be	indented	from	the	definition	line	by	the	same	amount	so	the
Python	interpreter	can	recognize	the	block.

A	custom	function	is	created	using	the	def	(definition)	keyword	followed	by	a	name	of
your	choice	and	()	parentheses.	The	programmer	can	choose	any	name	for	a	function
except	the	Python	keywords	listed	on	the	inside	front	cover	of	this	book,	and	the	name	of
an	existing	built-in	function.	This	line	must	end	with	a	:	colon	character,	then	the
statements	to	be	executed	whenever	the	function	gets	called	must	appear	on	lines	below
and	indented.	Syntax	of	a	function	definition,	therefore,	looks	like	this:
def	function-name	()	:

												statements-to-be-executed

												statements-to-be-executed

Once	the	function	statements	have	been	executed,	program	flow	resumes	at	the	point
directly	following	the	function	call.	This	modularity	is	very	useful	in	Python	programming
to	isolate	set	routines	so	they	can	be	called	upon	repeatedly.

To	create	custom	functions	it	is	necessary	to	understand	the	accessibility	(“scope”)	of
variables	in	a	program:

• Variables	created	outside	functions	can	be	referenced	by	statements	inside	functions	–
they	have	“global”	scope

• Variables	created	inside	functions	cannot	be	referenced	from	outside	the	function	in
which	they	have	been	created	–	these	have	“local”	scope

The	limited	accessibility	of	local	variables	means	that	variables	of	the	same	name	can
appear	in	different	functions	without	conflict.

If	you	want	to	coerce	a	local	variable	to	make	it	accessible	elsewhere	it	must	first	be
declared	with	the	Python	global	keyword	followed	by	its	name	only.	It	may	subsequently	be
assigned	a	value	that	can	be	referenced	from	anywhere	in	the	program.	Where	a	global
variable	and	a	local	variable	have	the	same	name	the	function	will	use	the	local	version.

Avoid	using	global	variables	in	order	to	prevent	accidental	conflict	–	use	only	local
variables	where	possible.

Start	a	new	Python	script	by	initalizing	a	global	variable

global_var	=	1

scope.py

Next,	create	a	function	named	“my_vars”	to	display	the	value	contained	within	the
global	variable
def	my_vars()	:

												print(‘Global	Variable:’	,	global_var)

Now,	add	indented	statements	to	the	function	block	to	initialize	a	local	variable
and	display	the	value	it	contains
												local_var	=	2

												print(‘Local	variable:’	,	local_var)

Then,	add	indented	statements	to	the	function	block	to	create	a	coerced	global
variable	and	assign	an	initial	value
												global	inner_var

												inner_var	=	3

Add	a	statement	after	the	function	to	call	upon	that	function	to	execute	the
statements	it	contains
my_vars()

Finally,	add	a	statement	to	display	the	value	contained	in	the	coerced	global
variable
print(‘Coerced	Global:’	,	inner_var)

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	–	to	see	the	custom	function	display	the	variable	values

Variables	that	are	not	global	but	appear	in	some	outer	scope	can	be	addressed	using	the
nonlocal	keyword.

Supplying	arguments
When	defining	a	custom	function	in	Python	programming	you	may,	optionally,	specify	an
“argument”	name	between	the	function’s	parentheses.	A	value	can	then	be	passed	to	that
argument	by	specifying	the	value	in	the	parentheses	of	the	call	to	the	function.	The
function	can	now	use	that	passed	in	value	during	its	execution	by	referencing	it	via	the
argument	name.	For	example,	defining	a	function	to	accept	an	argument	to	print	out	like
this:
def	echo(user)	:

												print(‘User:’	,	user)

Argument-naming	follows	the	same	conventions	as	variables	and	functions.

A	call	to	this	function	must	specify	a	value	to	be	passed	to	the	argument	within	its
parentheses	so	it	can	be	printed	out:
echo(‘Mike’)

Multiple	arguments	(a.k.a.	“parameters”)	can	be	specified	in	the	function	definition	by
including	a	comma-separated	list	of	argument	names	within	the	function	parentheses:
def	echo(user	,	lang	,	sys)	:

												print(User:’	,	user	,	‘Language:’	,	lang	,	‘Platform:’	,	sys)

When	calling	a	function	whose	definition	specifies	arguments,	the	call	must	include	the
same	number	of	data	values	as	arguments.	For	example,	to	call	this	example	with	multiple
arguments:
echo(‘Mike’	,	‘Python’	,	‘Windows’)

The	passed	values	must	appear	in	the	same	order	as	the	arguments	list	unless	the	caller
also	specifies	the	argument	names	like	this:
echo(lang	=	‘Python’	,	user	=	‘Mike’	,	sys	=	‘Windows’)

Name	arguments	the	same	as	variables	passed	to	them	to	make	the	data	movement
obvious.

Optionally,	a	default	value	may	be	specified	in	the	argument	list	when	defining	a	function.
This	will	be	overridden	when	the	caller	specifies	a	value	for	that	argument	but	will	be	used
by	the	function	when	no	value	gets	passed	by	the	caller:
def	echo(user	,	lang	,	sys	=	‘Linux’)	:

												print(User:’	,	user	,	‘Language:’	,	lang	,	‘Platform:’	,	sys)

This	means	you	may	call	the	function	passing	fewer	values	than	the	number	of	arguments
specified	in	the	function	definition,	to	use	the	default	argument	value,	or	pass	the	same
number	of	values	as	specified	arguments	to	override	the	default	value.

Start	a	new	Python	script	by	defining	a	function	to	accept	three	arguments	that
will	print	out	their	passed	in	values
def	echo(user	,	lang	,	sys)	:

												print(‘User:’,	user,	‘Language:’,	lang,	‘Platform:’,	sys)

args.py

Next,	call	the	function	passing	string	values	to	the	function	arguments	in	the	order
they	appear
echo(‘Mike’	,	‘Python’	,	‘Windows’)

Now,	call	the	function	passing	string	values	to	the	function	arguments	by
specifying	the	argument	names
echo(lang	=	‘Python’	,	sys	=	‘Mac	OS’	,	user	=	‘Anne’)

Then,	define	another	function	to	accept	two	arguments	with	default	values	that
will	print	out	argument	values
def	mirror(user	=	‘Carole’	,	lang	=	‘Python’)	:

												print(‘\nUser:’	,	user	,	‘Language:’	,	lang)

Finally,	add	statements	to	call	the	second	function	both	using	and	overriding
default	values
mirror()

mirror(lang	=	‘Java’)

mirror(user	=	‘Tony’)

mirror(‘Susan’	,	‘C++’)

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	–	to	see	the	function	display	the	argument	values

Returning	values
Like	Python’s	built-in	str()	function,	which	returns	a	string	representation	of	the	value
specified	as	its	argument	by	the	caller,	custom	functions	can	also	return	a	value	to	their
caller	by	using	the	Python	return	keyword	to	specify	a	value	to	be	returned.	For	example,
to	return	to	the	caller	the	total	of	adding	two	specified	argument	values	like	this:
def	sum(a	,	b)	:

												return	a	+	b

The	returned	result	may	be	assigned	to	a	variable	by	the	caller	for	subsequent	use	by	the
program	like	this:
total	=	sum(8	,	4)

print(‘Eight	Plus	Four	Is:’	,	total)

Or	the	returned	result	may	be	used	directly	“in-line”	like	this:
print(‘Eight	Plus	Four	Is:’	,	sum(8	,	4))

Typically,	a	return	statement	will	appear	at	the	very	end	of	a	function	block	to	return	the
final	result	of	executing	all	statements	contained	in	that	function.

A	return	statement	may,	however,	appear	earlier	in	the	function	block	to	halt	execution	of
all	subsequent	statements	in	that	block.	This	immediately	resumes	execution	of	the
program	at	the	caller.	Optionally,	the	return	statement	may	specify	a	value	to	be	returned	to
the	caller	or	the	value	may	be	omitted.	Where	no	value	is	specified,	a	default	value	of	None
is	assumed.	Typically,	this	is	used	to	halt	execution	of	the	function	statements	after	a
conditional	test	is	found	to	be	False.	For	example,	where	a	passed	argument	value	is	below
a	specified	number:
def	sum(a	,	b)	:

												if	a	<	5	:

																				return

												return	a	+	b

You	can	specify	a	default	value	for	an	argument	in	the	function	definition.

In	this	case,	the	function	will	return	the	default	value	None	when	the	first	passed	argument
value	is	below	five	and	the	final	statement	will	not	be	executed.

Where	the	function	is	to	perform	arithmetic,	user	input	can	be	validated	for	integer	values
with	the	built-in	isdigit()	function.

Start	a	new	Python	script	by	initializing	a	variable	with	user	input	of	an	integer
value	for	manipulation
num	=	input(‘Enter	An	Integer:’)

return.py

Next,	add	a	function	definition	that	accepts	a	single	argument	value	to	be	passed
from	the	caller
def	square(num)	:

Now,	insert	into	the	function	block	an	indented	statement	to	validate	the	passed
value	as	an	integer	or	halt	further	execution	of	the	function’s	statements
												if	not	num.isdigit()	:

																				return	‘Invalid	Entry’

Then,	add	indented	statements	to	cast	the	passed	value	as	an	int	data	type	then
return	the	sum	of	squaring	that	value	to	the	caller
												num	=	int(num)

												return	num	*	num

Finally,	add	a	statement	to	output	a	string	and	the	returned	value	from	the	function
call
print(num	,	‘Squared	Is:’	,	square(num))

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	–	to	see	the	function	display	the	returned	values

Remember	that	user	input	is	read	as	a	str	data	type	–	so	must	be	cast	into	an	int	or	float	data
type	for	arithmetic.

Using	callbacks
In	Python,	a	named	function	is	created	using	the	def	keyword	to	specify	a	function	name,
which	can	be	used	to	call	that	function	at	any	time	in	the	program	to	execute	the
statements	it	contains.	Optionally,	the	named	function	can	return	a	value	to	the	caller.

Python	also	allows	an	anonymous	un-named	function	to	be	created	using	the	lambda
keyword.	An	anonymous	function	may	only	contain	a	single	expression	which	must
always	return	a	value.

Unlike	the	usual	creation	of	a	function	with	the	def	keyword,	the	creation	of	a	function
with	the	lambda	keyword	returns	a	“function	object”.	This	can	be	assigned	to	a	variable,
which	can	then	be	used	to	reference	(“call	back”)	the	function	at	any	time	in	the	program
to	execute	the	expression	it	contains.

The	lambda	keyword,	therefore,	offers	the	programmer	an	alternative	syntax	for	the
creation	of	a	function.	For	example:
def	square(x)	:

												return	x	**	2

can	alternatively	be	written	more	succinctly	as…
square	=	lambda	x	:	x	**	2

In	either	case,	the	call	square(5)	returns	the	result	25	by	passing	in	an	integer	argument	to
the	function.	Note	that	the	lambda	keyword	is	followed	by	an	argument	without	parentheses
and	the	specified	expression	does	not	require	the	return	keyword	as	all	functions	created
with	lambda	must	implicitly	return	a	value.

In-line	lambda	callbacks	are	often	used	to	define	the	behavior	of	buttons	in	a	GUI	program.

While	the	lambda	keyword	offers	an	alternative	way	to	create	a	function	it	is	mostly	used	to
embed	a	function	within	the	code.	For	instance,	callbacks	are	frequently	coded	as	inline
lambda	expressions	embedded	directly	in	a	caller’s	arguments	list	–	instead	of	being
defined	with	the	def	keyword	elsewhere	in	the	program	and	referenced	by	name.	For
example:
def	function_1	:	statements-to-be-executed

def	function_2	:	statements-to-be-executed

callbacks	=	[function_1	,	function_2]

can	alternatively	be	written	more	succinctly	as…
callbacks	=	[lambda	:	expression	,	lambda	:	expression]

Start	a	new	Python	script	by	defining	three	functions	to	return	a	passed	argument
raised	to	various	powers
def	function_1(x)	:	return	x	**	2

def	function_2(x)	:	return	x	**	3

def	function_3(x)	:	return	x	**	4

lambda.py

Next,	add	a	statement	to	create	a	list	of	callbacks	to	each	of	the	functions	by
referencing	their	names
callbacks	=	[function_1	,	function_2	,	function_3]

Now,	display	a	heading	and	the	result	of	passing	a	value	to	each	of	the	named
functions
print(‘\nNamed	Functions:’)

for	function	in	callbacks	:	print(‘Result:’	,	function(3))

Then,	add	a	statement	to	create	a	list	of	callbacks	to	inline	anonymous	functions
that	return	a	passed	argument	raised	to	various	powers
callbacks	=	\

[lambda	x	:	x	**	2	,	lambda	x	:	x	**	3	,	lambda	x	:	x	**	4]

Finally,	display	a	heading	and	the	result	of	passing	a	value	to	each	of	the
anonymous	functions
print(‘\nAnonymous	Functions:’)

for	function	in	callbacks	:	print(‘Result:’	,	function(3))

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	–	to	see	returns	from	regular	and	anonymous	functions

Function	definitions	that	contain	just	one	statement	can	be	written	on	just	one	line	–	as
seen	here.

The	\	backslash	character	can	be	used	to	allow	code	to	continue	on	the	next	line	–	as	seen

here.

Adding	placeholders
The	Python	pass	keyword	is	useful	when	writing	program	code	as	a	temporary	placeholder
that	can	be	inserted	into	the	code	at	places	where	further	code	needs	to	be	added	later.	The
pass	keyword	is	inserted	where	a	statement	is	required	syntactically	but	it	merely	performs
a	“null”	operation	–	when	it	is	executed	nothing	happens	and	no	code	needs	to	be
executed.	This	allows	an	incomplete	program	to	be	executed	for	testing	by	simulating
correct	syntax	so	the	interpreter	does	not	report	errors.

Start	a	new	Python	script	by	initializing	a	variable	with	a	Boolean	value	then	add
an	incomplete	conditional	test
bool	=	True

if	bool	:

												print(‘Python	In	Easy	Steps’)

else	:

												#	Statements	to	be	inserted	here.

incomplete.py

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	–	to	see	the	interpreter	report	an	error

Replace	the	comment	with	the	pass	keyword	then	save	the	file	and	run	the	program
again	–	to	see	the	program	execute	as	the	interpreter	does	not	now	find	an	error

pass.py

In	loop	structures	it	is	important	not	to	confuse	the	pass	keyword,	which	allows	the
interpreter	to	process	all	subsequent	statements	on	that	iteration,	with	the	continue	keyword,
which	skips	subsequent	statements	on	that	iteration	of	the	loop	only.

Start	a	new	Python	script	by	initializing	a	variable	with	a	string	value

title	=	‘\nPython	In	Easy	Steps\n’

skip.py

Next,	add	a	loop	to	print	each	character	of	the	string

for	char	in	title	:	print(char	,	end	=	‘	‘)

Now,	add	a	loop	that	prints	each	string	character	but	replaces	any	‘y’	character
then	skips	to	the	next	iteration
for	char	in	title	:

												if	char	==	‘y’	:

																				print(‘*’	,	end	=	‘	‘)

																				continue

												print(char	,	end	=	‘	‘)

Finally,	add	a	loop	that	prints	each	string	character	but	inserts	an	asterisk	before
each	‘y’	character
for	char	in	title	:

												if	char	==	‘y’	:

																				print(‘*’	,	end	=	‘	’)

																				pass

												print(char	,	end	=	‘	‘)

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	–	to	see	a	different	output	from	each	loop

In	a	loop	the	continue	keyword	continues	on	the	next	iteration,	whereas	the	pass	keyword

passes	on	to	the	next	statement	of	the	same	iteration.

Producing	generators
When	a	Python	function	is	called,	it	executes	the	statements	it	contains	and	may	return
any	value	specified	to	the	return	keyword.	After	the	function	ends,	control	returns	to	the
caller	and	the	state	of	the	function	is	not	retained.	When	the	function	is	next	called,	it	will
process	its	statements	from	start	to	finish	once	more.

A	Python	generator,	on	the	other	hand,	is	a	special	function	that	returns	a	“generator
object”	to	the	caller	rather	than	a	data	value.	This,	effectively,	retains	the	state	of	the
function	when	it	was	last	called	so	it	will	continue	from	that	point	when	next	called.

Generator	functions	are	produced	by	defininition	just	like	regular	functions	but	contain	a
“yield”	statement.	This	begins	with	the	Python	yield	keyword	and	specifies	the	generator
object	to	be	returned	to	the	caller.	When	the	yield	statement	gets	executed,	the	state	of	the
generator	object	is	frozen	and	the	current	value	in	its	“expression	list”	is	retained.	The
generator	object	returned	by	the	yield	statement	can	be	conveniently	assigned	to	a
variable.	Python’s	built-in	next()	function	can	then	specify	that	variable	name	within	its
parentheses	to	continue	execution	of	the	function	from	the	point	at	which	it	was	frozen	–
exactly	as	if	the	yield	statement	were	just	another	external	call.

Repeatedly	calling	the	generator	object	with	the	next()	function	continues	execution	of	the
function	until	it	raises	an	exception.	This	can	be	avoided	by	enclosing	the	yield	statement
within	an	infinite	loop	so	it	will	return	successive	values	on	each	iteration.	For	example,	to
yield	an	incremented	value	on	each	call:
def	incrementer()	:

												i	=	1

												while	True	:

																				yield	i

																				i	+=	1

inc	=	incrementer()

print(next(inc))

print(next(inc))

print(next(inc))

These	calls	display	the	integer	value	1,	then	2,	then	3.

Perhaps	more	usefully,	the	generator	object	can	be	referenced	from	a	loop	to	successively
iterate	through	values.

Changing	the	conditional	test	in	this	loop	to	read	while	i	<	3	will	cause	a	StopIteration	error
when	called	for	the	third	time.

Start	a	new	Python	script	by	defining	a	function	that	begins	by	initializing	two
variables	with	an	integer	of	one

def	fibonacci_generator()	:

												a	=	b	=	1

yield.py

Next,	in	the	function	body	insert	an	indented	infinite	loop	to	yield	the	addition	of
two	previous	values
												while	True	:

																				yield	a

																				a	,	b	=	b	,	a	+	b

Now,	assign	the	returned	generator	object	to	a	variable

fib	=	fibonacci_generator()

Finally,	add	a	loop	to	successively	call	the	generator	function	and	display	its	value
on	each	iteration
for	i	in	fib	:

												if	i	>	100	:

																								break

												else	:

																								print(‘Generated:’	,	i)

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	–	to	see	the	loop	display	increasing	generated	values

Here,	the	variables	are	initialized	with	a	common	value	in	a	single	statement.

You	can	use	the	in-built	type()	function	to	confirm	the	object	type	–	here,	type(fib)	is

confirmed	as	a	generator	class	object.

Handling	exceptions
Sections	of	a	Python	script	in	which	it	is	possible	to	anticipate	errors,	such	as	those
handling	user	input,	can	be	enclosed	in	a	try	except	block	to	handle	“exception	errors”.	The
statements	to	be	executed	are	grouped	in	a	try	:	block	and	exceptions	are	passed	to	the
ensuing	except	:	block	for	handling.	Optionally,	this	may	be	followed	by	a	finally	:	block
containing	statements	to	be	executed	after	exceptions	have	been	handled.

Discover	more	built-in	exceptions	online	at	http://docs.python.org/3/library/exceptions.html

Python	recognizes	many	built-in	exceptions	such	as	the	NameError	which	occurs	when	a
variable	name	is	not	found,	the	IndexError	which	occurs	when	trying	to	address	a	non-
existent	list	index,	and	the	ValueError	which	occurs	when	a	built-in	operation	or	function
receives	an	argument	that	has	an	inappropriate	value.

Each	exception	returns	a	descriptive	message	that	can,	usefully,	be	assigned	to	a	variable
with	the	as	keyword.	This	can	then	be	used	to	display	the	nature	of	the	exception	when	it
occurs.

Start	a	new	Python	script	by	initializing	a	variable	with	a	string	value

title	=	‘Python	In	Easy	Steps’

try.py

Next,	add	a	try	statement	block	that	attempts	to	display	the	variable	value	–	but
specifies	the	name	incorrectly
try	:

												print(titel)

Now,	add	an	except	statement	block	to	display	an	error	message	when	a
NameError	occurs
except	NameError	as	msg	:

												print(msg)

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	–	to	see	how	the	error	gets	handled

http://docs.python.org/3/library/exceptions.html

Multiple	exceptions	can	be	handled	by	specifying	their	type	as	a	comma-separated	list	in
parentheses	within	the	except	block:
except	(NameError	,	IndexError)	as	msg	:

												print(msg)

You	can	also	compel	the	interpreter	to	report	an	exception	by	using	the	raise	keyword	to
specify	the	type	of	exception	to	be	recognized	and	a	custom	descriptive	message	in
parentheses.

Start	a	new	Python	script	by	initializing	a	variable	with	an	integer	value

day	=	32

raise.py

Next,	add	a	try	statement	block	that	tests	the	variable	value	then	specifies	an
exception	and	custom	message
try	:

												if	day	>	31	:

																				raise	ValueError(‘Invalid	Day	Number’)

												#	More	statements	to	execute	get	added	here.

Now,	add	an	except	statement	block	to	display	an	error	message	when	a
ValueError	occurs
except	ValueError	as	msg	:

												print(‘The	Program	found	An’	,	msg)

Then,	add	a	finally	statement	block	to	display	a	message	after	the	exception	has
been	handled	successfully
finally	:

												print(‘But	Today	Is	Beautiful	Anyway.’)

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	–	to	see	the	raised	error	get	handled

Statements	in	the	try	block	are	all	executed	unless	or	until	an	exception	occurs.

Debugging	assertions
When	tracking	down	(debugging)	errors	in	your	code	it	is	often	useful	to	“comment-out”
one	or	more	lines	of	code	by	prefixing	each	line	with	the	#	hash	character	–	as	used	for
your	comments.	The	Python	interpreter	will	then	omit	execution	of	those	lines	so	helps	to
localize	where	a	problem	lies.	For	example,	where	you	suspect	a	variable	assignment
problem	it	can	be	excluded	like	this:
#	elem	=	elem	/	2

If	the	program	now	runs	without	errors	the	commented-out	assignment	can	be	assumed	to
be	problematic.

Another	useful	debugging	technique	employs	the	Python	assert	keyword	to	add	error-
checking	code	to	your	script.	This	examines	a	specified	test	expression	for	a	Boolean	True
or	False	result	and	reports	an	“AssertionError”	when	the	test	fails.	Optionally,	an	assert
statement	can	include	a	descriptive	message	to	supply	when	reporting	an	AssertionError,
and	has	this	syntax:
assert	test-expression	,	descriptive-message

When	the	test	expression	fails,	the	interpreter	reports	the	AssertionError	and	halts
execution	of	the	script	but	when	the	test	succeeds,	the	assert	statement	does	nothing	and
execution	of	the	script	continues.

Employing	assert	statements	is	an	effective	way	to	document	your	script	as	their
descriptive	messages	provide	commentary	and	their	tests	alert	you	when	your	code	is
erroneous.

You	can	have	the	interpreter	ignore	all	assert	statements	using	a	-O	switch	in	the	run
command	–	for	example	python	-O	assert.py.

Assert	versus	Exception

At	first	glance	an	AssertionError	can	appear	confusingly	similar	to	an	Exception	but	it	is
important	to	recognize	their	distinctions:

• Exceptions	provide	a	way	to	handle	errors	that	may	legitimately	occur	at	runtime

• AssertionErrors	provide	a	way	to	alert	the	programmer	to	mistakes	during
development

Typically,	assert	statements	will	be	removed	from	release	versions	of	a	program	after

debugging	is	complete,	whereas	except	statements	will	remain	to	handle	runtime	errors.

Start	a	new	Python	script	by	initializing	a	list	with	several	string	values

chars	=	[‘Alpha’	,	‘Beta’	,	‘Gamma’	,	‘Delta’	,	‘Epsilon’]

assert.py

Next,	define	a	function	to	accept	a	single	argument

def	display(elem)	:

Now,	add	indented	statements	in	the	function	body	to	ensure	the	passed	argument
value	is	an	integer	then	display	a	list	element	of	that	index	number
												assert	type(elem)	is	int	,	‘Argument	Must	Be	Integer!’

												print(‘List	Element’	,	elem	,	‘=’	,	chars[elem])

Then,	initialize	a	variable	with	an	integer	value	and	call	the	function,	passing	this
variable	value	as	its	argument
elem	=	4

display(elem)

Finally,	change	the	variable	value	then	call	the	function	once	more,	passing	the
new	variable	value	as	its	argument
elem	=	elem	/	2

display(elem)

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	–	to	see	an	AssertionError	reported

This	AssertionError	occurs	because	the	division	operation	returns	a	float	value,	not	an
integer	value.

Summary
• Functions	are	defined	using	the	def	keyword	and	contain	indented	statements	to	execute

when	the	function	gets	called

• Variables	with	global	scope	can	be	referenced	from	anywhere,	but	variables	with	local
scope	can	only	be	referenced	from	within	the	function	in	which	they	are	declared

• Arguments	are	declared	as	a	comma-separated	list	within	the	parentheses	of	a	function
definition

• Function	calls	must	supply	data	for	each	function	argument	unless	a	default	value	is
specified	in	their	declaration

• Optionally,	a	function	can	include	a	return	statement	to	return	a	value	to	the	caller

• An	anonymous	function	containing	a	single	expression	is	created	with	the	lambda
keyword	and	returns	a	function	object

• Callbacks	are	frequently	coded	as	inline	lambda	expressions	embedded	directly	in	a
caller’s	argument	list

• Placeholders	can	be	created	by	inserting	the	pass	keyword	where	a	statement	is	required
syntactically

• A	generator	function	is	created	when	a	statement	using	the	yield	keyword	appears	in	its
function	block

• Generator	functions	retain	the	state	of	the	function	when	last	called	and	return	a
generator	object	to	the	caller

• The	built-in	next()	function	can	be	used	to	continue	execution	of	a	generator	function
from	the	point	where	it	was	frozen

• Anticipated	runtime	exception	errors	can	be	handled	by	enclosing	statements	in	a	try
except	block

• Optionally,	a	finally	statement	can	be	used	to	specify	statements	to	be	executed	after
exceptions	have	been	handled

• Error-checking	code	can	be	added	to	scripts	using	the	assert	keyword	to	report
development	errors

5

Importing	modules
This	chapter	demonstrates	how	to	use	Python	modules	in	your	programs.

Storing	functions

Owning	function	names

Interrogating	the	system

Performing	mathematics

Calculating	decimals

Telling	the	time

Running	a	timer

Matching	patterns

Summary

Storing	functions
Python	function	definitions	can,	usefully,	be	stored	in	one	or	more	separate	files	for	easier
maintenance	and	to	allow	them	to	be	used	in	several	programs	without	copying	the
definitions	into	each	one.	Each	file	storing	function	definitions	is	called	a	“module”	and
the	module	name	is	the	file	name	without	the	“.py”	extension.

Functions	stored	in	the	module	are	made	available	to	a	program	using	the	Python	import
keyword	followed	by	the	module	name.	Although	not	essential,	it	is	customary	to	put	any
import	statements	at	the	beginning	of	the	program.

Imported	functions	can	be	called	using	their	name	dot-suffixed	after	the	module	name.	For
example,	a	“steps”	function	from	an	imported	module	named	“ineasy”	can	be	called	with
ineasy.steps().

Where	functions	stored	in	a	module	include	arguments,	it	is	often	useful	to	assign	a	default
value	to	the	argument	in	the	definition.	This	makes	the	function	more	versatile	as	it
becomes	optional	for	the	call	to	specify	an	argument	value.

Start	a	new	Python	module	by	defining	a	function	that	supplies	a	default	string
value	to	its	argument	for	display
def	purr(pet	=	‘A	Cat’)	:

print(pet	,	‘Says	MEOW!’)

cat.py

Next,	add	two	more	function	definitions	that	also	supply	default	string	values	to
their	arguments	for	display
def	lick(pet	=	‘A	Cat’)	:

print(pet	,	‘Drinks	Milk’)

def	nap(pet	=	‘A	Cat’)	:

print(pet	,	‘Sleeps	By	The	Fire’)

Now,	save	the	file	as	“cat.py”	so	the	module	is	named	“cat”

Start	a	new	Python	script	with	a	statement	to	make	the	“cat”	module	functions
available
import	cat

kitty.py

Next,	call	each	function	without	supplying	an	argument

cat.purr()

cat.lick()

cat.nap()

Now,	call	each	function	again	and	pass	an	argument	to	each,	then	save	the	file

cat.purr(‘Kitty’)

cat.lick(‘Kitty’)

cat.nap(‘Kitty’)

Start	another	Python	script	by	making	the	“cat”	module	functions	available	once
more

import	cat

tiger.py

Then,	request	the	user	enters	a	name	to	overwrite	the	default	argument	value

pet	=	input(‘Enter	A	Pet	Name:	‘)

Finally,	call	each	function,	passing	the	user-defined	value	as	the	argument

cat.purr(pet)

cat.lick(pet)

cat.nap(pet)

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	these	programs	–	to	see	output	from	the	imported	module

You	can	create	an	alias	when	importing	a	module	using	import	as	keywords.	For	example

import	cat	as	tom	allows	you	to	use	tom	as	the	function	prefix	in	calls.

Owning	function	names
Internally,	each	Python	module	and	program	has	its	own	“symbol	table”	which	is	used	by
all	functions	defined	in	that	context	only.	This	avoids	possible	conflicts	with	functions	of
the	same	name	in	another	module	if	both	modules	were	imported	into	one	program.

When	you	import	a	module	with	an	import	statement,	that	module’s	symbol	table	does	not
get	added	to	the	program’s	symbol	table	–	only	the	module’s	name	gets	added.	That	is	why
you	need	to	call	the	module’s	functions	using	their	module	name	prefix.	Importing	a
“steps”	function	from	a	module	named	“ineasy”	and	another	“steps”	function	from	a
module	named	“dance”	means	they	can	be	called	without	conflict	as	ineasy.steps()	and
dance.steps().

Where	you	import	individual	function	names,	the	module	name	does	not	get	imported	–	so
it	cannot	be	used	as	a	prefix.

Generally,	it	is	preferable	to	avoid	conflicts	by	importing	the	module	name	and	calling	its
functions	with	the	module	name	prefix	but	you	can	import	individual	function	names
instead	with	a	from	import	statement.	The	module	name	is	specified	after	the	from	keyword,
and	functions	to	import	are	specified	as	a	comma-separated	list	after	the	import	keyword.
Alternatively,	the	*	wildcard	character	can	be	specified	after	import	to	import	all	function
names	into	the	program’s	own	symbol	table.	This	means	the	functions	can	be	called
without	a	module	name	prefix.

Start	a	new	Python	module	by	defining	a	function	that	supplies	a	default	string
value	to	its	argument

def	bark(pet	=	‘A	Dog’)	:

print(pet	,	‘Says	WOOF!’)

dog.py

Next,	add	two	more	function	definitions	that	also	supply	default	string	values	to
their	arguments

def	lick(pet	=	‘A	Dog’)	:

print(pet	,	‘Drinks	water’)

def	nap(pet	=	‘A	Dog’)	:

print(pet	,	‘	Sleeps	In	The	Sun’)

Save	the	file	as	“dog.py”	so	the	module	is	named	“dog”.

Start	a	new	Python	script	with	a	statement	to	make	individual	“dog”	module
functions	available

from	dog	import	bark	,	lick	,	nap

pooch.py

Next,	call	each	function	without	supplying	an	argument

bark()

lick()

nap()

Now,	call	each	function	again	and	pass	an	argument	value	to	each	then	save	the
file

bark(‘Pooch’)

lick(‘Pooch’)

nap(‘Pooch’)

Start	another	Python	script	by	making	all	“dog”	module	functions	available

from	dog	import	*

fido.py

Then,	request	the	user	enters	a	name	to	overwrite	the	default	argument	value

pet	=	input(‘Enter	A	Pet	Name:	‘)

Finally,	call	each	function,	passing	the	user-defined	value	as	the	argument

bark(pet)

lick(pet)

nap(pet)

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	these	programs	–	to	see	output	from	the	imported	functions

For	larger	programs	you	can	import	modules	into	other	modules	to	build	a	module
hierarchy.

Interrogating	the	system
Python	includes	“sys”	and	“keyword”	modules	that	are	useful	for	interrogating	the	Python
system	itself.	The	keyword	module	contains	a	list	of	all	Python	keywords	in	its	kwlist
attribute	and	provides	an	iskeyword()	method	if	you	want	to	test	a	word.

You	can	explore	the	many	features	of	the	“sys”	module	and	indeed	any	feature	of	Python
using	the	Interactive	Mode	help	system.	Just	type	help()	at	the	>>>	prompt	to	start	the	help
system	then	type	sys	at	the	help>	prompt	that	appears.

Perhaps	most	usefully,	the	“sys”	module	has	attributes	that	contain	the	Python	version
number,	interpreter	location	on	your	system,	and	a	list	of	all	directories	where	the
interpreter	seeks	module	files	–	so	if	you	save	module	files	in	any	of	these	directories	you
can	be	sure	the	interpreter	will	find	them.

Start	a	new	Python	script	by	importing	the	“sys”	and	“keyword”	modules	to	make
their	features	available
import	sys	,	keyword

system.py

Next,	add	a	statement	to	display	the	Python	version
print(‘Python	Version:‘	,	sys.version)

Now,	add	a	statement	to	display	the	actual	location	on	your	system	of	the	Python
interpreter
print(‘Python	Interpreter	Location:’	,	sys.executable)

Then,	add	statements	to	display	a	list	of	all	directories	where	the	Python
interpreter	looks	for	module	files
print(‘Python	Module	Search	Path:	‘)

for	dir	in	sys.path	:

print(dir)

Finally,	add	statements	to	display	a	list	of	all	the	Python	keywords
print(‘Python	Keywords:	‘)

for	word	in	keyword.kwlist	:

print(word)

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	–	to	see	details	of	the	Python	version	on	your	system

The	first	item	on	the	Python	search	path	is	your	current	directory	–	so	any	file	within	there
or	within	any	subdirectories	you	make	there	will	be	found	by	the	Python	interpreter.

Spend	a	little	time	with	the	Interactive	Mode	help	utility	to	discover	lots	more	about
Python.

Performing	mathematics
Python	includes	a	“math”	module	that	provides	lots	of	methods	you	can	use	to	perform
mathematical	procedures	once	imported.

The	math.ceil()	and	math.floor()	methods	enable	a	program	to	perform	rounding	of	a	floating
point	value	specified	between	their	parentheses	to	the	closest	integer	–	math.ceil()	rounds	up
and	math.floor()	rounds	down	but	the	value	returned,	although	an	integer,	is	a	float	data	type
rather	than	an	int	data	type.

Integers	can	be	cast	from	the	int	data	type	to	the	float	data	type	using	the	float()	function	and
to	the	string	data	type	using	the	str()	function.

The	math.pow()	method	requires	two	arguments	to	raise	a	specified	value	by	a	specified
power.	The	math.sqrt()	method,	on	the	other	hand,	simply	requires	a	single	argument	and
returns	the	square	root	of	that	specified	value.	Both	method	results	are	returned	as	a
numeric	value	of	the	float	data	type.

Typical	trigonometry	can	be	performed	using	methods	from	the	math	module	too,	such	as
math.sin(),	math.cosin()	and	math.tan().

Additionally,	Python	includes	a	“random”	module	that	can	be	used	to	produce	pseudo
random	numbers	once	imported	into	a	program.

The	random.random()	method	produces	a	single	floating-point	number	between	zero	and	1.0.
Perhaps	more	interestingly,	the	random.sample()	method	produces	a	list	of	elements	selected
at	random	from	a	sequence.	This	method	requires	two	arguments	to	specify	the	sequence
to	select	from,	and	the	length	of	the	list	to	be	produced.	As	the	range()	function	returns	a
sequence	of	numbers	this	can	be	used	to	specify	a	sequence	as	the	first	argument	to	the
random.sample()	method	–	so	it	will	randomly	select	numbers	from	that	sequence	to	produce
a	list	in	which	no	numbers	repeat.

Start	a	new	Python	script	by	importing	the	“math”	and	“random”	modules	to	make
their	features	available
import	math	,	random

maths.py

Next,	add	statements	to	display	two	rounded	values

print(‘Rounded	Up	9.5:‘	,	math.ceil(9.5))

print(‘Rounded	Down	9.5:‘	,	math.floor(9.5))

Now,	add	a	statement	to	initialize	a	variable	with	an	integer	value

num	=	4

Add	statements	to	display	the	square	and	square	root	of	the	variable	value

print(num	,	‘Squared:‘	,	math.pow(num	,	2))

print(num	,	‘Square	Root:‘	,	math.sqrt(num))

Then,	add	a	statement	to	produce	a	random	list	of	six	unique	numbers	between
one	and	49

nums	=	random.sample(range(1,	49)	,	6)

Finally,	add	a	statement	to	display	the	random	list

print(‘Your	Lucky	Lotto	Numbers	Are:‘	,	nums)

Save	the	file	in	your	scripts	directory	then	open	a	Command	prompt	window	there
and	run	this	program	–	to	see	math	results	and	random	samples

All	the	math	methods	here	return	floating-point	numbers	of	the	float	data	type.

The	list	produced	by	random.sample()	does	not	actually	replace	elements	of	the	sequence	but
merely	copies	a	sample,	as	its	name	says.

Calculating	decimals
Python	programs	that	attempt	floating-point	arithmetic	can	produce	unexpected	and
inaccurate	results	because	the	floating-point	numbers	cannot	accurately	represent	all
decimal	numbers.

Start	a	new	Python	script	by	initializing	two	variables	with	floating-point	values

item	=	0.70

rate	=	1.05

inaccurate.py

Next,	initialize	two	more	variables	by	attempting	floating-point	arithmetic	with
the	first	two	variables

tax	=	item	*	rate
total	=	item	+	tax

Now,	add	statements	to	display	variable	values	formatted	to	have	two	decimal
places	so	trailing	zeros	are	shown

print(‘Item:\t’	,	‘%.2f’	%	item)

print(‘Tax:\t’	,	‘%.2f’	%	tax)

print(‘Total:\t’	,	‘%.2f’	%	total)

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	the	program	–	to	see	the	output	display	an	inaccurate	addition

Here,	the	variable	values	are	formatted	using	a	string	substitution	technique	to	show	two
decimal	places	–	described	in	more	detail	here.

To	help	understand	this	problem,	edit	all	three	print	statements	to	display	the
variable	values	expanded	to	twenty	decimal	places,	then	run	the	modified	program

print(‘Item:\t’	,	‘%.20f’	%	item)

print(‘Tax:\t’	,	‘%.20f’	%	tax)

print(‘Total:\t’	,	‘%.20f’	%	total)

expanded.py

This	problem	is	not	unique	to	Python	–	Java	has	a	BigDecimal	class	that	overcomes	this
problem	in	much	the	same	way	as	the	decimal	module	in	Python.

It	is	now	clear	that	the	tax	value	is	represented	numerically	slightly	below	0.735	so	gets
rounded	down	to	0.73.	Conversely,	the	total	value	is	represented	numerically	slightly
above	1.435	so	gets	rounded	up	to	1.44,	creating	the	apparent	addition	error.

Errors	in	floating-point	arithmetic	can	be	avoided	using	Python’s	“decimal”	module.	This
provides	a	Decimal()	object	with	which	floating-point	numbers	can	be	more	accurately
represented.

Add	a	statement	at	the	beginning	of	the	program	to	import	the	“decimal”	module
to	make	all	features	available
from	decimal	import	*

decimals.py

Next,	edit	the	first	two	variable	assignment	to	objects

item	=	Decimal(0.70)

rate	=	Decimal(1.05)

Save	the	changes	then	run	the	modified	program	to	see	both	tax	and	total
representations	will	now	get	rounded	down	–	so	the	output	will	show	accurate
addition	when	string	formatting	is	changed	back	to	two	decimal	places

Always	use	the	Decimal()	object	to	calculate	monetary	values	or	anywhere	that	accuracy	is
essential.

Telling	the	time
The	Python	“datetime”	module	can	be	imported	into	a	program	to	make	use	of	times	and
dates.	It	provides	a	datetime	object	with	attributes	of	year,	month,	day,	hour,	minute,	second,
microsecond.

A	datetime	object	has	a	today()	method	that	assigns	the	current	date	and	time	values	to	its
attributes	and	returns	them	in	a	tuple.	It	also	has	a	getattr()	method	that	requires	two
arguments	specifying	the	datetime	object	name	and	attribute	to	retrieve.	Alternatively,	the
attributes	can	be	referenced	using	dot	notation	such	as	datetime.year.

As	the	datetime	object	is	in	a	module	of	the	same	name,	simply	importing	the	module
means	it	would	be	referenced	as	datetime.datetime.	Use	from	datetime	import	*	so	it	can	be
referenced	just	as	datetime.

All	values	in	a	datetime	object	are	stored	as	numeric	values	but	can,	usefully,	be
transformed	into	text	equivalents	using	its	strftime()	method.	This	requires	a	single	string
argument	that	is	a	“directive”	specifying	which	part	of	the	tuple	to	return	and	in	what
format.	The	possible	directives	are	listed	in	the	table	below:

Directive: Returns:

%A Full	weekday	name	(%a	for	abbreviated	day	name)

%B Full	month	name	(%b	for	abbreviated	month	name)

%c Date	and	time	appropriate	for	locale

%d Day	of	the	month	number	1-31

%f Microsecond	number	0-999999

%H Hour	number	0-23	(24-hour	clock)

%I Hour	number	1-12	(12-hour	clock)

%j Day	of	the	year	number	0-366

%m Month	number	1-12

%M Minute	number	0-59

%p AM	or	PM	equivalent	for	locale

%S Second	number	0-59

%w Week	day	number	0(Sunday)-6

%W Week	of	the	year	number	0-53

%X Time	appropriate	for	locale	(%x	for	appropriate	date)

%Y Year	0001-9999	(%y	for	year	00-99)

%z Timezone	offset	from	UTC	as	+HHMM	or	-HHMM

%Z Timezone	name

As	the	strftime()	method	requires	a	string	argument,	the	directive	must	be	enclosed	between
quote	marks.

Start	a	new	Python	script	by	importing	the	“datetime”	module	to	make	its	features
available
from	datetime	import	*

today.py

Next,	create	a	datetime	object	with	attributes	assigned	to	current	date	and	time
values	then	display	its	contents

today	=	datetime.today()

print(‘Today	Is:‘	,	today)

Add	a	loop	to	display	each	attribute	value	individually
for	attr	in	\
[‘year’,‘month’,‘day’,‘hour’,‘minute’,’second’,’microsecond’]	:

print(attr	,	‘:\t’	,	getattr(today	,	attr))

Now,	add	a	statement	to	display	time	using	dot	notation

print(‘	Time:‘	,	today.hour	,	‘:’	,	today.minute	,	sep	=	‘‘)

Then,	assign	formatted	day	and	month	names	to	variables

day	=	today.strftime(‘%A’)

month	=	today.strftime(‘%B’)

Finally,	add	a	statement	to	display	the	formatted	date

print(‘Date:‘	,	day	,	month	,	today.day)

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	–	to	see	the	date	and	time	values	get	displayed

Notice	how	the	\	backslash	character	is	used	in	this	loop	to	allow	a	statement	to	continue
on	the	next	line	without	causing	an	error.

You	can	assign	new	values	to	attributes	of	a	datetime	object	using	its	replace()	method,	such
as	today	=	today.replace(year=2015)

Running	a	timer
Getting	the	current	time	both	before	and	after	an	event	means	that	the	duration	of	the
event	can	be	calculated	by	their	difference.	The	Python	“time”	module	can	be	imported
into	a	program	to	provide	various	time-related	functions.

Current	system	time	is	usually	counted	as	the	number	of	seconds	elapsed	since	the	Epoch
at	00:00:00	GMT	on	January	1,	1970.	The	time	module’s	time()	method	returns	the	current
time	in	seconds	since	the	Epoch	as	a	floating	point	number	when	called.

The	gmtime()	method	converts	elapsed	time	from	the	Epoch	to	a	struct_time	object	at	UTC
with	the	Daylight	Saving	Time	always	set	to	zero,	whereas	localtime()	converts	to	a
struct_time	object	at	your	local	system	time.

The	figure	returned	by	the	time()	method	can	be	converted	into	a	“struct_time”	object	using
gmtime()	or	localtime()	methods.	This	object	has	attributes	of	tm_year,	tm_mon,	tm_mday,	tm_hour,
tm_min,	tm_sec,	tm_wday,	tm_yday,	tm_yday	and	tm_isdst	that	can	be	referenced	using	dot
notation.	For	example,	struct.tm_wday.

All	values	in	a	struct_time	object	are	stored	as	numeric	values	but	can	be	transformed	into
text	equivalents	using	the	strftime()	method.	This	requires	an	argument	that	is	a	format
“directive”	followed	by	the	name	of	the	struct_time	object.	The	possible	directives	include
those	listed	in	the	table	here	for	the	datetime	object.	For	example,	strftime(‘%A’	,	struct)	for
weekday.

Usefully,	the	time	module	also	provides	a	sleep()	method	that	can	be	used	to	pause	execution
of	a	program.	Its	argument	specifies	the	amount	of	time	in	seconds	by	which	to	delay
execution.

Start	a	new	Python	script	by	importing	the	“time”	module	to	make	its	features
available
from	time	import	*

timer.py

Next,	initialize	a	variable	with	a	floating	point	number	that	is	the	current	elapsed
time	since	the	epoch
start_timer	=	time()

Now,	add	a	statement	to	create	a	struct_time	object	from	the	elapsed	time	value
struct	=	localtime(start_timer)

Then,	announce	that	a	countdown	timer	is	about	to	begin	from	the	current	time
starting	point

print(‘\nStarting	Countdown	At:’	,	strftime(‘%X’	,	struct))

Add	a	loop	to	initialize	and	print	a	counter	variable	value	then	decrement	the
counter	by	one	and	pause	for	one	second	on	each	iteration

i	=	10

while	i	>	-1	:

print(i)
i	-=	1

sleep(1)

The	argument	to	the	sleep()	method	may	be	a	floating	point	number	to	indicate	a	more
precise	sleep	pause	time.

Next,	initialize	a	variable	with	a	floating	point	number	that	is	the	current	elapsed
time	now	since	the	Epoch
end_timer	=	time()

Now,	initialize	a	variable	with	the	rounded	seconds	value	of	the	time	difference
between	the	two	timed	points
difference	=	round(end_timer	-	start_timer)

Finally,	add	a	statement	to	display	the	time	taken	to	execute	the	countdown	loop
print(‘\nRuntime:’	,	difference	,	‘Seconds’)

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	–	to	see	the	loop	pause	on	each	iteration	and	elapsed	time

Do	not	confuse	the	time.strftime()	method	used	in	this	example	with	the	datetime.strftime()

method	used	in	the	previous	example.

Matching	patterns
The	Python	“re”	module	can	be	imported	into	a	program	to	make	use	of	Regular
Expression	patterns	that	describe	a	particular	string	of	characters.	Regular	Expressions	are
useful	for	text	validation	and	for	search-and-replace	operations	within	text	by	matching
their	specified	pattern	to	a	section	of	the	text.

The	topic	of	Regular	Expressions	is	extensive	and	beyond	the	remit	of	this	book	–	but	a
brief	introduction	is	provided	here	for	completeness.

A	Regular	Expression	pattern	may	consist	entirely	of	“literal	characters”	describing	a
character	string	to	match	within	some	text.	For	example,	the	Regular	Expression	“wind”
finds	a	match	in	“windows”	-	the	pattern	literally	matches	the	string	in	the	text.	More
typically,	a	Regular	Expresssion	pattern	consists	of	a	combination	of	literal	characters	and
these	“metacharacters”:

Metacharacter: Matches: Example:

. Any	Characters py..on

^ First	Characters ^py

$ Final	Characters ….on$

* Zero	Or	More	Repetitions py*

+ One	Or	More	Repetitions py+

? Zero	Or	One	Repetitions py?

{	} Multiple	Repetitions a{	3	}

[] Character	Class [a-z]

\ Special	Sequence \s

| Either	Optional	Character a	|	b

() Expression	Group (…)

The	character	class	[a-z]	matches	only	lowercase	characters	but	[a-z0-9]	also	matches	digits.

A	combination	of	literals	and	metacharacters	defining	a	pattern	to	be	matched	can	be
specified	to	the	re.compile()	method	to	return	a	pattern	object.	This	object	has	a	match()
method	to	specify	a	string	within	its	parentheses	to	compare	against	the	pattern.

When	a	match()	comparison	succeeds,	a	match	object	is	returned	containing	information
about	the	match,	otherwise	a	None	value	is	returned	when	the	comparison	fails.

A	match	object	has	start()	and	end()	methods,	which	return	the	position	of	the	match,	and	a
group()	method	that	returns	the	string	matched	by	the	comparison.

Start	a	new	Python	script	by	importing	the	“re”	module	to	make	the	regular
expression	methods	available
from	re	import	*

regex.py

Next,	initialize	a	variable	with	a	regular	expression	object

pattern	=	\	compile(‘(^|\s)[-a-z0-9_.]+@([-a-z0-9]+.)+[a-z]{2,6}(\s|$)’)

Now,	begin	a	function	definition	by	requesting	user	input	and	attempt	to	match
that	with	the	pattern

def	get_address()	:

address	=	input(‘Enter	Your	Email	Address:	‘)

is_valid	=	pattern.match(address)

Then,	add	indented	statements	to	display	an	appropriate	message	describing
whether	the	attempt	succeeded

if	is_valid	:

print(‘Valid	Address:’	,	is_valid.group())
else	:

print(‘Invalid	Address!	Please	Retry…\n’)

Finally,	add	a	statement	to	call	the	defined	function

get_address()

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	–	to	see	that	only	a	complete	email	address	will	validate

You	can	discover	more	about	Regular	Expressions	in	the	Library	Reference	section	of	the
Python	documentation	at	docs.python.org/3/library/re.html

https://docs.python.org/3/library/re.html

Summary
• Functions	can	be	stored	in	modules	that	are	named	as	the	file	name	without	the	“.py”

file	extension

• An	import	statement	makes	module	functions	available	in	a	program	by	dot-suffixing
their	name	after	the	module	name

• A	from	import	statement	makes	module	functions	available	in	a	program	without	the
need	to	dot-suffix	their	name

• The	sys	module	has	attributes	that	contain	the	Python	version	number,	interpreter
location,	and	path	to	search	for	modules

• The	keyword	module	has	a	kwlist	attribute	that	contains	a	list	of	all	current	Python
keywords

• The	math	module	provides	methods	to	perform	mathematical	procedures	such	as
math.ceil()	and	math.floor()

• The	random	module	provides	a	random()	method	that	produces	pseudo	random	numbers
and	a	sample()	method	that	produces	a	list	of	elements	selected	at	random	from	a
sequence

• The	decimal	module	provides	a	Decimal()	object	with	which	floating-point	numbers	can
be	accurately	represented	to	calculate	monetary	values

• The	datetime	module	provides	a	datetime	object	with	year,	month,	day,	hour,	minute,	second,
microsecond	attributes	that	can	be	referenced	by	dot-suffixing	or	with	the	getattr()	method

• A	datetime	object	has	a	strftime()	method	that	can	specify	a	directive	to	return	a	formatted
part	of	the	object

• The	time	module	provides	a	time()	method	that	returns	the	current	elapsed	time	in
seconds	since	the	Epoch

• The	gmtime()	and	localtime()	methods	return	a	struct_time	object	that	has	attributes
containing	date	and	time	components

• The	re	module	provides	a	compile()	method	to	create	a	Regular	Expression	pattern	and	a
match()	method	to	compare	a	pattern	to	a	specified	string

6

Managing	strings
This	chapter	demonstrates	how	to	work	with	string	data	values	and	text	files	in	Python	programs.

Manipulating	strings

Formatting	strings

Modifying	strings

Converting	strings

Accessing	files

Reading	and	writing	files

Updating	file	strings

Pickling	data

Summary

Manipulating	strings
String	values	can	be	manipulated	in	a	Python	program	using	the	various	operators	listed	in
the	table	below:

Operator: Description: Example:

+ Concatenate	–	join	strings	together ‘Hello’	+	‘Mike’

* Repeat	–	multiply	the	string ‘Hello’	*	2

[] Slice	–	select	a	character	at	a	specified	index	position ‘Hello’	[0]

[:] Range	Slice	–	select	characters	in	a	specified	index	range ‘Hello’	[0	:	4]

in Membership	Inclusive	–	return	True	if	character	exists	in	the
string ‘H’	in	‘Hello’

not	in Membership	Exclusive	–	return	True	if	character	doesn’t	exist	in
string ‘h’	not	in	‘Hello’

r/R Raw	String	–	suppress	meaning	of	escape	characters print(r’\n’)

‘‘‘	‘‘‘ Docstring	–	describe	a	module,	function,	class,	or	method def	sum(a,b)	:	‘‘‘	Add	Args
‘‘‘

The	membership	operators	perform	a	case-sensitive	match,	so	‘A’	in	‘abc’	will	fail.

The	[]	slice	operator	and	[:]	range	slice	operator	recognize	that	a	string	is	simply	a	list
containing	an	individual	character	within	each	list	element,	which	can	be	referenced	by
their	index	number.

Similarly,	the	in	and	not	in	membership	operators	iterate	through	each	element	seeking	to
match	the	specified	character.

The	raw	string	operator	r	(or	uppercase	R)	must	be	placed	immediately	before	the	opening
quote	mark	to	suppress	escape	characters	in	the	string	and	is	useful	when	the	string
contains	the	backslash	character.

A	“docstring”	is	a	descriptive	string	literal	that	occurs	as	the	first	statement	in	a	module,	a
function,	a	class,	or	a	method	definition.	This	should	be	enclosed	within	triple	single	quote
marks.	Uniquely,	the	docstring	becomes	the	__doc__	special	attribute	of	that	object,	so	can
be	referenced	using	its	name	and	dot-suffixing.	All	modules	should	normally	have
docstrings,	and	all	functions	and	classes	exported	by	a	module	should	also	have

docstrings.

The	Range	Slice	returns	the	string	up	to,	but	not	including,	the	final	specified	index
position.

Start	a	new	Python	script	by	defining	a	simple	function	that	includes	a	docstring
description
def	display(s)	:

‘‘’Display	an	argument	value.’’’

print(s)

manipulate.py

Next,	add	a	statement	to	display	the	function	description
display(display.__doc__)

Now,	add	a	statement	to	display	a	raw	string	value	that	contains	the	backslash
character
display(r’C:\Program	Files’)

Then,	add	a	statement	to	display	a	concatenation	of	two	string	values	that	include
an	escape	character	and	a	space

display(‘\nHello’	+	‘	Python’)

Next,	add	a	statement	to	display	a	slice	of	a	specified	string	within	a	range	of
element	index	numbers

display(‘Python	In	Easy	Steps\n’	[7	:])

Finally,	display	the	results	of	seeking	characters	within	a	specified	string

display(‘P’	in	‘Python’)

display(‘p’	in	‘Python’)

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	–	to	see	manipulated	strings	get	displayed

Remember	that	strings	must	be	enclosed	within	either	single	quote	marks	or	double	quote
marks.

With	range	slice,	if	the	start	index	number	is	omitted,	zero	is	assumed	and	if	the	end	index
number	is	omitted,	the	string	length	is	assumed.

Formatting	strings
The	Python	built-in	dir()	function	can	be	useful	to	examine	the	names	of	functions	and
variables	defined	in	a	module	by	specifying	the	module	name	within	its	parentheses.
Interactive	mode	can	easily	be	used	for	this	purpose	by	importing	the	module	name	then
calling	the	dir()	function.	The	example	below	examines	the	“dog”	module	created	here	in
the	previous	chapter:

Notice	that	the	__doc__	attribute	introduced	in	the	previous	example	appears	listed	here
by	the	dir()	function.

Those	defined	names	that	begin	and	end	with	a	double	underscore	are	Python	objects,
whereas	the	others	are	programmer-defined.	The	builtins__	module	can	also	be	examined
using	the	dir()	function,	to	examine	the	names	of	functions	and	variables	defined	by
default,	such	as	the	print()	function	and	a	str	object.

The	str	object	defines	several	useful	methods	for	string	formatting,	including	an	actual
format()	method	that	performs	replacements.	A	string	to	be	formatted	by	the	format()	method
can	contain	both	text	and	“replacement	fields”	marking	places	where	text	is	to	be	inserted
from	an	ordered	comma-separated	list	of	values.	Each	replacement	field	is	denoted	by	{	}
braces,	which	may,	optionally,	contain	the	index	number	position	of	the	replacement	in	the
list.

Strings	may	also	be	formatted	using	the	C-style	%s	substitution	operator	to	mark	places	in
a	string	where	text	is	to	be	inserted	from	a	comma-separated	ordered	list	of	values.

Do	not	confuse	the	str	object	described	here	with	the	str()	function	that	converts	values	to
the	string	data	type.

Start	a	new	Python	script	by	initializing	a	variable	with	a	formatted	string

snack	=	‘{}	and	{}’.format(‘Burger’	,	‘Fries’)

format.py

Next,	display	the	variable	value	to	see	the	text	replaced	in	their	listed	order

print(‘\nReplaced:’	,	snack)

Now,	assign	a	differently-formatted	string	to	the	variable

snack	=	‘{1}	and	{0}’.format(‘Burger’	,	‘Fries’)

Then,	display	the	variable	value	again	to	see	the	text	now	replaced	by	their
specified	index	element	value

print(‘Replaced:’	,	snack)

Assign	another	formatted	string	to	the	variable

snack	=	‘%s	and	%s’	%	(‘Milk’	,	‘Cookies’)

Finally,	display	the	variable	value	once	more	to	see	the	text	substituted	in	their
listed	order

print(‘\nSubstituted:’	,	snack)

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	–	to	see	formatted	strings	get	displayed

You	cannot	leave	spaces	around	the	index	number	in	the	replacement	field.

Other	data	types	can	be	substituted	using	%d	for	a	decimal	integer,	%c	for	a	character,	and
%f	for	a	floating-point	number.

Modifying	strings
The	Python	str	object	has	many	useful	methods	that	can	be	dot-suffixed	to	its	name	for
modification	of	the	string	and	to	examine	its	contents.	The	most	commonly	used	string
modification	methods	are	listed	in	the	table	below	together	with	a	brief	description:

Method: Description:

capitalize() Change	string’s	first	letter	to	uppercase

title() Change	all	first	letters	to	uppercase

upper()
lower()
swapcase()

Change	the	case	of	all	letters	to	uppercase,	to	lowercase,	or	to	the	inverse	of	the	current	case
respectively

join(seq) Merge	string	into	separator	sequence	seq

lstrip()

rstrip	()

strip()

Remove	leading	whitespace,	trailing

whitespace,	or	both	leading	and	trailing

whitespace	respectively

replace(old	,
new) Replace	all	occurrences	of	old	with	new

ljust(w	,	c)
rjust(w	,	c) Pad	string	to	right	or	left	respectively	to	total	column	width	w	with	character	c

center(w	,	c) Pad	string	each	side	to	total	column	width	w	with	character	c	(default	is	space)

count(sub) Return	the	number	of	occurrences	of	sub

find(sub) Return	the	index	number	of	the	first	occurrence	of	sub	or	return	-1	if	not	found

startswith(sub
)
endswith(sub)

Return	True	if	sub	is	found	at	start	or	end	respectively–	otherwise	return	False

isalpha()
isnumeric()
isalnum()

Return	True	if	all	characters	are	letters	only,	are	numbers	only,	are	letters	or	numbers	only	–
otherwise	return	False

islower()
isupper()
istitle()

Return	True	if	string	characters	are	lowercase,	uppercase,	or	all	first	letters	are	uppercase	only	–
otherwise	return	False

isspace() Return	True	if	string	contains	only	whitespace	–	otherwise	return	False

isdigit()
isdecimal() Return	True	if	string	contains	only	digits	or	decimals	–	otherwise	return	False

A	space	character	is	not	alphanumeric	so	isalnum()	returns	False	when	examining	strings	that
contain	spaces.

Start	a	new	Python	script	by	initializing	a	variable	with	a	string	of	lowercase
characters	and	spaces

string	=	‘python	in	easy	steps’

modify.py

Next,	display	the	string	capitalized,	titled,	and	centered

print(‘\nCapitalized:\t’	,	string.capitalize())

print(‘\nTitled:\t\t’	,	string.title())

print(‘\nCentered:\t’	,	string.center(30	,	‘*’))

Now,	display	the	string	in	all	uppercase	and	merged	with	a	sequence	of	two
asterisks

print(‘\nUppercase:\t’	,	string.upper())

print(‘\nJoined:\t\t’	,	string.join(‘**’))

Then,	display	the	string	padded	with	asterisks	on	the	left

print(‘\nJustified:\t’	,string.rjust(30	,	‘*’))

Finally,	display	the	string	with	all	occurrences	of	the	‘s’	character	replaced	by
asterisks

print(‘\nReplaced:\t’	,	string.replace(‘s’	,	‘*’))

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	–	to	see	modified	strings	get	displayed

With	the	rjust()	method	a	RIGHT-justified	string	gets	padding	added	to	its	LEFT,	and	with
the	ljust()	method	a	LEFT-justified	string	gets	padding	added	to	its	RIGHT.

Converting	strings
Before	Python	3.0,	string	characters	were	stored	by	their	ASCII	numeric	code	values	in
the	range	0-127,	representing	only	unaccented	Latin	characters.	For	example,	the
lowercase	letter	‘a’	is	assigned	97	as	its	code	value.	Each	byte	of	computer	memory	can,	in
fact,	store	values	in	the	range	0-255	but	this	is	still	too	limited	to	represent	all	accented
characters	and	non-Latin	characters.	For	example,	accented	characters	used	in	Western
Europe	and	the	Cyrillic	alphabet	used	for	Russian	cannot	be	represented	in	the	range	128-
255	because	there	are	more	than	127	such	characters.	Recent	versions	of	Python	overcome
this	limitation	by	storing	string	characters	as	their	Unicode	code	point	value	to	represent
all	characters	and	alphabets	in	the	numeric	range	0-1,114,111.	Characters	that	are	above
the	ASCII	range	may	require	two	bytes	for	their	code	point	value,	such	as	hexadecimal
0xC3	0xB6	for	‘ö’.

The	term	“ASCII”	is	an	acronym	for	American	Standard	Code	for	Information
Interchange.

The	str	object’s	encode()	method	can	be	used	to	convert	from	the	default	Unicode	encoding
and	its	decode()	method	can	be	used	to	convert	back	to	the	Unicode	default	encoding.

Python’s	“unicodedata”	module,	usefully,	provides	a	name()	method	that	reveals	the
Unicode	name	of	each	character.	Accented	and	non-Latin	characters	can	be	referenced	by
their	Unicode	name	or	by	decoding	their	Unicode	hexadecimal	code	point	value.

Start	a	new	Python	script	by	initializing	a	variable	with	a	string	containing	a	non-
ASCII	character	then	display	its	value,	data	type,	and	string	length

s	=	‘Röd’

print(‘\nRed	String:’	,	s)

print(‘Type:’	,	type(s)	,	‘\tLength:’	,	len(s))

unicode.py

Next,	encode	the	string	and	again	display	its	value,	data	type,	and	string	length

s	=	s.encode(‘utf-8’)

print(‘\nEncoded	String:’	,	s)

print(‘Type:’	,	type(s)	,	‘\tLength:’	,	len(s))

Now,	decode	the	string	and	once	more	display	its	value,	data	type,	and	string
length	–	to	reveal	the	hexadecimal	code	point	of	the	non-ASCII	character

s	=	s.decode(‘utf-8’)

print(‘\nDecoded	String:’	,	s)

print(‘Type:’	,	type(s)	,	‘\tLength:’	,	len(s))

Then,	add	statements	to	make	“unicodedata”	features	available	and	a	loop	to
reveal	the	Unicode	name	of	each	character	in	the	string
import	unicodedata
for	i	in	range(len(s))	:

print(s[i]	,	unicodedata.name(s[i])	,	sep	=	‘	:	‘)

Next,	add	statements	to	assign	the	variable	a	new	value	that	includes	a
hexadecimal	code	point	for	a	non-ASCII	character	then	display	the	decoded	string
value
s	=	b’Gr\xc3\xb6n’

print(‘\nGreen	String:’	,	s.decode(‘utf-8’))

Finally,	add	statements	to	assign	the	variable	another	new	value	that	includes	a
Unicode	character	name	for	a	non-ASCII	character	then	display	the	string	value

s	=	‘Gr\N{LATIN	SMALL	LETTER	O	WITH	DIAERESIS}n’

print(‘Green	String:’	,	s)

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	–	to	see	converted	strings	and	unicode	character	names

A	string	containing	byte	addresses	must	be	immediately	prefixed	by	a	b	to	denote	that
string	as	a	byte	literal.

Unicode	names	are	uppercase	and	referenced	by	inclusion	between	{	}	braces	prefixed	by	a
\N	in	this	notation	format.

Accessing	files
The	__builtins__	module	can	be	examined	using	the	dir()	function	to	reveal	that	it	contains	a
file	object	that	defines	several	methods	for	working	with	files,	including	open(),	read(),	write(),
and	close().

Before	a	file	can	be	read	or	written	it,	firstly,	must	always	be	opened	using	the	open()
method.	This	requires	two	string	arguments	to	specify	the	name	and	location	of	the	file,
and	one	of	the	following	“mode”	specifiers	in	which	to	open	the	file:

File
mode: Operation:

r Open	an	existing	file	to	read

w Open	an	existing	file	to	write.	Creates	a	new	file	if	none	exists	or	opens	an	existing	file	and	discards	all
its	previous	contents

a Append	text.	Opens	or	creates	a	text	file	for	writing	at	the	end	of	the	file

r+ Open	a	text	file	to	read	from	or	write	to

w+ Open	a	text	file	to	write	to	or	read	from

a+ Open	or	creates	a	text	file	to	read	from	or	write	to	at	the	end	of	the	file

Where	the	mode	includes	a	b	after	any	of	the	file	modes	listed	above,	the	operation	relates	to	a	binary	file	rather	than
a	text	file.	For	example,	rb	or	w+b

File	mode	arguments	are	string	values	so	must	be	surrounded	by	quotes.

Once	a	file	is	opened	and	you	have	a	file	object,	you	can	get	various	details	related	to	that
file	from	its	properties:

Property: Description:

name Name	of	the	opened	file

mode Mode	in	which	the	file	was	opened

closed Status	boolean	value	of	True	or	False

readable() Read	permission	boolean	value	of	True	or	False

writable() Write	permission	boolean	value	of	True	or	False

You	can	also	use	a	readlines()	method	that	returns	a	list	of	all	lines.

Start	a	new	Python	script	by	creating	a	file	object	for	a	new	text	file	named
“example.txt”	to	write	content	into

file	=	open(‘example.txt’	,	‘w’)

access.py

Next,	add	statements	to	display	the	file	name	and	mode

print(‘File	Name:’	,	file.name)

print(‘File	Open	Mode:’	,	file.mode)

Now,	add	statements	to	display	the	file	access	permissions

print(‘Readable:’	,	file.readable())

print(‘Writable:’	,	file.writable())

Then,	define	a	function	to	determine	the	file’s	status

def	get_status(f)	:

if	(f.closed	!=	False)	:

return	‘Closed’
else	:

return	‘Open’

Finally,	add	statements	to	display	the	current	file	status	then	close	the	file	and
display	the	file	status	once	more

print(‘File	Status:’	,	get_status(file))
file.close()

print(‘\nFile	Status:’	,	get_status(file))

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	–	to	see	a	file	get	opened	for	writing	then	get	closed

If	your	program	tries	to	open	a	non-existent	file	in	r	mode	the	interpreter	will	report	an
error.

Reading	and	writing	files
Once	a	file	has	been	successfully	opened	it	can	be	read,	or	added	to,	or	new	text	can	be
written	in	the	file,	depending	on	the	mode	specified	in	the	call	to	the	open()	method.
Following	this,	the	open	file	must	then	always	be	closed	by	calling	the	close()	method.

As	you	might	expect,	the	read()	method	returns	the	entire	content	of	the	file	and	the	write()
method	adds	content	to	the	file.

You	can	quickly	and	efficiently	read	the	entire	contents	in	a	loop,	iterating	line	by	line.

Start	a	new	Python	script	by	initializing	a	variable	with	a	concatenated	string
containing	newline	characters

poem	=	‘I	never	saw	a	man	who	looked\n’

poem	+=	‘With	such	a	wistful	eye\n’

poem	+=	‘Upon	that	little	tent	of	blue\n’

poem	+=	‘Which	prisoners	call	the	sky\n’

file.py

Next,	add	a	statement	to	create	a	file	object	for	a	new	text	file	named	“poem.txt”
to	write	content	into

file	=	open(‘poem.txt’	,	‘w’)

Now,	add	statements	to	write	the	string	contained	in	the	variable	into	the	text	file,
then	close	that	file

file.write(poem)
file.close()

Then,	add	a	statement	to	create	a	file	object	for	the	existing	text	file	“poem.txt”	to
read	from

file	=	open(‘poem.txt’	,	‘r’)

Now,	add	statements	to	display	the	contents	of	the	text	file,	then	close	that	file

for	line	in	file	:

print(line	,	end	=	‘’)
file.close()

Writing	to	an	existing	file	will	automatically	overwrite	its	contents!

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	–	to	see	the	file	get	created	then	read	out	to	display

Launch	the	Notepad	text	editor	to	confirm	the	new	text	file	exists	and	reveal	its
contents	written	by	the	program

Now,	add	statements	at	the	end	of	the	program	to	append	a	citation	to	the	text	file
then	save	the	script	file	again

file	=	open(‘poem.txt’	,	‘a’)

file.write(‘(Oscar	Wilde)’)
file.close()

Run	this	program	again	to	re-write	the	text	file	then	view	its	contents	in	Notepad	–
to	see	the	citation	now	appended	after	the	original	text	content

Suppress	the	default	newline	provided	by	the	print()	function	where	the	strings	themselves
contain	newlines.

You	can	also	use	the	file	object’s	readlines()	method	that	returns	a	list	of	all	lines	in	a	file	–
one	line	per	element.

Updating	file	strings
A	file	object’s	read()	method	will,	by	default,	read	the	entire	contents	of	the	file	from	the
very	beginning,	at	index	position	zero,	to	the	very	end	–	at	the	index	position	of	the	final
character.	Optionally,	the	read()	method	can	accept	an	integer	argument	to	specify	how
many	characters	it	should	read.

The	position	within	the	file,	from	which	to	read	or	at	which	to	write,	can	be	finely
controlled	using	the	file	object’s	seek()	method.	This	accepts	an	integer	argument
specifying	how	many	characters	to	move	position	as	an	offset	from	the	start	of	the	file.

The	current	position	within	a	file	can	be	discovered	at	any	time	by	calling	the	file	object’s
tell()	method	to	return	an	integer	location.

When	working	with	file	objects	it	is	good	practice	to	use	the	Python	with	keyword	to	group
the	file	operational	statements	within	a	block.	This	technique	ensures	that	the	file	is
properly	closed	after	operations	end,	even	if	an	exception	is	raised	on	the	way,	and	much
shorter	than	writing	equivalent	try	except	blocks.

Start	a	new	Python	script	by	assigning	a	string	value	to	a	variable	containing	text
to	be	written	in	a	file

text	=	‘The	political	slogan	“Workers	Of	The	World	Unite!”	is	from	The	Communist	Manifesto.’

update.py

Next,	add	statements	to	write	the	text	string	into	a	file	and	display	the	file’s
current	status	in	the	“with”	block

with	open(‘update.txt’	,	‘w’)	as	file	:

file.write(text)

print(‘\nFile	Now	Closed?:’	,	file.closed)

Now,	add	a	non-indented	statement	after	the	“with”	code	block	to	display	the	file’s
new	status

print(‘File	Now	Closed?:’	,	file.closed)

Then,	re-open	the	file	and	display	its	contents	to	confirm	it	now	contains	the	entire
text	string

with	open(‘update.txt’	,	‘r+’)	as	file	:

text	=	file.read()

print(‘\nString:’	,	text)

Next,	add	indented	statements	to	display	the	current	file	position,	then	reposition

and	display	that	new	position

print(‘\nPosition	In	File	Now:’	,	file.tell())

position	=	file.seek(33)

print(‘Position	In	File	Now:’	,	file.tell())

Now,	add	an	indented	statement	to	overwrite	the	text	from	the	current	file	position

file.write(‘All	Lands’)

Then,	add	indented	statements	to	reposition	in	the	file	once	more	and	overwrite
the	text	from	the	new	position

file.seek(59)

file.write(‘the	tombstone	of	Karl	Marx.’)

Finally,	add	indented	statements	to	return	to	the	start	of	the	file	and	display	its
entire	updated	contents

file.seek(0)

text	=	file.read()

print(‘\nString:’	,	text)

Save	the	file	to	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	–	to	see	the	file	strings	get	updated

The	seek()	method	may,	optionally,	accept	a	second	argument	value	of	0,	1,	or	2	to	move	the
specified	number	of	characters	from	the	start,	current,	or	end	position	respectively	–	zero
is	the	default	start	position.

As	with	strings,	the	first	character	in	a	file	is	at	index	position	zero	–	not	at	index	position
one.

Pickling	data
In	Python,	string	data	can	easily	be	stored	in	text	files	using	the	techniques	demonstrated
in	the	previous	examples.	Other	data	types,	such	as	numbers,	lists,	or	dictionaries,	could
also	be	stored	in	text	files	but	would	require	conversion	to	strings	first.	Restoring	that
stored	data	to	their	original	data	type	on	retrieval	would	require	another	conversion.	An
easier	way	to	achieve	data	persistence	of	any	data	object	is	provided	by	the	“pickle”
module.

The	process	of	“pickling”	objects	stores	a	string	representation	of	an	object	that	can	later
be	“unpickled”	to	its	former	state,	and	is	a	very	common	Python	programming	procedure.

An	object	can	be	converted	for	storage	in	a	file	by	specifying	the	object	and	file	as
arguments	to	the	pickle	object’s	dump()	method.	It	can	later	be	restored	from	that	file	by
specifying	the	file	name	as	the	sole	argument	to	the	pickle	object’s	load()	method.

Unless	the	storage	file	needs	to	be	human-readable	for	some	reason,	it	is	more	efficient	to
use	a	machine-readable	binary	file.

Where	the	program	needs	to	check	for	the	existence	of	a	storage	file,	the	“os”	module
provides	a	path	object	with	an	isfile()	method	that	returns	True	if	a	file	specified	within	its
parentheses	is	found.

Start	a	new	Python	script	by	making	“pickle”	and	“os”	module	methods	available
import	pickle	,	os

data.py

Next,	add	a	statement	to	test	that	a	specific	data	file	does	not	already	exist

if	not	os.path.isfile(‘pickle.dat’)	:

Now,	add	a	statement	to	create	a	list	of	two	elements	if	the	specified	file	is	not
found

data	=	[0	,	1]

Then,	add	statements	to	request	user	data	to	be	assigned	to	each	of	the	list
elements

data[0]	=	input(‘Enter	Topic:	‘)

data[1]	=	input(‘Enter	Series:	‘)

Next,	add	a	statement	to	create	a	binary	file	for	writing	to

file	=	open(‘pickle.dat’	,	‘wb’)

Now,	add	a	statement	to	dump	the	values	contained	in	the	variables	as	data	into
the	binary	file

pickle.dump(data	,	file)

Then,	after	writing	the	file	remember	to	close	it

file.close()

Next,	add	alternative	statements	to	open	an	existing	file	to	read	from	if	a	specific
data	file	does	already	exist
else	:

file	=	open(‘pickle.dat’	,	‘rb’)

Now,	add	statements	to	load	the	data	stored	in	that	existing	file	into	a	variable	then
close	the	file

data	=	pickle.load(file)
file.close()

Finally,	add	a	statement	to	display	the	restored	data

print(‘Welcome	Back	To:‘	+	data[0]	+	‘,’	+	data[1])

Save	the	file	in	your	scripts	directory	then	open	a	Command	prompt	window	there
and	run	this	program	–	to	see	user	input	get	stored	in	a	file	then	get	retrieved

Pickling	is	the	standard	way	to	create	Python	objects	that	can	be	used	in	other	programs.

Although	this	example	just	stores	two	string	values	in	a	list,	pickling	can	store	almost	any
type	of	Python	object.

Summary
• Strings	can	be	manipulated	by	operators	for	concatenation	+,	selecting	slices	[],	and

membership	with	in	and	not	in

• The	special	__doc__	attribute	can	contain	a	“docstring”	describing	a	module,	function,
class,	or	method

• Python’s	built-in	dir()	function	can	be	useful	to	examine	the	names	of	functions	and
variables	defined	in	a	module

• The	__builtins__	module	contains	functions	and	variables	that	are	available	by	default,
such	as	the	print()	function

• A	str	object	has	a	format()	method	for	string	formatting	and	many	methods	for	string
modification,	such	as	capitalize()

• Unicode	character	encoding	is	used	by	default	but	this	can	be	changed	with	the	str
object’s	encode()	and	decode()	methods

• The	unicodedata	module	provides	a	name()	method	that	reveals	the	Unicode	name	of	each
character

• A	file	object	has	open(),	read(),	write(),	and	close()	methods	for	working	with	files,	and
features	that	describe	the	file	properties

• The	open()	method	must	specify	a	file	name	string	argument	and	a	file	mode	string
argument,	such	as	’r’	to	read	the	file

• Position	in	a	file,	at	which	to	read	or	write,	can	be	specified	with	the	seek()	method	and
reported	by	the	tell()	method

• The	Python	with	keyword	groups	file	operational	statements	within	a	block	and
automatically	closes	an	open	file

• The	process	of	“pickling”	objects	stores	a	string	representation	of	an	object	that	can
later	be	“unpickled”	to	its	former	state

• A	pickle	object’s	dump()	method	requires	arguments	to	specify	an	object	for	conversion
and	a	file	name	in	which	to	store	data

• Stored	object	data	can	be	retrieved	by	specifying	the	file	name	in	which	it	is	stored	to
the	pickle	object’s	load()	method

7

Programming	objects
This	chapter	demonstrates	how	to	use	Python	for	Object	Oriented	Programming.

Encapsulating	data

Creating	instance	objects

Addressing	class	attributes

Examining	built-in	attributes

Collecting	garbage

Inheriting	features

Overriding	base	methods

Harnessing	polymorphism

Summary

Encapsulating	data
A	“class”	is	a	specified	prototype	describing	a	set	of	properties	that	characterize	an	object.
Each	class	has	a	data	structure	that	can	contain	both	functions	and	variables	to
characterize	the	object.

The	properties	of	a	class	are	referred	to	as	its	data	“members”.	Class	function	members	are
known	as	its	“methods”,	and	class	variable	members	(declared	within	a	class	structure	but
outside	any	method	definitions)	are	known	as	its	“attributes”.

Class	members	can	be	referenced	throughout	a	program	using	dot	notation,	suffixing	the
member	name	after	the	class	name,	with	syntax	of	class-name.method-name()	or	class-
name.attribute-name.

A	class	declaration	begins	with	the	class	keyword,	followed	by	a	programmer-specified
name	(adhering	to	the	usual	Python	naming	conventions	but	beginning	in	uppercase)	then
a	:	colon.	Next	come	indented	statements	optionally	specifying	a	class	document	string,
class	variable	attribute	declarations,	and	class	method	definitions	–	so	the	class	block
syntax	looks	like	this:
class	ClassName	:

‘‘	class-documentation-string	‘‘‘

class-variable-declarations

class-method-definitions

The	class	declaration,	which	specifies	its	attributes	and	methods,	is	a	blueprint	from	which
working	copies	(“instances”)	can	be	made.

All	variables	declared	within	method	definitions	are	known	as	“instance”	variables	and	are
only	available	locally	within	the	method	in	which	they	are	declared	–	they	cannot	be
directly	referenced	outside	the	class	structure.

Typically,	instance	variables	contain	data	passed	by	the	caller	when	an	instance	copy	of
the	class	is	created.	As	this	data	is	only	available	locally	for	internal	use	it	is	effectively
hidden	from	the	rest	of	the	program.	This	technique	of	data	“encapsulation”	ensures	that
data	is	securely	stored	within	the	class	structure	and	is	the	first	principle	of	Object
Oriented	Programming	(OOP).

It	is	conventional	to	begin	class	names	with	an	uppercase	character	and	object	names	with
lowercase.

All	properties	of	a	class	are	referenced	internally	by	the	dot	notation	prefix	self	–	so	an

attribute	named	“sound”	is	self.sound.	Additionally,	all	method	definitions	in	a	class	must
have	self	as	their	first	argument	–	so	a	method	named	“talk”	is	talk(self).

When	a	class	instance	is	created,	a	special	__init__(self)	method	is	automatically	called.
Subsequent	arguments	can	be	added	in	its	parentheses	if	values	are	to	be	passed	to
initialize	its	attributes.

The	class	documentation	string	can	be	accessed	via	the	special__doc__	docstring	attribute
with	Classname.__doc__	.

A	complete	Python	class	declaration	could	look	like	this	example:

class	Critter	:
‘‘‘	A	base	class	for	all	critter	properties.	‘‘‘

count	=	0

def	__init__(self	,	chat)	:

self.sound	=	chat

Critter.count	+=	1

def	talk(self)	:
return	self.sound

It	is	useful	to	examine	the	class	components	of	this	example:

• The	variable	count	is	a	class	variable	whose	integer	value	gets	shared	among	all
instances	of	this	class	–	this	value	can	be	referenced	as	Critter.count	from	inside	or
outside	the	class

• The	first	method	__init__()	is	the	initialization	method	that	is	automatically	called	when
an	instance	of	the	class	is	created

• The	__init__()	method	in	this	case	initializes	an	instance	sound,	with	a	value	passed	from
the	chat	argument,	and	increments	the	value	of	the	count	class	variable	whenever	an
instance	of	this	class	is	created

• The	second	method	talk()	is	declared	like	a	regular	function	except	the	first	argument	is
self	which	is	automatically	incorporated	–	no	value	needs	to	be	passed	from	the	caller

• The	talk()	method	in	this	case	simply	returns	the	value	encapsulated	in	the	sound
instance	variable

While	a	program	class	cannot	perfectly	emulate	a	real-word	object,	the	aim	is	to
encapsulate	all	relevant	attributes	and	actions.

Creating	instance	objects
An	“instance”	of	a	class	object	is	simply	a	copy	of	the	prototype	created	by	calling	that
class	name’s	constructor	and	specifying	the	required	number	of	arguments	within	its
parentheses.	The	call’s	arguments	must	match	those	specified	by	the	__init__()	method
definition	–	other	than	a	value	for	the	internal	self	argument.

The	class	instance	object	returned	by	the	constructor	is	assigned	to	a	variable	using	the
syntax	instance-name	=	ClassName(args).

Dot	notation	can	be	used	to	reference	the	methods	and	class	variable	attributes	of	an
instance	object	by	suffixing	their	name	as	instance-name.method-name()	or	instance-name.attribute-
name.

A	constructor	creates	an	instance	of	a	class	and	is	simply	the	class	name	followed	by
parentheses	containing	any	required	argument	values.

Typically,	a	base	class	can	be	defined	as	a	Python	module	file	so	it	can	be	imported	into
other	scripts	where	instance	objects	can	be	easily	created	from	the	“master”	class
prototype.

Start	a	new	Python	script	by	declaring	a	new	class	with	a	descriptive	document
string

class	Bird	:
‘‘’A	base	class	to	define	bird	properties.’’’

Bird.py

Next,	add	an	indented	statement	to	declare	and	initialize	a	class	variable	attribute
with	an	integer	zero	value

count	=	0

Now,	define	the	intializer	class	method	to	initialize	an	instance	variable	and	to
increment	the	class	variable

def	__init__(self	,	chat)	:

self.sound	=	chat

Bird.count	+=	1

Finally,	add	a	class	method	to	return	the	value	of	the	instance	variable	when	called
–	then	save	this	class	file

def	talk(self)	:
return	self.sound

You	must	not	pass	an	argument	value	for	the	self	argument	as	this	is	automatically
incorporated	by	Python.

Start	another	Python	script	by	making	features	of	the	class	file	available,	then
display	its	document	string

from	Bird	import	*

print(‘\nClass	Instances	Of:\n’	,	Bird.__doc__)

instance.py

Next,	add	a	statement	to	create	an	instance	of	the	class	and	pass	a	string	argument
value	to	its	instance	variable

polly	=	Bird(‘Squawk,	squawk!’)

Bird	instance	-	polly

Now,	display	this	instance	variable	value	and	call	the	class	method	to	display	the
common	class	variable	value

print(‘\nNumber	Of	Birds:’	,	polly.count)

print(‘Polly	Says:’	,	polly.talk())

Create	a	second	instance	of	the	class,	passing	a	different	string	argument	value	to
its	instance	variable

harry	=	Bird(‘Tweet,	tweet!’)

Bird	instance	-	harry

Finally,	display	this	instance	variable	value	and	call	the	class	method	to	display

the	common	class	variable	value

print(‘\nNumber	Of	Birds:’	,	harry.count)

print(‘Harry	Says:’	,	harry.talk())

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	–	to	see	two	instances	of	the	Bird	class	get	created

The	class	variable	count	can	also	be	referenced	with	Bird.count	but	the	encapsulated
instance	variable	sound	can	only	be	accessed	by	calling	an	instance’s	talk()	method.

Addressing	class	attributes
An	attribute	of	a	class	instance	can	be	added,	modified,	or	removed	at	any	time	using	dot
notation	to	address	the	attribute.	Making	a	statement	that	assigns	a	value	to	an	attribute
will	update	the	value	contained	within	an	existing	attribute	or	create	a	new	attribute	of	the
specified	name	containing	the	assigned	value:
instance-name.attribute-name	=	value

del	instance-name.attribute-name

Alternatively,	you	can	use	the	following	Python	built-in	functions	to	add,	modify,	or
remove	an	instance	variable:

• getattr(instance-name	,	‘attribute-name’)	–	return	the	attribute	value	of	the	class	instance

• hasattr(instance-name	,	‘attribute-name’)	–	return	True	if	the	attribute	value	exists	in	the
instance,	otherwise	return	False

• setattr(instance-name	,	‘attribute-name’	,	value)	–	update	the	existing	attribute	value	or	create	a
new	attribute	in	the	instance

• delattr(instance-name	,	‘attribute-name’)	–	remove	the	attribute	from	the	instance

The	attribute	name	specified	to	these	built-in	functions	must	be	enclosed	within	quotes.

The	name	of	attributes	automatically	supplied	by	Python	always	begin	with	an	underscore
character	to	notionally	indicate	“privacy”	–	so	these	should	not	be	modified,	or	removed.
You	can	add	your	own	attributes	named	in	this	way	to	indicate	privacy	if	you	wish	but	in
reality	these	can	be	modified	like	any	other	attribute.

Start	a	new	Python	script	by	by	making	features	of	the	Bird	class	available	that
was	created	here

from	Bird	import	*

address.py

Next,	create	an	instance	of	the	class	then	add	a	new	attribute	with	an	assigned
value	using	dot	notation

chick	=	Bird(‘Cheep,	cheep!’)

chick.age	=	‘1	week’

Now,	display	the	values	in	both	instance	variable	attributes

print(‘\nChick	Says:’	,	chick.talk())

print(‘Chick	Age:’	,	chick.age)

Then,	modify	the	new	attribute	using	dot	notation	and	display	its	new	value

chick.age	=	‘2	weeks’

print(‘Chick	Now:’	,	chick.age)

Bird	instance	-	chick

Next,	modify	the	new	attribute	once	more,	this	time	using	a	built-in	function

setattr(chick	,	‘age’	,	‘3	weeks’)

Now,	display	a	list	of	all	non-private	instance	attributes	and	their	respective	values
using	a	built-in	function

print(‘\nChick	Attributes…’)

for	attrib	in	dir(chick)	:

if	attrib[0]	!=	‘_’	:

print(attrib	,	‘:’	,	getattr(chick	,	attrib))

Finally,	remove	the	new	attribute	and	confirm	its	removal	using	a	built-in
functions

delattr(chick	,	‘age’)

print(‘\nChick	age	Attribute?’	,	hasattr(chick	,	‘age’))

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	–	to	see	the	instance	attributes	get	addressed

This	loop	skips	any	attribute	whose	name	begins	with	an	underscore	so	“private”	attributes
will	not	get	displayed	in	the	list.

Examining	built-in	attributes
Each	Python	class	is	automatically	created	with	a	number	of	built-in	private	attributes
whose	values	can	be	referenced	using	dot	notation.	For	example,	with	class-name.__doc__	to
see	the	document	string	attribute	value	of	a	specified	class	name.

The	built-in	dir()	function	can	be	used	to	display	a	list	of	all	the	built-in	attributes	in	a	class
specified	within	its	parentheses	by	testing	whether	each	attribute	name	begins	with	an
underscore.

The	built-in	__dict__	attribute	contains	a	“namespace”	dictionary	of	class	component	keys
and	their	associated	values.	The	dictionary	of	a	base	class	includes	its	default	__init__()
method,	and	all	class	methods	and	attributes.	The	dictionary	of	a	class	instance	includes	its
instance	attributes.

Start	a	new	Python	script	by	making	features	of	the	Bird	class	available	that	was
created	here

from	Bird	import	*

builtin.py

Next,	add	a	statement	to	create	an	instance	of	the	class

zola	=	Bird(‘Beep,	beep!’)

Now,	add	a	loop	to	display	all	built-in	instance	attributes

print(‘\nBuilt-in	Instance	Attributes…’)

for	attrib	in	dir(zola)	:

if	attrib[0]	==	‘_’	:

print(attrib)

Then,	add	a	loop	to	display	all	items	in	the	class	dictionary

print(‘\nClass	Dictionary…’)

for	item	in	Bird.__dict__	:

print(item	,	‘:’	,	Bird.__dict__[item])

Finally,	add	a	loop	to	display	all	items	in	the	instance	dictionary

print(‘\nInstance	Dictionary…’)

for	item	in	zola.__dict__	:

print(item	,	‘:’	,	zola.__dict__[item])

The	function	values	stored	in	the	dictionary	are	the	machine	addresses	where	the	functions
are	stored.

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	–	to	examine	the	built-in	attributes

Bird	-	zola.

The	class	dictionary	output	displays	all	class	attributes,	whereas	the	instance	dictionary
output	displays	only	instance	attributes	–	the	class	attributes	are	shared	by	the	instance.

A	class	instance	is	first	created	in	this	program	so	the	__init__()	method	has	been	called	to
increment	the	count	value	before	the	dictionary	gets	listed.

The	__weakref__	attribute	is	simply	used	internally	for	automatic	garbage	collection	of
“weak	references”	in	the	program	for	efficiency.

Collecting	garbage
When	a	class	instance	object	is	created	it	is	allocated	a	unique	memory	address	that	can	be
seen	using	the	built-in	id()	function.	Python	automatically	performs	“garbage	collection”	to
free	up	memory	space	by	periodically	deleting	un-needed	objects	such	as	class	instances	–
so	their	memory	address	becomes	vacant.

Whenever	an	object	gets	assigned	a	new	name	or	gets	placed	in	a	container,	such	as	a	list,
its	“reference	count”	increases.	Conversely,	whenever	these	are	removed	or	go	out	of
scope	its	count	decreases.	The	object	becomes	eligible	for	collection	when	this	count	is
zero.

Destroying	an	instance	of	a	class	may,	optionally,	call	upon	a	“destructor”	to	execute	a
__del__()	method	–	explicitly	reclaiming	occupied	memory	space	and	executing	any
specified	statements.

Start	a	new	Python	script	by	declaring	a	class	with	an	initializer	method	creating
two	instance	variables	and	a	method	to	display	one	of	those	variable	values

class	Songbird	:

def	__init__(self	,	name	,	song)	:

self.name	=	name

self.song	=	song

print(self.name	,	‘Is	Born…’)

Songbird.py

Next,	add	a	method	to	simply	display	both	variable	values

def	sing(self)	:

print(self.name	,	‘Sings:’	,	self.song)

Now,	add	a	destructor	method	for	confirmation	when	instances	of	the	class	are
destroyed	–	then	save	this	file

def	__del__(self)	:

print(self.name	,	‘Flew	Away!\n’)

Start	another	Python	script	by	making	features	of	the	class	file	available

from	Songbird	import	*

garbage.py

Next,	create	an	instance	of	the	class	then	display	its	instance	attribute	values	and
its	identity	address

bird_1	=	Songbird(‘Koko’	,	‘Tweet,	tweet!\n’)

print(bird_1.name	,	‘ID:’	,	id(bird_1))
bird_1.sing()

Now,	delete	this	instance	–	calling	its	destructor	method

del	bird_1

Songbird	-	Koko

Create	two	more	instances	of	the	class	then	display	their	instance	attribute	values
and	their	identity	addresses

bird_2	=	Songbird(‘Louie’	,	‘Chirp,	chirp!\n’)

print(bird_2.name	,	‘ID:’	,	id(bird_2))
bird_2.sing()

bird_3	=	Songbird(‘Misty’	,	‘Squawk,	squawk!\n’)

print(bird_3.name	,	‘ID:’	,	id(bird_3))
bird_3.sing()

Songbird	-	Louie

Finally,	delete	these	instances	–	calling	their	destructors

del	bird_2

del	bird_3

Songbird	-	Misty

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	–	to	see	memory	space	handled	by	garbage	collection

The	second	instance	created	here	is	allocated	the	memory	address	vacated	when	the	first
instance	was	deleted.

Inheriting	features
A	Python	class	can	be	created	as	a	brand	new	class,	like	those	in	previous	examples,	or
can	be	“derived”	from	an	existing	class.	Importantly,	a	derived	class	inherits	members	of
the	parent	(base)	class	from	which	it	is	derived	–	in	addition	to	its	own	members.

The	ability	to	inherit	members	from	a	base	class	allows	derived	classes	to	be	created	that
share	certain	common	properties,	which	have	been	defined	in	the	base	class.	For	example,
a	“Polygon”	base	class	may	define	width	and	height	properties	that	are	common	to	all
polygons.	Classes	of	“Rectangle”	and	Triangle”	could	be	derived	from	the	Polygon	class	–
inheriting	width	and	height	properties,	in	addition	to	their	own	members	defining	their
unique	features.

The	virtue	of	inheritance	is	extremely	powerful	and	is	the	second	principle	of	Object
Oriented	Programming	(OOP).

A	derived	class	declaration	adds	()	parentheses	after	its	class	name	specifying	the	name	of
its	parent	base	class.

Create	a	new	Python	script	that	declares	a	base	class	with	two	class	variables	and
a	method	to	set	their	values

class	Polygon	:

width	=	0

height	=	0

def	set_values(self	,	width	,	height)	:

Polygon.width	=	width

Polygon.height	=	height

Polygon.py

Next,	create	a	script	that	declares	a	derived	class	with	a	method	to	return

manipulated	class	variable	values

from	Polygon	import	*

class	Rectangle(Polygon)	:

def	area(self)	:

return	self.width	*	self.height

Rectangle.py

Now,	create	another	script	that	declares	a	derived	class	with	a	method	to	return
manipulated	class	variable	values

from	Polygon	import	*

class	Triangle(Polygon)	:

def	area(self)	:

return	(self.width	*	self.height)	/	2

Triangle.py

Save	the	three	class	files	then	start	a	new	Python	script	by	making	features	of	both
derived	classes	available

from	Rectangle	import	*

from	Triangle	import	*

inherit.py

Next,	create	an	instance	of	each	derived	class

rect	=	Rectangle()

trey	=	Triangle()

Now,	call	the	class	method	inherited	from	the	base	class,	passing	arguments	to
assign	to	the	class	variables

rect.set_values(4	,	5)

trey.set_values(4	,	5)

Finally,	display	the	result	of	manipulating	the	class	variables	inherited	from	the
base	class

print(‘Rectangle	Area:’	,	rect.area())

print(‘Triangle	Area:’	,	trey.area())

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	–	to	see	output	get	displayed	using	inherited	features

A	class	declaration	can	derive	from	more	than	one	class	by	listing	multiple	base	classes	in
the	parentheses	after	its	name	in	the	declaration.

Don’t	confuse	class	instances	and	derived	classes	–	an	instance	is	a	copy	of	a	class,
whereas	a	derived	class	is	a	new	class	that	inherits	properties	of	the	base	class	from	which
it	is	derived.

Overriding	base	methods
A	method	can	be	declared	in	a	derived	class	to	override	a	matching	method	in	the	base
class	–	if	both	method	declarations	have	the	same	name	and	the	same	number	of	listed
arguments.	This	effectively	hides	the	base	class	method	as	it	becomes	inaccessible	unless
it	is	called	explicitly,	using	the	base	class	name	for	identification.

Where	a	method	in	a	base	class	supplies	a	default	argument	value	this	can	be	used	in	an
explicit	call	to	the	base	method	or	alternative	values	can	be	supplied	by	overriding
methods.

Create	a	new	Python	script	that	declares	a	base	class	with	an	initializer	method	to
set	an	instance	variable	and	a	second	method	to	display	that	variable	value

class	Person	:
‘‘’A	base	class	to	define	Person	properties.’’’

def	__init__(self	,	name)	:

self.name	=	name

def	speak(self	,	msg	=	‘(Calling	The	Base	Class)’)	:

print(self.name	,	msg)

Person.py

Next,	create	a	script	that	declares	a	derived	class	with	a	method	that	overrides	the
second	base	class	method

from	Person	import	*
‘‘’A	derived	class	to	define	Man	properties.’’’

class	Man(Person)	:

def	speak(self	,	msg)	:

print(self.name	,	‘:\n\tHello!’	,	msg)

Man.py

Now,	create	another	script	that	also	declares	a	derived	class	with	a	method	that
once	again	overrides	the	same	method	in	the	base	class

from	Person	import	*
‘‘’A	derived	class	to	define	Hombre	properties.’’’

class	Hombre(Person)	:

def	speak(self	,	msg)	:

print(self.name	,	‘:\n\tHola!’	,	msg)

Hombre.py

Save	the	three	class	files	then	start	a	new	Python	script	by	making	features	of	both
derived	classes	available

from	Man	import	*

from	Hombre	import	*

override.py

Next,	create	an	instance	of	each	derived	class,	initializing	the	“name”	instance
variable	attribute

guy_1	=	Man(‘Richard’)

guy_2	=	Hombre(‘Ricardo’)

Now,	call	the	overriding	methods	of	each	derived	class,	assigning	different	values
to	the	“msg”	argument

guy_1.speak(‘It\’s	a	beautiful	evening.\n’)

guy_2.speak(‘Es	una	tarde	hermosa.\n’)

Man	-Richard

Hombre	-	Ricardo

Finally,	explicitly	call	the	base	class	method,	passing	a	reference	to	each	derived
class	–	but	none	for	the	“msg”	variable	so	its	default	value	will	be	used

Person.speak(guy_1)

Person.speak(guy_2)

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there

and	run	this	program	–	to	see	output	from	overriding	and	base	class	methods

The	method	declaration	in	the	derived	class	must	exactly	match	that	in	the	base	class	to
override	it.

Harnessing	polymorphism
The	three	cornerstones	of	Object	Oriented	Programming	(OOP)	are	encapsulation,
inheritance,	and	polymorphism.	Examples	earlier	in	this	chapter	have	demonstrated	how
data	can	be	encapsulated	within	a	Python	class,	and	how	derived	classes	inherit	the
properties	of	their	base	class.	This	example	introduces	the	final	cornerstone	principle	of
polymorphism.

The	term	“polymorphism”	(from	Greek,	meaning	“many	forms”)	describes	the	ability	to
assign	a	different	meaning,	or	purpose,	to	an	entity	according	to	its	context.

In	Python,	the	+	character	entity	can	be	described	as	polymorphic	because	it	represents
either	the	arithmetical	addition	operator,	in	the	context	of	numerical	operands,	or	the	string
concatenation	operator	in	the	context	of	character	operands.

Perhaps	more	importantly,	Python	class	methods	can	also	be	polymorphic	because	the
Python	language	uses	“duck	typing”	–	meaning…	if	it	walks	like	a	duck,	swims	like	a
duck,	and	quacks	like	a	duck,	then	that	bird	is	reckoned	to	be	a	duck.

In	a	duck-typed	language	you	can	create	a	function	to	take	an	object	of	any	type	and	call
that	object’s	methods.	If	the	object	does	indeed	have	the	called	methods	(is	reckoned	to	be
a	duck)	they	are	executed,	otherwise	the	function	signals	a	run-time	error.

Like-named	methods	of	multiple	classes	can	be	created	and	instances	of	those	classes	will
execute	the	associated	version.

Create	a	new	Python	script	that	declares	a	class	with	methods	to	display	strings
unique	to	the	class

class	Duck	:

def	talk(self)	:

print(‘\nDuck	Says:	Quack!’)

def	coat(self)	:

print(‘Duck	Wears:	Feathers’)

Duck.py

Next,	create	a	Python	script	that	declares	a	class	with	like-named	methods	but	to
display	strings	unique	to	this	class

class	Mouse	:

def	talk(self)	:

print(‘\nMouse	Says:	Squeak!’)

def	coat(self)	:

print(‘Mouse	Wears:	Fur’)

Mouse.py

Save	the	two	class	files	then	start	a	new	Python	script	by	making	features	of	both
classes	available

from	Duck	import	*

from	Mouse	import	*

polymorph.py

Next,	define	a	function	that	accepts	any	single	object	as	its	argument	and	attempts
to	call	methods	of	that	object

def	describe(object)	:
object.talk()

object.coat()

Now,	create	an	instance	object	of	each	class

donald	=	Duck()

mickey	=	Mouse()

Duck	-	donald

Finally,	add	statements	to	call	the	function	and	pass	each	instance	object	to	it	as	an
argument

describe(donald)

describe(mickey)

Mouse	-	mickey

Save	the	file	in	your	scripts	directory	and	open	a	Command	Prompt	window	there
then	run	this	program	–	to	see	the	methods	of	associated	versions	get	called

A	class	can	have	only	one	method	with	a	given	name	–	method	overloading	is	not
supported	in	Python.

Object	Oriented	Programming	with	Python	allows	data	encapsulation,	inheritance,	and
polymorphism.	Base	class	methods	can	be	overridden	by	like-named	methods	in	derived
classes.	Python	does	not,	however,	support	the	technique	of	“overloading”	found	in	other
languages	–	in	which	methods	of	the	same	name	can	be	created	with	different	argument
lists	in	a	single	class.

Summary
• A	class	is	a	data	structure	prototype	describing	object	properties	with	its	methods	and

attribute	members

• Each	class	declaration	begins	with	the	class	keyword	and	is	followed	by	an	indented
code	block	that	may	contain	a	class	document	string,	class	variables,	and	class
methods

• Class	variables	have	global	scope	but	instance	variables	(declared	within	method
definitions)	have	only	local	scope

• Instance	variables	encapsulate	data	securely	in	a	class	structure	and	are	initialized
when	a	class	instance	is	created

• Properties	of	a	class	are	referenced	by	dot	notation	and	are	addressed	internally	using
the	self	prefix

• A	class	instance	is	a	copy	of	the	prototype	that	automatically	calls	its	__init__()	method
when	the	instance	is	first	created

• An	attribute	of	a	class	can	be	added,	modified,	or	removed	using	dot	notation	or
manipulated	using	the	built-in	functions	getattr(),	hasattr(),	setattr(),	and	delattr()

• The	name	of	attributes	automatically	supplied	by	Python	begin	with	an	underscore
character	to	notionally	indicate	privacy

• The	built-in	__dict__	attribute	contains	a	namespace	dictionary	of	class	component	keys
and	values

• Python	automatically	performs	garbage	collection	but	the	del	keyword	can	remove
objects	and	call	the	class	destructor

• A	derived	class	inherits	the	method	and	attribute	members	of	the	parent	base	class
from	which	it	is	derived

• A	method	of	a	derived	class	can	override	a	matching	method	of	the	same	name	in	its
parent	base	class

• Python	is	a	duck-typed	language	that	supports	polymorphism	for	like-named	methods
of	multiple	classes

8

Processing	requests
This	chapter	demonstrates	how	to	create	server-side	Python	scripts	to	process	HTML	web	requests.

Sending	responses

Handling	values

Submitting	forms

Providing	text	areas

Checking	boxes

Choosing	radio	buttons

Selecting	options

Uploading	files

Summary

Sending	responses
Whenever	a	user	asks	to	view	an	online	web	page	in	their	browser	it	requests	the	page
from	the	web	server,	and	receives	the	page	in	response,	via	the	HTTP	protocol.

Where	a	requested	web	page	address	is	an	HTML	document	(typically	with	an	.html	file
extension)	the	web	server	response	will	return	that	file	to	the	browser	so	its	contents	can
be	displayed.

Where	Python	is	installed	on	the	computer	hosting	the	web	server,	the	web	server	can	be
configured	to	recognize	Python	scripts	(typically	with	a	.py	file	extension)	and	call	upon
the	Python	interpreter	to	process	script	code	before	sending	an	HTML	response	to	the	web
server,	for	return	to	the	browser	client.

A	Python	script	requested	by	a	web	browser	can	generate	a	complete	HTML	document
response	by	describing	the	content	type	on	the	first	line	as	Content-type:text/html\r\n\r\n	so	the
web	browser	will	parse	the	markup	content	for	display	on	the	screen.

The	examples	in	this	chapter	use	the	free	Abyss	Personal	Edition	web	server	available
from	www.aprelium.com	Installed	locally	on	your	computer	this	can	be	addressed	by	the
domain	name	localhost	or	by	the	IP	address	127.0.0.1.

Ensure	the	web	server	is	running	and	configured	to	execute	Python	scripts

http://www.aprelium.com

Next,	start	a	new	Python	script	by	describing	its	generated	output	content	type	to
be	an	HTML	document

print(‘Content-type:text/html\r\n\r\n’)

response.py

Now,	add	statements	to	output	an	entire	web	page	including	all	its	HTML	markup
tags

print(‘<!DOCTYPE	HTML>’)

print(‘<html	lang=”en”>’)

print(‘<head>’)

print(‘<meta	charset=”UTF-8”>’)

print(‘<title>Python	Response</title>’)

print(‘</head>’)

print(‘<body>’)

print(‘<h1>Hello	From	Python	Online!</h1>’)

print(‘</body>’)

print(‘</html>’)

Finally,	save	the	file	in	the	web	server’s	HTML	documents	directory	–	typically
this	will	be	/htdocs

Open	a	web	browser	and	request	the	script	from	the	web	server	via	the	HTTP
protocol	–	to	see	the	HTML	document	response	provided	by	the	Python	script

The	Content-type	output	description	gets	sent	as	an	HTTP	Header	to	the	browser	and

must	appear	on	the	first	line.

Enclose	HTML	attribute	values	within	double	quote	marks	so	they	do	not	get	confused
with	the	single	quote	marks	enclosing	the	strings.

Handling	values
Values	can	be	passed	to	a	Python	script	on	the	web	server	when	the	browser	makes	an
HTTP	request.	Those	values	can	be	used	in	the	script	and	echoed	in	a	response	returned	to
the	browser.

Python’s	“cgi”	module	can	be	used	to	easily	handle	data	passed	from	the	web	browser	by
an	HTTP	request.	This	provides	a	FieldStorage()	constructor	that	creates	an	object	storing	the
passed	data	as	a	dictionary	of	key:value	pairs.	Any	individual	value	can	then	be	retrieved
by	specifying	its	associated	key	name	within	the	parentheses	of	that	FieldStorage	object’s
getvalue()	method.

The	browser	can	submit	data	to	the	script	using	a	“GET”	method	that	simply	appends
key=value	pairs	to	the	script’s	URL	address.	These	follow	a	?	question	mark	character
after	the	file	name	and	multiple	pairs	must	be	separated	by	an	&	ampersand	character.	For
example,	script.py?key1=value1&key2=value2.

Create	a	new	HTML	document	containing	hyperlinks	with	appended	values	to
pass	to	a	Python	script
<!DOCTYPE	HTML>

<html	lang=”en”>

<head>

<meta	charset=”UTF-8”>

<title>Python	Appended	Values</title>

</head>

<body>

<h1>

Ferrari

Fiat

Ford

</h1>

</body>

</html>

get.html

Next,	start	a	new	Python	script	by	making	CGI	handling	features	available	and
create	a	FieldStorage	data	object
import	cgi

data	=	cgi.FieldStorage()

get.py

Now,	assign	two	passed	values	to	variables	by	specifying	their	associated	key
names

make	=	data.getvalue(‘make’)

model	=	data.getvalue(‘model’)

Then,	add	statements	to	output	an	entire	HTML	web	page	including	passed	values
in	the	output

print(‘Content-type:text/html\r\n\r\n’)

print(‘<!DOCTYPE	HTML>’)

print(‘<html	lang=”en”>’)

print(‘<head>’)

print(‘<meta	charset=”UTF-8”>’)

print(‘<title>Python	Response</title>’)

print(‘</head>’)

print(‘<body>’)

print(‘<h1>’	,	make	,	model	,	‘</h1>’)

print(‘Back’)

print(‘</body>’)

print(‘</html>’)

Finally,	save	both	files	in	the	web	server’s	/htdocs	directory

Open	a	web	browser	and	load	the	HTML	document	then	click	any	hyperlink	–	to
see	passed	values	in	the	response

The	request	string	in	the	GET	method	is	limited	to	1024	characters	so	is	unsuitable	for
passing	lots	of	key=value	pairs.

The	values	appended	to	the	URL	are	visible	in	the	browser	address	field	of	the	response	so
the	GET	method	should	not	be	used	to	send	passwords	or	other	sensitive	data	values	to	the
web	server.

Submitting	forms
Passing	data	from	a	web	page	to	a	web	server	using	the	GET	method	to	append	key:value
pairs	to	a	URL	is	simple	but	has	some	limitations	–	the	request	string	length	cannot	exceed
1024	characters	and	the	values	appear	in	the	browser	address	field.

As	a	more	reliable	alternative	the	browser	can	submit	data	to	the	script	using	a	“POST”
method	that	sends	the	information	to	the	web	server	as	a	separate	message	not	appended	to
the	URL.

Python’s	“cgi”	module	can	be	used	to	handle	form	data	sent	from	the	browser	with	the
POST	method	in	exactly	the	same	way	as	data	passed	from	the	browser	with	the	GET
method.	This	module’s	FieldStorage()	constructor	can	create	an	object	to	store	the	posted
data	as	a	dictionary	of	key:value	pairs	for	each	form	field.	Any	individual	value	can	be
retrieved	by	specifying	its	associated	key	name	to	the	object’s	getvalue()	method.

Create	a	new	HTML	document	containing	a	form	with	two	text	fields	containing
default	values	and	a	submit	button	to	post	all	form	values	to	a	Python	script
<!DOCTYPE	HTML>

<html	lang=”en”>

<head>

<meta	charset=”UTF-8”>

<title>Python	Form	Values</title>

</head>

<body>

<form	method=”POST”	action=”post.py”>

Make:	<input	type=”text”	name=”make”	value=”Ford”>
Model:

<input	type=”text”	name=”model”	value=”Mustang”>

<input	type=”submit”	value=”Submit”>

</form>

</body>

</html>

post.html

Next,	start	a	new	Python	script	by	making	CGI	handling	features	available	and
create	a	FieldStorage	data	object
import	cgi

data	=	cgi.FieldStorage()

post.py

Now,	assign	two	passed	values	to	variables	by	specifying	their	associated	key
names

make	=	data.getvalue(‘make’)

model	=	data.getvalue(‘model’)

Then,	add	statements	to	output	an	entire	HTML	web	page	including	posted	values
in	the	output
print(‘Content-type:text/html\r\n\r\n’)

print(‘<!DOCTYPE	HTML>’)

print(‘<html	lang=”en”>’)

print(‘<head>’)

print(‘<meta	charset=”UTF-8”>’)

print(‘<title>Python	Response</title>’)

print(‘</head>’)

print(‘<body>’)

print(‘<h1>’	,	make	,	model	,	‘</h1>’)

print(‘Back’)

print(‘</body>’)

print(‘</html>’)

Finally,	save	both	files	in	the	web	server’s	/htdocs	directory

Open	a	web	browser	and	load	the	HTML	document	then	push	the	button	–	to	see
posted	values	in	the	response

All	the	HTML	documents	in	this	chapter	must	be	loaded	into	the	browser	via	a	web	server
domain	such	as	localhost	–	you	cannot	simply	open	them	directly	to	try	these	examples.

Click	the	Back	hyperlink	and	change	the	text	field	values	then	submit	the	form	again	to
see	your	new	values	echoed.

Providing	text	areas
Large	amounts	of	user-input	text	data	can	be	passed	from	a	web	page	to	a	web	server
using	HTML	<textarea>	tags	and	the	form	POST	method.	This	tag	has	no	value	attribute	so	a
default	value	may	not	be	provided.	It	is,	therefore,	useful	to	have	the	Python	script	test
whether	the	text	area	has	been	left	blank	and	provide	a	default	value	when	the	user	has
entered	no	text.

Create	a	new	HTML	document	containing	a	form	with	a	text	area	field	and	a
submit	button
<!DOCTYPE	HTML>

<html	lang=”en”>

<head>	<meta	charset=”UTF-8”>

<title>Text	Area	Example</title>	</head>

<body>

<form	method=”POST”	action=”text.py”>

<textarea	name=”Future	Web”	rows=”5”	cols=”40”>

</textarea>

<input	type=”submit”	value=”Submit”>

</form>

</body>

</html>

text.html

Next,	start	a	new	Python	script	by	making	CGI	handling	features	available	and
create	a	FieldStorage	data	object
import	cgi

data	=	cgi.FieldStorage()

text.py

Now,	test	if	the	text	area	is	blank	then	assign	its	content	string	or	a	default	string
to	a	variable

if	data.getvalue(‘Future	Web’)	:

text	=	data.getvalue(‘Future	Web’)
else	:

text	=	‘Please	Enter	Text!’

Then,	add	statements	to	output	an	entire	HTML	web	page	including	posted	or
default	values	in	the	output
print(‘Content-type:text/html\r\n\r\n’)

print(‘<!DOCTYPE	HTML>’)

print(‘<html	lang=”en”>’)

print(‘<head>	<meta	charset=”UTF-8”>’)

print(‘<title>Python	Response</title>	</head>’)

print(‘<body>’)

print(‘<h1>’	,	text	,	‘</h1>’)

print(‘Back’)

print(‘</body>’)

print(‘</html>’)

Finally,	save	both	files	in	the	web	server’s	/htdocs	directory	and	load	the	HTML
document	in	a	browser	then	push	the	form	button	–	to	see	values	in	the	response

Examine	the	HTTP	request	and	response	components	using	browser	developer
tools	to	see	that	the	text	gets	sent	as	a	separate	message	in	the	HTTP	“Request
body”

The	average	character	width	may	vary	between	browsers	–	so	the	physical	size	of	the	text

area	field	may	vary	too.

You	can	use	the	F12	Developer	Tools	in	Internet	Explorer	to	examine	the	HTTP	request
and	response	components,	as	shown.

Checking	boxes
An	HTML	form	can	provide	a	visual	checkbox	“on/off”	switch	that	the	user	can	toggle	to
include	or	exclude	its	associated	data	for	submission	to	the	web	server.	The	Python	script
nominated	to	handle	the	form	data	can	test	whether	each	check	box	has	been	checked
simply	by	testing	if	a	value	has	been	received	from	the	checkbox	of	that	name.

Create	a	new	HTML	document	containing	a	form	with	three	checkboxes	with
associated	values	and	a	submit	button	to	post	only	checked	values	to	a	Python
script
<!DOCTYPE	HTML>

<html	lang=”en”>

<head>	<meta	charset=”UTF-8”>

<title>Checkbox	Example</title>	</head>

<body>

<form	method=”POST”	action=”check.py”>
Sailing:

<input	type=”checkbox”	name=”sail”	value=”Sailing”>
Walking:

<input	type=”checkbox”	name=”walk”	value=”Walking”>
Ski-ing:

<input	type=”checkbox”	name=”skee”	value=”Ski-ing”>

</form>

</body>

</html>

check.html

Next,	start	a	new	Python	script	by	making	CGI	handling	features	available	and
create	a	FieldStorage	data	object
import	cgi

data	=	cgi.FieldStorage()

check.py

Now,	assign	a	list	of	checked	box	values	as	elements	of	an	unordered	HTML	list
to	a	variable
list	=	‘’

if	data.getvalue(‘sail’)	:

list	+=	‘’	+	data.getvalue(‘sail’)

if	data.getvalue(‘walk’)	:

list	+=	‘’	+	data.getvalue(‘walk’)

if	data.getvalue(‘skee’)	:

list	+=	‘’	+	data.getvalue(‘skee’)

list	+=	‘’

Then,	add	statements	to	output	an	entire	HTML	web	page	including	a	list	of
posted	values	in	the	output
print(‘Content-type:text/html\r\n\r\n’)

print(‘<!DOCTYPE	HTML>’)

print(‘<html	lang=”en”>’)

print(‘<head>’)

print(‘<meta	charset=”UTF-8”>’)

print(‘<title>Python	Response</title>’)

print(‘</head>’)

print(‘<body>’)

print(‘<h1>’	,	list	,	‘</h1>’)

print(‘Back’)

print(‘</body>’)

print(‘</html>’)

Finally,	save	both	files	in	the	web	server’s	/htdocs	directory	and	load	the	HTML
document	in	a	browser	then	push	the	submit	button	–	to	see	checked	values	in	the
response

The	checked	keyword	can	be	added	in	any	checkbox	<input>	element	to	make	it	checked
by	default.

As	the	“Walking”	checkbox	is	unchecked	in	this	example,	its	key:value	pair	is	not	even
sent	to	the	web	server.

Choosing	radio	buttons
An	HTML	form	can	provide	a	“radio	button”	group	from	which	the	user	can	select	just
one	button	to	submit	its	associated	data	to	the	web	server.	Unlike	checkboxes,	radio
buttons	that	share	a	common	name	are	mutually	exclusive	so	when	one	button	in	the	group
is	selected,	all	other	buttons	in	that	group	are	switched	off.	The	Python	script	nominated	to
handle	the	form	data	can	test	the	value	submitted	for	the	radio	button	group	name	and
supply	an	appropriate	response.

Create	a	new	HTML	document	containing	a	form	with	one	group	of	three	radio
buttons	and	a	submit	button	to	post	the	value	of	the	chosen	button	to	a	Python
script
<!DOCTYPE	HTML>

<html	lang=”en”>

<head>	<meta	charset=”UTF-8”>

<title>Radio	Button	Example</title>	</head>

<body>

<form	method=”POST”	action=”radio.py”>

<fieldset>

<legend>HTML	Language	Category?</legend>

Script

<input	type=”radio”	name=”cat”	value=”Script”	checked>

Markup

<input	type=”radio”	name=”cat”	value=”Markup”>

Program

<input	type=”radio”	name=”cat”	value=”Program”>

<input	type=”submit”	value=”Submit”>

</fieldset>

</form>

</body>

</html>

radio.html

Next,	start	a	new	Python	script	by	making	CGI	handling	features	available	and
create	a	FieldStorage	data	object
import	cgi

data	=	cgi.FieldStorage()

radio.py

Now,	test	the	submitted	radio	group	value	and	assign	an	appropriate	response	to	a
variable
answer	=	data.getvalue(‘cat’)

if	answer	==	‘Markup’	:

result	=	answer	+	‘	Is	Correct’

else	:

result	=	answer	+	‘	Is	Incorrect’

Then,	add	statements	to	output	an	entire	HTML	web	page	including	the	posted
value	in	an	appropriate	output
print(‘Content-type:text/html\r\n\r\n’)

print(‘<!DOCTYPE	HTML>’)

print(‘<html	lang=”en”>’)

print(‘<head>’)

print(‘<meta	charset=”UTF-8”>’)

print(‘<title>Python	Response</title>’)

print(‘</head>’)

print(‘<body>’)

print(‘<h1>’	,	result	,	‘</h1>’)

print(‘Back’)

print(‘</body>’)

print(‘</html>’)

Finally,	save	both	files	in	the	web	server’s	/htdocs	directory

Load	the	HTML	document	in	a	browser	then	choose	the	correct	radio	button
answer	and	push	the	submit	button	–	to	see	the	associated	chosen	value	in	the
response

Always	include	a	checked	attribute	to	automatically	select	one	button	in	each	radio	button
group	–	to	include	a	default	choice.

Radio	button	elements	resemble	the	buttons	on	old	radios	where	each	button	selected	a
particular	radio	station	–	but,	of	course,	no	two	stations	could	be	selected	simultaneously.

Selecting	options
An	HTML	form	can	provide	a	dropdown	list	of	possible	options	from	which	the	user	can
select	a	single	option	to	include	its	associated	data	for	submission	to	the	web	server.	The
submitted	value	can	then	be	retrieved	by	specifying	its	associated	list	key	name	within	the
parentheses	of	that	FieldStorage	object’s	getvalue()	method.

Create	a	new	HTML	document	containing	a	form	with	a	dropdown	options	list
and	a	submit	button
<!DOCTYPE	HTML>

<html	lang=”en”>

<head>	<meta	charset=”UTF-8”>

<title>Selection	List	Example</title>	</head>

<body>

<form	method=”POST”	action=”select.py”>

<select	name=”CityList”>

<option	value=”New	York”>New	York</option>

<option	value=”London”>London</option>

<option	value=”Paris”>Paris</option>

<option	value=”Beijing”>Beijing</option>

</select>

<input	type=”submit”	value=”Submit”>

</form>

</body>

</html>

select.html

Next,	start	a	new	Python	script	by	making	CGI	handling	features	available	and
create	a	FieldStorage	data	object
import	cgi

data	=	cgi.FieldStorage()

select.py

Now,	assign	the	selected	option	value	to	a	variable

city	=	data.getvalue(‘CityList’)

Then,	add	statements	to	output	an	entire	HTML	web	page	including	the	posted
option	value	in	the	output
print(‘Content-type:text/html\r\n\r\n’)

print(‘<!DOCTYPE	HTML>’)

print(‘<html	lang=”en”>’)

print(‘<head>	<meta	charset=”UTF-8”>’)

print(‘<title>Python	Response</title>	</head>’)

print(‘<body>’)

print(‘<h1>City:’	,	city	,	‘</h1>’)

print(‘Back’)

print(‘</body>’)

print(‘</html>’)

Finally,	save	both	files	in	the	web	server’s	/htdocs	directory	and	load	the	HTML
document	in	a	browser	then	push	the	submit	button	–	to	see	the	selected	value	in
the	response

Typically,	the	first	list	option	will	be	selected	for	submission	by	default	unless	you	click

open	the	dropdown	list	and	select	an	alternative.

You	can	include	the	selected	attribute	in	an	<option>	tag	to	automatically	select	one
option	in	each	list	–	to	include	a	default	choice.

Uploading	files
An	HTML	form	can	provide	a	file	selection	facility,	which	calls	upon	the	operating
system’s	“Choose	File”	dialog,	to	allow	the	user	to	browse	their	local	file	system	and
select	a	file.	To	enable	this	facility	the	HTML	<form>	tag	must	include	an	enctype	attribute
specifying	the	encoding	type	as	“multipart/form-data”.

The	full	path	address	of	the	file	selected	for	upload	is	a	value	stored	in	the	FieldStorage
object	list	that	can	be	accessed	using	its	associated	key	name.	Usefully,	the	file	name	can
be	stripped	from	the	path	address	by	the	“os”	module’s	path.basename()	method.

A	copy	of	an	uploaded	file	can	be	written	on	the	web	server	by	reading	from	the
FieldStorage	object’s	file	property.

Create	a	new	HTML	document	containing	a	form	with	a	file	selection	facility	and
a	submit	button
<!DOCTYPE	HTML>

<html	lang=”en”>

<head>	<meta	charset=”UTF-8”>

<title>File	Upload	Example</title>	</head>

<body>

<form	method=”POST”	action=”upload.py”	enctype=”multipart/form-data”	>

<input	type=”file”	name=”filename”	style=”width:400px”>

<input	type=”submit”	value=”Submit”>

</form>

</body>

</html>

upload.html

Next,	start	a	new	Python	script	by	making	CGI	handling	and	operating	system
features	available	then	create	a	FieldStorage	data	object
import	cgi	,	os

data	=	cgi.FieldStorage()

upload.py

Now,	assign	the	full	path	of	the	uploaded	file	to	a	variable	and	its	stripped	out	file
name	to	another	variable
upload	=	data[‘filename’]

filename	=	os.path.basename(upload.filename)

Then,	write	a	copy	of	the	uploaded	file	on	the	web	server

with	open(filename	,	‘wb’)	as	copy	:

copy.write(upload.file.read())

Then,	add	statements	to	output	an	entire	HTML	web	page	including	the	uploaded
file	name	in	the	output
print(‘Content-type:text/html\r\n\r\n’)

print(‘<!DOCTYPE	HTML>’)

print(‘<html	lang=”en”>’)

print(‘<head>’)

print(‘<meta	charset=”UTF-8”>’)

print(‘<title>Python	Response</title>’)

print(‘</head>’)

print(‘<body>’)

print(‘<h1>File	Uploaded:’	,	filename	,	‘</h1>’)

print(‘Back’)

print(‘</body>’)

print(‘</html>’)

Finally,	save	both	files	in	the	web	server’s	/htdocs	directory	and	load	the	HTML
document	in	a	browser	then	select	a	file	for	upload	–	to	see	the	file	upload
response

Notice	that	binary	file	mode	is	used	here	to	copy	the	uploaded	file.

Summary
• Python	can	be	installed	on	a	web	server	host	to	process	script	code	before	sending	a

response	to	a	web	browser	client

• A	server-side	Python	script	can	generate	an	HTML	document	by	describing	the	content
type	as	Content-type:text/html\r\n\r\n

• The	cgi	module	provides	a	FieldStorage()	constructor	to	create	an	object	for	storing
submitted	data	as	key:value	pairs

• Any	value	stored	in	a	FieldStorage	object	can	be	retrieved	by	specifying	its	key	name
to	the	object’s	getvalue()	method

• The	browser	can	send	data	to	a	script	using	the	GET	method	that	appends	key=value
pairs	to	its	URL	address	after	a	?	mark

• Multiple	key=value	pairs	of	data	can	be	submitted	using	the	GET	method	if	each	pair
is	separated	by	an	&	character

• The	GET	method	request	string	length	cannot	exceed	1024	characters	and	will	be
visible	in	the	browser	address	field

• The	browser	can	send	data	to	a	script	using	the	POST	method	that	submits	key=value
pairs	as	a	separate	message

• Data	submitted	from	an	HTML	form	can	be	stored	in	a	FieldStorage	object	as
key:value	pairs	for	each	form	field

• A	server-side	Python	script	can	provide	default	values	for	submitted	HTML	form	fields
that	the	user	has	left	blank

• Checkbox	fields	of	an	HTML	form	that	are	unchecked	do	not	get	submitted	to	the	web
server

• A	selected	radio	button	in	a	group	provides	the	value	to	be	associated	with	the	group
name	when	the	form	gets	submitted

• A	selected	item	in	a	dropdown	list	provides	the	value	to	be	associated	with	the	list
name	when	the	form	gets	submitted

• An	HTML	form	can	allow	file	uploads	only	if	its	enctype	attribute	specifies	its	encoding
type	as	“multipart/form-data”

9

Building	interfaces
This	chapter	demonstrates	how	to	create	graphical	windowed	applications	with	Python.

Launching	a	window

Responding	to	buttons

Displaying	messages

Gathering	entries

Listing	options

Polling	radio	buttons

Checking	boxes

Adding	images

Summary

Launching	a	window
The	standard	Python	module	that	you	can	use	to	create	graphical	applications	is	called
“tkinter”	–	a	toolkit	to	interface	with	the	system	GUI	(Graphical	User	Interface).

The	tkinter	module	can	be	imported	into	a	program	like	any	other	module	to	provide
attributes	and	methods	for	windowed	apps.	Every	tkinter	program	must	begin	by	calling	the
Tk()	constructor	to	create	a	window	object.	The	window’s	size	can,	optionally,	be	specified
as	a	‘widthxheight’	string	argument	to	the	window	object’s	geometry()	method.	Similarly,	the
window’s	title	can	be	specified	as	a	‘title’	string	argument	to	the	window	object’s	title()
method.	If	not	specified,	default	size	and	title	values	will	be	used.

There	can	be	only	one	call	to	the	Tk()	constructor	and	it	must	be	at	the	start	of	the
program	code.

Every	tkinter	program	must	also	call	the	window	object’s	mainloop()	method	to	capture
events,	such	as	when	the	user	closes	the	window	to	quit	the	program.	This	loop	should
appear	at	the	end	of	the	program	as	it	also	handles	window	updates	that	may	be
implemented	during	execution.

With	tkinter,	all	the	graphical	controls	that	can	be	included	in	the	application	window,	such
as	buttons	or	checkboxes,	are	referred	to	as	“widgets”.	Perhaps	the	simplest	widget	is	a
non-interactive	label	object	that	merely	displays	text	or	an	image	in	the	app	interface.	A
label	object	can	be	created	by	specifying	the	window	object’s	name	and	text=’string’	as
arguments	to	a	Label()	constructor.

Once	created,	each	widget,	such	as	a	label,	must	then	be	added	to	the	window	using	one	of
these	“geometry	manager”	methods:

• pack()	–	places	the	widget	against	a	specified	side	of	the	window	using	TOP,	BOTTOM,
LEFT,	or	RIGHT	constant	values	specified	to	its	side=	argument

• place()	–	places	the	widget	at	XY	coordinates	in	the	window	using	numerical	values
specified	to	its	x=	and	y=	arguments

• grid()	–	places	the	widget	in	a	cell	within	the	window	using	numerical	values	specified
to	its	row=	and	column=	arguments

The	grid()	geometry	manager	method	is	demonstrated	in	the	example	here.

Optionally,	the	pack()	method	may	include	a	fill	argument	to	expand	the	widget	in	available
space.	For	example,	with	fill	=	‘x’.	Alternatively,	the	pack()	method	may	include	padx	and	pady
arguments	to	expand	the	widget	along	an	axis	by	a	specified	amount.

Start	a	new	Python	script	with	a	statement	to	make	the	“tkinter”	module	GUI
methods	and	attributes	available	from	tkinter	import	*

tk_window.py

Next,	add	a	statement	to	call	upon	a	constructor	to	create	a	window	object	window	=
Tk()

Now,	add	a	statement	to	specify	a	title	for	this	window
window.title(‘Label	Example’)

Then,	add	a	statement	to	call	upon	a	constructor	to	create	a	label	object
label	=	Label(window	,	text	=	‘Hello	World!’)

Use	the	packer	to	add	the	label	to	the	window	with	both	horizontal	and	vertical
padding	for	positioning
label.pack(padx	=	200	,	pady	=	50)

Finally,	add	the	mandatory	statement	to	maintain	the	window	by	capturing	events
window.mainloop()

Save	the	program	in	your	scripts	directory	then	open	a	Command	Prompt	window
there	and	run	this	program	with	the	command	python	tk_window.py	–	to	see	a	window
appear	containing	a	label	widget

Widgets	will	not	appear	in	the	window	when	running	the	program	unless	they	have	been
added	with	a	geometry	manager.

Responding	to	buttons
A	Button	widget	provides	a	graphical	button	in	an	application	window	that	may	contain
either	text	or	an	image	to	convey	the	button’s	purpose.	A	button	object	is	created	by
specifying	the	window	name	and	options	as	arguments	to	a	Button()	constructor.	Each
option	is	specified	as	an	option=value	pair.	The	command	option	must	always	specify	the
name	of	a	function	or	method	to	call	when	the	user	clicks	that	button.	The	most	popular
options	are	listed	below,	together	with	a	brief	description:

Option: Description:

activebackground Background	color	when	the	cursor	is	over

activeforeground Foreground	color	when	the	cursor	is	over

bd Border	width	in	pixels	(default	is	2)

bg Background	color

command Function	to	call	when	clicked

fg Foreground	color

font Font	for	button	label

height Button	height	in	text	lines,	or	pixels	for	images

highlightcolor Border	color	when	in	focus

image Image	to	be	displayed	instead	of	text

justify Multiple	text	lines	as	LEFT,	CENTER,	or	RIGHT

padx Horizontal	padding

pady Vertical	padding

relief Border	style	of	SUNKEN,	RIDGE,	RAISED	or	GROOVE

state Enabled	status	of	NORMAL	or	DISABLED

underline Index	number	in	text	of	character	to	underline

width Button	width	in	letters,	or	pixels	for	images

wraplength Length	at	which	to	wrap	text

The	values	assigned	to	other	options	determine	the	widget’s	appearance.	These	can	be
altered	by	specifying	a	new	option=value	pair	as	an	argument	to	the	widget’s	configure()
method.	Additionally,	a	current	option	value	can	be	retrieved	by	specifying	its	name	as	a
string	argument	to	the	widget’s	cget()	method.

You	can	also	call	a	button’s	invoke()	method	to,	in	turn,	call	the	function	nominated	to	its
command	option.

Start	a	new	Python	script	by	making	GUI	features	available	then	create	a	window
and	specify	a	title
from	tkinter	import	*

window	=	Tk()

window.title(‘Button	Example’)

tk_button.py

Next,	create	a	button	to	exit	the	program	when	clicked
btn_end	=	Button(window	,	text	=	‘Close’	,	command=exit)

Now,	add	a	function	to	toggle	the	window’s	background	color	when	another
button	gets	clicked
def	tog()	:

if	window.cget(‘bg’)	==	‘yellow’	:

window.configure(bg	=	‘gray’)
else	:

window.configure(bg	=	‘yellow’)

Then,	create	a	button	to	call	the	function	when	clicked
btn_tog	=	Button(window	,	text	=	‘Switch’	,	command=tog)

Add	the	buttons	to	the	window	with	positional	padding
btn_end.pack(padx	=	150	,	pady	=	20)

btn_tog.pack(padx	=	150	,	pady	=	20)

Finally,	add	the	loop	to	capture	this	window’s	events
window.mainloop()

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	with	the	command	python	tk_button.py	–	click	the	button	to	see
the	window’s	background	color	change

Only	the	function	name	is	specified	to	the	command	option.	Do	not	add	trailing	parentheses
in	the	assignment.

The	‘gray’	color	is	the	original	default	color	of	the	window.

Displaying	messages
A	program	can	display	messages	to	the	user	by	calling	methods	provided	in	the
“tkinter.messagebox”	module.	This	must	be	imported	separately	and	its	lengthy	name	can,
usefully,	be	assigned	a	short	alias	by	an	import	as	statement.

A	message	box	is	created	by	supplying	a	box	title	and	the	message	to	be	displayed	as	the
two	arguments	to	one	of	these	methods:

Method: Icon: Buttons:

showinfo() OK

showwarning() OK

showerror() OK

askquestion() Yes	(returns	the	string	‘yes’)	and	No	(returns	the	string	‘no’)

askokcancel() OK	(returns	1)	and	Cancel

askyesno() Yes	(returns	1)	and	No

askretrycancel() Retry	(returns	1)	and	Cancel

Those	methods	that	produce	a	message	box	containing	a	single	OK	button	return	no	value
when	the	button	gets	clicked	by	the	user.	Those	that	do	return	a	value	can	be	used	to
perform	conditional	branching	by	testing	that	value.

Only	the	askquestion()	method	returns	two	values	–	the	askyesno()	No	button	and	both	Cancel
buttons	return	nothing.

Start	a	new	Python	program	by	making	GUI	features	available	and	messagebox
features	available	as	a	short	alias
from	tkinter	import	*
import	tkinter.messagebox	as	box

tk_message.py

Next,	create	a	window	object	and	specify	a	title
window	=	Tk()

window.title(‘Message	Box	Example’)

Add	a	function	to	display	various	message	boxes
def	dialog()	:

var	=	box.askyesno(‘Message	Box’	,	‘Proceed?’)

if	var	==	1	:

box.showinfo(‘Yes	Box’,	‘Proceeding…’)
else	:

box.showwarning(‘No	Box’,	‘Cancelling…’)

Then,	create	a	button	to	call	the	function	when	clicked
btn	=	Button(window	,	text	=	‘Click’	,	command=dialog)

Add	the	button	to	the	window	with	positional	padding
btn.pack(padx	=	150	,	pady	=	50)

Finally,	add	the	loop	to	capture	this	window’s	events
window.mainloop()

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	with	the	command	python	tk_message.py	–	click	the	button	to	see
the	message	boxes	appear

Options	can	be	added	as	a	third	argument	to	these	method	calls.	For	example,	add

type=’abortretryignore’	to	get	three	buttons.

Gathering	entries
An	Entry	widget	provides	a	single-line	input	field	in	an	application	where	the	program	can
gather	entries	from	the	user.	An	entry	object	is	created	by	specifying	the	name	of	its	parent
container,	such	as	a	window	or	frame	name,	and	options	as	arguments	to	an	Entry()
constructor.	Each	option	is	specified	as	an	option=value	pair.	Popular	options	are	listed
below	together	with	a	brief	description:

Option: Description:

bd Border	width	in	pixels	(default	is	2)

bg Background	color

fg Foreground	color	used	to	render	the	text

font Font	for	the	text

highlightcolor Border	color	when	in	focus

selectbackground Background	color	of	selected	text

selectforeground Foreground	color	of	selected	text

show Hide	password	characters	with	show=’*’

state Enabled	status	of	NORMAL	or	DISABLED

width Entry	width	in	letters

Multiple	widgets	can	be	grouped	in	frames	for	better	positioning.	A	frame	object	is	created
by	specifying	the	name	of	the	window	to	a	Frame()	constructor.	The	frame’s	name	can	then
be	specified	as	the	first	argument	to	the	widget	constructors	to	identify	it	as	that	widget’s
container.

Use	the	Text	widget	instead	of	an	Entry	widget	if	you	want	to	allow	the	user	to	enter
multiple	lines	of	text.

When	actually	adding	widgets	to	the	frame	you	can	specify	which	side	to	pack	them	to	in
the	frame	with	TOP,	BOTTOM,	LEFT,	or	RIGHT	constants.	For	example,	entry.pack(side=LEFT).

Typically,	an	entry	widget	will	appear	alongside	a	label	describing	the	type	of	input

expected	there	from	the	user,	or	alongside	a	button	widget	that	the	user	can	click	to
perform	some	action	on	the	data	they	have	entered,	so	positioning	in	a	frame	is	ideal.

Data	currently	entered	into	an	entry	widget	can	be	retrieved	by	the	program	using	that
widget’s	get()	method.

Start	a	new	Python	program	by	making	GUI	features	available	and	messagebox
features	available	as	a	short	alias
from	tkinter	import	*

import	tkinter.messagebox	as	box

tk_entry.py

Next,	create	a	window	object	and	specify	a	title
window	=	Tk()

window.title(‘Entry	Example’)

Now,	create	a	frame	to	contain	an	entry	field	for	input
frame	=	Frame(window)

entry	=	Entry(frame)

Then,	add	a	function	to	display	data	currently	entered
def	dialog()	:

box.showinfo(‘Greetings’	,	‘Welcome	’	+	entry.get())

Now,	create	a	button	to	call	the	function	when	clicked
btn	=	Button(frame,	text	=	‘Enter	Name’	,	command=dialog)

Add	the	button	and	entry	to	the	frame	at	set	sides
btn.pack(side	=	RIGHT	,	padx	=	5)

entry.pack(side	=	LEFT)

frame.pack(padx	=	20	,	pady	=	20)

Finally,	add	the	loop	to	capture	this	window’s	events
window.mainloop()

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	with	the	command	python	tk_entry.py	–	enter	your	name	and
click	the	button	to	see	a	greeting	message	appear

Use	a	Label	widget	instead	of	an	Entry	widget	if	you	want	to	display	text	that	the	user
cannot	edit.

Listing	options
A	Listbox	widget	provides	a	list	of	items	in	an	application	from	which	the	user	can	make	a
selection.	A	listbox	object	is	created	by	specifying	the	name	of	its	parent	container,	such
as	a	window	or	frame	name,	and	options	as	arguments	to	a	Listbox()	constructor.	Popular
options	are	listed	below,	together	with	a	brief	description:

Option: Description:

bd Border	width	in	pixels	(default	is	2)

bg Background	color

fg Foreground	color	used	to	render	the	text

font Font	for	the	text

height Number	of	lines	in	list	(default	is	10)

selectbackground Background	color	of	selected	text

selectmode SINGLE	(the	default)	or	MULTIPLE	selections

width Listbox	width	in	letters	(default	is	20)

yscrollcommand Attach	to	a	vertical	scrollbar

With	Tkinter,	a	scrollbar	is	a	separate	widget	that	can	be	attached	to	Listbox,	Text,	Canvas
and	Entry	widgets.

Items	are	added	to	the	listbox	by	specifying	a	list	index	number	and	the	item	string	as
arguments	to	its	insert()	method.

You	can	retrieve	any	item	from	a	listbox	by	specifying	its	index	number	within	the
parentheses	of	its	get()	method.	Usefully,	a	listbox	also	has	a	curselection()	method	that
returns	the	index	number	of	the	currently-selected	item,	so	this	can	be	supplied	as	the
argument	to	its	get()	method	to	retrieve	the	current	selection.

Start	a	new	Python	program	by	making	GUI	features	available	and	messagebox
features	available	as	a	short	alias
from	tkinter	import	*

import	tkinter.messagebox	as	box

tk_listbox.py

Next,	create	a	window	object	and	specify	a	title
window	=	Tk()

window.title(‘Listbox	Example’)

Now,	create	a	frame	to	contain	widgets
frame	=	Frame(window)

Create	a	listbox	widget	offering	three	list	items
listbox	=	Listbox(frame)

listbox.insert(1	,	‘HTML5	in	easy	steps’)
listbox.insert(2	,	‘CSS3	in	easy	steps’)
listbox.insert(3	,	‘JavaScript	in	easy	steps’)

Next,	add	a	function	to	display	a	listbox	selection
def	dialog()	:

box.showinfo(‘Selection’	,	‘Your	Choice:	’	+	\

listbox.get(listbox.curselection()))

Now,	create	a	button	to	call	the	function	when	clicked
btn	=	Button(frame	,	text	=	‘Choose’	,	command	=	dialog)

Then,	add	the	button	and	listbox	to	the	frame	at	set	sides
btn.pack(side	=	RIGHT	,	padx	=	5)

listbox.pack(side	=	LEFT)

frame.pack(padx	=	30	,	pady	=	30)

Finally,	add	the	loop	to	capture	this	window’s	events
window.mainloop()

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	with	the	command	python	tk_listbox.py	–	select	an	option	and
click	the	button	to	see	your	selection	confirmed

If	the	selectmode	is	set	to	MULTIPLE	the	curselection()	method	returns	a	tuple	of	the	selected
index	numbers.

Polling	radio	buttons
A	Radiobutton	widget	provides	a	single	item	in	an	application	that	the	user	may	select.
Where	a	number	of	radio	buttons	are	grouped	together,	the	user	may	only	select	any	one
item	in	the	group.	With	tkinter,	radio	button	objects	are	grouped	together	when	they
nominate	the	same	control	variable	object	to	assign	a	value	to	upon	selection.	An	empty
string	variable	object	can	be	created	for	this	purpose	using	the	StringVar()	constructor	or	an
empty	integer	variable	object	using	the	IntVar()	constructor.

You	cannot	use	a	regular	variable	to	store	values	assigned	from	a	radio	button	selection	–
it	must	be	an	object.

A	radio	button	object	is	created	by	specifying	four	arguments	to	a	Radiobutton()	constructor:

• Name	of	the	parent	container,	such	as	the	frame	name

• Text	for	a	display	label,	specified	as	a	text=text	pair

• Control	variable	object,	specified	as	a	variable=variable	pair

• Value	to	be	assigned,	specified	as	a	value=value	pair

Each	radio	button	object	has	a	select()	method	that	can	be	used	to	specify	a	default	selection
in	a	group	of	radio	buttons	when	the	program	starts.	A	string	value	assigned	by	selecting	a
radio	button	can	be	retrieved	from	a	string	variable	object	by	its	get()	method.

Start	a	new	Python	program	by	making	GUI	features	available	and	messagebox
features	available	as	a	short	alias
from	tkinter	import	*
import	tkinter.messagebox	as	box

tk_radio.py

Next,	create	a	window	object	and	specify	a	title
window	=	Tk()

window.title(‘Radio	Button	Example’)

Now,	create	a	frame	to	contain	widgets
frame	=	Frame(window)

Then,	construct	a	string	variable	object	to	store	a	selection
book	=	StringVar()

Next,	create	three	radio	button	widgets	whose	value	will	be	assigned	to	the	string
variable	upon	selection
radio_1	=	Radiobutton(frame	,	text	=	‘HTML5’	,	\

variable	=	book	,	value	=	‘HTML5	in	easy	steps’)

radio_2	=	Radiobutton(frame	,	text	=	‘CSS3’	,	\

variable	=	book	,	value	=	‘CSS3	in	easy	steps’)

radio_3	=	Radiobutton(frame	,	text	=	‘JS’	,	\

variable	=	book	,	value	=	‘JavaScript	in	easy	steps’)

Now,	add	a	statement	to	specify	which	radio	button	will	be	selected	by	default
when	the	program	starts
radio_1.select()

Then,	add	a	function	to	display	a	radio	button	selection	and	a	button	to	call	this
function
def	dialog()	:

box.showinfo(‘Selection’	,	\
‘Your	Choice:	\n’	+	book.get())

btn	=	Button(frame	,	text	=	‘Choose’	,	command	=	dialog)

Add	the	push	button	and	radio	buttons	to	the	frame
btn.pack(side	=	RIGHT	,	padx	=	5)

radio_1.pack(side	=	LEFT)
radio_2.pack(side	=	LEFT)
radio_3.pack(side	=	LEFT)
frame.pack(padx	=	30	,	pady	=	30)

Finally,	add	the	loop	to	capture	this	window’s	events
window.mainloop()

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	with	the	command	python	tk_radio.py	–	choose	an	option	and
click	the	button	to	see	your	choice	confirmed

A	Radiobutton	object	has	a	deselect()	method	that	can	be	used	to	cancel	a	selection
programatically.

Checking	boxes
A	Checkbutton	widget	provides	a	single	item	in	an	application	that	the	user	may	select.
Where	a	number	of	check	buttons	appear	together	the	user	may	select	one	or	more	items.
Check	button	objects	nominate	an	individual	control	variable	object	to	assign	a	value	to
whether	checked	or	unchecked.	An	empty	string	variable	object	can	be	created	for	this
using	the	StringVar()	constructor	or	an	empty	integer	variable	object	using	the	IntVar()
constructor.

A	check	button	object	is	created	by	specifying	five	arguments	to	a	Checkbutton()	constructor:

• Name	of	the	parent	container,	such	as	the	frame	name

• Text	for	a	display	label,	as	a	text=text	pair

• Control	variable	object,	as	a	variable=variable	pair

• Value	to	assign	if	checked,	as	an	onvalue=value	pair

• Value	to	assign	if	unchecked,	as	an	offvalue=value	pair

An	integer	value	assigned	by	a	check	button	can	be	retrieved	from	a	integer	variable
object	by	its	get()	method.

Start	a	new	Python	program	by	making	GUI	features	available	and	messagebox
features	available	as	a	short	alias
from	tkinter	import	*

import	tkinter.messagebox	as	box

tk_check.py

Next,	create	a	window	object	and	specify	a	title
window	=	Tk()

window.title(‘Check	Button	Example’)

Now,	create	a	frame	to	contain	widgets
frame	=	Frame(window)

Then,	construct	three	integer	variable	objects	to	store	values

var_1	=	IntVar()

var_2	=	IntVar()

var_3	=	IntVar()

Create	three	check	button	widgets	whose	values	will	be	assigned	to	the	integer
variable	whether	checked	or	not

book_1	=	Checkbutton(frame	,	text	=	‘HTML5’	,	\

variable	=	var_1	,	onvalue	=	1	,	offvalue	=	0)

book_2	=	Checkbutton(frame	,	text	=	‘CSS3’	,	\

variable	=	var_2	,	onvalue	=	1	,	offvalue	=	0)

book_3	=	Checkbutton(frame	,	text	=	‘JS’	,	\

variable	=	var_3	,	onvalue	=	1	,	offvalue	=	0)

Next,	add	a	function	to	display	a	check	button	selection
def	dialog()	:

str	=	‘Your	Choice:’

if	var_1.get()	==	1	:	str	+=	‘\nHTML5	in	easy	steps’

if	var_2.get()	==	1	:	str	+=	‘\nCSS3	in	easy	steps’

if	var_3.get()	==	1	:	str	+=	‘\nJavaScript	in	easy	steps’

box.showinfo(‘Selection’	,	str)

Now,	create	a	button	to	call	the	function	when	clicked
btn	=	Button(frame	,	text	=	‘Choose’	,	command	=	dialog)

Then,	add	the	push	button	and	check	buttons	to	the	frame

btn.pack(side	=	RIGHT	,	padx	=	5)
book_1.pack(side	=	LEFT)
book_2.pack(side	=	LEFT)
book_3.pack(side	=	LEFT)
frame.pack(padx	=	30,	pady	=	30)

Finally,	add	the	loop	to	capture	this	window’s	events
window.mainloop()

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	with	the	command	python	tk_check.py	–	check	boxes	and	click
the	button	to	see	your	selection	confirmed

A	Checkbutton	object	has	select()	and	deselect()	methods	that	can	be	used	to	turn	the	state	on
or	off.	For	example,	check_1.	select().

The	state	of	any	Checkbutton	object	can	be	reversed	by	calling	its	toggle()	method.

Adding	images
With	the	tkinter	module,	images	in	GIF	or	PGM/PPM	file	formats	can	be	displayed	on
Label,	Button,	Text	and	Canvas	widgets	using	the	PhotoImage()	constructor	to	create	image
objects.	This	simply	requires	a	single	file=	argument	to	specify	the	image	file.	Interestingly,
it	also	has	a	subsample()	method	that	can	scale	down	a	specified	image	by	stating	a	sample
value	to	x=	and	y=	arguments.	For	example,	values	of	x=2,	y=2	samples	every	second	pixel	–
so	the	image	object	is	half-size	of	the	original.

The	PhotoImage	class	also	has	a	zoom()	method	that	will	double	the	image	size	with	the
same	x=2,y=2	values.

Once	an	image	object	has	been	created,	it	can	be	added	to	a	Label	or	Button	constructor
statement	by	an	image=	option.

Text	objects	have	an	image_create()	method	with	which	to	embed	an	image	into	the	text	field.
This	requires	two	arguments	to	specify	location	and	image=.	For	example,	‘1.0’	specifies	the
first	line	and	first	character.

Canvas	objects	have	a	create_image()	method	that	requires	two	arguments	to	specify	location
and	image=.	Here,	the	location	sets	the	x,y	coordinates	on	the	canvas	at	which	to	paint	the
image.

Start	a	new	Python	program	by	making	GUI	methods	and	attributes	available	then
create	a	window	object	and	specify	a	title
from	tkinter	import	*

window	=	Tk()

window.title(‘Image	Example’)

tk_image.py

Now,	create	an	image	object	from	a	local	image	file
img	=	PhotoImage(file	=	‘python.gif’)

python.gif	(200	×	200)

Then,	create	a	label	object	to	display	the	image	above	a	colored	background
label	=	Label(window	,	image	=	img	,	bg	=	‘yellow’)

Create	a	half-size	image	object	from	the	first	image	object

small_img	=	PhotoImage.subsample(img	,	x	=	2	,	y	=	2)

Now,	create	a	button	to	display	the	small	image
btn	=	Button(window	,	image	=	small_img)

Create	a	text	field	and	embed	the	small	image	then	insert	some	text	after	it

txt	=	Text(window	,	width	=	25	,	height	=	7)

txt.image_create(‘1.0’	,	image	=	small_img)

txt.insert(‘1.1’,	‘Python	Fun!’)

Create	a	canvas	and	paint	the	small	image	above	a	colored	background	then	paint
a	diagonal	line	over	the	top	of	it
can	=	\

Canvas(window	,	width	=	100	,	height	=	100	,	bg	=	‘cyan’)
can.create_image((50	,	50),	image	=	small_img)
can.create_line(0	,	0	,	100	,	100,	width	=	25	,	fill	=	‘yellow’)

Then,	add	the	widgets	to	the	window
label.pack(side	=	TOP)

btn.pack(side	=	LEFT	,	padx	=	10)
txt.pack(side	=	LEFT)

can.pack(side	=	LEFT,	padx	=	10)

Finally,	add	the	loop	to	capture	this	window’s	events
window.mainloop()

Save	the	file	in	your	scripts	directory	then	open	a	Command	Prompt	window	there
and	run	this	program	with	the	command	python	tk_photo.py	–	to	see	the	image

Notice	that	the	Text	method	is	image_create()	but	the	Canvas	method	is	create_image()	–	similar
yet	different.

Text	and	Canvas	widgets	are	both	powerful	and	flexible	–	discover	more	online	at
docs.python.org/3.3/library/tkinter.html

http://docs.python.org/3.3/library/tkinter.html

Summary
• The	tkinter	module	can	be	imported	into	a	Python	program	to	provide	attributes	and

methods	for	windowed	applications

• Every	tkinter	program	must	begin	by	calling	Tk()	to	create	a	window	and	call	its
mainloop()	method	to	capture	events

• The	window	object’s	title	is	specified	by	its	title()	method

• A	label	widget	is	created	by	specifying	the	name	of	its	parent	container	and	its	text	as
arguments	to	the	Label()	constructor

• Widgets	can	be	added	to	an	application	using	the	pack(),	grid()	or	place()	geometry
managers

• A	button	widget	is	created	by	specifying	the	name	of	its	parent	container,	its	text,	and
the	name	of	a	function	to	call	when	the	user	pushes	it,	as	arguments	to	the	Button()
constructor

• The	tkinter.messagebox	module	can	be	imported	into	a	Python	program	to	provide
attributes	and	methods	for	message	boxes

• Message	boxes	that	ask	the	user	to	make	a	choice	return	a	value	to	the	program	for
conditional	branching

• The	Frame()	constructor	creates	a	container	in	which	multiple	widgets	can	be	grouped
for	better	positioning

• The	Entry()	constructor	creates	a	single	line	text	field	whose	current	contents	can	be
retrieved	by	its	get()	method

• Items	are	added	to	a	Listbox	object	by	its	insert()	method	and	retrieved	by	specifying	their
index	number	to	its	get()	method

• Radiobutton	and	Checkbutton	objects	store	values	in	the	StringVar	or	IntVar	object	nominated
by	their	variable	attribute

• The	PhotoImage()	constructor	creates	an	image	object	that	has	a	subsample()	method	which
can	scale	down	the	image

• Images	can	be	added	to	Button	and	Label	objects,	embedded	in	Text	objects,	and	painted
on	Canvas	objects

10

Developing	applications
This	chapter	brings	together	elements	from	previous	chapters	to	build	a	complete	Python	application.

Generating	random	numbers

Planning	the	program

Designing	the	interface

Assigning	static	properties

Initializing	dynamic	properties

Adding	runtime	functionality

Testing	the	program

Freezing	the	program

Deploying	the	application

Summary

Generating	random	numbers
The	graphical	application	developed	on	subsequent	pages	of	this	book	will	generate	six
random	numbers	within	a	specific	range.	Initially,	its	functionality	can	be	developed	as	a
console	application	then	transferred	later	to	illustrate	how	it	can	be	applied	to	graphical
widget	components.

Floating-point	numbers	cast	from	the	float	data	type	to	the	int	data	type	by	the	built-in	int()
function	get	truncated	at	the	decimal	point.

The	standard	Python	library	has	a	random	module	that	provides	methods	to	generate
pseudo-random	numbers.	The	current	system	time	is	used	by	default	to	“seed”	the	random
generator	whenever	it	gets	initialized	–	so	it	does	not	repeat	its	selections.

A	pseudo-random	floating-point	number	from	0.0	to	1.0	can	be	generated	by	calling	the
random()	method	from	the	random	module.	The	range	of	generated	numbers	can	be	modified
using	the	*	multiplication	operator	to	specify	a	maximum	value	and	can	be	rounded	down
to	integer	values	using	the	built-in	int()	function.	For	example,	to	generate	an	integer	within
the	range	of	zero	to	nine:
int(random.random()	*	10)

Or	to	generate	a	whole	number	within	the	range	of	one	to	ten:
int(random.random()	*	10)	+	1

This	statement	could	be	used	in	a	loop	to	generate	multiple	random	integers	within	a	given
range	but	any	number	may	be	repeated	in	that	output	–	there	is	no	guaranteed	uniqueness.
Instead,	multiple	unique	random	integers	within	a	given	range	can	be	generated	by	the
sample()	method	from	the	random	module.	This	requires	two	arguments	to	specify	the	range
and	the	number	of	unique	integers	to	be	returned.	It	is	convenient	to	use	the	built-in	range()
function	to	specify	a	maximum	value.	For	example,	to	generate	six	unique	numbers	within
the	range	of	zero	to	nine:
random.sample(range(10)	,	6)

Or	to	generate	six	unique	numbers	within	the	range	of	one	to	ten:
random.sample(range(1	,	11)	,	6)

This	technique	could	represent	a	random	lottery	entry	by	choosing,	say,	six	unique
numbers	between	one	and	49.

The	range()	function	can	specify	start	and	end	values.	If	no	starting	value	is	supplied,	zero
is	assumed	by	default.

Launch	a	plain	text	editor	then	begin	a	Python	program	by	importing	two
functions	from	the	“random”	module

from	random	import	random	,	sample

sample.py

Next,	assign	a	random	floating-point	number	to	a	variable	then	display	its	value
num	=	random()

print(‘Random	Float	0.0-1.0	:	‘	,	num)

Now,	multiply	the	floating-point	number	and	cast	it	to	become	an	integer	then
display	its	value
num	=	int(num	*	10)

print(‘Random	Integer	0	-	9	:	‘	,	num)

Add	a	loop	to	assign	multiple	random	integers	to	a	list	then	display	the	list	items

nums	=	[]	;	i	=	0

while	i	<	6	:

nums.append(int(random()	*	10)	+	1)

i	+=	1

print(‘Random	Multiple	Integers	1-10	:’	,	nums)

Finally,	assign	multiple	unique	random	integers	to	the	list	then	display	the	list
items
nums	=	sample(range(1,	49)	,	6)

print(‘Random	Integer	Sample	1	-	49	:	‘	,	nums)

Save	the	file	then	execute	the	program	several	times	–	to	see	the	generated	random
numbers

The	random.sample()	function	returns	a	list	but	does	not	actually	replace	any	elements	in	the

specified	range.

Planning	the	program
When	creating	a	new	graphical	application	it	is	useful	to	first	spend	some	time	planning	its
design.	Clearly	define	the	program’s	precise	purpose,	decide	what	application
functionality	will	be	required,	then	decide	what	interface	widgets	will	be	needed.

A	plan	for	a	simple	application	to	pick	numbers	for	a	lottery	entry	might	look	like	this:

Program	purpose
• The	program	will	generate	a	series	of	six	unique	random	numbers	in	the	range	1-49

and	have	the	ability	to	be	reset

Functionality	required
• A	function	to	generate	and	display	six	unique	random	numbers

• A	function	to	clear	the	last	six	random	numbers	from	display

Interface	widgets	needed
• One	non-resizable	window	to	contain	all	other	widgets	and	to	display	the	application

title

• One	Label	widget	to	display	a	static	application	logo	image	–	just	to	enhance	the
appearance	of	the	interface

• Six	Label	widgets	to	dynamically	display	the	generated	series	of	unique	random
numbers	–	one	number	per	Label

• One	Button	widget	to	generate	and	display	the	numbers	in	the	Label	widgets	when	this
Button	gets	clicked.	This	Button	will	not	be	enabled	when	the	numbers	are	on	display

• One	Button	widget	to	clear	the	numbers	on	display	in	the	Label	widgets	when	this
Button	gets	clicked.	This	Button	will	not	be	enabled	when	the	numbers	are	not	on
display

Having	established	a	program	plan	means	you	can	now	produce	the	application	basics	by
creating	all	the	necessary	widgets.

Toggle	the	value	of	a	Button	widget’s	state	property	from	NORMAL	to	DISABLED	to

steer	the	user	–	in	this	case	the	application	must	be	reset	before	a	further	series	of	unique
random	numbers	can	be	generated.

Launch	a	plain	text	editor	then	begin	a	Python	program	by	importing	all	features
from	the	“tkinter”	module
#	Widgets:

from	tkinter	import	*

lotto(widgets).py

Next,	add	statements	to	create	a	window	object	and	an	image	object

window	=	Tk()

img	=	PhotoImage(file	=	‘logo.gif’)

lotto.gif

Now,	add	statements	to	create	all	the	necessary	widgets

imgLbl	=	Label(window,	image	=	img)

label1	=	Label(window,	relief	=	‘groove’,	width	=	2)
label2	=	Label(window,	relief	=	‘groove’,	width	=	2)
label3	=	Label(window,	relief	=	‘groove’,	width	=	2)
label4	=	Label(window,	relief	=	‘groove’,	width	=	2)
label5	=	Label(window,	relief	=	‘groove’,	width	=	2)
label6	=	Label(window,	relief	=	‘groove’,	width	=	2)
getBtn	=	Button(window)

resBtn	=	Button(window)

Then,	add	the	widgets	to	the	window	using	the	grid	layout	manager	–	ready	to
receive	arguments	to	specify	how	the	widgets	should	be	positioned	at	the	design
stage	next
#	Geometry:

imgLbl.grid()

label1.grid()

label2.grid()

label3.grid()

label4.grid()

label5.grid()

label6.grid()

getBtn.grid()

resBtn.grid()

Finally,	add	a	loop	statement	to	sustain	the	window

#	Sustain	window:

window.mainloop()

Save	the	file	then	execute	the	program	–	to	see	the	window	appear	containing	all
the	necessary	widgets

The	relief	property	specifies	a	border	style	and	the	width	property	specifies	the	label
width	in	character	numbers.

Designing	the	interface
Having	created	all	the	necessary	widgets,	on	the	previous	page,	you	can	now	design	the
interface	layout	by	adding	arguments	to	specify	how	the	widgets	should	be	positioned.	A
horizontal	design	will	position	the	logo	Label	on	the	left,	and	on	its	right	all	six	other
Labels	in	a	row	with	both	Buttons	below	this.	The	grid	layout	manager,	which	positions
widgets	in	rows	and	columns,	can	easily	produce	this	design	by	allowing	the	logo	Label	to
span	a	row	containing	all	six	other	Labels	and	also	a	row	containing	both	Buttons.	One
Button	can	span	four	columns	and	the	other	Button	can	span	two	columns,	arranged	like
this:

Edit	the	program	started	on	the	previous	page	–	firstly	by	positioning	the	Label
containing	the	logo	in	the	first	column	of	the	first	row,	and	have	it	span	across	the
second	row
#	Geometry:

imgLbl.grid(row	=	1,	column	=	1,	rowspan	=	2)

lotto(layout).py

Next,	position	a	Label	in	the	second	column	of	the	first	row	and	add	10	pixels	of
padding	to	its	left	and	right
label1.grid(row	=	1,	column	=	2,	padx	=	10)

Now,	position	a	Label	in	the	third	column	of	the	first	row	and	add	10	pixels	of
padding	to	its	left	and	right
label2.grid(row	=	1,	column	=	3,	padx	=	10)

Position	a	Label	in	the	fourth	column	of	the	first	row	and	add	10	pixels	of	padding
to	its	left	and	right
label3.grid(row	=	1,	column	=	4,	padx	=	10)

The	grid	layout	manager’s	rowspan	and	columnspan	properties	work	like	the	HTML	rowspan
and	colspan	table	cell	attributes.

Position	a	Label	in	the	fifth	column	of	the	first	row	and	add	10	pixels	of	padding
to	its	left	and	right
label4.grid(row	=	1,	column	=	5,	padx	=	10)

Position	a	Label	in	the	sixth	column	of	the	first	row	and	add	10	pixels	of	padding
to	its	left	and	right
label5.grid(row	=	1,	column	=	6,	padx	=	10)

Position	a	Label	in	the	seventh	column	of	the	first	row	then	add	10	pixels	of
padding	to	the	left	side	of	the	Label	and	20	pixels	of	padding	to	the	right	side	of
the	Label
label6.grid(row	=	1,	column	=	7,	padx	=	(10,	20))

Next,	position	a	Button	in	the	second	column	of	the	second	row	and	have	it	span
across	four	columns
getBtn.grid(row	=	2,	column	=	2,	columnspan	=	4)

Now,	position	a	Button	in	the	sixth	column	of	the	second	row,	and	have	it	span
across	two	columns
resBtn.grid(row	=	2,	column	=	6,	columnspan	=	2)

Save	the	file	then	execute	the	program	–	to	see	the	window	appear	containing	all
the	necessary	widgets	now	arranged	in	your	grid	layout	design

The	window	size	is	automatically	adjusted	to	suit	the	grid	contents	and	the	Button	widgets
are	automatically	centered	in	the	spanned	column	width.

Additional	padding	to	the	right	of	the	Label	in	the	final	column	of	the	first	row	extends	the
window	width	to	simply	create	a	small	right-hand	margin	area.

The	Buttons	will	expand	to	fit	static	text	that	will	appear	on	each	Button	face	–	specified
in	the	next	stage.

Assigning	static	properties
Having	arranged	all	the	necessary	widgets	in	a	grid	layout,	on	the	previous	page,	you	can
now	assign	static	values	to	the	widgets.	These	values	will	not	change	during	execution	of
the	program.

Modify	the	program	on	the	previous	page	by	inserting	a	new	section	just	before
the	final	loop	statement,	which	begins	with	a	statement	specifying	a	window	title
#	Static	Properties:

window.title(‘Lotto	Number	Picker’)

lotto(static).py

Next,	add	a	statement	to	prevent	the	user	resizing	the	window	along	both	the	X
axis	and	the	Y	axis	–	this	will	disable	the	window’s	“resize”	button
window.resizable(0,	0)

Now,	add	a	statement	to	specify	text	to	appear	on	the	face	of	the	first	Button
widget
getBtn.configure(text	=	‘Get	My	Lucky	Numbers’)

Then,	add	a	statement	to	specify	text	to	appear	on	the	face	of	the	second	Button
widget
resBtn.configure(text	=	‘Reset’)

Save	the	file	then	execute	the	program	–	to	see	the	window	now	has	a	title,	its
resize	button	is	disabled,	and	the	buttons	have	now	been	resized	to	suit	their	text

The	widget’s	configure()	method	allows	properties	to	be	subsequently	added	or	modified
after	they	have	been	created.

Initializing	dynamic	properties
Having	specified	values	for	static	properties,	on	the	facing	page,	initial	values	can	now	be
specified	for	those	properties	whose	values	will	change	dynamically	during	execution	of
the	program.

Modify	the	program	on	the	facing	page	by	inserting	another	new	section	just
before	the	final	loop	statement,	which	specifies	that	each	small	empty	Label
should	initially	display	an	ellipsis
#	Initial	Properties:

label1.configure(text	=	‘…’)

label2.configure(text	=	‘…’)

label3.configure(text	=	‘…’)

label4.configure(text	=	‘…’)

label5.configure(text	=	‘…’)

label6.configure(text	=	‘…’)

lotto(initial).py

Next,	add	a	statement	to	specify	that	the	second	Button	widget	should	initially	be
disabled
resBtn.configure(state	=	DISABLED)

Save	the	file	then	execute	the	program	–	to	see	each	small	Label	now	displays	an
ellipsis	and	that	the	“Reset”	Button	has	been	disabled

Button	states	are	recognized	by	tkinter	constants	of	DISABLED	(off),	NORMAL	(on),	or
ACTIVE	(pressed).

Adding	runtime	functionality
Having	created	code	to	initialize	dynamic	properties,	on	the	previous	page,	you	can	now
add	runtime	functionality	to	respond	to	clicks	on	the	Button	widgets	during	execution	of
the	program.

Modify	the	program	on	the	previous	page	by	inserting	one	more	new	sections	just
before	the	final	loop	statement,	which	begins	by	making	the	sample()	function
available	from	the	“random”	module
#	Dynamic	Properties:

from	random	import	sample

lotto.py

Next,	define	a	function	that	generates	and	assigns	six	unique	random	numbers	to
the	small	Labels	and	reverses	the	state	of	both	Buttons
def	pick()	:

nums	=	sample(range(1,	49),	6)
label1.configure(text	=	nums[0])
label2.configure(text	=	nums[1])
label3.configure(text	=	nums[2])
label4.configure(text	=	nums[3])
label5.configure(text	=	nums[4])
label6.configure(text	=	nums[5])
getBtn.configure(state	=	DISABLED)
resBtn.configure(state	=	NORMAL)

Now,	define	a	function	to	display	an	ellipsis	on	each	small	Label	and	revert	both
Buttons	to	their	initial	states
def	reset()	:

label1.configure(text	=	‘…’)
label2.configure(text	=	‘…’)
label3.configure(text	=	‘…’)
label4.configure(text	=	‘…’)
label5.configure(text	=	‘…’)
label6.configure(text	=	‘…’)
getBtn.configure(state	=	NORMAL)
resBtn.configure(state	=	DISABLED)

Then,	add	statements	to	nominate	the	relevant	function	to	be	called	when	each
Button	is	pressed	by	the	user

getBtn.configure(command	=	pick)

resBtn.configure(command	=	reset)

These	steps	provide	comparable	functionality	to	that	of	the	console	application	here.

Finally,	save	the	file	–	the	complete	program	should	look	like	that	shown	opposite

It	is	convention	to	place	all	import	statements	at	the	start	of	the	script	but	they	can	appear
anywhere,	as	listed	here.

The	color	highlighting	in	the	IDLE	editor	differs	from	that	used	throughout	this	book	–	but
the	code	precisely	compares	to	that	listed	in	this	chapter’s	steps.

Testing	the	program
Having	worked	through	the	program	plan,	on	the	previous	pages,	the	widgets	needed	and
functionality	required	have	now	been	added	to	the	application	–	so	it’s	ready	to	be	tested.

Launch	the	application	and	examine	its	initial	appearance

Static	text	appears	on	the	window	title	bar	and	on	the	Button	widgets,	the	window’s	resize
button	is	disabled,	the	small	Labels	contain	their	initial	ellipsis	text	values,	and	the
“Reset”	button	is	in	its	initial	disabled	state.

Next,	click	the	“Get	My	Lucky	Numbers”	Button	widget	–	to	execute	all	the
statements	within	the	pick()	function

No	number	is	repeated	in	any	series	because	the	random	module’s	sample()	function	returns
a	set	of	unique	random	integers.

A	series	of	numbers	within	the	desired	range	is	displayed	and	the	Button	states	have
changed	as	required	–	a	further	series	of	numbers	cannot	be	generated	until	the	application
has	been	reset.

Make	a	note	of	the	numbers	generated	in	this	first	series	for	comparison	later

Click	the	“Reset”	Button	widget	–	to	execute	all	the	statements	within	the	reset()
function	and	see	the	application	resume	its	initial	appearance	as	required

Click	the	“Get	My	Lucky	Numbers”	Button	widget	again	–	to	execute	its	pick()
function	again	and	confirm	that	the	new	series	of	numbers	differ	from	the	first
series

Finally,	restart	the	application	and	click	the	“Get	My	Lucky	Numbers”	Button
widget	once	more	–	and	confirm	that	this	first	series	numbers	are	different	to	those
noted	in	the	first	series	when	the	application	last	ran

The	series	of	generated	numbers	are	not	repeated	each	time	the	application	gets	launched
because	the	random	generator	is	seeded	by	the	current	system	time	–	which	is	different
each	time	the	generator	gets	called	upon.

Freezing	the	program
Having	satisfactorily	tested	the	application,	on	the	previous	page,	you	may	wish	to
distribute	it	for	use	on	other	computers	where	the	Python	interpreter	has	not	necessarily
been	installed.	To	ensure	the	application	will	execute	successfully	without	the	Python
interpreter,	your	program	files	can	be	“frozen”	into	a	bundle	that	includes	an	executable
(.exe)	file.

As	the	default	base	is	set	for	a	console	application	graphical	applications	require	a
different	base	on	Windows.

The	“cx_Freeze”	tool	is	a	free	set	of	scripts	and	modules	for	freezing	Python	scripts	into
executables	for	Windows,	Mac,	or	Linux.	This	tool	is	cross-platform	and	should	work	on
any	platform	that	Python	itself	works	on.	It	can	be	freely	downloaded	from	http://cx-
freeze.sourceforge.net	where	MSI	installers	are	available	for	Windows	and	RPM	installers	for
Linux,	both	for	32	bit	and	64	bit	systems	–	simply	choose	the	appropriate	version	for	your
system	then	download	it	and	run	the	installer.

The	cx_Freeze	tool	uses	Python’s	“distutils”	package	and	this	requires	a	setup	script	to
describe	your	module	distribution	so	it	will	bundle	appropriate	support	for	your
application.	The	setup	script	is	traditionally	named	setup.py	and	consists	mainly	of	a	call	to
a	cx_Freeze	setup()	function	–	supplying	information	as	argument	pairs.	This	specifies	any
required	build	options,	such	as	image	files	or	modules	to	be	included,	and	identifies	the
executable	script	and	system	platform	type.	For	example,	the	setup	script	for	the
application	developed	throughout	this	chapter	must	include	the	logo	image	file	logo.gif	and
specify	the	final	script	named	lotto.py	as	the	executable	script.

A	setup	script	can	be	executed	with	the	command	build	to	create	a	sub-directory	named
“build”	containing	a	further	sub-directory	named	starting	with	the	letters	“exe.”	and
ending	with	the	typical	identifier	for	your	system,	such	as	“win32-3.3”.

Launch	a	plain	text	editor	then	begin	a	Python	setup	script	by	making	available
the	“sys”	module	and	items	from	the	“cx_Freeze”	module
import	sys
from	cx_Freeze	import	setup,	Executable

setup.py

Next,	add	statements	to	identify	the	base	platform	in	use

base	=	None
if	sys.platform	==	‘win32’	:	base	=	‘Win32GUI’

Now,	add	a	statement	listing	the	include	options

http://cx-freeze.sourceforge.net

opts	=	{	‘include_files’	:	[‘logo.gif’]	,	‘includes’	:	[‘re’]	}

Finally,	add	a	call	to	the	setup()	function	passing	all	information	as	arguments

setup(name	=	‘Lotto’	,

version	=	‘1.0’	,

description	=	‘Lottery	Number	Picker’	,
author	=	‘Mike	McGrath’	,

options	=	{	‘build_exe’	:	opts	}	,

executables	=	[Executable(‘lotto.py’,	base=	base)])

Save	the	file	alongside	the	application	files	then	run	the	setup	script	to	build	the
distributable	bundle

Wait	until	the	build	process	creates	a	bundle	of	files	in	the	“build”	sub-directory
then	copy	the	whole	bundle	onto	portable	media,	such	as	a	USB	flash	drive

Now,	copy	the	bundle	onto	another	computer	where	Python	may	not	be	present
and	run	the	executable	file	–	to	see	the	application	launch

lotto.exe

The	‘re’	(regular	expressions)	module	is	manually	included	as	a	build	option	here,	only
because	at	the	time	of	writing	cx_Freeze	fails	to	include	it	automatically.

Deploying	the	application
Applications	developed	in	the	Python	language	can	be	deployed	on	Windows	systems
using	the	cx_Freeze	tool,	introduced	on	the	previous	page,	to	create	a	simple	MSI	installer.

This	employs	exactly	the	same	setup	script	as	that	used	to	build	a	distributable	bundle	of
files	–	listed	in	the	previous	example	and	illustrated	below:

On	Mac	OS	X,	you	can	use	bdist_dmg	to	build	a	Mac	disk	image.

The	setup	script	can	be	executed	with	the	command	bdist_msi,	rather	than	a	build	command,
to	create	a	sub-directory	called	“dist”	containing	an	MSI	installer	for	your	application.	The
installer	name	comprises	the	application	name	and	version	then	your	system	version.

Save	the	setup	script	alongside	the	application	files	then	run	the	script	to	create	the
Windows	installer

Wait	until	the	process	creates	the	installer	in	a	“dist”	sub-directory	then	copy	the
installer	onto	portable	media,	such	as	a	USB	flash	drive

You	can	discover	more	on	cx_Freeze	online	at	cx_freeze.readthedocs.org

Now,	copy	the	installer	onto	another	Windows	computer	where	Python	may	not	be
present	and	run	the	installer

Lotto-1.0-win32.msi

http://cx_freeze.readthedocs.org/

Then,	select	an	installation	location,	or	accept	the	suggested	default	location

When	the	installer	has	finished	copying	files,	navigate	to	your	chosen	installation
location	and	run	the	executable	file	–	to	see	the	application	launch

lotto.exe

Summary
• The	standard	Python	library	has	a	random	module	that	provides	functions	to	generate

pseudo-random	numbers

• A	pseudo-random	floating-point	number	from	0.0	to	1.0	can	be	generated	by	the	random
module’s	random()	function

• Multiple	unique	random	integers	within	a	given	range	can	be	generated	by	the	random
module’s	sample()	function

• A	program	plan	should	define	the	program’s	purpose,	required	functionality,	and
interface	widgets	needed

• In	designing	a	program	interface,	the	grid()	layout	manager	positions	widgets	in	rows
and	columns

• Static	properties	do	not	change	during	execution	of	a	program

• Dynamic	properties	do	change	during	execution	of	a	program	using	runtime
functionality	to	respond	to	a	user	action

• Upon	completion,	a	program	should	be	tested	to	ensure	it	performs	as	expected	in
every	respect

• Program	files	can	be	“frozen”	into	a	bundle	for	distribution	to	other	computers	where
the	Python	interpreter	is	not	present

• The	cx_Freeze	tool	uses	Python’s	“disutils”	package	to	freeze	programs	into
executables	for	Windows,	Mac,	or	Linux

• A	setup	script	describes	your	module	distribution	so	cx_Freeze	will	bundle	appropriate
support	for	the	application

• When	a	setup	script	is	executed	with	the	build	command,	a	distribution	bundle	is
created	that	includes	an	executable	file

• Applications	can	be	deployed	on	Windows	systems	using	the	cx_Freeze	tool	to	create
a	simple	installer

• When	a	setup	script	is	executed	with	the	bdist_msi	command,	an	MSI	installer	is	created
that	will	copy	the	distribution	bundle	onto	the	host	computer,	including	an	executable
file

	Title
	Copyright
	Contents
	Preface
	1 Getting started
	Introducing Python
	Installing Python on Windows
	Installing Python on Linux
	Meeting the interpreter
	Writing your first program
	Employing variables
	Obtaining user input
	Correcting errors
	Summary

	2 Performing operations
	Doing arithmetic
	Assigning values
	Comparing values
	Assessing logic
	Examining conditions
	Setting precedence
	Casting data types
	Manipulating bits
	Summary

	3 Making statements
	Writing lists
	Manipulating lists
	Restricting lists
	Associating list elements
	Branching with if
	Looping while true
	Looping over items
	Breaking out of loops
	Summary

	4 Defining functions
	Understanding scope
	Supplying arguments
	Returning values
	Using callbacks
	Adding placeholders
	Producing generators
	Handling exceptions
	Debugging assertions
	Summary

	5 Importing modules
	Storing functions
	Owning function names
	Interrogating the system
	Performing mathematics
	Calculating decimals
	Telling the time
	Running a timer
	Matching patterns
	Summary

	6 Managing strings
	Manipulating strings
	Formatting strings
	Modifying strings
	Converting strings
	Accessing files
	Reading and writing files
	Updating file strings
	Pickling data
	Summary

	7 Programming objects
	Encapsulating data
	Creating instance objects
	Addressing class attributes
	Examining built-in attributes
	Collecting garbage
	Inheriting features
	Overriding base methods
	Harnessing polymorphism
	Summary

	8 Processing requests
	Sending responses
	Handling values
	Submitting forms
	Providing text areas
	Checking boxes
	Choosing radio buttons
	Selecting options
	Uploading files
	Summary

	9 Building interfaces
	Launching a window
	Responding to buttons
	Displaying messages
	Gathering entries
	Listing options
	Polling radio buttons
	Checking boxes
	Adding images
	Summary

	10 Developing applications
	Generating random numbers
	Planning the program
	Designing the interface
	Assigning static properties
	Initializing dynamic properties
	Adding runtime functionality
	Testing the program
	Freezing the program
	Deploying the application
	Summary

	Back Cover

