
Chapman & Hall/CRC
TEXTBOOKS IN COMPUTING

K14528

H
erm

an

A FUNCTIONAL START
TO COMPUTING

WITH

A
 F

U
N

C
T

IO
N

A
L

 S
T

A
R

T
 T

O

C
O

M
P

U
T

IN
G

 W
IT

H
 P

Y
T

H
O

N
Ted Herman

Computer Science/Computer Engineering/Computing

A FUNCTIONAL START TO
COMPUTING WITH PYTHON

A Functional Start to Computing with Python enables you to quickly learn
computing without having to use loops, variables, and object abstractions
at the start. Requiring no prior programming experience, the book draws on
Python’s flexible data types and operations as well as its capacity for defining
new functions.

Taking an accessible, interactive approach to computing, the book addresses
more difficult concepts and abstractions later in the text. The author presents
ample explanations of data types, operators, and expressions. He also describes
comprehensions—the powerful specifications of lists and dictionaries—before
introducing loops and variables. This approach helps you better understand
assignment syntax and iteration by giving you a mental model of sophisticated
data first.

Along with the specifics of Python, the text covers important concepts of
computing, including software engineering motivation, algorithms behind
syntax rules, advanced functional programming ideas, and, briefly, finite state
machines. The book’s companion Web site provides many supplementary
materials.

Features
• Introduces data structure operations, including textual/string computing,

early in the text
• Integrates core computer science ideas, such as self-referencing

structures, aliases, and finite state machines
• Covers recursion in both functional- and imperative-style Python
• Reinforces your understanding of unit testing through interactive

programming exercises, with selected answers in an appendix

PYTHON

K14528_Cover.indd 1 6/11/13 9:21 AM

i
i

“K14528˙FM” — 2013/6/10 — 16:24 i
i

i
i

i
i

A FUNCTIONAL START
TO COMPUTING

WITH

PYTHON

i
i

“K14528˙FM” — 2013/6/10 — 16:24 i
i

i
i

i
i

CHAPMAN & HALL/CRC
TEXTBOOKS IN COMPUTING

Series Editors

Published Titles

Pascal Hitzler, Markus Krötzsch, and Sebastian Rudolph,
Foundations of Semantic Web Technologies

Uvais Qidwai and C.H. Chen, Digital Image Processing: An Algorithmic
Approach with MATLAB®

Henrik Bærbak Christensen, Flexible, Reliable Software: Using Patterns
and Agile Development

John S. Conery, Explorations in Computing: An Introduction to
Computer Science

Lisa C. Kaczmarczyk, Computers and Society: Computing for Good

Mark J. Johnson, A Concise Introduction to Programming in Python

Paul Anderson, Web 2.0 and Beyond: Principles and Technologies

Henry M. Walker, The Tao of Computing, Second Edition

Mark C. Lewis, Introduction to the Art of Programming Using Scala

Ted Herman, A Functional Start to Computing with Python

John Impagliazzo
Professor Emeritus, Hofstra University

Andrew McGettrick
Department of Computer
and Information Sciences
University of Strathclyde

Aims and Scope

This series covers traditional areas of computing, as well as related technical areas, such as
software engineering, artificial intelligence, computer engineering, information systems, and
information technology. The series will accommodate textbooks for undergraduate and gradu-
ate students, generally adhering to worldwide curriculum standards from professional societ-
ies. The editors wish to encourage new and imaginative ideas and proposals, and are keen to
help and encourage new authors. The editors welcome proposals that: provide groundbreaking
and imaginative perspectives on aspects of computing; present topics in a new and exciting
context; open up opportunities for emerging areas, such as multi-media, security, and mobile
systems; capture new developments and applications in emerging fields of computing; and
address topics that provide support for computing, such as mathematics, statistics, life and
physical sciences, and business.

i
i

“K14528˙FM” — 2013/6/10 — 16:24 i
i

i
i

i
i

Chapman & Hall/CRC
TEXTBOOKS IN COMPUTING

A FUNCTIONAL START
TO COMPUTING

WITH

Ted Herman

PYTHON

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2014 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20130422

International Standard Book Number-13: 978-1-4665-0457-8 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to
publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials
or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material repro-
duced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any
form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming,
and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copy-
right.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400.
CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been
granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identifica-
tion and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Contents

Preface xiii

I Motivation and Background 1

1 Inspirations of Computing 3

2 Preview of Computing with Python 7
Spiral Drawing 7
Reports 10
Goal 11

3 General Landscape of Computing Languages 13
Background Skills 14
Learning a Language 15

4 Python Setup 17
Distributions 17
Dialects 18
Calculator Mode 19
iPython 20
Running a Script 20
Microsoft Windows 21
Integrated Development Environments 21
Web Browsers 22

II Functional-Style Python 23

5 Types 25
It’s All 0 and 1 26
Programming Language Types 27
Primitives: Numbers, Characters, Booleans 29
Sequences: Tuples, Lists, Strings, Dictionaries 31
Type Queries 35
Yet More Types 35
Terminology Review 36
Exercises 37

Interlude: An Inventory Problem 39

v

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

vi CONTENTS

6 Operators 41
Numeric: Float and Integer Arithmetic 42
Integer Operators 43
Comparison: Numeric, General, and Type 44
General Comparison 44
Type Comparison 45
Boolean Operators: And, Or, Not 45
Sequence Operators: Concatenation and Containment 46
Hidden Operators: Function Application, Indexing, Lookup 47
Method Calls 50
Terminology Review 50
Exercises 51

7 Expressions 55
Sequential Reduction 56
Well-Formed Expressions 57
Parentheses and Priorities 57
Rules of Evaluation 59
Names for Values 61
Terminology Review 62
Exercises 63

Interlude: Puzzles with Expressions 67

8 Printing 69
Basic Print 70
String Interpretation 72
String Trivia 73
Terminology Review 75
Exercises 77

9 Functions I 81
Function Syntax 82
Head, Body, Parameters, and Arguments 85
Functions as Commands 86
Terminology Review 88
Exercises 89

10 Functions II 93
Parameters: Binding by Position 95
Arguments by Keywords 96
Default Parameters by Keyword 96
Return and None 98
Using Function Calls and Names 98
Python’s Built-In Functions 100
Type Conversion 100
Namespace Queries 101
Function Composition 102
Local Functions 102
Terminology Review 103
Exercises 103

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

CONTENTS vii

Interlude: Table Lookup Functions 107

Exercises: Unit Testing and Online Supplement 109

Test Suites 110
Python Doctest 112
Separating Test from Function 114
Going Further 114
Exercises 117

11 Conditional Logic 119
Control Flow Using If 121
Nested If 123
Levels and Statement Blocks 124
Else and Elif 125
Example: Reacting to Type Comparison 127
Terminology Review 128
Exercises 129

12 Slice, Split, Join 133
Slices of Sequences, Slices Are Sequences 134
Splitting Strings 136
Strings to Words 138
Joining Lists of Words 138
Other Handy String Methods 139
Method on Method 139
Terminology Review 140
Exercises 141

13 Comprehensions 143
List Functions: max, min, sum, all, any, zip 144
List Functions: filter, map, reduce 145
Streams, Generators, and Iterators 147
Range Function/Generator 148
List Comprehensions 149
Python Generators 153
Dictionary Comprehensions 154
Other Comprehensions 154
Multiline Expressions 155
Terminology Review 156
Exercises 157

14 Functional Patterns 159
Tail Recursion 159
Comprehension Patterns 163
Creating Structures 164
Searching and Filtering 165
Operator, Functools, Itertools 166
Trees 168
Regular Expressions 170

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

viii CONTENTS

Terminology Review 171
Exercises 173

Case Study: Tic-Tac-Toe 176

III Imperative-Style Python 179

15 Names for Data 181
Constants 182
Variables 184
Assignment Syntax 186
List and Dictionary Item Assignment 188
Deleting Variables and Items 189
Where Assignment Goes 190
Terminology Review 190
Exercises 191

16 Functions and Variables 193
Scope of Variables 193
Variables in Functions 194
Local and Global Scope 196
Default Global 197
Terminology Review 198
Exercises 199

17 Mutation 203
Mutation and Assignment 204
Slice Assignment 204
Mutation in Functions 206
Aliases 207
Mutation and Augmented Assignment 208
Items as References 209
Terminology Review 210
Exercises 211

18 Modules 213
Import Statements 214
Selective Import 214
Namespaces 215
Name Queries 216
Module Help 217
Python Standard Library 217
Module Placement 218
Learning More 219
The World of Packages 219
Treasure 221
Exercises 223

19 Repetition 225
Repeating Statements 226
For-Loops with Variables 227

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

CONTENTS ix

Loops on Condition: While Statements 229
Feedback Control 231
Recursion 233
Terminology Review 235
Exercises 235

Interlude: Game Cycle 239

20 Documentation 245
Comments in Programs 246
Motivations for Documentation 248
Cruft, Clarity, and Style 250
The Pass Statement 251
Pseudocode 252
Terminology Review 253
Exercises 253

21 Debugging 257
Kinds of Bugs 257
Methods of Debugging 259
Assertions and Testing 262

22 Accumulation Loop Patterns 267
Block Repetition 268
The Accumulation Pattern 270
Going Further 276
Terminology Review 277
Exercises 277

23 Search Loop Patterns 279
Sequential Search 279
Break and Continue 280
Nested Loops 283
Recursive Data 284
Terminology Review 287
Exercises 287

24 Drawing 289
Turtle Drawing 289
Drawing by Shapes 291
Graphing Data 292

Interlude: Animation Design 293

25 Input and Output 295
Console and Keyboard Input 295
Input Conversion and Validation 297
Output Formatting 299
Reading Files 302
Writing to Files 308
Terminology Review 311
Exercises 313

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

x CONTENTS

Interlude: File Indexing 315

26 Network Programs 323
Reading a Web Page 323
The Try and Except Statements 324
Catching Errors 325
Catching Network Errors 328
Making a Web Server 329
Client and Server 331
Terminology Review 333
Exercises 333

27 Objects, Classes, and Inheritance 335
Classes, Instances, Objects, Attributes 336
Methods Are Functions 337
The Init Method 338
Subclasses 340
Period Syntax 340
Example: Date/Time Objects 341
Example: Regular Expressions 342
Example: HTML Processing 343
Terminology Review 344
Exercises 345

Interlude: Signal Processing 347

28 Randomness, Time, and System Modules 351
The Random Module 351
The Time Module 355
The Sys Module 356
The OS Module 356
Terminology Review 358
Exercises 359

29 Graphical User Interfaces 361
GUI Concepts: Widgets, Layouts, Actions 362
Programming with a GUI Framework 364
The Tk GUI 364
Frame and Label 365
Buttons 367
Terminology Review 379
Exercises 381

IV Appendices 383

30 Advanced Topics 385
Decorators 385
Python Magic 386
Platforms and Virtual Machines 387
Scripts as Commands 387
Trivia 388

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

CONTENTS xi

31 Solutions to ✰-Exercises 389

32 Reference Tables 399

Index 411

This page intentionally left blankThis page intentionally left blank

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Preface

ACM’s 2001 CurriculumGuidelines recognize six directions to introducing computer science:
imperative first, objects first, functional first, breadth first, algorithms first, and hardware
first. As Python has taken a prominent position as an introductory programming language,
the question of how to use it in the functional first direction becomes interesting. Recently,
for example, the classic approach of Abelson, Sussman, and Sussman’s Structure and Inter-
pretation of Computer Programs (McGraw-Hill, 1984), originally targeted to Scheme, has
been adapted to Python.

My interest in using Python, yet preferring a functional first approach, is based on
observing what beginners find difficult.

(1) Beginners find assignment to variables troublesome. There is increased cog-
nitive load when distinguishing between a symbol x defined as 3, and later x
apparently equaling 103 in the same, brief program. True functional program-
ming avoids this situation. The first half of this book omits all assignment state-
ments, except for one-time definitions of variables in functions. (Incidentally,
complaints about Python’s dynamic typing become subdued in programs that
omit assignment and mutation.)

(2) Control structures, particularly iteration and exception handling, also con-
fuse beginners. The introduction of control structures is delayed until the second
half of the book, which covers imperative programming.

Sticking to life without assignment or loops might seem too constraining to be interesting
to students. To be sure, this approach does ask for more patience than a “sink or swim”
approach to learning how to program. Fortunately, Python has features that address the
functional style. Students usually find working with expressions, manipulating data struc-
tures with operators, and simple conditional logic natural enough to be quickly engaged
in writing their own functions. String operations of concatenation, slicing, splitting, and
joining are appealing material. While the abstractions of more advanced functionals and
comprehension syntax are more difficult for beginners, they have the advantage of challeng-
ing students who previously have only had exposure to imperative and operational styles
of programming.

The second half of the book follows a traditional approach: assignment and iteration en-
sures that the reader sees the standard notion of imperative loops. Along the way, there is
material about common patterns and language idioms, and topics of modules, files, network-
ing, and simple system interfaces that provide motivation. Although discussion of classes
and objects is put off until near the end of the book, many of the concepts are implicitly
put into action when data types, methods, and variable aliasing are explained. The student
is well prepared at the point where object and class terminology appears.

Throughout the book, I have tried to inculcate important concepts of computing along
with the specifics of Python. Indeed, if you are looking for a book that teaches just Python
as quickly as possible, there are hundreds of texts now on the market. The many boxes and
examples stress such things as software engineering motivation, algorithms behind the syn-
tax rules, some advanced functional programming ideas, and there is even a brief exposure
to finite state machines.

xiii

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

xiv Preface

Early reviewers of the book noted that some decisions will be uncomfortable: working
with files and graphics comes late; the many attractive libraries and potential for real-life
problem solving is delayed by the functional first approach. For many readers, it may be
worth skipping chapters and looking ahead to find these techniques, even if they are not
fully understood. The estimated difficulty of the chapters is uneven by design. On a scale
from 1 to 8, this graph estimates the technical difficulty of the material from each chapter.

C
h
1
0

C
h
1
3

C
h
1
4

C
h
1
9

C
h
2
6

C
h
2
7

Chapter Number

0

1

2

3

4

5

6

7

8

9

E
s
t.

T

e
c
h
n
ic

a
l
H

a
rd

n
e
s
s

Difficulty by Chapter

The graph labels more difficult chapters on the x-axis. Chapter 10 describes some of the
interesting, but likely unfamiliar ways that Python treats function parameters and argu-
ments. Chapter 13 introduces list comprehensions, followed by Chapter 14 that goes into
more advanced functional programming patterns; Chapter 14 could well be skipped by non-
avid readers. In the imperative half of the book, Chapter 19, which introduces iteration,
again becomes more difficult, and the two later difficult chapters are 26 and 27, because
they address exception handling, classes, and objects.

Companion online support for this book is found at functionalfirstpython.com,
which provides flash cards, a simple interactive Python tracer, software modules, and unit
tests (effectively, programming puzzles). Selected exercises in the chapters, annotated with
✰, have answers in the Appendix. In the context of sections of chapters, associated online
material is indicated by the arrow/web annotation shown to the right. ➪ web

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Part I

Motivation and Background

1

This page intentionally left blankThis page intentionally left blank

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Chapter 1: Inspirations of Computing

The discovery of music recording was a transformative event in human history. Here was an
invention that almost everyone instantly desired. Recorded music can be enjoyed by people
who cannot read or write, who cannot themselves play an instrument or sing. It is hard to
look back on the first crude recording technologies with their scratchy noises and wobbly
playback and understand how people could be satisfied. An amazing accumulation of clever
technology has improved the quality of recording and playback to a remarkable extent.
Even in the early days, engineers worked hard to reduce noise and ensure good fidelity in
reproducing original sound.

In the middle of the last century, magnetic tape became a preferred medium for record-
ing. This medium gives an engineer more options to overcome defects in what has been
recorded. A good engineer may be able to cut the tape, splice in part of another recording,
and use other tricks of modification. If some piece of equipment fell during a recording
session, a recording engineer might even be able to remove the sound of the accident, so
the listener would never know. More challenging are live recording sessions in front of an
audience. The placement of microphones, the sound levels, and mitigating audience noise
become problematic. Another problem during live recording can be that performers (espe-
cially in rock venues) might not be able to hear themselves singing; a singer could well miss a
note, sing slightly off-key, yet be unaware of the mistake. This leaves the recording engineer
with another problem: can the recording be tweaked so that off-key notes are transformed
into the proper pitch? It is not so easy. You can speed up the tape to raise the pitch, but
that changes the timing. Eventually, with hard work and long hours of trying many things,
recording engineers found tricks to overcome the problem of sour notes.

Arguably the discovery with the greatest impact in recent history of recordings is dig-
ital technology. By converting the electronic signals from microphones to digital form, the
recordings can be stored in highly efficient packages, like MP3s and other compressed for-
mats. Further, the playback and recording devices get smaller and cheaper. Relating back
to how engineers improve recording quality, the digital formats can be manipulated in many
new ways with far less laborious processes. When this technology first became widespread,
recording engineers were somewhat secretive about how they improved recordings. A new
technique automated the work of correcting the pitch of a singer. The magic was due to
a proprietary product called Auto-Tune. For some years the public was kept in the dark
about the existence of Auto-Tune. Then, in 1998, a hit song by Cher exploited and even
emphasized the use of Auto-Tune, and it was no secret. What used to be a trick of the trade
became widely known to the public.

The story of how Auto-Tune came into existence is one of those surprising sequences of
connections that link up, as happens sometimes in the history of innovation. Exploring for
oil is now an advanced scientific enterprise, drawing on satellite images, geological research,
and measuring seismic reaction to low-frequency vibration in exploratory prospects. The
study of vibration is essentially based on acoustic principles, which also apply to the tones
of musical instruments. An engineer working at Exxon noticed a connection between the
signal processing of sound in oil exploration and the detection of proper pitch in music.
Engineering principles used for classifying and removing noise from shock waves during
exploratory tests could also be used to reshape sound waves, thus correcting the pitch of
off-key notes. This observation eventually resulted, with lots of hard work solving other
problems, in Auto-Tune.

After Auto-Tune became more widely known, and accepted by at least some listeners,
performers started using it openly, more often, and some would say, more creatively. Rap

3

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

4 A Functional Start to Computing with Python

artist T-Pain used Auto-Tune continuously in performances. Used heavily, Auto-Tune gives
the voice clipped sound, with instant transition between notes that can resemble yodeling.
The hip-hop group Black Eyed Peas has cultivated this sound, selectively. Other performers
came under the influence of the “new sound” of Auto-Tune, to the extent that it became
something to emulate even without using Auto-Tune itself. Thus, we have a strange circle
of development intertwining technology and popular culture, which appears to be a theme
in other areas of modern life.

✰ ✰ ✰

Tracking athletic performance and ranking athletes in different ways has become an industry.
It is not just the records of times for track athletes and swimmers, nor are sports fans content
with counting strings of victories. Now fantasy sports leagues are million dollar business
communities, which track the numbers, events, and achievements of players in new ways.
Where did all of this originate? Perhaps the roots go to the motivations of conversation.
There is an old saying that all conversation is either bragging, complaining, or gossip (who
did what to whom). Whatever the reason, fans of sports follow the tabulations of the teams
and their players with enthusiasm.

In America we can credit baseball for the earliest, large scale publication of numbers
and records. As early as 1859 journalists started counting various events on the playing
field, recording the number of errors, the batting average over the course of a season, and
RBI (runs batted in). The event counts, averages, and other numbers became part of the
sports news stream, which fans followed, making it easy for them to identify rising stars in
baseball. Players with the best records draw an audience. Teams compete to get the best
players—team managers also read the papers. The rich teams have sufficient budgets to
buy talent from the poorer teams, leading to fame and fortune for players with the best
individual statistics. Another way that teams obtain talent is by shrewdly selecting talent,
by drafting the right combination of players and cultivating their skills in minor leagues.

The colorful history of baseball and the lore of draft picks, trades, rule changes, and
scheduling was for many decades a guild where wisdom was passed down through sto-
rytelling. Somewhere during the 1970s, the question of baseball statistics was revisited,
questioning whether the right sort of events were being counted. Trade publications began
tracking more numbers. Out of the numbers people tried to find correlations between player
and team statistics and winning games. The thinking is that if a model can be found which
accurately predicts winning on the basis of event counts, like number of walks, number of
hits, and so on, then players and managers will know what counts most toward winning
games. Even if this prediction is only accurate to a reasonable percentage, it might still win
out over the course of a long season.

Two decades later, in the 1990s, a few general managers with some training in sci-
entific methodology proposed taking the statistics further. The conjecture was that the
stories passed down among coaches, scouts, and players about talent and strategy were not
grounded in statistical knowledge. To test this hypothesis, the manager of the Oakland A’s
based the selection of players more rigorously and with finer levels of statistics than any
team had done before. They were up against a major disadvantage: the budget they had
for players was less than a third of the New York Yankees. In spite of being a poor team,
the team followed decisions based on a scientific understanding of statistics. The result was
surprising. During the 2000–2002 seasons one of the poorest teams in baseball, the Oak-
land A’s, had one of the most successful winning records.1 A few sports fans are still not
satisfied this new approach is valid, pointing out that the A’s did not win the World Series

1Read Moneyball: The Art of Winning an Unfair Game by Michael Lewis (W. W. Norton, 2003), for
the full story.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Inspirations of Computing 5

(actually, the loss of the Series might be attributed to human error in coaching, which devi-
ated from the strict policy of basing decisions on the statistics). In any case, the success of
Oakland caught the attention of other teams, who began emulating statistics-based decision
techniques of evaluating players, and copied the new strategies for managing and selecting
talent.

✰ ✰ ✰

If you walk toward the city of Chartres you might see across a flat landscape covered in
grain fields a small upright structure in the distance. As you continue walking toward that
structure, it begins to rise above the plain and take form. The geometric form becomes clear
as spires of the great cathedral are seen in more detail. The view of the cathedral growing
up from the plain seems calculated to inspire. The cathedral of Chartres was a pioneering
architectural achievement of its time, the construction spanning several centuries. An un-
told number of anonymous laborers made lasting contributions in building this renowned
masterpiece.

What you do not see looking at the cathedral of Chartres or other impressive buildings
dating to the time (13th to 16th centuries) is the number of failed attempts at similar
construction. Cities competed to have the grandest, tallest, and most impressive churches,
however, construction technology coming out of the dark ages was primitive. Many attempts
to build tall structures, especially ones that had enough windows to light up the interiors,
came to disastrous ends. To be sure, the invention of the flying buttress was a breakthrough
in structural engineering, but the knowledge of how to create successful tall cathedrals
remained more an informal art than a predictable science.

The human desire to push the envelope of daring architecture continues today. Catalogs
of famous buildings of the modern era feature skyscrapers competing for height and for
imaginative design. Other dimensions of competition include innovative materials, unusual
shapes, hidden perspectives, novel use of lighting, and arranging spaces to evoke certain
feelings in a building’s occupants. A prominent example is the Guggenheim Museum in
Bilbao, often cited for the seemingly random use of curves throughout the edifice. More
recent, and on a larger scale, is the Beijing National Stadium, known worldwide from the
2008 Summer Olympics. Sometimes called the “bird’s nest,” the stadium’s construction
exposes structural beams that have the appearance, from a distance, of random sticks. In
the night, when the stadium’s inside is illuminated, a glowing interior can be seen through
the lattice of steel beams.

Construction technology, design methods, and mechanical and civil engineering have
advanced to the point that creating modern buildings is far more reliable (and safer for
construction workers) than were the endeavors of the middle ages. The tension between
what an architect can imagine and what can be built has decreased, though building cost
remains a concern as it was many centuries ago. Modern civilization can realize architecture
that would have been undreamt just a century ago.

✰ ✰ ✰

What is common to the foregoing stories should come as no surprise, given the title of this
book. Each story culminates in technology that depends on software. Andy Hildebrand,
working at Exxon with autocorrelation software, created the basic idea for Auto-Tune.
Billy Beane, in part exploiting the computer analysis of earlier pioneers of Sabremetrics,
led the Oakland A’s to winning seasons. Modern, cutting-edge architecture would not be
possible without packages like Autodesk’s architectural suite of software.

Quietly, computing is fading into the background and fabric of modern society. We take
for granted many technologies based on material science, electromagnetic principles, and

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

6 A Functional Start to Computing with Python

even social conventions with murky origins. Software and computing is becoming another
ubiquitous part of everything. The most common personal computer on the planet is the
phone, which typically has well over a million lines of software code.

So how does it all work? At least to some degree, we should be curious and see what is
behind the technology. Perhaps with a bit of study, you might even find you can do a bit of
programming yourself, and at least have some feel for what is possible, and more important,
what are the pitfalls and limitations of software. This book goes beyond simple lessons on
traditional programming language topics. The aim is to show that computing has scientific
content, and that some design choices are debatable.

Yet, what fundamentally is computing? It seems now to be more than scientific or math-
ematical calculation. The largest consumers of computing are entertainment and commu-
nication industries. In the 1980s, philosopher and scholar Marshall McLuhan reinterpreted
human technologies as extensions and amplifications of ourselves. The wheel, in some sense,
amplifies the foot—it improves our locomotion. McLuhan saw the computer as a “brain am-
plifier.” In fact, a more accurate view would be to identify computing as an extension of the
nervous system. Computing elements are now deeply embedded in aircraft, smart building
infrastructure, vehicles, and appliances. Now sensors of all sorts, pressure, vibration, mo-
tion, light, and temperature are wired up along with computing elements that sense, route
signals, and find patterns of data, as one might expect of an extended nervous system.

As a discipline of study, computing abides by its own precepts and it favors some skills
over others. If you ask a professor of law what one learns in law school, the answer might
well be “to think like a lawyer”; and to become a psychologist is to learn how to think like
a psychologist. So it is with many disciplines, including computing. To gain some inkling
of how computing scientists think, you need to learn a bit of programming. In essence,
programming is about control. What is being controlled are the flows of data, the state of
memory, and possibly the signals leading out to external devices or the signals coming in
from sensing components. In some cases, this kind of control can produce music, interactive
displays, and guide networked conversations among people. Programming is also a kind
of technical self-expression which benefits from creative effort and careful planning. The
doorway to learning about programming is to become somewhat fluent in a programming
language. The main apparent subject of the remaining chapters is a programming language,
Python. It is only one of many computing languages, just as English is only one human
language. The real aim of the book is to encourage new ways of thinking about problem
solving, ways that even so stupid a device as a computer can perform.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Chapter 2: Preview of Computing with Python

Program or Be Programmed

— Douglas Rushkoff

x xx x
Many textbooks about programming plunge into the subject with a simple program, say
one that prints “Hello” three times. Easy enough in Python, it looks like this:

for i in range(3):

print("Hello")

runs with
output

Hello

Hello

Hello

This textbook is different from most other texts: we do not advocate jumping into program-
ming in the usual way. At the end of the chapter, some rationale for the book’s approach
is explained. The value of the preview here is to show how the “code” for programs can
be cryptic, yet parts are understandable. In many cases, the overall logical appearance,
and also seeing the result of what a program does when it runs, conveys the general idea.
Sometimes it is not that difficult to make a few changes here and there, and quickly modify
a program. Many people learn in this way.

Spiral Drawing

Let’s draw a spiral, something like what is shown in the shaded box to the left.
Of course, it is easy to draw a spiral, but to do it well requires some good drawing
skills—or a computer-controlled pen. So, let’s think about writing a program to
draw a spiral.

7

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

8 A Functional Start to Computing with Python

from turtle import *
from math import *

pensize(10)
pencolor("blue")

penup()
goto(20,0)

pendown()
for i in range(1,101):
newangle = 2 * i * pi / 100

goto(20*cos(newangle),
20*sin(newangle))

Nearly everyone faced with a programming task starts with
the same approach: hasn’t this been done before? And if
not, is there something close to what we want that we can
use? These are the same questions that any “maker” asks,
whether a carpenter, landscaper, or chef. Turns out, most
programming systems do have something for drawing a cir-
cle. One such example (easily found through a Web search)
is a Python program to draw a circle, seen to the left in
small print. It is not important to understand every detail
of this program, but it is pretty easy to guess that it means

to “draw” with a blue-colored pen, and it is using trigonometry to make a circle. The num-
bers 100 and 101 in the program effectively split the job of drawing a circle into a hundred
little drawing steps, each tracing around a circle. When the program runs, it makes a circle
something like what you see below. ➪ web

This “circle” is actually composed of a hundred straight lines. Why not
experiment with the program? What would happen if we change the
program to only draw through thirty points out of the hundred? Next,
the program has been changed, replacing 101 with 30, and you can see
the result.

Change 101 to 30 ...

from turtle import *
from math import *

pensize(10)
pencolor("blue")
penup()

goto(20,0)
pendown()

for i in range(1,30):
newangle = 2 * i * pi / 100

goto(20*cos(newangle),
20*sin(newangle))

So reducing the number of lines from 101 to 30 has the expected effect, only a portion of
a circle is drawn. Here, in a moment of inspiration, we imagine how to draw a spiral: draw
a bit of a circle with a small radius, then continue with a larger radius, and so on. These
instructions will “warp” the circle into a spiral. So where is the radius in the program? Is
it 2 or 20? (We already know what the role of 100 is.) The hint is that the first goto puts
the pen at position (20,0), suggesting that the radius is likely 20. The new version of the
program changes things by increasing the radius each time a line is drawn.

from turtle import *

from math import *
pensize(10)
pencolor("blue")

penup()
radius = 20

goto(radius,0)
pendown()

for i in range(1,30):
newangle = 2 * i * pi / 100
goto(radius*cos(newangle),

radius*sin(newangle))
radius = radius + 1

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Preview of Computing with Python 9

You may be able to see how the partial circle has been warped somewhat. But we still
do not have a spiral. The problem is that it is only drawing 30 lines, unlike the original
hundred. In fact, for a spiral, we need to go around several times, to see the spiral effect.
The logic of a hundred lines per 360◦ sweep around remains, however, the number of tiny
lines will increase, say to three hundred. Below, the drawing has been scaled down to fit on
the page.

from turtle import *

from math import *
pensize(10)

pencolor("blue")
penup()
radius = 20

goto(radius,0)
pendown()

for i in range(1,300):
newangle = 2 * i * pi / 100
goto(radius*cos(newangle),

radius*sin(newangle))
radius = radius + 1

➪ web

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

10 A Functional Start to Computing with Python

Reports

Maybe drawing (and especially the trigonometry) are not to your taste, or perhaps the
previous example seems too far from practical purposes. Here is a different kind of task,
similar things often done in networked businesses. A Web site keeps records of what clients
request over the network, in a file that grows throughout each day. Just a few records are
shown here (with lots of data suppressed to keep things simple):

61.135.249.84 - - [27/May/2011:04:44:36 -0500] "GET / HTTP/1.1" 200 2708 "-"

189.85.128.10 - - [27/May/2011:06:51:59 -0500] "GET /favicon.ico HTTP/1.0" 200 904 "-"
207.46.204.231 - - [27/May/2011:06:59:14 -0500] "GET /robots.txt HTTP/1.1" 404 208 "-"

Each record in the file shows a network address (like 207.46.204.231), a date and time
of a client request, and other information. The task is to produce a report showing which
hours of the day had more than a thousand requests for the Web site.

How might such a report be done? The idea is straightforward: go through all the records,
and gradually build up a table of hours and the count of requests for that hour. At the end,
just report those hours where the number of requests were more than one thousand. Here
is the expression of this idea as a Python program:

import urllib

from pprint import *

webpage = urllib.urlopen("http://acme.br/log/current")

hours = { i:0 for i in range(24) }

for line in webpage:

fields = line.split()

timedata = fields[3]

subfields = timedata.split(':')

HH = int(subfields[1])

hours[HH] = hours[HH] + 1

busyhours = { i:hours[i] for i in hours if hours[i]>1000 }

pprint(busyhours)

{8: 4053,

9: 1672,

11: 3150,

12: 1745,

14: 1292,

16: 1102,

17: 1189,

19: 1120,

21: 1358}

One can see from the output of this program shown in the shaded box, that peak hours
for the Web site were eight and eleven (morning). In the program, the location of the Web
site’s file of requests is given as a URL, much as browsers use. You can see the URL on the
third line of the program. Python’s urllib library makes it very easy for programs to read
Web pages. The program’s fourth line creates a table of hours, and the fifth line starts the
description of what is done with each line in the file: each record is split up into fields, the
hour is extracted and the appropriate table entry is updated. In the final two lines of the
program, the hours with counts greater than one thousand are extracted and printed.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Preview of Computing with Python 11

Goal

The goal of computer science is to put itself out of business. Rather than instructing a
computer with all the individual steps of a task in excruciating detail, we should be able to
describe what we want instead of how to do it. Unfortunately, the current state of affairs is
that we are very far away from the computers and software in science fiction movies. The
reality is that we often have to resort to providing detailed, step-by-step precise instructions
in a program.

There are some signs of hope in computing. For certain kinds of databases, there are
natural language interfaces, where we can describe the data needed and the software will
figure out how to get it. Similarly, search engines find results based on text queries, sample
images, or sounds, without demanding that users write programs. In the realm of software
tools, there are some declarative languages that avoid details of how computing steps are
done. Recently there is renewed interest in functional languages (closely related to declar-
ative languages). Some programming difficulties and even bugs can be eliminated using
functional languages. However, declarative and functional languages still do require pro-
grammers to be precise and think through what they want. The current state of the art
remains far from dreams of effortless human-computer interaction.

This text advocates a functional start to learning about computing, even though Python
is not a functional language. The learning technique is simply this: we can begin by learning
those aspects of Python that are in the spirit of functional languages, and then return to
the rest later. This learning technique has advantages:

✔ The initial focus on expressions and operations on data is familiar and intuitive to
most students. Python’s calculator mode encourages experimentation and provides
instant feedback.

✔ Programs build upon functions and structures of data, so that ways of manipulating
data are naturally introduced.

✔ The Python language has many standard functional concepts built-in, which other
mainstream languages (Java, Javascript, C++) do not have, and this simplifies learning.

There are also some disadvantages:

✖ For the impatient, say those who would love to immediately use the PyGame environ-
ment to design games or tinker with graphics, many of the needed parts of Python
are delayed to later chapters. The approach of this book delays gratification.

✖ For those who already know another language like Java, the approach of this book
does not quickly leverage what they already know.

This page intentionally left blankThis page intentionally left blank

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Chapter 3: General Landscape of Computing

Languages

There are people who actually
like programming. I don’t understand why they like programming.
— Rasmus Lerdorf, creator of the PHP Programming Language

Jokes do not usually translate well across languages. What is funny in Swahili may not cause
any laughter in Greek. Come to think of it, even from one person to the next in English, a
joke may not convey humor. Nonetheless, the odds are much worse in getting “funny” to
translate between different languages. Why should this be? The answer may depend on the
particular joke. Puns are very language specific. Also, there are sometimes cultural bases of
jokes which are not part of another language and another culture. And it is not just jokes
that translate poorly. Poetry, stories, even proverbs that hold wisdom might not easily be
restated in another language and have the same effect. People fluent in several languages
sometimes explain that some things are easier to say in one language than another, or that
a particular phrase cannot be exactly translated. What accounts for this?

One radical theory holds that languages have some effect on how people think. If this
were true, then it might indeed be the case that populations speaking Spanish have a
different appreciation for certain phrases than would equivalent groups of English speakers
have for the same, translated phrase. Perhaps some languages make it easier to be witty, and
maybe other languages promote politeness. There is a name for the theory, the Sapir-Worf
Hypothesis. Research on this and similar theories continues. Investigators of such theories
agree that no natural language is intrinsically superior to another. However, speakers of one
language or another do feel special attachment to their native tongues. It is difficult to find
anyone in China who does not feel Chinese is the best language; the same is true in Italy
of Italian, and so on.

Programming languages are artificial creations of a few individuals. As with human
languages, there are many programming languages. Human languages can be classified into
family trees and the evolution of languages can be mapped; the same is roughly true for
programming languages. A big difference between these is the reason why there are so many
languages. For natural languages that humans use, the history of population movement,
wars, nations, and trade routes explains the origins of the different languages. The diversity
and divergence of programming languages is partly explained by historical factors, but a
more fundamental reason for having many programming languages is the need for notation
and conventions that are well suited to application needs. Languages for database queries
can be streamlined for that purpose, whereas those for robotics are specialized to control
mechanics and movement.

Most people acquainted with a personal computer system exhibit the baby duck syn-
drome. Ducklings (and birds generally) bond to the first caregiver they see, usually a par-
ent duck. If the first caregiver is a person, the duckling will bond to that person. The same
occurs with people who bond to one kind of computer system, say Windows or Mac, and
become fixed on that system as the natural way that computers should be. Similarly, people
who learn one programming language well feel it is the best programming language, much
as people in Russia might believe that Russian is the best natural language. This kind of
bonding can be unfortunate, particularly for readers of this book: the language used here is
Python, best known as a scripting language (a language for writing scripts of commands).
Python was chosen because it is widely supported in many types of computing platforms,
because there is a rich library of available software for Python, and it is well suited to

13

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

14 A Functional Start to Computing with Python

education, with free versions of the language that are easy to install on personal computers.
Python is also serious enough to use for practical things. The Google search engine began
as a Python program; the popular BitTorrent file sharing software was originally written in
Python; web programming kits and game development tools in Python are available. Ulti-
mately, however, Python is just one choice. Other languages like Java, C#, Scheme, Ruby,
and C are good choices for learning about programming. The truth is that learning several
programming languages is expected of professionals, and it becomes easier to learn another
language once you have mastered one of them. There is no “best” programming language.

Background Skills

Many language courses are offered at a university: French, Spanish, Japanese, and other
natural languages are typical examples. Methods for learning a natural language can be
compared to ways of learning programming languages. Like natural languages, programming
languages can take years to fully master; an introductory course only goes so far. Like natural
language courses, a beginning class on Python will be somewhat easier to follow for students
who have a linguistic aptitude and who have a desire to learn new ways of expression
(some memorization and some creativity in combining a language’s basic elements). Like
learning natural languages, drills and interactive learning sessions are the typical ways of
building up skills, and this can sometimes be a time-consuming and frustrating experience.
However, unlike learning natural languages, the learning of computing languages requires
more appreciation of logical abstractions and precision in how ideas are expressed. At the
current state of computing evolution, the computer cannot “guess” what a programmer
means (despite science fiction movie portrayals).

Students and teachers have reported that a variety of background skills can be helpful
to learning a programming language. Some of these skills are listed here, though previously
knowing another programming language is also an obvious advantage (just as knowing some
French is a large advantage when taking a French course).

• Knowing how to use a word processor, even if just a simple scratchpad text area for
typing, cutting, and pasting, is helpful. Also, being able to use a Web browser and
a search engine can be quite useful. For some applications, knowing how to find and
launch applications on a windowing desktop is an advantage. Being able to navigate
through folders, copy, rename, and move folders and files is necessary in some cases.

• The experience of learning more than one natural language can be good preparation
toward learning a programming language. If you are open to new ways of expressing
ideas, you might more easily accept different styles of formal computing languages.

• Students who enjoy logical puzzles may have a head start; another asset for learning
computer languages is the ability to concentrate on logical games. Proficiency in quick
reaction time, first-person shooter games is not so helpful.

• Having a good math background is generally helpful, but it is not a sure sign of
ability for programming. The chapters that follow only suppose the reader to know
basic algebra and arithmetic operations.

• There appears to be some correlation between skill with musical instruments, which
require practice, and programming aptitude. Best is the kind of practice incorporating
standard music scores and scales, possibly even sight reading.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

General Landscape of Computing Languages 15

Learning a Language

There are distinct stages in the progression of language mastery. The initial stage is to
learn some vocabulary and basic syntax. The syntax of a language consists of rules on
how to combine verbs, nouns, pronouns, articles, and so on, into acceptable phrases and
sentences. The learning of syntax and vocabulary can be time-consuming. Exercises of
repetition are the usual path to building up memory of vocabulary. The most efficient way
to learn a foreign vocabulary is not widely known, but if you have the time and are willing
to devote the effort, there are tools to optimize the process (e.g., SuperMemo and similar
applications). Computing languages have much smaller vocabularies than natural languages,
so memorization is not the biggest challenge for this stage of learning programming.

Another stage in learning a language is the accumulation of idioms and patterns of
sentence construction. It turns out that people read and understand text by “chunking,”
which basically means that groups of words are seen and understood as grouped together as
familiar phrases. Programming also depends on familiar patterns and common expressions
that programmers tend to repeatedly use. The first phase in this stage is to read and
comprehend enough examples so that they become familiar. Mastery only occurs later,
when you start writing on your own, using these expressions yourself.

A later stage in learning a language is storytelling. To tell a story, you need to put
sentences together coherently. The analog to storytelling in computing languages is problem
solving. This is a technical activity which presupposes knowing the vocabulary, syntax, and
common expressions of the language.

The chapters of this book organize the material in stages similar to the progression
described above. The book’s chapters first explain rules of the language and show how to
decipher Python programs; later chapters emphasize problem solving and more practical
use of the language. This arrangement of the material differs from many modern texts on
programming. The current trend is to emphasize writing programs at the outset. The idea
of such books is more akin to an immersive experience in learning a foreign language. At the
outset, you are surrounded by all kinds of unfamiliar things, but gradually you learn more
about the language in all the stages together; vocabulary, syntax, patterns and storytelling,
all mixed up. This “sink or swim” approach can be quite effective in a very concentrated
environment, however, it can lead to a fragmented and incomplete coverage of the language.
The reason this book follows a different order is that the experience of educators teaching
computing has exposed certain difficulties students commonly encounter with programming
languages. The plan of the book is to delay introducing topics that are obstacles to learning
Python; the following paragraphs mention some of the difficulties.

Computing languages fall into two categories, the declarative/descriptive type and the
operational/procedural type. The former are languages where you tell the computer what
you want, whereas the latter are languages where you tell the computer what to do. The
true dream of computing should be to eliminate the latter type. Why should you tell the
computer how to do something, when the result is the only thing you care about? It would
be much better to simply declare what is needed and have the computer figure out how
to do it. The current state of the art in computing has not progressed far in declarative
languages. The best known examples that are declarative are relational database query
languages. Common programming languages are mostly of the procedural type. Students
generally find declarative languages simpler and easier to learn than procedural languages.
This book attempts to introduce Python by presenting the declarative parts of the language
first, to postpone the difficulties of operational reasoning. Even declarative languages may be
difficult for students unused to communicating with precision. The danger of a declarative
language is the “be careful what you want” phenomenon, where a careless specification
might deliver unexpected output.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

16 A Functional Start to Computing with Python

The experience of education in computing finds two elementary concepts to be typically
difficult for students new to computing. First, variable abstraction requires a higher level
of reasoning and takes practice getting used to. This book postpones the introduction
of variables until later chapters. Second, the sequence of steps controlled by looping and
jumping require that a student build a “mental model” of Python’s computing behavior.
Having a mental model is a road map to understanding and predicting how programs will
behave when they run. This aspect of Python is also postponed to later chapters. Rather
than introduce these known difficulties early, we examine first a more calculational style of
using the language. Fortunately, Python has an interactive “calculator” mode (the REPL,
or read-eval-print loop) for experimenting and learning. This mode is the counterpart of
having a native speaker to practice with learning a foreign language. Web-accessible versions
of Python for beginners are becoming widespread, so beginners can experiment without
even having to set up programming environments. Python also has concise notation and
enough data operations to do impressive things with expressions, even without variables
and controlling sequences of steps.

You think you know when you can learn,
are more sure when you can write,

even more when you can teach,
but certain when you can program.

— Alan Perlis

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Chapter 4: Python Setup

This book, based on the Python programming language, is only effective if the reader has
ready access to a working computing environment. Many computers come with Python
installed, and even when Python is not installed, limited programs can be run using a Web
browser. The general philosophy of this book is conservative, avoiding commercial packages
and advanced development environments; the reasoning is that the free and basic no-frills
Python remains valid even in the more advanced environments.

The Python language is not a native GUI application like games, picture drawing pro-
grams, or Web browsers. Python is based on text files which contain lines of commands
and definitions needed for making programs. The text files are nothing special: they can
be viewed and edited by usual system accessories that are also used to create and edit
simple notes. Word processors can also edit Python files, but this is probably not a good
idea, since Python does not use paragraphs, special fonts, and formatting. There are some
specialized text editors with useful features for Python programming; using one of these is
recommended.

Distributions

Python.org

ActivePython

EnthoughtPython

IronPython

Figure 4.1: Some distributions of Python.

Python itself can be downloaded for free from www.python.org (if it is is not already
installed on the computer you use). There are downloadable versions for many operating
systems and computer types. There are even ways to install Python on smartphones, but
this chapter offers no advice about doing so. When Python is installed, usually there are
two ways of running Python programs. One is via a system console. On most Linux/Unix
systems, it is as simple as typing in a command on the console and pressing enter to start a
Python program. For Windows, an extra step may be needed to set up the “system path”
if you would like to run Python from the console. Another way to run Python is via an

17

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

18 A Functional Start to Computing with Python

application called IDLE, which combines an editor with a console so that you can create
and modify a program using the editor and run it in another window that IDLE provides.

A number of “distributions” of Python offer some support or bundling advantages.
Whereas the official language comes from python.org, distributors of the language (some
of them commercial) have added value beyond the language: a number of software pack-
ages may be preinstalled; better development environments, program debuggers and editors
might be included; and there may be connections to operating system features. Figure 4.1
shows the general picture for a few distributions. The figure shows that all distributions
start with python.org, but then add their own branding. Arrows in the figure indicate that
each of the branded distributions copy from the core of the Python language and its li-
braries, but then add value by some customization, providing additional libraries and tools,
and perhaps by offering customer support. Advantages of using these branded distributions
are many, but distributions evolve at a different pace from the language and if you learn
Python using a customized distribution, it may be more difficult later to use Python in a
different setting. This book, therefore, depends only on the vanilla python.org distribution.

A few other ways Python programs may run depend on the kind of operating system.
Especially for Unix/Linux, Python is called a scripting language. You can actually extend
the vocabulary of system commands available from a console using Python programs; this
kind of new command is a script . Again, there is nothing really special about a script,
it is just a text file containing Python programming language commands and definitions.
It is also possible that a program you write may be launched by clicking on an icon in a
folder or on the desktop, but this is a more advanced topic that depends on system details.
Another arrangement is to use Python through Web servers and browsers. Web servers can
be configured to use Python programs in response to browser requests. The Web server
simply looks for a file with a particular name, then runs the Python program in that file,
which generates output back to the browser. These are just a few of the ways that a Python
program might be run.

For program development, special applications called IDEs might be used. Particularly
for more bureaucratic languages like Java and C# (which emphasize business/enterprise
concerns), many consider IDEs to be indispensable. There are now too many IDEs to enu-
merate, though the most famous ones you might have heard about include Visual Studio
and Eclipse. The more advanced IDEs have editors, consoles, tools to organize suites of
programs and libraries, automatic spell-checking and auto-completion for partially written
phrases (these tools are aware of the programming language syntax), and debugging tools.
Except for the complexity of using them—working with some IDEs has been compared to
operating the cockpit of a Boeing 747—IDEs can be quite handy. Indeed, some consider
IDEs to be the Auto-Tune of programming.

Dialects

It is perhaps a surprise that two native speakers of English may not be able to understand
each other. Someone growing up in Baltimore, Maryland may not be able to converse with
a native of Kingston, Jamaica, even if they are both speaking English. The problem can
be pronunciation, since accents vary depending on location. Nonnative speakers of English
might speak a form called “Globish.” However the accents may vary, written English is
understandable by all, with minor differences in accepted spelling and some vocabulary.
Not so simple for Python.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Python Setup 19

Python is a rapidly evolving language compared to natural human languages. There
are several versions with enough differences between them that a Python program written
for Version 3.0 probably will not run on a system that only has Version 2.5 installed. The
reason for new versions, like the reason for changing rules in sports or passing new laws
and regulations, is popular will of the user community who vote on new language features.
The trend in new versions is “backward compatibility,” meaning that programs written
for say Version 2.1 should work on a system running Version 2.6, without needing any
modification to the programs. The trend does not always hold. There was a major break in
the language syntax going from Version 2 (which means all the versions from 2.0, 2.1, and so
on) to Version 3 (including 3.0, 3.1, and so on). For learning about Python this situation is
inconvenient, to say the least. If only the whole world switched at once from one version to
the next, things would not be so bad. However, it takes time to change existing programs,
and it can be dangerous to try this quickly because conversion might introduce bugs.

➋
➌
E

The current situation in the software landscape, with respect to Python, is that
Version 3 is gradually being installed on many systems, but Version 2 continues
to be used as well. Some of the most useful packages constructed with Python
still depend on Version 2; nearly all Unix/Linux scripts based on Python use
Version 2; many IDEs have not yet caught up with Version 3. Operating systems

are flexible enough to allow Version 2 and Version 3 to be installed at the same time, though
users may need to call on them by different names. Here are conventions for this and later
chapters:

To distinguish between Version 2 and Version 3 (we can forget about antiquated
versions like Version 1), the names are Python2 and Python3. In chapters and
sections where some language feature is described with different syntax between
the versions, we use the symbol shown in the shaded box.

Calculator Mode

-bash-3.2$ python

Python 2.4.3 (#1, Jun 11 2009 14:09:37)

[GCC 4.1.2 20080704 (Red Hat 4.1.2-44)] on linux2

Type "help", "copyright", "credits" or "license"

for more information.

>>>

The simplest way to experiment with
Python is to start an interactive ses-
sion. On a Unix/Linux system or a
Mac, this is done by launching a ter-
minal , or console application, which
presents a rectangular area with a
command prompt. You can type on

the command prompt line, which typically begins with a $, >, or some other symbol, marking
the place where you begin typing. The rest of the window shows a history of commands en-
tered and responses from the commands. The command you want to try is simply “python,”
shown for a Linux system in the shaded box. The response by Python ends with the “>>>”
line, which is a prompt from the Python interpreter asking the user (you) to type some
Python command and press Enter.

>>> 2+2

4

>>>

In response to the command python, the system launches an inter-
active session of Python, sometimes called the calculator mode of using
Python. Above, you can see that this session uses Python2, specifically
Version 2.4.3 (with other technical details we do not care about). The
three-line interaction shown to the right is an example of Python calcu-
lator mode. Here, 2+2 was evaluated by Python, and the next line shows the result. After
the result comes another line, again presenting a prompt, allowing us to try more things.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

20 A Functional Start to Computing with Python

What about Windows? Under Microsoft Windows, after Python has been installed, the
Command Prompt accessory can be launched (found under the Accessories tab). Here is an
example showing how that would look:

Microsoft Windows [Version 6.1.7600]

Copyright (c) 2009 Microsoft Corporation. All rights reserved.

C:\Users\Bob Zippy>python

Python 2.6.2 (r262:71605, Apr 14 2009, 22:40:02) [MSC v.1500 32 bit (Intel) on win32]

Type "help", "copyright", "credits" or "license" for more information.

>>>

The calculator mode works the same under any operating system, once you get to Python’s
“>>>” prompt.

iPython

In [47]: 8.0*2.5

20.0

In [48]:

An alternate presentation of Python, known as iPython (also found
through Enthought and browser-based pythonanywhere) presents
the calculator mode differently. Shown to the left, instead of the
“>>>” style of prompt in the basic Python distribution, the inter-
active mode’s prompt in these systems starts with something like

“In [47]:” which tells you that this is the 47th prompt in an iPython session. The iPython
systems keep track of the history of interactions, allow you to call back earlier things in
a session, and even make some system commands available (e.g., listing the contents of
directory) while within the iPython session. Generally speaking, the iPython environment
combines aspects of an IDE with Python for a sophisticated programming and debugging
environment.

Running a Script

print ("Hello")

Another way to run Python is to use a script. Though a
Python script is just a text file, there is a convention about
what you name the file. It should be a name ending with “.py”
so that applications like IDEs will automatically recognize the

file to contain Python language. The next example supposes that hello.py is a text file
consisting of one line, as shown to the left. To run the script hello.py we need a terminal
(or Command Prompt for Windows). Below this is shown for a Linux terminal on the left
and a Windows command prompt on the right. In the example, we see that Python ran the
script, which output Hello, and returned control back to the terminal, waiting for another
user command. Notice that interacting with a system terminal or command prompt is sim-
ilar to interacting with Python calculator mode, except that the conversation is with the
host operating system, Linux or Windows. Beginning from the terminal or console prompt
for a command, the user (you) types python and the name of the script file, and the Python
program in file runs, printing output back to the console.

-bash-3.2$ python hello.py

Hello

-bash-3.2$

C:\Users\Bob Zippy>python hello.py

Hello

C:\Users\Bob Zippy>

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Python Setup 21

These script examples are missing a crucial detail. The current working directory for the
terminal or Command Prompt has to contain the hello.py file. For Unix/Linux and Mac,
this either means using some “open terminal here” option on a menu, or using cd commands
to position the session into the correct directory. Under Windows 7, you can hold down shift
and right-click on a folder to get an “open command window here” option, for example, for
the folder containing hello.py.

Microsoft Windows

A few extra notes are helpful to set up Python in Windows, should you need to do that.
After you download and install Python, it may be that the command python appears to
fail. This is most likely because Windows cannot find the python.exe program, even though
it has been installed. The way to tell Windows about the location of Python is to edit the
Path environmental variable (not at all obvious). Just how to do this depends on the version
of Windows—it is best to use a search engine and look for edit windows path along with
a keyword about your system version (Windows 7, Windows 8, etc.). Hopefully, you will
find some advice on this—if you have no experience in tuning Windows, please seek help in
setting things up.

Normally, Python is installed in its own folder, and you will need to find that and
add its location to the system path. For example, under Windows 7, you can just type
“system path” on the search box, which brings up a System Properties window with an
Environmental Variables button; click that and you can scroll through system variables to
find Path, which you click and then press on an edit button. At the end of the current
string of paths (be careful not to change anything already there), add a semicolon and
C:\Python27 or whatever is appropriate for the Python version you installed.

Another useful tool is a Python-friendly editor. For that, Notepad++ is a good choice. If
you launch Notepad++ and then open a Python script file (or create a new one) there is a
menu for language, under which Python and 50 other computer languages appear. Selecting
Python adds lots of nice features to help with Python programs.

One frequent source of confusion with Python scripts is the suffix “.py” on the file
name. On the Windows desktop or viewing a folder, the suffix is commonly hidden. Some
beginners will try to force this by renaming a file, only to have Windows add its own suffix.
As a result, one can end up having a hello.py.py file. If you are going to be working with
scripts, it is a good idea to learn how Windows deals with file types using suffixes, and how
to view and change the full file name.

Integrated Development Environments

What are the attractions of Integrated Development Environments (IDEs)? To answer this,
let’s preview a typical phase of software development. At a certain point in development, the
design of a program is finished, but it has not been put into a file; perhaps some small details
also need to be further researched. Enter the IDE, viewed as the programmer’s helper. Many
IDEs have built-in awareness of programming language syntax, knowledge of the (perhaps
vast) software libraries available with the language, and even features to automatically
detect logical errors in what programs do. Using an IDE, a programmer might see lists of
possible completions of words and phrases while typing, similar to auto-completion and
spell-checking features of word processors. More than that, different Python keywords may
have colors and fonts that make it easier to read and make sense of a program. With
sufficient screen area (so-called “desktop real estate”), an IDE may have one window for
the program, another for viewing the output of the program when it runs, and a third for

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

22 A Functional Start to Computing with Python

debugging information. For debugging, when a Python program stops due to a bug, some
IDEs automatically highlight the suspected bug in the editor of the program text.

With all the good things to say about IDEs, there are limitations. For one, many of
the intended ways of using Python are not graphical (using windows for output) and IDEs
may not be able to run programs for certain environments. If a Python program controls a
robot, the commands to turn wheels, lift an object, or inspect a camera image, then that
may not work on a desktop IDE. Some aspects of an IDE, which initially seem positive,
lose their attractiveness as users become progressively more expert with the language. The
auto-completion or suggested options while programming can be distracting; the full-screen
view with several windows may be incompatible with the normal mode of typical knowledge
workers, who have windows for e-mail, calendar, or other information portals.

The general impression from python.org, for whatever reason, is that the job of provid-
ing full-featured IDEs is left to some other provider(s). Python’s IDLE application is a quite
limited IDE compared to the many other competing IDEs now available. Using a search
engine or searching directly at python.org for IDE leads to many possible choices. It is
possible to learn Python without an IDE, and this book makes no recommendation about
which method of program development to use.

Web Browsers

As a final “platform” for writing and testing Python programs, consider the Web browser.
Though current browsers do not directly run Python code, it is possible to connect to a
Web site where Python runs, and if the Web server is set up for Python, then in theory you
can put a Python program into a form (either by typing or by cut-and-paste from another
window), press a button, and have the Web server run the program. This avoids Python
setup entirely: in fact, you can write and run Python programs using a tablet, a smartphone,
or any similar Web-connected device that has a modern browser. While this idea might
seem very easy, be aware of some downsides to working this way. First, if connectivity to
the Internet is poor, response time will be slow (similarly, if the server is several time zones
away from your device, the round-trip time for signaling over a large distance will cause
slow response time). Second, if the same Web server is shared by hundreds to thousands of
others, it can bog down under contention, causing unpredictable response time. Third, how
do you save your programs to a file for later use? A Web server may or may not allow you
to have input files, use advanced library functions or other features that Python has in a
fully installed, local system.

In spite of limitations, accessing Python through a Web browser has some excellent
benefits. There are Web servers with IDE-like debugging features, code visualization, and
tutorial support. Other Web sites may integrate online documentation and “active” text-
books that demonstrate running code immediately in the browser (possibly eReaders will
have such a feature soon). Many Web sites supporting Python testing through a browser
have appeared recently and more can be expected. It is worth experimenting with at least
a few of these.

➪ web

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Part II

Functional-Style Python

23

This page intentionally left blankThis page intentionally left blank

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Chapter 5: Types

type

int1024

False

float0.375E27

string"gate"

tuple(3,4)

list[True,1]

dictionary

type

int1024

boolTrue

float0.375E27

string"gate"

tuple(3,4)

list[True,1]

dictionary

Python’s Data Types

int, float . . . 42 -21.395 1.0028e-12

character, string . . . 'T' 'storm'

bool . . . True False

tuple . . . (5, 6, True, 'so', 9)

list . . . ['Take2', 100, 0]

dictionary . . . { 'ace':12, 'bottom':-3 }

25

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

26 A Functional Start to Computing with Python

Science is the systematic classification of experience.
— George Henry Lewes

Types are to computing what dimensional units are to physics and chemistry. In physics,
units are grams, volts, joules, calories, and degrees, to name a few. In computing there are
bits, bytes, terabytes, functions, records, and other nomenclature. Any programming lan-
guage needs notation and terminology to name the basic units for talking about programs.
The choices of such names and units are often hotly debated by the individuals who cre-
ate and embellish the language. Naming and classification is intrinsic to every specialized
discipline, from law to biology to theology. Computing is just another specialized area of
study.

Another similarity between physical science and computing is that the units themselves
can be a simple sanity check on human reasoning. When solving a problem in physics, a
common trick is “dimensional analysis,” which is nothing more than making sure that the
answer to a problem has the correct measure and that any calculations deriving the answer
use units that match and cancel. Of course, the answer could still be wrong due to some
mistake, but it is generally helpful to check on units during calculation. Similarly, programs
deal with types, and simple checks making sure types match up help prevent bugs from
appearing in the software.

The remainder of this chapter tells a little of the story of how types in computer lan-
guages have evolved, before going into the Python terminology. After that, Python’s most
primitive types are introduced, then sequences and dictionaries are explained.

It’s All 0 and 1

Nearly all computation is based on electrical signals. It was not always so. A century ago,
any computing was done with pencil and paper or in a few cases, mechanically with devices
like gears and sliding bars. We use electrical signals because the cost is low, the parts do
not wear out, signaling is fast, and the size of components can be reduced to near molecular
scale. Typically, voltage is used to distinguish between signals: for instance, two volts might
signify the number 1, whereas minus two volts (or maybe zero volts) might signify the
number 0. Thus, a common way to measure voltage, for purposes of computing, is a binary
measurement, symbolically using 0 or 1 to classify voltage. A single item of data, 0 or 1, is
called a bit ; a group of eight bits is a byte.

Given that physical quantities like voltage can be measured and expressed with high
precision, one question is why we should settle for 0 and 1 when actual voltage values could
be 0.00347, 1.21258, 2.19549, and so on. It seems that a more refined way to measure voltage
than just a binary classification should be possible. Conceptually, yes, it should be possible to
base computing on a richer set of numbers than 0 and 1, however, the cost of more sensitive
devices argues for staying with 0 and 1; also, using 0 and 1 simplifies the engineer’s job.
Further, we have to think of data storage, which often is not electrical. For memory, other
physical properties like magnetizing (positive or negative) or crystallizing (oriented or not
oriented) have natural binary measures. So, for various reasons of technology, manufacturing
cost, and convenience, the binary system of data representation and manipulation is now
ubiquitous.

The rules of binary arithmetic are simple, but tedious. We prefer to leave the details of
binary to computer engineers, instead focusing on units of data closer to our application
purposes: MP3, Web pages, text messages, and the like. Know, however, that all data, at
some level, is made up of bits. Engineers have nicely used lots of hidden binary encoding
tricks, but the problem they face is daunting: new applications continually get invented
faster than computers can be designed and built. We want new applications to run on

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Types 27

existing computers. Computer engineers rarely get into the details of application data,
preferring to stop their work at giving us a few types of data that are better than binary,
yet well short of what rich applications need. The common native data types that computers
work with are integers, floating point numbers (which approximate real numbers), and
characters from limited alphabets. It is left as a task, to computing scientists, software
designers, and sometimes students in programming courses, to figure out how to think and
use imaginative data units (MP3, Web pages, etc.) when the basic computer only supplies
integers, floating point numbers, and characters. In a nutshell, this is one of the basic
problems of computing science: take a primitive computing device and convert it into a
more intelligent device.

Programming Language Types

Historically, the first method of programming was to directly set machine language in-
structions into computer memory. This tedious job was greatly simplified by the invention
of assembly language, which enabled programmers to write lists of machine instructions in
files. An assembler takes such files and converts them into a form suitable to load into mem-
ory. In an assembly language, the basic types of data used in the instructions are groups of
bits; bytes and “words” are typical names for such groups. A computer word is the native
machine grouping of bits around which instructions and memory are designed. Computers
embedded in cars and appliances may have a word size of eight bits; desktop computers can
have a word size of 64 bits.

#include <stdio.h>

int main() {
int i;

for (i=0; i<10; i++) {
printf("i=%d\n",i);

}
return 0;

}

Different vendors offer different assembly lan-
guages. In part because of this fact, it is bet-
ter to use a programming language that works
on any kind of computer, regardless of the na-
tive word size and regardless of the format of
machine language instructions. One prominent
solution to this problem is the C programming
language. To the left is an example of a C pro-
gram. The C language is “higher level” than as-
sembly language. Again, a programmer creates

a file of instructions, however, the instructions can be more in a free-form style. Further,
there are conveniences to avoid having to do bookkeeping arithmetic dealing with memory,
concise ways of expressing large lists of instructions in just a few lines of text, and more
abstract ways of denoting data. In computing science, abstraction techniques give us the
leverage to amplify human reasoning. To fully appreciate what that last statement implies,
we will need to see many examples, mostly coming later in the book.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

28 A Functional Start to Computing with Python

#define _ F-->00||F-OO--;

int F=00,OO=00;main(){F_OO();

printf("%1.3f\n",4.*-F/OO/OO);}F_OO()

These are the first three lines from a C pro-
gram, the full text of which can be viewed
at http://ioccc.org/1988/westley.c The
program is a cleverly written, purposefully
confusing program submitted to the 1988
Obfuscated C Programming Contest. Such
programs are not good models for begin-
ners to learn about computing.

Programs written in C can be very efficient, but
they can also be quite difficult to understand. A
portion of an extreme example is seen on the left.
Die-hard fans of the C language admire the way
it can so concisely express complicated ideas,
however, the other side of the coin is that C pro-
grams can become inscrutable.

In the C language, there are essentially three
basic data types: integers, floating point num-
bers, and aggregate structures. The idea of an
aggregate structure is to bundle some integers,
floating point numbers, and even other aggre-
gates in handy ways. Examples include arrays

(which can represent vectors and matrices used for scientific applications) and data records
(often used for business applications, where part numbers, stock quantities, and calendar
dates can be aggregated into natural data units). Integers are not only used for calculation
in C, but are also used to represent alphabetic (a-z, A-Z) characters, and can refer to loca-
tions in computer memory (pointers refer to locations in memory) as well as values stored in
memory. Indeed, much of C programming requires that a programmer make a mental image
of what computer memory contains and how it is organized, in order to write a program.
In this last aspect, C is much like assembler language, requiring us to have some knowledge
of the underlying hardware that will run the program.

How does a computer follow the instructions in a C program? First, we need a special tool
called a compiler. A C compiler takes one or more files containing C language and transforms
them into assembly language; then the resulting assembly language is processed by an
assembler into machine code, which the computer directly executes (follows the machine
instructions). Put another way, the compiler’s input is C source code, and its output is
assembly language. Some compilers skip the part about assembly language; instead, they
directly take C source as input and generate machine code, also called object code, as output.

There are many C compilers because there are numerous different computer manufac-
turers with different standards of memory and calculation styles. This is an unfortunate
situation: when we get a new computer, we might need to recompile all of the software
using a C compiler suited to the new hardware. Is there some way to avoid this type of
dependence on the type of computer? One answer is the concept of a “virtual platform,” an
imaginary computer. Suppose we have a C compiler that produces object code for an imagi-
nary computer, the MIX 1009 computer. Though nobody has ever built the MIX machine, it
is possible to write a software tool called a virtual machine (VM) for the MIX. For example,
there could be a MIX VM for a smartphone: its input is MIX object code, and what it does
it to emulate the behavior of the MIX program on the smartphone. In other words, a VM
“interprets” the object code for the MIX, using the underlying hardware of the smartphone.
For instance, if the MIX object code has an instruction to multiply two numbers, then the
VM would need to accomplish that multiplication; in case the smartphone does not have
multiplication hardware, the VM would use repeated addition and multiplication tables to
get the correct calculation implied for a multiply instruction. Programmers are unaware of
the work that a VM has to do in this scenario. They write C programs for the hypothetical
MIX machine, and provided that each actual computer has a MIX VM, the object code
appears to execute properly on each of them.

The advent of virtual machines has the clear advantage of enabling us to be “plat-
form independent,” or “platform agnostic,” letting the same programs run on different
kinds of computer platforms without needing to rewrite programs or recompile them. But
this advantage just scratches the surface of why VMs are so popular as a technique for

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Types 29

programming languages. Recall that the subject of this section is programming language
types. In contrast to the limited data types offered on real computers, usually just bits
and numbers, the imaginary computer for a virtual machine could have all sorts of more
user-friendly data types: text, MP3 files, graphical images, and so on. Further, a VM can
have features for debugging, networking, and any other reasonable features we dream up.

Three examples of modern programming languages that use virtual machines are C#,
Java, and Python. These languages offer basic data types beyond bits and numbers: se-
quences of text, arrays, and logical values (true and false), as well as integers and floating
point numbers. Beyond the basic data types, these languages allow programmers to define
their own data types, which puts within reach exotic types of data like MP3 files, graphical
images, and so on.

Primitives: Numbers, Characters, Booleans

It is easiest to introduce Python’s types in several stages. The simplest and most “primi-
tive” types are numbers, characters, and booleans. Numbers, as defined in mathematics or
philosophy, are ideal concepts where the emphasis is on how to formally define them and
use them to build theories. Computing is more practical: the way numbers are represented
on a screen and entered by keyboard is a foremost concern for programming languages.

105 ✔
2 1 4 ✘
-2 ✔
78409869 ✔
7,204 ✘
0105 ✘

Integers. Integers in Python are just strings of numeric digits
(0–9) without punctuation. Implicitly, the notation for integers
is decimal (base 10). Perhaps the only surprise is that Python
does not permit integer notation for decimal numbers, except for
zero, to begin with 0. To the left are some examples of valid (✔)
and invalid (✘) decimal integers. The examples show that having
embedded spaces, commas, and leading zeros will not work for

denoting decimal numbers. (As a preview to more advanced Python, the last two examples
will actually give some kind of result in Python, just not what one might expect.)

Floating Point Numbers. Floating point numbers are an approximation to the ideal
notion of a real number. The notation for floating point takes its cue from scientific notation,
which allows for decimal point and exponent. Like integers, a floating point number is
denoted by a string without embedded spaces, using digits (0–9), and possibly a decimal
point and possibly an exponent. An exponent is signified by the letter e or E. Here are some
examples, with a third column for valid inputs showing traditional scientific notation:

600.001 ✔ 6.00001× 102 600.00099999999998

235e8 ✔ 2.35× 1010 23500000000.0

–8634.0123E-12 ✔ −8.6340123× 10−9 8.6340123000000004e-09

–99999999 ✘

The last line was marked invalid, for a floating point number, because Python considers it
to be an integer rather than a floating point number. The fourth column shows Python’s
approximation for the number when it is input at the keyboard. Why do these approxima-
tions deviate from what the numbers obviously represent? That is not an easy question to
answer; indeed, a significant part of any course on numerical analysis studies floating point
round-off and conversion errors. Nearly all programming languages suffer from imprecision
when approximating real numbers, though some hide the imprecision more than others.
Fortunately, for nearly all matters in this book, we will not be concerned with calculations
involving floating point numbers.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

30 A Functional Start to Computing with Python

Other Numbers. Python has many other numeric types and notations for numbers:
binary, hexadecimal, octal, fractions, decimal with fixed precision, and more are possible,
but we can skip these for now in learning the language. One type worth mentioning, but
not covered in this book, is the type for complex numbers. The value

√
−1, denoted by i in

mathematics texts, is 0.0+1.0j in Python.

Characters. Each key on a keyboard is a character, more or less: some keys control
behavior, such as the shift key; and some characters from languages other than English
(ö, é, etc.) may not have keys on the keyboard. As a primitive type, characters are those
defined in the ASCII standard. The original standard defined characters by a table so that
each character corresponded to an arrangement of seven bits. The current ASCII standard
assigns eight bits (one byte) to each character. Since the number of possible arrangements
of eight bits is 256 (numbers in the range 0 through 255), the ASCII standard could define
up to 256 possible characters.

>>> ord('k')

107

The usual way to denote a character in Python is to surround it by single
quotes, such as 't', 'M', and so on. This is natural notation for most
people, but there are cases of unintuitive characters such as spaces, tabs,
newlines, and other meta-characters. Using Python interactively, one can

ask for the number corresponding to the character, as shown to the left, where we find out
that the letter 'k' is assigned 107 for its value. What would this be in terms of bits? That
is a question we almost never need to answer (the answer is given by 10710 = 11010112, in
case you are curious).

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Types 31

>>> ord('\t')

9

>>> chr(9)

'\t'

>>> chr(82)

'R'

>>> chr(200)

'\xc8'

>>> chr(300)

ValueError: chr() arg

not in range(256)

Meta-characters use special notation starting with a back-
slash: the tab character is denoted by \t. There is also a way to
ask the converse question, what is the character corresponding
to a particular number, using notation like chr(9), as shown
to the right. The attempt chr(300) failed, and Python com-
plained, because ASCII characters are only defined for num-
bers in the range 0–255. Python’s answer to chr(200) looks
strange; the reason is that ASCII has not defined any charac-
ter for the number 200, so Python responds cryptically with
notation for the number 200 in hexadecimal (do not worry
about what this means). The following table shows a few ex-
amples of characters and meta-characters.

➪ web

' ' a single space (blank) character
'a' lowercase letter a
'A' upper and lowercase are different characters
'\t' the tab character
'\n' the newline character
'\r' the carriage return character
'.' period
'/' forward slash
'#' pound sign, or hash character
'\\' the backward slash

The last line of table is a surprise: Python considers the backslash to be a meta-character.
The reason is that backslash itself signifies a meta-character, and so the input '\' would
confuse Python. To overcome the confusion, we have to denote the backslash character with
'\\'. There are a few more cases of confusion when dealing with quotes (' and ") that will
be explained later.

Booleans. Python defines a special primitive type boolean. There are only two values in
the boolean type, True and False. Unlike English or other natural languages, the meaning
of True and the meaning of False do not indicate whether something is a fact or not a
fact. The booleans are used to control program behavior, a more advanced topic covered
later. The two-valued boolean resembles the binary, low-level way that computers encode
information as bits. Indeed, lower level languages like C use 0 for false and 1 for true. For
compatibility with older styles of thinking, Python does allow the number 0 to be substituted
for False, but it turns out this compromise for “legacy language” programmers can lead to
bugs in programs for psychological reasons, when programmers mentally mix up different
computer languages. We prefer to use True and False when controlling program behavior.

Sequences: Tuples, Lists, Strings, Dictionaries

Given the primitive Python types of numbers and characters, it makes sense to look at how
the primitive types can be bundled into useful aggregations of data. The three sequence
types introduced in this section are tuples, string, and lists. All of these are sequence types
in Python and share some characteristics.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

32 A Functional Start to Computing with Python

Tuples

Python has special notation for an aggregate of values, using the jargon term tuple. A tuple
is denoted by putting values in parentheses, separated by commas. Python requires that
every tuple except the empty tuple have at least one comma. Here are some examples:

(1,3,5) length is 3
(1,3,5,) length is 3
(False,False,'J',1.5e9) length is 4
(0.001,,True) syntax error
('i','o','w','a',5,2,2,4,2) length is 9
(0) not a tuple
(0,) length is 1
() length is 0

The last line shows the special case of the empty tuple. The comment associated with each
tuple above is the length of the tuple, which is the count of how many items are in the
tuple. When the length is 2, we sometimes call the tuple a pair , and when the length is 3,
the tuple can be called a triple. Computer scientists use the term k-tuple to mean a tuple of
length k. One last remark about tuples concerns an obscure feature in Python. In selected
circumstances, you can use tuples without needing parentheses. Sometimes, Python will
just consider False, 'W', 1.25e4, -351—without parentheses—to be a tuple (of length
4). The precise rule on when the parentheses are required is complicated, difficult to explain
in this chapter. It is always safe to use parentheses, so we prefer to use them in writing
tuples.

Lists

Lists are much like tuples, with some small changes in notation. Square brackets enclose
the items in a list.

[1,3,5] length is 3
[1,3,5,] length is 3
[0.001,,True] syntax error
['i','o','w','a',5,2,2,4,2] length is 9
[0] length is 1
[] length is 0

Practically the only difference visible between tuples and lists is that a list with a single
item can be denoted without using a comma.

Strings

Strings are special types for characters. Though a string typically contains only ASCII
characters, they can also have characters from other alphabets for Turkish, Chinese, and so
forth. Some examples of strings are:

'abc' length is 3
'A B' length is 3
'this\tthat' length is 9
"this\tthat" length is 9
'we don't know' syntax error
"we don't know" length is 13
'z' length is 1
'' length is 0

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Types 33

The notation for strings gives you several options for saying where a string starts and
where it ends. You can use a single quote ('), a double quote ("), or some other advanced
techniques to be covered later. Notice the line with the syntax error above. Python got
confused by starting a string with a single quote, then trying to include a single quote as
part of the string itself. The easy way to avoid this situation is to start and end the string
with a double quote, so that when Python encounters the single quote it is a character,
rather than a string terminator.

Dictionaries

A useful type that initially seems unintuitive is the dictionary. The dictionary type is a
simplified form of a database: it associates some data with a lookup value, called a key. A
dictionary is a list of keys and their associated values. The colon (:) separates the key from
its value. The notation is shown by these examples:

{7:3.5, 20:-2, 30:True} three keys
{True:'T'} one key
{} empty dictionary
{'a':0, 'b':0, 'c':0, 'd':1} four keys

Later, in Chapter 15, we see how keys and values in a dictionary can change as a program
runs. In Part II of this book, dictionaries do not change: they are only created and used for
calculations.

>>> {1:2, 1:9, 1:5, 2:10, 1:0}
{1:0, 2:10}

In a real database, a key can have only one value with
which it associates at any time, though as a database
changes, the value may change. Python obeys this
property, so dictionaries have only one value per key.

You can see this properly in an interactive session with Python, shown to the left: Python
took the keyboard input, which seemingly was a dictionary with five key/value items, but
then found the key 1 has multiple values—which cannot be allowed. Rather than report an
error, Python chose one of the values for 1 and took that. The result is a dictionary with
two keys, 1 and 2.

Putting Types Together

With a few exceptions, sequence types and dictionaries can freely use any Python type
(even ones not covered so far in these notes) as items, keys, and values. A tuple can contain
any type of item:

([],'Oak Tree','trail',False) length is 4
(0,1,{0:'a',1:'b'}) length is 3
((1,2,3),(3,4,5)) length is 2

The last line in the list of examples shows that an item of a tuple can itself be a tuple (which,
in principle, could contain tuples that contain tuples, and so on). However, the length of,
or number of items in a tuple is just determined by counting the items, without regard to
their individual lengths, should they happen to be tuples, strings, lists, or dictionaries.

If you have never seen this kind of “type mixing” before, it can initially seem confusing,
because of the mixture of symbols possibly close together. It turns out that, except for
textbooks and exercises, this sort of notation is not used very often. Yet it is good training
to learn how to scan such lines of Python and figure out what is the data type. You should
be able to distinguish between correct and incorrect ways of putting together the symbols.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

34 A Functional Start to Computing with Python

Suppose all the letters, quotes, spaces, colons, and digits are replaced by “o”—so that
we just see a string of o’s mixed with parentheses, brackets and braces. A result of such
replacement might be

(ooo[oooo{oooo)ooooo}]

There is an error in this line because it starts with a left parenthesis, but does not end with
a right parenthesis. An example that does not have an error is

(ooo(ooo)oooo(oooo)oooo[oooo{oooo(oooo)oooo}oooo]oooooo)

As a mental exercise, you might formulate some way to distinguish between such examples
that have errors or are correct. One attempt is just to count the number of each type of
symbol: there have to be as many left parenthesis as right parenthesis, and so on. Clearly,
this is not enough, since “)ooo(” satisfies that criterion. A more sophisticated rule is needed;
Python needs to have such a rule to inspect programs and report errors.

Similar to tuples, lists can mix all types as items.

[[False],{False:5,10:"ten"},[(0,),"zero"]] length is 3
[[1],[1],[1],[2],[2]] length is 5
[[1,2,3],(3,4,5)) length is 2

Strings, however, can only contain characters. Dictionaries can mix types, except that keys
cannot be lists or dictionaries.

{1:(0,True), 'a':[5], False:{False:-1.9}} ✔

{{3:0,1:2}:'over', -30:'out'} ✘

{ ('a','b'):0, (False,False,False):[] } ✔
{ [3,4]:"box", 'e':14 } ✘

One unfortunate thing about Python is the way it reports errors. For the last example,
marked with ✘ to indicate an error, Python reports the error as

TypeError: list objects are unhashable

which may not be very helpful without understanding deeply many details of the Python
language. Thus, it is important to understand the rules for how types can be mixed; if you
know the rules yourself, you can generally figure out what is wrong when Python complains,
rather than rely on the cryptic way Python tries to tell you the reason for the error.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Types 35

Type Queries

>>> type(-20)

<type 'int'>

>>> type("are")

<type 'str'>

>>> len([False,1.5e12])

2

>>> len("New York")

8

Python can help you learn about types. Just start
an interactive Python session and enter type(K),
replacing “K” by some text of your choosing.
Python should respond with the type of whatever
you entered, shown by examples to the right. The
commonly seen types are int, float, str, bool,

tuple, list, and dict. Chapter 6 shows how type
queries can be used in programs. The example also
demonstrates how you can ask Python to count the
number of items in a container, such as list, string,
tuple, or dictionary. Python’s len and type are just two instances of built-in functions in
the language (there are many more). Perhaps more interesting than the above are examples
that fail, where Python returns some error message. Exercises at the end of this chapter
have some incorrect things to try.

➪ web

Yet More Types

Taxonomy is described sometimes as a science and sometimes
as an art, but really it’s a battleground.

— Bill Bryson

Python has a few other built-in types not covered in this book, such as set, bytes,
bytearray, complex, and frozenset. (Briefly, the bytearray type is mentioned again in
Chapter 8.) Further, by including modules from Python’s standard library, more types can
be accessed, including Fraction, Decimal, date, and array types. It is even possible for
you to define your own types in Python, a topic touched on much later, in Chapter 27.
Below, a bit about the set type is discussed.

You may have noticed that some of Python’s types are conveniently grouped by having
similar properties. Types int, float, and complex are numeric types. Types list, tuple,
and string are sequence types. Another grouping is list, tuple, and dict, each of which
can have any other type as an element: this group is sometimes called the container group of
types. Such a grouping makes it convenient to make statements about Python containers—
when we are talking in general about lists, tuples, and dictionaries.

Arrays. For readers familiar with other programming languages like C, Java and the like,
two other terms may be known to you: collections and arrays. Python does have collection
types, but that is an advanced topic beyond where this book goes. The other term, array, is
an important point of distinction between Python and some other languages. In Java and
C, the language uses an array where Python programmers would use a list. The difference
between an array and a list is that all the elements of an array need to have the same type.
The reason to prefer an array over a list is efficiency: a Java or C compiler can transform
source code using arrays into more efficient (faster-running) programs compared to lists.
Python also has array types, but they are not covered in this book.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

36 A Functional Start to Computing with Python

set([])

{5}
{"corn","wheat",False}
{0,0,0,17,"end","start","end"}

Sets. You can skip reading about Python
sets; they are rarely used, but will be of
interest to students with some math back-
ground. Whereas tuples and lists are or-
dered containers of items, allowing items to

be repeated, sets are unordered containers of distinct items. The older style notation for a
set in Python is set(o), where “o” stands for a Python list. For example, set([2,5]) is a
set containing two integer elements, 2 and 5. Newer notation for this (in most recent versions
of Python) is the simpler {2,5}, which nicely resembles the traditional mathematical nota-
tion for sets. On the left are four examples of set notation in Python. The first line defines
an empty set (which cannot be denoted with the curly braces). The last line’s list contains
repeated items; when Python processes this, duplicate items are removed so that the set
only contains one copy of each item. Python has facilities in the language to manipulate
and combine sets, including operators for union, difference, subset, and intersection.

Terminology Review

Jargon introduced in this chapter includes: bits, bytes, binary, floating point, type, len,
machine language, assembly language, assembler, compiler, computer word, pointer, exe-
cute, source code, object code, virtual machine, emulate, character, boolean, True, False,
sequence types, tuple, string, list, dictionary, key.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Types 37

Exercises

The point of this exercise is just to get some initial experience starting an interactive Python
session and trying a few things at the keyboard.

➪ web

Use Python interactively to determine the type of each line of text below by substituting
the line of text for “K” in type(K). Some lines have errors (and Python will return an
error message). Where appropriate, also try the len(K) on the same text. Use this exercise
to learn a few keyboard tricks, such as calling up what you previously typed, editing some
characters, and retrying.

1. (4,44,444,)

2. X

3. "package pickup at the corner"

4. (True,[0],false,[15])

5. len("seven")

6. {0:(),1:{6:0},5}

7. 1,True,2

8. (18)

9. 'the\ttournament\nwinner\nis\'

10. "what exactly does "status quo" mean?"

11. [1008,(19,0,[False,False],"j"]

12. type(False)

13. 9+6e4j

14. len

15. type

16. 0b111110111010000101

This page intentionally left blankThis page intentionally left blank

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Interlude: An Inventory Problem

Like many manufacturing firms, Acme Perfume had its own problems with the supplies of
material used to make perfumes. Perfumes are secret mixtures of elemental scents, often
based on natural products—these are called the “base notes” for making perfume. Some
have intriguing names related to botanical origins, like oakmoss, vetiver, lovage, and costus.
Other ingredients are staples of the aroma-chemicals industry, chiefly acetates, esthers, and
ketones. In many cases, freshness matters. The odor of a substance may change over time, or
be different depending on the year and location where it was obtained. These are challenging
to Acme Perfume because customers expect that fragrances for a named perfume will be
the same from year to year. If the musk is not stinky in the right way or the lavender is
not pungent enough, then the end product could take more labor to produce, because the
factory expert (the “nose”) will take more time to adjust things, possibly even needing to
discard a batch.

One part of the business is to carefully track the supply and current stock of the ingredi-
ents. To make things simple, we consider just two facets of the inventory problem here, the
ingredients and the suppliers. For each ingredient, suppose we have the substance name, the
supplier name, the number of days to expiration, and the quantity in stock. Acme’s database
should track the status of all ingredients in stock and be updated frequently. Acme sources
ingredients from about 20 suppliers; the database should also maintain information about
the suppliers, including contact information, e-mails, orders, and billing status. How is all
of this information to be organized and represented?

table = greatest invention ever to contain information!

That’s right, Acme uses tables. Below are some two-line fragments of what would be Acme’s
tables of perfume ingredients and suppliers. On the left is part of the table of ingredients;
on the right is part of the table of suppliers.

oakmoss28 Botanisco 205

lavender4 Durevelia 834

Botanisco www.botanisco.co.za · · ·
Olfaktikov olfaktikov.co.fr · · ·

What Python type can represent such tables? There is no best answer to this question.
However, for reasons that make sense in later chapters, a reasonable answer is that each row
in a table should be a Python list. The two rows shown for the ingredients table could
thus be

["oakmoss28","Botanisco",205], ["lavender4","Durevelia",834]

Similarly, the rows of the suppliers table could also be lists. Another idea might be to
arrange the suppliers as a dictionary, like this

{ "Botanisco":'www.botanisco.co.za', "Olfaktikov":'olfaktikov.co.fr' }

The table of suppliers suggests (the “· · ·” in the third column) there could be more infor-
mation. How would this be accommodated by a dictionary? The trick is to use a list. A
revised representation of the suppliers table including phone numbers might be

{ "Botanisco":['www.botanisco.co.za',"+44 208.555.1212", etc] }

39

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

40 A Functional Start to Computing with Python

In practice, this way of showing a dictionary in a textbook is far too lengthy to be practical.
Later chapters introduce techniques whereby dictionaries can be created from data in files,
where they are conveniently inspected and changed by programs.

which is best, list, tuple, string, or dictionary?

It is a bit early to fully explain the reasons for preferring one type over another, given a
choice. Most commonly, the dictionary type is chosen when the intended use is to lookup
by a key (i.e., the supplier name). Tuples are often used for data that does not change when
a program runs, whereas information in lists can be more dynamic. Later examples, which
refer to Acme Perfume, illustrate how Python can work with tables represented by lists and
dictionaries.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Chapter 6: Operators

operators

numeric

+ -

∗

∗∗

/

//

%

sequence

+

in

.index()

boolean

and

or

not

comparison

>

<

<=

>=

==

!=

in

not in

41

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

42 A Functional Start to Computing with Python

Operators are standing by.
— Anonymous

Calculation consists of reducing expressions to some minimized form. Thus, 100+100 re-
duces to 200. Computing long ago parted ways with calculations of numerical results. Most
of what computers do is search, organize data, find patterns, and sense physical objects.
Nevertheless, because most students have learned some algebra, it is reasonable to first
introduce Python’s numeric operators, and then ease into the less familiar operations.

Unlike low level machine language working with bits, the operators in Python will not
work unless types of data are suitable: Python is a typed language. Python outputs a
TypeError message when you try to use an operator on the wrong type of data.

Operators are of two flavors, binary and unary. Binary operators, like * and /, take two
arguments placed on the left and right sides of the operator. Unary operators have just one
argument placed on the right side of the operator.

This chapter starts with familiar numeric operators, then goes on to introduce new
ones for boolean and sequence types. After these operators are presented, Chapter 7 shows
how operations can be mixed in expressions, and how operator priority helps to resolve
ambiguity.

Notation used in this and later chapters is the “➜” symbol, which
indicates how Python evaluates an operation or expression, reducing it
to an output value.

Example: 100+100 ➜ 200.

Numeric: Float and Integer Arithmetic

Numeric operators take integer or floating point arguments and compute a result. Most
often, both left and right arguments to an operator have the same numeric type (integer or
floating point), but it is possible to mix these as well, putting an integer on the left side and
a float (floating point) on the right side or the other way around. A few numeric operators
are specialized to integers; the section following this one deals with these.

operator meaning example
+ addition 8.03+1.22e3

- subtraction 1723-2521

* multiplication 17*21

/ division 6.02e23/10521.0

** exponentiation 144**0.5

The minus (-) operator uses the same symbol as the negative number sign, and both can
be used in a Python operation: 3--10 is calculated to be 13, for example.

Not in Python: Some students who know C, C#, Java or similar lan-
guages ask immediately: does Python have the “++” operator or the “--”
operator? The answer is no!

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Operators 43

The minus operator is also exceptional because it is both a binary and a unary operator.
Used as a unary operator, it reverses the sign of its right argument: ---3 is negative 3
because the sign is reversed twice (the third “-” is the sign of the number).

Integer Operators ➋
➌
E

Division. When Python is presented with the operation 8/3 a choice has to be made.
Should the answer be 2.6666666666666665 (the computer approximates fractions) or should
the answer be an integer, say 2 or maybe 3? The first answer would be more precise, but it
would not be an integer. With operators +, -, and *, an operation on two integers yields an
integer. To be consistent, Python should return an integer for division, however, others have
a different opinion. This debate was resolved in Python2 in favor of returning an integer
whenever two integers are combined by division. Therefore, in Python2, 8/3 is computed to
be 2, rounding the true answer down to the nearest integer. Similarly, -8/3 returns -3 by
rounding down in Python2.

The debate was not fully settled, however. In Python3 the subject was reconsidered,
and a new operator // was introduced (actually the // operator is supported in all recent
versions of Python2). Here is how it works in Python3:

• 8/3 returns 2.6666666666666665 (which is a floating point number)

• 8//3 returns 2, rounding down to the closest integer value

The general policy that Python3 tried to follow was to be backward compatible with Python2,
that is, programs written for Python2 should still work, even when processed in the Python3
programming environment. However, the case of the division operator shows that this policy
was not strictly followed.

Remainder. Another special integer operator is the division-remainder operator %, which
returns the remainder from dividing two integers:

8%3 ➜ 2
8%4 ➜ 0
9%2 ➜ 1
-7%4 ➜ 1

-8%-3 ➜ -2

The lines above show examples of what % calculates for different arguments. When the
right argument divides evenly (no remainder) into the left argument, then the answer is 0.
Otherwise, when the right argument is a positive number, the answer will be some value
larger than 0 and less than the right argument. When the right argument is negative, the
answer is not so easy to explain; programs almost never use a negative number for the right
argument of %, so it is best not to worry about this case (you can safely forget how it works).
A handy usage for the % operator is to see if an integer is even or odd. It is even if it is
divisible by 2, so x%2 is 0 if x is even and x%2 is 1 if x is odd. It is worth remembering this
trick.

Exceptions. Trying to divide an integer by zero, or trying x%0, causes Python to halt
computation and output a ZeroDivisionErrormessage. Similarly, dividing a floating point
number by 0.0 will generate an error. Sometimes floating point operations may produce a
result too large or too small for Python to approximate, and you might encounter special

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

44 A Functional Start to Computing with Python

values like inf or nan when this happens. This book does not cover all of what can happen
with floating point operators, so you would need to look elsewhere if you are curious about
this.

Bit Operations. Python has the same bit operators that low level languages like C offers
(~ >> << & ^ |), but we skip this topic. Normal programming can do without bit opera-
tions, as we hope to concentrate more on useful applications than on low level, machine-
oriented topics.

Comparison: Numeric, General, and Type

Comparison operators differ from the standard arithmetic operators because the type of the
result is typically different from the arguments: 10>2 ➜ True. The result of comparison
is a boolean value, either True or False. The comparison operators are familiar for numeric
arguments:

90<100 ➜ True

100<90 ➜ False

100>90 ➜ True

100>100 ➜ False

100>=100 ➜ True (means ≥ in math)
100>=50 ➜ True

100>=200 ➜ False

100<=200 ➜ True (means ≤ in math)
100<>200 ➜ True (means 6= in math)
100<>100 ➜ False

100!=200 ➜ True (means 6= in math)
100!=100 ➜ False

100==100 ➜ True (means = in math)
100==200 ➜ False

Python also allows a “range test” to determine whether a number lies between two values.
Examples of this are

-200 < 60 < 200.952 ➜ True

1e-4 <= 0.000001 < 8 ➜ False

General Comparison

Python allows comparison between other types, boolean and sequence, so long as both
arguments to the comparison operator have the same type. Thus, strings can be compared
to strings, booleans to booleans, and so on. For booleans, the way this works is simple:
if we treat False as 0 and True as 1, then all of < > >= <= <> != == behave in the
expected manner (but, it turns out we never need to compare booleans to each other).
String comparison has a more complicated behavior. There are two ways to understand
this, an intuitive way and a formal way. The intuition is alphabetic ordering. Think of
where a word, say orbit, would occur in a dictionary. Would it come before or after the
word ordinary? Well, both words are in the “o” section of the dictionary, and even the
second letter is the same in both words. So we have to look at the third letter to decide: b
comes before d in the alphabet, so orbit should come before ordinary in the dictionary. Put

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Operators 45

another way, orbit has “lower alphabetic ranking” than ordinary—so orbit < ordinary

in some sense.
The preceding seems reasonable to most people, but it leaves lots of questions unan-

swered. What about capital letters? What about punctuation, blanks, tabs, and other weird
things that might be in a string? What if one string is shorter than the other? Worrying
about all these special cases, sometimes called edge cases or corner cases , occupies much
of what computer scientists have to manage in order to get correct programs. It is not that
difficult because Python and other high level languages can automate the way it works.
However, to truly understand how it works, it is revealing to look behind the scenes at how
Python does comparison for strings and other sequence types. At the end of this chapter
there is a detailed technical explanation of the algorithm Python uses for sequence com-
parison. Most programmers skip over knowing this level of detail, but if you are puzzled by
Python’s behavior or just curious, you should look at the algorithm.

Type Comparison

Chapter 7 builds on this chapter by combining operators and values into expressions, and
introducing the notion of naming a value or the result of calculating a value for an expression.
In later chapters, the question arises, what is the Python type of some name? The answer
is found by comparing the type of the name to a known type: type(X)==type(3) is True
if X is an integer, but False otherwise. For convenience, Python allows you to use int

in place of type(3), float in place of type(1.8), and to use other abbreviations: bool,
str, list, tuple, dict, type. Some examples follow, with another type comparison
function instance in the last few lines.

type(25)==list ➜ False

type(-200)==int ➜ True

type(-200)==type(-2e2) ➜ False

type("ABC")!=type("XYZ") ➜ False

str==type("") ➜ True

type([])==type([3,1]) ➜ True

list!=tuple ➜ True

isinstance("hello",str) ➜ True

isinstance("1",int) ➜ False

isinstance(1e9,float) ➜ True

The isinstance function internally does the type comparison, where the value (or name)
is put first and the type is second.

Boolean Operators: And, Or, Not

Python English
and may not mean and
or may not mean or
not may not mean not

The table above shows the three boolean operators, warning that English usage of the terms
could be misleading. Whether they are misleading or not depends on personal background
and experience. Lawyers might have a different technical understanding of what English
words “and,” “or” imply in documents. Some people interpret “or” as being an exclusive

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

46 A Functional Start to Computing with Python

choice, as in “either this or that.” Python has a technical definition for each operator. The
not operator is unary, and there are just two possibilities:

not False ➜ True

not True ➜ False

Thus, not is the boolean equivalent of the unary minus operator, for instance: ---3 ➜ -3,
and likewise not not not True ➜ False. The binary operators and and or also have a
limited number of possibilities, shown below:

False and False ➜ False

False and True ➜ False

True and False ➜ False

True and True ➜ True

False or False ➜ False

False or True ➜ True

True or False ➜ True

True or True ➜ True

It is definitely a good idea to memorize the way that Python’s boolean operators behave.
In fact, the behavior of these operators is deeply connected with formal logic, a branch of
philosophy.

Sequence Operators: Concatenation and Containment

There are three sequence operators: +, *, and in. The + operator is called the concatenation
operator. It takes two sequences of the same type and returns a sequence of that type. Use
the + operator to “glue together” two sequences:

'one' + 'two' ➜ 'onetwo'

'' + 'anything' ➜ 'anything'

(1,2) + (False,) ➜ (1,2,False)

[7]+["seven","eight"] ➜ [7,"seven","eight"]

['sample']+[] ➜ ['sample']

['trace']+[''] ➜ ['trace','']

Empty sequences (which are '', [], and ()) act like the “zero” of concatenation. The * is
similar to integer multiplication, but using concatenation rather than addition:

4*'E' ➜ 'EEEE'

'wow'*2 ➜ 'wowwow'

0*'object' ➜ ''

[False,True]*2 ➜ [False,True,False,True]

To use the * operator this way, one argument should be a sequence and the other must be
an integer (negative integers behave like zero).

The in operator resembles a comparison operator because it returns a boolean value.
The left argument of in can be any type and the right argument is a sequence type.

4 in [2,4,6,8] ➜ True

3 in [2,4,6,8] ➜ False

'n' in 'many' ➜ True

'z' in 'sleep' ➜ False

'S' in 'sleep' ➜ False

(1,2) in [0,(1,2),3,4] ➜ True

(3,4) in [0,(1,2),3,4] ➜ False

type(7) in (str,int,float) ➜ True

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Operators 47

The in operator is sometimes called a membership.

But wait, there’s more . . .

The in operator has a special extra feature for strings: it can do a “substring test” for
membership.

'and' in 'candy' ➜ True

'sip' in "Mississippi" ➜ True

'over' in "ver" ➜ False

"will" in "will" ➜ True

'45' in '1945-1951' ➜ True

"Can" in "cantankerous" ➜ False

'' in "anything" ➜ True

The last line is a special case: the empty string is considered to be contained in every Python
string. The membership operation is also valid for sets and dictionaries. For dictionaries,
the operation returns True if the left argument is a key in the dictionary.

False in {1:'a',False:0} ➜ True

0 in {1:'a',False:0} ➜ False

Finally, there is a Python operator doing the opposite of in (no, it is not called out):

7 not in [1,2,3,4] ➜ True

You can use not in anywhere you would use in to test nonmembership of the left argument
in the sequence or dictionary on the right.

Hidden Operators: Function Application, Indexing,
Lookup

Two other operators are unusual because there is no single character or string of characters
to represent them. At first sight, these might not even appear to be operators. One has
already been introduced, though not as an operator: function application. Temporarily, let
“o” be a visible symbol for function application. The expression of applying the length
function with a string argument could be

len o "painting" ➜ 8

The o operator takes a function name as the left argument and something else, a parameter ,
that the function uses to find an answer. In fact, Python does not have a symbol o for
function application; instead, the notation is:

len("painting") ➜ 8

Because there is no special symbol, function application is an implicit operator (also, it
is a binary operator). Later, there will be examples where the right argument to function
application looks like a tuple, with multiple items separated by commas.

The other implicit operator is called indexing. The left argument is a sequence and the
right argument is an integer, for instance

'oranges' K 3 ➜ 'n'

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

48 A Functional Start to Computing with Python

where “K” represents the indexing operator. The right argument, called the index, identifies
which item of the sequence should be returned, counting left to right, starting from zero.
Above, the index for 'o' is 0, for 'r' it is 1, and so on. Of course, Python does not use
a “K” symbol: indexing is an implicit operator. The actual notation is similar to function
application, but using brackets rather than parentheses:

'oranges'[3] ➜ 'n'

A simple way to think of 'oranges'[3] is that it means “skip the first three items and
return the next one.” Hence, 'oranges'[0] skips no items and returns the first, 'o'.

One feature of Python that is different from other languages is that the index can be
a negative integer. When negative, the item to return is found by counting right to left
(that is, starting from the end of the sequence and counting backward), with -1 referring
to the last item of the sequence. The index value cannot be a floating point number and
cannot refer to some position that would be outside of the sequence. Python will output an
IndexError message if the index goes “out of bounds” for the sequence.

"safe at home"[10] ➜ 'm'

'reason is why'[13] ✘

[1,3,5,7][-2] ➜ 5

(False,0,True)[2.0] ✘
("one","two","three","four")[3] ➜ 'four'

(3,"ready",[4,5],6)[2] ➜ [4,5]

The lines with ✘ are cases where the index is out of bounds, killing Python’s index operation
attempt.

Lookup. Indexing also works for dictionaries, but the value used for the index has to be
some key in the dictionary. The index value can thus be any type allowable for a dictionary
key (numeric, string, tuple, boolean). If the index given is not in the dictionary, Python will
output a KeyError message.

{1:True, 2:True, 3:True}[2] ➜ True

{1:True, 2:True, 3:True}[0] ✘

{"Sam":61, "Chen":90, "Suzy":74}["Chen"] ➜ 90

{"Fox":-1, True:0, 95.5:"x"}[True] ➜ 0

This type of indexing shows how dictionaries might be used like a database, looking up a
value by an associated name. It is up to the programmer to figure out how best to exploit
Python’s dictionary type.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Operators 49

Why Does Indexing Start with Zero?

Why doesn’t "Vector"[1] evaluate to 'V'? After all, “V” is the first character in the
string, so shouldn’t the number 1 refer to the first character? Over time, this has been
a hotly debated question. One reason Python uses 0 instead of 1 as the first index is
historical, though there are engineering considerations too. Wikipedia has a description
of zero-based numbering on this topic, pointing out that other areas of counting may
start with zero (for instance, “ground zero” comes to mind). Since computing is all
based on bits at the deepest level of data representation, it is worth looking at a simple
case and how this influences indexing.

With two bits of information, there are only four possible combinations of bits: 00,
01, 10, and 11. With eight bits, there are 23 = 8 combinations, and generally with any
number n of bits, there are 2n combinations of using 0 and 1. Therefore, in deciding
on how to represent integers, it is sensible to let 00 represent zero, 01 to represent 1,
10 to represent 2, and 11 to represent 3—the binary number system (negative integers
are another story).

Integers are not only used for arithmetic, but also as a way to refer to different
places in computer memory: there is a memory location for 0, a memory location for
1, and so on. To engineers working with memory locations, it is natural to let 0 be
the “index” for the first memory location. Languages C, Java, and related cousins of
these all use 0 as the starting index value for data. However, not all language designers
made the same choice. There are other computing languages that start with 1; in fact,
there is even a computer language which allows the programmer to choose which is the
starting value, 0 or 1, to be used when referring to the first item of a sequence.

Example: Suppose memory is a sequence of 8-bit bytes, and the first four bytes look
like this:

01011110 11110011 00100001 10011001

The value of memory location zero is 01011110, which might be expressed in Python-
like syntax as Memory[0].

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

50 A Functional Start to Computing with Python

Method Calls

Several modern programming languages offer special syntax for a special type of function
application, a method call or method invocation. To illustrate this feature, some examples
follow:

'Paris, France'.upper() ➜ 'PARIS, FRANCE'

'forest'.index('r') ➜ 2

[4,9,16].index(9) ➜ 1

The effect of upper is obvious, it returned the capitalized version of a string. The effect of
index is a search: it returns the index of a given item in a sequence. How does this syntax
for a method call work? The operator here is the period “.” It is a binary operator, where
the left argument is some Python value and the right argument is a function application. At
a deeper level of analysis, there is a more precise explanation of how this works. Suppose,
corresponding to upper there is a “secret function” named upper (different font). Then

'Paris, France'.upper() is equivalent to upper('Paris, France')

The upper function takes one argument, a string, and returns a capitalized version of the
argument. Similarly,

[4,9,16].index(9) is equivalent to index([4,9,16],9)

where index is a function of two arguments, the first being a sequence and the second being
an item to find within that sequence. Thus, a method call is really a function call, but with
some unusual syntax for the function’s arguments.

Why does Python have both functions and method calls? In this chapter, this is not a
question we can answer. Later chapters will expose more syntax and justify why method
calls are part of the language.

Terminology Review

Jargon introduced in this chapter: binary operators, unary operators, typed language,
TypeError, argument, parameter, backward compatible, edge cases (corner cases), algo-
rithm, concatenation, membership, function application, implicit operator, indexing, index,
method call.

The formula “Two and two make five” is not without its attractions.
— Fyodor Dostoyevsky

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Operators 51

Exercises

Evaluate the following lines, trying to predict what Python would return for each use of the
operators. To check your work, use Python interactively.

➪ web

1. type(2>2)

2. 3-----4

3. "Big > small"

4. 99+'three'

5. ["A",2]<["A",3]

6. 20 >= 20

7. type(3*"three")

8. 2**10

9. 3*len("three")

10. '' in "empty"

11. "four".index('o')

12. "several".index('w')

13. {4:1, 3:2, 2:3, 1:4}[2]

14. "seven > 5

15. 8 in {0:1, 1:2, 2:3}

16. 8 in {0:7, 1:8, 2:9}

17. [True,False,True].index(True)

18. 'timing'[-4]

19. 'timing'[-4]+'timing'[-2]

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

52 A Functional Start to Computing with Python

Python’s Algorithm for Comparison Want to understand the precise way Python
compares sequences? To see how Python internally performs sequence comparison, it is
helpful to see its recipe, or algorithm for comparing two strings. Suppose the comparison
operator is •, standing for < or == (we do this so we do not have to repeat the explanation
twice). The algorithm consists of four rules, applied over and over, until an answer is
obtained. Before revealing the algorithm, imagine there are two strings, 'hyperbole'
and 'hyena' and visualize them using tables:

h y p e r b o l e

➢

h y e n a

➢

The ➢ symbol underneath the h in both tables is called a cursor, much like what you see
on a screen as you type. The significance of the cursor is that the algorithm starts by
looking at the first item of both sequences, h in this example. Then it tries to determine
whether the answer is True or False at the cursor’s location in both sequences. If the
answer is found, the algorithm terminates right away. Otherwise, the algorithm moves
each cursor to the right and tries the whole thing over again. For example, if the answer
for 'hyperbole' versus 'hyena' is not found on the first try, then the algorithm will
try again with

h y p e r b o l e

➢

h y e n a

➢

Notice how the cursor moved over for both strings. Here are the rules of the algorithm:

1. If both cursors are beyond the end of the strings, then the answer is True if • is
== and False if • is <.

2. If the cursor for the left argument is beyond the end of the string, but the cursor
for the right argument is not, then the answer is False if • is == and True if • is
<.

3. If the cursor for the right argument is beyond the end of the string, but the cursor
for the left argument is not, then the answer is False.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Operators 53

4. If the cursors for both strings are within the strings, let x be the cursor’s character
for the left argument and let y be the cursor’s character for the right argument;
now, if x==y ➜ True, then move both cursors to the right and retry starting from
Rule 1. Otherwise, the result is:

(a) if • is == the answer is False;

(b) if • is < the answer is the result of comparing ord(x) < ord(y).

Finally, at rule 4(b) we see the trick of comparing strings which have punctuation,
blanks, digits, and so on: it uses ord to convert a character into a number, and then
falls back to numeric comparison. To illustrate the algorithm consider these examples:

'a'<'any' ➜ True

'capital'<'cap' ➜ False

'Average'<'and' ➜ True

The first line shows the effect of rule 4 and rule 2: the algorithm compares 'a' to 'a',
then moves the cursor (rule 4), putting the cursor beyond the end of the left argument.
Here, rule 2 determines the answer to be True. For the last line, rule 4(b) evaluates
ord('A')<ord('a'); this turns out to be 65<97, which determines the answer.

Are programmers supposed to know the integers of ord for all characters? No,
though for alphabetic characters these integers have sensible values, so that comparison
of letters follows alphabetic order; perhaps the only thing worth knowing is that any
capital letter is considered to be smaller than all the lowercase letters.

Leftover. The algorithm does not say how to handle > <= >= <> != == operators.
Rather than explain this here, there is a simpler way to understand these cases by first
learning about boolean operators.

Tuples and Lists. Comparison operators also work for the other sequence types,
tuples and lists, using essentially the same algorithm that string comparison uses.

[True,25,"hello",19,False] < [True,25,"hello",9,False] ➜ False

The reasoning, using rules 1–4, starts with cursors at the beginning of each list. The
first, second, and third items of these lists are equal, so rule 4 repeats three times,
putting the cursor at 19 for the left argument and at 9 for the third argument. Then
the comparison 19<9 determines the answer to be False.

This page intentionally left blankThis page intentionally left blank

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Chapter 7: Expressions

len("
vorte

x")*2
%12

"oran
ge"[(2

,9,-2,5
)[2]]

"easy
" in (

"yes
ease"

*2)

2**81-3**45

10>7 or "m">"b" and True

(not True, "t", 72/6)[2-4]

55

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

56 A Functional Start to Computing with Python

I can calculate the motion of heavenly bodies,
but not the madness of people.

— Isaac Newton

Computing starts to become interesting when operators and types combine to form expres-
sions . Throughout science, there are expressions about equalities or inequalities, typically
called formulas or equations. Scientific breakthroughs sometimes have concise technical
statements expressed by such formulas. Students learn how to calculate with expressions
(usually algebraic expressions), but the same general way of manipulating symbols hap-
pens with logic, balancing chemical reaction equations, deducing voltages for a circuit, and
so on. Every student learns how, with the aid of a calculator, to find the x satisfying
x = 8/(52 − 3× 7). Early on, students learn rules of what to do first, how to proceed from
one step to the next, in order to solve such problems. Similarly, programming languages
need syntax rules that guide interpretation of source code, which is the topic of this chapter.
A Python program might contain an expression

not True or not False and True

Without syntax rules , this expression seems ambiguous. Programs can also mix operators
and arguments having a variety of types; here, syntax rules (like grammar in English)
can improve programming style, so that programs written by one person are more easily
understood by someone else.

Sequential Reduction

Let us reconsider, in “slow motion,” how an arithmetic expression is reduced to a final
answer. The following table shows the original expression and lines that make one simplifi-
cation to the previous line, until the last line is a single number.

1-2-3-4 ➜ -1-3-4

-1-3-4 ➜ -4-4

-4-4 ➜ -8

The order of evaluation for these steps is left-to-right , that is, each step calculates the
leftmost operation in the expression to get the next line. This is Python’s normal way of
reducing or evaluating expressions. So long as an expression has an operator in it, there
is further evaluation work to do. It is easy to change the order of evaluation by inserting
parentheses:

1-(2-3)-4 ➜ 1--1-4

-1--1-4 ➜ 0-4

0-4 ➜ -4

When part of an expression is enclosed in parentheses, Python evaluates that part first,
but otherwise the order of evaluation remains left to right. Unfortunately, Python does
not show this detailed, sequential reduction of an expression: Python appears to instantly
evaluate the expression and return an answer. However, it can sometimes be a useful exercise
to manually go through an evaluation one step at a time. You may already suspect that
Python has an algorithm for evaluation.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Expressions 57

Well-Formed Expressions

Using some “rules of construction,” a clear definition of the syntax of expressions emerges.
The rules, taken together, define well-formed expressions . These are expressions that follow
the syntax, but may still be incorrect. The rules define expressions that superficially look
reasonable: parentheses match, operators have arguments, and so on. Yet, according to
the rules, “9/(3-2-1)” is a well-formed expression, even though Python would output a
ZeroDivisionError message when trying to evaluate it. This is a general phenomenon of
programming languages: so-called syntax errors are found by compilers, before the program
ever runs; whereas runtime errors are discovered later, when the program executes. Think
of the well-formed formula rules as a gatekeeper for correct programs. The rules may not
find all the bugs, but can find some obvious ones. Another nice property of the syntax rules
is that programming language editors (which are essentially word processors specialized to
programs) can be aware of the rules, finding errors even as you use the keyboard to write
source code. This works somewhat like spell-checkers that watch what you type, suggesting
whether or not a word is suspicious according to its dictionary. At the end of this chapter,
the rules for well-formed expressions are given along with some examples. You can get
some feel for how well-formed expressions work just by studying working programs, so most
programmers do not need to memorize such rules.

Parentheses and Priorities

Even when an expression is well-formed and is valid in Python, meaning that it runs without
halting and outputting an error message, the result might not be what we expect. The
problem is that, without a further kind of rule, there can be some ambiguity about the
order of sequentially reducing an expression to a final result. Consider this mixture of string
concatenation and indexing:

"mobility"+"patterns"[0]

Without knowing better, you might think this should reduce to 'm', reasoning that evalua-
tion goes left to right, so the intermediate result would be "mobilitypatterns"[0], which
returns 'm'. But, instead, Python returns "mobilityp", because the indexing operation
occurred first, before the string concatenation. If you wanted the first order of operations,
then you would need to use:

("mobility"+"patterns")[0]

Using parentheses forces the order of evaluation, so the answer here is 'm'. What is needed,
in order to make Python’s evaluation of expressions predictable, is to know about all the
exceptions to the normal, left-to-right, evaluation process. Figure 7.1 shows the priority of
Python operators, with the highest priority operator at the top of the table.

Examples. As done earlier in the chapter, working through examples sequentially, one
reduction per step, illustrates Python’s order of evaluation. In the following example, each
line makes one reduction step to get the next line. Note! the (2), (3), (8), (9), and (12) you
see to the right on each step refer to numbered priority lines in Figure 7.1.

9>1e-4 and {0:"Cavern", 5:'Tunnel'}[0].upper() in 'cave' ➜ (8)
True and {0:"Cavern", 5:'Tunnel'}[0].upper() in 'cave' ➜ (2)

True and "Cavern".upper() in 'cave' ➜ (3)
True and "CAVERN" in 'cave' ➜ (9)

True and False ➜ (11)
False

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

58 A Functional Start to Computing with Python

(1) f(· · ·) function application
(2) E1[E2] index (lookup)
(3) E .f(· · ·) method call
(4) ** exponentiation
(5) -E change sign
(6) *, /, //, % multiplication, division, remainder
(7) +, - addition, subtraction
(8) <, <=, >, >=, <>, !=, == comparison operators
(9) in, not in membership
(10) not E logical negation
(11) and logical conjunct
(12) or logical disjunct

Figure 7.1: Python operator priorities.

The next section of the chapter has a more detailed explanation of how Python evaluates
and reduces expressions, but the example above hints at how things occur: there is a series
of steps, each step simplifying the expression, and each step consults the table of Figure
7.1. Extra parentheses can override Python’s operator priority; the same holds for brackets
(used to define lists or indexing) and for curly braces (used to define dictionaries). Consider

{3+4:True, 50/2:"quarter"}[12-5]

According to the operator priorities, (2) dictionary lookup has highest priority for evalu-
ation. But, the dictionary items have expressions for keys, and these are within the { }
symbols; similarly, there is an expression within the [] for the lookup value, and that also
has higher priority to reduce first. The actual order of evaluation would therefore be

{3+4:True, 50/2:"quarter"}[12-5] ➜ left-to-right
{7:True, 50/2:"quarter"}[12-5] ➜ left-to-right
{7:True, 25:"quarter"}[12-5] ➜ left-to-right

{7:True, 25:"quarter"}[7] ➜ (2)
True

You might notice above that the first three steps, done left-to-right, could instead be done
in any order, because they are “independent” expressions. Mentally, this is the simplest way
to think about parentheses (or braces and brackets): they surround expressions that have
to be evaluated before the operators outside of the parentheses (braces or brackets).

➪ web

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Expressions 59

Typical of Python usage is a comparison expression with function application, arith-
metic, or string operations in it:

len('t'+" E")>2 and not "x" in "axis" ➜ parentheses
len("t E")>2 and not "x" in "axis" ➜ (1)

3>2 and not "x" in "axis" ➜ (8)
True and not "x" in "axis" ➜ (9)

True and not True ➜ (10)
True and False ➜

False

Many software professionals are not fully cognizant of operator priorities. Having to work
with numerous programming languages, system tools, database packages, and a variety
of mobile computing devices (plus keeping up with all the latest trends in computing),
even professionals cannot be expected to recall obscure details of a particular programming
language. Thus, some programmers might rewrite the example above as

(len('t'+" E")>2) and (not ("x" in "axis"))

Using the added parentheses, it is obvious what is evaluated first, second, and so on. The
and is clearly the last operation to be evaluated. If you are uncertain or perhaps just want
to make expressions more readable, consider adding extra parentheses. Whether you use
them or not is up to you: in all areas of life, expression can be a matter of personal style.

Rules of Evaluation

Given the operator priorities, parentheses, and well-formed expression rules, how does
Python evaluate an expression? There are different ways to explain this, and we use a
simplified explanation here. This section of the chapter is somewhat lengthy, but under-
standing how Python does the evaluation can be quite important: if you want an expression
to give the right answer, you had better understand the way Python will interpret your
expression.

General Rules: Left-to-right
evaluation, but look-ahead
first, checking if a higher pri-
ority operation comes next;
parentheses force evaluation
order; evaluation work can be
“queued up” due to operator
priority.

Repeating from earlier, the general rule is left-to-
right reduction of an expression to a final value. How-
ever, as Python evaluates from left to right, it “looks
ahead” before it reduces an operator. Consider the
expression

2-3-4*2**5+1

Going left-to-right, the first operator is subtraction:
does Python therefore immediately reduce 2-3 to -1?
No! First, Python observes that the operator following
3 is another minus operator; now, since the operator on the left of 3 and on the right of 3
have the same priority, Python can safely reduce 2-3 to -1 and get

-1-4*2**5+1

as a partially reduced expression. The next operation to consider is reducing -1-4 to -5: can
this be done? No! First, Python observes that the operator to the right of 4 is *. Comparing
multiplication to minus in the priority table of Figure 7.1, we see that multiplication has
higher priority. Hence, Python should reduce 4*2 before reducing the minus sign to the left
of 4. So is that what Python does next? No! Before reducing 4*2, Python looks to the right

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

60 A Functional Start to Computing with Python

of 2 and finds the operator **. Again, we consult the table of Figure 7.1. It turns out that
** has higher priority than *, so Python should first reduce 2**5 before working on the
multiplication. Is that what Python does next? No! Python looks to the right of 5 to see if
there is another operator (if there were no more operators, we would finally be at the end of
the story). To the right of 5 is the plus operator. The plus operator has lower priority than
** in the table. Therefore, finally, Python can get to work actually reducing an operation
to a value. To summarize where things stand at this point in the evaluation, Python has a
“backlog” of two jobs to do,

1. reduce 2**5, getting 32

2. then reduce 4*32, getting 128

The partially reduced expression thus becomes

-1-128+1

Once again, Python can consider reducing the minus operator to the right of the first 1 in
this expression. Is that what Python does? No! First, look ahead to compare this minus
operator to the operator on the right of 128. It is a plus operator. In the table of Figure
7.1, the minus and plus have the same priority. What is Python to do in this event of equal
priority operators? The answer is simple, just use left-to-right evaluation. Python therefore
reduces -1-128 to -129. The partially reduced expression becomes

-129+1

One more step gets the final value, -128.

✰ ✰ ✰

A curious illustration of Python’s left-to-right order of evaluation occurs with boolean op-
erators or, and. Python optimizes the way that these operators are evaluated by skipping
reduction when it will not matter. Suppose Python is asked to evaluate

True or o

where “o” is some expression. It turns out that whether o is True or it is False does
not matter: the final result will be True, just based on the simple definition of “or” in
Python. Therefore, Python skips even trying to evaluate “o” (so long as it is a well-formed
expression). Here is some evidence of this fact, using interactive Python:

>>> (3>2) or (3>(2/0))

True

>>> (3>(2/0)) or (3>2)

ZeroDivisionError: integer division or modulo by zero

Evaluating left-to-right, Python gets the partially reduced expression

True or (3>(2/0))

Python can immediately reduce this to True, since it does not matter what value would
be on the right side of the or operator. But, when we switch around the two sides, the
left-to-right rule asks Python to evaluate (3>(2/0)) first, and this is an error.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Expressions 61

A similar example would be an expression

7>1 and "t" in "it" and 4>2+2 and 7>3/0

According to the priority table in Figure 7.1, all operators (>, in, +, /) are higher priority
than and. However, going left-to-right, whenever Python might encounter something of the
form

False and o

then Python can immediately conclude the reduction to False is correct, regardless of the
value of “o,” by the definition of and. Partial evaluations for the expression above are

7>1 and "t" in "it" and 4>2+2 and 7>3/0 ➜

True and "t" in "it" and 4>2+2 and 7>3/0 ➜
True and True and 4>2+2 and 7>3/0 ➜

True and 4>2+2 and 7>3/0 ➜
True and 4>4 and 7>3/0 ➜

True and False and 7>3/0 ➜

False and 7>3/0 ➜
False

Natural languages, like English, are known to have inconsistencies. In
principle, programming language should be free from inconsistencies, but
sometimes they do arise. An example of this is the Python expression

0 in [0] == True

which Python evaluates to be False. Instead, for the expression

(0 in [0]) == True

Python’s evaluation is True. This is logical, since according to the priority
table in Figure 7.1, the == operator has higher priority; yet, if we try

0 in ([0] == True)

Python reports a TypeError, because the in operator only works with
sequences! Here we see an example of an inconsistency in Python’s gram-
mar (a bug, which may be corrected in future revisions to the language).
Fortunately, such inconsistencies are quite rare and should not be a con-
cern for practical purposes.

Names for Values ➪ web

Most commonly, programs do not directly have numbers, lists, strings, and so on, in the ex-
pressions. Rather, symbolic names for things are used. Conventionally, textbooks introduce
variables to refer to data. In Python, variables are more complex than in other languages,
so we postpone the study of variables (and assignment statements) to Chapter 15. The
examples that follow are simple, yet show how expressions can work with names referring
to data.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

62 A Functional Start to Computing with Python

x = len("gravity") ➜ x = 7

y = 81 % 17 ➜ y = 13

z = [x, y, x<y and y>0] ➜
z = [7, 13, 7<13 and 13>0] ➜

z = [7, 13, True and 13>0] ➜
z = [7, 13, True and True] ➜

z = [7, 13, True]

The bottom line for this little example is that x stands for 7, y stands for 13, and z stands
for [7,13,True]. When you work interactively with Python, giving names to expressions
actually gives names to the values of those expressions, after evaluation. Notice that the
value for z does not refer to x or y, even though the expression defining z had both x and
y in it.

Using names for expressions can dramatically reduce the number of keystrokes needed
to express a program. The hard part of learning to use names is that you have to keep track
of the type and value of the names. Evaluating an expression requires knowing the values
of all the named parts.

>>> a = "enter"

>>> b = 4*[a]

>>> c = b[1]+b[3]

>>> "renter" in c

True

Python responds silently to defining a name during an interactive session. Python does not
respond with “OK,” it just accepts what is typed (like “b = 4*[a]”) without complaining.
This is normal behavior during an interactive session. Python only shows a value if there is
something to be evaluated. Above, to understand why Python evaluated the final expression
to be True requires that you look back to see how c is defined, which in turn means you
need to look back further to see where b is given, and so on. As a beginner, when you have
trouble with expressions in programs, you should ask Python interactively to show what is
the value of a name. For instance, given the above:

>>> a, b, c

('enter', ['enter','enter','enter','enter'], 'enterenter')

Python shows the value of a name, or a tuple of names.

Terminology Review

Jargon introduced in this chapter includes: expressions, evaluation, order of evaluation,
well-formed expressions, runtime errors, syntax errors, left-to-right, operator priorities, re-
duction, syntax rules.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Expressions 63

Exercises ➪ web

(1) What would be the result of Python evaluating the following?

1. "Hello",[21,4)

2. "abcd" + ("mnop")

3. "absolute"[9-5]

4. "amazing" >= "astounding"

5. "and" in "or" or "or" != "and"

6. "california"["f"]

7. "divide"/2

8. "easy" in ("yes we ease"*2)

9. "gb" in (10*"boing")

10. "hand" + "traffic"[2*5-4]

11. "hexadecimal"/2

12. "orange"[(2,9,-2,5)[2]]

13. "w" in "Iowa" and (5!=4*3-7 or "k" not in "Hawk")

14. "xmo/2+57

15. ("and" in "or") or ("or" != "and")

16. ("hq"*2,("a"<"b")and True)

17. ((10<2*5) or (7<7*7)), "a"*2

18. ((not ((10-2)==2**3) and (1e5 > 3000))

19. (-1,-2,-3,-4)[-2]

20. (-2**3,"0"+"2")

21. (0*"x") in "Iowa"

22. (1,2)[0]

23. (256**0.5)**0.(256**0.5)**0.5

24. (True,"Sample",False,"Seven")[4]

25. (not True, "to"+"rn", 72/6)[2-4]

26. (type(4*4),type("a"*2),type(3.0*2))

27. -(3**4) <= (-3)**(4)

28. 1*2*3*4*5/10

29. not (True and False)

30. 1+2*7**2

31. 1.-+3**

32. 105/2 == 52.5*2.0 (Python2)

33. 10>7 or "m">"b" and True

34. 15*(3-2*(12+6/(4+8))

35. 15//2+1 (Python3)

36. 2 in (21,5-1)

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

64 A Functional Start to Computing with Python

37. 2*((3-1)*"ox")

38. 2*2+9+2*3-5

39. 3*(2+(8*(1+(6+7)*2))))

40. 4*(---2+2)*'stop'

41. 5-4-3-2

42. 6/((10*4)+3)) (Python2)

43. 8.1e6-10000 <= (2**3)*(10**6)

44. 89//2+1e2 (Python3)

45. True and ((5!=2) or (not False))

46. True and (False or not False)

47. type(8>10)

48. 8.1e6-10000 <= (2**3)*(10**6)

(2) What should be in the two blanks so that Python would evaluate the following ex-
pression to be 25?

((10,11,12),(4,5,25),(7,19,21))[][]

(3) What value should be in the blank so that Python will evaluate this expression to be
True?

("four","five","six","seven","eight")[] in "one hundred sixty"

(4) What value should be in the blank so that Python will evaluate this expression to be
19?

(30-19+2,-5+3*8,"19",True)[]

(5) What value should be in the blank so that Python will evaluate this expression to be
False ?

(5>=5,"a"<"m",6==2*3,"f" in "swim",True)[2 -]

(6) Here is part of an interactive Python session. What line will Python show in response
to this?

>>> x = [5,6,7,8]

>>> y = [x,True,x,False]

>>> z = (y[0]==y[2],y[2])

>>> z[-1][-1]

(7) How will Python respond to this interactive session?

>>> s = ['taken','surprise','over','come','by']

>>> (s[0]+s[-1]).upper() + s[-3]+s[3]

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Expressions 65

Python’s Well-Formed Expressions The rules that follow are deceptively power-
ful. They start with simple statements, but build on each other in perhaps surprising
ways. It is best to read them first, then look at examples of expressions, going back to
the rules if questions arise. Rules R6 and R7 look more complicated, but the pattern
is easy to understand after looking at a few examples.

Rule R1 Every Python value, be it numeric, character, string, tuple, list, dictionary,
boolean, and so on, is a well-formed expression.

Rule R2 If E is a well-formed expression, then (E) is a well-formed expression.

Rule R3 Given any unary operator ◦, if E is a well-formed expression, then ◦ E is a
well-formed expression.

Rule R4 Given any binary operator ◦, and two well-formed expressions L andR, then
L ◦ R is a well-formed expression.

Rule R5 (Indexing Syntax) If S is a well-formed expression and E is a well-formed
expression, then S[E] is a well-formed expression.

Rule R6 (Function Syntax) If f is a function name, and E1, E2, E3, . . . , are all
well-formed expressions, then f(), f(E1), f(E1, E2), f(E1, E2, E3), . . . are also well-
formed expressions.

Rule R7 (Method Syntax) If f is a method name, S is a well-formed expression, and
E1, E2, E3, . . . , are all well-formed expressions, then S.f(), S.f(E1), S.f(E1, E2),
S.f(E1, E2, E3), . . . are also well-formed expressions.

This list of rules is incomplete. A more formal, complete list of rules would have provi-
sions for lists, tuples, dictionaries, sets, strings, and other features introduced in later
chapters. The rules for the types in Chapter 5 can be understood by intuition because
of the many examples already presented. The difference here is that expressions can
be used in lists. For well-formed expressions E1, E2, E3, the list [E1, E2, E3] is also a
well-formed expression; similarly, expressions can be used in tuples, dictionaries, and
so on.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

66 A Functional Start to Computing with Python

Examples. The following examples show that expressions must be well-formed to be
valid Python, though there are cases where it is not enough to be well-formed. The
first line is not well-formed because only Rules R2, R6, and R7 introduce parentheses,
and always in pairs surrounding well-formed expressions: "xyz"[2 is not a well-formed
expression because Rule R5 demands that brackets occur in pairs.

expression well- valid
formed Python

len("xyz"[2)] ✘ ✘

5+"AB"[9] ✔ ✘
*+3,4 ✘ ✘

"abc"[2]*len("abc") ✔ ✔

2.5 (3e9 - -4E8) ✘ ✘
[1+2,True or not False] ✔ ✔

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Interlude: Puzzles with Expressions

?
Here are some puzzles testing knowledge of Python expressions, types, and
operators in an indirect way, requiring some imagination, trial, and error. The
questions ask you to find Python values (numbers, strings, lists, etc.) for the
Greek characters α and β. Some questions are easy, but some are challenging.
For some of the questions, it may help to try empty sequences, such as '', [],
and ().

➀ Find values for α and β so that the following evaluates to
True.

α<=β and β<=α

➁ Is there a value for α so that Python evaluates the following
to be True?

α + 1 == α

(Hint: According to some people, ∞+ 1 =∞.)

➂ For what values of α being a sequence type (list, string,
tuple) will Python evaluate the following to be True?

2*α == α

➃ Find α and β so that the following evaluates to True.

type(α)==type(β) and α<β and len(β)<len(α)

➄ Find α so that the following evaluates to True.

type(α)==type((α,))

➅ Find α and β so that the following evaluates to True.

α[β in α] == β

➆ Does the following evaluate to True for all numbers α of type
int?

1+α%2 == (α+1)%2

67

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

68 A Functional Start to Computing with Python

➊ Find α so that the following evaluates to True.

α in α and α+α==α

➋ Can you find α and β so that the following evaluates to True?

α not in β and β[α] == α

➌ Are there values for α and β so that the following evaluates to True?

α in β and α != β[β.index(α)]

➍ Is it possible to have value α so that False results in the following compar-
ison?

α.upper() == α.upper().upper()

➎ Find α and β values so that the following evaluates to True.

α in α in β

➏ Is there an α so that Python evaluates the following to be False?

len(α)>=0 or α[0]==α[-1]

➐ Can there be α and β to get True as the result of the following comparison?

β[α] == α[β]

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Chapter 8: Printing

print(”hi”)print(”hi”)

prin
t(”hi”)print(”hi”)

print(”hi”)
pr

in
t(”

hi
”)

print(”hi”)pr
in

t(”
hi

”)
print(”hi”)pr

in
t(

”h
i”

)print(”hi”)print(”hi”)

print(”hi”)

prin
t(”hi”)print(”hi”)

print(”hi”)
pr

in
t(”

hi
”)print(”hi”)pr

in
t(”

hi
”)

print(”hi”)pr
in

t(
”h

i”
)print(”hi”)
print(”hi”)

print(”hi”)

69

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

70 A Functional Start to Computing with Python

A verbal contract isn’t worth the paper it’s printed on.
— Samuel Goldwyn

Printing is the simplest form of programming. Most people do not even think of printing as a
kind of programming, but after some study of what goes on, especially for more complicated
cases, writing a correct print command can be seen as programming. Even Gutenberg’s
printing press had, in some sense, to be programmed: the letters had to be arranged the
right way so that the desired page got produced.

Basic Print ➋
➌
E

Chapter 5 describes computer programs as lists of instructions, where an instruction could
be some low-level bit operation. For this book, such instructions are classified into two
kinds, the computational ones and the commands. Computational instructions do things
like addition, exponentiation, counting characters in a string, searching a dictionary, sorting
data, and so forth. Commands store data into files, control motors, raise or lower volume
on speakers, and the like. Whereas the computational instructions produce the answer to
some question, the command instructions do not really answer a question, instead changing
something that might even be external to the computer. Printing instructions are tradition-
ally classified as commands, because the historical meaning of “print” is to make an image
on paper. The current meaning is broader, so that printing can mean writing on a screen
or writing text to a file.

> python myscript.py

Hello does

this

work?

>

Commands and Scripts. A command , sometimes
called a statement , is a line of text in Python with spe-
cial syntax. There are many commands in Python, each
typically starting with some special word, such as print
or del, followed by text used as an argument to the com-
mand. Some commands are a single line of text, but many

command arguments have numerous lines of text, with particular conventions about the
spacing of the text on each line. Typical commands are print statements, assignment state-
ments, flow control statements, and function definition statements. Within such statements
there can be values (of Python types) and expressions. The simplest kind of Python program
is a script , which is a text file containing Python commands. Using an operating system’s
command console, running a Python script can be as easy as shown above typing python

followed by the name of the file in a terminal or command prompt. In the example, three
printed lines were displayed, which the script generated.

Important Note: When you work with Python interactively, each line you enter will be
followed by Python showing the result of evaluation. For example:

>>> "hi" + "now"

'hinow'

>>> print("hi"+"there")

hithere

Two things to observe from the example are that (1) when Python evaluates "hi" + "now,"

the result is clearly a string and Python shows quotes surrounding the evaluated result; (2)
the print produced something without the quotes. Now, to show a contrasting example,
suppose myscript.py is a file consisting of exactly these two lines:

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Printing 71

"hi" + "now"

print("hi"+"there")

At a command console, the script is run as follows:

> python myscript.py

hithere

>

What we observe is that the result of evaluating "hi" + "now" is not printed by running
the script. That is normal: Python does not print results from evaluating expressions in
a script. If we need to have some output, then the script must have an explicit print in it.

Print as Function (Python3) or Print as Command (Python2)

Python3’s print command uses the syntax of functions (technically, print is a function in
Python3, but it is also a command because it outputs to a printer rather than return a
value).

>>> print(5*7, [True,True and False], "xyz")

35 [True, False] xyz

Things to notice from the example are that expressions are evaluated (reduced to a value)
before printed and strings are shown without quotes. There can be any number of argu-
ments to the print function; however, to prevent source code lines from getting too long,
programmers usually separate what needs to be printed into multiple print commands.

Python2’s Print Statement

Python2’s print command consists of the word print followed by any number of expressions
separated by commas.

>>> print 5*7, [True,True and False], "xyz"

35 [True, False] xyz

Except for this not being a function application, the syntax is about the same as for Python3.
What would happen if we tried the Python3 syntax in a Python2 environment?

>>> print(5*7, [True,True and False], "xyz")

(35,[True, False],'xyz')

The output shows that Python2 evaluated the statement as a command to print a tuple; in
fact, the command could be equivalently written as

>>> print (5*7, [True,True and False], "xyz")

This rewriting of the command makes it clear that Python2’s print can print a tuple, and
the syntax is not the same as function application. One more example is a script in a file.
Suppose myscript.py contains these lines of text:

print "Hello does"

print "this"

print "work?"

The three print commands will, when the script runs, have the output shown earlier in this
chapter.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

72 A Functional Start to Computing with Python

String Interpretation

What explains the different behavior of printing strings, here illustrated with Python2 syn-
tax?

>>> print "test\t this"

test this

>>> print ["test\t this"]

['test\t this']

In the first case, Python formats the string onto the page (or screen). The tab character
('\t') has been used to guide the formatting. The quotes are gone because they are not
part of the string content, they are just there for us to know where the string begins and
where it ends, which could otherwise be ambiguous (for strings containing spaces).

In the second case, Python displays a list containing a string value. Python’s display
of this list has been produced for human readability, though there could be some machine-
oriented, bit, or numeric way that the list is encoded in memory: we do not care how the
machine does it, we only want to see a readable version of the list. The formatting of a
string does not occur until it is printed as a string.

>>> print '*'+2*'\t*'+'\nS\nT'

* * *

S

T

The print command can generate many lines of output, shown above. In effect, the special
characters '\t' and '\n' are instructions to the printer. This is why we may think of
printing as a primitive form of programming: the printer is “programmed” by following the
instructions embedded into the text. Similarly, if you have seen HTML used in Web page
design, it is a programming language for Web browsers, instructing them how to format the
content of a Web page.

➪ web

Print Is Tricky!

Though it looks so simple, print’s behavior is complicated. A command print (m)

behaves differently depending on type(m). If m is a string, then its characters (and
meta-characters) will be interpreted as instructions to the printer, as shown above.
However, if m is not a string, then m will first be converted to a string representation,
using something like Python’s built-in str() conversion function, so that it can be
shown using ASCII characters. Thus, in a Python2 statement such as

print 1.0+0.5, "$\nX", False, "False"

the number 1.5 and the value False must be converted to strings, whereas the two
strings will be interpreted for printing. The output from this is

1.5 $

X False False

Remember, False is not a string; "False" is a string, which may seem confusing
because both have the same printed output.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Printing 73

String Trivia

This section has some obscure notation and tricks that can be used with strings. Except
for the topic of long strings, the extra notation is not really helpful to a beginner learning
Python (but it does not seem to fit elsewhere in the book, so it is here for reference).

Long Strings. Python does not put a limit on how long strings may be. With an inter-
active Python session, try this:

>>> print 1000*"this is a test"

and you will see that Python displays a long string (too large to fit onto one screenful of
output). Python provides a way to type in a long or multiline string, using a convention
of three quotes to start and three quotes to end the string. The syntax works with either
single (') or double (") quotes. Example:

>>> '''There are so many laws and federal statutes

... that a bookshelf holding them all is over

... nine feet thick.'''

'There are so many laws and federal statutes\nthat

a bookshelf holding them all is over \nnine feet thick.'

>>>

The “...” is inserted by Python when, during interaction, it expects more input to be typed
that continues what was started on previous lines. The triple quote (''') tells Python that
a string definition begins, which can go on for many lines, until finally another (''') ends
the definition. Notice how Python automatically created the newline characters ('\n') for
the end of each line being part of the string.

Raw Strings and Bytes. ➋
➌
E

Python supports internationalization, meaning that characters from many languages can
be represented, including those outside of the ASCII alphabet. Internationalization is an
advanced topic outside of this introductory text, but it is worth mentioning that Python
supports other kinds of strings or string-like sequences. The bytes and bytearray types are
useful to handle unusual characters. The notation for a sequence of the bytes type, given
in terms of characters, is to start a string with “b'” instead of a single quote, as in:

>>> x = b'some bytes could be here'

One motivation for the bytes type has to do with internationalization and other repre-
sentation issues (along with some efficiency concerns). We mention it here only because
some software libraries refer to the bytes type or a bytearray sequence. Recent versions of
Python2 allow the use of bytes, but do not support this language feature fully in the way
Python3 does.

What one has not experienced one will never understand in print.
— Isadora Duncan

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

74 A Functional Start to Computing with Python

Raw Strings. Both Python2 and Python3 allow strings in raw string syntax, which con-
sists of beginning a string with “r'” instead of a single quote. Using raw string syntax
bypasses the backslash escape convention that Python normally uses for strings. In a nor-
mal string, wherever there are \n, \t, or \\ (the meta-characters introduced in Chapter 5),
Python will internally use a single character in the string. But with a raw string, backslashes
are not treated in any special way:

>>> r'Showing off how \t and \ are treated'

'Showing off how \\t and \\ are treated'

Observe that Python converted the backslash symbol within the raw string into the '\\'

character. When printed, only the single backslash would be shown in each instance.

Implicit Concatenation. Another obscure feature in Python, and not guaranteed to
work in all cases, is string concatenation without an operator. It works by putting strings
side-by-side:

>>> "Hello" "World"

'HelloWorld'

>>> 'Way''Off'

'WayOff'

The only reason to mention this obscure feature is that students sometimes encounter this
by accident, working on an interactive Python session. It is not good practice to use this
feature in programming. The general rule of good style in computing is to make things clear
and explicit, rather than use little-known tricks.

➪ web

Backspace Long ago, hardware printers were mechanical devices that required low-
level instructions, including “form-feed” (to get a new sheet of paper) and distinct
commands to move the typing back to the start of a line and to roll the paper forward
by one line. These low-level instructions enabled some tricks we do not have today:
one could make a program that printed the same character on the same paper until it
actually put a hole through the paper! There are still vestiges of the old days. One is
the backspace character (\b). Consider this:

print ("Please be careless\b\b\bful")

Please be carelful

Can you explain the output?

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Printing 75

Automatic Newline. Normally, any print command automatically adds a newline
('\n') character at the end of what is printed. For instance, suppose a script myscript.py
contains these Python statements (using Python3 syntax):

print("one",1)

print("two",2)

print("three",3)

Now, the script is run using a system console (command shell):

> python myscript.py

one 1

two 2

three 3

What if you would rather not have this behavior? A special syntax for this in Python3 is
the following:

print("one",1,end='')

print("two",2,end='')

print("three",3)

When the script is run, the first two print commands will substitute an empty string for
the newline character, with the result:

> python myscript.py

one 1two 2three 3

Python2 has a different syntax to do this. The script would be

print "one",1,

print "two",2,

print "three",3

The extra comma on the first two print commands means, to Python2, that it should skip
inserting a newline character.

➪ web

Terminology Review

Jargon used in this chapter (some of it actually defined in earlier chapters) includes: com-
mand, statement, script, format, printer instructions, unicode, raw strings, automatic new-
line.

This page intentionally left blankThis page intentionally left blank

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Printing 77

Exercises

(1) Write a Python script named ball.py. Running the script should have this output:

xxx

xxxxxxxxx

xxxxxxxxxxxxx

xxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxx

xxxxxxxxxxxxx

xxxxxxxxx

xxx

There are many ways that ball.py could be written, but your answer should have
these properties:

– The script consists of eight print commands.

– In any print command, the letter “x” only appears once or twice (to get around
this limit, just use expressions like 6*'x').

(2) Each of the following print examples will generate some output when they run. Can
you predict what they will print? To make things clear, all the examples say whether
Python2 or Python3 is used.

– Python2 example:

print(12,"1"),

print("2 ")

– Python3 example:

K = '''* "* \'>'''

M = "(\t)"

print(K+M+K)

– Python2 example:

s = "abcde\nfghijk"'

print(3*s[2]+2*s[9]+s[3]+s[5]+2*s[-1])

(3) Try the following Python print command, here shown in Python2.

print 1000*(2*' '+'X')

Now try replacing the value 2 in this print command by 3, 4, 5, 6, 7, 8, and 9. For
which values do the X letter line up in columns and for which values do the X letters
make diagonal lines on the window?

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

78 A Functional Start to Computing with Python

✰(4) Suppose the Python2 command print c[0]+c[1]+c[2]+c[3]+c[4] produces the fol-
lowing output:

TTTTTTTT

TT

TT

TT

TT

What could c be in order to get such a result?

(5) (Just for fun.) Use a search engine to research the topic “ASCII Art.” You will likely
find translations from photographs to printer-approximated images from those pho-
tographs. While most of these do not use tricks like the '\t' (tab) character for
formatting and spacing, it is interesting to note that some advanced controls (well
beyond what is in this chapter) can even do things like backspace and print over the
same character twice—which only has meaning on a real paper printer. There is even
animated ASCII art!

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Printing 79

Pretty Printing

Python’s print is not very fancy: you can see data, but there is not much detailed
control over how numbers and sequences appear when printed. Chapter 25 introduces
some techniques for data formatting. Beyond this book, there are many specialized
techniques (even a data formatting “mini-language” in Python) to automate and con-
trol the way data is rendered when printed, including how many decimal places are
used when showing decimal amounts. The following example shows a “pretty printing”
facility that Python offers, which is mainly useful for lists and dictionaries.

Suppose we need to print something in a complicated list, for instance a list that
contains tuples, strings, and a dictionary. A typical interactive session might be:

>>> a = ("R",False,78)

>>> b = { "white":(255,255,255), "black":(0,0,0) }

>>> c = [a, b, "+++", b]

>>> print(c)

[('R',False,78), {'white':(255,255,255), 'black':(0,0,0)},

'+++', {'white':(255,255,255), 'black':(0,0,0)}]

What you see is that printing crams all the information together on just one line if
it will fit, otherwise breaking it into more than one line of output. Now we continue
the interactive session with a technique that is described in Chapter 18 (that chapter
explains how to take advantage of a rich library of software that accompanies Python).

>>> from pprint import *

>>> pprint(c)

[('R', False, 78),

{'black': (0, 0, 0), 'white': (255, 255, 255)},

'+++',

{'black': (0, 0, 0), 'white': (255, 255, 255)}]

The pprint is a “pretty print” function, not part of the Python language, which is
available in the pprint module. The “from pprint import *” line tells Python to
bring in the pprint function from the library of modules. This pretty-printing function
makes a nicer display of complicated lists by attempting to present them in more
tabular display, spread out over several lines.

This page intentionally left blankThis page intentionally left blank

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Chapter 9: Functions I

f(x) =
√
x · sin 2x

x

f(x)

f = lambda x: x**0.5 * sin(2*x)

def f(x):
return x**0.5 * sin(2*x)

81

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

82 A Functional Start to Computing with Python

In the old days when people invented a new function
they had something useful in mind.

— Henri Poincare

Programming languages are connected to an area of computing called software engineering,
which asks a simple question: why is the production of software different from designing
bridges, manufacturing aircraft, developing pharmaceuticals, or building houses? Architects
and construction firms are able to pretty well predict how long it will take to build a house
and how much it will cost, but the same cannot be done with software. Also, when it
comes to building a house, there is an established marketplace of parts, concrete, structural
beams, and so on; there are tools for all aspects of construction. The dream of software
engineering is to find the right kinds of tools and “parts” so that creating programs and
computing applications can become predictable, reliable, and have acceptably low cost. This
dream has influenced the evolution of programming languages and industrial conventions
for organizing software systems.

One important discovery of software engineering is the DRY principle (“Don’t Repeat
Yourself”). The basic idea is simple: humans should not need to write software that is repet-
itive. Instead, we should have tools so that a particular algorithm or symbolic manipulation
is done once, and then reused, instead of rewriting the same thing over and over. A key tech-
nical device for this purpose is the invention of the subroutine. A subroutine is a portion
of a program that can be reused, possibly for multiple reasons; the goal of a subroutine is
typically some limited computation that returns a value based on information given to the
subroutine. Suppose a subroutine exists for calculating

√
x, call it sqrt(x). Within a pro-

gram, there can be expressions like sqrt(801.25), sqrt(4.1129e12), or sqrt(169). The
method for calculating a square root is a highly researched and optimized numerical proce-
dure, and instead of doing the work of figuring out how to do this ourselves and repeating
the effort, it is handy to have an “off-the-shelf” subroutine available.

Function Syntax

Python uses the term function rather than subroutine, which can be misleading consider-
ing all the different meanings of “function” outside of computing. Within the computing
community, functional programming languages are a well-known branch of the family tree
of languages. These languages consider functions to be types, similar to data types like
integers, strings, and lists; Chapter 10 has a section on function composition discussing this
programming style further.

Python offers two ways to define functions, one for simple, one-line expressions, and
another for longer computations or lists of commands. We look first at the one-line style of
function definition because of its connection to the history of computing research.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Functions I 83

One-Line Functions: Lambdas

Lambda is the name of the
Greek character λ, which is
used in a language of function
definition called λ-calculus.
Alonzo Church introduced λ-
calculus in the 1930s, well
before digital computers ex-
isted. In the 1950s, when
the modern form of digi-
tal computing was invented,
most intended applications of
computing were mathemati-
cal functions—and investiga-
tion of λ-calculus became im-
portant. Can everything com-
putable be expressed using
λ-calculus? This kind of re-
search question continues to
the present.

Suppose you are asked to solve the following equa-
tion:

a · x2 + b · x + c = 0

This is the famous quadratic equation, and many
students would write down x = (−b±

√
b2 − 4ac)/2a

immediately from memory, but there is a curious in-
terpretation of the equation where that answer would
be wrong: the person asking tells you that you are
supposed to solve for c, not x. Then the answer would
be just −ax2 − bx. The point is, to be very pre-
cise, you need to be told what are the variables, and
what are the given constants in the equation. This
is how Python can define a function that computes
−ax2 − bx:

f = lambda a,x,b: -a*x**2 - b*x

The word “lambda” is a Python reserved word (a
special word that is built-in to Python’s syntax).
The box explains the historical reference for lambda.
The statement above defines a function f, and the
“a,x,b:” indicate that this function has three pa-
rameters named a, x, and b. The remainder of the line is an expression to say what value
the function returns when it is used. The following is a full, interactive example that defines
f and then uses it twice:

>>> f = lambda a,x,b: -a*x**2 - b*x

>>> f(1,5,7)

-60

>>> f(10,2,100)

-240

In fact, a function defined with a lambda can be used even without giving it a name:

>>> (lambda x,y: x**2 - y**2)(16,12)

112

The first set of parentheses, surrounding the lambda expression, are needed so that Python
knows where the lambda’s definition ends; the second pair of parentheses tell Python what
are the values for x and y. This way of defining a function without a name, using it only
once, does not make much sense. However, there are software packages in libraries that
may require that a one-line function definition be provided, and for these packages lambda
expressions could be useful.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

84 A Functional Start to Computing with Python

>>> R = lambda x: "positive" if x>0 else "negative"

>>> R(5)

'positive'

>>> R(-2e10)

'negative'

>>> R(0)

'negative'

Lambda definitions can even have
conditional definitions, using re-
served words if and else. This
syntax is somewhat obscure, and
most programmers find better
ways to define functions than this
style of programming. In case you
ever come across this syntax, here

is an example to the left. Some might consider function R to have a bug, because it reports
zero to be negative. However, Python is correctly following the definition of R. Later, in
Chapter 10, we see a more flexible way of putting conditions into functions, which would
easily allow for making R return something different for zero.

Multiline Functions: The Def Command

>>> def sqrt(x):

... return x**0.5

...

>>> sqrt(16)

4.0

>>> sqrt(900)

30.0

>>> sqrt(2)

1.4142135623730951

In nearly all situations, the lambda style of defin-
ing a function is impractical. The syntax is hard
to remember, it is unlike the rest of Python, and
being confined to a single line expression is not
enough to do interesting work. The usual way
to define a function in Python is to use the re-
served word def. To the right is a short example.
The syntax starts with def, then a name for the
function, a parameter list , and a colon. There-
after follow one or more lines, one of which is
a return statement. The return statement provides an expression that Python evaluates,
reducing it to a value that will be substituted when the function is used. The syntax of
function application consists of the function name followed by parentheses surrounding ar-
guments (if any) to the function. For instance, the function application sqrt(16) first binds
the value 16 to the symbolic name x, then evaluates the expression 16**0.5, which turns
into 4.0 by reducing the expression. The “binding” of 16 to the symbolic name x is tempo-
rary, done only for the duration of Python’s evaluation of function application; later, values
900 and 2 will be bound to the symbolic name x when they are used in sqrt application.

Notice the ... shown by Python during the definition of the function sqrt; this was
done by Python because it is aware that a function is being defined, and expects one or
more lines of code to be part of the function. It is crucial that these lines be indented :
you will see many examples illustrating this point. Python uses the notational convention of
indenting lines of text to tell where a definition starts and where it ends. In the interactive
session, a blank line ends the definition.

Rather than define functions interactively, we usually put the function definitions in a
script. Suppose myscript.py is a file containing these lines (using Python3 syntax for the
print statements).

def firstlast(s):

return s[0]+s[-1]

print(firstlast("hold"))

print(firstlast('taxes'))

print(firstlast("Garden Ornament"))

Running the script has this output:

> python myscript.py

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Functions I 85

hd

ts

Gt

The function firstlast returns a string consisting of the concatenation of the first and
last character of the function argument. One way to interpret the function definition, which
appears first in the script file, is that it is a command: the command is to define a function.
Once the function is defined, it can be freely used in expressions later in the script. A script
can contain many function definitions, each following the syntax of function definition, as
shown below.

def firstlast(s):

return s[0]+s[-1]

def lastfirst(s):

return s[-1]+s[0]

print(firstlast("hold"))

print(lastfirst("hold"))

Methods. For the sake of completeness, it is worth mentioning that Python has one
more way to define functions. Chapter 27, which appears much later in this book, ex-
plains how methods can be defined. For now, it is not important to know the details,
but as a point of curiosity we can see “under the hood”—how Python evaluates ex-
pressions using function calls. A method is a special kind of function. One example of
a method introduced in Chapter 6 is the upper method. Recall that an expression like
"Hello".upper()was explained in Chapter 6 to be effectively a secret function upper,
as though it were upper("Hello") instead of "Hello".upper(). Similarly, Python has
secret functions for nearly all operators, which are methods. Corresponding to the ad-
dition operator +, for example, there is the “ add ” method, demonstrated here:

>>> x = 100

>>> x. add (1)

101

The example shows that x+1 is the same as x. add (1), which is essentially a function
call.

Head, Body, Parameters, and Arguments ➪ web

Looking further into the syntax of function definition, function application, and related
conventions, it is helpful to develop some terminology. Much of this terminology is used
in other programming languages as well, and is generally “common knowledge” among
programmers.

Head and Body. Some jargon for function definition is head and body of the function.
The “head,” or header, is just the first line, starting with def and ending with a colon. The
remaining lines of the function definition are the body of the function, which have to be
indented so that Python knows which lines belong to the function body. For lambda-style
definitions, the body is the part that follows the colon.

Parameters versus Arguments. Perhaps you have noticed: sometimes functions are
described as having parameters, and at other times they are arguments. Are these terms

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

86 A Functional Start to Computing with Python

just synonyms? To many students, there seems no difference. Technically there is a clear
difference in usage.

On the defining line of a function (beginning with the keyword def and ending with
the colon), the symbolic names in the function head are called parameters . Subsequently,
for each time that function is used in application, what gets evaluated and substituted for
the parameter is called an argument to the function. A program has one line for defining
parameters, but these parameters can be used as arguments many times: a Python program
can have many applications of the same function, but with different values in the arguments
at different places in a program.

def sqrt(x): x is a parameter
. . .

print sqrt(100) 100 is an argument
print sqrt(225) 225 is an argument

Binding. When a Python program evaluates a function application, function arguments
get bound to the parameters defined for that function. Later in the chapter we will see
several ways of binding arguments to parameters. One important observation about binding
is that if an expression is used as an argument, Python must first evaluate that expression,
reducing it to a value; only then does the symbolic name used as the function parameter
have a definite meaning inside the function’s body.

Binding Multiple Parameters. The names of a function’s parameters appear in the
head; in Python, a function’s head must provide exactly the number of names that any use
of the function will have. Below are some acceptable and invalid cases for function headers.

def f(x,y,z): ✔
def f(x,x): ✘

def f(): ✔
def f(a,b-1) ✘

The second line is invalid because the head attempts to name two parameters with the same
name; the third line is acceptable because Python allows functions with no parameters (the
number of parameters is zero); the fourth line is invalid because Python expects only names,
not expressions. However, for arguments to functions, it is natural to have expressions. The
table below shows columns for a function header, a typical usage of that function, and the
binding that results.

head usage resulting binding

def f(a,b): f(2,2*3) a equals 2, b equals 6
def f(a,b): f(True or False, not False) a equals True, b equals True
def g(m,n): g("AK"[1],(2,)+(9,)) m equals 'K', n equals (2,9)

Notice how the third column, the binding of the names (a, b, m, n), resembles how Python
allows naming of the values that result from expression evaluation. For example, in the last
row of the table, the binding result is m = "AK"[1], and this evaluation of expressions to
names is done before Python proceeds to evaluate the body of the function.

Functions as Commands

Functions can return values based on expressions of their arguments, but Python does not
require all functions to return values. Some functions are like Python3’s print syntax, essen-
tially using the function syntax to accomplish some external effect: drawing on a window,
playing a sound, and so on. A simple example using Python3 syntax is this script:

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Functions I 87

def twiceprint(sometext):

print(sometext)

print(sometext)

twiceprint("Hello")

twiceprint("there")

The function twiceprint has no return statement since the point is to print the argument
twice, but there is nothing to calculate. Similarly, each function evaluation is simply a line
with twiceprint and an argument, and nothing is expected to be computed. When run,
the output of this script is:

Hello

Hello

there

there

The same script written using Python2 syntax is:

def twiceprint(sometext):

print sometext

print sometext

twiceprint("Hello")

twiceprint("there")

Function application is the same for Python2 and Python3; the only difference is the print

statement. Typical command functions may not use any parameter at all: in such cases the
parameter list is empty:

def shoutout():

print "one"

print "more"

print "time"

shoutout()

shoutout()

shoutout()

Notice how the indentation of all the lines in the body is the same. Python does not have
a precise requirement of how far lines need to be indented, but they must all be indented
by the same amount: all the lines in the body should line up along some imaginary vertical
line.

Tracing. The ability to insert print commands into a function body can help us see
how Python works, or perhaps that a function has been incorrectly coded. Consider this
definition of a function calc and two function applications, in a script:

def calc(y):

print "argument is", y

return y**(1.0/3.0)/(1.0/y)

print "A:", calc(2**3)

print "B:", calc(2**5)

When this runs, the output is:

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

88 A Functional Start to Computing with Python

A: argument is 8

16.0

B: argument is 32

101.593667326

The surprising thing about this is that the two print commands mingle their output.
The first print statement outputs A:, but then must wait for the function application
calc(2**3) to be evaluated and reduced to a value before it outputs the rest. However,
inside of the function application calc(2**3) there is a print statement (by the way, this
adds a newline, as print commands normally do). Finally, the value 16.0 is returned, and
then output.

Terminology Review

Jargon introduced in this chapter includes: the DRY principle, subroutine, parameter, ar-
gument, indented lines, head, body, binding, bound to.

➪ web

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Functions I 89

Exercises

There can be many answers to some of the exercises: writing functions calls for some creativ-
ity and problem solving. The following exercises can all be solved by returning expressions,
drawing from the material covered in this and preceding chapters. Feel free to use built-in
functions that Python has (e.g., len) or built-in methods, such as the upper method on
strings or the index method for sequences.

(1) Write a function named MultiCalc that returns a list of the sum, the product, and the
remainder of a pair of numbers. Here would be some interactive calls to MultiCalc:

>>> p = (85,23)

>>> MultiCalc(p)

[108, 1955, 16]

>>> r = (1,1)

[2, 1, 0]

(2) Write a function named allz that takes a sequence argument, and returns a string of
z characters of the same length as the argument. Here are a few examples of how it
should behave:

allz([1,2,3,4,5]) ➜ 'zzzzz'

allz("happen") ➜ 'zzzzzz'

allz([]) ➜ ''

(3) Write a function named lastearly which returns either True or False, depending on
whether a string’s last character also occurs earlier in the same string. Here is what
we expect from lastearly:

lastearly("overland") ➜ False

lastearly("wow") ➜ True

lastearly("X") ➜ False

lastearly("wish for years") ➜ True

The answer is to define lastearly(value) so that it returns the “!=” comparison
last character’s index with the number value.index(value[-1]): if they are different
then the last character occurs earlier in the string. (Recall that len(value)-1 is the
index for the final character.) See if you can make a working definition of lastearly
based on these ideas.

✰(4) Every student in an algebra class learns the basic formula for the roots of a quadratic,

−b±
√
b2 − 4ac

2a

which finds values of x such that ax2+bx+c = 0. Write a function quadroot(a,b,c)

that returns the roots, as a pair, for the given parameters.

✰(5) Write a function foo(s) that returns a boolean, given a string s: the result is True
if the first character of s concatenated with the last character of s also occurs as a
string within s. Here are some examples:

foo("wanted") ➜ False

foo("drainer") ➜ True

foo("scissors") ➜ True

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

90 A Functional Start to Computing with Python

(6) The lambda-style definition allows a parameter to be a tuple. Consider these two defi-
nitions of f, followed by two calls to f:

(a) f = lambda x,y: x+y / x*y

(b) f = lambda (x,y): x+y / x*y

(i) f(2,4)

(ii) f((2,4))

Which of (i) and (ii) works with (a)? Which works with (b)? How many arguments
does f expect for (a) and how many with (b) as the definition? (Chapter 10 has more
coverage of functions with multiple parameters.)

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Functions I 91

Return versus Print

Some beginners confuse the concepts of return and print—it can be confusing, as the
following example shows. What is the difference between the two versions of the sqrt

function below?
def sqrt(x):

return x**0.5

def sqrt(x):

print x**0.5

In fact, the response to either looks the same:

>>> sqrt(25)

5.0

To explain how they differ, it is helpful to make a mental model of what print means.
Suppose the Python sqrt functions are running on a smartphone which has a display
and also a wireless link to a printer. The environment has been set up so that the print
command outputs to the printer, whereas some other function, perhaps display(s),
outputs to the phone’s screen area. In this situation, we see that print outputs on
paper, whereas return is intended as calculating the square root of parameter x. The
original meaning of print, dating back to the origin of computing, was to output on
paper; only later was printing reinterpreted as output to a console. Such “virtualization”
of the physical world is typical in the history of information technology, where we rely
on metaphors to explain things (folders, the desktop, etc.). In our smartphone scenario,
casual use of print will not be helpful if we need to have the result of sqrt instead be
displayed the screen. Worse, if the result of sqrt is to be used in further calculations,
print is not at all what is needed. To see this, just using Python2 in a typical (non-
smartphone) environment, compare what happens when the two versions of sqrt are
used in expressions:

>>> 1 + sqrt(9)

4.0

>>> 1 + sqrt(9)

TypeError: unsupported types for +

The version with the print statement got an error because it failed to return a value
(secretly, it does return a value None, explained in Chapter 13, but this causes an error).

functions which calculate a result should use return

This page intentionally left blankThis page intentionally left blank

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Chapter 10: Functions II

defxF(x,y):
print "entering F"
s=x*y
t=abs(x-y)
return t/s

def Main():
d=25
e=75

print "calling F"
k=F(d,e)
print k

M
ai
n
ca
lls

F

F
re
tu
rn
s

to
M
ai
n

93

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

94 A Functional Start to Computing with Python

It is the function of vice to keep virtue within reasonable bounds.
— Samuel Butler

The functional style of programming is one that leverages the ability to create functions in
nearly extreme ways. In addition to making functions that compute numeric, string, and
list values, a function can test what kind of arguments it is given and change what it returns
accordingly. This chapter shows how Python functions can work with multiple arguments
and even substitute for missing arguments. The functional style encourages programmers
to write functions from other functions: some functions are built in to Python, and these
can be used to write other functions. There are even functions that have, as inputs, other
functions! This abstract way of thinking moves the programmer up to higher layers, so to
speak, on the pyramid of software automation. Whereas low-level data processing works with
numbers, higher-level computing approaches symbolic reasoning, where operations seem to
transform ideas. Fortunately, the material in this chapter is not so abstract: the techniques
are mainstream Python language concepts and turn out to be quite practical.

Programmers use a certain vocabulary when talking about the way functions are used
and how they behave. In nearly all cases, a program has a “main” function—this is really
just jargon for the program itself. The main function will usually have statements with
expressions, and some of these expressions will refer to other functions. For instance, if the
main function (sometimes called the main program) uses an expression using Python’s built-
in len function, then we say main calls len, and len returns to main. The terms “calling”
and “returning” colorfully evoke the musical pattern of call and response, which occurs in
many cultures. Some authors use the word invoke instead of “call,” which lets one refer to
a particular call event as an invocation. In the example of main calling len, not only does
len return to main after it is called, it returns a value—the length of a sequence that was
its argument for the call. Keep in mind that programming is essentially a way of describing
and controlling computing events. In this sense, the events of “calling” and “returning” are
controlled by Python commands: len(S) calls len with argument S, and return n is a
command to go back from a function back to the caller. Since a function could be called
many times, from different places in a program, Python has to keep track of who the caller
of a function is whenever the call event takes place.

Not all functions have parameters. There could be a function named monitor that has
no parameters, so a main program calling it would have “monitor()” in some expression.
Perhaps monitor returns a list, but the point is that no arguments are needed, so there
is nothing between the parentheses, which looks strange at first. What if a function has
nothing to return? Python actually insists that every function return some value, however,
if a programmer forgets to do this, a substitute value is automatically provided: a later
section in this chapter introduces Python’s None, the special substitute value. There is
another sense in which functions “return” to the caller. Whenever Python evaluates an
expression using a function, that expression is temporarily put on hold, because function
evaluation has high priority. When and where main calls monitor, we say control passes
to monitor. This terminology originated from the days when computers could only do one
step at a time (and most people still reason this way about computing). In a sense, main
gives control of the computer’s facilities to monitor, which then calculates the desired value.
After monitor is finished, it passes control back to the caller, main. Thus, monitor returns
control of the computer back to main. The simplest way to think about how programs
operate is that they do one step at a time.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Functions II 95

Parameters: Binding by Position

To this point, the functions introduced mainly used a single parameter or had an empty
parameter list. Technically this is already enough for all programming needs, because a
single parameter could be a tuple, dictionary, or list type–each of which can bundle up
any collection of data. However, it is usually more convenient to use a parameter list with
several symbolic names, one for each parameter.

Positional Parameters. We start with a simple example.

def subtract(a,b):

return a-b

Evaluation of subtract(8,2) returns 6, whereas subtract(2,8) returns -6. Thus, the
first argument binds to a and the second argument binds to b. This style of matching up
arguments, first argument to first parameter, and so on, is called the positional parameter
style. Here is a three-parameter example:

def subthenadd(a,b,c):

return a-b+c

When the head of the function contains, say three parameters, any function application
needs to have three parameters. So, Python will output an error when the wrong number
of arguments is tried for function application:

>>> subthenadd(9,2)

TypeError: subthenadd() takes exactly 3 arguments (2 given)

Python has some advanced notation to allow the definition of functions with a variable
number of parameters (for instance, like Python3’s print function, which can have any
number of arguments).

Function Type. The error in the previous example was reported by Python as a
TypeError. This error suggests that functions have types. You can see this by asking Python
with the type() query:

>>> type(subthenadd)

<type 'function'>

Python is thus aware of the function name much like a data type, such as string, list, or
numeric types. Further, the number of parameters is considered to be a characteristic of the
type of function, as are some other features described below.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

96 A Functional Start to Computing with Python

Arguments by Keywords
The Web was originally based on
pages and links between pages,
where each page was named
by a URI (Uniform Resource
Identifier). When search en-
gines and similar content servers
came on the scene, URLs
added programming features to
page names, including keywords.
You may see some addresses
on a Web browser with ex-
tra keywords and values, like
“?ref=1&q=cross+file”.
The Web browser sends a cus-

tomized request, using these key-
words, to a Web server. Python
allows a similar style for func-
tion parameters and arguments.
Advantages of this style are a
more programmer-friendly inter-
face and having “default values”
when the keywords are missing.

Python differs from traditional languages, which use
the positional style only for functions and subrou-
tines, by offering a variety of styles for application
and definition of parameters. First, we show how
even functions defined with positional parameters
can be called with keyword style arguments. This
style uses the “=” symbol to say which argument
should be bound with a parameter. The first example
refers to the subtract function defined previously.

>>> subtract(a=9,b=2)

7

>>> subtract(b=1,a=3)

2

>>> subtract(b=100)

TypeError: subtract() takes

exactly 2 non-keyword arguments

(1 given)

>>> subtract(16,b=8)

8

>>> subtract(10,a=5,b=0)

TypeError: subtract() got multiple

values for keyword argument 'a'

The examples show several features of calling a func-
tion with the keyword argument style: (i) The arguments bind by the parameter name, a
and b in the example. It does not matter which is the order of the keyword arguments
given. (ii) All parameters defined in the function header need to be bound by the function
application. (iii) An argument for a parameter can only be specified once in the function
application. (iv) Positional and keyword argument styles can be mixed. The rule here is
that positional arguments come first, then any remaining parameters can be specified by
keyword. The keyword style of argument specification is not so useful for invoking functions
defined with positional parameters; the real purpose of this style is motivated by the next
topic, keyword parameters.

➪ web

Default Parameters by Keyword

Parameters can also be specified as keywords by using “=” and a value to bind to the
parameter. During function application, a keyword argument then overrides the parameter.

def nand(left=True,right=True):

return not (left and right)

...

>>> nand(left=False,right=True):

True

>>> nand(left=5>3, right='a' in "lost")

True

The parameter for nand’s definition says that the symbolic name left has the value True;
however, the first function application contradicts this, instead specifying that False should

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Functions II 97

be bound to left. When Python evaluates the function application, what is given in the
argument takes over. Though keyword style parameters can be used with the argument
style of function application, seen above, the positional style can still be used:

>>> nand(False,True)

True

>>> nand(True,True)

False

The value given for a parameter in the function header is called the default value. There
are two motivations for the keyword style: first, people may forget the exact order of what
are the parameters to a function, but remember the symbolic names of the parameters.
The second motivation is that there may be a parameter which, in 99% of all function
applications, tends to get the same value. To streamline programming notation, in the
spirit of Don’t Repeat Yourself (DRY), Python allows parameters that have default values
to be omitted from function application. When omitted from the arguments, the value used
in function evaluation will be the default value.

>>> nand(right=(16==4*4))

False

>>> nand(left=False)

True

>>> nand()

False

The last line above shows that all arguments can be omitted, because the header for nand
gives default values for all parameters.

Beginning Python programmers tend to avoid using keyword parameters, except where
necessary: when using some of Python’s library of functions, the use of keywords is practi-
cally the only way to take advantage of some functions.

➪ web

Manual Binding

Instead of writing a function header with parameters (foo(x,y), etc.), Python has
syntax to treat positional arguments to a function as a tuple. This is done by naming
just one parameter and preceding it with “*,” as shown below to the left, with an
example usage on the right.

def numpars(*p):

return len(p)
>>> numpars("one",2,True,"blue")

4

To refer to the kth argument given to foo with head foo(*p), a statement in the
body would use p[k]. Keyword arguments can be accessed by similar syntax. The
notation foo(**p) in the header allows the body to refer to arguments in a dictio-
nary. For instance, p["time"] would equal 5 in a call foo(time=5). If both positional
and keyword arguments are used in a function call, the definition’s head would be
foo(*p,**k), which makes p a tuple of positional arguments and k a dictionary of
keyword arguments.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

98 A Functional Start to Computing with Python

Return and None

Functions that produce a result based on arguments or default values of parameters have
return statements to say what is the result value. We have seen that command functions
(like ones that only print) do not have return statements. You should know, however, that
Python actually does have a return value even for functions without return statements: it
is a special value called None. There is even a special type in Python for this:

>>> type(None)

<type 'NoneType'>

>>> None

>>>

Unlike other values, you see above that Python’s display of None in an interactive session
shows nothing. But, you can see it as part of a tuple or list:

>>> [None,False]

[None, False]

Here is a demonstration of how None gets produced for a function which does not have a
return statement:

def noret(x):

x + 1

...

>>> [noret(5)]

[None]

If you were expecting to see 6 as the result of noret(5), then you have missed an important
point about Python functions: they return None unless you have a return statement. Of
course, if you really wanted to, you could have a “return None” in your function, but why
would anyone do that? In fact, there is a reasonable answer to this question, coming up
in Chapter 11. Using “conditional logic” it is possible to program a function that returns
quickly, without computing all the statements in the body of the function, if the arguments
have particular values. Then, either “return None” or simply the statement “return” is
sensible. In Python, the statement return (with no value given) is equivalent to return

None, illustrated by this example:

def nothing():

return

>>> [nothing()]

[None]

Using Function Calls and Names

So far, the chapter has not addressed the concern of how functions and parame-
ters are named. Previously, function names sqrt, firstlast, lastfirst, twiceprint,

shoutout, calc, subtract, subthenadd, nand, and noret have been defined as exam-
ples. These all happen to be lowercase function names, but uppercase names and mixed
names are also permitted, for instance

MUL, Fraction, CaLiFoRnIa, EasyThereGuy

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Functions II 99

are valid Python function names. Generally, any combination of alphabetic characters (with-
out any blanks) is an acceptable name. Python discriminates between upper and lowercase
names, so Sqrt and sqrt are considered to be different names. The only restriction is that
certain reserved names, also called reserved words and reserved identifiers, should not be
chosen as function names. Examples of this are: and, or, not, False, True, in, def,

type, len, print, None, and any other part of the Python language that occurs in state-
ments, types, operators, and such—it can be confusing to define functions with names that
conflict with the language.

Similarly, parameter names which symbolically refer to arguments can be any name that
does not conflict with the Python language; above examples use parameter names x, y,

a, b, left, right, but as with function names, you can use upper- and lowercase or a
mixture of cases. As a matter of style, some people prefer to use names that reflect the
“meaning” of a parameter and so names like dividend or InvoiceNumber could be used.
Other people like terse names like x, y, J, and so on. Avoid tricky and confusing names
like ILIILI, LLILIIL, and so on, which make reading code very difficult.

Numeric digits can also be used in names, though not as the first character. Thus, names
such as y30, alpha1, Key003 are admissible in Python.

Building on Functions ➪ web

It should come as no surprise that you can use function application in expressions, even
those that are arguments to functions:

>>> nand(subtract(7,3)>0, subtract(2,9)>0)

True

To bind arguments of nand to its parameters, Python first has to evaluate the expressions for
each argument, which are function applications. Sometimes this is called nested evaluation,
where in order to evaluate one thing, something inside (here, it is inside the argument list)
has to be evaluated. This use of “nest” is an analogy to nesting dolls, a Russian folk toy.1

As well as putting function application inside of argument expressions, it is quite common
to organize function definitions that use function application in their bodies. For example,
the formula for distance between two points in two dimensional space, called the Euclidean
distance, is

√

(x2 − x1)2 + (y2 − y1)2

Using Python definitions, this formula could be written with several functions:

def dimdiff(a,b,ind):

return a[ind]-b[ind]

def xdiff(v,w):

return dimdiff(v,w,0)

def ydiff(v,w):

return dimdiff(v,w,1)

def sqrt(x):

return x**0.5

def distance(p,q):

return sqrt(xdiff(p,q)**2, ydiff(p,q)**2)

This example probably went too far in using functions, but it makes the point that you can
write one function in terms of expressions that rely on other functions. Whether this is a
good idea or not depends on the situation.

1Look up matryoshka if you are curious.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

100 A Functional Start to Computing with Python

Python’s Built-In Functions

Python has some functions that are automatically available without needing the program-
mer to define them. These are called built-in functions . Here is a partial list of Python’s
built-in functions:

abs(x) returns absolute value
min(x,y) returns smaller argument
max(x,y) returns larger argument
type(x) type query
len(x) length of sequence

Chapter 18 describes how thousands more functions can be brought into Python, thanks to
libraries that are freely available with Python or found via the Web.

Type Conversion

Another set of built-in functions are ones that can convert data from one type to another.
The function names are the same as the type names, and all take a single argument. Also,
all of these have a default value when no argument is given. The following shows the default
values:

int() 0
float() 0.0
bool() False

str() ''

tuple() ()

list() []

dict() {}

set() set([])

Common examples of type conversion are string to numeric, float to integer, and anything
to a string. Here are some examples:

>>> int(1.95)

1

>>> float(999)

999.0

>>> int(False)

0

>>> tuple([False,-9,"abc"])

(False, -9, 'abc')

>>> list("state")

['s', 't', 'a', 't', 'e']

>>> str([1,2,3])

'[1, 2, 3]'

Conversion to a string again requires that you comprehend the difference between typed
data and the characters that represent that data. This often trips up beginners. Consider
these cases:

>>> [8,2,5,1][2]

5

>>> str([8,2,5,1])[2]

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Functions II 101

','

>>> "home" + 9

TypeError: cannot concatenate 'str' and 'int' objects

>>> "home" + str(9)

'home9'

>>> int("seven")

ValueError: invalid literal for int() with base 10: 'seven'

>>> int("7")

7

The examples are not a complete set of rules for how Python does (and does not) convert
between types, but show the more common cases. The print function in Python3 uses
the equivalent of str() for each argument before output; the print statement in Python2
similarly handles each expression given on the statement.

Namespace Queries

During a Python interactive session, or during the run of a script, Python builds an internal
dictionary of the names of defined functions and other things needed to evaluate expressions
and to execute programs. There is a built-in function dir that returns a list of what are the
currently defined names. Here is the output of dir() when Python first starts an interactive
session:

>>> dir()

['__builtins__', '__doc__', '__name__', '__package__']

All the special names used by Python start with underscore characters—these have special
significance for the Python environment. Now suppose the session continues with:

>>> def sqrt(x):

... return x**0.5

...

>>> def double(x):

... return 2*x

...

>>> dir()

['__builtins__', '__doc__', '__name__', '__package__', 'sqrt', 'double']

This example hints at how Python does its job: it uses concepts from Python itself in
order to interact with users, evaluate what they type, define functions, and so forth. It uses
integers, strings, lists, dictionaries, and other data types, with extensive use of functions to
do all the work.

The smaller the function, the greater the management.
— C. Northcote Parkinson

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

102 A Functional Start to Computing with Python

Function Composition ➪ web

Building new functions in terms of old ones is a standard way to write software. A term for
this is function composition, which means putting functions together in some combination
to get new functions. For some examples, recall that Chapter 6 explained how the operators
== and < work for sequences, but did not define other comparisons between sequences.
Using function composition it is easy to explain how the operators work. Below, let leq be
a function for the <= operator, neq for != (and its synonym <>), gt for >, and geq for >=.

def geq(x,y):

return not (x < y)

def neq(x,y):

return not (x == y)

def gt(x,y):

return geq(x,y) and neq(x,y)

def leq(x,y):

return not gt(x,y)

Function composition has another meaning for a style of programming called functional
programming. The idea of functional programming is that parameters of functions, and
more broadly inputs to algorithms, can be functions as well as ordinary data values. It is
difficult to appreciate this without looking at an example.

def addOne(x):

return x+1

def addTwo(x):

return x+2

def appFtoVal(f,v):

return f(v)

def appFFtoVal(f,v):

return f(f(v))

...

>>> appFtoVal(addOne,100)

101

>>> appFFtoVal(addOne,100)

102

>>> appFtoVal(addTwo,100)

102

>>> appFFtoVal(addTwo,100)

104

The interesting thing here is that you cannot see, by looking at the body of appFtoVal,
just what exactly the function f does. Indeed, Python gives the freedom of selecting what
function f will be up to the caller of appFtoVal, as the example shows.

Local Functions

Sometimes it is handy to write a function only to make it easier to write another function.
Suppose three (x, y) points are given and we need to know whether all these points lie on a
common line or they are corners of a triangle. A test for this (not foolproof because float is
imperfect) is to check whether two of the interpoint distances add up to the third distance.
The following example uses syntax explained in later chapters: Python’s if is explained in

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Functions II 103

Chapter 11, but can be understood intuitively here; the simultaneous definition of d1, d2,

d3, to the respective values of distance, is syntax explained in Chapter 15.

def colinear(a,b,c):

def distance(p1,p2):

x1,y1 = p1

x2,y2 = p2

return ((x2-x1)**2 + (y2-y1)**2)**0.5

if a==b or b==c or a==c:

return True

d1,d2,d3 = distance(a,b), distance(b,c), distance(a,c)

if d1+d2==d3 or d2+d3=d1 or d1+d3=d2:

return True

return False

The point of the example is that the “interior” function distance(p1,p2)has no use outside
of the colinear function, so it is defined inside of colinear. The body of colinear first
defines distance and later uses it. The parameters a,b,c are each (x, y) pairs, which is
why the statement x1,y1 = p1 is sensible: p1 is a pair of values. An important point of
this example is that distance is local to colinear. Had this code been part of a larger
program, other places in the program would not be able to call distance, because it is local
to colinear and Python wo not allow code outside of colinear to use it. (Though there
is an exception to this rule: see the box “Currying and Made-to-Order Functions” later in
this chapter.)

Terminology Review

Jargon introduced in this chapter includes: positional parameters, keyword parameters,
default values, keyword arguments, the None type, type conversion functions, namespace,
function composition, and functional programming.

Exercises ➪ web

(1) Write a function IsDiff(a,b,c) that returns True if a-b equals c, and otherwise
returns False.

✰(2) Write a function IsUpper(r,s) that returns True if s is the uppercase version of r.
An interactive test of IsUpper would be the following:

>>> IsUpper("Tent",'TENT')

True

>>> IsUpper("ground","EARTH")

False

(3) This is almost the same question as (2). Write a function TestUpper(c) that returns
True if c is an all uppercase string. Here are test cases:

>>> TestUpper('BIG')

True

>>> TestUpper("Sun")

False

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

104 A Functional Start to Computing with Python

(4) Write a function named sandwich(a,b,c) that returns True if b is equal to the con-
catenation of a and b. Some test cases for sandwich are:

>>> sandwich("the","theplay","play")

True

>>> sandwich([False],[False,True],[True])

True

>>> sandwich((),(1,2),(1,2))

True

>>> sandwich("X","J","Y")

False

(5) In mathematics, a function is idempotent if multiple applications get the same result
as a single application of the function. Python has a built-in function abs with this
property: abs(-7) returns 7, the absolute value of the argument. Clearly, abs(abs(x))
returns the same number as abs(x) for any number x. This exercise is to write a
function named idem that returns True in case f(f(x)) is equal to f(x) for given
arguments f and x. Here would be some interactive test cases for a correctly designed
idem:

>>> idem(abs,-3)

True

>>> x = type(True)

>>> y = type(x)

>>> idem(type,y)

True

>>> def subtractOne(x):

... return x-1

...

>>> idem(subtractOne,50)

False

(The test case using Python’s type query is a bit tricky, but may make sense if you
experiment with type(type(True)).)

✰(6) The following function definition has several errors. There are two syntax mistakes,
a possible runtime error (which might or might not occur when trying to use the
function), and what is probably a design flaw, namely a suspicious way the function
is coded. Can you find the errors?

def multicat(prefix=(1,2),value,suffix=(9))

a = prefix + value

b = a + suffix

return

(7) What will this script print when it runs?

def switch((left,right)):

return (right,left)

def insert(a,(b,c)):

return (b,a,c)

print insert(True,switch((True,False)))

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Functions II 105

Currying and Made-to-Order Functions

Currying is a technique that reframes the computing of functions with multiple pa-
rameters into computing that only uses single-parameter functions. This technique is
named after logician Haskell Curry (functional programming language Haskell is named
after him). It is simple in Python to illustrate this technique, and also emphasizes some
novel programming ideas. Suppose we need a function increase(x) that returns x+k
for some desired value k. One way to do this would be to define increase(k,x) so
that the value of k is a parameter. A disadvantage of this definition is that a program
needs to have the value for k known and remembered so that it is available when using
increase. Instead, is there some way to define increase(x) so that the value of k is
“built in” to the definition, yet this value is not a fixed number (like 1, 2, or 99) in the
definition?

def makeIncrease(k,x=0):

def bump(x):

return k+x

return bump

>>> increaseFive = makeIncrease(5)

>>> increaseTen = makeIncrease(10)

>>> increaseFive(1)

6

>>> increaseTen(2)

12

>>> bump(3)

NameError: name 'bump' is not defined.

The body of makeIncrease is peculiar: it defines a local function named bump. This
local function is returned to the caller of makeIncrease. The last line in the interactive
session (bump(3)) demonstrates that bump is not known outside of the makeIncrease

function. Yet, increaseFive is a function: it is equivalent to bump, where k equals 5.
The net effect is that makeIncrease creates a specialized function, which can be used
later. Two examples of this are increaseFive, a one-parameter function which adds 5
to its argument, and increaseTen, which adds 10 to its argument.

This technique of writing a function that returns a new function is typical of the
style of advanced functional programming. It can be used to “Curry” functions and to
reduce the number of parameters in some situations. As a beginner, you should not
be expected to use or master such an advanced technique. Nonetheless, there are some
useful takeaways from the example above:

• In Python, a function is a type, much as sequences, booleans, and numbers are
types.

• It is possible to return a function as the result of some calculation.

• Conversely (not shown above, but made useful in Chapter 13), it is possible to
have a function as an argument. For example:

app = lambda f,g,x: f(g(x))

defines app(f,g,x) to be f(g(x)).

This page intentionally left blankThis page intentionally left blank

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Interlude: Table Lookup Functions

Recall the inventory problem of Acme Perfume, the essence of which was the representation
of tables using Python types. What good are tables without being able to use them? Once
there are Python data structures to represent the tables, such as lists, tuples, and dictio-
naries, the practical use cases2 motivate the invention of functions to access the tables.

How does one decide whether or not new functions should be written, what parameters
they should have, and what they should compute? Two schools of thought are top-down
design and bottom-up design. The top-down approach proceeds from thinking about how
software will be used, what the goals are, and then breaking down action by users into small
enough sub-actions that they look like desirable functions. For example, suppose Acme’s
employees need to frequently make a list of Web sites for an ingredient. A desirable function
thus might be lookup(T,ingred), where parameter T refers to Acme’s tables and parameter
ingred names an ingredient. Function lookup’s action would be to make a list of Web sites
and return that. The bottom-up method is more difficult to motivate, coming mostly from
the experience of having previously designed many systems and then anticipating what
will be useful even before users ask for it! A typical bottom-up tactic is to write functions
that search, update, and delete rows of a table. Such functions can be designed, written,
and debugged even without knowing whether or not the application will need them. One
advantage to the bottom-up method is that users, perhaps the employees and managers at
Acme, are not certain about what they want. It could be useful to have a family of potentially
useful functions ready when Acme’s management finally nails down all the requirements for
the software.

Recall the two tables mentioned earlier, one for ingredients and the other for suppliers.
Here we show two rows of each, but the columns are designated A, B, C, and so on, and
values under the columns are numbers.

ingredient A B · · ·

oakmoss28 100 101 · · ·
lavender4 200 201 · · ·

supplier M N · · ·

Botanisco 300 301 · · ·
Olfaktikov 400 402 · · ·

Let ingredients and suppliers be Python representations of these two tables. We
assume that each row in the ingredient table names a different ingredient than all the
other rows (we can arrange for this to be true by design for Acme’s database). Similarly,
we suppose each row in the supplier table differs from the other rows. These assumptions
motivate using dictionaries: ingredients["oakmoss28"] could be a list of the values for
columns A, B, and so on, and suppliers["Botanisco"] could be a list of the values for
columns M, N, and so on. Alternatively—and this will be our choice—each row of the
ingredients table can be a dictionary. Thus,

ingredients["oakmosss28"]["B"] ➜ 101

One column of the ingredient table, say D in the ingredient table, is a list of all the suppliers
for an ingredient. The Acme management would like a simple query that, given an ingredi-
ent, responds with the Web site of a supplier for that ingredient (the query just returns the
site of the first supplier in the list). The following oneWeb(ingred) functions implements
this query.

2In software engineering, the term use case refers to analysis of how people will likely use a system. Use
case analysis is a first step in figuring out what functions would be useful to the users of a proposed system.
If you query a search engine on “use case analysis” you are likely to find diagrams which illustrate how
users of a system interact with its parts.

107

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

108 A Functional Start to Computing with Python

def oneWeb(ingred,T1=ingredients,T2=suppliers):

ingredRow = T1[ingred]

suppList = ingredRow["D"]

oneVendor = suppList[0]

suppRow = T2[oneVendor]

webSite = suppRow["P"]

return webSite

The oneWeb is a textbook example of a table lookup. Each line of the function is either a
table lookup (we see lookups in T1, T2, and for rows D and P) or an index operation: the
suppList[0] effectively “looks up” the first item of a list.

Example: Suppose the above oneWeb function is called with oneWeb("lavender4");
defaults on the T1 and T2 keywords will be the ingredients and suppliers tables, repre-
sented below as dictionaries. Here is a picture of how Python will relate the names given to
values when it evaluates oneWeb("lavender4"):

{"oakmoss28":{"A":100,"D":["kysraco"]},

"lavender4":{"A":200,"D":["Olfaktikov"]},

. . . }

T1

{"Botanisco":{"M":300,"P":"www.botan.fr"},

"Olfaktikov":{"M":400,"P":"www.olfak.pu"},

. . . }

T2

{"A":200,"D":["Olfaktikov"]}

ingredRow

["Olfaktikov"]

suppList
"Olfaktikov"

oneVendor

{"M":400,"P":"www.olfak.pu"}

suppRow
"www.olfak.pu"

x xwebSite

x x
Each arrow above stands for a name definition in the script. The arrow from T1 to the
ingredRow box just below represents “ingredRow = T1[ingred],” since we know ingred

is "lavender4" for this example. The rightmost arrow from T2 to the suppRow box joins
up with a line from oneVendor—that is because this arrow represents the “suppRow =

T2[oneVendor]” definition in the script.
Table lookup is a core problem-solving technique in computing. Lookup is so simple that

it is often overlooked. In order for table lookup to be practical, we also need ways to create
dictionaries, update dictionaries, and load tables into dictionaries from files. Ways to update
dictionaries are presented in Chapters 15–17. Reading from files is a topic of Chapter 25.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Exercises: Unit Testing and Online Supplement

def Quarterly(weeks, balance):

total = sum(weeks)

limit = total/float(len(weeks)

...

U
n
it

T
es
t

✔ ➀ Test Passed
✘ ➁ Test Failed
✘ ➂ Test Failed
✔ ➃ Test Passed

...
D
ebug

&

A
n
aly

sis

I see the bug

we can fix it

and try again . . .

109

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

110 A Functional Start to Computing with Python

How can one become proficient in writing functions? Printed exercises only go so far: they
encourage the reader to think about a problem, but fall short of an interactive experience.
The following few pages in the book explain a Python framework for testing programs. With
a testing facility, a suite of training exercises opens up, provided online as a companion to
this text. These exercises take the form of puzzles: test cases for a function (which is missing)
are provided, and the puzzle is to devise and write in Python a satisfactory function. You
know you have the solution when the test cases run with no errors.

The unit-testing topic is out of place with the rest of the text: it uses some Python
syntax that has not been discussed in previous chapters. Later chapters do explain the
syntax, but the topic is so useful for exercises that it is worth seeing here.

Test Suites

Trust, but verify.
— Russian saying

Testing software is a standard policy in industry. Testing occurs at multiple times during
development of systems and applications. The main considerations for testing are deciding
what should be tested and how to automate testing, because it is tedious and likely to
be done repeatedly as bugs get fixed and software evolves. Large software companies have
separate testing divisions for quality control. Some testing is randomized, but randomization
may not be a guarantee that certain important cases are tried, which can be vital for
software used in safety-critical missions. Most often, automated testing relies on scripts
that give inputs and expected outputs for a series of tests. Each time a new version of a
program is developed, it can be automatically tested by running the test script.

Testing coverage refers to how extensive a test script, or a suite of tests, validates that
software correctly implements a specification. A test suite with good coverage puts enough
“stress” on a program to give confidence that the program can be safely used. In practice,
even the best coverage is no guarantee that the program is free from hidden bugs, but
running tests is far better than doing nothing. Testing can be done at different levels of
detail. For interactive games, testing might need to cover how the game performs with
simulated user input; for Web servers, testing would cover different browsers and their
interactions with the server. Even individual parts of the software can be tested by making
test suites customized to validate functions or methods making up a software application.
This last technique, which is the unit testing of individual functions, is described next for
Python.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Exercises: Unit Testing and Online Supplement 111

Formal Methods
The design of software is driven by imagination. In the case of an individual software

designer, the imagined application or system may be based on a coherent vision, free
from internal conflicts or bugs. More often, software is the result of team efforts com-
bining design ideas from many people, from customer suggestions, or brainstorming
under the influence of late night pizza consumption and crazy music. Little surprise
that much software really is vaguely imagined, so the vision probably would have some
unforeseen problems when it is actually built.

Software engineering researchers are well aware of the problems going from vision
to reality. Various design disciplines and tools can be used, which try to coerce people
doing design into using techniques that double-check the designs, motivated in part by
the success of double-ledger bookkeeping in finding accounting mistakes. One research
contribution is the area of formal methods. Within formal methods, the starting point
is to have a specification of software. By “specification” we mean that the details of
imagined software are pinned down precisely so that there is no confusion about what
a design means and does not mean. Creating a truly unambiguous specification is quite
difficult. Consider students taking courses, particularly courses where homeworks are
programming assignments. Invariably, students find the assignments confusing, because
questions come up about how a program should behave. Even for extremely simple
assignments like “write a function to compute square root” a student might ask, what
if the input is a negative number, what if the input is a character string, and so forth.
We do not want to write a book, the equivalent of an income tax regulation, dealing
with every question that could conceivably be asked. In practice, specifications will
make some compromises to avoid overly long and complicated descriptions.

Practical specifications of software fall short of the ideal, leaving some details un-
mentioned. This could be a problem during software development and show up during
program testing, but it is better than not having any kind of specification. Complete
discussion of specifications is beyond what this book covers. One limited kind of speci-
fication, which is very practical for beginners, is unit testing. The idea of unit testing is
to make a series of software tests. Each test consists of an input for what is being tested
and the expected output. In principle, specification of software might be achieved by
unit testing; in practice, the number of tests that would be needed to represent a full
specification is too large to describe. Even for something as simple as a square root
function, a full suite of test cases could number 1040 or more. Researchers have devised
clever ways of reducing the number of tests to a small number so that the probability
is good for finding defects in software. In this discussion, things are less formal. We
limit unit testing to functions, and the test cases are typically only a few.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

112 A Functional Start to Computing with Python

Python Doctest

'''

>>> sqrt(16)

4.0

>>> sqrt(3)

1.7320508075688772

>>> sqrt(-1)

Traceback (most recent call last):

...

ValueError: negative number cannot

be raised to a fractional power

'''

def sqrt(x):

return x**0.5

if __name__ == "__main__":

import doctest

doctest.testmod()

Here, using the sqrt function, we show basic
unit testing with Python. The syntax is shown
to the left, which is a testing script for sqrt.
The file begins with a long string (Chapter 8 ex-
plains the notation for a multiline string). This
string contains something that should look fa-
miliar: it is a transcript of an interactive Python
session, which exercises some sqrt calls. This
transcript has been edited slightly; the “...”
line in a real Python session would be several
lines of diagnostic information. At the end of
the script, there are some mysterious lines with
underscores and the name doctest in a couple
places. The “doctest” is Python’s test harness,
meaning that it is a part of Python that drives

the testing procedure. What doctest does is to read the long string at the beginning of the
script, and use that to formulate tests. The transcript in the long string says what is to be
tested and what values to use and expect.

Without Bugs

Running the unit test is easy from a command prompt. Suppose the script shown above is
in a file sqrt.py. Just running the script does the testing:

> python sqrt.py

>

> python sqrt.py -v

Trying:

sqrt(16)

Expecting:

4.0

ok

Trying:

sqrt(3)

Expecting:

1.7320508075688772

ok

Trying:

sqrt(-1)

Expecting:

Traceback (most recent call last):

...

ValueError: negative number cannot be

raised to a fractional power

ok

3 tests in 2 items.

3 passed and 0 failed.

Test passed.

>

The script has no output if the function sqrt

passed all of the tests. Should some kind of re-
port be desired, there is a slightly different way
to run the script, shown to the right (notice the
“-v” on the python command, which requests
verbose output). There are three test cases in
the script sqrt.py. The output, presented to the
right, shows “ok” for each test case. The perhaps
confusing part is that the test verifies that sqrt
should have an error when the argument is -1.
The designer of the test cases wanted the square
root function to fail for negative numbers. If in-
stead, the sqrt function returned some value in-
stead of getting the ValueError, that would be
wrong in the opinion of whoever wrote the test
cases. In normal life, we see tests with only pos-
itive results to mean satisfactory performance;
but in software, a thorough specification can also
say just when a function should get an error.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Exercises: Unit Testing and Online Supplement 113

With Bug

Let’s suppose the example is changed to introduce a bug by defining sqrt incorrectly
(raising x to the power 0.25 instead of 0.5). Below, the incorrect definition is on the left,
and part of the unit test run is shown on the right.

def sqrt(x):

return x**0.25

> python sqrt.py

Failed example:

sqrt(16)

Expected:

4.0

Got:

2.0

The output shows only tests that fail, with input and expected output. Seeing the difference
between “expected” and “got” is valuable when debugging the function.

Syntax Explained

While the general picture of unit testing should be clear from these examples, the syntax
is mysterious. Some parts of the sqrt.py script use Python features explained in later
chapters. Figure 10.1 shows a simplified look at the script. The key points to observe are:

• The script starts with triple quotes—a long string (explained in Chapter 8)—which
continues down to the triple quotes some lines below. Recall that scripts, unlike in-
teractive Python, do not print expressions. So, starting a script with a string will not
harm anything.

• Beginning a script with a long string is a sneaky way for a programmer to write a
message, usually an explanation, to anyone (human) reading the program. This is a
commenting convention, described later in Chapter 20. For the present, simply accept
this as some strange kind of remark that starts the script.

• Do not be confused that the long string contains Python code. Yes, it happens
to look like some Python test cases, but technically it is just a string, used as a
commenting convention.

• The definition of sqrt is the normal way of defining functions, explained in Chapter
9.

• The line starting with “if” is the first point in the script where computing occurs.
Earlier lines of the script are either documentation (the long string) or function defini-
tion (for sqrt). The meaning of if is made clear in Chapter 11; for now, just think of
this as a way to turn on unit testing under certain conditions. The “ main ” refers to
the concept of the main function, talked about informally in Chapter 10. The “import
doctest” tells Python to use a module from the standard Python library; Chapter 18
explains the syntax of importing. Finally, the doctest.testmod() is a function call,
which kicks off the unit testing.

• Once the actual unit testing takes control, it uses a devious trick. The unit testing
function doctest.testmod reads the comment at the beginning of the script. It ex-
tracts from the long string a specification of test cases. These test cases, which were
painstakingly copied from an interactive Python session (which had a working version
of sqrt) show exactly how sqrt should behave for certain arguments (16, 3, and –1).

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

114 A Functional Start to Computing with Python

'''
starts a comment string

>>> sqrt(16)
positive test case4.0

>>> sqrt(3)

1.7320508075688772

>>> sqrt(-1)

negative test case

Traceback (most recent call last):
...

'''

def sqrt(x):

here is where sqrt is defined

return x**0.5

if name == " main ":

controls use of unit testing

import doctest

doctest.testmod()

Figure 10.1: Simplified view of test script.

Separating Test from Function

Another way to test a function is to define it in one file and put the testing script in another
file. An example testing script is shown in Figure 10.2. Notice that it does not contain a
definition of sqrt, but has an import line in its place; Chapter 18 explains the syntax of
this line. Suppose the file testsqrt.py contains that which is in Figure 10.2. To run the
script, first there needs to be a file sqrt.py containing the definition:

def sqrt(x):

return x**0.5

Testing occurs by entering the command

> python testsqrt.py

>

Going Further

In addition to the doctest feature, Python has a unittest and other facilities to support
testing, most of which are more advanced than needed for beginners. One thing worth
pointing out is that it is possible to test many functions in one script. The long string
with test cases can use a number of test cases and test multiple functions. These functions
might use built-in functions, refer to each other in expressions, and use other Python syntax
defined in later chapters.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Exercises: Unit Testing and Online Supplement 115

'''

>>> sqrt(16)

4.0

>>> sqrt(3)

1.7320508075688772

>>> sqrt(-1)

Traceback (most recent call last):

...

ValueError: negative number cannot be raised to a fractional power

'''

from sqrt import *

if __name__ == "__main__":

import doctest

doctest.testmod()

Figure 10.2: Unit test script.

This page intentionally left blankThis page intentionally left blank

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Exercises: Unit Testing and Online Supplement 117

Exercises ➪ web

'''

The allz function returns a string

in which every letter is 'z'; the

length of the returned string is the

same as the length of the argument

given to allz:

>>> allz([1,2,3,4,5])

'zzzzz'

>>> allz("happen")

'zzzzzz'

>>> allz([])

''

'''

#------------------------------

#------------------------------

if __name__ == "__main__":

import doctest

doctest.testmod()

The Web site support of this textbook has many unit
tests. Each of the unit tests is a script with missing
function definitions. Your task is to write the miss-
ing functions so that running the scripts completes
testing with no errors. A typical exercise is shown
on the right. The two lines staring with #--------

are comments (see Chapter 20 for the syntax of a
Python comment). The exercise is to define a func-
tion named allz that has the behavior shown in the
three test cases. As explained in this chapter, these
test cases are copied from an interactive Python ses-
sion using a working allz function. Your definition of
allz should be put between the two #-------- lines.
Once you have put a definition of allz between these
two lines, run the example, using an Integrated De-
velopment Environment (IDE) such as IDLE, or from
a system console. For instance, if the file is allz.py,
and you have edited it to have allz defined, then a command from the console

> python allz.py

tests your program.
In general, with running Python programs (not just with unit testing), Python will

report errors. The way that Python indicates the source of an error, whether it is a syntax
error or runtime error such as division by zero, is supposed to inform the user about the
type of the error and the line number in the program. Unfortunately, the terminology that
Python uses often contains too much detail, some advanced concepts, and other information
not so helpful to debugging. Sometimes IDEs do a better job of indicating the error, perhaps
highlighting the line in a different color to emphasize the location. Chapter 21 offers some
advice on debugging, but for unit testing there is a different strategy. If the unit test fails
because your function definition has a bug, the best debugging method is to first isolate the
bug: make a copy of the python program, and in your copy take out the unit testing. As an
example, you could make a file copy-allz.py that contains only your definition of allz,
followed by one print statement, say print(allz([2,3])). When you run copy-allz.py,
the only thing the program does is to try evaluating allz([2,3]) and print the result. This
makes debugging simpler because the program has fewer actions.

def allz(S):

if len(S)==5:

return 5*'z'

elif len(S)==6:

return 6*'z'

else return ''

The English description of allz at the beginning of the
exercise conveys a general meaning, but the test cases
are far more precise. Obviously, each exercise has only
some test cases. Defining a function to satisfy these cases
exclusively, and not the more general description, is not
really solving the problem. The proposed definition of
allz on the left (which uses Python condition syntax

from Chapter 11) will pass the three unit tests: it is correct for sequences of length 0, 5, and
6. Yet the intent of the problem was to provide a correct result for any length sequence,
not just the three instances shown. To overcome this situation, some systems inject random
tests, using random values for test arguments. For beginners, it is better to use known unit
tests without randomness, since this makes problems more concrete and is less confusing
during debugging.

The Web site unit test supplement to this book arranges the unit tests into topics
that roughly correspond to the progression of chapters. There is a section Basic that can

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

118 A Functional Start to Computing with Python

be solved using techniques of previous chapters; a section Condition needs material from
Chapter 11, and Slice exercises ideas of Chapter 12. Other sections depend on later chap-
ters. Solving a few of these unit tests really helps one get the hang of functions, problem
solving, and the simple tasks of typing in Python, testing it, and debugging.

The way to understand a system is
to learn how it breaks.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Chapter 11: Conditional Logic

12 coins and a balance

one coin is counterfeit—it is either

heavier or lighter than other coins

find the counterfeit coin in three

weighings

119

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

120 A Functional Start to Computing with Python

S ← i ← 0

S ← S + A[i]
i < len(A)-1

?

i ← i+1

stop

yes

no

Figure 11.1: Small flowchart example.

Over a century ago, railroads were hot technology, pushing innovation and driving the
economy. The buildup of rail infrastructure put tracks between cities, essentially creating
a road network for trains. Unlike natural paths or roads for people, horses, and livestock,
trains cannot turn by themselves from one track to another. It took the invention of the rail
switch to get trains from one track to another. Eventually a network of tracks and switching
junctions emerged.

Early train locomotives were fueled by wood or coal and railway engineers managed the
switches. Major junctions in most cities, the railway switchyards, concentrated the switching
jobs. The junctions also had repair facilities, shunting engines, stocks of water (needed for
steam engines), and supplies. Imagine a train heading from Chicago to Kansas City. Rather
than have a single track dedicated to this route, the train goes along many track segments,
guided by switches. First might be a track from Chicago to Rockford; then a track from
Rockford to Dubuque. At each junction, an engineer had to set the switch for the train
changing track segments. Every switch setting was a decision by an engineer, hopefully
getting the train closer to Kansas City. Looking at this situation more generally, the picture
we see is many trains moving simultaneously to lots of destinations. We see that the train
network is essentially programmed by engineers to keep train traffic flowing smoothly. Most
rail switches are binary: either the switch is set one way or the other. Consequently, the
logic of switching resembles a primitive form of computing.

Some decades later, another new technology arrived, again using manual switching and
junction stations: the telephone network. A telephone call in the early days made an elec-
trical circuit between two telephones. Telephone operators made this possible by patching
wires between contacts of other wire segments. Each patch wire can be regarded as a switch,
and the operation of the overall network facilitated calls flowing through the system.

Similar to the telephone network, the earliest computing devices required manual setup
of the machinery. What was computing’s analog to train traffic or a network of telephone
calls? Data is what flows through a computing process: input flows to output. The nature
of the input data dictates how data gets “switched” through a network of logic, just as a

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Conditional Logic 121

train’s destination guides how switches have to be set for proper flow. Concentrating our
attention on the switching, we see the control flow of the network. Each junction or decision
point controls where things flow. Chapter 10 also refers to control flow in the motivation
for the return statement of a function.

Even before programming languages came on the scene, people devised notation for the
logic of control flow—we use the term logic because the fundamental units for switching
are often binary, hence there is a kind of boolean status for a switch, setting it one way or
another. A graphical view of control flow (along with other processing descriptions) is the
flowchart . The idea of a flowchart is to show how inputs drive the sequence of steps through
a procedure. Figure 11.1 shows a fragment of such a flowchart. Diamond shapes represent
decisions, with a question in the diamond and arrows leading away according to the answer.

Programming languages all need some kind of way to let switching be represented,
since control flow is a central issue in software design. The typical feature in programming
languages is an if syntax to control which parts of the code handle data depending on
the circumstance. Associated with if is a condition and some kind of action clause. The
condition is an expression that evaluates to a boolean value; when the condition is true, the
action clause takes over processing of data. When the condition is false, the action clause is
skipped. The overall structure of a program may string together many such if statements,
just as a flowchart may have many decision points within it. This way of describing decisions
in programs is sometimes called conditional logic, because the logic of decisions is guided
by the if conditions.

Control Flow Using If

Before examination of Python’s if statement, let us take a look at how equivalent concepts
might be expressed in other areas of science. The state of water (H2O) is either liquid, solid
(frozen), or gaseous (vapor). The particular state of water depends on the temperature.
Notation for this fact could be:

H2O is







solid if temperature ≤ 0
liquid if 0 < temperature ≤ 100
gas if temperature > 100

The same notation is used in mathematics. Here is an example taken from a math textbook,
defining some term δi,j :

δi,j =







−1 if i < j
0 if i = j
1 if i > j

By this definition, δ5,5 = 0, δ3,1 = 1, and δ2,7 = −1.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

122 A Functional Start to Computing with Python

def delta(i,j):

if i<j:

return -1

if i==j:

return 0

if i>j:

return 1

Python. To the right, the box shows how the definition of
δi,j could be expressed as a Python function. The body of
delta consists of three if statements. The syntax for if re-
sembles the syntax for def: first the word if, then some ex-
pression which evaluates to a boolean value, then a colon. Each
if statement has an associated “body” which is indented. A
function application of delta goes through the if statements
sequentially; if the expression i<j evaluates to True, then the
function application immediately returns -1, and the other
two if statements are ignored. Only if the expression i<j evaluates to False will Python
go on to look at the second if statement.

def delta(i,j):

if i<j:

return -1

if i==j:

return 0

return 1

The function delta can be rewritten using only two if

statements and get exactly the same results, shown in the
left box. When evaluating delta(8,2) with this definition,
Python first binds i to 8 and j to 2. The first if condition
evaluates 8<2 ➜ False, so Python evaluates the second if,
which also evaluates to a False condition. Finally, the only
remaining statement in the body executes, so delta(8,2) re-
turns 1. Contrast this definition with the incorrect definition,

shown next.

def delta(i,j):

if i<j:

return -1

if i==j:

return 0

return 1

The mistake here is the indentation of the last return

so that it belongs to the body of the second if, rather than
being the final statement of delta’s body. Since this mis-
take is valid by the syntactic rules of the Python language,
there would be no error message from Python. The program
would simply give an incorrect result: for this buggy version,
delta(8,2) returns None, because no return statement gets
executed. This is a particularly insidious kind of error, one
that some programmers blame on the syntax of Python. Java and C use curly braces ({ })
to explicitly say where the body of an if starts and where it ends, so they do not typically
encounter this problem.

Tracing. By adding some print statements, the flow control is illuminated by looking
at the program’s output. Tracing shows a “history” of what happens when the program
proceeds from one line to the next. Below, the definition of demo is changed to include print
statements which uniquely identify different points in the program. When the program runs,
it will be clear exactly which print statement caused something to be output. An interactive
experiment with demo is shown on the right.

def demo(flag):

print 1

print 2

if flag:

print "XX"

print 3

print 4

>>> demo(False)

1

2

3

4

>>> demo(True)

1

2

XX

3

4

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Conditional Logic 123

Nested If

Using the if statement added a second level of indentation to the body of a function. You
can take the syntax even further, putting if statements inside the body of an if.

def nestif(x,y,z,a,b,c):

if x:

if y:

print a

print b

if z:

print c

Sometimes it helps to visualize the indentation with vertical lines showing the levels of
indenting. Below, on the left, the nested if example is enhanced to show lines at the same
level of indentation. It is clear from looking at the vertical lines there are three levels of
indentation. You can see that “if x:” and “if z:” align on the left at the same level.
Some text editing programs are aware of Python syntax, even showing the vertical lines
when you edit a script. Further, they can allow you to collapse the body of an if statement
or even the body of a function. For instance, on the right, there appears a view which one
such editor has “collapsed” the body of one if statement.

def nestif(x,y,z,a,b,c):

if x:

if y:

print a

print b

if z:

print c

⊟ def nestif(x,y,z,a,b,c):

⊟ if x:

⊞ if y:

print b

⊟ if z:

print c

The ⊟ symbol on the left indicates that a body can be collapsed by clicking on the symbol.
The ⊞ and the horizontal line show that the body has been collapsed. If you want to
see the body again, click on the symbol and it will un-collapse. Not all “smart editors”
work this way, and there might be other conventions for collapsing and expanding nested
statements. Also, there are other helpful features in Python-aware text editors, such as
coloring the special words (def, if, etc.) or using different fonts for different parts of the
Python language. Such editors can help you navigate through different levels of nesting. Of
course, it does not hurt to have Python evaluate the function a couple of times to verify
that it works as expected:

>>> nestif(True,True,True,1,2,3)

1

2

3

>>> nestif(False,True,True,1,2,3)

3

>>> nestif(True,False,True,1,2,3)

2

3

>>> nestif(False,False,False,1,2,3)

>>>

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

124 A Functional Start to Computing with Python

The x, y, z parameters act as switches for the control flow, determining which of a, b,

c will be printed. The example shows nesting (that is, putting an if statement inside of
the body of an if) with just one more level of indenting. In principle, you can use if inside
if inside if . . . to as many levels as you need, but doing so tends to make programs less
readable. Another way to write the same nestif function above would be

def nestif(x,y,z,a,b,c):

if x and y:

print a

if x:

print b

if z:

print c

➪ web

The “Horizontal” If An unfortunate design choice in the Python language, at
least for beginners, is that if can be used in at least three different ways. This chapter
only covers the “vertical” type of if, where the if/else/elif resemble outlines with
indented blocks. There are two other ways that if can appear, one of them described
briefly in Chapter 13, and another mentioned in connection with lambda definitions in
Chapter 9. The usage associated with lambda is actually part of Python’s syntax of
expressions, as we show by an interactive example:

>>> A = "forest"

>>> 3*('x'+'-' if 'o' in A else 'y'+'=')

'x-x-x-'

>>> 3*('x'+'-' if 'i' in A else 'y'+'=')

'y=y=y='

The example shows that if/else is a syntax construction that takes a boolean con-
dition (like 'o' in A) and two expressions (like 'x'+'-' and 'y'+'='), evaluating to
a result. We recommend that beginners not use this syntax . This horizontal
if/else construction can quickly become confusing, as in the following:

D[False if (True if 0>1 else False) else True]

This is valid Python syntax, but less straightforward than the vertical if style that
uses indentation.

Levels and Statement Blocks

When describing Python code in a script or in the body of a function, two if statements
are said to be at the same level if they are indented by the same amount and no other
statement between them is indented by a smaller amount. Figure 11.2 shows an example
with nested if statements that are shaded in gray (or colored, if you happen to be seeing
a colored version of the text): all the ifs at the same level have the same shading.

Notice that it is not the case that all ifs with the same amount of indentation are at
the same level in function R(a,b,c). The if’s associated with printing 4 and 5 are indented
the same as those for printing 9 and 10, yet they have different colors. The reason is that
the statements printing 7 and the if testing a==c have lesser indentation; this “breaks up”
the structure of the levels.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Conditional Logic 125

def R(a,b,c):

print(1)

if a>b:

print(2)

if a==b:

print(3)

if b>c:

print(4)

if b==c:

print(5)

print(6)

if a>c:

print(7)

if a==c:

print(8)

if b>c:

print(9)

if b==c:

print(10)

an outline

1. topic

a. subtopic

b. subtopic

2. topic

a. subtopic

b. subtopic

Figure 11.2: Levels of if and outline structure.

Now consider the outline shown in the figure. Here we see that numbering for subtopic
is reused: even though the subtopics for topic 2 are at the same level as those for topic 1,
they do not need to be numbered as “c” and “d,” which would carry on from the “a” and
“b.” It is natural to consider each new subtopic list as something new, and number it by
starting over. Similarly, the levels of if statements are only considered the same when they
belong to the same block of statements. A block of statements is a group that is indented
by the same amount or more.

In the figure, all the statements below def R(a,b,c) are a block: they are all indented
more than the def statement. Likewise, following if a==b there is a block of five statements,
all indented more than this if statement.

Else and Elif

Python’s if statement is adequate for the conditional logic in any function definition imag-
inable. Yet, the language can do better than just having if alone, because certain patterns
of conditional logic occur frequently in programs. A recurring theme in the evolution of
programming languages is to watch how people use the language, then ask if some change
in the language, perhaps a new feature added to the language, will simplify things. The
else statement is a good example of this theme.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

126 A Functional Start to Computing with Python

First, consider a function questin(s) returning True if string s contains a question mark.

def questin(s):

return '?' in s

This function does not even need conditional logic! But, just to make a point, we rewrite it
using if and add some print statements.

def questin(s):

if '?' in s:

print("positive")

return True

if not ('?' in s):

print("negative")

return False

The pattern here, occurring quite often, recalls the flowchart diamond shapes, where a
decision has two outcomes. The decision is a condition (boolean). Above, the pattern is
expressed with ifs, one for the case true, the other for the case not true (false). A drawback
to this style is that the condition ('?' in s) had to be typed in twice. An else statement
overcomes this drawback. The same function is rewritten by:

def questin(s):

if '?' in s:

print("positive")

return True

else:

print("negative")

return False

Notice that the else statement aligns (same indentation) as the if statement—this is
crucial in Python. The only way that Python can know what condition else refers to is by
the indentation. Computing jargon for this pattern is that if/else has two branches , one
handling the true condition, the other handling the false condition.

Else Association. Python’s rule for evaluating else is that the block of statements
following else runs only when the condition of the preceding if at the same level evaluates
to False. To see why this rule is needed, consider an example.

def K(m,n):

if len(m)>len(n):

print(m)

if n in m:

print(n)

else:

print(n+m)

The else is not associated with the immediately preceding if statement (which has condi-
tion “n in m”), because of the different levels. The preceding if at the same level as else
is the first if in the example.

Elif

The same theme that motivated else, namely that programming languages cater to common
patterns used in practice, can be extended much further. Python does not go very far in this

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Conditional Logic 127

regard, unlike some other languages. There is a trade-off between adding language features
for convenience and burdening people who are learning the language with too much syntax.
The only other statement Python has is the elif statement. An example shows how elif

helps.

def whichstate(s):

if "Iowa" in s:

return 0

else:

if "Illinois" is s:

return 1

else:

if "Wisconsin" is s:

return 2

else:

return -1

Examination of this function and careful counting shows that it uses four levels of indenta-
tion. This seems unfortunate, since what is really happening here is a three-way decision,
either return 0, 1, or 2. The elif statement abbreviates else followed by an indented if,
and this reduces the nesting and indentation, making things more readable. Further, you
can have any number of elif statements associated with an if statement, all aligned at
the same indentation as the if.

def whichstate(s):

if "Iowa" in s:

return 0

elif: "Illinois" is s:

return 1

elif "Wisconsin" is s:

return 2

else:

return -1

Notice the final else statement: it takes over when none of the previous if/elif conditions
evaluate to True. It would be easy (but quite boring) to expand this function with 47 more
elif statements dealing with the remaining state names. Later, we learn there are much
nicer ways of getting the same result using dictionary methods and other Python statements.

➪ web

Example: Reacting to Type Comparison

Most functions expect a parameter to be a particular type. The function might use an
operator or a method that is only valid if the parameter is known to be a string, for
example. Many languages that use typed data permit the design of functions that behave
differently depending on the type of the argument the caller supplies. The if statement
can control which way a function behaves by comparing the argument’s type to what is
expected. To illustrate this, we first look at Python type names.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

128 A Functional Start to Computing with Python

type(x) == list ➜ True if x is a list
type(x) == dict ➜ True if x is a dictionary
type(x) == str ➜ True if x is a string

type(x) == tuple ➜ True if x is a tuple
type(x) == int ➜ True if x is an integer

type(x) == float ➜ True for floating point x
type(x) == bool ➜ True if x is boolean

As a demonstration of testing types, the function first defined below prints an error
message if the argument is not a sequence:

def first(S):

if type(S) not in [list,str,tuple]:

print "first expects sequence argument"

elif len(S) == 0:

print "first expects nonempty sequence"

else:

return S[0]

Notice that first only has a return in the case of a nonempty sequence argument. For
other kinds of arguments, first would return None by default.

Terminology Review

Jargon introduced in this chapter includes: flowchart, condition, conditional logic, block of
statements, nested if, type comparison.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Conditional Logic 129

Exercises ➪ web

(1) Write a function even(x) that returns True or False depending on whether integer
parameter x is an even or an odd number. The even(x) could be written in a single
line, as

even = lambda x: x%2==0

But for this chapter, the exercise is to write function even using def and the if

statement.

(2) Write a function hasVowel(S) that returns True or False depending on whether a
string S contains a vowel (where a vowel is one of the letters a, e, i, o, u). Again,
the function can be written in a single line using lambda, but the question is to write
it using def and if.

(3) Write a function tpr(G) that prints a string G twice if the length of the string is even,
and prints it three times if the length of the string is odd. Hint: Use the even(x)

function from problem (1).

(4) Look up the signum function on Wikipedia; then write a Python definition for this
function.

(5) What does the following script print?

def score(weight,velocity,color):

print("testing permit validity")

if weight>10 and velocity>5:

print("weight is too much for speed")

if weight<10 or color=="black":

print("light enough or")

print("unmarked for permit")

if weight>=10:

if color!="black":

print("needing further test")

print("done testing")

print("first: 11, 10, white")

score(11,10,"white")

print("second: 12, 3, black")

score(12,3,"black")

print("third: 6, 8, black")

score(6,8,"black")

✰(6) Using Python, find out what this script prints. Can you explain its output?

def selpow(value):

print("value =",value)

if 0<=value<1.0:

return value**2

if 1.0<=value<2.0:

return value**1.5

if value>=2.0:

return value**0.5

print("done")

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

130 A Functional Start to Computing with Python

print("Testing")

print(selpow(selpow(selpow(3.0))))

print(selpow(-1.0))

✰(7) Here are two definitions of a function aei to determine whether or not a string contains
the letter “a,” “e,” or “i.”

def aei(String):

if 'a' not in String:

if 'e' not in String:

return ('i' in String)

else:

return ('i' not in String)

elif 'e' not in String:

return ('i' not in String)

else:

return False

def aei(String):

u = 'a' in String

v = 'e' in String

w = 'i' in String

return (u or v or w)

What is the result of evaluating aei("invalidate")?One version above returns True,
but the other returns False. What if we change the problem to ask whether a string
has only one of “a,” “e,” or “i?” What we would like, for instance, is that aei("tame")
returns False, because “tame” has both “a” and “e”; however, aei("finish") should
return True because “finish” has only “i” and does not have “a” or “e.”

– Which of the two definitions of aei correctly determines whether the string has
just one of “a,” “e,” or “i?”

– Can you rewrite the definition of the aei on the left (the one using nested if)
so that it does not use nesting, and is thereby easier to understand?

(8) Write a body for function multival() so that it has at most one if statement and
has no else or elif statement. Your definition of multival() should return the same
values that the one shown below does, for any argument.

def multival(Xlist):

if 7 in Xlist:

if len(Xlist)==3:

return "K"

else:

return "M"

else:

if len(Xlist)==2:

return "K"

return "M"

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Conditional Logic 131

Syntactic Sugar. Purists of computing might argue that Python’s “if” statement is
syntactic sugar, meaning that while it makes the language sweeter for programming, no
new capabilities are added to the language. To appreciate their point of view, consider
a function which appears to need if, but actually does not. Suppose we need to write
a function f(x) that behaves like x2 when x ≤ 5, but is the constant 5 if x > 5. A
mathematician would define f like this:

f(x) =

{

x2 if x ≤ 5
5 otherwise

Surprisingly, function f can be written in Python without using if:
def f(x):

D = { True:5, False:x**2 }

return D[x>5]

It is not hard to see that f(3) returns 9, because 3>5 is False, so D[False] evaluates
to 3**2. But what about more complicated situations, where a function might need to
print and do more than will fit in a dictionary? We can take the same idea used above
and make it more general:

def g(x):

return 5

def h(x):

return x**2

def f(x):

D = { True:g, False:h }

K = D[x>5]

return K(x)

The remarkable thing about the dictionary in this second version is that the items
are names of functions rather than ordinary data items like numbers, strings, lists,
and so on. Python allows functions to be treated like data; hence functions can be in
lists, tuples, and dictionaries. After Python evaluates K = D[x>5], the name K refers
to the appropriate function, g or h. Once we have a function being called in the return
statement evaluating K(x), that function could be some arbitrary script of statements,
including printing, other function calls, expressions, and so on. In principle, the logic of
elif, or nested if could be done in a similar way. However, even purists would admit
that using if, elif, and else improve the readability of programs. Because we live in
a world where software is shared, modified, and reused, it makes sense to emphasize
techniques that make programs simpler to understand.

This page intentionally left blankThis page intentionally left blank

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Chapter 12: Slice, Split, Join

[True, "bread", 33, False, len(R)+8][2:4]

[33, False]

Slicing,
Splitting, and Joining

T = "word play in python".split()

T = ["word", "play", "in", "python"]

"/".join(T)

"word/play/in/python"

133

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

134 A Functional Start to Computing with Python

It slices, it dices, it even purées!
— Never actually said by Ron Popiel

Indexing is a standard feature of most programming languages. Java, C#, C++, and C all
have syntax like E[i] whereby an item with index i can be referenced in E (which might
be a character string, an array of numbers, etc.). Python goes further: it is possible to refer
to “chunks” of a sequence instead of indexing items one at a time. This feature is called
slicing a sequence. Other techniques, like split and join, make it easy to take apart strings
and assemble lists of strings into new strings.

In the same way that hand tools allow people to cut, shape, and put together wood into
furniture, slicing, split, and join operations form the “carpentry” of Python’s text processing
tasks. Even more powerful methods, notably regular expressions, could be likened to the
“power tools” of text and string processing. This chapter only covers the basic techniques,
leaving regular expressions and other more advanced libraries of software as later topics to
explore.

Working with slices, particularly Python’s syntax for slices, takes some getting used to.
With practice, it becomes easy to write expressions that take apart sequences in creative
ways and use operators to assemble slices into new sequences. For strings, slicing is only
the beginning. String methods provide ways to search, replace, and form new strings from
sequences of strings.

Slices of Sequences, Slices Are Sequences

A portion of a sequence is called a slice in Python. It is helpful to visualize a slice in a
sequence and name some qualities of the slice.

[9, 8, 7, 9, 2, 3, 8, 6, 6]

➥ ➦

start end

Above, the shaded box marks a slice of the sequence and arrows label the places where the
slice starts and ends. The Python notation for this slice is

[9,8,7,9,2,3,8,6,5][2:5]

>>> "wonderful"[2:5]

'nde'

>>> "wonderful"[2:2+3]

'nde'

This expression looks a bit confusing due to the square
brackets. It is easier on the eyes to see a similar string
slice, seen to the right. The notation for slicing is like
indexing, but uses a colon to separate the start and end
of the slice: [start:end] specifies the slice to Python. The
start index comes before the colon; the end, however, is
not the index of the ending item—instead end is just beyond the index of the last item of
the slice. Initially, this might seem like bad language design. Why not be consistent, why
not use an index value for both start and end positions of the slice? To answer this (and
also give students an easy way to remember how slicing works) consider the rewriting of
the endpoint using 2+3 instead of 5. Of course, these are equivalent, but the point is that
we look at 2+3 here as being the start index (2) plus the length of the slice (3 characters).
Seen this way, the notation makes sense. The length of the slice is end-start (subtracting
start from end).

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Slice, Split, Join 135

Slices Are Sequences. One deceptive behavior of slicing is a slice of length one, shown
next. A function slicomp is defined to show a slice of length one, then an element of the
same sequence using indexing, and then the result of comparing the two to see whether they
are equal or not. Turns out, they are equal for strings, but not for other sequence types.

caution - subtle example follows

def slicomp(seq,start,end):

print (seq[start:end], seq[start])

print (type(seq[start:end]), type(seq[start]))

return seq[start:end] == seq[start]

...

>>> slicomp('tambor',3,4)

b b

<class 'str'> <class 'str'>

True

>>> slicomp([True,7,False,9,True,5], 3,4)

[9] 9

<class 'list'> <class 'int'>

False

What this example reveals is that indexing works slightly differently for strings than it does
for lists or tuples. On strings, indexing returns a string, whereas on the other types, indexing
returns an element of the list or tuple. Notice that Python finds [9] and 9 have different
types and therefore are not equal (they are not the same thing). This fact is obvious for
slices of length 2 or more, but it is easy to forget this with a slice of length 1. The simple
rule to remember is that a slice is always a sequence, even if its length is 1.

def reprod(seq):

print seq, seq[0:len(seq)]

...

>>> reprod("deals")

deals deals

>>> reprod([9,8,7])

[9, 8, 7] [9, 8, 7]

>>> reprod((False,True))

(False, True) (False, True)

Maximum Slices. Another special case for a slice
is taking the entire sequence as a slice. The example
here shows what happens when a slice starts with
0, the index of the first item in the sequence, and
ends just after the index of the last item, that is,
len(seq). The value of len(seq) is not a valid index
value—it lies outside of the sequence; however, it is
meaningful for slicing. One can get away with writing
an ending index value that would be out of bounds
for ordinary indexing of a sequence, and a maximum
slice will be returned.

>>> "abc"[0:999]

'abc'

>>> "abc"[1:1+99]

'bc'

Thus, slicing notation is more forgiving than indexing: any
value beyond the index of the sequence’s last item works to
get a slice including the rightmost item of the sequence. Of
course, if a large value is used for the end, that will violate
the earlier “+” observation for the length of a slice. For 1+99,
Python cannot give back a slice of length 99 when the original

sequence, starting at index 1, only has two items. Thus, Python returns the longest slice
possible with the specified starting index value.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

136 A Functional Start to Computing with Python

Empty Slices. Many expressions for slicing result in empty sequences: 'hello'[0:0],
'hello'[1:1], 'hello'[2:2], 'hello'[3:3], and 'hello'[4:4] are all empty slices. Vi-
sually, these examples correspond to putting the end so close to the start that there is no
room for any item shown here for start/end [2:2]

[9, 8, 7, 9, 2, 3, 8, 6, 5]

➥ ➦

start end

Again, Python is rather tolerant about what can be put as start and end of a slice that
is empty; even 'hello'[999:999] will produce an empty slice. Also, if the end is smaller
than the start value, say 'hello'[3:0], that is an empty slice. A takeaway from this is
that sequences contain lots of empty slices, so to speak.

>>> "imagine"[1:-1]

'magin'

Negative Index Values. Just as some negative numbers
work as index values (-1 for the end of a sequence), you may
use negative numbers to specify both start and end of a slice.
For instance, here is an expression to get a slice starting with
the second character and ending just before the end of a string.

>>> "tertiary junction"[10:]

'unction'

>>> "anthropology"[:8]

'anthropo'

>>> 'anthropology'[:-8]

'anth'

>>> "empire"[:]

'empire'

Default Values. The syntax for slicing has
some handy ways to say that a sequence starts
with index 0 or that it includes everything up
to the last item. If you omit the start value, the
default is 0; if you omit the end value, the default
is to include the rest of the sequence. The last
idiom shown, namely S[:] to make a copy of
a sequence, turns out to be quite useful and is
worth remembering.

Splitting Strings ➪ web

The split method works for strings only, not for other species of sequence. The idea is
to split up an input string into multiple strings, where the splitting points are determined
by a pattern. Date formats typically have slash characters separating the date fields. Using
split the fields of a date are extracted.

'10/25/2006'.split('/')

['10','25','2006']

Notice that the pattern, the '/' character in this case, is not present in the output: the
splitting pattern is removed. Also, the output is not a string, but a list of strings. There are
several natural questions one might have about the split method:

• What happens if the pattern is not found in the input?

• What happens if the input is nothing but the pattern?

• Can the pattern be anything? What about a pattern with more than a single charac-
ter? How about an empty string?

• Is there some way to have more than one pattern?

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Slice, Split, Join 137

These questions are answered later by showing examples. The point of listing the questions is
that a single example is rarely enough to fully understand an operator, function, or method.
How a method or function or operator behaves with exceptional inputs, like corner cases,
needs to be investigated for full understanding. Good reference manuals for programming
languages (not textbooks) should explain all the details of functions and methods, answering
all questions about what happens with unusual inputs. One problem in practice is that even
when reference manuals do explain details, the explanations could be mathematical or use
“legalese,” that is, English found in laws, regulations, or bureaucratic text that is hard to
fathom. Fortunately, you can always try examples with Python and discover for yourself
the answers.

More generally, the problem of clearly describing how software works or should behave is
a profound, core challenge in computing. Misunderstandings by users, by programmers, and
by software vendors can have serious consequences. In this introductory text on computing
we will not see much that helps to resolve such problems; this is a more advanced topic. Some
years ago, IBM developed a new computer and new programming language and wanted
to test the new system. The company chose a novel strategy. They loaned some early
models of the new system to local schools, where kids could play with them. What IBM
found is that the system quickly broke, both hardware and software, and it broke in many
different ways. It seems that kids tried doing things that the programmers and engineers
had never imagined. Probably, had the system only been sold to other companies with
business applications, the bugs associated with unanticipated inputs and surprising usage
patterns might have taken years to be exposed, if ever. For high quality software, the old
saying “expect the unexpected” is good advice to software designers. On a small scale, this
is another reason to explore the corner cases of inputs to methods and functions.

>>> 'testing 123'.split('/')

['testing 123']

This shows what happens when the splitting
pattern is absent from the input string: the re-
sult is a list, but it only contains the original
input string.

>>> "on knowing the price of dice".split('e ')

['on knowing th', 'pric', 'of dice']

Yes, you can use a pattern that is a string longer than a single character. But, it can be
confusing:

>>> "oooo ooooo oooooo".split('oo')

['', '', ' ', '', 'o ', '', '', '']

To make sense of the result, it may help to put lines under and over the places where the
pattern occurs (we use both under and over to make it easy to see).

oooo ooooo oooooo

Between oo and oo in oooo, there is an empty string (see it?). This is the rationale for
some of the empty strings in the output. All the overlined and underlined portions, which
match the pattern, are removed. The resulting list only contains strings that are between
the removed patterns, or between a removed pattern and the start or the end of the original
string.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

138 A Functional Start to Computing with Python

>>> "oo".split('oo')

['', '']

When an example is confusing, like the previous
one, it can help to try a simpler one. Here is
a simpler split using "oo" (for both string and
pattern). A way to understand the result is to
observe that

"oo" is obtained by evaluating ('' + "oo" + '')

and removing the pattern 'oo' leaves an empty string representing the start and another
representing the end of the original string. By rewriting a string containing the pattern as
a concatenation expression (+), the output result makes sense.

The split method does not work for just any pattern: the pattern cannot be empty, or
Python will output an error message.

>>> "abc".split('')

ValueError: empty separator

Strings to Words

One other special case for a pattern is for splitting by whitespace. Whitespace refers not
to a single string, but any combination of characters that are invisible when printed, such
as blanks, tabs, newlines, and such. The aim of whitespace splitting is to derive a list of
the words in an input string without having any empty strings, blank strings, or similar, in
the list. The whitespace split is signaled to Python by having no argument for the pattern.
Thus,

>>> "One\n\tTwo Three Four\n\nFive\n".split()

['One','Two','Tree','Four','Five']

The whitespace split is especially useful for functions that might get input text lines in
either Unix/Linux format or in Windows format: the usual way lines end in Windows is
with the string '\r\n', whereas in other systems lines end with just '\n'. The whitespace
split produces the same result with either convention for ending a line of text.

Joining List of Words ➪ web

>>> " ".join(['how','big','is','the','storm'])

'how big is the storm'

>>> "/".join(['12','31','15'])

'12/31/15'

>>> "--".join(["a","b","c","d"])

'a--b--c--d'

The join method does the opposite
of split, roughly speaking. The join

method thus takes a separator string
and uses that as the “glue” when join-
ing up (actually, concatenating) a list
of strings. Suppose there is a list of
strings to be concatenated all together;
then use the empty string for the separator, and join does the work:

>>> ''.join(['how','big','is','the','storm'])

'howbigisthestorm'

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Slice, Split, Join 139

Other Handy String Methods

Many other string methods are built-in to Python and yet more are available in the Python
libraries of functions and methods. A few are shown here with examples.

>>> 'round Table'.upper()

'ROUND TABLE'

>>> 'round Table'.lower()

'round table'

>>> 'Inventory'.center(30)

' Inventory '

>>> "mississippi".replace('i','x')

'mxssxssxppx'

>>> "mississippi".replace('ss',' ss ')

'mi ss i ss ippi'

>>> "mississippi".replace('ss','')

'miiippi'

>>> "oooooo".replace('oo','')

''

>>> "ooooooo".replace('oo','')

'o'

>>> "whole".strip()

'whole'

>>> " tacit approval given \n".strip()

'tacit approval given'

>>> "eventually exit".count('e')

3

>>> 'oooooooo'.count("oo")

4

The centermethod produces an output string of the specified length, roughly centering the
input string into the output. The strip method removes whitespace to the left and to the
right of any nonwhitespace text in the input. There are also lstrip and rstrip methods
that, respectively, remove only from the left or right. The count method reports how many
times the method’s argument occurs in the string. The count method is notable in that it
also works for lists:

>>> [6>5, 5>4, 1>2, 'e'>'g'].count(True)

2

Method on Method ➪ web

Though Chapter 7 explains how an expression can use multiple function applications and
method calls, there are some tricks of the trade you might not think of initially using Python.
It is helpful to see some examples.

>>> ''.join("1/2/3".split('/')) == "123"

True

The first example shows that expressions with methods can be arguments to other methods.
The next example deals with an unanswered question posed earlier in the chapter. How can
we split on multiple patterns, that is, do something like the whitespace split, but for some
custom patterns? Below is Python code to split either using a colon or a semicolon.

>>> 'e;f or g:t m;d'.replace(':',';').split(';')

['e', 'f or g', 't m', 'd']

The example exploits the way that Python evaluates expressions left to right, with expecta-
tions for operator priorities. The replace method is the first to be evaluated, and it creates
a string with colons changed to semicolons; then the split method divides that string into
a list of strings according to where semicolons were found.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

140 A Functional Start to Computing with Python

def anycompare(S,T):

return S.upper() == T.upper()

...

>>> anycompare("Fast",'FAst')

True

>>> anycompare("slow",'sloWW')

False

The previous examples used the
replace method to transform (get a
new string) data into a form easier
to work with. The same idea is used
here to compare an input string with-
out caring about the difference between
upper- or lowercase. This technique is
a case that disagrees with human in-

tuition. For a human, it would be more work to first convert a string to uppercase than
to compare without caring about the upper/lowercase distinction. In computing, however,
transforming data to a “normal form” is often a key principle in problem solving.

Terminology Review

Terminology introduced in this chapter includes: slicing, whitespace, separator string, and
empty slice. Important methods introduced are split, join, upper, lower, center,

replace, strip, and count.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Slice, Split, Join 141

Exercises ➪ web

(1) What does Python evaluate the following expressions to be?

1. "agility"[2:5] + "taxonomy"[3:6]

2. [115,202,192,334,257][:4]

3. len("crazy"[3:3+4])

4. [9,8,7,6,5,4,3,2,1][-3:]

5. type([False,True,False,True][2:3])

6. "---".join("this is important".split())

7. int(''.join("7/7/07".split('/')))

8. "too soon to tell".replace('o','*').replace('* ','')

(2) What does the following script print?

def midcap(f):

return f[:f.index("t")].split()[2]

print f("going far in a boat over a river")

✰(3) Write a function trisect(String) that splits String into a tuple (left,middle,right).
Examples using trisect in an interactive session:

>>> trisect("abcdefghi")

('abc', 'def', 'ghi')

>>> trisect("567")

('5', '6', '7')

For simplicity, you may assume that any argument of trisect is a string of length 3n,
for some number n. If you are careful in how you use splitting, your trisect function
should even give a sensible result for trisect("").

(4) Create a function first, using slicing, that returns True if the item at the specified
index is the first occurrence. Here is a definition of first without slicing:

def first(Seq,i):

a = Seq.index(Seq[i])

return (a == i)

Examples using first are first([1,2,3,4],2) ➜ True; and first([2,2,2,2],2)

➜ False. Your definition should use the slice Seq[:i] and return True if Seq[i] is
not in this slice.

✰(5) Suppose there is a string containing one period and all alphabetic characters are
lowercase. Write a function fsub that returns a new copy of the string in which all
“o” characters before the period are removed, and all “y” characters after the period
are changed into “ia.” For example,

fsub("you fool ophelia. oh my say")➜ "yu fl phelia. oh mia saia"

(6) Write a function halfmerge(V,W) that returns a sequence composed of the first half
of V followed by the last half of W. Some interactive examples:

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

142 A Functional Start to Computing with Python

>>> inmerge([1,2,3,4],[5,6,7,8])

[1,2,7,8]

>>> inmerge(['a','b','c','d'],[True,False])

['a','b',False]

You might wonder what halfmerge is supposed to do if V or W do not have an even
number of items (it is unclear how to cut a sequence of three items in half). The
answer is that the specification is not clear on this point; the only examples above are
even-length sequences. Your answer need only be valid for the cases where sequences
can be halved, and for odd-length sequences, your halfmerge can return anything or
even generate an error.

(7) Write a function Paf(S) that returns a string that is like S except that letters after the
first x (if there are any x characters) are all uppercase. Here are interactive examples
with the Paf function.

>>> Paf("Normal input")

'Normal input'

>>> Paf("Mixing words")

'MixING WORDS'

>>> Paf("xray")

'xRAY'

Hints: Use if to return if the argument S contains no x; use the index method to
find the location of the first x; use a slice expression to represent the substring of S
that occurs before x, and another slice expression to represent the substring after the
x. Note that slices can be empty (hence the substring before x in the xray example
is empty).

(8) Here is a function with a bug:

def rotate(seq,amount):

if amount<0:

return seq

return seq[amount:]+seq[amount]

The desired behavior of the function was to “left rotate” a sequence by a number of
places in the amount parameter. Here would be examples of a working function:

>>> rotate([1,2,3,4,5],1)

[2,3,4,5,1]

>>> rotate([1,2,3,4,5],3)

[4,5,1,2,3]

Can you find the bug and fix the definition of rotate?

(9) Use a search engine to look up the Python endswith method and the Python rstrip

method. Then write a function ing(w) that returns True if w is a string that ends
with “ing,” but ignoring any whitespace.

>>> ing("barely")

False

>>> ing("run or walking ")

True

>>> ing("Douglas and Boeing")

True

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Chapter 13: Comprehensions

def primes(x,y):

return [i for i in range(x,y) if

all([i%j != 0 for j in range(2,i) if

i%j == 0])]

Comprehensions and Generators

>>> primes(200,300)

[211, 223, 227, 229]

Map, Reduce, Filter

>>> Words = "Three functional paradigms"

>>> map(len, Words.split())

[5, 10, 9]

>>> f = lambda x: "r" not in x

>>> filter(f, Words.split())

["functional"]

143

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

144 A Functional Start to Computing with Python

Most people find the concept of programming obvious,
but the doing impossible.

— Alan Perlis

It is remarkable how often we list or enumerate information. Lists help shoppers remem-
ber what to buy; checklists are essential for pilots going through complicated procedures
on takeoff and landing; businesses continuously scan lists of sales and production figures;
scientists analyze lists of experimental data looking for patterns. Python has the list data
type, but that is only the starting point toward automating the many things people rou-
tinely do with lists. Learning how to manipulate data in lists is the gateway to mastering
more sophisticated structures of information: databases built of tables, scientific matrix op-
erations, and search engine statistics. This chapter reviews useful methods and functions
for working with lists. Python has a special syntax for generating new lists from existing
lists, which is quite powerful and interesting.

List Functions: max, min, sum, all, any, zip

Earlier chapters introduced the basic list operators for indexing and slicing. The len function
tells you the number of items in a list. Here are some other useful built-in functions for lists.

>>> max([12,16,5,-8,20,7,14])

20

>>> max("four five six

seven".split())

'six'

max. The max() function is typically used on
numbers (max(9,3) returns 3). However, max()
can also be used with a list argument. A restric-
tion on the list is that all the items be compara-
ble, that is, they should have the same type for
comparison purposes: all items can be numeric,

all items can be strings, and so on. The string example above returns 'six' because it is
the largest string (alphabetically). Python prints an error message if the input list is empty.

min. The min() function returns the smallest item of a list.

sum. Use the sum() function for numeric lists only: it adds up the numbers of a list. For
an empty list, the sum() result is zero.

>>> sum([1.5,30,21.25,12.4])

65.1500000000000006

>>> all([])

True

>>> all([True,True,False])

False

>>> all([10>9, 'x' in "max", 0 == 5*0])

True

all and any. Use all() to test for
the presence of False in a list of
booleans. Intuitively, all(x) returns
True if all the items of list x are True;
or True if x is empty. Contrasting with
all(), the function any() changes the
logic of the test: any(x) tests for the
presence of at least one True value in list x. If there is not any True found, the function
any([]) returns False.

zip. The name zip() is inspired by an article of clothing: the zipper. The teeth of the two
parts of a zipper are merged by connecting one tooth from each part as the zipper slides.
The zip function takes two lists and puts them into a single list of pairs, where each pair
has one item from both lists. It is best to start with an example:

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Comprehensions 145

>>> zip([1,2,3], ['a','b','c'])

[(1,'a'), (2,'b'), (3,'c')]

>>> zip([0,9,5], "talk")

[(0,'t'), (9,'a'), (5,'l')]

>>> zip("talk", [0,9,5])

[('t',0), ('a',9), ('l',5)]

It is typically expected that both arguments to zip() will
be sequences of the same length; if not, then zip() will
stop building output with the length of the shorter list.
Also, zip() permits strings to be used as arguments, as
shown to the right. Why would the zip() function be
useful? One answer is the building of dictionaries from
lists. It turns out that the type conversion function dict takes an argument of the form of
zip’s output:

>>> dict([(0,False), (-1,"hi"), (7,2)])

{ 0:False, -1:'hi', 7:2 }

>>> dict(zip([4,5,6],"xyz"))

{ 4:'x', 5:'y', 6:'z' }

>>> zip(*zip([2,2,5],"efg"))

[(2,2,5), ('e','f','g')]

The zip() function can even “unzip” with different syn-
tax, which we do not explain in this chapter (because it is
seldom used). As a teaser, here is an example using zip()
to both zip and unzip, using the unpacking operator (this

is trivia you need not know for learning Python). We mention it here mainly so you can
look up “unpacking arguments” in a reference manual, should you be curious.

def big(x):

return x>10

def small(x):

return not big(x)

...

>>> filter(big,[6,8,14,2,19,6,10])

[14,19]

>>> filter(small,[6,8,14,2,19,6,10])

[6,8,2,6,10]

List Functions: filter, map,

reduce

filter. With filter() we encounter an exam-
ple of true functional style of programming lan-
guages: it is a function that expects a function
argument (an initially confusing concept). To
use filter(), you need to define your own func-
tion that returns a boolean. The code shown
here illustrates two usages of filter. Can you
see what filter() does? Functions big() and
small() are defined to report True for some
numbers, but False for others. The output of
filter() uses a function like big() or small() to screen the items given in the second
argument, a list.

Note for Python3: The filter function returns a “filter object” rather than a list. Later
in this chapter, the concept of generator/iterator is introduced; Python3 returns genera-
tors or generator-like things, such as the filter object, where Python2 would return a list.
Fortunately, for many purposes, a generator behaves like a list.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

146 A Functional Start to Computing with Python

def square(x):

return x*x

def double(x):

return x+x

...

>>> map(square,[3,6,9])

[9,36,81]

>>> map(double,"fine")

['ff','ii','nn','ee']

map. Another functional-style tool is the
map() function. Like filter(), the map() func-
tion needs a list and a function. The output list
has the same number of items as the input list;
all that happens is to apply the given function
to each item of the input. You might notice to
the left that map() can take a string as input as
well as list (any sequence type is accepted).

Note for Python3: The result of using map is a generator-like thing called a map
object.

def multiply(x,y):

return x*y

def fun(a,b):

if len(b)>3:

return b

return a

...

>>> reduce(multiply,[8,9,0.5,2])

72.0

>>> reduce(fun,"one and two and three".split())

'three'

>>> reduce(fun,"one and two and end".split())

'one'

reduce. The idea of reduce() is to
let programmers define their own ver-
sions of sum(), replacing addition with
a function of their own design. As with
filter() and map(), a function needs
to be defined first. The first example
with multiply is easy to comprehend,
but the second example may require
some thought to figure out.

Note for Python3: To use reduce in Python3, you need to have this statement
earlier in your script or interactive session:

from functools import reduce

The syntax of importing modules is introduced in Chapter 18.

➡ An exercise at the end of this chapter suggests that you explore two other handy built-in
functions, sorted and reversed. It is worth knowing about these.

➪ web

Functions map, filter, and reduce predate the Python language, and were in common
use by functional programming experts in the 1960s. These functions are paradigms, or
patterns, of frequently used ideas in problem solving—they automate some of the steps
of programming. More recently, Google built much of their Web indexing on a pattern
calledMapReduce, which does something like a combination of map and reduce (but in a
way that can scale to using thousands of computers working together). All the abstract
thinking behind these functional paradigms, which may initially seem artificial, does
turn out to be useful in practice!

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Comprehensions 147

Streams, Generators, and Iterators

Imagine a graphical game where players can explore a fantastic, fictional landscape with
rivers, mountains, lakes, forests, trails, villages, and more. Without knowing how such a
game might work, we might conjecture ways the software makes it possible to view the
landscape in some detail. One way would be to have a massive dataset of images—needing
lots of storage area to hold the dataset. Another idea would be to generate the landscape on
demand, using algorithms. Computer scientists have researched the natural characteristics
of landscapes, weather, and lighting at different times of day and night, and published
algorithms that create realistic landscapes (such research is ongoing). The great advantage
of such algorithmic generation is that relatively little storage is needed, because instead of
storing an image, it can be created on demand by an algorithm.

Returning to Python and lists, suppose we would like to have a list of all the integers
between one and ten thousand. Let’s say what we want is:

A = [1,2,3, · · ·10000]

Of course “· · ·” is not a symbol one can type, and it is not in the Python language. But
why do we need such a list? Instead of having such a long list of ten thousand numbers,
Python can algorithmically generate the list on demand.

Python has provisions for two kinds of generated lists (or generated tuples). These two
kinds were added to the Python language based on observing how programmers typically
use long sequences of data. The two patterns commonly seen in practice are random access
and sequential access. In the pattern of random access, programs may select different
items in lists at seemingly “random” places (well, it looks random to Python, because the
pattern is unpredictable). For random access, indexing is used: a program might have an
expression using A[237], and immediately after another expression could use A[608]. Thus,
the program “jumps” from one place to another in the list named A. The second typical
pattern is sequential access. Programs that use sequential access are predictable: the first
reference to list A would be A[0], then A[1], and so on, proceeding up to the end of A

(unless the program decides to finish looking at A prematurely).
It is the pattern of sequential access where algorithmic generation excels. Indeed, Python

has notation to define a generator of lists or sequences. More broadly speaking, Python
language experts use the term iterator, and sometimes the term iterable appears in docu-
mentation and error messages. For the present, it is enough to think of both terms, iterator
and generator, as having the same meaning.

The concept of sequential access is not limited to lists and the Python language. Most
programs that read files, write files, and communicate through networking software depend
on sequential access to data. Humans read text sequentially (except when skipping over the
boring parts). Usual jargon for software that processes data, whether from a file, a list, or
some other memory device, is data streaming. When a file is “viewed” as a data stream, the
data in the file flows out from the file to the software, in sequential order, from first byte
to last byte. Similarly, a program’s output (like Python’s print) is a data stream flowing
from the program to some storage area or possibly to a text area in a window.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

148 A Functional Start to Computing with Python

Range/Function Generator

Range ➋
➌
E

The range() function generates a list of integers, controlled by a few parameters. As the
Python language evolved, the range() function became more important and frequently
used in expressions, which caused some practical problems. The situation culminated with
a change in the meaning of range() between Python2 and Python3. Below, we first look at
Python2’s range(), and then explain how the Python3 version of range() differs. Fortu-
nately, for nearly all programming concerns, the two versions get the same results.

Range in Python2

When Python2 evaluates range(k), for some integer k (not a negative integer), a list of k
items is returned. Before a technical explanation is given, a few examples for range() are
shown.

range(0) ➜ []

range(5) ➜ [0,1,2,3,4]

range(0,5) ➜ [0,1,2,3,4]

range(4,10) ➜ [4,5,6,7,8,9]

range(4,10,1) ➜ [4,5,6,7,8,9]

range(4,10,2) ➜ [4,6,8]

range(10,4,-2) ➜ [10,8,6]

>>> sum(range(1000))

499500

>>> range(8)

[0,1,2,3,4,5,6,7]

>>> type(range(8))

<type 'list'>

There are three forms using range(), either one, two or three
arguments can be given. The main form is the two-argument
case, which is range(start,limit). Here, start is the first item
for the result list; limit is a value beyond which the list does
not go. An optional third argument, step, is the value added
going from one item to the next. When range() has only one
argument, then start is zero and the argument is the limit

value. All arguments should be integers.

Range in Python3

An example given for Python2 contains the function application range(1000). When
Python2 evaluates this function application, it builds a list with a thousand integers, which
occupy some space in memory. While memory is not so expensive, some programmers did
use range() with some very large arguments, which caused some performance problems
with evaluating expressions (slow running times for programs).

>>> sum(range(1000))

499500

>>> range(8)

range(0,8)

>>> type(range(8))

<class 'range'>

To counter the performance problems with range(), the
language designers decided to make range algorithmically
generated rather than build a list. In Python3, range(100)
is a “range object” rather than a list. However, it be-
haves exactly like a list in nearly all respects. For instance,
range(5,15)[-2] is 13, just as one might expect for a list.
Repeating an example used earlier, the sum() is the same as
for Python2; what you cannot see is that Python3 created the list starting with 0, then 1,
then 2, and so on, only when sum() asked for the next item of its argument. That way, sum
added up the numbers in the list sequentially, but the entire list was not needed in memory.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Comprehensions 149

Only after a list item was given to sum() and added to a total, then did range() supply
the next item.

One can generally observe that as the Python language has evolved, from Python2 to
Python3, the evaluation has become “smarter” in the way it treats sequences. The approach
of Python3 for range, map, and filter (among others) is called lazy evaluation. The idea of
lazy evaluation is that the Python interpreter delays actually evaluating expressions until
it is certain they will be needed. This clever idea does save the amount of memory needed
for computation, but the situation for Python3 is not easy to explain to beginners.

➪ web

Bottom Line. Use range() in Python3 just as you would in Python2: for all computing
purposes they have the same behavior. Note: in Python2, if the advantages of an algorith-
mically generated version of range is needed, it is available as “xrange.” If you wish to see
a list for some range object in Python3, simply write list(range(4,100)) to see the list
(which does nothing more than convert the range object to a list).

List Comprehensions

To this point, a limited number of operators and functions have been introduced that create
lists: range() can generate a list; slicing extracts a portion of a list; list concatenation (using
the + operator) creates a new list from two input lists; functions filter() and map() each
take one input list and produce one output list. This section explains a special syntax to
create new lists from existing lists. The formal name for this syntax is list comprehension;
informally, a simpler name for the syntax is custom list.

Illustration. To motivate the syntax, think about the following somewhat artificial prob-
lem. Suppose a list is needed containing numbers of the form x2+2, where x is some integer
in the range 20–25. Such a “custom list” is expressed by the Python syntax:

>>> [x*x+2 for x in range(20,26)]

[402, 443, 486, 531, 578]

The general form of this syntax uses an implicit parameter, x in the example above. To
explain the general form, let “expr(x)” stand for some Python expression which uses pa-
rameter x in it. This expression can use operators, functions, and methods, and x can appear
numerous times in the expression. In fact, the expression might not even contain x (we will
see examples where that makes sense). Also, let elist stand for some expression that evalu-
ates to a sequence (list, tuple, or string). Basically, elist can be anything handled by the in
operator—even a dictionary will be acceptable. Another term for the list represented by elist
is the source list. Items are taken from the source list, fed to the expression as parameter x,
which produces the output items. The general form for a custom list (list comprehension)
is:

[expr(x) for x in elist]

Of course, rather than always naming the parameter “x,” any other name could be chosen.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

150 A Functional Start to Computing with Python

Examples

>>> [word+'!' for word in "have a good day".split()]

['have!', 'a!', 'good!', 'day!']

>>> [T>5 for T in range(4,9)]

[False,False,True,True,True]

>>> [8 for m in range(4)]

[8,8,8,8]

>>> [min(i,10) for i in range(8,16)]

[8,9,10,10,10,10,10,10]

The last example builds a list using min() for the expression of items. Though this makes
the point that functions can be used, a more dramatic example is to use tracing in the
function evaluation. The next example only works for Python3, though the same idea can
be carried out for Python2.

>>> [print(i) for i in range(6,10)]

6

7

8

9

[None,None,None,None]

This result looks surprising at first. You can
see that the print() function is applied four
times, once for each item in range(6,10), and
each time the print() function adds a newline
character, which is why you see four lines of out-
put. But then there is a list of four None values.
Why is this? The answer is that the custom list
notation does build a list, and the value returned by print is None (because print() returns
None in Python3).

def show(i):

print i

>>> [show(i) for i in range(6,10)]

6

7

8

9

[None,None,None,None]

The same example can be shown in Python2, but
using an additional function definition. Because
print is a command rather than a function in
Python2, we make up a function show() here,
which does nothing more than print its argu-
ment. Recall that functions return None by de-
fault, so each call show(i) returns None. Thus,
the custom list has only None items because the
show function has no return statement.

➪ web

Adding a Condition. But wait, there is more! Yes, the general form of list comprehen-
sion has further syntax, optionally adding a condition on what items are used from the
source list. The form is:

[expr(x) for x in elist if condition]

Of course, rather than always naming the parameter “x,” any other name could be chosen.
The condition is a Python expression that evaluates to a boolean, and may have parameter
x in it.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Comprehensions 151

Examples

>>> [i-1 for i in range(12,20) if i%5 in [2,4]]

[11, 13, 16, 18]

>>> [c for c in "king kong" if c>'m']

['n', 'o', 'n']

>>> ''.join([c for c in "king kong" if c>'m'])

'non'

These examples just show the notation, they do not really indicate how useful custom lists
could be for real programming. The next example is the first to suggest some potential for
more ambitious problem solving.

Problem Example. A typical puzzle asks a question that is simple to read and under-
stand, but does not have an obvious or trivial answer. Here is a puzzle question: How many
numbers between zero and one thousand contain the digit 7 somewhere?

Someone with a math background will jump to thinking about arithmetic operations to
do the job. For instance, you can tell if a number n ends with the digit 7 by the expression
n%10 == 7; to detect whether 7 occurs elsewhere in the number, more arithmetic is needed.
However, a person with a computing background will try a simpler idea. If we first convert
the integer from numeric type to a string, then all that is needed is to look for the character
'7' in the string. So, the strategy to solve this problem is to first generate integers in the
range 0–1000 (the range function can do this), and then filter out those numbers with a
digit 7. As a final step, the len function reports how many items there are in the filtered
list.

str(n) convert n to a string
'7' in str(n) test for digit 7

[n for n in range(1000)] source list

Given this progression of the elements of our solution, the following should be understand-
able.

>>> len([n for n in range(1000) if '7' in str(n)])

271

Notice that we did not really write the solution all in one go: it is best, even for experienced
programmers, to first write the elements of an expression, make sure the syntax is right,
and perhaps even test corner cases of these elements using Python interactively. After such
preparation, putting together the solution is easier and more reliably done.

Two Source Lists. It is conceivable that a custom list is needed from the combination of
items from two source lists. In principle, any number of source lists could be combined, but
the main idea is best seen with two source lists. The custom list syntax enables expression
of this idea, though it is not very useful in practice. The reason for showing it here is a hint
about how database queries are done. Queries of databases are usually questions about the
content of tables. There might be a table for inventory and another table for part number.
The table for inventory has part numbers and quantity in stock. The table for part number
has the numbers and a text description of that part. Perhaps a question is “What are the
part descriptions for items not in stock?” In order to answer this question, the two tables
somehow need to be combined. As a warmup to this kind of question, we show first a custom
list based on combining characters from two strings.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

152 A Functional Start to Computing with Python

>>> [a+b for a in "12" for b in "xy"]

['1x', '1y', '2x', '2y']

The example shows that every combination of items from the two source lists "12" and
"xy" appear in the output.

➪ web

Database Example. The combination of two source lists to produce one output list
illustrates the kind of processing typical of database queries. To show this using Python
(real databases use specialized languages like SQL), suppose that inventory is a list of
pairs of the form (p, q) where p is a part number and q is the quantity of that part in
current stock. The other list, the part description list, has the form (p, d) where p is a part
number and d is a text description of that part. The part description list is probably derived
from catalogs supplied by part vendors, and it usually has more parts than are offered as
inventory. Thus, the part numbers that occur in the inventory list are just a subset of
the parts in the description list. The problem now is to write a function reorder() that
produces descriptions of the parts that need to be reordered, because they are not in stock,
but should be. Here is the function’s header:

def reorder(Desc,Inv):

Parameter Desc is the description list; parameter Inv is the inventory list. Suppose d is an
item of Desc and let k be an item of Inv. Here are a few expressions that will be useful for
writing the function body:

d[0] part number from Desc item
k[0] part number from Inv item

d[0]==k[0] True when d, k
refer to the same part

d[1] text description of item
k[1] quantity in stock for an item

k[1]==0 True if item out of stock

The expressions above may seem obvious, but it is still a good idea to see that we have
all the ammunition needed to attack the problem. The final step is to combine both lists,
but filter the combination so that we only get those part descriptions where the quantity
in stock is zero.

def reorder(Desc,Inv):

return [d[1] for d in Desc for k in Inv if d[0]==k[0] and k[1]==0]

Let’s try this with some simple inputs:

>>> reorder([(1,"abc"),(2,"def")], [(1,5),(2,0)])

['def']

Though just one test does not prove the expression is correct, the output is what we expect
to see.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Comprehensions 153

Python Generators

Creating a generator in Python is as simple as using the comprehension notation, but with
parentheses instead of square brackets. An interactive example:

>>> M = (i**2 for i in range(4,35))

>>> type(M)

<type 'generator'>

>>> M[12]

TypeError: 'generator' object is not suscriptable

>>> M = (i**2 for i in range(4,35))

>>> max(M)

1156

>>> max(M)

ValueError: max() arg is an empty sequence

Unlike a real tuple or a list, the gen-
erator M does not support the ran-
dom access pattern. No indexing is al-
lowed. Also, some typical list or tuple
functions do not work with generators.
Even when they work, there is a sur-
prise: generators get “used up” as
the example to the right illustrates. What is going on here? The first response to max(M)

is correct, it is 34**2, is equal to 1156. But the second try of evaluating max(M) got an
error. The explanation is that a generator can only be “used” (going through all the items
it generates) once. This may seem quite surprising, but it is a typical way to do things in
software. New generators can easily be created, so there really is not any limitation if one of
them “expires” after using it. After seeing how generators are defined and how they work,
it should be clear that Python3’s range object (and Python2’s xrange) are more flexible
than generators, because they do not get used up and because they support random access
by indexing.

>>> Y = enumerate("Precipitation")

>>> [x for x in Y]

[(0,'P'), (1,'r'), (2,'e'), (3,'c'), (4,'i'),

(5,'p'), (6,'i'), (7,'t'), (8,'a'), (9,'t'),

(10,'i'), (11,'o'), (12,'n')]

>>> [x for x in Y]

[]

Much of the software in Python li-
braries uses generators or iterators.
There are also built-in functions that
return generators, and advanced tech-
niques where functions can become
generators (so that they algorithmi-
cally “stream” what they return to
callers). One example is the enumerate

function. The enumerate function returns a generator for a sequence; the generator creates
pairs of index values (numbers) and the corresponding item in the sequence. Why this should
be useful is a subject for later chapters. The point to observe above is that the generator
returned by enumerate is “used up”—it appears to be empty when the interaction above
tries to use it again.

➪ web

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

154 A Functional Start to Computing with Python

Dictionary Comprehensions

Comprehension notation also works for building dictionaries.

>>> WordList = "a wakeup call from the team".split()

>>> N = enumerate(WordList)

>>> D = { t[0]:t[1] for t in N }

>>> D

{0:'a', 1:'wakeup', 2:'call', 3:'from', 4:'the', 5:'team'}

Recall how binding patterns enable functions to name the parts of sequences in their pa-
rameters. A similar idea is also allowed in comprehensions or generators. If it is known that
items from a sequence (or a generator) will be tuples, we can use patterns to name the parts
of the tuple. Hence, the example above could have been written this way:

>>> WordList = "a wakeup call from the team".split()

>>> N = enumerate(WordList)

>>> D = { a:b for (a,b) in N }

>>> D

{0:'a', 1:'wakeup', 2:'call', 3:'from', 4:'the', 5:'team'}

➪ web

Other Comprehensions

Strings are sequences, which can be indexed, sliced, and concatenated. So can we also
use comprehensions to make new strings from existing sequences? Sorry, current Python
does not offer string comprehensions. Nor does Python have tuple comprehensions. The
way to get the equivalent of string or tuple comprehensions is to use a type conversion
function. Problem (7) at the end of the chapter asks you to write the equivalent of tuple
comprehension. Here, we show two examples of getting string results from comprehensions.

>>> P = "surveys show about one third of people"

>>> U = [c for c in P if c not in "aeiou "}

>>> ''.join(U)

'srvysshwbtnthrdfppl'

>>> M = [ord(l) for l in "antiques"]

>>> M

[97, 110, 116, 105, 113, 117, 101, 115]

>>> ''.join([chr(x+1) for x in M])

'boujrvft'

Both examples use the string join method to create a new string from a list of strings. The
first examples shows some filtering (removing vowels). The second shows what happens by
incrementing the numeric code for each letter: the a becomes b, the n becomes o, and so on
in the result.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Comprehensions 155

Multiline Expressions

As more syntax features of Python are exposed in this chapter, the examples get longer and
it becomes more difficult to demonstrate Python features with single-line statements. There
are several ways to make a Python statement that is longer than a single line of text. One
of these has already been mentioned in Chapter 8, the triple quote (''' or """) convention.
Python evaluates the following as if it were, logically speaking, a single long line:

len('''This anecdote produced an extraordinary effect, not only

upon Mr. Slithers, but upon the housekeeper also, who evinced

so much anxiety to please and be pleased, that Mr. Weller, with

a manner betokening some alarm, conveyed a whispered inquiry to

his son whether he had gone 'too [far].'''')

Besides the triple quote convention, Python permits a statement to span multiple lines if a
parenthesized expression has been started, but not completed. Hence,

5.32E12 * (3.692 -

4.105)

is valid syntax for an expression spanning two lines. Similarly, a left parenthesis (used to
start a tuple, used to enclose arguments for function application, used to enclose parameters
in a function header, and so on, can all span any number of lines, up to where the closing
right parenthesis) is found. The same idea works for a left bracket [or a left brace {, since
Python can detect that more lines are needed in order to find the matching right symbol
for the statement to end. Thus, an earlier example could be rewritten as:

def reorder(Desc,Inv):

return [d[1]

for d in Desc

for k in Inv

if d[0]==k[0] and k[1]==0

]

When single statements span lines, the rules about indentation (all statement text aligning
on the left) are suspended, at least for the continuation of the statement spanning lines.
After the statement’s final line, the rules about indentation go back into effect. Sometimes
using more lines can make statements more readable.

One other technique to make a Python statement span multiple lines is to use a contin-
uation marker, represented by a single “\” character. For example,

def myfunction(r,s):

return r + \

s * 2 + \

200

Each backslash ending a line tells Python that the next line below is a continuation of the
previous line. The continuation lines do not need to have the same indentation, but it can
look nicer to use some amount of indenting. One tricky point about using “\” to continue
lines: there should be no characters (not even a blank) after the “\” character .
This is tricky because a blank is not visible, and Python does not consider “\ ” to be a
line continuation marker.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

156 A Functional Start to Computing with Python

Terminology Review

A few list functions are introduced in this chapter: max, min, sum, all, any, and zip.
Three important functional list functions are filter, map, and reduce. The range func-
tion produces a list of integers (or in Python3, a function “object” that later will behave
like a list). Powerful syntax for list comprehensions enables concise specification of new
lists from existing ones. Python generators and iterators provide a way to algorithmically
generate sequences. Other syntax shows how multiline expressions work in Python.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Comprehensions 157

Exercises ➪ web

(1) What does Python evaluate the following expressions to be? These are best answered
using an interactive Python session, possibly trying different parts of the expression
to understand how they fit together for the result.

1. min(range(20))

2. len(range(10,20))

3. range(20)[11:17]

4. [-x for x in range(5)]

5. sum(range(6))

6. any([c=="X" for c in "ejkXrq"])

7. map(len, "the overall picture is good".split())

8. range(5) + ['+'] + range(5)

9. 504 in range(85,12,900)

10. sum(range(-5,5))

11. ''.join(["-"+c for c in 'python'])

(2) A function foo(C) is needed that returns the “backwards” version of a character
string:

>>> foo("hawk")

'kwah'

>>> foo("amazing")

'gnizama'

Write function foo(C) in Python. Here is a strategy for writing foo. First, see if you
can write a range term that steps from the rightmost index down to the first index of
a string. For instance, if the string is "thousand" then the range expression should
return [7,6,5,4,3,2,1,0]. Once you have this range expression, use it to make a
custom list, something along the lines of

[C[i] for i in range(. . .)]

It can help to just make a simpler version of foo(C) that returns this custom list and
test it with a few examples. Once you have this working, the remaining task would be
to convert the list of characters into a string. Use the join method to do this. Recall
this:

>>> ''.join(['r','i','s','k'])

'risk'

You can use this kind of join, but with your custom list as its argument.

✰(3) Write a function allvowels(P) that returns True if the argument is a string consisting
only of vowels.

✰(4) How many positive integers smaller than 100,000 are divisible by both 11 and 13?
Write a Python expression or function to answer this question.

(5) Write a function issorted(X) that returns True if the argument is a sequence in
which each item is less than or equal to the next item in the sequence. Examples:

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

158 A Functional Start to Computing with Python

>>> issorted([3,9,10,5])

False

>>> issorted(range(8))

True

>>> issorted([2,4,6])

True

The recommended way to write issorted(X) is to first create a custom list of booleans
in which each item corresponds to a “<=” comparison between consecutive items of X.
For instance, such a custom list for input [3,9,10,5] should be [True,True,False]
(notice that the custom list is shorter by one than the input list). The way to get
an item of the custom list is to use a comparison like X[k]<=X[k+1]. Once you have
the custom list working, you can use the all function to get the final definition for
issorted.

✰(6) Scientific and engineering applications make extensive use of matrices, often shown as
tables of numbers:

805 201 327 588
612 119 351 292
982 779 238 153
201 202 496 644
484 670 295 517
683 109 256 164

In Python, such a matrix would be represented by a list, where each item of the list
is a row of the matrix:

[[805,201,327,588], [612,119,351,292], \

[982,779,238,153], [201,202,496,644], \

[484,670,295,517], [683,109,256,164]]

Write a Python function column(p,M) which returns a list of the items in column p

of matrix M. Example:

>>> column(0,[[1,2],[3,4],[5,6]]

[1,3,5]

>>> column(1,[[1,2],[3,4],[5,6]]

[2,4,6]

>>> column(2,["over","take","road"])

['e','k','a']

(7) Python list comprehension is used to create a custom list; dictionary comprehension
creates a dictionary. What if we need to create a tuple? The generator syntax uses
parentheses, so there does not seem to be any way to create a custom tuple. Explain
why tuple comprehension is not really needed in Python. (Hint: Consider that the
built-in tuple function can convert a list into a tuple.)

(8) Two more handy, built-in list functions are sorted and reversed. The idea of sorted
is to return a sorted version of a list, whereas the idea of reversed is to make a
backward copy of a list. One of these functions does return a list, but the other
returns a generator. Which one returns a generator? Experiment with Python, then
consider problem (2) above and how a generator might be the answer.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Chapter 14: Functional Patterns

Let us train our minds to desire what the situation demands.
— Lucius Annaeus Seneca

Programming languages teach you to not want what they cannot provide.
— Paul Graham

This chapter finishes our functional-first introduction to computing; the remainder of the
book starts another style of programming commonly found in languages like C, and Java.
The many definitions from previous chapters about types, operators, expressions, function
arguments and parameters, are enough in theory to do just about any kind of computing.
However, something is missing: a certain “wisdom” of experts is not captured by these
definitions. This chapter aims to reveal some tricks of functional programming.

Much human reasoning is not based on deduction from facts. People tend to recognize a
situation by pattern matching: if a problem you encounter resembles one you’ve previously
seen, you can likely just rely on a solution you remember to solve the task at hand. Over
time, we build internal catalogs of situations and ideas of how to deal with them. The entries
in such a mental catalog are patterns, and the solutions we remember could be “idioms” that
we tend to use. This chapter introduces idioms for functional programming. Later, Chapters
22 and 23 explain other patterns and idioms, but for an imperative style of programming.

Much of the wisdom about functional programming in Python can be found using this
link: http://docs.python.org/howto/functional.html, however, the explanations there
assume more knowledge by the reader than you might have. A goal of this chapter is to
provide more motivation and give more examples than the official Python documentation.

Tail Recursion
Suppose you are given a problem of “processing” all the items of a sequence (list, tuple,
or string). The word “processing” is purposefully vague: it could be that the problem calls
for accumulating (like summing, or filtering) values of the items, or it could be that the
problem calls for searching for particular values. The more generally one thinks about what
“processing” might mean, the better: we would like to have a pattern that works for the
widest range of problems imaginable. Next in this chapter, four examples show tail recursion
in Python. By working through these examples, the pattern of tail recursion should emerge.

159

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

160 A Functional Start to Computing with Python

def prupper(L):

if len(L)==0:

return None

else:

print L[0].upper()

return prupper(L[1:])

>>> prupper("one two three".split())

ONE

TWO

THREE

Printing Items of a Sequence. Tail re-
cursion is the pattern of processing the items
of a sequence one by one, starting from the
first item, and continuing until the last item.
The example shown here is prupper, which uses
tail recursion to print words in uppercase. The
first time seeing tail recursion can be puzzling.
The output example makes it clear that “print
L[0].upper()” is going through the three words
of the argument string L, but exactly how does
this work? The answer is seen by substituting
repeatedly for arguments in the body of prupper, taking care to think of each substitution
separately.

➀ When prupper is first called (by the “>>>” line), the value of L binds
to the list of strings ["one", "two", "three"]. Thus L[0] is "one"
and L[1:] is ["two", "three"]. Hence, ONE is printed. Now, notice
that the body of the function ends with return prupper(L[1:])—
this needs to be carefully examined as a separate, new evaluation.

➁ The new task, namely to evaluate prupper(L[1:]), should be
thought of as prupper(["two", "three"]). Do not be confused
that L is used in the argument (as L[1:]). Instead of thinking about
L, concentrate on the value, which is ["two", "three"]. When you
just look at the argument as a value, it becomes clear that L is
["two", "three"] in the new evaluation (not the old evaluation).
By this way of understanding, it is sensible that L[0] is "two", hence
TWO is printed.

➂ By the same reasoning, Python will need to evaluate
prupper(L[1:]) by substituting the value of the slice, which
is prupper(["three"]). Thus, L is ["three"], L[0] is "three", we
see THREE printed, and L[1:] is the empty list []. What remains is
to examine prupper(L[1:]) as a new evaluation.

➃ Finally, we have prupper([]) to evaluate. The if statement causes
the function to exit early with return None.

Functional language experts use jargon for L[0] and L[1:]:
the item L[0] is called the head of L, and the remainder
of the sequence, L[1:], is called the tail of L. This jargon
motivates the name tail recursion.

Figure 14.1: Some steps to evaluate prupper("one two three".split()).

Figure 14.1 analyzes how Python evaluates the prupper example. To understand the
figure, an idea explained in Chapter 16 needs to be briefly given here. Hypothetically,
consider a function hoo(v) and a function ray(v); suppose in the body of hoo there is an
expression T+ray(5*v). In order to evaluate, say hoo(21), Python would need to evaluate

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Functional Patterns 161

ray(5*v)—in this case it is ray(5*21). To do so, Python would bind 105 (obtained by 5*21)
to v in ray(v). At this point, we might become worried, because technically there are two
valuations for v, 21, and 105. Do not be confused! These are different parameters, the v

that is a parameter of hoo and the v that is a parameter of ray. When Python evaluates
ray(105), all the preparations and remaining work for hoo is put in the background, so to
speak. Until Python finishes evaluating ray(105), progress on hoo is suspended and hoo’s
v remains equal to 21.

Now consider the code for prupper(L). Unlike the situation with hoo and ray, the
body of prupper requires Python to evaluate an expression with prupper before it can
progress in the program. Again, we are faced with possible confusion: what value does L

have, ["one","two","three"] or ["two","three"]? For Python, there is no confusion,
because each evaluation of a function is performed in a fresh, new context. That is, when
such a recursive use of prupper is encountered—meaning that there is an expression need-
ing evaluation of prupper in the body of prupper—Python will put the current work of
evaluation, which is part-way, finished into the background, and concentrate on a new task
of evaluating the recursive expression. When this happens, in the new evaluation, L will
bind to a value pertinent to that evaluation. Your mental model for this should be like a
virtual desktop, where work stacks up, gets finished, and then resumes at the point where
the most recent previous work was suspended.

Steps in Figure 14.1 show how, in tail recursion, Python had to evaluate prupper four
times: once for each item in the original list, and one extra time with an empty list. There is
more to the story: we did not look at how the return None participates in the evaluations.
A different example will show us that.

def tailsum(S,L):

if len(L)==0:

return S

else:

return tailsum(S+L[0],L[1:])

>>> tailsum(0,[1,10,100])

111

Summing Items of a Sequence. A nice
trick of using tail recursion is to change a func-
tion’s definition to have an extra parameter.
This parameter represents a “continuation” of
some calculation, which was not finished in the
body of a function, but will be finished later by
some new evaluation on the tail of the sequence.
The tailsum example shows tail recursion cal-
culating the sum of numbers in a sequence.
Again, it can be confusing for beginners how tail recursion calculates the results, but it is
sensible by following a detailed tracing of how Python evaluates tailsum(0,[1,10,100]),
shown in Figure 14.2. The figure indents further for new evaluations, and un-indents at steps
that resume suspended evaluations. It may seem strange that steps ➄–➆ do not accomplish
anything other than resuming evaluations that simply resume other steps. This is just the
way tail recursion works. Later in this chapter, we will see a way to exploit this behavior
in a different kind of recursion.

def vecsum(S,L1,L2):

if L1==[] or L2==[]:

return S

else:

head1, head2 = L1[0], L2[0]

tail1, tail2 = L1[1:], L2[1:]

return vecsum(S+[head1+head2],tail1,tail2)

>>> vecsum([],[1,2,3],[100,200,300])

[101, 202, 303]

Summing Items of Two Lists. Us-
ing tail recursion to add up items of a
list is not really useful, since Python al-
ready has the built-in sum function. How-
ever, the same pattern can be used to
add two lists, element-wise. The code
for vecsum does this by using tail re-
cursion on two lists. In the evaluation
of vecsum([],[1,2,3],[100,200,300]),
Python names head1 as 1 and head2

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

162 A Functional Start to Computing with Python

as 100. Then a new evaluation is needed, for vecsum([]+[1+100],[2,3],[200,300])

➜ vecsum([]+[101],[2,3],[200,300]) ➜ vecsum([101],[2,3],[200,300]).
The value of S is a list, empty for the first vecsum evaluation. As new evaluations occur
during the computing of the answer, each new evaluation will get a longer list for S, and
also shorter lists for the L1 and L2 parameters.

def tailfind(S,value,L):

if L[0]==value:

return S

else:

return (S+1,value,L[1:])

def indx(M,v):

return tailfind(0,v,M)

>>> "property".index('e')

4

>>> indx("property",'e')

4

>>> "property".index('s')

ValueError: substring not found

>>> indx("property",'s')

IndexError: string out of range

Searching for an Item in a Sequence. Recall
that Python’s index method calculates the small-
est nonnegative index of a value in a sequence:
for example, "jaded".index("d") is 2. We can
use tail recursion to do the same task. The exam-
ples change a few things about the tail recursion
pattern. First, the tail recursion is in the three-
parameter tailfind function, but to make a sim-
pler interface for using it, a two-parameter indx

function was invented. A second difference is how
the tail recursion here omits the test for an empty
sequence. Arguably, this is poor style, not checking
for an empty sequence; however, you can see that
the behavior of Python’s built-in index is similar—
it also generates an error when the value to be

found is not present. A third, less obvious difference is that the tail recursion done by
tailfind differs from previous examples because it may not go through the entire se-
quence. For instance, tailfind(0,"absorbing","a") finishes the evaluation with the first
if statement, rather than needing any new evaluation.

➪ web

➀ Looking at tailsum(0,[1,10,100]), we see that S is 0 and L is [1,10,100]. Here, Python
is forced to evaluate tailsum(0+1,[10,100]) to know what number to return.

➁ Looking at tailsum(1,[10,100]), notice that S is 1 and L is [10,100], so Python
needs first to evaluate tailsum(1+10,[100]) to obtain the number to return.

➂ With tailsum(11,[100]), Python will make a separate evaluation of
tailsum(11+100,[]).

➃ Evaluation of tailsum(111,[]) is just the “return S” line, where S is 111.

➄ Having finished the evaluation of tailsum(11+100,[]), Python returns the value
sought in step ➂ (it is 111).

➅ Python resumes step ➁, where the value of tailsum(1+10,[100]) is needed—as
provided by step ➄.

➆ Finally, Python resumes step ➀, giving it the awaited value (111).

➥

➥
➥➥

➥
➥

Figure 14.2: Steps to evaluate tailsum(0,[1,10,100]); the right-pointing arrow indicates
work suspended to perform a new evaluation; the down-pointing arrow indicates the value
returned to resume the previous evaluation.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Functional Patterns 163

Pythonic Style

The pattern of tail recursion is quite powerful. Tail recursion could be used to program
Python’s built-in functions sum, min, max, all, any, filter, map, reduce, zip, and
even len. It is worth memorizing the pattern of tail recursion and using it yourself
a few times to master this style of programming. The inventor of Python, Guido van
Rossum, has a different style preference. At one time, he suggested that such built-ins
as map, filter, and reduce be removed from Python, arguing that comprehensions can
be used for all situations where these built-ins are used. Later in this chapter, we show
why tail recursion, or something like it, remains valuable even when comprehensions
are used. The next section shows patterns of using comprehensions; interesting patterns
using comprehensions epitomize the so-called pythonic style of programming.

Comprehension Patterns

The ways that comprehension can be used are so varied that it is not possible to show
them all in one concise chapter. By some examples that follow, a few of the main themes
are explored. Beyond these examples, some patterns found in Python’s standard module
library facilitate other patterns.

Word Problems

Many practical applications focus on text processing. Problems of parsing documents make
excellent exercises for learning programming techniques. Suppose story.txt is a file con-
taining some natural language text. One line of story.txt might be a line such as

or tells one everything about them except what one wants to know

The programming problem to solve is this: write a function to calculate the percentage of
words in the file which contain the letter “e.” Above, there are 12 words and half of them
contain “e,” so 50% is the answer for the line shown.

def eCount(fname):

F = open(fname)

words = F.read().split()

eWords = [w for w in words if "e" in w]

p = 100*len(eWords)/float(len(words))

return int(p)

>>> eCount("story.txt")

31

To solve this problem, a bit of Python’s
file-reading technique is needed; details about
input and output are given in Chapter 25.
The code for eCount uses two techniques: first
F represents an opened file, which is the way
most computer languages make data in files
accessible; second, the F.read() method re-
turns all the data in the file as a string. The
program defines words to be the list obtained
by splitting the file wherever strings are sepa-
rated by whitespace (tabs, blanks, and newlines). The comprehension does effectively what
Python’s filter does, making a list of only the items from words that contain “e.” The
line defining p takes care to calculate the fraction using floating point, avoiding the crude
rounding of integer division. The themes of this example are (i) comprehension can go
through data taken from a file, (ii) comprehension can filter (using if) selected values, and
(iii) the result of comprehension can be used in other sequence functions, such as len.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

164 A Functional Start to Computing with Python

def uCount(fname):

F = open(fname)

words = F.read().split()

uniqs = {w:0 for w in words}
eWords = [w for w in uniqs if "e" in w]

p = 100*len(eWords)/float(len(uniqs))

return int(p)

>>> uCount("story.txt")

24

Perhaps the eCount function is incorrect,
because what was really meant was to cal-
culate the percentage of unique words. For
instance, if “the” occurs thousands of times,
maybe the intent of the problem was to count
“the” only once. Python offers a simple way
to deal with such a requirement. The uCount
function uses two comprehensions, one that
creates a dictionary of all the words from
story.txt, and the same list comprehension
that eCount used to filter only the words con-
taining “e.” The theme of this example is that dictionary comprehension can be used to
boil down input into just the unique items of the input.

➪ web

def mCount(fname):

def f(t):

r = (w in t.split() if "e" in w)

return len(r)

F = open(fname)

lm = (len(f(t)) for t in F)

return max(lm)

>>> mCount("story.txt")

15

As one more variation on the theme of counting
e’s in a file, here is a program to answer the ques-
tion, what is the most number of e-containing
words on a line? To answer this question, the
function mCount uses two comprehensions, one
of them within an internally defined function
f(t). The function f(t) is indented and defined
within the body of mCount because f is only used
inside mCount, and not meant to be used in the
rest of the program. Function f makes a gen-
erator, which will produce all the e-containing

words in a line t. The code of mCount defines lm as another generator, which yields the
length of each filtered sequence that f(t) gives, for each line t in the file. The themes of
this example are (i) comprehensions can build upon other comprehensions by introducing
functions, like f(t), and (ii) for many situations, using a generator instead of list com-
prehension does the same job. Why is point (ii) significant? The issue is one of computer
resources. The previous example created a dictionary, obtained by first letting words con-
tain the entire file. Had this file been many gigabytes of text, the computer would not be
able to run the program due to lack of sufficient memory. However, for the case of counting
e’s line by line, we can use a generator that only consumes memory enough to take care
of one line at a time. Python is smart enough in how it manages generator evaluation to
reuse memory. If lm had been a list comprehension instead of a generator, all the lengths
of all the filtered lines would be needed in memory at the same time. Though you cannot
get away with using generators for every programming problem, it is a good strategy when
faced with large datasets.

Creating Structures









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









An identity matrix is a square arrangement of 0s and 1s with 1s
on the diagonal and 0s everywhere else. The problem we consider
is how to make a function, using comprehensions, to create an
identity matrix. The matrix shown on the left is a 4 × 4 matrix,
because it has 4 rows and 4 columns. The general problem is to
create an n × n matrix, where n is a parameter. Python does
not have a data type for matrices, so we use lists: a matrix is

a list of its rows, each of which is itself a list of numbers. The 4 × 4 identity matrix is

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Functional Patterns 165

represented by [[1,0,0,0], [0,1,0,0], [0,0,1,0], [0,0,0,1]]. The general shape
of this representation suggests how we can use comprehension: the function will use a list
comprehension [row(i) for i in range(n)], where row(i) is a function that creates a
row.

def idMatrix(n):

def row(i):

prefix = i*[0]

suffix = (n-i-1)*[0]

return prefix+[1]+suffix

I = [row(i) for i in range(n)]

return I

The idMatrix(n) function builds an identity ma-
trix, where n is the number of columns (and rows).
The list comprehension creates the matrix as sketched
in the previous paragraph. The trick here is finding
a way to define row(i). Here, the function row(i)

was found by some experimentation and observations
about the repetitive structure of the identity matrix.
Observe that row j of an identity matrix consists of j
0’s, followed by a 1, followed by more 0’s. That observation suggests we try an expression
like j*[0]+[1]+t*[0] where t is some number to be determined. Now observe that each
row is a list of n numbers: that implies t should satisfy: j+1+t equals n. Hence t is n-j-1.
This kind of thinking leads to the definitions of prefix and suffix in the code, but we
should also check to see that corner cases, that is, when j is 0 or j is n− 1, also work out
properly. Fortunately, these cases work: in Python, 0*[0] evaluates to [], which is perfect
for row 0 of the matrix. The theme of this example is that list comprehension can describe
structured data in controlled, periodic structures.

➪ web

Searching and Filtering

To a mathematician, computers are most useful when they search a large set of candidates
to see which of them are acceptable solutions to a problem. The pattern is thus (i) creating
a set of candidates, and (ii) selecting which ones should be kept. This example here is a
program to draw a circle. Mathematically, a circle on the plane centered at the point (0, 0)
is the set of points satisfying x2 + y2 = r2 where r is the radius of the circle. Unfortunately,
Python cannot search through infinitely many (x, y) pairs to discover which ones are on the
circle, though we can approximate this idea.

import teken

C = [(x,y) for x in range(-200,200)

for y in range(-200,200)

if 22400 <= x**2 + y**2 <= 22600]

[teken.label(start=(x+200,y+200),text="/",

color="green") for (x,y) in C]

teken.show()

Suppose we try (x, y) pairs with x ∈
[−200, 199] and y ∈ [−200, 199], but filter
for a radius of approximately 150 (which is
r2 = 22500). The code used in our example
filters by allowing any (x, y) that would fit
an r2 in [22400, 22600]. This program uses
a technique from Chapter 18, the import

statement to gain access to drawing soft-
ware. Chapter 24 discusses the teken module, which can be used to draw simple figures
using a Web browser’s canvas area. The method taken.label puts text at a specified co-
ordinate, here the slash (/) character. Figure 14.3 shows two outputs for this program, one
with the slash character, and another run of the same program with an underscore instead
of the slash.

➪ web

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

166 A Functional Start to Computing with Python

Figure 14.3: Teken drawings of approximate circles.

Operator, Functools, Itertools

Python has tools in its standard library which epitomize many patterns used in functional
programming. A presentation of Python’s language features to access libraries comes later,
in Chapter 18, but it is worth describing some of the function tools here. Three library
modules are relevant to this chapter, operator, functools, and itertools. To access all
of these, the following three lines should be put at the start of a Python script:

from operator import *

from functools import *

from itertools import *

The effect of these lines is to bring in extra function definitions from Python’s standard
library. Before launching into more patterns of functional programming that the tools pro-
vide, we look at an idiom of Python programming, based on the itemgetter function from
the operator module.

>>> C = [(x,x**2,2*x) for x in range(-5,4)]

>>> sorted(C)

(-5,25,-10), (-4,16,-8), (-3,9,-6),

(-2,4,-4), (-1,1,-2), (0,0,0),

(1,1,2), (2,2,4), (3,9,5)

Customized Sorting. Many applica-
tions print reports from datasets, calculate
statistics, or look for particular situations in
files. Quite often, data needs to be summa-
rized and sorted. To the right is a transcript
of making a list comprehension and sorting
it. Because the items of the list are tuples,
the tuple-comparison algorithm described in the box “Python’s Algorithm for Comparison”
(Chapter 6) is used to order the sorted result: it starts by comparing the first element of
one tuple to first elements of other tuples. What if this is not what we want? Is there some
way to have the sorted order only look at the second element of each tuple? This is where
the itemgetter idiom is handy.

>>> from operator import *

>>> C = [(x,x**2,2*x) for x in range(-5,4)]

>>> sorted(C,key=itemgetter(1))

(0,0,0), (-1,1,-2), (1,1,2),

(-2,4,-4), (2,4,4), (-3,9,-6),

(3,9,6), (-4,16,-8), (-5,25,-10)

A revised transcript is shown to the
right. An extra keyword argument to
sorted specifies that the second element
should be used for comparison (whereas
itemgetter(0) would specify the first ele-
ment, and itemgetter(2) would be for the
third). The result is in increasing order by
the second element of the tuples. This may
seem a rather obscure part of Python, but sorting is an important pattern in solutions to
many problems, and the itemgetter technique is worth knowing.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Functional Patterns 167

Patterns from Functools. The functools module defines reduce, which Python2 al-
ready has, but Python3 does not. The other significant function in functools is partial,
which does the trick of currying discussed in the box “Carrying and Made-to-Order Func-
tions” in Chapter 10.

Patterns from Itertools. The itertools module provides a rich variety of
patterns useful for functional programming styles. There are too many of them
to describe here, so we look at one of the functions, groupby, to get a fla-
vor of what itertools has. The official Python documentation on itertools (see
http://docs.python.org/library/itertools.html) has a section on recipes, showing
more of the tools in action.

The groupby function is designed for processing items of a sequence, where items may
be duplicated. The list [1,1,2,3,3,3,4] is an example of such a sequence. The point of
groupby is to process the duplicates as groups. For the example list, there are four groups
for the values 1, 2, 3, 4. Within a group, the items can also be sequentially processed. We
illustrate this with the problem of finding what is the most commonly occurring word in a
text file. Figure 14.4 shows the code, with comments written in italics after some statements.
In the figure, ordered is a sorted list of the words in a file, and most likely there will be
duplicates, because common words “a”, “and”, “the” occur frequently in normal text. The
next line of code calculates, for a given word, what is the length of the list of values in a
group, all of which are the same word: this tabulates the number of duplicates. If a word
only appears once in the file, this length will be 1. To get a group, named as obj in the
code, the groupby function is called, which returns a generator. Items from this generator
are pairs of the form (word,obj). The outcome of this work is the list T, which contains
pairs (word,c) where c is a count of duplicates. To complete the task, T is sorted according
to the count; this uses itemgetter to specify which element of the tuple is the count and
also adds the optional keyword argument reverse=True, so that the sorting will be in
decreasing order by count. That puts the most frequently occurring word at the beginning
of list R.

from itertools import *

from operator import *

def topword(fname):

F = open(fname)

words = F.read().split() makes list of words in the file
ordered = sorted(words) now a sorted list with duplicates
T = [(word,len([x for x in obj])) obj is a group of duplicates

for (word,obj) in groupby(ordered)] groupby gives (word,obj) pairs
R = sorted(T,key=itemgetter(1), sort by number of duplicates

reverse=True)

top = R[0] top is highest dup count pair
return top[0]

print topword("report.txt")

the

Figure 14.4: Finding most frequently occurring word in a file.

As a beginner, you should not be expected to master the patterns in itertools. Our
purpose in looking at groupby is to show the pythonic style of programming, which leverages
patterns in libraries. You may encounter this style in browsing Python programs found
online or in various software packages.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

168 A Functional Start to Computing with Python

More Recursion

Tail recursion is only one pattern that uses recursion in functional programming. A few
more important patterns are shown here with some examples. Later, in Chapter 19 there
is a more general explanation of recursion, and how it also fits with an imperative style of
programming.

def tailsum(L):

if len(L)==1:

return L[0]

else:

return L[0]+tailsum(L[1:])

>>> tailsum([1,10,100,1000])

1111

Summation Revisited. A key property of
tail recursion is that functions end either by re-
turning a value or returning what is returned by
a recursive call. Another option would be to take
the value returned by a recursive call, and then
use that value for other purposes before return-
ing. An illustration is a different way of sum-
ming items in a sequence than was presented in
“Summing Items of a Sequence” earlier in this
chapter, where tailsum was defined with two parameters, the “sum so far” parameter, and
the “remainder of the sequence” parameter. The version of tailsum shown here looks sim-
pler, because tailsum has one parameter. In fact, this version forces Python to do a bit
more bookkeeping in its evaluation. Only after evaluating the result of recursion on the tail
does the code in tailsum add the head to what is returned. Consequently, the actual order
of summation for the example is forced to be 1+(10+(100+1000)). The first two items to
be added are the last two in the list; additions of all previous items in the list are put in
the background by Python, as it waits for recursive calls to finish. For a list of a thousand
items, that would mean stacking up nearly a thousand suspended function calls waiting for
the last two elements to be added.

➪ web

Trees

Real computer scientists love trees. Not necessarily the woody kind that grow in nature
reserves, but rather the kind of organizational tree found in scientific taxonomies. Figure
14.5 shows an example of a classification hierarchy and how a list in Python might represent
this information. The figure shows the Python list twice, first to the right of the diagram,
in a form that emphasizes the nesting of lists; and the second underneath, in a linear way
on two lines, typical of how Python prints a list.

In the figure’s diagram, each of the terms (life, plant, etc.) is a node of the tree. The
node at the top, for life, is call the root node of the tree. (Standard computing terminology
for trees turns the tree upside-down compared to what one might see in a biology text.)
Underneath life are three child nodes : plant, bacteria, and animal. The plant node
has, in turn, two children, cactus and grass. Nodes that do not have children are called
leaf nodes. Notice that if we concentrate on the plant node, we can think of it as a tree
with root plant and children (leaves) cactus and grass. In effect, plant is a subtree of
the life tree. Thinking of things this way, the general pattern for a tree is that a node in
a tree has possibly two kinds of children, leaves or roots of subtrees.

With this terminology, the rule for how Python can represent a tree as shown by lists in
Figure 14.5 is this: a tree is a list with the root as the first item (a nonlist) and children as
remaining items. If a child is a leaf, it is not a list; if a child is a subtree, it is a list, following
the same rule of representation. Other ways of representing trees may use dictionaries or

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Functional Patterns 169

life

plant

cactus grass

bacteria animal

mammal

feline canine equine

["life",

["plant",

"cactus", "grass"],

"bacteria",

["animal",

["mammal",

"feline","canine","equine"]

]]

["life",["plant","cactus","grass"],"bacteria",

["animal",["mammal","feline","canine","equine"]]]

Figure 14.5: Classification tree and Python representation.

even encode all the information in a string. We use this list representation here to motivate
a functional programming pattern.

def leafCount(Tree):

if type(Tree)!=list:

return 1

else:

return sum(leafCount(i)

for i in Tree[1:])

>>> leafCount([1,2,[3,4],[5,[6,7]]]

3

The example problem for trees is a function
that counts the number of leaves in a tree. The
return 1 statement produces the count of 1,
done for each leaf node. Recursion takes care
of trees and subtrees, by calling leafCount(i)

on each item in the tail of a tree or sub-
tree. Though the function looks simple, it is
helpful to check the example’s tree argument,
[1,2,[3,4],[5,[6,7]]]. The root node 1 has
three children, but only 2 is a leaf; node 3 has
one child, the leaf 4. Node 5 has one child, the subtree 6, which has one leaf 7. The leaves
are thus 2, 4, and 7. The example sneaks in another trick of Python syntax: the parentheses
used in the notation for a generator are missing in the code; Python allows this when the
generator is the argument to a function that has a single parameter (sum, in the program).

Suppose that instead of counting leaves, the problem is to count all nodes in a
tree. A small change to the program gives us the function needed. Instead of return

sum(LeafCount(i) . . . , make it return 1+sum(LeafCount(i) . . . to include the root of
the tree (or subtree) in the count. The same pattern shown by this example can be adapted
to many other purposes. If the nodes are numbers, it is not difficult to add up all the values
in leaf nodes, using a similar idea.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

170 A Functional Start to Computing with Python

def similar(A,B):

if type(A)!=type(B):

return False

if type(A)!=list:

return True

if len(A)!=len(B):

return False

R = (similar(A[i],B[i])

for i in range(len(A)))

return all(R)

Nested List Type Similarity. The tree rep-
resentation has lists that could, in turn, have
lists as items. More generally, we can think of
lists that are mixtures of numbers, booleans,
strings, and lists. The problem we solve here is
to say whether two lists A and B are “similar”
in the sense that the types at the corresponding
places are the same in both lists. The logic of
the function is straightforward, with four cases
(i)–(iv). Since each of these cases has a return

statement, the elif or else statements are not
needed: each of (i)–(iii) is an if statement with a return. The four cases are: (i) if A and B

have different types, they are not similar; otherwise, for cases (ii)–(iv), we know that A and
B have the same type, though further checking is needed to determine similarity. Case (ii)
is when A (and also B) are not lists, in which case they are similar, hence the return True

statement is appropriate. Notice that for the remaining cases (iii)–(iv), both A and B are
lists. Case (iii) returns False if the two lists are not the same length, because similar lists
must have the same number of items. In the final case, a generator R is created by compre-
hension, which applies (recursively) the similar function to determine whether items at
the same index position in A and B are similar. The generator R will therefore behave like a
sequence of booleans. The last statement of the function returns True only if all the items
of the generator are True. Examples of similar (✔) and dissimilar lists (✘) follow.

[True,[3,"x"],False,False] [False,[88,’’],False,True] ✔
["crack",[[True]],17,["up"]] ["Case",[False],9,["down"]] ✘

list(range(12)) list(range(10)) ✘
list(range(12)) list(range(-4,8)) ✔

[[["one",3],2:True],0] [[['''J ''',-8],],900] ✔

➪ web

Regular Expressions

To programmers who use the Perl scripting language, a facility called regular expression is
fundamental. Applications that need to scan text for patterns can use regular expressions
to define these patterns. For instance, pattern “ab+” stands for text of the form ab, abb,
abbb, and so on—an a followed by any number of b’s. Regular expression patterns can be
extremely complex; there is even a mini-language of regular expressions, which has meta-
characters that act like constrained wildcards in matching patterns. These meta-characters,
which begin with the backslash character (\), can lead to a “backslash plague” of writing
and understanding regular expressions. Chapters and books have been written about regu-
lar expressions (Chapter 27 of this book has further information on the topic). The precise
details of regular expressions vary from one programming language to another (Perl’s dif-
fers from Python’s). The official Python Web site has a how-to document on the subject
(http://docs.python.org/dev/howto/regex.html). Despite the intimidating setup for
using and learning regular expressions, the payoff can be worthwhile: careful use of regular
expressions can eliminate the need to write functions that look for patterns of text.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Functional Patterns 171

import re

def showphrase(text):

def showplace(p):

start, end = p

print text[start:end]

pattern = r'top\s+\w+\s+\w+\s+day\s+'

match = re.compile(pattern)

places = (e.span()

for e in match.finditer(text))

v = [showplace(d) for d in places]

>>> text = '''wish top of the day was

top in each day for me'''

>>> showphrase(text)

top of the day

top in each day

This regular expression example searches
for a phrase of the form “top yada yada day”
where “yada” can be any string of visible text.
The line defining pattern has the regular ex-
pression: you can see top and day in the ex-
pression, with other things such as \w+ to rep-
resent “yada” and \s+ to stand for white space
characters. The string starts with r' instead
of a single quote to overcome some backslash
confusion. The match.finditer creates an it-
erator for all the places that the desired phrase
occurs in the text. The function showplace(d)

is called to print the actual matching text. If
you are interested in using regular expressions,
it is best to seek tutorials, recipes, and helpful
documentation rather than the pages of this book.

Don’t Be Too Clever

You may get the impression, reading this chapter, that the aim of functional program-
ming is to find very compact function definitions that are mysterious, because they use
lots of tricks of comprehensions and recursion. This is not the case. The patterns that
occur repeatedly in programming should be reused, rather than starting from scratch
in problem solving. The tools used in Pythonic style take advantage of existing pat-
terns; becoming familiar with these patterns is the equivalent to learning expressions
of speech and a larger vocabulary in natural language.

Trying to be too clever defeats one goal of software engineering, which is to make
your work easily understandable to other team members (and even to yourself, after a
few months). Regular expressions are a technique sometimes abused, resulting in long,
inscrutable strings of symbols that somehow match patterns. Functional programming
can also be too clever. Here is an example, an expression (written by Ulf Bartelt)
that calculates the first 30 numbers of the Fibonacci sequence [1,1,2,3,5,8,13,...]
(except for the first two, each number is the sum of the previous two in the sequence):

map(lambda x,f=lambda x,f:(x<=1) or (f(x-1,f)+f(x-2,f)): f(x,f),

range(30))

It takes far too much work to understand why this expression works. There are pro-
grammers who enjoy this kind of challenge, but it is generally considered poor style.
Chapter 20 has more to say on the topic of style.

Terminology Review

This chapter presented the first usage of recursion, especially tail recursion, in function
definition. Along the way, terms like head, tail, and trees (root, nodes, leaves, child) came
up in examples. Other examples were used, but did not fully explain such things as files,
modules, and regular expression.

This page intentionally left blankThis page intentionally left blank

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Functional Patterns 173

Exercises ➪ web

(1) Show how the expression here, which has two list comprehensions, could be replaced
by a single list comprehension.

>>> [i for i in range(3)] + [j for j in range(8,11)]

[0, 1, 2, 8, 9, 10]

(2) Here is a function definition foo(f,b,L) returning a generator.

def foo(f,b,L):

return (f(x) for x in L if b(x))

The question is this: Which of the following two expressions would be equivalent to
foo(f,b,L)?

(a) map(f,filter(b,L))

(b) filter(b,map(f,L))

(3) A student hears that tail recursion can be used to write the equivalent of what
Python’s built-in reversed function does, namely to produce a reversed-order ver-
sion of a sequence: list(reversed([1,2,3])) ➜ [3,2,1]. The student tries the
following definition:

def myrev(M):

def brev(S,M):

if len(M)<2:

return M+S

else:

T = S+[M[0]]

return brev(T,M[1:])

G = []

return brev(G,M)

print myrev([1,2,3,4])

When the student ran the program, the output was [4,1,2,3], which is not what a
reversing function should do. What is wrong with this program? (Hint: It is just a
change to one line of the code to make it correct.)

(4) Write a function mergedict(A,B) that returns a dictionary equal to the “merge” of
dictionaries A and B. An example of testing mergedict might be:

>>> A = {"E":3, "J":10, "F":12}

>>> B = {"a":1, "t":0, "E":15}

>>> mergedict(A,B)

{"a":1, "J":10, "E":3, "t":0, "F":12}

Hints: (i) Use dictionary comprehension; (ii) use A.keys() to get the list of keys that
dictionary A contains, and similarly B.keys() for B; (iii) make a local function that
returns the value associated with a key, by looking in A and, if necessary, also in B.

(5) The diffs(L) function is supposed to take a list of numbers L and make a corre-
sponding list of the differences between consecutive items in L. An example of diffs
would be this:

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

174 A Functional Start to Computing with Python

>>> diffs([5,2,9,3,0])

[3, -7, 6, 3]

The result of diffs(L) is thus a sequence with length equal to len(L)-1. Write a
definition of diffs using a comprehension which has the expression range(len(L)-1)

in it.

(6) Let A and B be lists of the same length. List A can have any kind of item in it, but list B
contains only booleans. The problem is to define a function select(A,B) that filters A
by what the corresponding item of B is: where an item of B is True, the corresponding
item of A should be in the result. It is easy to understand with an example:

>>> A = [3,9,6,12,2,0,10]

>>> B = [True,False,False,True,True,False,True]

>>> select(A,B)

[3, 12, 2, 10]

Write a definition of select that uses one comprehension, but does not use indexing.
Hint: Use the zip function in your comprehension.

(7) An inexperienced programmer tried the following function based on tail recursion, to
do the equivalent of what Python’s built-in zip does.

def myzip(listA,listB):

def loczip(S,X,Y):

if X==[] or Y==[]:

return S

newS = S + [(X[0],Y[0])]

return loczip(newS,X,Y)

return loczip([],listA,listB)

print myzip([1,2,3],[7,8,9])

The programmer was expecting this code, when run as a script, to print
[(1,7),(2,8),(3,9)]. Instead, Python reported an error, something about “max-
imum recursion depth exceeded” when it ran. Can you find and correct the bug in
this code?

(8) Show that a comprehension expression can give the same result as zip(A,B) for lists
A and B. Hint: The easiest way to do this is by making the term of the comprehension
something like (A[i],B[i]); but take care to think about corner cases when A and B

have different lengths. This problem is, in some sense, the opposite of problem (6).

(9) The operator module gives names to most of the Python standard operators de-
scribed in Chapter 6. For example, after the statement from operator import *

is in a script (or done interactively), iadd(5,3) returns 8, mul(5,3) returns 15,
and (True,False) returns False, and or (True,False) returns True. Using these
functions supplied by operator, plus the built-in reduce function, write expressions
equivalent of sum, any, and all.

(10) Use tail recursion to write the equivalent of Python’s built-in reduce function. The
head for your function can be

def treduce(func,seq,init=0):

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Functional Patterns 175

where the optional keyword parameter init says what is the default value for an
empty sequence (it is zero for sum). To define treduce, it is helpful to first define
tailreduce, with a head like

def tailreduce(S,seq):

which uses S for an argument that represents the accumulated value passed on in
tail recursion. Once you have written tailreduce, the treduce function can call
tailreduce for the tail recursion.

(11) The map function creates a list (or generator) from a function f and a list L:
map(f,L) returns [f(e) for e in L]. The goal of this exercise is to turn things
around. Write a function pam(x,F) where F is a list of functions, which re-
turns a list [f1(x), f2(x), ...] for the functions f1, f2, . . . in F. For example,
pam("test",(len,max,type)) should return [4, "t", <type 'str'>].

(12) Write a function treemap that does what map does, but for a tree. Here is an example
usage of treemap:

>>> treemap(len,["one","two",["three","four","five"],"six"])

[3, 3, [5, 4, 4], 3]

(It is the same tree “shape,” but has lengths of the strings instead of the strings in
the result.)

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Case Study: Tic-Tac-Toe

Software should make life simpler, not more complicated. Mastery of computing includes
skills to reduce complexity of programs and algorithms. If there are two ways to write a
function, one with four if/elif cases and other with just two cases, we generally prefer
the latter. The design considerations for a game function is discussed below, stressing ideas
to keep things simple and show pythonic style in function definitions.

Advice on Design
The most important advice to beginners about designing programs is

this: don’t do it at the keyboard. As a rule, developers should spend
at most 25% of the time actually writing functions, program, and code.
About 75% of the time should be spent researching the problem at hand,
learning about what techniques are available (including libraries of ex-
isting software), asking questions to clarify requirements, experimenting
with different representations of the information, and discussing alter-
natives with other team members. Considerable thought should precede
formulation of a plan. Even after you have a plan of attack and thoughts
about what functions need to be written and tested, you should think
through the consequences of having the functions you imagine writing,
and ask yourself if there are corner cases or exceptions.

The case study here shows the finished product of design, skipping
over missteps and experiments that were part of the work. The emphasis
is on techniques that manage complexity.

Tic-tac-toe is an easy game, made somewhat more interesting if the number of rows
and columns is larger than the traditional 3 × 3 number of cells. Our goal is to write a
function which returns True if a game position is a win for one play or another, and returns
False if neither player has won. A first step is to agree on how a particular game position
is represented using Python data types. Suppose an n × n game board is associated to a
list of n rows, with each row being a string of n characters: represent an empty cell with
'-', and 'X' and 'O' for cells that have been marked. An example with this representation
appears in Figure 14.6.

✕

✕

✕

✕

O O X -

- O - -

X - X -

X - - O

["OOX-","-O--","X-X-","X--O"]

Figure 14.6: Tic-tac-toe game position represented by Python list.

The second part of the design is to look at what is needed to answer the question, is
the position a win or not. This amounts to determining whether there are three X’s or
three O’s in a row. However, three in a row means looking in horizontal, vertical, and two
diagonal orientations. The obvious way to check this would be to write four functions (or

176

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Case Study: Tic-Tac-Toe 177

expressions), one for horizontals, one for verticals, one for right-tilted diagonals, and one
for left-tilted diagonals. Before we investigate such a design, consider this alternative: if we
had a function that rotated a game by 90 degrees, then columns become rows and diagonals
flip orientation in the rotation (try it!). So, with a rotation function, we can use just two
win-checking functions, one for rows and one for diagonals: the idea is to first check rows,
then one diagonal in the game position, then rotate and repeat. We thus have only three
functions to write.

How can a function check for three X’s or O’s being consecutive in a row? Since strings
represent the game rows, a slice comes to mind. Some expression like row[i:i+3]=="XXX"

in an if statement checks for three X’s being consecutive. To simplify treating both X and
O together in one test, the expression could be row[i:i+3] in ("XXX,"OOO").

· · ·

...

What about diagonals? Unlike rows, where the length of each row is
n cells in the game, diagonals have differing numbers of cells. The longest
diagonal is n cells, while the shortest diagonal we need to examine is 3 cells
(we can ignore the two diagonals that have 2 cells and also the diagonals
with 1 cell). The diagram shows downward-right oriented diagonals, in
two shadings. The darker arrows cover the longest diagonal and extend
through the upper right portion of the game board. The lighter arrows

are for the lower left part. The dark arrows have in common that they all start on row 0;
the lighter arrows have in common that they start on column 0 of the board. The longest
diagonal could be given by a list [pos[i][i] for i in range(n)], where pos[i] denotes
row number i and pos[i][i] is cell number i in row i. What about other diagonals, say
for the upper right part of the board? Before conjecturing a pattern, it helps to work out on
scratch paper a few of the diagonals, here done for a 5× 5 board, starting with the longest
diagonal.

[pos[0][0], pos[1][1], pos[2][2], pos[3][3], pos[4][4]]

[pos[0][1], pos[1][2], pos[2][3], pos[3][4]]

[pos[0][2], pos[1][3], pos[1][4]]

The pattern we conjecture from this example is that the k-th diagonal in the upper-right
part would be the list [pos[0][i] for i in range(k,n-k)]. The comprehension uses k
twice, once to say where the list starts within the position and the other to say where it
stops.

def check3(seq):

def grab3(k):

return seq[k]+seq[k+1]+seq[k+2]

m = len(seq)

S = (grab3(i) for i in range(m-3))

A = (x in ("XXX","OOO") for x in S)

return any(A)

Recounting the design to this point, the fol-
lowing functions would be helpful for the solu-
tion: rotate, to return a 90-degree rotation of
a position; checkrows to see whether there are
three X or O values consecutive in a row; and
check-diagonals function to see whether there
are three consecutive along the diagonals. Ear-
lier we saw there are two kinds of diagonal, one
for the upper right part and another for the lower left part of the board. Hence, it would
be a reasonable design to have checkURdiags and checkLLdiags functions. Notice that
three of the desired functions need to look for three consecutive X or O values being consec-
utive, so let’s add check3 as another desirable function to have. Code for check3 is shown
above. The only tricky part of the function is range(m-3), which makes sure Python stops
short of looking for three consecutive values too near the end of a sequence. If in doubt
about such things, try an example argument. Suppose that seq has length 10. Start-
ing at seq[10-2] (equals seq[8]) would cause trouble, because grab3 would try to access
seq[10], and 9 would be the maximum index value allowable.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

178 A Functional Start to Computing with Python

def checkURdiags(pos):

n = len(pos)

def diag(k):

return [pos[0][i]

for i in range(k,n-k)]

D = (diag(k) for k in range(n-2))

A = (check3(e) for e in D)

return any(A)

Function check3 returns True if either player
has a win in the argument sequence. Since
we have seen a conjectured pattern for upper
right diagonals, the checkURdiags function is
a reasonable next development. The logic of
checkURdiags direct: D is a generator of the
diagonals, with each diagonal being a sequence
generated by the local diag function. Note that
D stops short of including the two tiny diago-
nals that have fewer than three items (so that
no trouble is caused for check3).

def checkLLdiags(pos):

n = len(pos)

def diag(k):

return [pos[i][0]

for i in range(k,n-k)]

D = (diag(k) for k in range(n-2))

A = (check3(e) for e in D)

return any(A)

The checkLLdiags function, which examines di-
agonals in the lower-left part of the board, has
code nearly identical to checkURdiags. The dif-
ference is that the diagonals all start on the first
column (hence pos[i][0] starts the diag list
comprehension). For the sake of simplicity, the
code also checks the longest diagonal: thus the
longest diagonal belongs to both the upper right
and lower left parts of the board. This redun-
dancy does no harm. For future improvement,

the two functions checkURdiags and checkLLdiags could be combined into a single func-
tion checkdiags; the combined function would have a parameter to say which of UR or LL
to check.

def rotate(pos):

n = len(pos)

def row(k):

return [pos[i][k]

for i in range(n)]

newpos = [row(j) for j in range(n)]

return newpos

When a position is turned by 90 degrees,
columns become rows. The first row of the ro-
tation, call it row(0), is given by listing the
items in the first column (at index 0) of ev-
ery row of pos, namely [pos[k][0] for k in

range(n)], where n is the number of rows. For
the rotate function, we are careful to use list
comprehension rather than generator notation,
so that indexing can be used on the result. The expression for the second row is similar,
but using pos[k][1] to get the second column. Extending this pattern of building a row
from a column in pos gives the code shown to the right.

def winning(pos):

rot = rotate(pos)

R = [f(pos) or f(rot)

for f in (checkrows,

checkURdiags,checkLLdiags)

return any(R)

The final function to write, winning(pos),
returns True if any of the above check-functions
returns True on either the position or the ro-
tated position. This completes the case study,
but we caution the reader: something important
is missing from this program. What is missing is
a document or commentary explaining its logic,
stating what assumptions are made about the arguments, and discussing restrictions on
using these functions. Documentation is quite important, and is the subject of Chapter 20.
Each of the functions in this case study deserves documentation and comments about how
the functions calculate their results.

➪ web

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Part III

Imperative-Style Python

179

This page intentionally left blankThis page intentionally left blank

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Chapter 15: Names for Data

X = 42

X += 5

X = list(range(X))

X[3], X[5] = X[17], X[22]

X[4:12] = []

del X

181

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

182 A Functional Start to Computing with Python

One man’s constant is another man’s variable.
— Alan Perlis

Throughout science, descriptions of quantifiable data use specialized terminology to name
measurements. Especially where there are formulas and equations, one finds variables and
constants. The famous e = mc2 equation has variables e for energy, m for mass, and the
constant c for the speed of light. Economists talk about quantities in markets, sometimes
using vocabulary like “exogenous variables” of an economic system. Common to different
areas such as physics or economics is the root meaning of the word variable, the verb
vary—the variables of a system are the things that vary over time. A constant, however, is
something that does not change.

In the early days of computing, the purpose of having a computer was to support sci-
entific or economic (business) needs, and it was natural to carry over the terminology of
variables and constants. Now things are different. Arguably, the most common purposes
for computing are entertainment, social networking, and data warehousing. Programming
languages have evolved to suit the needs of applications, and the meaning of the word vari-
able is no longer closely related to quantities of physical experiments or economic models.
New programming languages have corrupted the use of the word variable, to some extent.
Actually, a better description of what is used in programming would be symbolic names for
structured data in memory. However, to be consistent with other textbooks and program-
ming jargon, the word variable is used in this chapter.

Although the original inspiration for the use of variables is simple and intuitive, Python
has many powerful features for manipulating data and dynamically changing the meaning
of a variable; languages C, C++, C#, and Java offer comparatively less freedom in working
with variables.

Constants

All primitive values in Python can be considered as constants. The value “25” in a Python
program represents the same number no matter how often it is used.1 However, what is
usually meant by constant in a programming language is a symbolic name for a value,
which is defined once, and does not change after being defined. In mathematics, the best
known constant is the legendary value π = 3.1415926535897931 · · · the ratio of a circle’s
circumference to its diameter. A Python definition for π could be the code shown here.

>>> pi = 3.1415926535897931

>>> print pi

3.1415926535897931

1In the early days of computing, the FORTRAN language accidentally allowed programmers to change
the value of a number, so it could be that “25” might later represent 26 in a program; this was a bug in the
programming language.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Names for Data 183

x = 1.121e-2

y = 0.0092

u = 1.05

v = 1.19

w = 2.07

z = 6.502

t = u**(v*w)

((x-y)/t/z + 200.8

A constant’s name can be any string of characters, subject
to the same restrictions explained for function names and
their parameters in Chapters 9 and 10. The obvious ad-
vantage of having pi defined is that we can type “pi” into
statements rather than a long string of digits. Thereby,
Python functions and scripts are easier for us to read.
One curious fact, reported in several research papers on
education, is that many students are better able to calcu-
late with values than with constants. The studies suggest
it is easier to calculate

((1.212e-2 - 0.0092)/1.05**(1.19*2.07))/6.502 + 200.8

than it is to calculate the value of the final expression shown in the code above, involving
x, y, t, and z.

The two forms are logically equivalent, so why is the first easier for calculation than the
second? Apparently, the simple act of substituting actual values for the symbolic names adds
to the cognitive load for doing calculations. Nonetheless, programming would be impossible
without using symbolic names for values; Python does not have any trouble using symbolic
names.

A Python script can have any number of definitions for symbolic names. The definitions
are processed sequentially: an expression cannot evaluate a symbolic name before it has
been defined. A valid script is the following:

kstring = '''Trivial names are those given to a particular

agate by a collector or dealer to honor some special

occasion such as a family event or celebration.'''

words = kstring.split()

print words[0].upper(), words[-4].upper()

An example which is not correct would be:

Tpr = "named specimens were worth more than unnamed ones"

print Words[1:5]

Words = Tpr.split()

The bug is that Python is asked to evaluate Words before it has been defined. By switching
the order of the last two statements, the bug is eliminated. Some other programming lan-
guages do not have this restriction: symbolic names can be used before they are defined in
the text of a program, because the compiler will search for the definitions throughout the
program.

Temporary Constants. Even formal mathematicians reuse symbolic names. Today, in a
lecture, x has one meaning, but later in the week x will have a different interpretation. Even
though x changes, it can still be understood as a constant, because the scope of a lecture or
a journal article is limited. Within the scope of a presentation, it could be that x has only
one meaning or one value. Thus, x is a constant if we look at the intended scope for using x
and we do not look outside that scope. Likewise, for a Python function sqrt(v), parameter
v may refer to different arguments at different times: perhaps sqrt(100) and sqrt(225)

are expressions in the same program. If we focus only on the definition of sqrt, then v is a
constant; this is because the scope of v is just within the body of sqrt, where the value of
v refers just to one value for the duration of computing sqrt. It does not change reasoning
that different evaluations of sqrt get different arguments, because these are independent,

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

184 A Functional Start to Computing with Python

do not interfere with each other, and take place at separate times. The examples of x and
sqrt show that it is reasonable to think of symbolic names as constants, even though there
may be some wider context where a name could have different meanings in different places.

Part II of this book (Chapters 5 through 14) does use names for values computed within
scripts and functions, but carefully so. Consider the solution to exercise (4) of Chapter 9:

def quadroot(a,b,c):

d = (b**2 - 4*a*c)**0.5

m = d/(2*a)

n = -b/(2*a)

roots = (m+n,m-n)

return roots

There are names d, m, n, and roots, for calculated values. However, these are not vari-
ables, because once a name is equated to a value, it does not change within the body of the
function. In effect, they are temporary constants.

Variables

x = "types are the cactus needles of programming"

x = x.split()

x = x[3]

x = x[3]

print x

The code shown here is a valid
Python script. Just looking at this
script raises many questions. What
does it print? How does one answer
the question what is x? Is this good
programming style or bad style? Be-

fore answering these and related questions, it is helpful to step back and make some obser-
vations.

One important takeaway comparing the example above and the earlier examples is that
the “=” symbol has a different meaning. In good scientific or mathematical presentations, “=”
either relates variables in an equation (e = mc2) or means defined by, thus giving a definition
to a symbolic name, which remains constant for the duration of some intended scope of
discussion. For a definition, one should not have one thing and then later a conflicting,
different statement. In mathematics, there is no value for x satisfying x = x + 1. But
the meaning of “=” in the Python example above is redefine (except perhaps for the first
statement where x is unknown). In computing, this usage of “=” is called assignment . Above,
all the statements except for the print are assignment statements.

In theoretical circles of computing language experts, some people consider the assign-
ment statement to be a terrible mistake in the design of a programming language. It invites
confusion, they say, because it makes programmers keep track of the meaning of names that
change when a program runs. Indeed, some students stumble mentally when learning about
assignment, while others find it a natural way to think about software. Some computing
languages, like Haskell or Scheme, either do not have assignment statements or relegate
them to rarely used features. One thing is for sure, Python (and Java, C, C#, etc.) do not
have trouble evaluating and running assignment statements. Hence, the old-fashioned, not
very helpful advice to students having difficulty was sometimes “learn to think like a com-
puter.” The reason for mentioning the debate among experts and pointing out the technical
difference between different kinds of “=” is to motivate the reader to take some care, learn
good technique for using assignment statements, and avoid certain tricky situations when
writing software. Some advice in this and later chapters may help.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Names for Data 185

def sqrt(x):

return x**0.5

...

>>> sqrt(25)

5.0

>>> sqrt = 25

>>> sqrt(25)

TypeError: 'int' object is not callable

As to what is the value of x for the pre-
vious example, any answer will need to
have some temporal qualification: more
plainly put, we need to say when, as
Python runs the script, x has a certain
value and type. The value of x does
vary as Python evaluates the script, so
x is a variable. A surprising feature of
Python is that it has no language fea-
tures for naming constants. In fact, every symbolically named entity in Python is a vari-
able. Even function names are technically variables! Disappointed? Disturbed? Perhaps you
should be. Python allowed the name sqrt to be a function, but later sqrt became an
integer, and it no longer worked for function application.

Python has no named constants.
Python treats every name as a variable.

To get some understanding of how Python processes scripts, it can be helpful to acquire a
“mental model” of how Python works with variables. Here is the basic algorithm Python
uses for managing names.

➀ When Python starts, it builds an empty dictionary to keep track of variables. The
keys of this dictionary are variable names; corresponding to a key is a list containing
the variable’s type, its value, and other information Python needs for the variable.

➁ Python puts the standard built-in functions and other system variables into the dic-
tionary.

➂ For a script or an interactive session, Python modifies the dictionary whenever it
evaluates a function definition or an assignment statement. If a variable’s key already
exists in the dictionary with the name of an assignment or definition, Python replaces
the value component associated with that key; and if the key does not exist, it is
added to the dictionary.

➃ When Python evaluates an expression containing a variable, the dictionary is used to
substitute a value or lookup a function definition, whichever is appropriate.

Steps ➂ and ➃ are repeated throughout the evaluation of a script or interactive session.
Python’s dir() function (and some others, such as locals()) enable you to inspect the
variable dictionary, if you are curious.

Possibly this information is more than you wanted to know about how Python works; yet
it is sometimes useful to realize that every time an assignment statement is evaluated, the
variable dictionary is modified. The explanation ➀–➃ omits an important facet of Python:
how does Python deal with function application, the binding of arguments to parameters,
and assignment statements inside functions? This turns out to be a complicated mechanism.
A later chapter partly describes how it works, though a full explanation is an advanced topic.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

186 A Functional Start to Computing with Python

Assignment Syntax

It is possible with a single Python statement to assign several variables. There are two forms
of multiple assignment, either giving several variables the same value or assigning several
variables different values.

>>> R = 10

>>> Avar = Kvar = E = R + 2

>>> print(Avar,Kvar,E)

12 12 12

Multiple Assignment. This kind of assignment is also
valid in Java, C, and similar languages. The syntax is
shown in the example on the right. The second statement
assigns Avar, Kvar, and E all the same value, which is
obtained by evaluating the expression R+2. It might seem
that other reasonable variations of this form could work:

>>> a = 1 + b = c = 1

SyntaxError: can't assign to operator

The programmer’s intent was to assign 2 to a and 1 to b and c, but Python is not happy
with this attempted assignment. The only allowed form is to give all the variables the same
value.

>>> (a,b,c) = (1,2,3)

>>> print(a,b,c,b*c)

1 2 3 6

Tuple Assignment. Python can assign different values
to different variables within a single statement by using a
tuple of variables on the left side of an assignment. This
kind of assignment is called tuple assignment, sometimes
also called unpacking or unboxing. An equivalent series
of statements is:

>>> a = 1

>>> b = 2

>>> c = 3

>>> print(a,b,c,b*c)

1 2 3 6

There are several ways this kind of assignment becomes quite handy for writing functions
and scripts.

• Recall that, sometimes, a tuple can be formed without the enclosing parentheses.
Tuple assignment is one instance where this works:

>>> a, b, c = 45, 5>2, 12*3

• The number of items on the right side should be the same as the number of variables
on the left side.

>>> a, b = (False,"Hello",9)

ValueError: too many values to unpack

>>> a, b, c = 1,2

ValueError: need more than 2 values to unpack

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Names for Data 187

• You can use tuple assignment to “swap” the values of two variables:

>>> a, b = "one", "two"

>>> a, b = b, a

>>> print(a,b)

two one

• The right side of a tuple assignment can be any type of sequence.

>>> e, f, g, h = "help"

>>> print(e+h)

hp

>>> x,y,z = [5,6,7]

>>> print(x,y,z)

5 6 7

• When dealing with tuples that occur as arguments to a function, or tuples inside lists,
it is sometimes nicer to use unpacking than indexing.

T = [(1.2,9.2),(4.0,7.3)]

R = T[1][0]-T[0][0] + T[1][1]-T[0][1]

print(R)

pointa, pointb = T

xa, ya = pointa

xb, yb = pointb

R = xb-xa + yb-ya

print (R)

Both print statements output the same value.

Augmented Assignment. Augmented assignment is common to several C-like lan-
guages, including Java, C#, and C++. The idea is to abbreviate assignment statements that
update (change the value) a variable by one operator and an expression.

M += 1 equivalent to M = M + 1

M -= 1 equivalent to M = M - 1

M *= 2 equivalent to M = M * 2

E /= 2.0 equivalent to E = E / 2.0

w += g[4]-20 equivalent to w = w + g[4] - 20

L += [True,False] equivalent to L = L + [True,False]

S += "end" equivalent to S = S + "end"

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

188 A Functional Start to Computing with Python

Augmented assignment saves keystrokes especially for long variable names, like
InvenQuantity, where a simple operation can be done without needing to spell out the
variable name twice in a statement. There are other augmented assignments in Python:
for instance, //= is defined in Python3 (and even in later versions of Python2). The most
common ones to remember are +=, *=, and -=.

➪ web

List and Dictionary Item Assignment

PressureRec[5] = 2.507e3

NameTab["Bob"] += 3

R[3], R[7] = R[3]+1, R[0]*2

The assignment statement does not always replace a vari-
able’s value. For two types, list and dictionary, an assign-
ment can replace the value for one, selected item. This
is done by using indexing notation on the left side of the
assignment. Typical assignment statements are shown in

the shaded box. The values of items that are not mentioned on the left side of the “=”
are unchanged by the assignment. To make the point clear, here is a table of “before” and
“after” for variable A in some assignment statements.

before after
[5,0,6,1,8] A[2] = True [5,0,True,1,8]

[[1,2],"fast",[3,4]] A[2][0] = 1 [[1,2],"fast",[1,4]]

{1:0, "xx":5, True:7} A["xx"] = -1 {1:0, "xx":-1, True:7}

{1:0, "xx":5, True:7} A[9] = 0 {1:0, "xx":5, True:7, 9:0}

Some notes on indexing assignment help to explain the examples.

• Only dictionaries and lists permit indexed assignment; you cannot change a character
in a string or an item of a tuple. This is further explained in Chapter 17.

• Dictionaries allow any string or number to be an index. Python will create a new
item if necessary, and change the value for an item if the key already exists in the
dictionary.

• Lists cannot have “holes” in the sequence of values. Consider this example:

>>> A = [9,8,4,3]

>>> A[99] = 0

IndexError: list assignment index out of range

>>> A[4] = 0

IndexError: list assignment index out of range

>>> A[-1] = 0

>>> A

[9,8,4,0]

If the goal is to use assignment to make a list longer by adding an item, there are
other ways to do this, which are discussed in Chapter 17.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Names for Data 189

• One previous example combines tuple assignment with indexing. Generally, this can
be confusing and lead to programming errors. The official Python reference documen-
tation even has a warning about this, showing this example:

x = [0, 1]

i = 0

i, x[i] = 1, 2

print x

Can you guess what this prints? Most programmers do not have a good intuition
about this kind of situation, so it is best not to mix tuple assignment with indexed
assignment in such a way.

➪ web

Deleting Variables and Items

>>> x, y, z = range(3)

>>> del y

>>> print x

0

>>> print y

NameError: name 'y' is not defined

>>> del y

NameError: name 'y' is not defined

>>> del x, z

>>> print x

NameError: name 'x' is not defined

Python does not have an “undo” for assignments
the way that word processors do. When a pro-
gram runs, millions or billions of assignments
might take place per second; it is not practical
for a computer to keep track of all changes so
that they could be reversed. That being said,
Python does have a statement to destroy a vari-
able, which expunges the variable from the dic-
tionary of names. The del statement causes a
name to become undefined. What we see is the
existence of variables in Python is transitory,

they can come and go. (The above even works for Python3, where range(3) is not exactly
a sequence, but behaves like a sequence.)

Indexed Delete. When the del statement is used for a particular item in a list or dictio-
nary, that item is removed. This does not remove the variable, since the list or dictionary still
exists, though in its changed form. The use of del for a dictionary is simple: the key and its
associated value are removed from the dictionary. Thus, dictionaries can be like databases,
where items are added or updated by indexed assignment and items are removed using del.
For lists, the situation is a bit more complicated.

before after
[5,0,6,1,8] del A[2] [5,0,1,8]

[1,2,3,4,5] del A[0], A[-1] [2,3,4]

[[1,2],[3,4]] del A[1][0] [[1,2], [4]]

[1,2,3,4,5] del A[0], A[0] [3,4,5]

[1,2,3,4,5] del A[1], A[0] [3,4,5]

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

190 A Functional Start to Computing with Python

The examples make it clear that Python deletes the items one at a time, processing the
items from left to right. What is essential to understand is that indexing itself changes as
the list shrinks. After removing an item A[i], the indexing of every element A[j] for j > i
is lowered by 1. Of course, for any item deletion, the index value has to be within range of
the list:

>>> L = [0,1,2,3,4,5,6,7,8,9]

>>> del L[20]

IndexError: list assignment index out of range

Where Assignment Goes

You can use assignment statements and del statements in scripts, in functions, and in
the body of an if (or elif or else) statement. The concept introduced earlier for default
parameters in functions, or for keyword arguments when using functions, also uses the
“=” symbol, but these earlier forms are not assignment statements. Unfortunately, Python
has a limited range of symbols and they can be used with different meanings in different
situations (much like natural languages such as English may use the same word with different
meanings). You may also have noticed that “in” is both an operator to test whether an
item is in a sequence and the “in” is used for custom lists—with a different meaning.

One place you cannot use assignment is within a list comprehension (a custom list).
Watch what Python does when we try:

>>> E = 10*[True]

>>> [E[i] = False for i in range(5)]

SyntaxError: invalid syntax

There is another way to effectively do what this expression attempts to do, which will be
shown in Chapter 19.

Terminology Review

This chapter introduces jargon for variables, referring also to constants and symbolic names.
The assignment statement (the single equal “=”) can be to single variables or multiple vari-
ables; the tuple assignment provides a convenient way to unpack (or unbox) from sequences,
which is handy for giving names to parts of a sequence. The del command removes a vari-
able from Python’s dictionary of symbolic names. The scope of a name is restricted by
context, such as limiting access of a name to within a function’s body.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Names for Data 191

Exercises ➪ web

(1) What does the following script print?

a,b,c = range(10,40,10)

d = 100

print a*(b+c)-d

(2) What does the following script print?

a,b,c = "one", "two", "three"

if b>"four":

b = "five"

c += "."

b = " " + b

print b+c

(Yes, it is allowable to use if in a script, even when not inside of a function.)

(3) What is the value for variable X after the following statements of a script run?

X = [9] + range(8) + [12,10]

X[4] = 0

del X[3]

del X[5]

(4) After these statements, what is the value of B?

B, C = '', list("toil")

B += C[0]

del C[0]

B += C[0]

del C[0]

B += C[0]

del C[0]

B += C[0]

(5) Same question, but a small change: after these statements, what is the value of B?

B, C = '', list("toil")

B = C[0] + B

del C[0]

B = C[0] + B

del C[0]

B = C[0] + B

del C[0]

B = C[0] + B

This page intentionally left blankThis page intentionally left blank

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Chapter 16: Functions and Variables

What happens in functions should stay in functions.

Perhaps the biggest obstacle for computing is complexity. Not everything that one can
imagine is computable can actually be done. Unlike science fiction movies where the human
protagonist commands the computer to calculate the odds, crack a security code, or find
the identity of a suspect from slivers of evidence, the reality is that computing has its limits.
The main theoretical limit is complexity: some things are inherently difficult to compute.

On a practical scale, complexity is a major impediment to the construction of software.
A typical commercial aircraft has dozens if not hundreds of embedded computing devices;
a telephone can have over a million statements from several computing languages. To help
manage the complexity, there are several general themes. One theme mentioned in Chapter
9 is the Don’t Repeat Yourself (DRY) principle. Another is the division of large software
projects into chunks of manageable size, with the hope that the complexity of each chunk
is relatively low.

Functions help manage complexity in several ways. First, the job of each function can
be limited so that it does not need complicated logic. Second, even if what happens inside
a function is based on some complex idea (possibly even some mathematical theory), the
caller of a function can be unaware of how the function does its job, so interior complexity is
hidden and users of the function are shielded from the complexity. And third, the variables
used by the caller of a function can be protected from any of the function’s statements, which
sets up a boundary between variables of one software component (the calling program) and
the variables used inside the function.

Scope of Variables

1 X = 20

2 Y = int(X*1.5)

3 Z = (X+Y)/2

4 X += Y

5 print("value =",Z)

6 del Y, Z

7 print(X)

The notion of scope was introduced, informally, in Chap-
ter 15. Here we first revisit the idea of scope for a script,
rather than a function, to see the simple cases. The first
case for scope is trivial. To show it, here is a script with
some line numbers on the left (they are not part of the
script, but just for reference in the discussion that fol-
lows).

When the script runs, initially no variables (other
than Python’s built-in names) are defined. By the same token, when the script finishes,
no variable is defined, because the memory of a Python program is transient, unlike the
memory of data in a disk file, on CD, or on a flash drive. (In later chapters we shall see how
to write to files, so that results can be persistent rather than transient.) Variable X becomes
defined in line 1 of the script, and remains defined up to the end of the script. At line 4 we
see that X is redefined, or assigned a new value. Variable Y is defined in line 2, and remains
defined up to line 6, where it is deleted. The example illustrates that it matters where,
within a script, that we look to decide whether a variable is defined or not. And, because
the order of evaluation of lines in a script flows from the first line to the last line, it also
matters when we consider the question of variable being defined or not.

The scope of a variable refers to the places and times that it is defined. When we say that
a variable is “defined” we mean that it has a specific, unambiguous value. The value is fixed
at the moment of assignment. In a script, the value of a variable is always its most recent

193

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

194 A Functional Start to Computing with Python

assignment. Thus above, the value of X at lines 5, 6, and 7 is 50—because the assignment on
line 4 redefines X to be the evaluation of X+Y at the moment that line 4 runs. To emphasize

1 A = "one"

2 B = "two " + A

3 A = "three"

4 print(B)

this behavior, consider this snippet of code. When it runs,
the output is two one. The assignment to A in line 3 does
not change the value of B, it only redefines A. The value of
B was fixed in its most recent assignment, at line 2. One
could imagine a programming language where definitions
of one variable in terms of another would be “dynamic,”

changing when the underlying variables change (spreadsheets behave this way, for example).
Python sets variables at the point of assignment by value, not by some definitional meaning.

1 R = mystery()

2 if type(R)==str:

3 C = R.split()

4 print("result")

5 print(C)

Scope is not always trivial in a script. What happens
when the code shown to the right runs? The scope of R is
the entire script, from line 1 to line 5. The first line defines
R as what some function “mystery()” returns (suppose
we do not know exactly what this returns). Now, can you
say what is the scope of variable C? Possibly, it is lines
3-5; but it may happen that mystery() does not return
a string, in which case C will never be defined. Thus, it can be that the scope of a variable
in a Python script can be unpredictable; it can be dynamic and depend on the values used
and the conditional logic in the script.

Variables in Functions

def myfunction(S):

x = S.split()

y = ''.join(x)

return len(x)-len(y)

def test():

x = "one more time"

y = "larger than a breadbox"

print(myfunction(x))

print(myfunction(y))

print(x)

print(y)

test()

Variables can freely be used inside functions. The scope
of variables assigned within functions is limited to the
body of the function and for the duration of a function
application. The output of the script on the right is

2

3

one more time

larger than a breadbox

Seeing this output demonstrates that applying myfunction
did not redefine variable x assigned in the body of test.

Somehow, when x is assigned within myfunction, the value of variables in test is
unaffected. The technical reason is that the scope of a variable is limited to the function
body where it is assigned. The way Python achieves this is roughly described by the following
rules (later we talk about some exceptions to the rules).

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Functions and Variables 195

➀ To aid the explanation, consider a function application gfun(5,"it")

with the header of gfun being

def gfun(a,b):

When gfun(5,"it") is evaluated, Python first creates a new variable
name dictionary, solely for this function application. At this point, there
are thus two variable dictionaries, the one that already existed for the
function’s caller (which could be another function or perhaps a script),
and the new one, the gfun-dictionary. The new gfun-dictionary is empty.

➁ Python next puts two items into the new dictionary, for parameter a and
for parameter b. The values associated with these two items are obtained
by evaluating the arguments of the function application, in this case, 5
and "it". This step is called binding arguments to parameter names.

➂ As Python evaluates statements of gfun, any assignment or expression
evaluation uses the gfun-dictionary to find variables, create new vari-
ables, change variable values, or delete them.

➃ When gfun returns, by a return statement, or if Python finishes evaluat-
ing all statements in gfun (perhaps because it has no return statement),
then Python takes the value to be returned (or None), sets that aside,
and destroys the gfun-dictionary.

➄ Finally, Python substitutes whatever return value was obtained from the
previous step into the expression where the gfun(5,"it") appears.

x x
The rules explain how Python can avoid confusion over variable names during function
evaluation. During the evaluation of gfun(5,"it"), there can safely be two different vari-
ables with the same name; but they have different scope, and therefore they are in different
dictionaries. Python uses only one variable dictionary at a time, so there is no confusion.
The only time the two dictionaries connect is when parameters bind to arguments, which
may require getting values from the caller’s dictionary. Each function application operates
in a “private world” of variables, oblivious to the outside. A consequence of rule ➃, which
destroys the gfun-directory, is that a function cannot “remember” how many times it has
been called, nor can it save some information between function applications. In Chapter 27
(“How Can a Function Remember?), the problem of having a function remember previous
calls is revisited.

Few programmers think about the work Python does to evaluate function application.
This is probably a good thing. The example at the beginning of the chapter and the descrip-
tion of rules ➀–➄ mention the simple case of a single function application. In fact, Python
can evaluate expressions such as g(f(h(k(True)))), which involves four functions: f, g,

h, k. Technically, this means Python will need four dictionaries, one for the scope of each
function. Each time Python evaluates function application, it pushes down the current set
of dictionaries. The term “push down” is standard computing jargon, but a better way to
describe this might be “put in background,” referring to how applications launched on a
software desktop open windows that cover up existing windows. The older windows move
to the background; they will reappear once the current application finishes. To evaluate
g(f(h(k(True)))), Python will push down g, then f, and then h before it finishes evaluat-

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

196 A Functional Start to Computing with Python

ing k(True). In case you are curious, the opposite of “push down” is pop up: when function
evaluation finishes, the previous dictionary of variable names and values that existed before
evaluating the function “pops up” and becomes active.

An important consequence of pushing down and managing multiple dictionaries is that
there can be more than one variable with the same name. However, at any moment during
the run of a script of evaluation of a function, the question of scope is determined by the
currently active dictionary of variable names and values.

Local and Global Scope

def Mfun(val):

global acount

r = val/2

acount += 1

return r*r

def top():

global acount

acount = 0

v = max([Mfun(i) for i in range(10,18)])

print "max is", v

print "there were", acount, "function calls"

top()

There are two exceptions to rules ➀–
➄ above, which are “loopholes” in the
scope restrictions on variables. One of
these is an object reference mechanism,
which is common to many program-
ming languages, and is a topic of Chap-
ter 17. The other is a way to bypass
scoping rules for certain variables. The
global statement allows functions to
say that one or more variables created
outside of the function can be used in
expressions and assigned. When used
in expressions, such global variables have their previous values, before the function was
called. If a global variable is assigned within the function, the result of the assignment
persists even after the function returns.

➪ web

max is 64

there were 8 function calls

Running this script produces the output displayed to the
left. In the example, variable acount belongs to two dic-
tionaries, one for top and one for Mfun. The first time that
Mfun is called, namely Mfun(10), the value of acount is

0; the second time is Mfun(11), and acount equals 1.
Superficially, it may seem that the global statement simplifies writing functions. It is a

way to have some memory for how many times a function is called. Using global is a way
that many functions could share information through variables they have in common to
their name dictionaries. However, by the same token, there is some danger to using global.
For one thing, the caller of a function that has a global statement may need to understand
more about that function.

>>> Mfun(0)

line 4, in Mfun

acount += 1

NameError: global name 'acount' is not defined

Suppose Mfun is defined as above,
and an interactive Python session,
shown on the right, tries a call
Mfun(0). The error occurs when Mfun

tries to evaluate acount += 1, which is
logically the same as acount = acount

+ 1. In order to evaluate this, Python first needs to get the current value of acount. But
for the interactive session, variable acount was never assigned a value, so Python is unable
to find a preexisting acount variable with a value, and prints the error message. Because
the use of global means that the callers of functions need to understand more about what
happens inside the function, i.e., that it depends on having the values of the global variables,
this programming technique is generally considered to be poor practice. While there may

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Functions and Variables 197

be some circumstances that motivate global, nine times out of ten there is another, better
way to achieve the same ends. The use of global may turn out to complicate software
rather than simplify it.

Default Global

Even if you never use the global statement, it is worth knowing about. Here is why: Python
automatically uses a “semi-global” way of evaluating variables inside of functions. To explain
Python’s behavior, rule ➂ needs to be revised a bit:

(Rule ➂′) When Python starts function application, the statements
of the function are examined to get the names of all variables that
might be assigned. If some variable might be assigned (whether it
is assigned or not may depend on conditional logic), but is not in a
global statement, Python considers that variable name to be local.
If a variable is not local by this criterion, then by default it is global.

Some program language experts are of the opinion that Python’s “default global” behavior
is a bug in the language design. Others like the way that functions refer to variables of the
caller even though they are not parameters. In some ways, global variables, be they declared
by global or be they default globals, are in effect secret parameters to a function—it is
not enough to look at the function header, you have to read through the function body to
figure out dependency on global variables. Secrecy may introduce more complexity, which
is a danger to good software construction. To see why the default global behavior can be a
danger, it is good to see a few examples.

def Rfun(b):

r = 2

return b*r

...

>>> r = 7

>>> print Rfun(0), Rfun(8)

0 16

Here is an example that uses no default global vari-
ables and has no surprises. The first statement in Rfun’s
body establishes an initial value for r, which creates an
entry in the Rfun’s local variable dictionary. One com-
mon mistake programmers make is forgetting to put some
statement in a function; this can also happen because of a
keystroke error in some editors, where a delete line might
happen by pressing some key. The consequence is seen in
the next example.

def Rfun(b):

return b*r

...

>>> print Rfun(0), Rfun(8)

NameError: global name 'r' is not defined

The interaction here is good: Python actu-
ally detected that something is wrong in the
definition of Rfun. The error message indi-
cates that the local variable dictionary does
not have the name r in it when it evaluated
b*r, and Python could not find the name in

any pushed down dictionary either. Sometimes, when a programmer forgets a statement in
a program, Python will observe an error; however, this is not always the case.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

198 A Functional Start to Computing with Python

def Rfun(b):

return b*r

...

>>> r = 7

>>> print Rfun(0), Rfun(8)

0 56

This example confirms that Python uses the default
global strategy of finding variable names and their values.
The local dictionary takes priority, but will use a global
approach when a variable is not assigned in the function
body. But is this what the programmer intended? Just
because Python did not complain does not mean the re-
sult is correct.

def Tfun(b):

if not b:

r = 5

return r

...

>>> r = 7

>>> print Tfun(True)

UnboundLocalError: local variable 'r'

referenced before assignment

In this last example, we observe that Python
classified r in Tfun as a local variable, not a
global one. A bug was thereby detected. Because
r is potentially assigned, depending on whether
b is True or False, Python conservatively es-
timates that r is a local variable. Therefore, in
evaluating Tfun(b), the fact that r is 7 in the
larger scope is missed, because Python only con-
siders the local dictionary, where r is a local vari-
able (which has not yet been assigned).

Terminology Review

Jargon used in this chapter includes: scope, global variable, binding arguments to parame-
ters, default global variable, push-down, and pop-up.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Functions and Variables 199

Exercises ➪ web

(1) What does the following script print?

def f(x):

global f

del f

return 10*x

print f(10)

print f(100)

(2) This is an exercise to learn about two of the Python built-in functions, locals() and
globals(). Try the script below. Which print statement generates the most output
and which the least?

def f():

S = globals()

T = locals()

print S.keys()

print T.keys()

X = None

f()

(3) Why does this script get an error?

def f():

del R

R = 0

f()

(4) What gets printed by this script?

def A(x,key=False):

if key:

return 2*x

else:

return x

def B(x,key=True):

return A(x) + A(x,key)

key = False

print B(1,key)

print B(1)

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

200 A Functional Start to Computing with Python

(5) A programmer wrote the following code to test out a function divisors(N) that is
supposed to return numbers that divide into N with no remainder (but not including
1 or N itself).

def divisors(N):

D = [i for i in range(2,N/2) if N%j==0]

return D

for j in range(20):

print "Factors of", j, "are", divisors(j)

The program runs, but unfortunately, due to a typo (only one character is incorrect!)
the program does not work correctly. What is the mistake?

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Functions and Variables 201

Counter-Exception?

Here is an example that appears to defy the rule about default global variables presented
earlier in the chapter.

X = {"red":3, "blue":4, "green":5}

M = [4,5]

def gremlin():

M[2:] = [6,7]

X["blue"] += 10

return None

print X["blue"], M

gremlin()

print X["blue"], M

When run, this script first prints 4, [4,5] as one should expect. However, the second
line it prints is 14, [4,5,6,7]. This is surprising, because the script was able to modify
X and M by assignment, treating these as global variables, not local ones. Why is this
so? Rule ➂′ states that assignment to a variable makes it local to a function, unlike
the result we see here. The difference to Python is that an assignment such as M[2:] =

[6,7] is not an assignment to variable M, but instead it is an item assignment (actually
it is a slice assignment). In the terminology of the next chapter, Chapter 17, the two
assignments in the script are mutations to an existing variable. Had the script used an
assignment like M = [0,1], then Python would make M a local variable. If you find these
rules unintuitive, please consider any confusion yet another reason to be careful about
using global variables. The behavior of Python concerning implicit global variables can
be a source of trouble when one is trying to make simple, reliable software.

This page intentionally left blankThis page intentionally left blank

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Chapter 17: Mutation

Mutants are not the ones mankind should fear.
— Dr. Jean Grey, X-Men (the Movie)

Imagine that the town where you live has decided to invite a visitor from a far-off, remote
tribal land, which still has a hunter-gatherer society. Missionaries taught the visitor, named
Mzlot’l, how to speak English, but he has no experience with modern civilization. When he
arrives, the mayor throws a big party with lots of guests, who present Mzlot’l some gifts.
He is amazed and delighted with some of these gifts, particularly enjoying a flashlight and
a Swiss Army Knife, which he has to be shown how to open and use. However, when he
is given a gift card for $100, nobody can explain why this is a good gift to him—he finds
this gift to be worthless and stupid. He cannot understand “you can use it to buy stuff”
because he has no experience with stores and transactions. As far as Mzlot’l is concerned,
a good gift is something that has immediate, visible function and worth. The gift card is
an abstract concept he does not fathom.

Money is a good example of an abstraction we use in everyday life. Money is the ab-
straction of value, especially paper money, which has very little intrinsic worth (it is just
paper). Abstraction has merits and demerits. On the one hand, abstraction gives the free-
dom to substitute and manipulate quantities in many places. You can carry large amounts
of money more easily than carrying raw goods, crops, lumber, or gold. On the other hand,
to get something useful out of money you need to exchange it for what is actually useful.
In that sense, money is an indirect marker of value, requiring the user to do something to
exploit it. Also, you might need to have some concern about whether or not the money is
valid, i.e., it is not counterfeit or worthless because of some government collapse.

Just as money is an abstraction and has some indirect character, it will be seen that
some Python variables are based on indirect mechanisms. Largely, this feature of Python
is hidden, and programmers may be unaware that variables may have references to values,
rather than having values directly. This chapter exposes the use of indirection in certain
Python data types, variables, methods, and operators.

The data types in Python fall into two categories, mutable and immutable. The mutable
category includes lists, dictionaries, and sets. The other types introduced in Chapter 5 are
all immutable types: bool, int, float, tuple, and string. It is the mutable types that use
indirection in Python. These types are the subject of this chapter. Of the mutable types,
the chapter concentrates on lists; working with dictionaries or sets has a similar flavor. The

203

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

204 A Functional Start to Computing with Python

standard terms mutable and immutable are part of Python jargon, and used in the official
reference manual for the language. In this chapter, the word mutation is used not to mean
some biological, evolutionary process, but rather to form and reform data, like sculpting
clay.

The technical matter of this chapter can be difficult to understand quickly. Different
readers of this may comprehend some parts, but not others. The approach may seem tedious
because the same idea is expressed in several ways and with many examples. Probably
the most useful programming technique is slice assignment. The notion of indirection, as
implemented for lists and dictionaries in Python, is a core idea in modern software. A patient
reading of this chapter will give a solid foundation for Chapter 27 on object-oriented software
design.

Mutation and Assignment

>>> A = [0,1,2,3,4]

>>> print("A = ",A)

A = [0, 1, 2, 3, 4]

>>> A = "time after time",split()

>>> print("A = ",A)

A = ['time', 'after', 'time']

>>> A[2] = False

>>> print("A = ",A)

['time', 'after', False]

Recall that there are two ways to change a vari-
able representing a list, either assignment to the
variable or indexed assignment (and deletion),
which specifies an item as the target of the as-
signment. There is significant, if invisible, dif-
ference between these two. Both assignments to
A, to the right, give variable A a reference to a
list; the first assignment creates A, and the sec-
ond assignment replaces A’s reference, so that A
refers to a new list. By contrast, the assignment
to A[2] does not change A’s reference. Rather, it mutates the list referenced by A. These
words may just seem like semantics, making some distinction that really has no practical
consequence. Hold on. Later in the chapter, there are examples that will demonstrate these
differences are important. For now, just be aware that there is some internal distinction
between assigning without an index and assigning to an item.

Slice Assignment

>>> X = [2,4,6,8,10,12,14,16]

>>> X[2:2+3] = ['a','b','c']

>>> X

[2, 4, 'a', 'b', 'c', 12, 14, 16]

>>> X[2:3] = False

TypeError: can only assign an iterable

>>> X[2:3] = 'x'

>>> X

[2, 4, 'x', 'b', 'c', 12, 14, 16]

An attractive syntax feature of Python is the
ability to assign to a slice of a list. The syn-
tax is simple once the concept of slices is under-
stood: specify a slice on the left side of “=” and
that slice is replaced by the expression on the
right side. Note that the expression on the right
side must be a sequence: since a slice itself is a
sequence, Python needs to have a sequence to
replace it. The example here shows that False
cannot be assigned to a slice because False is
not an iterable (consider the term iterable, for now, to be a sequence). So, even if the
slice only has a single item, it is still a list of one item—a sequence is needed to replace it.
By contrast, the assignment of 'x' to the slice does not cause an error, because 'x' is a
sequence (strings are sequences). Types matter.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Mutation 205

>>> X = [2,4,6,8,10,12,14,16]

>>> X[4:] = "1/2/3",split('/')

>>> X

[2, 4, 6, 8, '1', '2', '3']

>>> X[3:3+2] = []

>>> X

[2, 4, 6, '2', '3']

What makes slice assignment particularly useful
is that the length of the slice and the length of
the sequence on the right side of the assignment
can differ. The first slice assignment, to X[4:],
replaces a slice with four items by a sequence
of length 3. Hence, slice assignment can delete
items. This is shown more dramatically by the
assignment to X[3:3+2], which obliterates two
items.

>>> X = [2,4,6,8,10,12,14,16]

>>> X[2:2] = [True,False]

>>> X

[2, 4, True, False, 6, 8, 10, 12, 14, 16]

>>> X[0:0] = [100]

[100, 2, 4, True, False, 6, 8, 10, 12, 14, 16]

>>> X[0:len(X)] = [1,3,5]

>>> X

[1,3,5]

By the same logic, slice assignment can
be used to insert items by replacing an
empty slice. Two instances are shown
here, the first inserting a sequence of
two items just after the second item in
X, and then a single-item list contain-
ing 100 is inserted before the first item
in X. The final slice assignment of the
example replaces the entire list; that

assignment could also have been written more concisely by “X[:] = [1,3,5]” with the
same effect. This example is another illustration of the two kinds of assignment, variable
replacement and mutation. The last slice assignment is mutation, because it replaces the
list that X refers to, whereas the initial assignment at the start of the example gives X a
new reference to a list. While it might seem like a meaningless distinction now, later in this
chapter we see evidence that they are different.

Slice Deletion. The del statement can remove a range of items, as given by the slice
notation:

>>> L = [5,6,7,8,9,10,11,12,13]

>>> del L[3:6]

>>> L

[5, 6, 7, 11, 12, 13]

>>> del L[2:2]

>>> L

[5, 6, 7, 11, 12, 13]

Observe that deleting an empty slice has no effect.

Mutating Methods

A number of sequence methods are mutating methods. A mutating method changes the list
referenced by a variable, while leaving the reference unchanged. After we look at some built-
in mutating methods here, we see in the following section how to write mutating functions.
A mutating function can change containers (lists, dictionaries, sets, and similar things)
referenced in variables that are arguments to the function.

>>> Y = [5,2,9,3,1,0,8]

>>> Y.sort()

>>> Y

[0,1,2,3,5,8,9]

sort. The sort() method rearranges the items of a list
into increasing order. A quick example of this is shown
to the right. It is possible to put keyword parameters
to sort() and get a decreasing-order sort. Notice that,

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

206 A Functional Start to Computing with Python

unlike methods like index() and count(), the sort()method returns None this is why you
do not see any output above after Y.sort(). Rather, sort() quietly does its job, which is
to mutate the list into a sorted order.

Remark. Python also has a built-in function sorted() which takes a sequence
argument and returns a sorted copy of the sequence; function sorted() is non-
mutating, whereas the sort() method is a mutator.

>>> Y = "let us go there".split()

>>> Y.reverse()

>>> Y

['there', 'go', 'us', 'let']

reverse. The reverse() method mutates a
list by putting the items in reverse order. There
is also a nonmutating, built-in function named
reversed(). (You may recall that reversed(S)
for a sequence returns the same as the expres-
sion S[::-1].)

>>> Z = [5==5, 2>5, "RA", 7]

>>> Z.append(20)

>>> Z

[True, False, 'RA', 7, 20]

>>> Z.append([30])

>>> Z

[True, False, 'RA', 7, 20, [30]]

append. The append()method mutates a list
by adding an item to the list. Note that the ar-
gument for append() is an item, which does not
need to be a sequence. The last part of the ex-
ample makes this clear, as it adds a list as the
last item. A technical explanation for append()
is that it does what slice assignment does:

A.append(B) is the same as A[len(A):] = [B].
If instead you want A[len(A):] = B, use the extend() method.

➪ web

Other List-Mutating Methods. The Python reference manual describes several other
mutating methods: extend(), insert(), remove(), and pop(). These are not essential to
know, but it is likely you will see them and later use them as your familiarity with Python
grows.

Mutation in Functions

def NewAppend(L,x):

L[len(L):] = [x]

...

>>> V = [1,3,4]

>>> NewAppend(V,99)

>>> V

[1,3,4,99]

The previous section on mutating methods presented a
few methods and showed examples, but did not really
explain how these methods can mutate a variable of type
list. To get some idea of the programming techniques
that a mutation method might use, this section shows
how to write a mutating function. The interesting twist is
how Python uses indirection to get around the limitation
of variable scope. Mutating assignment can change the
list of a variable of a function’s caller, without using the global statement. Obviously from
this example, a function is able to change a list given as a parameter. Does this contradict
what Chapter 16 says about variable scope? The answer is no, but to understand why, we
need to look a bit deeper at how Python does binding. When Python evaluates the function
application NewAppend(V,99), it creates a local dictionary for NewAppend, and puts two
entries into this dictionary, one for L and one for x. The subtle point is that the value for L
is not the list [1,3,4]; rather, it is a reference to that list. After the local dictionary has

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Mutation 207

been created, but before the evaluation of the NewAppend completes, there are temporarily
two variables that refer to the same list, L in NewAppend’s scope, and V in the interactive
session. When NewAppend does a mutating assignment, the list referenced by both variables
changes. Ways that a function can mutate a list are index assignment, slice assignment, or
the use of a list mutating method.

To reinforce the point about mutating assignment in a function, we make some small
changes to the previous example. Each of the versions below makes two assignments to the
argument L, but with different effects.

def NewAppend(L,x):

L[len(L):] = [x]

L = [True]

...

>>> V = [1,3,4]

>>> NewAppend(V,99)

>>> V

[1,3,4,99]

def NewAppend(L,x):

L = [True]

L[len(L):] = [x]

...

>>> V = [1,3,4]

>>> NewAppend(V,99)

>>> V

[1,3,4]

In the left version, the first assignment mutates L. The second assignment is nonmutating,
so it gives L a reference to a new list. This reference to a new list does not change what
V refers to, so the mutation to L is retained and accessible through V, whereas the second
assignment has no effect on V. What about the version on the right? This time, before the
mutating assignment was done, the reference of L had already been changed to something
different from what V refers to. The point of the example is to prepare for the next sections,
which build a mental model justifying Python’s behavior for such programs.

➪ web

Aliases

>>> K = [6,2,9,4]

>>> Kcopy = K

>>> K[1] = True

>>> K

[6, True, 9, 4]

>>> Kcopy

[6, True, 9, 4]

The previous examples and the discussion of mutation are
some evidence that Python uses an indirect way of connecting
variables to list values. The binding of a list variable to a
parameter connects two variables to the same list, but there
is a much simpler way to do this in Python. The assignment
Kcopy = K creates variable Kcopy and gives it, as a value, a
reference to the same list that K refers to. Therefore, when the
list itself was mutated by index assignment, both K and Kcopy

refer to the same, mutated list. Another way to see the distinction is to use more than one
list and the == comparison operator.

>>> J = [9,9,4]

>>> Jcopy = J

>>> W = [9,9,4]

>>> J == Jcopy, J == W, Jcopy == W

True, True, True

>>> Jcopy[2] = 'a'

>>> J == Jcopy, J == W, Jcopy == W

True, False, False

>>> J, W

[9, 9, 'a'], [9, 9, 4]

Two facts underly this example. First, even
though the initial assignments to J and W

give the same list value to each variable, it
is clear from the later behavior that J and W

do not refer to the same list. This is made
clear when the Jcopy indexed assignment
mutates the list that J references. Although
J and W refer to different lists, the first com-
parison J == W evaluates to True, because
the two lists have identical items.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

208 A Functional Start to Computing with Python

name value

J α

Jcopy α

W β

α [9,9,4]

β [9,9,4]

One way to think about the previous example is to imagine
Python has some table of names and values, like a dictionary.
The table contains some hidden names, known only to Python,
which are α and β. These hidden names have lists as their
values, but the variable names do not. The variable names
have hidden names for values. This is why we say mutable
variables are indirect references to values. Though it is more
difficult to understand mutable than immutable types, the features of mutable variables are
quite useful: there are mutating methods and ways to change lists passed as arguments to
functions.

The concept of having multiple references to the same thing is an abstraction used widely
in software. Probably the most familiar instance is how files and directories (folders) are
organized. In Windows, you can create a shortcut to a file or application. A shortcut is not a
copy of a file, because a copy would take up disk space; a shortcut is another name that can
be used in place of the file and moved to the desktop or some other folder. The Linux/Unix
term for this is a link to a file. The Python jargon for two variables that refer to the same
list is alias . For the example above, Jcopy is an alias for the list that J references.

➪ web

>>> E = F = "tick tock clock".split()

>>> G = "tick tock clock".split()

>>> E == F, E == G, F == G

True, True, True

>>> E is F, E is G, F is G

True, False, False

>>> E[0] = 1.5

>>> E is F

True

>>> F = range(10)

>>> E is F

False

Equality of Reference. Two list vari-
ables can be equal, when compared by the
== operator, even when they refer to differ-
ent lists. Is there some way to see if two vari-
ables refer to the same list without mutat-
ing one of them, then checking that this mu-
tation happened to the other one? Python
has an operator just for this question. The
is operator compares the references for two
variables. It returns True only when the
two variables refer to the same list. Above,
E is F remains True up to the statement
F = range(10), which is a nonmutating assignment. The assignment to F gives it a new
reference, different from E’s.

Mutation and Augmented Assignment

The general rule for assignment, with regard to mutation, is that any kind of assignment
except indexed or sliced assignment makes a new reference rather than mutating a list. It
does not matter whether augmented assignment (e.g., +=) or tuple assignment is used, what
matters is whether the variable on the left side of the assignment is indexed or sliced. There
is one exception to the general rule.

>>> A = B = [1,2]

>>> A.extend([3,4])

>>> B

[1, 2, 3, 4]

Recall append() is a mutating method which adds an item
to the end of a list. A similar method, extend(), inserts a list
at the end of a list, seen by example to the right. The extend()
method is thus a kind of concatenation method. The exception
to the general rule is that Python translates “+=” for lists into
a method call to extend(). The example on the left, below,
demonstrates this exception. However, in the example on the right, Python does not use
extend() for what seems to be an equivalent way of concatenating. On the right, the second

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Mutation 209

assignment to A gave it a new reference rather than mutate the list of the existing reference.
You may never run into this particular oddity of Python’s “+=” behavior, but if it catches
you by surprise, debugging can be painful.

>>> A = B = [1,2]

>>> A += [3,4]

>>> A is B

True

>>> B

[1, 2, 3, 4]

>>> A = B = [1,2]

>>> A = A + [3,4]

>>> A is B

False

>>> B

[1, 2]

>>> A

[1, 2, 3, 4]

✰ ✰ ✰

Items as References

>>> A = [1,2]

>>> B = A

>>> C = [A,[3,4],B]

>>> C

[[1,2], [3,4], [1,2]]

>>> C[2] is A

True

>>> C[0] is C[2]

True

>>> A[1] = 0

>>> C

[[1,0], [3,4], [1,0]]

Previous examples demonstrate how different vari-
ables can be aliases to the same list (using a hidden
name and indirect reference). The same idea also per-
tains to the items of sequences, e.g., lists, tuples, and
dictionaries. Furthermore, an item within a list or
dictionary can, in turn, be a reference to a sequence.
The example here creates C to have a list for each
item. The result looks surprising: the single assign-
ment A[1] = 0 appears to have changed list C in
two places. This is not a correct understanding: two
items of list C actually refer to the same thing, the
list initially defined by A. This example is well worth
pondering: it shows both the power of allowing aliases as well as the confusion it might
create when not used carefully.

➪ web

Cloning

>>> A = [1,2]

>>> B = A

>>> del A

>>> B

[1, 2]

When you use a copy machine to reproduce a printed sheet of
paper, you get a new sheet of paper, hopefully identical to the
original for practical purposes. You can tear the copy, write
on it, crumple it, and the original is unaffected. We have seen
that B = A does not make a copy of a list, it makes another
reference to a list. A nice illustration of this fact is shown on

the left. After B = A, both variables refer to the same list. When variable A is deleted, the
underlying list is not destroyed; there remains a reference B to the list. Python only destroys
an actual list (and recycles memory) once all references to that list are gone.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

210 A Functional Start to Computing with Python

>>> A = [1,2]

>>> B = A[:]

>>> B == A

True

>>> B is A

False

>>> B[-1] = 99

>>> B

[1, 99]

>>> A

[1, 2]

Sometimes, making another reference to a list is exactly what
is wanted. Parameter binding to list arguments makes another
reference to a list, which is why functions can mutate list vari-
ables given in their arguments. In other situations, we may not
want to make another reference, because a copy works better.
A copy can be changed without changing the original. The
easy way to make a copy is the trick shown here. Recall that
A[:] creates a new copy of sequence A, not another reference
to the existing sequence.

>>> A = [1,[2,3],4]

>>> B = A[:]

>>> B[0] = 'x'

>>> B

['x', [2,3], 4]

>>> A

[1, [2,3], 4]

>>> B[1][0] = 'y'

>>> B

['x', ['y',3], 4]

>>> A

[1, ['y',3], 4]

Shallow versus Deep Copy. One of the tricky topics this
chapter has not covered is the issue of indirect references to
lists when they are nested. Nested lists can be copied in several
ways, with the extremes being shallow copy and deep copy. A
shallow copy is simply B = A[:]. What more could one ask of
copying? The example shows that although B is different from
A, the second item of B is actually a reference to the same
list that the second item of A references. A shallow copy only
copies “one level” of a nested list. A deep copy would make
copies at all levels of nesting. How to do a deep copy of a list is
a topic beyond this chapter, but a simple example given next
hints at how it can be done.

>>> A = [1,[2,3],4]

>>> B = A[:]

>>> B is A

False

>>> B[1] is A[1]

True

>>> B == A

True

>>> B = [A[0], A[1][:], A[2]]

>>> B is A

False

>>> B[1] is A[1]

False

>>> B == A

True

In the example on the right, B is defined twice,
the first time as a shallow copy, and the second
time as a deep copy. The key difference shows
up in the alias test B[1] is A[1]: True for the
shallow copy, but False for the deep copy. For
some applications, the problem with the shallow
copy is that a mutation of some item in a shallow
copy could also change the value of the aliased
original variable. With a deep copy, this is not a
danger. Though the technique above for making
a deep copy is specific to the particular example
of A, the general technique is not too hard to
imagine. There would need to be some nested
way of cloning a list (or a dictionary) all the
way through the levels of nesting. Note, by the way, for a list containing only immutable
items (numbers, strings, booleans), that there is no difference between shallow and deep
copying. The Python standard library has a module copy, which makes deep copies of nested
containers; Chapter 18 introduces the topic of modules in Python.

➪ web

Terminology Review

Jargon in this chapter includes: mutable versus immutable types; mutating methods; aliases;
references to lists; the is operator; cloning (shallow copy versus deep copy).

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Mutation 211

Exercises ➪ web

These exercises use the Python2 style of the print statement and ask what will be printed. It
is better to start with interactive (calculator mode) sessions and experiment with assignment
before writing functions that mutate arguments.

(1) What will be the result of this interaction with Python?

>>> M,varX,varY,t = ("team",[],"sample",[True,False])

>>> print len(M)*len(varX) + len(varY)*len(t)

(2) What will Python print here?

>>> if = "el"

>>> if += "if"

>>> print if

(3) What is printed in this interactive session?

>>> t3,t4 = [50,2], "going going gone"

>>> t4 = t4.split()

>>> t3 += t4

>>> print t3

(4) What does Python print?

>>> a = b = "sub urban"

>>> a[3] = "-"

>>> print b

(5) For this question, first a function definition is given, then the interactive part follows.
What does Python print?

def YR(z):

z[0] *= 2

>>> X = Y = ["F","a","s","t"]

>>> YR(Y)

>>> print "".join(X+Y)

(6) What will Python print?

>>> A1 = {"A":9, "B":8, "C":7, "D":6}

>>> A2 = A1

>>> A2[0] = False

>>> print A1

>>> A2 = type(A2)

>>> print A1

(7) What will Python print?

>>> wall,table,lamp,desk = ("plane","K",[True,2,0],"neighbor")

>>> print len(table)*len(lamp)*len(desk)

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

212 A Functional Start to Computing with Python

(8) What will be printed?

>>> Camp = [True,True,77,88]

>>> Camp += 99

>>> print Camp

(9) What is the printed output for the following?

>>> t3,t4 = "going going gone", ["found","here"]

>>> t3 = t3.split()

>>> t3 += t4

>>> print t3

(10) What is printed?

>>> a = b = [4,3,5,2,1,6,7]

>>> a[-1:] = [False,False]

>>> print b

(11) For this question, first a function definition is given, then the interactive part follows.

def YR(z):

if len(z[0])>0:

z[0] = z[0].upper()

>>> X = Y = "easy beat for dancing".split()

>>> YR(Y)

>>> print " ".join(X+Y)

(12) What is printed here?

>>> A2 = {"A":9, "B":8, "C":7, "D":6}

>>> A1 = A2

>>> A2[0] = True

>>> print A1

>>> A2 = type(A2)

>>> print A1

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Chapter 18: Modules

Most imports come from outside of the country.
— George W. Bush

A text file containing Python statements can be run from a terminal with a command.
This way of using Python is a script, which may contain function definitions, variable
assignments, print statements, and more. Another way to organize Python statements is to
distribute them among several files. One of these files can be a script we might designate
as the main program, whereas others contain bits of Python that the main program uses.

The terminology for a file that is not an independent script, but contains Python state-
ments, is a module. A module is nothing more than a file containing Python statements,
function definitions, and variable assignments. The way that a (main) program uses the con-
tents of a module is to “include” or “import” it. Python has special statements to import
modules. Typically, a Python program imports the modules it needs near the beginning of
the program. Without having an import statement, a program cannot use a module.

Roughly speaking, there are three kinds of modules. (i) Standard library modules, which
are distributed along with Python—these modules are always available to use, and the offi-
cial Python manual and supporting documents explain what these modules offer. Examples
of such modules are ones that have mathematical functions, communication network facili-
ties, and time/date formatting and conversion tools. (ii) Externally provided modules have
been written by volunteers and by many organizations. Examples of these are game-building
kits, graphical display managers, web development frameworks, and scientific libraries. (iii)
Local modules are things that you, or persons in some local department in an organization,
write. Even beginners can find it useful to arrange functions into different modules.

Type (ii), modules external to the standard library, are for many (if not most) people,
the real attraction of Python. At the end of this chapter is a section named treasure,
describing some of the better known software packages and modules that contribute to
Python’s popularity as a computing platform. Unfortunately, installing externally available
modules is not always simple and perhaps not even possible with both Python2 and Python3.
This book generally (with the exception of one drawing tool) avoids depending on external
modules for introducing computing with Python.

213

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

214 A Functional Start to Computing with Python

Import Statements

Let’s say you have a main program in a file named myprog.py and a module named
myutil.py, as shown in Figure 18.1, with myprog.py on the left and myutil.py on the
right. The syntax of the import statement in the figure is “from myutil import *.”

from myutil import *

T = [6,20,13] + range(1,4)

print product(T)

def times(x,y):

return x*y

def product(V):

return reduce(times,V)

Figure 18.1: Main program and module it uses.

$ python myprog.py

9360

Running myprog.py is seen on the right. The main program
myprog.py was able to use the function defined in the mod-
ule myutil.py. Note that there is nothing special about the
contents of myutil.py: Python will even allow you to use the
file as a main program sometimes and as a module at other times. Thus, being a module is
a role for a file containing Python definitions. If you use an import statement to bring in
the definitions from another file, then that other file is considered to be a module. Note also
that the filename’s suffix “.py” is not given in the import statement. Python automatically
assumes that the module name is a file that has suffix “.py.”

>>> from math import *

>>> log(50)

3.912023005428146

>>> pi

3.1415926535897931

>>> sin(pi)

1.2246063538223773e-16

Modules can also be used in interactive sessions. A common
instance of this is the standard mathmodule. The mathmodule
defines many mathematical functions as well as certain vari-
ables (pi and e). Observe that sin(pi) returned a very small
number (rather than the true mathematical value zero) be-
cause floating point arithmetic only approximates real arith-
metic. Somewhere in Python’s software libraries there needs
to be a file named math.py; the question of where math.py

can be found, what it contains, and how it is documented will be explained later.

Selective Import

from B import *

from C import *

Import can be used within modules as well as in the main
program. The main program could be A.py, which has an
import statement “from B import *,” implying there is a file
B.py. The file B.py could also have an import statement, such

as “from C import *,” to bring definitions in from C.py. Alternatively, a different main
program might import both B.py and C.py: the first two lines in the main program could
be those shown in the box above. After these two lines, the main program can use functions
defined in B.py and functions defined in C.py.

There is a potential problem, however, when importing from two or more modules.
What if two modules define the same function? For example, it could be that B.py defines
a function raxor, and also C.py defines a function named raxor that does something
completely different from the one inside B.py. Which one will the importing program get to
use? The general answer is that the second module to be imported overwrites the definitions
of the first module that was imported. An import statement “from C import *” overwrites

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Modules 215

any defined functions or variables that have the same names as the ones in C.py. This fact
means one should take care using this kind of statement.

from B import *

from C import capit

Most often, the people who write programs importing
modules do not know all the function names inside a mod-
ule, and really are only interested in a few things. Python
offers a more refined way of importing. To illustrate, sup-

pose that a main program only needs a function capit from C.py. The first two lines of the
main program could be those in the shaded box. Now, even if C.py has a raxor function
that would overwrite the one B.py has defined, there is no conflict: only the function capit

is brought in from C.py.

>>> from math import pi, e, sin

>>> sin(e**pi)

-0.91257759866927624

The same technique can be used to import
multiple definitions. This example selectively
imports just three things from math; because
only the named variables and functions are im-
ported, other things from math, like cos, log,

and exp, are not available to the importing program.

Namespaces

>>> import math

>>> math.sin(2*math.pi)

-2.4492127076447545e-16

>>> pi

NameError: name 'pi' is not defined

>>> math.pi

3.1415926535897931

>>> math.ki

AttributeError: 'module' object has

no attribute 'ki'

Python offers an entirely different idea
for managing name conflicts, that is,
conflicts between existing function or
variable names and those imported
from modules. The idea is to re-
tain the module name as part of the
function names. The Python state-
ment to accomplish this is “import,”
shown by this example. The simple
“import math” makes the functions

and variables of the math module accessible, but they need an extra qualifier as part of
the name. The Python jargon for “math.pi” labels the part before the period, math, as the
qualifier or module name, and the part following the period is called the attribute. Above,
both sin and pi are used as attributes. The last line of the example shows Python com-
plaining that “math.ki” is an error, because there is no function or variable ki in the math
module; in other words, Python cannot find the attribute named ki within math.py.

Typically, we may think of modules brought in by an import statement in a way similar
to how function bodies deal with variable names. Recall that within a function, as it runs,
Python sets up a new name dictionary for evaluating the function’s statements and expres-
sions. For modules, Python adds to the current name dictionary, enlarging the “space” of
names. Since each imported module has its own qualifier (using the module’s name), we can
think of separate namespaces, one for each module. The qualified name “math.sin” refers
to the name “sin” within the namespace of math.

import A

import B

import C

print (A.foo(), B.foo(), C.foo())

With this style of importing, a script
could use two functions named foo()

found in different modules. For exam-
ple, there could be modules A, B, C

imported in a script. The print can re-
fer to the three different foo functions

without any name conflict, thanks to the qualifiers and separate namespaces.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

216 A Functional Start to Computing with Python

import sys

import os

import csv

import time

Many Python modules and main programs use import

statements for more than one module. A typical example,
shown here, imports typical modules from the standard li-
brary. The example shows that four modules are imported,
though perhaps more are imported indirectly, behind the
scene, because modules may import modules. The same ex-
ample could be more concisely expressed as

import sys, os

import csv, time

Or, using just one line import sys, os, csv, time. All of these forms of using import

get the same result.

➪ web

Name Queries

$ python

Python 2.5.2

>>> dir()

['__builtins__', '__doc__', '__name__']

Python has a built-in function to query the
namespace for modules (and for other things
as well). The function dir() can be used inter-
actively to see what names are currently used.
The example shows that after starting Python,
dir() returns a list of three names. These un-
usual names are the “hidden” internal namespaces of Python. To see something more un-
derstandable, we continue the example by importing math:

>>> import math

>>> dir()

['__builtins__', '__doc__', '__name__', 'math']

>>> type(math)

<type 'module'>

The dir() function now returns a list containing a new namespace, reflecting the fact that
math has been imported. Observe also that Python identifies the type of “math” to be a
module. What if you now would like to list the names inside of a namespace?

>>> dir(math)

['__doc__', '__file__', '__name__', 'acos', 'asin',

'atan', 'atan2', 'ceil', 'cos', 'cosh', 'degrees',

'e', 'exp', 'fabs', 'floor', 'fmod', 'frexp', 'hypot',

'ldexp', 'log', 'log10', 'modf', 'pi', 'pow', 'radians',

'sin', 'sinh', 'sqrt', 'tan', 'tanh']

>>> type(math.degrees)

<type 'builtin_function_or_method'>

>>> type(math.e)

<type 'float'>

You can see that the namespace for the math module has an assortment of things. More
can be learned about the names using Python’s type() function.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Modules 217

Module Help

Python standard modules, like math, time, sys, os, csv, and hundreds more, have some
limited documentation. You can see this documentation using Python’s built-in help()

function. For example:

$ python

Python 2.5.2

>>> import math

>>> help(math)

NAME

math

FILE

/usr/lib/python2.5/lib-dynload/math.so

MODULE DOCS

/usr/doc/python-2.5.2/html/module-math.html

DESCRIPTION

This module is always available. It provides access

to the mathematical functions defined by the C standard.

FUNCTIONS

acos(...)

acos(x)

Return the arc cosine (measured in radians) of x.

This documentation continues for many screens full of text; you might need to press the
space bar many times to go through it all interactively.

Python Standard Library ➪ web

Increasingly, useful Python programs cannot be written without use of modules from the
standard library, which comes with all Python distributions, and extra modules such as de-
scribed later in this chapter. Consult http://docs.python.org/library/ to see a catalog
of the modules in the standard library. The main Web page for Python has the caption,
for this catalog, “keep this under your pillow.” There are many modules covering different
application domains, but a few that merit highlighting here are:

functools, itertools, operator modules are mentioned in Chapters 13 and
14. Some useful data types are found in the collections module.

random, time, sys, os are covered in Chapter 28; the subprocess module is
illustrated in Chapter 27. Chapter 26 uses several network-oriented modules. For
detailed parsing of Web pages (that contain HTML), there are parsing modules
in the standard library.

The csv module is quite useful for parsing comma-separated files, commonly
exported from spreadsheet applications.

Chapter 29 shows examples using the Tkinter module, for interactive window
programs.

Some of these modules are either exercises at the end of the chapter or are used in later
chapters (the doctestmodule was introduced earlier, in “Exercise: Unit Testing and Online
Supplement” after Chapter 10).

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

218 A Functional Start to Computing with Python

Module Placement

When you write your own modules, they will probably be placed in the same directory
(folder) as the main program. When Python encounters an import statement (or a from

statement), it searches for a corresponding “.py” file in the current directory (folder) where
the program is being run. Can modules be placed elsewhere? Yes, but the rules for what
is allowed and how Python searches for modules are complex due to the various different
operating systems (Windows, Unix, etc.), which have their own individually tailored orga-
nization of files and directories. For example, there can be a PYTHONPATH variable set in
operating system configurations, which tells Python where to search for modules.

The standard modules that are distributed with an installation of Python, like math,

sys, time, and so on, have been highly optimized for efficiency. Many of these modules are
in fact mostly written in C or another language to take advantage of hardware features or
to use memory more efficiently. Other standard modules are written in Python, for example
unittest.py is a module for unit testing. The standard modules are placed in a directory
that is automatically searched no matter where a main program being run is located. The
location of this special Python directory depends on the operating system. If you are curious,
you can find this directory and explore the code that implements modules.

Third-party modules are ones not distributed with an installation of Python; they are
typically added to a system by downloading a “kit” or package via the Internet and then fol-
lowing some installation instructions. Python has a special directory for such added software,
typically containing subdirectories (subfolders) for each package. The third-party modules
are typically put in these directories, and Python will automatically search for modules in
these places. Some packages give the user an option, during the installation process, to place
the modules in a directory specified by the person doing the installation.

Optimization and Byte-Code. When you initially start using your own modules, you
will possibly be surprised to see new files appearing in the same directory of the modules.
When Python imports a module, it first compiles the module into a form that is easier
to run (but impossible for human viewing). Thus, for a module abc.py, Python creates a
file abc.pyc containing the compiled, or byte-code version of the module. It is called byte-
code because it contains instructions for a virtual machine that executes code particular to
Python.

Name Abbreviation

Python modules are proliferating, making all kinds of special features and computing plat-
forms accessible through Python programming. One consequence of this proliferation is that
we have run out of simple, intuitive names for modules. Increasingly, modules are being orga-
nized into directories (folders) and possibly even subdirectories. In Python2, for example, the
shell command python -m SimpleHTTPServer runs the module named SimpleHTTPServer,
which is part of the standard Python library, as a main program (this starts a Web server).
However, in Python3, to better organize modules, this has been changed to python3 -m

http.server, because there is now a directory named http in the standard library, which
has a module named server in that directory. The period (“.”) here is syntax for a path:
the statement import x.y.z would bring in module z, found in subdirectory y of directory
x.

The use of directories and generally having longer module names can make it cumber-
some to use a simple import statement. It is inconvenient to write Acme.CRM.site.foo(m)
to invoke a function foo. To streamline such cases, Python provides the as keyword for im-
porting modules. Instead of writing import Acme.CRM.site and then using the full name

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Modules 219

for invoking functions in the module, one can write this:

import Acme.CRM.site as Ac

After this, Ac works as an abbreviation for the full name of the module: Ac.foo(m) can be
used to call foo with argument m. The use of “as” for abbreviation can also be used with
function names in statements such as from Acme.CRM.site import foo as f, after which
f(m) calls the foo function from the module.

Learning More

Online resources and examples are the best source for learning about modules. The Python
documentation (available at www.python.org) lists all the standard modules, their func-
tions, methods, and variables, with a few small examples. Generally, the official Python
documentation assumes you already know most of the Python language and concepts, and
even skips over simple facts (like adding qualifiers to the names, using the import state-
ments, and so on). It is better for beginners to find some tutorial that uses a module and
learn how to use it. The official Python documentation is useful as a catalog, to learn
what kinds of modules are offered and what features have been added with new versions of
Python.

APIs, SDKs, Frameworks

Many software systems have their own ways of interacting with users, displaying and
managing data. Yet, there could be additional features that designers did not build
into the system. Some systems provide an application programmer interface (API) so
that users who know how to program can interact with the system using some defined
functions and data layouts. There can be a library of API calls, which enable users to
enhance and manage the software system in novel ways. Beyond APIs, some systems
and products have a software development kit (SDK), which can include tools, software,
and hardware, in addition to an API library. Using an SDK, a developer can extend
a system’s capabilities and interfaces and even allow for a distributed value-enhanced
version of the original product.

Related to APIs and SDKs is the concept of a framework. Whereas a software system
might be completely usable without needing to tinker with an API or SDK, the intent of
a framework is software that is incomplete, yet designed to be completed and customized
by the framework’s user. A typical instance of a framework is a Web server. It is
up to the user to configure, write code, and use tools to make a Web server usable.
Frameworks can have API calls and SDK-like features, but usually have more powerful
ways to control and manipulate the system. In some frameworks, the framework user
writes a function that the framework calls to guide decisions and control the look-and-
feel of output and input.

The World of Packages

A package is typically a collection of modules, but can also include documentation, extra
files, and even code written in languages other than Python. External modules are usually
added to a Python library using some package installation technique. Search engines can
help one find modules, examples, or working applications based on Python. Before trying

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

220 A Functional Start to Computing with Python

external packages, it is wise to check whether the new modules will be compatible with the
current Python version, and whether the new modules require yet other software in order
to work. Indeed, for some externally provided modules, there may be a “laundry list” of
things to do, other software to install first, licenses to review, and decisions to be made
about where libraries should reside.

Library Placement

Where does an externally provided module go when it is added to a system? The usual
answer, assumed by nearly all installation procedures, is to put the new module in the
“site-packages” of the current Python distribution directory (if a system has been set up
with multiple Python versions, this becomes more difficult). On a Unix system, this directory
is typically in an area that requires privileges for writing: so installing a new module would
require more than ordinary privileges. It is possible, but more work, to install new modules
to a subdirectory of a user’s area; then some additional work would be needed to specify the
subdirectory and set up some path information so that Python knows where to look for the
new modules (which can be done by establishing a PYTHONPATH environmental variable or
by an additional parameter on a command line). It is usually preferred to put new modules
in the site-packages directory. Keep in mind that if a new version of Python is installed, the
site-packages directory may be overwritten (emptied) or it may not be compatible with the
new version of Python.

Automatic Installation

The easiest kind of software installation is one that automates all the steps. For this to be
possible, someone else has done the hard work of writing installation scripts that discover
the kind of computer, its operating system, versions of software previously installed, and
perhaps hundreds of other crucial details, to know how the software should properly be
installed. Professionally packaged software often has automatic ways to install packages;
however, Python modules found through search engines may not be professionally packaged
(sometimes you get what you pay for) and then more work has to be done.

“Easy” Install

A popular way to install Python modules is based on a package of modules called
setuptools. Once this package has been installed, an “easy install” script, which runs
as a command easy install, can process “egg” files containing the material for new mod-
ules. The bootstrap process for using such Python eggs is to first, using a more manual
procedure, install the setup tools. After that, other module installation becomes nearly au-
tomatic. The easy-install script will check for module dependencies, complaining if a module
needs yet another module to be installed first, in order for everything to work properly. Here
are some imagined examples of using easy-install:

$ easy_install http://www.acme.org/software/wondermod.tar.gz

$ easy_install --upgrade WonderMod

$ easy_install Downloads/wondermod-12.3.egg

Like more professional software tools, the easy-install command does try to automat-
ically find dependencies and download them to complete a correct installation of new
modules. Note that the setuptools package is not currently part of the official Python
distribution or documentation, though it is well documented online. Recently, a newer
mechanism for installing Python packages, pip, has been introduced as a replacement for

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Modules 221

easy install; pip further automates the process of installing a package with dependencies
(see www.pip-installer.org).

Setup Script

More primitive than easy-install/pip is the distutils package of Python. This is sup-
ported and documented by the official Python distribution. The recommended procedure
is to download a compressed directory containing the new modules, unpack it, and find a
setup.py script in the directory. Then, the shell command

$ python setup.py install

attempts to install the modules to Python’s site-packages directory (needing administra-
tive privileges to do so). There is an option to install the new modules to another directory,

$ python setup.py install --home=/home/user/py-lib

(adjust the name of the alternate directory as needed, remembering also to set up the
Python search path for modules appropriately). On a Windows system, the procedure for
using setup.py is similar. See the section on Installing Python Modules of the official Python
documentation for more details.

Treasure ➪ web

A list of popular and tested packages of Python modules and scripts can be viewed at

http://pypi.python.org/pypi

Packages continue to be improved, new packages supersede others, and the state of the art
evolves: it is difficult to know what is best for your needs, let alone keep up with the torrent
of packages being updated or added to such a list. In some cases, the best packages offer
modules that are improvements over the Python standard library (particularly for network-
ing modules). In other cases, the external modules might have some glitches, limitations,
or depend on particular Python versions. Below, we have a list of some influential, popular,
or useful packages. In addition to those listed, Python can be used in other contexts, like
CGI scripts (e.g., called by an Apache Web server to respond to a browser request) and
communication with Web services, social network apps, and database environments. In-
creasingly, Web-based software offers programming interfaces (usually APIs, or Application
Programming Interfaces) to Python.

Numeric and Scientific Interests

A variety of packages support numerical methods, statistical analysis of data, advanced
mathematical algorithms, and data visualization to explore results of calculations. Use
the NumPy package for its numerical methods (another option is Blaze) and SciPy for li-
braries of scientific functions. The matplotlib library can graph and display data in simple
up to complex visualization styles. Instead of installing each of these packages individu-
ally, many users now opt to obtain an all-in-one, commercial distribution of Python (see
http://www.python.org/getit/ for a list of available Python distributions).

For data analysis, the starting point is often to use built-in modules like csv and re to
rearrange and convert data; then for analysis, the pandas package supplies many modules
and functions for statistical models of data.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

222 A Functional Start to Computing with Python

Less well known, but interesting to students, might be the SymPy package, which can do
things like symbolic integration, solving equations and other math tasks, all by manipulating
symbols rather than computing with values.

Games, Media, and Images

Pygame is the best-known game development package. It includes a media player and other
tools for working with sounds, animation, and images, but there are also specialized packages
outside of PyGame that manipulate media, such as pyglet or pillow, for working on images.

Natural Language and Text

For processing natural language, there is the Natural Language TookKit (www.nltk.org).
There are packages for working with fonts, PDF files, PostScript, and some other formats for
text. Related, but not natural language, are packages and modules geared to spreadsheets
and CSV formats (Python’s standard library has a module for CSV).

Data Mining and Machine Learning

A number of packages implement machine learning algorithms either in Python, or make
available nonPython code through Python interfaces. Data mining of web-hosted informa-
tion is chiefly done through packages that dig beneath markup languages to get at data;
examples are Scrapy and BeautifulSoup. Other packages assist in data analysis, notably
pandas and databrewery. For working with databases, there are too many packages to
mention here; most database software installations have Python interfaces.

Web Frameworks

Let’s say you would like to develop a Web site that goes beyond what Python’s standard
library has. A Web framework has features that automate data persistence (either by using
files or working with a database), organize templates and page styles, and facilitate browser
processing (using HTML5, CSS, Javascript, jQuery, or other technology). These frameworks
have become sophisticated collections of packages, configuration files that take some effort
to fully master. The Python is the “glue” to customize those parts of the framework that
can give a Web site an individualized look-and-feel. Django is one of the best-known Python-
based frameworks; many interesting Web sites have been built using the Django framework.
Lighter weight, so-called micro-frameworks Flask and Bottlemight be suited for small Web
servers. There are also Wiki-oriented projects like MoinMoin.

Networking

The Google search engine was originally programming in Python, though to scale up, it
had to be rewritten in more efficient languages. Python is still a valid choice for many
networking tasks, including special-purpose servers and clients. On the server side, the
Tornado framework and Twisted framework have better concurrency performance than the
simple servers found in Python’s standard library. On the client side, the requests package
aims to be a more modern and reliable set of functions than what Python’s standard library
offers. For learning about how Web servers and browsers communicate, an “HTTP Proxy”
server is quite valuable—there are several written in Python.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Modules 223

Desktop Windowing

If you are writing an application that has a graphical user interface, and you would like the
interface to use the same look-and-feel as other applications on your system, then you will
probably wish to go beyond what Python’s standard library offers (Tk, see Chapter 29).
The most widely used packages for GUI programming are WxWidgets and PyGTK. It can be
simpler to avoid GUI programming altogether and use a combination of Web browser and
Python-based server or a Web framework. However, for highly interactive applications with
advanced graphics or multimedia work, windowing packages are the usual choice (PyGame
depends on using such a package).

Exercises

The best way to do these exercises is to use online material, typically some example or
tutorial page, that explains with examples how the module should be used. Such tutorial
pages will probably refer to features of Python you do not know about, but you may be
able to copy their examples and try them.

(1) Write a function numa(w) that takes a string w as parameter. The function should use
the standard Python urllib module to read the Web page given by w and count the
number of times the letter “a” occurs in the Web page. For example,

>>> numa("http://www.google.com/index.html")

393

(2) Use the standard Python calendar module to print an image of the current month,
for instance, you could print this with a single print statement using the prmonth

method.

May 2011

Su Mo Tu We Th Fr Sa

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31

(3) Read the documentation on the sys module, specifically the sys.argv variable. Write
a script using that module, which prints the command line arguments when the script
is run from a command prompt. For instance,

> python myscript.py 1 X 99

arguments are: 1, 'X', 99

would be an example of running such a script. (For more advanced parsing of command
line options, the argparse, getopt and optparse modules are in the library.)

(4) Try the subprocess module in a script to execute a system command. After import-
ing subprocess, a Python script should be able to list the current directory with a
statement such as

subprocess.call("dir",shell=True)

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

224 A Functional Start to Computing with Python

(The subprocess command is also capable of returning a response from a command
as a string, so that the Python script can extract information from the string; a later
exercise in Chapter 27 has response processing.)

(5) Python cannot represent real numbers with infinite precision. However, there is a
Fraction type in the standard library, available through the fractions module.

from fractions import Fraction

Experiment with the Fraction type. Other alternative numeric types and functions
are found in the decimal module, also worth knowing about.

(6) An advanced exercise is to learn how Python libraries and packages work by exploring
the code behind the standard libraries. To do this, you’ll need to have Python installed
on a machine where you can access system files (usually not the case when running
Python from a browser in the “cloud”) and where there is some way to search for
files. Two starting points for such an exercise are:

• Locate the file pprint.py, which should be in the directory containing many of
Python’s standard library modules (pprint was introduced in the box “Pretty
Printing” in Chapter 8). Use an editor to open the file and see what variables
and functions are defined. You can try the same with other modules you see in
the library. Many of the programming techniques are explained in later chapters
(classes and objects come in Chapter 27). Some standard python modules, such
as the array module, do not have Python source code. For the sake of efficiency,
such modules are written in C or another low-level language.

• Find and read Python documentation on modules, which has a section on pack-
ages (a good place to start is docs.python.org/tutorial, which has a “pack-
ages” section). Several conventions of interest explained there are the init .py

file, the all variable, and the notion of the main module.

Within Python modules, you may find that many variables start with an underscore
character (). This is a convention, which you can also look up, about so-called private
variables (or class-local variables).

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Chapter 19: Repetition

w
hi
le
fo
rw

hile
forwhilefor

w
hile

for
w
hile for while for

loo
p
...
.

Me and recursion don’t get along.
— Computer Science Student

Automation is a hallmark of the Industrial Age. During the industrial revolution, repeti-
tive tasks formerly done by people and horses came to be implemented by steam-powered
machines; initially the machines were used selectively for the manufacture of clothing. Sub-
sequently, transportation networks and a power infrastructure emerged, eventually moving
to electricity for power. Transport networks connected natural resources to manufacturing
facilities and to markets, and so the industrial age made machinery ubiquitous.

A story similar to the industrial revolution took place more recently in the Informa-
tion Age, which has its roots in the automation of repetitive tasks like counting, summing,
tabulating, and indexing. Initially, a limited range of calculators and computers could auto-
mate for local needs. Applications for these devices was limited to manufacturing, finance,
and some specialized areas requiring calculation. Later, communication networks and an
industry of low-cost switching devices connected computing globally, enabling nearly free
information flow across countries and organizational boundaries. Thanks to the buildup of
this infrastructure, the range of applications that automate information tasks expanded to
entertainment, journalism, agriculture, and health sciences, to name a few areas.

The final frontier for computing is the automation of automation. This is still very much a
research topic, with little progress to show. Roughly speaking, this goal of computing science

225

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

226 A Functional Start to Computing with Python

is to put computer programming out of business. The holy grail is to create computing
systems that automatically synthesize their own software. This vision needs far more than
what programming languages offer. Nonetheless, we can look to programming languages to
see how they help reduce repetition in many algorithms and for common application needs.

This chapter introduces the concepts of iteration and recursion, which are crucial ideas
in computing. Some students find these ideas to be major stumbling blocks toward a deeper
understanding of software. Indeed, learning about how to handle repetition in a program-
ming language is a hurdle that must be passed to get on to more interesting things. Take
your time; practice; do not be afraid to admit this is difficult material. The goal of the
chapter is only to introduce Python’s language features for repetition. It is not expected
that you will know how to use these features from what is presented here. The objective is
to show how Python interprets the statements.

Repeating Statements

print("123 Main Street")

print("Mytown, Oregon")

We begin with a personal task of automation, making
some address labels. A Python script to print a label
could be the two print statements on the right. It turns
out that the paper for printing labels is a special paper
with a sticky side, and to be economical it would be best to print the label at least five times
on one sheet. One way to do this is to make a script that repeats the print statements
above five times. Some editors make this easy using copy-and-paste. This way of automating
repetitive programming is bad software practice. If everyone used this technique, programs
would be bloated, boring, and possibly difficult to maintain. For instance, if the address
needs to be changed, one would have to use an editor to find-and-replace in all the places
where the needed change occurs. There is a better way.

for c in "xxxxx":

print("123 Main Street")

print("Mytown, Oregon")

Some programming languages have a special state-
ment of the form “do 5 times” which can be put in front
of the print commands, which does exactly what we want.
Unfortunately, Python does not have such a statement.
Rather, Python offers the for statement, which has syn-
tax like def and if, needing a colon and indentation. We have seen for in Chapter 13 under
the topic of list comprehension (custom lists). There, the for qualifies a variable with “in”
specifying a sequence over which the variable ranges. The same holds for the for statement
as well: The two print statements have to be indented by the same amount of whitespace,
so that they align on the left. This indented part is the body of the for statement; the
indented statements are sometimes called a block of statements (blocks of statements occur
in function bodies, if statements, and other Python syntax). The odd thing is the syntax
of the for statement above, which specifies that a variable c ranges over a string of five x

characters; the variable c is not used in the body.

for c in range(5):

print("123 Main Street")

print("Mytown, Oregon")

We could get exactly the same behavior another way.
The range(5) acts as a sequence of five items. For either
version, Python will repeat the running of both print

statements in the body for each item of the sequence; the
only fact that matters is the length of the sequence. You
might wonder why this is any better than using an editor to copy-and-paste five times the
same print commands. The answer is simple to show.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Repetition 227

def PrintMany(n):

for c in range(n):

print("123 Main Street")

print("Mytown, Oregon")

Here, inside the PrintMany function, the for statement
will cause the print statements in its body to be run n

times, where the value of n might not be known at the
time of using an editor to write the Python statements.
It could be that the value of n is determined when the
script runs, by asking the user at the keyboard.

Informally, a repetition such as the for statement (or later, the while statement) is
called a loop. Loop statements are central to all programming languages save the most
primitive (assembly language may not have a loop statement). The body of the loop is the
part (block of statements) that repeats in each cycle through the repetition.

For-Loops with Variables ➪ web

print 0

print 2

print 4

print 6

print 8

Most often, repetition in software is not literally the same thing over and over,
but a similar thing repeated with a slight variation. Consider the script shown
here. Each line is different from any other, but there is definitely a repetitive
pattern. What is needed is a way to “parameterize” the repetitive pattern so
that a template of the pattern can be set up once and then repeated, with
variation, for some number of times.

for i in range(0,9,2):

print i

The for statement captures this pattern. This script and the
previous one have equivalent output, but this one is preferable
for programming purposes. It makes the program smaller and
easier to understand, easier to work with and debug. Some-

times patterns are not as easy to see, and it takes some experience to recognize that a for

statement can do the job.

print 0

print 2

print 400

print 6

print 8

To the right, we see an exception in the pattern, but it is limited to
a single instance (the number 400). Python has just the feature needed
to take care of exceptions in the logic of programming; if, else, and
elif statements. The idea is to change the behavior of the script when
the loop variable i takes on a certain value in the body of the for loop.
Implicitly, when the script runs, the loop variable i is assigned the next
value each time the body of the loop runs.

for i in range(0,9,2):

if i == 4:

print 400

else:

print i

The for loop above does the job of printing, on five lines, the numbers 0, 2, 400, 6, and 8.
The if statement in the body of the loop causes the regular logic of “print i” to deviate
when i is 4.

Understanding

Pause

This is right, take a moment to ask yourself. Do you really understand the for statement?
The last section showed some examples, flatly asserting that the for statement produces

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

228 A Functional Start to Computing with Python

something equivalent to repeating some Python statements. The students who claim to un-
derstand this upon first sight are most probably the ones who already know a programming
language such as Java, C#, javascript, and so on. But if you do not have such experience,
then it is unlikely you really understand how for works. Books and documents are poor
media for explaining the for statement because the way Python treats for is a dynamic
process. A better way to learn about repetition in a programming language would be some
interactive game, or to experiment with for and build your own mental model of what is
happening.

for c in "Hello":

print c

In spite of the inadequacies of the printed page, the
following is an attempt to show how for works, in “slow
motion.” We start with the simple loop shown to the
right. This loop will print the letters of "Hello," one at
a time, on five lines.

c = 'H'

print c

c = 'e'

print c

c = 'l'

print c

c = 'l'

print c

c = 'o'

print c

When Python encounters this loop, it will internally expand
them into something like the Python statements shown to
the left. This expanded view of how Python processes a for

statement shows that nothing very complex or sophisticated is
going on. Before each print c, the loop variable c is assigned
the value that will be used by the body of the loop, in this
case one print statement. The thing to remember when you
see a for statement is that a repetitive series of assignments,
one for each item in the sequence before the colon, will be
interleaved with the repetition of the loop body.

for i in xrange(0,9,2):

print i

i = 0

print i

i = i + 2

print i

i = i + 2

print i

i = i + 2

print i

i = i + 2

print i

Another example shown here expands both the for loop and
the xrange function (recall that xrange is a generator in
Python2, equivalent to range in Python3). Python stops the
looping when another i = i + 2 would put i over the limit
value 9 in the xrange sequence.

As a test of your understanding, what do you suppose is
the last thing that would be printed (after At end) in the
following script?

for i in range(0,9,2):

print i

print "At end", i

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Repetition 229

Loops on Condition: While Statements

Python has a statement for repetition that is more primitive than the for statement.
It repeats the evaluation of its body so long as some condition holds. The while state-
ment demands that a condition be given rather than a variable and a sequence. This is

v = 5

while v>0:

print v*v*v

v -= 1

a primitive kind of repetition statement, resembling assembly
language or other lower level computing languages. Without
trying to explain it first, let’s examine the “expanded view,”
which is the series of actions Python would do, expressed as
statements.

v = 5

if v>0:

print v*v*v

v = v - 1

if v>0:

print v*v*v

v = v - 1

if v>0:

print v*v*v

v = v - 1

if v>0:

print v*v*v

v = v - 1

if v>0:

print v*v*v

v = v - 1

if v>0:

print v*v*v

v = v -1

(Let’s stop here; most probably you get the idea.) In principle, the indentation and repetition
could continue ad infinitum. To make things simpler, we show the same thing but with some
of the expressions evaluated:

v = 5

if v>0:

print 5*5*5

v = 4

if v>0:

print 4*4*4

v = 3

if v>0:

print 3*3*3

v = 2

if v>0:

print 2*2*2

v = 1

if v>0:

print 1*1*1

v = 0

if v>0:

Here we can stop. The final if condition will evaluate to False, so it is fruitless to continue
any longer.

The mechanism of Python’s while statement should now be clear. The block of state-
ments indented after the while, called the body of the while loop, will be repeated until
the condition is evaluated to be False.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

230 A Functional Start to Computing with Python

Using while has good and bad aspects. For some applications, it is not possible to
know in advance how many times something should be repeated: the condition for halting
repetition might be discovered during the course of repeating whatever is being done. In
these cases, for will not do the job, and we need while. On the negative side, using while

can accidentally result in the dreaded infinite loop, where the repetition goes on forever,
because the condition of the while never becomes False.1 The jargon term loop is generally
used for repetition: “while loop” and “for loop” are common names for this kind of syntax in
programming languages. Another one is a “do loop,” because some programming languages
have another syntax with a do statement. Still other widely used terminology is the term
iteration in place of repetition.

for i in range(0,9,2):

print i

As a final example on the while statement, recall the ear-
lier for loop shown again here, to the right. Because while is
more primitive than for, it is no surprise that we can express
the same repetition using while as this for loop.

i = 0

while i<9:

print i

i = i + 2

i = 8

Why the i = 8 at the end? Whereas range(0,9,2) represents the list [0,2,4,6,8], the
while statement above would actually put variable i up to the value 10 before finding out
that i<9 is False. Of course, putting i up to 10 goes too far, hence the assignment after
the loop assigns it to the value it would have after the equivalent for loop.

Practice ➪ web

Few people grasp all the consequences, let alone how to properly control loops with for

and while upon first seeing them. Rather than explore all the ways loops can be used here,
two later chapters, Chapters 22 and 23, are devoted to common patterns of loops found in
practice. By studying these patterns and trying some exercises using these patterns, deeper
understanding of loops should follow. The remainder of this chapter shows alternative ways
of thinking about repetition using analogies and revisiting recursion (the earlier Chapter 14
focused on tail recursion).

1Technically, there is no such thing in practice as an infinite loop, because sooner or later someone will
turn off the power.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Repetition 231

Feedback Control

How do systems, be they engineered systems like aircraft on autopilot or biological systems,
regulate their behavior? The answer is feedback. A simple temperature control system in a
building samples the temperature inside, and if it is too cold, starts up a boiler or furnace. In
contrast to engineered control systems, natural systems have evolved feedback mechanisms.

A classic example of feedback in na-
ture is the relationship between preda-
tor and prey, sometimes shown by sim-
ulation (on the right is a typical simula-
tion by the Lotka-Volterra equations).
As the population of prey (e.g., rab-
bits) increases, the population of the
predator (e.g., foxes) increases due to
the increased food supply. The graph
shows that increase is not immediate,
because it takes time for the predators
to reproduce. What happens is typical
of many feedback systems: the preda-
tor increases beyond the available food
supply, which is dwindling under pres-
sure from the high level of predation.
Eventually, the predator population cannot be sustained and the population falls. Once
this happens to a sufficient degree, the prey can once again rebound. Our takeaway, for pur-
poses of this chapter, is that a characteristic of feedback is a delay, or lag, between control
actions and the system under control.

minval, minind, i = V[0], 0, 0

while i<len(V):

if V[i]<minval:

minval, minind = V[i], i

i = i + 1

Something similar to the lag associated with feedback
can be seen also in a Python for-loop. The loop shown
here assigns minval to be the minimum value of a se-
quence V and also assigns minind to be the index of
this minimum value in V. The loop has an interesting
property when it runs. The body of the loop has three

statements, the last being an increment to variable i. Immediately after Python performs
an increment to i, the next statement will be the test of the while condition, to see whether
or not further iterations are needed. Between finishing the increment to i and testing this
condition, a special property is satisfied: minval is equal to the minimum of the slice V[:i].
This fact is not immediately obvious, so it is worth elaborating a bit. Let P be a symbol rep-
resenting the property that minval equals min(V[i:]). Now consider what happens when
the loop first starts: if minval is not smaller than the next item V[i], then minval is wrong
for property P once i is again incremented—in which case, minval has to be corrected.
Technically, each iteration of the loop might “break” property P , followed by a correction
to repair the situation. The reason the loop works is that P implies minval is the smallest
value in V once i increments up to len(V) (because V[:len(V)] is V itself).

The lag between statements that temporarily disrupt a goal (like property P), followed
by a statement or a block of statements that again establish the goal, resembles the lag
between prey and predator seen in the graph above. It is typical of feedback, and of programs
with loops, that they make progress in discrete, sometimes abrupt steps. Probably over 99%
of programmers never formalize their thinking to realize there is some property like P lurking
behind a loop, however, something like this (technically called an invariant property) is
fundamental to advanced computer science.

To illustrate P concretely, suppose V is the list [9,4,8,2,3]. Below is a table with rows

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

232 A Functional Start to Computing with Python

for the variables that change when the loop runs, plus an extra row for P showing whether
it is satisfactory (✔) or not (✘). The top row is a step number, where we number the two
assignment statements in the loop—we number two steps in each iteration (ignoring the
internal steps Python takes to evaluate conditions for while and if).

step 1 2 3 4 5 6 7 8 9 10
i 0 1 1 2 2 3 3 4 4 5

minval 9 9 4 4 4 4 2 2 2 2
minind 0 0 1 1 1 1 3 3 3 3

P ✘ ✔ ✘ ✔ ✔ ✔ ✘ ✔ ✔ ✔

Let’s look at time step 3, where minval is assigned 4 and i is 1. Right after this step,
condition P is invalidated, since 4 is not the minimum of V[:1] (which has minimum value
9); but after one more step, i becomes 2, and then P is OK. If this kind of reasoning
seems overly detailed, please be assured that software construction more often depends on
pattern matching: after reading Chapters 22–23 and working through exercises there, loop
constructions should become more intuitive.

Engineering disciplines have a more analytic view of feedback, again related to loops.
Recall the flowchart in Figure 11.1, in Chapter 11. The flowchart depicts a loop that accu-
mulates the sum of a list. The diamond shape in the flowchart is effectively the condition of
a while loop. Control engineers often diagram feedback control systems with boxes and ar-
rows representing different organizational units and flow of communication between them.
Figure 19.1 shows a simplified diagram of a control loop (which often have many more
organizational units than just the three shown here).

Sense and Plan

Control

State

Figure 19.1: Simplified control loop.

The control loop of the figure consists of the state, which represents all the variables of
the system to be controlled by feedback. For a building system, the variables might include
temperature and air pressure (flow). The sense and plan block in the diagram reads sensors
that sample some of the state variables; this part of the system then calculates the difference

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Repetition 233

perceived between the sample and where the system should ideally be, in terms of state
variables. The control block then gets signals to turn on heat, fans, and so on. Notice that
the sense and plan component cannot simply change the actual state of the building: it
can only indirectly change it by turning things on and off. This creates a lag and possibly
also overshoots in temperature control. Software regulating communication networks builds
on the model of a control loop. Sensing consists of measuring communication rates, level
of traffic, delay, and other “variables” of the network (whether in fact these are program
variables or not). If traffic is congested in some places, a control action can be to reroute
communication on alternate paths.

What about for and while loops in Python? In software, the values of the variables
constitute the state. While it is true that variables can be changed by assignment, it is
generally not easy or advisable to change all variables in a single line of a program. Unlike
list comprehensions, which appear to instantaneously calculate using all items of a list, for
and while loops reflect the more primitive nature of computing, by handling data a little
at a time, perhaps one item in each iteration. For software, it is this level of detail, namely
that many calculations may be needed to complete an iteration, which introduces something
akin to lag in a control system. For beginners, the confusion arises because each iteration
may write over the state, that is, the state changes by assignments to variables. Thus, the
variables at the start of the loop become “input” to the next iteration, which then “outputs”
new values into these same variables. This is why we can think of loops as feedback. Each
iteration takes values from the previous one, calculates new values, and these are fed into
the next iteration.

Recursion ➪ web

Recursion was introduced in Chapter 14, but for the functional style of computing (perhaps
you skipped that chapter, so this may be the first introduction of the topic). Remarkably, it is
possible to express any computing idea without having any syntax for iteration; without any
for, while, or similar feature, repetition can still be done. Repetition is expressible using
function recursion. Put simply, recursion refers to functions that may contain expressions
wherein they invoke themselves. Upon first glance, this notion seems nonsense. Careful
logical thinkers do not define words in terms of themselves. A dictionary definition of the
noun set, for instance, should not use the word “set” in it. We would reject a definition like

a set is any concept referring to a set-like thing.

The problem is that you have to know what a set is before being able to read this definition.
How can Python allow functions to be self-referential, defining them in terms of them-

selves? Let’s look at an example. On the right, a function for multiply uses multiply

def multiply(x,y):

if y == 0:

return 0

if y == 1:

return x

return (x + multiply(x,y-1))

sometimes to return its result. The idea of the function
is simple: multiplication of integers is just repeated addi-
tion. There are special cases for multiplying by 0 or by 1,
and the function handles those cases. It is the function’s
final statement that is in question. Here is the clever idea
behind this function’s last line: if you want the product
x*y and you know y>1, then you can reason:

x× y = x× (1 + (y − 1)) = x+ x× (y − 1)

This observation is exactly what the last line of multiply expresses. However, to understand
how Python deals with recursion, we need to study an example. The following is the series
of steps that Python takes to evaluate multiply(5,3).

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

234 A Functional Start to Computing with Python

1. multiply(5,3) function application
(x binds to 5, y binds to 3)

2. 5 + multiply(x,y-1) return expression
3. multiply(5,2) evaluation needed

At step 2, the addition cannot be completed without knowing the evaluation of
multiply(5,2), which is the reason for step 3. At such a juncture, Python is stuck. What
it does is to save the current situation in memory, similar to what a human does (or should
do) when interrupted in the midst of doing some activity when the phone rings. Handle the
phone call, and when done, return back to the activity where it was left off. We show the
next steps with an additional level of indenting, plus a star (✰) meaning that there will be
further work when these steps are done.

✰ 4. multiply(5,2) function application
(x binds to 5, y binds to 2)

✰ 5. 5 + multiply(x,y-1) return expression
✰ 6. multiply(5,1) evaluation needed

Again, Python is stuck here. It cannot add up numbers in step 5 without having the evalu-
ation of multiply(5,1). So, once again, Python has to remember exactly where it is stuck,
take a sidetracked path, and do the necessary evaluation.

As the story of evaluation continues, two ✰ symbols are shown before step to indicate
that Python actually has two pending evaluations to complete.

✰ ✰ 7. multiply(5,1) function application
(x binds to 5, y binds to 1)

✰ ✰ 8. y == 1, so return x return expression
✰ ✰ 9. 5 evaluation complete

Finally, Python has finished a function evaluation. Where were we? Oh, yes, the value from
the function evaluation allows the most recent suspended work to continue.

✰ 10. 5 + 5 substituting returned value
✰ 11. 10 evaluation complete

Step 10 is really just going back to step 5 (notice both of these steps have a single
✰), now that the result of multiply(5,1) is known. Step 11 finishes the evaluation of
multiply(5,2), so Python can get back to where it had left off previously at steps 2-3. The
suspended work remaining continues.

12. 5 + 10 substituting returned value
13. 15 evaluation complete

In this way, Python calculates that multiply(5,3) evaluates to 15. This way of working
seems nonintuitive to some people, because humans often make mistakes when interrupted
and having to stop work and get back to it later. However, computers have no trouble doing
the bookkeeping. In most cases, recursion can be just as efficient as using while or for.

for i in range(0,9,2):

print i

Previous Example. One more example is helpful to give
some evidence that recursion can do anything that a for or
while statement could do. Once again, we recall the example
shown to the right. In order to express the same idea using
recursion, a function priRang will be defined. The function has a recursive definition. Below,
the left side shows the Python and the right side shows the output when it is run.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Repetition 235

def priRang(n):

if n < 9:

print n

priRang(n+2)

priRang(0)

i = 8

0

2

4

6

8

The priRang function has one parameter, which it promptly prints, before another function
application. Following the function definition, there are two Python statements. The first
evaluation by Python is for the function application priRang(0). This will bind 0 to n, and
start a similar series of evaluation, temporary suspension of work, and recursive evaluation,
just like the previous example. After printing 8, there will be an evaluation of priRang(10),
for which there is no recursion. The final assignment i = 8 is just to be very exact in
reproducing all the same results as the for statement, since it ends up with i being 8.

If you find recursion to be a natural idea, simple to understand, congratulations. Most
people find this concept strange and not easy to use. For instance, if the function definition
is changed just a bit, reversing the order of two statements:

def priRang(n):

if n < 9:

priRang(n+2)

print n

priRang(0)

i = 8

8

6

4

2

0

The explanation of the reversed order in output is simple. The print statement comes after
the recursive call in the body of the if statement. That means Python will continue to
put aside what it is doing, evaluation of the recursion, and will not even get back to any
print statement until it evaluates priRang(10), which is a dead end as far as recursion is
concerned (at which time the binding n = 8 is in effect).

Terminology Review

Jargon introduced in this chapter includes: block of statements, loop, infinite loop, for loop,
while loop, iteration, and recursion.

Exercises ➪ web

(1) In the code below, determine what should replace “?” to get the printed output shown.

def R():

for c in ?:

print("d"+c+"t")

>>> R()

dat

det

dit

dot

(2) Two statements in the code below have “?” that should be changed so that the script
will print as seen below. How should these statements be changed?

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

236 A Functional Start to Computing with Python

def K(m):

e = ?

while e>1:

print e*e

?

>>> K(5)

25

16

9

4

(3) Something not illustrated in this chapter (discussed later in Chapter 23) is the possi-
bility of putting a loop inside of a loop. What does the following script print?

for term in "large game whole".split():

for suffix in "st ly -size".split():

print(term+suffix)

(4) Here is the printed output from a function gen():

1

1

2

3

2

2

4

6

3

3

6

9

Write a definition of function gen() that has only two print statements. Hint: First
write a function that uses a loop to print 1, 2, 3—then modify the function to have
another loop within the body of the first loop (like problem [3], above) which prints
the other output lines.

(5) The word “iterate” has a larger meaning for the business of software and product
development. Find and read the article “On Language: Iterate,” which appeared in
the New York Times, June 7, 2010 (the language column by Ben Zimmer).

(6) The term “unrolling a loop” means rewriting a loop so that the body of the loop
is repeated manually (typing in the same statement or nearly the same statement
multiple times). Here is a simple loop to print numbers 1–8:

for i in range(1,9):

print(i)

The loop above goes through 8 iterations. Rewrite this as a loop that only goes through
4 iterations, has a body with two print statements, yet prints the same output as the
loop shown above.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Repetition 237

(7) A standard beginner exercise is to show how a mathematical function, such as factorial,
can be computed using the different repetition facilities of a programming language.
The factorial function fact(n) is typically defined by

fact(n) = n · (n− 1) · (n− 2) · · · 3 · 2 · 1

Thus, fact(5) = 5 ·4 ·3 ·2 ·1 = 120. The exercise is to write a Python fact(n) function
that returns the factorial of parameter n.

(a) Use a for loop to calculate factorial. Before the for statement, assign a variable
S = 1; then, within the body of the for loop, use an augmented assignment to
give S a new value in each iteration. When the iteration is done, S will be the
value of the factorial.

(b) Use a while loop to calculate factorial. Before the while loop, assign two vari-
ables:

L, S = range(1,n+1), 1

Within the body of the while loop, use the popmethod to simultaneously extract
an item from L and remove that item from L. Here is an interactive example of
how the pop method works:

>>> D = [9,200,True,5]

>>> x = D.pop()

>>> x

5

>>> D

[9, 200, True]

(c) The recursive technique for computing factorial is based on an alternative math-
ematical definition, which is equivalent to the one shown above:

fact(n) =

{

1 if n < 2
n · fact(n− 1) otherwise

Translating this recursive mathematical to a Python function definition is mostly
straightforward; remember to put the return statements in the definition. During
debugging, it can be helpful to put in some print statements.

✰(8) Write a recursive function whittle(A,i) which returns A[i], where A is a sequence
and i is a number in the range 0<=i<len(A). So that the problem is not trivial (and
to make it interesting), you are only allowed to use 0 and len(A)/2 (or len(A)//2
for Python3) as the values in any index or split expression. To give some idea of how
whittle would work, observe that if A is the string "abcd," then an expression for
whittle(A,2) is "abcd"[len(A)/2:][0]. However, this little "abcd" example is not
general for all values of i and does not show the recursive nature of the problem
(which is important for much longer sequences than four character strings). For the
recursive definition, you need to split A into left and right halves, but use recursion
just on one of the halves.

(9) A beginning programmer wrote the following function, which was intended to print
numbers from a list in two parts, first the even numbers, then the odd numbers. But
the function has a bug. Can you find the bug?

def evenodd(somelist):

evens = odds = []

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

238 A Functional Start to Computing with Python

for item in somelist:

if item%2==0:

evens.append(item)

else:

odds.append(item)

for item in evens:

print item

for item in odds:

print item

✰(10) Suppose a positive number n is given, and the problem is to find nonnegative integers
x and y so that x · 5+ y · 8 == n. This is a kind of search problem, searching through
various alternatives to see what works for a conjectured pair (x, y) of integers. One
way to solve the problem is to use comprehensions. Observe, for example, that we
know x ≤ n/5 and y ≤ n/8, because larger values of x or y would cause any sum to
be larger than n. So, a comprehension like this produces all the possibilities:

[(x,y) for x in range(n/5) for y in range(n/8)

if x*5 + y*8 == n]

Using this list comprehension, Python searches through all possible pairs (x, y). The
exercise here is to use recursion for a somewhat different search strategy. The ob-
servation for the recursive search is this: if x · 5 + y · 8 == n and x > 0, then
(x − 1) · 5 + y · 8 == (n − 5); similarly if y > 0, then x · 5 + (y − 1) · 8 == (n − 8).
The significance of this observation is this: provided there is (recursive) solution to
finding a pair of values (a, b) so that a · 5+ b · 8 == (n− 5), the answer to the original
problems is easy: x = a + 1 and y = b. So, it should not be too difficult to make a
recursive search. Define a function factor(N) that uses recursion to find a pair (x,y)
that are integers making x*5+y*8==N. In your answer, note that for some values of N
there may be no solution: factor(2) should return (None,None) to indicate that no
pair can be found. Thus, a recursive call like factor(N-5)might return (None,None),
the body of factor will need to test for such an outcome from a recursive call.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Interlude: Game Cycle

An early computer game, before the advent of powerful hardware for graphics, was based on
a maze of rooms and passageways between the rooms. This game had a text-based interface
where the player navigated the maze through keyboard commands. This later evolved into
role-playing scenarios, eventually motivating many well-known immersive game experiences.
Here we introduce the game cycle for a generic maze-like game. So long as the game is in
progress, the control algorithm effectively boils down to a while repetition of table lookup.
This turns out to be a deeply significant pattern in computing: the way that nearly all
computer processing units (the CPUs) work is the same, consisting of an endless repetition
of table-lookup operations. Software, too, exploits this pattern under the hood of many
modules and libraries.

The simple map above shows eight rooms with passageways. Three of the rooms have
creatures, just to add some fun to the game. To distinguish rooms, we give them names for
the sake of Python representation: let "NW" for NorthWest be the upper left room; let "N"
for North be the upper center room, and so on. Our goal is not to fully develop a game;
we only show the mechanics of moving from one game situation to another, and how this is
done by table lookup. Such things as game strategy, or how to make it interesting and fun
are more advanced questions.

Before looking at Python code for a game, you may recall from the box “Syntactic
Sugar” in Chapter 11, how a dictionary lookup can substitute for an if statement. What
we do for a game is avoid writing many complicated if–elif statements. Instead, we can
build a table (as a dictionary) of all the game moves and outcomes. Most of the planning
goes into the table, which may simplify the logic of the program.

239

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

240 A Functional Start to Computing with Python

import random

Head,Tail = 1,0

D = {("NW",Head):"N",("N",Head):"NE",
("NE",Head):"E",("E",Head):"SE",

("SE",Head):"S",("S",Head):"SW",

("SW",Head):"W",("W",Head):"NW",

("NW",Tail):"W",("W",Tail):"SW",

("SW",Tail):"S",("S",Tail):"SE",

("SE",Tail):"E",("E",Tail):"NE",

("NE",Tail):"N",("N",Tail):"NW"}
room = "SE" # initial location

while True:

cointoss = random.select([Head,Tail])

room = D[(room,cointoss)]

print "moving to", room

Suppose the game has one player, who
moves by tossing virtual coin. Chapter 28
shows an easy way to simulate coin tossing,
using a random selection function, which we
use here. Let room be a variable that names
the current location of the player, and let D

be a dictionary describing where to move af-
ter a coin toss. The game cycle is the while

loop shown to the right. This is not much of a
game: it never ends, there are no points, and
the player moves around aimlessly by a coin
toss decision. It does show the central point,
that movement is guided by table lookup. The
dictionary D has keys for all possible combi-
nations of coin toss and location. If this script
started and the first three iterations of the while loop got Head, Head, Tail as the values
for cointoss, then the first three locations printed would be S, SW, and S (the dictionary has
been set up for Head to move clockwise around the rooms and Tail to move the opposite
way).

Head,Tail = 1,0

R,L = 1,0

D = {("NW",Head):"N",("N",Head):"NE",
...} # same as before

room = "SE" # initial location

while True:

print "You are in room", room

next = input("Please enter R or L: ")

room = D[(room,next)]

As a first improvement, let’s have the
player decide which way to move, L or R (for
Left and Right), instead of using a simulated
coin toss. To do this, we borrow the technique
of asking a player for keyboard input from the
Python console, described in Chapter 25. In
this revised version of the game, the player is
asked to type which move to make, which then
becomes part of the lookup key in the dictio-
nary. The game is still pointless, because the
player never wins or loses. However, even with-

out an initial map of the rooms, a player could experiment with L and R inputs, interacting
with the program, and discover the names of all the rooms. The flow of data in the game
cycle is depicted in the diagram below: room helps select the next room value.

room input()

(room,?)

D[]

The point of the diagram is that dictionary D behaves like a function with two param-
eters, though represented as a tuple, which is the key for the dictionary lookup. Whenever
we have a function with quite simple logic, for example, returning different values only
depending on various cases for what the arguments are, it is worth considering whether a
table lookup using a dictionary might simplify the programming.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Interlude: Game Cycle 241

skiffen kelbdud roodle

import random

Head,Tail,R,L = 1,0,1,0

D = {("NW",Head):"N",("N",Head):"NE",
...} # same as before

C = {"W":("skiffen",[-30,50]),
"N":("kelbdud",[-50,40]),

"NE":("roodle",[-25,60])}
room,points = "SE",100

while 0<points<200:

print "You are in room", room

if room in C:

print C[room][0], "is in here"

points += random.select(C[room][1])

print "points now:", points

next = input("Please enter R or L: ")

room = D[(room,next)]

print "Game over!"

What about the creatures? Let’s have the
player interact with the creatures and either
gain or lose points at random, and winning or
losing based on the number of points. The dic-
tionary C has keys for rooms where the crea-
tures are, with the associated value being the
creature’s name and list of points to be won
or lost. In this third version, there are two dic-
tionaries, C and D; also, there are two variables
that change as the game proceeds, room and
points. The player types L or R, moves from
place to place, encountering the creatures and
by random selection, the point total shrinks
or grows. The game ends when the number of
points exceeds 200 or goes to zero (or nega-
tive). One can imagine further improvements
to the game. For example, at each turn, the
creatures could randomly move to another room or stay put; more exotic features could
be added, like collecting magic potions or solving puzzles to gain points when meeting a
particular creature. Our purpose here, however, is not to perfect the game, but to extract
the pattern of the basic game cycle and see how it is more broadly useful in computing.

State Machine. The version of the game above has two variables that change during the
game; suppose creatures moved also, then there would be three changing variables; room,
points, and C. It is useful to aggregate all these variables into a single entity called state.
The word “state” is meant to stand for all dynamic status and attribute concepts associated
with the application—the game; the sense of “state” is similar to what one means in phrases
like “state of the economy” or “state of the world.” The aggregation to define state could be
as simple as state = [room, points, C]. Then in the game code, changing some portion
of the state would be by assignment: state[1] += 20 adds 20 points to the player’s point
total. As a further elaboration, we might have multiple players of the game, accomplished
by letting room and point components be lists. Then to add 20 points to player 3’s total, it
would be state[1][3] += 20.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

242 A Functional Start to Computing with Python

D = define tables, constants, etc.
state = define initial state
while notDone(state):

state = nextState(state,D)

The code shown to the left represents a state
machine, which is the essential logic of the game
cycle. A state machine boils down to an itera-
tion that changes the state variable in each cy-
cle of the loop. Two functions mentioned in the
code may be implemented as table lookup, us-

ing dictionaries, and also inject some printing, soliciting input from files or users, invoking
random choice, and so on. The code shows an assignment to change the state, state =

nextState(state,D); however, if state is a mutable type (list or dictionary), this state-
ment would just be “nextState(state,D)” instead, putting the code that changes state
inside the body of nextState.

D = define tables, constants, etc.
state = define initial state object
while not state.done():

state.next(D)

Looking ahead to Chapter 27, where Python
classes and objects are introduced, a better way
to manage state would use methods rather than
functions. The code here shows how a state ob-
ject could be equipped with methods to check
for game termination (the done method) and to
compute the state after one more turn (the next method). Superficially, this seems just a
small syntax change, but there is more involved to setting up classes and objects, explained
in Chapter 27. One advantage to using an object representation is the flexibility of naming
components. It is somewhat nicer to let “state.players” refer to the list of the game’s
players than to use list notation “state[1]” or dictionary notation “state["players"]”—
objects defined appropriately allow named attributes that are easier to remember and make
code more understandable.

➪ web

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Interlude: Game Cycle 243

Game Cycle and Regular Expressions
One of the jewels of computing is the discovery of a fundamental connection be-

tween the state machine way of writing programs and the patterns found in regular
expressions, a topic mentioned in “Regular Expressions” in Chapter 14 and later
in Chapter 27. Python’s re module can search through strings for patterns of char-
acters: re.compile("ab+a") produces a regular expression object, which can be
used to match or search text read from a file. The object that re.compile("ab+a")
returns will match a character string which starts with a, then has one or more
b’s, followed by another a. Examples of this pattern are aba, abba, abbba, and so
on. A state machine that can recognize this pattern is derived from the diagram
below.

1 2 3

"a" "a"

"b"

The circled numbers in the diagram are the states of the state machine. Seen as
a game, the starting point is state 1; to get from state 1 to state 2, an input
character a is needed. Once at state 2, getting an input b leads back to state 2.
To end the game, state 3 is reached from state 2 by reading input character a.
This state machine is implemented in Python by a dictionary D = {(1,"a"):2,
(2,"b"):2, (2,"a"):3}. If a combination of state and input character does not
occur in the dictionary, say (1,"r"), then the pattern ab+a is not matched. With
a little imagination, you can see the relation between a game board of rooms
and creatures, and this abstract diagram representing the ab+a pattern. The state
machine idea serves both to run a game cycle and to recognize a pattern.

The state machine idea has an even wider application in software that controls or
monitors communication, either between machines or between users and machines.
In a crude way, the pattern ab+a might signify the buttons that control a display
panel. The “a” button turns on the power, the “b” button refreshes information
on the panel, and when the “a” button is pressed again, the panel powers off.
It is even possible to put functions in the table used by the state machine and
have these functions called whenever the machine changes state. For example, let
D = {(1,"a"):(2,f), (2,"b"):(2,g), (2,"a"):(3,h)}, where f, g, and h are
functions. Upon looking up D[(1,"a")], the state machine learns not only that 2
is the next state, but that function f is supposed to be called (perhaps f() turns
on the panel’s power).

The idea of using table lookup via the state machine algorithm is quite powerful
for recognizing textual patterns. What re.compile("ab+a") creates could include
a dictionary like D, among other things. For more information about the theory that
connects such things as state machines and textual patterns, you can research the
term deterministic finite automaton online using a search engine. State machines
are so prevalent in software that most compilers and interpreters of computing
languages, including Python, use them to parse the programs we write and decide
whether or not they have syntax errors.

This page intentionally left blankThis page intentionally left blank

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Chapter 20: Documentation

Ink is better than the best memory.
— Chinese proverb

It seems obvious that computing languages would not exist if computers did not exist. Yet
the concept of an algorithm predates computers by at least a thousand years. The idea
of computing is independent of automatic machinery. Even without actual computers, a
number of complicated algorithms were devised to compute numeric results, help construct
buildings, tune musical instruments, and prepare medicinal remedies. Some of these al-
gorithms have iterative or recursive structure and take some explaining to communicate
their details. Thus, even without computers, there is some need to document, or explain
algorithms, the functions they use and define, and the nature of their inputs and outputs.

All computing languages provide syntax so that, along with the instructions and program
statements, some documentation and explanation can be carried along with such things as
function definitions, variable assignments, loops, and other statements. The documentation
is typically just natural language (English, Swahili, German, etc.), and the only syntax
needed in a computing language is a way to avoid confusion between the documentation
and the program statements to be run on a computer.

For some motivation, recall the cryptic C program shown in Chapter 5. In fact, this kind
of inscrutable program can even be written in Python. The program shown below on the
left, by Jeff Preshing1 is (incredibly) a valid Python program. Technically, this program
can be put on two, rather long lines of Python, using tricks of extending a logical line (see
Chapter 30 for more about this). When it runs, it produces the high-resolution image shown
on the right.

_ = (

255,
lambda

V ,B,c
:c and Y(V*V+B,B, c

-1)if(abs(V)<6)else

(2+c-4*abs(V)**-0.4)/i
) ;v, x=1500,1000;C=range(v*x

);import struct;P=struct.pack;M,\
j ='<QIIHHHH',open('M.bmp','wb').write

for X in j('BM'+P(M,v*x*3+26,26,12,v,x,1,24))or C:

i ,Y=_;j(P('BBB',*(lambda T:(T*80+T**9
*i-950*T **99,T*70-880*T**18+701*

T **9 ,T*i**(1-T**45*2)))(sum(
[Y(0,(A%3/3.+X%v+(X/v+

A/3/3.-x/2)/1j)*2.5
/x -2.7,i)**2 for \

A in C

[:9]])
/9)

))

This is not good programming style! Trying to explain or understand such a program
would not be enjoyable for most people. Our goal should be to write software that is un-
derstandable, easy to work with, and to use. (Notice that the text of this program has been
formatted to resemble its output. The term quine, in the lore of computing, refers to a
program that outputs itself.)

1http://preshing.com/20110926/high-resolution-mandlebrot-in-obfuscated-python

245

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

246 A Functional Start to Computing with Python

Comments in Programs

The Python language uses the “#” symbol as a mechanism to add non-Python text to
scripts, functions, modules, and so on. Anywhere you like, you can add some text to a line
of Python, provided it is preceded by the #- character, and Python will ignore what follows
on that line. Here is an interactive example:

>>> 2 + 2 == 4 # wouldn't it be nice to get 5 ?

True

Python ignored the text starting with #, as if it were invisible. There really is no reason
to add text in an interactive session. However, in a script, you can use such text, called a
program comment, as a note to yourself, so that you remember things later. For instance,
consider this function:

def product(X):

probably this function should first

have some validation that X is a list of numbers

p = 1.0

for a in X:

p *= a

return p

The extra lines beginning with # will be ignored by Python, but are notes by the author of
the product function, admitting that the function has a potential bug: it will have errors
if the parameter X does not represent a list of numbers. Perhaps the author will edit the
function someday and change it to deal with cases where X is not a list of numbers.

Docstrings

One unusual feature of Python, Java, C, and similar languages is that a line can have an
expression that will be evaluated, but then ignored. For example, we can write the product
function this way:

def product(X):

p = 1.0

40 + len("the right decision".split())

for a in X:

p *= a

return p

What is that line starting with 40 doing? Python will evaluate it (calculating 43), but then
there is no variable assigned, no return statement, so some extra work is being done but
for no purpose. Python allows this—there is no error generated. Similarly, we could rewrite
product this way:

def product(X):

"product(X) computes X[0]*X[1]*...*X[len(X)-1]"

p = 1.0

for a in X:

p *= a

return p

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Documentation 247

In this version, the first line is evaluated by Python (it is just a string), but then nothing
is done with the result. However, this is a convenient trick for making a comment by a
programmer. More often, it is done with long string notation.

def product(X):

'''the product(X) function computes

X[0]*X[1]*...*X[k]

where k is len(X). Special cases:

if len(X) is 0, product(X) -> 1.0

if len(X) is 1, product(X) is X[0]

'''

p = 1.0

for a in X:

p *= a

return p

Now the comment is documentation, explaining to anyone who might want to use the
product function what it is supposed to do. Python has special terminology for a string
put as the first line in the body of a function: it is called the function’s docstring. Suppose
we put product’s definition in a file, say stuff.py, and start an interactive session in the
same directory as the file. Consider this example:

>>> import stuff

>>> print(stuff.product.__doc__)

the product(X) function computes

X[0]*X[1]*...*X[k]

where k is len(X). Special cases:

if len(X) is 0, product(X) -> 1.0

if len(X) is 1, product(X) is X[0]

>>>

Yes, the unusual syntax is intentional: the underscore characters reveal how Python uses
special names for certain features of its infrastructure. The name “__doc__” is used like
a variable to refer to a function’s docstring. Above, the first line of the example imports
stuff.py as a module (see Chapter 18). The second line prints the docstring of the product
function in the module. It could be that stuff.py has other functions: each of these func-
tions can have its own docstring, which can be printed or manipulated like any other string.
In addition, if the first line of a module is a string (usually a long string), it can be a
comment covering the entire module. For instance, stuff.py might start like this:

'''

The stuff module is something I wrote to

have a product function, a streverse function,

and a stdev function. See their docstrings

for further info.

'''

def product(X):

'''the product(X) function computes

X[0]*X[1]*...*X[k]

...

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

248 A Functional Start to Computing with Python

With this as background, an interactive session using stuff.py might be:

>>> import stuff

>>> print(stuff.__doc__)

The stuff module is something I wrote to

have a product function, a streverse function,

and a stdev function. See their docstrings

for further info.

>>>

Interactive Help

In an interactive session, you can use the built-in help function to see docstrings (which
was introduced in Chapter 18). Example:

>>> import stuff

>>> help(stuff)

NAME

stuff

FILE

/home/user/Desktop/Demo/stuff.py

DESCRIPTION

The stuff module is something I wrote to

have a product function, a streverse function,

...

Much more is printed, showing all the functions, their docstrings, and more. Most all Python
modules have docstrings and can be explored using the help function.

Motivations for Documentation

Why add comments to Python programs? There is no right answer to this question. In
fact, there is (sometimes spirited) debate about what comments should and should not be
included in code. Overall, the rationale for comments—which are targeted to a human au-
dience rather than a compiler or the computer that runs the program—is that programs
should be made understandable for other programmers and even for the authors of the pro-
grams. This issue of making programs understandable to others can be crucial for effective
team software development. Most software has to be changed in response to user demands,
sometimes long after the software was first written. Trying to figure out how programs work
can be quite frustrating without some guide or hints on how decisions were made during
the software development.

Comments might help, and might hurt understanding of a program. Often, the best way
to make a program understandable is not with the comments, but rather by structuring it
to be simple. If the functions are simple and straightforward, if there are no “tricks” in how
it manipulates types, methods, variables, and other syntactic elements, then it is hopefully
easier to understand. Here follows a list of the conventional reasons for having comments.

1. Remembrances, notes to self: The nature of these comments is to jog the memory of
the author. Typical are statements about future plans, limitations, or explanations
of why some code was written, why an earlier version failed, and perhaps even links
(http references) to further documents.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Documentation 249

2. Notes to coworkers: In a team, these notes help others understand parts of the code
they did not author. Also, when one person changes code written by another team
member, it can be helpful to point out where and why the change(s) were made. In a
larger organization, some of these comments might also refer to other software written
by other teams, refer to organizational documents, mission statements, and so forth.

3. Explanation of technique: Perhaps a function or a family of functions implement some
sophisticated mechanism that is not easy to understand from the program statements
alone. Then, it can be helpful to explain in English what is being done, what is
the basic approach, and how it was carried out in the actual program. This type of
comment could be useful for students submitting homework, in case the program is
incomplete.

4. History of development: If you look at most industrial strength software, including
open-source software, there is usually some record of how the software was developed,
which features were added (including date, authorship, testing details) as new versions
of the software were built up over time. Though much of the history of development
is typically maintained in databases or conventional versioning systems, comments
are valuable in programs because they place the log at the location of where things
changed.

5. Intellectual property claims, legal disclaimers, organizational standard statements.
Virtually all distributed software has some kind of standard language in comments
to claim copyright or to (attempt) claims about liability, something like a EULA
(End User License Agreement); some military or government software might have
statements about the level of confidentiality.

6. Credits, citations, and attributions: If the author(s) copied ideas from someplace, then
there may be thanks given, or a reference to an article, or a link to where the ideas
originate. This is not only polite, but can be a valuable way to track down a reference
that more fully explains things (like a Wikipedia article). Another example of this is
network software that uses a standard protocol documented in some official repository,
where there is full, formal specification of the ideas.

7. User documentation: The purpose of some software is to provide a library of functions,
subroutines, procedures, and methods to other programmers. What is needed for the
users of such software is not the full understanding of how the functions work. It is
likely enough to understand the interfaces so that the software will be usable. As an
example, it might be that a module provides some functions to display a map, allowing
for the map to be scaled, colored, be annotated, and to merge in some online data
searches on objects included in the map. For this, a user does not need to know all the
details: what the user wants is to know how to “tune” the map, turning the knobs and
controls on the map under application control. How can the user know this? Perhaps
the docstring can explain parameters to functions, can explain the purpose of each
function, and so on. While it can be argued that such documentation should belong
in a separate user manual, it is traditional to have some level of this documentation
in comments, especially during software development.

Yet more items could well be added to the list above. The main takeaway from seeing
this list is that there are many reasons for having comments and several different readers
(audiences) for the comments in a program. In the old days, it could have been said that
programming languages were “write-only” languages (because nobody ever read what is in
a program, they only run it on the computer). But we can see now that it is useful to add
comments to programs.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

250 A Functional Start to Computing with Python

Cruft, Clarity, and Style

Above, it was mentioned that comments can actually hurt the understanding of a program.
This is usually because what the comments state is at odds with what the program actually
does or expects for input. One source of such bad comments is cruft. The term “cruft”
is often experienced visiting Web pages. On a Web page, there can be a link that either
leads nowhere or leads to an errant Web page. Usually this is because, over time, Web
pages change yet the links to them do not change: these are crufty links. Similarly, when a
program has been documented with comments, they can initially be accurate descriptions
of the logic of the functions and variables. Later, when a program is modified to fix bugs,
make it more efficient, add new features, and so forth, the old comments might be left in the
code. The old comments thereby become false statements: they are cruft in the program.

Clarity of Expression

Adding comments may help others understand how a function, module, or script works, but
there are other practical steps outside of comments to improve code readability. The issue
of making code clear to others is particularly important when organizations use teams of
developers who share in the creating and maintenance of software. When one person is not
around and a coworker has to take over the responsibility for some component of a system,
documentation and readability are crucial. What can one do to make life easier for others
working with program code?

1. Spacing: A few blank lines, keeping lines short, indenting blocks of code (Python
allows you to indent by a single space, but further indenting can make things more
readable).

2. Limited nesting: Python and other programming languages allow for arbitrary nest-
ing. Hence, one can write if-statements within if-statements within yet other if-
statements, and so on, making the logic quite complicated. Often, just placing code
in a new function and describing that function with comments can simplify the ap-
pearance. Putting some limits on the degree of nesting (of if, of for, of expressions)
relieves some mental load for the reader; similarly, limiting the number of statements
in a function can structure the program to make it simpler.

3. Avoid tricky expressions. The following is legal Python code, but not easy to under-
stand:

if (a<b)<=False:

One should avoid tricky use of expressions, even if they work.

4. Choose descriptive, memorable variable names. Here are examples of such names:

VecTotal, Mean, TabControl = 0.0, 0.0, ''

Here are some poor choices:

II1ILILIL = 2.5

I1IIILILL = 0.0

LastYearOveralProjectdQuartrlyEarnings = ''

There really is no “right way” to name variables. Some famous software gurus have,
from time to time, expressed their opinions on guidelines for variable names. One well-
known discipline of naming is camel case (which you can look up on any Web search

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Documentation 251

engine); Charles Simonyi promoted the so-called “Hungarian notation” for variable
naming.

The Pass Statement

def HandleInput(line,D):

if line.startswith(">"):

pass # store line into D

else:

return "invalid line"

It can be helpful to document programs
even before they are entirely written. Your
plans and intentions for functions can be set
down early, so that each time you return
to the implementation task, remembering
what needs to be done is easy. One Python
statement that can be handy for this is the pass statement. The pass statement does
nothing, though it is technically not a comment. A reason for using pass is that Python
does require at least some valid statement for each indented block, whether for a function
definition, an if, or other similar situations. In the example seen here, the intent of the
programmer was to write code that obtained information from the line parameter, storing
that into a dictionary D; at present, the code is missing, though the function HandleInput

could be tested for invalid lines, since there is a statement (just pass) associated with the
case of a valid line. Later chapters introduce other situations where it is useful to have the
pass statement.

Assertions

Although Python ignores comments, there is a special statement in Python and most mod-
ern languages that is like a comment, but does influence program behavior. The assert

statement causes an error to arise if a particular condition—a condition invented by the
author of the function or program—is violated. Suppose there is a function product(X)

that is supposed to calculate the product of a list of integers. The author uses the assert

statement to declare that the input to the function, parameter X, should be a nonempty list
of integers, as follows:

def product(X):

assert type(X)==list and len(X)>0

r = 1.0

for t in X:

assert type(t)==int

r *= t

return r

Above, the assert is like a technical comment: the first assert is a requirement that X

should be a list and that it should have at least one item in it. The assert in the body
of the loop states the requirement that each item in the list should be an integer. When
the product function is used later, in some script or other function, Python will check the
conditions given in these assert statements; if the conditions are not satisfied by the data,
then Python will halt the program and generate an error.

Style

Master programmers (especially very opinionated ones) develop their own style preferences
for how many comments a program should have, what should be in the comments, and so
on. Few of these people agree on style preferences. The style guidelines expressed by Guido
van Rossum, the inventor of Python, are described in the document found via this link:

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

252 A Functional Start to Computing with Python

http://www.python.org/dev/peps/pep-0008/ (search for PEP 8 Style Guide
for Python Code if this link does not work)

The list of style guidelines is extensive. A few gems from this list are:

• Comments that contradict the code are worse than no comments. Always make a
priority of keeping the comments up-to-date when the code changes!

• Comments should be complete sentences. If a comment is a phrase or sentence, its
first word should be capitalized, unless it is an identifier that begins with a lowercase
letter (never alter the case of identifiers!).

• Use inline comments sparingly. An inline comment is a comment on the same line
as a statement. Inline comments should be separated by at least two spaces from
the statement. They should start with a # and a single space. Inline comments are
unnecessary and in fact distracting if they state the obvious. Do not do this:

x = x + 1 # Increment x

But sometimes, this is useful:

x = x + 1 # Compensate for border

Formalized Comments

The syntax for comments was originally invented for human readers: Python ignores the
text inside of comments. Later, some software developers started adding special formatting
conventions to their comments. For example, one might see this in a comment:

The second parameter X to this function must be

For anyone familiar with HTML, the language for marking up Web pages, this may look
familiar. The comment is using HTML to make bold the text between “” and “.”
After adding these extra formatting specifiers to the text, developers wrote other programs
that extracted the comments from scripts and modules (ignoring the Python code) and
made them into Web pages. This makes for some nice online documentation of programs,
however, it burdens the programmer with writing fancy HTML to document the code.

Pseudocode

Pseudocode is any high-level description of a program or algorithm using human-readable
language, but put in a format that approximates how some programming language might
appear. Pseudocode for a sort function might be something like this:

sort(X) function (X is a list of ints)

make a new list L, initially empty

make a copy of X, call it Y

while Y has items,

move smallest item in Y to L,

removing it from Y

finished result is in L

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Documentation 253

Many times textbooks describe algorithms with pseudocode, and software developers may
write pseudocode of programs on whiteboards in meetings, during discussions. After plan-
ning sessions, the pseudocode and other notes can become comments included in the finished
programs. It is good practice to begin your own work by writing pseudocode.

Keep in mind that the intent of pseudocode is to convey the technical ideas of an
algorithm or program, without being constrained by the exact syntax. The goal is to com-
municate the idea to another team member, or even to yourself (or your instructor). You
can be somewhat free from the language details. After the pseudocode looks reasonably
complete and detailed, you can convert it into actual Python statements.

Terminology Review

Jargon introduced in this chapter includes: program comments, docstrings, documentation,
cruft, assertions (and the assert statement), pseudocode.

Exercises

All but the last exercise here ask you to look at pseudocode and translate it into working
Python code. This is similar to “Exercises: Unit Testing and Online Supplement” after
Chapter 10, except that here the idea of the solution is given to you. If problem solving in
Python does not come naturally, translating pseudocode can be a useful exercise. Another
similar kind of exercise for beginners is to take working Python functions and modify them
to add new features or change some aspect of their behavior. Generally, these exercises
depend on knowing more about loops (and in some cases, using input/output) than has
been shown in previous chapters. So it is best to first learn material from Chapters 22–25
before solving these problems.

>>> plusrev([1,2,3],[10,20,30])

[31, 22, 13]

>>> plusrev("one two three four".split(),

"1 2 3 4".split())

["one4", "two3", "three2", "four1"]

(1) This first problem has quite detailed
pseudocode; usually pseudocode describes
problem solving with higher-level concepts.
Write a function plusrev(E,F) that item-
wise concatenates sequence E with the re-
verse of sequence F. Two examples are seen
to the right. Your implementation of plusrev(E,F) should correspond to the pseudocode
sketched by the numbered list here.

➀ Assert that parameters E and F have the same type as each other.

➁ Assert that E and F have the same length.

➂ Let t be the length of E.

➃ Setting up the accumulation pattern, let R be the empty list.

➄ Let i iterate from zero up to t-1, with the body of the loop doing the following: stick
on to the right end of R the “+” of the i-th item of E and the t-(i+1)-th item of F.
(Maybe another idea is to use negative indexing on F; do whatever is easier.)

➅ At end of loop, do not forget to return R.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

254 A Functional Start to Computing with Python

(2) A function is needed that “cleans up” a dictionary by removing key-value items where
the value is None, while leaving all other items alone. This function, cleanone(D), thus has
to modify dictionary D. The function does not need to return anything, just change D by
possibly removing some items.

➀ Let K be an empty list.

➁ In an accumulation loop, go through D and find each item which has None as the value,
putting the key into the list K.

➂ Finally, iterate through K, removing whatever item of D has the key listed in K.

>>> merge([29,58,61,82],[7,45,49,58,90,93])

[7, 29, 45, 49, 58, 58, 61, 82, 90, 93]

(3) Write a function merge(A,B) that
merges two sorted lists into a single list.
How merge should work is suggested by the
example on the right. Pseudocode for merge
follows.

• Let i and j be variables that are respectively used to go through index values for the
two input lists A and B. Initially, let both of these variables be zero.

• Let C be a variable to be returned when the function is done; initially let C be zero.

• Repeat the following steps until C is returned:

➀ If i is as big as the number of items in A, append to C all items of B starting
from index j, and then return C.

➁ If j is as big as the number of items in B, append to C all of A starting from
index i, and then return C.

➂ Otherwise, let m be the minimum of the i-th item of A and the j-th item of B.

➃ If m came from A, add one to i and concatenate m onto C.

➄ Else, m came from B; so add one to j and concatenate m onto C.

X =





100 200 300
5 10 15
9 90 900





(4) Write diag(X,j) that returns a list of the j-
th “diagonal” of a square table. A square table, or
square matrix, has the same number of rows and
columns. A three-row, three-column square matrix
of numbers is on the right. A diagonal goes through
items along a slanted row. For this example, diagonal
0 is [9], diagonal 1 is [5, 90], diagonal 2 is [100, 10, 900], diagonal 3 is [200, 15],
and diagonal 4 is [300].

➀ Let n be the number of rows of X.

➁ Assert that X has the same number of rows and columns.

➂ Assert that j is at least zero and at most 2*(n-1).

➃ If j specifies a diagonal starting along the first column compute the following:

• let k be the row number to start listing the diagonal (this would be n-1 if j is
zero, etc.).

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Documentation 255

• let p be the number of items in the diagonal j; there is a simple formula to
calculate this; figure that out on some scratch paper first.

➄ Else, j specifies a diagonal starting on the top row, but not at the first column; then
calculate the following:

• let k be the column number in the first row to start listing the diagonal (this
would be 1 if j is n, etc.).

• let p be the number of items in the diagonal j; there is another simple formula
to calculate this; figure that out on some scratch paper first.

➅ For each of the two above cases, the list to return can be stated as a list comprehension,
using k, p, and double indexing (like X[?][??] by putting in the right things for the
question marks).

(5) At an interactive Python session, try the following:

import this

print (this.s)

Can you figure out the result?

This page intentionally left blankThis page intentionally left blank

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Chapter 21: Debugging

Confidence is what you have before you understand the problem.
— Woody Allen

Mistakes are an inevitable and practical part of using computer languages. Some bugs are
syntax errors, reported by Python even before it runs the program. Others may only show up
when a combination of input values drives the program to go through a particular sequence
of statements. This chapter surveys some of the standard methods and tools used to track
down bugs. The novel Anna Karenina by Tolstoy begins with “Happy families are all alike;
every unhappy family is unhappy in its own way.” So it seems also with incorrect programs.
There are myriad ways a program can fail. Moreover, a program can have numerous flaws,
such that fixing one eventually reveals another.

Why is designing software difficult, and why is it that debugging cannot be fully au-
tomatic? Fully capable languages allow for programming any kind of behavior. It is not
hard to write a program that counts 1, 2, 3, ..., 8927105, 8927107, ...—it counts
perfectly until reaching a certain number, then skips the next number. Software can do
crazy things, and computing systems cannot distinguish between what is correct and what
is considered to be a bug, unless we go to considerable effort to specify very precisely and
in full detail the difference between correct and incorrect behavior. More often, identifying
a bug is a case of “I know one when I see one.” Debugging, then, consists of replaying a
behavior and searching for the errant code.

Kinds of Bugs

Terminology distinguishing bugs is helpful to say what techniques are needed to search for
them. Sometimes the classification is uncertain because, when a bug is observed, all the
circumstances may not be known without further tests.

257

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

258 A Functional Start to Computing with Python

Crashes. The easiest to identify are bugs that stop a program with an error message.
Figure 21.1 shows typical traceback from running a Python script that has a bug. Only
the last two lines relate directly to the error: the kind of error is IndexError and the line
number in the script is shown. The other lines indicate that the error was within a nesting
of evaluations; Chapter 26 explains how errors in Python “percolate” up through pending
function evaluations. The traceback messages in Figure 21.1 indicate the sequence of events
leading up to the crash:

print reportgen(...) → m = topmonth(...) → crash in sorted(...)

Here, the main thing of interest is where the bug happened, on line 141 of the script, an
error raised by sorted. It takes a bit of practice getting used to traceback messages, and
it helps to use an editor that numbers the lines of a script (so you can see which lines the
traceback messages refer to).

With luck, finding the line of the script where the program crashed is enough to figure
out the cause of a bug.

Traceback (most recent call last):

File "monscan.py", line 202, in <module>

print reportgen("3quarter.txt") during evaluation of reportgen()

File "monscan.py", line 87, in reportgen

m = topmonth(VWeeks,Total) evaluating topmonth()

File "monscan.py", line 141, in topmonth

R = sorted(T,key=itemgetter(8),reverse=True) error is in sorted()
IndexError: tuple index out of range

Figure 21.1: Traceback report of an error.

Traceback error messages are not always enough to diagnose a bug. It can be that a
program gets a ZeroDivisionError, but when you look at the program, the reason why
one of the numbers was zero is not obvious. Sometimes, when a program crashes, you need
to see how the condition triggering the crash came to be. Debugging a program can be like
crime scene investigation, where the causes that lead to the actual error need some detective
work. Later in this chapter we see some methods for tracking down bugs.

Repeatable Errors. Ideally, all bugs are repeatable on demand. The worst situation for
finding bugs is an unrepeatable error. For example, suppose you have a Web server that
crashes very rarely, and only when a particular user and browser combination connects
to the server. If we do not know who is the user and what the user did, we might see
messages for the crash, but neither understand the cause nor have the ability to recreate
the bug and devise experiments to track it down. Fortunately for beginners, nearly all errors
are repeatable. The techniques described in this chapter generally presume that bugs are
repeatable.

Incorrect Results. Even programs that do not crash can have bugs. A programmay have
an infinite loop—it would run forever unless we stop it. Other kinds of incorrect programs
finish and write output, but the results might be nonsense. Beyond these examples, software
used for interactive graphics or networking can misbehave in too many ways to enumerate.
While there is no fully comprehensive way to identify bugs in programs relative to how we
expect them to behave, this is more often a shortcoming of the way we humans describe (or
fail to describe) our expectations. Later in the chapter we hint at computing research areas
that address the problem of verifying and validating software.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Debugging 259

Advanced Bug Types

Unrepeatable bugs are rare in commonplace programs. The situation of a bug
that is not easily reproduced is usually due to timing of parallel or concurrent
computing (an unlikely specialty area for beginners to be using).
Heisenbugs are oddities in the theory of debugging. A bug is called a Heisenbug

if it disappears when you try to debug it: attempts to use debugging tools, adding
extra statements to trace execution, or other changes that are normally helpful
to track down bugs do not work for Heisenbugs. Fortunately, such bugs are very
uncommon.

Methods of Debugging

Two metaphors motivate the methods for tracking down bugs. First, it is a process of search,
so general ideas about searching can be helpful in locating problems. Second, hunches are
sometimes shortcuts in the search. The search metaphor motivates “binary search” in de-
bugging, explained below. The hunch metaphor can be more elegantly called abductive
reasoning (this is what Sherlock Holmes used), which consists of making a hypothesis about
the cause of a bug, and then devising experiments to reject or accept the hypothesis. De-
bugging is usually a combination of these metaphors.

Tracing Execution

Since a bug is a deviation from expected program behavior, it is sensible to have tools
that examine behavior. Considering that program statements might run at the rate of well
over a million per second, we have two alternatives: either slow down the rate of Python’s
statement evaluation so that we can watch it a step at a time, or record the evaluation
somehow to a log of events for later scrutiny. Both of these alternatives are valuable.

Step-Through Debuggers. Some Integrated Development Environments (IDEs) have
debuggers that let you control the rate of statement evaluation. Typical options for de-
buggers are single-step evaluations controlled interactively, by clicking a button, possibly
allowing you to see variable values with each (next) statement that runs. This can become
tedious, so debuggers may also have a breakpoint facility. The idea is to mark one or more
program statements as “breakpoints,” then launch the program to run at normal speed until
a breakpoint is reached; then the program stops, allowing interactive inspection of variables
and resumption of execution.

Figure 21.2 shows an example of stepping through a program, but without breakpoints.
On the left, the program is shown with the next line to be evaluated shaded. On the right
of the figure, values for variables are shown. Unfortunately, standard Python does not have
a graphical debugger; one has to find an IDE or other interactive tool elsewhere in the
Python software world for this facility. Python’s standard library does have an interactive
debugger, the pdb module. However, the interface to pdb is text-based and not so intuitive
for beginners. At the end of the chapter, we look at pdb; we consider first alternative ways
to inspect program behavior.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

260 A Functional Start to Computing with Python

Figure 21.2: Stepping through a program.

def tempis(T):

n = len(T)

R = n*[None]

for i in range(n):

t = T[i]

if t<10:

R[i] = "cold"

elif 10<t<20:

R[i] = "warm"

elif 20<t<100:

R[i] = "hot"

return R

V = [15,29,72,5,20,22]

W = ",".join(tempis(V))

print W

Papering Over. The script shown to the left
(the same as shown in Figure 21.2) consists of
a function and a small test of the function. The
function tempis(T) is supposed to take a list of
temperature values and return a list classifying
them as cold, warm, or hot. To test the function,
the script assigns W to be a comma-separated
string of temperature classifications for a sample
list of numbers. When it runs, the script crashes
with a TypeError, where Python complains that
instead of a list of strings, which join expects,
the list given to join on the assignment to W

had a None value. To make a point, let’s suppose
an inexperienced programmer ran the script and

saw the error message. The programmer might first think, how can I eliminate the error?
One idea is “papering over” the error, which is to make the error go away by changing the
script, hoping that fixes the bug.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Debugging 261

def tempis(T):

n = len(T)

R = n*[""]

for i in range(n):

t = T[i]

if t<10:

R[i] = "cold"

elif 10<t<20:

R[i] = "warm"

elif 20<t<100:

R[i] = "hot"

return R

V = [15,29,72,5,20,22]

W = ",".join(tempis(V))

print W p

Code on the right shows how the programmer
attempted to fix the bug. After noticing that the
join failed because of a None value, and that the
return R statement at the end of tempis(T)

might include a None because R is initially cre-
ated as a list of n None values, the obvious fix
is to change the third line of the script so that
R is initially a list of empty strings. That way,
no matter what tempis(T) returns, the join of
the resulting list will work, because everything
in R will be a string. What does the script do af-
ter this change? The printed output of the script
is warm,hot,hot,cold,,hot. Although the new
script does not crash, the output is not correct.
It is not enough simply to prevent a crash—that is like treating a symptom rather than
finding a cure. In fact, a crash is preferable to incorrect output in many situations, because
it makes the existence of a bug obvious.

Visibility through Printing. Instead of trying to paper over the bug, it is better to
understand the root cause of the error. The trouble is, with a behavior such as a running
program, the error can be detected long after the initial cause leading to the crash. Though
a step-through debugger might be nice to study the program behavior leading up to the
error, we can also use simple print statements to give us the visibility needed for debugging.
Figure 21.3 shows another modification to the tempis(T) function, one that has an extra
print statement inserted. The code is shown on the left in Figure 21.3, with corresponding
output shown on the right.

def tempis(T):

n = len(T)

R = n*[None]

for i in range(n):

t = T[i]

if t<10:

R[i] = "cold"

elif 10<t<20:

R[i] = "warm"

elif 20<t<100:

R[i] = "hot"

print "**", T[i], R[i]

return R

V = [15,29,72,5,20,22]

W = ','.join(tempis(V))

print W

** 15 warm

** 29 hot

** 72 hot

** 5 cold

** 20 None

** 22 hot

Traceback (most recent call last):

File "bug01.py", line 15, in <module>

W = ','.join(tempis(V))

TypeError: sequence item 4:

expected string, NoneType found

Figure 21.3: After adding a print statement for debugging.

The print statement is the last line in the body of the for loop of tempis. It prints
“**” to make it obvious this printing is only for debugging; once the bug is fixed, any extra
debugging print statements will be removed (or converted into comments). Running this
modified script makes it clear just where the None value originates: the value 20 is not
classified as either warm, hot, or cold. The crash still occurs, but seeing the values of T and
R at each iteration is enough to understand the bug. One of the elif conditions should
be changed, either 10<t<=20 or 20<=t<100 will classify 20. The correct choice is up to the
application needs for temperature classification.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

262 A Functional Start to Computing with Python

Binary Search. Adding temporary print statements to debug a program can be very
useful, but it takes some experience to do this efficiently. Here are a few tips: (i) it can
help to add more than one debugging print statement to give more visibility into buggy
behavior; (ii) if you have more than one debugging print in a program, start each print
with some different string (e.g., "**", "==", "++", etc.) to make it clear when you look at
the output which print statement is responsible for the output; (iii) if there are complex
expressions in the code, such as R.split().index(T[f(j)]), then consider breaking up
the expression into several statements that assign intermediate values to variables that can
be printed (to make them visible in debugging runs); (iv) if you have no hypothesis on
where the bug might be, use binary search to find the problem. The idea of binary search
is simple: if there is a single bug, then it is either in the first half or the second half of the
program. Therefore, try putting a print statement about halfway through the code and run
the program. If the resulting output indicates there is some problem with variables, then
the bug is in the first half of the program—then repeat this debugging by putting a print
statement somewhere near quarter-way in the code. However, if no problem is indicated
with the print halfway through, try moving the print to about the three-quarters point in
the code and retry. Binary search is faster than linear search, which is to move a debugging
print one statement at a time in each retry of the program. Of course, in practice, the idea
of binary search or linear search must be adapted to the program structure, taking into
account the functions, loops, and expressions.

Logging. Tracing program execution by adding debugging print statements is useful not
only for programs that crash, but also for software that does not crash and has incorrect
behavior. Particularly for programs that do not crash, there are situations where a standard
print statement cannot be used. In certain environments, such a graphical user interfaces
(Chapter 29) or some kinds of network programs, Python that is called by a Web server
to handle a request from a browser, and even some IDEs prevent viewing the output of
print statements as a program runs. Two ideas for overcoming such a limitation on using
print are logging debugging output to files or modifying the print statements to send the
output somewhere other than to the console. For logging debugging output, Python has a
logging module; details on using that are beyond the scope of this book. As to redirecting
the output from a print statement, Chapter 25 explains how this can be done. Another idea
can be to use Python’s file and writing features, also explained in Chapter 25, to record
values into a file for debugging.

Assertions and Testing

Whereas crashes (program termination with an error message) makes it clear that a bug
may exist, incorrect behavior is a “silent” bug. Silent bugs, or latent bugs (which may only
show up in rare cases of input), are not only challenges for writing programs, they are
dangerous for improving and maintaining software. With each new version of a software
system, a new feature added to a program may introduce errors in older, existing features.
The suggestion of many software professionals, to meet such challenges, is (i) to ensure
that incorrect behavior results in a crash (some kind of identifiable error like IndexError),
and (ii) to create a test suite of sample inputs to the functions in a program to test their
behaviors. Chapter 20 introduces the assert statement, which provides what is needed for
(i); the unit testing facility explained in “Test Suites” (“Exercises: Unit Testing and Online
Supplement” after Chapter 10) is one of Python’s facilities addressing (ii).

An assert statement can assist debugging by converting incorrect behavior into a
crash. If some argument x is supposed to be a nonempty list, then the statement assert

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Debugging 263

type(x)==list and len(x)>0will raise an AssertionError if x does not satisfy the stated
property. An advantage of using assert over debugging print statements is that the assert
can remain in a program even after debugging is finished, whereas print statements for de-
bugging are not useful (and become annoying) after the program is debugged. Later, if the
program is changed to add new features, an assert statement will continue to check that
variables or arguments satisfy the assert conditions.

The unit testing facility described “Exercises: Unit Testing and Online Supplement”
after Chapter 10, is most useful when debugging modules. The unit tests are only comments,
and are not used, unless the module is run as a script; when the module is imported, the
unit testing is skipped. Each time a suite of modules is changed to add new features in
a software development cycle, the unit tests can be rerun to validate that modules still
satisfy all the tests. This policy of verifying that software continues to satisfy a test suite
is called regression testing. Use of regression testing can accelerate the detection of bugs in
software development. Python cannot currently generate the unit tests automatically; it is
up to programmers to write the unit test cases in ways that hopefully stress test or cover
the edge/corner cases of how functions can be called, in order to increase the likelihood of
finding any bugs.

Using pdb

import pdb

def tempis(T):

n = len(T)

R = n*[None]

for i in range(n):

t = T[i]

if t<10:

R[i] = "cold"

elif 10<t<20:

R[i] = "warm"

elif 20<t<100:

R[i] = "hot"

if R[i] == None:

pdb.set trace()

return R

V = [15,29,72,5,20,22]

W = ",".join(tempis(V))

print W

Python’s pdb module is a text-based, interactive debugger.
The idea is to start a script, usually at the command line,
and wait for the script to pause at a breakpoint. The first
breakpoint occurs after the statement pdb.set trace()

runs. The code to the left shows the example from earlier
in the chapter, modified to put the breakpoint when R[i]

is None at the end of the for-loop iteration. Presumably, a
programmer put this breakpoint in because of seeing the er-
ror in the join. A transcript of running the modified script
is shown below. The shaded areas are the parts where a
programmer interacts with pdb when the script runs. The
breakpoint is reported by “temptest.py(5)” to occur on
line 5 of the script. The programmer is then prompted to
enter some pdb command—the prompts are the “(PDB)”
lines. The programmer typed an interactive print state-
ment to display the current values of i, R[i], and T[i].
Here, the programmer sees that the error is likely associ-

ated with 20 as the value of T[i]. Normally, inspecting the variables at the breakpoint is
enough to understand the bug, from which the programmer can change the program, fix
the bug, or try another experiment. However, pdb has other commands (see Python doc-
umentation for the full set of pdb commands). For example, the programmer could enter
the command next to continue the script’s next line. By repeatedly entering next (abbre-
viated as n), the programmer can watch the script a line at a time. At any point, the print
statement can be entered to view values of variables.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

264 A Functional Start to Computing with Python

> python temptest.py start script
> temptest.py(5)tempis()

-> for i in range(n):

(Pdb) print i, R[i], T[i]
breakpoint—enter command

4 None 20

(Pdb) R[i] = "zzz" make R[4] different from None

(Pdb) clear
tell pdb to finish scriptClear all breaks? y

(Pdb) c

warm,hot,hot,cold,zzz,hot

In the transcript above, the programmer made an unusual choice. Instead of letting
the script continue with a pdb command, the programmer assigned R[i] = "zzz," which
changed R[4] from None to the string zzz. The next command, clear, removed breakpoints,
and the command continue (abbreviated as c) ran the script to its conclusion.

The pdb module is not a user-friendly way to debug, depending on knowing special
PDB commands and changing scripts to include pdb.set trace() for setting a breakpoint.
Nonetheless, it is worth seeing how a debugger can display and even change information
during program execution.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Debugging 265

Verification and Validation

It is no secret that Python’s built-in debugging facilities leave a lot to be desired. Other
programming languages have IDEs with breakpoints and other helpful features, such as
monitoring every change to a particular variable or object. Industrial and academic re-
searchers have devised many tools and programming techniques to assist in debugging,
testing, automatic verification, and bug prevention. On the testing side, there are tools that
automatically generate test suites which force every combination of control flow through
if, elif, else, while, and so on, in a function; such test suites can exhaustively check for
crash-bugs. Some tools even warn of suspicious behavior, which is likely incorrect behavior.

To verify that a program has no incorrect behavior, researchers have tools and compilers
for automatically, or semiautomatically, exploring all the behaviors of a program, comparing
these behaviors against a specification of what are the desired correct behaviors. The caveat
for using such tools is that one first has to specify, in perfect detail, what are the correct
behaviors. This is usually done using a specification language, which is different from the
programming language. Roughly speaking, the idea resembles double-entry bookkeeping
(which is sometimes cited as one of the most transformative inventions in civilization, dating
at least to the 15th century). The method of double-entry bookkeeping has an inherently
redundant way of tracking the flow of goods and money; this redundancy significantly
increases the odds of finding accounting mistakes. With software, having distinct ways to
specify behavior, one in a specification language and another in a programming language,
offers a similar hope of finding mistakes. If the behavior of the specification and the behavior
of the program differ, one of them has to be mistaken.

Even approximations to the idea of a complete behavior specification can be useful. A
few verification projects manage to weave specification and program into a single source
file; sometimes these specifications only cover a portion of the correct behavior, but may
still serve to uncover mistakes and potential bugs using verification tools. The only feature
of Python that might be thought of as a specification is the assert statement. If one is
careful to write assert statements about all the parameters to a function, which state all
the expected properties of the parameters, then the quality of the code may be improved
by preventing bugs or exposing incorrect calls to the function. However, unlike the research
tools, Python has no way to automatically verify all the behaviors of a function.

This page intentionally left blankThis page intentionally left blank

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Chapter 22: Accumulation Loop Patterns

for
item

in
sequence: accum

ula

to
r.
ap
pe
nd
(i
te
m

)

Biologically the species is the accumulation of the experiments
of all its successful individuals since the beginning.

— H. G. Wells

One hallmark of master crafters, at least to the outsider, is how they make things look easy.
The same can be said of some graceful athletes, musicians, and cartoonists, that they make
what they do look natural and effortless. Yet what we view when watching these individuals
is most likely the product of years of learning and practice. One cannot really learn a craft
only by watching the masters; learning a craft requires participation and practice ourselves.
Similarly, learning how to write Python functions that use repetition constructs (for loops)
or recursion is best done by practice.

There are many techniques for learning how to write loops. Some simple problems nat-
urally suggest loop-based solutions. A sequence of problems, graded from relatively easy to
more complex, make for good training exercises. Other useful exercises present function def-
initions that are incomplete (like “fill in the blank” problems), which limits the work needed
to find a solution. Another indispensable learning technique is to go through a catalog of
patterns that have been found in programs containing loops. Such patterns are sometimes
called idioms of programming; others call these patterns computing paradigms because
they are standard forms for programs found useful in practice. This chapter features some
of the principal kinds of idioms used in Python loops.

267

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

268 A Functional Start to Computing with Python

Loop synthesis refers to the mental process of writing for or while loops. The usual
way one learns how to write loops is to study many examples, and learn either directly or
by intuition the patterns that others have found. Just learning the patterns is quite helpful
in becoming comfortable with loops. However, there are other cues that help to write loops;
for instance, from the kind of technical problems one faces in devising programs, there can
be hints on which patterns might be useful. If the programming problem is an information
search, then it makes sense to consider patterns that others have used for searching. If
the programming problem works with scientific applications, then another set of patterns
would likely be relevant. In some cases, the idioms and patterns presented in this chapter
are accompanied by observations about problem characteristics that would suggest using a
particular pattern.

The content of this chapter repeats patterns already shown in Chapter 14, but here the
same ideas are shown in an imperative style rather than a functional style. Whereas func-
tional patterns for accumulation either rely on reduce or using tail recursion, the imperative
style directly programs accumulation using for loops.

Block Repetition

def printwow():

print("Wow")

print("Wow")

print("Wow")

The simplest form of repetition is to collapse a state-
ment repeated a constant number of times. Chapter 19
explains simple repetition and repetition with variation.
Loop synthesis is nearly trivial for problems that call for
simple repetition. We repeat some themes from Chapter
19, but with added commentary about efficiency and no-
tation. Rather than writing the code shown here, we can write either of the three versions
below, though for the third version, an argument 3 needs to be bound to parameter n in
the printwow() function.

def printwow():

for i in [0,0,0]:

print("Wow")

def printwow():

for i in 3*[0]:

print("Wow")

def printwow(n):

for i in range(n):

print("Wow")

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Accumulation Loop Patterns 269

def sumsquares(n): # will return 0 + 1 + 2 + ... + n

SumSquare = 0

for loopvariable in range(n):

SumSquare += loopvariable

return SumSquare

The next step up in mak-
ing things more complicated
is to use the loop variable in
the body of the loop: there
should be some expression us-
ing the loop variable. Often a
loop variable that takes on the values in a range expression is used as an index value in a
sequence, as seen in several examples in Chapter 19.

One surprise that Python syntax offers is that unboxing (tuple assignment) can be used
in for loops. Here is a small example. After this code runs, variable Comb will have the value

Vector = [(21,105),(204,38),

(150,242),(63,12)]

Comb = 0

for (x,y) in Vector:

Comb += x*y

calculated from 21 ·105+204 ·38+150 ·242+63 ·12.
In the example’s first iteration x,y = 21,105, and
in the second iteration x,y = 204,38. Thus, in each
iteration of the loop, (x,y) refers to one tuple in
Vector. The parentheses in the for statement above
are optional; the statement can also be written as

“for x,y in Vector:” because Python will interpret “x,y” as being a tuple. This kind of
for loop is useful for graphics programs that deal with drawing points and lines based on
(x, y)-type coordinates.

To fully understand how the for statement works in Python, one needs to understand
the evaluation of the general form

for loopvars in loopiter:

In this general form, “loopvars” is either the name of a single variable or a multiple variable
comprising a tuple, as illustrated above; and “loopiter” is either a sequence, an iterator, a
generator, or a sequence-like object (such as a dictionary or Python3’s range object).

S = [4,2,5,0,9,7,6]

for m in range(len(S)):

if S[m]%2==1:

del S[m]

print(S)

To show that the understanding of the form of for is not
trivial, consider the Python code shown here. The idea
of this code is to remove all the odd numbers from list
S, and one might expect it to print [4,2,0,6]. However,
when it runs, Python reports an IndexError, which halts
the run. The problem is that m will take on the values 0,

1, 2, . . . , 6, because S contains seven items after the first assignment, and this is what
determines the evaluation of range(len(S)). After five iterations are completed, two items
are removed from S, which makes the length of the list five rather than seven: thus S[m]

becomes undefined when m is greater than 4. That explains why Python encounters the
IndexError.

D = {7:"k", 2:"w", -8:"z", 0:"r"}

AllChars = ""

for key in D.keys():

if D[key]<0:

D[-key] = "x"

AllChars += D[key]

print(AllChars)

A similar phenomenon occurs with dictionaries.
Code here shows a loop through the keys of a dic-
tionary. The for loop’s loopiter expression uses a
method for the dictionary type, the keys() method,
which returns a list of the keys in the dictionary.
When this code runs, it prints zrwk (the order of
the keys is mixed up by Python)—the new dictio-
nary item added during the run, D[8] = "x", is not
printed because the for loop determined the loopiter expression: D.keys() evaluates to the
list [-8,0,2,7], and these are the values that key will take on during the iterations.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

270 A Functional Start to Computing with Python

The Accumulation Pattern

The accumulation pattern is one of the most basic idioms of computing with sequences. It is a
generalization of summation (Python’s built in reduce function expresses the accumulation
pattern, but only to a limited extent), but can go well beyond what sum can do. The
accumulation pattern has several forms, one of which is seen here:

Accum = NullValue
for loopvar in loopiter :

Accum = expr(Accum, loopvar)

The italicized names above, NullValue, loopvar, loopiter, and expr will vary considerably
when the accumulation pattern is put into practice. The expr should be seen as some Python
expression (combination of operators, functions, methods, etc.) that has both Accum and
loopvar in it. In more elaborate cases, the body of the loop could be more than a single as-
signment to Accum: it could have if statements and multiple assignments. The remainder of
this section on the accumulation pattern presents a series of examples, gradually increasing
the complexity.

Numeric Accumulation

def product(somelist):

Accum = 1

for item in somelist:

Accum *= item

return Accum

sum, product, and so on. The most direct cases of
accumulation are sums, products, and related notions.
The accumulation pattern for a product of a list of num-
bers is illustrated on the right. Here, NullValue is 1, and
the expr of the pattern is Accum * item (however, writ-
ten concisely by augmented assignment). The same pat-
tern can work for all the mathematical operators (* + - / // ** %), though it rarely
makes sense except for + and *.

def allmin(somelist):

Accum = somelist[0]

for item in somelist:

Accum = min(Accum,item)

return Accum

min, max, and so on. For accumulation, we can use
any function f that (i) takes two numeric arguments and
(ii) returns a numeric argument. The body of the loop, in
general, would be Accum = f(Accum, item). The example
here finds the minimum value in a list. The most difficult
task in writing this code is the selection of NullValue, in

this case somelist[0]. Ideally, the best choice for NullValue is arguably some number
known to be larger than any item in the list: the min function would then lower the value
of Accum in the first iteration. A nice choice for NullValue might be ∞, but this choice is
unavailable in Python.

➪ web

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Accumulation Loop Patterns 271

def allmin(somelist):

Accum = somelist[0]

for item in somelist:

if item < Accum:

Accum = item

return Accum

The code of allmin can equivalently be the definition
here. This rewriting shows how the accumulation pattern
can use a block of statements in the loop to give a possibly
new value to Accum. Writing allmin this way is nothing
more than realizing that the built-in function min could
be defined by

def min(a,b):

if a < b:

return a

return b

Substituting this min definition into the accumulation pattern yields the rewritten version.

Sum of Gaps. This is a more advanced example than the previous ones. The goal is
to write a function that will total up the differences between consecutive items in a list
of numbers. If the input is [1,1,1,1] then the total is 0, because there is no difference
between consecutive items; if the input is [1,1,2,2] then the total is -1, because the only
difference is 1-2 ➜ -1.

def sumgaps(R):

Accum = 0

limit = len(R)-1 # see below why we subtract 1

for i in range(limit): # i goes over [0,1,...,len(R)-2]

Accum += R[i+1]-R[i] # danger: we have i+1 as index,

so loop better stop before len(R)-1

return Accum

Boolean Accumulation

def all(M): # M is a list of booleans

Accum = True

for value in M:

Accum = Accum and value

return Accum

The accumulation pattern for boolean types is
covered by Python’s built-in all and any func-
tions. Here we show that these ideas can be
programmed by accumulation because there are
cases (see the “Exercises” at the end of the chap-
ter) where boolean accumulation is preferable to
using all or any. The example here is a defini-
tion of the all function. The function any can similarly be defined, with False as NullValue,
and having “Accum = Accum or value” as the body of the loop. Another equivalent way
to write all would be:

def all(M): # M is a list of booleans

Accum = True

for value in M:

if value: # makes sense because value is a boolean

pass

else: # value is False

Accum = False

return Accum

Note: The pass statement is used for the if block, only because there is nothing to be done
with Accum where value is True, yet Python insists on having some statement indented
following any if statement.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

272 A Functional Start to Computing with Python

The reason this second version of all works correctly is that the basic boolean and

operator is so simple, the same result can be done by if/else logic. It is quite a simple
exercise, for instance, to define a function that does the same thing as “and” using just “if”
statements in the function (plus a return at the end of the function).

➪ web

String Accumulation

Input = "Prepare the surface with a mild acid solution"

Vowels = "aeiouAEIOU"

Accum = ''

for character in Input:

if character in Vowels:

Accum = Accum + character

print(Accum)

As a demonstration (because
it is rarely used in practice),
we show how NullValue and
expr can be adapted to the
string type. Here is an exam-
ple to collect all the vowels in
a string, returning the result as
a string. When this code runs,
eaeeuaeiaiaiouio is printed.

List Accumulation

List accumulation is useful for many applications. Generally, NullValue is the empty list
and expr is some form of concatenation, either using the + operator, the += augmented
assignment, or a list method such as append, extend, or insert (slice assignment could be
substituted for any of these methods).

def wordlengths(wordlist):

Accum = []

for item in Alist:

Accum = Accum + [len(item)]

return Accum

Z = '''The river kept its finest

spectacle till the end'''.split()

print(wordlengths(Z))

An equivalent of Python’s map function can
be done using list accumulation. The exam-
ple here illustrates how map(len,wordlist)

might be accomplished using a loop. In
each iterate, Accum concatenates a new item,
namely the length of the next word of
Z. Better style than this would be to use
“Accum.append(len(item)),” but we present
this version to emphasize the accumulation pat-
tern. The printed output of this example is
[3,5,4,3,6,9,4,3,3].

def reversed(Alist):

Accum = []

for item in Alist:

Accum = [item] + Accum

return Accum

Here is a definition of reversed (which hap-
pens to be a built-in function in Python).
The result of evaluating reversed([1,2,3])

is [3,2,1]. The order of concatenation above
is crucial. It would be a mistake to have
Accum = Accum + [item] for the body of the
loop, because the result of reversed([1,2,3])
would then be [1,2,3].

def zip(Alist,Blist):

Accum = []

OutSize = min(len(Alist),len(Blist))

for i in range(OutSize):

v = (Alist[i], Blist[i])

Accum.append(v)

return Accum

Python’s zip is a built-in function that
combines two or more lists into a single list
of tuples. The accumulation pattern can also
build an output list of tuples given two lists as
the input parameters. The function is written
to accommodate the shorter of the two input

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Accumulation Loop Patterns 273

lists. This example of accumulation uses the index notation (Alist[i] and Blist[i]) ref-
erencing the input list items, in contrast to earlier examples that directly use items supplied
by the for . . . in statement. Whether it is better to use indexing or to directly loop through
items of a sequence is a matter of personal style. However, for some problems, there is no
choice but to use indexing. Processing two or more input lists in tandem is such a problem,
because the for statement does not have a way to go through multiple lists in parallel. The
only choice is to loop over a range of index values and use indexing, as the example shows.

def bigwords(sentence):

Accum = []

for word in sentence.split():

if len(word)>8:

Accum.append(word)

return Accum

To get the equivalent of the filter function, an if

statement is needed. This example shows how a fil-
tering idea works on a list of strings. The function
bigwords extracts a list of the words longer than
eight characters by only appending to Accum the
“big” words. Selective filtering in a loop, like this
example, can also be used to implement searching
algorithms; a topic that is explained further in Chapter 23.

While the bigwords function does return the list of big words in a string, the resulting
list might contain duplicates; perhaps this is what is needed, perhaps not. What if we do
not want the resulting list to have duplicate words? Two new versions are shown below. On
the left, to make the list get only unique words, the code avoids adding a word to Accum

when it is already in the list. Python offers another way to write not (word in Accum).
Using the not in operator, the code on the left is rewritten to be the version on the right.

def bigwords(sentence):

Accum = []

for word in sentence.split():

if len(word)>8 and not (word in Accum):

Accum.append(word)

return Accum

x x

def bigwords(sentence):

Accum = []

for word in sentence.split():

if len(word)>8 and word not in Accum:

Accum.append(word)

return Accum

x x

➪ web

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

274 A Functional Start to Computing with Python

Dictionary Accumulation

The patterns of accumulation seen thus far include Accum types that are numeric, boolean, or
list. These are sufficient for most applications, but dictionaries are well suited to applications
of classification or statistics. Furthermore, even where a list might be used, dictionaries are
far more efficient than lists when the data to be processed is quite large.

Accum = { }

for word in Book:

if word not in Accum:

Accum[word] = 0

Accum[word] += 1

now display the table

for word in Accum:

print(word,Accum[word])

To illustrate the pattern, suppose Book is a list
of all the words in some novel, in the order they oc-
cur. Further simplifying the problem, assume that
all punctuation has been removed (periods, commas,
semicolons, and so on) and all the words are lower-
case. The goal is to make a table of each word in Book

along with the number of times that word appears.
Most likely, common words “the,” “an,” and “a” will
have the highest counts. A solution to the problem
is shown to the right.

The dictionary accumulation example has a trick worth noting. The NullValue for the
accumulation pattern is an empty dictionary, but accumulation step is not so straightfor-
ward. It would be nice if the body of the accumulation loop consisted of the single line
such as Accum[word] += 1, with the simple intent of incrementing the count for a partic-
ular word. Unfortunately, word may not be in the dictionary (there is a first time for every
word). Therefore, there is an if statement that adds a new word to the dictionary if it is not
already present. The initial count for the new word is zero because it will be incremented
by the next statement, making the count equal to 1.

This kind of issue with dictionaries, needing to initialize a count when a value is first
seen, comes up often enough that many prefer using the dictionary get method instead of
indexing by key. As an example, suppose v = D["box"] would get an error because "box"
is not a key in dictionary D. The assignment v = D.get("box",9) will succeed, making v

equal to 9 (the second argument to the get method specifies what to return if the key is
not found in the dictionary).

Accum = { }

for word in Book:

Accum[word] = Accum.get(word,0) + 1

now display the table

for word in Accum:

print(word,Accum[word])

Alternatively, suppose D["box"] has the
value 120. When the key is present in the dictio-
nary, the get method looks up the value and re-
turns that: so v = D.get("box",9) assigns 120
to v, since "box" is a key in D. Thus, the script
to count all the words in Book can be written
more simply, shown here on the right. The first
time a word is encountered, the get() method
returns zero, so the first assignment to Accum[word] will be 1; any assignments in subse-
quent iterations will increment to the count for that word. Another idea is to use a standard
library module which provides a tool just to address this issue; if you are curious, look up
defaultdict in Python’s collections module.

➪ web

1 3

2 2

5 1

6 1

Because dictionaries tolerate numbers, booleans, tuples, and strings
as keys, the same code can count frequencies of numbers in a sequence.
For instance, if Book is the list of numbers [1,1,2,5,6,2,1], then the
output consists of the four lines shown on the right.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Accumulation Loop Patterns 275

Loops Using Iterables and Generators

You may encounter an error message like “object is not an iterable” trying to
write a for loop or using some sequence methods. Chapter 13 informally describes
iterators (and the associated term iterable) with generators. In fact, Python automat-
ically creates an iterator (if one is not already available) in order to perform a for

loop. Technically, an iterator is a Python type, like other data types (boolean, string,
list, and so on), which has several methods. The next() method is the one related to
loops. Writing a loop with code such as “for letter in "fast":” is equivalent to
the following:

g = (c for c in "fast")

while True:

try:

letter = g.next()

(here would be statements for the body of the loop)
except StopIteration:

break

This while repetition with a True condition—is an infinite loop. However, when the
generator is exhausted (recall from Chapter 13 that generators get “used up”), the
next() method will trigger a runtime error, similar to a divide-by-zero error. This
error is named StopIteration and would cause the program to fail were it not for the
“try” statement. The try and except statements are explained later, in Chapter 26.
These statements cause the while loop to terminate normally (via the break, explained
in Chapter 23) after all the generator’s items have been processed by the loop.

After seeing the above and reading some explanation of how iterators work with loops,
you may appreciate the simpler syntax of for loops. The fact that for loops work
generally with iterators (and not just sequences) is quite useful. Chapter 25 introduces
input and output using files, and file-like objects (which include networking concepts
and some computer graphics devices); file-like objects are also iterables, which means
we can use simple for-loop syntax to work with them.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

276 A Functional Start to Computing with Python

Generator Loops

We have seen how loops can use generators that supply items for the loop variable,
but what about creating a generator? Chapter 13 introduces the comprehension syntax
for defining a generator, but it is rather limited. It turns out that making a generator
with imperative syntax is as easy as using the keyword yield in place of return in a
function. The script here defines a generator mr() equivalent to range():

def mr(limit):

i = 0

while i<limit:

yield i

i += 1

for k in mr(5):

print k

When this script runs, it prints 0, 1, 2, 3, 4, because the for loop’s iteration vari-
able k gets incremented values from mr(5) with each iteration. How does this work?
One way to think about yield is that it returns a value, yet leaves the function mr()

in a kind of suspended animation, where it will resume the next time it is called. Tech-
nically, Python evaluates mr(5) and instead of getting an integer value or a list, mr(5)
is a generator. Python makes this evaluation because a yield statement was found
within the function’s body. Then, for each application of the next() method, the code
of the generator is activated until a yield statement provides a value. Of course, you
do not see a next()method invocation above; the previous box in this chapter explains
how, behind the scenes, this is actually happening.

Python’s syntax for generators is yet more powerful than the example shows. It is
possible for code using a generator g to use the g.send(v) method to “send” a value
v into the loop of the generator code (though, to make this work, there should be a
statement like x = yield i so that x is assigned the value v). This fancier kind of
generator syntax is well beyond this chapter, but good to know about if you plan to be
an expert in computing (another example is part of “Interlude Signal Processing” after
Chapter 27). The idea of sending values into a generator and getting other values back
is called a coroutine. The use of complicated control design, such as coroutines and
“callback” logic in programming is common in certain object-oriented system design
patterns.

Going Further

Examples in this chapter are simple, processing little lists and strings. In practice, the
accumulation pattern is used to process files. The pattern can be nested and have more
elaborate conditions. Also, because for loops may process sequence-like objects such as
generators, accumulation is often connected with procedures and algorithms that generate
data. The two boxes on previous pages briefly explain how generators are related to iteration.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Accumulation Loop Patterns 277

Terminology Review

This chapter introduced the accumulation pattern, presented many examples showing it
with different data types, operators, and expressions in the loops. The chapter also demon-
strated that removing items from a list can interfere with a for loop. Some jargon used in
this chapter includes: computing paradigms, programming idioms, loop synthesis, and the
accumulation pattern.

Exercises ➪ web

All of the exercises from Chapter 13 could be exercises here, using loops instead of
list concatenation to define functions. Similarly, all of the problems that follow could be
solved without using loops (exploiting many of Python’s built-in functions, which do looping
already in how they work). The intent is to exercise the patterns.

(1) The problem is to write a function divsum(xlist,ylist) where the two arguments
are lists of numbers and the two lists have the same length.

xlist[0]/ylist[0] + xlist[1]/ylist[1] + xlist[2]/ylist[2] + ...

(summing such fractions up to the end of the lists).

(2) Function strange(numlist) returns a string that is the concatenation (gluing to-
gether) of the str(item) for all items in numlist. Here are some interactive examples
showing how the function should work:

>>> strange([1,2,3,4])

'1234'

>>> strange(range(5))

'01234'

>>> strange(range(100,110))

'100101102103104105106107108109'

(3) Write a function allodd that returns True if all numbers in a list are odd numbers.
The pattern for the solution is boolean accumulation, adapting the body of the loop
to checking each item for being odd or even.

(4) The function isDouble(X) returns a boolean (True or False). The idea of
isDouble(X) is to return True only if X is the same sequence repeated twice. For ex-
ample, isDouble([0,1,0,1]) returns True, whereas isDouble([1,2,3,4]) returns
False; also isDouble("wayway") returns True. Obviously, len(X) needs to be an
even number. The recommended way to write isDouble is to use boolean accumula-
tion, in each iteration comparing X[i]==X[2*i], where loop variable i steps through
range(len(X)/2).

(5) Function isPrefix has three parameters: isPrefix(prefix,stem,candidate). The
idea is to return True if there is a value n so that

prefix + stem[:n] == candidate

is True. The solution can be formulated as a search problem, searching for the value n,
by trying the integers found in range(len(stem)) or some similar range of numbers.

(6) The function sumgaps shown in this chapter adds up all the “gaps” in a list of numbers.
Write a similar function that determines what is the smallest gap (possibly a negative
number) between any two items in a list of numbers.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

278 A Functional Start to Computing with Python

(7) Define a function base7(numlist). The parameter (numlist) is a list of numbers;
assume each item in numlist is a digit in [0,1,2,3,4,5,6]. The content of numlist
should be viewed as a “base 7” numeral, for example: [2,5,6] is 139 in decimal,
because

2× 72 + 5× 71 + 6× 70 = 2× 49 + 5× 7 + 6× 1 = 139

The result of evaluating base7([2,5,6])would be 139. Use the accumulation pattern
to write the base7 function.

(8) The function maxdist(P,ref) is described here:

1. Parameter P is a list of (x, y) pairs, which represent points in 2D-space. Think
of P as a list of points on the plane.

2. Parameter ref is also a point, that is, ref is an (x, y) pair.

3. The function should return the maximum distance between ref and any point
in P.

4. The distance between two points, say (x1, y1) and (x2, y2), is

√

(x1 − x2)2 + (y1 − y2)2

(9) The integer logarithm (base 2) of x, denoted by ⌊lg
2
x⌋, is the smallest number n such

that x/2/2/2 · · ·2 (n times dividing by two) is less than 2. For instance,

9/2/2/2 = 4.5/2/2 = 2.25/2 = 1.125

Hence, the integer logarithm of 9 is 3. Write a function using a while loop that
calculates the integer logarithm. The pattern is accumulation, where each iteration
divides the current number by 2.0 and increments Accum, to keep track of the number
of divisions done. The condition on the while loop checks whether the current number
is less than 2.

(10) Can you explain Python’s behavior for the following script?

X = [True,False]

X.append(X)

X[-1].reverse()

del X[0][0][0][0]

print X

(11) Suppose variable Text is a list of words (character strings) each beginning with a
lowercase letter. Write a single for loop that makes 26 counts, one for each letter that
a word may start with. For example, when the loop finishes, some variable Count will
have all the counters; perhaps Count[2] (“c” is the third letter in the alphabet) or
Count["c"] will be the number of words in Text beginning with “c.”

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Chapter 23: Search Loop Patterns

for
item

in
sequence: if interes

tin

g(
ite
m
):
br
ea
k

He who would search for pearls must dive below.
— John Dryden

Sequential Search

def findval(T):

for i in range(len(T)):

if 2<T[i]<7:

return i

return len(T) # failed to find

Loops are often used to search sequences for par-
ticular values. The result of the search might be
boolean (True if the desired value was present),
which is what the in operator does, or it might
be that the search returns the location of the
value, which is what Python’s indexmethod can
do. Observe first that the accumulation pattern
can search for all the places where a value occurs and accumulate these places into a list.

279

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

280 A Functional Start to Computing with Python

However, if we are only interested in finding the first place where a value occurs, then
accumulation would be overkill (less efficient). Suppose a list T contains numbers and the
problem is to find the first location, if any, where a value between 2 and 7 occurs. The
findval(T) function shown here can search for the value.

def findval(T,interval):

a,b = interval # a tuple like (2,7)

for i in range(len(T)):

if a<T[i]<b:

return i

return len(T) # failed to find

findval(T) will return an integer less than the
length of the list T if a value between 2 and 7 is
found, but otherwise it will return the length of
T. Instead of fixing the criterion in the function
(“hard coding” 2 and 7), we can let the caller
of findval specify these numbers, shown in the
version to the left.

Here is a thought question: How many iterations does the function use to find a suitable
value? For instance, the list T might have a thousand integers; the particular invocation
of findval could be findval(T,(1,3))—this is just a search for the first instance of the
number 2. If the value 2 happens to be the first item in T, then findval will return 0 by
the first iteration, and it will not go through the 999 other items of T. If the value 2 first
occurs around the middle of T, then findval would go through about 500 items in T before
returning.

One point of the thought question above is that the search idiom, called sequential
search, is unlike the accumulation pattern in that it does not always iterate over the entire
input sequence. The trick is that the return statement, if it runs within a loop, stops the
function evaluation immediately. A name for this trick is early return, because the function
does not go through all of its statements in every run: depending on the input data, the
function may “return early” under control of some conditional logic.

Break and Continue

def search(Alist,Blist,value):

'''search both Alist and Blist for value

returning a tuple of the places in both

where value was found, or otherwise

returning None (value not found in both)'''

for i in range(len(Alist)):

if Alist[i]==value:

break

if Alist[i]!=value:

return None

for k in range(len(Blist)):

if Blist[k]==value:

break

if Blist[k]!=value:

return None

return (i,k)

The idea of early return within a
loop was so popular for program-
ming languages that new syn-
tax features were added to many
languages, Python included. Two
special statements, break and
continue, alter the way that loops
run. The break statement ends
a loop early. The search func-
tion shown here uses break. What
you see to the right contains two
instances of the search pattern,
one for parameter Alist and the
other for parameter Blist. When
the loop finds parameter value in
Alist, the break statement ends the loop right away. The break statement does not exit
the search function, it just ends the currently running loop. In case value is not found in
Alist, the break statement for that loop will not be used, and the loop will run over the
entirety of Alist. This is why there is the if Alist[i]!=value following the loop. Maybe
the loop ends early due to break, but maybe the loop does not end early. In that case, it
could be that the loop failed to find any item of Alist equal to value—so this if statement
will check for that possibility and return None.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Search Loop Patterns 281

Pause

If you have not seen break or continue before, it is worth thinking carefully about the
example above. Whereas a return statement causes the work of a function to immediately
stop, not so for break. Unlike return, the work of the function containing the loop is not
finished by break. It is just the current loop that is done. If there is another statement in
the function after the loop, then the function should proceed by evaluating this statement
after the loop. Mentally, however, when you see break you should be aware that the break
only takes effect when the if condition is True.

➪ web

✰ ✰ ✰

def pack(parts):

Total = 0

assume any part is under 640 grams

while len(parts)>0:

if parts[0]+Total > 640:

break

Total += parts[0] # pack this part

del parts[0]

return Total

The break is quite often used in while

loops, illustrated by a small example.
Suppose there is a list of positive inte-
gers, which represent weights of parts
to be shipped. All the parts need to be
shipped, but they need to be put into
boxes. More than one part can be put
into a box, so long as the total weight
in a box is under 640 grams. Here is a
function pack that takes the input list
parts and returns the weight of the first box that will be shipped (the more advanced prob-
lem would be to give weights of all the boxes). The while loop will end early (by break) if
the total of the parts considered to be in the box would go over 640 grams by adding the
next part in the input list. However, it is possible that one box might have all parts in the
input list, in which case the loop will not end early.

Accum = []

for x in range(20):

if x%2==0:

continue

Accum.append(x)

print(Accum)

In contrast to break, the continue statement does
not end the loop early. Instead, the continue state-
ment ends the current iteration early. An illustra-
tive example is this for loop. This loop prints
[1,3,5,7,9,11,13,15,17,19]. The reason is that the
loop skips appending even numbers to Accum, because
an iteration where x is an even number ends when the
continue statement runs. However, the loop does not stop: it picks up with the next value
of x out of range(20).

Generally, if you have doubts about how break and continue work, it may be helpful
to try small examples that have prints put within the body of the loop and outside of
the loop. This will allow you to “trace” what Python does when the loop runs, so you can
deduce what Python must be doing in the evaluation process.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

282 A Functional Start to Computing with Python

Break and Continue Summary

• The break statement causes an immedi-
ate “jump” to the first statement after the
loop.

• break ends the loop early.

• The continue statement causes an im-
mediate jump back to the start of the loop
(picking up the next value of the iteration
variable).

• continue ends the current iteration early.

• continue does not end the loop.

✰ ✰ ✰

Break versus Return

def limitSum(M):

Accum = 0

for item in M:

if Accum+item > 100:

return Accum

Accum += item

An easy way to end a loop, when inside a function, is
simply to use return. Here is a function that sums num-
bers of a list so long as the sum does not exceed 100.
As soon as the sum would go over 100, the function re-
turns the accumulated sum up to that point. This brings
up the question, why would one ever use break, when the
return statement exits the function (and hence stops the
loop) right away? There are two answers to this. First, it
could be that a loop is done in a script outside of a function; a return statement is only
valid within a function. Second, within a function, it might be that there is more work to
do after the loop finishes, even if it ends early.

def strange(M):

Accum = 0

for item in M:

if Accum+item > 100:

break

Accum += item

for item in M:

if Accum % item == 0:

return item

This second example again calculates the sum up to where
further additions would exceed 100, but then does more.
It returns the first item in the list such that the sum is
divisible by that item. To do this, it is necessary to have
a second loop, one that searches for the satisfactory item.
The break ends the first loop, to get the sum, so that
the second loop can begin. A return instead of break in
the first loop would be a mistake. Although this example
is rather artificial, there are many occasions in practice
where scripts or functions use multiple loops in succes-

sion, which motivate using break rather than return.

✰ ✰ ✰

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Search Loop Patterns 283

Consider the problem of detecting whether a string’s first double letter (like the phrase
“exceed expectation”) also has that letter later on in the string (the answer would be
False for “battle plan”). To make a point, we solve this using a loop:

def HasTwoAndLater(astr):

for i in range(len(astr)-1) # one less than normal, so that astr[i+1] works

if astr[i]==astr[i+1]: # first double-letter in the string

break

now, out of the loop; astr[i] is the double letter

for j in range(i+2,len(astr)): # j starts after the double letter

if astr[j]==astr[i] # astr[j] is later

return True

return False

In this code, replacing the break by return would not give the correct result.

➪ web

Nested Loops

Most examples in this chapter deal with lists of numbers or lists of strings. Many applications
require more sophisticated kinds of lists, where items of a list might themselves be lists,
dictionaries, or tuples. A classic example of this is an array, typically shown in mathematics
texts in tabular form:

14 20 31 88 70 12 15 21
5 90 44 45 37 65 12 0
73 20 39 86 91 55 25 52
15 38 12 21 83 51 70 40

This array has four rows and eight columns. A Python representation of this concept would
typically be something like the following:

M = []

M.append([14,20,31,88,70,12,15,21])

M.append([5,90,44,45,37,65,12,0])

M.append([73,20,39,86,91,55,25,52])

M.append([15,38,12,21,83,51,70,40])

Accum = 0

for i in range(len(M)): # loops over 4 rows

for j in range(len(M[i])): # loop over 8 columns

Accum += M[i][j]

These statements result in M being
a list of four items; each item of M
is itself a list of eight numbers. A
simple accumulation problem is to
sum all the numbers in the array,
which is done here by the accumu-
lation pattern and a nested loop. Initially, this kind of nested loop—especially when it uses
indexes and range, looks confusing. Indeed, it takes some practice getting used to this style
of programming (which is common in scientific applications). To understand it, observe first
that M[0], M[1], M[2], M[3] are each lists (see append methods above). Thus, the data
type of M[i] is a list. Consequently, the notation (M[i])[j] or just M[i][j] refers to a
number: column j within row i of the array.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

284 A Functional Start to Computing with Python

search = None

for i in range(len(M)):

for j in range(len(M[i])):

if search == None and M[i][j]%2 == 0:

search = M[i][j]

With only a small change, the sum-
mation of the matrix items is changed
here to a search. In this case, the
code searches for the first even number
found in the matrix, saving the value
of the item in variable search. An ex-
ercise at the end of the chapter asks to
further modify this program so that it need not go through all the iterations of the loops;
it should be able to stop as soon as the first even number is found. The challenge in doing
this is the way break works in Python. When there are nested loops, the break statement
only applies to the loop body where the break runs. Thus, if an “inner loop” (more deeply
nested) encounters a break, Python will immediately stop this inner loop, but continue
with the outer loop. Similarly, the scope of continue applies to the loop body where it is
found.

➪ web

Recursive Data

Chapter 14 introduced recursion and recursive structuring of data, such as lists within lists.
We revisit the topic in this chapter to consider how such cases can be handled using the
imperative style of programming. First, a recursive strategy is described (in case you missed
Chapter 14), then a method using while is discussed.

Lists of numbers, list of words, even arrays represented as lists of lists have a kind of
“data regularity” about them. The items have the same type, or in the case of lists of lists,
there is a similarity between items. However, there are many naturally occurring problems
that have a kind of irregularity. Consider this list Q:

Q = [[2,1,9],3,[[6,7],0],[12,[5,[1,1],4],17],9]

def recursum(List):

Accum = 0

for item in List:

if type(item)==int:

Accum += item

continue

if the program gets here, item is a list

Accum += recursum(item)

return Accum

Some items of Q are numbers, some are
lists; one item is a list of numbers, an-
other is a list containing numbers and
lists. Suppose we need to sum up all
the numbers in Q; what should be done
with this irregularity? First, we look
at recursion to solve the problem. To
fully appreciate how recursum works,
printed text is insufficient: you really
need to use a debugger, or add some print statements and watch as Python runs the pro-
gram. Intuitively, the loop will be the ordinary accumulation pattern alone when the list
only contains integers. However, when an item turns out to be a list, then we take a “leap of
faith” that recursum(item)will calculate the sum of all numbers within item. An example,
in some tedious detail, of how recursum would be evaluated is shown in Figure 23.1. Do
not be put off by this level of detail: programmers do not need to think about all these
operations, since that is the job of computers. A programmer need only concentrate on the
first level of evaluation, trusting that recursion can go all the way to the bottom in doing
the evaluation.

Just as a minor modification to summing items of a matrix turned accumulation into
a search, the same can be done for a recursive data structure. All that is needed is to
initialize some variable, say search, to be a value that is not in the data, then use recursion

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Search Loop Patterns 285

or iteration to go through the items. When the matching item is found, it can be saved
in the search variable. This is straightforward with iteration, though the pattern calls for
some explanation (given on the next page). What if recursion is used? The problem with
recursion is that assigning to a variable search inside of a recursive call will not work:
variable assignments inside functions change only local (not global) variables. Chapter 17
shows how to circumvent this restriction: let search be a list, initially empty, and when a
matching item is found, append it to list search. Mutating a variable is compatible with
recursion.

➪ web

recursum([[2,1,9],3,[[6,7],0]]) ➜
recursum(0 ✜ [2,1,9],3,[[6,7],0]) ➜
recursum(0 ✜ recursum([2,1,9]) ; [3,[[6,7],0]]) ➜
recursum(0 ✜ recursum(0 ✜ [2,1,9]) ; [3,[[6,7],0]]) ➜
recursum(0 ✜ recursum(2 ✜ [1,9]) ; [3,[[6,7],0]]) ➜
recursum(0 ✜ recursum(3 ✜ [9]) ; [3,[[6,7],0]]) ➜
recursum(0 ✜ recursum(12 ✜ []) ; [3,[[6,7],0]]) ➜
recursum(0 ✜ 12 ; [3,[[6,7],0]] ➜
recursum(12 ✜ ; [3,[6,7],0]) ➜
recursum(15 ✜ recursum([[6,7],0])) ➜
recursum(15 ✜ recursum(0 ✜ [[6,7],0])) ➜
recursum(15 ✜ recursum(0 ✜ [recursum([6,7]),0]) ➜
recursum(15 ✜ recursum(0 ✜ [recursum(0 ✜ [6,7]),0]) ➜
recursum(15 ✜ recursum(0 ✜ [recursum(6 ✜ [7]),0]) ➜
recursum(15 ✜ recursum(0 ✜ [recursum(13 ✜ []),0]) ➜
recursum(15 ✜ recursum(0 ✜ [13,0]) ➜
recursum(15 ✜ recursum(13 ✜ [0]) ➜
recursum(15 ✜ recursum(13 ✜ []) ➜
recursum(15 ✜ 13) ➜
28

Figure 23.1: Example of a recursum evaluation: the ✜-symbol separates the current value of
the Accum variable from the remainder of the work to be done; notice that recursion creates
different levels of recursum evaluation, each with its own Accum variable.

A classic question of computer science is whether the technique of recursion is actually
necessary to process recursive data structures. The answer is no, thanks to a device known
as a queue. A queue is nothing more than a list manipulated by indexing and slicing in a
certain way. Here is a nonrecursive solution to the problem. Two equivalent versions are
shown below, but the one on the right makes better use of Python list methods.

def loopsum(List):

Accum, Queue = 0,List[:]

initial Queue is copy of List

while len(Queue)>0:

head = Queue[0]

del Queue[0]

if type(head) == int:

Accum += head

else: # head is a list

for item in head:

Queue.append(item)

return Accum

def loopsum(List):

Accum, Queue = 0,List[:]

while len(Queue)>0:

head = Queue.pop(0)

if type(head) == int:

Accum += head

else: # head is a list

Queue.extend(head)

return Accum

x x

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

286 A Functional Start to Computing with Python

A queue is just a list that is mutated in only two possible ways: either more items are
added to the end, or the first item of the list is removed from the list. The pop(0) method
removes the first item and also returns it, so that head = Queue.pop(0) simultaneously
gets the first item from Queue and deletes that item.

The intuition of using the queue is this. As the for loop goes through the items of List,
each will either be an int or a list. The items that are of type int can be dealt with
immediately, by adding to Accum (the accumulation pattern). But if the item is a list, then
summing of this item is postponed: the item is concatenated to the end of the queue, which
represents work to be done later. The final trick is the initialization before the loop, which
makes Accum zero and makes Queue be a copy of the original List. If you manually go
through an example, being careful to put postponed work on the end of Queue (using the
extend method), you observe how the postponed work inevitably gets added to Accum.

➪ web

There is one more way to write recursum that is not recursive—it is a Python trick,
that rarely works, and it is not considered good practice. The code is shown on the
left, with an example sequence of data transformations shown to the right.

def recursum(L):

S = str(L)

for char in "[,]":

S = S.replace(char,' ')

return sum(map(int,S.split()))

[[2,1,9],3,[[6,7],0] ➜
"[[2,1,9],3,[[6,7],0]" ➜
" 2,1,9],3, 6,7],0]" ➜
" 2 1 9] 3 6 7] 0]" ➜
" 2 1 9 3 6 7 0" ➜
["2","1","9","3","6","7","0"] ➜
[2,1,9,3,6,7,0] ➜
28

This definition might seem appealing because it avoids recursion. However, it does not
respect the recursive nature of the data structure, and only works because of the way
Python represents lists when formatting (via the str conversion).

Tools

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

xml:lang="en" lang="en">

<head><title>Most Excellent Page</title>

</head>

<body bgcolor="white" link="blue" text="red">

<p>This will be a great page.</p>

</body>

</html>

Most searching boils down to pattern
matching. For numeric problems, it can
be that a certain pattern of values is of
interest: looking through equity prices
to see when a stock price exceeded
its 200-day moving average, or look-
ing at voltage measurements to find a
spike. Other patterns are character or
byte arrangements. Chapter 27 shows
an example using Python’s re module,
which can search through text for pat-
terns given by regular expressions. An-
other similar case is scanning the content of Web pages looking for special “tags” that mark
text areas. Above is the source of a Web page, written in the HTML language. Below, we
show an example of searching through this source to extract the title of the page. This
is just one example of using a tool to make search simpler; there are many such tools for
different problem domains.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Search Loop Patterns 287

from pyquery import PyQuery

root = PyQuery(source)

print root('title').text()

Let’s say we want to read the XHTML source of a page as
a string, and then extract from that string just the title
of the page. The title is enclosed between <title> and
</title> tags. It is certainly possible to write Python
code to search for the tags and then pull out the title,

but it can be worth learning about tools that simplify the job. One tool to consider is
pyquery, which is a module similar to Javascript’s jQuery library for navigating through
elements of an HTML document (see http://packages.python.org/pyquery/). Though
pyquery is not part of the standard library, it is worth the effort to install this package if
you plan on frequently searching through a Web page source. For the HTML example shown
above, put into a string variable source, the three lines shown here and find the page title
and print it. The output from these lines is Most Excellent Page. Note that if the page
did not have a title field, this code would have failed, raising a Python error. Recovering
from such errors within a Python program is a topic of Chapter 26.

Terminology Review

This chapter introduced the break and continue statements, discussed early return, how
to exit loops or skip iterations, and some sequential search patterns. The possibility of
nested loops, including inner loop and outer loop ideas, shows how loops can be combined.
Recursive data structures, also found in the tree examples in Chapter 14, can use either
recursion or loops for searching or accumulation.

Exercises ➪ web

(1) The problem is to write a loop searching for the last even number in a list of numbers.
This is a simple exercise, using for example range(len(V)-1,-1,-1), which will allow
the search to proceed from back to front. Instead, replace the ? below to get the result
(do not use a comprehension expression).

def FindLastEven(V):

for e in ? :

if e%2==0:

return e

(2) Write a version of find that searches a matrix (a list of lists of integers) for the first
even number that either returns that number or returns None if the matrix has no
even number. Your code should use break so that all iterations end as soon as the
first even number is found.

(3) Let X be a list of numbers. Write a function sp(X) that returns True if there is an item
X[k] for k>0 which equals sum(X[:k]). Do not use sum in your definition of sp.

(4) Given a list of strings, which of these strings are also found within all the previous
items of the list?

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

288 A Functional Start to Computing with Python

(5) Find an item of a list that is an alias of another item in the list.

(6) The problem is to define inside(Points) which returns True if at least one item in
Points is within the rectangle with corners at (0,0), (2,0), (2,1), (0,1). The
sequence Points has pairs of numbers as its items (each item represents an (x, y)
point on the plane).

Loopy Data

Can you explain the following interactive Python session?

>>> X = [1,2,3]

>>> X.append(X)

>>> X

[1, 2, 3, [...]]

>>> X is X[3]

True

>>> X.insert(1,X)

>>> X

[1, [...], 2, 3, [...]]

>>> (X is X[1]) and (X is X[4])

True

In this session, variable X is truly a recursive data structure—the line “X.append(X)”
tells Python to add the list X to itself, which would make the list X contain itself. Does
this even make sense? You can see that Python tolerates this sort of behavior. Using
the terminology of Chapter 17, X and X[3] turn out to be aliases of the same list. After
the insertion “X.insert(1,X),” all three of X, X[1], and X[4] are aliases of the same
list: apparently, X contains itself twice!

In the history of philosophy, this situation borders on what is called an antinomy, a
paradox of sorts. Over a century ago, Bertrand Russell wondered if the notion of a set
of all sets could be reasonable. Would a set of all sets contain itself? There is no way
to prove the answer or disprove it—this question is called Russell’s Paradox.

In computer science, many very useful data structures can have self-references. Above,
the list X contains two references to X, one at index 1 and another at index 4. Such
“loopy” lists are valuable because they can represent things like organizational charts
where the relationships between parts of an organization are naturally complex, with
communication lines between the different parts represented in any way we desire.
Lists that allow any kind of reference (even self-reference) give us just the flexibility
needed. However, the algorithms that compute using such lists need to be careful to
avoid infinite loops: some extra checks in the while loops or recursive functions need
to detect when self-reference may occur.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Chapter 24: Drawing

Sci-fi films are the epic films of the day because we can no longer put 10,000
extras in the scene, but we can draw thousands of aliens with computers.

— William Shatner

Many introductions to computing begin with graphics. Drawing and related ideas, like
shading, coloring, animation, and special effects are intuitive and appear deceptively simple
to produce. Remember, even humans could draw and appreciate figures long before reading,
writing, and calculation were on the scene. It comes then as a surprise that graphics is rather
complicated for computers, requiring many layers of software and hardware to do well. It is
far simpler to program a computer to search millions of items than it is to draw a realistic
scene. Thus, it should not be so strange to find that Python lacks any built-in features for
graphics.

In order to access graphical hardware, Python needs to use software packages that are
external to the language. Even the choice of what package to use is not obvious. If Python
controls the screen on a small mobile device, there is likely a particular package optimized
for that device. The techniques for graphics vary depending on the hardware drivers (pos-
sibly vendor specific), the operating system, and maybe the type of browser plugins if the
graphics is portrayed over a network. One of the most widely implemented, if somewhat
crude, graphics packages is something called Tk, a so-called framework for graphical user
interfaces. As an outgrowth of some robotics research and later some projects with educat-
ing schoolchildren in computing, a package for Python called turtle was developed. More
modern software for drawing is available outside of the Python standard library of modules.
This chapter also describes the tekenmodule, which was written for this book, to introduce
drawing shapes using HTML5, which most modern Web browsers can render in high quality.

Turtle Drawing

We show first an interactive example of the turtlemodule. Figure 24.1 shows an interactive
session on the left and the output on the right. What cannot be seen from the figure is the
interactive nature of the drawing. After each command, a small change became visible on
the output area (Python creates a new window to show the drawing).

289

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

290 A Functional Start to Computing with Python

>>> import turtle

>>> turtle.position()

(0.00,0.00)

>>> turtle.forward(50)

>>> turtle.left(90)

>>> turtle.forward(50)

>>> turtle.right(90)

>>> turtle.forward(50)

>>> turtle.left(90)

>>> turtle.forward(50)

>>> turtle.right(90)

>>> turtle.forward(50)

Figure 24.1: Interactive Python using turtle.

The session begins by importing the turtle module. The first statement thereafter calls
turtle’s position() function, which reports the (x, y) location of “the turtle,” which is a
name for a virtual pen that does the drawing. Most function calls in the turtle module
either report on the turtle’s status, command the turtle to move or change some attribute
(like the color of the pen), or in the case of real-time graphics, delay before doing some
action. In the figure, the turtle is at (0, 0) initially, shown as a pair of floats, in what
position() returns. At any moment, we think of the turtle as oriented (we might think
of the turtle as pointing south, north, east, west, and so on). The next series of function
calls move the turtle in the direction of its current orientation or change the orientation.
The forward(50) function tells the turtle to move 50 units forward; the left(90) tells the
turtle to reorient 90 degrees counterclockwise; the right(90) tells the turtle to reorient 90
degrees clockwise from its current orientation. Each time the turtle moves, it drags a pen,
leaving a trail. The model of drawing using a turtle is intuitive, like steering a vehicle.

➪ web

Another example using a low-level line drawing is this illustration of applied trigonome-
try, using a module named teken, developed for this textbook. The code on the left renders
the figure on the right:

import math, teken

'''

This program adapts the first example from the article

"Plotting the Spirograph Equations with Gnuplot", by Victor

Luana, Linux Gazette #133, December 2006.

'''

T,R,r,p = 200, 100.0, 2.0, 80.0

linepoints = []

for i in range(T):

t = float(i)

x = (R-r)*math.cos(t) + p*math.cos((R-r)*t/r)

y = (R-r)*math.sin(t) + p*math.sin((R-r)*t/r)

x,y = int(200+x), int(200+y)

point = (int(x), int(y))

linepoints.append(point)

teken.polyline(points=linepoints,color="blue")

teken.show()

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Drawing 291

Drawing by Shapes

More modern drawing software libraries offer the developer catalogs of shapes, fonts, an-
imation, shading, and patterns for complicated visual displays, including the inclusion of
photographs and artwork. Figure 24.2 shows a script using the teken module and the re-
sulting drawing on the right. There are several features of this script that contrast with the
turtle-style of drawing. Instead of a virtual pen, and commands to move the pen, change
direction, and go forward, the commands of the teken module draw in some defined shapes,
lines, or text areas (called labels).

import teken

teken.rectangle(start=(50,20),color="cyan",

fill="palegreen",height=200,width=200)

teken.circle(start=(120,120),radius=60,

color="yellow",fill="white")

spec = "yellow orange red purple blue green"

for i,c in enumerate(spec.split()):

teken.line(start=(150,0),

end=(50+20*i,140),color=c)

teken.label(start=(150,150),angle=45,

text="Draw",color="darkviolet")

teken.show()

D
raw

Figure 24.2: Drawing shapes with teken.

Things to notice about the script in Figure 24.2 are the following points:

• The picture area, called the canvas, is addressed by (x, y) coordinates; by default,
teken supposes this to be a 400 × 400 area. The x-coordinate addresses the canvas
horizontally, with x = 0 being the leftmost and x = 399 as the rightmost point in the
area (although the browser may clip the visible area, depending on the window pa-
rameters). However, unlike mathematical texts, the y coordinate addresses the canvas
with y = 0 at the top and y = 399 at the bottom—the reverse of what we expect
in traditional mathematics. This way of using canvas coordinates is typical of several
graphical software interfaces.

• The teken functions may not be interactive (this depends on the particular circum-
stances of browser rendering of the HTML5 canvas commands). The last line in the
script, teken.show(), forces all the previous calls that draw shapes to become visible.
This is also typical of many graphical software packages, which virtually draw figures
offscreen and only later move them to the display area.

• One shape (or line or label) draws on top of previously drawn shapes. Hence, a drawing
is built up by a number of function calls using teken.

➪ web

Coordinate Drawing versus Relative Placement

Drawing shapes beyond lines, rectangles, ellipses, and so on, can take some planning, because
teken is based on coordinates. Some scripts in this chapter use trigonometry to calculate

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

292 A Functional Start to Computing with Python

coordinates for drawing a complicated sequence of line segments. Instead of drawing shapes
and text at particular coordinates, there is another way (but not available using teken).
Some software offers functions for relative placement of shapes. The suite of software used
to design Web pages, for example, is based on HTML, CSS, Javascript, JQuery, and other
packages to flexibly design the placement of objects on a page. This can be done in qualita-
tive terms such as “center” or relative terms such as “above,” “left of,” and so on. Chapter
27 describes a graphical user interface, which leaves the details of how objects are placed up
to algorithms to determine. Of course, for really fine control of placement, the coordinate
way to specifying where shapes go may still be needed.

Graphing Data

There are many other ways of drawing in Python using modules and extra libraries designed
for graphical or richer media experiences. One important specialty is portraying quantitative
information. The topic of data presentation has grown to be its own domain of expertise
for which Python packages (not usually distributed with standard Python) can be used.
Though the standard Python distribution includes the Tk library for interactive widgets,
drawing, and plotting—the turtle and the tkinter modules use Tk—there are much nicer
packages for data presentation.

matplotlib. The example shown here uses matplotlib, which is a presentation library of
modules typically used in scientific or statistical Python applications. Two simple examples
and their outputs are shown below, but they barely scratch the surface. To get a better idea
of what this package can do, it is best to visit the gallery on the matplotlib Web site.

import math, random, matplotlib.pyplot as plt
theta, r = [], []

for i in range(1,101):
angle = 2*math.pi * (i/100.0)

theta.append(angle)
r.append(1.0 - math.sin(3*angle))

plt.polar(theta,r)
plt.show()

pointsY = [5*math.sin(5*math.pi*i/100)

for i in range(100)]
pointsW = [random.choice(range(-5,6))

for i in range(30)]

plt.ylabel("sin and random list")
plt.xlabel("trial number")

plt.plot(pointsY)
plt.plot(pointsW)

plt.show()

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Interlude: Animation Design

Computer graphics begins with low-level considerations for drawing lines, polygons, and
even setting the color of pixels on a display, but quickly the designs become more ambitious,
going far beyond what this text can describe. Realistic scene rendering depends on knowing
about shading, shadows, reflections, and other optical properties. Special effects can make
objects transparent or luminous. Though the finer points of computer graphics can be
complex, one element of graphical display is easy to understand: animation.

Animation by computer graphics consists of playing a sequence of frames, like a movie.
The frames are viewed sequentially, over time, to give us the illusion of movement. Animation
is thus a behavior : the software has to produce values (the drawings) as a function of time (or
frame number). If the animation is part of an interactive game, then the software-controlled
behavior will depend on inputs from users, making programming more complicated. Careful
design decreases the complexity of software.

For the simplest case of animation, a general design in pseudocode looks like this:

for n in range(numberFrames):
frame = some code that draws frame n
output frame

The question is how to get details about “some code that draws frame” above. It may seem
like a straightforward process, designing code to draw the contents of a frame, but it is
worth thinking about how to minimize the complexity of the design—we do not want to
end up with a messy program that is difficult to understand.

Example. The simple example illustrates a design choice. The animation displays a stick-
figure rotating and shrinking, while a cat creeps along below. Using teken, a ten-frame
animation can be this (with the first four frames shown below):

import teken

for i in range(10):

theta, mag, creepx = 10+15*i, 1-0.1*i, 50 + 25*i

teken.image(name="stickfig.gif",start=(250,50),

width=120,height=250,angle=theta,scale=mag)

teken.image(name="cat.gif",start=(creepx,200),

width=98,height=72)

teken.show()

teken.clear()

Alternative Design. With just two images, the stick-figure and the cat, a simple loop
body can do everything and the program is understandable. But what if the animation
contained hundreds of moving parts? Then a straightforward design might lead to a loop
body with many hundreds of lines of code. Instead of directly writing Python statements
for each image in the loop, we could use a list of figures and the associated functions that
draw them.

293

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

294 A Functional Start to Computing with Python

import teken

def drawStickFig(t): # t is "time" in the animation

theta, mag = 10+15*t, 1-0.1*t

teken.image(name="stickfig.gif",start=(250,50),

width=120,height=250,angle=theta,scale=mag)

def drawCat(t):

x = 50 + 25*t

teken.image(name="cat.gif",start=(x,200),

width=98,height=72)

figures = {"stickFigure":drawStickFig, "cat":drawCat}

for i in range(10):

for item in figures:

drawFunction = figures[item]

drawFunction(i)

teken.show()

teken.clear()

In this alternative design, every figure has its own drawing function. The main animation
loop now conveys the logic of the animation without needing to show the details of how each
figure is drawn. Changes to such a program might be more localized so that a programmer
can work on a particular function without needing to think about other functions. One
can imagine this kind of design becoming more elaborate: perhaps the drawing of some
figures should be skipped depending on user inputs to the program (like a game); or more
parameters to the drawing functions could customize how figures are drawn.

Beyond this alternative design using a dictionary of names and functions, Chapter 27
offers another tool from Python’s catalog: objects and classes. Roughly speaking, by letting
each figure be an object, we can define functions that “remember” things between successive
calls. For example, the function invoked by drawCat(5) could look at variables assigned
during the evaluation of drawCat(4) (or whatever an earlier call to drawCat was). This
can simplify sophisticated programs because these “memory variables” do not have to be
known to the caller of drawCat. The Cat object has its own private, enduring memory as
well as providing a function. The syntax of objects, explained in Chapter 27, for the Cat

object could be p.draw(5), where p is a variable equal to the Cat object. This syntax should
look familiar: it is the same syntax seen in string expressions like "--".join(T); it turns
out that the data structures of Python, be they lists, strings, or dictionaries, are secretly
objects.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Chapter 25: Input and Output

Data is not information, information is not knowledge,
knowledge is not understanding, understanding is not wisdom.

— Clifford Stoll

The field of computing grew out of applications characterized by input-output problems.
Businesses tabulate sales and inventory figures, producing quarterly reports. Scientific ap-
plications process experimental data, generating statistical summaries, graphs, and charts.
Recent computing needs transcend simple reports: they require interactive, mobile, and
dynamic data sharing. That said, the basics of how most software works depends on some
form of handling input datasets and creating results in desired, standard formats. Though
new formats for output include video or 3D descriptions (there are now so-called 3D print-
ers that manufacture objects from software designs), it is still a good idea to learn simple
character formats using ASCII, which is what this chapter offers.

The starting concepts for this chapter are input from keyboard, output to the console,
and file i/o (reading and writing files that are on persistent storage, like disk or flash
memory). Along the way, there are dependent concepts that turn out to be useful later for
other purposes: Python has a formatting “mini-language” for precise control of how numbers
and strings are placed; there are different options for conversion of input data from character
form to internal data types. The plan of this chapter is to begin with the simple case of
input from the keyboard and output to a console. Although this should be simple, this
is an area where Python2 and Python3 significantly differ; the discussion has a number of
examples showing language features for the two versions of Python. The remainder of the
chapter thereafter deals with files.

Console and Keyboard Input ➋
➌
E

>>> x = input("Type a number here --> ")

Type a number here --> 7

>>> x

7

Python2 has two built-in functions that
solicit text input from a user at the
keyboard. These two functions, called
input() and raw_input(), have in
common that they suspend a running
function or script indefinitely, waiting
until a user types in some character data and presses Enter on the keyboard. The box
above contains a simple demonstration of input(), done in an interactive Python2 ses-
sion. What you cannot see in the box is the pause waiting for user input. The line
“Type a number here --> 7” was partly made by Python2 and partly made by the user.
Python2 printed the text Type a number here --> and put the cursor just after this text,
waiting for the user to enter something. The string argument to input() is called the
prompt, and it is displayed just before where you expect the user to type in some text. The
prompt is optional; if you do not supply a prompt, Python2 will wait for user input on a
new, blank line. The prompt is a nice way to indicate that something is expected from the
user (otherwise, Python2 would wait forever, or until the window is closed).

295

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

296 A Functional Start to Computing with Python

a = input("number please: ")

b = input("another one please: ")

print("you entered", a, b)

print("types of a,b are", type(a), type(b))

The input() function is usually called
from a script or some function within
a script. The script on the left looks
simple, The input() function is called
twice, saving the first value in variable
a and the second in b. Suppose this

script is put into a file named demo.py. Examples in the following paragraphs run demo.py

to show there is more to input() than one might first think. Below are two examples of
running demo.py from a Linux terminal:

> python demo.py
number please: 201.5

another one please: -40
you entered 201.5 -40

types of a,b are <class 'float'> <class 'int'>
>

> python demo.py
number please: 12*60

another one please: a/4 + 22
you entered 720 182

types of a,b are <class 'int'> <class 'int'>
>

The example on the left is straightforward. The one on the right demonstrates that variable
a, assigned from the first input() call, can be typed by the user in the response to the second
input(). Initially, this might seem like a clever feature of Python. The surprise here is that
Python2 will accept an expression as the value that the user enters via keyboard, which can
be any expression of the kind that might appear in normal Python2 statements. However,
it has to be an expression: functions, methods, and operators are allowed; but assignment
statements, if, for, and so on, are not allowed. Above, the input text “a/4 + 22” references
variable a, which was assigned 720 by the previous statement.

> python demo.py

number please: [x**2 for x in range(5)]

another one please: "fabricate"[:4]

you entered [0, 1, 4, 9, 16] fabri

types of a,b are <class 'list'> <class 'str'>

>

A somewhat strange example is
shown here, where the user entered a
Python slice expression of a string in-
stead of a number. Though this method
of getting input from a user is quite
flexible, it opens the door to many mis-
takes.

> python demo.py

number please: one

NameError: name 'one' is not defined

>

The input one caused the script to stop with an error, because Python could not evaluate the
string “one” and get a value (if the input had been "one," quotes included, then Python2
would at least get a string). Worse even than input that causes a script to stop with an error
could be input of an expression containing mutating method calls: when Python2 evaluates
somelist.reverse() it changes what is in the variable somelist. Therefore, some people
consider the input() function to be a security problem, because it can allow the user to
crash a program, trick it into giving bad results, and so on.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Input and Output 297

a = raw_input("number please: ")

b = raw_input("another one please: ")

print("you entered", a, b)

print("types of a,b are", type(a), type(b))

PyTwo’s raw_input() function does
not suffer from such security prob-
lems. Scripts do not crash and users
cannot do more than supply charac-
ters for input to the script. To the
right is a rewriting of demo.py using
raw_input(). An example running the revised script, which uses raw input(), follows,
and it purposefully has some input that would be illegal for the input() function:

> python demo.py

number please: 1 plus 2

another one please: seven

you entered 1 plus 2 seven

types of a,b are <class 'str'> <class 'str'>

>

You see why raw_input() does not run into trouble: the result of calling raw_input() is
always a string. Python will not interpret this string as an expression, so there is no danger
of causing the script to fail with an error.

Python3. In Python3, the input() was removed, and raw_input() renamed to input();
in other words, Python3’s input() function behaves the way Python2’s raw_input() does.

Input Conversion and Validation

mass = raw_input("Enter mass: ")

velocity = raw_input("Enter velocity: ")

mass = int(mass)

velocity = int(velocity)

print("mv =", mass*velocity)

On the one hand, Python2’s raw_input()

(or Python3’s input()) does not fail, no
matter what a user enters from the key-
board. On the other hand, getting a string
may not be what is needed. Therefore, us-
ing raw input() often calls for some data
conversion, from string to some other data type. Suppose we would like to make small
Python2 script demo.py that gets two numbers from the keyboard, as shown here. Below
are two sample runs of the script. On the left is a normal run of the script, and on the right
the user made a mistake in the response to the input prompt.

> python demo.py

Enter mass: 10

Enter velocity: 30

mv = 300

>

> python demo.py

Enter mass: 10.

Enter velocity: 30

mass = int(mass)

ValueError: invalid literal for int(): '10.'

Python’s int() function converts a string to an int, but causes trouble if the string contains
characters not expected for integers. If we want a script that tolerates user mistakes, and
generally has a more “robust” behavior, then some kind of input validation is needed.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

298 A Functional Start to Computing with Python

For conversion from a string to an integer, Python requires that the string contain only
numeric digits whereas the keyboard input contained a period (Python is actually more
flexible: the result of int("-0095") is 95, for instance). It may seem, therefore, that
raw_input() is no better than Python2’s input() for dealing with user mistakes. How-
ever, there are other steps one can add to the demo.py to validate the user input before
attempting conversion:

def valid(numstring):

if len(numstring)<1:

return False

for char in numstring:

if char not in "0123456789":

return False

return True

def getinput(varname):

while True:

R = raw_input("Enter " + varname + ": ")

if valid(R):

return R

print("Please retry - input must be digits only")

mass = int(getinput("mass"))

velocity = int(getinput("velocity"))

print("mv =", mass*velocity)

The valid() function will only return True if the argument is a string that int() would
convert without error. The getinput() function will ask the user to retry, and retry again
(with no limit on retries) until what the user keys in is valid—which is why this way of
handling input is called input validation.

It is relatively easy to validate a string that should consist only of numeric digits. But
many input formats are considerably more complex: dates, times, and scientific numbers
with exponents are not easy to validate. In a later chapter, we will revisit the topic of input
validation and see a more powerful technique that Python offers for this purpose.

➪ web

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Input and Output 299

Output Formatting ➋
➌
E

Python’s print() function (Python3) or the print statement (Python2) convert various
Python types such as strings, lists, integers, and dictionaries to some standard format for
display. Whereas strings need no conversion (print only has to interpret control sequences
like \n for proper output), all the other types first need conversion to strings. For instance,

>>> print([1,2,3])

[1, 2, 3]

shows that print first converted the list [1,2,3] into a string, and then displayed that
string. We can also see the same conversion interactively:

>>> str([1,2,3])

'[1, 2, 3]'

>>> repr([1,2,3])

'[1, 2, 3]'

The built-in repr() function is the preferred way to convert a type into a string, though
str() works as well. One crucial advantage of repr() is seen in the interactive experiments
with a string:

>>> str("abc")

'abc'

>>> repr("abc")

"'abc'"

For a string, repr() creates a string that, when printed, would show how Python encodes a
string (do not worry if this makes little sense right now, since our goal for repr() is mainly
to convert lists, dictionaries, and other more complex types). What if repr’s conversion of
a list into a string is not exactly what is desired? Here is a simple way to get a conversion
that does not introduce blanks:

>>> repr([1,2,3]).replace(' ','')

'[1,2,3]'

The trick of using string methods, or even functions you may write, lets you take the string
that repr produces and change it as you like.

➪ web

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

300 A Functional Start to Computing with Python

Templates ➋
➌
E

The idea of a text template is familiar to anyone who has received form letters.

Dear ,
Good news! We have added value points to your account. And

if you purchase an upgrade to your current package, . . .

A program fills in the blanks before sending the form letter, putting a customer name in
the first blank and an amount in the second blank. Python3 and later versions of Python2
support a built-in string method format() that implements the idea of a template. A simple
example of this, shown as an interactive session, is:

>>> "starting time {0}, ending time {1}".format(1200,1930)

'starting time 1200, ending time 1930'

>>> "W{0}{1}t {0} wh{1}l{2}".format('a','i','e.')

'Wait a while.'

The format method’s template contains special areas such as {0} that will be replaced
by arguments to the method. We call the special areas {0}, {1}, . . . , pattern fields in the
template. The first argument (1200 and 'a' above) replaces {0} wherever this pattern field
occurs, the second argument replaces {1}, and so on. The template, or pattern string, is
shown as a string above, but typically would be a variable of type str; such a variable
could be thousands of characters, representing many lines of text.

The format() goes far beyond replacing pattern fields. The format() method substi-
tutes for the text in the pattern field, guided by information from the arguments and from
instructions in the special areas themselves. A full enumeration of format’s power is beyond
this chapter, though the main features are worth mention:

• format() converts its arguments to strings during substitution.

• format() can either use positional arguments (where {0} refers to the first argument,
{1} the second argument, and so on), or format() may use a dictionary as its ar-
gument, in which case substitution is driven by the names of keys in the dictionary
(which are given within the pattern fields).

• When numbers are converted to strings, the pattern field can say whether the number
should be left-justified, right-justified, printed in decimal, hexadecimal, using exponent
notation, the number of significant digits, and other formatting details.

➪ web

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Input and Output 301

Taking full advantage of format() is not simple. Indeed, the official Python documenta-
tion has a section entitled “Format Specification Mini-Language,” indicating that format()
actually uses a specialized data language describing how arguments substitute for text in
a string. The following table shows just a few examples and what they intend, for pattern
fields.

{4:30} ➜ use fifth argument, format in 30 characters
{1:>30} ➜ use second argument, right align in 30 chars
{0:^30} ➜ use first argument, center in 30 chars

{0:-^30} ➜ use first argument, center in 30 chars, dash fill
{:f} ➜ use fixed decimal notation
{:e} ➜ use exponent notation

{:8.5f} ➜ format in 8 chars, with 5 digits after decimal
{:,} ➜ format as human-readable thousands using comma

To understand this small table, it is helpful to show some examples. The first example shows
that the argument index can be omitted, and Python will simply substitute pattern fields
in the order they occur:

>>> "{:12}aaaaaa{:e}".format("hi",2345.6789)

'hi aaaaaa2.345679e+03'

>>> "{1:-^10.2f} and {0:,} ok".format(235111982,1.5)

'---1.50--- and 235,111,982 ok'

Experienced Python programmers do not typically memorize the full formatting mini-
language (what can be put into pattern fields); rather, they learn to locate the documen-
tation on the language themselves, then experiment perhaps interactively to be sure that
what they have put into the pattern fields gets the right results.

Python2 Substitution. Before format() was introduced into the Python language, there
was another template operator. This older operator is still supported in Python2, though it
is not available in Python3. We mention it here in case you happen to look at older scripts or
have need to work with an older version of Python2, such as version 2.4. Recall that Python
has a remainder operator, “%” often used to test whether an integer is even or odd. The
remainder operator is only defined for integers. Taking advantage of this known limitation,
Python used % for another purpose, with strings. This example shows how the operator
handled substitution in templates:

>>> "M is %d and V is %5.2f in the equation" % (100,12.5)

'M is 100 and V is 12.50 in the equation'

For the older-style % operator, pattern fields were identified by the % character, and a mini-
language of formatting controlled some details of number conversion to strings.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

302 A Functional Start to Computing with Python

Reading Files ➋
➌
E

The functions, scripts, and examples of this section suppose that ex.txt is a file containing
these five lines:

A flea and a fly in a flue

Were imprisoned, so what could they do?

Said the fly, "let us flee!"

"Let us fly!" said the flea.

So they flew through a flaw in the flue.

The file ex.txt would be located in some directory, which determines its “full address”
for technical purposes. For instance, on a Linux system, it might be /home/user/Desktop/
ex.txt whereas on a Windows system it could be C:\Users\Robert\Desktop\ex.txt.
When you see the file through a windowing system with folders and icons, the file might
just appear with the name ex, because the window system may hide the “.txt” suffix:
window systems are designed for users, not for software developers. Whatever the situation,
you will probably need to know the full address and work with directories (folders), possibly
changing the “working directory” (using the cd command under Windows or Linux) to use
files with Python.

>>> F = open("ex.txt",'r')

>>> G = open("ex.txt")

>>> print(type(F),type(G))

<class 'file'> <class 'file'>

We start with some interactive exercises that
read from a file. The first concept to know about
is a file object, which has the type file in
Python. For reading files, there are three basic
operations, open, close, and read (there are a
few others as well, for more advanced work).
The interactive example creates two file objects; each of these file objects does the same as
the other, it serves as a basis for reading the file ex.txt—this only works without the full
address because this interactive exercise was done in the same directory as where ex.txt

resides. There is no reason to create two file objects to read a file. The exercise just demon-
strates four different ways to do the same thing. The argument 'r' in two cases above tells
Python that the file should be prepared for reading (not writing). If left out, this argument
defaults to 'r' anyway.

Note for Python2: Another built-in called file() can be used as well as
open(), but file() is not valid in Python3.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Input and Output 303

>>> text = F.read()

>>> len(text)

166

>>> text.count('\n')

5

Let’s assume F has the file object for ex.txt, obtained
by the assignment F = open("ex.txt"). To work with
file F, the read() method returns the content of the file
as a string, in this example, assigned to variable text.
Looking at the example, one sees that the file contains
166 characters and 5 newline characters (one at the end
of each line). Now, suppose we need to process the text in the file. The following script puts
the ideas above together with a loop to print the three most frequently occurring words in
the file.

F = open("ex.txt")

text = F.read()

wordlist = text.split()

countable = { } # will be dictionary words & counts

for word in wordlist:

if word not in countable:

countable[word] = 0

countable[word] += 1

next, make a list of (count,word) tuples

freqlist = []

for word in countable:

new = (countable[word],word)

freqlist.append(new)

sort the list by increasing order of count values

freqlist.sort()

print highest three instances

print(freqlist[-1],freqlist[-2],freqlist[-3])

When the script runs, it prints

('the', 3) ('a', 3) ('us', 2)

You may notice some deficiencies in this script. One could argue that the count for 'a'

should be 4, not 3; but the script counted A and a as different words. Also, the script included
punctuation marks in the words. A more careful version of this script would overcome these
deficiencies.

➪ web

Note for Python3

The read() function may not work for files that contain nontext characters. If
myfile.dat contains some data in binary (not text), then to read from the file, Python
has to be informed, when the file is being opened, to treat the file as a binary file. Here
is an example:

F = open("myfile.dat","rb") # "b" means binary

data = F.read()

As a result of these two statements, variable data contains the file, however, the type of
data is a new (Python3) type called bytes. It is beyond this chapter to fully explain the
bytes type, which is much like a string, but for binary values. The conversion between
string and bytes types is by methods,

A.encode() for str A, returns a bytes copy
B.decode() for bytes B, returns a str copy

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

304 A Functional Start to Computing with Python

Reading Lines and Bytes

Quite often, the data in text files is organized into lines, which are separated by \n, or in
the case of Windows, by \r\n strings. For many applications, it is natural to process the
input line by line. Here is a script to make print a list of the line lengths in ex.txt:

F = open("ex.txt")

text = F.read()

linelist = text.split('\n')

lengths = []

for line in linelist:

lengths.append(len(line))

print(lengths)

The output from this script may surprise you:

[26, 39, 28, 28, 40, 0]

(To understand why there is a 0 at the end of the list, you may need to review how the
split method works in Chapter 12.) This way of processing lines, by reading in the whole
file to a string, then using split, is considered poor style for two reasons:

1. The split('\n') technique alone may not be what you want, as the example above
indicates; also, it will leave in the \r characters if the text file has Windows file
encoding, but not have these characters under Linux systems. This makes life more
complicated than it should be.

2. Reading in the entire file to a string may not be practical for very long files. It would
be better to read such a file a bit at a time. Fortunately, Python has several ways to
do this.

Rather than use read(), there is another, somewhat “intuitive” way to read the lines of a
file:

F = open("ex.txt")

lengths = []

for line in F:

lengths.append(len(line))

print(lengths)

The output from this is:

[27, 40, 29, 29, 41]

Notice here that an ordinary for loop can use a file object as though it were a sequence.
Doing so, the loopiter variable takes on a new string, the contents of a line in the file, in
each iteration. Also, in each iteration, the line variable contains the full line, including the
ending \n character (which explains why the lengths of the lines are one larger than in the
earlier, similar example).

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Input and Output 305

One cautionary note on using a for loop to process the lines in a file: unlike for loops over
ordinary sequences, a for iteration over lines of a file only works once:

F = open("ex.txt")

firstlinecount = 0

for line in F:

firstlinecount += 1

secondlinecount = 0

for line in F: # attempt second time

secondlinecount += 1

print([firstlinecount,secondlinecount])

This script prints [5, 0]. The file object behaves as though a single iteration over its lines
“deplete it,” so that it has no more lines for another loop. However, a simple change makes
a difference:

F = open("ex.txt")

firstlinecount = 0

for line in F:

firstlinecount += 1

F.close()

F = open("ex.txt")

secondlinecount = 0

for line in F: # attempt second time

secondlinecount += 1

print([firstlinecount,secondlinecount])

Now it prints [5, 5]. The close() method tells Python that a file object is finished, and
will not be read further. However, the line following creates a new file object and assigns it
to F (it happens to be for the same input file), so the loop following works as expected.

➪ web

Reading Bytes

F = open("ex.txt")

scount = 0

while True:

char = F.read(1)

if len(char)<1:

break

if char=='s':

scount += 1

print(scount)

It makes sense to read lines of a file that is text. The same
does not hold for many other kinds of file, including MP3
files, image files (gif, jpg, etc.), or raw data from scientific
instruments. These are considered binary files as opposed to
text files. Python can read binary files into a string, using
the read() method, but again this is impractical for large
files. The technique for reading binary files is to read them
in chunks, a bit at a time, processing the input as bytes of
data. The way to do this is to supply an argument for the
read method, which tells Python how many bytes from the
file to read. As an illustration, the script above treats ex.txt as though it were a binary
file, counting the number of characters equal to 's': This script sets up what looks like an
infinite loop; the rationale for this is that we may not know, at the outset, how many bytes
the file contains. Each assignment char = F.read(1) is essentially a request, to Python, to
read the next byte from the file and put that into variable char. However, at the end of the
file, this request will fail: as a result, char will be an empty string at the end. This is why
the following if statement checks the length of char, to see whether the end of the file has
been reached—this terminates the while loop. The choice of using read(1) was motivated

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

306 A Functional Start to Computing with Python

by the goal, looking at one character at a time in a loop. Other applications might read four
bytes in each iteration, in which case the method would be read(4) to request the next
four bytes.

There is much more to reading and interpreting the bytes of a binary file than the
example above would suggest. Typically, another module struct is used to convert bytes
into integers, floating point numbers, and so forth. You can read about struct online if you
encounter the need to process binary files in some application (also relevant may be binhex
and binascii modules).

Standard Input and Standard Output

Another criticism of the examples above is that they “hard code” the file name. That is,
the name of the file ex.txt is written into the Python code. What you would like to use is
the same script one time for ex.txt, another time for june.txt, and so forth? It would be
nice to do this without having to change the Python code. Linux has a convention to allow
just this capability, called redirection.

import sys

linecount = 0

for line in sys.stdin:

linecount += 1

print(linecount)

STDIN. Long ago, in the early days of operating systems,
most programs were simple: they would read input, typically
from punched cards, magnetic tape, or paper tape, and print
output results on paper. The input device, whether a card
reader or a tape reader, had a symbolic name like STDIN or
SYSIN. Later, as computing media progressed from cards and
tape to other forms, this notion persisted. Programs were supplied, automatically, with an
input file named stdin or something similar. Python can use this stdin feature, shown
here in a script.

> python linecount.py < ex.txt

5

The sys module has many functions and vari-
ables related to the operating system support of
Python, including the stdin file. Suppose this
script is put into linecount.py, and we would

like to count the lines in ex.txt. The part of the command specifying the input file, that
is, the part with tells which file will be used for sys.stdin, is the “< ex.txt.” This is a
convention of the operating system (shell language of system commands), to redirect where
a program will look for stdin input. Note: if this is omitted, and if a program tries to read
from stdin, then the input will be expected from the user at the keyboard.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Input and Output 307

> python linecount.py

one

two

stop

exit

quit

help, get me out!

A test is shown on the right, where the redirection is omitted.
What happens is that, in response to “python linecount.py,”
the cursor blinks on the next line, waiting for user input (which
will be treated as the stdin file). The user typed one, and the
script asked for more input; the user typed two, and again the
script waited for input. The user tried to get out of this, typing
stop, then exit, and so on. Actually, this goes on and on with
more lines, because the user has no way to tell the program that
stdin has ended via the keyboard device. The moral of the story is that it is better to
use input() and validation if keyboard input is appropriate; otherwise, use redirection
to associate sys.stdin with some file. The following interaction at a Linux shell prompt
illustrates why redirection is handy:

> python linecount.py < monday.txt

3128

> python linecount.py < tuesday.txt

405

> python linecount.py < tuesday.txt

11218

The linecount.py script was invoked three times on three different files, without having
to make any change to the script.

Multiple Files

There is no limit in Python to the number of files that a program can use. An example below
shows a loop through two files. One thing to keep in mind is that there is some memory
overhead for each file. Large programs that read many files may benefit from reducing the
overhead. The memory overhead for such large programs is not the total number of files
they read, but rather the number of open files at any time during the run. To reduce this
overhead, it is wise to close each file when it is no longer needed, for instance

F = open("ex.txt","r")

for line in F:

myprocess(line)

F.close() # done with file F

...

Some function myprocess() looks at each line of the file; after the loop terminates, it is a
good idea to close the file.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

308 A Functional Start to Computing with Python

readline. Consider the task of merging two files ex1.txt and ex2.txt. There could be
many ways to merge two files, including a back-to-back merge, a line after line merge, and so
on. As an example, the following program takes a pair of lines, one from each file, and prints
the concatenation of these two lines, in a loop. The example introduces another method for
file objects, the readline method. Each use of readline returns the next line in the file.
At the end of the file, readline returns the empty string.

F, G = open("ex1.txt"), open("ex2.txt")

while True:

line1 = F.readline()

line2 = G.readline()

if line1=='' and line2=='':

break # end of both files

outputline = line1 + line2

print(outputline)

F.close()

G.close()

When the script runs, it may be that one of the two input files has fewer lines than the
other. In such an event, the while loop will get empty strings from readline() of the
shorter file as it continues to read lines from the longer file. Python also has a readlines()

method: it returns a list of all the lines in a file (unlike read(), which returns the entire file
contents as a string).

Writing to Files

Python offers a write() method that adds strings to a file. To use write(), the file object
needs to be prepared for output. A statement to create a file object for output is

F = open("out.txt","w")

The second argument (the "w") tells Python that the file object will be used for writing
(and if the second argument is omitted, the default is reading).

The write() method is deceptively simple to use: F.write("hello") adds the string
hello to the file represented by file object F. The underlying behavior of Python, and the
operating system, add some wrinkles to this simple interpretation. Reading and writing differ

T = "hello"

F.write(T)

print("done")

significantly in timing of data transfer. When a program has a
statement R = F.readline(), the assignment of a string to vari-
able R actually takes some amount of time to perform (under a
millisecond). Though this amount of time is not humanly percep-
tible, it does cause Python to wait until the data is transferred
from the file to R. In contrast, the script shown above may not transfer hello to the file
before printing done.

As far as using methods read, readline, or readlines, the only thing we need to know
is that these methods fetch some data when the method is called. However, for the write

method, the situation is not so simple. For reasons of efficiency, the write method does not
instantly transfer data. Instead, the write method “schedules” the actual transfer of data
to the file at some future time. There are several motivations for scheduling future data
transfer. It can be that the file media (flash, disc, etc.) is rather slow compared to program
steps, so it would be less efficient to make the program slow down for each write call; it can

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Input and Output 309

be that the file media uses less power (energy) when multiple file transfers are “bundled”
together into larger size blocks of data.

➪ web

Flushing Buffers

Two file object methods can be used to force the transfer of data that previous write calls
have scheduled: they are flush() and close(). The flush() method can be called at any
time after a file object has been prepared for output, up to the point where the close()

method has been called. The close()method not only finishes and schedules data transfer,
but it also releases any memory resources entailed by the file object. After the close()

method has been called, the file object is no longer available for write operations.
Why does this matter? Suppose a program generates a large output, writing to a file that

will be many gigabytes when the program finishes. Now imagine that the program does not
finish because of a power outage that crashes the computer. What will be in the file after
the power goes out? Hard to say. However, if the program occasionally uses the flush()

method, then at least some of the scheduled data transfer will likely be added to the output
file. Such a program could run for hours or days before it closes the output file, and using
flush() is therefore sensible. In the small exercises of this chapter, using flush() will not
be justified. Just remember that a program writing to a file should use close() before
the program finishes. In fact, when a Python program does finish, the operating system
automatically closes any open files. Yet the habit of using close() is valuable. Consider a
Python program that acts as a Web server, responding to network requests and recording
something related to those requests in files. This program might run for weeks or months,
handling millions of network requests. For this program, it would be essential to use close()
to finish scheduled data transfer so that the output files have all the data they should (so
that these files could be used for other needs, including analysis, report generation, and so
on).

Please use close() when finished writing.

With Context Manager

If you look at Python code found in library modules, you may encounter the “with”
statement, usually in connection with files. Python’s with statement is typically
followed by a block of statements using a file, but omitting close on the file. This
is because with automatically closes the file, whether it was opened and read,
written, or not. A brief example follows.

S = list()

with open("forex.txt") as F:

for line in F:

if line.startswith("--"):

S.append(line)

S is now list of lines having "--" at beginning

As a beginner, you should not need to use with. The with statement is associated
with a context manager in Python, a concept you likely will not need to understand
or use.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

310 A Functional Start to Computing with Python

String Preparation

F = open("out.txt",'w')

for x in range(20):

s = repr(x)

F.write(s)

F.close()

The argument of the write() method must be a string.
Here is a demonstration of the fact:

>>> F = open("out.txt",'w')

>>> F.write(1.5)

TypeError: must be string, not float

If only a string can be written, but one would like to write numbers, then some kind of
conversion to a string is needed, as seen in the script above. The script writes integers
converted to strings, using the built-in repr() function described earlier in this chapter.
After running this script, the file out.txt consists of the single line:

012345678910111213141516171819

This result may not be what one would hope for. Unlike print, the write() method does
not automatically insert spaces or newline (\n) characters. This is where formatting comes
handy. Below, the left script uses the format method on the template string "{}\n" to
ensure that each number is not only converted to a string, but a newline comes after that.
Instead of using format, an assignment such as “s = repr(x)+"\n"” would also work for
the same purpose. The content of out.txt after the script runs is shown below on the right.

F = open("out.txt",'w')

for x in range(10,16):

s = "{}\n".format(x)

F.write(s)

F.close()

10

11

12

13

14

15

Reading and Writing

Python has additional methods for file objects so that the same file can be both read from
and written to in the same program. Databases consist of files that are updated, meaning
that data is read from the file, changed in memory, and then written back over the original
values. Python is capable of doing this, but it is an advanced topic, beyond this chapter.
Another feature worth mentioning is that on most operating systems where Python runs, an
output file can be opened in append mode: when a file object is created with append mode,
the data written to the file does not replace what the file already may have—new data
written to the file is concatenated to what is already in the file. Append mode is frequently
used for logging events, audit trails, or other applications where many scripts write output
to the same file, and the result is a file with the output of all of them.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Input and Output 311

Printing to Files ➋
➌
E

for value in range(3,8):

print(value)

The print statement in Python2, or the print function in
Python3, is implemented internally within Python using the
write() method. By default, Python directs printed output
to a file object sys.stdout. Usually, the operating system
sends anything intended for standard output (sys.stdout) to the console, as seen during
interactive Python sessions. As with the standard input sys.stdin, it is possible to redirect
where standard output goes. Consider the basic script shown above. Suppose this two-line
script is in a file basic.py, and the following command is run at a Linux shell prompt:

> python basic.py > out.txt

>

The “>” at the beginning of the two lines above is a marker for the command prompt,
whereas the “>” before out.txt tells Linux to redirect standard output from the console
to a file named out.txt. This is why you see no output from the script on the console.

3

4

5

6

7

However, if you use some editor to look at out.txt after the script has run, the
content will be the lines shown to the right. Both input redirection and output
redirection can be used on the same script run.

> python countlines.py < myfile.txt > count.txt

The example runs the countlines.py script, taking standard input from the
file myfile.txt, and sending anything printed to a file count.txt.

F = open("newout.txt","w")

for W in range(50):

print >> F, W, W**2, W**3

F.close()

Python2 print to File Object. A strange syntax is
used in Python2 for printing to a file object other than
to standard output (fortunately abandoned in Python3).
Generally, you can use the print statement to place out-
put into any file that has been created for output using
“>>” syntax. Here is an example printing to a file newout.txt. Unlike the write()method,
the print statement will put spaces between the items printed and add a newline character
at the end of the line.

F = open("newout.txt","w")

for W in range(50):

print(W, W**2, W**3, file=F)

F.close()

Python3 print to File Object. For Python3, there is
no print statement, there is the print() function. It has
a keyword parameter file that defaults to sys.stdout.
For any print() function call, the file argument can
specify a file object for output. The print() function
will put spaces between the items and add a newline (\n). The print() function has other
keyword parameters that can change some details of behavior, including the spacing between
items printed and whether the newline character is inserted at the end.

Terminology Review

Python2 has two techniques for getting input from the keyboard, input() and raw_input(),
whereas Python3 has only input(). The format method and the formatting mini-language
use a template to control how output strings convert other types into readable form. This
chapter introduced file objects and methods read(), write(), readline(), close(), plus
functions to create file objects, open() and file(). Standard input, standard output, and

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

312 A Functional Start to Computing with Python

redirection (for both input and output) have names and special notation (sys.stdin,
sys.stdout, with “<” and “>” in a Linux command console). A new kind of for loop
was introduced in this chapter, which is used to iterate over the lines of a file. The repr()

built-in function was introduced, and the Python3 bytes type was mentioned, for which
there are methods decode() and encode().

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Input and Output 313

Exercises ➪ web

(1) Consider the classic problem of solving simultaneous equations, often specified by
values a1, b1, c1, a2, b2, c2 in the equations

a1 · x+ b1 · y = c1

a2 · x+ b2 · y = c2

Write a Python script that asks the user for six numbers corresponding to the values in
these equations and then either outputs what are x and y or reports that no solution
can be calculated.

(2) Write a script that takes a text file, perhaps containing a news article or some
short story, and makes a version of the same file in which all punctuation characters
(.,;:'"?-) have been removed, as well as numeric digits (0123456789) and other
nonalphabetic characters ($%^&*()[]@!‘~<>\, etc.). Furthermore, the script should
convert uppercase to lowercase. Thus, the output file should only contain whitespace
characters and letters (a–z), but have the same number of lines as the input file and
the same number of “words.”

(3) Write a script that produces a table with two columns, words and counts. The input
for the script is a text file containing simple words, like the output file from problem
(2). For each word in the input file, there should be a row in the table with that word
and the number of times it occurs in the input file, so there should be as many rows
in the table as there are different (distinct) words in the input file. The table’s two
columns should line up, so that all words start at the beginning of the line, and all
numbers line up in the same column.

(4) Write a script that sums values in the third column of CSV file. You may do this
either by reading each line of the file, splitting by commas and converting list items
to numbers, or you may research how to use Python’s csv module.

This page intentionally left blankThis page intentionally left blank

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Interlude: File Indexing

As a case study, this section develops programs for searching a directory of text files. Infor-
mally, what we would like to create is a command like “findfiles seahorse” and see a list
printed of all the files containing the word “seahorse.” Many systems already have such a
command or perhaps an application that searches through files for a pattern. But in this
case study, the aim is something similar to a search engine. In contrast to an active search
of Web sites, a search engine works in two phases: (i) first scan the web, building a catalog
of the words in pages and where they are found; (ii) in response to a search request, look
through the catalog built in phase (i) and report on the search hits. Hence, the structure
of this case study is to first develop a program to build a catalog of all the text files in
a directory. This catalog is called the index of the files, inspired by indices at the end of
books.

Building an Index

Before we get going, a bit of research is in order. The first interlude of this book (“Interlude:
An Inventory Problem”), examined the problem of how to represent the data (tables) of
Acme Perfume. There are different ways to represent inventory, each worthy of considera-
tion. Similarly, one of the first design choices for constructing an index is deciding on how to
represent information in the index. What will the index be used for? The only purpose here
is a findfiles program, which searches or uses lookup to find a word within the index.
Python already has the ideal data structure for this purpose, the dictionary. We can have
the index be a dictionary, with all the words in all the files, as keys in the dictionary.

If words are the keys in the dictionary, what are the values associated with those keys?
The obvious answer is to have a list of filenames as the value for a key. We will follow this
simple design, but later find better ideas because of the need for persistent data. Unlike all
the scripts and functions elsewhere in this book, the project of this section is one where
results must persist after the program finishes. Once all files are read and their words put
in a dictionary, the first phase is done. The output of the first phase is a dictionary, which
has to be saved somewhere for later queries.

import sys, os

wordindex = dict() # empty

def addwords(D,F):

function will read F

and add words to D

filelist = os.listdir(sys.argv[0])

for file in filelist:

addwords(wordindex,file)

output = open("windex.txt",'w')

output.write(repr(wordindex))

output.close()

Another research task is to figure out how
the first phase will get the name of a directory
of files, learn how to list all the files therein, and
how to save the output (dictionary) for later use
by the second phase. After one does some Web
searches, reads Python manuals, and tries inter-
active testing, two valuable techniques are dis-
covered. First, the name of the directory can be
a command line argument, so that sys.argv[0]
will be a string containing the directory name.
Second, the os.listdir() function returns a
list of files and subdirectories within a directory, which is what we need. Third, to save
the dictionary the program can either print it (and we then capture stdout by redirec-
tion) or write it to a file. The sketched program shown here writes the dictionary to a file
windex.txt, after converting it to a string form using the repr() built-in.

315

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

316 A Functional Start to Computing with Python

{"a":["prog.txt","memo.txt",

"first.py"], "and":["memo.txt",

"first.py","other.py"], "any":

...

It is a good idea to pause here, before any more
program development, and think through the
consequences of the design so far. If all goes
well, the first phase will be a program that goes
through a bunch of files in a directory and writes
a file windex.txt. Let’s say the command to run
the first phase is “python indexor.py HomeWorks” where Homeworks is a directory. What
will windex.txt look like after this? Just a tiny fragment of what we imagine is shown
here. The result is essentially the same as what is seen printing a dictionary. This output
of indexor.py will later become the input of findfiles.py, so the second phase will have
to read windex.txt and recreate the dictionary. How does a program read a file, which is
the printed image of a dictionary, and get back the dictionary from this? With integers,
a simple conversion like int("12") returns the number 12, but not so with a dictionary.
There is no conversion such as dict("{'a':3}")which returns the dictionary {"a":3}. So,
the choice made so far of simply converting a dictionary to a string using repr(), turns out
to be a burden on the design of findfiles.py.

Chapter 26 introduces Python’s eval() function, which is capable of evaluating a string
that has a valid Python expression and returning a value. Function eval() could reconsti-
tute the dictionary with an assignment such as this:

wordindex = eval(open("windex.txt").read())

However, as Chapter 26 observes, the use of eval() can be dangerous and is also difficult to
debug if things go awry. Another idea is to use Python’s picklemodule. The picklemodule
is Python’s implementation of the concept called serialization (actually it is Java terminol-
ogy). Serialization entails having two library facilities, one for converting data structures or
objects into a form suitable for writing to a file or transmitting over a network, and another
facility for doing the reverse conversion back into a data structure or object. The pickle

module has functions for both kinds of conversion. We could use pickle instead of using
repr, write the pickled data to windex.txt, and then let findfiles.py read windex.txt

and use “unpickle” to get dictionary wordindex. Yet another choice would be to find, and
learn how to use, modules that convert Python data structures to JSON or XML, which
are standard ways of representing data in text files. The bottom line is that we have many
choices in the design. However, for illustrative purposes, this case study uses a simple design
that makes the job of findfiles.py easy.

output = open("windex.txt",'w')

for key,value in wordindex.items():

output.write(key+"\n") # word

fl = ','.join(value)

output.write(fl+"\n")

output.close()

Instead of writing repr(wordindex) to
windex.txt, a design that simplifies processing
is shown here. On one line, a word is written,
and on the next line the files which have that
word are written as a string, separated by com-
mas (we assume that filenames do not contain
commas). The corresponding code which reads
windex.txt and recreates the dictionary is straightforward, and is shown in the next para-
graph.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Interlude: File Indexing 317

dsource = open("windex.txt")

wordindex = dict()

for line in dsource:

read word and remove '\n'

word = line.split()[0]

wordindex[word] = list()

nextline = dsource.next()

fl = line.split()[0]

for filename in fl.split(','):

wordindex[word].append(filename)

dsource.close()

The code here reads the file two lines at a time,
using a for loop, and adds (key,value) pairs to
the dictionary with a nested loop. In computing
jargon, a nested loop such as this is sometimes
called the inner loop. The code here would best
be encapsulated into a function and tested dur-
ing the debugging of findfiles.py. Two ob-
servations about this code explain some details.
First, recall that a for loop reading a text file
will get the newline ('\n') character at the end
of each line; the code uses whitespace split to
eliminate the newline, followed by indexing to pull out the first string from the list that
split() returns. Second, this code shows a way to deal with the situation where we need to
process two lines of input in each iteration of the loop. Because our first phase writes a word
on one line and the list of files on the following line, we need to read lines in pairs here. The
for loop cannot read two lines at once, so the assignment nextline = dsource.next()

reads a line using the next() method (which is what for does behind the scenes, see the
box “Loops Using Iterables and Generators” in Chapter 22).

A remaining issue is the addwords(D,F) function, which was not defined earlier. With D

being the dictionary under construction and F being a filename, this function should mutate
D for each word in F so that findfiles.py will later report this. The design of addwords is
simple. Using a for loop, we can read lines of the file, split each line, and with an inner loop,
make sure the words are in the dictionary and associated with the file named by F. In the
following code, some extra tricks have been inserted, such as removing trailing punctuation,
converting hyphens into spaces, and using the lowercase version of the word.

def cleanword(W):

"return a cleaned-up version of word W"

from string import punctuation

C = W

while len(C)>0 and C[-1] in punctuation:

C = C[:-1]

return C.lower()

def addwords(D,F):

'''Mutate D for each word in F so that D[word]

refers to a list that contains F (as a filename)'''

fileF = open(F)

for line in fileF:

line = line.replace("-"," ") # handle hypenated words

words = line.split()

for word in words:

word = cleanword(word)

if len(word)==0:

continue # in case cleaned up word is empty

if word not in D:

D[word] = list()

if F not in D[word]:

D[word].append(F)

fileF.close()

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

318 A Functional Start to Computing with Python

The addwords() function makes use of another function, cleanword(). By what ratio-
nale was this new function added to the design? The basic theme in much software function
is overcoming library deficiency. The idea behind our improvement to the indexor.py pro-
gram is to make it easy for findfiles.py to automatically find words without regard to
being upper- or lowercase words. Further, we would like “stop” and “stop.” to be indexed
the same. Therefore, what we wish Python had built in was some kind of word regularizer,
which converted to lowercase, removed punctuation, took care of hyphenation, and more.
Python does not have a built-in function for that. So, to make up for this lack in Python, we
write our own function. Many functions in programs exist because the designer had a wish
list of features that the programming language or system did not already have. So, this is one
rationale for creating cleanword(). But, some readers might object, why define a function
if it is only going to be called once? Why not instead just take the code in cleanword() and
merge it into the code for addwords()? The reasons are program readability and testing.
If we move the code of cleanword() directly into the inner loop of addwords(), then we
end up having a triply nested loop, which makes the program more difficult to read. As
a general rule, one should aim to write Python code that does not have more than a few
levels of indenting. That will make the code easier to comprehend and debug. The other
reason to keep cleanword() as a separate function is testing. The cleanword() function
can be tested separately from the rest of the program; unit tests can even validate that
it works correctly. A final observation about cleanword() is its use of Python’s string

module. This module has a variable punctuation, which is nothing more than a string of
all the punctuation characters found in the ASCII character set (period, comma, semicolon,
question mark, etc.).

import sys, pprint

def getdict():

code was sketched earlier

...

tofind = sys.argv[0]

wordindex = getdict()

if tofind not in wordindex:

print "word not found"

else:

print "word in files:"

fl = wordindex[tofind]

pprint.pprint(fl)

The basic design of the first phase of the case
study is in place. The missing part, shown here,
is the findfile.py script, which reconstitutes
the dictionary built by indexor.py and uses it
to search for a word. Though this completes the
basic design, there is much to be done to make
this design robust. For one thing, either of these
phases could encounter errors due to missing
files, getting some kind of error when attempting
to read a file with binary data, or attempting to
read a subdirectory (which os.listdir() can
return in its list) as a file. Chapter 26 introduces
Python’s try .. except syntax whereby a program can catch an error and take some re-
medial action, recovering from the error instead of crashing. In fact, most well-designed
programs have error-recovery as part of their design. A second concern about the simple
design of the case study is performance. Though Python is not the most efficient language,
proper design can sometimes dramatically improve running time of programs.

➪ web

✰ ✰ ✰

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Interlude: File Indexing 319

Refining the Index

In what way might the performance of indexor.py and findfiles.py be improved? Here
are two ideas. First, one could think about a design of indexor.py that incrementally
mutates the index of words for a directory. Search engines build indices incrementally rather
than all in one run. Perhaps indexor.py could run from time to time, only changing the
dictionary in windex.txt when a file of the directory has changed. With an incremental
design, the running time for indexor.pymight be significantly smaller (even negligible time
when no files have changed since the last run). A second performance improvement would
be to change findfiles.py so that instead of reading all of windex.txt and rebuilding
wordindex, maybe just some small portion of windex.txt could be read. That would speed
up searching for a word in a file. There are many other ways one could think of improving
the design, not all related to running time performance. Another idea might be to change
the dictionary so that the location (line number, column number) of words within files is
retained. Such a new feature might enable searching for phrases as well as words.

Of the ideas for improvement, this case study investigates the second improvement idea,
which is to read just a portion of windex.txt. By exploring this idea, we also glimpse a little
of the way dictionaries work “under the hood” in Python. Again, in order to pursue the
improvement, some initial research is a good idea. How can a program read just a portion
of a file? How can it be known which part of a file to read? Answers to these questions are
the first order of business.

Most persistent media, like hard disk or flash memory, makes random access possible.
This should make one suspect that files have methods beyond read() and write() that
somehow enable reading and writing to start at different points within a file. If we search
Python’s documentation (or just use a search engine), the seek() method’s description is
found. The seek() method takes an integer argument and positions the file object so that
the next read() or write() starts from that offset. For example, given file object F, after
F.seek(100) the next F.read() will access data 100 bytes into the file. There are some
caveats about seek() noted in the documentation, but it will satisfy needs of this case
study.

Another research question is this: how can we know where, in a file, to look
for a particular word, say the word famous? To answer this, we dig into the in-
ternals of Python that enable dictionaries to fetch values by keys. The magic that
makes dictionaries work is the concept called hash tables, which is beyond this book.
A hash table has the two very useful characteristics: (i) it can be indexed, like
a sequence type (list, tuple, string) very fast, using a number as the index; (ii)
there is a hash function that turns a key value, such as a string, into a number.

>>> dir(str)

['__add__', '__class__', ...

'__hash__', '__init__', ...

'join', 'replace', ...]

>>> "famous".__hash__()

868660305

Using property (ii), Python figures out where a
(key,value) pair belongs in the dictionary by first
using the hash function to get a number, and then
using property (i) to know the right place in the ta-
ble for storing or reading the value associated with
a key. It is not necessary to fully understand this,
though it is revealing to look at how Python does

this. To the left, in an interactive script, some internal methods are exposed: The response
to dir(str) is a list of all the methods and attributes of the string (str) type; there are far
too many to show here, and most are omitted (hence the “. . . ”). Two of the methods we
recognize, join() and replace(); most of them are unfamiliar. One especially of interest is
the hash () method—it is this method that calculates the number used by dictionaries
to find the location for a key. The example concludes by showing the value of the hash
function (that is, the hash () method) for the word famous. Any type used as a key in a

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

320 A Functional Start to Computing with Python

dictionary, be it a string, tuple, or numeric type, secretly has a hash () method. We will
use Python’s hash method to figure out where, in a file, to find information for the word
famous.

Imagine that the indexing file, windex.txt, contains 10,000 total characters. Let us con-
sider a simple plan on where a word and its list of filenames will be placed in windex.txt:
either the first or second half. If famous is in the second half, then a method call like
F.seek(5000) skips over the first half of windex.txt, and subsequent reading from file
object F can search for the line containing the word famous. How can it be known
whether famous is in the first or second half? The answer is found from the expression
"famous". hash ()%2. This expression will evaluate to 0 or to 1, depending on whether
the hash function result for famous is even or odd. Thus, if the hash value for famous is odd,
then famous will be in the second half of windex.txt. Of course, to ensure that this works,
we have to arrange that indexor.py puts famous and its list of filenames in the second
half, but this is possible since indexor.py can use the same hash function (the hash ()

method) that findfiles.py does.
The performance improvement by just reading half of windex.txt is not very impressive,

but the idea can be tweaked to get much better performance. Instead of using odd or even,
we make the expression to determine location "famous". hash ()%k where k is a larger
number, say 172. This effectively divides windex.txt into 172 chunks of equal size, and
some clever value in seek() will skip right to the chunk that has famous. Though many
details remain, this is the basis for the improvement (and, incidentally, a powerful strategy
in modern design of efficient databases). One more modification to the idea is helpful.
Instead of fixing the number of chunks to be some number like 172, we let the k be tuned
by indexor.py. Similarly, the number of bytes in a chunk, say p bytes, will be tuned by
indexor.py. The data, coming from indexor.py’s dictionary of words and filenames, will
determine the number of chunks k and the value of p.

import sys

F = open("windex.txt")

k = int(F.read(8))

p = int(F.read(8))

word = sys.argv[0]

chunk = word.__hash__()%k

F.seek(p*chunk)

area = F.read(p).split('\n')

lines = iter(area)

for text in lines:

if word == text:

print lines.next()

break

A crude script for the revised findfiles.py is shown
here. It reads the first eight bytes of windex.txt to
learn the value k, the next eight bytes to get the
value p, and thus the size of the chunk and the num-
ber of chunks is known. The chunk that should have
the word being sought is calculated using the hash
function. This chunk is read, split by newline into a
list of strings, and then an iterator line is created.
Python’s built-in iter function does the equivalent
of making a generator such as (e for e in area);
this allows us to use the next() method in the for

loop going through the lines that comprise the chunk.
Once the loop hits the matching word, it prints the

next line and quits the loop. This script has a number of bugs, does not print output nicely,
and does not show a message when the word is not found. It does illustrate, quite concisely,
how the hash function idea could significantly improve performance.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Interlude: File Indexing 321

The hard part of the job is revising indexor.py so that it puts words and corresponding
file lists into the correct chunks, plus determining the values for p, k, and writing those
into the first 16 bytes. What should determine k and p? The value of k must be large
enough so that the number of words for which word. hash ()%k have the same value
(meaning they will go into the same chunk) does not exceed p bytes. This is the hardest
part of the problem. Once we know values for k and p, the seek() method can be used
to write the data into the appropriate chunk. After k is known, it will be simple to create
a list of k dictionaries, one for each chunk. Then each word of the dictionary built by the
addwords() function (earlier in this chapter) can be copied to one of k new dictionaries.
Writing the contents of a dictionary to a chunk can be like the code given on the opening
page of Chapter 5.

To understand how p and k might be found, a bit of computing research terminology is
helpful. When a hash function calculates the same value for two different words, we call that
a collision. Depending on the quality of the hash function, collisions may happen frequently
(many words get the same hash value) or not at all (a so-called perfect hash function).
Python’s built-in hash () is high-quality, but not perfect. Collisions can happen. To limit
collisions so that too many words do not end up in the same chunk, we may experiment
with p and k. A useful observation of computing researchers is that the quality of the hash
function will improve the larger k is; and for our design, we observe that the larger p is,
the more collisions we can allow yet ensure the chunk does not overflow with words. So, on
the one hand, using large values for k and p will overcome the collision problem, but on the
other hand, these large values will make the windex.txt file become big. Below, we offer
a primitive design that increases both k and p until all words fit into their hash-computed
chunks. This is not an exact science, but it is the nature of the problem.

To organize all the tasks of revising indexor.py, here is a “wish list” for helpful func-
tions. These are functions we wish Python already had in some module.

• EntSize(W). We wish there were a function that would tell us how many bytes total
are in the two lines of windex.txt for the word W.

• MaxEnt(D). Let’s say D is the dictionary that is created by running addwords(D,F)

on every file object F in the directory. We wish there were a function MaxEnt(D) that
returns the maximum of EntSize(W) for any word W in dictionary D.

• Collisions(k,D). We would like a function that tells us, for a given k, how many
words maximum, from D, can get the same chunk number.

• allow(k,p,D). The allow function should return a boolean telling us whether or not
a file with k chunks each of size p bytes will prevent any chunk from overflowing with
words due to collisions.

• Buckets(k,D). It would be nice to have a function that takes D and returns a new
list of k dictionaries, one for each chunk, with the words and filenames put into these
new dictionaries.

• writeBucket(i,B). This function takes a dictionary B (one item of the list that
Buckets builds) and writes it to chunk i of windex.txt.

• writekp(). Let there be a function that writes values of k and p in the first 16 bytes
of windex.txt.

Perhaps this wish list is incomplete, but it can be a starting point to sketching a revised
indexor.py.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

322 A Functional Start to Computing with Python

k, p, D = 32, 1024, setup()

while not allow(k,p,D):

k, p = 2*k, 2*p

L = Buckets(k,D)

F = open("windex.txt",'w')

for i,B in enumerate(L):

writeBucket(i,B,F)

writekp(k,p,F)

F.close()

A rough version of indexor.py is the script shown
here. It is missing a function setup(), which includes
code creating a dictionary, running addwords() for
each file in a specified directory, and returning that
completed dictionary. In other words, setup() builds
D for us. The other functions have been informally
described in the wish list. The strategy for finding
k and p is simple: starting with estimates for each,
the allow() function checks whether or not they will
work; if not, the values for k and p are doubled and the test repeated. Once allowable values
are found, file windex.txt can be written using other functions in the wish list. When testing
an implementation of this code, we may find that doubling k and p was too drastic (and
that windex.txt would be too large). In that case, other ideas for increasing these values
could be explored.

def allow(k,p,D):

m = MaxEnt(D)

t = Collisions(k,D)

return p >= m*t

Here we have a somewhat pessimistic, though
simple implementation of allow(). If we conser-
vatively estimate that every word will consume
MaxEnt(D) bytes when written to windex.txt, and
if there can be Collisions(k,D) words in a chunk,
then p will need to be at least m*t bytes.

def Collisions(k,D):

allhash = [w.__hash__()%k for

w in D.keys()]

V = { i:0 for i in range(k) }

for x in allhash:

V[x] += 1

return max(V.values())

The Collisions() function reports the most
number of words that would go by hashing to the
same chunk. The logic here may seem curious. First,
allhash is a list of all the chunk numbers for all
words in D. Then a new dictionary V is created with
chunk numbers as keys and zero as the value for every
chunk. The chunks are tabulated by V, so that V[x]
will be the total number of words which would end

up in chunk x. The function returns the maximum value over all items in V. This implemen-
tation of Collisions() is a reminder that even with an imperative style of programming,
the pythonic way of using comprehensions can make for elegant, simple code.

def Buckets(k,D):

L = [dict() for i in range(k)]

for key in D:

j = key.__hash__()%k # chunk

N = L[j]

N[key] = D[key]

return L

Rather than fleshing out all the functions on the
wish list, we end this case study by showing just one
of them. The logic of Buckets() is simple enough.
After creating k new dictionaries with a list compre-
hension, the keys of D are examined in a loop. For
each key, the chunk number is calculated and the new
dictionary for that chunk is referenced by N, which
is then mutated to copy the key and value from D.

This mutation, because of aliasing, changes the appropriate dictionary in list L.

➪ web

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Chapter 26: Network Programs

Societies have always been shaped more by the nature of the media
by which [they] communicate than by the content of the communication.

— Marshall McLuhan

Communication networks are familiar to all of us: e-mail, the Web, video over cable, and
thousands of smartphone applications are essential components of our lives. Less familiar,
yet no less important, are hidden data networks. Computing has grown to be pervasive in
modern infrastructure. Although most infrastructure computing is confined to microproces-
sors with limited functions (heating systems in buildings, fuel monitors in vehicles, traffic
control systems, devices that track packages, alarm systems, etc.) these functions gain con-
siderable value to the extent that they are networked, even if such networking is hidden
from casual observation.

The standard Python library has a suite of modules for networking, all of them oriented
to Internet protocols (other modules specific to cellular networks or low-level hardware
networks are currently outside of the standard library). One feature of networking sets it
apart from most other computing application: failures are part of normal life in networks. A
path through the Internet may involve hundreds of computers, routing switches, fiber optic
cables, and wireless communication susceptible to electromagnetic noise. In such situations,
the probability of some communication outage or just some message being lost is significant
enough to warrant some precaution by application programs. Another source of worry is that
networks can be overloaded by peak data traffic, which again disrupts service temporarily.

The goal of this chapter is to introduce some of Python’s standard network modules
and also to show how errors can be handled by scripts, functions, and modules. The error-
handling uses try and except statements, which are widely used for many purposes (beyond
networking) in Python programming.

Reading a Web Page ➋
➌
E

The technical steps involved in getting a Web page from a server are complex: The server
name has to be resolved into hardware addresses, messages are broken into data units
suitable to the network medium (wire, wireless, or fiber), the server has to process the
request to serve up particular page, and so forth. Fortunately, all of this has been packaged
up into a simple interface. After putting all of the complexity into modules, it is as easy
as opening a file object and then using techniques from Chapter 25 to do the rest. The
examples that follow use a for loop to process the file object, however, read() could just
as well have been used.

323

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

324 A Functional Start to Computing with Python

import urllib2

UF = urllib2.urlopen("http://www.nist.gov")

PageFile = file("Web page.txt",'w')

for line in UF:

PageFile.write(line)

PageFile.close()

Python2’s urllib2.urlopen(). The
script here writes a copy of a Web page to
a local file. Two file objects are used, UF
for reading the Web page and PageFile for
saving the page. The urlopen() function
will fail if there is no Internet connection or
if the URL does not correspond to a Web
page.

import urllib.request

UF = urllib.request.urlopen("http://www.nist.gov")

PageFile = open("Web page.txt",'w')

for line in UF:

if type(line)==bytes:

line = line.decode()

PageFile.write(line)

PageFile.close()

Python3’s urllib.request.

urlopen(). A script to do the same
as the one above, but for Python3,
is given here. Notice in the version
for Python3 that a different module
is used (urllib.request) and that
the lines of the Web page are treated
as binary: a Web page could contain
binary values, hence the conditional
logic converts the bytes type into a string. The reason for this is that the ordinary write()

method on a file expects its argument to be a string, not something of type bytes.

The Try and Except Statements

Suppose one of the examples above is changed to introduce an error, but the error is not
a syntax error, just a mistake in the name of the Web page. In that case, Python will get
some kind of internal error in a system or network function, which will be reflected to a
script. Here is an example (from Python2) showing an error message:

Traceback (most recent call last):

File "fetch.py", line 2, in <module>

UF = urllib2.urlopen("http://www.nist.cov")

File "/usr/lib/python2.7/urllib2.py", line 126, in urlopen

return _opener.open(url, data, timeout)

File "/usr/lib/python2.7/urllib2.py", line 391, in open

response = self._open(req, data)

File "/usr/lib/python2.7/urllib2.py", line 409, in _open

'_open', req)

File "/usr/lib/python2.7/urllib2.py", line 369, in _call_chain

result = func(*args)

File "/usr/lib/python2.7/urllib2.py", line 1173, in http_open

return self.do_open(httplib.HTTPConnection, req)

File "/usr/lib/python2.7/urllib2.py", line 1148, in do_open

raise URLError(err)

urllib2.URLError: <urlopen error [Errno -2] Name or service not known>

Nearly all of this information is of no use to most Python programs except the last line,
which may indicate the type of error and could provide enough text for some investigation
using a search engine.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Network Programs 325

Python and many other languages provide syntax to detect errors when they occur, within
the program, so that a function or a script can take corrective steps without having to
completely fail. A user may not even be aware of errors that a program catches and corrects
on its own.

Catching Errors
➪ web

A = [1,2,0,5]

for num in A:

print(1.0/float(num))

Before we address errors of networks, consider this simple ex-
ample of a script that stops with an error. This script fails due
to a ZeroDivisionError because the third item in list A is
zero. Python has try and except statements which can catch
such errors. A revised script is shown below, with the output

of the script on the right. Both try and except statements expect an indented block of
statements (perhaps just one statement) to follow.

A = [1,2,0,5]

for num in A:

try:

print(1.0/float(num))

except ZeroDivisionError:

print("ouch!")

1.0

0.5

ouch!

0.2

The try statement’s block can be any number of statements, and an error might occur
anywhere in this block; if an error does occur, then the try’s block of statements run
instead of halting the entire program with an error message.

The except statement in the example above names the kind of error that is anticipated.
Here is a similar example showing how this works in more detail.

A = [1,2,0,5]

for i in [0,1,2,3,4]:

try:

print(1.0/float(A[i]))

except ZeroDivisionError:

print("ouch!")

1.0

0.5

ouch!

0.2

IndexError: list index out of range

Though the bug is easy to find (the loopiter variable i will have the value 4 in the last
iteration), it can also be caught by an except statement. Several ways to do this are shown
below on the left, by adding another except statement, and on the right, by specifying
multiple kinds of errors to be caught.

A = [1,2,0,5]

for i in [0,1,2,3,4]:

try:

print(1.0/float(A[i]))

except ZeroDivisionError:

print("ouch!")

except IndexError:

print("ouch!")

A = [1,2,0,5]

for i in [0,1,2,3,4]:

try:

print(1.0/float(A[i]))

except (ZeroDivisionError, IndexError):

print("ouch!")

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

326 A Functional Start to Computing with Python

A = [1,2,0,5]

for i in [0,1,2,3,4]:

try:

print(1.0/float(A[i]))

except:

print("ouch!")

For beginners, the easiest way to catch errors is to be
lazy and omit naming an error. Python does permit
this. When an except statement does not name any
error, it will catch any kind of error. Where it is a
division by zero error, an index error, a missing file
error, an except without a specific named error will
catch it.

Note: The full syntax of try ... except is considerably more complicated
than the examples above; there are optional else and finally clauses, and
more.

Although the except statement works without naming any particular kind of error (such
as IndexError), this is possibly dangerous programming practice. The reason is that
if one is lazy and simply uses except without naming any error, debugging becomes more
difficult. Instead of knowing why the block of statements under the try failed, all that is
known is some kind of failure occurred. For example, in fetching a Web page, there can
be different kinds of error: the URL is incorrect, or maybe the network is not available, or
perhaps if the Web page should be written to a file, it could be that writing to a file fails
because there is not enough storage. Without naming the error type anticipated, there is no
way for someone using the Python program to determine the cause of the error and correct
the situation: debugging is then more difficult.

Raising Errors ➪ web

def scan(M):

if type(M) != list:

raise ValueError

for item in M:

if type(item) != int:

raise ValueError

Python permits functions and scripts to generate
their own errors, halting the entire program imme-
diately with an error message. It is as simple as us-
ing the raise statement. Technically, all the nor-
mal Python errors (IndexError, TypeError, etc.)
are known as exceptions. The example here is a func-
tion scan(M) that halts with a ValueError if the ar-

gument is not a list of integers. Our choice of ValueError in this example is arbitrary; we
might just as well have used IndexError or any other standard error name (there are about
20 of them).

def product(X):

scan(X) # make sure X is list of int

P = 1

for item in X:

P *= item

return P

def sumprods(Array):

S = 0

for row in Array:

S += product(row)

return S

M = [[1,2,3], [4,5,6], [2.5,9,8]]

print(sumprods(M))

The logic of error generation (using raise)
and the try ... except combination control
how and where errors are caught within pro-
grams. Suppose we have a script, which starts
with the definition of scan(M) above, and then
continues with the code presented here. This
script fails due to a ValueError in the evalu-
ation of scan(X), because X will at one point be
the last “row” of M. It is useful to go over error
propagation during a Python run of a script. The
error is generated by the raise statement in the
scan function. This error causes the evaluation
of scan(X) in the first line of product(X) to get
a ValueError; since the product function does not have a try ... except combination
of statements, the product(X) function fails. In turn, the statement of sumprods(Array)
“S += product(row)” will fail with a ValueError, because that is the kind of error that
causes product(row) to fail. Thus, what we see is a “cascade of errors,” where the caller of

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Network Programs 327

a function that fails also fails; then the caller of the caller fails; and so on. This is why the
error messages printed by Python are often so verbose: they show the whole chain of error
propagation, with line numbers in each function of the cascade of errors.

def sumprods(Array):

S = 0

for row in Array:

try:

x = product(row)

except ValueError:

x = 0

S += x

return S

M = [[1,2,3], [4,5,6], [2.5,9,8]]

print(sumprods(M))

Now we show how using try ... except

might deal with the situation of scan(M) rais-
ing an exception. The revised definition puts the
try ... except in the sumprods function, sub-
stituting zero for the product in case of an er-
ror. Could the try ... except have been put
instead in the product function? Yes. This is
a design decision that depends on needs of the
application.

The raise statement can also have an argu-
ment with an explanation, which might be help-
ful to users who see the error. Repeating the
example earlier, we add some explanatory strings:

def scan(M):

if type(M) != list:

raise ValueError("scan argument not a list")

for item in M:

if type(item) != int:

raise ValueError("scan list item not an integer")

An except ValueError statement would catch either of the two ValueErrors, but if this
error is seen on a console, the extra explanation from the ValueError argument can be
used to help the user understand the problem. For instance,

>>> scan(True)

ValueError: scan argument not a list

Input Conversion ➋
➌
E

➪ web

This is a topic that actually belongs to Chapter 25, but it makes sense to reconsider the
topic in light of try ... except. Recall that Python2’s input function can fail due to
invalid input. Though it is generally not a good idea to use this input function, a program
can catch errors using try ... except, for instance:

while True:

try:

X = input("Enter a number: ")

except: # remember, this is Python 2

print "Bad input, please retry"

continue

print "Your number squared: ", X*X

This script can tolerate a bad input such as 5o9, tell the user, and ask again. (However,
the script can still fail because a user could enter [True], which will not trigger an error in
input(), but later in the multiplication.)

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

328 A Functional Start to Computing with Python

Python’s Evaluation Function. What about Python3, whose input() function behaves
like the raw_input() of Python2? There are times that Python2’s input() function is handy;
say a program needs to get a list, like [1,True,2.5]— from a string "[1, True, 2.5]."

This type of conversion is easy using the built-in eval(): the result of

X = eval("[1, True, 2.5]")

is that X is the list [1,True,2.5]. All the dangers that were mentioned in Chapter 25 for the
Python2 input() function are dangers for eval() as well. It is wise to have some validation
before trying eval(), and then to use try ... except to catch errors in converting from
a string containing a Python expression to a Python value.

Catching Network Errors ➪ web

Now we put together the preceding topics into a larger purpose: A script that takes a file
containing URLs visits many Web pages (skipping the ones that have trouble) and reports
the average size of a Web page. The input file is urls.txt. The first line of urls.txtmight
be www.nist.gov, the second line might be www.usps.com, and so forth. Here is the script,
a Python3 program:

import urllib, urllib.request

URLFile = open("urls.txt")

S = n = 0 # S for sum of bytes, n for number of pages

for line in URLFile:

tofetch = "http://" + line

tofetch = tofetch.strip() # remove '\n'

try:

F = urllib.request.urlopen(tofetch)

V = F.read()

S += len(V)

n += 1

F.close()

except urllib.error.URLError:

pass # ignore failures

at end of loop, use S and n to get average

T = "Average page size = {0}".format(S//n)

print(T)

(The specific kind of error, here urllib.error.URLError, was found by reading the Python3
documentation for the urllib module.) When writing such a script, which reads a file and
also fetches a Web page, it would be reasonable to add extra print()’s so that you can
watch progress while the script is running. For example, within the block of statements for
the try, the script could print some message about the URL about to be fetched.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Network Programs 329

Making a Web Server ➋
➌
E

➪ web

The previous section showed that it is relatively simple, in Python, to fetch a Web page.
Technically, this is accomplished by a network protocol called HTTP. A protocol is usually
some established standard (accepted by industry groups and government authorities) for
the nature of messages, what they should contain, their format and data encoding, and
other details. The HTTP protocol (the “P” stands for Protocol) is the protocol used for a
dialog between a client and a server. The client-server terminology refers to the fact that
there are two programs (both could be Python scripts) in which one party, the client, asks
for something from the other party, the server. The server is often a program that answers
to requests of thousands, if not millions, of clients. For HTTP, the client is nearly always a
Web browser. In response to clicking on a link or typing a URL into the request box, the
browser finds the server and sends it a request for a page. The server then “serves up” a
Web page in response.

The earlier examples showed how one half of the situation can be done in Python, the
client side. Now we look at how Python can do the other half, the server side. As it is for
the client, there are differences in how the modules for Python2 and Python3 work, so an
example is shown for each.

Python2 HTTP Server

The simplest HTTP server, shown below, uses syntax that goes beyond what has been seen
thus far in previous chapters; it relies on class definition, which is covered in a later chapter.
For the present, just accept that there is some mysterious new syntax, to be explained later.
The following script is in a file webserver.py:

import BaseHTTPServer

class MyHandler(BaseHTTPServer.BaseHTTPRequestHandler):

def do_GET(self):

try:

self.send_response(200)

self.send_header('Content-type','text/html')

self.end_headers()

self.wfile.write("<html><body><h2>Hi There</h2></body></html>")

return

except:

return

main program is here

try:

server = BaseHTTPServer.HTTPServer(('',8000), MyHandler)

print 'started httpserver...'

server.serve_forever()

except KeyboardInterrupt:

print '^C received, shutting down server'

server.socket.close()

The organization of the code above is partly explained by these remarks:

• The Python2 module for HTTP servers is BaseHTTPServer, imported on the first line.
It is called “base” because other, more complex HTTP servers are built on top of this
module.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

330 A Functional Start to Computing with Python

• The line starting with class declares that a server (or even more than one server)
will be customized using the “base” server of the module. The syntax of class implies
that some methods will be defined. We have seen already methods for strings and lists
(recall the methods like replace(), index(), etc.). Here is an example of user-defined
methods.

• The do_GET() method will automatically be called by the base HTTP server when a
browser request arrives. The block of statements in the body of do_GET() say what
will happen with a request. There can be conditional logic, error codes, even print

statements here.

• There is a file object self.wfile, which is the place to build a response to a request.
Since this is a file object, the write() method is used for creating the response to a
browser request. Notice that the argument in the example above is a string, and you
may observe that this string is HTML, to be interpreted by the browser.

• The main part of the script is a try ... except statement. The error it catches is a
user entering a CTL+c (Ctrl and c simultaneously) to stop the server.

• Within the try block of statements, a server is created with “port” number 8000. This
number is somewhat arbitrary, but must be different from the number of any other
server on the same computer (in student exercises, it is wise to change this from 8000
to 8045 or some other distinct value).

Now, to launch this Web server, the command (under Linux) could be the following:

> python webserver.py

started httpserver...

localhost - - [10/Aug/2010 16:53:23] "GET / HTTP/1.1" 200 -

^C^C received, shutting down server

>

The response to starting the script was the first printed message, started httpserver.
However, what we cannot see above is that a browser was then used to request a page. In
the browser’s URL area, the following was entered:

http://localhost:8000

This unusual URL (quite different from something like http://www.nist.gov) has two
components, localhost and the number 8000, which is the port number the server uses.
The name localhost is standard terminology for bypassing the Internet and directly using
a server on the same computer where the browser runs. For testing purposes, localhost is
quite handy. After entering this URL, the browser displayed a simple page with Hi There,
as directed by the HTML written in the script.

This very simple example misses some useful features that BaseHTTPServer offers. For
instance, the do_GET() method can inspect a string sent by the browser, looking for par-
ticular information about which “page” to return (in reality, “page” is just jargon, and the
server can return any kind of string). If the string sent by the browser contains index.html,
then the server logic could have an if statement and a block of code to create a page for
that.

Python3 HTTP Server

The base HTTP server for Python3 is nearly the same as the one for Python2, the main
difference being a reorganization of the library code into different module names.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Network Programs 331

import http.server

class MyHandler(http.server.BaseHTTPRequestHandler):

def do_GET(self):

try:

self.send_response(200)

self.send_header('Content-type','text/html')

self.end_headers()

response = "<html><body><h2>Hi There</h2></body></html>"

self.wfile.write(response.encode())

return

except:

return

try:

server = http.server.HTTPServer(('',8000), MyHandler)

print('started httpserver...')

server.serve_forever()

except KeyboardInterrupt:

print('^C received, shutting down server')

server.socket.close()

The only changes in the script for Python3 are the module name, http.server, using
print() as a function rather than as a command, and having to write bytes rather than a
string to the self.wfile file object. The encode method does the conversion from string
to the bytes type.

Client and Server ➪ web

Once a server has been started, say by the command “python webserver.py,” any number
of browser requests can be entered, and each will return a Web page. In fact, Web page
requests could come from different browsers or even a client written with a simple Python
program. Below is an example of a script that could be run in another window (command
shell) on the same computer where webserver.py runs. The script name for the following
is webclient.py. The example uses Python2 (the Python3 version would be similar):

import urllib2

UF = urllib2.urlopen("http://localhost:8000")

print UF.read()

Supposing that webserver.py is running in another window, the following shows the result
of running webclient.py.

> python webclient.py

<html><body><h2>Hi There</h2></body></html>

>

The result is no surprise—the client gets just what the server wrote as a response. Unlike
a browser, this elementary client does not process the HTML tags (<html>, <body>, etc.).

General Client-Server Interaction. Going beyond this example, most scenarios of
client and server programs have a continuing dialog between the two parties. A client con-
tacts the server, which responds, and the client then sends another request to the server.
This request/response kind of dialog can transfer the contents of a file, query a database,

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

332 A Functional Start to Computing with Python

execute some financial transaction, and even have function calls on the client side to draw
or control devices. These scenarios are the subject of specialized texts on network program-
ming. It is worth noting that influential systems like Google and BitTorrent originated as
Python scripts. One good thing about networks is that standards for communication do
not vary across operating systems, versions of languages, and platforms. The server could
be running Python3, and the client Python2, and communication would work properly.

Serving Multiple Pages ➪ web

The basic example of the previous section always returns the same “page,” regardless of
the request. It is more interesting when the server can respond to different page requests
with different pages. The following is a fragment of a Python2 script, just showing the
do_GET(self) method definition used earlier in the chapter (for Python3, strings would
have to be converted to the bytes type before writing them).

def do_GET(self):

try:

if self.path.endswith("/index.html"):

f = open("index.html")

self.send_response(200)

self.send_header('Content-type','text/html')

self.end_headers()

self.wfile.write(f.read())

f.close()

return

elif self.path.endswith("/show.html"):

f = open("show.html")

s = f.read()

f.close()

s = s.format(self.path,self.client_address)

self.send_response(200)

self.send_header('Content-type','text/html')

self.end_headers()

self.wfile.write(s)

return

else:

f = open("404.html")

self.send_response(404)

self.send_header('Content-type','text/html')

self.end_headers()

self.wfile.write(f.read())

f.close()

return

except:

pass

Does this code seem repetitive? Yes, it would likely be improved using functions that en-
capsulate some repeated statements. The code does show how the server might return three
different Web pages, one for index.html, one for show.html, and another for any other
request. All Web pages are HTML stored in files. The one interesting case is show.html,
which might contain the following lines:

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Network Programs 333

<html><body> <p>

Your request for {0}

</p><p>

originated from {1}

</p></body></html>

The file is essentially a template with the formatting codes {0} and {1} that will be
substituted by self.path and self.client_address when the server responds with the
Web page. This shows that pages can be dynamic, changing content of what is in the
page depending on the client or other factors. A typical value for self.path would be
/show.html if the client URL was http://localhost:8000/show.html. Thus, the server
can look at the string in self.path to customize the response it returns. The variable
self.client_address is a tuple (an IP address and a port), identifying the client’s net-
work location.

Terminology Review

This chapter uses the try ... except statement, which is helpful for network applications,
but has many other uses. The notions of client and server programs, examples of HTTP
and HTML, and customizing a library module (the base HTTP server) are covered as well.

Exercises ➪ web

The best source of exercises is the Internet, using a search engine, to find Python Web
servers, clients, and network tutorials; you can learn from them, change the code, and
experiment with your own ideas, and go on from there. As a warm-up, we offer some simple
exercises here.

(1) Write a Python program that gets a URL from the user, using input() (Python3)
or raw_input() (Python2) and then fetches the Web page and counts the number of
lowercase j’s that are in the response.

(2) Write a Python script that reports whether a URL is a valid Web site, using the try

.. except to decide whether the URL functioned or not.

(3) The self.path variable in the do_GET(self)method can contain lots of information;
a URL could be something like

http://localhost:8432/goto/www.nist.gov

so that the self.path would contain /goto/www.nist.gov. See if you can write a
server that creates a URL out of the contents of self.path and then use that URL
to fetch a page from another server (like www.nist.gov); the goal is to return that
page back to the client.

(4) Use a search engine to find a tutorial on how to use Python’s socket module, which
gives access to the lowest level of networking. Write a script that transmits the content
of a file to another Python program (you will need to write two scripts, one is a “server”
to receive the file, and the other is the “client” that sends the file). You may also use
Python’s socketserver module if it is helpful.

This page intentionally left blankThis page intentionally left blank

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Chapter 27: Objects, Classes, and Inheritance

Mathematicians do not study objects,
but relations between objects.

— Henri Poincare

Object-oriented programming is one of those buzzwords which is difficult to nail down pre-
cisely. Reading an explanation of this in, say Wikipedia, quickly opens up more buzzwords
and abstractions until it seems like going around in circles. Why all the fuss? To understand
what objects (and classes) mean for a programming language, it helps to look briefly at the
history of how languages treat data with higher-level operations than manipulating bits
and bytes. However, even after learning of this history, there is still the question of why it
is important to learn about objects. The simple answer is that, for better or worse, most
modern software and their libraries of modules now depend on using objects. So, to use
much of the useful software out there (and there is a vast amount of great software), one
needs to understand objects and associated concepts.

A Bit of History. Back in Chapter 5, there is justification for Python types beyond
simple numbers and bits. Python tuples and lists can have any kind of item, including
strings, dictionaries, and lists. Other languages do not have so much freedom. Typically,
the other programming languages have arrays, or something like lists, which only permit
one kind of item (a list only of numbers or only of strings). There is one practical concern
for any language, which is the problem of representing data given by the application, be it
business, entertainment, or scientific purpose. Often the data is naturally seen as either a
table or a list of records. In a table, there are rows, which resemble records. A spreadsheet
is a natural example. Records are common in business and government, where records
correspond to individuals (taxpayers), companies, or manufactured appliances (inventory).
A feature of a record is that it has fields. Usually, each field has a name (somewhat like a
column heading in a table), and an application “type” such as a date, a monetary value, a
quantity, checkmarks (paid/unpaid), and so forth. Using Python, it is easy to represent a
record as using the list type, but in designing applications one might also need to think
about how a record would be stored on some permanent media. A low-level language such
as assembler or C enables programmers to precisely lay out a record in terms of the bytes
of memory and the placement of fields in memory. The C language uses a concept of a data
structure, called a struct in C. Similarly, arrays have a precise layout in memory in C.

The simple view of data as records only goes so far to help us represent application
information. In a genealogy application, family trees have to be represented; some family
trees are large, some are small, so putting a family tree in a single record does not seem
practical. If each member of the family tree has a record, then there needs to be some way to
relate the records (father, mother, sibling) and group the records (different family names).
If records are deleted or arbitrarily modified, the family tree might not make sense. In an
effort to avoid making a mess of everything just using records, some theorists proposed
abstract data types (ADTs) that not only structure data, but define all the operations that
are allowed to read, write, delete, and create items of the ADT.

Beyond even abstract data types comes the realization that there are common patterns
of applications and computing systems. Two business applications might be quite similar
up to a certain level of detail, so it would be sensible to use a common base for their
software. Graphical applications often use ideas based around geometry and hardware ideas
(pixels, shading). Even if two graphical applications are quite different, certain aspects of

335

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

336 A Functional Start to Computing with Python

them will be alike enough to warrant using the same basic ADTs and algorithms, though
customized for efficiency and particular quirks. This is the fundamental realization behind
object-oriented programming: the syntax of a programming language can help automate the
reuse and customization of ADTs. One principal idea is that of a class hierarchy, wherein
all the ADTs in the universe of programming are categorized into various branches, viewed
as an evolutionary tree of data structures and operations on them. Different languages have
their own hierarchies (Java has its standard library, Microsoft has defined a hierarchy in
the .NET framework).

Classes, Instances, Objects, Attributes

This section is quite abstract and may be hard to understand in a single reading.
It may help to scan the terminology, go on to the next section, and then come
back to this section after seeing a few examples.

Python has syntax allowing a program (module or script) to define a class, which is similar
in spirit to a new data type. You can define as many classes (i.e., new data types) as needed.
Once a class has been defined, a program can create instances of that class. The situation is
similar to the list type in Python. A program can create as many lists as needed, and each
will have list as its type. Another term for an instance of a class is object : every object is
an instance of a class.

Objects are essentially packages of data. In most object-oriented languages the data
within an object can only be viewed or changed using methods defined for the object. The
definitions of the methods are found in the class from which the object comes (remember,
an object is an instance of a class). Python has a less strict interpretation of objects and
classes. Objects belong to classes, however, objects are completely mutable: the data should
be viewed and manipulated using methods, however, ordinary assignment statements can
read and write data of objects as well.

Inside an object, the data items are typically ordinary basic things such as numbers,
characters, strings, or other simple data. Each of the items in the object is a variable named
in the class definition for that object. Most object-oriented programming languages call the
variables and methods of a class members of that class; in Python these are often called
attributes rather than members.

The collected experience of writing software with classes shows that some classes strongly
resemble others: the methods are similar, and perhaps the data of objects in the respective
classes looks about the same. To take advantage of this observation, programming languages
enable a new class to be defined in terms of an existing one. Roughly speaking, the idea
is to say “define class X to be like class Y, with a few exceptions.” This notion of defining
one class to be like another is called inheritance. Classes can thereby have a parent-child
relation. Class X could have class Y as a parent class. The conventional name for a parent
class is superclass, whereas the conventional name for a child class is subclass. In most
object-oriented programming languages, a parent can have many children, but a child can
only have one parent; Python actually does allow a child class to have multiple parent
classes (that goes well beyond what this chapter covers). The practical consequence of a
parent-child relation is that, by default, class X will have all the attributes (variables and
methods) of class Y. There are ways for the definition of class X to override what are Y’s
members, if that is what is needed in customizing X.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Objects, Classes, and Inheritance 337

Elementary Objects in Python

The simplest example of creating an object, letting g refer to the object, and showing its
Python type is:

>>> g = object()

>>> type(g)

<type 'object'>

Unfortunately, there is not much that can be done with such a simple object: it is an instance
of class that has no attributes. To make a more meaningful object, we first need to define
a class. The simplest definition of a class, here given the name “point,” is:

class point():

pass

The pass statement does nothing; it is only put there because Python expects to have at
least one statement within any class definition (otherwise there would be a syntax error).
Here is an interactive example of creating an instance of the class point:

>>> g = point()

>>> type(g)

<type 'instance'>

>>> g.x = 50

>>> g.y = 200

>>> h = g

>>> h is g

True

>>> h.x

50

>>> h.x + g.y

250

The first line creates a point object and lets variable g refer to this new object. The
assignment g.x = 50 creates an attribute x of the object. The subsequent lines that assign
to h and refer to attributes show that objects are treated like other mutables (lists and
dictionaries), as described in Chapter 17. Above, h is an alias of g: they both refer to the
same object.

Methods Are Functions ➪ web

Methods are functions defined within a class. This section shows different methods for class
point; suppose p is an instance of point. To call a method, a program would use this
syntax:

r = p.mean()

This assigns the result of invoking method mean for object p. Within class point there needs
to be a definition of the mean method. For instance,

class point():

def mean(self):

return (self.x + self.y)/2.0

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

338 A Functional Start to Computing with Python

The definition of mean is unusual: there is a parameter self, but the expression p.mean()

has no argument. The explanation is that self represents the object in question, p in this
case. Though the variable name p precedes the method mean() in the expression p.mean(),
Python treats this as if mean(p) were the expression matching up arguments to the method
definition. Another example shows a method requiring an argument:

class point():

def mean(self):

return (self.x + self.y)/2.0

def right(self,amount):

self.x += amount

return

Using this version of point, the expression p.right() would be an error, because self

would be p, but there is nothing to match up with amount in the definition. Proper would
be p.right(20), which will let parameter amount bind with the number 20. You might also
notice that methods can change the values of the variables within an object: p.right(20)
increases p.x by 20.

The Init Method ➪ web

One method name with special significance is the “__init__” method. Nearly all class
definitions are written to have such a method.

class point():

def __init__(self,a,b):

self.x, self.y = a, b

def right(self,amount):

self.x += amount

Here is an interactive example using the class point.

>>> p = point(30,80)

>>> p.x

30

>>> p.y

80

>>> p.right(20)

>>> p.x

50

In the first line, point(30,80) creates an instance of point, letting p be a reference to this
new object. The arguments 30, 80 match up to parameters of the __init__method, so that
the x and y variables of the new object have the desired initial values. General terminology
for an initializing method is object constructor, since the purpose is to construct a new
instance of the class and set up various attributes for later use.

Containment

Object attributes can be variables, and these variables could in fact be references to other
objects. As a warmup to illustrating this potential of objects, here is a small example
showing that a list can have objects as items.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Objects, Classes, and Inheritance 339

>>> p = point(0,100)

>>> Triangle = [point(-50,0), point(50,0), p]

>>> point1 = Triangle[0]

>>> point1.x

-50

>>> point1 is Triangle[0]

True

>>> Triangle[2].y

100

The assignment to Triangle above shows that creation of an object can be within expres-
sions, which put the object inside a list. A reference to an object behaves like a reference
to the other mutable types in Python, dictionaries, and lists.

Line Objects. In geometry, a line is defined by two (distinct) points. A Python class to
make a line could be:

class Line():

def __init__(self,a,b):

self.point1, self.point2 = a,b

if a.x==b.x and a.y==b.y:

raise ValueError

def length(self):

dx = self.point2.x-self.point1.x

dy = self.point2.y-self.point1.y

return (dx*dx + dy*dy)**0.5

The constructor method __init__ for Line needs two arguments, both of them point ob-
jects. Since a line cannot be defined with a single (x, y) point, the constructor raises an
error if both arguments refer to the same (x, y) point. The length method calculates the
distance between the two points defining the line. Other methods like slope and intercept

could easily be defined as well. Using the Line class is straightforward:

>>> L = Line(point(1,1),point(8,-5))

>>> L.point2.y

-5

>>> L.length()

9.2195445729

The way that Python evaluates L.point2.y is left-to-right: the point2 attribute of object
L is itself a point object, which has a y attribute. An equivalent way to write this would
be (L.point2).y.

➪ web

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

340 A Functional Start to Computing with Python

Subclasses

This chapter’s exposition of classes and objects is limited; the example here just shows some
elementary syntax for class inheritance.

class ColoredLine(Line):

def setColor(self,newcolor):

self.color = newcolor

def getColor(self):

try:

return self.color

except:

return None

The example defines a class ColoredLine that inherits the attributes of its parent class,
named in the definition: the Line class. The ColoredLine class possesses the Line attributes
plus new attributes, color, setColor, and getColor.

>>> L = Line(point(0,0),point(5,1))

>>> L.getColor()

AttributeError: Line instance has no attribute 'getcolor'

>>> M = ColoredLine(point(0,0),point(5,1))

>>> print(M.getColor())

None

>>> M.setColor(27)

>>> M.getColor()

27

Only a ColoredLine instance has methods setColor and getColor.
In Python2, defining a class that inherits from object effectively creates a new type; in

Python3, all defined classes are types. Moreover, you can define your own class that is a
subclass of any Python type.

Going Further

The syntax for inheritance (defining a new class in terms of an existing parent class) is more
complex than the simple example above might suggest. Some difficulties arise from having
constructor methods in both parent and child classes; we do not explain this any further—
the only reason to show it is that you may come across this syntax while looking at Python
programs you encounter. Built-in functions super(), isinstance(), and issubclass()

assist in the definition of hierarchical classes. The built-in type() function, only seen in
this book as a way to inspect the type of a variable or expression, also has a three-argument
functionality that can dynamically create a class or type. For further information about
these functions and the general topic of class hierarchies in Python, a more complete and
advanced text should be studied. The only need for hierarchy in this chapter is to exploit
some features in the Python library of modules: some of them require that you define a
new class in terms of a class defined in a module. Chapter 26 has an example of this: The
MyHandler class is defined as a subclass of the BaseHTTPRequestHandler class, so that it
can customize behavior of a standard HTTP server.

Period Syntax

Consider all the uses of the period (dot, “.”) in Python:

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Objects, Classes, and Inheritance 341

• The decimal point is part of float notation: 2.5, 1.305e-7, etc.

• Method syntax, which is a kind of function invocation, uses the dot: ''.join(X),
Evar.index("ing"), M.sort(), etc.

• Names of variables, classes, and functions in modules imported using the import

statement require a period to qualify the name. (And in Python3, a period can be used
to refer to directory and subdirectory relation where a module is located.) Examples
of this are math.pi, math.sqrt(), random.choice().

• Attributes of objects use the p.x notation.

When periods occur in expressions, recall that the default rule for Python syntax is left-
to-right evaluation. As Python evaluates such an expression, the type of the term under
evaluation determines what is expected next. If Python determines that R is a module name
in evaluating R.t, then t had better be some variable, function, or class within module R.
Similarly, if x is an object reference in the expression x.a, then a must be an attribute of
x. Technically, this holds for an expression like ''.join(V) because the empty string ''

is an instance of the “string” class, and the method join is defined in the string class, so
''.join is an attribute:

>>> type(''.join)

<type 'builtin_function_or_method'>

In expression M.e.b, it could be that M is a module, e is an object reference inside of
the module, and b is an attribute of e. Even more complicated expressions are allowed by
Python, so long as they follow the syntax rules and make sense in terms of the types and
the rules for using dot listed above.

(Tref[i][j]).(Ftab("S",k)).summary(V.y[b:b+8])

In parsing this rather messy expression, Python could first determine that Tref[i][j]

refers to a module, then determine that Ftab("S",k) returns an object reference within
that module, and that summary is a method of the object—so the expression would make
sense. Of course, this complicated way of expressing an idea is not recommended.

Example: Date/Time Objects

The Python datetime module is based on objects. As with all Python modules, the only
reliable documentation is that found at www.python.org; it is somewhat cryptic documen-
tation, however, with knowledge of objects and Python syntax, and perhaps some examples
found with a bit of searching, these modules are very useful. The following script is an
exercise using datetime objects.

import datetime

import date

DayBirth = datetime.date(1992,8,4) # date of birth

WeekDays = "Mon Tue Wed Thu Fri Sat Sun".split()

day = WeekDays[DayBirth.weekday()]

S = "born on a {0}.".format(day)

print(S)

Now = datetime.date.today() # current date/time

Age = Now - DayBirth # creates timedelta object

S = "current age in days since birth is {0}."

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

342 A Functional Start to Computing with Python

S = S.format(Age.days)

print(S)

➪ web

One interesting feature shown above is the calculation of age, Age = Now - DayBirth.
The datetime module actually extends Python’s minus operator (“-”) so that objects can
be subtracted (in this case, two date objects). The result creates a timedelta object. This
hints at how Python can define classes and instances that essentially behave as new data
types for the language.

Example: Regular Expressions ➪ web

Some people, when confronted with a problem, think
“I know, I’ll use regular expressions.” Now they have two problems.

— Jamie Zawinski

The concept of regular expressions is fundamental to much of the day-to-day work in infor-
mation technology and the software industry. The essential idea is easy to grasp: consoles,
or command shells, typically allow one to see all the files that begin with “T” by entering

> ls T*

T.pl Tcpserv.py Token.bak Tankfill.tgz Transactor TAX.doc

The “*” is a wildcard character, meaning that it can stand for any string of characters.
Hence, filenames like Temp.txt and Tomorrow.data would be listed, whereas files that do
not begin with T would not be shown. Many search engines allow similar syntax to limit
and tailor search results.

Regular expressions are supported by libraries or modules in most programming lan-
guages. Some programming languages even incorporate regular expressions into the syntax
of the language itself, notably Perl, where using regular expressions is a way of life, so
to speak. Regular expressions go well beyond “*,” typically using many special characters
(+, [,], *, (,), ?, and others) to control how text to be searched will match up with
some pattern expression. On the one hand, regular expressions enable very concise, flexible
and powerful matching of patterns to text data, which is quite useful for tasks of searching,
data extraction, conversion, and general preparation of information. On the other hand, the
notation and conventions of regular expressions are a mini-language that is easy to forget,
can differ slightly from one programming language to the next, and has a very cryptic ap-
pearance. Whatever one might conclude about regular expression usage, it is an important
programming idiom in current software systems and worth knowing about.

The official Python documentation includes a “Regular Expression HOWTO,” which
should be consulted for those planning to use this feature in Python. What follows is just
one example of the power of regular expressions. The task in the example is to read a file
dorian.txt and find all strings in the file consisting of lowercase characters, starting with
“a” and ending with “ly,” making a list of these.

import re

T = open("dorian.txt").read()

regobject = re.compile("a[a-z]*ly")

matches = regobject.findall(T)

print(matches)

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Objects, Classes, and Inheritance 343

The pattern for searching through the file text above is the string "a[a-z]*ly," which
stands for anything that begins with a, followed by any number of characters in the lowercase
alphabet (a–z), followed by ly. The output of the example is too lengthy to reproduce here
(the file dorian.txt contains over 75,000 words). The first few lines of the output are:

['adly', 'ally', 'ardly', 'arily', 'anguidly', 'ainly',

'ally', 'ally', 'ally', 'absolutely', 'ally', 'awfully',

'absolutely', 'asionally', 'ally', 'ally', 'ainly', 'angely',

The script is quite short, yet able to match a generic pattern to many forms of string
matching the pattern. Methods other than findall return “match objects,” from which
the index of a match within the file text can be extracted.

Example: HTML Processing ➪ web

Network programs may fetch Web pages, which use HTML, a language to mark up text for
display and browser interaction. While it is possible to write Python functions that scan
HTML and extract meaning from the data, it is usually easier to use a Python module to
do this. The following example is a script that processes HTML in a string (alternatively it
could be in a file object, as shown in Chapter 26). The script uses the Python2 version of
HTML processing, but Python3’s version is nearly the same.

import HTMLParser

class LinkParser(HTMLParser.HTMLParser):

def handle_starttag(self,tag,attrs):

if tag == 'a':

linktuple = attrs[0]

href, url = linktuple

self.mylinks.append(url)

T = '''<html><body bgcolor="gray">

<h1>My Title</h1><p>Welcome to Webpage.

The Python

Link is a good resource. Sometimes

the

Wikipedia page is helpful.

</body></html>'''

create a parser object

p = LinkParser()

p.mylinks = [] # collect links

p.feed(T)

for url in p.mylinks:

print(url)

Observe that to use the HTMLParser, a script must define a class that inherits from the
HTMLParser class, customizing a method that is called repeatedly during a scan of some
HTML input. The input is “fed” to a parser object, which is created first (above, it is
variable p). Thanks to Python’s flexibility, the script adds a new attribute mylinks, a list
to collect all the URLs in a Web page. Object-oriented software purists would not write the
script this way: a purist would instead create the mylinks attribute inside the __init__

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

344 A Functional Start to Computing with Python

method, however, doing so would entail using super(), which goes beyond what this chapter
covers. The output of the script above is

http://www.python.org

http://en.wikipedia.org

Terminology Review

Object-oriented programming is rich with jargon. Motivations start with records, fields
within records, structured data, and abstract data types. The notion of classes and instances
of classes, commonly called objects, incorporates inheritance so that classes can form a
hierarchy, in which a class may have parent and child classes (superclass and subclass).
Within a class, there are members, which could be data or methods; Python notation uses
a period (dot) after an object reference for an attribute; an attribute may be a variable or
may be a method. When one class inherits from another, all the members automatically
carry over from the parent, unless the definition of the child overrides them. Most standard
Python modules use class/object techniques; some modules require that applications using
them define subclasses, which override methods to customize their behavior.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Objects, Classes, and Inheritance 345

Exercises ➪ web

(1) Find and read documentation of Python’s webbrowsermodule. Then try the following,
interactively:

>>> import webbrowser

>>> T = webbrowser.get()

>>> T.open("http://www.python.org")

This should cause a Web browser to start and display a Web page. Above, the variable
T is a reference to a browser “controller” object. Write a script that launches a Web
browser and opens several tabs with different pages.

(2) Python’s list class defines the methods and operators of lists. At an interactive
Python session, you can see the hidden methods of list by the command help(list).
Write a new class mylist that inherits the methods of list. The following should
work after your class definition:

>>> R = mylist("one two three".split())

>>> R[0]

'one'

>>> len(R)

3

Now revise your definition of mylist so that it has a method middle(), which re-
turns the “middle” item of the sequence it contains. Continuing the example above,
R.middle() should return "two."One more thing to try with the definition of mylist,
change the length method so that len(R) returns double what the number of items
has, that is, six instead of three.

(3) Write a definition of a class named Box that has three methods, a __init__(self)

method, a register(self) method, and a isRegistered(self) method. The be-
havior of the latter two should be as follows:

>>> p = Box() # create a Box object

>>> p.isRegistered() # has p been registered?

False

>>> p.isRegistered() # now has p been registered?

False

>>> p.register()

>>> p.isRegistered() # has p been registered?

True

>>> p.isRegistered() # is p still registered?

True

(4) This script is supposed to print the number of letters in common to two words. The
words “entangle” and “legal” have 4 letters in common (a, e, g, l), so the script
should print 4 as the result. Instead the script has some errors. Even after correcting
the syntax errors, it still does not work correctly, because the way it calculates the
result is wrong. What are the errors and how can it be made to work correctly?

class Word():

def init(self,value)

self.text = value

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

346 A Functional Start to Computing with Python

def common(OtherWord)

n = 0

for letter in Otherword.text:

n += self.text.count(letter)

return n

A = Word("entangle")

B = Word("legal")

print A.common(B)

(5) This exercise is for Unix/Linux systems only (might work on a Mac OS, too). The
module for the exercise is subprocess, which enables a Python script to issue typical
commands like ls (list directory), tail (get the last lines of a file), mv (move or rename
a file or directory), and hundreds more. The commands can even be new ones that
you invent. The subprocess not only lets you issue the commands within Python, but
any number of parameters to these commands can be given as a list of strings, and the
response from the command will be captured as a string, where the Python script can
extract information. This kind of facility to call up system commands, get responses,
and process data approaches the real meaning of script—it can automate what people
might have to otherwise do manually, but which is a regular enough activity to merit
automation. Here is an example using subprocess:

import sys, subprocess

subprocess.call("date",shell=True)

subprocess.call("date -u",shell=True)

The script runs date commands as though they had been typed in from a shell prompt;
the output goes back to the console. What if we would like the output to be returned
to the Python script? The next example has another method of subprocess, which
enables the output from a command to be returned in an object.

import sys

import subprocess

create a Popen object, which runs the unix command

ls -l /opt

listing what's in the /opt directory.

P = subprocess.Popen(["ls","-l","/opt"],stdout=subprocess.PIPE)

run the Popen object and wait until it's done: the

communicate() method returns a tuple (A,B) where both

A and B are strings, with A being the command's normal

output and B having error messages, if any

out,error = P.communicate()

go through lines in out, and nicely format them

for line in out.split('\n'):

sys.stdout.write("\t" + line + '\n')

sys.stdout.write("-----------------------\n") # make marker at end

Modify this second example so that it changes options on the ls command (you can
read about the options by reading a manual page on ls, searching online). Another
experiment could be to extract just some information from the string in out and
summarize that.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Interlude: Signal Processing

Most of the data generated in the world of embedded computers, in social networking, in
the realm of commerce, is a kind of flow of information. For example, in finance there is a
continuous stream of trading events, and in commerce we see transactions in large volumes.
A typical embedded computer situation is found in large aircraft, which are equipped with
vibration and strain sensors, generating terabytes of readings in each flight. Though most
of this kind of data ends up not being useful at the level of each and every bit, the general
volume, “velocity,” and trending of events and readings can signify important trends. Here,
we consider a simplified problem typical of this domain of computing.

Suppose we have a sensor that measures relative movement using an accelerometer,
which produces a reading corresponding to movement (actually, acceleration) in physical
space, at the rate of 120 readings every second. The accelerometer is embedded in a vehicle,
connected to a computer with a radio, so that the radio might be used to send a distress
message if the vehicle is in some kind of danger. It turns out not worthwhile to record all
of the accelerometer data; experts dealing with the accelerometer tell us that a change of
10% in a stream of readings likely means the vehicle needs attention due to some accident
or malfunction. Furthermore, there can sometimes be false readings due to electrical noise
in the system, so the engineers recommend that the 10% change detection be with respect
to the average of several previous readings.

while True:

x = Accelerometer()

if not normal(x):

sendWarning(x)

The nearly pseudocode design of what we
would like to implement is simple, seen on
the right. The Accelorometer() function pro-
duces one reading from the sensor device, and
sendWarning(x) transmits a distress message.
It is the normal(x) function that is of interest here. That function needs to return a boolean
depending on how x relates to previous iterations of the while loop. The problem is, how
can the function normal(x) refer to the last several readings, in order to return False if x
represents a 10% change? In Python, there is not an obvious answer to this. Instead, most
people would rewrite the code as shown on the right, below.

history = []

while True:

x = Accelerometer()

if not normal(x,history):

sendWarning(x)

if len(history) < 5:

history.append(x)

else:

history = history[1:] + [x]

Though this change will enable normal to see
the last five previous readings via the history

argument, it clutters up the logic and puts the
responsibility of keeping an appropriate amount
of history in the main program, not inside
normal. (Maybe the choice of the number 5 will
need to be changed later, as the engineers tune
their warning logic.) So we return to the real
question.

How Can a Python Function Remember?

In the paragraphs that follow, several advanced Python techniques show different ways of
answering this kind of question.

347

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

348 A Functional Start to Computing with Python

Global Variables

The first idea that may come to mind is to record the history of previous readings in a global
variable. Then, a statement such as global history would presumably allow normal(x)

to change the variable history to include x, and that way the body of normal(x) might
use the previous readings to test for a 10% change. Unfortunately, the statement global

history encounters the error NameError: global name 'history' is not defined. To
make this idea work, the main program would have to first assign to a history variable
so that it would exist when normal(x) is called. Since the goal was to have normal(x)

completely take care of maintaining history itself, without any extra statements outside of
normal(x), we would rather not have to first create the history variable. Though there
are some ways around this situation (for instance, by inspecting the names that Python
returns from the globals() function), the code would not be easy to understand by doing
things this way. Let us look for another idea.

Use Classes and Objects

G = WarnClass()

while True:

x = Accelerometer()

if not G.normal(x):

sendWarning(x)

The whole idea of a function “remembering”
previous calls, or having some kind of durable
information between calls, is part of the motiva-
tion of classes, objects, and methods. It is fairly
straightforward, using notions from Chapter 27,
to revise the code to use an object, seen by the
example to the right. The new variable G is an instance of a new class WarnClass, which
has a method normal(self,x). Within the definition of normal, the code could freely use
any kind of attributes, perhaps going beyond just self.history, so the main program does
not need to worry about how normal does its checking for the 10% threshold.

normal = WarnClass()

while True:

x = Accelerometer()

if not normal(x):

sendWarning(x)

If only to show off another Python feature, the
revised version on the left uses another trick. In
this code, normal is an object of WarnClass; the
curious thing here is that normal(x) looks like a
function call, which is strange since we normally
associate methods, not functions, with objects.

The trick is that the definition of class WarnClass defines a method call (self,x). Just
as the init (self)method is invoked whenever an object is created, one may also define
a call method that will be invoked each time a statement tries to use the object with
function-calling syntax. This is a somewhat obscure trick, not recommended for common
practice. It is shown here mainly to reveal some of the under-the-hood mechanisms that
Python is capable of exposing.

Hidden Mutable in Keyword Parameter

def normal(x,history=[]):

history.append(x)

if len(history)>5:

del history[0]

... # code for 10% detection

The design based on classes and objects is the
standard recommendation of most programming
practice. However, Python does have a curious
treatment of mutables when specified as default
values in keyword parameters. An example is
seen to the right. The header of normal now in-
cludes a keyword parameter for history, initially with the empty list as the default value.
The curious aspect of Python is that this default value actually changes with each muta-
tion to history. After five calls to normal, say normal(70), normal(73), normal(75),

normal(74), normal(76), history will be the list [70,73,75,74,76]. It is a matter of
some debate whether or not this behavior of Python is a good or bad feature. Technically,

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Interlude: Signal Processing 349

using it does precisely satisfy the objective of having a function remember values between
calls. For this technique to work properly, the caller of normal should not specify a history
argument, since that would override the default parameter value. This is why we refer to
history as a “hidden” keyword parameter—it is not something to be advertised to callers
of the function (though nothing prevents the caller from doing so). Most beginners find
this behavior of functions surprising; for further information, try a Web search on default
parameter values in Python. (One other interesting trick, suggested in the “Trivia” section
in Chapter 30, is to use a function attribute to the same purpose as the hidden keyword
parameter.)

Coroutine Processing

The most exotic way for a function to remember values between calls is simply to let
the function run forever. That idea seems puzzling: if a function never uses return, how
can a caller get back a result from the function call? Python’s answer exploits generators,
specifically generator loops (see the box “Loops Using Iterables and Generators” in Chapter
22). Within a generator loop, the yield statement can both transmit a value, such as the
boolean result of a 10% threshold test inside of normal, and get the next value of x. In the
main program, instead of using next() to get the result from normal, the main program
uses send(x). Sample code is shown below.

def normal():

history = []

x = yield # yield with no value just to get first x

while True:

history.append(x) # history[-1] is x

r = False # warning is false by default

if len(history)>5:

mean = sum(history[:-1]) / 5.0

if abs(history[-1] - mean) >= 0.1*mean:

r = True

del history[0]

x = yield r # "return" r, and get next x value

main program

T = normal() # create generator (like an object)

T.send(None) # initialize the generator by sending None

while True:

x = Accelerometer()

v = T.send(x) # give normal the next x & get result

if v:

sendWarning(x)

In a sense, organizing a program this way, where the main program is a loop that “calls”
a generator using the send() method, resembles parallel processing. The program behav-
ior roughly is like two concurrently running entities, the main program and normal, each
running a loop. They meet up for communication using send() and yield. This view of
two entities concurrently running loops and exchanging information is called the coroutine
pattern of programming. It is an advanced programming technique not advised for begin-
ners. We show it here to give some idea of how computer scientists organize systems using
concepts of concurrency or parallelism in designs.

This page intentionally left blankThis page intentionally left blank

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Chapter 28: Randomness, Time, and System Modules

Creativity is the ability to introduce order into the randomness of nature.
— Eric Hoffer

Now the whole point about machines is they are designed not to
be random. When you call up a word processing program on your

computer, you don’t want it to be different every time you call
it up. You want it to stay the same.

— Rupert Sheldrake

A list of the top five most useful modules in the Python library would probably include
math, sys, random, time, and os. The math module has been seen in earlier chapters; the
goal of this chapter is to briefly introduce the other most useful modules.

The Random Module

The random module is a collection of methods for generating random numbers, ideal sta-
tistical distributions (Gaussian, uniform, exponential, Pareto, and more), and some useful
sampling and selection methods. We touch on just a few of the methods here; online Python
documentation lists all the methods and describes what they do. The methods and their
explanations follow, describing the methods as though they are functions from the random

module; then an example script is presented. Later, it is shown that these really are methods
and a class/object is associated with them.

Of course, the idea behavior of any simulation of randomness would be unpredictable—
free from any patterns. Each time that a random method gets called, it could return some-
thing different from the last time (though, of course, it is not so easy, since even the behavior
of always being different is too predictable). It turns out, however, that computers are inca-
pable of generating, through software, truly random numbers. The best that can be done is
to generate pseudorandom numbers, which look like random values for practical purposes.
The technique for generating random numbers or random operations is based on the no-
tion of a seed value, explained later in this chapter. Paradoxically, this technique enables
program behavior to be perfectly repeatable and predictable, yet have seemingly random
properties.

Methods

uniform(a,b) returns a number randomly selected (with equal or uniform probability)
from all numbers between a and b. Example:

>>> import random

>>> random.uniform(0.0,1.0)

0.5127619674301888

randint(a,b) returns an integer x randomly chosen to satisfy a ≤ x ≤ b. Example:

>>> from random import *

>>> randint(-5,5), randint(-5,5), randint(-5,5)

(-1, -5, 2)

choice(M) returns a randomly chosen item from sequence M. Example:

351

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

352 A Functional Start to Computing with Python

>>> import random

>>> random.choice("minority")

't'

>>> random.choice("minority")

'm'

shuffle(M) scrambles list M randomly (mutating M). Example:

>>> import random

>>> T = "the design from months to days".split()

>>> random.shuffle(T)

>>> ['to', 'the', 'days', 'from', 'design', 'months']

Case Study: The Monte Hall Problem

This puzzle is a popular question about randomness, information, and choice. The game
show presents the contestant three curtains, and it is known that a big prize awaits behind
one curtain, but which? You initially choose one curtain, but before it is opened, Monte
Hall (the game show host) raises another curtain and reveals that one does not have the
big prize. You still have a chance to win! Now Monte asks, would you like to switch to the
other remaining curtain, or stay put with your first choice? What is the best strategy here?
Rather than launch into some mathematical argument, let’s write a script that simulates
the game 10,000 times with each strategy: switching curtains or staying put. We should
observe a difference between the strategies.

def StayPut():

curtains = [None,None,None]

prize = random.choice([0,1,2])

curtains[prize] = "Win"

contestant = random.choice([0,1,2])

return curtains[contestant]=="Win"

Before planning a 10,000 trial experiment, we
need to have the technique for a single experi-
ment, which is one run of the game show. Let
the curtains be numbered 0, 1, 2; the loca-
tion of the big prize will be random (using the
random.choice method). Then, let the contes-
tant choose a curtain at random. Now comes the

reveal by Monte of a nonprize curtain, followed by the contestant’s strategy. Above is this
idea realized as a function for the nonswitching strategy, the StayPut() function.

The StayPut() function will sometimes return True, sometimes return False, depending
on whether the simulated contestant chose the winning curtain. There is nothing about
simulating Monte opening a curtain, since the strategy here is to stay put no matter what.
The other strategy is to switch, shown here. Running 10,000 trials of these strategies is a
simple iteration, accumulating the number of times that a contestant wins. On the top of
the next page, code for the Switch() function is presented, with a script for a simulation
comparing StayPut() and Switch() below.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Randomness, Time, and System Modules 353

def Switch():

curtains = [None,None,None]

prize = random.choice([0,1,2]) # hidden prize

curtains[prize] = "Win"

contestant = random.choice([0,1,2]) # simulated choice

reveal = [0,1,2] # these are the curtains, but

reveal.remove(prize) # only consider nonprize curtain

if contestant in reveal: # see if contestant chose nonprize

reveal.remove(contestant) # remove prize & contestant choice

raisecurtain = random.choice(reveal) # raise nonprize curtain

finalchoice = [0,1,2]

finalchoice.remove(raisecurtain)

finalchoice.remove(contestant)

finalchoice = finalchoice[0] # switch and see - is it a win?

return curtains[finalchoice]=="Win"

StayCount = 0

SwitchCount = 0

countmap = { True:1, False: 0 }
for n in range(10000): # try both strategies 10,000 times

StayCount += countmap[StayPut()]

SwitchCount += countmap[Switch()]

now report which strategy got the most wins

template = "Staying put got {0} wins, switching got {1} wins"

print(template.format(StayCount, SwitchCount))

We leave the reader in suspense over the outcome of the simulation (run it if you like).
The point of this case study is that, rather than the mathematical approach of deriving
probability values and formulas to answer a question, simulation can be a simple way to
study decision strategies.

➪ web

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

354 A Functional Start to Computing with Python

Random Objects ➪ web

Random number generation is extremely useful in simulations, games (to add some variety
in behaviors), and for statistical experiments. There is an unexpected side effect of using
randomness: it may be that a program has a bug, but the bug shows up very rarely because
it depends on what the random methods do. This can be quite frustrating if a bug happens
but is not easily repeatable for debugging purposes. Fortunately, software random number
generation is not actually random in the true sense of the word. Random number generators
have an initial seed value, which determines how it will behave. The seed(x) method sets
the seed value to x. Here is a small demonstration:

>>> import random

>>> random.seed(5)

>>> [random.randint(0,1000) for t in range(10)]

[623, 742, 795, 943, 740, 923, 29, 466, 944, 649]

>>> [random.randint(0,1000) for t in range(10)]

[901, 113, 469, 246, 544, 574, 13, 216, 279, 917]

>>> random.seed(5)

>>> [random.randint(0,1000) for t in range(10)]

[623, 742, 795, 943, 740, 923, 29, 466, 944, 649]

>>> import random

>>> V = random.Random()

>>> V.seed(231)

>>> V.choice("one two three".split())

'three'

Above, after setting the seed value to 5, a list of
ten random numbers is generated, then another
list. Then the seed is set back again to 5, and
it is evident that the next list is identical to the
earlier one generated after the same seed value.
What is seen to the left is based on the Random

class defined in the random module; the import random statement creates an instance
(object) of this class, and the methods in all earlier examples of this chapter use this object.
The seed value is an attribute (integer variable within the object), which the seed()method
assigns. In fact, each method of random that does some random number generation takes
the current seed, uses it somehow to make some “random” choice, and then changes the
seed to a new value. If needed, the Random class can be used directly.

class Random():

def cycle(self): # get next seed

self.seed *= 1103515245

self.seed += 12345

self.seed &= 0x7fffffff

def __init__(self,seed=None):

if seed == None:

import time

self.seed = int(time.time())

def random(self):

import math

self.cycle()

m,e = math.frexp(float(self.seed))

return 2.0*(m-0.5)

Two points of interest are worth knowing
about the random module. First, there is a con-
nection between pseudorandom number genera-
tion and the concept of a hash table, mentioned
“Refining the Index” in “Interlude: File Index-
ing,” in connection with file indexing. Python
has a hash method for the nonmutable
types (string, tuple, numbers), which is inter-
nally used in implementing dictionaries. When
"abc". hash () is evaluated, an integer is re-
turned. The hash method has been carefully
designed so that the likelihood that different
strings get the same hash result is quite low.
In some sense, what hash does is similar to what the random module does. The other
point of interest is how random works. The code shown above is a primitive implementation
of a pseudorandom number generator. The logic is a bit mysterious, yet the operations are
simple.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Randomness, Time, and System Modules 355

The Time Module ➪ web

Python’s time module is a collection of variables and functions to format, measure, and
control time. Several of the functions are useful for getting the current time, formatting it
for display, and measuring elapsed time. The time module is sometimes used in conjunction
with the datetime and calendar modules for displaying chronological data. The display
functions are documented in the online Python manual; this section does not describe them.
The emphasis here is measurement and control functions.

import random, time

def countlist(M):

"count number of unique items in list M"

L = []

for item in M:

if item not in L:

L.append(item)

return len(L)

def countdict(M):

"count number of unique items in list M"

D = { }

for item in M:

D[item] = True

return len(D)

biglist = [random.randint(0,1000) for x in range(1000000)]

start = time.clock()

countlist(biglist)

end = time.clock()

print("using list: {0} seconds".format(end-start))

start = time.clock()

countdict(biglist)

end = time.clock()

print("using dictionary: {0} seconds".format(end-start))

Typical result running this program:

using list: 22.49 seconds

using dictionary: 0.34 seconds

Figure 28.1: Timing measurement comparing list and dict types.

time() returns a float, which is supposed to be the number of elapsed seconds since
January 1, 1970. However, it is only as accurate as the setting of the clock on the
computer and the hardware support for timekeeping. A typical example could be
(shown in Python3):

import urllib.request, time

start = time.time()

page = urllib.request.urlopen("http://www.nist.gov")

end = time.time()

print("elapsed time = {0}".format(end-start))

The example measures the time taken to fetch a Web page.

clock() returns a float, which is supposed to be the amount of time that the computer’s
processor (the Central Processing Unit, or CPU) spent running the current Python
session or program since it started. This is usually quite accurate, though it becomes
less accurate over very small amounts of time. The clock() function can be useful

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

356 A Functional Start to Computing with Python

for efficiency experiments to compare different ways of looping or comparing different
algorithms to see which runs faster. An example of this is shown in Figure 28.1. The
dictionary clearly wins the contest of efficiency here.

sleep(amt) is used to suspend the running Python program and wait for amt seconds
before resuming. The amt argument can be a float for fractions of a second. For
instance, time.sleep(1.5) causes the program to pause for one and a half seconds.
The sleeping could be interrupted by an exception, say a CTL-c from the keyboard;
in that case, the sleeping ends prematurely, and the program resumes.

The Sys Module ➪ web

The sys module gives programs access to facilities of the underlying infrastructure of
Python, which is the interface between the operating system and the running of Python lan-
guage programs. Chapter 25 discusses two of the sys module’s object, stdin and stdout.
Two more are listed here.

argv is a list of strings, usually made by splitting the shell command that launched the
current Python session. An example of this could be a two-line script myscript.py:

import sys

print(sys.argv)

Running this script with a couple of examples shows how argv reflects shell commands:

$ python myscript.py

['myscript.py']

$ python myscript.py yada blah -hello x=5

['myscript.py', 'yada', 'blah', '-hello', 'x=5']

The argv list is, in a sense, the input argument to running a Python script: the
program can examine the command line, extract values from the argv list, and use
these values to decide which file to open, what functions to call, how to format the
output, and so on. The extra strings following myscript.py in the example above are
sometimes called command line options, since they are put on a shell command and
may control optional behavior of the script, depending on how the program uses the
argv information.

sys.exit(rc) is a function that halts program execution, closing files, cleaning up memory,
and terminating all Python activities. The value rc is an integer, which may (or may
not) be significant to the operating system shell, presumably as an indication from
the program as to why it quit. Typically, an rc value of zero means that the exit is a
normal completion of the program, whereas other values indicate some kind of error
condition.

There are many other sys functions and variables which give detailed information about
the resources used by Python, the location of module libraries, and more.

The OS Module ➪ web

The OSmodule makes some standard operating system functions and commands into Python
functions. This module differs from others because it may not work the same for different op-
erating systems. The official online documentation should be consulted to fully comprehend

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Randomness, Time, and System Modules 357

the limitation. Here are a few of the os functions and variables, concentrating on directory
and file paths, which are strings that designate the location of entities in the system’s file
system.

getcwd() returns a path, the current working directory, likely the directory where the
command to launch the Python program initially launched.

listdir(path) returns a list of all the files and directories present in the specified path.
For instance,

>>> import os

>>> os.listdir("/opt")

['safe', 'allf.py', 'Adobe', 'ibm', 'sun', 'java', 'inven.txt']

Note that some of the strings in the returned list might be names of files, and others
names of subdirectories. Thus, to use listdir to explore all files under a directory,
recursion might be needed. Alternatively, use the walk function described below.

stat(path) returns a “stat” object for the path. This object has attributes for the most
recent access time, most recent update time, size (of file), and many other details
about the file or directory named by the path. See the online documentation for a
comprehensive list of the attributes.

path.abspath(path) returns a fully qualified path for the given path. The path argument
could be a simple file name, like 'test.py,' which would make sense in the context
of the current working directory; but the “full address” of the path could be

/home/user/jrane/progs/test.py

which is what path.abspath() would return.

path.isdir(path) returns True if the named path is a directory.

path.isfile(path) returns True if the named path is a file.

path.walk(top,func,arg) is a function typical of the object-oriented or functional styles
of programming. (Note for Python3: the path.walk function is replaced by walk, so
instead of using os.path.walk, use os.walk in Python3.) To use this, you need first
to create a function (the func parameter). This will be a function that gets called for
each subdirectory under a given path, going down each subdirectory, sub-subdirectory,
and so on, recursively. The top parameter is the starting path for the recursive “walk”
through all subdirectories; the arg parameter can be anything, and it will be passed
along to the function named by func (it could be used to avoid using global as a way
to access other objects you create for saving results). The head for the func function
is:

def func(arg,dirname,fnames):

where dirname is the path of a subdirectory and fnames is a list of all the entities
(files and subdirectories) within that subdirectory, similar to what listdir() returns.

The OS module has so many functions for system interfaces that it would likely be possible
to write a shell interpreter in Python. Figure 28.2 shows an example using various functions
from os to total up the number of bytes in all the Python scripts under the opt directory.
The script in Figure 28.2 uses two details from os not explained above. First, the st_size
attribute from a stat object is the size, in bytes, of a file. Second, the full path of a file

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

358 A Functional Start to Computing with Python

import os

class Counter():

def __init__(self):

self.total = 0

def add(self,val):

self.total += val

def sizepy(count,place):

if (os.path.isfile(place) and

place.endswith(".py")):

size = os.stat(place).st_size

count.add(int(size))

def accumsizes(count,dirname,fnames):

for name in fnames:

fullname = dirname + os.sep + name

sizepy(count,fullname)

C = Counter()

os.path.walk("opt",accumsizes,C)

print C.total

Figure 28.2: Recursive directory exploration using os module.

is made by concatenating the name of a directory with the name of a file, using os.sep

between these two. The reason is that Linux (Mac or Unix) systems use “/” to separate
names in a path, whereas Windows uses “\” as the separator. The os.sep will reflect the
choice of the underlying operating system. Note that this script will fail, as will other os
functions, if the user running the program does not have sufficient permissions to access
the files or directories. Though this may be overcome using try .. except statements, we
showed the simpler, failure-free case here.

Terminology Review

Jargon worth remembering from this chapter includes random number generation, pseudo-
random, random seed, CPU time, argv, and (file/directory) path.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Randomness, Time, and System Modules 359

Exercises

(1) Use Python to solve the following problem—do not use some mathematical analysis to
compute the answer. In some imaginary country, the government has a strict policy on
how families grow. Each family is allowed to have at most one daughter, but can have
as many sons as they wish. For purposes of calculation, assume the odds of having a
son or daughter are equally likely (like a coin toss), and that a family will continue
to have children until a daughter is born. Also, there are no twins, triplets, or other
outlier events. What will be the proportion of males to females in this country?

(2) Consider a die (single of dice) that is tossed repeatedly. Each toss gets a number
between 1 and 6, with equal likelihood. The problem is to see how often there are two
of the same number in a row, three of the same number in a row, four in a row, and
so on. For instance, if the sequence of tosses has these values:

3 4 2 1 5 5 4 2 3 3 3 2 6 4 6 5 1 1 2 4 6

Then there are two times that a number is repeated exactly twice (5 5 and 1 1) and
one time that a number is repeated exactly three times (3 3 3). Simulate the tossing
of a die a million times, and report on the number of times that a number is repeated
exactly k times in a row, for k = 2, 3, 4,

(3) Modify the directory walk example to build a list of all files that have all uppercase
names. Hint: Accumulate such files in a list, which can be an attribute of an object,
similar to the object C in the walk example.

(4) Which is faster, summing a list of a million random numbers using sum, using a for

loop with the accumulation pattern, or using recursion? To answer this question, use
clock to measure the amount of CPU time each of these consume. Make sure in your
tests that you do not count the time of generating the list of random numbers.

This page intentionally left blankThis page intentionally left blank

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Chapter 29: Graphical User Interfaces

Software suppliers are trying to make their software packages more
“user-friendly.” Their best approach, so far, has been to take all the

old brochures, and stamp the words, “user-friendly” on the cover.
— Bill Gates

Visual display of information is older than any language. Graphical display of data, partic-
ularly quantities, is more recent. Accurate maps portray distance and land mass sizes. A
rope connecting a float, pulley, and counterweight may show current water level. A sundial
casts a shadow indicating the hour. The later invention of clocks with dials was inspired by
the sundial’s circular shadow motion. Common to these historical points is that information
flow is in one direction: the user sees, but cannot control the phenomena giving rise to the
data by the display mechanism.

Interaction with graphical display is a comparatively recent innovation. Some interaction
reverses information flow: the user changes a graphic of a data value, and this change effects
some control of the underlying phenomenon (some alarm clocks and thermostats have this
property). Other interactions control the graphical display, set parameters to software, and
guide system behavior. The invention of modern graphical user interface (GUI) systems,
especially the general form of using rectangular windows, keyboard, and mouse, is credited to
Alan Kay, working at Xerox Parc in the 1980s. This combination of hardware, software, and
presentation subsequently moved to Apple, then Microsoft Windows and Unix platforms.

A major challenge for the implementation of GUIs is the software architecture. What
are the best languages, the most suitable patterns and disciplined design strategies? While
there is no best answer to such a question, the community of software experts has settled
on some common principles and terminology. The basis for design is commonality in the
styles of presentation and user interface patterns. Windows generally have control boxes at
corners, can be resized by dragging, there are pull-down menus, cut-and-paste operations,
slider bars, checkboxes, and so on. At a higher level of design, applications use metaphors
for what windows and controls represent: dashboards on vehicles, folders, scrollable lists,
text input/output areas, and similar familiar concepts. Designs composed of these elements
of windows and application metaphors have promoted so-called GUI Frameworks, which are
“programming kits” for building GUI applications. This chapter illustrates the framework
approach in Python, using the Tk framework.

Before interaction with software, programs were nearly always elaborations of input-
output functions: the program would dictate when input was used and when output was
returned. With GUI systems, there is a “paradigm shift” to another style of programming,
event-driven control of programs. The fundamental difference is that the program does not
dictate the exact sequence of inputs. Nearly all event-driven programs are organized around
indefinite loops (like a while loop), where most of the time the program is waiting for
events. In Tk and other GUI frameworks, this loop is implicit: the application invokes a
particular method, which does not return. The event loop is inside that method, hidden
from view of the programmer. The application just needs to set up some objects whose
methods will be called when events occur. Thus, GUI applications are “reactive” programs
that react to events.

Learning about GUI software can be frustrating: the problem is that there are so many
GUI frameworks, each with its own quirks and version dependencies. Most of the frame-
works are designed to be independent of the programming language, so that a variety of
programming languages can be used for the same framework. Python has no inherent GUI

361

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

362 A Functional Start to Computing with Python

facility. The one used in this chapter, Tk, is usually part of a Python installation, which is
why we choose it as a learning platform. However, Tk is relatively old, not as convenient
to use as newer alternatives, and does not take advantage of some newer native windowing
functions available under Apple, Microsoft, and Linux desktop software. For Python there
are many independent GUI frameworks (gtk, WxWindows, native GUI for Windows, etc.)
that are superior to Tk, though requiring significant training to fully exploit. Specialized
GUI frameworks for smartphones (Android, iPhone) may also support Python program-
ming. Another method of interaction is via Web browser languages (Javascript, HTML5),
browser plugins that have their own programming languages (Flash, Silverlight). One such
technique puts Python programs on the server side, which respond to a URL request for a
page by returning text that includes both HTML and Javascript: the Python program then
uses templates to customize the Javascript program that will control browser interaction
with the user. This theme is typical of modern software, where programs generate yet other
programs (Python which generates Javascript), a topic more advanced than this chapter
explores.

GUI Concepts: Widgets, Layouts, Actions

Everyone who has used a Web browser or desktop software recognizes common GUI pat-
terns. The individual patterns that are employed repeatedly are components of GUI frame-
works. Examples of these components are pull-down menus, buttons, slider bars, file selec-
tors, text entry boxes, and popup alerts. For each of these components, which are common
to numerous applications, a GUI framework defines a widget. A typical application may
use the button widget dozens of times, in different places, on the screen. Naturally, the
programming for widgets is captured by object-oriented design. GUI frameworks provide a
button (widget) class, and each button on a screen is an instance of the button class. The
button class has methods for setting color, text, font style, and behavior associated with
the button.

Widgets are not just for low-level components like buttons. More sophisticated repeat-
able patterns such as calendar/date selectors and color choosers may also be represented
by widget-style classes. These higher-level widgets are assemblies of lower-level widgets: a
calendar widget could be composed of many button widgets, label widgets, and a slider wid-
get, arranged into the familiar calendar appearance. In fact, GUI frameworks are the best
advertisement for object-oriented design. GUI programs draw from libraries of widgets and
other repeatable components (files, database access, networking) by instantiating objects,
which are customized instances of the library classes.

To deliver an attractive and easy-to-use feel, an application needs to control the place-
ment of widgets on the screen. It is straightforward to place widgets on the screen using
(x, y) coordinates. Coordinates may be given in standard units of size (centimeters) or num-
ber of pixels (the smallest displayable area on a screen). The dimensions, width and height,
of a widget can be similarly specified in standard size units. Complications to this straight-
forward approach occur when the same application has to contend with varying hardware
displays. Screens vary in size, aspect ratio, and number of pixels. Some applications even
prepare for both desktop use and mobile device displays that have small screens. Input
hardware can also vary: touchscreens, mice, or gesture recognizers could be inputs to the
same application, depending on where it is deployed. To manage such complications, GUI
frameworks provide geometry managers. A geometry manager enables applications to place
widgets in relative terms, like left, right, top, bottom, northeast, south, and so forth. In
action, the geometry manager calculates coordinates depending on the actual size of the
window (which could even be resized dynamically by the user), attempting to fit the rel-

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Graphical User Interfaces 363

ative locations of the widgets while rendering the output so that things are legible and
usable. Geometry managers are usually implemented in methods of container widgets ; an
application may create a container widget first, give it some preferred dimension (width and
height), then pack smaller widgets into the container. Typical names for containers with
geometry managers are Frame and GridLayout. Applications with many widgets typically
use container widgets recursively. The entire application window may be subdivided into
different areas, so that each area has its own container. A geometry manager might be
tasked with placing a widget that itself hosts several subwidgets.

Some widgets are only for display purposes, showing titles, items in a table, graphical
images (jpg, gif, png), or video boxes. Other widgets are intended for user interaction. The
type of user interaction is controlled by the application. The application can say what hap-
pens when the widget is clicked, double-clicked, or when the mouse moves over the widget.
GUI frameworks permit applications to bind a widget handler with an event—but this is
not the same meaning of “bind” as Python uses for parameters and arguments explained
in Chapter 10. Rather, the GUI framework predefines some kinds of user events, including
mouse clicks, keyboard entry, and mouse movement (with and without button pressed). An
element of the framework is a controller, which constantly monitors input devices and the
state of the screen to detect events. When an event occurs, the controller finds all appropri-
ate widgets related to the event and determines whether or not the application has bound
a handler to this event. If so, the controller dispatches the handler, meaning that it invokes
the handler in the same way that programs call functions. The function of the handler is to
“handle” (take care of) the event. In an object-oriented context, handlers are nearly always
methods of classes which the application defines. Rather than defining such a class afresh,
the programmer defines a subclass of something in the GUI framework.

What can a handler do? For debugging or demonstration purposes, a handler might
just have a few print statements. Usually handlers contain calls to the GUI framework
functions, read and write files, or do nothing. A typical action of a handler would be to
change the color of a widget or copy data that is logically associated with a widget to some
variable and do some small calculation, perhaps adding a new widget to the current display.
In this way, one user event triggers a change to what appears on the screen.

This way of programming an application by creating widgets, placing them with a ge-
ometry manager, then arranging handlers to deal with events, tends to give application
programs a chaotic appearance. If we ignore all the code related to the GUI framework, the
part of the application for calculations, network communication, file reading, and printing
is scattered about, with pieces in handlers, object constructors, and in functions defined by
the programmer. Instead of a simple, straightforward flow of control—discussed in Chapter
11—the logic of the program is hard to see. Indeed, what happens when the program runs
depends on what the user does. In some sense, each GUI program is a game between two
players, the application and the user. The user generates events, the application redraws
the screen, the user responds, and so on. In contrast, using the raw_input() function is
simple because a script or function stops and waits while the user responds with input. For a
GUI application, the application could be in the midst of doing some calculation or reading
a file at the same instant that a user clicks on a widget. The whole idea of GUI applica-
tions is to make life easy for the user, not the programmer. The application may get events
asynchronously, meaning that user events may not be synchronized to the pace or order of
operations done by the application. The GUI controller does background bookkeeping for
events, calling the handler(s) for events and updating displays of widgets as they change.
Most GUI controllers also try to take advantage of low-level hardware features for drawing
pixels and text; a typical optimization feature of controllers is to delay screen updates until
the application has finished making changes rather than trying to update each pixel at the
instant it changes. This saves considerable overhead and can improve response time for the

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

364 A Functional Start to Computing with Python

user; however, the application may need to inform the controller when screen updates are
needed, and this further complicates life for the application programmer.

Programming with a GUI Framework

GUI programming is a specialized skill, because the frameworks are complex and the tools
to exploit the frameworks take time to learn. One framework could easily have hundreds of
widgets, each with dozens of methods. Full documentation of these frameworks, let alone
accurately maintaining this documentation in the face of new versions and improvements
to the frameworks, is not common. Mastering a framework is time-consuming and best
done by implementing applications, experimenting with widgets, reading texts, participating
in online discussions about the framework, and plenty of debugging. This chapter barely
scratches the surface of one GUI. The Tk framework is poorly explained in the Python
documentation, so it would probably be better to explore another framework for serious
applications. Nonetheless, the Tk examples in the rest of the chapter do illustrate the
organizing principles of GUI programming.

Because GUI frameworks can be hard to learn, and because there remains some demand
for GUI applications, software engineers have created tools that help programmers write
applications. The most important of these is the IDE (Integrated Development Environment),
which combines smart editing of program text, debugging (the ability to run a program one
step at a time or have it pause at certain statements, and to inspect variables during the run),
and searching through documentation while the programs are being written. Professional
IDEs like Visual Studio or Eclipse give the programmer instant access to lists of methods
available for an object and the parameters of a method. All the programmer need do is
start typing and the IDE will attempt, like a spelling corrector, to complete the current
typing to something in the programming language or in a library. After connecting a GUI
framework’s library of classes to the IDE, the programmer does not have to recall the exact
names of methods or parameters, since the IDE will supply these in a list for selection.

Another tool to assist developers is an application generator. The idea of an applica-
tion generator is to provide a library of templates for applications. The templates include
widgets and some basic fragments of programs and class constructors. Usually, application
generators are launched as online applications which resemble drawing programs or pre-
sentation creators. The programmer selects widgets from a toolbar, drags them onto the
screen, sizes and positions them. Various other operations and pull-down options customize
the widgets, even allowing for the naming of variables and event handlers to be associated
with the widgets. Finally, the tool can emit source programming language statements to run
the application. Typically, the programs generated by such a tool are incomplete: they lack
the application-specific needs of reading files, accessing a database, communicating over a
network, or whatever else the application will need. However, the programs generated may
be the “skeleton” of a completed program. It can save considerable time to use an applica-
tion generator to get some crude form of the desired application, and then use an IDE to
edit the generated code and complete the job.

The Tk GUI ➋
➌
E

The Tk GUI framework was introduced in the 1980s as a rudimentary tool that simplified
application programming for the Unix X-window system. Since then, Tk has been adapted
to many other windowing systems. Though Tk is powerful enough for some impressive
applications (the turtle drawing system of Chapter 24 is based on Tk), it has been eclipsed by

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Graphical User Interfaces 365

more modern frameworks. The purpose of this chapter is not a comprehensive introduction
to Tk; the examples that follow just show some of the organizing principles explained earlier
in action.

The examples are organized around a few widgets to show different styles of display
and interaction. The first two examples show Tk directly, whereas the remaining examples
use another Python module Tix, which introduces some convenient higher level widgets
built from the basic Tk widgets. All of the examples are expressed using Python2, though
adapting them to Python3 could easily be done by renaming the module names.

Adding, Removing, and Changing Widgets

To begin the process of working with widgets, a “root window” has to be created; Tk is
a class, so Tk() creates an object representing the root window. The root window is also
considered to be a widget, and additional widgets are put into the root window. For all the
widgets to be added to the root window, the process has essentially two steps.

(1) First, there is a class for the widget, and an instance (object) is created for that
widget. A typical widget creation statement is

buttonref = Button(container)

where container is either the root window object or a reference to some other widget
that will contain the Button instance. The new Button object then has buttonref as
the variable to reference it.

(2) Second, the newly created widget is “packed” using the pack() method:

buttonref.pack()

The pack() method makes the widget visible and put into an appropriate place on
the window.

Changing a widget (text, style, what it does when clicked) is done by invoking the
configure() method and supplying keyword arguments to configure(). To remove a
widget, use the destroy() method. If the destroy() method is used on the root window,
then the entire window is closed.

Frame and Label

Our first Tk GUI program shows a label without any provision for interaction. The Label

widget is used only to show some text, typically a title or some directions for the user.
Program statements are annotated with ➀–➈ for explanatory notes below. The widget and
window shown by the program appears to the right of the code.

➀ from Tkinter import *

➁ class MyApplication(Frame):

def buildMyWidgets(self):

➂ forshow = Label(self,

text="Just for Show")

➃ forshow.pack()

➄ def __init__(self,master):

Frame.__init__(self,master)

self.pack()

➅ self.buildMyWidgets()

➆ root = Tk()

Tobject = MyApplication(root)

➇ Tobject.mainloop()

➈ root.destroy()

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

366 A Functional Start to Computing with Python

Notes:

➀ The Tkinter module (renamed to tkinter in Python3) here is imported using from

to get simpler names of widgets; later examples use the import statement and longer
names.

➆ This is the first statement of the script to run (previous statements only define classes
and methods). The Tk() creates an object and a window on the screen associated
with that object: it is sometimes called a root window, parent window, or emphmaster
window, since additional GUI widgets will be considered children or slaves of this
window. This example does not show it, but applications can have multiple root
windows.

➁ The MyApplication class is a subclass of Tk’s Frame, a container widget. In this
very simple program, there is not much geometry to calculate, because the container
will have only a label widget. The main reason to introduce MyApplication is to
show how setup of additional widgets within the frame can be put into the object’s
constructor method. The statement following ➆ creates an instance of MyApplication;
notice that the new frame object is created using the root window as an argument
to the constructor. This is the general rule for Tk widgets: the first argument to the
constructor names the parent widget, which is the root window.

➄ defines the constructor. The thing to observe here is that, for the MyApplication class
to be a properly working container with geometry management, the constructor for
Frame has to be invoked. The first line following ➄ does that, explicitly calling the
__init__method of the parent class. The next line of the constructor calls the pack()
method, which is the standard call that a widget uses to tell a geometry manager to
place the widget in the parent widget. Here, the statement tells Tk that the newly
created frame should be placed in the root window.

➅ uses another method to put the label widget into the frame. There is no advantage for
this small example putting this into a new buildMyWidgets method, however, this is
typical of GUI application programming.

➂ builds a Label widget, one of many in the Tk catalog of widgets. The single argument
to constructing the label object turns out to be the frame (MyApplication) that will
contain the new label. There is also a keyword argument, text, which provides a
string used in setting up the Label widget. One has to find in some documentation, a
textbook, or copy from other Tk examples that the Label widget has a text argument.
Many other arguments are possible, depending on the kind of widget. The choices for
these arguments can be changed later using a configure() method, if needed.

➃ is a pack() on the new Label widget, requesting placement inside the Frame, which
has previously been placed within the root window. Thus, after ➃ finishes, there is
a parent-child-grandchild relationship between the root window, Frame, and Label

widget.

➇ kicks off the interactive cycle. The mainloop() method runs indefinitely, waiting
for user events and invoking handlers. Usually, the application will eventually use
a destroy() method on the root window, to finish the application and return from
the mainloop() method. The statement ➈ shows how to use the destroy() method,
but actually it is a bug to place the destroy() here: it should instead be called within
a handler (which this example neglects to define).

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Graphical User Interfaces 367

Buttons

To the previous example for the Label widget, we add here a Button widget. This time
the Frame contains two widgets, Label and Button. The pack() methods therefore have
been tuned for widget placement: the Label widget is placed on top, the Button on the
bottom of the frame. Right of the code, shown below, are two versions of what the users
see. The uppermost version shows the window before the user moves the mouse over the
button, and the lower version shows that the button turns yellow when the mouse is over
the button (you likely cannot see the color difference on the black/white rendered page of
the book). This is a standard cue to the user that the button would like to be clicked. The
Button widget has some handy arguments controlling the normal background color and the
“active” background color, shown in the method setting up the widgets.

from Tkinter import *

import sys

class MyApplication(Frame):

def quit(self,event):

sys.exit(0)

def buildMyWidgets(self):

forshow = Label(self,text="Just for Show")

forshow.pack(side="top")

forinput = Button(self,text="Click Here")

forinput.configure(background="beige",

activebackground="yellow")

forinput.bind("<Button-1>",self.quit)

forinput.pack(side="bottom")

def __init__(self,master):

Frame.__init__(self,master)

self.pack()

self.buildMyWidgets()

root = Tk()

Tobject = MyApplication(root)

Tobject.mainloop()

The bind()method associates a widget with an event handler. The first argument to bind()
is a string that names the kind of event that the named handler expects. Options for this
argument include

<Button-1>, <Button-2>, <Button-3>, <Key>, <Enter>, <Leave>, <Return>,
<Home>, <Up>, <F3>, <ButtonRelease-1>, <DoubleButton-1>

and many others. The handler defined for this example, the quit() method, expects a
single1 argument, the event parameter, which is an object with information about the
event (location of the mouse and some other data). The example shows another way that
the Python program could end the GUI: instead of using the destroy() method to remove
the root window, the program just calls verb—sys.exit()— which ends the entire program
immediately.

Playing Around ➪ web

The examples here are not advisable to copy, but are sometimes used as a preliminary
demonstration. It is interesting at least one time to see Tix/Tk done interactively:

>>> import Tix

>>> r = Tix.Tk()

1Remember, the self parameter is present in every method definition, and does not really count as an
argument given by the method’s caller.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

368 A Functional Start to Computing with Python

>>> f = Tix.Frame(r)

>>> f.pack()

>>> b1 = Tix.Button(f,text="one")

>>> b1.pack()

>>> b2 = Tix.Button(f,text="two")

>>> b2.pack()

>>> b3 = Tix.Button(f,text="three")

>>> b3.pack(side="right")

>>> b4 = Tix.Button(f,text="four")

>>> b4.pack(side="left")

>>> b2.destroy()

>>> b1.destroy()

>>> f.destroy()

>>> r.destroy()

Done interactively, you can see the window appear, grow, and shrink as the buttons are
packed and destroyed. Another attractive example is this script, using the Grid layout
instead of Frame:

from Tix import *

r = Tk()

f = Grid(r)

f.pack()

for i in range(8):

for j in range(8):

b = Button(f,text=str(i)+str(j))

if i==j:

b.configure(background="lightblue")

b.grid(row=i,column=j)

This produces a square array of buttons, colored on the diagonal. If the above is put into
a script grid.py, then the shell command python -i grid.py brings up the window (the
-i on the command is needed to keep Python up and running after the script finishes, so
that the window remains on the screen).

Assorted Tk/Tix Widgets ➪ web

The rest of the chapter shows selected widgets available in Tk/Tix modules. These are
presented mainly to show binding and interaction in Python.

Tix Meter Widget

The example here does not follow the pattern of earlier examples or later ones. It avoids
using a mainloop() method, since interaction with the GUI is not intended. The program
imports the Tix module, which goes on to import Tk internally. The Tix module acts as a
wrapper for Tk. The notion of a wrapper is similar to the idea of inheriting or extending a
class in an object-oriented design. The Tix module provides nearly all the widgets that Tk
does, and adds many more new widgets that simplify application design. Thus, Tix “wraps”
Tk into a new package with extra features. For Python3, the name is changed from Tix to
tkinter.tix.

The Meter widget is familiar to users as a “progress bar” for a lengthy, time-consuming
operation. It informs the user of a percentage (usually percent complete on an operation),

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Graphical User Interfaces 369

and this is periodically updated as the application makes progress. To the right of the code
below there is an example of how the Meter widget appears.

import time, Tix

def runMeter():

root = Tix.Tk()

progressbar = Tix.Meter(root,value=0.0)

progressbar.pack()

root.update_idletasks()

for i in range(31):

time.sleep(0.5)

progressbar.configure(value=i/30.0)

root.update_idletasks()

time.sleep(2)

root.update_idletasks()

root.destroy()

while True:

text = raw_input("stop or go: ")

if text.startswith("stop"):

break

runMeter()

The code above does not run the mainloop() method for user interaction. The program
starts with a while loop, which asks the user for a string, and in the body of the loop either
breaks out or invokes runMeter(), defined earlier. The runMeter() function creates a root
window, places a Meter widget in the root window, and then loops (slowly) to update the
meter. The update_idletasks()method counters the “lazy” way that Tk changes widgets
on the screen (recall that operation of the GUI controller is asynchronous, and may delay
showing changes to widgets). The update_idletasks() ensures that a new value for the
runMeter will be shown. After the loop finishes, at the end of runMeter(), the root window
is destroyed.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

370 A Functional Start to Computing with Python

The Entry Widget

The Entry widget is for user input of one line of text. The example below shows the code;
there is no image because the widget’s display is quite elementary.

import sys, Tix

class MyApplication(Tix.Frame):

def quit(self,event):

sys.exit(0)

def whatentered(self,event):

text = self.entrywidget.get()

print("Entered: '{0}'".format(text))

def buildMyWidgets(self):

forquit = Tix.Button(self,text="Quit")

forquit.configure(background="beige",

activebackground="yellow")

forquit.bind("<Button-1>",self.quit)

forquit.pack(side="right")

forentry = Tix.Entry(self,

background="palegreen",

width=64)

forentry.pack(side="left")

forentry.bind("<Return>",self.whatentered)

self.entrywidget = forentry

def __init__(self, master=None):

Tix.Frame.__init__(self,master)

self.pack()

self.buildMyWidgets()

root = Tix.Tk()

Tobject = MyApplication(master=root)

Tobject.master.title("Entry Demo")

Tobject.mainloop()

The example binds the Entry widget to the event of a user pressing the “Enter” key, denoted
by the string <Return>. Within the handler whatentered(), the code needs a reference to
the Entry widget, however, no reference is passed directly as an argument—only a reference
to a containing widget, the MyApplication object, passed as self (the other parameter
event is an object that has information about the cursor location and type of event). The
problem is thus how to get a reference to the Entry widget when only the container widget
is known. This is solved simply by inventing a new attribute, adding that to the container
widget (the self.entrywidget = forentry statement), and then using that later in the
handler. The get() method is used in the handler to obtain the string that the user entered
and print it.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Graphical User Interfaces 371

Tix Control Widget

The Control widget lets a user raise or lower a numeric value in predefined steps to set
some value of meaning to an application. The Control widget in the example is packed
along with a Label and a Button (copied from the earlier example) into a Frame container.

import sys, Tix

class PrivateStuff():

pass

class MyApplication(Tix.Frame):

def quit(self,event):

sys.exit(0)

def showvalue(self,event):

print self.privatestuff.R.get()

def buildMyWidgets(self):

forshow = Tix.Label(self,text="value selection")

forshow.pack(side="top")

forinput = Tix.Button(self,text="Quit")

forinput.configure(background="beige",

activebackground="yellow")

forinput.bind("<Button-1>",self.quit)

forinput.pack(side="right")

self.privatestuff.R = Tix.IntVar()

self.privatestuff.R.set(3)

forvalue = Tix.Control(self,label="Value",

variable = self.privatestuff.R,

min=-5,max=5,step=1)

forvalue.pack(side="bottom")

forvalue.bind("<Leave>",self.showvalue)

def __init__(self, master=None):

Tix.Frame.__init__(self,master)

self.pack()

self.privatestuff = PrivateStuff()

self.buildMyWidgets()

rootwindow = Tix.Tk()

Tobject = MyApplication(master=rootwindow)

Tobject.master.title("Control Widget")

Tobject.mainloop()

The code for this example illustrates another feature of Tk. In addition to widget classes,
Tk (and Tix by extension) provides a wrapper for immutable types. The StringVar and
IntVar classes wrap string and int types, respectively, with set() and get() methods.
The reason for such classes is that an application may wish to manipulate a value used
within a widget and have that value automatically appear on the screen without having to
invoke update_idletasks() or otherwise reconfigure widgets. When a value in a widget
is represented with a StringVar or an IntVar, either side (normal application code or the
controller, on behalf of a user event) can change the value and it will instantly be available
to the other side.

The binding for the Control widget is set to invoke the showvalue() method each
time the mouse leaves the area occupied by the Control widget. For this example, the
showvalue() method prints the current value for the widget. However, there is a techni-
cal problem: how can the showvalue() method know this value? The only arguments to
showvalue() are self and event objects, which neither are the desired value nor a refer-
ence to it. There are two ways to solve this problem. First, it is possible to use the global
statement and then define global variables that will be known within the method; this is
generally not good practice in object oriented design. A better solution is to make the value,
or a reference to the value, an attribute of the widget. This technique was used earlier for

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

372 A Functional Start to Computing with Python

the Entry widget as a way to “remember” a reference to a widget in the container object.
In this program, the self argument to showvalue() is specified to be the MyApplication
object at the time bind() is called. Thus, showvalue() can easily refer to any frame at-
tribute (because MyApplication is a subclass of Frame). The trick is therefore to add a
new attribute to MyApplication which refers to the value set in the Control widget. The
body of showvalue() can use this new attribute. One caution is to make sure that the new
attribute really is new: it should not be, by accident, some attribute which is already in the
Frame class or any other ancestor (remember, this is object-oriented design where classes
inherit attributes from ancestor classes). The program above uses a name unlikely to be in
the Tk or Tix modules, namely privatestuff. Furthermore, we let the new privatestuff

attribute be of an object reference to which any number of other attributes can be added
without fear of collision with an existing name in Tk or Tix. While these precautions are
more extreme than the example merits, they illustrate the flexibility of object-oriented
design in using a GUI framework.

Tix ComboBox

The ComboBox is a fancier sort of widget from the Tix

module. It combines labels, pull-down selection, scrol-
lable list, text entry, and buttons. The ComboBox wid-
get is inspired by a similar widget from the Microsoft
Windows catalog of widgets. It should be no surprise
that the setup for this widget has many methods and
arguments, so an example is rather lengthy. The code
is shown on the next page, but we do not explain the
details. The PrivateStuff class is used here to contain
attributes for month and year, as StringVar objects;
a practical application would access their values in the
handlers.

(ComboBox example on next page.)

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Graphical User Interfaces 373

import sys, Tix

class PrivateStuff():

pass

class MyApplication(Tix.Frame):

def selmonth(self,event):

print "month selected"

def selyear(self,event):

print "year selected"

def ok(self):

sys.exit(0)

def buildMyWidgets(self):

self.privatestuff.month = Tix.StringVar()

self.privatestuff.year = Tix.StringVar()

self.privatestuff.month.set("Jan")

self.privatestuff.year.set("2010")

a = Tix.ComboBox(self,

label="Month: ", dropdown=True,

command=self.selmonth, editable=False,

variable=self.privatestuff.month)

b = Tix.ComboBox(self,

label="Year: ", dropdown=False,

command=self.selyear, editable=True,

variable=self.privatestuff.year)

a.pack(side="top", anchor="w")

b.pack(side="top", anchor="w")

monthlist = "Jan Feb Mar Apr May Jun"

monthlist += " Jul Aug Sep Oct Dec"

for m in monthlist.split():

a.insert(Tix.END,m)

for y in range(10):

b.insert(Tix.END,str(2005+y))

box = Tix.ButtonBox(self, orientation="horizontal")

box.add('ok', text='Ok',

underline=0, width=6,

command=self.ok)

box.add('cancel', text='Cancel',

underline=0, width=6,

command=self.ok)

box.pack(side="bottom",fill="both")

self.pack(side="top",fill="both",expand=True)

def __init__(self, master=None):

Tix.Frame.__init__(self,master)

self.configure(border=True,relief="raised")

self.pack()

self.privatestuff = PrivateStuff()

self.buildMyWidgets()

rootwindow = Tix.Tk()

Tobject = MyApplication(master=rootwindow)

Tobject.master.title("ComboBox Widget")

Tobject.mainloop()

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

374 A Functional Start to Computing with Python

File Selection Widget

Applications that use files may ask the user for the location of the file (name and directory).
This is often done interactively by browsing for the file, clicking on icons or names to
navigate through folders until the file is located. The widget is shown below, followed by
the Python code. There are several widgets for file selection in Tk/Tix; this example uses
the ExFileSelectDialog widget. The starting widget in the code is a simple frame with
a label and a button; clicking on this button pops up the file selection widget. Thus, the
button widget is bound to a handler (selectfile), which creates a ExFileSelectDialog

widget. As with other complex widgets, this one is composed of many other, more basic
widgets. The code uses a Tix method for retrieving a subwidget: the statement

fsbox = dialog.subwidget("fsbox")

extracts a reference to a ComboBox subwidget of the file selection dialog widget to customize
its features. The popup() method of the file selection widget causes Tk’s controller to bring
up the dialog on the screen, asking the user for a file name. The image below shows the
result where the dialog appears while the original label/button remains on the screen. After
the user locates a file and clicks Ok, the showfile handler is given the selected file name (it
will be a fully qualified name, including directory names). The example saves the name as
an attribute, though nothing further is done with it.

import sys, Tix

class PrivateStuff():

pass

class MyApplication(Tix.Frame):

def showfile(self,chosenfile):

self.privatestuff.Fname.set(chosenfile)

def quit(self,event):

sys.exit(0)

def selectfile(self,event):

dialog = Tix.ExFileSelectDialog(self,

title="Select a File",

command=self.showfile)

fsbox = dialog.subwidget("fsbox")

fsbox.config(pattern="*.txt")

dialog.popup()

def buildMyWidgets(self):

self.privatestuff.Fname = Tix.StringVar()

self.privatestuff.Fname.set("(none yet)")

forshow = Tix.Label(self,textvariable=self.privatestuff.Fname)

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Graphical User Interfaces 375

forshow.pack(side="top")

forexit = Tix.Button(self,text="Quit")

forexit.configure(background="beige",

activebackground="yellow")

forexit.bind("<Button-1>",self.quit)

forexit.pack(side="left")

forsel = Tix.Button(self,text="Select File")

forsel.configure(background="beige",

activebackground="yellow")

forsel.bind("<Button-1>",self.selectfile)

forsel.pack(side="right")

def __init__(self, master=None):

Tix.Frame.__init__(self,master)

self.pack()

self.privatestuff = PrivateStuff()

self.buildMyWidgets()

rootwindow = Tix.Tk()

Tobject = MyApplication(master=rootwindow)

Tobject.master.title("Control Widget")

Tobject.mainloop()

Scrollable List Widget

Tix’s ScrolledListBox widget can show a
list of items too lengthy for display in the win-
dow. Scrollbars let the user move the view of
items. The widget allows individual items or
a range of items to be selected; clicking, dou-
bleclicking, and a few other events can trigger
actions in handler methods. Within the object
representing the widget, there are methods to
insert items and delete items. The example
shown to the right reads a file for the items to
show, each item being a line from the file (a
string).

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

376 A Functional Start to Computing with Python

import sys, Tix

class PrivateStuff():

pass

class MyApplication(Tix.Frame):

def quit(self,event):

sys.exit(0)

def browse(self,event):

linebox = self.privatestuff.LB

ind = linebox.curselection()

if len(ind)>0:

print "Clicked on", linebox.get(ind[0])

def buildMyWidgets(self):

box = Tix.ScrolledListBox(self,

scrollbar="auto")

box.pack(side="bottom", anchor="e",fill="both")

listbox = box.subwidget("listbox")

try:

f = open("demo7.py")

for line in f:

listbox.insert("end",line[:-1])

f.close()

except:

listbox.insert("end","failed to open file")

#listbox.configure(width=60)

listbox.bind("<ButtonRelease-1>",self.browse)

self.privatestuff.LB = listbox

forquit = Tix.Button(self,text="Exit")

forquit.configure(background="beige",

activebackground="yellow")

forquit.bind("<Button-1>",self.quit)

forquit.pack(side="top")

def __init__(self, master=None):

Tix.Frame.__init__(self,master)

self.configure(border=True,relief="raised")

self.configure(width="10c",height="12c")

self.pack()

self.privatestuff = PrivateStuff()

self.buildMyWidgets()

rootwindow = Tix.Tk()

Tobject = MyApplication(master=rootwindow)

Tobject.master.title("ScrolledListBox Widget")

Tobject.mainloop()

The items for display and selection are associated with a subwidget of the ScrolledListBox,
the listbox subwidget. For convenience, the program retains a reference to the listbox

as an attribute,

self.privatestuff.LB = listbox

The code shows only two method calls for the listbox items. Adding items to the list is
done by the method call

listbox.insert("end",line[:-1])

The insert(index,text) method has two arguments, the index for a place to insert the
item (zero for start of the list) and a string, which is the item to insert. The first argument
can also be "end" to insert an item at the end of the current list. Since lines are read from
the file in first-to-last order, it makes sense to insert each at the end of the list. The reason to
omit the last character of the line (i.e., using line[:-1]) is for display, because the listbox
will not display a newline (\n) nicely. The other listbox methods occur in a handler. The

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Graphical User Interfaces 377

method curselection() returns a list of indices of the listbox items that were selected
by the user. Selection of multiple items has not been enabled for this listbox, so the list
will have a single item. The get(index) method returns an item at the specified index.
Another method, not used in this program, is the delete(index) method for removing a
specified item from the listbox.

Scrollable Text Widget

The Tix widget for scrollable text is ScrolledText. This widget could be the basis for a
text editor, since the widget allows a user to highlight and select text that spans lines, or
select a small number of characters, such as a word in a sentence. The example follows with
no explanation; the reason to show it is mainly to contrast this widget with the previous
ScrolledListBox widget.

import sys, Tix

class PrivateStuff():

pass

class MyApplication(Tix.Frame):

def quit(self,event):

sys.exit(0)

def buildMyWidgets(self):

box = Tix.ScrolledText(self,

scrollbar="auto")

box.pack(side="bottom", anchor="e",fill="both")

try:

f = open("bookdemo8.py")

for line in f:

box.text.insert("end",line)

f.close()

except:

box.text.insert("end","failed to open file")

forquit = Tix.Button(self,text="Exit")

forquit.configure(background="beige",

activebackground="yellow")

forquit.bind("<Button-1>",self.quit)

forquit.pack(side="top")

def __init__(self, master=None):

Tix.Frame.__init__(self,master)

self.configure(border=True,relief="raised")

self.configure(width="10c",height="12c")

self.pack()

self.privatestuff = PrivateStuff()

self.buildMyWidgets()

rootwindow = Tix.Tk()

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

378 A Functional Start to Computing with Python

Tobject = MyApplication(master=rootwindow)

Tobject.master.title("ScrolledText Widget")

Tobject.mainloop()

Canvas Widget

The Tk/Tix modules have widgets for images and for drawing. The Canvas widget has
methods for drawing lines, upon which applications like turtle can be built. The example
below, shown without explanation, uses the Canvas widget to plot a sine wave.

import sys, math, Tkinter, Tix

class MyApplication(Tix.Frame):

def quit(self,event):

sys.exit(0)

def plot(self,canvas):

canvas.delete(Tkinter.ALL)

canvasX = canvas.winfo_width()

canvasY = canvas.winfo_height()

canvas.create_rectangle(0,0,

canvasX,canvasY,

fill="white")

sinwave = []

span = 5*math.pi / 1000

for i in range(1000):

sinwave.append((float(i), math.sin(i*span)))

plotCoords = []

oldx = oldy = None

for x,y in sinwave:

newy = (y+1.0)*(canvasY/2.0)

newx = x*(canvasX/1000.0)

if oldx != None:

line = canvas.create_line(oldx,oldy,newx,newy)

canvas.itemconfig(line,fill="magenta",width=4)

oldx, oldy = newx, newy

def buildMyWidgets(self):

forshow = Tix.Label(self,text="plotting sin(x)")

forshow.configure(padx="2i")

forshow.pack(side="top")

forinput = Tix.Button(self,text="Quit")

forinput.configure(background="beige",

activebackground="yellow")

forinput.bind("<Button-1>",self.quit)

forinput.pack(side="right")

fordrawing = Tix.Canvas(self)

fordrawing.pack(side="bottom",

fill="both",

expand=True)

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Graphical User Interfaces 379

self.update_idletasks()

self.plot(fordrawing)

def __init__(self, master=None):

Tix.Frame.__init__(self,master) # initialize parent class first

self.pack()

self.buildMyWidgets()

rootwindow = Tix.Tk()

Tobject = MyApplication(master=rootwindow)

Tobject.master.title("Plot Sin(x)")

Tobject.mainloop()

Terminology Review

This chapter introduced the jargon in GUI frameworks related to object-oriented design.
Widgets are the reusable components of GUI applications. Container widgets host the on-
screen widgets, and are packed into the root window or a parent window by a geometry
manager. Widgets can be bound to event handlers, which are invoked by the GUI controller
as driven by user inputs. IDEs and application generators can reduce development time for
applications using a GUI framework.

This page intentionally left blankThis page intentionally left blank

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Graphical User Interfaces 381

Exercises

(1) A random walk is a simulation of a particle that moves randomly. The idea can be
illustrated simply with a coin and a ruler. The ruler is 12 inches long, with tick marks
at 1, 2, . . . , 11 inch positions. The coin is placed initially between the 5 and 6 inch
marks. Now, repeatedly, the following is done: pick up the coin and toss it. If it comes
up heads, move the coin one inch to the right of where it was; if it comes up tails, move
the coin one inch to the left. This process repeats until the coin is off of the ruler. This
problem is to simulate a random walk showing the position using the Meter widget.
Write a GUI application that uses Tix and the Meter widget to show the steps of
the random walk. You may wish to experiment with the timing of the steps (using
time.sleep() so that the steps of the random walk are visible.

(2) Write an application with at least six Button objects. The application is to a primitive
game of guessing which button “wins” the game. Bind each of the buttons to an
event handler so that nonwinning buttons cause some message, perhaps a hint, to be
displayed. It is easy to use print to display such a hint, but you may wish to be
more ambitious and write the message into some widget. For example, you could use
a Label widget to show the message: the method mylab.config(text=S) changes
the text on the label object mylab (which you have to create and pack first) to the
contents of string S. Another idea would be to change the title on the root window.

This page intentionally left blankThis page intentionally left blank

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Part IV

Appendices

383

This page intentionally left blankThis page intentionally left blank

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Chapter 30: Advanced Topics

You are in a maze of twisty little passages, all alike.
— Colossal Cave Adventure

(game by Will Crowther, circa 1977)

There is much more to Python and to the community of software developers using Python
than previous chapters might suggest. Our aim throughout the book has been to emphasize
computing concepts, rather than cover the Python language in every detail. Thus, this
chapter is a sampling of some advanced topics with interesting computing ideas.

Of the advanced topics in Python and its infrastructure, there are two major themes
and many small features. The first major theme is found in decorations, which express
higher-level patterns in the spirit of Chapters 14 and 27. The second big theme is so-
called “Python magic,” which exposes many internal methods and attributes of the Python
platform, enabling customization and playing tricks with the language. Except for highly
specialized cases where extreme efficiency or some peculiar flexibility is required, one should
avoid these “magic” features. However, from the computing view, looking at the internals
of the platform is quite interesting.

Decorators

Many consider automation techniques to be key notions in reducing the cost of software
engineering. Most automation rests on expressing repetitive aspects of programming in
abstract ways and providing tools or language features that capture frequently repeated
patterns. One of the oldest ideas goes back to assembly language programming, whenmacros
were invented. A macro processor is one that takes source code as input and produces better
or more elaborate source code as output. For example, using a “macro language” one may
be able to define one-line expression that turns into the equivalent of a while loop with a
break statement; a programmer could then concisely write code using macros that turns
into much larger programs in a target language, be it machine language, C, and so forth.
The problem with macro programming is that it is too powerful : using macros can introduce
mistakes that are hard to find and tends to confuse code.

Modern practice tends to avoid macro programming in favor of more structured and
comprehensible techniques. One example is the use of wrappers. Suppose we would like to
have some subset T of the functions in a program do some bookkeeping by adding to a global
counter each time one of these functions is evaluated. The direct approach to implementing
this would be to manually insert extra statements into each function in T . Imagine, however,
that our programming language has some facility to replace each call to f(args), for any
f ∈ T , by a call to a new function fcount(f, args), where the code for fcount takes care
of adding to a global counter and also invoking f(args). The function fcount is called a
wrapper, as if it “wraps” around the function call to f (wrappers can do some computing
before calling f and also some computing after f returns).

Wrappers are just one example of a larger theme of program transformation. What is
useful, yet constrained enough to be principled and reasonable, is a language facility to add
statements or mutate code in ways that constrain what is done to be understandable. Such
transformed code could be functions, classes, methods, or other units of program construc-
tion (as opposed to macros, which may not respect the units of program construction).

385

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

386 A Functional Start to Computing with Python

global FCount

FCount = 0

def fcount(originalFunction):

def newFunction(*args):

global FCount

FCount += 1

originalFunction(*args)

return newFunction

@fcount # decorator

def foo(x):

print x*x

foo(5)

foo(7)

foo(9)

print FCount

Python’s answer to program transformation is
the decorator feature. In terms of the fcount

example on the previous page, a Python dec-
orator could be the code shown to the right.
The @fcount statement just before the defini-
tion of function foo is essentially a transforma-
tion directive to Python. This statement tells
Python to invoke fcount(foo): the function
foo is the argument to fcount. When we look at
what fcount does, we see that foo is input, but
another function, newFunction, is what is re-
turned. The net effect of this is that every place
in the program that appears to call foo actually
calls the transformed version of foo. When the
script runs, it prints 25, 49, 81, and 3. The
first three numbers are printed by the (trans-
formed) foo, and the number 3 is the count of
how many times foo has been called. What the example does not show is that the @fcount
statement could as well be put before other function definitions, so they would also be
counted in the FCount total. It is even possible to have multiple decorator statements pre-
cede a function, class, or method definition; this means that a definition can have several
transformations. Decorators can also have parameters in addition to the functions being
transformed to tailor the transformation.

Python Magic

At the highest level of software development, tool construction becomes important. One
becomes interested in more than solving a particular problem, hoping to generalize the
solution so that it can solve other problems. In a sense, a computer language like Python is
such a tool. Experience has shown that choices made in the design of a particular language
are not universally the best ones for particular problems. Sometimes, we would like to
revisit how a language works, perhaps tweaking the design to make life easier. More than
most languages, Python actually accommodates customization. This kind of customization
is rarely helpful to beginners (and some would argue that these features are not worth the
obscurity they encourage), however, many of the customization techniques reveal design
choices of Python and computing languages more generally.

First, we consider the introspective capabilities of Python, that is, how a program can
inspect its own structure, the structure of classes, objects, and so forth. The inspectmodule
has methods to go through all the attributes of modules, classes, objects, and more. When
function calls “stack up” due to recursion or just by a series of calls, inspect also has
methods to examine the “frame records” of a stack of calls, which can further be examined
to see the local and global variable values at each point. Python’s parser and ast modules
make it possible to inspect the internal objects representing a program. This kind of detailed
look at the structure of how data is represented in Python is needed for implementing foreign
function interfaces (using the ctypes library) to code written in a nonPython language.

Most of the “magic” customization relates to Python’s type, class, and object-oriented
facilities. Recall that the init method is automatically invoked when a new instance
of a class is created. There are many other methods automatically invoked when objects
are created, mutated, and deleted. Further, all of Python’s operators (+, *, /, etc.) are
secretly methods with names add , mul , and so on. It is possible to define a new type,

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Advanced Topics 387

write the methods corresponding to operators, and have instances of the new type allow
syntax such as A + B, which invokes add in the intuitive way. Really advanced magic
methods even permit the definition of functions that create new types, change attributes of
modules, and more.

One interesting customization, also a feature of languages Java and C#, is the Python
property attribute feature. Roughly put, property is a function used in the definition of a
class which establishes so-called getter, setter, and deleter methods for a named attribute
of objects in the class. When a property is established for an object D with attribute m,
then an assignment D.m = 2 turns into a method call to the setter method for D. The setter
method can do extra checking, prevent any assignment, add to counters, or any other action
we might like.

Platforms and Virtual Machines

The standard Python is built upon a virtual machine: the Python code is first compiled
into byte code, which is then interpreted by a virtual machine. This way of doing things
can be much slower than how truly compiled code, written in C or machine language, runs
on computing hardware. For really efficient program execution, needed when problem size
or data scale is enormous, Python is probably not the best choice. Similarly, to take ad-
vantage of parallel computing hardware or intense graphical processing, Python’s standard
concurrency modules threading and multiprocessing might not be adequate.

Several projects have built alternative virtual machines that either optimize how Python
runs or add new features not in the standard distribution. One example of this is Jython,
which translates Python’s byte code to a form that can run on the Java Virtual Machine.
The significance of this development is that all of Java’s data structures and methods are
available through Python; applications can be written in a mixture of Python and Java.
The PyPy project takes another approach. Instead of interpreting bytecode, the goal is to
compile the bytecode yet further into optimized machine code; in some cases the result can
run 10 times faster than standard Python. Other, less mature, projects aim to use Python
in smartphone, tablet, or embedded computing platforms.

Scripts as Commands

Under Linux or other Unix-like systems, a Python script can have a special first line com-
ment, typically of the form “#!/usr/bin/env python” or perhaps “#!/usr/bin/python”—
this is a comment in Python because the first character is #. When the file containing the
script is given executable permission, say with a command such as chmod +x prog.py,
and if the search path for commands has been set up to include the directory containing
prog.py, then you can use prog.py as a command. Better yet, rename prog.py to a simpler
name, like prog. Then, at a shell command line, a command prog one two will run the
Python script, where “one two” are parameters to the script, available via the sys.args

mechanism described in Chapter 28. You can build your own command environment, even
to the point where one script calls another (see the subprocess example in Chapter 27),
the scripts read and write files, go through directories, databases, and invoke other tools
that have command-line syntax.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

388 A Functional Start to Computing with Python

Trivia

There are many curious points of syntax and operation not mentioned in this book. Though
these are inessential, it is likely you will encounter them if you explore Python further. A
few of these are listed here:

• It is possible to use single-line “compound statements” in Python. For example, the
following is valid Python syntax:

if x<y: a = x; print(y); b = y

Two features shown in this example are (i) when the body of the if would be a single
line, it can be placed after the colon on the same line (rather than indented as a block).
Also (ii) the semicolon (;) makes it possible to put more than one statement on a
line, though there are restrictions on doing so. Some programmers with experience
in programming Java or C, where ending statements with a semicolon is the norm,
continue to put a semicolon at the end of statements in Python. Accidentally, this often
works. The semicolon binding, above, has priority over the colon: if x<y evaluates to
False, then the assignment to b will not occur (because it is considered to be part of
the body of the if).

• Compound statements are applicable to def, for, while, and other statements, so long
as the body is a single line. For example, “for x in range(10): E.append(x)” is a
legal statement.

• The full syntax for try ...except includes else and finally statements. The for

and while statements also can have else clauses.

• Though it is not advisable for beginners, one often sees statements like “while L:”
where L is a list that is depleted by the body of the loop. This plays on the trick that
all empty containers (string, list, dictionary, tuple) are treated as False in Python’s
evaluation for conditions.

• The single underscore () is a variable referring to the last evaluated result. To observe
this, in an interactive Python session, enter some expression; then enter the single
underscore to see what is shown in response.

• repr(x) and `x` are equivalent. (you may have to search for the back-leaning single
quote on the keyboard to use this).

• Python allows new classes to inherit from the built-in types, int, list, str, etc.

• Functions, like objects, can be given attributes (try f.x = 1 for some function f);
however, the “self” mechanism for objects has no meaning for these attributes. Of
course, f.__doc__ is the attribute referring to the docstring of the function f.

• The int() function can also convert bases, e.g., int("284",9) converts using base 9
instead of base 10.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Chapter 31: Solutions to ✰-Exercises

Chapter 8

(4) There are many possible answers. This one illustrates how the newline (\n) character
works along with operators * to repeat and + to concatenate.

a = 8*"T" + "\n"
* and + operators use strings

b = 3*" " + "TT\n"
c = [a] + 4*[b]

but here, * and + use lists

If you try this, you may observe that the print adds an extra newline. To prevent that
extra newline, one can either add an extra comma to the print command or make a
slightly different c, which does not have a newline as the final item’s character.

Chapter 9

(4) There are two roots of the quadratic,

−b+
√
b2 − 4ac

2a
and

−b−
√
b2 − 4ac

2a

Although one can write a function for each, it is simpler to write one function that
returns the two roots as a pair—but only simpler if we streamline the notation first.
Let’s rewrite the two roots like this:

m =

√
b2 − 4ac

2a

n =
−b
2a

roots = (m+ n,m− n)

Now it is straightforward to define quadroot(a,b,c)

def quadroot(a,b,c):

d = (b**2 - 4*a*c)**0.5

m = d/(2*a)

n = -b/(2*a)

roots = (m+n,m-n)

return roots

The lesson of this exercise is that a bit of planning can simplify function design. In
particular, if we find that a particular expression or part of an expression is used more
than once, then consider defining a name for that expression. The remainder of the
calculation is then simpler.

389

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

390 A Functional Start to Computing with Python

(5) What operator returns True or False depending on whether a string r is contained
in parameter s? The comparison “r in s” does the job. Therefore, the last line of
the function can be something like

return (r in s)

All that remains is to let r be the concatenation of the first and last character from
s; the first character is s[0], and the last character is s[-1]. The concatenation we
need is s[0]+s[-1], which puts together the first and last character as a new string.

def foo(s):

r = s[0]+s[-1]

return (r in s)

The lesson of this exercise is that it helps to reason backwards when designing func-
tions. Think first about what the function has to return. Most likely, what is returned
will need some value that is not instantly available in the function’s parameters. Then
turn your attention to the problem of calculating this needed value. Many times,
reasoning in this way leads one to a working design of the function.

Chapter 10

(2) This problem has a simple solution which illustrates a technique that should be in
everyone’s toolbox. Problems that involve comparison, or testing some property of a
parameter, are often solved by conversion. The idea is to first “convert” a function
argument to a form that makes the problem simpler to solve. A solution to (2) is this
function definition:

def IsUpper(val,upval):

y = val.upper()

return (y == upval)

In this definition, the first line of the body defines y to be the uppercase conversion
of parameter val. The solution is then simple: y == upval is the desired result.

Most people first see the idea of conversion for testing a property when they learn
about fractions. Mathematically, there is the question

1455

9603

?
=

505

3333

The answer is found by converting the two fractions to ones with common denomina-
tors, then comparing. Similar ideas of conversion are valuable problem-solving tech-
niques in computing.

The IsUpper problem inspires a simple test of whether a string is all uppercase
characters or not:

def allupper(val):

y = val.upper()

return (val == y)

The allupper function returns True only if the conversion of the argument to up-
percase does nothing: that is, after conversion, you get the same thing as the original
argument. The same idea can be illustrated with a function to test whether a number
is zero or not:

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Solutions to ✰-Exercises 391

def iszero(x):

return ((-x)==x)

(in practice, the simpler x==0 would be better, but this definition is just to make the
point about conversion).

(6) Given was the definition:

def multicat(prefix=(1,2),value,suffix=(9))

a = prefix + value

b = a + suffix

return

This definition has two syntax errors and one design flaw:

1. the colon (:) is missing from the function head;

2. the second line of the body is indented one extra space;

3. the return statement does not give a value to return—it should have been return

b so that the caller of multicat will get the concatenated result. A return state-
ment with no value is a legitimate Python, because not all functions return results
(some functions, for example, just print something). Python will not complain
that this is an error, but the program is likely to encounter a bug because of this
mistake.

Chapter 11

(6) When run using Python3, the result is this:

Testing

value = 3.0

value = 1.7320508075688772

value = 2.2795070569547775

1.509803648477105

value = -1.0

done

None

There are several points this exercise emphasizes:

• A function can both print something and calculate a result to be returned. The
value returned by selpow needs to be printed, but also the first line in selpow’s
body causes Python to print something, as a side effect of calling selpow.

• Do you see the final “None” in what is printed? This is explained by the fact that
selpow does not return anything when none of the if-cases evaluate to True.
So, when value is -1.0 the function selpow prints value = 1.0, and prints
done, but no return statement is applicable—so “print selpow(-1.0)” prints
None, as explained in Chapter 10.

• The earlier part of the output is relatively straightforward. In order to evalu-
ate selpow(selpow(selpow(3.0))), Python has to first calculate the result of
selpow(3.0), then use that as the argument to selpow, and repeat this once
more to finish.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

392 A Functional Start to Computing with Python

(7) This problem shows the difference between “inclusive or” and “exclusive or,” some-
times called either-or. In specialty of logic (either mathematical or philosophical),
when we say that “a or b is true,” it could well be the case that both a and b are true.
This is Python’s definition of the or operator. So the version of aei with return (u

or v or w) uses inclusive or, and thus returns True for aei("invalidate"). What
about the other version of aei, is this exclusive or? To be an exclusive or, we would
need that only one of the three vowels (“a,” “e,” “i”) is contained in the argument.
A helpful way to understand the first version of aei is to draw a flowchart (in fact,
this function has to be so confusingly written that we are almost forced to make a
flowchart to understand it!).

a in
String?

e in
String?

i in
String?

False

True
i in

String?
True

False

e in
String?

i in
String?

False

True

False

no

yes

no

x xyes

no

x xyes

x xyes

no

x xyes

no

no

x xyes

x x

How confusing this aei is! Is there no better way to make a test of exclusive or? One
source of confusion is the “negative” testing, using code like ’a’ not in String.
Reading from the flowchart, the aei function could have been written differently.
Consider this:

def aei(String):

if 'a' in String:

if 'e' in String:

return False

else:

return not ('i' in String)

else:

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Solutions to ✰-Exercises 393

if 'e' in String:

return not ('i' in String)

else:

return ('i' in String)

This looks perhaps less confusing, but it is still a mess. A much simpler way to write
aei that tests for the exclusive-or containment of the three letters is the following:

def aei(String):

if ('a' in String) and ('e' not in String) and ('i' not in String):

return True

elif ('e' in String) and ('a' not in String) and ('i' not in String):

return True

elif ('i' in String) and ('a' not in String) and ('e' not in String):

return True

else:

return False

The lesson of this exercise is that it is a good idea to avoid nested if code in programs,
because they can be confusing. This type of confusion leads to mistakes. Most times
one sees statements like

if A:

if B:

it would be better to have “if A and B” instead.

This simplified aei above is a great improvement, but still somewhat unsatisfying,
because it has a kind of repetitious style. A common trick for implementing test of
“exclusive or” uses counting.

def aei(String):

return ('a' in String,

'e' in String,

'i' in String).count(True) == 1

This definition returns True precisely when one (not zero, not two, not three) of the
three vowels is contained in the string argument.

Chapter 12

(3) The problem states that we may assume the argument String satisfies
len(String)==3n for some number n. Knowing the value of n will be useful because
slicing specifies the length of a slice, as the chapter explains: String[i:i+n] is a slice
of length n (provided that i+n does not go past the end of String). How can n be
calculated? The expression len(String)/3 does the job (even if n is zero, this works).
The three parts of trisect’s result are left, middle, and right; each of these is a
string of length n. Putting these observations together suggests this definition:

def trisect(String):

n = len(String)/3

left = String[0:0+n]

middle = String[0+n:0+n+n]

right = String[0+n+n:]

return (left,middle,right)

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

394 A Functional Start to Computing with Python

Notice that middle starts where left ends: the value 0+n is n, meaning that left

includes all the characters up to but not including n. That is convenient, because it is
just the place where middle starts. To emphasize this pattern also works for ending
middle and beginning right, the code above expresses the second “splitting place”
as 0+n+n.

(5) The behavior of fsub is different for the part before the period and the part after
the period. A good first step is to split the argument of fsub into the part before the
period and remainder. Here is a function doing that:

def twoparts(String):

place = String.index('.')

part1 = String[:place]

part2 = String[place:]

return (part1,part2)

The rest of the work is to use the replace method changing "o" into the empty
string (which effectively removes all o-letters) and again use replace changing "y"

into "ia."

def fsub(String):

part1, part2 = twoparts(String)

newpart1 = part1.replace("o",'')

newpart2 = part2.replace("y",'ia')

return newpart1 + newpart2

The function fsub can be written more compactly, in a single function (instead of
first defining twoparts). One advantage, for beginners, of defining twoparts is that
it can be written and tested interactively as a first step. Once we know twoparts is
correct, then we can try extending the program by writing fsub. This style of software
development is a slow-but-steady way of making progress. A second advantage is that
when a function has many lines that each contribute some small progress toward the
result, it is easy to add some print statements during debugging to see what is going
on in case the function does not work as expected. Once we know that all the technical
things are working, a more compact definition can be attempted:

def fsub(String):

place = String.index('.')

return String[:place].replace("o",'') + String[place:].replace("y",'ia')

Chapter 13

(3) The problem is equivalent to asking the question, are all items in P vowels? The reason
to look at the problem this way is to realize that “all” is in the problem statement.
This naturally suggests we use the all function: it must be all(itemv(P)) where
itemv(P) returns a sequence of booleans (True and False) for each letter in P. For
example,

itemv("aaed") ➜ [True, True, True, False]

is what we expect itemv to do. What is a list comprehension expression that does
what itemv needs to do? To test whether a letter is a vowel is straightforward: letter
in "aeiou" is the simplest (or, if you prefer, letter in "aeiouyAEIOUY" for sake of
completeness). The list comprehension is thus:

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Solutions to ✰-Exercises 395

def allvowels(P):

vowels = "aeiou"

itemv = [(letter in vowels) for letter in P]

return all(itemv)

Looking at the above, it may seem confusing to see “in” appear twice, with differ-
ent meanings for Python: the first “in” is a comparison operator, testing whether a
single character letter contains vowels; the second “in” is part of the syntax of list
comprehension—it says where the letter comes from, one letter for each item in P.
Some professional programmers would not be satisfied with this definition because it
will encounter an error if P is not a string. Instead, they might prefer this definition:

def allvowels(P):

vowels = "aeiou"

if type(P) != type(vowels):

return False

itemv = [(letter in vowels) for letter in P]

return all(itemv)

Python has other ways to deal with type-checking, complaining about arguments being
inappropriate types, and more—later chapters introduce other techniques for this.

(4) How many positive integers smaller than 100,000 are divisible by both 11 and 13?
The idea is nearly the same as used for question (3), but instead of “all” we use
“count,” totaling over a sequence of True and False values. It is handy to make a
function et(n) returning True or returning False, depending on whether n satisfies
both divisibility tests. Here is a definition of et(n):

et = lambda n: n%11==0 and n%13==0

The problem’s solution now just counts a list comprehension of all the et(n) values
for n between 0 and 99,999 (smaller than 100,000).

[et(n) for n in range(0,100000)].count(True)

(6) When confronted with a problem dealing with nested lists (a list whose items are
lists), it is helpful to look at some concrete cases. Instead of working on column(p,M),
ask the simpler question, what is the first column (column 0) of M? We know that M
is supposed to be a matrix, which is an arrangement of numbers we describe by rows
and columns—each number in the matrix is at an intersection of a row and column.
In Python, a matrix like M is represented by a list, namely a list of the rows of M,
shown horizontally in the problem statement’s example. Simple list comprehension [

row for row in M] is nothing more than M itself: it is only a list of the rows. What
we need for the first column is to get row[0] for each row. Thus,

[row[0] for row in M]

is the first column of M. But the problem is to get a particular column, the one indexed
by p. The solution is to generalize from 0 to a parameter p. So, for the definition we
have

def column(p,M):

return [row[p] for row in M]

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

396 A Functional Start to Computing with Python

Though this exercise is simple (and the function definition is short), there is an im-
portant lesson here: as a problem-solving technique, it can be very helpful to first try
a solution with a particular value rather than a parameter (0 rather than p, above);
once we understand how it works with a particular value, try to generalize what you
have done by using the parameter.

Chapter 19

(8) The essential trick of the solution is to realize that A[i] is found either in the left or
the right half of sequence A. As a first step, let’s see how simple expressions can tell us
which half of A contains A[i]. If we can do that, then we can use recursion to repeat
the same problem but on the left or right half of A. Using splitting, the left half of A is
A[0:len(A)/2]; the right half of A is A[len(A)/2:]. What if len(A) is odd? Try an
example, say A being "abcdefg." Then len(A)/2 is 3, so the left “half” is A[0:3],
or "abc," and the right “half” is A[3:], or "defg."

Proceeding on the question of locating A[i], observe that the comparison i<len(A)/2

evaluates to True if A[i] is in the left half of A. Now we can try a recursive definition—
which will turn out to be incorrect, but easy to repair:

def whittle(A,i):

half = len(A)/2

if i<half:

answer = whittle(A[0:half],i)

return answer

else:

answer = whittle(A[half:],i)

return answer

While it expresses the right idea, there are a couple of bugs with this definition. First,
when does recursion ever stop? We need to have a check at the start of the function
for a “base case,” that is, a situation where no recursion is needed. If len(A) is 1 and
i is zero, we can skip any recursion and just return A[0].

def whittle(A,i):

half = len(A)/2

if len(A)==1:

return A[0]

elif i<half:

answer = whittle(A[0:half],i)

return answer

else:

answer = whittle(A[half:],i)

return answer

The remaining “bug” for this definition is what happens when A[i] is in the right half
of A. The bug is that i is the index with respect to the original sequence A, but we are
asking to solve whittle on a sequence (the right half) whose length is smaller than
i. For example, consider whittle("abcdefg",5)—which would trigger the recursive
call whittle("defg",5). See the flaw?

To overcome this flaw, the recursive call to whittle needs to adjust the second ar-
gument: it needs to “skip over” the first half of A, which is sensible since we know

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Solutions to ✰-Exercises 397

that A[i] is not in the first half. So, instead of using i as the argument, we can use
i-half.

def whittle(A,i):

half = len(A)/2

print ("***",A,i)

if len(A)==1:

return A[0]

elif i<half:

answer = whittle(A[0:half],i)

return answer

else:

answer = whittle(A[half:],i-half)

return answer

Above, a debugging print statement has been added to the function. If this definition
seems unclear, try using this definition of whittle for some examples and observe
what is displayed. An example:

>>> whittle("abcdefghijklmnop",12)

('***', 'abcdefghijklmnop', 12)

('***', 'ijklmnop', 4)

('***', 'mnop', 0)

('***', 'mn', 0)

('***', 'm', 0)

m

(10) This is the sort of problem that highlights the almost mysterious attraction of re-
cursion. With relatively few statements in a program, the search for a solution is
described.

def factor(N):

if N == 0:

return (0,0)

if N < 5:

return (None,None)

a,b = factor(N-5)

if a != None:

return (a+1,b)

a,b = factor(N-8)

if b != None:

return (a,b+1)

return (None,None)

The body of factor begins with “base cases,” which are the easy (and exceptional)
values of N that do not need recursion. These are N being zero, which has an easy
answer, and positive N less than 5, which has no answer. The body of factor then
potentially tries two different recursive calls, factor(N-5) and factor(N-8); either
of these provides an answer to the problem. If both of these attempts fail, the final
line of the function returns a value indicating that the search failed.

Most experienced computer scientists look upon such a function with suspicion. The
function turns out to be inefficient; for instance, it always uses subtraction of 5 or 8
whereas there could be a test in the function for N being divisible by 5 or 8. Another

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

398 A Functional Start to Computing with Python

more serious question is, does this function always work? Maybe there is some value
like 10341 and even though 5x + 8y = 10341 for some (x, y), factor(10341) would
return (None,None). Is there some way to know whether or not this recursive search
always does the job of finding factors? Yes, there is a way to reason about this, which
is standard in computer science.

Divide the possibilities for N into two groups, the small numbers (say, less than 20) and
the remaining group of large numbers. We can verify that factor(N) works for small
numbers just by trying them all and manually checking that the answer is correct.
For the large numbers, it was previously observed that if factor(N) does have a
solution (x,y), then either factor(N-5) or factor(N-8) will be enough to calculate
the answer. So, provided factor(M) is a correctly working function for all the values of
M smaller than N, the recursive search method used by factor(N)will be correct. Note,
however, that factor(N)might depend on factor(N-5), which in turn might depend
on factor((N-5)-8) (by recursion), and so forth. Each deeper level of recursion will
be trying the search on a smaller value for its argument, trusting that the deeper
search has a correct result. Does this kind of searching go on forever? Eventually, the
search argument will be one of the small numbers, which will have been verified at the
beginning of the reasoning process. This is because, with a subtraction of 5 or 8, a big
number cannot “skip over” the small numbers and get to a negative number. Thus,
a chain of trust is established, starting from N, then N-5, then (N-5)-8 (or however
the search turns out) and so on, down to a small number. By this reasoning, we can
trust the pair (x,y) that factor(N) returns. But will factor(N) incorrectly return
(None,None) when in fact there is a solution? Looking at the body of factor(N)

we see that it tries factor(N-8) whenever factor(N-5) fails; so the function does
search all possibilities for a chain of trust down to the small numbers before giving
up and returning (None,None). Put another way, if there is such a chain, factor(N)
will either find that chain, or find another satisfactory chain that produces a correct
answer.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Chapter 32: Reference Tables

This appendix is for quick lookup of selected features of Python, assuming that you are
already familiar with the concepts, but may have forgotten a syntax feature. If you are
online, you might want to look at http://www.python.org/doc/QuickRef.html for a more
complete quick reference. Some of the material in this chapter is not explained in earlier
chapters.

Python Operators (in order of precedence, highest to lowest)

Operator Explanation
f(args...) function invocation

x[index:index] slicing
x[index] subscript (lookup)

x.attribute object attribute reference
** exponentiation (raising to a power)
~x bit flip

+x, -x positive, negative
*, /, //, % multiplication, division, remainder

+, - addition, subtraction
<<, >> left, right bit shifting

& bit “and” operation
^ bit “xor” operation
| bit “or” operation

<, <=, >, >=, <>, !=, == comparison operators
is, is not reference comparison
in, not in membership

not x logical negation
and logical conjunct
or logical disjunct

Note: X < Y < Z is equivalent to X < Y and Y < Z.

399

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

400 A Functional Start to Computing with Python

Formatting

A special operator, for Python2 only, is the format (%) operator, which takes a string on the
left side, and a variable or tuple on the right side; it produces a new string by substituting,
converting, and formatting as directed by the left-side string.

In the left-side string can be formatting codes (%c, %s, %i, %d, %u, %x, %e, %f, %g and
others) and one can also specify precision for floating point conversion. Examples:

a = '%s has %03d quote types' % ('Python', 2)

a ==> 'Python has 002 quote types'

There is also a fancier way to use format with a dictionary:

a = '%(lang)s has %(c)03d quote types' % {

'c':2, 'lang':'Python}

For recent Python2 versions and for Python3, use the format() method on strings, e.g.,

a = '{0} has {1:03d} quote types'.format('Python',2)

a ==> 'Python has 002 quote types'

or with keywords,

a = '{lang}s has %val:03d quote types'.format(

lang="Python", val=2)

or with a dictionary,

b = {'lang':"Python", 'val':2}

a = '{lang}s has %val:03d quote types'.format(**b)

Decorators

The “@” symbol precedes decorator directives. Example:

def hello(CODE):

print "Hello World"

return CODE

@hello

def foo(x):

print x*x

foo(5)

The runtime output from foo(5) are the two lines Hello World and 25.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Reference Tables 401

Reserved Words in Python

and as assert break class

continue def del elif else

exec finally for from global

if import in is lambda

not or pass print raise

return try with while yield

Many other special words are part of Python’s type system, including bool, int, float,
list, dict, set, file; the list above is just a list of keywords that are the verbs, so to
speak, in program statements.

Assignment Statement

A single = assigns to variables. An assignment statement can assign to multiple variables
and unpack tuples and sequences. Examples:

x = 2*r[5] # assign to x

a,b,c = ('e',1.1,0)

m,r = "hello", "goodbye"

a,b,c,d = "word"

x,y = range(100)[45:47]

m,r = r,m # swap r and m values

a = b = c = 2 # make 'em all 2

An assignment can also be augmented with an operator:

e += 1 # equivalent to e = e + 1

e *= 2 # equivalent to e = e * 2

Statements

Illegal Symbols (but allowed within data or quoted strings): $?

Multiline Statements: Normally, a Python language statement is a single line of text.
Exceptions: the \ character, when the last character on a line, can continue the statement
to the next line—this is not recommended, and may not work on all systems. Within any
matched pair of parenthesis, including (), [], {}, the statement can continue over many
lines until the matching parenthesis is found. Triple-quoted strings can span multiple lines.

Comments: Comments start with # and continue to end of line.

pass is the do-nothing statement.

del removes a variable, a slice of a list, item in dictionary, an attribute of an object, etc.

print writes to the console; it puts a newline at the end (Python2: unless you end the
statement with a comma; in Python3 print is a function).

exec takes a string and interprets the string as a Python statement (not in Python3).

Semicolons can be used to put multiple statements on one line, provided they are “simple
statements” (see Python documentation).

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

402 A Functional Start to Computing with Python

Name and Type Syntax

Variable, Class, Function, and Other Names: The pattern allowed is sequence of
alphabetic characters (that is, letters a–z, A–Z) and may also include underscore symbols
(_); numbers (0–9) can appear within the name, but not as the first character. Generally,
names that begin with two underscores are special Python names.

Strings: Three ways of defining strings:

"a string"

'another string'

'''a string containing embedded newlines,

and quote (') marks, can be

delimited with triple quotes.'''

There are more advanced types of strings in Python2 (sometimes you might see something
like r'Unistring') for more general (nonEnglish) usage.

Meta-Characters in Strings:

\n Newline \\ Backslash (\)

\' Single quote (') \" Double quote (")

\r Carriage Return (CR)

\b Backspace (BS) \t Tab (TAB)

Octal and Hexadecimal Notations:

octal: 0177, 0177777777777777777L

hex: 0xFF, 0xFFFFFFFFFFFFFFFFFFL

Tuple Syntax: Tuple of length 0, 1, 2, etc.: () (1,) (1,2) (parentheses are optional if
length is greater than zero).

List Syntax: List of length 0, 1, 2, etc.: [] [1] [1,2]

Set Syntax: set([]), set([2,9]), set("abc"), {2,9}.

Dictionary Syntax:
Dictionary of length 0, 1, 2, etc.: {}, {1:'first'}, {1:'first', 'next':'second'}

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Reference Tables 403

Slicing, Indexing, Lookup

X = (0,1,2,3,4,5,6,7) # define X for examples below

X[3] ==> 3

X[-1] ==> 7

X[2:4] ==> (2,3)

X[1:] ==> (1,2,3,4,5,6,7)

X[:3] ==> (0,1,2)

X[:] ==> (0,1,2,3,4,5,6,7) # makes a copy of the sequence

X[::-1] ==> (7,6,5,4,3,2,1,0)

Slicing and numeric subscripting can use negative numbers to count leftward, from the end,
rather than rightward, from the beginning of the sequence. For dictionary indexing,

R = { 1:True, (2,3):"Pair", 3.14159:"Pecan Pie" }

R[1] ==> True

R[(2,3)] ==> 'Pair'

R[0] ==> Error - not in dictionary

Special Values

None: None is used as the default return value on functions. Input that evaluates to None

does not echo/print when running Python interactively.

Logical Constants: True and False are the results of comparison, and can be used in
assignments. In logical expressions, the following act the same as False: the special value
None, the number zero, an empty sequence ([]) or empty dictionary ({}). All other values
put into logical expressions act the same as True.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

404 A Functional Start to Computing with Python

Built-In Functions and Manipulators

Built-In Numeric Functions:

abs(x) absolute value of x

int(x) x converted to integer

float(x) x converted to floating point

divmod(x,y) the tuple (x/y, x%y)

pow(x,y) x to the power y

range(start [,end [, step]])

use range for a sequence of integers

chr(i) return character for ASCII code i

ord(c) return ASCII code for character c

Functions for Sequence Types: These work on lists, tuples, and strings.

len(s) length of s

min(s) smallest item of s

max(s) largest item of s

sum(s) add up items in s

x in s True if an item of s

is equal to x, else False

x not in s False if an item of s

is equal to x, else True

s + t the concatenation of s and t

s * n, n * s n copies of s concatenated

s[i] i'th item of s, origin 0

s[i:j] slice of s from i to j

Operators on Lists: These operators can change a list:

s[i] = x item i of s is replaced by x

s[i:j] = t replace slice of s from i to j

del s[i:j] delete slice (same as s[i:j] = [])

s.append(x) add x to end of s

s.count(x) number of i's for which s[i] == x

s.index(x) smallest i such that s[i] == x1)

s.insert(i, x) item i becomes x,

old item i is now at i+1, etc

s.remove(x) same as del s[s.index(x)]

s.pop(i) remove item at index i and return it

s.reverse() reverses the items of s (in place)

s.sort() sorts the list (in place)

Note: The built-in functions reversed() and sorted() do not change their argument:
each returns a new list, in reversed or sorted order.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Reference Tables 405

Operators on Dictionaries

len(a) the number of items in a

a[k] the item of a with key k

a[k] = x set a[k] to x

del a[k] remove a[k] from a

a.items() list of (key, value) pairs

a.keys() a's list of keys

a.values() a's list of values

a.has_key(k) True if a has key k,

else False

k in a same as a.has_key(k)

Operators on Sets

len(s) number of elements of s

x in s test if x is in set s

s <= t ask if s is a subset of t

s | t union of sets s and t

s & t intersection of sets s and t

s - t new set, remove elements

of set t from set s

s.copy() create a new copy of s

s.add(e) add element e to s

s.discard(e) remove element e from s

s.clear() makes s empty

s.pop() return (and remove) some

element from s

Type Conversion: You can create lists, dictionaries, sets, integers, floating numbers (and
more) by putting what you want as the argument of a function that has the type’s name.
For instance, to return a list, based on set s: list(s); to get a floating type from an integer:
float(3); to create a dictionary, supply a list of pairs: dict([('a',2),('b',3)]).

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

406 A Functional Start to Computing with Python

Compact Notation to Create Lists

Create interesting lists using Python’s list comprehension syntax. Here are a few examples:
[2**i for i in range(10)] creates [1,2,4,8,16,32,64,128,256,512].
["->"+e for e in "abcd"] creates ['->a','->b','->c','->d'].
[(i,j) for i in range(10) for j in range(3)] generates a list of 30 pairs, with

every combination from the two ranges.
[x for x in myDictionary if x not in yourDictionary] generates a list of items

in myDictionary that are not in yourDictionary (the example illustrates how if can be
combined with for to generate a list).

Other Comprehensions

{ k:k*k for k in range(8) } creates dictionary mapping numbers to their squares.
(i*i for i in range(8)) creates a generator of squares.

Zip. The built-in function zip creates a new list of pairs from two given lists: zip("abc",
range(3))’ returns [('a',0),('b',1),('c',2)]; zip(*m) returns an unzip operation.

Higher-Order List Operations

Python gives you some “higher order” methods of using lists, called filter, map, and
reduce.

filter(myfunc, myseq)

has two arguments: the first, myfunc, must be a function that returns a bool (that is, True
or False), and myfunc must take a single argument, which is of the same type as elements
of sequence myseq. The result is a new sequence consisting of all elements of myseq where
myfunc returned True. For instance,

def foo(x):

if x != 'a': return True

filter(foo,"abracadabra") ==> 'brcdbr'

map creates a new sequence consisting of applying the first argument, a function, to each
element of the second argument, a sequence:

map(ord,"ASCII") ==> [65, 83, 67, 73, 73]

reduce takes a function of two arguments, and successively evaluates the function iteratively
through a sequence. A classic example is this:

def add(x,y):

return x+y

reduce(add,[3,9,20,5]) ==> 37

Of course, sum([3,9,20,5]) does the same thing, but using reduce you can use the “pat-
tern” of adding all the elements of a sequence for more general functions than just addition.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Reference Tables 407

Files

A “file object” is created with open("someFileName") (other forms of open specify whether
to read the file or write it, where the file is located, and more). If f is a file object, these
are standard operators:

f.close(x) close file f.

f.flush(x) flush file's internal buffer.

f.read(k) return string

(next k bytes from file f).

f.read() read all of f, return as string.

f.readline() read one entire line from file

f.readlines() read all of f with readline()

(and return list of lines read).

f.write(str) write str to file f.

f.writelines(list) write list of strings to file.

Control Flow

if statement:

if 5>3:

print("hello")

x = 20

if with else:

if 5>3:

print("hello")

x = 20

else:

x = 0

print("bye")

There is also a way to chain multiple tests (a “many-way” if statement) using the elif

keyword.

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

408 A Functional Start to Computing with Python

The while statement:

x = 19

while x>0:

print('-')

x = x - 1

print('.')

Note: Rarely used, it is also possible to follow the while statement with else, which gets
executed when the loop ends. Within a while loop, the continue statement causes the
next iteration of the loop to start immediately; the break statement terminates the loop
immediately (and skips over any else part, if there is one).

The for statement:

e = range(3,23)

for i in e:

print(50-i)

The continue, break, and else statements can also be used in for loops. The return

statement: the return statement immediately exits a function; if there is a value to the
right of return, then that value is the result of the function invocation.

Exception Statements. The keywords try, except, finally, and raise are used to alter
control flow using exceptions; this is a more advanced topic than this brief appendix covers.

Library Statements

import copies a module from a library or from a file. Example:

import sys

print(sys.argv)

Note: The names of things inside the imported module have a “qualified” or “hierarchical”
way of referring to them. The from statement copies from within a module, allowing the
names to be accessed directly:

from sys import *

print(argv)

Function Invocation and Definition

function(arguments) invokes a function; depending on the function definition, the argu-
ments may include keywords with assignments, for example:

f(7,term=True)

The function head (where you define the function) can specify keyword default values, which
say what values to use if the function’s caller does not provide these keyword arguments.
If a keyword default value is a mutable object, such as a list, then that default value can
actually be changed by one call, and persist for later calls (this is a tricky behavior of
Python).

The syntax function(*myargs) in a function’s head allows function to be called with any
number of arguments; then myargs will be a tuple, consisting of the arguments supplied

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

Reference Tables 409

by function’s caller. The same syntax, function(*someargs), when used by the caller of
function, means that someargs is a sequence, which should be converted to a tuple used
for the list of arguments to function. The syntax function(**myargs) in a function head
presumes that myargs is a dictionary, with strings as keys, so that the keys can be used
as keyword arguments. The syntax can use both styles, for example, function(*a,**b)
would allow positional arguments first, then keyword arguments.

The def statement defines a function, declaring its arguments (which can include keyword
parameters and their defaults),

def myfun(x,y):

print("myfun called with", x, y)

if x>y:

return x-y

else:

return y-x

Lambda Expressions:

It is possible to define very simple functions in a one-line expression: f = lambda x: 2*x

defines f the same as a longer definition

def f(x):

return 2*x

Using a lambda expression can make programs more concise:

reduce((lambda x,y: x+y),[3,9,20,5])

Class Definition and Object Creation

The class statement defines a class, which establishes the pattern for future objects that
will be created for this class.

class MyClass():

def __init__(self):

self.pos = 0

def move(self,t):

self.pos = self.pos + t

A fancier form of the class statement allows you to define a class in terms of another class,
which is the idea of inheritance. To create an object (also called an instance of the class),
an example would be:

x = MyClass() # create a new instance

x.move(3) # invoke the move method on x

print(x.pos) # will print 3

✐

✐

“book” — 2013/6/21 — 16:18
✐

✐

✐

✐

✐

✐

410 A Functional Start to Computing with Python

Aliasing

Two variables can refer to the same object; conversely, different instances of the same class
can have different values:

x = MyClass()

z = MyClass()

y = x

x.move(15)

print(y.pos) # will print 15

print(x is y) # will print True

print(x is z) # will print False

print(z.pos) # will print 0

Note: Lists are essentially objects of a “list” class, so aliasing occurs with lists (this is a
frequent difficulty for beginning Python programmers). The following example illustrates
how aliasing can be confusing—you change the object using one variable name, and all the
other variables referring to the same object also get changed.

a = [1,2,3,4,[True,False],5]

b = a

b[0:4] = [] # replace a slice of b

print(a) # will print [[True,False],5]

Dictionaries are also objects; all objects aremutable types, whereas strings, tuples, booleans,
and numbers are immutable, so these do not suffer from alias situations. Use the is operator
to test whether two variables are aliases.

Inside Python

DocStrings. If the first line of a Python program (or function) is a string, then that is
called the “documentation string” of the program (or function).
Introspection. There are built-in functions to ask Python about the type of a variable,
list of defined variables, list of functions, the documentation string, and many other things.

vars() returns a dictionary of names

dir() returns keys of vars()

locals() dictionary of local names

globals() dictionary of global names

__doc__ the DocString

type(x) returns the type of name x

isinstance(x,T) True if x is of type T

id(x) internal key of name x

x is y True if id(x)==id(y)

Chapman & Hall/CRC
TEXTBOOKS IN COMPUTING

K14528

H
erm

an

A FUNCTIONAL START
TO COMPUTING

WITH

A
 F

U
N

C
T

IO
N

A
L

 S
T

A
R

T
 T

O

C
O

M
P

U
T

IN
G

 W
IT

H
 P

Y
T

H
O

N

Ted Herman

Computer Science/Computer Engineering/Computing

A FUNCTIONAL START TO
COMPUTING WITH PYTHON

A Functional Start to Computing with Python enables you to quickly learn
computing without having to use loops, variables, and object abstractions
at the start. Requiring no prior programming experience, the book draws on
Python’s flexible data types and operations as well as its capacity for defining
new functions.

Taking an accessible, interactive approach to computing, the book addresses
more difficult concepts and abstractions later in the text. The author presents
ample explanations of data types, operators, and expressions. He also describes
comprehensions—the powerful specifications of lists and dictionaries—before
introducing loops and variables. This approach helps you better understand
assignment syntax and iteration by giving you a mental model of sophisticated
data first.

Along with the specifics of Python, the text covers important concepts of
computing, including software engineering motivation, algorithms behind
syntax rules, advanced functional programming ideas, and, briefly, finite state
machines. The book’s companion Web site provides many supplementary
materials.

Features
• Introduces data structure operations, including textual/string computing,

early in the text
• Integrates core computer science ideas, such as self-referencing

structures, aliases, and finite state machines
• Covers recursion in both functional- and imperative-style Python
• Reinforces your understanding of unit testing through interactive

programming exercises, with selected answers in an appendix

PYTHON

K14528_Cover.indd 1 6/11/13 9:21 AM

	Front Cover
	Contents
	Preface
	I. Motivation and Background
	1. Inspirations of Computing
	2. Preview of Computing with Python
	3. General Landscape of Computing Languages
	4. Python Setup

	II. Functional-Style Python
	5. Types
	6. Operators
	7. Expressions
	8. Printing
	9. Functions I
	10. Functions II
	11. Conditional Logic
	12. Slice, Split, Join
	13. Comprehensions
	14. Functional Patterns

	III. Imperative-Style Python
	15. Names for Data
	16. Functions and Variables
	17. Mutation
	18. Modules
	19. Repetition
	20. Documentation
	21. Debugging
	22. Accumulation Loop Patterns
	23. Search Loop Patterns
	24. Drawing
	25. Input and Output
	26. Network Programs
	27. Objects, Classes, and Inheritance
	28. Randomness, Time, and System Modules
	29. Graphical User Interfaces

	IV. Appendices
	30. Advanced Topics
	31. Solutions to -Exercises
	32. Reference Tables

