
Chris Roffey

level 2

97
81

10
76

23
25

5
 R

of
fe

y:
 C

od
in

g
C

lu
b

Py
th

on
 N

ex
t S

te
p

L
ev

el
 2

 C
ov

er
.

C
 M

 Y
 K

Next
Steps

Python
Next
Steps

Python
CodingClub
Coding Club

Chris Roffey

level 2

Next
Steps

Python
Next
Steps

Python
CodingClub
CodingClub

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of
education, learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107623255

© Cambridge University Press 2013

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 2013
Reprinted 2013

Printed in Poland by Opolgraf

A catalogue record for this publication is available from the British Library

ISBN 978-1-107-62325-5 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy
of URLs for external or third-party internet websites referred to in this publication,
and does not guarantee that any content on such websites is, or will remain,
accurate or appropriate.

www.cambridge.org
www.cambridge.org/9781107623255

33Contents

Contents
Introduction� 4

Chapter 1: Data types� 7

Chapter 2: Building GUIs� 21

Chapter 3: Designing a simple calculator� 36

Chapter 4: A fully working calculator� 47

Chapter 5: Customising the calculator� 61

Bonus chapter: Algorithms� 74

Taking things further� 90

Appendix 1: Some key bits of information� 91

Appendix 2: Binary numbers� 94

Appendix 3: Calculator functions source code� 96

Glossary and index� 99

The Quick Quiz answers� 105

Acknowledgements� 106

44Introduction

Introduction
Who is this book for?

This book is the Level 2 core book in the Coding Club series of books. To get the most out
of this title, you should be familiar with the Python 3 programming language and know
about variables, while loops and if, elif and else statements. Therefore, we advise that you
first read Python Basics before reading this book. Python: Next steps is aimed at 12–13 year
olds but is accessible to older children and even adults who want to learn about computer
programming.

Why should you choose this book?

This book explains important principles while helping you build useful short projects. We
want you, the reader, to learn not only how to make the programs in this book but also
how to design your own. We want you to be able to write programs well, so that if you take
it further and become the inventor of the next Google you will not have to unlearn bad
programming habits.

55Introduction

What you need?

Any computer can run Python 3. If your computer does not already have Python 3 installed
there is a section on the companion website (www.codingclub.co.uk) that guides you through
the installation. This takes about five minutes! That is all you need to get started.

Start files for all the projects in the book are available to download from the companion
website so you do not get lost in the bigger projects. There are also finished files for each
project, should you get stuck, and answers to the puzzles and challenges.

How to use this book

You should read this book carefully and build all the main projects in order. At the end of
each chapter there are further ideas, and challenges that you can think of as ‘mini quests’.
Some readers will want to work through them all so that they understand everything all the
time. Some of you will probably prefer to rush through and get to the end. Which approach
is best? The one you are most comfortable with is the best approach for you. If you are being
guided by a teacher, you should trust their judgement so that you can get the most help out
of them as possible.

There are four ways in which this book tries to help you to learn:

	 1	 Typing in the code – this is important as it gets you to work through the code a line at a
time (like computers do) and will help you remember the details in the future.

	 2	 Finding and fixing errors – error messages in Python give you some clues as to what has
gone wrong. Solving these problems yourself will help you to be a better programmer.
However, if you get stuck, the code can be downloaded from the companion website
(www.codingclub.co.uk).

http://www.codingclub.co.uk
http://www.codingclub.co.uk

66Introduction

	 3	 Experimenting – feel free to experiment with the code you write. See what else you can
make it do. If you try all the challenges, puzzles and ideas, and generally play with the
code, this will help you learn how to write code like a professional.

	 4	 Finally, this book will not only provide the code to build some pretty cool, short projects –
it will also teach you how the programs were designed. You can then use the same
methods to design your own applications.

A word of warning

You may be tempted to simply get the code off the website instead of typing it out yourself.
If you do this you will probably find that you cannot remember how to write code so easily
later. In this book you will only be asked to type small chunks of code at a time – remember
that this will help you understand every detail of each of your programs.

7Chapter 1: Data types

Chapter 1
Data types

In this chapter you will:

•	 learn about data types

•	 learn about tuples, lists and dictionaries

•	 make a version of MyMagic8Ball that is much shorter than the one from Python Basics.

Data types
In Python Basics you learned about strings (bits of text), integers (whole numbers) and
floats (numbers with a decimal point). These are examples of data types. There are more!
In this chapter we will look at some new data types: tuples, lists and dictionaries. These new
data types are all called container data types because they store more than one piece of
data. For example, they can store several strings. They do so in different ways and have their
own advantages and disadvantages.

A string is rather like a container because it stores a whole sequence of letters or numbers (or
a mixture of both). In Python Basics we learned that there are several functions we can use on
strings. We can also use many of these functions on tuples, lists and dictionaries.

I’m back!

88Chapter 1: Data types

Tuples
A tuple is the simplest of our new data types. They can store strings, integers and other data
types. Here is an example of a tuple that stores four strings, each separated by a comma:

my_tuple = ("one", "two", "three", "four")

Each value in a tuple is separated by a comma. Unlike variables, we cannot change what is
stored in a given tuple.

Each value in the tuple has an index starting from 0. So, print(my_tuple[1])for the
example above produces the output two. Look at how this works below.

A tuple.

Python 3.1.3 (r313:86834, Nov 28 2010, 10:01:07)
[GCC 4.4.5] on linux2
Type "copyright", "credits" or "license()" for more information.
==== No Subprocess ====
>>> my_tuple = ("one", "two", "three", "four")
>>> print(my_tuple[0])
one
>>> print(my_tuple[1])
two
>>> print(my_tuple[2])
three
>>> print(my_tuple[3])
four
>>>

99Chapter 1: Data types

MyMagic8Ball

In Python Basics we wrote a small application called MyMagic8Ball that used the random
module and the functions print(), input() and randint(). Here is the code:

My Magic 8 Ball

import random

write answers
ans1="Go for it!"
ans2="No way, Jose!"
ans3="I'm not sure. Ask me again."
ans4="Fear of the unknown is what imprisons us."
ans5="It would be madness to do that!"
ans6="Only you can save mankind!"
ans7="Makes no difference to me, do or don't - whatever."
ans8="Yes, I think on balance that is the right choice."

print("Welcome to MyMagic8Ball.")

get the user's question
question = input("Ask me for advice then press ENTER to shake me.\n")

Code Box 1.1

(continues on the next page)

1010Chapter 1: Data types

print("shaking ...\n" * 4)

use the randint() function to select the correct answer
choice=random.randint(1, 8)
if choice==1:
 answer=ans1
elif choice==2:
 answer=ans2
elif choice==3:
 answer=ans3
elif choice==4:
 answer=ans4
elif choice==5:
 answer=ans5
elif choice==6:
 answer=ans6
elif choice==7:
 answer=ans7
else:
 answer=ans8

print the answer to the screen
print(answer)

input("\n\nPress the RETURN key to finish.")

1111Chapter 1: Data types

Now see how much easier and shorter the code is if we include a tuple:

My Magic 8 Ball

import random

put answers in a tuple

answers = (
 "Go for it!",
 "No way, Jose!",
 "I'm not sure. Ask me again.",
 "Fear of the unknown is what imprisons us.",
 "It would be madness to do that!",
 "Only you can save mankind!",
 "Makes no difference to me, do or don't - whatever.",
 "Yes, I think on balance that is the right choice."
)

print("Welcome to MyMagic8Ball.")

get the user's question
question = input("Ask me for advice then press ENTER to shake me.\n")

print("shaking ...\n" * 4)

use the randint() function to select the correct answer
choice = random.randint(0, 7)

Code Box 1.2

(continues on the next page)

1212Chapter 1: Data types

Analysis of Code Box 1.2

If it has been a while since you read Python Basics, you might find it useful to type this code
into IDLE and think about it line by line. Here is what it does.

The import statement

We are going to use a function from Python’s random module so we need to import it.

The tuple

We have to separate the strings in the tuple answers with commas. Starting a new line after
each comma makes the code much easier to read.

The input() function

The input() function listens to the keyboard entry and waits for the return key to be
pressed. It then returns the keyboard input as a string, which we store in the variable
question.

print the answer to the screen
print(answers[choice])

exit nicely
input("\n\nPress the RETURN key to finish.")

1313Chapter 1: Data types

Are you are a bit confused
about when to use round brackets
and when to use square brackets?

Basically, when we create a tuple we
wrap its contents in round brackets.

Whenever we call an indexed value
from the tuple, we put the index

(its position in the list) in square
brackets.

question = input("Ask me for advice then press ENTER to shake me.\n")

variable name to access
the keyboard input

string that is printed out,
giving instructions to the user

The randint() function

choice = random.randint(0, 7)

This line of code asks the randint() method in the random module to select a random
number from 0 to 7. This number is then stored in the variable called choice. (A method is
a function in a class.)

Finishing off

print(answers[choice])

This uses the random number choice as the index in the answers tuple. This line selects
the string that was randomly chosen from the tuple and prints it.

Experiment

The two scripts are available from the companion website
(www.codingclub.co.uk). Try them both out and check that they
do the same thing.

1414Chapter 1: Data types

Lists
A list is another type of container. They are very similar to tuples except that they can be
altered. Think of tuples as quick, memory-efficient lists that cannot be altered by other code.
We cannot insert or delete items in tuples with our programs. There are, however, functions
to allow us to insert or delete items in lists. Lists are written like this:

my_list = ["one", "two", "three", "four"]

Just as with tuples, each value in the list has an index starting from 0 and each value is
separated by a comma.

Look at how this works in interactive mode:

>>> my_list = ["one", "two", "three", "four"]
>>> my_list[2]
'three'
>>> my_tuple = ("one", "two", "three", "four")
>>> my_tuple[2]
'three'
>>>

You can see that both a list and a tuple provide the same output. So, when would we use a
list instead of a tuple? We would choose a list rather than a tuple if we want our program to
add, remove or change an item within the list.

Hmm, the list is surrounded by
square brackets this time.

Do you remember that interactive mode
in Python means using the Python shell rather

than saving and running a file? It is very
useful for running little experiments.

1515Chapter 1: Data types

For each of the following say which is the best choice, a list or a tuple:

	 1	 A place to store seven strings consisting of the days of the week (e.g. "Monday") that we
want to use in an application.

	 2	 A place to store the full names of members of the Coding Club in an application we use to
keep track of who is still a club member.

	 3	 A place to store the ten integer values (0, 1, 2, 3, 4, 5, 6, 7, 8 and 9) of the keys used to
make a calculator app.

Quick Quiz 1.1

Dictionaries
The last of our container data types is a dictionary. Dictionaries take a slightly
different form. In dictionaries we supply our own indexes. Here, we call the index a key.
Keys can be strings, integers, floats or even tuples. Here is an example:

my_dictionary = {1:"cat", 2:"dog", 3:"horse", 4:"fish"}

key value

or

my_dictionary = {"1":"cat", "2":"dog", "3":"horse", "4":"fish"}

key value

Silly me, I was confused
for a moment here as I

had forgotten that strings
always appear in speech
marks and numbers do

not. So 1 is an integer but
"1" is a number stored

as a string!

1616Chapter 1: Data types

Look at how this works in interactive mode:

>>> my_dictionary = {1:"one", 2:"two", 3:"three", 4:"four"}
>>> my_dictionary[2]
'two'
>>> my_dictionary = {"1":"one", "2":"two", "3":"three", "4":"four"}
>>> my_dictionary["2"]
'two'

You might have noticed that dictionaries require a different structure within the brackets to
assign keys to the values. They use a colon ‘:’ to separate the value from its key.

What’s with the brackets?
When we create a new container, Python provides us with a quick way of defining which
kind we require by our choice of brackets.

•	 If you want a tuple – wrap it in round brackets.

•	 If you want a list – use square brackets.

•	 If it’s a dictionary you are after – use curly brackets.

1717Chapter 1: Data types

What’s the difference?

Strings, tuples and lists are all indexed ordered containers; the values are automatically given an index
based on the order in which they were input. Dictionaries have keys that you provide and the key–value
pairs are not stored in a particular order. Strings and tuples have their content set at creation and cannot be
changed by a program directly. Lists and dictionaries are containers in which the values can be added to and
changed in a variety of ways.

It is also possible to create empty containers like this:
my_string = ""
my_tuple = ()
my_list = []
my_dictionary = {}

Delving Deeper

Useful functions
Table 1.1 provides a list of useful functions you can use on strings, tuples, lists and
dictionaries. You can also find it in Appendix 1. The table assumes the following containers
have been created:

>>> s = "bar" # a string
>>> t = ("b", "a", "r") # a tuple
>>> l = ["b", "a", "r"] # a list
>>> d = {1:"b", 2:"a", 3:"r"} # a dictionary

1818Chapter 1: Data types

Table 1.1 Some useful functions.

Function Strings Tuples Lists Dictionaries

print all >>> print(s)
bar

>>> print(t)
('b', 'a', 'r')

>>> print(l)
['b', 'a', 'r']

>>> print(d)
{1: 'b', 2: 'a', 3: 'r'}

print
element

>>> print(s[2])
r

>>> print(t[2])
r

>>> print(l[2])
r

>>> print(d[2])
a

combine >>> a=s+"f"
>>> a
'barf'

>>> a=t+("f",)
>>> a
('b', 'a', 'r', 'f')

>>> a=l+["f"]
>>> a
['b', 'a', 'r', 'f']

add an
element

Strings cannot
be altered.

Tuples cannot be
altered.

>>> l.append("f")
>>> l
['b', 'a', 'r', 'f']

>>> d[4]="f"
>>> d[4]
'f'

sort Strings cannot
be altered.

Tuples cannot be
altered.

>>> l.sort()
>>> l
['a', 'b', 'r']

>>> sorted(d)
['1', '2', '3']
>>> sorted(d.values())
['a', 'b', 'r']

delete an
element

Strings cannot
be altered.

Tuples cannot be
altered.

>>> del l[1]
>>> l
['b', 'r']

>>> del d[1]
>>> i
{2:'a', 3:'r'}

replace
element

Strings cannot
be altered.

Tuples cannot be
altered.

>>> l[0]="c"
>>> l
['c', 'a', 'r']

>>> d[1]="c"
>>> print(d)
{1: 'c', 2: 'a', 3: 'r'}

find >>> i.find("b")
0

>>> t.index("b")
0

>>> l.index("b")
0

get
length

>>> len(s)
3

>>> len(t)
3

>>> len(l)
3

>>> len(d)
3

This table could be very
helpful when I write

my own applications!

s = "bar" # a string
t = ("b", "a", "r") # a tuple
l = ["b", "a", "r"] # a list
d = {1:"b", 2:"a", 3:"r"} # a dictionary

1919Chapter 1: Data types

For each of the following say whether to choose a tuple, a list, or a dictionary:
	 1	 A container to store the personal best times achieved by club swimmers in the 100m

freestyle such as: Mark: 65.34s, Freya: 68.04s, etc.
	 2	 A container to store the months of the year.
	 3	 A container to store the monthly rainfall data for London in 2012.
	 4	 A container to store the names of the students who currently attend the chess club.

Quick Quiz 1.2

Chapter summary
In this chapter you have:

•	 learned more about data types
•	 learned about tuples, lists and dictionaries
•	 made a shorter version of MyMagic8Ball
•	 �seen some of the different functions that can and cannot be used with the new

data types.

We will explore these new data types further in this book. Here are just a few ideas
that will help you refresh your coding skills from Python Basics. (As dictionaries are the
hardest to use, we will wait until you have learned a little bit more before providing any
puzzles involving them.)

It is always good
to practise.

2020Chapter 1: Data types

Write a new version of MyMagic8Ball using a list instead of a tuple. It should work in exactly
the same way if you get it right because lists can do everything tuples can and more.

Puzzle

Challenge

This is a challenge from Python Basics so although you may be a bit rusty you should be
able to manage it. Hopefully it brings back happy memories for you.
	 1	 Add some code to myMagic8Ball2.py (Code Box 1.2) so that the Magic8Ball says “Hi”

and asks for the user’s name at the start of the game.
	 2	 It should then store the input in a variable such as user_name.
	 3	 Change the code so that the Magic8Ball talks to the user using their name. At the end

for example, it could say: “Thanks for playing, [Name]. Please press the RETURN key to
finish.”

There are several ways to do this.
To see one answer go to www.codingclub.co.uk/book2_resources.php.

Change the Magic8Ball game into a fortune cookie game. You could call it
myFortuneCookie.py.

Idea

You are destined to
become a famous computer

scientist one day!

21Chapter 2: Building GUIs

Chapter 2
Building GUIs

In this chapter you will:

•	 practise using tuples and dictionaries

•	 revise how to use tkinter and learn about using widgets

•	 build a graphical user interface (GUI)

•	 build a glossary application.

2222Chapter 2: Building GUIs

MyGlossary
A graphical user interface (GUI) is, very simply, the ‘screen’ that allows a user to interact
with their computer through graphics such as menus and buttons. You are now going to
build a small GUI application of your own using tkinter.

In the source code downloaded from the companion website, in the folder for Chapter 2,
you will find a file called myGlossary_Start.py. This file provides you with outline source
code for a glossary application containing the complete glossary for this book. This is also
provided for reference in Code Box 2.1.

myGlossary_Start.py

from tkinter import *

key press function:

main:
window = Tk()
window.title("My Coding Club Glossary")

create label

create text entry box

Add a submit button:

Code Box 2.1

2323Chapter 2: Building GUIs

The glossary has been stored as a dictionary data type. The key is the glossary word and the
value is the definition.

e.g. 'function': 'A reusable piece of code'

key value

We have used single speech marks rather than the usual double ones so that we can use
double speech marks in the definitions without having to escape them all.

create another label

create text box

The dictionary:
my_glossary = {
 'algorithm': 'Step by step instructions to perform a task that a
computer could understand.',
 'bug': 'A piece of code that is causing a program to fail to run
properly or at all.',
 'binary number': 'A number represented in base 2.'
 }

Run mainloop
window.mainloop()

It is useful to be able to
choose whether to wrap

strings in single or double
speech marks. Don’t

forget to be consistent in
your code though.

2424Chapter 2: Building GUIs

To access the definition for a glossary term, all that is required is to write code that is
something like this:

print(my_glossary["function"])

If you run myGlossary_Start.py as it is supplied, it should open a small window entitled
‘My Coding Club Glossary’.

tkinter widgets

In Python Basics you were introduced to tkinter and you learned how to use this module to
open a window. We then used tkinter’s Canvas class to provide an area where we could
draw. Canvas is an example of a tkinter widget. tkinter provides all the normal widgets that
are available in modern programming languages, such as buttons, labels or text entry fields.
Indeed there are popular alternatives to tkinter even in Python.

Although all modern languages provide these GUI facilities they do not all do so in the same way as tkinter.
If in the future you want to create an application in a different programming language, you will need to find
out how it provides windows, canvases, buttons, labels, etc. To do this, read the documentation for the GUI
library you choose to use.

Delving Deeper

I often use widgets in
my web apps. The main

widgets I use are buttons,
checkboxes, bullet lists,

dropdown menus and
textboxes.

2525Chapter 2: Building GUIs

In this section you will learn about some more tkinter widgets and see how to build a simple
GUI. First we must see how tkinter arranges things in the window we have created. The
window is divided into as many columns and rows as we require. Each row and column is
numbered so that the cells can be referenced by coordinates in the usual computer science
way – (0,0) from the top left:

A tkinter grid.

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

In addition to assigning a cell for our widgets, we can determine where we put them inside
these cells by making them stick to the north (top), south (bottom), west (left) or east (right)
of the cells. It is easier to see this in action.

tkinter widgets.

label
entry

button

label
text box

2626Chapter 2: Building GUIs

The Label widget

The Label widget is probably the simplest one. It just provides some text in the application
window. In myGlossary_Start.py, add the code from Code Box 2.2 under the # create
label comment.

Label(window, text="Enter the word you want defining:").grid(row=0, column=0, sticky=W)

Code Box 2.2

W stands for west. If you save and run this now you will see how it works.

The Entry widget

The Entry widget provides a box for entering text. It could be added in exactly the same
way as the label widget. However, as your code is going to have to refer to this box later, it is
best to assign the widget a name with the equals operator. We will call this text entry box,
entry.

In myGlossary_Start.py add the code from Code Box 2.3 under the # create text
entry box comment.

entry = Entry(window, width=20, bg="light green")
entry.grid(row=1, column=0, sticky=W)

Code Box 2.3

2727Chapter 2: Building GUIs

Experiment

Try replacing sticky=W with sticky=E in the entry.grid line and see what happens.

Compare the last two code boxes carefully to see the two different ways of using the dot operator. Again, if
you save and run the code, you will see how it works. In Code Box 2.1 we did not give the label a variable
name because we are not going to want to call on it later. Hence, we use the dot operator to call the grid()
method, which will assign the tkinter position values. All of tkinter’s widget classes have a grid() method
we can use. In Code Box 2.2, we create the text entry box and assign it to a variable name so that we can call
on it elsewhere in our code. The code is then neater and easier to read if we use the dot operator to assign the
position variables on the next line attaching them to the text box name, entry.

Delving Deeper

Experiment

Try rewriting the code you have added in Code Box 2.3 in the same way as in
Code Box 2.2 like this:

entry = Entry(�window, width=20, bg="light green").grid(row=1,
column=0, sticky=W)

Code Box 2.4

(continues on the next page)

2828Chapter 2: Building GUIs

Does it make any difference?

Important: You will find at this stage that it does not seem to make any difference
but in fact it does! If you leave the code like this and do not put it back to how it was,
you will find it comes back and bites you later with a bug that is very difficult to spot.
What happens is, if we add the grid() method at the end of the line with the dot
operator, it succeeds in creating the text box but fails to assign it to the variable called
entry. So when we finish our click() method we will keep being told that entry does
not exist. In other words, please make sure the code is back like it was in Code Box 2.3
before moving on.

The Button widget

The Button widget provides a button! We want it to do something when we press it, so before
we make the button let’s just add the beginning of the function it will call when it is pressed.
Add the code from Code Box 2.5 just below the # key press function comment.

key press function
def click():
 entered_text = �entry.get() # collect text from text entry box

Code Box 2.5

2929Chapter 2: Building GUIs

Now just below the # Add a submit button comment, add the code from Code Box 2.6.

Add a submit button
Button(window, text="SUBMIT", width=5, command=click).grid(row=2, column=0, sticky=W)

Code Box 2.6

As with all the other widgets, the first argument (information required by a function or
widget) is window, which tells tkinter where the widget is to be placed. command=click tells
the button to call the click() function when the button is pressed. Notice how you must
not include the brackets when assigning the function to the button. If you do include them
it tries to run the function when the button is created rather than when it is pressed. We will
use buttons a lot in later chapters where we will be able to see how this works more clearly.
Finally, we call the Button class’s grid() method to place it where we want it in the window.
You can run this to see a pretty useless button if you want to check everything so far.

The Text widget

Add another label and then a text box by entering the code from Code Box 2.7 in the
appropriate sections in myGlossary_Start.py. You should understand this code by now.

create another label
Label(window, text="\nDefinition:").grid(row=3, column=0, sticky=W)

create text box
output = Text(window, width=75, height=6, wrap=WORD, background="light green")
output.grid(row=4, column=0, columnspan=2, sticky=W)

Code Box 2.7

3030Chapter 2: Building GUIs

Again it is possible to run this code but do not expect a great deal to happen, as our
click() function is not finished. The application does however have all of its widgets and
so the GUI is complete.

Did you notice the use of the optional columnspan=2 argument supplied in the output text box? The text box
is created in the cell (4,0) of our grid layout and allowed to cross into the next column as well (4,1). In this
case it is totally unnecessary (you can delete it to check if you want). It has been included here because you
may need this technique to make some of the solutions to the puzzles at the end of the chapter look good.

Delving Deeper

Finishing off MyGlossary
The only thing left to do is to complete the click() function. This will call the definition we
want from our dictionary. Complete the click() function by entering the code from Code
Box 2.8.

key press function
def click():
 entered_text = entry.get() # collect text from text entry box
 output.delete(0.0, END) # clear text box
 definition = my_glossary[entered_text]
 output.insert(END, definition)

Code Box 2.8

It does not do
much but it is

beginning to look
good.

3131Chapter 2: Building GUIs

Analysis of Code Box 2.8

entry.get() applies the get() function to the entry widget. This collects whatever text
has been typed in to this text entry box and assigns it to the entered_text variable.

Next we clear the text box widget called output with this widget’s delete() method.
This takes two arguments. The 0.0 says start deleting from line 0 (i.e. before line 1) and
before character 0 (i.e. the beginning). END is a constant that always refers to the position
after the last character in the text box. We could also have replaced END with a
line.character index but END is easier.

The indexes referred to in the delete() method work like coordinates but actually indicate where the cursor
goes when selecting text. The rows or lines count from 0, before the first line, then 1 is the first line, 2 is the
next etc. The character index (or column index) counts from 0, before the first character, then 1 after it, 2 next
etc. Don’t forget a space is a character.

For example, my_string = "text| widget box" the cursor is at index position (1.4).

Delving Deeper

The next line of code finds the definition in the dictionary using the entered text as the key.
Finally, this is added to the text box widget called output using the widget’s insert()
method. This takes two arguments:

	 1	 where to start the insertion: (END) i.e. the beginning (we have just cleared output)
	 2	 what to insert: the definition found in the dictionary in the previous line.

Did you know that the
glossary contains all the key

words from this book and
Python Basics?

3232Chapter 2: Building GUIs

Testing

Try this out by saving and running the program. Once it is running try entering the word
‘bug’ and pressing the SUBMIT button. If this works delete ‘bug’ and try ‘function’. All good
so far? Now let’s test it with nothing added and with some random key presses that do not
make up a word. These do not cause the app to crash completely but the console starts to
spin with errors because the search through the dictionary fails.

Catching errors

It is good practice to think of all the things that can go wrong in your programs and handle
them. Python provides us with a way of doing this that is very helpful. It uses try: and
except:. The fix to the click() function is provided in Code Box 2.9. Study it carefully and
then correct and save the myGlossary_Start.py application.

key press function
def click():
 entered_text = �entry.get() # collect text from text entry box
 output.delete(0.0, END) # clear text box
 try:
 definition = my_glossary[entered_text]
 except:
 definition = "There is no entry for this word."
 output.insert(END, definition)

Code Box 2.9

3333Chapter 2: Building GUIs

This completes the program. You now have a handy little application that you can have
available while reading this book. You can use it to look up any bold words you find in this
book that you are unsure of.

Chapter summary
In this chapter you have:

•	 practised using dictionaries
•	 revised how to use tkinter and learned about some more widgets
•	 built a GUI
•	 built a glossary application.

Combining dictionaries and GUIs is very powerful and should allow you to make many little
applications. Here are some ideas.

Using the glossary program as a
template, make some revision flash
cards to help you revise.

Idea 1

Flash cards.

3434Chapter 2: Building GUIs

Using the glossary program as a
template, make a vocabulary app
to help you with a foreign language
you are studying. Make the key
the English word and the
definition the translation.

Idea 2

Vocab app.

Using the glossary program as a
template, make a quiz app that
selects random questions and
provides the answers when you
press GET ANSWER.
Hint: You will need
two text boxes rather than one entry
box and one text box. You will also
need a NEXT button, in addition to
the GET ANSWER one. To see one
answer go to www.codingclub.co.uk.

Challenge

Quiz app.

3535Chapter 2: Building GUIs

Using the solution from the
challenge as a template, make a
random joke generator.
Hint: You will need to
stick to two-liners like this:
Q: �What do you get if you cross a

coder and a footballer?
A: Foot oder

Idea 3

Joke generator app.

36Chapter 3: Designing a simple calculator

Chapter 3
Designing a simple calculator

In this chapter you will:

•	 learn about how loops work

•	 use lists and loops to save a lot of repetitive coding

•	 learn more about the tkinter button widget

•	 design your own calculator application called MyCalculator

•	 build a complex GUI easily.

3737Chapter 3: Designing a simple calculator

Laying out the calculator
In this chapter we are going to lay out a simple calculator. This is just the beginning! Later
in the book we will add some more buttons so that you can customise it. Very soon you will
have built a fully programmable calculator.

This chapter focuses on making a neat layout as efficiently as possible. As there are a lot of
similar buttons, you will build them by looping though lists rather than one at a time. With
this new knowledge you will be able to build all sorts of new applications that users can
easily interact with.

Starting the design
Investigation 1

First we will try to build the calculator one button at a time. Do not worry – most of the
work has been done for you. Open myCalculator_expt1.py from the folder for Chapter 3
supplied on the companion website. You will find the code for a calculator app that has one
button and a display (Code Box 3.1).

myCalculator_expt1.py

from tkinter import *
from decimal import *

main:
window = Tk()
window.title("MyCalculator")

Code Box 3.1

(continues on the next page)

3838Chapter 3: Designing a simple calculator

use Entry widget for an editable display
display = Entry(window, width=45, bg="light green")
display.grid()

create num_pad buttons:
def click1():
 display.insert(END, "1")

Button(window, text="1", width=5, command=click1).grid(row=1,column=0)

Run mainloop
window.mainloop()

If you press the button, it will output the string "1" to the display. Run the application
and check that it functions as expected. Look at the code carefully and try adding a second
button – the 2 button. Try to do this and add a third button before looking below at the
supplied answer.

Now compare your code with the solution in Code Box 3.2:

create num_pad buttons:
def click1():
 display.insert(END, "1")
Button(window, text="1", width=5, command=click1).grid(row=1,column=0)

Code Box 3.2

3939Chapter 3: Designing a simple calculator

def click2():
 display.insert(END, "2")
Button(window, text="2", width=5, command=click2).grid(row=2,column=0)

def click3():
 display.insert(END, "3")
Button(window, text="3", width=5, command=click3).grid(row=3,column=0)

Analysis of Code Box 3.2

For each button we are adding three lines of code. There are 19 buttons on the simple
calculator and in the next chapter we will add another 10. This will result in a lot of copying
and pasting and leads to many lines of code. This method of programming becomes
annoying when you wish to change the design. For example, if you wanted to change the
width of the buttons, you would have to change the code for width in 29 sets of buttons!
Furthermore, most of the buttons do the same thing: they add their value to the display. It
makes sense therefore to have one function that handles button clicks and put it at the top of
our code listing.

Investigation 2

In this investigation we will try to build the number pad with a loop. Open
myCalculator_expt2.py from the Chapter 3 folder. You can see the code below in Code
Box 3.3. This produces a calculator application that has nine buttons and a display. Can
you see how we have used counter variables for the rows and columns and how these are
increased to build the number pad? Notice also that when you run it, the buttons do not
appear to do anything when you press them.

This is an example of
what computer scientists

call refactoring – it is an
important skill for coders

to learn.

4040Chapter 3: Designing a simple calculator

myCalculator_expt2.py

from tkinter import *
from decimal import *

key press function:
def click(key):
 display.insert(END, key)

main:
window = Tk()
window.title("MyCalculator")

create top_row frame
top_row = Frame(window)
top_row.grid(row=0, column=0, columnspan=2, sticky=N)

use Entry widget for an editable display
display = Entry(top_row, width=45, bg="light green")
display.grid()

create num_pad_frame
num_pad = Frame(window)
num_pad.grid(row=1, column=0, sticky=W)

Code Box 3.3

4141Chapter 3: Designing a simple calculator

provide a list of keys for the number pad:
num_pad_list = [
'7', '8', '9',
'4', '5', '6',
'1', '2', '3',
'0', '.', '=']

create num_pad buttons with a loop
r = 0 # row counter
c = 0 # column counter

for btn_text in num_pad_list:
 Button(num_pad, text=btn_text, width=5, command=click(btn_text)).grid(row=r, column=c)
 c = c+1
 if c > 2:
 c = 0
 r = r+1

Run mainloop
window.mainloop()

Deliberate mistake!

What is the deliberate mistake?
(Leave the code as shown – we will look into this more in the testing and debugging section.)

Quick Quiz 3.1

4242Chapter 3: Designing a simple calculator

Using frames

While you were trying out Investigation 1, you may have tried putting the three buttons
next to each other and found that they did not fit very well. One way of controlling groups
of elements is by spanning columns. But it is often better to put groups of widgets in another
widget called a frame. This is how we will use frames to organise the calculator.

operator framenum_pad frame

top_row frame

Calculator with frames.

If you look carefully at the code you should see how the frame widgets are arranged
in the window and the buttons are then grouped in the frames.

for loops

In Python Basics we learned about while loops. Now it is time to meet for loops. A for loop is
great when handling lists, dictionaries or tuples. For loops go through the indented code as
many times as required, so in this case once for each button we need. That is, once for each
value of btn_text. The variable btn_text is used to hold the values of the num_pad_list.
So, on the first time round the loop, btn_text represents the string '7'. On the next time
round btn_text will be '8'. Each time through the loop the column counter c is increased
by 1 until it is greater than 2.

Some people specialise in
laying out user interfaces

for apps. If they are
good at their jobs, their

interfaces always appear to
be the natural solution to

the user.

4343Chapter 3: Designing a simple calculator

Experiment

Try running the code as supplied and then alter the code so that the
column counter counts up until it is greater than 3 and see what happens.
Keep altering the values of c and r until you have a good feel for how this
loop builds the number pad.

Debugging

The code for each button should all make sense to you now. The problem here is: why
doesn’t this code work as expected? Working out why code does not work as expected is
called debugging. There are two clues:

Clue 1: Nothing happens when we press the buttons.
Clue 2: The output when the app is first run is 7894561230.=

What do you notice about this output?
1	 It is just random numbers and symbols?
2	 The numbers and symbols are in the reverse order of the num_pad_list.
3	 The numbers and symbols are in the same order as the num_pad_list.

Quick Quiz 3.2

The first clue tells us that the command option that links to our click() function does not
work when we press the buttons. The second clue tells us that the function was called every

The num_pad_list could
all have been typed out on

one line. See how much easier
it is to read by adding line

breaks. Line returns in lists,
dictionaries and tuples are

ignored by the computer.

4444Chapter 3: Designing a simple calculator

time a button was created. tkinter is following a standard evaluation rule here: a function
runs straight away if it is called with brackets after its name. However, we want to attach the
function to the button ready to be called only if the button is pressed. For this to happen the
tkinter button widget requires us to type the function’s name without the brackets.

Try replacing command=click(btn_text) with command=click and then running the
application. What do you think will happen? All is well until you press a button. We have
solved the first problem – the click() function is no longer called as we create each button.
When you do press a button though, the click() function is still not called. Other than
this quite major problem, this is a much better way of designing our program than writing
19 button calls and 19 separate functions.

Building the calculator for real
The Investigation 2 file you have been working on may have a few bugs by now. If this is the
case you can simply start with the fresh file myCalculator3_start.py from the Chapter
3 folder or check your code against this file and add the commenting backbone to the code
from our experiments. Try running it to check that it behaves as you expect: the buttons still
don’t work! To finish the chapter we are going to ignore the fact that the buttons do not work
and instead finish the layout so at least it looks like a calculator.

Your calculator now needs some buttons that perform operations such as adding, multiplying
etc. These operator buttons need to be separated from the number pad. By choosing a large
width for the display text box, we have made a space ready for this set of new buttons.

Add the code from Code Box 3.4 to myCalculator_start.py so that you have a complete
set of buttons – that don’t do anything.

I think I get it.
Although none of
the buttons work

yet, we only have to
solve the problem
in one place in our

code and then all the
buttons will work.

4545Chapter 3: Designing a simple calculator

create operator_frame
operator = Frame(window)
operator.grid(row=1, column=1, sticky=E)

operator_list = [
'*', '/',
'+', '-',
'(', ')',
'C']

create operator buttons with a loop
r = 0
c = 0
for btn_text in operator_list:
 Button(�operator, text=btn_text, width=5,

command=click).grid(row=r,column=c)
 c = c+1
 if c > 1:
 c = 0
 r = r+1

Run mainloop
window.mainloop()

Code Box 3.4

Save your code and run it to check it looks good! OK, so none of the buttons work
but at least we do not have to sort that out in 19 separate places. Will we be able
to sort out this problem? You will have to wait until the next chapter to find out!

Crikey, a cliffhanger
in a book on writing

computer code!

4646Chapter 3: Designing a simple calculator

Chapter summary
In this chapter you have:

•	 learned about for loops
•	 used lists and loops, saving a lot of repetitive coding
•	 learned a little more about the tkinter Button widget
•	 made a calculator application called MyCalculator that looks good but is not finished
•	 built a complex GUI quickly and easily.

This chapter has been about how to lay out a graphical user interface (GUI) with lots of buttons.
In it, you added many buttons and organised them into groups using columns, rows and frames.

The ideas and puzzles this time are to help you get used to this process.

Make a small calculator. Change the width of every button and then adjust the display
width until your calculator looks good but is smaller.

Idea

My favourite kind of
buttons are chocolate

buttons.

Try to swap around the number pad
with the function pad.

Puzzle 1

Add a button at the bottom of MyCalculator
that is the full width of the calculator.
(Hint: this will require a new frame and then
a new button. There is no need for a loop.)

Puzzle 2

47Chapter 4: A fully working calculator

Chapter 4
A fully working calculator

In this chapter you will:

•	 learn how to use default values in functions creatively

•	 learn about debugging

•	 learn about catching and handling errors

•	 delve deeper into binary numbers

•	 produce a fully working calculator.
I hope this works
by the end of the

chapter!

4848Chapter 4: A fully working calculator

Arguments
In the last chapter we saw that the Button widget requires us to supply a function name
without brackets. This is so that the function is called when the button is pressed and not
when the button is built. Unfortunately, the neat use of a for loop has made it more difficult
to send an argument to the click() function. We need to do this to tell it which button we
are referring to. If we are not allowed to use brackets, we cannot directly supply an argument!

What do arguments have to do with programming?
1	 Arguments are another word for the keys in dictionaries.
2	 Arguments are the values passed to a function.
3	 Arguments are the values in a tuple.

Quick Quiz 4.1

To solve this problem we must send an argument indirectly! We can take advantage of how a
function’s arguments can be given default values. To remind you how this works try entering
the code from Code Box 4.1 in interactive mode. (Don’t forget that the code box shows both
your input (after >>>) and the response from the program (in blue.) Then play with it until
you can see how it works. The first two lines define a very simple function.

4949Chapter 4: A fully working calculator

>>> def my_function(x="default text"):
 print(x)
>>> my_function("two")
two
>>> my_function(3)
3
>>> my_function()
default text

Code Box 4.1

This leads to quite an elegant solution. Open myCalculator4_start.py from the
Chapter 4 folder and notice how there is a new function inserted into the loop called cmd().
You can also see this in Code Box 4.2. So how does it work? This is quite complicated but
often when coding we do not need to understand how everything works. We can just use a
solution that someone else has worked out. This is much like a mobile phone manufacturer
fitting a processor chip to do a job without understanding how it does it. Nevertheless if you
want an explanation see the Delving Deeper box.

In Code Box 4.2 you can see that the cmd() function sets the value held by btn_text as a default value of x.
This allows the cmd() function to be called without supplying any arguments and that means it will still work
without brackets supplied when it is used as the command for all the buttons made inside the loop. When
cmd() is called by pressing a particular button on the calculator it in turn calls click() with its default
btn_text value supplied. So now the click() function knows which button is being sent to it.

Delving Deeper

My brain hurts!
However I am going to
add this to my list of

code snippets. It looks
like it could be useful

in the future!

5050Chapter 4: A fully working calculator

Code Box 4.2

create num_pad buttons with a loop
r = 0
c = 0
for btn_text in num_pad_list:
 def cmd(x=btn_text):
 click(x)
 Button(�num_pad, text=btn_text, width=5, command=cmd).grid(row=r,column=c)
 c = c+1
 if c > 2:
 c = 0
 r = r+1

If you run this script you will find that the number buttons on your calculator now
work as expected. Now see if you can alter the code in operator_list so that these
buttons also put text into the calculator’s display. An answer, in case you need it, is
in Code Box 4.3.

Note how in Code Box 4.3 btn_text has been replaced by b. This is quicker to write but
more difficult to understand. You will often see code like this but you should stick to using
descriptive variable names except for counters such as r and c.

5151Chapter 4: A fully working calculator

It is good code design to
separate out appearance

from function in your
applications. The calculator
is constructed separately

from the click()
function. The click()
function is where all the

work occurs.

create operator buttons with a loop
r = 0
c = 0
for b in operator_list:
 def cmd(x=b):
 click(x)
 Button(operator, text=b, width=5, command=cmd).grid(row=r,column=c)
 c = c+1
 if c > 1:
 c = 0
 r = r+1

Code Box 4.3

When you run the application now, all the buttons send a call to the click() function via
cmd() and successfully pass along the correct button label. So finally we can put all of the
code for how each button works in one place.

Perfecting the click() function
The calculator has three types of buttons:

•	 buttons that add content to the display

•	 the equals button that evaluates what is in the display

•	 the C button that clears the screen.

Most of the buttons just print their value in the calculator’s display. Therefore after
handling the behaviour of all the other buttons we can leave this code in the

5252Chapter 4: A fully working calculator

else clause at the bottom of the function. You can now add the code from Code Box 4.4 to
your myCalculator4_start.py file. You should find that it mostly does as you would expect.

Code Box 4.4

key press function:
def click(key):
 # pressing equals key means calculate:
 if key == "=":
 result = str(eval(display.get()))
 display.insert(END, " = " + result)
 # pressing C key means clear screen:
 elif key == "C":
 display.delete(0, END)

 # add other key-pressed values to end of current entry:
 else:
 display.insert(END, key)

Analysis of Code Box 4.4

The code after the else: statement is the same as we had before. It inserts the value or symbol of
the button at the end of display, which is our text entry box widget functioning as our display.

The code that handles the clear key (after the elif statement) deletes everything in
display from the first character (the character at position 0) through to the end.

The interesting stuff happens when the equals button is pressed (after the if statement).
Here we take advantage of the fact that the Python language is pretty good at maths itself.

5353Chapter 4: A fully working calculator

The line that starts result does the maths and the next line of code adds an equals sign
to the display and then the result of the calculation. This leaves us with one line of quite
complicated code to explain – the one that does the maths.

result = str(eval(display.get()))

Basically, this line of code works out the answer of the contents of display and stores it in a
variable which we name result.

Calculator with a calculation in the display.

7*3=21

The way this works is by applying a series of functions at the same time. For example, the
result of the eval() function is a float or integer data type. The Entry widget only accepts
strings so we use the str() function to change the float result into a string.

Nesting function calls within other function calls like this saves typing but can be difficult to
read. Here is another way of representing the same code in more than one line so that it is a
lot easier to understand:

result = display.get() # store the contents of entry in a variable
result = eval(result) # use the eval() function to do the calculation
result = str(result) # cast result to a string.

This takes a lot more typing though!

Did you know that
changing one data
type into another
like this is called

casting?

5454Chapter 4: A fully working calculator

Testing and debugging
The calculator is nearly finished. The next stage is to test it thoroughly and note down the
problems. Try the following calculations and put them in a debugging table like the one below.

Test calculations:

7*2,  7/2,  7+2,  7−2,  7*(7+2),  10/2,  10/6,  10/3,  7*(7+2))

Table 4.1 The start of a debugging table.

Sum Output OK?

7*2 14 ✓

7/2 3.5 ✓

Two problems should emerge from this process:

•	 �Any unexpected input such as an extra bracket produces an error in the console and no
response in the calculator.

•	 �The results of some division calculations are unexpected
(e.g. 10/3 produces 3.3333333333333335 where we would expect 3.3333333333333333).

Catching errors

We can solve the first problem with a common coding technique we met first in Chapter 2:
we catch errors and handle them with helpful messages. In Python this is done by putting
the function that might not work after a try: clause. We then handle the error, if there is
one, after an except: clause.

5555Chapter 4: A fully working calculator

You should now alter your click() method so it looks like the code in Code Box 4.5.

key press function:
def click(key):
 # pressing equals key means calculate:
 if key == "=":
 try:
 result = str(eval(display.get()))
 display.insert(END, " = " + result)
 except:
 display.insert(END, " --> Error!")

 # pressing C key means clear screen:
 elif key == "C":
 display.delete(0, END)

 # add other key-pressed values to end of current entry:
 else:
 display.insert(END, key)

Code Box 4.5

Now run this and see how it handles any entry that does not actually make
sense such as 7*(7+2)), which has an extra bracket.

The second problem we have to solve is that when our calculator
tries to work out 10/3 it unexpectedly rounds up at some point.

I have a particular
talent at thinking
up strange things
you could do with

apps!

It is very important to try and think
of all the unusual things that users

could try in your applications and
sort them out if your apps are not

going to constantly go wrong.

5656Chapter 4: A fully working calculator

Binary division does not
even appear in ‘A’ Level

maths at the moment, so
the Delving Deeper section
is just for our readers who

are gifted mathematicians.

Computers store numbers on silicon chips. Each location on the chip can either have a negative charge or not.
This means computers normally do maths in base two (usually called binary), where each memory location
is equal to either 0 or 1. It is as if you only had one finger on each hand! No other numbers are allowed. Here
are some decimal numbers with their binary equivalents:

Decimal (base 10) Binary

1
2
3
4
5
6
7
8

1
10
11
100
101
110
111
1000

The problem arises when computers try and represent 0.1 in base 10 as a binary number:

	 0.1 (in base 10) = 0.00011001100110011001100 … (in binary)

This is the same as what happens when you divide two by three in base 10, which as a decimal equals
0.66666… . Unfortunately, it is not possible for computers to represent 0.1 accurately as a simple binary number
either. This means it always has to be rounded at some point – which necessarily introduces some inaccuracy.

Delving Deeper

Our normal number system is called
base 10 because we use ten digits:

0, 1, 2, 3, 4, 5, 6, 7, 8 and 9.
Binary is called base 2 because it

only uses two digits: 0 and 1.

Wow Mr Campbell, I
thought doing division in

base 10 was hard!

5757Chapter 4: A fully working calculator

Computers normally do division this way:

1	 Convert the two base 10 numbers to binary: 10/3 becomes 1010/11
2	 Do the division in binary: 1010/11 = 11.01010101010 … (At this point we require some rounding of the

answer as otherwise it goes on for ever.)
3	 Convert back to base 10: 3.33333333333333348136306995

Computers cannot easily do accurate division!

This turns out to be quite a complicated problem to solve – currently our calculator does all its division exactly
this way.

There is an easy way to solve this problem. It is to give the answer to an acceptable
number of decimal places, well before Python has done its rounding. We need to slice
the result, like this:

result = display.get() # store the contents of entry in a variable
result = eval(result) # use the eval() function to do the calculation
result = str(result) # cast to a string.

slice the result to show characters 0 to 10
(ie 10 digits and a decimal point):
result = result[0:10]

The beauty of typing less

This can be written with far less code though – by nesting some of these function calls like this:

result = str(eval(display.get()))[0:10]

5858Chapter 4: A fully working calculator

So now you can amend your calculator and test it by adjusting the file to incorporate the
changes in Code Box 4.6. After making these changes and saving, you should have a fully
functioning simple calculator.

myCalculator.py

from tkinter import *

key press function:
def click(key):
 # pressing equals key means calculate:
 if key == "=":
 try:
 result = str(eval(display.get()))[0:10]
 display.insert(END, " = " + result)
 except:
 display.insert(END, " --> Error!")

 # pressing C key means clear screen:
 elif key == "C":
 display.delete(0, END)
 # add other key-pressed values to end of current entry:
 else:
 display.insert(END, key)

Code Box 4.6

The calculator
works!

Ahem, I never
doubted it.

5959Chapter 4: A fully working calculator

Chapter summary
In this chapter you have:

•	 learned more about default values in functions
•	 learned some more about testing and debugging
•	 learned about catching and handling errors
•	 delved deeper into binary numbers and how computers do sums
•	 produced a fully working calculator
•	 learned how to slice strings.

After all that hard work, its time to play with the calculator before we start to show you how
to customise it in the final two chapters.

Go back and try out your debugging table again and check that the calculator now
handles all the test input as we would hope.

Idea 1

Try out your new calculator on some real problems. Then compare the answers with
another calculator.

Idea 2

I love maths so much!

6060Chapter 4: A fully working calculator

If you have never done any binary maths before, read the section on binary numbers in
Appendix 2. This explains how to convert binary numbers to and from decimal numbers.

Idea 3

If you tried Idea 3 but decided not to read the Delving Deeper section earlier in this
chapter…and if your brain does not ache yet – you could go back and read it now!

Idea 4

61Chapter 5: Customising the calculator

Chapter 5
Customising the calculator

In this chapter you will:

•	 lay out a customisable calculator

•	 create some fully functioning constant buttons

•	 start a module to hold the functions for our programmable buttons

•	 learn a little more about how to organise code in applications.

6262Chapter 5: Customising the calculator

Adding more buttons
In Chapter 4 you produced a simple calculator that does all the things that a normal
calculator does. In this chapter you will add some more buttons that you can program to do
exactly what you want.

Adding a set of buttons for constants

There is nothing new here. So let’s just get typing!

Open myCalculator5_start.py from the Chapter 5 folder on the companion website. This
contains a clean copy of the code we have produced so far with some comments indicating
where to add the new bits of code. After having a quick look at the file to check you recognise
everything, add the code from Code Box 5.1 where indicated.

Calculators can sure have
a lot of buttons!

create constants_frame
constants = Frame(window)
constants.grid(row=3, column=0, sticky=W)

constants_list = [
'pi',
'speed of light (m/s)',
'speed of sound (m/s)',
'ave dist to sun (km)']

create constants buttons with a loop
r = 0
c = 0

Code Box 5.1

6363Chapter 5: Customising the calculator

Notice that the new buttons we have added are for set values that do not change; for
example, the speed of sound is a fixed scientific value. Therefore, these buttons are constants
(you met constants in Chapter 2). If you run this script you will find that the constant
buttons are now in the correct place and print their names in the calculator’s display.

Adding a set of buttons for the functions

Let’s look again at the image of our new and improved calculator:

for btn_text in constants_list:
 def cmd(x=btn_text):
 click(x)
 Button(�constants, text=btn_text, width=22, command=cmd).grid(row=r, column=c)
 r = r+1

6464Chapter 5: Customising the calculator

The four buttons in the bottom right-hand corner are called function buttons
because they apply a set function to a number you enter into the calculator.
See if you can produce the code to make the function buttons. An answer is
below in Code Box 5.2 but you should be able to do this yourself without looking.
Use the code for the constants as your guide and think about what columns and
rows you need.

create functions_frame
functions = Frame(window)
functions.grid(row=3, column=1, sticky=E)

functions_list = [
'factorial (!)',
'-> roman',
'-> binary',
'binary -> 10']

create functions buttons with a loop
r = 0
c = 0
for b in functions_list:
 def cmd(x=b):
 click(x)
 Button(�functions, text=b, width=13, command=cmd).grid(row=r, column=c)
 r = r+1

Code Box 5.2

The ‘Roman’ button on
the calculator represents

‘Roman numerals’ – you
know: i, ii, iii, etc.

6565Chapter 5: Customising the calculator

Now check that your calculator shows the names of all the new buttons.

The object here is to produce your very own calculator that does what you want. The functions in this book
are unusual examples that might inspire you to attach functions that are not on everyone else’s calculators.
If however, you want to add some more traditional functions such as x2 or √ they are easy to add using the **
operator that raises a number to a given power:
def square(n):
 return n**2

def square_root(n)
 return n**0.5

If you do not understand this ask your maths teacher.

Delving Deeper

Attaching the constants to the buttons

It is easy to attach the constants to the buttons. We will add the required code to the click()
function by looking out for the new buttons with more elif statements. Continue amending
myCalculator5_start.py by adding the new code from Code Box 5.3 and then test out
the pi button. You will be adding your own constants in no time.

 # now for the constant buttons:
 elif key == constants_list[0]:
 display.insert(END, "3.141592654")

Code Box 5.3

6666Chapter 5: Customising the calculator

Try to complete the others yourself. When the pi button works, try adding the code so that
the other constant buttons work too. Here are their values:

•	 The speed of light: 300000000m/s.

•	 The speed of sound: 330m/s.

•	 The average distance to the sun: 149597887.5km.

If you are successful, the buttons should all work as expected. Check them out. If you have
any difficulties that you cannot solve yourself, code that works is provided in Code Box 5.4.

now for the constant buttons:
elif key == constants_list[0]:
 display.insert(END, "3.141592654")
elif key == constants_list[1]:
 display.insert(END, "300000000")
elif key == constants_list[2]:
 display.insert(END, "330")
elif key == constants_list[3]:
 display.insert(END, "149597887.5")

Code Box 5.4

My favourite constant
is Avogadro’s constant,

which is:
602 200 000 000 000

000 000 000

6767Chapter 5: Customising the calculator

Getting the function buttons organised

To keep our code as easy to read and as flexible as possible, we are going to store the
functions in a separate file. You might remember from Python Basics that a file that
contains functions is called a module. Can you remember what we do to make a
module available to your apps? We import it. First, we need to add the line of code
that will import this file, to the beginning of the program. We can then add lines of
code to the click() function that will go and get the functions we require.

In the Chapter 5 folder in the source code from the companion website there is a module
called calc_functions.py. It has a skeleton structure that provides functions that simply
print out the name of the function buttons when they are pressed. You can examine
it in Code Box 5.5.

Putting your functions in a
separate module is a good idea

because the module can be used to
store lots of functions. You will

never need to delete functions: they
can be added or removed from

your calculator by making a button
as you wish. The functions will also
be available to other applications if

you need them in the future.

function module for calculator application in Python: Next Steps

Factorial function:
def factorial(n):
 return "factorial (!)"

Convert to roman numerals function:
def to_roman(n):
 return "-> roman"

Convert base 10 numbers to binary function:
def to_binary(n):
 return "-> binary"

Code Box 5.5

(continues on the next page)

6868Chapter 5: Customising the calculator

Your job now is to amend myCalculator5_start.py by replacing the first three lines by
the contents of Code Box 5.6.

myCalculator.py

from tkinter import *
import calc_functions

Code Box 5.6

There are two ways to import modules:

1	 Use the structure: import calc_functions. When we use this, we must call the functions in our programs
with a reference to that module: calc_functions.factorial(n).

2	 As we use the methods from the tkinter module so often, we choose to import it differently:
from tkinter import *. This way of importing modules means that when we call a function
from that module in our program we no longer need to precede it with a reference to that module file:
grid(row=r, column=c)

Both systems are shown in this book because you will see examples of both in other Python code you meet. If
you know what is going on you shouldn’t get confused.

Delving Deeper

The code that calls the factorial() function when the factorial button on the calculator
is pressed is supplied in Code Box 5.7. Currently, this takes the entry from the calculator
display and returns the name of the button. Later on it will work out what the answer is.
Add the code to call this function from Code Box 5.7 and try it out to see how this works.

Convert base 2 numbers to base 10 function:
def from_binary(n):
 return "binary -> 10"

6969Chapter 5: Customising the calculator

now for the function buttons:
elif key == functions_list[0]:
 n = display.get() # collect display value
 display.delete(0, END) # clear display
 display.insert(END, calc_functions.factorial(n))

Code Box 5.7

Before testing this, read it carefully and try to predict what you think will happen.

What do we expect?
1	 The answer will be calculated correctly.
2	 There will be an error message.
3	 The display will be cleared and the name of the button will appear.
4	 The name of the button will be added to the end of the display.

Quick Quiz 5.1

Your job now is to sort out the other three buttons in the same way. Here are the function
names in calc_functions.py:

•	 to_roman(n)
•	 to_binary(n)
•	 from_binary(n)

7070Chapter 5: Customising the calculator

One way of doing this is shown in Code Box 5.8. It involves copying and pasting so
could probably be improved. Try to work out what is required yourself before looking
at this answer.

now for the function buttons:
elif key == functions_list[0]:
 n = display.get() # collect display value
 display.delete(0, END) # clear display
 display.insert(END, calc_functions.factorial(n))

elif key == functions_list[1]:
 n = display.get() # collect display value
 display.delete(0, END) # clear display
 display.insert(END, calc_functions.to_roman(n))

elif key == functions_list[2]:
 n = display.get() # collect display value
 display.delete(0, END) # clear display
 display.insert(END, calc_functions.to_binary(n))

elif key == functions_list[3]:
 n = display.get() # collect display value
 display.delete(0, END) # clear display
 display.insert(END, calc_functions.from_binary(n))

Code Box 5.8

From now on all we need to do is adjust the code in the calc_functions.py module.

I remember how to do this!
calc_functions.to_roman(n)
means ‘run the to_roman() function
in the calc_functions module
and send it the value stored in n as its
argument’.

7171Chapter 5: Customising the calculator

Chapter summary
In this chapter you have:

•	 built the user interface for a customisable calculator
•	 created some fully functioning constant buttons
•	 imported a module that will hold the functions for our programmable buttons
•	 learned a little more about how to organise code in applications.

You now have a calculator with eight programmable buttons. And more importantly, you
are already getting very good in the language that is used to program this calculator. The
challenges below will encourage you to start this process.

Choose one of the function buttons and rename it square. Then in the
calc_functions.py file add the code to add this functionality. If you need
to you can look back at page 65 in the Delving Deeper section to help you do this.

Challenge 1

Choose another one of the function buttons and rename it sqrt. Then in the
calc_functions.py file add the code to add this functionality. Again you can
look back at page 65 in the Delving Deeper section if you need to.

Challenge 2

7272Chapter 5: Customising the calculator

Refactor the repetitive code in Code Box 5.7 so that the two repeating lines are only
coded once.
Hint: You will need to have a separate if elif elif else structure inside a single
elif statement.

Challenge 3

•	 Start to think about what you would like your calculator to be able to do in the future.
•	 Add some more code to the other two buttons that you think might be useful to you.
•	 Find out what the mathematical function factorial does.
•	 �Use the calculator to work out how many minutes it takes light from the sun to get to

Earth.
•	 �See how far you can go when writing out Roman numerals without using our

calculator.
•	 �Practise converting binary numbers to decimals and back using the instructions in

Appendix 2.
•	 �Make a cute little calculator by changing all the button sizes again.
•	 �Make a giant-screen-filling-monster of a calculator.

Ideas

Sometimes you might
see something like
1.8E+7 in the

calculator display. This
means 1.8 × 107 ,

which is another way of
writing 18 000 000.

7373Chapter 5: Customising the calculator

What’s next?

If you wish to stop here that is fine. You have a fully functioning calculator that you can
customise by changing the constant buttons and the function buttons. If you are not going
any further you might like to add some of the functions from the calc_functions.py file
to your calculator. You can find the code in calc_functions.py on the companion website
in the ‘Final’ folder that is within the ‘Bonus Chapter’ folder. There is also a copy of the final
calc_functions.py file provided for you to study in Appendix 3.

The Bonus Chapter explains how computer scientists use algorithms to create functions like
these. Although some of the material is quite hard, it is very interesting. Even if you do not
understand it all, you will learn lots!

74Bonus chapter: Algorithms

Bonus chapter
Algorithms

In this chapter you will:

•	 add code to the programmable buttons

•	 learn about algorithms

•	 complete the calculator project

•	 learn about factorials

•	 learn how to convert numbers to Roman numerals.
Ahem, what is this,

‘play time’?!

7575Bonus chapter: Algorithms

An introductory note
In this chapter we are not going to alter the myCalculator.py file. However, when testing
the calculator, this is still the file that needs to be opened and run. We will do the work of
this chapter on the calc_functions.py script that you met for the first time in Chapter 5.
You should begin with the files supplied in the sub-folder called ‘Start’ that can be found
within the folder called ‘Bonus Chapter’ you have downloaded from the companion website.
There is also a final version of the files myCalculator.py and calc_functions.py within
the sub-folder called ‘Final’, but you should only refer to this if you get stuck. Please be aware
this is an interesting but difficult chapter!

Developing algorithms
An algorithm is a step-by-step recipe, or a set of rules, that solves a problem. For example,
sorting a list of words into alphabetical order is an important thing for computers to do.
There are many ways of solving this simple problem. A lot of research has gone into finding
the most efficient algorithm because it is such an important task.

Here is an algorithm for making a cup of coffee:

	 1	 Get a mug.
	 2	 Add 1 teaspoon of instant coffee to the mug.
	 3	 Add water to a kettle.
	 4	 Boil the water.
	 5	 Add the boiling water to the mug to within 2 cm of the top.
	 6	 Get the milk from the fridge.
	 7	 Add 1 cm depth of milk to the mug.
	 8	 Put the milk back in the fridge.

I cannot get through
the day without at

least one cappuccino.

7676Bonus chapter: Algorithms

These are the kind of precise instructions a computer or robot would require to make a cup of
coffee. When creating computer applications we often use functions that have algorithms in
them. There are a number of ways of doing this. Some coders write flow diagrams. Some just
write it out as it comes to them and figure it out as they go along. Others try to write out the
algorithm in simple terms first and then write the code. The ‘just-write-it’ method is not the
best choice and often results in far more work in the end than the other two. In this chapter
we write two algorithms and use a different approach to write each one.

The factorial function
Factorials may be new to you. In maths lessons we might write 5! and we would say
‘five factorial’.

	 5! = 5 × 4 × 3 × 2 × 1

	 = 120

You may be thinking that this will need a loop. Notice how you are now thinking like a
coder. The method we will use this time is to have a first go at writing the algorithm and
then turn it into code. Here is the algorithm:

	 1	 Assign the target number to a variable: n.
	 2	 Create a variable to store the answer: ans.
	 3	 Make ans equal to n.
	 4	 Reduce n by 1.
	 5	 Make ans equal to itself times by n.
	 6	 Continue doing this until n equals 1.

7777Bonus chapter: Algorithms

We should now be confident that we will be able to write some code to do this.

Open calc_functions.py from the ‘Start’ folder in the ‘Bonus Chapter’ folder and add the
code from Code Box 6.1. Note this will produce an error when you run it. The Quick Quiz
should help you work out why.

Factorial function:
def factorial(n):
 ans=n # set initial value of answer before loop
 while n>1:
 ans=ans*(n-1)
 n=n-1
 return ans

Code Box 6.1

Why is our function not working?
	 1	 The code works but produces the wrong answer.
	 2	 The while loop never ends.
	 3	 There is an error in the algorithm.
	 4	 The calculator script is passing a string to the function rather than an integer.

Quick Quiz 6.1

The clue is in the last line of the error message. To solve this we need to add a line that casts
the string into an integer. Fix this with the code in Code Box 6.2.

7878Bonus chapter: Algorithms

Factorial function:
def factorial(n):
 n=int(n) # cast the string argument to an integer
 ans=n # set initial value of answer before loop
 while n>1:
 ans=ans*(n-1)
 n=n-1
 return ans

Code Box 6.2

Testing and debugging time

If you run the calculator now you should find that the factorial function works quite well.
Did you know that 0! = 1. Our calculator doesn’t!

Try to complete a debugging table, like you did in Chapter 4, to see if you can spot any other
problems:

Test input:

5, 0, 7−2, 3.2, 50, 5+2 = 7

Table 6.1 The start of a debugging table.

Entry Expected result Actual result

5 120 120

0 1 0

7979Bonus chapter: Algorithms

This should throw up several issues:

•	 �zero factorial is a special case
•	 �if the number gets too large the answer does not fit on the screen and can cause the

calculator to stop working
•	 �you cannot have a factorial of a negative number
•	 �you cannot have a factorial of a decimal number.

The bug fixes can be added by copying the code from Code Box 6.3 in place of the faulty code.

Factorial function:
def factorial(n):
 try:
 n = int(n)
 except:
 return "--> Error!"

 # '0' is special:
 if n == 0:
 return 1

 # back out if too large:
 if n > 40:
 return "--> Answer will not fit on screen!"

Code Box 6.3

(continues on the next page)

The number 40 was
chosen by experimentation

to see which number
pushed the answer beyond

the display. It was 41.

8080Bonus chapter: Algorithms

 #catch negative numbers:
 if n < 0:
 return "--> Error!"

 # apply factorial algorithm
 ans=n # set initial value of answer before loop
 while n > 1:
 ans = ans*(n-1)
 n = n-1
 return ans

Analysis of Code Box 6.3

If the input from the display is not an integer we need to catch the error with try: except:

Next we solve the 0! special case with an if clause.

We can solve the problem of large numbers in a similar way. This is important because large
numbers ask the computer to work very hard and may cause the calculator to stop working.

Finally we have to deal with the negative numbers because they cannot produce a factorial.
All we have to do is test for numbers less than zero.

8181Bonus chapter: Algorithms

The Roman numeral function
To convert an integer into a Roman numeral requires another algorithm. This time we will
try and work out the code by using a flow diagram.

Flow diagram for converting to Roman numerals.

Convert n into an integer.String n

Y

Y

Y

Y

N

N

N

N

END

Can we subtract
1?

Is n > 4999?
print error
message

Write M

Write CM

Write 1

Can we subtract
1000?

Can we subtract
900?

At this point we repeat this process for 500, 400, 100, 90, 50, 40, 10, 9, 5 and 4
writing ‘D’, ‘CD’, ‘C’, ‘XC’, ‘L’, ‘XL’, ‘X’, ‘IX’, ‘V’ and ‘IV’ respectively.

Our flow diagram suggests we need a tuple to store the set of numbers: 1000, 900, 500,
etc. so we can loop through them; we also need a dictionary to store which letter(s) they
correspond to so we can look them up. This can be achieved in several ways without the

Bigger numbers can be
made by putting a bar over
a letter. The bar indicates
a 1000 times the normal

value, so V
-

 is 5000
and M

-
 is a million.

8282Bonus chapter: Algorithms

need for many lines of code. Copy out the code from Code Box 6.4 into the correct place in
calc_functions.py you have been working on. Think carefully about how it works as you
type.

It is too early in your programming knowledge to expect you to be able to do this without
giving you the code in Code Box 6.4. But, if you are keen to try, then do not look at Code
Box 6.4 as this is the answer! Instead, create the tuple and dictionary, use a for loop to go
through the tuple and see if you can solve this tricky puzzle.

Challenge

Convert number to roman numerals:
def to_roman(n):
 try:
 n = int(n)
 except:
 return "--> Error!"

 # opt out of numbers greater than 4999:
 if n > 4999:
 return "--> out of range"

 # create the tuple and dictionary:
 numberBreaks = (1000,900,500,400,100,90,50,40,10,9,5,4,1)
 letters = {1000 : "M", 900 : "CM", 500 : "D", 400 : "CD", 100 : "C",
 90 : "XC", 50 : "L", 40 : "XL", 10 : "X", 9 : "IX", 5 : "V",
 4 : "IV", 1 : "I" }

Code Box 6.4

8383Bonus chapter: Algorithms

 # start the algorithm:
 result = ""
 for value in numberBreaks:
 while n >= value:
 result = result+letters[value]
 n = n-value
 return result

Analysis of Code Box 6.4

Although this is a tricky algorithm to convert into code, it introduces nothing that is new
to you. To work out how this code works all you need to do is compare it carefully with the
flow diagram on page 81.

The convert to binary function
Python already has functions that can be used to convert from one base to another, so this
function is very simple to program. Although we will wrap it in try: and catch: you only
need to focus on two lines of code:

n = int(n)
return bin(n)[2:]

The first line converts the string that is sent from the display to an integer.

At first I couldn’t work
this one out.

It isn’t too difficult to
see how it works when
you look through the

solution though.

8484Bonus chapter: Algorithms

What is the coder’s word for converting one data type into another?
	 1	 casting
	 2	 throwing
	 3	 catching

Quick Quiz 6.2

The second line uses Python’s bin() function. This function returns a binary number as a
string but precedes it with 0b:

>>> bin(10)
'0b1010'

To display what we want, we must strip off the first two characters. Because the returned value
from the bin() function is a string, we can simply slice it by adding [2:] after the function call.
This says: only return the characters from index 2 and beyond. Just what we want!

Now copy the code from Code Box 6.5 into calc_functions.py to get this button working.

Convert base 10 numbers to binary function:
def to_binary(n):
 try:
 n = int(n)
 return bin(n)[2:]
 except:
 return "--> Error!"

Code Box 6.5

8585Bonus chapter: Algorithms

The final function
Again, Python already has a built-in function to cast to an integer, int(). Normally we
do not give it any other argument other than a number string. If we are giving it a binary
string we need to supply an optional argument which is the base. The default, if we do not
supply it, is base 10 but we need to tell the int()function what we are doing if we supply
a binary number:

>>> int("100", 2)
4

Now copy the code from Code Box 6.6 into calc_functions.py to finish your fully working
programmable calculator.

Convert base 2 numbers to base 10 function:
def from_binary(n):
 try:
 return int(n, 2)
 except:
 return "--> Error!"

Code Box 6.6

There are many other functions that you can attach to your buttons. Instead of recoding
them you could actually add more buttons if you prefer. A good place to start is to look at
other calculators and see if there is anything that they do that you want your calculator to
be able to do too.

Have fun!

8686Bonus chapter: Algorithms

Chapter summary
In this chapter you have:

•	 learned how to calculate factorials
•	 learned about algorithms
•	 added code to the programmable buttons
•	 found how to convert numbers to roman numerals
•	 learned more about casting
•	 completed the calculator project.

There are many options available to you now. The easiest changes to make are to the
constant buttons. Below are a few other ideas.

•	 �Change the size of the calculator again by making the buttons smaller and tweaking
the widths of the display.

•	 Change the colour of the display.
•	 Change the function buttons to some of your favourites.

Ideas

Once you understand the basics of a programming language, it is an important skill to be
able to look through other people’s code and work out how it works. When you do this, do
not worry if you do not understand everything. Just be ready to learn.

Just as with Python Basics, a bonus app is provided, which is called myCalculatorPlus.py.
It can be found in the ‘Bonus’ folder in the ‘Bonus Chapter’ folder in the source code file

8787Bonus chapter: Algorithms

(if you have not already peeked!). This adds a further button at the bottom of the calculator
that runs a neat little game. This game is all about converting binary numbers to base 10.

When you press the ‘play time’ button you will find a binary number presented in the
calculator display. The object of the game is to clear ten binary numbers as fast as you
can. To clear the random binary number displayed press the calculator number key that
corresponds to it. If you get it correct, a new number will appear. When you have completed
ten numbers the game tells you how long you took.

This, of course, gives an opportunity to provide further ideas!

•	 �Try to make the timer more accurate.
Hint: Look out for the comment telling you where a string has been truncated to five
characters.

•	 �Make the game easier for younger children by turning it into a kind of ‘whack-a-
mole game’ by displaying the actual button numbers that have to be hit, instead
of the binary version.

•	 �Change the game so that it shows a Roman numeral in the display and you have to
hit the correct number button.

Further ideas

What is going on?
Is there really a bonus

app in this bonus
chapter? Surely this is

a bonus bonus?

8888Bonus chapter: Algorithms

�Make a copy of myCalculatorPlus.py and change the game so
that it does the following:

•	 �Asks the player: ‘Choose a times table to practise.’
•	 �If the user has chosen the 5 times table then the calculator

should randomly display a number from the set: 0, 5, 10, 15, 20,
25, 30, 35, 40 and 45. To clear them and go onto the next one
the user would type 0, 1, 2, 3, 4, 5, 6, 7, 8 or 9, respectively.

A harder idea Wow, this will really
help me get fast at

my times tables!

OK, so you think you can code now? Here is a serious challenge for you! If you look at the code for converting
numbers to Roman numerals you will see there is an unnecessary repeat of information. The values in the tuple
are also in the dictionary. Surely we do not need both? Well, you don’t, but you will have to replace both with a
very useful construct: a tuple of tuples:
romans =	(
		 (1000, "M"), (900, "CM"), (500, "D"), (400, "CD"), (100, "C"), (90, "XC"),
		 (50, "L"), (40, "XL"), (10, "X"), (9, "IX"), (5, "V"), (4, "IV"), (1, "I")
)

Puzzle

8989Bonus chapter: Algorithms

Study this interactive session:

Python 3.1.3 (r313:86834, Nov 28 2010, 10:01:07)
[GCC 4.4.5] on linux2
Type "copyright", "credits" or "license()" for more information.
==== No Subprocess ====
>>> romans = ((1000, "M"), (900, "CM"), (500, "D"), (400, "CD"), (100, "C"),
(90, "XC"), (50, "L"), (40, "XL"), (10, "X"), (9, "IX"), (5, "V"), (4, "IV"),
(1, "I"))
>>>
>>> romans
�((1000, 'M'), (900, 'CM'), (500, 'D'), (400, 'CD'), (100, 'C'), (90, 'XC'),
�(50, 'L'), (40, 'XL'), (10, 'X'), (9, 'IX'), (5, 'V'), (4, 'IV'), (1, 'I')
)
>>>
>>> romans[0]
(1000, 'M')
>>>
>>> romans[0][0]
1000
>>>
>>> romans[0][1]
'M'
>>>
>>> len(romans)
13
>>>

Now rewrite the Roman numerals code in calculator_functions.py so that it uses the tuple of tuples rather
than a tuple and a dictionary.
Good luck. There is an answer provided on the companion website, if you get stuck.

9090Taking things further

Taking things further
When you have finished this book we hope you will want to continue to learn to code. Here
are some other places and resources you might like to look.

More Python

Other books in the series, found at the companion website (www.codingclub.co.uk).

The official Python documentation: http://docs.python.org/py3k/

The Python chapter in the Raspberry Filling guide:
http://downloads.raspberrypi.org/Raspberry_Pi_Education_Manual.pdf.

PyGame website: this site provides a set of modules that need to be downloaded that help
with making games. It has a community of Python coding enthusiasts and enables you to
post your games for others to play. Find it at www.pygame.org/

Other programming languages

A great next programming language might be Java. Java is very similar to the languages
in the C family and would provide you with your first taste of a language that uses curly
brackets. There are some great resources available. Perhaps the best place to start might be
with Greenfoot. Java makes extensive use of classes and objects though, so you might prefer
to do this after reading Python: Building Big Apps. This more advanced book introduces these
concepts in Python which you are already familiar with.

Java Programming: www.greenfoot.org/

file:///Y:/production/C_Club_NextSteps_TS_151012_EDU/Typesetting/Production/Firstproofs/styling/www.codingclub.co.uk
http://docs.python.org/py3k/
http://www.pygame.org/
http://www.greenfoot.org/

9191Appendix 1

Appendix 1
Some key bits of information
The companion website

Website: www.codingclub.co.uk

The companion website has the answers to the puzzles and challenges in the book, and the
complete source code including start files and bonus code. You will also find information
about other books in the series, character profiles and much, much more.

Adding a series of buttons with a for loop

for btn_text in button_list:
 def cmd(x=btn_text):
 # The function attached to the button with its label passed as an argument:
 click(x)
 Button(�num_pad, text=btn_text, width=5, command=cmd)

Catching errors

def my_function(args):
 try:
 # your code goes here
 except:
 return "--> Error!"

http://www.codingclub.co.uk

9292Appendix 1

tkinter widgets

label
entry

button

label
text box

Here is some outline code for some widgets inside a window object called window created
with this line of code:

window = Tk()

my_frame = Frame(window)
my_label = Label(my_frame, text="My text goes here")
my_text_entry_box = Entry(my_frame, width=20, bg="light green")
my_button = Button(�my_frame, text="SUBMIT", width=5,

command=[the function name to be called goes here])
my_text_box = Text(�my_frame, width=75, height=6, wrap=WORD, background="light green")

Container data type summary

The table below provides a list of useful functions that you can use on strings, tuples, lists
and dictionaries. The table below assumes these containers have been created:

>>> s = "bar" # a string
>>> t = ("b", "a", "r") # a tuple
>>> l = ["b", "a", "r"] # a list
>>> d = {1:"b", 2:"a", 3:"r"} # a dictionary

9393Appendix 1

Table A1 Some useful functions.

Function Strings Tuples Lists Dictionaries

print all >>> print(s)
bar

>>> print(t)
('b', 'a', 'r')

>>> print(l)
['b', 'a', 'r']

>>> print(d)
{1: 'b', 2: 'a', 3: 'r'}

print
element

>>> print(s[2])
r

>>> print(t[2])
r

>>> print(l[2])
r

>>> print(d[2])
a

combine >>> a=s+"f"
>>> a
'barf'

>>> a=t+("f",)
>>> a
('b', 'a', 'r', 'f')

>>> a=l+["f"]
>>> a
['b', 'a', 'r', 'f']

add an
element

Strings cannot
be altered.

Tuples cannot be
altered.

>>> l.append("f")
>>> l
['b', 'a', 'r', 'f']

>>> d[4]="f"
>>> d[4]
'f'

sort Strings cannot
be altered.

Tuples cannot be
altered.

>>> l.sort()
>>> l
['a', 'b', 'r']

>>> sorted(d)
['1', '2', '3']
>>> sorted(d.values())
['a', 'b', 'r']

delete an
element

Strings cannot
be altered.

Tuples cannot be
altered.

>>> del l[1]
>>> l
['b', 'r']

>>> del d[1]
>>> i
{2:'a', 3:'r'}

replace
element

Strings cannot
be altered.

Tuples cannot be
altered.

>>> l[0]="c"
>>> l
['c', 'a', 'r']

>>> d[1]="c"
>>> print(d)
{1: 'c', 2: 'a', 3: 'r'}

find >>> i.find("b")
0

>>> t.index("b")
0

>>> l.index("b")
0

get
length

>>> len(s)
3

>>> len(t)
3

>>> len(l)
3

>>> len(d)
3

9494Appendix 2

Appendix 2
Binary numbers

To understand binary numbers it is best to remind ourselves how base 10 numbers work. Each
column, starting from the right, stores values that are 10 times as large as the previous column.

e.g. The number 347 has 7 units, 4 tens, 3 hundreds and no thousands:

thousands hundreds tens units

3 4 7

So we get 347 by adding:

	 (3×100)	 +	 (4×10)	 +	 (7×1)

In binary, or base 2 as it is sometimes called, the system is the same except each column is
worth two times the preceding column:

e.g. 1101 (or 13 in base 10) has 1 unit, zero twos, 1 four, and 1 eight:

eights fours twos units

1 1 0 1

So we can see 1101 in binary is 13 in base 10 by adding:

	 (1×8)	 +	 (1×4)	 +	 (0×2)	 +	 (1×1)

9595Appendix 2

Thus if you want to work out what the value of a binary number is in base 10 you can write
on your fingers and work it out like this:

16

8
4

2

1
512

256
128 64

32

So 1101 can be represented like this:

8
4

1

9696Appendix 3

Appendix 3
Calculator functions source code

calc_functions.py
function module for calculator application in Python: Next Steps

Calculate the factorial of a number:
def factorial(n):
 try:
 n = int(n)
 except:
 return "--> Error!"

 # '0' is special:
 if n == 0:
 return 1

 # back out if too large:
 if n > 40:
 return "--> Answer will not fit on screen!"

 # catch negative numbers:
 if n < 0:
 return "--> Error!"

 # apply factorial algorithm:

9797Appendix 3

 ans=n # set initial value of answer before loop
 while n > 1:
 ans = ans*(n-1)
 n = n-1
 return ans

Convert number to roman numerals:
def to_roman(n):
 try:
 n = int(n)
 except:
 return "--> Error!"

 # opt out of numbers greater than 4999:
 if n > 4999:
 ans = "--> out of range"
 return ans

 # start algorithm:
 numberBreaks = (1000,900,500,400,100,90,50,40,10,9,5,4,1)
 letters = {�1000 : "M", 900 : "CM", 500 : "D", 400 : "CD", 100 :

"C", 90 : "XC", 50 : "L", 40 : "XL",
 �10 : "X", 9 : "IX", 5 : "V", 4 : "IV",
 1 : "I" }
 result = ""
 for value in numberBreaks:
 while n >= value:
 result = result+letters[value]
 n = n-value
 return result (continues on the next page)

9898Appendix 3

Convert base 10 numbers to binary function:
def to_binary(n):
 try:
 n = int(n)
 return bin(n)[2:]
 except:
 return "--> Error!"

Convert base 2 numbers to base 10 function:
def from_binary(n):
 try:
 return int(n, 2)
 except:
 return "--> Error!"

9999Glossary and index

Glossary and index
algorithm	�� step-by-step instructions to perform a task that a computer can understand� 75

argument	� a piece of information that is required by a function so that it can perform its
task; usually a string or number, my_function(arguments go here)� 29

binary number	� a number represented in base 2� 56

bug	� a piece of code that is causing a program to fail to run properly or at all� 28

casting	� the process of converting one data type into another; e.g. sometimes a
number is stored as text but may need to be converted into an integer – this
can be done like this: int("3")� 53

commenting	� some text in a computer program that is for the human reader and is ignored
by the computer when running the program – in Python all comments begin
with a hash symbol #� 44

constant	� a number that does not change; it is good practice to name constants in
capitals e.g. SPEED_OF_LIGHT� 31

container	� container data types store groups of other data types, which may include
more containers; the containers used in this book are tuples, lists and dictionaries � 7

data types	� different types of information stored by the computer, for example floats,
integers, strings, tuples, lists and dictionaries � 7

100100Glossary and index

debugging	� the process of finding bugs in a program� 43

default	� a value given to an argument or variable as a starting point� 48

dictionary	� an unordered container data type that can store values of other data types as
key:value pairs � 15

equals operator	� the equals sign is used to assign a value to a variable in coding, e.g. n=2
assigns the value 2 to the variable n � 26

escape	� when characters that have certain meanings in Python are required in strings
they have to be “escaped” so that the computer knows they do not have their
usual meaning; this is done by putting a slash in front of them e.g. \"� 23

floats	 number data types that can have a decimal value� 7

for loop	� a kind of loop that is useful for iterating through container data types � 42

frame	� a tkinter widget that can contain groups of other widgets, used to help
organise the layout of complicated user interfaces � 42

function	� a reusable piece of code� 12

GUI	� stands for Graphical User Interface – a window with buttons and text entry
boxes is an example of a graphical user interface � 22

index	� the number that references a value in a string, tuple or list; each item in the
container data type is indexed from 0 for the first item, then 1 for the next etc� 8

101101Glossary and index

integers	 number data types that cannot have decimal values and must be whole numbers� 7

interactive mode	� this is when we use IDLE to try out snippets of code without saving them � 14

key	� the equivalent of an index in a string, tuple or list but for a dictionary; it is
defined by the programmer and can, for example, be a string, integer, float or
even a tuple in a key:value pair� 15

list		� an ordered container data type which can hold values of any type and can
have elements added or removed; like a tuple each element is indexed from 0� 14

loop	� a piece of code that keeps repeating until a certain condition is met� 39

method	� the name given to a function in a class � 13

module	� a saved Python file whose functions can be used by another program� 9

operator	� a symbol that performs a simple function on some code such as multiplying
two numbers or comparing them to see if they are equal; see also equals operator� 26

ordered containers	� ordered containers are container data types where the values stored are
indexed together with their position in the container, e.g. tuples and lists; a
dictionary is an example of an unordered container� 17

output	� data that is sent from a program to a screen or printer etc� 8

refactoring	� the process of changing the structure of code so it is less repetitive, more
readable, easier to maintain, etc� 39

102102Glossary and index

return	� (1) the value a function will produce after it has been run – it is also a Python
keyword; (2) the ‘end of line’ key on a keyboard, sometimes called the enter key� 12

slice	� the process of extracting sections of a string or container variable – sometimes
called array slicing � 57

statement	� used to mean a snippet of code; strictly speaking it is a piece of code that
represents a command or action, e.g. a print statement� 52

strings	� text data that can be stored in a variable � 7

tkinter	� a package of classes that are often imported into Python programs that
give methods that are useful for producing windows, drawing images and
producing animations� 22

tuple	� an ordered container data type whose values are indexed from 0; its contents
cannot be changed� 8

value	� anything that can be stored in a variable such as the elements in a container data type � 8

variable	� a name that refers to a place in a computer’s memory where data is stored;
more loosely, it can also be used to refer to that data� 12

while loops	� a kind of loop that repeats code while a comparing statement returns True � 42

widget	� an element of a GUI such as a button or text entry box� 24

103103Glossary and index

Some useful words

comparative operator	� sometimes called logic operators, they allow us to compare data in a program;
they include == and > (you can find others in Table 3 in the Appendix in Python Basics)�

local variable	� a variable that is defined inside a function and is only usable inside that function�

mathematical operator	� an operator that performs some mathematical function on some numbers,
e.g. multiplication or addition�

parameter	 another word for argument when being used in a function�

global variable	 a variable that is usable anywhere in a program�

hacking	� taking some previously written code and rewriting bits to make it do
something different�

IDE	� stands for Integrated Development Environment; IDLE is an example of one –
they are special text editors with useful tools built in for programmers�

IDLE	� stands for Integrated DeveLopment Environment; this is the IDE that comes
with a normal Python 3 install�

infinite loop	� a piece of code that keeps running forever; this is usually a bad thing�

execute 	� another word for run – to execute some code is to run it�

104104Glossary and index

script mode	 this is when we use IDLE to help us write code that we will save in a file�

syntax error	� an error produced when a computer fails to run a program because it cannot
recognise the format of the code supplied, e.g. a syntax error would be
produced if a closing bracket was missing�

105105The Quick Quiz answers

The Quick Quiz answers
Quick Quiz 1.1

	 1	 Tuple.
	 2	 List.
	 3	 Tuple.

Quick Quiz 1.2

	 1	 Dictionary.
	 2	 Tuple.
	 3	 Dictionary.
	 4	 List.

Quick Quiz 3.1

Because we have called the click () function with brackets
it will be called when the calculator buttons are created
rather than when they are pressed. The problem now is:
How do we supply an argument without brackets?

Quick Quiz 3.2

Answer = 3

Quick Quiz 4.1

Answer = 2

Quick Quiz 5.1

Answer = 3

Quick Quiz 6.1

Answer = 4

Quick Quiz 6.2

Answer = 1

106106Acknowledgements

Acknowledgements
It takes a great deal of effort to ensure that there are as few errors as possible appear in these
books. The typesetters, for example, have a difficult job ensuring that every space is counted
and colour change is made in the code boxes. My thanks go to Alex Bradbury, Marjory
Bisset, Anna Littlewood, Carl Saxton and Heather Mahy who have all helped immensely
with this process. Their care and attention to detail is greatly appreciated.

Producing three books in one year while holding down a full-time job can become all
consuming and this asks a lot from my family. My wife Rita and son Daniel’s patience with
my obsession is never taken for granted. Unfortunately my work colleagues also have to
put up with me occasionally mentioning this project. They never cease to act interested and
are a great source of encouragement to me, so my thanks go to all the staff at Ewell Castle
(except Mr. Blencowe who has ribbed me mercilessly).

The author and publisher acknowledge the following sources of copyright material and are
grateful for the permissions granted.

p. 7 Image Zoo/Alamy; p. 20 Mau Hong/Shutterstock

The publisher has used its best endeavours to ensure that the URLs for external websites
referred to in this book are correct and active at the time of going to press. However, the
publisher has no responsibility for the websites and can make no guarantee that a site will
remain live or that the content is or will remain appropriate.

	Cover
	Title
	Copyright
	Contents
	Introduction
	Chapter 1: Data types
	Chapter 2: Building GUIs
	Chapter 3: Designing a simple calculator
	Chapter 4: A fully working calculator
	Chapter 5: Customising the calculator
	Bonus chapter: Algorithms
	Taking things further
	Appendix 1: Some key bits of information
	Appendix 2: Binary numbers
	Appendix 3: Calculator functions source code
	Glossary and index
	The Quick Quiz answers
	Acknowledgements

