
www.cambridge.org/9781107658554
www.cambridge.org/9781107658554

Python
Basics

CodingClub

cambridge university press
Cambridge, New York, Melbourne, Madrid, Cape Town,
Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

www.cambridge.org
Information on this title: www.cambridge.org/9781107658554

© Cambridge University Press 2012

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 2012

Printed in Poland by Opolgraf

A catalogue record for this publication is available from the British Library

ISBN 978-1-107-65855-4 Paperback

Cambridge University Press has no responsibility for the persistence or
accuracy of URLs for external or third-party internet websites referred to in
this publication, and does not guarantee that any content on such websites is,
or will remain, accurate or appropriate.

www.cambridge.org/9781107658554
www.cambridge.org
www.cambridge.org/9781107658554
www.cambridge.org

3Contents 3

Introduction 4

Chapter 1: Python, IDLE and your first program 8

Chapter 2: Some text, some maths and going loopy 16

Chapter 3: Readable code and the MyMagic8Ball game 28

Chapter 4: Functions 45

Chapter 5: MyEtchASketch 55

Taking things further 73

Appendix 74

Glossary and Index 77

The Quick Quiz answers 81

Acknowledgements 82

Contents

4Introduction 4

Introduction
Why was this book written?

This book is the first in a series of books for anyone with little or no knowledge of computer
programming but who would like to give it a go.

Who is this book for?

One factor was the availability of a computer that any child could save up for or get for their
birthday, such as the Raspberry Pi from www.raspberrypi.org.

But my wish to produce a series of short books on coding goes back much further than that.
When I grew up, computers were very different from the PCs we use today. To play a game or
use a word-processor, you had to run the program by typing green text into an empty black
screen. But the great thing was, you could also type in your own commands and run them! It
was not long before I had written my first text-based game in a language called BASIC.

5Introduction 5

Later on, I wanted to learn a more modern language, and set about teaching myself Java. I
read four or five books and completed the examples, but at the end of each one I was left in
a dreadful situation: I had all sorts of ideas for programs I wished to make, but still no idea
how to start! I could make the exciting projects that were the focus of these books, but not
much else. So with this series of books, I have taken a different approach. I hope it will teach
you the skills you need to write any program you can imagine – eventually – and many
simple programs straight away.

Why should you choose this book?

After many years of looking, I finally found a great book on Java called Introducing Java by
David Parsons, published by Thomas Learning. It was for university students. Suddenly I
understood why we did certain things and how to start designing complex programs. If only
I had started with this book to begin with!

I want you, the reader, to learn not only how to make the programs in this book but also how
to design your own. I want you to be able to write programs well, so that if you take it further
and become the inventor of the next Google you will not have to unlearn bad programming
habits. Unlearning things, I should add, is a lot more difficult than you might imagine.

What needs to be installed?

You do not have to do this! Please ask a responsible adult to read the Introduction for Adults
page on the coding club website (www.codingclub.co.uk) so that they can get everything
organised for you. If you are able to do this by yourself then full instructions can be found at
http://python.org/download/. If you are going to learn to program on a Raspberry Pi, it will
be very easy to get things ready as it comes pre-installed with everything you need. You do
not have to use a Raspberry Pi to run Python. You can use Windows, Apple Mac and
Linux systems.

6Introduction 6

How to use this book

It is hoped that you will read this book carefully and build all the main projects in order.
At the end of each chapter there are further ideas, and challenges that you can think of as
‘mini quests’ in a video game. Some readers will want to work through all of them so that
they understand everything all the time. Some of you will probably prefer to rush through
and get to the end. When these readers think: ‘What can I do now?’ One answer is to go back
and look at some of the ideas at the end of each chapter. Which approach is best? The one
you are most comfortable with. If you are being guided by a teacher though, then to enable
them to help you the most you should trust their judgement.

There are four ways in which this book tries to help you to learn:

1 By copying the code – this is important as it gets you to work through the code a line at a
time (like computers do) and will help you remember the details in the future.

2 Finding and fixing errors – error messages in Python give you some clues as to what has
gone wrong. Solving these problems yourself will help you to be a better programmer.
In the end though, this should not become boring, so if you get stuck the code can be
downloaded from the accompanying website.

3 Experimenting – feel free to experiment with the code we write. See what else you can
make it do. If you try all the challenges, puzzles and ideas, and generally mess with the
code, this will help you learn how to write code like a professional.

4 Finally, this book will not only provide the code to build some cool, short projects but
also teach you how the programs were designed. You can then use the same methods to
design your own applications.

7Introduction 7

A word of warning

You may be tempted to simply get the code off the web site instead of typing it yourself. If
you do this you will probably find that you cannot remember how to write code so easily
later. You will only be asked to type small chunks of code at a time – remember that this will
help you understand every detail of your programs.

You will also become a faster typist, which is a very important skill these days!

8Chapter 1: Python, IDLE and your first program

In this chapter you are going to:

•	 learn about computer programming and the different languages that you can use

•	 meet the Python programming language

•	 learn how to use IDLE, which will help organise your programs and allow you to run
them easily

•	 check that your computer has been set up correctly

•	 write and run your first program.

Chapter 1
Python, IDLE and your first program

99Chapter 1: Python, IDLE and your first program

Coding
Coding is writing instructions for a computer to perform a task. This code has to be in a form
that the computer can understand. This is more formally known as computer programming.

Computers and coding have not been around for a long time but they have sure packed in
some interesting history in a short space of time. The first machine that stored instructions
in a way that future computers could take advantage of was the Jacquard loom that used
holes punched in cards and was invented in 1801. Charles Babbage is often credited with
inventing the first computer which he described in 1837 but was not built until 100 years
later. In 1989 Guido van Rossum started to create the Python programming language which
he named after Monty Python’s Flying Circus, a BBC comedy sketch show.

Programming languages
There are many programming languages currently used by coders around the world. Some
are best in one situation, others in another.

•	 HTML is good for producing web pages.

•	 SQL is great at making databases do what you want.

•	 Python is brilliant for writing quick applications, running programming experiments
and for building larger applications, including games.

1010Chapter 1: Python, IDLE and your first program

If you have previously programmed in Scratch (produced by MIT) you will find you can
pick up Python very quickly. Scratch is great for learning how to think like a programmer
and is very good for making games. If you have not tried Scratch before, you might
enjoy trying that next because the ability to learn a new programming language is an
important skill for coders. You will find it is a lot easier than learning a new human
language.

Once you have learned one modern programming language, you can quickly learn others.
You simply have to find out how your new language handles variables, loops, etc. (You will
know what these are by the end of the book.)

Python
Python is a typed computer language. This makes writing short programs very fast and you
can produce almost anything you can imagine.

Python is a powerful, modern programming language used by many famous organisations
such as YouTube and NASA. It is one of three programming languages that can be used to
write Google Apps. Python is a great language. Enjoy!

IDLE
You will start programming in IDLE which comes with Python. IDLE is a special text editor
like Microsoft Word, except it understands Python and helps you get your code right. IDLE is
itself, a Python application.

1111Chapter 1: Python, IDLE and your first program

Let’s look at IDLE:

Python 3.2.1 (v3.2.1:ac1f7e5c0510, Jul 9 2011, 01:03:53)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "copyright", "credits" or "license()" for more information.
>>>

IDLE when started on an Apple Mac.

The code you want to run is typed after the special entry prompt:

>>> my code goes here

To run the code we press the return key. This is how Python runs in IDLE’s interactive mode.
Python can run files as well but to start with, this is all we need.

Let’s see how IDLE looks on a Windows PC:

Python 3.2.1 (default, Jul 10 2011, 20:02:51)

[MSC v.1500 64 bit (AMD64)] on win32

Type "copyright", "credits" or "license()" for more information.
>>>

IDLE when started on Windows 7.

1212Chapter 1: Python, IDLE and your first program

And finally, how IDLE looks on a Linux computer:

IDLE when started up on the Raspberry Pi computer.

Python 3.1.3 (r313:86834, Nov 28 2010, 10:01:07)
[GCC 4.4.5] on linux2
Type "copyright", "credits" or "license()" for more information.
>>>

A great reason for learning Python and using IDLE as our IDE (Integrated Development
Environment) is that it is very similar on all the different types of computers available.

The text before the >>> prompt is unimportant at the moment. However, it is always useful
to know what version of Python you are using.

Hello World!
Since the dawn of programming, when the first cave-coders booted up their cave-computers,
it has been a tradition that your first program when learning a new language is ‘Hello
World’. The aim is to try to make the computer say ‘hello’ to the world. If you can do this
you will have tested whether everything that was set up for you is working properly.

1313Chapter 1: Python, IDLE and your first program

•	 If it is not already started, start up IDLE.

•	 After the >>> prompt write in the code from Code Box 1.1 and then press your return
key to run the program.

Code Box 1.1

print("Hello World!")

If all is well, you should get something like this:

Python 3.1.3 (r313:86834, Nov 28 2010, 10:01:07)

[GCC 4.4.5] on linux2

Type "copyright", "credits" or "license()" for more information.

>>> print("Hello World!")

Hello World!

>>>

Hello World!

Python has followed your instruction and output ‘Hello World!’

You have written your first computer program. Well done!

1414Chapter 1: Python, IDLE and your first program

Making mistakes

Did you get a syntax error?

Syntax errors are very common when typing in code (as are other errors). If you make one
or two it is not your fault. It is because although computers are fast, they can also be a bit
stupid. If there are any tiny mistakes in your code, they panic and produce error messages.
These messages try to explain to you what the problem is but they are often difficult to
understand.

Colons, brackets, speech marks, apostrophes and spelling of Python words have to be just right.
Although we can read imperfect sentences, computers cannot.

Whether or not you got any errors, try this Quick Quiz.

Which of these lines of code are correct?
1 Print("Hello world!")
2 print("Hello world!")
3 print(Hello world!)
4 print "Hello world!"

Quick Quiz 1

Notice how the coloured text helps you spot code that is not going to work. All the code
listings in this book use the same coloured text as in IDLE’s standard display. This should
help you to spot bugs in your code.

1515Chapter 1: Python, IDLE and your first program

Chapter summary
In this chapter you have learned:

•	 that programming is writing instructions for computers
•	 that there are many different computer languages
•	 why Python is a great language to learn
•	 how to use IDLE in interactive mode
•	 how to write and run a simple program
•	 that the print() command means ‘show on the screen’ not ‘send to the printer’.

1 Write some new code so that a short message is displayed that says thank you to
whoever got everything ready for you.

2 Run your new code to display the message.
3 Now show them your message. This will make them happy.

Idea 1

1 Write some code so that the computer will show the text for a joke.
>>> print("Question: What goes clip?")
Question: What goes clip?
>>> print("Answer: A one legged horse")
Answer: A one legged horse
>>>

Idea 2

16Chapter 2: Some text, some maths and going loopy

In this chapter you are going to:

•	 learn how to do some more with text

•	 get Python to do some maths for you

•	 learn about how while loops work

•	 learn lots of useful operators.

This is a fun chapter as we get to start some real programming!

Chapter 2
Some text, some maths and going loopy

1717Chapter 2: Some text, some maths and going loopy

Text

Escape sequences

Try opening IDLE in interactive mode and enter the code in Code Box 2.1.

print("Question: What goes clip?\nAnswer: A one legged horse.")

Code Box 2.1

If you have not pressed your return key yet, to see what happens, do so now.

You should have discovered \n has a special purpose. It is an example of an escape
sequence. Table 2.1 shows some more escape sequences.

Escape sequence What it does

\n creates a line return in a string of text

\t creates a tab style indent in a string of text

\\ allows a backslash to appear in a string of text

\" allows a speech mark to be used in a string of text

Table 2.1 Escape sequences.

1818Chapter 2: Some text, some maths and going loopy

Experiment

Try writing a variety of little programs in IDLE using the escape sequences
in Table 2.1 until you feel you know what they all do.

Backslashes

Are you a bit confused about the last two escape sequences? If so, type in and run the code
from Code Box 2.2.

Code Box 2.2

print("Here is a speech mark: \" and here is a slash: \\")

Try typing in the code from Code Box 2.3 to see how to avoid having to escape speech marks.
This takes advantage of the fact that you can choose whether to surround strings in double
speech marks or single ones. Watch out though, you will get a lot of syntax errors if you do
not do this carefully.

Code Box 2.3

print('I say "High", you say "Low". You say "Why?" and I say "I don\'t know". Oh no.')

1919Chapter 2: Some text, some maths and going loopy

The backslash is used to ‘escape’ characters that are used in Python. When we want to print some
text to the screen we wrap it in speech marks. This now means that there is a problem if you want
to type some speech marks. Well, you know what to do about it – put a backslash before it. So
what do you do if you want to actually print a backslash to the screen? Put a backslash before it!

Functions

print()is called a function (these are covered in chapter 4, page 53). What print()
will do, is print anything you throw at it inside the brackets. They must be separated by
a comma, and strings (bits of text) must be put in speech marks. Everything inside the
brackets will be printed out in order. The results from sums can also be output, but you must
not put the calculations in speech marks. What do you think would happen if you left in the
speech marks? Don’t forget you can also add in escape sequences.

Maths
Using Python as a calculator is easy, if you remember two things:

1 In Python, as in almost all programming languages, the multiplication symbol is an
asterisk.

2 The division symbol is a forward slash.

>>> 10/4
2.5
>>> 3*3
9
>>>

2020Chapter 2: Some text, some maths and going loopy

There is another way of dividing. If you use two forward slashes instead of one, Python will
produce an integer as an answer. An integer is a whole number (a decimal such as 2.5 is
called a float). You can now find the remainder, with another mathematical operator
called the modulus. This is represented by a % sign.

>>> 11/4
2.75
>>> 11//4
2
>>> 11%4
3
>>>

Table 2.2 lists some more mathematical operators.

Operator Name Example Answer

* multiply 2*3 6

/ divide (normal) 20/8 2.5

// divide (integer) 20//8 2

% modulus 20%8 4

+ add 2+3 5

- subtract 7-3 4

Table 2.2 Maths operators.

0

2121Chapter 2: Some text, some maths and going loopy

Experiment

In interactive mode, check that the examples in Table 2.2 do give the
correct answers and then try out some of your own favourite sums. You
might like to see what happens if you wrap a maths sum inside speech
marks in the print() function.

Combining text and maths
It is also possible to combine text (or strings) and numbers in the print() function. The
comma is used here as a separator between the text and the maths.

>>> print("111 divided by 4 = ", 111/4)
111 divided by 4 = 27.75
>>>
>>> print("11 divided by 4 = ", 11/4)
11 divided by 4 = 2.75
>>>

Can you work out what the output from this code will be?

>>> print("11 divided by 4 also equals: ", 11//4, " remainder: ", 11%4)

Quick Quiz 2

2222Chapter 2: Some text, some maths and going loopy

Going loopy
Computers are great at repetitive tasks. So are humans, but we get bored easily! Computers
are not only good at them, they are fast! Therefore we need to know how to tell them to do
repeats. To do this we use a while loop. This runs some code while something is true and
stops when it becomes false.

Imagine you were trying to write some code in a History lesson at school, when you should
be doing History. Your teacher might ask you to write fifty lines. Well no matter, Python can
do that.

Try opening IDLE in interactive mode and then enter the code in Code Box 2.4. You will need
to press return twice at the end.

Code Box 2.4

>>> lines=0

>>> while lines < 50:

 print("I will not write code in history lessons.")

 lines = lines+1

Here is another solution to the same problem:

>>> print("I will not write code in history lessons.\n" *50)

Code Box 2.5

2323Chapter 2: Some text, some maths and going loopy

The code in Code Box 2.5 is clever – look carefully to see what is happening. Run it if you are
not sure. Although the code in Code Box 2.4 is longer, a while loop is often more useful as it
can do far more complex tasks. For example, with a while loop you can ask a computer to
count to 100. Try entering the code from Code Box 2.6 and running it.

Code Box 2.6

>>> number=1

>>> while number < 101:

 print(number)

 number = number+1

How do while loops work?

Variables

To start with we create a variable and assign a value to it. A variable is a space in the
computer’s memory where we can store, for example, a string or an integer. We create a
variable by naming it. In Code Box 2.6 we called our variable ‘number’ and with the equals
operator we give it the value ‘1’.

The next line of code >>> while number<101: says ‘while the variable called number is less
than 101 do the following’. All of the code that is indented after the colon is to be repeatedly
performed by the computer. That is, it loops through these two lines of code until number is
no longer less than 101.

2424Chapter 2: Some text, some maths and going loopy

number=1
while number < 1:
 print(number)
 number = number+1

create a variable and assign it the value 1

the colon says to run all of the indented code

there are no speech marks here as we want the value
of number not the word “number”

the variable number is incremented by 1

IDLE automatically indents for you!

The last line of code number = number+1 is in the loop. It keeps adding 1 to number for
each passage through the loop. Don’t forget the variable’s value can be changed with the
equals operator at any time.

The equals sign is used differently to the way it is used in maths. In computing, the equals sign means ‘point
this variable name at this piece of data’ (an integer for example). So number=1 means ‘create a variable
called number and point it at the integer 1’. Another way of saying this is ‘assign the value 1 to the variable
number‘. Later we may assign another value to number.

Delving Deeper

number = 1

 number 1,

2525Chapter 2: Some text, some maths and going loopy

Operators

There are several operators you can use in a while loop. Some examples are given in Table
2.3. Note how we now have another version of equals ==. This form is more like the equals
in maths. It is an example of a comparative operator. Therefore, while number==1:
means ‘while the variable called number is equal to 1, do the following’.

Operator Meaning

== equal to

!= not equal to

> greater than

< less than

>= greater than or equal to

<= less than or equal to

Table 2.3 Comparative operators.

We use a double equals sign to compare two values and a single equals sign to assign a
value to a variable.

2626Chapter 2: Some text, some maths and going loopy

Chapter summary
In this chapter you have learned:

•	 how the print() function is very flexible
•	 how to write and run simple maths code
•	 how to output a mixture of strings, maths or numbers
•	 how to write a while loop and use comparative operators

Write some code in IDLE so that the computer counts up to 20 in twos.

Puzzle 1

Write some code so that the computer outputs the 5 times table like this.

1x5=5
2x5=10
3x5=15

Hint: You will need a counter variable which you could call number. Then
you should find out how to write one line, and then make your loop do it 10
times.

Puzzle 2

2727Chapter 2: Some text, some maths and going loopy

See if you can re-write the following code in three different ways so that each
program still produces output which counts to a hundred.

>>> number=1
>>> while number < 101:
 print(number)
 number = number+1

In your new code, you are not allowed to use the less than operator <.
Instead you should use one of these comparative operators in each program:
<= > !=

Puzzle 3

Answers to all of these puzzles can be found on the companion website
www.codingclub.co.uk.

28Chapter 3: Readable code and the MyMagic8Ball game

In this chapter you are going to:

•	 write and save a Python file using script mode

•	 learn how to write clear readable code

•	 run a Python file

•	 learn about how to get user input

•	 learn about if and else

•	 write a short game called MyMagic8Ball.

You are going to build and save a Magic 8 Ball game. If you have not played with one of
these toys before, what you do is, ask the 8 Ball for some advice, shake it and it magically
responds.

Chapter 3
Readable code and the MyMagic8Ball game

2929Chapter 3: Readable code and the MyMagic8Ball game

Script Mode
Open IDLE in interactive mode and then from the File menu choose New Window. A new
window appears that is apparently blank. When you type in this window and save the file you
are working in script mode. The file name must end in .py to show that it is Python code.

MyMagic8Ball

import random

write answers
ans1=”Go for it!”
ans2=”No way, Jose!”
ans3=”I’m not sure. Ask me again.”
ans4=”Fear of the unknown is what imprisons us.”
ans5=”It would be madness to do that!”
ans6=”Only you can save mankind!”
ans7=”Makes no difference to me, do or don’t - whatever.”
ans8=”Yes, I think on balance that is the right choice.”

print(“Welcome to MyMagic8Ball.”)

get the users question
question = input(“Ask me for advice then press ENTER to shake me.\n”)

print(“shaking ...\n” * 4)

Python 3.1.3 (r313:86834, Nov 28 2010, 10:01:07)
[GCC 4.4.5] on linux2
Type “copyright”, “credits” or “license()” for more information.
>>>

IDLE – interactive and script modes side by side.

Try typing the code from Code Box 3.1 into your new script mode window. These are the first
lines of the MyMagic8Ball game.

(If you have a British Apple keyboard, you will need to hold alt and click the £ symbol to type #.)

3030Chapter 3: Readable code and the MyMagic8Ball game

MyMagic8Ball

import random

write answers
ans1="Go for it!"
ans2="No way, Jose!"
ans3="I’m not sure. Ask me again."
ans4="Fear of the unknown is what imprisons us."
ans5="It would be madness to do that!"
ans6="Only you can save mankind!"
ans7="Makes no difference to me, do or don’t - whatever."
ans8="Yes, I think on balance that is the right choice."

Code Box 3.1

Now you should save your work by choosing Save from the File menu. It is a good idea
to save all your code into a special folder which you can call – ‘Python Code’ – in your
documents folder. Call the new file myMagic8Ball.py.

Analysis of Code Box 3.1

The # symbol

The # symbol says to the computer, ‘ignore the rest of the text on this line, it is for
humans’. This is called commenting. You have typed in two comments so far.

3131Chapter 3: Readable code and the MyMagic8Ball game

Modules

import random uses a new Python word – import – followed by the name of a Python module.

A module is a Python file with special code that you do not have to write yourself but that
you can use. There are many modules available and it is also possible to write your own. So
import random brings in to your application a selection of functions that you can use later
in your program. (Chapter 4 is all about functions.)

String variables

The last 8 lines of code are the variables where you store some strings (bits of
text) that will be used later in the game. At this early stage you may be asking
yourself, how do I know what to call my variables? Well within reason you can
call them what you like. There are only 31 reserved words in Python.

Writing tidy code
It is important to write your code so that it is easy for you to read it later, when
you have forgotten how you did things. It also makes it easier, if your code is
well written, for other coders to understand what you did.

White space

Lots of computer languages like Java, PHP and C++ wrap chunks of code in
curly brackets. Each statement has to end in a semicolon.

There are 31 Python words that you cannot
use as your own variable names. These are:
and as assert break class continue
def del elif else except finally
for from global if import in is
lambda nonlocal not or pass print
raise return try while with yield

You must also be very careful to use only
letters and underscores and no unusual
characters such as & ! @ $ * () ? : ; [] “
< > ‘ ` | = { } \ /. Spaces are not allowed
either. Numbers are allowed but not at the
beginning of your variable names.

Delving deeper

3232Chapter 3: Readable code and the MyMagic8Ball game

{
 private int current_floor = 0;
 public int getFloor()
 {
 return current_floor;
 }
 public void moveToFloor(int floor_number)
 {
 current_floor = floor_number;
 }
}

Java code.

Python does not require semicolons or curly brackets. Semicolons can be very annoying as
they are easy to forget and if you do forget one, your program will not run at all.

In Python, each line of code simply requires that you have a line ending. This is a lot easier
to spot if you do manage to forget!

To group lines of code together you indent the code (four taps on the space bar). However
IDLE will usually know when you should indent and do it for you when you press return!
This indenting produces ‘white space’. The code is grouped according to how you arrange the
white space. This is how the same code would look in Python.

class Lift():
 current_floor=0

 def getFloor():
 return current_floor

 def moveToFloor(floor_number):
 current_floor = floor_number

Python code.

3333Chapter 3: Readable code and the MyMagic8Ball game

There are other differences to note. Java has a lot of extra words like public, private, int and void. This is
because it is a very strict language where everything has to be carefully defined. Python instead, will usually
work out whether something is an integer (number) or string (text) for the programmer. Both languages have
their advantages and disadvantages.

Classes are not dealt with in this book but we do have to use some for our final project in chapter 5. You will
learn about the def keyword in the next chapter!

Delving deeper

More about commenting

Don’t be surprised if you had no idea what any of the code above meant. Even if you had
already read this book, it can be difficult to read other people’s code. Remember, it is written
for computers to understand, not us. Remember, we can leave little notes or comments as we
go using the hash symbol #.

Here is the same Python code as above with some comments.

This is a class that describes a lift (or elevator in the USA)
class Lift():
 # The lift starts on floor zero
 current_floor=0

 # The method for finding the lift
 def getFloor():
 return current_floor

 # The method for moving the lift
 def moveToFloor(floor_number):
 current_floor = floor_number

Python code with too many comments.

3434Chapter 3: Readable code and the MyMagic8Ball game

As you can see, it is possible to add too much commenting! Sometimes simply naming things
well is much better. The names chosen by the programmer here include Lift,
current_floor, getFloor, moveToFloor and floor_number. The only Python code words
are class and def.

Naming variables

If you want to store a number or some text somewhere you do so in a variable.

Variables should always be named with descriptive names. You should always start with a
little letter. You can separate words with underscores like this my_own_variable.

Getting user input
Getting user input is surprisingly simple in Python. We use another supplied function
input(). This function is very similar to the print() function in as much as it can be given
a string which it sends to the screen. The difference is it can only take one string and it then
waits for the return key on the keyboard to be pressed. This means that it can be used to
pause a program or wait until the user is ready. However it does one other thing: it returns,
as a string, everything that is typed by the user until the return key is pressed. This can be
collected in a string variable like this.

keyboard_input = input("Enter some text please.")

3535Chapter 3: Readable code and the MyMagic8Ball game

•	 In interactive mode, try typing the code in Code Box 3.2 to see how this works. When
the computer asks for your name, tell it who you are, press return and then complete
the code.

Code Box 3.2

>>> name = input("What is your name?\n")

>>> print("Hello ", name)

•	 Try and see what you can do with input() without supplying any text.

•	 By combining print() with input() you can make up for input’s inability to handle
complicated combinations of strings and maths. See if you can work out how. (Hint:
Just use input() on its own, after a complicated print() function.)

Experiment

Now back to script mode.

After your eight variables in myMagic8Ball.py, miss a line and type in the code from Code
Box 3.3.

print("Welcome to MyMagic8Ball.")
get the users question
question = input("Ask me for advice then press RETURN to shake me.\n")
print("shaking ...\n" * 4)

Code Box 3.3

3636Chapter 3: Readable code and the MyMagic8Ball game

The variable question is given the value from the result of the input() function. That is,
it now stores whatever was typed by the person playing the game before they pressed return.
In this version you will not use this variable. In fact the player might as well speak. However,
you may want to customise the game later so it is good design to store this input somewhere
obvious, just in case. You will find that you understand the rest of this code now. If you are
not sure what the last line in Code Box 3.3 does, you could copy that into the interactive
mode window and find out.

Using the random module
The first line of code in Code Box 3.1 imports Python’s random module. This gives your
program access to a number of functions. You will use just one – randint(). This function
takes two integer arguments. Arguments are the values that you provide for a function to do
its task. You will learn more about this in chapter 4.

A simple dice

To create a dice requires only one line of code in interactive mode.

>>> random.randint(1, 6)

We have to put random. before randint() to tell the computer that this function can be
found in the random module. The two arguments are the start number and the end number.
The function randomly chooses 1, 2, 3, 4, 5 or 6. Try it out a few times in interactive mode to
see it in action.

3737Chapter 3: Readable code and the MyMagic8Ball game

Back in script mode

Back in the myMagic8Ball.py window type the code from Code Box 3.4. You will see that
we use the randint() function to generate a random number between 1 and 8 and assign
the result to a variable called choice.

(Hint: You can save yourself a lot of typing by copying and pasting. Remember that
whenever you do this, it means there is probably a better way of writing your code!)

Code Box 3.4

use the randint() function to select the correct answer
choice=random.randint(1, 8)
if choice == 1:
 answer=ans1
elif choice == 2:
 answer=ans2
elif choice == 3:
 answer=ans3
elif choice == 4:
 answer=ans4
elif choice == 5:
 answer=ans5
elif choice == 6:
 answer=ans6
elif choice == 7:
 answer=ans7

A random image!

(continues on the next page)

3838Chapter 3: Readable code and the MyMagic8Ball game

Analysis of Code Box 3.4

if, elif and else

The last part of the code in Code Box 3.4 used the Python words if, elif and else. They are
very easy to understand when you realise that elif is short for else if. Look at this bit of code.

if choice == 1:
 answer = ans1

The first line says, ‘if the value of choice is equal to 1, then run the code that is indented
after the colon.’

Notice how the comparison operator == is used, in the same way as it was with the while
loop in chapter 2.

else:
 answer=ans8

print the answer to the screen
print(answer)

input("\n\nPress the RETURN key to finish.")

3939Chapter 3: Readable code and the MyMagic8Ball game

So, if choice does equal 1 the program creates a new variable and calls it answer. Using the
equals sign it is given the string that is held by your variable ans1 which you typed at the
beginning of the program. So now answer would hold the string "Go for it!".

The random generator randint(1, 8) may not have produced the value 1 though, so
the next bit of the code handles the situation if choice equals 2:.

elif choice == 2:
 answer=ans2

So in this case answer would hold the string, "No way, Jose!".

This continues until the application handles all other situations with else:.
In your program this means if the choice is 8.

else:
 answer=ans8

Two uses of input

The input() function is used twice in this program. The first time, it takes the
user input and stores it in a variable called question.

 if

 if
 else elif

 else

4040Chapter 3: Readable code and the MyMagic8Ball game

question = input("Ask me for advice then press ENTER to shake me.\n")

Do you remember how the user’s input is not actually required? What this line of code does
do, is wait until the return key is pressed and stores the input just in case we decide to use it
some other time.

At the end of the program we use the input() function again.

input("\n\nPress the RETURN key to finish.")

This line does not even bother storing the user input at all. It just supplies two line returns
and a message to say the game is over. The program again waits for the user to press the
return key and then finishes.

This is much better than suddenly finishing the game unexpectedly and you will see it used
a lot from now on.

You have entered all the code for this program now. If you have not saved it, do so now and
then check it against the complete listing in Code Box 3.5.

4141Chapter 3: Readable code and the MyMagic8Ball game

Putting it all together
Here is the complete code as seen in IDLE.

Code Box 3.5

MyMagic8Ball

import random

write answers
ans1="Go for it!"
ans2="No way, Jose!"
ans3="I’m not sure. Ask me again."
ans4="Fear of the unknown is what imprisons us."
ans5="It would be madness to do that!"
ans6="Only you can save mankind!"
ans7="Makes no difference to me, do or don’t - whatever."
ans8="Yes, I think on balance that is the right choice."

print("Welcome to MyMagic8Ball.")

get the users question
question = input("Ask me for advice then press ENTER to shake me.\n")

print("shaking ...\n" * 4)
use the randint() function to select the correct answer
choice=random.randint(1, 8)
if choice==1:
 answer=ans1

(continues on the next page)

4242Chapter 3: Readable code and the MyMagic8Ball game

elif choice==2:
 answer=ans2
elif choice==3:
 answer=ans3
elif choice==4:
 answer=ans4
elif choice==5:
 answer=ans5
elif choice==6:
 answer=ans6
elif choice==7:
 answer=ans7
else:
 answer=ans8

print the answer to the screen
print(answer)

input("\n\nPress the RETURN key to finish.")

Running programs in script mode

To run the code you must first remember to save it with the .py at the end. Now with the
finished myMagic8Ball.py file open, choose Run Module from the Run menu. The program
will run in the interactive mode window. Try it out.

4343Chapter 3: Readable code and the MyMagic8Ball game

Chapter summary
In this chapter you have learned:

•	 how to write and save a Python file using script mode
•	 how to write clear readable code with comments and descriptive variable names
•	 how to run a Python file
•	 how to get user input
•	 about if, elif and else
•	 how to write a short game called MyMagic8Ball.

You have worked hard and learned a lot in this chapter. It is time you experimented a bit!

 Try out the game on some friends or relatives. (Hint: Make sure they cannot see the
code, as this will ruin the game.)

Idea 1

 Change the eight string variables to answers you want your Magic8Ball to say.

Idea 2

4444Chapter 3: Readable code and the MyMagic8Ball game

•	 Add some code to myMagic8Ball.py so that the Magic8Ball says ‘Hi’ and asks for the
user’s name at the start of the game.

•	 It should then store the input in a variable such as user_name.
•	 Re-write the code so that the Magic8Ball talks to the user using their name. At the end

for example, it could say: ‘Thanks for playing [user’s name]. Please press the return
key to finish.’

There are several ways to do this. An example answer can be found on the Coding Club
website.

Challenge

45Chapter 4: Functions

Chapter 4
 Functions

In this chapter you are going to:

•	 learn about functions

•	 write your own functions

•	 create a number guessing game.

4646Chapter 4: Functions

Functions
You have already met and used a few functions. The first one you used was print().
Functions have brackets after their name. This is where we supply arguments separated by
commas. Some functions do not need them, they do their jobs without argument!

an argument another argument

print("This is my number: ", number)

There are many functions that are built in to Python that we can already use. We can also
make our own. We create functions with the def keyword. Here is the code for a
counting function.

>>> def count(number):
 n=1
 while n <= number:
 print(n)
 n = n+1

In interactive mode, type in the above code. You will need to press return twice
to get back to the Python prompt. Then type count(10) and press return.

4747Chapter 4: Functions

An infinite loop can be created by running a while loop that never stops. This is not a good
thing! It usually means you have made a mistake.

You may get into a similar situation if you try playing with the count() or the
times_tables() functions later in this chapter.

If your program keeps running and will not stop just close the window. Python will ask if you
want to kill the program. Don’t be scared … kill it!

(Sometimes simply holding ctrl and pressing the c key will work better.)

Delving deeper

Times tables anyone?
To get Python to produce any of the times tables is easy, with a while loop. However, if we
want to be able to quickly choose which times table we want, then it is probably easier to
write a new function rather than keep hacking your code.

Let’s start thinking...

We need to supply a value that indicates which times table we want. This is a number so we
could call this argument num:

def times_tables(num):

Now we need to produce a while loop. But first let’s work out the code for one line of the
table e.g. 2 × 12 = 24 . To do this the 2 is a counter which we will use in the while loop
(Simply use n, not all variable names have to be descriptive!). The 12 is num and the 24 is

1 × 12 = 12
2 × 12 = 24
3 × 12 = 36
4 × 12 = 48
5 × 12 = 60
6 × 12 = 72

4848Chapter 4: Functions

obtained by multiplying n by num. The rest is just text. We can put all this together into one
print statement.

Which of these produces the output we want?
1 print(n, " x ", num, " = ", n*num)
2 print(num, " x ", n, " = ", num*n)
3 print(n, " * ", num, " = " n*num)

Quick Quiz 3

Now let’s stick it all together.

Using IDLE’s interactive mode, type in and think about the code in Code Box 4.1. Don’t
forget to press return twice to get back the Python prompt. Nothing should happen yet – all
will be revealed shortly.

Code Box 4.1

>>> def times_tables(num):

 n=1

 while n <= 10:

 print(n, " x ", num, " = ", n*num)

 n = n+1

4949Chapter 4: Functions

To run this code and output the 12 times table, type the code from Code Box 4.2
and press return.

>>> times_tables(12)

Code Box 4.2

If all goes well you should have a screen that looks like this:

Python 3.1.3 (r313:86834, Nov 28 2010, 10:01:07)
[GCC 4.4.5] on linux2
Type “copyright”, “credits” or “license()” for more information.

>>> def times_tables(num):
 n=1
 while n <= 10:
 print(n, “ x “, num, “ = “, n*num)
 n = n+1

>>> times_tables(12)
1 x 12 = 12
2 x 12 = 24
3 x 12 = 36
4 x 12 = 48
5 x 12 = 60
6 x 12 = 72
7 x 12 = 84
8 x 12 = 96
9 x 12 = 108
10 x 12 = 120
>>>

Times tables.

5050Chapter 4: Functions

What if you prefer to have your times tables twelve lines long, so that you get
12 x 12 = 144. Now you have to go back and edit the function. This could become
tiring in interactive mode and a small annoyance if your function was saved
as a Python file. Let's try re-writing the function so that it takes two arguments
instead. Still in interactive mode, try entering the code in Code Box 4.3 and you
will see the power of functions. Enjoy!

Code Box 4.3

>>> def times_tables(how_far, num):

 n=1

 while n <= how_far:

 print(n, " x ", num, " = ", n*num)

 n = n+1

>>> times_tables(12, 17)

The number guessing game
Here is the complete code for a small game. This is a very simple game where
the computer thinks of a number between 1 and 100 and the player has to guess
what it is. The game uses Python’s random number function again and a while
loop. Open a new window in IDLE and type in the code from Code Box 4.4. Save
this file as myNumber.py in your Python code folder. As you type, try and work
out what each line is doing and marvel at how far you have come.

 times_tables()

times_tables(num):

5151Chapter 4: Functions

Code Box 4.4

myNumber.py
This game uses a home made function
import random

Think of a number
computer_number = random.randint(1, 100)

Create the function is_same()
def is_same(target, number):
 if target == number:
 result="Win"
 elif target > number:
 result="Low"
 else:
 result="High"
 return result

Start the game
print("Hello.\nI have thought of a number between 1 and 100.")

Collect the user’s guess as an integer
guess = int(input("Can you guess it? "))
Use our function
higher_or_lower = is_same(computer_number, guess)

(continues on the next page)

5252Chapter 4: Functions

Run the game until the user is correct
while higher_or_lower != "Win":
 if higher_or_lower == "Low":
 guess = int(input("Sorry, you are too low. Try again. "))
 else:
 guess = int(input("Sorry, you are too high. Try again. "))

 higher_or_lower = is_same(computer_number, guess)

End the game
input("Correct!\nWell Done\n\n\nPress RETURN to exit.")

There are two new things to you in this game. The return keyword tells the is_same()
function what value should be sent back after it is called. We know functions can be sent
arguments, well they can also return data.

In this case it returns the value stored in the variable result. So, if the two numbers are the
same it returns the string Win, if the supplied number is higher than the target, the function
returns the value High and if the supplied number is lower than the target, Low.

The second new thing to you is converting the user’s input into an integer by wrapping it in
int(input goes here). This is because anything coming from keyboard input is received
as strings. The process of converting one data-type into another data-type is called casting.

Have you remembered to save the file to your Python Code folder? If so, you can run it by
choosing Run Module from the Run menu or pressing F5.

5353Chapter 4: Functions

Chapter summary
In this chapter you have learned:

•	 about functions and how to write your own
•	 about building small programs, using functions and while loops
•	 a little about the steps needed when designing a function
•	 how to create a number guessing game
•	 how to stop a program that just keeps running – kill it; (or press ctrl-c)
•	 how to easily copy portions of code in IDLE.

You have worked hard and learned a lot about functions in this chapter. Here are a few ideas
that you may enjoy. There are several ways to do them. Examples can be found on the web site.

•	 Put the code from Code Box 4.3 into a script mode file called times_tables.py.
•	 Add some user interaction so that it asks which table you want and how far it should go.
•	 Do not forget to add a line of code to stop the program nicely.

Now you have a times table app you can use whenever you want.

Idea 1

5454Chapter 4: Functions

 Make a copy of
myNumber.py and
then add some code
to make it count and
display how many
guesses it took the
player. (Hint: you will
need another variable
which you could call
counter.)

Idea 2

 Make the
myNumber.py game
easier for younger
children by reducing
the range of numbers
between 1 and 100 to
between 1 and 10.

Idea 3

A harder challenge is to get the myNumber.py game to offer a choice of levels.
•	 Easy: choose from numbers between 1 and 10.
•	 Medium: numbers up to 20.
•	 Hard: numbers between 1 and 100.

This can be split into a number of shorter tasks.
1 Ask the user what level they would like to play and collect and store the new

input as "e", "m" or "h".
2 Add the following code to catch any input we do not want the user to enter.

while level != "e" and level != "m" and level != "h":

 level = input("Sorry. You must type in one of the
 letters 'e', 'm' or 'h'\ne/m/h:")

3 Use if, elif and else to sort out the upper limit and store the result in a
suitable variable.

4 Move the code where the computer thinks of a number, to below this section and
insert your upper limit variable in place of the appropriate argument.

5 Adjust the print() function below the # Start the game comment so that it
outputs the correct information.

6 Adjust the code so the output all looks nice.

Idea 4

55Chapter 5: MyEtchASketch

Chapter 5
 MyEtchASketch

In this chapter you are going to:

•	 learn how to use the tkinter library

•	 make your own MyEtchASketch game

•	 learn how to put an application in its own window

•	 learn how to attach functions to keyboard presses.

5656Chapter 5: MyEtchASketch

The tkinter library
In the previous chapters we saw how to import a module. A module is a file that gives us
access to a number of functions we do not have to write ourselves. So far we have used the
random module.

We are now going to import a whole library of modules that give us access to graphical
functions, such as the ability to make a window and a canvas to draw on.

As there are a number of modules we simply import them all like this.

from tkinter import *

The asterisk means everything. It is not being used as a multiplication symbol here!

As tkinter uses classes (which we are not learning about in this book), some of
the code looks a bit strange. Do not worry about it. This is an introductory book.
You can learn about classes later. The term Canvas() for example takes its
arguments in a different form because Canvas is a class. Also notice it starts with
a capital letter.

We are going to make a window that is 600 pixels (dots on the screen) wide and
400 pixels high with a canvas we can draw on. In our case the canvas is black.
We do this using the code from Code Box 5.1. First we must open a new file in
script mode and type it in.

Then save it as myEtchASketch.py

MyEtchASketch in a window.

5757Chapter 5: MyEtchASketch

myEtchASketch application from Coding Club: Python Basics

from tkinter import *

Set variables:
canvas_height = 400
canvas_width = 600
canvas_colour = "black"

main:
window = Tk()
window.title("MyEtchASketch")
canvas = Canvas(bg=canvas_colour, height=canvas_height, width=canvas_width, highlightthickness=0)
canvas.pack()

window.mainloop()

Code Box 5.1

You can try running myEtchASketch.py now. Although it is not very exciting, it is the
first time you have made a window! Notice how something also happens in the interactive
mode window. This is now acting as a console where we will get, among other things, error
messages.

5858Chapter 5: MyEtchASketch

The plan
Now that you have a window in which to make your application and a canvas to draw
on, it is time to start planning the rest of the application. To do this we break down the
task into functions. First we need to be able to draw a vertical line a bit at a time and then
horizontally. As these are going to be controlled by the up, down, left and right arrow keys
on the keyboard it makes sense to have four functions that are all going to be similar and
then attach those functions to the keys. So to start with, let’s just try and create a function
that draws a line up when we press the up key. If we can achieve this we know that we will
be able to complete this project.

The coordinates
Unlike in maths, tkinter and most computer languages use coordinates that count from the
top left of the screen. So our canvas looks like this.

(0, 0)

(600, 400)(300, 400)

(300, 0)

 x

y

5959Chapter 5: MyEtchASketch

So a point on the screen is represented by two numbers:

e.g. (100, 50) = a point 100 pixels along the x-axis and 50 pixels down the y-axis.

Keeping code organised
The function to draw a vertical line requires a few more variables so that we can keep track
of where we are up to. These should go at the top of your code with your other variable
declarations. This is good coding style. Now if you want to adjust your program, you simply
adjust the variables at the top and re-run it. You do not have to dig through your code to
find where things happen. Also by choosing descriptive names for the variables you do not
need excessive amounts of commenting.

The functions should come next. They need to be before the main section that runs your
application. That way it can use them! Therefore the code from Code Box 5.1 has been split
in Code Box 5.2 to make room for all our functions.

You can add the new code to your myEtchASketch.py file now. It will not do anything
different yet. How the function works will be explained in the next analysis section.

6060Chapter 5: MyEtchASketch

Code Box 5.2

Code Box 5.2

myEtchASketch application from Coding Club: Python Basics

from tkinter import *

Set variables:

canvas_height = 400

canvas_width = 600

canvas_colour = "black"

p1_x = canvas_width/2

p1_y = canvas_height

p1_colour = "green"

line_width = 5

line_length = 5

Functions:

player controls

def p1_move_N(self):

 global p1_y

6161Chapter 5: MyEtchASketch

Code Box 5.2

main:

window = Tk()

window.title("MyEtchASketch")

canvas = Canvas(bg=canvas_colour, height=canvas_height, width=canvas_width, highlightthickness=0)

canvas.pack()

window.mainloop()

 canvas.create_line(p1_x, p1_y, p1_x, (p1_y-line_length), width=line_width, fill=p1_colour)

 p1_y = p1_y - line_length

Code Box 5.2 analysis

First, it must be noted that p1 stands for player 1. The reason for having a player 1 is that
you never know what is going to happen when you start out making a game. Ideas crop up
and suddenly you want another player. OK, probably not for a MyEtchASketch game.

6262Chapter 5: MyEtchASketch

The variables

Instead of adding lots of squares to make our lines, the code is simpler if you draw lots of
little lines. You make a square by setting the line_width equal to the line_length. This
works well because a line has a beginning and end coordinate, which is just what we want to
keep track of. The variables are listed in Table 5.1.

Code What it means Initial settings

p1_x stores the x position of the end of the line half the width of the canvas

p1_y stores the y position of the end of the line the height of the canvas

p1_colour stores the colour of the line "green"

line_width stores the line width 5 pixels

line_length stores the line length 5 pixels

Table 5.1 Variables for MyEtchASketch game.

The p1_move_N() function

p1_move_N(self) is going to be a function that sends the line drawn by player 1 up the
screen.

6363Chapter 5: MyEtchASketch

self

As this uses methods from tkinter, this function has to be supplied with the argument self.
This is to do with tkinter’s methods being in classes. Functions in classes are called methods.
(Remember though, that we are not covering classes in this book.) For now, just always
supply self.

global

At the start of our script, we declared all our variables and gave them some default values.
As they are outside any functions, they are global variables. This means that they are
available throughout the program. However, any variables declared inside a function are
called local variables, which means that they are not available outside their function and
will be lost when the function call is over. As we want all our functions to use our global
variables we have to tell the function this, by re-declaring them inside the function, using
the keyword global. This is only required if the function is going to change the variable. By
doing this the function is using the same variables as the rest of the program.

The create_line() method

We are using the create_line() method from tkinter’s canvas class:

canvas.create_line(arguments go here)

The arguments required are shown in Table 5.2 on the next page.

6464Chapter 5: MyEtchASketch

Arguments required by tkinter Your supplied variables

x1 (x-coordinate of beginning of line) p1_x (current x-coordinate of player 1)

y1 (y-coordinate of beginning of line) p1_y (current y-coordinate of player 1)

x2 (x-coordinate of end of line) p1_x (current x-coordinate of player 1)

y2 (y-coordinate of end of line) p1_y – line_length (current y-coordinate of
player 1 minus the length of the line)

Table 5.2 Arguments required for MyEtchASketch to move north.

line end:(x2, y2)

line start:(x1, y1)

To draw on the canvas we create lots of little lines that always start with the same
coordinates that the last one ended with. This is easier than making little squares. Instead,
we draw green lines that are 5 pixels wide to match our line length. Thus, we need to supply
two more optional arguments to the create_line() method as shown in Table 5.3.

6565Chapter 5: MyEtchASketch

Optional arguments Your supplied variables

width line_width

fill p1_colour

Table 5.3 Optional arguments for MyEtchASketch.

As we are moving up the screen, it is only necessary to subtract the line length
from p1_y but you must add one more line of code to this function to store the
new p1_y position for next time.

Adding keyboard control
We simply use the bind() method from the tkinter window class and it just takes
 two arguments.

window.bind("the key board key name", our_function)

If we wanted the a key we would supply the argument "a" but for the up arrow key
we give "<Up>".

window.bind("<Up>", p1_move_N)

6666Chapter 5: MyEtchASketch

Now add the code from Code Box 5.3 to your myEtchASketch.py file. When you
run this, if all is well, you will find that by pressing the up arrow on your keyboard
you can make a series of green squares 5 pixels wide by 5 pixels long.

Code Box 5.3

bind movement to key presses

window.bind("<Up>", p1_move_N)

window.mainloop()

6767Chapter 5: MyEtchASketch

Finishing off
Once you have movement upwards, you will find the other directions are easy to write code
for. To move down we add 5 pixels to our y-coordinate, to move right we add 5 pixels to our
x-coordinate and to go left we take 5 pixels from our x-coordinate.

Add the rest of the functions from Code Box 5.4 (this is the final step). Since we are repeating
this code so often, this should indicate that there is probably a better way of writing this
program. We will examine this in the activity section at the end of the chapter.

If you find your program does not run the first time; try to sort out any problems
yourself. If you do get stuck though, you can download the code from the
companion website.

6868Chapter 5: MyEtchASketch

player controls

def p1_move_N(self):

 global p1_y

 canvas.create_line(p1_x, p1_y, p1_x, (p1_y-line_length), width=line_width, fill=p1_colour)

 p1_y = p1_y - line_length

def p1_move_S(self):

 global p1_y

 canvas.create_line(p1_x, p1_y, p1_x, p1_y+line_length, width=line_width, fill=p1_colour)

 p1_y = p1_y + line_length

def p1_move_E(self):

 global p1_x

 canvas.create_line(p1_x, p1_y, p1_x + line_length, p1_y, width=line_width, fill=p1_colour)

 p1_x = p1_x + line_length

def p1_move_W(self):

 global p1_x

 canvas.create_line(p1_x, p1_y, p1_x - line_length, p1_y, width=line_width, fill=p1_colour)

 p1_x = p1_x - line_length

Code Box 5.4

6969Chapter 5: MyEtchASketch

def erase_all(self):

 canvas.delete(ALL)

main:

window = Tk()

window.title("MyEtchASketch")

canvas = Canvas(bg=canvas_colour, height=canvas_height, width=canvas_width, highlightthickness=0)

canvas.pack()

bind movement to key presses

window.bind("<Up>", p1_move_N)

window.bind("<Down>", p1_move_S)

window.bind("<Left>", p1_move_W)

window.bind("<Right>", p1_move_E)

window.bind("u", erase_all)

window.mainloop()

7070Chapter 5: MyEtchASketch

Chapter summary
In this chapter you have learned:

•	 how to use the tkinter library
•	 how to make your own MyEtchASketch game
•	 how to put an application in its own window
•	 how to attach functions to keyboard presses
•	 that ‘copy and pasting’ hints at a better way of doing things
•	 how to clear a canvas. (If you typed out the code you should have spotted an extra

function that was sneaked in: erase_all(self) . This clears the screen when the
user presses the u key on their keyboard.)

This chapter provides us with many possibilities for ideas. As you have organised your
code well, the following Quick Ideas can be easily achieved by simply adjusting the
variables at the beginning of your file.

Quick Ideas

•	 Make line_length longer and see what happens.

•	 Change the colour a few times and find out what named colours tkinter supports.

•	 Generally change the square size to find a size that you like.

•	 Completely customise the code adjusting all the variables until you are happy.

7171Chapter 5: MyEtchASketch

Remember we said that copying and pasting indicates that there are better ways of coding.
This puzzle encourages you to write better code.

 Make a new function called p1_move(x, y) so that the four movement methods can be
simplified to something like this.

def p1_move_N(self):
 p1_move(0, -line_length)

There are several ways to do this. An example answer can be found on the website.

Puzzle

Also on the website you will find the code for a two-player game called
ourEtchASketch.py. If you are feeling keen, you could try to make it yourself – it is not
really very difficult and takes advantage of the better code structure from this chapter’s
puzzle. This two-player game is also fun for one player because it allows you to draw in two
colours. It also provides the opportunity to give you a few more extra ideas.

7272Chapter 5: MyEtchASketch

Extra ideas

•	 Download ourEtchASketch.py and try drawing something colourful.

•	 Look at the code and see how easy it was to make this into a two-player game.

•	 Try it out with a friend as a cooperative drawing game.

•	 Try playing it as a timed competition to see who has the most squares visible at
the end. The object is to draw over your opponent as much as possible. (Hint: It
might be best to make the squares bigger.)

•	 Try playing a weird game of Tron. As there is no collision detection, you will have
to be honest about when you collide. (Hint: If you do not know what Tron is, ask
an adult.)

•	 Try making the canvas tall and thin and then having a race with a friend to the
top of the screen.

•	 Make the racing game more interesting by putting some obstacles in the way.
(Hint: draw some random-sized and coloured lines on the screen at the start just
before the code that binds the functions to the keyboard.)

•	 Make up some other games of your own.

7373Taking things further

Taking things further
When you have finished this book we hope you will want to continue to learn to code. Here
are some other places and resources that you might wish to look at.

More Python

Other books in the series, found at this book's companion website: http://www.codingclub.co.uk

The official python documentation: http://docs.python.org/py3k/

PyGame Website: This site provides a set of modules that need to be downloaded that aid
with making games. It has a community of Python coding enthusiasts and enables you to
post your games for others to play.

Thinking like a programmer

http://armorgames.com/play/6061/light-bot-20
http://www.robozzle.com/

Other programming languages

The Scratch official website: http://scratch.mit.edu/
Java Programming: http://www.greenfoot.org/

7474Appendix

Appendix
Some key bits of information

Companion website

Website: http://www.codingclub.co.uk

Here you will find answers to the challenges and puzzles at the end of chapters. The
complete source code for all the projects is also here.

Escape sequences

Escape sequence What they do

\n creates a line return in a string

\t creates a tab style indent in a string

\\ allows a backslash to appear in a string

\" allows a speech mark to be used in a string

Table A1 Escape sequences.

7575Appendix

Mathematical operators

Operator Name Example Answer

* multiply 2*3 6

/ divide (normal) 20/8 2.5

// divide (integer) 20//8 2

% modulus 20%8 4

+ add 2+3 5

- minus 7-3 4

Table A2 Mathematical operators.w

Comparison operators

Operator Meaning

== equal to

!= not equal to

> greater than

< less than

>= greater than or equal to

<= less than or equal to

Table A3 Comparison operators.

7676Appendix

End game code snippet

input("\n\nPress the RETURN key to finish.")

Basic tkinter code for activating a function via a key press

window.bind("<Up>", my_function)

or
 window.bind("a", my_function)

Basic tkinter code for making a canvas to draw in its own window

from tkinter import *

Set variables:
canvas_height = 400
canvas_width = 600

main:
window = Tk()
window.title("My Game Title")
canvas = Canvas(bg = "black", height = canvas_height, width = canvas_width, highlightthickness = 0)
canvas.pack()
window.mainloop()

Use the random module to pick a number between 1 and 6

import random
dice_number = random.randint(1,6)

7777Glossary and index

Glossary and index
argument a piece of information that is required by a function so that it can perform

its task; usually a string or number, my_function(arguments go here) 36

bug a piece of code that is causing a program to fail to run properly or at all 14

casting the process of converting one data-type into another; e.g. sometimes a
number may stored as text but need to be converted in to an integer – this
can be done like this: int(“3”) 52

commenting some text in a computer program that is for the human reader and is
ignored by the computer when running the program – in Python all
comments begin with a hash symbol # 30

comparative operator sometimes called logic operators, they allow us to compare data in a
program; they include == and > (others are found in Table 3 in the Appendix) 25

data-type different types of information stored by the computer, for example floats,
integers and strings 52

default a value given to an argument or variable as a starting point 63

7878Glossary and index

equals operator the equals sign is used to assign a value to a variable in coding, for
example n=2 assigns the value 2 to the variable n 23

escape sequence when characters that have certain meanings in Python are required in
strings they have to be “escaped” so that the computer knows they do not
have their usual meaning; this is done by putting a slash in front of them e.g. \" 17

float a number data-type that can have a decimal value 20

function a reusable piece of code 19

global variable a variable that is usable anywhere in a program 63

hacking taking some previously written code and re-writing bits to make it do
something different 47

IDE stands for Integrated Development Environment; IDLE is an example of
one – they are special text editors with useful tools built in for programmers 12

IDLE stands for Integrated DeveLopment Environment; this is the IDE that
comes with a normal Python 3 install 10

infinite loop a piece of code that keeps running forever; this is usually a bad thing 47

integer a number data-type that cannot have a decimal value and must be a whole number 20

interactive mode this is when we use IDLE to try out snippets of code without saving them 12

7979Glossary and index

local variable a variable that is defined inside a function and is only usable inside that
function 63

logical operator see comparative operator 25

loop a piece of code that keeps repeating until a certain condition is met 22

mathematical operator an operator that performs some mathematical function on some numbers;
e.g. multiplication or addition 20

method the name given to a function in a class 63

module a saved python file whose functions can be used by another program 31

modulus a mathematical operator that is used to return the remainder from a
division calculation; e.g. 22%7 returns 1 20

operator a symbol that performs a simple function on some code such as
multiplying two numbers or comparing them to see if they are equal; see
also comparative operator and mathematical operator 25

output data that is sent from a program to a screen or printer, etc 13

return (1) the value a function will produce after it has been run – it is also a Python
keyword; (2) the ‘end of line’ key on a keyboard, sometimes called the enter key 52

script mode this is when we use IDLE to help us write code that we will save in a file 29

8080Glossary and index

statement used in this book to mean a snippet of code; strictly speaking it is a piece of
code that represents a command or action; e.g. a print statement 48

string text data, which can be stored in a variable 19

syntax error an error produced when a computer fails to run a program because it
cannot recognise the format of the code supplied; e.g. a syntax error would
be produced if a bracket had not been closed 14

tkinter a package of classes that are often imported in to Python programs that
give methods that are useful for producing windows, drawing images and
producing animations 56

variable a name that refers to a place in a computer’s memory where data is stored;
more loosely, it can also be used to refer to that data 23

while loop a kind of loop that repeats code while a comparative statement returns True 22

8181The Quick Quiz answers

The Quick Quiz answers
Quick Quiz 1

Answer = 2

Quick Quiz 2

Answer = 11 divided by 4 also equals: 2 remainder 3

Quick Quiz 3

Answer = 1

8282Acknowledgements

Acknowledgements
Although this is a small book it has been a lot more work than I expected. My aim has always been to produce a series
of books that are produced to a standard that young people deserve. To that end I sought an established publisher
and my thanks have to go to Claudia Bickford-Smith for her enthusiasm for the project. I am so glad that Cambridge
University Press were able to take me on. The hard work of Heather Mahy and Carl Saxton who had the unenviable job
of keeping me on the straight and narrow while making the project a reality is also much appreciated.

A book that purports to teach coding to youngsters has to be tried out on youngsters. My thanks therefore must go to
The Coding Club boys of Ewell Castle School and my youngest son Daniel who endured the early versions and helped
me find out what worked and what (unfortunately for them) didn’t.

It was fantastic when I realised that the Raspberry Pi foundation had the same aims and root motivations as myself
and the encouragement of Jack Lang and the enormous help from Alex Bradbury in ensuring my code and Computer
Science was technically correct was invaluable.

I also want to personally thank Ohio Art Company who own and sell the amazing Etch A Sketch® toy who were also
very enthusiastic and quick to give me permission to use their registered trademarks.

Fran, I love the illustrations.

My two eldest sons have left the nest but thanks to modern technology have also shared the journey and made
invaluable contributions and suggestions. Finally, writing books and programs in the evenings and holidays takes time.
My eternal thanks go to my wife Rita for never begrudging me this time or complaining, even when listening to me
talking about code snippets!

Thanks guys … thighs.

8383Acknowledgements

The author and publisher acknowledge the following sources of copyright material and are
grateful for the permissions granted. While every effort has been made, it has not always
been possible to identify the sources of all the material used, or to trace all copyright holders.
If any omissions are brought to our notice, we will be happy to include the appropriate
acknowledgements on reprinting.

p. 28 ImageZoo/Alamy; p. 36 Sukhonosova Anastasia/Shutterstock; p. 37 Stock Illustrations
Ltd/Alamy; p. 55 Judith Collins/Alamy

The word mark, logo, and configuration of the Etch A Sketch® product are registered
trademarks of the Ohio Art Company.

	Cover
	Title
	Copyright
	Contents
	Introduction
	Why was this book written?
	Who is this book for?
	Why should you choose this book?
	What needs to be installed?
	How to use this book
	A word of warning

	Chapter 1: Python, IDLE and your first program
	Coding
	Programming languages
	Python
	IDLE
	Hello World!
	Making mistakes
	Did you get a syntax error?

	Chapter summary

	Chapter 2: Some text, some maths and going loopy
	Text
	Escape sequences
	Backslashes
	Functions

	Maths
	Combining text and maths
	Going loopy
	How do while loops work?
	Variables
	Operators

	Chapter summary

	Chapter 3: Readable code and the MyMagic8Ball game
	Script Mode
	Analysis of Code Box 3.1
	The # symbol
	Modules
	String variables

	Writing tidy code
	White space
	More about commenting
	Naming variables

	Getting user input
	Using the random module
	A simple dice
	Back in script mode
	Analysis of Code Box 3.4
	if, elif and else
	Two uses of input

	Putting it all together
	Running programs in script mode

	Chapter summary

	Chapter 4: Functions
	Functions
	Times tables anyone?
	The number guessing game
	Chapter summary

	Chapter 5: MyEtchASketch
	The tkinter library
	The plan
	The coordinates
	Keeping code organised
	Code Box 5.2 analysis
	The variables
	The p1_move_N() function
	self
	global
	The create_line() method

	Adding keyboard control
	Finishing off
	Chapter summary

	Taking things further
	More Python
	Thinking like a programmer
	Other programming languages

	Appendix
	Some key bits of information
	Companion website
	Escape sequences
	Mathematical operators
	Comparison operators
	End game code snippet
	Basic tkinter code for activating a function via a key press
	Basic tkinter code for making a canvas to draw in its own window
	Use the random module to pick a number between 1 and 6

	Glossary and Index
	The Quick Quiz answers
	Quick Quiz 1
	Quick Quiz 2
	Quick Quiz 3

	Acknowledgements

