Swing
for Jython

Graphical Jython Ul and Scripts Development using
Java Swing and WebSphere Application Server

Robert A. Gibson

Apress-

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

Apress*

Contents at a Glance

About the AUthOr ..o ————————————_ Xix

About the Technical REVIEWErScccssvssmsssssssssssssmsssnsnssnsssnsansas xxi

INtroducCtionccovvesienis s ————————————————_— Xxiii
Chapter 1: Components and Containers..........cccccunsemmmmnssssnnmmmsssssnmmmssssnmmsssssnmsssssnmnan. 1
Chapter 2: Interactive Sessions VS. SCHiPtS.....ccciuusssmmmsssssnnnmsssssnsnssssssnsssssssnsnnsssssnsnnssssnnns 9
Chapter 3: Building a Simple Global Security Application..........cccccnnsemnnnnsssesnnnnsssssnnnn, 15
Chapter 4: Button Up! Using Buttons and Labels..........cccuscemmmnsssenmmmnsssssssmmsssssssnsssssssnnnns 21
Chapter 5: Picking a Layout Manager Can Be a Pane..........cccusmrmsssmsmsssnsssssssssssssssssnssssnns 35
Chapter 6: Using Text Input Fields..........cccinnnmmmmmmnnsnmnmmmssssnmmmssssmmmmsssssmsmsssssssssssssneass 65
Chapter 7: Other Input Componentsccccuseemmmmisssnsnmmmsssssnmmssssssnmsssssssnsssssssssnssssnnnn 79
Chapter 8: Selectable Input COMPONENTSccccrrsmmrmsssnmmssssmmsssnsssssnsesssssesssssesssnsesssnnessnns 99
Chapter 9: Providing Choices, Making LiStS.......ccuscmmmmmssennmmmmssennmmmssssssmmssssssssnssssssssnsans 105
Chapter 10: Menus and Menulitems.......ccccuussemmmmmsssesnmmmsssssnmmssssssnsssssssssssssssnssssssssnnnsnssns 121
Chapter 11: Using JTree to Show the Forest: Hierarchical Relationships of
L0 1] 00 1T 1 137
Chapter 12: Motion to Take from the Table: Building Tablesccccusermssenrmssanssssansnsns 153
Chapter 13: Keystrokes, Actions, and Bindings, Oh My!ccccccnnemmmmnmnssesnmnmssssnnns 193
Chapter 14: It’s the Event of the Year: Events in Swing Applications..........cccccusseenninsnas 205
Chapter 15: Nuts to Soup: Using Jsoup to Enhance Applications........c.ccuuseeersnsssensnsnsans 231
Chapter 16: Conversing with a User with Dialog BOXEScussseessssesssssasssssanssssansssssnnssss 263
Chapter 17: Specialized Dialog BOXEScuusseemmmssssnsnmsssssnanssssssnsnssssssnsnssssssnsnsssssnnnnssssns 285

CONTENTS AT A GLANCE

Chapter 18: Monitoring and Indicating Progressccccusssesssmssssnssssssssssssssssssssssssssnsnsssss 297
Chapter 19: Internal Frames......ccceeeummmimmmmmmsssssssmmmmsmmmmssssssssnsmssssssssssssssenssssssss 317
Chapter 20: Building a Graphical Help Application...........cccivuunsemmmmnnsssssmmssssssssnsssssssnnsns 355
Chapter 21: A Security Configuration Report Applicationccccccnnrmmnsssnsssssssssssnnnnns 385
Chapter 22: WASports: A WebSphere Port Application..........ccccummmmmmssnmnnmnmmmssssssssnns 419
11 . 463

vi

Introduction

A long time ago, in a galaxy far, far away...

Okay, maybe not so long ago, unless you are thinking in terms of “web years.” In 1995, Java was introduced into
the world. At that time, it included a Graphical User Interface (GUI) framework called the Abstract Window Toolkit
(AWT). Unfortunately, the AWT contained many native widgets that depended on the underlying operating system.

It didn’t take long to realize that the AWT approach was limited, and unfortunately, unreliable. So, in 1997, the
Java Foundation Classes (JFC) was introduced and included the Swing component classes.!

Late in 1997, Jython was created to combine the performance provided by the Java Virtual Machine (JVM) with
the elegance of Python. In so doing, the entire collection of existing Java classes were added to the ones available
from Python. What this means to a software developer is that the rapid prototyping and iteration of Python can be
combined with the impressive class hierarchy of Java to provide an amazing software development platform.

In 2002, Samuele Pedroni and Noel Rappin wrote a book titled Jython Essentials which, interestingly enough, uses
an example similar to the one shown in Listing 1.

Listing 1. Welcome to Jython Swing

wsadmin>from javax.swing import JFrame
wsadmin>win = JFrame("Welcome to Jython Swing")
wsadminswin.size = (400, 100)

wsadmin>win. show()

The output of this interactive wsadmin code snippet is shown in Figure 1.

Figure 1. Welcome to Jython Swing application output

At the time of this writing, the first chapter of Jython Essentials was (still) available on the O'Reilly website.?
So, it has been obvious, at least to some people, just how valuable and powerful Jython can be as a Swing
development environment.

'T hadn’t realized, at least until I looked at Java Foundation Classes in a Nutshell by David Flanagan, just how much of the JFC was
composed of Swing classes and components. Most of Part I of that book documents the GUI Application Programming Interfaces
(APIs) used in client-side Java programs.

*See http://oreilly.com/catalog/jythoness/chapter/cho1.html.

xxiii

http://oreilly.com/catalog/jythoness/chapter/ch01.html

INTRODUCTION

Why Read This Book?

You may ask, if the Jython Essentials book has been around for more than a decade and talks about using Swing with
Jython, is this book really necessary? The answer to that question is yes, because Jython Essentials, as well as the other
Jython books, talk a little about using Swing with Jython and provides occasional example programs, but this topic is
mentioned only in passing.

There are some other books about Jython, most notably The Definitive Guide to Jython: Python for the Java
Platform by Jim Baker, Josh Juneau, Frank Wierzbicki, Leo Soto, and Victor Ng (Apress, ISBN 978-1-4302-2527-0). It
too has some examples of using Swing with Jython. Unfortunately for the person interested in learning how to write
Jython Swing applications, the amount of information is limited.

What Does This Book Cover?

The focus of this book, on the other hand, is to show you how to use Swing to add a GUI to your Jython scripts, with an
emphasis on the WebSphere Application Server wsadmin utility. In fact, we teach you Swing using Jython and do itin a
way that will make your scripts easier for people to use, more robust, more understandable, and therefore easier

to maintain.

The Swing hierarchy is a huge beast.

How do you eat an elephant? One bite at a time.

That’s what you're going to do with Swing in this book—consume it in a lot of small bytes.

In order to make it more easily consumable, the book uses lots of examples, with most of them building on earlier
ones. In fact, by the time you're done, you'll have touched on the almost 300 scripts that were written during the
creation of this book.

Additional challenges exist, for example, event handling and threads. These too require some clarifying
examples and explanation. We will also be dealing with concurrency, especially in the context of using threads in the
applications that are created.

As you progress, you'll see that there are often a number of different ways to do things. We try to point some of
these different approaches, depending on the context. Why only some? Well, unfortunately, we are rarely able to
identify them all. As I found after reading lots of different programs, there is often yet another way to do something.
So, we admit that we don’t know everything. In fact, that’s one of the things that we find neat and interesting about
writing code. We love to learn and hope that you do too.

Swing development is a “target rich” environment.

These days, it’s a challenge to find command-line only programs. Wherever you look, programs have a graphical
interface and allow the users to use their mouse to make selections. Frequently, you can use the mouse to completely
specify the information required by a program to perform the user-desired operations. How many times have you
been able to use a mouse to make all of the selections from the displayed information? I bet you don’t have to think
too hard to come up with a number of examples of this kind of interaction.

Unfortunately, this has not been the case for most WebSphere Application Server (WSAS) administrative scripts.
When using wsadmin to execute one of these WSAS administrative scripts, developers have been forced to do one of
the following:

e Provide command-line options as input.
e Use some kind of input file (such as a properties file, Windows . ini file, and so on).

e Have the script prompt the users and wait for them to provide an appropriate response.

XXiv

INTRODUCTION

This book is going to help you change all that. We’re going to cover all of the information that you need to help
you add a Graphical User Interface (GUI) to your WSAS Jython scripts. Does that mean that we cover each and every
Java Swing class, method, and constant? No, unfortunately not. Take a look at Java Swing by Robert Eckstein,

Marc Loy, and Dave Wood (ISBN 1-56592-455-X); it’s more than 1,000 pages long! And, it’s not the only huge book on
Java Swing. Unfortunately, this is part of the problem. Many people are intimidated by the amount of information and
are unsure of how and where to start.

One thing that you should realize is that we don’t have to create a huge tome about each and every aspect on this
subject in order to make it useful. For one, we don’t duplicate information that is available elsewhere. What we do
need to do is show you:

e Whatis possible
e Whatisrequired
e How to make use of existing information

e How to take Java examples and produce equivalent (possibly even better) Jython scripts that
do the same kind of thing

And that is what we intend to do with this book. How does that sound?

What You Need

What is required?

This book is all about using the Java Swing classes in your Jython scripts. The fact that a number of examples use
the IBM WebSphere Application Server (WSAS) to demonstrate different things does not mean that you must have
WSAS in order to use Swing in your Jython scripts. I happen to use the WSAS environment to demonstrate some of
the more complete applications. So it is important to note that some, but not all, of the scripts included with this work
depend on information that is provided by a WSAS environment. If you are interested in using the information in this
book in your own Jython scripts, I encourage you to do so.

All of the book’s scripts have been tested using WSAS versions 8.5, 8.0, and 7.0. Some of them are also usable on
version 6.1, but there are some things that don’t exist in that version of wsadmin.® When these issues pop up, they
are addressed.

Most contemporary software programs have a graphical user interface. In fact, some people (like my kids) would
be stymied by something like a Windows or UNIX command prompt.

They would likely ask something like, “What am I supposed to do now? There’s nothing to click on!” That’s what
this book is all about—helping you create user-friendly Jython scripts using Java Swing classes.

3Most notably, any scripts that depend on the SwingWorker class won’t work on version 6.1 of WSAS since that class is not
available in the 6.1 wsadmin class hierarchy.

XXV

CHAPTER 1

Components and Containers

Before you begin your exploration of Swing objects and classes, I need to first explain how I am going to describe these
things. For the most part, the objects that you use on your graphical applications are called components. In some places,
they may be referred to as widgets. I'll try to be consistent and stick with components in hope of minimizing confusion.

In this chapter, you get your first exposure to the Swing hierarchy and see how a Jython application can use the
Swing classes to create a Graphical User Interface (GUT). You'll begin with top-level container types and see what
makes them special. Then you will see how Jython can help you to investigate and understand the class hierarchy. Next,
you create a trivial application using an interactive session. You also get your first exposure to some of the challenges
associated with the positioning of components on an application when you aren’t aware of class default values. Finally,
you'll see how users can impact the way that things are displayed should they resize the application window.

Another thing that you need to realize is that the Java Swing classes are not a complete replacement of the AWT.
There are a number of places, as you will see, where AWT features continue to be used. For example, the AWT event-
handling elements and mechanisms are an integral part of the user interface that most people consider “Java Swing.”
When AWT features are needed, they are identified accordingly.

As you will soon see, you will be building applications using Swing components placed in a way to convey
information to the users. Sometimes the users can interact with these components in order to provide information to
the application. At other times, the components are used only to provide information to the users. An example of this
kind of component is text placed on the application near an input field to direct users as to what kind of information,
or input, is expected.

Sometimes, multiple components or objects are grouped together and associated with one another. An example
of this is a list of some sort that’s used to make a selection. This grouping of components will be associated with, and
contained within, a collection. One of the many concepts explained in this book is how to tell the Swing classes how
a collection should be displayed. In fact, in order for a component to be visible, it must be associated with a container
of some sort. Because of this, a hierarchy of containers and components exists in every Swing application. At the top
of the hierarchy there needs to be a root, or top-level, container that holds the complete collection of application
components.' This might make a little more sense when you see some examples.

Top-Level Containers

Some Swing containers are special. The main difference between these and other containers in the Swing hierarchy is
that none of the top-level containers are descended from the javax.swing.JComponent class. In fact, each of them is a
descendant of an AWT class. Because of this, these containers may not be placed into any other container. All of these
special containers are called “top-level” containers because they are at the top (relatively speaking) of the application
hierarchy.

'The biggest difference between collections and components is that a collection is a kind of component that can hold other
components.

CHAPTER 1 © COMPONENTS AND CONTAINERS

What are these container classes, and what does it mean that they aren’t descended from javax.swing.
JComponent?

Take a look at the Java class documentation (i.e., the output of the Javadoc tool that’s used to generate API
documentation in HTML).? In this documentation, you need to locate the top-level containers. Table 1-1 shows the
top portion of the class hierarchy for each of the top-level containers.

Table 1-1. Top-Level Containers

Container Type Class Hierarchy

JApplet® java.lang.0Object
java.awt.Component
java.awt.Container
java.awt.Panel
java.applet.Applet
javax.swing.JApplet

JDialog! java.lang.0Object
java.awt.Component
java.awt.Container
java.awt.Window
java.awt.Dialog
javax.swing.JDialog

JFrame® java.lang.0Object
java.awt.Component
java.awt.Container
java.awt.Window
java.awt.Frame
javax.swing.JFrame

JWindow® java.lang.0Object
java.awt.Component
java.awt.Container
java.awt.Window
javax.swing.JWindow

As you can see, each of these classes descends from a java.awt class, not from the javax.swing.JComponent
class. As with all AWT classes, this means that there is a significant portion of the class that is composed of native
(i.e., operating system-specific) code.

2See http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html.
3See http://docs.oracle.com/javase/8/docs/api/javax/swing/JApplet.html.
‘See http://docs.oracle.com/javase/8/docs/api/javax/swing/IDialog.html
’See http://docs.oracle.com/javase/8/docs/api/javax/swing/JIFrame.html.
See http://docs.oracle.com/javase/8/docs/api/javax/swing/IWindow.html

2

http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/JApplet.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/JDialog.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/JFrame.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/JWindow.html

CHAPTER 1 COMPONENTS AND CONTAINERS

Looking at these top-level components might make you wonder about the difference between a window
(JWindow) and a frame (JFrame). Listing 1-1 shows a trivial interactive wsadmin session’ that can be used to display a
JWindow instance of a specific size.?

Listing 1-1. Simple JWindow example

wsadmin>from java.awt import Dimension
wsadmin>from javax.swing import JWindow
wsadmin>win = JWindow()
wsadmins>win.setSize(Dimension(400, 100))
wsadmins>win.show()

Wait a minute. How did I know that I needed to import the Dimension class from the java.awt library and then
instantiate one of them in order to invoke the setSize() method?
The answer is I cheated. I first tried to do it without importing the Dimension class, as in Listing 1-2.

Listing 1-2. The setSize() exception

wsadmin>from javax.swing import JWindow

wsadmin>win = JWindow()

wsadmins>win.setSize((400, 100))

WASX7015E: Exception running command: "win.setSize((400, 100))";

exception information: com.ibm.bsf.BSFException: exception from Jython:
. setSize(): 1st arg can't be coerced to java.awt.Dimension

Did you notice how the exception tells you exactly what you need to use to resolve the issue? This demonstrates
just how easy it is to use an interactive wsadmin (or Jython) session to develop and test your applications.’

Now, getting back to the JWindow. If you execute the steps shown in Listing 1-1, you'll notice how empty it is.
It is a completely blank slate. This provides you with the opportunity to completely define how your application will
look. The tradeoff though is that you have to define each and every aspect of the application. For this reason, however,
I prefer to use the JFrame as a starting point (at least for now), since it does a lot of the work for me. In fact, the vast
majority of scripts in the remainder of the book use the JFrame class.

Getting Help from Jython

You just looked at the Java class documentation for the top-level containers. Do you really have to use the
documentation, or is there any way to get to this kind of information from Jython? Let’s take a quick look at what
Jython can do to help you. Listing 1-3 shows an interactive wsadmin session that includes the definition of a simple
Jython class function (called classes) that can display information about the class definition hierarchy. In this case,
this function is used to show information about the JFrame class.

To start an interactive session, execute either the wsadmin.bat or wsadmin. sh shell script and identify the scripting language

to be used as Jython. For example, "./wsadmin.sh -conntype none -lang Jython".

81 did not include a figure of the result because it is simply a plain white rectangle displayed in the top-left corner of the screen. Go
ahead and try it for yourself, and you’ll see what I mean.

You'll find that we often use script and application interchangeably in this book.

CHAPTER 1 © COMPONENTS AND CONTAINERS

Listing 1-3. The classes function

wsadmin>from javax.swing import JFrame
wsadmin>

wsadmin>def classes(Class, pad = "') :
wsadmin> print pad + str(Class)
wsadmin> for base in Class._ bases_ :
wsadminy classes(base, pad + '| ')
wsadmin>

wsadminy>classes(JFrame)
javax.swing.JFrame

| java.awt.Frame

| java.awt.Window

| | java.awt.Container

| | | java.awt.Component

| | | | java.lang.Object

| | | | java.awt.image.ImageObserver

| | | | java.awt.MenuContainer

| | | | java.io.Serializable

| | javax.accessibility.Accessible

| java.awt.MenuContainer
javax.swing.WindowConstants
javax.accessibility.Accessible
javax.swing.RootPaneContainer
wsadmin>

How does this information compare with what you saw earlier from the Java class documentation? One
difference is that the information that is displayed is from the specified class, which in this case is JFrame, down
toward its ancestor components. It is also more complete. The really neat thing about this is that you are using the
power of Jython to understand what is available from the Java Swing hierarchy.

How and Why Are You Able to Do This?

Java includes some properties that allow objects and classes to be dynamically “queried” to determine information
about what the objects and classes can do. These properties are called reflection and introspection. The classes
function in Listing 1-3 illustrates one way to use these properties. l won'’t get into this too much, at least at this point,
but you will be seeing more about how to use some of the properties later.'

What’s Next?...Starting Simple

After starting with a frame, you need to decide what your application should display. Let’s start by adding the
ubiquitous "Hello World!" message. How do you go about doing that? First, you have to figure out what kind of
object you need to display text.

Swing has a component for that, called a JLabel. (You will soon realize that many of the Java Swing components
start with a capital J).

%One important point to mention is that the output produced by the classes function when Jython (not wsadmin) is used is much
harder to read. I chose to use the wsadmin environment for simplicity and readability.

4

CHAPTER 1 COMPONENTS AND CONTAINERS

Before you create a JLabel object, you need to tell Jython where it can obtain details about this class, just like you
did for the JFrame class. Again, you use a variation of the Jython import statement. Listing 1-4 shows one way to do
exactly this.

Listing 1-4. Adding a JLabel to the application

wsadmin>from javax.swing import JFrame

wsadmin>from javax.swing import JLabel

wsadmin>

wsadminy>frame = JFrame('Hello world')

wsadmin>label = frame.add(JLabel('Hello Swing world'))
wsadminy>frame.pack()

wsadmin>frame.setVisible(1)

wsadmin>

The steps used in this example can be described as follows:

1. Instantiate (create) a JFrame object (supply the title). This is done by calling the JFrame
constructor.

2. Instantiate a JLabel object (supply the label text). This is done by calling the JLabel
constructor.

3. Add the JLabel object to the JFrame (application) object. This is done by calling the
JFrame add() method and passing the JLabel object to it.!!

The result of executing the code in Listing 1-4 is a small application window located in the top-left corner of the
screen. first image in Figure 1-1

hetio swng woria)| (fbeto swmgworia |

Figure 1-1. The “Hello Swing world” window

The shows what this window looks like. It’s interesting to note, however, that the application title, which is
normally on the title bar, is obscured by the application icons. The second image in Figure 1-1 shows what happens
when you grab the right side of the window and drag it to the right, thereby increasing the window width and making
the application title visible.

Adding a Second Label

Hopefully, that seems pretty straightforward to you. Let’s add another label just to see what happens. Listing 1-5
shows a different interactive wsadmin session that does just that.

""The program saves the result of calling frame.add() into a variable simply to make the interactive session more readable.

CHAPTER 1 © COMPONENTS AND CONTAINERS

Listing 1-5. Adding a second JLabel to the application

wsadmin>from javax.swing import JFrame

wsadmin>from javax.swing import JLabel

wsadmin>

wsadmin>frame = JFrame('Hello world')

wsadmin>label = frame.add(JLabel('Hello Swing world'))
wsadmin>label = frame.add(JLabel('Testing, 1, 2, 3'))
wsadmin>frame.pack()

wsadmin>frame.setVisible(1)

wsadmin>

Figure 1-2 shows the output. Unfortunately, it probably doesn’t look like you expected it to. What happened? The
simple answer is that you didn'’t tell the frame where to add the second label, so it put both labels in the same place,
and Swing can’t show both labels in the same place. This chapter isn’t the best place get into details about Layout
Managers; you'll learn about them in Chapter 5. You'll do just enough to get by here.

esting, 1,2, 3

Figure 1-2. After adding the second JLabel

Is there a something simple that you can do make this example work? Yes there is! Listing 1-6 shows how you can
change the default Layout Manager used by the JFrame objects.'?

Listing 1-6. Changing the default JFrame Layout Manager

wsadmin>from java.awt import FlowlLayout

wsadmin>

wsadmin>from javax.swing import JFrame

wsadmin>from javax.swing import JlLabel

wsadmin>

wsadmin>frame = JFrame('Frame title')
wsadmin>frame.setlLayout(FlowlLayout())

wsadmin>label = frame.add(JLabel('Hello Swing world'))
wsadmin>label = frame.add(JlLabel('Testing, 1, 2, 3'))
wsadmin>frame.pack()

wsadminy>frame.setVisible(1)

wsadmin>

Unfortunately, as you can see in the image on the left in Figure 1-3, the two labels are side by side on the same
line. If you drag the corner of the window to narrow the application window a little bit, you'll get better results. The
image on the right in Figure 1-3 shows how the two labels are separate and distinct.

In case you are interested, BorderLayout is the default Layout Manager used by JFrame.

6

CHAPTER 1 COMPONENTS AND CONTAINERS

. m—] [Hello Swing World

| Hello Swing World Testing, 1, 2, 3 Testing, 1,2,3

Figure 1-3. Adjacent JLabel objects

Summary

What has this chapter taught you? For one thing, it shows how easily you can create a trivial graphical application
using Jython and Swing. However, these aren’t really good examples because they were created using interactive
wsadmin sessions. In the next chapter, you'll learn about the differences between interactive sessions and script files.

CHAPTER 2

Interactive Sessions vs. Scripts

It shouldn’t take long for you to realize that you don’t want to be using interactive wsadmin sessions for your
applications. What does it take? Well, there are some things of which you must be aware.

This chapter begins with some additional interactive scripts to help illustrate some of the important differences
between the interactive environment and what is needed for your Jython Swing scripts to be successful. Part of this
process includes using the Java compiler to understand that some methods have been deprecated. Unfortunately
Jython doesn't warn you about this when the scripts using those methods are executed. Finally, you'll take a look at
thread safety and the challenge that it presents to developers.

Running Your First Script from a File

Let’s start by putting the trivial script from the previous chapter into a text file and then execute it using wsadmin.!
Listing 2-1 shows the contents of the Welcome.py script file.

Listing 2-1. The Welcome.py Script File

from javax.swing import JFrame

win = JFrame('Welcome to Jython Swing')
win.size = (400, 100)

win. show()

What happens when you execute this script using wsadmin?? Nothing, that’s what. The question is, why don’t
you see anything? The simple answer is that the call to the show() method returns immediately, and the script exits.
There isn’t time for the Swing framework to display the instantiated window. To verify this, you can add a statement
that causes the script to wait. The easiest and simplest way to do this is to use the raw_input () function to display a
message and then wait for user input. Listing 2-2 shows the contents of the modified Welcomel. py script file.

Listing 2-2. The Welcomel.py Script File

from javax.swing import JFrame
win = JFrame('Welcome to Jython Swing')
win.size = (400, 100)
win. show()
if 'AdminConfig' in dir() :
raw_input('\nPress <Enter> to terminate the application: ')

'For those using Jython and not wsadmin, you don’t need to use raw_input() to pause the script.
*The command should look something like wsadmin -conntype none -f Welcome.py.

CHAPTER 2 ' INTERACTIVE SESSIONS VS. SCRIPTS

That’s better! When you execute this script, the wsadmin utility stays around long enough for the application
window to be displayed. Even though the application isn’t too exciting, it is interesting enough as a starting point.

The next question you should ask at this point is, “What happens when you use (click on) the application
close icon in the top-right corner of the application window?” The application exits, right? No, it doesn’t. Look at
the interactive wsadmin command prompt window. It continues to show the "Press <Enter> to terminate the
application:" message. If you press the Enter key at this point, wsadmin exits and the operating system command
prompt is displayed.®

How do you fix this behavior? How do you get wsadmin to exit when you use the application’s close icon? The
simple answer is that you have to tell it to. If you take a moment to think about it, you'll realize that the close icon is
part of the JFrame. If you take a look at the JFrame online documentation,* you'll find the following:

Unlike a Frame, a JFrame has some notion of how to respond when the user attempts to close
the window. The default behavior is to simply hide the JFrame when the user closes the window.
To change the default behavior, you invoke the setDefaultCloseOperation(int) method.

Listing 2-3 shows the revised script, Welcome2.py. The only change from the previous script is the addition of a
call to the setDefaultCloseOperation() method. What happens when you run this script and click on the close icon?
The application window is removed, and the wsadmin utility terminates.

Listing 2-3. The Welcome2.py Script File

from javax.swing import JFrame
win = JFrame('Welcome to Jython Swing')
win.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE)
win.size = (400, 100)
win. show()
if 'AdminConfig' in dir() :
raw_input('\nPress <Enter> to terminate the application: ')

This is perfect, right? No, not really. There are a couple of things that aren’t as they should be.

Depending “Too Much” on Limited Information

The first problem with the trivial script in Listing 2-3 isn’t very obvious. In fact, to figure out this problem, you can either:
e Lookclosely at the JFrame documentation.
e Write and compile an equivalent Java application.

Listing 2-4 shows an equivalent Java application.

3Forreaders who use Jython and not wsadmin, the Java process will still be executing in the background when you execute the script.
See http://docs.oracle.com/javase/8/docs/api/javax/swing/JFrame.html.

10

http://docs.oracle.com/javase/8/docs/api/javax/swing/JFrame.html

CHAPTER 2 * INTERACTIVE SESSIONS VS. SCRIPTS

Listing 2-4. Welcome3.java

import javax.swing.JFrame;

public class Welcome3 {
public static void main(String args[]) {
JFrame win = new JFrame("Welcome to Java Swing");
win.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);
win.setSize(400, 100);
win.show();

What happens when you compile this? The warning messages (notes) shown in Figure 2-1 are generated.

Note: Welcome3.java uses or overrides a deprecated API.
Note: Recompile with -Xlint:deprecation for details.

Figure 2-1. Welcome3 warning messages

If you recompile Welcome3 using the specified option, you get a more detailed explanation of the problem, as
shown in Figure 2-2.

warning: [deprecation] show() in java.awt.Window has been deprecated

Figure 2-2. Welcome3 detailed deprecation message

Looking at the documentation for this show()) method,® you'll find that you should be using
setVisible(boolean) instead.

This shows® you a challenge that you'll encounter when using Jython to call Java methods. The Java compiler
informs the users when a method has been deprecated, but the Jython environment does not. I'm not suggesting
that you should avoid using calls to Java methods in your Jython scripts. Far from it’ I'm just letting you know that
you should check to see if a method has been deprecated before using it in your scripts. This situation is most likely
to occur, at least from my experience, if you obtain an existing Java Swing program and translate, or convert, it to the
equivalent Jython without checking for this kind of issue.

Seehttp://docs.oracle.com/javase/8/docs/api/java/awt/Window. html#show%28%29.
Pun intended.

11

http://docs.oracle.com/javase/8/docs/api/java/awt/Window.html%23show%2528%2529

CHAPTER 2 ' INTERACTIVE SESSIONS VS. SCRIPTS

Swing Threads

Deprecated methods aren’t the only kind of issue of which you need to be aware. One of the most significant
differences between simple applications and ones where the developer needs to be able to interact with users and
respond to events is related to threads of control (aka threads). Articles have been around for quite some time that
discuss issues related to the fact that Swing developers should be aware of the fact that most Swing components are
not thread-safe,” and techniques exists for performing long-running operations.?

One technique is to define the application in a separate class and then wrap the instantiation of this class in a
Java Runnable class. The calling of this Runnable class is deferred until the Swing environment is ready for it. This
slight delay is performed by the Swing Event Dispatch thread and is initiated by a call to the invokeLater () method
call of the SwingUtilities, or EventQueue class. This concept can be hard to follow. Take a look at an example of this
technique, as shown in Listing 2-5.

Listing 2-5. Templatel.py

1|import java

2|import sys

3|from java.awt import EventQueue
4|from javax.swing import JFrame
5|class Templatel :

6] def _init (self) :

7] frame = JFrame('Title')

8| frame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE)
9| frame.pack()

10| frame.setVisible(1)

11|class Runnable(java.lang.Runnable) :
12| def _init_ (self, fun) :

13| self.runner = fun

14| def run(self) :

15| self.runner()

16]|if _name__ in [' main_ ', 'main'] :

17| EventQueue.invokelLater(Runnable(Template1l))

18| if 'AdminConfig' in dir() :

19| raw_input('\nPress <Enter> to terminate the application: ')
20|else :

21| print '\nError: This script should be executed, not imported.\n'
22| if 'JYTHON_JAR' in dir(sys) :

23| print 'jython %s.py' % _ name__

24| else :

25| print 'Usage: wsadmin -f %s.py' % _ name__

26| sys.exit()

A detailed description for this code can be found in Table 2-1.

"See http://java.sun.com/products/jfc/tsc/articles/threads/threads1.html.
8See http://java.sun.com/products/jfc/tsc/articles/threads/threads2.html.

12

http://java.sun.com/products/jfc/tsc/articles/threads/threads1.html
http://java.sun.com/products/jfc/tsc/articles/threads/threads2.html

CHAPTER 2 * INTERACTIVE SESSIONS VS. SCRIPTS

Table 2-1. Templatel.py Details

Lines Detailed Description

1-4 Statements used to add class names to the Jython namespace.
5-10 User-defined application class (i.e., Template1).
11-15 Wrapper class, descended from java.lang.Runnable, that saves a class reference in the constructor and

delays the instantiation of the class until the run() method is called (on the Swing Event Dispatch thread).

16-22 This is the (apparent) script-entry point. This code determines if the script was executed or imported.
If imported, an error message is displayed and the script exits. If the script was executed, a call to
instantiate the user application class is deferred until the Swing Event Dispatch thread is ready to do so.

A roughly equivalent approach is shown in Listing 2-6.

Listing 2-6. Template2.py

1|import java

2|import sys

3|from java.awt import EventQueue
4|from javax.swing import JFrame
5|class Template2(java.lang.Runnable) :
6| def run(self) :

7] frame = JFrame('Title')

8| frame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE)

9| frame.pack()

10| frame.setVisible(1)

11|if name in [' main_ ', 'main'] :

12| EventQueue.invokelater(Template2())

13| if 'AdminConfig' in dir() :

14| raw_input('\nPress <Enter> to terminate the application: ')
15|else :

16| print '\nError: This script should be executed, not imported.\n'
17| if 'JYTHON JAR' in dir(sys) :

18| print 'jython %s.py' % _name__

19| else :

20| print 'Usage: wsadmin -f %s.py' % _ name__

21| sys.exit()

Looking closely at these two listings, you should notice the differences. Instead of defining a separate user
application class that creates the Swing application components in the class constructor, this code places all of the
Swing component-creation operations in the class run() method.

The example scripts provided and described in this book tend to use the second template since it requires a
little less code. It also makes a bit more sense, at least to me. While writing the example scripts in this book I found it
extremely easy to start with the Template script and add the code that was required to demonstrate the topic being
discussed. One useful feature of this technique is the fact that it should help you focus on the important differences
and hopefully spend less time with the script as a whole.

13

CHAPTER 2 ' INTERACTIVE SESSIONS VS. SCRIPTS

Summary

This chapter shows what happens when you start using script files instead of interactive wsadmin sessions for your
applications. The biggest difference is that you have to add a way for the script file to wait for the users to interact with
the application. To do so, the script files will often use something like the raw_input () function provided by Jython.
Additionally, subsequent script files in this book include an application class that defines the Jython components,
containers, and structures used by the applications demonstrating the use of Swing classes and constructs.

14

CHAPTER 3

Building a Simple Global Security
Application

In my experience, learning a programming topic is much easier when good examples are included. Throughout this book,
you're going to go through the process of building simple Jython Swing applications from scratch. As you do so, you will be
learning about some of the available Swing components and using them to make your application useful. In this chapter,
you take a quick look at a simple graphical application that displays whether the WebSphere Global Security has been
enabled or not. This will lead you to the topics of panes and layers, which are so very important to Swing applications.

Adding Text to the Application Using a JLabel

At this point, you haven’t learned how to build a non-trivial, fully functional application. However, you do have
information eno ugh to get started. How so? Well, you'll start simple by building a simple application that displays
the status of the global security. For those who may be unfamiliar with it, global security is simply a setting that
determines whether a username and password is required to administer the application server environment.
Listing 3-1 shows a complete Jython script to do just this.

Listing 3-1. SecStatus.py

1|import java

2|from java.awt import EventQueue
3|from javax.swing import JFrame
4|from javax.swing import JLabel
5|class SecStatus(java.lang.Runnable) :
6] def run(self) :

7] frame = JFrame('Global Security')

8| frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE)

9] security = AdminConfig.list('Security')

10| status = AdminConfig.showAttribute(security, 'enabled')
11| frame.add(JLabel('Security enabled: ' + status))

12| frame.pack()

13| frame.setVisible(1)

14|if _name__ in ['__main_", 'main'] :

15| EventQueue.invokelater(SecStatus())

16| raw_input('\nPress <Enter> to terminate the application: ')
17]|else :

18| print 'Error: This script should be executed, not imported.\n'
19| print 'Usage: wsadmin -f %s.py' % _ name__

15

CHAPTER 3 ' BUILDING A SIMPLE GLOBAL SECURITY APPLICATION

The statements that make use of wsadmin scripting objects are shown in lines 9 and 10. This application doesn’t
require a graphical user interface. In fact, it can easily be performed using a single wsadmin command with a print
statement to display the status. Listing 3-2 shows a simple wsadmin command line that can be used to display the
same security status information.!

Listing 3-2. wsadmin Command that Displays the Global Security Status

wsadmin -conntype none -lang jython -c "print 'Security enabled:
+ AdminConfig.showAttribute(AdminConfig.list('Security'), ‘enabled')"

However, you will quickly see that scripts that interact with users are often good candidates for graphical user
interface, and so that is what you will be learning to do.

No “Pane,” No Gain

When your application creates one of the top-level containers (e.g., a JFrame), a number of things are created by
that container to help it perform its role. One of the things created by the JFrame constructor is a RootPane (which
happens to be of type JRootPane).2

What does this RootPane do? It is composed of, and is used to manage, the following panes, each of which will be
described in the following sections:

e Aglass pane
e Alayered pane
e A content pane

e Anoptional menu bar

When You Live in a Glass House, Everything Is a Pane

The glass pane can be used to intercept events.® For most applications, it is a transparent pane that doesn’t get in the
way of your visible application components. However, there may be a time when you want to have something made
visible on the glass pane that covers an existing component on the content pane. There is an interesting example in
the Java Swing Tutorial, on the :How to Use Root Panes” page,* that demonstrates one possible use of the glass pane.
A section about the glass pane can be found on that same page.®

At this point, [haven’t discussed enough of using Swing with Jython for the novice user to understand this
particular example. However, someone with some knowledge of Java Swing and Jython might be interested in how
an equivalent Jython script would look. For those folks, I have included a translated version of the GlassPaneDemo. py
script to read and play with. Figure 3-1 shows some sample images that can be created using this script. The complete
script is available in the source code for this chapter.

'The contents of Listing 3-2 must be entered as a single line / statement.

*See http://docs.oracle.com/javase/8/docs/api/javax/swing/IRootPane.html.

3Which have not yet been defined. For the time being, you can think of things like mouse clicks as events, the first discussion
of which appears in Chapter 4.

‘See http://docs.oracle.com/javase/tutorial/uiswing/components/rootpane.html.

5See http://docs.oracle.com/javase/tutorial/uiswing/components/rootpane.htmliglasspane.

16

http://docs.oracle.com/javase/8/docs/api/javax/swing/JRootPane.html
http://docs.oracle.com/javase/tutorial/uiswing/components/rootpane.html
http://docs.oracle.com/javase/tutorial/uiswing/components/rootpane.html#glasspane

CHAPTER 3 * BUILDING A SIMPLE GLOBAL SECURITY APPLICATION

Menu

[] Glass pane "visible” | Button 1 i Button 2 [v] Glass pane "visible" Button 1 | Button 2

Figure 3-1. GlassPaneDemo.py sample images

The Layered Look Can Also Be a Pane

I'm certain that you have used an application that includes components that involve different layers. One of the most
common instances of layers occurs when a pop-up menu is displayed. It is important that this menu isn’t obscured
by any of the existing components. The layered pane is used to great effect for component positioning. Right now, you
don’t have to worry about this pane. It is discussed in Chapter 19.

The Optional MenuBar

Almost every graphical application that you can think of has some kind of menu. The MenuBar is a collection of
Menultems that are displayed to allow users to make selections. The applications that you create are likely to use
MenuBars. In fact, many of the complete scripts that are developed in the last few chapters of this book use MenuBars
and Menultems. Since this is an important topic, the book spends all of Chapter 10 on menu-related issues.

The Content Pane Will Contain Most of the Visible Items

All Swing applications have at least one top-level container. Each of these top-level containers is the top, or root, of
the application containment hierarchy (i.e., all of the visible components that appear in the container). In this book,
almost all of the example applications will have a JFrame as the top-level container.

Additionally, just about every application will place the components to be displayed on the JFrame content pane.
So, one of the most common things that needs to be done with a JFrame instance is to obtain a reference to its content
pane. This is typically done using syntax like that shown in Listing 3-3.

Listing 3-3. Getting a JFrame Content Pane Reference
contentPane = frame.getContentPane()
What kind of object is returned by this call? The simple answer is that a java.awt.Container® is returned. What,

exactly, is a java.awt.Container? It certainly is a lot easier to comprehend than it is to describe. In fact, I described
Swing containers as components that can hold a group of zero or more components.

Seehttp://docs.oracle.com/javase/8/docs/api/javax/swing/IFrame.html#getContentPane().

17

http://docs.oracle.com/javase/8/docs/api/javax/swing/JFrame.html%23getContentPane()

CHAPTER 3 ' BUILDING A SIMPLE GLOBAL SECURITY APPLICATION

Looking at the documentation,” you can see that it has six dozen methods. Granted, seven of these have been
deprecated and another five are protected, which means that you really shouldn’t be using them from your Jython
scripts. Another seven have multiple overloaded variations (e.g., there are five different add() methods). These add()
methods are shown in Table 3-1.

Table 3-1. Component add() methods

Modifier and Type Method and Description

Component add(Component comp)

Appends the specified component to the end of this container.
Component add(Component comp, int index)

Adds the specified component to this container at the given position.
void add(Component comp, Object constraints)

Adds the specified component to the end of this container.
void add(Component comp, Object constraints, int index)

Adds the specified component to this container with the specified constraints at the
specified index.

Component add(String name, Component comp)

Adds the specified component to this container.

I'won't be digging too deeply into these various methods, but I will be making good use of a number of them.
In fact, you have already seen some example uses of the add () method (see line 11 of Listing 3-1, for example).

Did you catch that? I snuck one in on you there. If you were watching closely, you may have wondered why
Listing 3-1 doesn’t include a call to the getContentPane () method, as shown in Listing 3-3. How does this work?
Well, the Swing developers realized that some method calls are very common, so they have provided a convenience.
Instead of writing a statement like you see in Listing 3-4, you are allowed to leave out the call to the getContentPane()
method.

Listing 3-4. Calling getContentPane() to add() Something

frame.getContentPane().add(something)

Where is this documented? Right on the JFrame documentation,® where you'll find the paragraph shown in
Figure 3-2.°

'See http://docs.oracle.com/javase/8/docs/api/java/awt/Container.html.
8See http://docs.oracle.com/javase/8/docs/api/javax/swing/JIFrame.html.
Yes, convenience is misspelled in the documentation.

18

http://docs.oracle.com/javase/8/docs/api/java/awt/Container.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/JFrame.html

CHAPTER 3 © BUILDING A SIMPLE GLOBAL SECURITY APPLICATION

... As a conveniance add and its variants, remove and setLayout have been overridden to
forward to the contentPane as necessary. This means you can write:

frame.add(child);

And the child will be added to the contentPane.

Figure 3-2. JFrame conveniences from the JFrame documentation

Can you still include the call to the getContentPane() method in your code? Certainly. You aren'’t forced to use
this convenience. If this makes your code easier and more understandable, that is your choice. Don’t be surprised
when most of the sample Java Swing code found in the wild'® uses this convenience.

Summary

In this chapter, you saw a simple Jython Swing application that displays the current WebSphere global security status
as the text of a JLabel component. Even though it is trivial in nature, it demonstrates the structure of the applications
to be found throughout the book. Additionally, you had your first exposure to the layering that exists in the JFrame
class, which will be used in almost every example application found in this book.

0The “wild” here refers to the wild, wild west, also known as the World Wide Web (WWW).

19

CHAPTER 4

Button Up! Using Buttons and Labels/

Up to this point, the applications you built in this book have been kind of boring.! They really haven’t done anything
except display a message. But now it’s time to change that. In this chapter, you're going to add a button to your
application and then have it react when the user presses it. How does that sound?

To do this you'll first take a look at the JButton class hierarchy and see the Java way to create a button and add
it to the application frame. Then you'll see a verbose way, in Jython, to do the same thing. Then you'll see a more
concise way to put a button on the frame and have an event handler update another component when the user
presses the button. This technique will allow your applications to react when the users click one of the buttons.

JButton Class Hierarchy

Before you start making buttons, it seems appropriate to take a look at this class. In Chapter 1, you saw a function named
classes that displayed the class hierarchy for a given type from the inside out. Listing 4-1 shows this simple function again.’

Listing 4-1. classes.py

def classes(Class, pad = "') :
print pad + str(Class)
for base in Class._bases_ :
classes(base, pad + '| ')

Using this function, you can display the JButton class hierarchy. Listing 4-2 shows an interactive wsadmin session
that does just that.?

Listing 4-2. JButton class hierarchy

wsadmin>from javax.swing import JButton
wsadmin>

wsadmin>classes(JButton)
javax.swing.JButton

| javax.swing.AbstractButton

| | javax.swing.JComponent

| | | java.awt.Container

| | | | java.awt.Component

'"Except, of course, for the GlassPaneDemo. py script mentioned in Chapter 3, which was converted from the original Java.
But it doesn’t count since I haven’t covered the concepts used in that code.

’Remember that the output shown in this book is from the wsadmin version of Jython since it’s easier to understand.

*The command used to start this wsadmin session included the -profile classes.py parameters.

21

CHAPTER 4 © BUTTON UP! USING BUTTONS AND LABELS

| | | | java.lang.0Object

| | | | java.awt.image.ImageObserver
| | | | java.awt.MenuContainer

| | | | java.io.Serializable

| | java.io.Serializable

| java.awt.ItemSelectable

| javax.swing.SwingConstants

| javax.accessibility.Accessible
wsadmin>

What are you going to do with this information? Well, the first thing that you need to do is to create, or instantiate,
a button instance. Then you’ll add it to the frame. To begin, take a quick look at a trivial Java application to do this.
Listing 4-3 contains the relevant code snippet.*

Listing 4-3. The Java Code to Create a Button and Add It to a Frame

JFrame frame = new JFrame("ButtonDemo");
frame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);
JButton button = new JButton("Press me");

frame.add(button);

frame.pack();

frame.setVisible(true);

What would this look like in Jython? Listing 4-4 shows the equivalent Jython code.

Listing 4-4. The Verbose Jython Way to Do the Same Thing

frame = JFrame('ButtonDemo 01')
frame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE)
button = frame.add(JButton('Press me'))
button.addActionListener(ButtonPressed())
frame.pack()

frame.setVisible(1)

They certainly do look similar, don’t they? What if you use an interactive wsadmin session to execute these steps?
Listing 4-5 shows what happens when you try to do this.

Listing 4-5. The wsadmin interactive session to create and add a button

wsadmin>from javax.swing import JFrame, JButton

wsadmin>frame = JFrame('ButtonDemo 01')

wsadminsbutton = JButton('Press me')

wsadminy>frame.add(button)
javax.swing.JButton[,0,0,0x0,invalid,alignmentX=0.0,alignmentY=...

“The complete application can be found in the code\Chap_04\ButtonDemo_01. java file.

22

CHAPTER 4 © BUTTON UP! USING BUTTONS AND LABELS

The figure ends when some output is generated by the frame.add() method call. What was returned by the
add() method call? Listing 4-6 shows a slightly different interactive session. This time, the value returned by the add()
method call is saved into a variable named result. Then you determine if the value returned by add() is the same
one passed in. Why? Well, the JFrame class® inherits five different add() methods from the java.awt.Container. This
Jython statement is calling the Container add() method® that returns the same value that was passed in.

Listing 4-6. The wsadmin interactive JButton session 2

wsadmin>from javax.swing import JFrame, JButton
wsadmin>

wsadminy>frame = JFrame('ButtonDemo’)
wsadmin>button = JButton('Press me')
wsadmin>result = frame.add(button)
wsadmin>result == button

1

wsadmin>

You can use this fact to simplify your code. Listing 4-7 shows this simplification. Instead of instantiating the
JButton instance and saving the returned value in a variable (e.g., button), you can combine the add() call with the
JButton constructor call and save the value returned from the add() call.

Listing 4-7. The wsadmin interactive JButton session 3

wsadmin>from javax.swing import JFrame, JButton

wsadmin>

wsadmin>frame = JFrame('ButtonDemo')
wsadmin>frame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE)
wsadmins>button = frame.add(JButton('Press me'))
wsadmin>...

Note This technique doesn’t work for every Container add() method call, since not every add method returns
avalue.

The application found in Button_01.py contains a button that says “Press me!” that can be pressed.
Unfortunately, it doesn’t do anything yet, but you'll get there right after a short digression. At this point it is
appropriate to address an important question: How does Swing know where to put things on the application?

The Layout of the Land

One of the many parts of a Container is something called the Layout Manager. I touched on this a little in Chapter 1,
and I will be going into detail about it in Chapter 5. For the moment, you'll simply take a quick peek “under the
covers,” so to speak.

For the time being, you're going to use JFrame as the top-level container. One way that you can learn more about
the JFrame class hierarchy is to use the Java documentation. Figure 4-1 shows this relationship, at least the portion
covered by the Java documentation.

See http://docs.oracle.com/javase/8/docs/api/javax/swing/IFrame.html.
See http://docs.oracle.com/javase/8/docs/api/java/awt/Container.html#add%28java.awt.Component%29.

23

http://docs.oracle.com/javase/8/docs/api/javax/swing/JFrame.html
http://docs.oracle.com/javase/8/docs/api/java/awt/Container.html

CHAPTER 4 © BUTTON UP! USING BUTTONS AND LABELS

java.lang.Object
java.awt.Component
java.awt.Container
java.awt.Window

java.awt.Frame

javax.swing.JFrame

Figure 4-1. JFrame class hierarchy

The root of this class hierarchy is an Object, which isn’t too surprising. The class hierarchy for the JFrame Swing
class can be seen in Listing 4-8. Note, however, that unlike the JFrame Javadoc class hierarchy shown in Figure 4-1,
the output of the classes function starts at the JFrame class and works its way up the hierarchy. So this is kind of an
inside-out view of the hierarchy. One of the things that I found interesting about this view is the presence of additional
classes that don’t show up in the Javadoc.

Listing 4-8. Another look at the JFrame class hierarchy

wsadmin>from javax.swing import JFrame
wsadmin>

wsadmin>classes(JFrame)
javax.swing.JFrame

| java.awt.Frame

| java.awt.Window

| | java.awt.Container

| | | java.awt.Component

| | | | java.lang.Object

| | | | java.awt.image.ImageObserver
| | | | java.awt.MenuContainer

| | | | java.io.Serializable

| | javax.accessibility.Accessible

| java.awt.MenuContainer
javax.swing.WindowConstants
javax.accessibility.Accessible
javax.swing.RootPaneContainer
wsadmin>

This diagram is kind of nice, but it would be more useful if it also allowed you to see the methods and attributes
that exist at each level of the hierarchy. Better yet, it would be really nice if you had a way to filter the list of methods
and/or attributes based on some text. Listing 4-9 contains a function that includes these additional capabilities.

24

CHAPTER 4 © BUTTON UP! USING BUTTONS AND LABELS

Listing 4-9. classInfo.py

1|def classInfo(Class, meth

2|

3]

4]

5]

6]

7]

8]

9|
10|
11|
12|
13|
14|
15|
16|
17|
18]
19|
20|
21|
22|
23|
24|
25|
26|
27|
28|
29|
30|
31|
32|
33]
34|
35|

= None, attr = None, pad = '') :
print pad + str(Class)
prefix = pad + ' '
if type(meth) == type('') :
comma, line = '', '' + prefix
methods = [
n for n, v in vars(Class).items()
if n.lower().find(meth.lower()) > -1 and callable(v)
]
methods.sort()
for m in methods :
if len(line + comma + m) > 65 :
print line.replace('|', '>')
comma, line = '', '' + prefix
line += comma + m
comma = ', '
if not line.endswith(' ') :
print line.replace('|', '>')
if type(attr) == type('') :
comma, line = '', '' + prefix
attribs = [
n for n, v in vars(Class).items()
if n.lower().find(attr.lower()) > -1 and not callable(v)
]
attribs.sort()
for a in attribs :
if len(line + comma + a) > 65 :
print line.replace('|', '*')
comma, line = '', '' + prefix
line += comma + a
comma = ', '
if not line.endswith(' ') :
print line.replace('|', '*')
for b in Class. bases_ :
classInfo(b, meth, attr, pad + '| ')

How do you use it? Well, when you call the classInfo() function, you must specify at least one parameter, which

is a class (e.g., JFrame). In addition, you can als provide one or two parameters to show the methods and/or attribute
names at each level of the class hierarchy. I find it best to include the parameter keyword (i.e., meth or attr) to
indicate which parameter is being provided.

For example, if you want to display all of the methods in the JFrame hierarchy that contain the case-insensitive

string "layout", you could call this function a statement, as shown on line 3 in Figure 4-7. Method names that include
the specified text (i.e., "layout") are indicated using the > character.

25

CHAPTER 4 © BUTTON UP! USING BUTTONS AND LABELS

Listing 4-10. JFrame class hierarchy showing the “layout” methods.

1 wsadmin>from javax.swing import JFrame
2 wsadmin>

3 wsadmin>classInfo(JFrame, meth = 'layout')
4 javax.swing.JFrame

5 | java.awt.Frame

6 | | java.awt.Window

7 | | | java.awt.Container

8 > > > getlayout, setlLayout

9 | | | | java.awt.Component

10 > > > > dolayout
11 | | | | | java.lang.Object
12 | | | | | java.awt.image.ImageObserver
13 | | | | | java.awt.MenuContainer

14 | | | | | java.io.Serializable

15 | | | javax.accessibility.Accessible
16 | | java.awt.MenuContainer
17 | javax.swing.WindowConstants
18 | javax.accessibility.Accessible
19 | javax.swing.RootPaneContainer

I'wasn't too surprised by the presence of getter and setter methods in the layout (i.e., getLayout and setLayout),
but I didn’t expect to see the doLayout method in the java.awt.Component class. Looking at the Javadoc for the
java.awt.Component class, you'll find the information about the doLayout () method” shown in Figure 4-2.

public void doLayout()Causes this container to lay out its components. Most programs should not call this method
directly, but should invoke the validate method instead.

Figure 4-2. java.awt.Component.doLayout() description

'See http://docs.oracle.com/javase/8/docs/api/java/awt/Container.html#doLayout%28%29.

26

http://docs.oracle.com/javase/8/docs/api/java/awt/Container.html%23doLayout%2528%2529

CHAPTER 4 © BUTTON UP! USING BUTTONS AND LABELS

That'’s kind of neat, but I don’t intend to be calling that method in any of my code. Let’s stick with the
recommendation and avoid using it.

Since you looked for the layout methods, it’s wise to take a moment to see if any attributes exist that refer to
“layout” Listing 4-11 shows how to specify the attr keyword argument for the classInfo() function. The generated
output of the JFrame class hierarchy shows that only one attribute exists in this hierarchy that contains the string
"layout". It occurs in the java.awt.Container class.

Listing 4-11. JFrame class hierarchy showing “layout” attributes

wsadmin>from javax.swing import JFrame
wsadmin>
wsadmin>classInfo(JFrame, attr = 'layout')
javax.swing.JFrame
| java.awt.Frame
| java.awt.Window
| java.awt.Container

layout
| java.awt.Component
| | java.lang.Object
| | java.awt.image.ImageObserver
| | java.awt.MenuContainer
| | java.io.Serializable
| javax.accessibility.Accessible
| java.awt.MenuContainer
javax.swing.WindowConstants
javax.accessibility.Accessible
javax.swing.RootPaneContainer
wsadmin>

|
* %
| |
| |
| |
||
||
|

I
|
*
I
|
|
I
|
|
|
|
|
|

What does this mean? Well, if you look at the Javadoc for java.awt.Container,® you might expect to see a
“field”° called layout. So why isn’t one there? Well, you can thank Jython for that. It automatically recognizes a
property for which a getter (i.e., getPropertyName or isPropertyName) and a setter (i.e., setPropertyName) method
are defined. This allows you to use the PropertyName as an expression or in an assignment statement. You'll use
this feature throughout the examples in this book. Let’s take a quick look at the example interactive wsadmin session
shown in Listing 4-12.

8See http://docs.oracle.com/javase/8/docs/api/java/awt/Container.html.
°Java terminology for what is called an “attribute” in Jython programs.

27

http://docs.oracle.com/javase/8/docs/api/java/awt/Container.html

CHAPTER 4 © BUTTON UP! USING BUTTONS AND LABELS

Listing 4-12. Huh? What'’s goin’ on, Lucy?

1 wsadmin>from java.awt import FlowlLayout
2 wsadmin>from javax.swing import JFrame

3 wsadmin>

4 wsadmin>flayout = FlowLayout()

5 wsadminy>frame = JFrame('Title')

6 wsadmin>frame.layout

7 java.awt.BorderLayout[hgap=0,vgap=0]

8 wsadmin>frame.layout = flayout

9 wsadmin>frame.layout

10 java.awt.BorderLayout[hgap=0,vgap=0]

11 wsadmin>frame.getLayout()

12 java.awt.BorderLayout[hgap=0,vgap=0]

13 wsadmin>frame.getContentPane().getLayout()

14 java.awt.FlowLayout[hgap=5,vgap=5,align=center]

15 wsadmin>frame.getContentPane().getlayout() == flayout
16 1

17 wsadmin>

Wait a minute! What's going on here? This demonstrates one situation where you have to be mindful of what

Jython is trying to do with the “automatic” attribute when it finds getter and setter methods. Table 4-1 describes each
line of the wsadmin interactive session shown in Listing 4-12.

Table 4-1. What's Goin’ on Lucy, Explained

Lines Detailed Description/Explanation

1-3 Import the AWT and Swing classes that you will be using.

4 Instantiate a FlowLayout Layout Manager object (fLayout).

5 Instantiate a JFrame object and provide a title.

6-7 Use the frame.layout attribute to display information about the default Layout Manager that was

created by the JFrame constructor.
Note: It is a BorderLayout Manager object.

8 Use the frame.layout attribute to assign the kind of Layout Manager you want the frame to use.

9-10 Use the frame. layout attribute to verify the Layout Manager associated with the frame.
Note: It is still a BorderLayout Manager object.

11-12 Use the frame.layout getter method to determine which Layout Manager is associated with the
frame.

Note: It is still a BorderLayout Manager object.

13-14 Use the frame.getContentPane() method to obtain a reference to the frame ContentPane, then use
its layout getter method to determine the Layout Manager associated with the Content Pane.

Note: It is a FlowLayout Manager object.

15-16 Verify that the FlowLayout Manager object being used by the Content Pane is, in fact, the same
object that was created in line 4.

Note: The 1 in line 16 means true.

28

CHAPTER 4 © BUTTON UP! USING BUTTONS AND LABELS

The code you are seeing here is due to a special convenience provided by the JFrame class developers.
The sentence from the Javadoc is shown in Figure 4-3.

As a convenience add and its variants, remove and setLayout have been overridden to forward to the contentPane as
necessary.

Figure 4-3. JFrame “convenience”

I'm bringing this to your attention now so that you are less likely to be surprised when you stumble upon it while
you are developing and maintaining your Jython Swing scripts.

Buttons! Labels! Action!

You've looked at how to create a button and add it to your application. The next thing that you need to figure out is
how to make the button do something when it’s clicked. When a button is clicked, something called an “event” occurs.
A button click is one of many events that can occur in a Swing application. For the time being, I'm going to focus'’ on
this specific kind of event. You will learn about other events as they occur in the book.

Listing 4-13 shows a trivial Java application that prints a message (using the System.out.println() method call)
when the button is pressed.

Listing 4-13. ButtonDemo_02.java : Reacting to a Button Press

1|import java.awt.event.*;

2|import javax.swing.*;

3|public class ButtonDemo 02 {

4| public static void main(String[] args) {

5] javax.swing.SwingUtilities.invokelLater(new Runnable() {

6] public void run() {

7] JFrame frame = new JFrame("ButtonDemo");

8| frame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);
9| JButton button = new JButton("Press me");

10| button.addActionListener(new ActionListener() {
11| public void actionPerformed(ActionEvent ae) {
12| System.out.println("button pressed");
13| b

14 });

15| frame.add(button);

16| frame.pack();

17| frame.setVisible(true);

18| }

19| D;

20| }

211}

YGaining and losing focus are two other kinds of events that can occur.

29

CHAPTER 4 © BUTTON UP! USING BUTTONS AND LABELS

Listing 4-14 shows the first attempt at implementing this application in Jython. One of the things that Java
includes is the concept of anonymous classes. Lines 10-14 of Listing 4-13 show how an anonymous class can be
used to define an ActionListener, which contains an actionPerformed() method to be invoked when the button-
pressed event occurs. Jython doesn’t allow anonymous classes. Listing 4-14 shows (in lines 7-9) one way to define
aButtonPressed descendent of the ActionListener class. In line 15, an instance of this class is instantiated and
added as an action listener to the button. Many (most?) programmers, especially those new to Java, find the use of
anonymous inner classes cumbersome and hard to read and write.

Listing 4-14. ButtonDemo_01.py: Reacting to a Button Press

1|import java

2|import sys

3|from java.awt import EventQueue
4|from java.awt.event import ActionListener
5/from javax.swing import JButton
6|from javax.swing import JFrame
7|class ButtonPressed(ActionlListener) :

8| def actionPerformed(self, e) :

9| print 'button pressed'
10| class ButtonDemo 01(java.lang.Runnable) :
11| def run(self) :

12| frame = JFrame('ButtonDemo 01')

13| frame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE)

14| button = frame.add(JButton('Press me'))

15| button.addActionListener(ButtonPressed())

16| frame.pack()

17| frame.setVisible(1)

18]if _name__ in [' main_ ', 'main'] :

19| EventQueue. invokelater(ButtonDemo 01())

20| if 'AdminConfig' in dir() :

21| raw_input('\nPress <Enter> to terminate the application:\n')
22]|else :

23| print '\nError: This script should be executed, not imported.\n'

24| which = ['wsadmin -f', 'jython']['JYTHON JAR' in dir(sys)]
25| print 'Usage: %s %s.py' % (which, _name_)
26| sys.exit()

Another approach is shown in Listing 4-15. This example, instead of defining a separate class, uses
multiple inheritance. The class defined in line 8 is a descendent of the java.lang.Runnable and the java.awt.
event.ActionlListener classes. This means that it includes the run() method from the Runnable class and the
actionPerformed() method from the ActionListener class. So all you need to do is identify the current class instance
as the ActionListener, as shown in line 13.

Listing 4-15. ButtonDemo_02.py: Using Multiple Inheritance

1|import java
2|import sys

3|from java.awt import EventQueue
4|from java.awt.event import ActionListener
5/from java.lang import Runnable

6|from javax.swing import JButton
7|from javax.swing import JFrame

30

CHAPTER 4 © BUTTON UP! USING BUTTONS AND LABELS

8|class ButtonDemo 02(Runnable, ActionListener) :
9| def run(self) :

10| frame = JFrame('ButtonDemo 02")

11| frame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE)

12| button = frame.add(JButton('Press me'))

13| button.addActionListener(self)

14| frame.pack()

15| frame.setVisible(1)

16| def actionPerformed(self, e) :

17| print 'button pressed'

18]if _name_ in [' main_ ', 'main'] :

19 EventQueue. invokelater(ButtonDemo 02())

20| if 'AdminConfig' in dir() :

21| raw_input('\nPress <Enter> to terminate the application:\n')
22]|else :

23| print '\nError: This script should be executed, not imported.\n'

24| which = ['wsadmin -f', 'jython']['JYTHON JAR' in dir(sys)]
25| print 'Usage: %s %s.py' % (which, _name__)
26| sys.exit()

Although this is pretty interesting, it’s not the only way that this feat can be accomplished. Next, you'll take
advantage of another Jython feature called “keyword arguments.”

Listing 4-16 shows that you don’t even have to declare the class as a descendent of the ActionListener class in
order to use it as one (see line 7). You can simply use the implied setter (in line 12) to identify another class method as
the ActionListener event handler. The really neat part of this, at least to me, is that you don’t have to call the method
actionPerformed(); you can call it something more intuitive, like buttonPressed().

Listing 4-16. ButtonDemo_03.py: Multiple Inheritance Isn’t Required

1|import java

2|import sys

3|from java.awt import EventQueue
4|from java.lang import Runnable
5/from javax.swing import JButton
6|from javax.swing import JFrame
7|class ButtonDemo 03(Runnable) :

8| def run(self) :

9| frame = JFrame('ButtonDemo 03")

10| frame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE)
11| button = frame.add(JButton('Press me'))

12| button.actionPerformed = self.buttonPressed

13| frame.pack()

14| frame.setVisible(1)

15| def buttonPressed(self, e) :

16| print 'button pressed'

17|if _name__ in [' main_ ', 'main'] :

18] EventQueue. invokelater(ButtonDemo 03())

19| if 'AdminConfig' in dir() :

20| raw_input('\nPress <Enter> to terminate the application:\n')

31

CHAPTER 4 © BUTTON UP! USING BUTTONS AND LABELS

21]|else :

22| print '\nError: This script should be executed, not imported.\n'
23| which = ['wsadmin -f', 'jython']['JYTHON JAR' in dir(sys)]
24| print 'Usage: %s %s.py' % (which, _name_)

25| sys.exit()

The biggest difference between using the automatic, or implied, setter call in an assignment statement
(e.g., line 12 in Listing 4-16) and using a call to the addActionListener() method (e.g., line 13 in Listing 4-15)
is that using the call to the addActionListener() method is necessary when you need to register multiple
ActionListener objects.

While you're looking at some Jython techniques for creating a button, adding it to the frame, and adding an
ActionListener, let’s take a look at some other things that you can do using Jython.

Listing 4-17 contains the run() method from two versions of the ButtonDemo_03 script. Lines 1-7 are from the
ButtonDemo_03.py script file and lines 9-21 are from the ButtonDemo_03a. py script file.

Listing 4-17. Another Way to Create a Frame and Add a Button
1] def run(self) :

2| frame = JFrame('ButtonDemo 03")

3] frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE)
4| button = frame.add(JButton('Press me'))

5] button.actionPerformed = self.buttonPressed

6] frame.pack()

7] frame.setVisible(1)

8]...

9| def run(self) :

10| frame = JFrame(

11| 'ButtonDemo _03a’,

12| defaultCloseOperation = JFrame.EXIT ON_CLOSE
13|)

14| frame.add(

15| JButton(

16| 'Press me',

17| actionPerformed = self.buttonPressed

18])

19])

20| frame.pack()

21| frame.setVisible(1)

In lines 2 and 3 (of Listing 4-17), you can see the technique that has been used up to this point to:
e Create a JFrame instance.
e Provide atitle string.
e Setthe default close operation to be used when the close icon is selected.

This code corresponds with the commonly used Java style. Lines 10-13, on the other hand, show that you can do
these same things with a single Jython statement. Granted, since I don’t want the lines to be too long, this statement is
being displayed across multiple lines. However, it is still a single statement.

32

CHAPTER 4 © BUTTON UP! USING BUTTONS AND LABELS

Lines 4 and 5 (again of Listing 4-17) show how you can:
e C(Create a JButton instance.
e Provide a text string to be displayed on the button.
e Add the button to the frame and save a reference to the button in a variable.
e Define the actionPerformed() method to be called when a button press event occurs.

The code in lines 14-19 does many of these same steps in a single statement. Again, multiple lines are used to
make the various parts of the statement easier to read. The only significant thing that this statement doesn’t do is save
areference to the button in a variable. This is simply because I didn’t see the need to save that information. If you do
need to save this value, you can have the code save the result of calling the frame.add() method in a variable.

Updating the Application

It seems kind of silly to have a GUI application display a message to the command prompt window when a button is
pressed. This section explains what you need to do in order for the application to make changes to the user display
when the button is pressed.

e Add alabel to the application, the text of which can be modified by the event handler
(the ActionListener actionPerformed()) method.

e Have the actionPerformed (i.e., buttonPressed()) method change the text in the label.

That sounds pretty straightforward, but there’s something tricky you need to know about. In order for the
buttonPressed() method to access the application label, it needs to be able to identify it and refer to it. So when
you create the label, you need to save a reference to it in an instance attribute. Listing 4-18 contains the run() and
buttonPressed() methods from the ButtonDemo_04.py application that does these things.

Listing 4-18. Parts of ButtonDemo_04.py
11| def run(self) :

12| frame = JFrame('ButtonDemo 04')

13| frame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE)
14| button = frame.add(JButton('Press me'))

15| button.actionPerformed = self.buttonPressed

16| self.label = JLabel('button press pending')

17| frame.add(self.label, BorderlLayout.SOUTH)

18| frame.pack()

19| frame.setVisible(1)

20| def buttonPressed(self, e) :

21| self.label.setText('button pressed')

Table 4-2 explains, in detail, each of the statements in Listing 4-19. The most important ones are in line 16, where
areference is saved to the label instance, and in line 21, where this reference is used to update the label text field.

33

CHAPTER 4 BUTTON UP! USING BUTTONS AND LABELS

Table 4-2. ButtonDemo_04.py Explained

Lines Detailed Description/Explanation

12-13 These are the same steps used previously to create a JFrame instance and to define the action to take
when the close icon is selected.

14-15 These are the same steps used previously to create a button with some text and to identify the method
to call when the button press event occurs.

16 Create a JLabel instance and save the reference as an object attribute value (i.e., self.label).

17 Add the JLabel instance to the frame, using the Layout Manager constant (i.e., BorderLayout.SOUTH),"
to identify where on the application the label should be placed.

18-19 These are the same steps used previously to adjust the application size and to make the
application visible.

20-21 ActionListener actionPerformed method that is invoked when a button pressed event occurs.

Note how the object instance variable (self.label) is used to modify the text being displayed in the
label field.

What happens when you execute this application? Figure 4-4 shows the application, before (on left) and after
(on right) the e. This demonstrates that the technique performs as expected.

Figure 4-4. ButtonDemo_04.py output images.

Summary

This chapter demonstrates that you can choose to write Jython scripts using syntax that closely matches Java Swing
constructs or you can use Jython idioms to make the applications more readable. This means that you should be able
to use sample Java Swing applications or code snippets from the Internet to learn how to write and test your Jython
Swing applications.

Additionally, you have started looking at some of the many Swing components and learning about how the Swing
class hierarchy handles events such as button clicks. Chapter 5 delves into the topic of Layout Managers in great
detail; they give you more control over how things are positioned on your application frame.

"http://docs.oracle.com/javase/8/docs/api/java/awt/BorderLayout.html.

34

http://docs.oracle.com/javase/8/docs/api/java/awt/BorderLayout.html

CHAPTER 5

Picking a Layout Manager Can
Be a Pane

Earlier in this book,' you learned a bit about how items are placed, or positioned, on an application. This chapter
deals with that topic in more detail and discusses some of the most commonly used Layout Managers. These include
some of the more complicated ones, like the Absolute Layout and GridBagLayout Managers, as well as some of the
simpler ones like the FlowLayout, BorderLayout, and BoxLayout Managers.

You will also learn about components that aren’t exactly Layout Managers, including SplitPane and TabbedPane.
You will then be better able to decide how to position the components on the application window in order to best
communicate and interact with your users.

The Absolute Layout Manager Does Not Corrupt Absolutely

Designing and creating graphical applications can be frustrating. This is especially true when you have to position
every component on the frame that is displayed to the users. Let’s take a look at what this entails.

First, you need to remove any Layout Manager that’s already on the container. Then, for each child component,
you need to define its size and location on the frame content pane. Finally, you need to call the container repaint()
method to render the components within the container using the current details known about the objects.

This isn’t particularly difficult, but it can be tedious and requires a lot of code. Listing 5-1 shows a portion of one
way to do this.

Listing 5-1. AbsoluteLayout Example

6|class Absolutelayout(java.lang.Runnable) :
7] def run(self) :

8| frame = JFrame(

9| 'AbsolutelLayout’,

10| defaultCloseOperation = JFrame.EXIT ON_CLOSE
11])

12| frame.setLayout(None)

!Chapter 1 touched on the subject when you added a second label to the frame, In Chapter 4, you saw the layout-related methods
and attributes.

35

CHAPTER 5 " PICKING A LAYOUT MANAGER CAN BE A PANE

13| data = [

14| ['A', 20, 10, 0, O],

15| ['B', 40, 40, 10, 10],

16| ['C', 80, 20, 20, 20]

17|]

18] insets = frame.getInsets()

19| for item in data :

20| button = frame.add(JButton(item[0]))

21| size = button.getPreferredSize()

22| button.setBounds(

23| insets.left + item[1],

24| insets.top + item[2],

25| size.width + item[3],

26| size.height + item[4]

27|)

28] frame.setSize(

29| 300 + insets.left + insets.right, # frame width
30| 150 + insets.top + insets.bottom # frame height
31|)

32| frame.setVisible(1)

How does it work? Well, line 12 shows how to remove any existing Layout Manager. Lines 19-27 show one
relatively simple way to create some buttons and define their location and size on the containing frame. It’s important
to remember, though, that the call to frame.add() is, in fact, equivalent to calling frame.getContentPane().add(), as
discussed in Chapter 3.

When a component (e.g., a button) is created, its constructor will determine its “preferred” size. This preferred
size can be obtained by calling the getPreferredSize() method for the component, as you can see in line 21. Then
the component’s setBounds () method can be used to locate and possibly resize the component.

The first two parameters of the setBounds () method define the component’s position by identifying its top-left
point. The next two parameters of the method identify the width and height of the component.

What happens when you run this script? Well, you will see three buttons positioned on the application frame.
Figure 5-1 shows how the application frame should look. It also shows how challenging it can be to “do it yourself””
Did you anticipate that some of the buttons would be overlaid on the screen? I certainly didn’t.

';; AbsoluteLayoiE. (S|

Figure 5-1. AbsoluteLayout example output

Are there any advantages to using this technique? Yes, there are. If you resize the application, you will notice that
the component’s location and size don’t change. This is not the case with every Layout Manager, as you will see.

36

CHAPTER 5 * PICKING A LAYOUT MANAGER CAN BE A PANE

Going with the Flow: The FlowLayout Manager

The next Layout Manager that you're going to investigate is quite simple to use and is called the FlowLayout Layout
Manager.? This manager attempts to place the components in a row. If there isn’t sufficient space in the container to
do so, multiple rows will be used. If more than enough space exists, the Layout Manager will, by default, center the
components horizontally in the available space.

Listing 5-2 shows part of the FlowLayoutDemo. py sample application, which demonstrates how this works in an
application.

Listing 5-2. FlowLayout Example
9|def run(self) :

10| frame = JFrame(

11| 'FlowLayout"',

12| defaultCloseOperation = JFrame.EXIT_ON_CLOSE

131)

14| cp = frame.getContentPane()

15| TR T e
16| # The alignment can be one of the following values:

17| o m oo e

18|# cp.setlayout(FlowLayout(FlowLayout.LEFT))

19|# cp.setlLayout(FlowLayout(FlowLayout.RIGHT))

20| cp.setlayout(FlowLayout()) # FlowlLayout.CENTER = default
21|# cp.setlayout(FlowLayout(FlowLayout.LEADING))

22|# cp.setlayout(FlowLayout(FlowLayout.TRAILING))

23| for name in '1,two,Now is the time...'.split(',"') :
24| frame.add(JButton(name))
25| Bmm = e e

26| # The ComponentOrientation can be either LEFT_TO RIGHT, or
27| # RIGHT_TO_LEFT. The default is based upon system locale
28| e T R CEEEE T E
29|# cp.setComponentOrientation(...)

30| frame.setSize(350, 100)

31| frame.setVisible(1)

Here are some things to note about this code include:
e The FlowlLayout class is part of the java.awt hierarchy.
e Adefault FlowLayout instance centers the components, with a small space between each.

e The component orientation (left-to-right vs. right-to-left) is inherited from the
java.awt.Component class.

Figure 5-2 contains some sample outputs generated using this script.

?See http://docs.oracle.com/javase/8/docs/api/java/awt/FlowLayout.html.

37

http://docs.oracle.com/javase/8/docs/api/java/awt/FlowLayout.html

CHAPTER 5~ PICKING A LAYOUT MANAGER CAN BE A PANE

Using default values.

Align = RIGHT, Orientation = Right to Left.

Align = RIGHT, Orientation = Right to Left

Too narrow to display the buttons on a single
row.

Figure 5-2. FlowLayout examples

The description to the left of each image identifies the alignment and orientation values used to produce it.
The FlowLayout Layout Manager is much easier than having to specify exactly where components should be
placed. However, you must be mindful of what things will look like should the application change size.

South of the Border: The BorderLayout Manager

Next, take a look at the BorderLayout Layout Manager. What do layouts using this Layout Manager look like? Figure 5-3
shows a simple application using this manager.

PAGE_START

LINE_START CENTER LINE_END

PAGE_END

Figure 5-3. BorderLayout examples

The BorderLayout Layout Manager enables you to easily position the components using some simple constants.
The labels for each of the buttons shown in Figure 5-3 contain the names of these BorderLayout constants.
Additionally, Listing 5-3 shows a portion of the script that generated this output.

38

CHAPTER 5 * PICKING A LAYOUT MANAGER CAN BE A PANE

Listing 5-3. BorderLayout Example
9| def run(self) :

10| frame = JFrame(

11| 'BorderlLayout"’,

12| layout = BorderLayout(),

13| defaultCloseOperation = JFrame.EXIT ON_CLOSE

14])

15| data = [

16| ["PAGE_START', BorderLayout.PAGE_START],
17| ['PAGE_END' , Borderlayout.PAGE END],
18| ["LINE_START', BorderLayout.LINE START],
19| ['LINE_END' , BorderLayout.LINE END],
20|]

21| for name, pos in data :

22| frame.add(JButton(name), pos)

23| big = JButton(

24| "CENTER',

25| preferredSize = Dimension(256, 128)
26|

27| frame.add(big, BorderLayout.CENTER)

28| frame.pack()

29| frame.setVisible(1)

Tip | encourage you to execute the script and resize the application frame to see what happens to the buttons.
Remember that the results that you are seeing are because you’re using the BorderLayout Layout Manager.

The BorderLayout Layout Manager has advantages, (e.g., simplicity of use) and disadvantages (e.g., the results of
resizing the application may not be to your liking). Take these issues into account when you choose your application
Layout Manager.

In addition to the constants shown on lines 16-27 in Listing 5-3, BorderLayout also includes some common
directional constants. Figure 5-4 shows where these constants position components.

Figure 5-4. BorderLayout directional constants

39

CHAPTER 5~ PICKING A LAYOUT MANAGER CAN BE A PANE

Listing 5-4 shows a portion of the BorderLayoutNEWS. py script that was used to generate this output.

Listing 5-4. BorderLayoutNEWS Example
9| def run(self) :

10| frame = JFrame(

11| 'BorderLayoutNEWS',

12| layout = Borderlayout(),

13| defaultCloseOperation = JFrame.EXIT_ON_CLOSE
14)

15| data = [

16| BorderLayout.NORTH,

17| BorderLayout.SOUTH,

18| BorderLayout.EAST,

19| BorderLayout.WEST

20|]

21| for pos in data :

22| frame.add(JButton(pos), pos)

23| big = JButton(

24| 'Center',

25| preferredSize = Dimension(256, 128)
26|

27| frame.add(big, BorderLayout.CENTER)

28] frame.pack()

29| frame.setVisible(1)

The only other point worth noting about the BorderLayout class is that you can have the Layout Manager
automatically separate components by specifying horizontal and vertical gap values when the Layout Manager is

instantiated. You can see what this means by looking at Figure 5-5.

Figure 5-5. BorderLayout with component separation

What change was required? All you have to do is specify the gap values on the call to the BorderLayout

constructor. The important line from the BorderLayoutGap.py script is shown in Listing 5-5.

40

CHAPTER 5 * PICKING A LAYOUT MANAGER CAN BE A PANE

Listing 5-5. BorderLayoutGap Example
12| layout = BorderlLayout(16, 8),

The constructor used in Listing 5-5° identifies the horizontal and vertical gaps to be used between components.

What'’s in the Cards? Using the CardLayout Manager

The next Layout Manager you'll learn about is the CardLayout Manager. As with the previously described Layout
Managers, this one lets you position the components. The interesting thing about this one is that like a deck of cards in
a stack, only the top one is visible. What does this mean? Figure 5-6 shows a simple application using the CardLayout
Manager. It uses the top row of buttons to allow users to select one of the cards to be displayed.

Figure 5-6. CardLayout examples

3See http://docs.oracle.com/javase/8/docs/api/java/awt/BorderLayout.html#BorderLayout%28int,%20int%29.

41

http://docs.oracle.com/javase/8/docs/api/java/awt/BorderLayout.html%23BorderLayout%2528int%2c%2520int%2529

CHAPTER 5 " PICKING A LAYOUT MANAGER CAN BE A PANE

Before you learn about the CardLayout Manager, I first have to quickly mention another container, specifically a
JPanel* that is used in a number of places in this CardLayout application.

What is a JPanel? It is best to think of a JPanel as a simple, lightweight container that can be used to hold a group
of components. In this example, you will simply create JPanel instances and add some components to each.

Alright, let’s dig into the example. If you click on any of the buttons in the top row, you'll see that the top panel
doesn’t change but the bottom one displays the other components.

How do you do this? Note that the application, (i.e., the JFrame instance) uses one Layout Manager (on its
ContentPane). In this case, the application will have two separate parts, or panes. Each pane will be a JPanel instance.
The top is used to display the fixed buttons and the bottom is used to display the current CardLayout view.

Listing 5-6 shows the run() method for this example. In it, you can see how:

e The frame layout is configured to use a BorderLayout Manager instance.

e Areference to the frame ContentPane is obtained and the two support routines are called to
populate the different parts of the frame panel.

Listing 5-6. CardLayoutDemo run() Method

10|class CardLayoutDemo(java.lang.Runnable) :
11| def run(self) :

12| frame = JFrame(

13| 'CardLayout ',

14| layout = BorderLayout(),

15| defaultCloseOperation = JFrame.EXIT_ON_CLOSE
16|)

17| cp = frame.getContentPane()

18] self.addButtons(cp, BorderLayout.NORTH)

19| self.addCards(cp, BorderLayout.CENTER)

20| frame.setSize(300, 125)

21| frame.setVisible(1)

Listing 5-7 shows how the addButtons () method uses the default JPanel Layout Manager, i.e., a FlowLayout
Manager instance, to add three buttons to the panel. The choice of button labels will become clear shortly. Please
note that the ActionListener actionPerformed method for each button is assigned to be the buttonPress() method in
this object instance. It is important to realize that each container component in the application has its own, possibly
default, Layout Manager. This allows the application designers to position the individual components as they see fit.

Listing 5-7. CardLayoutDemo addButtons() Method

22| def addButtons(self, container, position) :

23] panel = JPanel()

24| for name in '1,2,3'.split(',"') :

25| panel.add(

26| JButton(

27| name,

28] actionPerformed = self.buttonPress
29|)

30|)

31| container.add(panel, position)

Finally, the addButtons () method adds the button panel to the user-specified container, i.e., the frame
ContentPane, using the specified location or position.

‘Seehttp://docs.oracle.com/javase/8/docs/api/javax/swing/IPanel.html.

42

http://docs.oracle.com/javase/8/docs/api/javax/swing/JPanel.html

CHAPTER 5 * PICKING A LAYOUT MANAGER CAN BE A PANE

Listing 5-8 shows how the addCards () method uses a default JPanel instance for each of the card panels.
For simplicity’s sake, the first and last of these card panels contain only a label, which can be used to verify which card
panel is being displayed. The middle card panel contains three more buttons to show how easily a card panel can be
populated with components.

Listing 5-8. CardLayoutDemo addCards () Method

32| def addCards(self, container, position) :

33| card1 = JPanel()

34| card1.add(

35| JLabel(

36| 'The quick brown fox jumped over the lazy dog.'
37|)

38|

39| card2 = JPanel()

40| for name in 'A,B,C'.split(',') :

41| card2.add(JButton(name))

42| card3 = JPanel()

43| card3.add(

44| JLabel(

45| '"Now is the time for all good men to come to...'
46|)

47])

48| cards = self.cards = JPanel(CardlLayout())
49| cards.add(card1, '1')

50| cards.add(card2, '2')

51| cards.add(card3, '3')

52| container.add(cards, position)

Finally, another JPanel is created to hold the various card panels that you just created and populated. Each of
these card panels is added to the panel that is using the CardLayout Layout Manager. Note that when a panel is added,
you specify an identifier to be used to select this panel. These strings correspond to the button labels used in the
addButtons() method shown in Listing 5-7.

Listing 5-9 shows how the buttonPress () event-handling method can obtain a reference to the Layout
Manager object instance being used by the panel. Then this Layout Manager’s show() method can be used to
specify a card panel instance to be displayed. The label of the button that was pressed can be used by calling the
event.getActionCommand() method. All in all, this makes for a very clear, concise, and precise event handler.

Listing 5-9. CardLayoutDemo buttonPress() Method

53] def buttonPress(self, event) :
54 deck = self.cards.getLayout()
55| deck.show(self.cards, event.getActionCommand())

Hopefully you can see how easily this can be used to create a really neat application. Next, you will take a look at
some of the various components that your applications can use.

43

CHAPTER 5 " PICKING A LAYOUT MANAGER CAN BE A PANE

Splitting Up Is Easy to Do: Using Split Panes

Unlike splitting the atom, Swing provides for a very easy way to partition all of, or part of, your application into two
pieces. Unfortunately, it’s not a Layout Manager, but it certainly applies to the topic at hand, so I cover it here anyway.
The JPanel that was mentioned earlier provides you with a lightweight container for keeping a collection of

components together. Wouldn't it be neat if you had a simple way of splitting a panel in two, either vertically or
horizontally? Well, there is a way, called a JSplitPane.® Figure 5-7 shows a very simple application with two buttons,
one in each of the two parts of the horizontally split panel.

Figure 5-7. JSplitPane sample output

One feature that might not be immediately obvious in Figure 5-7 is that the separator (the divider) between the
two parts of the split pane is moveable. The image on the right shows how the application appears after moving the
separator as far to the right as possible. The limitation is imposed by the minimum size of each button.

Listing 5-10 shows just how easy it is to create and use one of these split panes in your applications.

Listing 5-10. SplitPanel: Simple Horizontal Separation

7|class SplitPanei(java.lang.Runnable) :
8| def run(self) :

9| frame = JFrame(

10| 'SplitPanel’,

11| defaultCloseOperation = JFrame.EXIT ON_CLOSE
12|)

13| frame.add(JSplitPane(

14| ISplitPane.HORIZONTAL SPLIT,
15| JButton('Left'),

16| JButton('Right')

17|)

18])

19| frame.pack()

20| frame.setVisible(1)

Vertical Splits: Not as Painful as They Sound

Itis just as easy to have a portion of your application window separated vertically. Look at line 14 in Listing 5-10. You

can see how the JSplitPane class contains a constant that indicates in which direction (horizontally or vertically) the
pane should be split. If, instead of using JSplitPane.HORIZONTAL_SPLIT, you use JSplitPane.VERTICAL_SPLIT, your
application will look similar to Figure 5-8.

’See http://docs.oracle.com/javase/8/docs/api/javax/swing/ISplitPane.html.

44

http://docs.oracle.com/javase/8/docs/api/javax/swing/JSplitPane.html

CHAPTER 5 * PICKING A LAYOUT MANAGER CAN BE A PANE

Figure 5-8. JSplitPane2, vertical split

Unlike in the previous application, this separator doesn’t move. Well, that’s only partially true. If you resize the
window, as shown in Figure 5-9, you can see how the top part remains the same and all of the additional height is
given to the bottom part. Then, you can move the separator bar down, resizing the two parts of the split panel. Again,
each portion of the split pane is limited by the minimum size restriction of the components.

Figure 5-9. JSplitPane2, vertical split and resizing

45

CHAPTER 5 " PICKING A LAYOUT MANAGER CAN BE A PANE

Limited Resources: Setting Size Attributes

Along time ago, in a galaxy far, far away, I took an economics class that used something called the “Guns versus
butter model”® to describe the concept of choosing between two limited resources. In the same way, split panes
restrict the amount of space that the separator bar can move. How is this determined? Every Swing component has
the JComponent” and the Component® as some of its base classes. Therefore, each Swing component has different size
attributes, as you can see in Listing 5-11. These attributes are used to identify things like the minimum, maximum,
and preferred size of a component.

Listing 5-11. Component size attributes

wsadmin>from javax.swing import JButton
wsadmin>

wsadmin>classInfo(JButton, attr = 'size')
javax.swing.JButton

| javax.swing.AbstractButton

| javax.swing.JComponent

| | java.awt.Container

| java.awt.Component

|

I

]

* * % * ancestorResized, baselineResizeBehavior

*¥ % % % componentResized, maximumSize, maximumSizeSet
¥ ¥ ¥ *x minimumSize, minimumSizeSet, preferredSize
¥ ¥ x ¥ preferredSizeSet, size

| 1]| | java.lang.Object

| |]| | java.awt.image.ImageObserver

| | | || java.awt.MenuContainer

| | | | | java.io.Serializable

| | | java.io.Serializable

| | java.awt.ItemSelectable

| | javax.swing.SwingConstants

| javax.accessibility.Accessible

wsadminy>

What are all of those “size” attributes in the java.awt.Component class, anyway? Well, the size attribute identifies
the current width and height of the component, which shouldn’t be too much of a surprise. The others—minimumSize,
maximumSize, and preferredSize—are suggestions, or hints,® to the Layout Manager about how the particular
component should be represented.

The effect of the minimumSize attribute can be the borne out with a little testing. Figure 5-10 shows the initial
application image, including the separators between the split panes. Each button in the application uses the same
event handler routine to display the button text, the current button size, and the other size attributes mentioned
previously. I encourage you to use the application to improve your understanding about the various component
size attributes.

See http://en.wikipedia.org/wiki/Guns_versus_butter_model.

'See http://docs.oracle.com/javase/8/docs/api/javax/swing/IComponent.html.

8See http://docs.oracle.com/javase/8/docs/api/java/awt/Component.html.

%¢...the code is more what you’d call ‘guidelines’ than actual rules.” From http://www.imdb.com/title/tt0325980/quotes.

46

http://en.wikipedia.org/wiki/Guns_versus_butter_model
http://docs.oracle.com/javase/8/docs/api/javax/swing/JComponent.html
http://docs.oracle.com/javase/8/docs/api/java/awt/Component.html
http://www.imdb.com/title/tt0325980/quotes

CHAPTER 5 * PICKING A LAYOUT MANAGER CAN BE A PANE

Figure 5-10. SplitPane4: initial rendering

To use the application, you need only click on the buttons to display the button size attributes. Then you can
resize the window and use the buttons again to see which attribute values have changed. When the window size
increases, you can also move the split pane divider lines by dragging them. Again, you can use the buttons to see the
effect on the button size attributes.

Nested Split Panes

The application that illustrates the divider movement seen in Figure 5-10 uses the simple concept of nested split
panes. Listing 5-12 shows the part of the SplitPane4.py script that produced this output.

Listing 5-12. Nested Split Panes

The button() method, on lines 17, 20, and 21, is a local reference to a method used to create a JButton with
the actionPerformed() method assigned. The actionPerformed() method is the event handler used to display the
button component sizes.

One interesting thing from this listing is how the top component (i.e., the second argument to the JSplitPane
constructor) in line 17 is a simple call to the JButton constructor. Notice how the next argument, (i.e., the third for
the JSplitPane constructor), which is used to specify the bottom component for the vertically split pane, is itself a
JSplitPane constructor. This is the nesting to which this section refers.

Imagine how much fun you could have using this technique to create deeply nested split pane components!*
If you search the web, you can find an interesting article, written by Hans Muller entitled “MultiSplitPane: Splitting
Without Nesting.”!! If you are really adventurous, you might investigate adding his class files to your environment and
using them or converting them to Jython. If you do, please let me know how it goes.

Divider and Conquer

What, exactly, can you do with, and about, the separator (aka divider) bar? As you saw earlier, the Layout Manager
decides how to allocate the available space to display the components. Do you have any control over the divider bar,
and how it can be used? Sure, there are a number of JSplitPane methods related to the divider.

For example, Figure 5-11 shows how you can easily adjust the size of the divider bar using the setDividerSize()
method. The image corresponds to the selected size button (i.e., the top image has a divider size of zero, the middle
image has a divider size of 10, and the bottom image has a divider size of 20).

19This was discussed in Chapter 3.
"See http://today.java.net/pub/a/today/2006/03/23/multi-split-pane.html.

47

http://today.java.net/pub/a/today/2006/03/23/multi-split-pane.html

CHAPTER 5~ PICKING A LAYOUT MANAGER CAN BE A PANE

Figure 5-11. SplitPane5: various divider sizes

One SplitPane attribute with which you may be unfamiliar is the OneTouchExpandable property. By default, this
Boolean attribute is set to false. When it is true, the divider has two little triangles added to it, as shown in Figure 5-12.

Figure 5-12. SplitPane6 with the OneTouchExpandable divider

By enabling OneTouchExpandable, you allow the user to minimize one component with a single mouse click,
which is really quite cool. Looking at the script used to produce this output, which can be found in the SplitPane6.py
script file, you can see that you only needed to specify the oneTouchExpandable keyword argument on the JSplitPane
constructor call. Listing 5-13 shows how easily this can be accomplished using Jython.

48

CHAPTER 5 * PICKING A LAYOUT MANAGER CAN BE A PANE

Listing 5-13. oneTouchExpandable Keyword Argument

15| frame.add(

16| ISplitPane(

17| JSplitPane.HORIZONTAL SPLIT,
18] JButton('Left'),

19| JButton('Right'),

20| oneTouchExpandable = 1

21|)

22|)

Rules for Using Split Panes

Unlike a during knife fight, there are rules for using a split pane. Most of them deal with how to determine the
component sizes, and therefore the divider bar. This can also lead to dealing with the sizes of any nested components,
which can be a challenge. In fact, there is a wonderful statement on the Java tutorials page entitled “How to Use Split
Panes”’* that says:

Note Choosing which sizes you should set is an art that requires understanding how a split pane’s preferred size
and divider location are determined.

Immediately after this statement, the page contains a bulleted list of rules for making split panes work well for
you and your applications. If you intend to use split panes, I suggest that you bookmark that URL and study it often.
I certainly have.

Can | Run a Tab? Using a TabbedPane

This section discusses something else that really isn’t a Layout Manager. It seems to be related to the CardLayout
Layout Manager you read about earlier. In fact, it’s a different kind of panel. The reason I am discussing it here is
because of the similarities it has to the CardLayout Manager mentioned in the previous section. Figure 5-13 shows
how JTabbedPane can be used to display one of a group of panes based on the user’s selection. Unlike the CardLayout
Layout Manager, an instance of JTabbedPane has a selectable tab label that can be used to determine the content to be
displayed.

2Seehttp://docs.oracle.com/javase/tutorial/uiswing/components/splitpane.html.

49

http://docs.oracle.com/javase/tutorial/uiswing/components/splitpane.html

CHAPTER 5~ PICKING A LAYOUT MANAGER CAN BE A PANE

Figure 5-13. TabbedPaneDemo examples

To demonstrate the similarities and differences between a panel using the CardLayout Manager and a
TabbedPane class, the code shown in Listing 5-14 uses the same child panel contents as those seen in Listing 5-8.

Listing 5-14. TabbedPaneDemo Class

10| class TabbedPaneDemo(java.lang.Runnable) :
11| def run(self) :

12| frame = JFrame(

13| 'TabbedPaneDemo"' ,

14| defaultCloseOperation = JFrame.EXIT_ON_CLOSE
15|

16| self.addTabs(frame.getContentPane())
17| frame.setSize(300, 125)

18| frame.setVisible(1)

19| def addTabs(self, container) :

20| tab1 = JPanel()

21| tab1.add(

22| JLabel(

50

CHAPTER 5 * PICKING A LAYOUT MANAGER CAN BE A PANE

23| 'The quick brown fox jumped over the lazy dog.'
24|)

25|

26| tab2 = JPanel()

27| for name in 'A,B,C'.split(',"') :

28] tab2.add(JButton(name))

29| tab3 = JPanel()

30| tab3.add(

31| JLabel(

32| 'Now is the time for all good men to come to...'
33|)

34)

35| tabs = JTabbedPane()

36| tabs.addTab('Uno' , tab1)

37| tabs.addTab('Dos' , tab2)

38| tabs.addTab('Tres', tab3)

39| container.add(tabs)

What's the main difference? Well, in lines 36-38, you can see how the child panes are added to the JTabbedPane
instance using the addTab() method instead of the JPanel add() method shown in lines 49-51 of Listing 5-8.

A JTabbedPane instance is also easier because the selection mechanism is built into the class. Take another look
at Listings 5-7 and 5-9, where you had to specifically identify how the CardLayout panel instances would be selected
by the users.

Are You Boxed In? Using the BoxLayout Manager

Earlier in this chapter, you saw how easy it was to use the FlowLayout Layout Manager to position the components
in a row. You also saw that when the application window was resized, the Layout Manager would reposition the
components on different rows when the width of the application window would otherwise be too narrow. There
are times when you don’t want this to occur. This leads to the next Layout Manager, i.e., the one defined in the
BoxLayout class."

Figure 5-14 shows the sample output of the BoxLayoutDemo sample application. It uses a JTabbedPane with three
tabs. In each tab, you can see three buttons that are layered out along the Y_AXIS (i.e., vertically). The only difference
between the tabs is how the buttons are aligned within the pane.

BSeehttp://docs.oracle.com/javase/8/docs/api/javax/swing/BoxLayout.html.

51

http://docs.oracle.com/javase/8/docs/api/javax/swing/BoxLayout.html

CHAPTER 5~ PICKING A LAYOUT MANAGER CAN BE A PANE

Left | Center | Right |

1
2

3 being the third number

2

Figure 5-14. BoxLayout tabs

Listing 5-15 shows the BoxLayoutDemo class that produces the output shown in Figure 5-14. As you can see, when
you instantiate the Layout Manager, as shown in line 29, you tell it how the components should be displayed. Later,
in line 31, you see that when you instantiate the buttons, you can use a Component alignment constant to tell the
component where the other part should be displayed (i.e., along the x-axis of the panel).

52

CHAPTER 5

Listing 5-15. BoxLayoutDemo Class

10| class BoxLayoutDemo(java.lang.Runnable) :

11|
12|
13|
14|
15|
16|
17|
18|
19|
20|
21|
22|
23|
24|
25
26|
27|
28|
29|
30|
31|
32|
33|

def run(self) :
frame = JFrame(
'BoxLayoutDemo',
defaultCloseOperation = JFrame.EXIT ON_CLOSE

self.addTabs(frame.getContentPane())
frame.setSize(300, 175)
frame.setVisible(1)
def addTabs(self, container) :
align = [
['Left' , Component.LEFT_ALIGNMENT],
['Center', Component.CENTER_ALIGNMENT],
['Right' , Component.RIGHT_ALIGNMENT]
]
names = '1,2,3 being the third number'.split(',")
tabs = JTabbedPane()
for aName, aConst in align :
tab = JPanel()
tab.setLayout(BoxLayout(tab, BoxLayout.Y AXIS))
for name in names :
tab.add(JButton(name, alignmentX = aConst))
tabs.addTab(aName, tab)
container.add(tabs)

Table 5-1. BoxLayout Constants

PICKING A LAYOUT MANAGER CAN BE A PANE

The constants provided by the BoxLayout class include those listed in Table 5-1.

Constant Description
BoxLayout.X_AXIS Components are laid out horizontally, left to right.
BoxLayout.Y_AXIS Components are laid out vertically, top to bottom.

BoxLayout.LINE_AXIS

BoxLayout . PAGE_AXIS

either horizontally or vertically.

Components are laid out based on the container’s ComponentOrientation property,

Components are laid out the way text is displayed on a page, based on the container’s

ComponentOrientation property, either horizontally or vertically.

The Box Class

Even though this chapter has been focusing mainly on Layout Managers, you have also learned about some container
classes to help define how the application components are displayed. The Box class is another of these lightweight
containers that helps arrange application components.

53

CHAPTER 5 " PICKING A LAYOUT MANAGER CAN BE A PANE

If you need to create a single row or column of components, you might want to take a look at the Box class,**
which works kind of like a JPanel. One significant difference between these two classes is that the Box class can only
use a BoxLayout Layout Manager,'® whereas the JPanel allows the developer to choose any kind of Layout Manager.'

Building a Box

The Box class has a single constructor, as shown in Figure 5-15. One of the interesting things about this constructor is
that it isn’t used as often as the createHorizontalBox() and createVerticalBox() methods. I think that calling the

Box.createHorizontalBox() method is more understandable than Box(BoxLayout.X AXIS), don’t you? Canyou

think of a reason that you might prefer the constructor to the createHorizontalBox () method?

public Box(int axis)

Creates a Box that displays its components along the specified axis.

Parameters:

axis - can be BoxLayout.X_AXIS, BoxLayout.Y_AXIS, BoxLayout.LINE_AXIS or
BoxLayout.PAGE_AXIS.

Throws:

AWTError -if the axis is invalid

See Also:

createHorizontalBox(), createVerticalBox()

Figure 5-15. Box constructor

If nothing comes to mind, you might want to take another look at Table 5-1. The important thing to note is that the
createHorizontalBox() class is equivalent to using the Box(BoxLayout.X AXIS) constructor call, which will position
the components left to right, regardless of the user locale. This might not be what you intend. You have to be the judge.

“Seehttp://docs.oracle.com/javase/8/docs/api/javax/swing/Box.html.
5See http://docs.oracle.com/javase/8/docs/api/javax/swing/Box.html#setLayout%28java.awt.LayoutManager’%29.
1By default, a JPanel instance will use a FlowLayout Layout Manager.

54

http://docs.oracle.com/javase/8/docs/api/javax/swing/Box.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/Box.html%23setLayout%2528java.awt.LayoutManager%2529

CHAPTER 5 * PICKING A LAYOUT MANAGER CAN BE A PANE

Invisible Box Components

One of the challenges with using a Box instance to hold your components is the fact that they are, by default, adjacent
to one another. Figure 5-16 shows what happens when three fixed-size components (i.e., JLabel instances) are added
to a horizontal box container. The left image shows how the application looks when the application is first made
visible. The right image shows what happens to the components when the application is widened.

Figure 5-16. Horizontal (fixed-size) components

If you were expecting the components to be centered or right-aligned, you aren’t going to be pleased with the
results. To help adjust this kind of alignment, the Box class includes the following “filler” components:

e Glue
e Struts
e Rigid areas

Your choice of filler component will depend upon the initial appearance of your box, as well as on how you want
it to look when it is resized.

Glue

If you research Java Swing glue components, most of the references mention the fact that glue is not a very good
description for this type of component. This is true because most people think of glue as a kind of adhesive. Instances
of this invisible Swing component will start out with a width or height of zero. This attribute then increases in size as
the container size increases.

Three Box methods exist that can be used to create glue components. These methods are listed and described
in Table 5-2.

Table 5-2. Box Class Glue Methods

Method Name Description/Details

createGlue() Used to create a component that can be used between horizontal or vertical
components.

createHorizontalGlue() Used to create a component that is oriented horizontally.

createVerticalGlue() Used to create a component that is oriented vertically.

Glue components have a minimum size (horizontal width or vertical height) of zero. This means that it shouldn’t
be obvious when a glue component is between other components on the box container. When the container becomes
larger, the Layout Manager will increase the size of all of the resizable components (i.e., the ones smaller than their
maximum size). When multiple fixed-size components are positioned between glue components, the available space
will be allocated equally to the glue components.

55

CHAPTER 5~ PICKING A LAYOUT MANAGER CAN BE A PANE

It may help to see an example to better understand what this means. Table 5-3 shows what happens when glue
components are positioned around some fixed-size components (i.e., JLabel instances), and the application frame
containing the horizontal box is widened.

Table 5-3. Using Glue Components in a Horizontal Box

No glue components exist, so all the “extra” space is
allocated to the right of the last label.

One glue component is added before the first label, so it
gets all the “extra” space.

Glue components are added before and after the first
label. The “extra” space is equally distributed between the
glue components.

Glue components are added in three places. The
“extra” space is equally distributed among these glue
components.

Glue components are added before, after, and in between
the labels. All the “extra” space is allocated equally.

[Lot < iddie > <__Rignt_>_]j

When a vertical box is used to hold components, glue components act in a similar fashion.

Strut Components

There are times when it is appropriate to have some minimum distance between components. For those times, consider
using horizontal or vertical struts. Table 5-4 shows two methods that you can use to create these strut components.

Table 5-4. Box Class Strut Methods

Method Name Description/Details

createHorizontalStrut(int width) Create a filler component of the specified width (in pixels).

createVerticalStrut(int height) Create a filler component of the specified height (in pixels).

Is there any problem related to using strut components? Well, I have found some references that indicate that
horizontal strut components have an unlimited height, and vertical strut components have an unlimited width,
which can be a problem. Apparently, if you use strut components with nested vertical and horizontal box containers,
alignment issues can arise. Take a look at this example to see what they are talking about. Figure 5-17 shows an
application that has five buttons (all of which have the same text) aligned in a plus pattern. The issue isn’t obvious
until you drag the bottom-right corner of the application down to increase the size and width. As you can see from the

56

CHAPTER 5 * PICKING A LAYOUT MANAGER CAN BE A PANE

image on the right, the results are unexpected. The glue components are placed before the leftmost button, after the
rightmost one, above the top one, and beneath the bottom one. When the frame becomes larger, the strut component
before the rightmost button has extra space.

™ ThorizontalB.y = I

Figure 5-17. Alignment issues with strut components

Rigid Area Components

The final invisible component—called a rigid area—is created using specific, fixed dimensions. This means that the
component size should not change even if its container is resized. This would seem to make it the preferred filler
component if your application is best rendered with some space between visible components. Table 5-5 shows the Box
method that you can use to create this type of invisible component.

Table 5-5. Rigid Area Creation Method

Method Name Description/Details

createRigidArea(Dimension d) Creates an invisible component that’s always the specified size.

Boxes and Resizable Components

Up to this point, you have been using fixed-size components when dealing with box containers (e.g., labels and
buttons). It is important to note, however, that some components have a maximum size that isn’t the same as the
minimum and preferred size. What happens when that occurs?

Based on what I have already discussed, you probably realize that the Layout Manager will also allocate available
space to these components as space becomes available. The distribution of the available size depends on a number of
factors, including:

e The maximum size attribute of the resizable components
e The current size of the container
e The size of the screen

I don't know about you, but I was a little surprised about this last one. In fact, had to try it out, so I played around
with the fBox. py script, which displays information about the text field width when the button is pressed. When the
maximum width of the text field is less than or near the screen width, the amount of space allocated to the text field as
the application width increases is relatively small. As the maximum width of the text field is increased, you'll see that
the amount of space allocated to the text field as the application is widened increases accordingly. If the maximum
width of the text field is not limited (i.e., if the default maximum width is used), the text field will receive all of the
available extra width.

57

CHAPTER 5~ PICKING A LAYOUT MANAGER CAN BE A PANE

Gridlock, Anyone? Using the GridLayout Manager

Another common layout configuration is when the components are laid out in a grid. The GridLayout Layout
Manager provides this configuration. Figure 5-18 shows a simple example where the application has two panes, each
of which contains a group of buttons displayed in a grid. Each grid has three columns and enough rows to display all

of the buttons.

Horizontal: 0 Horizontal: 2 Horizontal: 4
Horizontal: 8 Horizontal: 16
Vertical: 0 Vertical: 2 Vertical: 4
Vertical: 8 Vertical: 16
< BGri -
Horizontal: 0 Horizontal: 2 Horizontal: 4
Horizontal: 8 Horizontal: 16
Vertical: 0 Vertical: 2 Vertical: 4
Vertical: 8 Vertical: 16
o -
Horizontal: 0 Horizontal: 2 Horizontal: 4
Horizontal: 8 Horizontal: 16
Vertical: 0 Vertical: 2 Vertical: 4
Vertical: 8 Vertical: 16

Figure 5-18. GridLayoutDemo examples

58

CHAPTER 5 * PICKING A LAYOUT MANAGER CAN BE A PANE

The interesting thing about this application is that the buttons allow you to dynamically change the horizontal or
vertical gap between the buttons on each pane that is using the GridLayout Layout Manager.

Listing 5-16 shows the run() method in the GridLayoutDemo application. In this method, you can see how the
main panel uses a BoxLayout Layout Manager to position two inner panes along the Y_AXIS (i.e., vertically). Then, the
addButtons() method is called to add another inner pane, which uses a GridLayout Layout Manager to position a
group of buttons.

Listing 5-16. GridLayoutDemo run() Method

def run(self) :
frame = JFrame(
'GridLayoutDemo’,
defaultCloseOperation = JFrame.EXIT ON_CLOSE
)
main = JPanel()
main.setLayout(BoxLayout(main, BoxLayout.Y AXIS))
self.panes = []
self.addButtons(main, 'Horizontal:')
self.addButtons(main, 'Vertical:')
frame.add(main)
frame.setSize(500, 250)
frame.setVisible(1)

Listing 5-17 shows how the addButtons () method creates a new panel, populates it with buttons, and then adds
it to the specified container. A reference to the new panel is saved in the self.panes list, created in the run() method,
for use by the button event handler.

Listing 5-17. GridLayoutDemo addButtons() Method

def addButtons(self, container, prefix) :
pane = JPanel(GridlLayout(0, 3))
self.panes.append(pane)
for size in '0,2,4,8,16'.split(',") :
pane.add(
JButton(
"%s %s' % (prefix, size),
actionPerformed = self.buttonPress
)
)
container.add(pane)

Listing 5-18 shows how the button label is retrieved using the event.getActionCommand() method. The program
then uses the space that exists between the direction (i.e., Horizontal or Vertical) and the size (i.e., the number of
pixels) for the inner component gap.

Listing 5-18. GridLayoutDemo buttonPress() Method

def buttonPress(self, event) :
dir, size = event.getActionCommand().split(' ')
if dir[0] == 'H'
for pane in self.panes :
layout = pane.getlayout()
layout.setHgap(int(size))
layout.layoutContainer(pane)

59

CHAPTER 5~ PICKING A LAYOUT MANAGER CAN BE A PANE

else :
for pane in self.panes :
layout = pane.getLayout()
layout.setVgap(int(size))
layout.layoutContainer(pane)

This is where you need to process each of the panes using a GridLayout Layout Manager. Given a pane, you can
obtain a reference to the Layout Manager used by that pane using the pane.getLayout() method call. You can use
this reference to adjust the horizontal or vertical gap used by this Layout Manager (i.e., by calling the setHgap() or
setVgap() method).

Once the gap has been changed, a call is made to the layoutContainer () method to force the Layout Manager to
adjust how the components are displayed.

Shaking Things Up: The GridBagLayout Manager

One of the problems with the GridLayout Manager is that sometimes you’ll want there to be some differences
between the size and placement of the components. For example, you might want things to be arrayed in rows, but
not use the regular column arrangement provided by GridLayout. You can use the GridBaglLayout Layout Manager for
these purposes. Unfortunately, it comes with a price. Specifically, in order for you to have more control over the size
and placement of components in a grid, you must provide a greater level of detail to each component. Therefore, the
GridBaglLayout Manager is a bit more complicated than the others.

Figure 5-19 shows sample output of the GridBagLayout applications found in the code\Chap_05 directory. These
are just examples of the kind of control that the GridBagLayout Layout Manager provides for component placement.

3 being the third number | 3 being the third number |

Four shalt thou not count Four shait thou not count

Five is right out

3 being the third number

Four shait thou not count

Five is right out

Figure 5-19. GridBagLayout examples

60

CHAPTER 5 * PICKING A LAYOUT MANAGER CAN BE A PANE

Listing 5-19 shows the addComponents () method from the GridBaglLayout4 script, which was used to generate
the output shown in Figure 5-19. There are some important points about this method to note. For example, a new
GridBagConstraints instance is created for each component. Why is this considered a “best” practice? This is
recommended because the reuse of existing GridBagConstraints objects can easily lead to subtle, and therefore
difficult-to-diagnose, problems. It is all too easy to forget that one of the many constraint fields has a non-default value.

Listing 5-19: GridBagLayout4 addComponents () Method

def addComponents(self, container) :
container.setlayout(GridBaglLayout())
¢ = GridBagConstraints()
c.gridx = 0 # first column
c.gridy = 0 # first row
container.add(JButton('1'), c)
¢ = GridBagConstraints()

c.gridx = 1 # second column
c.gridy = 1 # second row
container.add(JButton('2'), c)

¢ = GridBagConstraints()

c.fill = GridBagConstraints.HORIZONTAL
c.gridx = 2 # third column
c.gridy = 2 # third row
c.weightx = 0.0

c.gridwidth = 3

container.add(JButton('3 being the third number'), c)
¢ = GridBagConstraints()

c.gridx = 1 # second column
c.gridy = 3 # forth row
c.ipady = 32 # make this one taller

container.add(JButton('Four shalt thou not count'), c)
¢ = GridBagConstraints()

c.gridx = 1 # second column
c.gridy = 4 # fifth row
c.gridwidth = 3 # make this one 3 columns wide

container.add(JButton('Five is right out'), c)

This provides me with another opportunity to highlight some of the features and strengths of Jython. If you take
alook at the Javadoc for the GridBagConstraints class,'” you will see that two constructors exist. The first constructor
has no parameters and creates a GridBagConstraints instance using all of the default values. The other has 11
parameters and requires that all of the values be provided.

Jython, on the other hand, lets you use keyword arguments to selectively provide only those values of interest.
Listing 5-20 shows an interactive session that uses a displayConstraints() function' to show any non-default
constraint values that exist in the specified object. In lines 8, 14, and 19, you can see how keyword arguments can be
provided when the object is instantiated.

"Seehttp://docs.oracle.com/javase/8/docs/api/java/awt/CGridBagConstraints.html.
!8The complete source for which can be found in code\Chap_05\displayConstraints.py script file.

61

http://docs.oracle.com/javase/8/docs/api/java/awt/GridBagConstraints.html

CHAPTER 5 " PICKING A LAYOUT MANAGER CAN BE A PANE

Listing 5-20. Specifying GridBagConstraints parameters using keywords

wsadmin>from java.awt import GridBagConstraints
wsadmin>from java.awt import Insets

wsadmin>

wsadmin>c = GridBagConstraints()
wsadmin>displayConstraints(c)

All constraint values match defaults

wsadmin>

wsadmin>c = GridBagConstraints(gridx = 1, gridy = 2)
wsadmin>displayConstraints(c)

Non-default constraint values:

gridx: 1
gridy: 2
wsadminy>

wsadmin>c = GridBagConstraints(insets = Insets(1, 2, 3, 4))
wsadmin>displayConstraints(c)
Non-default constraint values:

insets: java.awt.Insets[top=1,left=2,bottom=3,right=4]
wsadmin>
wsadmin>c = GridBagConstraints(fill = GridBagConstraints.CENTER)
wsadmin>displayConstraints(c)
Non-default constraint values:

fill: CENTER

wsadmin>

Looking at Other Layout Managers

In addition to the Layout Managers you already read about, there is the SpringlLayout class'. I'm not going to cover it
here because of its complexity, as well as because it’s most often used by GUI builders. At this time, I am unaware of
any GUI builder that generates Jython code, so it would seem that your best bet is to find one that generates Java code
and translate it to the corresponding Jython code. Unfortunately, I don’t know how many people would invest the
time to do this, especially if the application’s “look and feel” changes frequently.

Another Layout Manager, called GroupLayout,® exists, and is also used by GUI builders. It too is beyond the scope
of this book due to its complexity. If you are interested in learning more about it, read the section in the Java Swing
tutorials called “How to Use GroupLayout."*!

The other alternative that isn’t covered here is the “roll your own” option. There is good information about this
approach at your fingertips; see the section in the Java Swing tutorials entitled “Creating a Custom Layout Manager.”*
This, too, is beyond the scope of this book, and I don't have enough experience with it to feel comfortable trying to
tackle this topic here.

YSeehttp://docs.oracle.com/javase/8/docs/api/javax/swing/Springlayout.html.
MSee http://docs.oracle.com/javase/8/docs/api/javax/swing/GroupLayout.html.
See http://docs.oracle.com/javase/tutorial/uiswing/layout/group.html.

2See http://docs.oracle.com/javase/tutorial/uiswing/layout/custom.html.

62

http://docs.oracle.com/javase/8/docs/api/javax/swing/SpringLayout.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/GroupLayout.html
http://docs.oracle.com/javase/tutorial/uiswing/layout/group.html
http://docs.oracle.com/javase/tutorial/uiswing/layout/custom.html

CHAPTER 5 * PICKING A LAYOUT MANAGER CAN BE A PANE

Summary

This chapter is all about providing you with information to help you understand how you can use Layout Managers
or containers to position your application components. As you can see, there are a number of options open to you
and your applications. It’s all about how you want the application components to be arranged. One of the aspects
discussed in each section is how the components change when the container is resized. This is an important topic to
consider when you are designing and developing your application, so keep that in mind.

63

CHAPTER 6

Using Text Input Fields

Up to this point, you've been limited in the kinds of applications that you can build because of the lack of ways of
getting information (i.e., input) into the application. You will now start to remedy that deficiency by learning to create
an input field that lets the users enter text.

This chapter discusses a couple of input-related fields such as JTextField and JTextArea. Additionally, you
will take a look at how the data is displayed e.g., using alignment and fonts. The chapter also covers creating a
simple Swing application that allows you to display and modify a value in the WebSphere Application Server (WSAS)
environment. One reason to do this is so that you can see how to perform “long-running” operations on a separate
thread using instances of the SwingWorker class.

What Does It Take to Get Data Into an Application?

To start, you'll create a fairly simple value that you want to be able to view and possibly modify. How about the
WebSphere Administrative Console inactivity timeout? Well, unfortunately, the WebSphere documentation only
contains one sample Jacl script that shows how this can be done.! You'll start by creating two Jython functions, one to
get the current inactivity timeout value and the other to set it.

Listing 6-1 shows an interactive wsadmin session where these functions are used to get and set the timeout value.
The complete functions can be found in code\Chap_06 directory.’? They've been tested, as shown in Listing 6-1, so
you should be all set to use them, right?

Listing 6-1. Getting and setting the admin console inactivity timeout

wsadmin>print getTimeout()

30

wsadmin>print setTimeout('123')
Successfully modified.
wsadmin>print getTimeout()

123

wsadmin>print setTimeout('30')
Successfully modified.

wsadmin>

'See http://wwwi14.software.ibm.com/webapp/wsbroker/redirect?version=compass&product=was-nd-
dist&topic=cons_sessionto.
’In files named getTimeout.py and setTimeout.py, respectively.

65

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=compass&product=was-nd-dist&topic=cons_sessionto
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=compass&product=was-nd-dist&topic=cons_sessionto

CHAPTER 6 ' USING TEXT INPUT FIELDS

JTextField: Getting Data Into the Application

To make things easy, you will start with a simple text field that solicits information from the users. What is required
and how does it work? You start by creating a JTextField instance, which provides a simple, lightweight input field
that allows users to enter a small amount of text. When the user input is complete, which is generally indicated by the
user pressing the Enter key, any associated ActionListener will receive an action event.®

If you look at the Java documentation for the JTextField class,* you'll see that a number of constructors exist.
The simplest of these requires no parameters. One of those enables you to provide an initial string value to be
displayed, one allows the field width in number of columns, and another allows the initial string value to be specified
as well as the number of columns to be displayed. This application will use something simple—the one that allows
you to specify the number of columns to be displayed. Since you are unlikely to need more than three digits, you can
use a value of three for the number of columns.

To provide the users with visual indications of what the input field contains, you need to surround it with some
labels. And to be a little more complete, you can have a message label field on a separate line to display a message
indicating the success or failure of the requested action.

Note Do you remember how you were able to use the actionPerformed keyword assignment as part of the
constructor call when you created a JButton? If not, have a look at Chapter 4.°

You can use the same technique to specify the ActionListener routine to be called when an actionEvent occurs.
In the case of JTextField, this is when the user presses the Enter key.

Your First, Almost Real, Application

What does it take to use one or more existing routines and turn them into a graphical wsadmin application? Well, after
a bit of work, you're likely to take what you have learned, including the information about the JTextField, and build
an application, the output of which might look something like Figure 6-1.

> Conso!e l Consoletir;l&_‘

Timeout: |30 Timeout: 123 | minutes

minutes

Successfully modified.

Figure 6-1. consoleTimeoutl sample output

3] haven’t covered action events in great detail, at least not yet. They are covered in Chapter 14. However, you have used the
actionPerformed() method when you learned about buttons earlier.

See http://docs.oracle.com/javase/8/docs/api/javax/swing/ITextField.html.

For example, take a look at Listing 4-8.

66

http://docs.oracle.com/javase/7/docs/api/javax/swing/JTextField.html

CHAPTER 6 * USING TEXT INPUT FIELDS

What code do you need to do this? Listing 6-2 shows the consoleTimeout1 class from the sample application
script file. Note how it calls the getTimeout () and setTimeout () routines, just like the interactive session shown in
Listing 6-1. This makes it look pretty simple, doesn’t it?

Listing 6-2. consoleTimeoutl Class

class consoleTimeout1(java.lang.Runnable) :
def run(self) :
frame = JFrame(
'Console timeout',
defaultCloseOperation = JFrame.EXIT_ON_CLOSE

)

cp = frame.getContentPane()
cp.setlayout(BoxLayout(cp, BoxLayout.Y AXIS))

input = JPanel(layout = FlowlLayout())

input.add(JLabel('Timeout:'))

self.text = JTextField(3, actionPerformed = self.update)
input.add(self.text)

self.text.setText(getTimeout())

input.add(JLabel('minutes'))

cp.add(input)

self.msg = cp.add(JLabel())

frame.setSize(290, 100)
frame.setVisible(1)

def update(self, event) :

value = self.text.getText().strip()

if re.search('"\d+$', value) :
self.msg.setText(setTimeout(value))

else :
msg = 'Invalid value "%s" ignored.' % value
self.msg.setText(msg)
self.text.setText(getTimeout())

Unfortunately, it isn’t as simple as it looks. If you test the application and watch closely, you are likely to notice a
delay between the time that you type a value and press Enter, and the message being displayed. What’s happening?

Welcome to the world of event-driven applications. What you are seeing is the fact that a non-trivial delay is
occurring between the time that the setTimeout () routine is being called and when it returns. In the meantime, the
entire application is hung. This is a really bad thing, and exhibits a terrible practice.

Help Me SwingWorker, You’re My Only Hope!

A first attempt at fixing this might involve changing the message field to show some kind of message. You might even
want to disable the input field before calling the setTimeout () routine. So, how might you do this? Well, you could
replace the call to the setTimeout () routine in Listing 6-1 with something like what’s shown in Listing 6-3.

67

CHAPTER 6 ' USING TEXT INPUT FIELDS

Listing 6-3. Attempt to Fix the update() Method

self.msg.setText('working...')
self.text.setEnabled(0)
self.msg.setText(setTimeout(value))
self.text.setEnabled(1)

What do the calls to the setEnabled() method associated with the JTextField do? The first one attempts to
disable it by specifying 0, which is interpreted as false, and the second call attempts to enable it by specifying 1,
which is interpreted as true.®

If it worked, this would disable the input field so that the AdninConfig scripting object could locate and modify
the inactivity timeout value associated with the appropriate configuration object.

Unfortunately, this doesn’t work because the part of the Swing framework that updates the screen never has a
chance to gain control to update the display. How do you fix this? How do you force the application to perform some
separate action while the Swing framework displays the GUI and allows the user to generate events like button clicks?

Well, to do this, I need to take a trip down the rabbit hole and talk about something called concurrency.” It's
similar to when you have multiple separate programs running on your computer at the same time. In this case, you
need the application to have multiple things going on. The challenge is that all of this needs to be happening within
one program, the wsadmin Jython script.

When multiple programs execute at the same time, the operating system and the program developer are
responsible for keeping things straight, so that two or more programs don't try to manipulate the same piece of
information (e.g., an object or variable) at the same, or nearly the same time.

How do you have separate things going on at the same time in your Jython scripts? Well, you are going to have
to make use of a concurrent programming concept called threads. You need to identify operations that may require a
“long” time to complete and have these executed on a separate thread. A thread is a short form of, or nickname for, a
thread of control. Each thread operates separately and distinctly.

Since I don’t have the time or space to completely cover this topic, am going to try to provide just enough so that
you can resolve the common issues that you'll likely encounter when using the applications discussed.

The really good news is that Jython scripts are executing on a Java Virtual Machine, and Java was created with
concurrency in mind. This means that your scripts can make use of classes and techniques that have been part of Java
for years.

The primary class that you need to use is called SwingWorker. The Javadoc for the SwingWorker class® includes a
simple case example that translates to Listing 6-4.

¢Just like you do with the call to frame.setVisible(1) in the application run() method.

’Concurrent programming is a large topic all by itself. I don’t have the time or space to cover it here completely. You will, however,
learn enough to be able to develop graphical Jython applications. There are lots of good articles available on the topic. I encourage
you to search for “threads and concurrent programming.”

8See http://docs.oracle.com/javase/8/docs/api/javax/swing/SwingWorker.html.

68

http://docs.oracle.com/javase/8/docs/api/javax/swing/SwingWorker.html

CHAPTER 6 * USING TEXT INPUT FIELDS

Listing 6-4. Simple SwingWorker Subclass

class InTheSwing(SwingWorker) :
def _init (self, labelField = None) :
self.label = labelField
def doInBackground(self) :

try :

self.result = longRunningRoutine()
except :

self.result = 'Exception encountered.'

def done(self) :
self.label.setText(self.result)

label = frame.add(JLabel())
InTheSwing(label).excecute()

How well does this work? The images shown in Figure 6-2 can answer this question. You can see that when
there’s an invalid value entered (in this case “x”), the bad value is replaced with the original value and an appropriate
error message is displayed. The next image shows what happens when a valid value is entered. The input field has
been disabled and a "working. .." message is displayed, at least until the update is complete. The last image shows
that the input field has been enabled; the "Update successful" message is displayed.

Timeout: [{ | minutes | Timeout: [30 | minutes
| Invalid numeric value "x".

Timeout: minutes

working...

Figure 6-2. consoleTimeout2 Sample Output

What code do you need to do this? Listing 6-5 shows the WSAStask class, which is a SwingWorker descendent
class. How does it work?
Listing 6-5. WSAStask Class

58| class WSAStask(SwingWorker) :
59| def _init (self, textField, labelField) :

60| self.text = textField # Save the References
61| self.label = labelField

62| SwingWorker _ init (self)

63| def doInBackground(self) :

64| self.text.setEnabled(0) # Disable input field
65| self.label.setText('working...') # Inform user of status
66| value = self.text.getText().strip()

69

CHAPTER 6 ' USING TEXT INPUT FIELDS

67| if not re.search(re.compile('"\d+$'), value) :

68| msg = "Invalid numeric value "%s",' % value

69| self.label.setText(msg)

70| self.text.setText(getTimeout())

71| else :

72| self.label.setText(setTimeout(value))

73| def done(self) :

74| self.text.setEnabled(1) # Enable input field

The explanation of how this class works can be found in Table 6-1. Fortunately, the code that needs to be
executed on a separate thread of control is quite easy to understand.

Table 6-1. WSAStask Class, Explained

Lines Description/Explanation

59-62 Class constructor used to save references to the necessary component fields and call the SwinghWorker
(i.e., base class) constructor (i.e., the SwinghWorker. init () method).

63-72 Method called by the Swinghorker execute() method that does the actual, possibly long, running work.
It is interesting to note how calls to global functions (i.e., getTimeout() and setTimeout()) are made
here. Note also how the field references saved by the constructor method (i.e., the _init () method)
are used here to access and manipulate the actual components.

73-74 The done() method is also called by the SwingWorker execute() method when the doInBackground()
method completes.

What does that do for your consoleTimeout class? In Listing 6-2, the update() method required half a dozen
steps. Listing 6-6 shows how you only need to instantiate a WSAStask object and call its execute method to do
the work. Remember that all of the stuff that was previously done in the update() method has been moved to the
WSAStask doInBackground() method. So the code to perform the work is now performed on the separate thread
of control.

Listing 6-6. consoleTimeout2’s update() Method

def update(self, event) :
WSAStask(self.text, self.msg).execute()

Warning It's important to note that SwingWorker objects cannot be reused. Additional work, even if it is identical to
what was done previously, must be done using a completely new instance of the SwingWorker descendant class.

Back to the JTextField

Up to this point, I haven’t provided many details about the JTextField component. The reason for this was to allow
you to quickly use a simple kind of input field for the sample application. Now, however, it’s appropriate to revisit the
JTextField class, so you can garner a more complete understanding of its capabilities, limitations, and uses.

70

CHAPTER 6 * USING TEXT INPUT FIELDS

If you look into the Java Swing Tutorial, you'll can find a section entitled, “How to Use Text Fields”’ Let’s start by
describing and using the JTextField, which is the simplest of the text input fields.

Looking at the JTextField Javadoc shows that it includes a number of methods. Unfortunately, I don’t have the
time or space to completely describe each and every method. However, there are some that warrant investigation.
One getter/setter pair that is likely to catch your eye is the one dealing with horizontal alignment. Figure 6-3 shows
the output of the TextAlignment. py'® script, which illustrates the various JTextField alignment values and how they
affect text display in a JTextField.

Figure 6-3. TextAlignment output

Listing 6-7 shows the TextAlignment class from the script used to display this output. It is interesting to note how
easily you can display this information using a GridLayout. You don’t even have to tell the Layout Manager how many
rows will be displayed. By initializing the number of rows as 0, as shown on line 12, you let the Layout Manager keep
track of how many rows are provided.

Listing 6-7. TextAlignment Class

8|class TextAlignment(java.lang.Runnable) :
9| def run(self) :

10| frame = JFrame(

11| 'TextAlignment',

12| layout = GridlLayout(0, 2),

13| defaultCloseOperation = JFrame.EXIT_ON_CLOSE
14|)

15| data = [

16| ['Left' , JTextField.LEFT 1,
17| ['Center' , JTextField.CENTER],
18] ['Right' , JTextField.RIGHT],
19 ['Leading' , JTextField.LEADING 1],
20| ['Trailing', JTextField.TRAILING]

21|]

°See http://docs.oracle.com/javase/tutorial/uiswing/components/textfield.html.
“The complete script is in the Code\Chap_06\TextAlignment.py file.

71

http://docs.oracle.com/javase/tutorial/uiswing/components/textfield.html

CHAPTER 6 ' USING TEXT INPUT FIELDS

22| for label, align in data :

23| frame.add(JLabel(label))
24| text = frame.add(

25| JTextField(

26| 5,

27| text = str(align),
28| horizontalAlignment = align
29|)

30])

31| frame.pack()

32| frame.setVisible(1)

The other thing to note here is how you can use the Jython keyword parameter assignments (lines 12, 13, 27, and 28)
to greatly simplify the code.

Consider the difference between the Left and Leading alignments. Remember that you might be building
applications that are used in a variety of locations across the world. Left and Right are absolute direction indicators,
whereas the Leading and Trailing alignments are related to the locale and the direction that text should be displayed,
based on the locale setting.

Size Matters: Looking at Text Font Attributes

While you're looking at the JTextField documentation, it's smart to consider also the setFont() method. Can

you change the font used by the JTextField components? With a tiny bit of work, I was able to change the
TextAlignment.py example to use a different font for each of the JTextField values. The output of this modification is
shown in Figure 6-4.

Figure 6-4. TextFonts output

72

CHAPTER 6 * USING TEXT INPUT FIELDS

The changes you need to make to generate this output are shown in Listing 6-8. This isn’t anything nearing a
complete discussion about fonts; it’s just a glimpse as to how easy they are to change.

Listing 6-8. TextFonts Changes

['Left' , JTextField.LEFT , None],

['Center' , JTextField.CENTER , Font('Courier' , Font.BOLD, 12)],

['Right' , JTextField.RIGHT , Font('Ariel' , Font.ITALIC, 14)],

['Leading' , JTextField.LEADING , Font('Elephant', Font.BOLD | Font.ITALIC, 20)],
['Trailing', JTextField.TRAILING, Font('Papyrus' , Font.PLAIN, 36)]

for label, align, font in data :
frame.add(JLabel(label))
text = frame.add(
JTextField(
5,
text = str(align),
horizontalAlignment = align,
)
)
if font :
text.setFont(font)

This code adds an additional column for each row in the data array. The value of this column is None or a font
instance. If a font instance is present, it is used to define the font to be used for the associated JTextField instance.
The test and associated assignment are performed in the last two lines of Listing 6-6.

The Elephant (Font) in the Room

One of the questions that might come to you as you are looking at this code is, “Is there really a font named
‘Elephant”? I was a little surprised by that one as well. This made me wonder what it would take to create a simple
application that displays the list of available font names.

First, you need some kind of data area that can be used to hold a bunch of information. For this purpose, you're
going to use the next kind of input field, called a JTextArea. One of the things to note about this particular application
is that it uses an output field, not an input field.

How do you do that? The Java documentation for this component' includes half a dozen constructors, half of
which allow you to provide a string to be used to initialize the text. Listing 6-9 shows how you can obtain the list of
available fonts from a local graphics environment instance. One thing that you have to note, however, is that you have
to convert this list of strings into a single string, with newline characters delimiting each line of text. Fortunately, a
simple Jython idiom exists to do exactly this, as you can see in line 19.

""See http://docs.oracle.com/javase/8/docs/api/javax/swing/ITextArea.html.

73

http://docs.oracle.com/javase/7/docs/api/javax/swing/JTextArea.html

CHAPTER 6 ' USING TEXT INPUT FIELDS

Listing 6-9. AvailableFonts Class

8|class AvailableFonts(java.lang.Runnable) :
9| def run(self) :

10| frame = JFrame(

11| 'Available Fonts',

12| defaultCloseOperation = JFrame.EXIT ON_CLOSE
13|)

14| lge = GraphicsEnvironment.getLocalGraphicsEnvironment()
15| fontNames = lge.getAvailableFontFamilyNames ()
16| frame.add(

17| JScrollPane(

18| JTextArea(

19| "\n'.join(fontNames),

20| editable = o,

21| Tows = 8,

22| columns = 32

23|)

24|)

25])

26| frame.pack()

27| frame.setVisible(1)

The other important thing to notice is that this text area is likely to contain more lines of text than will
comfortably fit on the application screen. Therefore, you need to put the text area instance in a container that will
automatically provide vertical and horizontal scroll bars, as needed, to comfortably display a reasonable application
window. You do this using an instance of the JScrollPane class."

Is it always this simple and easy? Well, it all depends. In this case, you can use almost all of the default settings.
The other really good thing about Jython is that you can also use keyword arguments to help document what the
parameters mean. So, all in all, you benefit from the well-designed Swing classes hierarchy.

Take a moment and comment out lines 21 and 22. Don’t forget to remove or comment out the trailing comma
on line 20 as well."* Before you execute the script, what do you expect it to display? When I ran the modified script,
it didn’t match my expectations. I don’t know about you, but I think that the use of the keyword arguments on the
JTextArea constructor call certainly made the application better looking. This just to point out to you that not all of
the Swing default values will match your expectations or needs. Try to keep this in mind.

Using JTextArea for Input

Let’s talk for a moment about the editable keyword assignment in line 20 of Listing 6-7. By now, you should be able to
recognize it as equivalent to a call to the setEditable() method with a value of false. All this so the area of text can’t
be modified by the user. All you have to do to make this input component editable is remove this keyword assignment
or change the value from 0 (false) to 1 (true).

What happens if you execute the script after making this change? Well, you can select, modify, remove, or add
text. And all it really takes is a JTextArea instance. With the JTextField, as you saw earlier in the chapter, you can add
an ActionListener in order for an event handler routine of your choice to be invoked when the user presses Enter.

2See http://docs.oracle.com/javase/8/docs/api/javax/swing/IScrollPane.html.
3You could replace lines 16-25 with the following statement, which I find much easier to read:
frame.add(JScrollPane(JTextArea('\n'.join(fontNames), editable =0)))

74

http://docs.oracle.com/javase/8/docs/api/javax/swing/JScrollPane.html

CHAPTER 6 * USING TEXT INPUT FIELDS

Which listeners make sense for a JTextArea? I don’t know. Let’s use the classInfo() routine, seen earlier, to find
out what kind of listeners can be added. Oops. That’s one of the problems about asking questions. You may not want
to see the answer you get. What are all of these things? Table 6-2 briefly explains the kinds of listeners that can

be added.

Table 6-2. JTextArea Listeners

Listener Name

Listener Description

AncestorlListener
Caretlistener
ComponentListener
ContainerlListener
FocusListener
HierarchyBoundsListener
Hierarchylistener
InputMethodListener
KeyListener

MouselListener

MouseMotionlListener
MouseWheellistener
PropertyChangelListener

VetoableChangelistener

Support notification when changes occur to a JComponent or one of its ancestors.
Listens for changes in the caret position of a text component.

The listener interface for receiving component events.

The listener interface for receiving container events.

The listener interface for receiving keyboard focus events on a component.

The listener interface for receiving ancestor moved and resized events.

The listener interface for receiving hierarchy changed events.

The listener interface for receiving input method events.

The listener interface for receiving keyboard events (keystrokes).

The listener interface for receiving “interesting” mouse events (press, release,
click, enter, and exit) on a component.

The listener interface for receiving mouse motion events on a component.
The listener interface for receiving mouse wheel events on a component.
A PropertyChange event gets fired whenever a bean changes a “bound” property.

A VetoableChange event gets fired whenever a bean changes a “constrained”
property.

If you chose to have a listener for each kind of event, you would be able to micromanage the JTextArea instance.
I'm not even going to investigate all of these listeners. I am, however, going to take a look at the CaretListener, since
it can be used to monitor changes to the current position in the JTextArea portion of your application.

What does that require? Well, looking at the CaretListener Javadoc,' you see that only one method,
caretUpdate(), needs to be implemented.

You can see that as you type into the input area, the label at the bottom of the application is updated to reflect the
number of words and lines that exist. Figure 6-5 shows the sample output after pasting some text into the input area.

See http://docs.oracle.com/javase/8/docs/api/javax/swing/event/CaretListener.html.

75

http://docs.oracle.com/javase/8/docs/api/javax/swing/event/CaretListener.html

CHAPTER 6 * USING TEXT INPUT FIELDS

And the Lord spake, saying, "First shalt thou take outthe Holy Pin. Then, shait
ou countto three. No more. No less. Three shalt be the number thou shalt
count, and the number of the counting shall be three. Four shalt thou not count,

neither count thou two, excepting that thou then proceed to three. Five is right

out. Once atthe number three, being the third number to be reached, then,
lobbest thou thy Holy Hand Grenade of Antioch towards thy foe, who, being
naughty in My sight, shall snuff it.”

words: 94 #lines: 7

Figure 6-5. SimpleEditor output

Listing 6-10 shows just how easy it is to use a TextArea and a CaretListener to create a very simple text editor.

Listing 6-10. SimpleEditor Class

class SimpleEditor(java.lang.Runnable) :
def run(self) :
frame = JFrame(
'Simple Editor',
layout = BorderLayout(),
defaultCloseOperation = JFrame.EXIT_ON_CLOSE

)
self.area = JTextArea(

rows = 8,

columns = 32,

caretUpdate = self.caretUpdate
)

frame.add(JScrollPane(self.area), BorderLayout.CENTER)
self.words = JlLabel('# words: 0 # lines: 0')

frame.add(self.words, BorderLayout.SOUTH)

frame.pack()

frame.setVisible(1)

def caretUpdate(self, event, regexp = None) :
if not regexp :
regexp = re.compile("\W+', re.MULTILINE)
pos = event.getDot()
text = self.area.getText()
if text.strip() == "'
words = lines = 0
else :
words = len(re.split(regexp, text))
lines = len(text.splitlines())
msg = '# words: %d # lines: %d' % (words, lines)
self.words.setText(msg)

76

CHAPTER 6 * USING TEXT INPUT FIELDS

Warning This caretUpdate() method does not work well with large amounts of data. Each time the caret (cursor)
moves, the method is invoked, and it retrieves the entire text area and uses a regular expression to separate the data into
“words.” The splitlines() method then separates the data into “lines.” This is very inefficient and suitable only for a
trivial example such as this one.

Summary

This chapter is the first one to discuss the use of text input fields for your application scripts. It also introduced

the important topic of threads, and the use of SwingWorker class instances to perform potentially long-running
operations on a separate thread to keep the application from hanging. In the next chapter, you'll take a look at some
other components that allow the users to provide input.

77

CHAPTER 7

Other Input Components

This chapter presents other input components available in the Swing class hierarchy. Specifically, it deals with some
specialized text input fields, such as JPassword, three types of ComboBoxes (static, editable, and dynamic), and
formatted text fields. Additionally, I combine some of these while discussing the JSpinner class at the end of the
chapter.

Password Fields

One common reason for having a fairly small input field is to allow the users to enter a password. The good news

is that the Swing class hierarchy includes an input component specifically for this purpose. Having recently seen

the JTextField component, you shouldn’t be too surprised to learn that a descendent component exists, called
JPasswordField.! The bad news is that working with passwords, especially within a scripting language such as
Jython, includes the possibility of security exposures, especially if the script writer doesn’t think in terms of potential
vulnerabilities.

Fortunately, the Swing developers did keep security in mind when designing Java as well as this input
component.? For example, you may not realize it, but unlike a normal text input field, the text in a JPasswordField
can’t be cut or copied. If you try to do so, a little bell sound is played to indicate that the requested action cannot be
performed.

JPasswordField is a descendent of JTextField, which was discussed in Chapter 6. What happens when
text is entered into JPasswordField? Figure 7-1 shows that as you enter text, each character is replaced by a user-
configurable echo character. Each instance of this component can, if you choose, have a unique echo character. To
identify the character to be displayed for this input field, you use the setEchoChar () method.

Password: Password: (eees

Password is correct

Figure 7-1. PasswordDemo sample output

!See http://docs.oracle.com/javase/8/docs/api/javax/swing/IPasswordField.html.
*Unfortunately, there are lots of ways for script writers to overlook good security practices, so be careful.

79

http://docs.oracle.com/javase/8/docs/api/javax/swing/JPasswordField.html

CHAPTER 7 © OTHER INPUT COMPONENTS

What does it take to use JPasswordField? Listing 7-1 contains the PasswordDemo class used to generate the
output shown in Figure 7-1. There are some things I need to mention about this code though. Notice how, on
line 13, the size keyword attribute is used to define the size of the frame to be displayed. This is especially useful
in an example like this, which includes an initially empty JLabel component that will be used on the application
window to display a message.

Listing 7-1. PasswordDemo Class

9|class PasswordDemo(java.lang.Runnable) :
10| def run(self) :

11| frame = JFrame(

12| 'PasswordDemo’,

13| size = (215, 100),

14| layout = FlowLayout(),

15| defaultCloseOperation = JFrame.EXIT_ON_CLOSE
16|)

17| frame.add(JLabel('Password:'))

18] self.pwd = frame.add(

19| JPasswordField(

20| 10,

21| actionPerformed = self.enter

22|)

23|)

24| self.msg = frame.add(JLabel())

25| frame.setVisible(1)

26| def enter(self, event) :

27| print 'ActionCommand: "%s"' % event.getActionCommand()
28| pwd = self.pwd.getPassword()

29| if pwd == jarray.array('test', 'c') :

30| result = 'correct'

31| else :

32| result = 'wrong!'

33| self.msg.setText('Password is %s' % result) .

If the frame size isn’t specified, and a call to the frame. pack() method is used to determine the initial size of the
application, space won't be allocated for the message field. This choice would require the ActionListener method
(i.e., the enter () method on lines 26-33) to adjust the size of the application frame so the message text is visible. It’s
much easier to specify the frame size when the frame is constructed.

The JPasswordField instance, as shown on lines 19-22, uses the first parameter to specify the number of
characters that are allowed. Notice that you don’t have to do anything special to specify an echo character. If you
don’t like the default echo character, you can use the setEchoChar () method, the echoChar attribute, or the keyword
constructor argument to specify the character to be displayed when the user enters data.

Is There an Echo in Here? Using the Character-Obfuscation Property

Sometimes it might be convenient to allow the users to “turn off” the character-obfuscation property of a password
field. If this is the case, you can change the echoChar property of the field to have a value of zero (i.e., \x00 or chr(0)).
When this is the case, any text in the field will be displayed “in the clear” To enable obfuscation, you simply specify a
non-zero echoChar value. The PasswordDemo2. py script file uses a button to demonstrate one way that this might be
performed.

80

CHAPTER 7 © OTHER INPUT COMPONENTS

The important part of this script is the showHide() method, which acts as the event handler for the application
button. Initially, this button has a value of Show and can be used to display the user input in the clear. Listing 7-2
shows that when the button is activated, the method uses the current text associated with the button to determine
how to proceed. When the button text is Show, the password field echoChar attribute is set to zero and the text of the
button changes to Hide. When the button text is Hide, the password field echoChar attribute is set to its original value
and the text of the button is reset to Show.

Listing 7-2. showHide() Method from PasswordDemo2.py

def showHide(self, event) :

button = event.getSource()

if button.getText() == 'Show'
self.pwd.setEchoChar(chr(0))
button.setText('Hide')

else :
self.pwd.setEchoChar(self.echoChar)
button.setText('Show')

Figure 7-2 shows some sample images from the PasswordDemo2. py script. The first image shows what happens
when text is entered. The next image shows the result of using the Show button. Notice how the button value has
been changed and the password input field is now “in the clear”® The next image shows the result of using the Submit
button to verify the user input, and the final image shows how the Hide button can be used to obfuscate the password
text field again.

Password: |sess| | Password: [test

‘ Show | ‘ Hide H Submit ‘

Password: |test Password: |eeee

Hide ‘l Submit ‘ Show Submit ‘

Password is correct Password is correct

Figure 7-2. PasswordDemo2.py sample output

31t is interesting to note that even though the password text is visible, you still can’t copy its value to the system’s clipboard.

81

CHAPTER 7 © OTHER INPUT COMPONENTS

The getPassword() Method

Reading the Javadoc for the JPassword class should help you understand that even though two getText () methods
exist for the underlying text field, they have been deprecated and shouldn’t be used. Each getText () method
description includes the following statement:

Note For security reasons, this method is deprecated. Use the getPassword method instead.

Some interesting things should be noted about the differences between the getText () methods and the
getPassword() method. One of the most obvious differences is that the return type of the getText () methods is
String, whereas the return type of the getPassword() method is a character array. The primary reason for this is
security. Strings are immutable and will stick around in memory until a garbage collection cycle can free the storage.
A character array, on the other hand, can be replaced or overwritten immediately.

The event.getActionCommand() Method

What'’s so important about the event handler that it warrants a separate section? JPasswordField has JTextField as
its base class. Because of this, it inherits some properties from that class that could be possible security concerns. The
following statement comes from the JTextField Javadoc page:

JTextField will use the command string set with the setActionCommand method if it’s not null; otherwise, it will use the
text of the field as a compatibility with java.awt.TextField.

What does it mean for your application? It should be a warning that if you aren’t careful, the actionCommand
attribute of the JPasswordField instance may be a password string, which might be another possible security
exposure. So it is a best practice to provide a non-null actionCommand value for your password field instance.

Listing 7-3 shows how easily this can be done using the actionCommand keyword attribute on the constructor call.
When this is done, using the Enter key is indistinguishable from using the Submit button as far as the event handler is
concerned.

Listing 7-3. Defining a Non-Null actionCommand Attribute Value

self.pwd = frame.add(
JPasswordField(
10,
actionCommand = 'Submit’,
actionPerformed = self.enter

The JPasswordField Event Handler

You finally get to the ActionListener event handler method that is used to process the user-supplied password. You
can see an example of this routine in lines 26-33 of Listing 7-1. As mentioned earlier, the data type returned by calling
the getPassword() method is a Java array.

82

CHAPTER 7 © OTHER INPUT COMPONENTS

The simplest way to check the user-supplied password against the required password value is to create a Java
array of the appropriate type and value and compare it with the value returned by the getPassword() method. To do
s0, you can use the jarray module. If you are unfamiliar with the array method in the jarray module,* it exports two
functions for the creation of Java arrays for Jython scripts.® The exported functions are explained in Table 7-1.

Table 7-1. The jarray Module Functions

Function Signature Description

array(sequence, typeCode) Returns a Java array containing the values initialized using the specified sequence.

zeros(length, typeCode) Returns a Java array containing zero (or null) values of the specified length.

The possible values for the typeCode argument of these functions are listed in Table 7-2.

Table 7-2. typeCode Values Used by the jarray Module

typeCode Character Value Data Type of the Returned Array

'b’ byte
¢ char
d' double
! float
'h' short
i int

1" long
'z' Boolean

Using this information allows you to better understand the expression on line 29 in Listing 7-1. Listing 7-4
demonstrates this even more clearly. From this image, you can see just how easy it is to create a Java array using a
string value to initialize the array.

Listing 7-4. Creating a Java array

wsadmin>import jarray

wsadmin>

wsadmin>jarray.array('test', 'c')
array(['t', 'e', 's', 't'], char)
wsadmin>

Using functions from the jarray module allows you to simplify the testing of the value returned by the
JPasswordField getPassword() method call. So, you need to be able to compare the value entered by the users
against the appropriate password value. Unfortunately, you also need to be able to view the user password in this
simple application. Please don’t use this kind of technique—i.e., hard-coded passwords—in your applications.

‘Seehttp://www.jython.org/javadoc/org/python/modules/jarray.html.
STable 7-2 only lists the function signatures that have a typeCode argument for simplicity’s sake.

83

http://www.jython.org/javadoc/org/python/modules/jarray.html

CHAPTER 7 © OTHER INPUT COMPONENTS

Converting jarray Values to Strings

What if you need a Jython string in your script? Can’t you use the toString() method to convert the array value
to a string? Unfortunately, the data types returned by the jarray array() function and the JPasswordField
getPassword() method are, in fact, of type org. python.core.PyArray. Listing 7-5 demonstrates this.

Listing 7-5. Java array type

wsadmin>import jarray

wsadmin>from javax.swing import JPasswordField
wsadmin>

wsadmin>result = jarray.array('test', 'c')
wsadmin>type(result)

<jclass org.python.core.PyArray at 1926329041>
wsadmin>

wsadmin>pwd = JPasswordField('test')
wsadmin>type(pwd.getPassword())

<jclass org.python.core.PyArray at 1926329041>
wsadmin>

So how do you convert this Java array of characters into a string that can be passed to one of the wsadmin scripting
object methods? Listing 7-6 shows a couple of ways to do this. The first builds a simple array of the individual
characters, and then uses the string join() method to return a string formed by concatenating the characters
of the array with an empty string between each. The second shows how simple this operation can be when list
comprehension is used instead.

Listing 7-6. Converting a Java array of characters to a string

wsadminsresult = []

wsadmin>for ch in pwd.getPassword() :
wsadmin> result.append(ch)
wsadmin>

wsadminy>str(result)

“['t|) ‘e') |S') 't|]"
wsadmin>'"'.join(result)

"test’

wsadmin>

wsadmin>

wsadmins>result = []

wsadmin>for ch in pwd.getPassword() :
wsadmin> result.append(ch)
wsadmin>

wsadmin>'"'.join(result)

"test’

wsadmin>

wsadmin>result = ''.join([ch for ch in pwd.getPassword()])
wsadmin>result

"test’

wsadmin>

84

CHAPTER 7 © OTHER INPUT COMPONENTS

Why do you need to worry about this? All you have to do is not set the ActionCommand string, and you will be able
to retrieve the password as a string when the users press Enter, right? Not really. What happens when your application
has multiple input fields, such as a user ID as well as a password? What about when you want to have two password
fields for verification purposes? What happens when you also need or want to have a button? Then your script will
have to use the JPasswordField getPassword() method to retrieve the Java array of characters. Then, before you can
pass it to a WebSphere scripting object, you need some way to easily convert it from a Java array of characters into a
Jython string. All this really means is that you need to know how to perform this type of conversion.

Choosing from a List

One nice technique for allowing users to provide input in your application is to provide a list of values and allow the
users to select one. The Swing component that provides this kind of choice is the JComboBox. If you are interested in
what that looks like, take a look at the sample output shown in Figure 7-3.

Pick one: 'spam :

Selection: spam

Figure 7-3. ComboBoxDemo sample output

There are some things that you should know about a JComboBox instance:

e The JComboBox class doesn’t include an actionPerformed attribute that can be used as
keyword argument in the constructor call. So you must either use the addActionListener()
method call or the actionListener keyword argument to identify the ActionlListener
instance to be used.

e One of the side effects of this decision is that the application class has to be a descendent
of the ActionlListener class, and it must have an event handler method named
actionPerformed(). An example of this can be seen on lines 9, 21, and 24 in Listing 7-7.

e Itisimportant to realize that only one ComboBox item can be selected at a time. Multiple
items cannot be selected using this component.

e TheActionlListener event handler code can use the event.getSource() method to obtain a
reference to the JComboBox instance. This technique allows you to access the ComboBox object
easily, an example of which is shown on lines 25 and 26 in Listing 7-7. An alternative is to have
the application keep an object instance reference to the JComboBox object.

85

CHAPTER 7 © OTHER INPUT COMPONENTS

Listing 7-7. ComboBox Class

9|class ComboBoxDemo(java.lang.Runnable, ActionListener) :
10| def run(self) :

11| frame = JFrame(

12| 'ComboBoxDemo ",

13| size = (200, 100),

14| layout = FlowlLayout(),

15| defaultCloseOperation = JFrame.EXIT_ON_CLOSE
16|)

17| frame.add(JLabel('Pick one:'))

18| choices = 'The,quick,brown,fox,jumped'.split(',")
19| choices.extend('over,the,lazy,spam'.split(',"))
20| ComboBox = frame.add(JComboBox(choices))

21| ComboBox.addActionListener(self)

22| self.msg = frame.add(JLabel())

23| frame.setVisible(1)

24| def actionPerformed(self, event) :

25| ComboBox = event.getSource()

26| msg = 'Selection: ' + ComboBox.getSelectedItem()
27| self.msg.setText(msg)

Editing a ComboBox

One of the questions that can come up when you are looking at the JComboBox class is whether it can be edited. The
simple answer is yes. There is an editable attribute that you can set to allow users to enter a value that isn’t on the list.
Figure 7-4 shows some sample output of the EditableComboBox. py script.

I tat, =S|

Pick one: [JUNK| -]
Selection: JUNK

Figure 7-4. EditableComboBox sample output

What do you need to do to allow users to enter off-list values? Interestingly enough, you only have to set the
editable attribute on the JComboBox instance. Listing 7-8 shows just how simple it is to do so.

86

CHAPTER 7 © OTHER INPUT COMPONENTS

Listing 7-8. Making a ComboBox Editable

ComboBox = frame.add(

JComboBox (
self.choices,
editable = 1

)

There is one important thing to note, however. Even though the event handler method can obtain a user value
thatisn’t in the original list, the list of items doesn’t change. So, if the users want to use the same value again, they will
have to re-enter it. This should make you wonder if there is a way to add and remove items from the list.

Using the DynamicComboBox

There is also a DynamicComboBox, but it requires a bit more effort and code to use it well. First, take a quick look at
some sample output from this sample application, and then you can take a look at and learn about the instructions
required to generate the desired results.

Figure 7-5 shows how the list of items in the ComboBox can be removed and added to completely replace the
list. What does it take to completely replace the items in the list? The next three listings show methods from the
DynamicComboBox. py script.

Pick one: iThe

Remove

Make a selection

Pick one:

{ !

Se

Item removed: “lazy”

Figure 7-5. DynamicComboBox sample output

87

CHAPTER 7 © OTHER INPUT COMPONENTS

Listing 7-9 shows the run() method, which creates the various Swing components, places them on the
application, and assigns the appropriate ActionListener event handler for the JComboBox and the new Remove
button. This is where you'll see the initial list of nine ComboBox items (i.e., lines 22 and 23).

Listing 7-9. DynamicComboBox run() Method

12| class DynamicComboBox(java.lang.Runnable, ActionlListener) :
13| def run(self) :

14| self.frame = frame = JFrame(

15| 'DynamicComboBox ",

16| size = (310, 137),

17| layout = Borderlayout(),

18| defaultCloseOperation = JFrame.EXIT_ON_CLOSE

19|)

20| panel = JPanel()

21| panel.add(JLabel('Pick one:'))

22| self.choices = 'The,quick,brown,fox,jumped'.split(',")
23| self.choices.extend('over,the,lazy,spam'.split(',"'))
24| self.ComboBox = ComboBox = JComboBox(

25| self.choices,

26| editable = 1

27|)

28| ComboBox.addActionListener(self)

29| panel.add(ComboBox)

30| frame.add(panel, BorderLayout.NORTH)

31| panel = JPanel()

32| self.RemoveButton = JButton(

33| 'Remove’,

34| actionPerformed = self.remove

35|)

36| panel.add(self.RemoveButton)

37| frame.add(panel, BorderLayout.CENTER)

38| panel = JPanel(alignmentX = Component.CENTER_ALIGNMENT)
39| self.msg = panel.add(JLabel('Make a selection'))

40| frame.add(panel, BorderLayout.SOUTH)

41| frame.setVisible(1) .

One thing that might surprise you is the use of JPanel instances. The first is created on line 20. Then, you add a
label (line 21) and a ComboBox (line 29) to it. Finally, this panel is added to the frame on line 30. This allows both the
label and the ComboBox to be kept together as a group of components, and then this panel can be positioned on the
top of the frame using the BorderLayout.NORTH constant, as shown on line 30.

The creation of a second panel, on line 31, may surprise you. If you didn’t do this and simply added the button to
the frame using the BorderLayout.CENTER constant, the button would increase to fill the available space, thus making
it too large. By placing the button in a panel, as on line 36, the panel can be sized to fill the available space, while
leaving the button at its preferred size in the middle of the panel.

Then you create yet another panel, on line 38. This time you use the alignmentX keyword assignment to
configure the horizontal alignment accordingly. If you chose to simply add the message label (e.g., self.msg
on line 39) to the BorderLayout.SOUTH position instead, the message label would be aligned to left and would look out
of place.

88

CHAPTER 7 © OTHER INPUT COMPONENTS

The actionPerformed() method, shown in Listing 7-10, is the ActionlListener event handler that is associated
with the ComboBox by the statement on line 28 in Listing 7-9. This method is invoked when someone uses a mouse
button or a keyboard event to make a selection on the ComboBox. It is especially interesting to note that the item
returned by the call to the getSelectedItem() method, as shown on line 44, might in fact return a value that doesn’t
currently exist in the list of items currently associated with the ComboBox. This is only possible when the ComboBox
editable attribute is true, as you can see on line 26 in Listing 7-9.

Listing 7-10. DynamicComboBox actionPerformed() Method

42| def actionPerformed(self, event) :

43| cb = self.ComboBox

44| item = cb.getSelectedItem().strip()

45| items = [

46| cb.getItemAt(i)

47| for i in range(cb.getItemCount())
48|]

49| if item :

50| if item not in items :

51| cb.addItem(item)

52| self.RemoveButton.setEnabled(1)
53| msg = 'Selection: "%s"' % item

54/ self.msg.setText(msg)

55] else :

56| cb.setSelectedIndex(0)

This event handler is responsible for determining if the specified item is valid, and whether or not it currently
exists on the list. If it doesn’t exist, a call is made to the addItem() method (line 51) to add it to the list of items
currently associated with the ComboBox. Why do you call the setEnabled() method when an item is added? Because
itis possible for the remove method, shown in Listing 7-11, to reduce the number of items on the ComboBox to one. At
this point, the Remove button should be disabled.

Listing 7-11. DynamicComboBox remove () Method

57| def remove(self, event) :

58| cb = self.ComboBox

59| index = cb.getSelectedIndex()

60| item = cb.getSelectedItem()

61| try :

62| cb.removeItem(item)

63| self.msg.setText('Item removed: "%s"' % item)
64| except :

65| self.msg.setText('Remove request failed')

66| self.RemoveButton.setEnabled(cb.getItemCount() > 1)

The remove () method, shown in Listing 7-11, is associated with the button, as shown on line 34 in Listing 7-9.
This method is invoked only when the user selects the Remove button, and the event handler routine is responsible
for removing the current ComboBox item. It is also responsible for disabling the button when the number of items on
the ComboBox list is reduced to one.*

SThe expression (i.e., cb.getItemCount() > 1) will be true (i.e., 1) when more than one item is present on the list; this keeps the
button enabled. When the list only has one item, the expression is false (i.e., 0) and the button is disabled.

89

CHAPTER 7 © OTHER INPUT COMPONENTS

Formatted Text Fields

There are times when it is important to control the way information is displayed by a text field. For situations such as
this, Swing provides the JFormattedTextField class” and the Format class hierarchy.?

A formatted text field allows you to specify the kinds of values that are appropriate for a specific field and
determine how these values are displayed. What kind of formatting can you apply? Well, you can format a text field
as a number (e.g., as an integer, a floating point, or as currency). You can also specify a pattern to identify how a value
should appear (e.g., a date, Social Security Number, or even a telephone number).

Take a quick look at a sample application that uses the various instances of formatted numbers.’ Figure 7-6 shows
the output of this simple application.

—

> | FormattedTex... =4 =k
—

getinstance() h2,345.679
getCurrencylnstance()$12,345.68
getintegerinstance() 12,346

getNumberinstance() |12,345.679

getPercentinstance() |1.234,568% |
e

Figure 7-6. FormattedTextFieldDemo sample output

What does it take to generate the output? You might be surprised to see just how easy it is. Listing 7-12 contains
the code from the FormattedTextFieldDemo.py script used to produce the output shown in Figure 7-6."

Listing 7-12. FormattedTextFieldDemo Class

class FormattedTextFieldDemo(java.lang.Runnable) :
def addFTF(self, name) :

pane = self.frame.getContentPane()

pane.add(JLabel(name))

pane.add(

JFormattedTextField(

eval('NumberFormat.' + name),
value = 12345.67890,
columns = 10

)

)
def run(self) :
self.frame = frame = JFrame(
'FormattedTextFieldDemo',
layout = Gridlayout(0, 2),
defaultCloseOperation = JFrame.EXIT_ON_CLOSE

"Seehttp://docs.oracle.com/javase/8/docs/api/javax/swing/IFormattedTextField.html.
8Seehttp://docs.oracle.com/javase/8/docs/api/java/text/Format.html.

Note: You’ll revisit the JFormattedTextField class in Chapter 14.

""Note: The eval() function, as shown in line 15, is normally discouraged. However, using it in this example allowed the addFTF ()
method call to be greatly simplified and much shorter.

90

http://docs.oracle.com/javase/8/docs/api/javax/swing/JFormattedTextField.html
http://docs.oracle.com/javase/8/docs/api/java/text/Format.html

CHAPTER 7 © OTHER INPUT COMPONENTS

self.addFTF('getInstance()')
self.addFTF('getCurrencyInstance()')
self.addFTF('getIntegerInstance()')
self.addFTF('getNumberInstance()')
self.addFTF('getPercentInstance()')
frame.pack()

frame.setVisible(1)

Looking closely at this script, you can see that the format of the value to be displayed in each field is defined by
the NumberFormat instance that is used to instantiate each formatted text field.

The generated output may make you wonder about the kind of control that is provided by the NumberFormat
class. Looking at the NumberFormat Javadoc,'! you see that you can modify the attributes in Table 7-3. By the way, this
table shows the initial/default settings for each of these attributes for the specified NumberFormat instance type.

Table 7-3. NumberFormat Instance Type Attributes

NumberFormat Instance Type Integer Part Fraction Part

Minimum Digits Maximum Digits Minimum Digits Maximum Digits
getInstance() 1 MAXINT 0 3
getCurrencyInstance() 1 MAXINT 2 2
getIntegerInstance() 1 MAXINT 0 0
getNumberInstance() 1 MAXINT 0 3
getPercentInstance() 1 MAXINT 0 0

How are you supposed to understand this information? Well, take a look at a row in the table, e.g., the one for
the currency instances. It differs from the others in that these kinds of values have a minimum and maximum of two
fractional digits. That’s why the value in the currency row of Figure 7-6 appears as $12,345.68. If you execute that
script and enter a value of $0 in the input field, it will be reformatted as $0.00, which makes sense when you look at
the row in Table 7-3 specifying currency values. There will be a minimum of one digit before and exactly two digits
after the decimal point.

One important point to note about these types of constructors for the NumberFormat class is that the instance
attributes are specific to the locale of the operating system on which the wsadmin script is being executed. If your
application requires a specific locale formatting, it might be specified as a parameter on the instance constructor:

format = NumberFormat.getCurrencyInstance(Locale.FRENCH)

''See http://docs.oracle.com/javase/8/docs/api/java/text/NumberFormat.html.

91

http://docs.oracle.com/javase/8/docs/api/java/text/NumberFormat.html

CHAPTER 7 OTHER INPUT COMPONENTS

Using a JSpinner Text Field

The last of the text input fields to be discussed here makes use of the javax.swing.JSpinner class. What does the
JSpinner object look like? Each JSpinner field has a text input field and two small buttons. Figure 7-7 shows a trivial
JSpinner field displaying the days of the week.

It should be obvious that the text field in this particular example isn’t wide enough to display all of the characters
in the longest weekdays. First, take a look at the class used to display this sample output. Listing 7-13 shows the
Spinner1 class from this script file."?

= X
rday

iatu E

Figure 7-7. Sample JSpinner text field

Listing 7-13. Spinner1 Class

from java.text import DateFormatSymbols as DFS

class Spinneri(java.lang.Runnable) :
def run(self) :
frame = JFrame(
'Spinner1’,
layout = FlowLayout(),
defaultCloseOperation = JFrame.EXIT_ON_CLOSE
)
daysOfWeek = [dow for dow in DFS().getWeekdays() if dow]
frame.add(JSpinner(SpinnerListModel(daysOfWeek)))
frame.pack()
frame.setVisible(1)

Some DateFormatSymbols Methods

To understand this example, you need to understand a few concepts. Let’s begin with the getWeekdays () method of
the DateFormatSymbols module.” Listing 7-14 shows an interactive wsadmin session showing what is returned by the
DateFormatSymbols’ getWeekdays() and getMonths() methods."

?Line 5 is included to show how an alias for the DateFormatSymbols was defined. This allowed line 17 to be short enough to be fit
easily in the available space.

BSeehttp://docs.oracle.com/javase/8/docs/api/java/text/DateFormatSymbols.html.

!4There are many more methods provided by the DateFormatSymbols class that aren’t covered in this book. Feel free to experiment
with and use these other methods.

92

http://docs.oracle.com/javase/8/docs/api/java/text/DateFormatSymbols.html

CHAPTER 7 © OTHER INPUT COMPONENTS

Listing 7-14. DateFormatSymbols methods

wsadmin>from java.text import DateFormatSymbols as DFS

wsadmin>

wsadmin>DFS() . getWeekdays ()

array(['', 'Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday'], java.lang.
String)

wsadmin>

wsadmin>len(DFS().getWeekdays())

8

wsadmin>DFS().getMonths()

wsadmin>array(['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August’,
'September', 'October', 'November', 'December', ''], java.lang.String)

It should be no surprise to you that the getWeekdays () and getMonths () methods return Java arrays. What
might be a surprise to you—it certainly was to me—was the fact that the getWeekdays () method returns eight values
and the getMonths () method returns 13 values.'* That’s why the Spinner1 class, as shown in Listing 7-13, uses list
comprehension to process the results of calling the getWeekdays () method and returns the non-empty values
that exist.

The JSpinner Class

Unlike the JComboBox, JSpinner instances do not display any kind of drop-down list of values. Only the current value
is visible. The buttons on the field can be used to display the next or previous values. Why would you use a spinner
instead of a ComboBox? Spinners are normally used when the number of valid items is too large to display. Does the
use of the JSpinner class force the users to use the buttons? No, it doesn’t.

Figure 7-8 shows the same Spinner1 application after various actions. You can see that the text portion of
the spinner can be selected and user input (i.e., from the keyboard) can be used to filter or select the value to be
displayed.

= =27 X
sday=

Figure 7-8. Spinner value selections

>This is not a bug, as is explained in the bug report found here: http://bugs.sun.com/bugdatabase/view_bug.do?bug_
1d=4146173. It’s a feature. Personally, I kind of like the explanation that exists in various places on the web that these eight-day
weeks and 13-month years were created for managers and product planners to explain and justify the development schedules. But
that’s just a guess.

93

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4146173
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4146173

CHAPTER 7 © OTHER INPUT COMPONENTS

The various actions shown in Figure 7-9 are explained in Table 7-4.

ot | o e - o = - = (2

L [0 ’U If,000,000F U 2,147,483 6471 H [2,147,483 6481 ‘

Figure 7-9. Default (numeric) spinner examples

Table 7-4. Spinner Value Selection, Explained

Image Description

1 Shows the application output after the window is slightly widened.
2 Shows how the text in the input field can be selected.
3 After typing W (and clicking on the window edge to cause the text input field to be widened), you can see

that the first value matching the specified text has been selected. It is interesting to note how the W has
been deselected.

4 After selecting the entire text in the field again.
5 After typing T, notice that Tuesday has been selected, even though it precedes Wednesday in the list
of values.
6 After typing h, notice how Thursday has been selected. This tells you that the value that you typed is used

to match the selected portion of the text field.

This raises a number of questions in my mind. What kinds of values can be displayed in a spinner field? Do they
have to be alphabetic strings? Let’s take a look at the JSpinner Javadoc' to find out.

According to that page, there are only two JSpinner constructors—the default (i.e., empty) and one that uses
something called a SpinnerModel argument. The default spinner constructor shows that it can be used to display
numeric (i.e., integer). The images in Figure 7-9 show how numeric spinner values can be selected.

From left, the first image shows the initial, or default, value of 0. The second shows how a million is displayed.
The third shows the maximum integer value (i.e., java.lang.Integer.MAX VALUE of 2,147,483,647). The final image
shows the value shown when the button is used to display the next value. Hopefully, you aren’t too surprised by the
fact that a wraparound occurs, and the value that is displayed is the smallest integer value
(i.e., java.lang.Integer.MIN_VALUE of -2,147,483,648).

One of the interesting things to note about this output is how the numeric values are formatted. From this output,
you should quickly come to the realization that the text field portion of the spinner instance is a formatted text field.

The SpinnerModel Class

The SpinnerModel Javadoc'’ explains that this class is used for potentially unbounded values, which makes sense,
especially looking back at the default spinner that you saw in Figure 7-9.

'“See http://docs.oracle.com/javase/8/docs/api/javax/swing/ISpinner.html.
Seehttp://docs.oracle.com/javase/8/docs/api/javax/swing/SpinnerModel.html.

94

http://docs.oracle.com/javase/8/docs/api/javax/swing/JSpinner.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/SpinnerModel.html

CHAPTER 7 © OTHER INPUT COMPONENTS

One of the important points to note about the SpinnerModel is that it is an interface. Your applications can use
one of your own classes based upon this interface class or one of the implementations provided by the Swing API,
specifically SpinnerDateModel, SpinnerListModel, or SpinnerNumberModel. Looking back at Listing 7-13, you can see
that the Spinner1 class uses the SpinnerListModel class. The constructor for this class was passed an array of strings.
This particular example contains a short list of values, so a ComboBox may be a better choice in this type of situation.
But it’s your decision.

The SpinnerNumberModel class constructors have either zero or four parameters. The zero parameters
constructor was used by the default JSpinner () constructor shown on line 15 of Listing 7-15.

Listing 7-15. Spinner2 Class

8|class Spinner2(java.lang.Runnable) :
9| def run(self) :

10| frame = JFrame(

11| 'Spinner2’,

12| layout = FlowlLayout(),

13| defaultCloseOperation = JFrame.EXIT ON_CLOSE
14|)

15| frame.add(JSpinner())

16| frame.pack()

17| frame.setVisible(1)

This is the one that was used to display a selection of four billion values, as shown in Figure 7-9.
The four-parameter variant of the SpinnerNumberModel class constructor identifies:

e Theinitial value to be displayed

e The minimum valid value

e The maximum valid value

e The stepSize, or increment value, to be used

The Spinner3 class that shows how this might be used is demonstrated in Listing 7-16.

Listing 7-16. Spinner3 Class

class Spinner3(java.lang.Runnable) :
def run(self) :
frame = JFrame(
'Spinner3’,
layout = FlowLayout(),
defaultCloseOperation = JFrame.EXIT ON_CLOSE

)
frame.add(
JSpinnex(
SpinnerNumberModel (
o0, # Initial value
-3141.59, # Minimum value
+3141.59, # Maximum value
3.14159 # stepSize
)
)
)

frame.pack()
frame.setVisible(1)

95

CHAPTER 7 © OTHER INPUT COMPONENTS

One of the interesting points to note about this application is that no value exists above the maximum or below
the minimum specified values. This differs from the Spinner2 class, which uses a wraparound effect.

Figure 7-10 shows what the default SpinnerDateModel looks like, at least for my locale. The multiple images show
that you can select different portions of the date in the text field and then use either the spinner buttons or the up and
down keys on your keyboard to change the date.

818112 2:13 PMF 918112 2:13 PMES 197109 12:14 AN

Figure 7-10. Default SpinnerDateModel examples

For example, I set the current date to 3/1/00 and selected the day of the month part (i.e., the 1). Pressing the
down key changes the date to 2/29/00 (i.e., Leap Day). How do you specify March 1, 2000 as the starting date for the
spinner? Listing 7-17 shows one way to do this and is part of the Spinner5. py script.

Listing 7-17. Sample Use of SpinnerDateModel

frame.add(
JSpinnex(
SpinnerDateModel(
Date(2000, 2, 1), # zero origin month
None, # minimum
None, # maximum
Calendar.DAY_OF_MONTH # Ignored by GUI
)
)
)

One of the things to remember about this example is that even though a calendarField argument is specified,
this does not automatically cause the specified field to be selected on the application window. You might be surprised
to see the cursor located at the beginning or end of your input field, depending on your locale.

The JSpinner Editor

What if you don’t like the way that the value (e.g., Date) is shown in the spinner text field? To change it, you need to
change the default spinner editor, which is based on the kind of SpinnerModel being used. Four spinner editors are
provided by Swing:

e JSpinner.DateEditor—Used for SpinnerDateModel instances

e JSpinner.lListEditor—Used for SpinnerListModel instances

e JSpinner.NumberEditor—Used for SpinnerNumberModel instances

e JSpinner.DefaultEditor—A simple base class for more specialized editors

Figure 7-11 shows the sample output that is generated using a different date pattern used by the Spinner6 class
shown in Listing 7-18.

96

CHAPTER 7 © OTHER INPUT COMPONENTS

g = o, 3)
b1 Mar OOE 29 Feb DUE 28 Feb QQEID

Figure 7-11. The Spinner6 output using a different date pattern

Lines 27-30 show how you can specify a different date display pattern'® for the formatted text field used by the
spinner instance.

Listing 7-18. Spinner6 Class

10|from javax.swing import SpinnerDateModel
11|class Spinner6(java.lang.Runnable) :
12| def run(self) :

13| frame = JFrame(

14| 'Spinner6’,

15| layout = FlowlLayout(),

16| defaultCloseOperation = JFrame.EXIT ON_CLOSE
17)

18| spinner = JSpinner(

19| SpinnerDateModel (

20| Date(2000, 2, 1), # zero origin month
21| None, # minimum

22| None, # maximum

23| Calendar.DAY_OF_MONTH # Ignored by GUI
24|)

25)

26| spinner.setEditor(

27| JSpinner.DateEditor(

28] spinner,

29| "dd MMM yy'

30|)

31)

32| frame.add(spinner)

33| frame.pack()

34| frame.setVisible(1)

This is just a simple example that should provide you with enough of a start for your applications.

Summary

This chapter explained many new input components that you can now utilize. By now, you should be getting a better
feel for how Swing components can be used to provide user-friendly input choices for the users of your applications.
In the next chapter, you will turn your attention to selectable input components.

'¥See http://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html.

97

http://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html

CHAPTER 8

Selectable Input Components

So far, you have learned how to use simple buttons and a variety of text input fields. In this chapter, you'll take a look
at using some other input components, ones that can be selected. All of the components in this chapter have two
possible states, they are either selected or not. I'll start by describing toggle buttons, proceed to check boxes, and then
to radio buttons. I will also discuss how to group these fields in order to make interesting user presentations.

Toggle Buttons

Simple push buttons are used to initiate an event of some kind. Occasionally, it can be useful for a button to have
an associated state to convey additional information to the users. Toggle buttons perform this role. Thinking of this
obvious difference makes me think of when I was little. The radio in my parents’ car had buttons that you would press
to select a station. It was quite obvious which of the buttons had been selected. You will learn how to group toggle
buttons together so that only one button can be selected at a time.

Before you do that, though, you need to better understand toggle buttons and their states. The toggle button state
can indicate whether the button has been selected/clicked or not. What does a toggle button look like? Figure 8-1
shows a simple application window containing a single toggle button, before and after it is pressed. In order to
accentuate the button’s state, this application also changes the button’s text based on its selected attribute.

Figure 8-1. Sample toggle button application output

What does it take to create a JToggleButton?' Listing 8-1 shows the ToggleButton class that instantiates a toggle
button using the specified text and identifies the event handler to be invoked when the button state changes. The most
significant difference between simple buttons and toggle buttons is the presence of the selected state. A push button,
on the other hand, initiates an action when the button is clicked. Because of this, the event handler of the toggle
button invokes the itemStateChanged() method of the ItemListener interface.? By comparison, the event handler for
a JButton will invoke the actionPerformed() method of the ActionListener interface.’ You can see this difference in
the itemStateChanged keyword argument of the JToggleButton constructor in Listing 8-1.

'See http://docs.oracle.com/javase/8/docs/api/javax/swing/IToggleButton.html.
*Seehttp://docs.oracle.com/javase/8/docs/api/java/awt/event/ItemListener.html.
3Seehttp://docs.oracle.com/javase/8/docs/api/java/awt/event/ActionlListener.html.

99

http://docs.oracle.com/javase/7/docs/api/javax/swing/JToggleButton.html
http://docs.oracle.com/javase/7/docs/api/java/awt/event/ItemListener.html
http://docs.oracle.com/javase/7/docs/api/java/awt/event/ActionListener.html

CHAPTER 8 © SELECTABLE INPUT COMPONENTS

Listing 8-1. ToggleButton Class

8|class ToggleButton(java.lang.Runnable) :
9] def run(self) :

10| frame = JFrame(

11| 'Toggle Button',

12| layout = FlowLayout(),

13| size = (275, 85),

14| defaultCloseOperation = JFrame.EXIT_ON_CLOSE

15|)

16| button = JToggleButton(# Make a toggle button
17| "off' , # Initial button text
18| itemStateChanged = self.toggle # Event handler

19|)

20| frame.add(button)

21| frame.setVisible(1)

22| def toggle(self, event) :

23| button = event.getItem()

24| button.setText(['Off', 'On'][button.isSelected()])

The toggle method, shown in lines 22-24 of Listing 8-1, uses the getItem() method of the event that caused the
method to be called in order to determine which component had a state change. It wasn’t necessary to do this in this
simple application, because there is only one component that has this property. However, this example is useful when
you have multiple components that share an event handler. In fact, you'll see this scenario in the next example.

Check Boxes

While reviewing the Javadoc for the JCheckBox class,* I found it kind of interesting to see that it was, in fact, based on
the JToggleButton class that you just read about. This makes sense because toggle buttons and check boxes both
have a simple on/off state and react when clicked. Using this knowledge, you can easily create an application based on
the ToggleButton code that has some check boxes. Figure 8-2 shows the some sample output of this application.

[lyes [INo []maybe vl Yes [v]No Maybe [lyes [INo []Maybe

Nothing selected Maybe selected? Yes No selected? No

Figure 8-2. Sample output for check boxes

Listing 8-2 shows one way that this can be done.® A point of interest is how the event handler uses the getText()
method (line 31) to retrieve the text of the check box that caused the state change method to be called. As mentioned
earlier, this allows the check boxes to share the same event handler.

‘Seehttp://docs.oracle.com/javase/8/docs/api/javax/swing/ICheckBox.html.
SInitially, I had the code to create and add each JCheckBox to the frame on a single line. Width limitations for these listings,
however, meant that it would be best, at least for this example, to create and use the addCB() method in lines 9-15 instead.

100

http://docs.oracle.com/javase/7/docs/api/javax/swing/JCheckBox.html

CHAPTER 8 © SELECTABLE INPUT COMPONENTS

Listing 8-2. CheckBoxes Class

8|class CheckBoxes(java.lang.Runnable) :
9] def addCB(self, pane, text) :

10| pane.add(

11| JCheckBox(

12| text,

13| itemStateChanged = self.toggle

14|)

15])

16| def run(self) :

17| frame = JFrame(

18] "Check Boxes',

19] layout = FlowlLayout(),

20| size = (250, 100),

21| defaultCloseOperation = JFrame.EXIT_ON_CLOSE
22|)

23| cp = frame.getContentPane()

24| self.addCB(cp, 'Yes')

25| self.addCB(cp, 'No')

26| self.addCB(cp, 'Maybe')

27| self.label = frame.add(JLabel('Nothing selected'))
28| frame.setVisible(1)

29| def toggle(self, event) :

30| cb = event.getItem()

31| text = cb.getText()

32| state = ['No', 'Yes'][cb.isSelected()]

33| self.label.setText('%s selected? %s' % (text, state))

Note This example doesn’t use the selected parameter of the ICheckBox constructor, so each of the check boxes
starts with the state as deselected.

Radio Buttons

One of the differences between check boxes and radio buttons is that radio buttons are most useful when they are
grouped. This allows one, and only one, radio button in the group to be selected at a time. Take a look at the previous
example again; this time, however, it uses radio buttons instead of check boxes.

Figure 8-3 shows sample output of this simple application, which is now using radio buttons instead of check boxes.

) Yes (J No) Maybe) Yes (® No () Maybe) Yes () No @™ Maybe

Nothing selected Selection: No Selection: Maybe

Figure 8-3. Sample output for radio buttons

101

CHAPTER 8 © SELECTABLE INPUT COMPONENTS

Listing 8-3 shows the RadioButtons class that generates the output shown in Figure 8-3. What, if anything, do you
notice about this class? Take a few moments to compare it to the CheckBoxes class in Listing 8-2. You should find very
few differences between these two classes.

Listing 8-3. RadioButtons Class

9|class RadioButtons(java.lang.Runnable) :
10| def addRB(self, pane, bg, text) :

11| bg.add(

12| pane.add(

13| JRadioButton(

14| text,

15| itemStateChanged = self.toggle
16|)

17|)

18])

19| def run(self) :

20| frame = JFrame(

21| 'Radio Buttons',

22| layout = FlowlLayout(),

23] size = (250, 100),

24| defaultCloseOperation = JFrame.EXIT_ON_CLOSE
25|)

26| cp = frame.getContentPane()

27| bg = ButtonGroup()

28] self.addRB(cp, bg, 'Yes')

29| self.addRB(cp, bg, 'No')

30| self.addRB(cp, bg, 'Maybe')

31| self.label = frame.add(JLabel('Nothing selected'))
32| frame.setVisible(1)

33| def toggle(self, event) :

34| text = event.getItem().getText()

35| self.label.setText('Selection: ' + text)

As mentioned earlier, you also need a ButtonGroup® to indicate the collection to which the new JRadioButton’
object should be added. This ButtonGroup is created on line 27 and passed to the addRB() method on lines 28-30. So
that shouldn’t be too much of a surprise. Were you surprised that with one statement—in lines 11-18—you can:

e (Create aradio button (line 13)

e Specify the associated text (line 14)

e Specify the ActionListener (i.e., itemStateChanged) event handler (line 15)
e Add the ActionListener to the specified pane (line 12)

e Add the ActionListener to the specified button group (line 11)

I found this quite nice, and I appreciate how easy it is to understand the code required to do this. Granted, the
example isn’t perfect, but it is very easy to replace an application component with a closely related one.

*Seehttp://docs.oracle.com/javase/8/docs/api/javax/swing/ButtonGroup.html.
’See http://docs.oracle.com/javase/8/docs/api/javax/swing/IRadioButton.html.

102

http://docs.oracle.com/javase/7/docs/api/javax/swing/ButtonGroup.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/JRadioButton.html

CHAPTER 8 © SELECTABLE INPUT COMPONENTS

Toggle Buttons in a Button Group

In the first part of this chapter I mentioned how the radio buttons of my parents’ car were similar to toggle buttons.
Thinking of this made me wonder how difficult it would be to simulate this feature in a script. All you need to do is
place a bunch of toggle buttons in a button group, right? Well, that’s pretty much the case. There are a few extra things
that you need to do (initialize one of the buttons as selected and display the correct message), but that’s pretty much
it. Figure 8-4 shows the sample output for this application.

Selection: 1 Selection: 5

Figure 8-4. A group of toggle buttons

What does it take to do this? Not much. In fact I think that you'll agree that Listing 8-4 looks very similar to
Listing 8-3, where you used a button group to identify a group of radio buttons.
Listing 8-4. ButtonGroupDemo

class ButtonGroupDemo(java.lang.Runnable) :
def addRB(self, pane, bg, text) :

bg.add(
pane.add(
JToggleButton(
text,
selected = (text == '1'),
itemStateChanged = self.toggle
)
)

)
def run(self) :
frame = JFrame(
'ToggleButton Group',
layout = Flowlayout(),
size = (265, 100),
defaultCloseOperation = JFrame.EXIT_ON_CLOSE

)
cp = frame.getContentPane()
bg = ButtonGroup()

for i in range(1, 6) :
self.addRB(cp, bg, i)
self.label = frame.add(JLabel('Selection: 1'))
frame.setVisible(1)
def toggle(self, event) :
text = event.getItem().getText()
self.label.setText('Selection: ' + text)

103

CHAPTER 8 © SELECTABLE INPUT COMPONENTS

Here’s a question for you. Do toggle buttons in a button group act any differently than those that aren’tin a
button group? The answer is yes they do. Once a toggle button within a button group is selected, it can’t be deselected.
In fact, this is the same behavior shown when radio buttons are used. Initially, you can have all of the radio buttons
(or toggle buttons) in a button group deselected, but once one has been selected, one will always be selected.?

Summary

This chapter, even though it is fairly short, discusses and describes selectable input components. One of the
interesting things that I found while investigating these components was the fact that all the selectable classes are
based on the JToggleButton class. This is what led me to investigate using multiple toggle buttons within a button
group. I hope that you find these an interesting addition to your collection of user interface components.

8Unless, of course, you have something like an event handler deselect everything in the group.

104

CHAPTER 9

Providing Choices, Making Lists

You are likely to encounter situations where it would be nice to provide your users with a list of choices. For example,
you've probably selected the name of the city where you live from a list. Maybe you want to build an application to
keep track of the books or movies that you own. Fortunately, Swing provides the JList' component, which allows
programmers to build and display lists of this sort. In this chapter, you learn how to build and display a list of items.
You will also learn how to manipulate a list in the event handler method associated with another component, such as
a button.

Making a List and Checking It Twice

How hard is it to make a list? Not very. Listing 9-1 shows how little code is required to create a list using a group of
words from a string. Another version of this script, called List1a.py, is provided that shows you how to build a JList
using a java.util.Vector.

Listing 9-1. The List1 Class

class List1(java.lang.Runnable) :
def run(self) :
frame = JFrame(
'List1',
size = (250, 200),
defaultCloseOperation = JFrame.EXIT_ON_CLOSE
)
data = 'Now is the time for all good spam'.split(' ')
frame.add(JList(data))
frame.setVisible(1)

What can you do with a default JList? Figure 9-1 shows that you can select one or more items on this list with no
additional code; you simply need to press the Ctrl key while additional items are selected.

'See http://docs.oracle.com/javase/8/docs/api/javax/swing/JList.html.

105

http://docs.oracle.com/javase/8/docs/api/javax/swing/JList.html

CHAPTER 9 © PROVIDING CHOICES, MAKING LISTS

Figure 9-1. Listl’s sample output

Wow, that was easy, right? You're all done and can move on to the next topic, right? Not quite. There are lots
of things that you need to consider when your applications deal with lists. For example, the last image shows one
problem that occurs when the size of the frame isn’t large enough to show all of the entries in the list. There is no
indication that additional items exist. Even worse, if you use the cursor down arrow to move the selection down the
list, you can select items that are not visible to the user. What can you do about that?

Optional Scroll Bars

If your list has a limited (small) number of items (such as the days of the week), you might want to use something like
a JComboBox? instead of a JList. Frequently, however, the number of items on the list won't easily fit in the application
window. When this happens, you only need to wrap the JList instance within a JScrol1lPane.® This is so easy to do
that it is hard to imagine why you wouldn’t want to always put your JList instance in a scroll pane. Listing 9-2 shows
just how easy this can be. Compare line 15 to line 14 in Listing 9-1.

Listing 9-2. Wrapping a JList in a Scroll Pane

7|class List2(java.lang.Runnable) :
8| def run(self) :

9] frame = JFrame(

10| "List2',

2As discussed in section 7.2.
3See http://docs.oracle.com/javase/8/docs/api/javax/swing/JIScrollPane.html.

106

http://docs.oracle.com/javase/8/docs/api/javax/swing/JScrollPane.html

CHAPTER 9 © PROVIDING CHOICES, MAKING LISTS

11| size = (250, 100),

12| defaultCloseOperation = JFrame.EXIT ON_CLOSE

13|)

14| data = 'Now is the time for all good spam'.split(' ')
15| frame.add(JScrollPane(JList(data)))

16| frame.setVisible(1)

What does this do to the application? Well, if the list contains more items than can be displayed in the available
area, vertical and/or horizontal scroll bars will be added, as needed, to allow the users to determine which parts of the
available information they want to view. Figure 9-2 shows the output of the List2 application. It has space for fewer
lines and therefore requires a vertical scrollbar.* Once the size of the frame is large enough to display the complete list,
the vertical scrollbar automatically disappears.

Figure 9-2. List2’s sample output

The ScrollPane Viewport

The JScrollPane Javadoc includes a diagram that shows the relationship between the Scrol1lPane instance and the
child component contained in it. One of the important concepts to note is that a JViewport® is created to determine
the portion of the child component to be displayed.

Tip If you are interested in learning more about scroll panes, viewports, and scroll bars, | encourage you to take a
look at the “How to Use Scroll Panes”® portion of the Java Swing Tutorials. This book doesn’t delve into more detail about
viewports, but they do show up in Chapter 12, where tables are discussed in detail.

“In case you are wondering, I simply held the Ctrl key and selected the odd list entries to produce these images.
See http://docs.oracle.com/javase/8/docs/api/javax/swing/IViewport.html.
See http://docs.oracle.com/javase/tutorial/uiswing/components/scrollpane.html.

107

http://docs.oracle.com/javase/8/docs/api/javax/swing/JViewport.html
http://docs.oracle.com/javase/tutorial/uiswing/components/scrollpane.html

CHAPTER 9 © PROVIDING CHOICES, MAKING LISTS

Manipulating the List

You will frequently need your applications to manipulate a list in some way. For example, you may want to add,
remove, or replace items on a list. To do this, you need to use the interface provided by the list model. What's a list
model? It is the component that actually contains the list contents and provides methods that allow your applications
to manipulate the list. If one is not passed to the JList constructor, a DefaultListModel’ will be created to for you.? You
previously saw this separation of the component and its data in Chapter 7, which discussed the SpinnerModel class.

Counting List Items

Let’s take a quick look at how a list model can be used to count the number of times a specific value occurs on the list.
Figure 9-3 shows some sample output for the List3 application. The first image (from the left) shows the initial look of
the application. The second image shows what the application looks like after you enter some text into the input field
(i.e., “the”) and click the Count button. Note how the input field is cleared and the message portion of the application
is updated to reflect the number of occurrences of the specified word.

Count

ccurance count “the" occurs 2 time(s)

"men" occurs 0 time(s)

Figure 9-3. List3’s sample output

Listings 9-3 and 9-4 show the List3 class produces the output shown in Figure 9-3. Lines 21-25 show how the list
of words is created, again using a simple array of strings. Lines 26-32 show how the list is wrapped in a scroll pane and
added to the top of the application window using the BorderLayout.NORTH position constant.

Listing 9-3. List3’s run() Method

13|class List3(java.lang.Runnable) :
14| def run(self) :

15| frame = JFrame(

16| 'List3',

17| size = (200, 200),

18] layout = Borderlayout(),

19| defaultCloseOperation = JFrame.EXIT_ON_CLOSE
20|)

"See http://docs.oracle.com/javase/8/docs/api/javax/swing/DefaultListModel.html.
8This book discusses the use of the DefaultListModel, not the AbstractListModel, the ListModel, or the more interesting
SortedListModel class discussed at http://java.sun.com/developer/technicalArticles/J2SE/Desktop/sorted_jlist/

108

http://docs.oracle.com/javase/8/docs/api/javax/swing/DefaultListModel.html
http://java.sun.com/developer/technicalArticles/J2SE/Desktop/sorted_jlist/

21|
22|
23|
24|
25|
26|
27|
28|
29|
30|
31|
32|
33]
34|
35|
36|
37|
38|
39]
40|
41|
42|
43|
44|

data = (
'Now is the time for all good spam ' +
"to come to the aid of their eggs'
Y.split(" ')
self.info = JList(data)
frame.add(
JScrollPane(
self.info,
preferredSize = (200, 110)

)s
BorderLayout.NORTH

)
panel = JPanel(layout = GridLayout(0, 2))
panel.add(
JButton(
'Count’,
actionPerformed = self.count
)
)
self.text = panel.add(JTextField(10))
frame.add(panel, BorderLayout.CENTER)
self.msg = JlLabel('Occurance count')
frame.add(self.msg, BorderLayout.SOUTH)
frame.setVisible(1)

CHAPTER 9 © PROVIDING CHOICES, MAKING LISTS

The middle portion of the application, containing the Count button and text input fields, is created and

positioned on the application window in lines 33-41. Finally, the status message (a label field) is created and placed
on the bottom of the application window in lines 42 and 43.

Listing 9-4 shows the count () method, which is identified as the button’s actionListener event handler, on

line 37 in Listing 9-3, when the button is created. It is here that you need to use the list model to count the number of
times a specified value occurs in the associated list.’

Listing 9-4. List3’s count() Method

45]
46|
47|
48|
49|
50|
51|
52|
53|
54|
55|
56|

def count(self, event) :

word = self.text.getText()
model = self.info.getModel()
occurs = 0
for index in range(model.getSize()) :

if model.getElementAt(index) == word :

occurs += 1
self.msg.setText(
""%s" occurs %d time(s)' %
(word, occurs)

)

self.text.setText("')

°You wouldn’t want to use this technique on an unbounded list. And, if your list was large, you would want the list model processing

to be performed on a separate thread (i.e., by a SwingWorker class instance).

109

CHAPTER 9 © PROVIDING CHOICES, MAKING LISTS

Limiting the Selectable Items

Other list-manipulation actions include adding and removing items to and from the list. Before you take a look at what
these operations require, think about it for a moment. When you want to add an item to the list, where do you want to
add it? Should it be added to the beginning of the list, at the end, or somewhere in the middle? You also might need to
consider if multiple occurrences of a value should be allowed on the list.

Do you want to allow multiple items to be selected? This might make sense if you want to allow the users to
remove multiple items with a single button click, but this might not always make sense. For example, if you want to
allow the users to select an item on the list, and then allow a new item to be added, either before or after the selected
item, then it doesn’t make sense to allow multiple items to be selected at one time.

Earlier, you saw that the default list properties allow you to select multiple list items. How do you disable this?
The JList class includes a selection mode attribute that can define the number of list items that can be selected.
Table 9-1 describes the list selection mode values.

Table 9-1. List Selection Mode Examples

Selection Mode Description
SINGLE_SELECTION Either zero or one item may be selected.
[Now [~]
is =
the
time
for I
e v
SINGLE_INTERVAL_SELECTION Only one contiguous group of items may be selected.
Now =1
is =
the
ime
for I
e v
MULTIPLE_INTERVAL_SELECTION The default mode allows multiple groups of items to be selected.
time i
for =
all E
good
Spam =

110

CHAPTER 9 © PROVIDING CHOICES, MAKING LISTS

In Java applications, you would normally use the JList setSelectionMode () method to identify the mode to
be used. In Jython, you can use this method call or you can use the selectionMode keyword argument when you
create the JList object. Listing 9-5 shows an example of how easily this can be done using the constructor keyword
argument

Listing 9-5. Using the List Selection Mode Keyword Argument

1261 self.info = JList(|
1271 data, |
1281 selectionMode = ListSelectionModel.SINGLE_SELECTION |
129]) 1

Reacting to List-Selection Events

Can you think of a reason that your application needs to know when an item on a list has been selected? What kinds of
things might you want to do with the selected item? You might want to remove it, modify it, or insert a new item before
or after the selected item. You might also want to initiate some more complex operation based on the user selection.
It’s all up to you.

If no item is selected, what kinds of things might you want to be able to do? What about adding items to the list?
Where might you be able to add an item if you have to reference it (a selected item)? What about adding a new item
first or last on the list? Those options make sense, don’t they?

The reason I'm asking these questions is to help you think about things that you might want to consider as you
are creating your own applications.

Do list selection events exist to be monitored? Sure. The challenge is trying to figure out what you want to do
when a list selection event occurs. What do you want to happen when the users select a list item? It depends on what
your application looks like and what it does.

What if you partition the application output to have the scrollable list and a text input field on top and some
buttons below? Figure 9-4 shows one way to do this.

y N
&) Lis... e (S IS
Now ==
is 1=
the
time
for =

First
Last Before
After Remove

Figure 9-4. List4’s sample output

111

CHAPTER 9 © PROVIDING CHOICES, MAKING LISTS

Listing 9-6 shows how easily this can be done using Jython. To partition the application window, the frame uses a
BorderlLayout, with the scrollable pane containing the list instance positioned using the BorderLayout.NORTH constant
(line 35), and another pane that uses a GridLayout to position the text field and buttons within it (lines 37-43). Then,
this pane is positioned on the application frame using the BorderLayout . SOUTH constant (line 44).

Listing 9-6. List4’s Class

14|class List4(java.lang.Runnable) :
15| def run(self) :

16| frame = JFrame(

17| "List4',

18| size = (200, 222),

19| layout = BorderlLayout(),

20| defaultCloseOperation = JFrame.EXIT_ON_CLOSE
21|)

22| data = (

23| 'Now is the time for all good spam ' +
24| "to come to the aid of their eggs'

25| Y.split(" ')

26| self.info = JList(

27| data,

28| selectionMode = ListSelectionModel.SINGLE_SELECTION
29)

30| frame.add(

31| JScrollPane(

32| self.info,

33| preferredSize = (200, 100)

34|)5

35| BorderLayout.NORTH

36/)

37| panel = JPanel(layout = GridLayout(0, 2))
38| self.text = panel.add(JTextField(10))

39| panel.add(self.button('First'))

40| panel.add(self.button('Last'))

41| panel.add(self.button('Before'))

42| panel.add(self.button('After'))

43| panel.add(self.button('Remove'))

44| frame.add(panel, BorderLayout.SOUTH)

45| frame.setVisible(1)

46| def button(self, text) :

47| return JButton(text, actionPerformed = self.insert)
48| def insert(self, event) :

49| todo = event.getActionCommand()

50| word = self.text.getText()

51| print '%s: "%s"' % (todo, word)

Now that you have an idea how the application will look, you might be able to figure out what you want to happen
when a list item is selected. You can also think about changing the appearance of the application if you don't like the
way it looks. What if you had the buttons and text field on the left and the list of items on the right? What would that
look like? It takes very little time and effort to figure this out. Figure 9-5 shows the result of making these changes.

112

CHAPTER 9 © PROVIDING CHOICES, MAKING LISTS

Remove

Figure 9-5. List5’s sample output

Looking at Listing 9-7, you can see how few changes were needed to produce this output. Additionally, you now
have an event handler that is called when a list selection operation has occurred (lines 35 and 51-54).

This method currently only produces output on the console, but it provides you with information about when a
selection event occurs, as well as informs you that you can use the available information to determine whether a list
item has been selected. You can do this by looking at the Javadoc for the ListSelectionListener class!® and verifying
that you only need to identify the valueChanged() method (see line 35).

Listing 9-7. List5's Class Reacting to List Selection Events

13|class List5(java.lang.Runnable) :
14| def run(self) :

15| frame = JFrame(

16| "Lists',

17| size = (200, 220),

18| layout = GridLayout(1, 2),

19| defaultCloseOperation = JFrame.EXIT_ON_CLOSE
20|)

21| panel = JPanel(layout = GridLayout(0, 1))
22| panel.add(self.button('Remove'))

23| panel.add(self.button('First'))

24| panel.add(self.button('Last'))

25| panel.add(self.button('Before'))

26| panel.add(self.button('After'))

27| self.text = panel.add(JTextField(10))

28] frame.add(panel)

29| data = (

30| 'Now is the time for all good spam ' +
31| "to come to the aid of their eggs'

32|).split(" ')

33| self.info = JList(

34| data,

%Seehttp://docs.oracle.com/javase/8/docs/api/javax/swing/event/ListSelectionListener.html.

113

http://docs.oracle.com/javase/8/docs/api/javax/swing/event/ListSelectionListener.html

CHAPTER 9 © PROVIDING CHOICES, MAKING LISTS

35| valueChanged = self.selection,

36| selectionMode = ListSelectionModel.SINGLE SELECTION
37|)

38| frame.add(

39| JScrollPane(

40| self.info,

41| preferredSize = (200, 100)

42|)

43|)

44| frame.setVisible(1)

45| def button(self, text) :

46 | return JButton(text, actionPerformed = self.insert)
47| def insert(self, event) :

48| todo = event.getActionCommand()

49| word = self.text.getText()

50| print '%s: "%s"' % (todo, word)

51| def selection(self, e) :

52| index = e.getSource().getSelectedIndex()

53| if not e.getValueIsAdjusting() :

54| print 'selected %d' % index

Reacting to User (Text) Input

All right, you've given some thought as to how you want the application to look and decided that you want to do
something when a list item is selected. What do you want to happen next? Wouldn't it be neat to have the application’s
buttons be enabled or disabled based on the user input? For example, it makes sense to enable the Remove button
when a list item is selected. What about the other buttons? When do you want them to be enabled? What if you only
enable the buttons related to list insertion when the user specifies some text in the text input field?

The InputMethodListener class' looks easy to use, right? But will it solve the problem at hand? Unfortunately, it
is not going to work in this scenario. The List6.py script contains an attempt to add an InputMethodListener event
handler.’? Unfortunately, when you try to execute this script you get an AttributeError exception. Why? Because the
addInputMethodListener() method is provided by the javax.swing.text.JTextComponent class, not the Runnable
or InputMethodListener classes.

Listing 9-8. List6.py Script Interesting Lines

15|from java.awt.event import InputMethodlListener
16|class List6(java.lang.Runnable, InputMethodlListener) :

| cee
29| self.addInputMethodListener(self)

| .
69| def caretPositionChanged(self, e) :

70| print 'caretPositionChanged() :', e
71| def inputMethodTextChanged(self, e) :
72| print 'inputMethodTextChanged() :', e

'See http://docs.oracle.com/javase/8/docs/api/java/awt/event/InputMethodListener.html.
12Please note that the line in List6.py that corresponds to line 29 in Listing 9-8 is commented out. To see the exception you need to
remove the “#” in column one of that statement before executing the script.

114

http://docs.oracle.com/javase/8/docs/api/java/awt/event/InputMethodListener.html

CHAPTER 9 © PROVIDING CHOICES, MAKING LISTS

Listing 9-8 shows how easy it is to make these kinds of changes. Why do I encourage you to look at failures? Well,
there are a few very important reasons to do so:

e To try new things
e Tolearn how to fail gracefully
e Tolearn from your mistakes

It only takes a few moments to search for AWT and Swing methods related to events that might be called when
the users enter text. It only required you to insert or modify seven lines of code. Was this a huge investment of time
and effort? No, and what you learned was priceless.

Is there another way to use an InputMethodListener? Certainly, you can create a class to implement the
InputMethodListener interface and see if that works. The List6a.py script contains this attempt. Listing 9-9 shows
the modified lines from List6.py to demonstrate this iteration.

Listing 9-9. List6a.py Script, Unique Lines Only

15|from java.awt.event import InputMethodlListener
16|class IML(InputMethodListener) :
17| def caretPositionChanged(self, e) :

18| print 'caretPositionChanged() :', e
19| def inputMethodTextChanged(self, e) :
20| print 'inputMethodTextChanged() :', e

21|class Listéa(java.lang.Runnable) :

| ces
33| self.text = panel.add(JTextField(10))
34| self.text.addInputMethodListener(IML())

Unfortunately, if you test this script, you will see that modifying the input field does not generate any output.
Additional research shows that another approach might be more viable. For this iteration, you see what you need to
use a DocumentListener instead of an InputMethodListener. This example is found in List6b.py; the modified lines
are shown in Listing 9-10.

Listing 9-10. List6b.py Script, Unique Lines Only

15|from javax.swing.event import DocumentListener
16|class DL(DocumentListener) :
17| def changedUpdate(self, e) :

18| print 'changedUpdate() :', e
19| def insertUpdate(self, e) :
20| print 'insertUpdate() :', e
21| def removeUpdate(self, e) :
22| print 'removeUpdate() :', e

23| class Listéb(java.lang.Runnable) :

|
35| self.text = panel.add(JTextField(10))
36| self.text.getDocument().addDocumentListener(DL())

115

CHAPTER 9 © PROVIDING CHOICES, MAKING LISTS

It is interesting to note that in order to have a DocumentListener for the input field, you can use the
getDocument () method of the JTextField class to identify the actual Document object that is associated with this
input field. If you test this iteration, as shown in Figure 9-6, you can see that events are being generated and the
corresponding DocumentListener methods are being called. The particular events were the result of typing a
character and then using the Backspace key to delete it from the input field.

This approach might not be the best way to monitor changes to an input field, especially with something simple
like the JTextField, which is used in these examples. Fortunately, there is another approach that you can investigate.

insertUpdate() : [Jjavax.swing.text.GapContent$InsertUndo@...]
removeUpdate () : [javax.swing.text.GapContent$RemoveUndol...]

Figure 9-6. List6b’s DocumentListener sample output

For this example, you are going to look at what happens when you add a listener to the input field for KeyListener
events."

text: "b"
text: "ba"
text: "bac"

text: "baco"
text: "bacon"

Figure 9-7 shows that you can monitor the text input field using a KeyListener keyReleased() method call.
Listings 9-11 and 9-12 show the List7 class used to produce this output.

text: "b"
text: "ba"
text: "bac"
text: "baco"
text: "bacon"

Figure 9-7. List7’s sample output

Listing 9-11. List7’s run() Method

16|class List7(java.lang.Runnable, KeylListener) :
17| def run(self) :

18] frame = JFrame(

19| "List7',

20| size = (200, 220),

21| layout = GridLayout(1, 2),

22| defaultCloseOperation = JFrame.EXIT ON_CLOSE
23|)

BSee http://docs.oracle.com/javase/8/docs/api/java/awt/event/KeyListener.html.

116

http://docs.oracle.com/javase/8/docs/api/java/awt/event/KeyListener.html

24|
25|
26|
27|
28|
29|
30|
31|
32|
33|
34|
35|
36|
37|
38|
39|
40|
41|
42|
43|
44|
45|
46|
47|
48|
49|
50|
51|
52|
53]

CHAPTER 9

panel = JPanel(layout = GridLayout(0, 1))
self.buttons = {}
for name in 'First,Last,Before,After,Remove’.split(',") :
self.buttons[name] = panel.add(self.button(name))
self.text = panel.add(
JTextField(
10,
keyReleased = self.typed
)

frame.add(panel)
data = (
'Now is the time for all good spam ' +
"to come to the aid of their eggs'
Y.split(" ')
model = DefaultlListModel()
for word in data :
model.addElement(word)
self.info = JList(
model,
valueChanged = self.selection,
selectionMode = ListSelectionModel.SINGLE SELECTION

)
frame.add(
JScrollPane(
self.info,
preferredSize = (200, 100)
)
)

frame.setVisible(1)

Listing 9-12. The Remaining List7 Class Methods

54
55]
56
57]
58]
59]
60|
61|
62|
63|
64|
65|
66|
67|
68|
69|
70|

def

def

def

button(self, text) :
return JButton(
text,
enabled = 0,
actionPerformed = self.doit
)
doit(self, event) :
todo = event.getActionCommand()

word = self.text.getText().strip()

List = self.info

pos = List.getSelectedIndex()

print '%s: "%s" pos: %d' % (todo, word, pos)

if todo == 'Remove' :
List.getModel().remove(pos)
self.buttons[todo].setEnabled(0)

selection(self, e) :

if e.getValueIsAdjusting() :

PROVIDING CHOICES, MAKING LISTS

Listing 9-11 shows the run() method and Listing 9-12 shows the rest of the methods from this class.

117

CHAPTER 9 © PROVIDING CHOICES, MAKING LISTS

71| si = e.getSource().getSelectedIndex()

72| self.buttons['Remove'].setEnabled(si > -1)
73] def typed(self, e) :

74| print "text: "%s"' % self.text.getText().strip()

Figure 9-8 shows the progress in the application output using the next iteration of the script. This one is found in
the List8.py script file. You can see which buttons are enabled before any text is entered, after some text is entered,
after a single item is selected, and finally after a button is used to insert the new word on the list.

-
BT e) (e e
First Now =i First Now =
is is
Last the Last the
Before -— Before -
for for
After all — After all =
good good
Remove spam Remove spam
| to i1l | |pacon| to =
Lo Fa¥alsalu
E 3 -

] s..

- qooa =
First spam —]
Last fo
come
Before to — Before
the
After
aid L
Remove [of Remove
their
bacon as =
N E 3 —

Figure 9-8. List8’s sample output

You can look at the iterations of the application and see how small changes have been made with each. Finally,
you get to the final iteration, which is found in the List10. py script file. This version includes the small improvement
of putting the removed item text in the text input field. This allows you to do:

1. Select a the first item.
2. Click the Remove button (thus putting the item value into text field).
3. Click the Last button to move the first item to the end of the list.

118

CHAPTER 9 © PROVIDING CHOICES, MAKING LISTS

Listing 9-13 contains the List10 class methods that allow your application to do these things. The run() method
is not included because it’s almost identical to the run() method found in Listing 9-11. The List10 class does,
however, include some interesting properties. You might not agree that these are advantages. Specifically, List10
takes advantage of the named keyword arguments to use the textCheck() method as:

e AKeylistener keyReleased() method
e AlistSelectionListener valueChanged() method
e Asimple textCheck() class
Java purists may take offense at this flexibility. However, I think that most Jython programmers can see the value
provided by the use of keyword argument lists in this type of application.
Listing 9-13. Remaining List10 Methods
57| def doit(self, event) :

58| todo = event.getActionCommand()

59| word = self.text.getText().strip()

60| List = self.lList

61| pos = List.getSelectedIndex()

62| model = List.getModel()

63| if todo == 'Remove' :

64| self.text.setText(List.getSelectedValue())
65| model.remove(pos)

66| else :

67| if todo == 'First' :

68| model.insertElementAt(word, 0)

69| elif todo == 'last' :

70| model.insertElementAt(word, model.getSize())
71| elif todo == 'Before' :

72| model.insertElementAt(word, pos)

73] else :

74| model.insertElementAt(word, pos + 1)
75| self.text.setText("')

76| self.textCheck()

77| def textCheck(self, e = None) :

78| word = self.text.getText().strip()

79| index = self.List.getSelectedIndex()

80| for name in 'First,last'.split(',') :

81| self.buttons[name].setEnabled(len(word) > 0)
82| for name in 'Before,After'.split(',') :

83| self.buttons[name].setEnabled(

84| len(word) > 0 and index > -1

85|)

86| self.buttons['Remove'].setEnabled(index > -1)

One of the most impressive things about this example is that it demonstrates how easy it is to quickly produce
applications. Being able to produce a rapid prototype is enormously valuable to programmers because they can then
easily manipulate and interact with the application and decide what they like and dislike about the way it looks, as
well as the way it responds to user input.

119

CHAPTER 9 © PROVIDING CHOICES, MAKING LISTS

Summary

This chapter covered how to display and manipulate lists of items with an emphasis on iterating the application

to test various representations of components on the frame as well as using a variety of listeners to improve your

understanding of how each might or might not enhance the usability of the application. You saw just how quickly and

easily a script can be modified to test a new approach so that you can discard those that don’t fit your specific needs.
Note: One point that this chapter didn’t cover was the fact that once modifications have been made to the list of

values, the application should retrieve the current list’s contents using the ListModel methods.

120

CHAPTER 10

Menus and Menultems

Menus are one of the most common input mechanisms that applications use. When was the last time that you worked
with a graphical application that didn’t include some sort of menu structure and hierarchy?

The main reason for creating and using menus in your applications is that it conveys to the users some of the
actions that they can perform with the application. So this is all about setting expectations and communicating at
least some of the things that the applications can do.

This chapter shows how easily you can add a menu to your applications and how to make your applications react
when the user selects a menu item.

The JMenu Class Hierarchy

You may not realize it, but menus are a kind of button. This makes a lot of sense when you think about what happens
when you click a button and when you click on a menu item. Each causes some kind of event that needs an event
handler to perform the desired action. There are differences, though. If there weren’t, you wouldn’t need another
class. Take a moment to think about it. How would you describe a menu? I think that you'll agree that they are almost
always a collection of individual words that convey information to the users. Each word or menu entry can be selected
and then displays a related sub-menu or performs some kind of response. A button, on the other hand, is almost
always used to initiate some kind of action or elicit a specific response.

You can see how menus and buttons are similar by looking at the JMenu class' Javadoc or by using the classInfo
routine first mentioned in Chapter 4. The classInfo hierarchy for the JMenu class is shown in Listing 10-1.

Listing 10-1. JMenu Class Hierarchy

wsadmin>classInfo(IMenu)
javax.swing.JMenu
| javax.swing.IMenuItem
| javax.swing.AbstractButton
| | javax.swing.JComponent
| | java.awt.Container
| | java.awt.Component
| | java.lang.Object
| | java.awt.image.ImageObserver
| | java.awt.MenuContainer
| | java.io.Serializable
java.io.Serializable
ava.awt.ItemSelectable

|
|
|
|
[
J

'See http://docs.oracle.com/javase/8/docs/api/javax/swing/IMenu.html.

121

http://docs.oracle.com/javase/8/docs/api/javax/swing/JMenu.html

CHAPTER 10 © MENUS AND MENUITEMS

| | | javax.swing.SwingConstants

| | javax.accessibility.Accessible
| | javax.swing.MenuElement

| javax.accessibility.Accessible

| javax.swing.MenuElement

wsadmin>

Unlike regular buttons, or even toggle buttons, the result of activating a menu is to cause the associated list of
items to be displayed. So how do you add a JMenu to the application? Since you are using a JFrame for almost all of
your applications, let’s take another quick look at the JFrame hierarchy, with a focus on the methods that contain the
text “menubar”.

Listing 10-2 shows this hierarchy. One important point to note is that the javax.swing.JFrame class has
JMenuBar getters and setters, and the java.awt.Frame class has MenuBar getters and setters.?

Listing 10-2. JFrame MenuBar Methods

wsadmin>classInfo(JFrame, meth = 'menubar')
javax.swing.JFrame
getIMenuBar, setJMenuBar
java.awt.Frame

getMenuBar, setMenuBar
| java.awt.Window
| java.awt.Container
| | java.awt.Component
| | | java.lang.Object
| | | java.awt.image.ImageObserver
| | | java.awt.MenuContainer
| | | java.io.Serializable
| javax.accessibility.Accessible
| java.awt.MenuContainer
javax.swing.WindowConstants
javax.accessibility.Accessible
javax.swing.RootPaneContainer
wsadmin>

I
>
I
||
||
||
||
||
||
||
I

I

I

I

What does this mean? For one, it means you need to be careful. Listing 10-3 shows what I'm talking about. Since
there are getters and setters for JMenuBars as well as MenuBars, you need to be certain that you remember to include
the J, or you'll get an exception like the one shown in lines 12 and 13.

Listing 10-3. Adding a MenuBar to the JFrame

1|wsadmin>from javax.swing import JFrame, IMenuBar, IMenu
2|wsadmin>

3|wsadmin>f = JFrame('Frame Title')

4|wsadmin>b = IMenuBar()

5|wsadmin>m = b.add(IMenu('Help'))
6|wsadmin>f.setMenuBar(m)

7|WASX7015E: Exception running command: "f.setMenuBar(m)";
8| exception information:

*The Swing JMenuBar methods are used exclusively in this book.

122

CHAPTER 10 © MENUS AND MENUITEMS

9| com.ibm.bsf.BSFException: exception from Jython:
10| Traceback (innermost last):

11| File "<input>", line 1, in ?

12| TypeError: setMenuBar(): 1st arg can't be coerced to
13| java.awt.MenuBar

14|wsadmin>

Let’s take a quick look at how you can create an empty, yet colorful, menu bar so that you can more easily identify
where it’s placed. Figure 10-1 shows where the blue JMenuBar is positioned on the JFrame content pane. By selecting a
colorful background, you don’t have to add any items to the menu to see where it.

Figure 10-1. Menul sample output with a blue JIMenuBar

Listing 10-4 shows how easily you can do this.

Note You have to identify the preferred JMenuBar size (line 17), since it contains no JMenu entries. Otherwise no
space would be allocated for the menu and it wouldn’t be visible.

Listing 10-4. The Menu1 Class Using Color to Show an Empty JMenuBar

7|class Menui(java.lang.Runnable) :
8| def run(self) :

9| frame = JFrame(

10| 'Menu1',

11| size = (200, 125),

12| defaultCloseOperation = JFrame.EXIT_ON_CLOSE
13|)

14| frame.setIMenuBar (

15| IMenuBax(

16| background = Color.blue,
17| preferredSize = (200, 25)
18])

19)

20| frame.setVisible(1)

How will the application look with a couple of menu entries? Let’s see.... Since the JMenuBar has a blue
background color, let’s make the menu entries use a color that contrasts well. Figure 10-2 shows a first attempt at
doing this.

3] encourage you to comment out line 17 and test this statement yourself. Don’t forget, however, to comment out the trailing
comma on the previous line as well.

123

CHAPTER 10 © MENUS AND MENUITEMS

Figure 10-2. Menu2 sample output with a J]MenuBar and entries

That’s not quite what I expected. What happened to the white foreground color? Listing 10-5 shows the Menu2 class.

Listing 10-5. The Menu2 Class Specifying Foreground and Background Colors

9|class Menu2(java.lang.Runnable) :
10| def run(self) :

11| frame = JFrame(

12| 'Menu2',

13| size = (200, 125),

14| defaultCloseOperation = JFrame.EXIT ON_CLOSE
15|)

16| menuBar = JMenuBar(

17| background = Color.blue,

18| foreground = Color.white

19|)

20| fileMenu = JMenu('File')

21| fileMenu.add(JMenuItem('Exit'))
22| menuBar.add(fileMenu)

23| helpMenu = JMenu('Help')

24| helpMenu.add(IMenuItem('About'))
25| menuBar.add(helpMenu)

26| frame.setIMenuBar(menuBar)

27| frame.setVisible(1)

The reason the menu items don’t show up well is that you specified the foreground color for the JMenuBar, not for
the menu entries. If you specify the color of the menu items, you can see the expected contrast in colors. Figure 10-3
demonstrates this expected contrast.

Figure 10-3. Menu3 sample output with colorful JMenuBar entries

124

CHAPTER 10 © MENUS AND MENUITEMS

Listing 10-6 shows the Menu3 class being used to generate this output. It also shows you that building a hierarchy
of menu entries can make your code a bit more challenging to read.
Listing 10-6. Menu3 Class with Contrasting Menu Entries

9|class Menu3(java.lang.Runnable) :
10| def run(self) :

11| frame = JFrame(

12| 'Menu3’,

13| size = (200, 125),

14| defaultCloseOperation = JFrame.EXIT ON_CLOSE

15|)

16| menuBar = JMenuBar(background = Color.blue)

17| fileMenu = JIMenu('File', foreground = Color.white)
18| fileMenu.add(JMenuItem('Exit'))

19| menuBar.add(fileMenu)

20| helpMenu = JMenu('Help', foreground = Color.white)
21| helpMenu.add(IMenuItem('About'))

22| menuBar.add(helpMenu)

23| frame.setJMenuBar(menuBar)

24| frame.setVisible(1)

Looking closely at Listing 10-6, you can find three different kinds of menu-related objects:
e JMenuBar: Created on line 16*
e JMenu: Created on lines 17 and 20
e JMenuItem: Created on lines 18 and 21°

Looking again at Figure 10-3, you can see most of these distinct entries and you can use this to better understand
these different menu classes. You can also see how the color scheme of the selected entries differs from the ones
specified. The good news is that you don’t have to describe this new scheme because it’s already provided by the Java
Swing classes. This is another example of the Swing library making your life as a GUI developer that much easier.

Unfortunately, not everything is this easy. Here is where you might get into a little bit of potential confusion based
on names and terminology. If you ask non-programmers what the row of words across the top of an application is
called, they are likely to call it a “menu,” which makes sense.

For Swing developers, however, the row of words corresponds with the Java, or Jython, JMenuBar class instance
and the words themselves are instances of the JMenu objects. In order to minimize confusion, this book consistently
uses the Java Swing terminology. I'll call the group of words or terms the JMenuBar, whereas the individual objects are
called JMenu entries.

Asyou can see, creating the JMenuBar and the JMenu entries, as well as the corresponding JMenuItems, requires
a fair amount code. It’s common practice to have a method that is responsible for the creating menu bars and their
entries and items. This method makes your application constructor (or run() method) simpler, and therefore easier to
read, understand, and maintain.

See http://docs.oracle.com/javase/8/docs/api/javax/swing/IMenuBar.html.
See http://docs.oracle.com/javase/8/docs/api/javax/swing/IMenultem.html.

125

http://docs.oracle.com/javase/8/docs/api/javax/swing/JMenuBar.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/JMenuItem.html

CHAPTER 10 © MENUS AND MENUITEMS

Reacting to Menu-Related Events

One of the nice things about menu items being a kind of abstract button is that you already know how to tell
the “button” what to do when it is pressed. You can use the verbose Java addActionListen() method call or the
actionPerformed keyword argument to identify the method to be called.

Consider this: It's common practice for Java Swing developers to have the application class descend from the
ActionListener class. This is frequently done using the syntax shown in Listing 10-7.

Listing 10-7. Java Class Implementing ActionlListener

public myClass implements ActionListener {

IMenuItem menuItem = new IMenuItem("Spam");
menuIltem.addActionListener(this);

publick void actionPerformed(ActionEvent e) {

}

Using this technique can make the actionPerformed() method more complex than it really needs to be. If every
button and menu item uses the same actionPerformed() method, this event handler needs to figure out which kind
of event was used to initiate the call to the actionPerformed() method. Listing 10-8, on the other hand, shows how
easy it can be, using Jython, to have a simple routine for each menu item action listener event handler.

Not only does this approach simplify each event handler, it also allows each method to have a name that is more
appropriate for the event being handled.

Listing 10-8. Using the actionPerformed Keyword Argument

8|class Menu4(java.lang.Runnable) :
9| def run(self) :

10| frame = JFrame(

11| "Menu4',

12| size = (200, 125),

13| defaultCloseOperation = JFrame.EXIT_ON_CLOSE
14)

15| menuBar = JMenuBar()

16| fileMenu = JMenu('File')

17| exitItem = fileMenu.add(

18] IMenuItem(

19| "Exit’,

20| actionPerformed = self.exit
21|)

22|)

23] menuBar.add(fileMenu)

24| helpMenu = JMenu('Help')

25| aboutItem = helpMenu.add(

26| IMenuItem(

27| "About "',

28| actionPerformed = self.about
29|)

30|)

126

CHAPTER 10 © MENUS AND MENUITEMS

31| menuBar.add(helpMenu)

32| frame.setIMenuBar(menuBar)
33| frame.setVisible(1)

34| def about(self, event) :

35| print 'Menu4.about()'

36| def exit(self, event) :

37| print 'Menu4.exit()’

38| sys.exit()

Granted, in Java you don’t need the ActionlListener actionPerformed() method to determine which
event caused the routine to be called. You could make each JMenuItem use an anonymous ActionlListener class
implementation. Unfortunately, this approach is much more challenging to read, use, and maintain than the Jython
technique used in the Menu4 class in Listing 10-8.

Using Radio Buttons on a Menu

Up to this point, the menu items have only included text. There are times, however, when it makes sense to use
radio buttons on a menu to identify only selection. I didn’t have to look far to find an example of this. I often use
the Notepad++ text editor, which has an Encoding menu item. The sub-menu on this entry includes five radio
button menu items that identify the encoding. There is a special class for this in the Swing hierarchy, called
JRadioButtonMenuItem.®

As you saw with radio buttons in Chapter 8, you need to be able to group all of the JRadioButtonMenuItem
instances together so that the Swing framework can enforce one selected item limitation. Fortunately, you can use the
same ButtonGroup class for the menu items that you used for radio buttons.

File] Help

® Spam
Egas

§l © Bacon
| Exit

Figure 10-4. Menu5 sample output with radio button menu items

Figure 10-4 shows the sample output of the Menu5 class, which demonstrates the use of JRadioButtonMenuItem
on the menu. In Listing 10-9, you can see most of the code needed to make this happen. The only routine thatisn’t
shown is the one that creates and returns JMenuBar.

See http://docs.oracle.com/javase/8/docs/api/javax/swing/IRadioButtonMenuItem.html.

127

http://docs.oracle.com/javase/8/docs/api/javax/swing/JRadioButtonMenuItem.html

CHAPTER 10 © MENUS AND MENUITEMS

Listing 10-9. Menu5 Class that Uses Radio Button Menu Items

10| class Menu5(java.lang.Runnable) :
11| def createMenuBar(self) :

| et
44| def run(self) :

45| frame = JFrame(

46| "'Menus ',

47| size = (200, 125),

48| defaultCloseOperation = JFrame.EXIT_ON_CLOSE
49|)

50| frame.setIMenuBar(self.createMenuBar())

51| frame.setVisible(1)

52| def spam(self, event) : print 'Menu5.spam()'
53] def eggs(self, event) : print 'Menu5.eggs()'
54| def bacon(self, event) : print 'Menu5.bacon()'
55| def about(self, event) : print 'Menu5.about()’
56| def exit(self, event) :

57| print 'Menu5.exit()'

58| sys.exit()

I think that having the menu-creation process in a method all to itself makes the remainder of the code more
understandable. Listing 10-10 shows the createMenuBar () method from this same class.

Listing 10-10 Menu5 createMenuBar () Method

11| def createMenuBar(self) :

12| menuBar = JMenuBar()

13| fileMenu = JMenu('File')

14| data = [

15| ['Spam' , self.spam 1],

16| ['Eggs' , self.eggs 1],

17| ['Bacon', self.bacon]

18]]

19| bGroup = ButtonGroup()

20| for name, handler in data :

21| rb = JRadioButtonMenuItem(

22| name,

23| actionPerformed = handler,
24| selected = (name == 'Spam')
25|)

26| bGroup.add(rb)

27| fileMenu.add(rb)

28| exitItem = fileMenu.add(

29| IMenuItem(

30] "Exit',

31| actionPerformed = self.exit
32|)

33)

34| menuBar.add(fileMenu)

35| helpMenu = JMenu('Help')

36| aboutItem = helpMenu.add(

128

CHAPTER 10 © MENUS AND MENUITEMS

37| IMenuItem(

38| "About’,

39| actionPerformed = self.about
40|)

41|)

42| menuBar.add(helpMenu)

43| return menuBar

Notice that this code (see line 24) ensures that one of the radio buttons in the group is selected. It isn’t often that
your event handlers (lines 52-58 in Listing 10-9) can actually be performed on a single line. But doing so shortens the
listing somewhat.

Using Check Boxes on a Menu

As I'm sure you've already guessed, in addition to radio button menu items, you can also create check box menu
items using the JCheckBoxMenuItem class.” Figure 10-5 shows some images of the same application using check box
menu items.

¥ Spam

¥ Eggs
i - Bacon
Exit

Figure 10-5. Menu6 sample output with check box menu items

Now you can see another advantage of using a separate method to create the menu bar. Listing 10-11 shows
only the createMenuBar () method from the Menu6 class because, other than this routine, Menu6 . py and Menus5. py
are the same.®

Listing 10-11. Menu6’s createMenuBar () Class

10| def createMenuBar(self) :

11| menuBar = JMenuBar()

12| fileMenu = IMenu('File')
13| data = [

14| ['Spam' , self.spam 1],
15| ["Eggs' , self.eggs 1,
16| ['Bacon', self.bacon]
17]

’See http://docs.oracle.com/javase/8/docs/api/javax/swing/JICheckBoxMenuItem.html.
8Except, of course, for the literal constants that contain the name of the script.

129

http://docs.oracle.com/javase/8/docs/api/javax/swing/JCheckBoxMenuItem.html

CHAPTER 10 © MENUS AND MENUITEMS

18] for name, handler in data :

19| fileMenu.add(

20| JCheckBoxMenuItem(

21| name,

22| actionPerformed = handler
23|)

24|)

25| exitItem = fileMenu.add(

26| IMenuItem(

27| "Exit',

28] actionPerformed = self.exit
29)

30|)

31| menuBar.add(fileMenu)

32| helpMenu = JMenu('Help')

33| aboutItem = helpMenu.add(

34| IMenuItem(

35| "About’,

36| actionPerformed = self.about
37)

38|

39| menuBar.add(helpMenu)

40| return menuBar

Separating Menu ltems

Occasionally, it is convenient to use a horizontal line on a menu to separate groups of items. For example,
Figure 10-6 shows how some check box menu items can be separated from one another. I think that you'll agree
that the line makes them stand out significantly.

File Encoding | View I

| I Full screen
, .
| = Word wrap

Figure 10-6. Menu7 sample output showing menu item separation

Interestingly enough, there are multiple ways that you can add such lines. Listing 10-12 shows three lines from
the createMenuBar () method from the Menu7.py file. In it, you see these techniques and how they are used. In the first
line, the familiar JMenu.add() method adds an anonymous JSeparator object.’ This is such a simple and common
operation that the JMenu class includes a method to do just this. In the second comment line, you see how the
addSeparator () method adds a separator to the end of the specified IMenu. The third line shows that the JMenu has an
insertSeparator () method that you can use to insert a separator line at a specified position of an existing menu.

°See http://docs.oracle.com/javase/8/docs/api/javax/swing/JSeparator.html.

130

http://docs.oracle.com/javase/8/docs/api/javax/swing/JSeparator.html

CHAPTER 10 © MENUS AND MENUITEMS

Listing 10-12. Menu7 JSeparator() and addSeparator()

viewMenu.add(JSeparator()) # Using IMenu.add()
viewMenu.addSeparator() # Using addSeparator()
viewMenu.insertSeparator(1) # Using insertSeparator()

Menu Mnemonics and Accelerators

If you look closely at the JMenuItem constructors, you may notice that one includes something called a keyboard
mnemonic.”® What is this all about? Well, it lets you specify a key that can be used to select the associated menu item
when the menu is visible. To better understand this idea, you'll add a mnemonic to the same menu that you saw
earlier. Figure 10-7 shows the Exit menu with an underscore under the letter “x.” This indicates that the user can select
this entry by pressing the “x” key.

) Encoding in ANSI File Encoding View

) Encoding in UTF-8
0 Encoding in UCS-2 Big Endian
O Encoding in UCS-2 Little Endian

Figure 10-7. Menu8 menu items with a mnemonic on the Exit menu item

Figure 10-7 shows what happens to the menu items for which mnemonic values are specified. In each instance,
the first instance of the specified letter in the menu item is underlined.! In this case, the “x” in Exit and the “A” in ANSI
have menu shortcuts.

The mnemonic keystrokes are active only when the menu is being displayed. So, if you wanted to be able to use
the “x” mnemonic to exit the application using the keyboard, you would need to press the F10 key to activate the first
menu entry, and then press the “x” key to use the mnemonic to select this menu item.?

How do you define a mnemonic for a JRadioButtonMenuItem? Unlike the JMenuItem constructor, no parameter
exists for a keyboard mnemonic. This is yet another example where Jython makes life so much easier for you. Instead
of creating a JRadioButtonMenuItem and then using the setMnemonic() method inherited from the AbstractButton
class, you can simply add a keyword argument to the constructor. Listing 10-13 shows how this is done in Menu8. py.

1%See http://docs.oracle.com/javase/8/docs/api/javax/swing/IMenuItem. html#IMenultem%28java.lang.String,%20int%29.
!"In situations where you want to underline a different letter in the text string, use the setDisplayedMnemonicIndex() method
inherited from the AbstractButton class, i.e., http://docs.oracle.com/javase/8/docs/api/javax/swing/AbstractButton.
html#setDisplayedMnemonicIndex%281int%29.

120f course, you could select the File menu entry using the mouse and then press the “x” key on the keyboard, but it’s just as easy

to use the mouse to select Exit after using it to open the File menu.

131

http://docs.oracle.com/javase/8/docs/api/javax/swing/JMenuItem.html#JMenuItem%28java.lang.String,%20int%29
http://docs.oracle.com/javase/8/docs/api/javax/swing/AbstractButton.html#setDisplayedMnemonicIndex%28int%29
http://docs.oracle.com/javase/8/docs/api/javax/swing/AbstractButton.html#setDisplayedMnemonicIndex%28int%29

CHAPTER 10 © MENUS AND MENUITEMS

Listing 10-13. Using the Mnemonic Keyword Argument on the JRadioButtonMenuItem Constructor

25| codeMenu = IMenu('Encoding')

26| data = [

27| ['ANSI' , KeyEvent.VK A],
28| ['UTF-8' , KeyEvent.VK U],
29| ['Ucs-2 Big Endian' , KeyEvent.VK B 1,
30| ['UCS-2 Little Endian' , KeyEvent.VK L]
31|]

32| bGroup = ButtonGroup()

33| for suffix, mnemonic in data :

34| name = 'Encoding in ' + suffix

35| rb = JRadioButtonMenuItem(

36| name,

37| mnemonic = mnemonic,

38| selected = (suffix == 'ANSI')

39)

40| bGroup.add(rb)

41| codeMenu.add(rb)

One of the limitations of mnemonics is that the menu entry with a mnemonic has to be visible for the mnemonic
key to be recognized. This brings us to the topic of to accelerator keys. The advantage of associating an accelerator key
with a menu entry (or item) is that the menu does not have to be visible for the associated event to be initiated. One
disadvantage of accelerator keys is that you need to use the menu item setAccelerator() method to associate an
accelerator key with a menu item. Unless, of course, you're using a wonderful language like Jython that allows you to
use keyword arguments on your constructor calls.

Another possible disadvantage of accelerators is that, unlike mnemonics, there is no obvious indication
that an accelerator key is in effect. Listing 10-14 shows a snippet from Menu9. py, which uses a bad practice of
associating an unmodified “x” accelerator key with the Exit menu item. This means that when the user presses
the “x” key, the program immediately exits. This is unlikely to be an event or action that will be anticipated, or
appreciated, by your users.

Listing 10-14. Example of an Unmodified Accelerator

18] exitItem = fileMenu.add(

19| IMenuItem(

20| "Exit',

21| KeyEvent.VK X,

22| actionPerformed = self.exit,

23| accelerator = KeyStroke.getKeyStroke('x')
24|)

25)

What can and should be done about this? One possibility is to use the modified keys (Alt-X instead of simply
X) .Menu10.py tries to do exactly this. Instead of “x” as shown in line 46 of Listing 10-14, Listing 10-15 defines the
accelerator as Alt-X (see lines 23-27). Listing 10-15 is from Menu10a. py, which defines Alt-X as the accelerator key for
the Exit menu item.

132

CHAPTER 10 © MENUS AND MENUITEMS

Listing 10-15. Using Alt-X as an Accelerator

42| exitItem = fileMenu.add(

43| IMenuItem(

44| "Exit’,

45] KeyEvent.VK X,

46| actionPerformed = self.exit,

47| accelerator = KeyStroke.getKeyStroke(
48| "x',

49| InputEvent.ALT_DOWN_MASK

50|)

51])

What does the menu item look like when you add this kind of accelerator key? Figure 10-8 shows how Swing
displays this kind of information. I don't know about you, but I'm pretty impressed by Swing when I see that it
automatically adds Alt-X to the menu item to clearly convey the presence of the accelerator key.

Figure 10-8. Menu10 menu showing Alt-X accelerator key

Unfortunately, this doesn’t work for some reason. When you press Alt-X, nothing happens. Why not? Let’s
figure out what is wrong. What are the differences between the unmodified KeyStroke in Listing 10-14 (line 23) and
the modified KeyStroke in Listing 10-15 (lines 47-50)? Listing 10-14 uses a KeyEvent constant instead a simple
character string. Does it matter? Unfortunately, it does. Listing 10-16"* shows what is returned by the
KeyStroke.getKeyStroke() method using four different techniques.

Listing 10-16. Generating Modified KeyStroke Instances

wsadmin>from javax.swing import KeyStroke as KS
wsadmin>from java.awt.event import ActionEvent

wsadmin>from java.awt.event import InputEvent

wsadmin>from java.awt.event import KeyEvent

wsadmin>

wsadmin>KS.getKeyStroke('x')

typed x

wsadmin>KS.getKeyStroke(KeyEvent.VK X, ActionEvent.ALT MASK)
alt pressed X

BListing 10-16 uses the KS alias for KeyStroke so the lines aren’t too long.

133

CHAPTER 10 © MENUS AND MENUITEMS

wsadmin>KS.getKeyStroke(KeyEvent.VK X, InputEvent.ALT MASK)

alt pressed X

wsadmin>KS.getKeyStroke('x', ActionEvent.ALT MASK)

alt typed x

wsadmin>

wsadmin>a = KS.getKeyStroke(KeyEvent.VK X, ActionEvent.ALT MASK)
wsadmin>i = KS.getKeyStroke(KeyEvent.VK X, InputEvent.ALT_MASK)
wsadmin>a == 1

1

wsadmin>

What does this mean for your applications? Well, it means that if you try to use the technique from Listing 10-15,
line 48, your accelerator keys won’t work. It isn’t obvious from the user interface that there is a difference, butit’'s a
subtle and important one at that. The last part of Listing 10-16 shows that you can use ActionEvent or InputEvent
to identify the modification type—it doesn’t matter. The result of the comparison is 1 (true), which means that the
values are the same.

Pop-Up Menus

In addition to the menu bars, Swing applications can also use pop-up menus. What is a pop-up menu, exactly? Just
as with a menu on the menu bar, when a pop-up menu is activated, its menu items are displayed. Unlike a menu bar
menu, a pop-up menu is normally activated using a right-click on the component with which the pop-up menu is
associated. Interestingly enough, this approach enables you to define multiple context-sensitive pop-up menus if that
makes sense for your application.

Let’s take a quick look at a trivial pop-up menu for a very simple application. Figure 10-9 shows the application
output with two labels and two text input fields. If you right-click on either of the input fields, a small pop-up menu is
displayed. Should you decide to select one of the values on the menu, that value is placed into the text field over which
the right-click occurred.

Figure 10-9. Popupl sample output

134

CHAPTER 10 © MENUS AND MENUITEMS
Listing 10-17 shows some of the Popup1 class methods used to produce the output shown in Figure 10-9.

Listing 10-17. Popupl actionPerformed() and run() Methods

11|class Popup1(java.lang.Runnable) :

12| def actionPerformed(self, event) :

13| self.target.setText(event.getActionCommand())
14| def run(self) :

15| frame = JFrame(

16| 'Popupl’,

17| layout = GridlLayout(0, 2),

18| defaultCloseOperation = JFrame.EXIT ON_CLOSE
19|)

20| frame.add(JLabel('One'))

21| frame.add(

22| JTextField(

23] 5,

24| mousePressed = self.PUcheck,
25 mouseReleased = self.PUcheck
26|)

27)

28| self.PU = self.PUmenu()

29| frame.add(JLabel('Two'))

30| frame.add(

31| JTextField(

32| 5,

33| mousePressed = self.PUcheck,
34| mouseReleased = self.PUcheck
35])

36|)

37| frame.pack()

38| frame.setVisible(1)

Listing 10-18 shows the remainder of the Popup1 class methods found in the Popup1.py script.

Listing 10-18. Popupl PUmenu() and PUcheck() Methods
39| def PUmenu(self) :

40| def Menultem(text) :

41| return IMenuItem(

42| text,

43| actionPerformed = self.actionPerformed
44|)

45| popup = JPopupMenu()

46| popup.add(MenuItem('Spam'))

47| popup.add(MenuItem('Eggs'))

135

CHAPTER 10 © MENUS AND MENUITEMS

48| popup.add(MenuItem('Bacon'))
49| return popup

50| def PUcheck(self, event) :

51| if event.isPopupTrigger() :

52| self.target = event.getSource()
53| self.PU. show(

54 event.getComponent(),

55] event.getX(),

56| event.getY()

571)

One of the reasons for including multiple input fields was to demonstrate that the event used to display the pop-
up can also be used to determine which component to associate with the event (see line 52 in Listing 10-18). In order
for the pop-up menu to have access to this information, it needs to be saved somewhere in the application. Jython
makes this really easy, by allowing you to dynamically create object attributes as they are needed. You can see that the
only other occurrence of the self.target object attribute is found on line 13 of Listing 10-17 in the ActionListener
actionPerformed() method. Table 10-1 describes the various parts of the Popup1 class.

Table 10-1. Popup1 Class, Explained

Lines Description
12-13 The actionPerformed() method is invoked when a pop-up menu item is selected (line 43).
14-38 Popup1 run() method, which:

o Creates the application frame (lines 15-19).
e Creates the labels and text fields (lines 20-36).

Note the use of the mousePressed and mouseReleased keyword assignments.
e Creates the pop-up menu (line 28).
e Resizes and shows the frame (lines 37-38).

39-49 PUmenu() method that’s used to create the JPopupMenu and MenuItems.

50-57 PUcheck() method that’s invoked by mouse-listener routines to verify that a pop-up trigger occurred.
If a trigger did occur, it saves the associated input field and then shows the pop-up menu based on the
cursor’s location.

Summary

This chapter is all about menus and menu items—more specifically, it’s about JMenus and JMenuItems. It is important
to remember the difference. The former are AWT classes and the latter are Swing classes. You saw how easy it is to
create menu bars, pop-up menus, and the event handlers that are associated with these menu items. In the next
chapter, you take a look at really useful structure—JTree—which is great for displaying hierarchical relationships
between information.

136

CHAPTER 11

Using JTree to Show the Forest:
Hierarchical Relationships of
Components

This chapter is all about building and using trees to display a hierarchical relationship between elements. Trees allow
you to convey a specific relationship between different pieces of information. For example, this kind of structure is
great for showing something like an organizational chart. By the time you're through with this chapter, you should not
only be able to use trees in your own applications, but you will also more aware of the capabilities and limitations of
this useful structure.

Displaying the Servers in a WebSphere Application Server Cell

One of the really useful Swing structures is JTree,' which lets you show a hierarchical relationship of components.

A simple WebSphere Application Server cell will have a number of nodes, with each node having a number of servers.
This hierarchy is well suited for a tree structure. Figure 11-1 shows a sequence of images created by the Treel.py
script. Here’s a description of each image, from top-left to bottom-right:

e This image only shows the cell name and the associated node names within the cell. The
horizontal scroll bar shows that the tree is within a scroll bar, and that the available horizontal
space isn't sufficient to display the widest node name.

e This image shows what the tree looks like with the first node expanded. The highlighting is an
indication that a tree node is selected.

e This image shows what happens when the second node is expanded.

e The final image shows the application after it has been resized and has multiple nodes
selected.

'See http://docs.oracle.com/javase/8/docs/api/javax/swing/ITree.html.

137

http://docs.oracle.com/javase/8/docs/api/javax/swing/JTree.html

CHAPTER 11 © USING JTREE TO SHOW THE FOREST: HIERARCHICAL RELATIONSHIPS OF COMPONENTS

[1|RAGiIbson-W520Cell02 [RAGibson-W520Cell02
o= [RAGibson-W520CellMan ? [j|RAGibson—W52|JCeIIMan
o [] RAGibson-W520Node02 D dmgr

o~] RAGibson-W520Node02

[| RAGibson-W520Cell02
¢ [CJ RAGibson-W520CellManager02

[} dmar [dmar

¢ [RAGibson-W520CellM

¢ 1 RAGibson-W520Node
[y member1

[} member2 [} member2
[nodeagent [} nodeagent

0 §ewer1 0

¢ [RAGibson-W520Node02
[} member1

Figure 11-1. Treel sample output

The resized window is large enough to display the complete tree, so no scroll bars are necessary.

Trees display information vertically, with each line or row displaying a single piece of information, or data. Each
of these data items is called a node, and the node at the top of the tree is called the root node.? A node may or may not
have additional nodes beneath it. If it does, it is called a branch node, if it doesn't, it’s called a leaf node. A branch node
is also called the parent of the nodes beneath it, and they are referred to as children, or child nodes. You may have
noticed that there is a bit of a terminology collision® here.

Figure 11-1 shows the name of the WebSphere cell as the root node, and the names of the WebSphere nodes as
children of the root node of the tree. Subsequent images in this figure show how individual nodes can be selected,
collapsed, or expanded using the mouse or keyboard.*

The second image in the figure shows an expanded branch node. In this case, the first child node beneath the
root identifies the WebSphere deployment manager node that has one child (leaf) node, identified as dmgr. In this
application, each leaf node represents an application server and shows the name of each server. It’s important to
remember that server names must be unique within the same node, but can occur multiple times within the cell.

This hierarchical representation of the names of the WebSphere cell, nodes, and servers should match your
conceptual understanding of the relationship between these WebSphere configuration objects.

As Figure 11-1 illustrates, it is very likely that the JTree instance will be in a JScrol1Pane to allow scroll bars to
displayed as needed.

>To minimize the chance of confusion, I’m going to try to be consistent and refer to Swing tree nodes as nodes, and WebSphere
Application Server nodes as WebSphere nodes.

3This topic also came up in Chapter 10.

“Tree nodes can be expanded or collapsed by positioning the entry using a mouse or cursor keys and pressing Enter.

138

CHAPTER 11 USING JTREE TO SHOW THE FOREST: HIERARCHICAL RELATIONSHIPS OF COMPONENTS

Listing 11-1 shows the Tree1 class from the Treel.py script used to generate the output shown in Figure 11-1.°

Listing 11-1. Treel Class Using the JTree Class

8|class Tree1(java.lang.Runnable) :

9|
10|
11|
12|
13|
14|
15|
16|
17|
18]
19|
20|
21|
22|
23|
24|
25
26|
27|
28]
29|
30|
31|
32|
33|

def cellTree(self) :
cell = AdminConfig.list('Cell’)
root = DefaultMutableTreeNode(self.getName(cell))
for node in AdminConfig.list('Node').splitlines() :
here = DefaultMutableTreeNode(
self.getName(node)
)

servers = AdminConfig.list('Server', node)
for server in servers.splitlines() :
leaf = DefaultMutableTreeNode(
self.getName(server)
)

here.add(leaf)
root.add(here)
return JTree(root)
def getName(self, configld) :
return AdminConfig.showAttribute(configId, 'name')
def run(self) :
frame = JFrame(
'Treel',
size = (200, 200),
defaultCloseOperation = JFrame.EXIT_ON_CLOSE
)
frame.add(JScrollPane(self.cellTree()))
frame.setVisible(1)

Table 11-1 provides a short description of the code used to build and display the hierarchical tree structure. From
the code in Listing 11-1, the description in Table 11-1, and the output in Figure 11-1, it should be clear that the JTree
class is easy to use and quite powerful. With no additional code, you can select one or more items as well as expand or
collapse individual nodes.®

Table 11-1. Treel Listing Explained

Lines Description

9-23 cellTree() method that creates, populates, and returns a JTree instance representing the names
of the WebSphere cell, nodes, and application servers. Each node in the tree is an instance of
DefaultMutableTreeNode and may have zero or more child nodes (aka children).

24-25 getName () method that uses the AdminConfig.showAttribute() scripting object method call to obtain
and return the name of the specified configuration object.

26-33 Treel run() method that creates the application frame, populates it, and displays it on the Swing event

dispatch thread.

SRemember that AdminConfig is a wsadmin scripting object, and therefore is only available when wsadmin is used to execute the
Jython script.
See http://docs.oracle.com/javase/8/docs/api/javax/swing/tree/DefaultMutableTreeNode. html.

139

http://docs.oracle.com/javase/8/docs/api/javax/swing/tree/DefaultMutableTreeNode.html

CHAPTER 11 © USING JTREE TO SHOW THE FOREST: HIERARCHICAL RELATIONSHIPS OF COMPONENTS

JTree Attributes and Methods

You can see, by looking at the cel1Tree() method in Listing 11-1, that it is really easy to create a JTree. You can also
see, from Figure 11-1, that the default settings or attributes might not match your expectations. For example, you
might not want to allow the users to select multiple entries. How do you limit the users to selecting zero or one item
at a time? You'll see how to do this shortly. Before you do that, though, it is important to see how the tree structure is
separated from the data being represented.

The TreeSelectionModel Class

One scenario that occurs frequently in the Swing class hierarchy is having one class to display a structure, and having
arelated but separate class that holds the data. This is also the case for trees. The class used by a tree to hold its data
is an implementation of the TreeModel interface.” The only implementation of this class used by this book is the
DefaultTreeModel class.®

In addition to the data model, the JTree class also has a TreeSelectionModel associated with it. Unless, of
course, you don’t want to let the users select any of the tree nodes. If this is the case, it should be set to None (or null in
Java terms).

What, exactly, does this mean? Does it mean that you can’t expand or collapse the tree nodes? No, it doesn’t. It
just means that no node can be selected. Figure 11-2 shows images similar to those Figure 11-1, but this time none of
the nodes can be selected.

[]|RAGibson-W520Cell01 [1|RAGibson-W520Cell01
o= [] RAGIbson-W520CelIManj 9 [C] RAGIbson-W520CellMan
o~ [RAGibson-W520Node01 D dmagr

o=] RAGIbs0N-W520Node01

[1|RAGibson-W520Cell01 [1|RAGibson-W520Cell01

¢] RAGibson-W520CelMani"lfl o — RAGibson-W520CellManager01
O dmgr [y dmar

¢ [RAGibson-W520Node01 il o 3 RAGibson-W520Node01
[} nodeagent [y nodeagent
[servert [server1

Figure 11-2. Tree2 sample output

"See http://docs.oracle.com/javase/8/docs/api/javax/swing/tree/TreeModel.html.
8See http://docs.oracle.com/javase/8/docs/api/javax/swing/tree/DefaultTreeModel.html.

140

http://docs.oracle.com/javase/8/docs/api/javax/swing/tree/TreeModel.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/tree/DefaultTreeModel.html

CHAPTER 11 USING JTREE TO SHOW THE FOREST: HIERARCHICAL RELATIONSHIPS OF COMPONENTS

What do you need to do to set this kind of limitation? Well, it’s really quite simple. Listing 11-2 contains the run()
method from Tree2.py, which shows that you only need to change lines 32-34, which correspond to line 32 in
Listing 11-1.
Listing 11-2. Tree2 run() Method
26| def run(self) :

27| frame = JFrame(

28] 'Tree2',

29| size = (200, 200),

30| defaultCloseOperation = JFrame.EXIT ON_CLOSE
31|)

32| tree = self.cellTree()

33| tree.setSelectionModel(None)

34| frame.add(JScrollPane(tree))

35] frame.setVisible(1)

Let’s get back to the question raised earlier. How do you limit the selection to zero or one tree node? The answer
is that you need to change the default selection mode using the setSelectionMode () method. What kinds of values
does this method allow? The value must correspond to the TreeSelectionModel constants shown in Table 11-2.°

Table 11-2. TreeSelectionModel Constants

SINGLE_TREE_SELECTION Allows a maximum of one tree node to be selected.

CONTIGUOUS TREE_SELECTION Allows a maximum of one continuous adjacent group of nodes to be selected.

DISCONTIGUOUS_TREE_SELECTION Allows an unlimited number of nodes to be selected, with no restriction that
they be adjacent.

This table may make you think about lists and how you can limit the selection of list items.'* In fact, there is a
direct correlation between the selection settings allowed by JList instances and JTree instances. In the example
scripts in Chapter 9, you used the JList selectionMode keyword argument to limit the JList instances to a
single item.

You might wonder if you can do a similar thing with JTree instances. Listing 11-3 shows how you can use the
classInfo function, which you learned about in Chapter 4, to display the JTree class hierarchy. It also shows all of the
attributes that contain the string "selectionmode". Unlike the corresponding JList class hierarchy, the JTree class
does not have a selectionMode attribute. So the answer to the question is no, you can’t do it quite that easily.

°See http://docs.oracle.com/javase/8/docs/api/javax/swing/tree/TreeSelectionModel.html.
10See the section in Chapter 9 entitled “Limiting the Selectable Items.”

141

http://docs.oracle.com/javase/8/docs/api/javax/swing/tree/TreeSelectionModel.html

CHAPTER 11 USING JTREE TO SHOW THE FOREST: HIERARCHICAL RELATIONSHIPS OF COMPONENTS

Listing 11-3 JTree class hierarchy showing selectmode attributes

wsadmin>from javax.swing import JTree
wsadmin>
wsadminy>classInfo(JTree, attr = 'selectionmode')
javax.swing.JTree
selectionModel
| javax.swing.JComponent
| | java.awt.Container
| | | java.awt.Component
| | | | java.lang.Object
| | | | java.awt.image.ImageObserver
| | | | java.awt.MenuContainer
| | | | java.io.Serializable
| | java.io.Serializable
| javax.swing.Scrollable
| javax.accessibility.Accessible
wsadmin>

So, how can you do it? Well, Listing 11-4 contains the run() method from Tree3.py. The statement used to limit
the tree selection to a single node is performed in lines 34-36, which correspond to line 33 in Listing 11-2. From this
you can see that in order to change the selection mode you need to obtain the selection model used by this tree (via a
call to the getSelectionModel() method as shown in line 34). You then call the setSelectionMode() method of this
model to make the change.

Listing 11-4. Tree3 run() Method, Limiting Node Selection
27| def run(self) :

28| frame = JFrame(

29| 'Tree3',

30| size = (200, 200),

31| defaultCloseOperation = JFrame.EXIT_ON_CLOSE
32|)

33| tree = self.cellTree()

34| tree.getSelectionModel().setSelectionMode(
35] TreeSelectionModel.SINGLE TREE_SELECTION
36|)

37| frame.add(JScrollPane(tree))

38| frame.setVisible(1)

Note It is possible to use the Jython-provided attributes to minimize the explicit calls to the specified methods, but
that is likely to cause confusion. Code to do this would look something like:

tree.selectionModel.selectionMode = TreeSelectionModel.SINGLE_TREE_SELECTION

You will have to decide if using the attribute names like this instead of the getter and setter methods is worth the potential confusion
that it might cause.

142

TreeSelectionListener

USING JTREE TO SHOW THE FOREST: HIERARCHICAL RELATIONSHIPS OF COMPONENTS

There are times when your applications will need to know when the user makes a tree node selection. For example,
when the user selects a tree node it is likely that they want information about this node displayed immediately. You
will need the application to display information about the selected WebSphere node as soon as the user selects the

corresponding tree node.

To do this, you need to use the TreeSelectionListener interface.!" Just like the ListSelectionlListener,'? which
is described in Chapter 9, this interface has a single valueChanged() method. Can you use the valueChanged keyword
argument on the JTree constructor call to identify a TreeSelectionlListener method for the JTree instance? The
simple quick answer to this question is yes. Figure 11-3 shows one possible use for this kind of listener.

[][RAGibson-W520Cell01
o=] RAGibson-W520CellManager01
o~ [RAGibson-W520Node01

-7 RAGibson-W520Cell01
o 3|RAGibson-W520CelManager0]
o] RAGibson-W520Node01

Selected: <none=

[| RAGibson-W520CellD1

¢] RAGibson-W520CellManager01
[y amar

¢ [CIRAGibson-W520Node01|
[} nodeagent
[y servert

Selected: RAGibson-W520CellManager01

[_| RAGiDson-W520Cell01

¢ [C] RAGibson-W520CellManager01
[y dmar

¢ CI|RAGibs0n-W520N0de0 1|
[} nodeagent
D serverl

Selected: RAGibson-W520Node01

Figure 11-3. Tree4 sample output

Selected: =<none=

In Figure 11-3, you can see how the text field is updated by the tree selection listener event handler to reflect the
data from the selected node; it also shows "<none>" if no node has been selected. This will prove to be very useful, as
you'll see when you build on this application. Listings 11-5 and 11-6 show the Tree4 class that this application uses.

""See http://docs.oracle.com/javase/8/docs/api/javax/swing/event/TreeSelectionListener.html.
2See http://docs.oracle.com/javase/8/docs/api/javax/swing/event/ListSelectionListener.html.

143

http://docs.oracle.com/javase/8/docs/api/javax/swing/event/TreeSelectionListener.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/event/ListSelectionListener.html

CHAPTER 11 USING JTREE TO SHOW THE FOREST: HIERARCHICAL RELATIONSHIPS OF COMPONENTS

Listing 11-5. Tree4 Class Using a TreeSelectionListener

13| class Tree4(java.lang.Runnable) :
14| def cellTree(self) :

15| cell = AdminConfig.list('Cell')

16| root = DefaultMutableTreeNode(self.getName(cell))
17| for node in AdminConfig.list('Node').splitlines() :
18] here = DefaultMutableTreeNode(

19 self.getName(node)

20|)

21| servers = AdminConfig.list('Server', node)

22| for server in servers.splitlines() :

23| leaf = DefaultMutableTreeNode(

24| self.getName(server)

25|

26| here.add(leaf)

27| root.add(here)

28| return JTree(root, valueChanged = self.select)

29| def getName(self, configld) :

30| return AdminConfig.showAttribute(configId, 'name’)

Listing 11-6 shows the rest of the Tree4 class, including the run() method and the TreeSelectionListener
event handler. The select () method is the event handler method for this application. This routine is identified as the
listener for the JTree instance by using the valueChanged keyword assignment on line 28 in Listing 11-5.

The run() method creates and populates the application frame. Lines 38-42 of Listing 11-6 show how easy it is
to create the tree, limit the number of items that can be selected, and position it all on the application frame. This is
accomplished in just three statements.

Setting up the rest of the frame is also as easy. Lines 43-52 show how four statements can create a label and a
read-only text field. These are placed in a panel, which is then positioned on the bottom part of the frame.

This is a wonderful example of how easy it is to create an interesting and useful application using Swing
components in a creative manner.

Listing 11-6. Tree4 Class Using a TreeSelectionListener, Continued

31| def run(self) :

32| frame = JFrame(

33| 'Tree4',

34| size = (320, 200),

35| layout = Borderlayout(),

36| defaultCloseOperation = JFrame.EXIT_ON_CLOSE
37|)

38| tree = self.cellTree()

39| tree.getSelectionModel().setSelectionMode(

40| TreeSelectionModel.SINGLE _TREE_SELECTION

41|)

42| frame.add(JScrollPane(tree), BorderLayout.CENTER)
43| panel = JPanel()

44| panel.add(JLabel('Selected:'))

144

45|
46|
47|
48|
49|
50|
51|
52|
53|
54|
55|
56|
57|
58|
59|
60|

def

CHAPTER 11 USING JTREE TO SHOW THE FOREST: HIERARCHICAL RELATIONSHIPS OF COMPONENTS

self.msg = panel.add(

JTextField(
'<none>', # Initial value
20, # Field width (columns)
editable = 0 # Disable editing

)

)

frame.add(panel, BorderLayout.SOUTH)
frame.setVisible(1)
select(self, event) :
tree = event.getSource()
if tree.getSelectionCount() :
node = str(tree.getlLastSelectedPathComponent())
else :
node = '<none>'
self.msg.setText(node)

Table 11-3 describes the important changes from the previous tree examples and the Tree4 class shown
in Listings 11-4 and 11-5. I think it’s impressive how easily you can use the Swing classes to build this neat little
application.”

Table 11-3. Tree4 Listing Explained

Lines Description

28 The only real difference is where you specify the valueChanged keyword on the JTree constructor to
specify the TreeSelectionListener event handler routine to be called.

35 To make the presentation more aesthetically appealing, the frame uses the Border Layout Manager.

42 You position the JScrollPane instance containing the JTree in the center of the application frame.

43-52 You create a Panel container to hold the label and the disabled text field on the bottom of the
application frame.

54-60 The select() method is the TreeSelectionListener valueChanged event handler. This method uses

the event.getSource() method to obtain a reference to the associated tree, and if a node has been
selected, it uses the getLastSelectedPathComponent () method call to identify that node.

JTree Manipulation

Some applications provide a way for the users to make changes to the tree being displayed. For example, you might
want your application to provide a way for the user to change the tree node to reflect new information. This can be as
simple as allowing the displayed values to be modified, or it may be appropriate to add and remove specific nodes.

"The dataType of the value returned by the getLastSelectedPathComponent() method call is an object, so it needs to be
converted to a string before this value can be used to update the JTextField value.

145

CHAPTER 11 © USING JTREE TO SHOW THE FOREST: HIERARCHICAL RELATIONSHIPS OF COMPONENTS

.Let’s break this example into pieces, and not just because the listing, even without comments and blank lines,
is too big. To start, let’s see what the application looks like when the DynamicTree.py script is executed. Figure 11-4
shows three images of this application before any changes are made.™*

| DynamicTre
|

o= [Parent 1] Parent 1
o [Parent 2 [chitd 1
[child 2

¢ [Parent2
[chitd 1
[child 2

¢ [] Root Node
¢ [Parent 1
[child 1
[child 2
¢ [Parent 2
[child 1

[[enila2]

Remove

Figure 11-4. DynamicTree sample output

The first part of the DynamicTree class, shown in Listing 11-7, provides enough information to understand the
layout of the application shown in Figure 11-4. The top part of the application window has a scroll pane containing
the initial tree. Beneath this, there is a row of buttons. The run() method, shown in lines 59-77, creates and populates
the frame, as you have seen before. For now, don’t worry about the constructor (the _init () method) or the
getSuffix() method. You'll see how they are used shortly.

!4This example is based on the DynamicTreeDemo from the Java Swing Tutorial, which can be found at
http://docs.oracle.com/javase/tutorial/uiswing/components/tree.html#dynamic.

146

http://docs.oracle.com/javase/tutorial/uiswing/components/tree.html#dynamic

CHAPTER 11 USING JTREE TO SHOW THE FOREST: HIERARCHICAL RELATIONSHIPS OF COMPONENTS

Listing 11-7. DynamicTree Class (Part 1 of 5)

53|class DynamicTree(java.lang.Runnable) :
54| def _init (self) :

55| self.nodeSuffix = 0

56| def getSuffix(self) :

57| self.nodeSuffix += 1

58| return self.nodeSuffix

59| def run(self) :

60| frame = JFrame(

61| 'DynamicTree',

62| layout = BorderlLayout(),

63| locationRelativeTo = None,

64| defaultCloseOperation = JFrame.EXIT_ON_CLOSE
65|)

66 | self.tree = self.makeTree() # Keep references handy
67| self.model = self.tree.getModel()

68| frame.add(

69| JScrollPane(

70| self.tree,

71| preferredSize = Dimension(300, 150)
72|)5

73| BorderLayout.CENTER

74|)

75| frame.add(self.buttonRow(), Borderlayout.SOUTH)
76| frame.pack()

77| frame.setVisible(1)

The only new thing in this run() method is line 63, which you might not have seen. What does this keyword
argument do? It corresponds with the setLocationRelativeTo() method from the JFrame class that is inherited from
the java.awt.Window class.' By initializing this value to None, which corresponds to the Java null, the application
window is positioned in the center of the screen.'® Pretty neat, eh?

The buttonRow() method, called in line 75 of Listing 11-7, can be seen on lines 78-94 in Listing 11-8. There
really shouldn’t be anything too surprising in this routine, which uses a GridLayout instance to position the buttons
being created in one horizontal row and assigns the actionPerformed event handler for each button using a keyword
argument (line 90).

Listing 11-8. DynamicTree Class (Part 2 of 5, buttonRow() Method)
78| def buttonRow(self) :

79| buttonPanel = JPanel(GridLayout(0, 3))
80| data = [

81| ['Add" , self.addEvent],

82| ['Remove', self.delEvent],

83| ['Clear' , self.clsEvent]

84|]

15See http://docs.oracle.com/javase/8/docs/api/java/awt/Window. html#setLocationRelativeTo%28java. awt . Component%29.
'6Actually, the top-left corner of the application is positioned on the center of the screen. This should be “close enough” for now.

147

http://docs.oracle.com/javase/8/docs/api/java/awt/Window.html#setLocationRelativeTo%28java.awt.Component%29

CHAPTER 11 USING JTREE TO SHOW THE FOREST: HIERARCHICAL RELATIONSHIPS OF COMPONENTS

85| self.buttons = {}

86| for name, handler in data :

87| self.buttons[name] = buttonPanel.add (
88| JButton(

89| name,

90| actionPerformed = handler,

91| enabled = name != 'Remove'

92|)

93])

94| return buttonPanel

Listing 11-9 shows the code for the three button event handlers that are referenced by the data array in lines 80-84
of Listing 11-8. For now, I'll just say that an event handler method is called when the button is pressed. I'll defer a
discussion of these specific event handlers until a little later. For now, it makes sense to provide them here because of
their references in the previous listing.

Listing 11-9. DynamicTree Class (Part 3 of 5, Button Event Handlers)
95| def addEvent(self, event) :

96 | sPath = self.tree.getSelectionModel().getSelectionPath()
97| if sPath : # Use selected node
98| parent = sPath.getlLastPathComponent()
99| else : # Nothing selected, use root
100 parent = self.model.getRoot()
101 kids = parent.getChildCount()
102 child = DefaultMutableTreeNode(
103 'New node %d' % self.getSuffix()
104 |
105 | self.model.insertNodeInto(child, parent, kids)
106 | self.tree.scrollPathToVisible(
107| TreePath(child.getPath())
108)
109 | def delEvent(self, event) :
110| currentSelection = self.tree.getSelectionPath()
111 if currentSelection :
112 currentNode = currentSelection.getlLastPathComponent()
113 if currentNode.getParent() :
114| self.model.removeNodeFromParent(currentNode)
115 return
116 | def clskvent(self, event) :
117] self.model.getRoot().removeAllChildren()
118 self.model.reload()

148

CHAPTER 11 USING JTREE TO SHOW THE FOREST: HIERARCHICAL RELATIONSHIPS OF COMPONENTS

The DefaultTreeModel Class

Listing 11-10 shows the makeTree() method called in line 66 of Listing 11-7. It uses instances of the
DefaultMutableTreeNode class, which you saw previously. What’s new in this method is how the root node of the tree
is passed as an argument to the DefaultTreeModel class constructor (line 126).

Listing 11-10. DynamicTree Class (Part 4 of 5, the makeTree() Method)
119 def makeTree(self) :

120 root = DefaultMutableTreeNode('Root Node')

121 for name in 'Parent 1,Parent 2'.split(',"') :
122] here = DefaultMutableTreeNode(name)

123 for child in 'Child 1,Child 2'.split(',") :
124 here.add(DefaultMutableTreeNode(child))
125 | root.add(here)

126 | model = DefaultTreeModel(

127 root,

128] treeModelListener = myTreeModellListener()
129|)

130 tree = JTree(

131| model,

132] editable = 1,

133] showsRootHandles = 1,

134| valueChanged = self.select

135])

136| tree.getSelectionModel().setSelectionMode(

137| TreeSelectionModel.SINGLE TREE_SELECTION

138|)

139 return tree

Don't forget that the JTree instance doesn’t actually contain the data being displayed. It only provides a view of
the data, which like most non-trivial Swing components, is provided by a component data model. In the case of the
JTree class, it's almost always an instance of the DefaultTreeModel class.!”

What does the tree model provide? Well, a lot of methods are provided by this class. Unfortunately, I don’t have
the time or space to investigate and describe how and when they are used. At this point, I will only take a look at a few
of them, specifically the ones related to adding and removing TreeModelListeners. In fact, that’s exactly what is done
in line 128. The DefaultTreeModel instance is then passed to the JTree constructor in line 131. At the same time,
other keyword arguments make the tree modifiable (line 132) and make the root node handle visible (line 133). Note
that the valueChanged keyword assignment argument (line 134) is used to identify the TreeSelectionListener event
handler for this tree instance.

Listing 11-11 shows the TreeSelectionListener event handler method for this DynamicTree class application. It
is only a little different from the one you saw earlier in this chapter. This example determines if a removable node has
been selected. Only non-root nodes can be selected, so you want the Remove button to be enabled only if the user has
selected a non-root node. To do this, the code determines if a node has been selected, and if so, how far down the tree
this selected node is. If no node has been selected, the count will be zero. The root node, by definition, has a depth
of 1. This information is used in line 148 to determine if the Remove button should be enabled.

"See http://docs.oracle.com/javase/8/docs/api/javax/swing/tree/DefaultTreeModel.html.

149

http://docs.oracle.com/javase/8/docs/api/javax/swing/tree/DefaultTreeModel.html

CHAPTER 11 USING JTREE TO SHOW THE FOREST: HIERARCHICAL RELATIONSHIPS OF COMPONENTS

Listing 11-11. DynamicTree Class (Part 5 of 5, the select () Method)
140| def select(self, event) :

141 tree = event.getSource() # Get access to tree

142 | count = tree.getSelectionCount()

143 sPath = tree.getSelectionModel().getSelectionPath()

144 | if sPath : # How deep is the pick?
145 depth = sPath.getPathCount()

146 | else : # Nothing selected

147 | depth = 0

148 self.buttons['Remove'].setEnabled(count and depth > 1)

The TreeModelListener Interface

Now you finally get to the topic mentioned in Listing 11-10 on line 128—the TreeModelListener interface.'® As you
have seen, listeners are used when certain events occur. In this case, the methods in this listener are called when tree
nodes are added, changed, or removed. In addition, another method is called when the tree structure changes. It is
important to note the difference between this listener and the TreeSelectionListener discussed earlier.

By creating a class based on this listener interface, you can monitor changes that occur in the tree. The question,
though, is how? Well, the TreeModelListener class is set up as a main class and isn’t nested inside the application
class. This demonstrates how you can use the TreeModelEvent!® provided with each of the TreeModelListener
methods in order to detect any changes that have occurred.

Listing 11-12 shows the myTreeModelListener class, which includes some common, shared methods that locate
specific parts of the tree model. They identify the parent or the specific node of interest.

Listing 11-12. The myTreeModellListener Class

19|class myTreeModelListener(TreeModellListener) :
20| def getNode(self, event) :

21| try :

22| parent = self.getParent(event)

23| node = parent.getChildAt(

24| event.getChildIndices()[0]

25|)

26| except :

27| node = event.getSource().getRoot()
28| return node

29| def getParent(self, event) :

30| try :

31| path = event.getTreePath().getPath()
32| parent = path[0] # Start with root node

'8See http://docs.oracle.com/javase/8/docs/api/javax/swing/event/TreeModelListener.html.
See http://docs.oracle.com/javase/8/docs/api/javax/swing/event/TreeModelEvent.html.

150

http://docs.oracle.com/javase/8/docs/api/javax/swing/event/TreeModelListener.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/event/TreeModelEvent.html

CHAPTER 11 USING JTREE TO SHOW THE FOREST: HIERARCHICAL RELATIONSHIPS OF COMPONENTS

33| for node in path[1:] : # Get parent of changed node
34| parent = parent.getChildAt(

35| parent.getIndex(node)

36|

37| except :

38| parent = None

39| return parent

40| def treeNodesChanged(self, event) :

41| node = self.getNode(event)

42| print ' treeNodesChanged():', node.getUserObject()
43| def treeNodesInserted(self, event) :

44| node = self.getNode(event)

45| print 'treeNodesInserted():', node.getUserObject()
46| def treeNodesRemoved(self, event) :

47| print ' treeNodesRemoved(): child %d under "%s"' % (
48| event.getChildIndices()[0],

49| self.getParent(event)

50|)

51| def treeStructureChanged(self, event) :

52| print 'treeStructureChanged():'

One question that people sometimes ask is, “How do I edit a node?” The sequence of images in Figure 11-5
demonstrates this process. You begin with the tree expanded and the root node selected. The users indicate that
they want to edit the node by triple-clicking the node (three left clicks in a short time interval).?* The node text is
temporarily replaced with a text field containing the selected node text. This allows users to easily replace the text
when they start typing. Should they want to cancel the edit operation, they can simply press Escape. To complete the
edit, thereby replacing the original node value with the new one, users simply need to press Enter. This is the point at
which the TreeModellListener treeNodesChanged() method is invoked.

PIt’s interesting to note that the specified node is expanded or collapsed as part of the normal double-click process. That’s why the
tree is collapsed as part of this edit process.

151

CHAPTER 11 © USING JTREE TO SHOW THE FOREST: HIERARCHICAL RELATIONSHIPS OF COMPONENTS

¢ [Parent 1
[child 1
[child 2

¢ [Parent2
[child 1
[y child 2

Figure 11-5. Editing tree nodes

How in the world would someone know this? Where is this documented? Well, if you think about it, there has to
be some editor associated with the tree in order for you to modify node values. A DefaultTreeCellEditor* is one of
the many things provided by the JTree class. This editor determines how the change is triggered, as well as the kind of
edit input field to be displayed.

In addition to a default tree cell editor, the JTree constructor will also provide DefaultTreeCellRenderer® to
determine how the tree nodes will be displayed. The fact that these support classes are part of the Swing hierarchy
makes the lives of Swing application developers significantly easier.

Creating your own replacements for either of these classes is well beyond the scope of this book. However, the
topic of cell renderers and editors is discussed in Chapter 12, which covers tables.

Summary

This chapter was all about creating, displaying, and manipulating trees. One of the most important points to
remember about the JTree class is that it does not actually contain the data; it simply displays the hierarchical data in
a form similar to an outline. The next chapter discusses the JTable class used to display data in a tabular format.

ZSee http://docs.oracle.com/javase/8/docs/api/javax/swing/tree/DefaultTreeCellEditor.html.
2See http://docs.oracle.com/javase/8/docs/api/javax/swing/tree/DefaultTreeCellRenderer.html.

152

http://docs.oracle.com/javase/8/docs/api/javax/swing/tree/DefaultTreeCellEditor.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/tree/DefaultTreeCellRenderer.html

CHAPTER 12

Motion to Take from the Table:
Building Tables

One of the most useful structures in graphical applications is the table format, when information is displayed in an
organized arrangement of rows and columns. In fact, you have seen lots of examples of tables throughout this book.

As a side note, it is interesting how often words have multiple meanings and uses. This is especially true in the
technology industry. It can also be the case with natural languages such as English. If you look for the definition of the
word “table,” you'll find that it is often used as a noun and occasionally as a transitive verb (i.e., to place on or take off
of an agenda). It is this second form that was the source for the title of this chapter, just to be different.

A table is such a common idea that most people would be hard pressed to remember when the concept was first
described to them. This chapter is all about how to build, display, control, manage, and manipulate information in tables.

Tables Can Be Really Easy

We use tables of information all the time. In fact, it was while I was working with a simple wsadmin Jython script that
listed port numbers and EndPoint names for my WebSphere Application Server environment that I started thinking
about displaying the information in a table. The name of the application was ListPorts.py and Chapter 22 is all
about the iterative development of a Swing application that does this.

Over time, I've written many different versions of that ListPorts.py script file. So many that it’s hard to keep
track of them all. I wrote a script to locate the various instances of this script on my system and then created a table
of the file date, size, and locations. Using this information, I produced a script that displays this information in table
form, as shown in Figure 12-1.

'See Robert’s Rules of Order, Article VI, Section 35.

153

CHAPTER 12 © MOTION TO TAKE FROM THE TABLE: BUILDING TABLES

Date Location Location
08/22/2011 726 CABM\WebS... |« | 726 |C:IBM\WebSphere\scripts\Swing\... ||
07/29/2011 826 C:IBM\WeDbS... 07/29/2011 826 |C:BMWyebSphere\AppServers0\bi...|
05/18/2011 1,822 C:AIBMWebS... 05/18/2011 | 1,822 |CANBM\WebSphere\AppServer0\s...
01172011 5,915 CAIBM\WebS... 0117/2011 | 5,915 |CANBM\WebSphere\scripts\Swing\...
10/18/2010 3415 CAIBM\WebS... 10/19/2010 | 3,415 |CANBM\WebSphere\AppServer70\bi...
05/12/2010 2,535 CABM\WebsS... 2,535 |CABMWebSphere\scriptsinewlLis...
04/09/2010 914 CAIBM\WebsS... 914 |CABM\WebSphere\scripts\ListPort...
09/01/2009 1,758 CIBM\WebS... 1,758 |CABM\WebSphere\AppServeniscri...

Date Location

T VJ?UT_!LWU IO T SO ETITeET e S U araTm.
1,655 05/01/2008 |CUBM\WebSphere\scripts\archi... |—
1,034 05/01/2008 |CIBMWebSphere\scripts.oldia...
1,514 05/01/2008 |C:NIBM\WebSphere\scripts.old\a...
1,655 05/01/2008 |CNBM\WebSphere\scripts.old\a...
2,332 04/30/2008 |C:BM\WebSphere\scripts\archi...
2,332 04/30/2008 |CUBM\WebSphere\scripts.oldia...
828 04/23/2008 |C:NBM\WebSphereWW7 Notes\ist...
04/23/2008 |CNBM\WebSphere\V7 Notes\ist...

Date
726 [08/2212011 |CABMWebSphere\scripts\Swin... |«
| 626 07/29/2011 |CNBM\WebSphere\AppServer80...| _
1,822 05/18/2011 |C:NUBMWebSphere\AppServerto...

5915 [0117/2011 |C:ABM\WebSphere\scripts\Swin...
3415 10/19/2010 |C:NUBMWebSphere\AppServer70...
2,535 05/12/2010 |CNBMWebSphere\scripts\newl...
914 04/09/2010 |C:NBMWebSpherelscriptsListP...
1,758 09/01/2009 |C:NBM\WebSphere\AppServeris...

4 T4 INRMmnnn IS-AUDMAIshOnharalesrintell ictD

Figure 12-1. Tablel.py output images

There are multiple images in this figure to show that the table columns can be resized and moved around easily.
To resize a column, you simply drag the vertical bar between two column headings one way or the other. To reorder
the columns, you drag a column heading (such as “Date”) to the desired position. The other columns are reordered
accordingly. All of these capabilities are provided by the JTable class.

It’s also interesting to note how the right-most column, which isn’t wide enough to display the complete directory
path, uses an ellipse (. . .) to indicate that the data has been truncated. Just as in Listing 12-1, which shows that lines
10-39 have been left out.? The last image shows that the column headings stay in place, even when the data scrolls
down to display other rows in the table.

Listing 12-1. Excerpts from Tablel.py

7|class Table1(java.lang.Runnable) :
8| def _init (self) :
9| info = r'"’
[...
40|04/23/2008| 506|C:\IBM\WebSphere\V7 Notes\listports.py

41"

42| self.data = [# list comprehension
43| line.split('|") # each row is an array
44| for line in info.splitlines() # each line is a row
45| if line # ignore blank lines
46|]

20f course, the Java Swing table does this automatically for you, whereas I had to do this manually in Listing 12-1.

154

CHAPTER 12 © MOTION TO TAKE FROM THE TABLE: BUILDING TABLES

47| def run(self) :

48| frame = JFrame(

49| 'Table1',

50| size = (300, 200),

51| locationRelativeTo = None,

52| defaultCloseOperation = JFrame.EXIT_ON_CLOSE
53])

54 headings = 'Date,size,location’.split(',"')
55| frame.add(

56| JScrollPane(

57| JTable(self.data, headings)

58])

59)

60| frame.setVisible(1)

How much code is required to provide all of this functionality? Almost none, as you can see by looking at the
Table1 class in Listing 12-1. Line 57 contains the JTable® constructor.* In fact, no additional code was required to
provide all of the functionality just described. It is all provided by the Java Swing class library.

Defaults Can Be Harmful to your . . . Mental Health

There’s a great deal that can be said for simplicity. In other words, defaults can sometimes drive you crazy. Just
remember though—you get what you pay for. By that, I mean it is extremely unlikely that you will be able to have a
really useful application that uses all of the Swing class defaults.

Let’s take another look at the simple table created by the Tablel. py script. Did you notice that all of the columns
in the first image are the same width? Unfortunately, the data found in each column isn’t all the same width. But the
default settings allocate each column the same amount of column space and each column is expected to contain the
same type of data (i.e., a string).

You'll investigate column manipulation a little later in this chapter (in the section entitled “Column
Manipulation”). For now, don’t worry about it. First, I describe other aspects of tables.

Picky, Picky, Picky. .. Selecting Parts of a Table

What parts of the table can be selected? As you can see in Figure 12-2, multiple groups of rows can be selected. This
figure also shows that cell values can be edited. When a cell is edited,’ the cell highlighting is distinctly different and
the cell has a more pronounced border. One of the challenges with the defaults is that every cell within the table is
considered a string, so (almost) any kind of character data can be entered. For example, while editing the selected cell
in Figure 12-2, you could easily enter any text you want. The caveat is that some characters will cause the edit mode to
terminate (such as the Tab and Enter keys).

3See http://docs.oracle.com/javase/8/docs/api/javax/swing/ITable.html.

4As you have seen before, it is a really good idea to place a potentially large component, such as a JTable instance, in a
JScrollPane, as shown in lines 56-58.

SEither by double-clicking on the cell or positioning the focus on a cell using cursor control keys and pressing the spacebar.

155

http://docs.oracle.com/javase/8/docs/api/javax/swing/JTable.html

CHAPTER 12 © MOTION TO TAKE FROM THE TABLE: BUILDING TABLES

Location Date | Location
C:IBMWebS... 08/22/2011 [C:uBMWVeDS...
CIBMW/ebS... 07/29/2011 CAIBMWebS..

CANBM\WebS... 05/18/2011 CNBM\WebS...

CAIBMWebS... 01/17/2011 CAIBMWebS...
CBMW/ebsS...] [CuBMWeDS..
CABMWebS... 5M12/2¢ CAIBMWVebS...
04/09/2010 CAIBMWebS... CABMWebS_
00/01/2009 C:BMWebS 09/01/2009 CABMWebS

Figure 12-2. Tablel output: row selection and editing

This provides you with a quick overview about some of the aspects related to Swing tables. The rest of the chapter
discusses tailoring them to act in ways that make sense.

Row, Row, Row Your . . . Table? Working with Rows

If you play with the Table1.py application, you'll see that when you click on any cell in the table, the whole row is
selected. In Figure 12-2, you can see that multiple groups of rows can, by default, be selected.® How can you change
the row selection behavior? That's easy; the JTable class has a row selectionMode property that uses the same
constants used when you were working with lists and trees. Table 12-1 describes the possible selection values.

Table 12-1. Selection Mode Constants

Selection Mode Constant Description

SINGLE_SELECTION Zero or one row can be selected.
SINGLE_INTERVAL_SELECTION One contiguous group of rows can be selected.
MULTIPLE_INTERVAL_SELECTION The default mode allows multiple groups of rows to be selected.

You can see, by looking at the JTable class Java documentation, that there is a setter but not a getter for the
selectionMode property.” Don’t be confused by the fact that there is a getter and setter for the selectionModel
property; this is not what we're talking about. The fact that the class provides only a setter method means that you can
use the setter (table.setSelectionMode()) method or you can specify the selectionMode keyword argument when
the table is constructed, as shown in Listing 12-2, which is from Table2.py.

Press and hold the Ctrl key as you use the mouse to select or deselect an individual row. If you hold the Shift key while making a
selection, you can select multiple contiguous rows.
I looked all over, but have yet to find any explanation for the lack of getter for this table property.

156

CHAPTER 12 © MOTION TO TAKE FROM THE TABLE: BUILDING TABLES

Listing 12-2. Specifying the selectionMode Using a Keyword Argument

6|from javax.swing import ListSelectionModel as LSM

56| frame.add(

57] JScrollPane(

58| JTable(

59| self.data,

60| headings,

61| selectionMode = LSM.SINGLE_SELECTION
62|)

63|)

64|)

Does the presence of the selectionMode attribute in the JTable class mean that you can access its value
(the operation normally performed by a getter method)? No, it doesn’t. If you try to do that, you'll get an exception like
the one shown in Listing 12-3.

Listing 12-3. Write-Only Attributes

wsadmin>from javax.swing import JTable
wsadmin>
wsadmin>data = [['1.1', "1.2"], ['2.1", "2.2"]]

wsadminshead = ['Uno', 'Dos']
wsadmin>

wsadmin>table = JTable(data, head)
wsadmin>

wsadmin>table.selectionMode
WASX7015E: Exception running command: "table.selectionMode";
exception information:
com. ibm.bsf.BSFException: exception from Jython:
Traceback (innermost last):
File "<input>", line 1, in ?
AttributeError: write-only attr: selectionMode

wsadmin>
What does that mean for your applications? Basically, it means that if your application needs to display and

modify this attribute, it needs to provide some way to maintain the property value as well as monitor any changes
made to it.

157

CHAPTER 12 © MOTION TO TAKE FROM THE TABLE: BUILDING TABLES

Selecting Columns

The JTable class has columnSelectionAllowed and rowSelectionAllowed attributes. Interestingly enough, the
former doesn’t appear on the Javadoc page of the JTable class, but it does exist, as you can see in Listing 12-4.

Listing 12-4. JTable selectionAllowed Attributes

wsadmin>from javax.swing import JTable
wsadmin>
wsadmin>classInfo(JTable, attr = 'SelectionAllowed')
javax.swing.JTable
columnSelectionAllowed, rowSelectionAllowed
| javax.swing.JComponent
| | java.awt.Container
| | | java.awt.Component
| | | | java.lang.Object
| | | | java.awt.image.ImageObserver
| | | | java.awt.MenuContainer
| | | | java.io.Serializable
| | java.io.Serializable
| javax.swing.event.TableModellListener
| | java.util.EventListener
| javax.swing.Scrollable
| javax.swing.event.TableColumnModellListener
| | java.util.EventListener
| javax.swing.event.ListSelectionListener
| | java.util.EventListener
| javax.swing.event.CellEditorListener
| | java.util.EventListener
| javax.accessibility.Accessible
| javax.swing.event.RowSorterListener
| | java.util.EventListener
wsadmin>

Selecting Individual Cells

If you look at the JTable documentation, you should be able to find the cel1SelectionEnabled attribute. Notice that
it has been obsolete since version 1.3. How do you allow your table cells to be selected? Well, a cell can be selectable
only when both rowSelectionAllowed and columnSelectionAllowed are true.

Interestingly enough, both a getter and a setter are provided for the cel1SelectionEnabled attribute. The
setter is used to assign the specified (Boolean) value to the rowSelectionAllowed and columnSelectionAllowed
attributes, and the getter returns true only if both attributes are true. Table 12-2 shows the values returned by the
rowSelectionAllowed, columnSelectionAllowed, and cellSelectionEnabled getter methods after the statement or
method call listed in column 1 of the table has been executed.

158

CHAPTER 12 © MOTION TO TAKE FROM THE TABLE: BUILDING TABLES

Table 12-2. Row, Column, and Cell Selection Values

Statement Executed Row Col Cell
JTable() 1 0 0
setColumnSelectionAllowed(1) 1 1 1
setRowSelectionAllowed(0) 0 1 0
setRowSelectionAllowed(1) 1 1 1
setCellSelectionEnabled(0) 0 0 0

ot
—
—

setCellSelectionEnabled(1)

One question that might come to mind, especially if you have seen the TableSelectionDemo application® from
the Java Swing Tutorial website, is “Aren’t the Row, Column, and Cell selection attributes affected by the selection
mode?” The answer is no, they aren’t. The developer of that application has added this association, but this is not
something that the JTable class does. So, the values in Table 12-2 are the same, regardless of the table selectionMode
setting. However, this does point out how developers can choose to enhance classes to provide functionality for their
applications.

| Am the Very Model of a Modern Major General: Table Models®

One of the many things that you haven’t read about yet about JTable instances is the fact that the displayed
information isn’t stored in the JTable. The table actually provides a view to the data. The JTable class isn’t the first
complex Swing class that you've seen that does this. In Chapter 11, you learned how the JTree class used a data model
to hold the information and the class used to display it.

What are the advantages to separating it like this? For one, it allows the view (the JTable class) to do things like
determine the column order to be displayed and to rearrange it, if necessary. In case you are interested, you can
disable the movement of columns. Listing 12-5 shows how you can use the JTable getTableHeader () method to
access the JTableHeader'" instance for this table. You then call the setReorderingAllowed() method with a value of 0
(false) to indicate that column reordering is not allowed.

Listing 12-5. Disabling Column Reordering
table.getTableHeader().setReorderingAllowed(0)

Types of Table Models

What kinds of table models exist in the Swing class hierarchy for your applications to use? There is an
AbstractTableModel! class as well as a DefaultTableModel.’? I'll let you guess which class is used as the default
should one not be provided for your JTable constructor call.

8See http://docs.oracle.com/javase/tutorial/uiswing/examples/components/TableSelectionDemoProject/src/
components/TableSelectionDemo. java.

*With thanks and homage to Gilbert and Sullivan for their marvelous works.

%See http://docs.oracle.com/javase/8/docs/api/javax/swing/table/JTableHeader.html.

See http://docs.oracle.com/javase/8/docs/api/javax/swing/table/AbstractTableModel.html.

"2See http://docs.oracle.com/javase/8/docs/api/javax/swing/table/DefaultTableModel.html.

159

http://docs.oracle.com/javase/tutorial/uiswing/examples/components/TableSelectionDemoProject/src/components/TableSelectionDemo.java
http://docs.oracle.com/javase/tutorial/uiswing/examples/components/TableSelectionDemoProject/src/components/TableSelectionDemo.java
http://docs.oracle.com/javase/8/docs/api/javax/swing/table/JTableHeader.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/table/AbstractTableModel.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/table/DefaultTableModel.html

CHAPTER 12 © MOTION TO TAKE FROM THE TABLE: BUILDING TABLES

Looking at the DefaultTableModel class documentation, you'll find more than two dozen methods, as well as
another dozen inherited from the AbstractTableModel base class. What do these methods allow you to do with your
table data? Well, from the user interface perspective, you can do things like add, move, and remove rows of data.
One of the most important methods, however, is the isCellEditable() method, which is used by the JTable class to
determine whether users are allowed to modify data in the specified cell. Listing 12-6 shows just how easily this can
be used.

Listing 12-6. Creating a Read-Only TableModel Class

9|class roTM(DefaultTableModel) :
10| def _init (self, data, headings) :

11| DefaultTableModel. init (self, data, headings)
12| def isCellEditable(self, row, col) :
13| return 0

14|class Table3(java.lang.Runnable) :

|o-

62| frame.add(

63| JScrollPane(

64| JTable(

65| roTM(self.data, headings),

66| selectionMode = LSM.SINGLE_SELECTION
67|)

68|)

69|)

The interesting point about the table model is how it is used, automatically, by the JTable class to determine
what information is to be displayed and how. How does the JTable class determine how the data is displayed? It calls
the tableModel getColumnClass(...) method, inherited from the base AbstractTableModel class, which you can
and should override.

Wait a minute, what does this mean? Previously, you learned that the default data type for each cell is a string.
Really, it’s an object that’s represented as a string by default. You can and should provide your own table model
getColumnClass(...) instance to identify the appropriate data type for each column. Why a column? One simplifying
implementation choice made by the Swing designers was to guarantee that all data in a JTable column would be of
a single type. This shouldn’t be too much of a restriction though since you can choose to identify the data type of the
column as an object and figure out how to display and manipulate the actual data.

Listing 12-7 shows a relatively simple table model descendent class that only allows the values in column one
(the second column)* to be modified (every other column is read-only). It also includes the getColumnClass(...)
method, which identifies the appropriate data type for each column.

Listing 12-7. My Table Model Class

13|class myTM(DefaultTableModel) :

14| def _init (self, data, headings) :

15| info = []

16| df = DateFormat.getDateInstance(DateFormat.SHORT)

BRemember that Jython and Java both use zero origin array indexing.

160

17|
18|
19|
20|
21|
22|
23|
24|
25|
26|
27|
28|
29|

for date, size, path in data :
info.append(
[

df.parse(date),

Integer(size.strip().replace(',"', '')),

String(path)

CHAPTER 12

DefaultTableModel. init_ (self, info, headings)
def getColumnClass(self, col) :
return [Date, Integer, String][col]
def isCellEditable(self, row, col) :
return col ==

Figure 12-3, shows the resulting output of this application (the source for which is in Table4.py). Is the way
the information is displayed in the table what you expected? Perhaps, perhaps not. Did you notice how the middle
column is now right-aligned, whereas all of the others are left-aligned? Why do you think that is?

MOTION TO TAKE FROM THE TABLE: BUILDING TABLES

& - P -
Date size Location Date size Location
Aug 22, 2011 726/CNBM\WebS... Aug 22, 2011 726|C:\BM\WebSphere\s...| ~ |
Jul 29, 2011 826/CNBM\WebS... | _ Jul 29, 2011 826/CNBM\WebSphere\A...| _
May 18, 2011 1822|CABM\WebS. . May 18, 2011 1822|CABM\WebSphere\A. .
Jan 17, 2011 5915/C:IBM\WebS... Jan 17, 2011 5915/C:\BM\WebSpherels...
Oct 19, 2010 3415/CNBM\WebS... Oct 19, 2010 3415/CABM\WebSphere\A_ .
May 12, 2010 2535/CNBM\WebS... May 12, 2010 2535|CNBM\WebSpherels...
Apr9, 2010 914|CNBM\WebS... Apr 9, 2010 914|CIBM\WebSphere\s...
Sep 1, 2009 1758|CAIBM\WebS. .. = Sep 1, 2009 1758|CAIBM\WebSphere\A. . =
& L & =]
Date size Location Date size Location

wWiay T, SUUJ T TR TLIVNY VTR T TET NS L L. a Wf‘dy I, «UU0 d T A TV T I TET S T a~
May 1, 2008 1655|CABM\WebSphere\scr... May 1, 2008 1655|CNIBM\WebSpherelscr...
May 1, 2008 1034|CABM\WebSpherelscr... May 1, 2008 1034|CNBM\WebSphere\scr...
May 1, 2008 1514|CABM\WebSphere\scr... May 1, 2008 1514|CNBM\WebSphere\scr...
May 1, 2008 1655|C:\IBM\WebSphere\scr... May 1, 2008 1655|CAIBM\WebSphere\scr...
Apr 30, 2008 2332|CNBM\WebSphere\scr... Apr 30, 2008 2332|CABM\WebSphere\scr...
Apr 30, 2008 23h82|C:UBMWebSphere\scr... Apr 30, 2008 CABMWebSphere\scr...
Apr 23, 2008 828|C:\IBM\WebSphereW7 .| = Apr 23, 2008 328/C:AIBMWebSphereW7 .| =
Apr 23, 2008 506{CANBM\WebSphere\WW7 .|« Apr 23, 2008 506|CABM\WebSphereW7 .|«

Figure 12-3. Table4 output

161

CHAPTER 12 © MOTION TO TAKE FROM THE TABLE: BUILDING TABLES

Cell Renderers

Another important aspect of the complex JTable class is the fact that each data type has a renderer instance that
determines how the information should be presented to the user. Unless you provide one, an instance of the
DefaultTableCellRenderer' class will be used. It is this renderer instance that displays the Integer values in the
middle column using right justification. What kind of cell renderers are provided by Swing? Table 12-3 provides this
information.

Table 12-3. Data Type-Specific Cell Renderers

Data Type Renderer Description

Boolean Displayed as a check box.

Number Displayed as a right-justified label.

Double Like Number, but the value is provided by a NumberFormat instance, which is locale-specific.
Float Same as Double.

Date Displayed as a left-justified label formatted by a DateFormat instance using the SHORT variation.
Icon Displayed as a centered label.

Object Displayed as a left-justified string in a label field.

Figure 12-4 shows some application images using various data types. For this application, the default
isCellEditable(...) method, that s, the one provided by DefaultTableModel, returns true for every cell. The first
image shows the initial column widths, the next image shows how a simple date value can be entered, and the last
two images show how a value of 1234567890 is displayed by the integer and float renderers. Notice how commas are
present in the Float column, but not in the Integer column.

See http://docs.oracle.com/javase/8/docs/api/javax/swing/table/DefaultTableCellRenderer.html.

162

http://docs.oracle.com/javase/8/docs/api/javax/swing/table/DefaultTableCellRenderer.html

CHAPTER 12 © MOTION TO TAKE FROM THE TABLE: BUILDING TABLES

Date Integer
12/29/77] 726
May 12, 2010 2535
Jun 23,2009 1715

Date Integer
Aug 22, 2011 726
May 12, 2010 2535
Jun 23, 2009 1715
May 3, 2008 1697
Apr 23, 2008 506

OFOFSA

May 3, 2008 1697
Apr 23, 2008 506

<]

Integer
Dec 29, 1977 | 12345...
May 12, 2010 2535
Jun 23, 2009 1715
May 3, 2008 1697
Apr 23, 2008 506

Date Integer
Dec 29, 1977 | 12345...
May 12, 2010 2535
Jun 23, 2009 1715
May 3, 2008 1697
Apr 23, 2008 506

Figure 12-4. Table5 output: data type rendering

Custom Cell Renderers

I have a question for you to consider: what do you think about representing a Boolean value as a check box? This
might make sense, at least as long as the data is editable. It is also very likely that Boolean values will be editable.

While working on this chapter, wondered if the selection model had any impact on the row, column, and cell
selection values. So I wrote a little Swing application to answer this question. The results of this test are displayed in
Table 12-2.

Three versions of the application can be found in the TableSelection#.py script files, where #is 1, 2, or 3. The
first version uses the simple expedient of not providing a TableModel, so all of the table cells default to being an
object, the default representation of which is a left-justified string value.

A reasonable improvement or iteration is to provide a simple table model that identifies each cell as being of
type Boolean, which results in the values being displayed using a check box centered in the cell. That'’s exactly what
the other versions of the application do. This is the point at which I wondered what it would take to provide my own
renderer, one that displays the Boolean value as a 0 or a 1. That’s what the third version of the application does. Since a
simple table model class already exists to identify each cell as a Boolean, and since a default renderer for type Boolean
already exists (see Table 12-3), you have to figure out how to replace this default Boolean renderer with one of your
own, specifically one that displays each value as a digit, centered in the cell. Figure 12-5 shows images from all three
verisons of this application.

163

CHAPTER 12 © MOTION TO TAKE FROM THE TABLE: BUILDING TABLES

(_single | One Group I Multi-Group

Row Col

(Single | One Group _T'_!_nt_l_lii'ﬁroup 1

o
=
19
e
Q
Fh

|
|
I

NORDOREE

EOEREIEI
NOROEE

B

b t
Single | One Group | Multi-Group |

Figure 12-5. TableSelection output with default and custom renderer

The first application, TableSelectioni.py, simply creates each JTable instance using the defaults. The second
image, generated by TableSelection2.py, uses a table model that identifies each cell as being of type Boolean. The
last image, generated by TableSelection3.py, replaces the default renderer of Boolean values with the one shown in
Listing 12-8 (line 81).

164

CHAPTER 12 © MOTION TO TAKE FROM THE TABLE: BUILDING TABLES

Listing 12-8: Custom Renderer for Boolean Values

17lclass boolRenderer(DefaultTableCellRenderer)

| |
| 18] def __init__(self) |
| 191 self.result = JLabel(|
I 201 horizontalAlignment = SwingConstants.CENTER I
| 21]) |
I 221 def getTableCellRendererComponent(I
| 231 self, |
| 24| table, # JTable - table containing value]
| 251 value, # Object - value being rendered I
| 261 isSelected, # boolean - Is value selected? I
| 271 hasFocus, # boolean - Does this cell have focus?]|
| 28] rowIndex, # int - Row # (0..N) |
| 29| vColIndex # int - Col # (0..N) |
| 301) |
| 31] self.result.setText(value.toString()) |
| 321 return self.result I
| P I |
| 811 bTable.setDefaultRenderer(Boolean, boolRenderer()) |
| |

A Few Cautions. . .

As you can see in Listing 12-8 as well as in the Javadoc for the DefaultTableCellRenderer class and the
TableCellRenderer interface' on which it is based, only one method class exists. When providing a custom
TableCellRenderer, it is important that you realize the potential performance impacts that can occur because of how
the getTableCellRendererComponent(. . .) method is used. So, take a few moments to read the “Implementation
Note” on the DefaultTableCellRenderer documentation page.

One of the important things that a custom TableCellRenderer should do is reuse a component instance, instead
of instantiating a new one on each call to the getTableCel1lRendererComponent(...) method. Listing 12-8 shows how
this class creates a common JLabel component instance in the constructor and reuses it on each use (lines 31 and 32).

It's interesting to note that if, for some reason, you don’t like the column-centric technique for choosing the cell
renderer, it is possible to create a table class based on JTable, which provides a getCellRenderer (.. .) method that
uses a different technique. However, as you might imagine, the difficulties associated with a drastic approach such as
this is not something to be underestimated. Although possible, it should rarely be considered a viable option.

5See http://docs.oracle.com/javase/8/docs/api/javax/swing/table/TableCellRenderer.html.

165

http://docs.oracle.com/javase/8/docs/api/javax/swing/table/TableCellRenderer.html

CHAPTER 12 © MOTION TO TAKE FROM THE TABLE: BUILDING TABLES

Which Cell Renderer to Use?

For tables that contain a variety of data types, it is quite possible that multiple cell renderer instances exist. When this
occurs, it might not be clear how the table determines which one to use. How is this determined? Well, if a renderer
has been defined for the specified table column, it takes precedence. If not, the renderer for the data type for that
column will be used. So, if you want to use a custom renderer, you have to decide if you want all cells of the same type
to be rendered in the same fashion or if you only want the data in a specific column to use this custom renderer. This
should help you decide which technique to use to specify the custom renderer.

What would be a good example of this kind of decision? Consider a situation whereby your table contains a
number of columns containing floating-point values. You might want some of these rendered using one format (such
as a percentage, with a specific number of decimal places) and another column as a completely different format (such
as in currency).

You just saw how to set up a cell renderer for a specific data type. How do you set up a column-specific one?
First, you need to access the TableColumn'® instance for the specific table column in question. Fortunately, this is
easily done by using the getColumn(...) method of the TableColumnModel'” instance that is used to hold the column
information for the specific table instance. This TableColumn class includes a setCellRenderer(...) method, which
allows you to specify the renderer instance for this particular table column. Listing 12-9 shows how easy this is. Please
note how the col variable identifies the column number for which this renderer instance is being specified.

Listing 12-9. Defining a Column-Specific Cell Renderer

| t = JTable(...) I
| t.getColumnModel().getColumn(col).setCellRenderer(myRenderer()) |

Don’t JLabel Me

The custom renderer used in Listing 12-8 used an instance of the JLabel class. Can some other component class be
used? Certainly! In fact, it appears to be quite reasonable to use something like the JFormattedTextField class that
you first saw in Chapter 7.

Figure 12-6 shows some sample images of the first attempt to use a JFormattedTextField as the component
returned for the custom renderer of the last column of the table. This column, which contains values of type Double,
has exactly two digits after the decimal point. Notice how the editor displays the cell data.

'“See http://docs.oracle.com/javase/8/docs/api/javax/swing/table/TableColumn.html.
7See http://docs.oracle.com/javase/8/docs/api/javax/swing/table/TableColumnModel.html.

166

http://docs.oracle.com/javase/8/docs/api/javax/swing/table/TableColumn.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/table/TableColumnModel.html

CHAPTER 12 © MOTION TO TAKE FROM THE TABLE: BUILDING TABLES

- | Tabl = < | Tabl =
TIF Date Integer Float | Double TIF Date Integer Float | Double
Aug 22, ... 726 0314 | v |Aug22, .. 726 0314 |
L] [May12, .. 2535 1128 | L] [may12, .. 2535 11628 |
v] [Jun23 .. 1715 22942 | V] [Jun23, .. 1715 22|942 |
[] [May3 2. 1697 33]1257 | [] [May3 2. 1697 3.3|1257 |
v] |Apr23, .. 506 441571 | v] |Apr23, .. 506 441571 |

= | Tabl = e =
TIF Date Integer Float | Double TIF Date Integer Float | Double
v] |Aug22, ... 726 0| 3.14159 vl |Aug22, .. 726 0314 |
[J [May12 .| 2535 11]6.28 | May12, [2535 11/6.28
Jun23 .. 1715 22942 | vl [un23,.| 1715 22|942 |
L] [May3 2. 1697 3.3]1257 | [] [may3 2. 1697 3.3|1257 |
Apr 23, ... 506 441571 | Apr 23, ... 506 44|1571 |

Figure 12-6. Table6a output with a custom renderer

Unfortunately, it isn’t quite right, is it? For example, when the first row is selected, the last cell isn’t highlighted
the same way that the rest of the row is. Additionally, the numeric values, although they are displayed with exactly two
decimal places, are left aligned in the cell. Nor does the cell have a border when it is selected, as the other cells in the row
do. Listing 12-10 shows the first attempt at a renderer, which uses a JFormattedTextField instance to display the values.

Listing 12-10. Table6a.py: First Attempt at Custom Renderer

18| class myRenderer(DefaultTableCellRenderer) :
def _init (self) :
nf = NumberFormat.getInstance()
nf.setMinimumFractionDigits(2)
nf.setMaximumFractionDigits(2)
self.result = JFormattedTextField(nf)
getTableCellRendererComponent (

19|
20|
21|
22|
23|
24|
25|
26|
27|
28|
29|
30|
31|
32|
33]

def

self,
table,
value,
isSelected,
hasFocus,
rowIndex,
vColIndex

self.result

JTable - table containing value

Object - value being rendered

boolean - Is value selected?

boolean - Does this cell have focus?
int - Row # (0..N)

int - Col # (0..N)

.setValue(value)

167

CHAPTER 12 © MOTION TO TAKE FROM THE TABLE: BUILDING TABLES

34| return self.result
[...
74| model = myTM(self.data, headings)
75| table = JTable(
76| model,
77| selectionMode = ListSelectionModel.SINGLE_SELECTION
78|
79| table.getColumnModel().getColumn(
80| model.getColumnCount() - 1 # i.e., last column
81|).setCellRenderer(
82| myRenderer ()
83|)

Let’s start by fixing the alignment problem. A little investigation into the JFormattedTextField Javadoc™
shows that it inherits the horizontal alignment property from the JTextField class.” This allows you to add a
horizontalAlignment keyword argument to the JFormattedTextField constructor call. Listing 12-11 shows this
minor modification.

Listing 12-11. Table6b.py with Horizontal Alignment

19|class myRenderer(DefaultTableCellRenderer) :
20| def _init (self) :

21| nf = NumberFormat.getInstance()

22| nf.setMinimumFractionDigits(2)

23| nf.setMaximumFractionDigits(2)

24| self.result = JFormattedTextField(

25 nf,

26| horizontalAlignment = JTextField.RIGHT
27|)

What does this do to the application’s output? Figure 12-7 shows how this change affects the cells’ appearance.
This does improve things a little bit, but additional challenges remain.

8See http://docs.oracle.com/javase/8/docs/api/javax/swing/IFormattedTextField.html.
“See http://docs.oracle.com/javase/8/docs/api/javax/swing/ITextField.html.

168

http://docs.oracle.com/javase/8/docs/api/javax/swing/JFormattedTextField.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/JTextField.html

& -
TIF Date | Integer | Float | Double
Aug 22, ... 726 0 314
L] [may12, .. 2535 1.1 £.28)
vl [Jun23, .. 1715 22 9 42|
L] [may3 2. 1697 3.3]___ 1257
v| |Apr23, .. 506 44| 1571|

Integer

726

2535

1715

1697

_'
RIORIOCRIS

506

& —!
TIF Date Integer Float | Double
V| Aug 22, ... 726 0] 3.14159
L] May 12, ... 2535 1.1 6.28/
v Jun 23, ... 1715 22 9.42|
] |may3, 2. 1697 331257/
4 Apr 23, .. 506 44 15.71J

CHAPTER 12

Figure 12-7. FormattedTextField with horizontal alignment fix

MOTION TO TAKE FROM THE TABLE: BUILDING TABLES

You can use the fact that the DefaultTableCellRenderer already does a lot of the work for you to resolve another
issue. With a little bit of code, you should be able to take advantage of this fact. Listing 12-12 shows one way to use the
DefaultTableCellRenderer class to solve some of the custom rendering issues.

169

CHAPTER 12 © MOTION TO TAKE FROM THE TABLE: BUILDING TABLES

Listing 12-12. Table6c.py: One Solution to the Custom Rendering Issues

19|class myRenderer(DefaultTableCellRenderer) :
20| def _init (self) :

21| nf = NumberFormat.getInstance()

22| nf.setMinimumFractionDigits(2)

23| nf.setMaximumFractionDigits(2)

24| self.result = JFormattedTextField(

25| nf,

26| border = None,

27| horizontalAlignment = JTextField.RIGHT

28|)

29| self.DTCR = DefaultTableCellRenderer()

30| def getTableCellRendererComponent(

31| self,

32| table, # JTable - table containing value
33| value, # Object - value being rendered
34| isSelected, # boolean - Is value selected?
35| hasFocus, # boolean - Does this cell have focus?
36| TOoMW, # int - Row # (0..N)

37| col # int - Col # (0..N)

38|)

39| comp = self.DTCR.getTableCellRendererComponent (

40| table, value, isSelected, hasFocus, row, col

4])

42| result = self.result

43| result.setForeground(comp.getForeground())

44| result.setBackground(comp.getBackground())

45| result.setBorder(comp.getBorder())

46| result.setValue(value)

47| return result

What does this mean as far as this output is concerned? Well, as you can see in Figure 12-8 when a row is selected,
all of the cells in the row have the same color scheme. The second image shows that when a cell in the last column is
selected, a slightly darker border is visible. And finally, the last image shows that when an invalid value is specified,
this fact is highlighted in a very obvious fashion. So it appears that using the default cell renderer is a viable solution
for some of these display issues.

170

£ | Tab —
TF | Date | Integer | Float | Double
v lAug 22, . 726 o 314
] IMay12,.| 2535 11| 628
W |lun23,_.| 1715 22 942
O] IMay3.2.| 1697 33 1257
¥ |Apr23, .. 506 44 1571

- | Tablebe

Date

Integer

Aug 22, ..

726

May 12, ...

2535

Jun 23, ...

1715

May3, 2.

1697

Apr23, ..

Date

Integer

Double

Aug 22, ...

726

X

May 12, ...

2535

6.28

Jun 23, ..

1715

9.42

May 3, 2...

1697

12.57

Apr23, ...

506

15.71

Figure 12-8. Table6c output showing expected results

Using Cell Editors

Another important part of displaying information in a tabular form is the fact that you'll often want to allow the user
to modify the information. This is where a cell editor comes into play. For this purpose, the Swing hierarchy includes
aCellEditor, aTableCellEditor? interface, and a DefaultCellEditor® class. Which of these are important for
providing your own cell editor? Well, the base CellEditor interface provides a group of methods that are rarely
replaced or overridden. So, it is best if you just leave them alone.
On the other hand, the TableCellEditor interface provides a method called
getTableCellEditorComponent(...) that enables developers to provide or specify an editor component with a table.

CHAPTER 12

MOTION TO TAKE FROM THE TABLE: BUILDING TABLES

2See http://docs.oracle.com/javase/8/docs/api/javax/swing/CellEditor.html.
HSee http://docs.oracle.com/javase/8/docs/api/javax/swing/table/TableCellEditor.html.
2See http://docs.oracle.com/javase/8/docs/api/javax/swing/DefaultCellEditor.html.

171

http://docs.oracle.com/javase/8/docs/api/javax/swing/CellEditor.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/table/TableCellEditor.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/DefaultCellEditor.html

CHAPTER 12 © MOTION TO TAKE FROM THE TABLE: BUILDING TABLES

Boolean Cell Editors

You've already seen some of the simple, default, cell editors. Consider for a moment what you are doing when you
have a table display Boolean values with a check box. Every time you toggle the check box, you are in fact editing

the value in that cell. That’s why, if you have a table model class in your application and your table includes Boolean
values, the setValueAt(...) method must save the value as a Boolean, and not as the Integer that is provided by

the setValueAt(...) method. Listing 12-13 shows the simple table model class that was used to verify this fact.
Notice how the setValueAt(...) method, in lines 27-29, displays the value and its data type before using the Boolean
constructor to save the appropriate kind of value.

Listing 12-13. BoolEdit.py Table Model Class

13|class tm(DefaultTableModel) :
14| def _init (self) :

15| head = 'Name,Value'.split(',')

16| self.data = [

17| ['False', Boolean(0)],

18| ['True' , Boolean(1)]

19]

20| DefaultTableModel. init (self, self.data, head)
21| def getColumnClass(self, col) :

22| return [String, Boolean][col]

23| def isCellEditable(self, row, col) :

24| return col == 1

25| def getValueAt(self, row, col) :

26| return self.datal row][col]

27| def setValueAt(self, value, row, col) :

28] print 'tm.setValueAt():', value, type(value)
29| self.data[row][col] = Boolean(value)

Figure 12-9 shows a couple of images of the application, as well as the output that is generated by the
setValueAt(...) method. Note how the value that is provided to the method is a Python integer. This is why you need
to convert it to a Boolean before saving it in the data array instance.

Press <Enter> to terminate the application:
tm.setValueAt (): 1 org.python.core.PyInteger

tm.setValuelAt(): 0 org.python.core.PyInteger
tm.setValueAt(): 1 org.python.core.PyInteger

Figure 12-9. BoolEdit sample output

Did you notice that you didn’t even have to provide a custom or specialized editor for this example? In Table 12-3,
you can see how Swing provides a renderer for Boolean types. Since the possible values are very limited, you don’t need
to worry about an editor for Boolean types.

172

CHAPTER 12 © MOTION TO TAKE FROM THE TABLE: BUILDING TABLES

Numeric Cell Editors

What about the numeric types? What do the default renderers and editors for these types provide? Figure 12-10 shows
some images from the sample NumbEdit. py application that show the minimum values for each type in the top rows
and the maximum values for each type in the bottom rows.

Double Float

Integer

Long

0 0

-2147483648

-922337203...

179,769,31...| 340,282.34...

2147483647

922337203...

Double Float

Integer

4 9E-324| 0

-2147483648

-922337203...

127| 179,769,31..| 340,282,34...

2147483647

922337203...

Double Float

Integer

Long

0 0

-2147483648

-922337203...

1.7976931349 340,282,34..

2147483647

Double Float

Integer

922337203...

Long

0

-2147483648

-922337203...

623157E308] 340,282,34...

2147483647

922337203...

Double Float

Integer

Long

0 0

-2147433648

-922337203...

179,769,31..| 340,28234..

2147483647

922337203...

Figure 12-10. NumbEdit.py output: default numeric renderers and editors

At first glance, it may seem that the minimum Double and Float values should be something other than zero. The
fact that they are non-zero, just very small, as is evident when the default editor for either value is used. The second
image shows that the minimum Double value is 4.9E-324, which is very close to 0. So close, in fact, that the default
renderer displays a value of zero instead. The third and fourth images show that the largest Double value has too
many significant digits to be displayed in the available space (it has a value of 1.7976931348623157E308). so elipses
are used to indicate that the values have been truncated.

The last image shows what happens when a user attempts to enter a value that is outside of the range of valid
values. The default editor highlights the cell using a red border, and the user is unable to move the focus away from
the cell.

173

CHAPTER 12 © MOTION TO TAKE FROM THE TABLE: BUILDING TABLES

One question that frequently comes to mind relates to the setValueAt(...) method that is called to save user-
specified values of various types. Java examples frequently use a switch statement or nested if-then-else statements
to deal with this type of thing. Jython, on the other hand, can make this kind of thing trivial, as shown in Listing 12-14.%

Listing 12-14. NumbEdit.py getValueAt(...) and setValueAt.(...)Methods
11|class tm(DefaultTableModel) :

|
29| def getColumnClass(self, col) :

30| return [Byte, Double, Float, Integer, Long, Short][col]
31| def getValueAt(self, row, col) :

32| return self.data[row][col]

33| def setValueAt(self, value, row, col) :

34| print 'tm.setValueAt():', value, type(value)

35| Type = self.getColumnClass(col)

36| self.data[row][col] = Type(value)

All of this capability is provided by the default numeric renderers and editors, which is actually pretty neat. Can
you think of a situation where you might need to provide your own numeric editor? What about the situation where you
want to allow a specific range of values? You might be able to use a numeric JSpinner as was discussed in Chapter 7,
but let’s start with something a little simpler. What does it take to provide a custom numeric editor that verifies the user
input before it is accepted?

Custom Numeric Cell Editors

First, you need to decide the range of value with which you want to work. For example, say your application wants to
work with a simple concept like TCP/IP port numbers, which range from 0 to 65535.* Since the maximum value is
larger than Short.MAX_VALUE (i.e., 32767), you have to use an Integer type field, and the editor has to verify the user
input before accepting it.

How, exactly, is the custom editor class supposed to check the user input? Well, first, you have to realize that the
editor has to provide some sort of input field. If you base the custom editor on DefaultCellEditor,? you can use the
fact that one of the constructors requires a JTextField. Listing 12-15 shows one way of doing this.

Listing 12-15. portEditor Class and Table Model from PortEdit.py

14|class portEditor(DefaultCellEditor) :
15| def _init (self) :

16| self.textfield = JTextField(

17| horizontalAlignment = JTextField.RIGHT

18|

19| DefaultCellEditor. init (self, self.textfield)

20| def stopCellEditing(self) :

#Again, this script uses a temporary variable, Type, so the line isn’t too long.
2Ignore the fact that a port number is in fact an unsigned short integer, which Java doesn’t support.

174

CHAPTER 12 © MOTION TO TAKE FROM THE TABLE: BUILDING TABLES

21| try :

22| val = Integer.valueOf(self.textfield.getText())
23| if not (-1 < val < 65536) :

24| raise NumberFormatException()

25| result = DefaultCellEditor.stopCellEditing(self)
26| except :

27| self.textfield.setBorder(LineBorder(Color.red))
28| result = 0 # false

29| return result

30|class tm(DefaultTableModel) :
31| def _init (self) :

32| head = 'Name,Value'.split(',')
33| self.data = [
34| ['Min Port', Integer(o0)],
35| ['Max Port', Integer(65535)]
36|]
37| DefaultTableModel. init_ (self, self.data, head)
38| def isCellEditable(self, row, col) :
39| return col ==
40| def getColumnClass(self, col) :
41| return [String, Integer][col]
42| def getValueAt(self, row, col) :
43| return self.data[row][col]
44| def setValueAt(self, value, row, col) :
45| print 'tm.setValueAt():', value, type(value)
46| self.data[row][col] = Integer(value)
l...
55| table = JTable(tm())
56| table.setDefaultEditor(Integer, portEditor())

This example shows how easy it is (line 27) to duplicate the technique used by DefaultCellEditors (thatis,
highlight the cell with a red border). It’s also good to note that since the custom cell editor is based on a JTextField, the
value provided to the setValueAt(...) table model method (lines 44-47) is a string, not an integer as you might expect.

How hard do you think it would be to change the code so it would display the port number using a different
format (for example, in hexadecimal, octal, or even using a comma for values larger than 999)? Think about this for
a moment. One significant decision you need to make is how, exactly, you want to represent port values. If you want
to display (render) them using hexadecimal characters, should they be maintained, verified, and edited as character
strings, or do you need to work with integer values elsewhere in the application?

These are the kinds of things that you need to consider as an application developer. How should the values be
displayed (rendered) for the users? How do you expect the users to provided new values (editor)? What do you need to
do to verify user input? Just think of the fun you have ahead of you.

JComboBox Cell Editors

If you look at the constructors for the DefaultCellEditor class,? you see one that accepts a JCheckBox argument
(which is likely to be the one used by the default Boolean cell editor), one that accepts a JTextField argument, like
the one you just saw, and one that accepts a JComboBox argument. What does that look like? Figure 12-11 shows some
sample application images for the cbEdit1.py script that use a combo box editor for the values in column 1.

175

CHAPTER 12 © MOTION TO TAKE FROM THE TABLE: BUILDING TABLES

Name Value
Which snam
quick
brown
fox
jumped
over
the
lazy
spam

[1»]4

Name

Which

Kl

Figure 12-11. cbEdit1.py output using a JComboBox editor

It's interesting to note that you can’t tell, from the initial display, that a combo box or drop-down list will be
displayed, until you invoke the editor on the value displayed in column 1. Is there a way to show this? Certainly!
All you have to do is set the cell renderer and the editor. Figure 12-12 shows some images from the cbEdit2.py
application, which does this.

Name Value

Uno The

Dos anick

Tres hrown

' quick
brown
fox
jumped
over
the

ounick muick

hrown lazy | | Ssnam

spam

Figure 12-12. cbEdit2.py output using a JComboBox editor and renderer

A Slight Detour: Table Row Height

Figure 12-12 shows that the default might not always be optimal. So, how do you change the height of the table rows?
When one of these kinds of questions arises, the first place that you should look is at the documentation for the class
in question. In this case, the JTable® class. Search for “rowheight” and you'll find a (protected) rowHeight attribute, as
well as some getter and setter methods.

The fact that the class includes multiple getter and setters, as shown in Table 12-4 illustrates that this class
provides an opportunity to control the row height used by the rows in the table. In addition, each row can have a
different height.

176

CHAPTER 12 © MOTION TO TAKE FROM THE TABLE: BUILDING TABLES

Table 12-4. JTable rowHeight Getter and Setter Methods

Getter/Setter Name Description
getRowHeight() Returns the JTable rowHeight (in pixels).
getRowHeight(int row) Returns the rowHeight of the specified JTable row.

setRowHeight(int rowHeight) Specifies the rowHeight to be used by all table rows, in pixels, and initiates a
table revalidation and repainting.

setRowHeight(int row, Specifies the rowHeight to be used by the specified row and initiates a table
int rowHeight) revalidation and repaint.

The results of using the rowHeight keyword attribute on the JTable constructor call is shown in Figure 12-13.
Remember that since the frame containing the JTable instance is contained in a scroll pane, simply changing the
height of the rows isn’t sufficient. You also need to increase the height of the frame if you don’t want the scroll bar to
be displayed.

£ keb.
Name Value
Uno The v
Dos quick
Tres brown

quick the
brown lazy

Figure 12-13. cbEdit3.py output with slightly larger rows

Interestingly enough, the second image shows that the height of the drop-down list (the ComboBox) isn’t affected
by the JTable row height. This shouldn’t be too much of a surprise when you think about it. The row height that you
changed was in the table, not in the ComboBox.

Listing 12-16 shows the slight modifications required to make the application easier to use. The only changes are
found in lines 54, where the height of the frame is slightly larger (from 112 to 125 pixels). The other change can be seen
in line 58, where you specify the rowHeight keyword argument used to assign the value of 20 (pixels) for each row.

177

CHAPTER 12 © MOTION TO TAKE FROM THE TABLE: BUILDING TABLES

Listing 12-16. The cbEdit3 Class’s run Method

51|class cbEdit3(java.lang.Runnable) :
52| def run(self) :

53] frame = JFrame(

54 'cbEdit3’,

55| size = (200, 125),

56| locationRelativeTo = None,

57| defaultCloseOperation = JFrame.EXIT_ON_CLOSE
58])

59| table = JTable(tm(), rowHeight = 20)

60| table.setDefaultRenderer(JComboBox, cbRenderer())
61| table.setDefaultEditor(JComboBox, cbEditor())
62| frame.add(JScrollPane(table))

63| frame.setVisible(1)

Warning: Ugliness Ahead

Up to this point, I have been completely avoiding the fact that the version of Jython that is provided with the
WebSphere Application Server product is, in a word, ancient. I'm sorry, but it’s true. Up until now, it hasn’t caused any
problems, at least nothing significant. Now, however, you're going to see where it makes a difference.

When I tried to implement a simple cell editor based on the JSpinner® class, I converted a simple Java
application, an abbreviated version of which is shown in Listing 12-17. The point that I want to make with this
example is the fact that the class extends the AbstractCellEditor class and implements the TableCellEditor
interface, as you can see in lines 12 and 13.

Listing 12-17. SpinEditor.java JSpinner Cell Editor

12|public class SpinEditor extends AbstractCellEditor
13| implements TableCellEditor

144

15| JSpinner spinner;

16| public SpinEditor()

17l A

18] String values[] = { "Spam", "Eggs", "Bacon" };

19 spinner = new JSpinner(new SpinnerListModel(values));
20| spinner.setEditor(new JSpinner.ListEditor(spinner));
1]}

22| public Component getTableCellEditorComponent(

23| JTable table,

24| Object value,

25 boolean isSelected,

26| int row,

27| int column

28])

»Spinkditor.java is incompletely shown here; only enough is shown for discussion purposes.

178

CHAPTER 12 © MOTION TO TAKE FROM THE TABLE: BUILDING TABLES

29| |
30| spinner.setValue(value);
31| return spinner;
32| }
33| public Object getCellEditorValue()
34 {
35| return spinner.getValue();
36|}
37| public static void main(String[] args)
38| {
|
63 }
64/}

Why use this approach? The main reason for doing so relates to the fact that the previous examples used the
DefaultCellEditor constructors, as shown in Table 12-5. The Java example, shown in Listing 12-17, illustrates how
you might go about creating a different kind of table cell editor, using a totally different component type.

Table 12-5. DefaultCellEditor Constructor Signatures

DefaultCellEditor(JCheckBox checkBox)
DefaultCellEditor(JComboBox comboBox)
DefaultCellEditor(JTextField textField)

What does this look like when you convert it to Jython? You are likely to get an editor class similar to Listing 12-18.
Notice how easy the conversion from Java to Jython is. This might be of assistance to you in the future, should you
want to convert a Java Swing application to Jython.

Listing 12-18. SpinEdit1.py Editor Class

14|class editor(AbstractCellEditor, TableCellEditor) :
15| def _init (self) :

16| values = 'Bacon,Eggs,Spam'.split(',")

17| self.spinner = JSpinner(SpinnerListModel(values))
18| self.spinner.setEditor(

19| JSpinner.ListEditor(self.spinner)

20|

21| def getCellEditorValue(self) :

22| return self.spinner.getValue()

23| def getTableCellEditorComponent(

24| self, # object reference
25 table, # JTable

26| value, # Object

27| isSelected, # boolean

28] Tow, # int

29| column # int

30|) .

31| self.spinner.setValue(value);

32| return self.spinner;

179

CHAPTER 12 © MOTION TO TAKE FROM THE TABLE: BUILDING TABLES

Unfortunately, if you were to execute this script using the wsadmin utility from a WebSphere Application Server
installation and click one of the values in the right-most column, you would see an exception like the one shown in
Figure 12-14.

Press <Enter> to terminate the application:Exception in thread
"AWT-EventQueue-0" Traceback (innermost last):
(no code object) at line 0

AttributeError: abstract method "isCellEditable" not implemented

Figure 12-14. Thewsadmin exception about the isCellEditable method

The really strange thing is that when I tried to use this same script with the latest stable build of Jython
(Jython 2.5.3), it worked just fine. But how do you get it to work with the version of Jython provided by the WebSphere
product?

Instead of inheriting from AbstractCellEditor and TableCellEditor, as shown in Listing 12-17, you can base
the editor class on the DefaultCellEditor class, as shown in Listing 12-19.

Listing 12-19. SpinEdit2.py Editor Class Based on DefaultCellEditor

13| class editor(DefaultCellEditor) :
14| def _init (self) :

15| DefaultCellEditor. init (self, JTextField())
16| values = 'Bacon,Eggs,Spam'.split(',")

17| self.spinner = JSpinner(SpinnerListModel(values))
18| self.spinner.setEditor(

19| JSpinner.ListEditor(self.spinner)

20|

21| def getCellEditorValue(self) :

22| return self.spinner.getValue()

23| def getTableCellEditorComponent(

24| self, # object reference
25| table, # JTable

26| value, # Object

27| isSelected, # boolean

28] Tow, # int

29| column # int

30|)

31| self.spinner.setValue(value);

32| return self.spinner;

This script works using the wsadmin utility and Jython 2.5.3. Since this book is primarily intended for WebSphere
script writers, subsequent scripts will be based on the DefaultCellEditor class, and not on the AbstractCellEditor
class and the TableCellEditor interface. Nonetheless, it was worth noting, so you don’t waste the same kind of time
that I did when I first encountered this issue.

Figure 12-15 shows some images from this application. The first two use an application frame height of 106 pixels,
with each table row using 20 pixels. The next two images show what happens when each row uses 25 pixels and the
frame height is set to 116 pixels.

180

CHAPTER 12 © MOTION TO TAKE FROM THE TABLE: BUILDING TABLES

Figure 12-15. SpinEdit2.py output images

The interesting note about these images is that when you use a uniform row height for each table row to better
display the cell editor representation, the table representation might look quite right. This is due to the fact that you
chose to display the cell values using a text, or string renderer, instead of a spinner renderer. If you use a custom
renderer instead, you'll see that each cell in this column uses the spinner icons, as shown in Figure 12-16.

Figure 12-16. SpinEdit3.py output images using a JSpinner renderer

Did you notice how the cell being edited in the second image shows the text of the spinner selection in bold? It’s
little things like this that make your application more user friendly. That’s one of the best reasons for using a robust
and well-designed framework like Swing to build your applications.

Are there other improvements that you should make? Take another look at the application. In fact, let’s make this
more obvious by comparing the outputs of SpinEdit2 and SpinEdit3, side by side, when the first row in the table is
selected. See Figure 12-17.

181

CHAPTER 12 © MOTION TO TAKE FROM THE TABLE: BUILDING TABLES

—] =]
= 5P, = e
Name Value Name Value
is Bacon This Baconf=
That Eggs That Eggsf=

Figure 12-17. SpinEdit2 and SpinEdit3 renderer differences

Seeing them like this makes it more obvious that the custom renderer isn’t dealing well with the cell colors.
This shouldn’t be too difficult to fix, right? Listing 12-12 showed how to solve a similar issue. Listing 12-20 shows the
revision of the sRenderer class from SpinEdit4.py.

Listing 12-20. SpinEdit4.py sRenderer Class

34|class sRenderer(DefaultTableCellRenderer) :
35] def _init (self) :

36| self.DTCR = DefaultTableCellRenderer()

37| self.spinner = JSpinner(SpinnerListModel(choices))

38| def getTableCellRendererComponent(

39| self,

40| table, # table containing cell being rendered
41| value, # Object - value being rendered

42| isSelected, # boolean - Is value selected?

43| hasFocus, # boolean - Does this cell have focus?
44| Tow, # int - Row # (0..N)

45| col # int - Col # (0..N)

46|) :

47| comp = self.DTCR.getTableCellRendererComponent(

48| table, value, isSelected, hasFocus, row, col

49|)

50| result = self.spinner

51| result.setForeground(comp.getForeground())

52| result.setBackground(comp.getBackground())

53| result.setValue(value)

54| return result

Unfortunately, this doesn’t resolve the problem because the JSpinner class has its own model-specific editor. In
order to “fix” this—that is, to have the spinner renderer reflect the appropriate colors—you need to change the text
editor field that the spinner is using.

Listing 12-21 shows the revised spinner renderer class from the SpinEdit5.py sample application. Figure 12-18
shows what this does to the application’s output.

Listing 12-21. SpinEdit5.py with Fixed sRenderer Class

34|class sRenderer(DefaultTableCellRenderer) :
35| def _init (self) :

36| self.DTCR = DefaultTableCellRenderer()

37| self.spinner = JSpinner(SpinnerListModel(choices))
38| def getTableCellRendererComponent(

39| self,

182

CHAPTER 12 © MOTION TO TAKE FROM THE TABLE: BUILDING TABLES

40| table, # table containing cell being rendered
41| value, # Object - value being rendered
42| isSelected, # boolean - Is value selected?
43| hasFocus, # boolean - Does this cell have focus?
44| Tow, # int - Row # (0..N)
45| col # int - Col # (0..N)
46|) :
47| comp = self.DTCR.getTableCellRendererComponent (
48| table, value, isSelected, hasFocus, row, col
49])
50| tf = self.spinner.getEditor().getTextField()
51| tf.setForeground(comp.getForeground())
52| tf.setBackground(comp.getBackground())
53| self.spinner.setValue(value)
54| return self.spinner
p- - &, i &, L
Name Value Name Value Name Value
his Bacon|= This Bacon|= This Spamf=
That Eggsi= That Eggs’= That Eggs

Figure 12-18. SpinEdit5 output

Column Manipulation

Up to this point, you haven’t learned much about column adjustments and manipulations. Back in Figure 12-1, you
saw how the default table settings allow users to reorder the columns. Listing 12-3 shows how this feature can be
disabled. Now, you're going to take a look at ways that you can manipulate your table columns.

Column Widths

In the section entitled, “Defaults Can Be Harmful to Your . . . Mental Health,” you learned that, by default, the
available horizontal space will be shared equally among each of the columns. If that is not the best appearance for
your application, you need to take control of the way the column space is allocated. The first thing to realize is that
your table might not have column headings. If it does, the information in these headings might not affect the way that
column space is, or should be, allocated. For example, if the information in your column headings is always wider
than the table data, this can greatly simplify the way that column space should be allocated. On the other hand, if

the data is sometimes wider than your column headings, you need to take this into account when your application
determines how wide each column should be.

183

CHAPTER 12 © MOTION TO TAKE FROM THE TABLE: BUILDING TABLES

Column Heading Width

In order to determine the amount of space (the width) that should be used to comfortably display your headings,
the program needs to make use of the renderer used by the table header. The fact that the table header has its own
renderer shouldn’t be too much of a surprise to you. Remember that the header will almost always contain strings,
whereas the table data will have various types of data in each column. Besides, you previously learned about the
JTableHeader class,' when you learned how to disable the reordering of columns.

Now, you're going to use this class to obtain the renderer used to display the table header. Let’s revisit the
application, last seen in Table6c. py, and revise it to adjust the width of the columns using the width of the column
headings.

Listing 12-22 shows the code used to do this. You may be surprised by the row number of -1, in
line 105. The Javadoc for the TableCellRenderer interface' includes a comment in the section on the
getTableCellRendererComponent(...) method that states, “When drawing the header, the value of row is -1.”

Listing 12-22. Table7.py: Specifying the Column Width Using Header Information Only

97| hRenderer = table.getTableHeader().getDefaultRenderer()
98| for col in range(model.getColumnCount()) :

99| column = table.getColumnModel().getColumn(col)
100| comp = hRenderer.getTableCellRendererComponent (

101 | None, # Table

102 | column.getHeaderValue(), # value

103] 0, # isSelected = false
104 | 0, # hasFocus = false
105] -1, # row #

106 | col # col #

107 |)

108 width = comp.getPreferredSize().width

109 column.setPreferredWidth(width)

This attempt fails because the preferred size is only a suggestion, not an absolute and firm limitation or
restriction.?® If you want to do this, you have to set the minimum and maximum column widths. Be careful though. In
some classes the method and attribute names have minimum and maximum spelled out entirely. The TableColumn
class,'® on the other hand, has setMinWidth(...), and setMaxWidth(...) methods instead. So, by replacing line 109
in Listing 12-20 with two statements, one to set the minimum column width and one to set the maximum column
width, you get the output in Figure 12-19, which was generated using the Table8.py script.

2And thirdly, the code is more what you’d call “guidelines” than actual rules.

184

£ [—]
T..|DatelntegenFloaiDoub..
[v]Au..| 726] 0[3.141
[M. | 2535] 11| 6.28
[V]lJu..| 1715 2.2| 9.42
[Jfm... | 1697| 3.3| 1257
[v][Ap 506 4.4/ 15.71

. Date

Integer

726

M...

2535

Ju...

1715

M...

1697

AD...

506

Figure 12-19. Table8 with fixed column widths

Determining Column Width

Well, that’s a big failure. You certainly don’t want to fix the column widths solely on the widths of the column headers,
at least not for this kind of column headings that this application is using. Instead, you can process the data in the
table, one column at a time, and compute the maximum preferred width for each value in the column. Then, you set
the preferred width for the column using the maximum of the preferred header width and the maximum preferred
width of all of the values in this column.

CHAPTER 12

MOTION TO TAKE FROM THE TABLE: BUILDING TABLES

185

CHAPTER 12 © MOTION TO TAKE FROM THE TABLE: BUILDING TABLES

That doesn’t sound too terribly bad. Are there any problems with this? Yes, unfortunately, there are. While
working on a general function for this purpose, I encountered the following issues:

e The data returned by the getValueAt(...) method needs to be processed using the
appropriate data type (the result of the getColumnClass(. . .) for the column).

This wasn't too difficult to resolve since you can use the data type identified with this column
to provide the renderer with the appropriate kind of value.

e Dealing with Date values can be somewhat of a challenge. In order to resolve this issue, you
have to use the appropriate DateFormat instance that matches the way that your Date columns
are displayed in the table. In this case, it seemed that the easiest way to deal with this was to
use a DefaultRenderer and have it determine the preferred width of the string representation
of the formatted date strings.

Listing 12-23 shows excerpts from the setColumnWidths(...) method of the Table9.py sample application. You
might want to use something like this to determine how to allocate the column widths.
Listing 12-23. Excerpts from the setColumnWidths(...) Method from Table9.py

21|def setColumnWidths(table) :
22| header = table.getTableHeader()

27| tem = table.getColumnModel() # Table Column Model
28] data = table.getModel() # To access table data
29| margin = tcm.getColumnMargin() # gap between columns
30| rows = data.getRowCount() # Number of rows
31| cols = tcm.getColumnCount() # Number of cols
32| df = DateFormat.getDateInstance(DateFormat.MEDIUM)
33| tWidth = 0 # Table width
34| for i in range(cols) : # For col 0..N
35| col = tecm.getColumn(i) # TableColumn: col i
36| idx = col.getModelIndex() # model index: col i
37| render = col.getHeaderRenderer() # header renderer,
38| if not render : #
39| render = hRenderer # or a default
40| if render :
41| comp = render.getTableCellRendererComponent

| .
48|)
49| cWidth = comp.getPreferredSize().width
50| else :
51| cWidth = -1
52| Type = data.getColumnClass(i) # dataType: col i
53| for row in range(rows) :
54 v = data.getValueAt(row, idx) # value
55| if Type == Date :
56| val = df.format(v) # formatted date
57] T = table.getDefaultRenderer(String)

186

CHAPTER 12 © MOTION TO TAKE FROM THE TABLE: BUILDING TABLES

58] else :
59| val = Type(v)
60| r = table.getCellRenderer(row, i)
61| comp = r.getTableCellRendererComponent(
| et
68|
69| cWidth = max(cWidth, comp.getPreferredSize().width)
70| if cWidth > 0 :
71| col.setPreferredWidth(cWidth + margin)
72| tWidth += col.getPreferredWidth()

73| table.setPreferredScrollableViewportSize(

|
78)

I think that you’ll agree that the column widths shown in Figure 12-20 are a great improvement over the ones in
Figure 12-19.

Integer
Aug 22, 2011 726
May 12, 2010 2535
Jun 23, 2009 1715
May 3, 2008 1697
Apr 23, 2008

NORDEE

Date Integer Double
lMon Aug 22 0: 726 3.14
May 12, 2010 2535 . 6.28
Jun 23, 2009 1715 . 9.42
May 3, 2008 1697 . 12.57
Apr 23, 2008 506

L2
v]
L]
[v]
L]
[v]

Date Double
Aug 22, 2011 314
May 12, 2010 2535 6.28
Jun 23, 2009 1715 942
May 3, 2008 1697 12.57
Apr 23, 2008 506 15.71

NORORIH

Figure 12-20. Table9 with compute column widths

187

CHAPTER 12 © MOTION TO TAKE FROM THE TABLE: BUILDING TABLES

Column Adjustments

If you have played with any of the table samples, you may have wondered why the columns react in the way that they
do when you change the column widths. (Drag the vertical bar separating two column headers to the left or to the
right to change the widths.)

Did you notice how all of the subsequent columns are adjusted to maintain the table width? Why is this? Well,
the JTable class includes a property called AutoResizeMode that the table uses to determine changes to the other
columns’ widths. Table 12-6 shows the constants used to modify this JTable property.

Table 12-6. JTable Auto Resize Constants

JTable Auto Resize Constant Description
AUTO_RESIZE_OFF Columns will not be adjusted automatically.
AUTO_RESIZE_NEXT_COLUMN Only the next column width will be affected by column

width changes.

AUTO_RESIZE_SUBSEQUENT_COLUMNS All subsequent columns will have their widths affected,
in order to distribute the effects across any subsequent
columns.

Note: This is the default setting.
AUTO_RESIZE_LAST_COLUMN Only the width of the last column will change.

AUTO_RESIZE_ALL_COLUMNS All table columns will be adjusted to account for the user-
specified width changes.

Let’s see what this means in a real application. To start, disable the auto resize property of the table. Figure 12-21
shows the application when the AUTO_RESIZE OFF and setColumnWidths(...) functions are used, as shown in
Listing 12-21.

188

d .
m

Date

IntegenFloalDouble

Aug 22, 2011
May 12, 2010

0.
11 6.28

Jun 23, 2009

22| 942

May 3, 2008

3.3| 1257

RO

Apr 23, 2008

44 1571

Date

IntegenFloaiDouble

Aug 22, 2011

123.] 0 314

May 12, 2010

2535 11| 6.28

May 3, 2008

Jun 23, 2009| 1715] 2.2| 9.42

1697 3.3| 12.57

Apr 23, 2008

506| 4.4 15.71

TIF Date Integer FloalDouble
[v]|Aug 22, 201112345678 o 314
Cl[May 12, 2010 2535 1.1] 628
v]/Jun 23, 2009 1715| 22| 9.42
[[may 3, 2008 1697| 3.3 1257
[v][Apr 23, 2008 506 4.4] 1571

CHAPTER 12

Figure 12-21. Table10.py: computing column widths with auto resize off

MOTION TO TAKE FROM THE TABLE: BUILDING TABLES

What would it take to have a simple table application that allowed you to dynamically change the auto resize
mode, and then see how each setting affects the application? Figure 12-22 shows the results.

189

CHAPTER 12 © MOTION TO TAKE FROM THE TABLE: BUILDING TABLES

AUTO_RESIZE

TIF Date Integer

v] |Aug 22,2011 726
May 12, 2010 2535
Jun 23, 2009 1715
May 3, 2008 1697
Apr 23, 2008 506

RORCE

AUTO_RESIZE

T/H Date Intege
[v]|Aug 22,2011| 726
May 12, 2010 2535
Jun 23, 2009| 1715
May 3, 2008 | 1697
Apr 23,2008 | 506

AUTO_RESIZE

Date Integer
Aug 22, 2011 726
May 12, 2010 2535
Jun 23, 2009 1715
May 3, 2008 1697
Apr 23, 2008 506

Integer FloalDouble
726 0| 314
2535 11| 6.28

1715| 2.2| 9.42
1697 3.3| 12.57
506| 4.4| 1571

Figure 12-22. Table11.py: dynamically selecting auto resize mode

190

CHAPTER 12 © MOTION TO TAKE FROM THE TABLE: BUILDING TABLES

You can see that the application has a menu that allows you to select a different auto resize setting. Listing 12-24
shows parts of the Table11. py script that were used to produce the output in Figure 12-22. All of the radio button
menu items identify the handler method as the action listener event handler. All this routine has to do is match the
text of the user selection to the corresponding JTable auto resize constant and use this to change the auto resize mode
on the table.

Listing 12-24. Selected Parts of Table11.py

130|class Table11(java.lang.Runnable) :

144 | self.info = [

145| ['Off' , JTable.AUTO_ RESIZE_OFF 1
146| ['Next', JTable.AUTO_RESIZE_NEXT_COLUMN 1,
147| ['Rest', JTable.AUTO_RESIZE_SUBSEQUENT_COLUMNS 1,
148| ['Last', JTable.AUTO_RESIZE_LAST_COLUMN 1,
149| ['All' , JTable.AUTO_RESIZE_ALL_COLUMNS]

150|]

|
185 | def handler(self, event) :

186 cmd = event.getActionCommand()

187| for name, value in self.info :

188 if cmd == name :

189 self.table.setAutoResizeMode(value)
190 | self.table.repaint()

This kind of script is easy to produce, and it provides you with a simple test environment to better understand the
implications of a table’s property. In this case, you're looking at the auto resize property.

Summary

This chapter has illustrated some of the power and flexibility of the JTable class. It is important to remember that
with great power there must also come great responsibility. This is just a reminder that you can quickly create a table
in your application. However, if you do so, it is quite likely that the default settings are going to need some testing,
manipulation, and tweaking in order to fit your exact needs. As this chapter has shown, iterating your script with
various enhancements isn’t that difficult. You are encouraged to use this technique to help improve your knowledge
of tables and their characteristics.

191

CHAPTER 13

Keystrokes, Actions, and Bindings,
Oh My!

There are a number of ways that graphical applications obtain user input. This chapter focuses on how applications
deal with user input from the keyboard. This is all about what happens when the user presses a key, and how
applications perceive and react to this kind of event.

Getting in a Bind: Looking at Bindings

In the section entitled “Menu Mnemonics and Accelerators" in Chapter 10, you learned how convenient it is to
associate a particular keystroke' with an ActionListener? for menu items. This association is called a binding. Doing
this allowed you to simplify the process of causing some menu-related action to occur. Thus, you were able to initiate
the associated menu action using the specified keystroke.

In this chapter, you learn how other parts of your applications can be set up to react to specific keystrokes.
You will also learn how to enhance the friendliness of your applications with these kinds of bindings.

What Is Meant by Binding?

Menu entries aren’t the only place in Swing where you can build an association between a keystroke and an action.
In fact, creating this kind of association is called binding. A keystroke is bound to an action. One point you have to
realize is that key bindings relate to a specific context. This has the potential of causing the users some confusion.
For example, say you use a keystroke in a particular way for one context and in a different way in a different context.
This might confuse or frustrate your users, so consider the consequences of such bindings carefully.

InputMaps and ActionMaps

How are bindings created? To begin, it is important to realize that the abstract JComponent class® includes actionMap
and inputMap attributes, as you can see in Listing 13-1.*

'Seehttp://docs.oracle.com/javase/8/docs/api/javax/swing/KeyStroke.html.

See http://docs.oracle.com/javase/8/docs/api/java/awt/event/Actionlistener.html.
3See http://docs.oracle.com/javase/8/docs/api/javax/swing/IComponent.html.

*The classInfo function can be found in code\Chap_04\classInfo.py.

193

http://docs.oracle.com/javase/8/docs/api/javax/swing/KeyStroke.html
http://docs.oracle.com/javase/8/docs/api/java/awt/event/ActionListener.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/JComponent.html

CHAPTER 13 KEYSTROKES, ACTIONS, AND BINDINGS, OH MY!

Listing 13-1. JComponent Map Attributes

wsadmin>from javax.swing import JComponent
wsadmin>
wsadmin>classInfo(JComponent, attr = 'map')
javax.swing.JComponent

actionMap, inputMap
| java.awt.Container
| | java.awt.Component
| | | java.lang.Object
| | | java.awt.image.ImageObserver
| | | java.awt.MenuContainer
| | | java.io.Serializable
| java.io.Serializable
wsadmin>

Let’s take a look at a specific class that descends from JComponent; for example, the JTable class.’ If you use the

classInfo function to display the methods that have the word “map” somewhere in their names, you get the output in
Listing 13-2. This makes sense, since it shows that you have getter and setter methods for the inputMap and actionMap
attributes. It is important to note, however, that the output of this function can be incomplete.

Listing 13-2. JTable Map Methods

wsadmin>from javax.swing import JTable
wsadmin>

wsadmin>classInfo(JTable, meth = 'map')
javax.swing.JTable

| javax.swing.JComponent

> getActionMap, getInputMap, setActionMap, setInputMap
| | java.awt.Container

| | | java.awt.Component

| | | | java.lang.Object

| | | | java.awt.image.ImageObserver

| | | | java.awt.MenuContainer

| | | | java.io.Serializable

| | java.io.Serializable

| javax.swing.event.TableModellListener

| | java.util.EventListener

| javax.swing.Scrollable

| javax.swing.event.TableColumnModellListener

| | java.util.EventListener

| javax.swing.event.ListSelectionListener

| | java.util.EventListener

| javax.swing.event.CellEditorListener

| | java.util.EventListener

| javax.accessibility.Accessible

| javax.swing.event.RowSorterListener

| | java.util.EventListener

wsadmin>

’See http://docs.oracle.com/javase/8/docs/api/javax/swing/ITable.html.

194

http://docs.oracle.com/javase/8/docs/api/javax/swing/JTable.html

CHAPTER 13 © KEYSTROKES, ACTIONS, AND BINDINGS, OH MY!

If you look at the JTable Javadoc,® you'll find the inputMap and actionMap getters and setters listed in Table 13-1.
The interesting point is that there are two inputMap getters, one without an argument and the other with. What'’s
that all about?

Table 13-1. JTable inputMap and actionMap Getters and Setters

Method return type and signature Description

InputMap getInputMap() Returns the inputMap that is used when the component
has focus.

InputMap getInputMap(int condition) Returns the inputMap that is used during condition.

void setInputMap(int condition, InputMap map) Setsthe inputMap to use with the condition to map.

ActionMap getActionMap() Returns the actionMap used to determine what action to
fire for a particular KeyStroke binding.

void setActionMap(ActionMap am) Sets the actionMap to am.

The condition argument used by the second getter identifies which of three possible inputMaps should be returned
to the caller. The constants that should be used are found in the JComponent class and are shown in Table 13-2.

Table 13-2. JComponent Condition (Binding-Related) Constants

Constant Name Binding Context
WHEN_FOCUSED Binding applies when the component has the focus.
WHEN_ANCESTOR_OF _FOCUSED_COMPONENT Binding applies when the receiving component is an ancestor of the

focused component or is itself the focused component.

WHEN_IN_FOCUSED_WINDOW Binding applies when the receiving component is in the window that
has the focus or is itself the focused component.

So, it looks like you can use one of these JComponent constants as the condition argument to the getInputMap()
method in order to retrieve the KeyStroke InputMap. Butwhich constant is the right one to use?

You have a few options available. You could use all three and see which one results in inputMaps that contain
information. Or you could take a look at the JComponent Javadoc® and read about the interesting and potentially
useful methods that exist. Which ones, you might wonder? Well, the ones listed in Table 13-3 caught my attention
(and aren’t marked as obsolete).

195

CHAPTER 13 KEYSTROKES, ACTIONS, AND BINDINGS, OH MY!

Table 13-3. JComponent Keystrokes and Actions Methods

Method return type and signature Description

KeyStroke[] getRegisteredKeyStrokes() Returns the keystrokes that will initiate registered actions.
int getConditionForKeyStroke(KeyStroke Returns the condition that determines whether a registered
aKeyStroke) action occurs in response to the specified keystroke.
ActionListener getActionForKeyStroke(Returns the object that will perform the action registered for a
KeyStroke aKeyStroke) given keystroke.

Okay, I admit it. I didn’t know to look into the JComponent class for these methods until used the classInfo
function and it showed the KeyStroke methods. Listing 13-3 shows the result of doing this.

Listing 13-3. Keystroke Methods in JTable Hierarchy

wsadmin>from javax.swing import JTable
wsadmin>
wsadmin>classInfo(JTable, meth = 'keystroke')
javax.swing.JTable
getSurrendersFocusOnKeystroke, setSurrendersFocusOnKeystroke
| javax.swing.JComponent
> getActionForKeyStroke, getConditionForKeyStroke
> getRegisteredKeyStrokes
| | java.awt.Container
| | | java.awt.Component
| | | | java.lang.Object
| | | | java.awt.image.ImageObserver
| | | | java.awt.MenuContainer
| | | | java.io.Serializable
| | java.io.Serializable
| javax.swing.event.TableModellListener
| | java.util.EventListener
| javax.swing.Scrollable
| javax.swing.event.TableColumnModellistener
| | java.util.EventListener
| javax.swing.event.ListSelectionListener
| | java.util.EventListener
| javax.swing.event.CellEditorListener
| | java.util.EventListener
| javax.accessibility.Accessible
| javax.swing.event.RowSorterListener
| | java.util.EventListener
wsadmin>

196

CHAPTER 13 © KEYSTROKES, ACTIONS, AND BINDINGS, OH MY!

JTable Keystrokes

Let’s take advantage of these methods to see how many keystroke bindings exist for the JTable class. Listing 13-4
shows a simple script that can be used to determine how many of these bindings exist, as well as determine the ones
associated specifically with the spacebar.

Listing 13-4. The Keystrokes.py Script

1|from javax.swing import JTable
2|table = JTable()

3lkeys = [

4 str(key)

5] for key in table.getRegisteredKeyStrokes()
6]

7|print 'Number of JTable KeyStrokes:', len(keys)
8|width = max([len(key) for key in keys])
9|print 'JTable "Space" Keys:'

10|print "\n'.join(

11] [

12| "%*s' % (width, key)

13| for key in keys if key.endswith('SPACE')
14|]

15|)

The output of this script is shown in Figure 13-1. It contains a few interesting things to consider. First, notice that
there are almost six dozen keystroke bindings for JTable instances. This should explain why the rest of the output is
limited to instances of bindings for the spacebar key. The other point of interest is the way that the keystroke modifiers
are presented.

Number of JTable KeyStrokes: 71
JTable "Space" Keys:
pressed SPACE
ctrl pressed SPACE
shift pressed SPACE
shift ctrlpressed SPACE

Figure 13-1. Keystrokes.py output

Additional tests of the keystroke modifiers show that each of the keystrokes has the four possible modifiers seen
in Figure 13-1. This made me wonder how hard it might be to get the names of the actions for these keystrokes.
Listing 13-5 shows the KeyStrokes2.py script, which was written to answer these questions.

197

CHAPTER 13 KEYSTROKES, ACTIONS, AND BINDINGS, OH MY!

Listing 13-5. KeyStrokes2.py Showing Bound Actions

1|from javax.swing import JTable
2|table = JTable()

3lkeys = [

4] key

5] for key in table.getRegisteredKeyStrokes()
6]

7|print 'Number of JTable KeyStrokes:', len(keys)
8|width = max([len(str(key)) for key in keys])
9|print 'JTable "Space" Keys:'

10|for key in keys :

11| if str(key).endswith('SPACE') :

12| cond = table.getConditionForKeyStroke(key)
13| act = table.getInputMap(cond).get(key)
14| print '%*s : %s' % (width, str(key), act)

The resulting output is shown in Figure 13-2. I don’t know about you, but I find this really fascinating.

Number of JTable KeyStrokes: 71
JTable "Space" Keys:
pressed SPACE : addToSelection
ctrl pressed SPACE : toggleAndAnchor
shift pressed SPACE : extendTo
shift ctrl pressed SPACE : moveSelectionTo

Figure 13-2. Keystrokes2.py output

Putting It All Together

What would it take to create a simple application that displays a table of information showing the keystroke bindings
for the JTable class? You can use a number of things that you've learned up to this point to do just that.

locationRelativeTo = None

While creating this application, you can also get a better understanding of something that you have been taking for
granted up to now. Back in Chapter 11, you started seeing some examples that used the locationRelativeTo keyword
argument to position the JFrame instance “in the middle of the screen.” So what exactly does that mean, and why am
I bringing it up here?

Until this application, you didn't really have much of a reason to dig into it. This application changed that
because it became more obvious what setting the locationRelativeTo attribute to None actually does. Essentially,
using this setting causes the top-left corner of your application to be placed in the center of the screen. When your
application isn’t too big for the screen, this is a very easy and convenient way to position the application window near
the center of the screen.

198

CHAPTER 13 © KEYSTROKES, ACTIONS, AND BINDINGS, OH MY!

Centering the Application

If you want to center the application’s window in the middle of the screen, the application must be able to determine
or compute the following:

o The size of the screen
e The size of the application (frame)

Then you have compute the best location for the top-left corner for the application using some simple math; so
far, so good. The question is, what'’s the best way to determine the size of the screen? There’s a simple answer to that
question because that’s something that GUI application developers have needed to know for a long time. Figure 13-3
shows just how easily this can be done.

wsadmin>from java.awt import Toolkit

wsadmin>

wsadmin>Toolkit.getDefaultToolkit () .getScreenSize ()
java.awt.Dimension[width=1920,height=1080]

wsadmin>

Figure 13-3. Determining screen size

Unfortunately, you might not actually need to use this technique. Consider for a moment what using the
locationRelativeTo keyword argument does. It places the application in the center of the screen. To correctly
position the application, you only need to reposition it using the size of the application (which you can obtain using
the JFrame getSize() method) and the center of the screen (which you can obtain using the JFrame getlLocation()
method). Listing 13-6 is an excerpt from the KeyBindings.py script; it shows one way that this can be done.

Listing 13-6. Centering an Application

134| size = frame.getSize()

135 loc = frame.getlLocation()

136 | frame.setLocation(

137 Point(

138] loc.x - (size.width >> 1),
139| loc.y - (size.height >> 1)
140|)

141|)

The code expects that the JFrame instance is in the variable named frame, and that it has been properly populated
and sized before the statement in line 134 is executed. It is important to realize what kinds of values are returned by the
method calls in lines 134 and 135. The size value is an instance of the java.awt.Dimension class® (just like you saw in
Figure 13-3). This makes perfect sense since the application has a width and height. On the other hand, the call to the
getlocation() method returns an instance of the java.awt.Point class,” because only the X and Y coordinates are
needed to identify a point on the screen.

The call to the setLocation(...) method should be fairly clear, once you realize that the positioning adjustment
requires that you move the X coordinate by half the width of the application and move the Y coordinate by half the
height of the application. This is exactly what the expressions on lines 138 and 139 are doing.

Seehttp://docs.oracle.com/javase/8/docs/api/java/awt/Dimension.html.
'See http://docs.oracle.com/javase/8/docs/api/java/awt/Point.html.

199

http://docs.oracle.com/javase/8/docs/api/java/awt/Dimension.html
http://docs.oracle.com/javase/8/docs/api/java/awt/Point.html

CHAPTER 13 KEYSTROKES, ACTIONS, AND BINDINGS, OH MY!

Defining the Table Properties

With a little thought, you’ll likely realize that this table will be composed of strings and you need to prevent the
users from being able to modify the table’s contents. You can define a trivial table model containing only the
getColumnClass(...) and isCellEditable(...) methods. Listing 13-7 shows just how simple this class can be.

Listing 13-7. Trivial Custom Table Model Class

75|class myTM(DefaultTableModel) :
76| def getColumnClass(self, col) :

77| return String
78| def isCellEditable(self, row, col) :
79| return 0

Computing the Table Data

Most of the work needed to create this application has already been completed. The biggest challenge is using the
stuff that you learned about earlier—using KeyStrokes.py and KeyStrokes2.py to build the two-dimensional array of
strings. The first column should hold the keystroke name and then each of the columns can hold the action name for
the corresponding keystroke-modifier column. Listing 13-8 shows the data(. . .) method, which builds and returns
this table for the application.

Listing 13-8. KeyBindings.py Method to Build Table Data

80|class KeyBindings(java.lang.Runnable) :
81| def data(self) :

82| table = JTable() # use an empty (default) table
83| iMap = table.getInputMap(

84| JComponent .WHEN_ANCESTOR_OF_FOCUSED_COMPONENT

85|)

86| keystrokes = [

87| (key, iMap.get(key))

88| for key in table.getRegisteredKeyStrokes()

89]

90| keys = {} # Dict, index = key name -> modifiers
91| acts = {} # Dict, index = keyStroke -> actionName
92| for key, act in keystrokes :

93| val = str(key) # e.g., shift ctrl pressed TAB
94| acts[val] = act # e.g., selectNextColumnCell
95| pos = val.rfind(' ')

96| prefix, name = val[:pos], val[pos + 1:]

97| if keys.has _key(name) :

98| keys[name].append(prefix)

99| else :

100 keys[name] = [prefix]

101 | names = keys.keys()

102| names.sort()

103| prefixes = [

104 | 'pressed’, # unmodified keystroke

105 | "ctrl pressed', # Ctrl-<keystroke>

200

106 |
107
108 |
109
110]
111
112
113|
114|
115]
116

CHAPTER 13 © KEYSTROKES, ACTIONS, AND BINDINGS, OH MY!

'shift pressed’, # Shift-<keystroke>
'shift ctrl pressed' # Shift-Ctrl-<keystroke>

]

result = [] # The 2D table of strings

for name in names : # For each key name (e.g., TAB)
here = [name] # Current table row

for prefix in prefixes :
kName = ' '.join([prefix, name])
here.append(acts.get(kName, '"))
result.append(here)

return result

Table 13-4 explains how this method produces the desired result. It may help you to realize that the cells for
which no bindings exist will contain empty strings.

Table 13-4. KeyBindings.py data() Method, Explained

Lines Description

82 Instantiates a JTable to simplify access to its methods.

83-85 Obtains an inputMap of the context used for all key bindings.

86-89 List-comprehension statement that builds a list of tuples for all the keystroke bindings and their
associated action names.

90-100 Builds a dictionary, named keys, indexed by the key name (e.g., TAB) and identifying the modifier
bindings. Also builds a dictionary, named acts, indexed by the keystroke (e.g., pressed TAB)
containing the bound action.

101-102 Builds a sorted list of the bound (unmodified) keystroke names (e.g., SPACE and TAB).

103-108 Builds a list of the keystroke modifiers in column order.

109-116 Builds the table to be returned by the data() method (i.e., the two-dimensional array of strings).

The Fruits of Your Labor

Figure 13-4 shows the results of executing the KeyBindings.py application, before any row selection has been made.

201

CHAPTER 13 © KEYSTROKES, ACTIONS, AND BINDINGS, OH MY!

[W ———

KeyStroke Unmodified Ctrl Shift Shift-Ctrl
A selectAll
BACK_SLASH clearSelection
C copy
COPY |copy
cuTt [cut
DELETE cut
DOWN selectNextRow selectNextRowChangeLead selectNextRowExtendSelection selectNextRowExtendSelection
END |selectLastColumn |selectLastRow selectLastColumnExtendSelection selectLastRowExtendSelection
ENTER |selectextRowCell selectPreviousRowCell
ESCAPE cancel
F2 stantEditing
F8 focusHeader
HOME selectFirstColumn selectFirstRow selectFirstColumnExtendSelection selectFirstRowExtendSelection
INSERT | |copy paste
KP_DOWN |selectiexRow |selectNexdRowChangelead selectNextRowExtendSelection selectNextRowExtendSelection
KP_LEFT selectPreviousColumn selectPreviousColumnChangel ead|selectPreviousColumnExtendSelection|selectPreviousColumnExtendSelection
KP_RIGHT |selectNexdColumn selectNextColumnChangelLead selectNextColumnExtendSelection selectMextColumnExtendSelection
KP_UP selectPreviousRow selectPrevicusRowChangelLead |selectPreviousRowExtendSelection |selectPreviousRowExtendSelection
LEFT selectPreviousColumn selectPreviousColumnChangelLead|selectPreviousColumnExtendSelection|selectPreviousColumnExtendSelection
PAGE_DOWN scrollDownChangeSelection|scroliRightChangeSelection scrollDownExtendSelection |scroliRightExtendSelection
PAGE_UP __|[scrollupChangeSelection |scrollLeftChangeSelection scrollUpExtendSelection scrollLeftExtendSelection
PASTE lpaste b T eGP S o O St o T R N [P e e ST
RIGHT selectNextColumn selectNextColumnChangelLead selectNextColumnExtendSelection selectNextColumnExdendSelection
SLASH selectall
SPACE |addToSelection |toggleAndAnchor extendTo moveSelectionTo
TAB_ _iselectNextColumnCell | |selectPreviousColumnCell 1
upP selectPreviousRow selectPreviousRowChangelead |selectPreviousRowExendSelection selectPreviousRowExtendSelection
v paste
X cut

Figure 13-4. KeyBindings.py's output, with no row selected

One of the really neat things about this application is that you can use what you see to understand the results of
using these bindings. For example, take a look at the TAB row and the Unmodified column. The action that is seen here
is selectNextColumnCell and the one in you can see that when you press either the Tab or the Shift-Tab key, the table
selection moves in the expected fashion.

Take a look at the actions associated with the Ctrl-A and Ctr]l-BACK_SLASH keys. Try pressing these keys and
see if the results meet your expectations. You should realize that not all of the actions will be allowed. Why not?

Well, some of them require that the current cell be editable (e.g., cut or paste). Others depend on the current values
of the columnSelectionAllowed and rowSelectionAllowed table attributes. In spite of that, I find the output of this
application quite useful. I hope that you do as well.

Binding Reuse

You might be wondering what you can do with this information. I'll get to that, but first [want to explain how I came
to investigate keystroke bindings.

I was working with an application that used some JTable instances. One of the challenges that I encountered was
that my tables had some read-only and read-write columns. I expected that the users of the application might want
to skip from one read-write cell to another using the Tab and Shift-Tab keys. In order to do this, I first had to figure out
how the current keystroke bindings worked.

202

CHAPTER 13 © KEYSTROKES, ACTIONS, AND BINDINGS, OH MY!

Looking again at Figure 13-4, you can see that the Tab and Shift-Tab keys correspond to selectNextColumnCell
and selectPreviousColumnCell, respectively. What can be done with this information? Well, what you want to
do is have the Tab and Shift-Tab keys be bound to actions something like selectNextEditableColumnCell and
selectPreviousEditableColumnCell.

I don’t know about you, but I would much prefer to use existing code instead of figuring out how to rewrite these
two ActionListeners. That should make sense. How should you go about doing that? You have a number of options
from which to choose. Let’s start with something simple and decide if and when you can improve things.

Where to Begin: Finding the Appropriate Action Class

With what kind of class do you need to start? Let’s see if you can get by with something easy, like the AbstractAction
class.® According to the Javadoc for that class, “The developer need only subclass this abstract class and define the
actionPerformed method.” This sounds ideal for this situation.

The next question you need to ask is, “What will our class instance need to access in order to perform its
role?” Well, since you are specifically concerned with JTable actions, it would seem likely that the action will
need to know with which table instance the action should be working. Additionally, it will need to know the
action it will be using to perform its role. In the case of selectNextEditableColumnCell, it needs to know that
it will need to use selectNextColumnCell. Or will it? Do you really need to create a completely new action and
replace the keystroke binding of the Tab key from selectNextColumnCell to a completely new action? What if
your new action simply identifies itself as the original action and uses the original action to perform its role?
That seems like a reasonable and fairly simple approach. It also simplifies the code that you need to write to
perform the desired action.

What Do You Need to Worry About? Boundary Conditions

Whenever you create something like this, you need to be concerned with boundary conditions. What are those

in this case? Well, consider a situation in which you have a read-only table. What should happen when the
selectNextEditableColumnCell action is invoked? If you're not careful, you might create an infinite loop situation,
which would be a bad thing. You need to be certain that your action deals well with a read-only table.

What's the next worst-case scenario? In my mind, it would be a table with only one editable cell. In that case,
how many cells would your action need to check in order to find the next editable cell? Well, that would depend on
the size of the table. Can you figure that out? Given access to the table, you can use the table.getRowCount() and
table.getColumnCount () methods to determine how many cells exist.

Listing 13-9 shows a simple implementation of this approach. It includes a call to the default toolkit beep ()
method if no editable cells are found in the table. You can test this application, which can be found in the
code\Chap_13\WoT.py script. You may want to modify the isCellEditable(...) method to return a 0 (false)
in order to test the read-only table scenario.

8See http://docs.oracle.com/javase/8/docs/api/javax/swing/AbstractAction.html.

203

http://docs.oracle.com/javase/8/docs/api/javax/swing/AbstractAction.html

CHAPTER 13 KEYSTROKES, ACTIONS, AND BINDINGS, OH MY!

Listing 13-9. findEditableCell Class from WoT.py

39| class findEditableCell(AbstractAction) :
40| def _init (self, table, action) :

41| self.table = table
42| self.original = table.getActionMap().get(action)
43| self.table.getActionMap().put(action, self)
44| self.beep = Toolkit.getDefaultToolkit().beep
45| def actionPerformed(self, actionEvent) :
46| table = self.table
47| numCells = table.getRowCount() * table.getColumnCount()
48| for cell in range(numCells) :
49| self.original.actionPerformed(actionEvent)
50| if table.isCellEditable(
51| table.getSelectedRow(),
52| table.getSelectedColumn()
53])
54| return
55| self.beep()
|...
70| findEditableCell(table, 'selectNextColumnCell')
71| findEditableCell(table, 'selectPreviousColumnCell')

Summary

This chapter explained how Java Swing applications deal with keystrokes. Rather than have the application monitor

the user input, the environment determines the action to be performed for the keystroke event based on the current

context. It is important to know how this works so your applications can take advantage of the existing infrastructure.
The next chapter discusses events and event handlers.

204

CHAPTER 14

It’s the Event of the Year: Events
in Swing Applications

I have been referencing events, of all sorts, in many of the preceding chapters. It seems like a good time to take a better
look at how events are handled in Swing applications.

This chapter is all about events, such as mouse clicks, and preparing an application to handle these kinds of
events when they occur. You'll also see how easy it is in Jython to associate a method with an event. It is important to
note that methods that are called when specific events occur are called listeners. The association of a listener method
with a specific kind of event is a kind of registration. Let’s begin this chapter by taking a look at the number of classes
that have something to do with events and listeners.

If an Event Occurs and No One Hears It . . .

1 ”

If you look at the “complete list of Java classes,' ” you'll find over 4,000 items. Of these, almost 12 dozen have “event”
somewhere in their name and another seven dozen have “listener” in their name. What are all these things?

You've seen a number of them already. For example, when you were working with the JButton class,? you learned
that in order to be able to react to user input, you needed an ActionListener® or some descendant class instance
containing an actionPerformed(. ..) method. Until you did this association, no method would be called when the
event occurred and the events were lost.

What type of argument is supplied to the actionPerformed(. ..) method? An ActionEvent,* that’s what. An
ActionEvent is an object instance that is used to indicate that some kind of component action has occurred. It can be
used by an event handler to do things like identify the component that generated the event. Since ActionEvents are
passed to registered listening methods, this chapter focuses more on listeners than on the details about ActionEvents.

Many of the Java Swing examples that you'll investigate are almost certain to include a listener of some type, as
well as the method it defines or requires. The interesting thing about many of the Jython script examples that you've
seen is that they don’t have to explicitly identify, include, and use the particular listener class that is needed for the
kind of event to be handled. You simply use the appropriate keyword argument to identify the method to be called
when the event occurs.

!See http://docs.oracle.com/javase/8/docs/api/allclasses-noframe.html.

See http://docs.oracle.com/javase/8/docs/api/javax/swing/JButton.html.

*See http://docs.oracle.com/javase/8/docs/api/java/awt/event/Actionlistener.html.
‘See http://docs.oracle.com/javase/8/docs/api/java/awt/event/ActionEvent.html.

205

http://docs.oracle.com/javase/8/docs/api/allclasses-noframe.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/JButton.html
http://docs.oracle.com/javase/8/docs/api/java/awt/event/ActionListener.html
http://docs.oracle.com/javase/8/docs/api/java/awt/event/ActionEvent.html

CHAPTER 14 © IT’S THE EVENT OF THE YEAR: EVENTS IN SWING APPLICATIONS

Is this always a good thing? Maybe, maybe not. Consider for a moment the perspective of an experienced Java
Swing developer. Their experience may have trained them to look at Swing applications in a specific way to locate
event handlers. Their first instinct may be to search for calls to the add*Listener(...) method. Are they going to
locate them in Jython scripts that use the appropriate keyword argument? I don’t think so, do you?

Personally, I find the use of the keyword argument to be a better approach for a number of reasons, including
(but not limited to) these:

o It forces the developer to identify the event handler during component instantiation.

e TItallows the event handler routine to be named something other than the generic
actionPerformed(...) method name. For example, I prefer to see a method named
buttonPressed(...) rather than the ubiquitous actionPerformed(. . .) variation, don’t you?

e Itallows multiple event handlers to be defined as part of the same application class. In this
way, each button instance can have its own unique event handler, instead of having to share
a single actionPerformed(...) method that must determine how it was invoked. This allows
each event handler method to be simpler and uncluttered by code that needs to determine or
identify the exact source of the associated event that caused the routine to be called.

e Itallows the developer to avoid using multiple inheritance in their application class (for
example, to include the ActionListener as one of its base classes).

Are there times when it might be a bad idea to use the keyword argument to identify the event handler to be
invoked? Think about it for a moment. What does a method name like add*Listener(...) imply? It tells you that
there are situations where multiple listeners may be appropriate. If this is the case then you are likely to be better
served by using add*Listener(...) to identify all of the event handlers to be registered as event listeners. Otherwise,
using the keyword argument approach may very well be the best. I'll talk more about this later in this chapter.

Using Listener Methods

Most of the examples that you've seen have focused on a small number of listeners.® For example, in all of the JButton
examples, you have only seen the ActionListener and its actionPerformed(. ..) method. Is that the only listener
available for the JButton class? If you think so, you are sadly mistaken and in for a big surprise. Listing 14-1 shows the
various listener methods and class hierarchy where each is defined.

Listing 14-1. JButton Listeners

wsadmin>from javax.swing import JButton

wsadmin>

wsadminy>classInfo(JButton, meth = 'listener')

javax.swing.JButton

| javax.swing.AbstractButton

> addActionListener, addChangelistener, getActionListeners
getChangelisteners, getItemListeners, removeActionlListener
removeChangelistener

| javax.swing.JComponent

> addAncestorlListener, addVetoableChangelistener

> getAncestorlListeners, getVetoableChangelisteners

>

>
>
>
>
> removeAncestorListener, removeVetoableChangelistener

The primary exception was shown in Table 6-2, where there were more than a dozen listeners for the JTextArea class.

206

CHAPTER 14 © IT’S THE EVENT OF THE YEAR: EVENTS IN SWING APPLICATIONS

java.awt.Container
addContainerlListener, addPropertyChangelistener
getContainerlListeners, removeContainerlListener
| java.awt.Component
> addComponentlListener, addFocuslListener
> addHierarchyBoundsListener, addHierarchylistener
> addInputMethodlListener, addKeylListener
> addMouselistener, addMouseMotionlListener
> addMouseWheellistener, addPropertyChangelistener
> getComponentlListeners, getFocuslListeners
> getHierarchyBoundslListeners, getHierarchylisteners
> getInputMethodlListeners, getKeylListeners, getlisteners
> getMouselisteners, getMouseMotionListeners
> getMouseWheellisteners, getPropertyChangelisteners
> removeComponentlListener, removeFocuslListener
> removeHierarchyBoundsListener, removeHierarchylListener
> removeInputMethodlListener, removeKeylListener
> removeMouselistener, removeMouseMotionlListener
> removeMouseWheellistener, removePropertyChangelistener
| | java.lang.Object
| | java.awt.image.ImageObserver
| | java.awt.MenuContainer
| | java.io.Serializable
java.io.Serializable
ava.awt.ItemSelectable
> addItemListener, removeltemListener
| javax.swing.SwingConstants
javax.accessibility.Accessible
wsadmin>

|
> >
> >
|1
> >
> >
> >
> >
> >
> >
> >
> >
> >
> >
> >
> >
> >
> >
> >
|
|
||
||
||
| 3

—_—V —— — —— — V ¥V ¥V V V V V V V V V V V V V —V Vv —

Is it likely that your applications will be using all of these listeners? No, but there are quite a few that are
worth investigating. The information in Listing 14-1 shows a large number of listener methods that are part of the
java.awt.Component class. The variety and type of listeners in the hierarchy should encourage you, as a developer,
and give you confidence that your application will be able to monitor any type of event you need.

Put Your Listener Where Your Component Is

In this section, you learn what it takes to create a MouseListener® for a component.” Before you begin, though, it is
important to realize that if your application is interested in mouse movement, this requires a different kind of listener
(MouseMotionListener).® For the moment, however, this section focuses on what it takes to create a MouselListener.

Table 14-1 shows the events defined by the MouseListener class. Each of these methods has a MouseEvent
parameter that is passed to the event handler method.

See http://docs.oracle.com/javase/8/docs/api/java/awt/event/Mouselistener.html.

"It's interesting to note that, at least at the time of this writing, the version 7 java.awt.event.Mouselistener Javadoc page has a
bad link. The “Tutorial: Writing a Mouse Listener” link should actually point to http://docs.oracle.com/javase/tutorial/
uiswing/events/mouselistener.html. This bad link has been corrected on the version 8 page.

¥See http://docs.oracle.com/javase/8/docs/api/java/awt/event/MouseMotionListener.html.

207

http://docs.oracle.com/javase/8/docs/api/java/awt/event/MouseListener.html
http://docs.oracle.com/javase/tutorial/uiswing/events/mouselistener.html
http://docs.oracle.com/javase/tutorial/uiswing/events/mouselistener.html
http://docs.oracle.com/javase/8/docs/api/java/awt/event/MouseMotionListener.html

CHAPTER 14 © IT’S THE EVENT OF THE YEAR: EVENTS IN SWING APPLICATIONS

Table 14-1. Mouselistener Methods

Method Name Invoked When the Mouse . ..

mouseEntered(...) Enters a component.

mousePressed(...) Button has been pressed on a component.
mouseReleased(...) Button has been released on a component.
mouseClicked(...) Button has been pressed and released on a component.
mouseExited(...) Exits a component.

Listing 14-2 shows just how easily you can add a MouselListener to a component like a button. Note how the
listener class, in lines 10-24, needs to be provided with access to the specific application component, in this case, a
JTextArea. This is because it’s external to the Listen1 application class.

Listing 14-2. Adding a Mouselistener to a Button

10|class listener(Mouselistener) :
11| def init (self, textArea) :

12| self.textArea = textArea
13| def mouseClicked(self, me) :
14| self.logEvent(me)

15| def mouseEntered(self, me) :
16| self.logEvent(me)

17| def mouseExited(self, me) :
18| self.logEvent(me)

19| def mousePressed(self, me) :
20| self.logEvent(me)

21| def mouseReleased(self, me) :
22| self.logEvent(me)

23| def logEvent(self, me) :

24| self.textArea.append(me.toString() + '\n')

25|class Listen1(java.lang.Runnable) :
26| def run(self) :

27| frame = JFrame(

28| "Listen1’,

29| layout = FlowlLayout(),

30| locationRelativeTo = None,

31| size = (512, 256),

32| defaultCloseOperation = JFrame.EXIT_ON_CLOSE

33|)

34| self.button = frame.add(JButton('Button'))

35| self.textarea = JTextArea(rows = 10, columns = 40)
36| self.button.addMouselistener(listener(self.textarea))
37| frame.add(JScrollPane(self.textarea))

38| frame.setVisible(1)

Figure 14-1 shows an image from the Listen1.py application. In this case, moved the mouse over the button,
clicked the button, and then moved the mouse elsewhere. Figure 14-1 shows every event that occurred, in the order
that they are shown in Table 14-1.

208

CHAPTER 14 © IT’S THE EVENT OF THE YEAR: EVENTS IN SWING APPLICATIONS

Button

java.awt.event MouseEventiMOUSE_ENTERED,(1,8),absolute(1181,565), butiq
java.awt.event. MouseEventiMOUSE_PRESSED,(31,9),absolute(1211,566),buti
java.awt.event MouseEvent{MOUSE_RELEASED,(31,9),absolute(1211,566),bu

java.awt.event MouseEventiMOUSE_CLICKED,(31,9),absolute(1211,566), buttd
java.awt.event MouseEventiMOUSE_EXITED (-6,13),absolute(1174,570),buttor

Figure 14-1. Listen1.py sample output

What if you aren’t interested in monitoring all of the possible events that class provides? Well, one trivial
technique is to have the uninteresting methods do nothing (they can contain a simple, pass or return statement).
This can be a possible source of confusion and error. I've had at least one instance where I didn’t realize that I
duplicated a listener method name, where the second instance inadvertently replaced the first. It took me a while to
realize and resolve my mistake. What can you do about this kind of situation?

Adapt or Die: Using Adapter Classes

The Swing designers have been very kind to its developers. The hierarchy includes about two dozen “adapter” classes
that contain most, if not all, of the methods you'll need, all with empty placeholder statements. Using these as a base
class is a great place to start.

One way to find the class you need is by looking at the Javadoc and paying particular interest to the “See Also”
sections. For example, the MouseListener Javadoc® has, as its first reference in this section, the MouseAdapter class.’
Using that as a base class for your listener allows you to simplify the listener class from the Listen1 application.
Listing 14-2 contains the original listener class in lines 10-24. Listing 14-3 shows a simplified class that assumes you
are interested in one only of the available methods.

Listing 14-3. Listen2.py Using MouseAdapter

10| class listener(MouseAdapter) :
11| def _init (self, textArea) :

12| self.textArea = textArea
13| def mouseClicked(self, me) :
14| self.textArea.append(me.toString() + '\n')

Figure 14-2 shows sample output from this iteration of the Listen#. py script. Note that Listen2.py is only
interested in mouseClicked events, so you only see references to those events in the text area. You no longer see the
other events shown in Figure 14-1.

°See http://docs.oracle.com/javase/8/docs/api/java/awt/event/MouseAdapter.html.

209

http://docs.oracle.com/javase/8/docs/api/java/awt/event/MouseAdapter.html

CHAPTER 14 © IT’S THE EVENT OF THE YEAR: EVENTS IN SWING APPLICATIONS

Button

java.awt.event MouseEventfMOUSE_CLICKED,(14,10),absolute(1194,572 }_buﬂ:

Figure 14-2. Listen2.py sample output

Listening for Keyboard Events

What if you wanted your application to monitor keystrokes as they are entered, so that the application can be
dynamically updated to reflect various information about the user input? If your application has more than one kind
of information to be displayed, based on this input, this could make things a little interesting for the developers. One
approach would be to have one KeyListener for the user input field that updates multiple fields based on the user’s
input. One problem with this, though, is that as you continue to add fields to the application, this listener becomes
more complex.

Another approach is to have a more generic listener class that is used to monitor one simple property, and
then update a single application field based on this property. What would this kind of listener class need in order to
perform this role? It would need to have the following parts of the application specified during its instantiation or
construction:

e Theinput field being monitored
e The output field to be updated
e The function used to determine the result displayed in the output field

Say you had a single input field that you wanted to monitor. When the user enters a value, it needs to be checked
to see if the value is an even number (integer). That’s not too difficult. What if you also wanted the field to indicate
when the value was an odd integer value? It might also be interesting to have a field display whether the value is a
prime number.

In order to create this kind of application, you need to understand the kinds of events that are generated for
KeyListener objects.'” How does this class work? Table 14-2 shows the three methods that are part of the KeyListener
interface. Each event handler method has a KeyEvent argument that will be passed to the method.

%See http://docs.oracle.com/javase/8/docs/api/java/awt/event/KeyListener.html.

210

http://docs.oracle.com/javase/8/docs/api/java/awt/event/KeyListener.html

CHAPTER 14 © IT’S THE EVENT OF THE YEAR: EVENTS IN SWING APPLICATIONS

Table 14-2. Keylistener Methods

Method Name Description

keyPressed(...) Invoked when a key is pressed.
keyReleased(...) Invoked when a key is released.
keyTyped(...) Invoked when a key is typed.

Unfortunately, the description for each method is kind of lacking. What does each mean, and what’s the
difference between them? When might you be concerned with using one method versus another?

The best way to answer questions like this is to write a program that tries them out. You can then learn more
about the methods by seeing the output they produce. Using Listen1.py as a starting point, you can replace
Mouselistener with KeyListener, replacing each MouselListener method with the appropriate KeyListener method.
The result is shown in Listing 14-4.

Listing 14-4. Keylistener Descendant Class from Listen3.py

13| class listener(KeylListener) :
14| def _init (self, textArea) :

15| self.textArea = textArea

16| def keyPressed(self, ke) :

17| self.logEvent(ke)

18| def keyReleased(self, ke) :

19| self.logEvent(ke)

20| def keyTyped(self, ke) :

21| self.logEvent(ke)

22| def logEvent(self, ke) :

23| self.textArea.append(ke.toString() + '\n')

Sample output from the Listen3.py application is shown in Figure 14-3. The first image shows what happens
when you press and hold (and finally release) the Right-Shift key. Notice how multiple KEY_PRESSED events, only one
KEY_RELEASED event, and no KEY_TYPED events were generated. The second image shows the key events that were
generated when you quickly press and release the 0 key. And the third image shows the keystroke events that can
occur when a normal key, in this case the 0 key, is pressed and held just long enough to generate two repeated 0’s in
the input field.

211

CHAPTER 14 © IT’S THE EVENT OF THE YEAR: EVENTS IN SWING APPLICATIONS

Input: | || Clear

Jjava.awt.event KeyEvent[KEY_PRESSED, keyCode=16 keyText=Shift keyChar=Un
Jjava.awt.event KeyEventiKEY_PRESSED, keyCode=16 keyText=Shift keyChar=Un
Jjava awt event KeyEventiKEY_PRESSED, keyCode=16 keyText=Shift keyChar=Un
ljava.awt.event KeyEvent{KEY_RELEASED keyCode=16 keyText=Shift keyChar=Unr

java.awt event KeyEventiKEY_PRESSED, keyCode=48, keyText=0,keyChar="0" keyll
jjava.awt.event KeyEventlKEY_TYPED keyCode=0 keyText=Unknown keyCode: 0x{
Jjava.awt event KeyEventlKEY_RELEASED keyCode=43 keyText=0,keyChar="0" key

[«] vl

Input: |00 Clear |

ava.awt.event KeyEvent[KEY_PRESSED keyCode=48 keyText=0 keyChar="0" k| +|
java.awt.event. KeyEventKEY_TYPED keyCode=0 keyText=Unknown keyCode:
java.awt.event KeyEventKEY_PRESSED keyCode=48 keyText=0 keyChar="0"k
java.awt.event KeyEvent[KEY_TYPED keyCode=0 keyText=Unknown keyCode:
ava.awt.event KeyEventKEY_RELEASED keyCode=43 keyText=0 keyChar="0",| —

Figure 14-3. Listen3.py sample output

212

CHAPTER 14 © IT’S THE EVENT OF THE YEAR: EVENTS IN SWING APPLICATIONS

From these images, you can see that:

e For repeated keystrokes of characters that don’t produce input (such as the Shift key), only
KEY_PRESSED events occur.

e For repeated keystrokes of characters that produce input (such as any of the letters and the
numeric keys), the KEY_PRESSED and KEY_TYPED events occur in an alternating pattern.

e TheKEY_RELEASED event only occurs once for each key.

You are encouraged to use the Listen3.py script and see the events that are generated when you press and
release combinations of keys (such as Ctrl-Shift-Spacebar). Are you surprised, or do you observe what you expected?
This exercise should help you better understand the keystroke events that are generated.

Listing 14-5 shows almost all of the Listen3 class that was used to produce the output shown in Figure 14-3.

At this point, you shouldn’t be too surprised by how easy it is to create this kind of application.

Listing 14-5. Listen3 Class from Listen3.py

24|class Listen3(java.lang.Runnable) :
25| def run(self) :

26| frame = JFrame(

27| 'Listen3’,

28| layout = FlowLayout(),

29| locationRelativeTo = None,

30| size = (512, 256),

31| defaultCloseOperation = JFrame.EXIT_ON_CLOSE
32|)

33| frame.add(

34| JLabel(

35| "Input:’,

36| horizontalAlignment = SwingConstants.RIGHT
37|)

38|)

39| self.text = frame.add(JTextField(8))

40| frame.add(

41| JButton(

42| "Clear’,

43| actionPerformed = self.clear

44|)

45|)

46| self.textArea = JTextArea(rows = 10, columns = 40)
47| frame.add(JScrollPane(self.textArea))

48| self.text.addKeyListener(listener(self.textArea))
49| frame.setVisible(1)

Listing 14-6, on the other hand, may contain a surprise or two. Initially, I intended that the button should only
be used to clear the application TextArea. However, after playing with the application for a very short time, I soon
realized that it would also be useful to clear the input text field. The potential surprise, however, is related to the last
method call in this routine.

What, exactly, does the requestFocusInWindow() method do, and how did I know to use it? Before including this
method call, I was forced to use the mouse to click on the input field to give it focus after the button was pressed. The
alternative would be to use the Tab key to move the focus from the button to the input field. The problem with this
approach is that it generates input that’s written to TextArea.

213

CHAPTER 14 © IT’S THE EVENT OF THE YEAR: EVENTS IN SWING APPLICATIONS

So, Ilooked for methods in JTextField that had “focus” in their name. The first one that I found was
JComponent.requestFocus()," which looked promising, at least until I read that the use of this routine is discouraged.
The good news is that the documentation for this method also provided the name of the recommended routine to be
used, instead. So, the purpose of the call to the requestFocusInWindow() method is to restore focus to the input field
after the button is pressed.

Listing 14-6. The ActionListener Method Used by the Button
50| def clear(self, event) :

51| self.text.setText('')
52| self.textArea.setText('')
53| self.text.requestFocusInWindow()

All in all, this is a useful application, especially when you are interested in learning about keystroke events that
can be generated and the sequence in which they occur.

Most Objects Never Really Listen

At the beginning of this chapter, you read that there are times when it makes sense for multiple listeners to monitor
a particular component for the same kind of event. Fortunately, this is something that can easily be accomplished.
Before you looked at the kind of keystroke events that can be generated, you saw an application that had multiple
listeners monitoring an input field, each one updating a component based on the value contained in the input field.
Before you look at an example, take a moment to think about situations in which it would make sense to do this.
Listing 14-7 provides one example. The class constructor for this listener requires that three things be provided:

e Theinputfield being monitored
e The output field to be updated (in this example, a JLabel)

e The function to be used to determine the message value to be specified

Listing 14-7. Listener Class from Listen4.py

10| class listener(KeyAdapter) :
11| def _init (self, input, msg, fun) :

12| self.input = input

13| self.msg = msg

14| self.fun = fun

15| def keyReleased(self, ke) :

16| text = self.input.text

17| if text :

18| try :

19| value = int(self.input.text)
20| msg = ['No', 'Yes'][self.fun(value)]
21| except :

22| msg = 'invalid integer’

23| else :

24| msg = "'

25| self.msg.setText(msg)

""See http://docs.oracle.com/javase/8/docs/api/javax/swing/JIComponent.html#requestFocus%28%29.

214

http://docs.oracle.com/javase/8/docs/api/javax/swing/JComponent.html#requestFocus%28%29

CHAPTER 14 © IT’S THE EVENT OF THE YEAR: EVENTS IN SWING APPLICATIONS

This listener class, as you can see, descends from the KeyAdapter class,'? not from the abstract KeyListener
class.! This allows you to simplify the class because you can choose to implement only the keyReleased(...)
method.”

Maybe you are confused by the syntax shown on line 20. Here, we take advantage of some of the power of Jython.

The first part of the expression—“['No', 'Yes']”—identifies a list containing two values. The second part
of the expression—“[self.fun(value)]”—identifies the index used to select the desired value from the list. In
order to determine the value to be used, which should be zero or one, you call the user-specified function (provided
when the class was instantiated; see lines 11-14) and pass the value of the user-specified input field (after converting it
from a string to an integer).

Note In case you are wondering, the try/except statement is necessary in case the user specifies an invalid input
and the conversion fails.

Listing 14-8. Listen4 Class from Listen4.py

26|class Listen4(java.lang.Runnable) :
27| def run(self) :

28| def isEven(num) :

29| return not (num & 1)

30| def is0dd(num) :

31| return num & 1

32| def isPrime(num):

33| result = 0 # Default = False

34| if num == abs(int(num)) : # Only integers allowed
35| if num == 1 : # Special case

36| pass # use default (false)
37| elif num == 2 : # Special case

38| result = 1 #

39| elif num & 1 : # Only odd numbers...
40| for f in xrange(3, int(num**0.5) + 1, 2) :
41| if not num % f :

42| break # f is a factor...

43| else :

44| result = 1 # we found a prime

45| return result

46 | def label(text) :

47| return Jlabel(

48| text + ' ',

49| horizontalAlignment = SwingConstants.RIGHT

50|)

2See http://docs.oracle.com/javase/8/docs/api/java/awt/event/KeyAdapter.html.
BInitially, I mistakenly used the keyTyped(. ..) method, thinking that it would be the one invoked after the keystroke had
been processed. But I was wrong. Fortunately, it was a trivial thing to change the name of the routine from keyTyped(...) to

keyReleased(...).

215

http://docs.oracle.com/javase/8/docs/api/java/awt/event/KeyAdapter.html

CHAPTER 14 © IT°S THE EVENT OF THE YEAR: EVENTS IN SWING APPLICATIONS

51| frame = JFrame(

52| "Listens’,

53| layout = Gridlayout(0, 2),

54 locationRelativeTo = None,

55| size = (200, 128),

56| defaultCloseOperation = JFrame.EXIT_ON_CLOSE

57|

58| frame.add(label('Integer:'))

59| text = frame.add(JTextField(10))

60| frame.add(label('Even?'))

61| even = frame.add(JlLabel(''))

62| text.addKeyListener(listener(text, even, iskEven))
63| frame.add(label('Odd?'))

64| odd = frame.add(JLabel(''))

65| text.addKeylListener(listener(text, odd, isOdd))
66| frame.add(label('Prime?'))

67| prime = frame.add(JLabel(''))

68| text.addKeylListener(listener(text, prime, isPrime))
69| frame.setVisible(1)

Lines 62, 65, and 68 of Listing 14-8 show how the application has three KeyListener methods for the same input
field (the JTextField), as well as specifying different output (JLabel) fields and functions to be called to determine
the message to be displayed in each.

Figure 14-4 shows some sample output from the Listen4.py application, which has multiple listeners for a single
input field.

Integer: [x
Even? invalid integer
0dd? invalid integer
Prime? invalid integer

Integer: |2147483647
Even? Yes Even? No
0dd? No 0dd? Yes

Prime? Yes Prime? Yes

Figure 14-4. Listen4.py output

216

CHAPTER 14 © IT’S THE EVENT OF THE YEAR: EVENTS IN SWING APPLICATIONS

Looking for a Listener in a Haystack

Up to this point, things have sort of been handed to you on a platter, so to speak. Unfortunately, that approach is only
useful up to a point. Let’s take a look at how a developers can determine the best way to do something.

One of the many challenges with designing and developing an application is trying to figure out what size
it should be. Along those lines, I wondered how much time and effort would be required to have the application
monitor any resize requests that might occur.

Why would I want to do this? Consider, for a moment, that I have no idea how large or small for that matter, to
make my application. I could simply let Swing determine the size for me by using the JFrame pack() (inherited)
method.

Unfortunately, I haven’t always been happy with the default size. So, I did a quick look at the listeners and the
Java Swing Tutorial' to see if I could find something useful. It didn’t take me long to realize that my photographic
memory was out of film, and I would have to use a different technique.

Using one of the various Internet search engines, you can search for “java swing resize listener,” which will quickly
point you to the “How to Write a Component Listener” swing tutorial page.'® Looking at the sample application on
that page, called ComponentEventDemo. java,'® I was able to find some things worth investigating.

e This application, like most from the Java Swing Tutorial pages, has the main(...) method
use an anonymous Runnable class within its call to the SwingUtilities invokelater(...)
method.

e Invariably, the run(...) method in this class simply calls the createAndShowGUI(...)
method within the application class.

e This application class (ComponentEventDemo) extends JPanel, so the createAndShowGUI(...)
method creates JFrame instances and uses the JPanel that is created by the application class
as areplacement for the JFrame ContentPane.Ihaven’t used this technique, but it appears to
be a common one used by many of the sample applications in the Swing Tutorial pages.

¢ The sample applications that extend a base class like JPanel almost always use the
Java technique of calling the super(...) method to invoke the base class constructor.
Unfortunately, this isn’t available to Jython developers, so instead, you'll have to invoke the
base class constructor—that is, call the JPanel. init (self) method.

e The only expression that can’t be used “as-is” occurs in the component event handler
methods, and looks like this: e.getComponent().getClass().getName(). If you try to use
expressions like these in your Jython scripts, you'll get an exception something like this:

TypeError: getName(): expected 1 args; got 0

See https://docs.oracle.com/javase/tutorial/uiswing/.

5See http://docs.oracle.com/javase/tutorial/uiswing/events/componentlistener.html.

'“See http://docs.oracle.com/javase/tutorial/uiswing/examples/events/ComponentEventDemoProject/src/events/
ComponentEventDemo. java.

217

https://docs.oracle.com/javase/tutorial/uiswing/
http://docs.oracle.com/javase/tutorial/uiswing/events/componentlistener.html
http://docs.oracle.com/javase/tutorial/uiswing/examples/events/ComponentEventDemoProject/src/events/ComponentEventDemo.java
http://docs.oracle.com/javase/tutorial/uiswing/examples/events/ComponentEventDemoProject/src/events/ComponentEventDemo.java

CHAPTER 14 © IT’S THE EVENT OF THE YEAR: EVENTS IN SWING APPLICATIONS

The reason that this happens is because Jython has two ways for calling a method instance'”:
e thelnstance.theMethod(args)
e TheClass.theMethod(theInstance, args)

Unfortunately, you are trying to use the first technique, but Jython prefers the second. How can you fix this? You
have a couple of different options available. You can use the syntax preferred by Jython, which is an expression like
this one:

java.lang.Class.getName(e.getComponent().getClass())

Unfortunately, this results in a string something like “javax. swing.JButton’ instead of the preferred “JButton’”.
A somewhat simpler approach is to use the fact that you can use str(e.getComponent().getClass()) to get this
same string value, then split the string with “.” as a delimiter. Finally, you use the negative list indexing technique to
access the final part of the list of strings:

name = str(e.getComponent().getClass()).split('.")[-1]

Before you take a look at Jython script that I produced, try to convert the original Java application to Jython
yourself. This exercise should provide you with some practice at reading an original Java Swing application and trying
to produce a script using the same kind of components and organization.

Using the original Java version—or the one you created, or even the one that can be found in code\Chap_14\
ComponentEventDemo.py—take a look at the events generated when you do something simple like make the
application window a tiny bit taller. Figure 14-5 shows multiple images produced by using the Jython script at various
times. The most interesting one, at least to me, is the last image, which shows just how many “Moved” events are
generated when you make the window a little bit larger.'® Also interesting is the fact that only one “Resized” event
is generated. The really interesting part is that the event identifies the component that was resized, in this case, the
JFrame object.

"Thanks to Jeff Emanuel for providing this explanation on the jython-users mailing list.
18This is why my version of the script includes a counter showing the number of events that have been encountered.

218

CHAPTER 14 © IT’S THE EVENT OF THE YEAR: EVENTS IN SWING APPLICATIONS

Resized
JPanel Resized
JPanel Resized
JPanel Moved
: JCheckBox Resized
: JCheckBox Resized
: JCheckBox Moved
JButton Resized
JErame Resized
JFrame Moved
JFrame Shown

H O Wm0 e Ww e

=

Clear

[v] Button visible

JButton --- Hidden
13: JPanel Resized
14: JPanel Moved
15: JCheckBox Moved

[] Button visible

Moved
Moved
Moved
Moved
Moved
Moved
Moved
Moved
Moved
Moved
Moved
Resized

Clear

Button visible

Figure 14-5. ComponentEventDemo sample output
219

CHAPTER 14 © IT’S THE EVENT OF THE YEAR: EVENTS IN SWING APPLICATIONS

Using a ComponentAdapter to Monitor Changes

Using this ComponentEventDemo application made me think about using a ComponentListener' to gain a better
understanding about the size and position of an application window. Of course, if you aren’t interested in monitoring
all of the Component events, you might want to consider using a ComponentAdapter' instead.

What do you think it would take to have an application that displays the width and height of the frame? The
images in Figure 14-6 show one possible representation. Take a few moments and see if you can figure out how to do
this before looking at the source, which is available in code\Chap_14\Frame1.py.

Width: |200]

Height: [200

Width: [245
Height: {110 |

| widtn: [158 |
Height:[100 |

Figure 14-6. Framel sample output

Issues you might want to consider:
e Which Layout Manager do you want to use?
e For which events does the application need to listen?

Listing 14-9 shows the Frame1 class from the script of the same name. Notice how the Layout Manager attribute
of the frame constructor is initialized to None. That means that this application is going to position each component by
specifying its size and location.

Listing 14-9. Frame1 Class from Framel.py

16|class Frame1(java.lang.Runnable) :
17| def run(self) :

18] self.frame = frame = JFrame(

19| 'Framel',

20| size = (200, 200),

21| layout = None,

22| locationRelativeTo = None,

23| defaultCloseOperation = JFrame.EXIT_ON_CLOSE
24|)

25 frame.addComponentListener(listener(self))
26| insets = frame.getInsets()

27| self.width = JTextField(4)

28| self.height = JTextField(4)

See http://docs.oracle.com/javase/8/docs/api/java/awt/event/ComponentAdapter.html.

220

http://docs.oracle.com/javase/8/docs/api/java/awt/event/ComponentAdapter.html

CHAPTER 14 © IT’S THE EVENT OF THE YEAR: EVENTS IN SWING APPLICATIONS

29| items = [

30| [JLabel('Width:'), 7, 71,
31| [self.width , 50, 51,
32| [JLabel('Height:'), 7, 311,
33| [self.height , 50, 30]
34|]

35| for item in items :

36| thing = frame.add(item[0])
37| size = thing.getPreferredSize()
38| thing. setBounds(

39| insets.left + item[1],

40| insets.top + item[2],

41| size.width,

42| size.height

43|

44| frame.setVisible(1)

Listing 14-10 shows the simple listener class that is a descendant of the abstract ComponentAdapter class. This
allows you to simplify your class and only specify methods of interest, which in this case is the componentResized()
method.”

Listing 14-10. Listener Class from Framel.py

8|class listener(ComponentAdapter) :
9| def _init (self, app) :

10| self.app = app

11| def componentResized(self, ce) :

12| app = self.app

13| size = app.frame.getSize()

14| app.width.setText(“size.width™)
15| app.height.setText(“size.height™)

What would it take to have an application that shows the position or location on the screen, in addition to the
size? It would be a good exercise for you to try to expand Frame1.py to add this kind of functionality. Why don’t you
take some time to do this before you take a look at the one found in code\Chap_14\Frame2.py?

Listing 14-11 shows the revised listener class that was used to generate the output shown in Figure 14-7. Note
how additional ComponentListener methods have been included. This allows the application to update the position,
that is the X and Y fields, as the application frame is moved. In order to do this, the frame.getBounds () method
is called to acquire the current size and position of the frame. In Listing 14-8, you were only using the size of the
application, so the frame.getSize() method was used instead.

2[f you are unfamiliar with the backtic operator, it converts the expression within as a printable string. See the Jython repr()
built-in function.

221

CHAPTER 14 © IT°S THE EVENT OF THE YEAR: EVENTS IN SWING APPLICATIONS

Listing 14-11. Listener Class from Frame2.py

8|class listener(ComponentAdapter) :
9| def _init (self, app) :

10| self.app = app

11| def updateInfo(self) :

12| app = self.app

13| bounds = app.frame.getBounds()

14| app.width.setText(~bounds.width™)
15| app.height.setText(“bounds.height™)
16| app.x.setText(“bounds.x™)

17| app.y.setText(“bounds.y™)

18| def componentMoved(self, ce) :

19| self.updateInfo()

20| def componentResized(self, ce) :

21| self.updateInfo()

22| def componentShown(self, ce) :

23| self.updateInfo()

Width: |200|

Height: [200 |

X:[s60 | Width: [256) |
Y:[a15 | Height: [150 | Height: [146 |
X:[400 | X: [820

¥:[300 | v:[151 |

Figure 14-7. Frame2 sample output

Listing 14-12 shows just how little needed to be modified in order to have the application monitor the location
as well as the size. It also shows how tedious it can be to determine the components’ positions so that they can be
identified without using a Layout Manager.

Why did I choose to use the absolute layout technique? The primary reason was because I didn’t want the
components to move around on the application as it moved and was resized.

Listing 14-12. Modified Statements from the Frame2 Class

24|class Frame2(java.lang.Runnable) :

34| self.width = JTextField(4)

35| self.height = JTextField(4)

36| self.x = JTextField(4)

37| self.y = JTextField(4)

38| items = [

39| [Jlabel('Width:'), 11, 71,
40| [self.width , 50, 51,
41| [JLabel('Height:'), 7, 311,

222

42|
43|
44
45|
46|
47|

|

Monitoring the Input Fields

[self.height , 50,
[JLabel('X:') , 35,
[self.x , 50,
[JLabel('Y:') , 35,
[self.y , 50,

CHAPTER 14

30],
55 1,
53 1,
79 1,
78]

IT’S THE EVENT OF THE YEAR: EVENTS IN SWING APPLICATIONS

Using the mouse to move and resize the application window can be a frustrating experience, especially if you are
trying to precisely adjust a specific value (such as the height). Wouldn't it be useful to also allow users to enter a
value in any of these input fields as well? If you do allow user input, you'll need to verify that input before it is used.
For example, it doesn’t make any sense to allow users to specify a negative width or height. On the other hand, it
may make sense for the location values to be negative. On my system, I have a second display, and when I put the
application frame in the middle of it, the value of X is -775.

So how do you go about monitoring the input fields? One way is to have an ActionListener for each field. In fact,

you could have a different one for each field so that you don’t have to figure out which value was modified.
Listing 14-13, which can be found in Frame3.py, shows one way that this can be done.

Listing 14-13. Unique ActionListener for Each Input Field

24|class Frame3(java.lang.Runnable) :
def changeWidth(self, event) :
value = event.getActionCommand()
try :

25|
26|
27|
28|
29|
30|
31|
32|

|
57|

|
66|
67|
68|
69|
70|
71|
72|
73|
74|
75|
76|
77|

|

width = int(value)

size = self.frame.getSize()

self.frame.setSize(width,

except :
print 'Invalid Width: "%s"' % value

def run(self) :

self.width = JTextField(
4, actionPerformed = self.changeWidth

self.height = JTextField(
4, actionPerformed = self.changeHeight

)

self.x = JTextField(
4, actionPerformed = self.changeX

)

self.y = JTextField(
4, actionPerformed = self.changeY

)

size.height)

223

CHAPTER 14 © IT’S THE EVENT OF THE YEAR: EVENTS IN SWING APPLICATIONS

Unfortunately, this isn’t a great approach for a number of reasons, including these:

e UsingActionListeners means that the values aren’t verified until the user presses Enter,
which isn’t very user friendly. It would probably be better if verification occurred when the
user does one of the following:

e Presses the Enter key
e Tries to change focus (using the Tab key, Shift-Tab, or even a mouse event)
e Enters the text

e EachActionlistener is very similar. You might be able to refactor, but the technique used to
indicate that an invalid value was specified isn’t very good or user friendly. Nor does it use the
Swing interface, which is a bad thing.

Back in Chapter 7, you read a little about the JFormattedTextField class,? including how it is used to restrict
user input. Let’s revisit that class and see if it can help you improve the user experience of this application. What part
of a JFormattedTextField will help you with this application? Well, there are some things in the Javadoc that you
should be aware of. Specifically, it contains information about using one of the following:

e APropertyChangelistener® for monitoring editing changes

e AnInputVerifier® to keep focus from being lost when an invalid value is specified

Using a PropertyChangeListener

One of the interesting things about the JFormattedTextField class is that, in addition to the text attribute that it
inherits from JTextField, it also defines a value attribute.?* Why does it have both a text and a value attribute? More
importantly, what does that mean for your applications?

Consider the following scenario: a formatted text field has some kind of value, for example, some kind of
currency. When this field has focus, it may be an indication that the user wants to modify the value, which is great.
Users start typing and as they do so, the text that they enter might not be valid. As user input is being provided, the text
attribute reflects what the user has entered. When entry is complete, the contents of the text attribute can be used to
determine if the information is valid or appropriate for the field.

So, the value attribute maintains a valid value, formatted using the appropriate pattern. The text attribute, on the
other hand, reflects the current, unverified, and unformatted user input. It’s when the user entry process is complete
that the verification and formatting can occur, but only if the user-specified value is acceptable. At least that way it is
supposed to work, if your applications use the available capabilities.

Let’s start by looking at the PropertyChangelListener to see how it fits into this strategy. To begin, consider an
application that has a couple of formatted text fields with a property change listener event handler routine to tell you
about the PropertyChangeEvents that occur. This routine can update a text area with information about the events,
including the PropertyName, the 01dValue, and the NewValue attributes identified by PropertyChangeEvent.?

Listing 14-14 shows the PropertyChangeListener and ActionListener event handler routines from the
PropertylListener.py sample application.

sSee http://docs.oracle.com/javase/8/docs/api/javax/swing/JFormattedTextField.html.

2See http://docs.oracle.com/javase/8/docs/api/java/beans/PropertyChangelListener.html.

BSee http://docs.oracle.com/javase/8/docs/api/javax/swing/InputVerifier.html.

2In spite of the fact that the Javadoc for this class doesn’t identify this fact, at least not explicitly in the “Field Summary” section.
»See http://docs.oracle.com/javase/8/docs/api/java/beans/PropertyChangeEvent.html.

224

http://docs.oracle.com/javase/8/docs/api/javax/swing/JFormattedTextField.html
http://docs.oracle.com/javase/8/docs/api/java/beans/PropertyChangeListener.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/InputVerifier.html
http://docs.oracle.com/javase/8/docs/api/java/beans/PropertyChangeEvent.html

CHAPTER 14

Listing 14-14. PropertyChangelListener Event Handler Routine

17|class PropertylListener(java.lang.Runnable) :

18| def
19|
20|
21|
22|
23|
24|
25|
26| def
27|

changed(self, pce) :

format = ' Name: %(name)s\n'
format += 'OldValue: %(old)s\n'
format += 'NewValue: %(new)s\n\n'

name = pce.getPropertyName()
old = 'pce.get0Oldvalue()'
new = 'pce.getNewValue()'

self.textArea.append(format % locals())
clear(self, e) :
self.textArea.setText('')

IT’S THE EVENT OF THE YEAR: EVENTS IN SWING APPLICATIONS

Figure 14-8 shows some images from this application. I'm not sure what I was expecting, but I didn’t realize the
kind of PropertyChangeEvents that would be generated (which is exactly why this kind of script is so useful).

Number: h2.345_679

Currency:|$12,345.68 |

Name :

ancestor
Hone

: javax.swing.JPanel[,0,0,0x0,invalid,layout=j

: ancestor
: None
: javax.swing.JPanel[,0,0,0x0,invalid, layout=j

Number:
Currency: |512,345.68

ITOvVaLIus .

: Jjavax.swing.JPanel[,0,0,0x0,invalid, layout]

: ancestor
: Hone
¢ javax.swing.JPanel[,0,0,0x0, invalid, layout

: editValid
: 1
: 0

OIS

Figure 14-8. Propertylistener.py sample output

225

CHAPTER 14 © IT°S THE EVENT OF THE YEAR: EVENTS IN SWING APPLICATIONS

Number: |12,345.679

Currency: $12,345.68 |:

O Liv)

javax.swing.JPanel[,0,0,0x0,invalid, layout|

: editValid
t 1

MewValue: 0

: editvValid
: 0
1

Number: |3.142

Currency: |$12,345.68

Name: value
DldValue: 12345.6789
MewValue: 3.14159

Figure 14-8. (continued)

The images in Figure 14-8 demonstrate various events based on the user input. Arguably, the most important is
when the user enters a valid value for the formatted text field. This property change event will have a property name
of value, as well as an 01dValue attribute that can be used to determine the previous valid value, and a NewValue
attribute that can be used to identify the newly entered value. This is shown in the last image in Figure 14-8.

Using an InputVerifier

As mentioned earlier, the InputVerifier class exists to allow your applications to check for valid input before field
focus is enabled. Let’s take a look at a trivial application that uses an InputVerifier to force the user to enter the
value pass before the input focus can change. Figure 14-9 shows the output of this simple application.

226

Enter "pass”

CHAPTER 14 © IT’S THE EVENT OF THE YEAR: EVENTS IN SWING APPLICATIONS

| TextField 2

Figure 14-9. VerifyTest1.py sample output

Listing 14-15. Trivial Input Verification from VerifyTest1.py

9|class inputChecker(InputVerifier) :

10|
11|

def verify(self, input) :

return input.getText() == "pass”

12|class VerifierTest1(java.lang.Runnable) :

13|
14|
15|
16|
17|
18]
19|
20|
21|
22|
23|
24|
25|
26|
27|
28|
29|
30|
31|

def run(self) :

frame = JFrame(
'VerifierTest1',
locationRelativeTo = None,
defaultCloseOperation = JFrame.EXIT_ON_CLOSE

)
frame.add(
JTextField(
'Enter "pass"',
inputVerifier = inputChecker()
)5
BorderLayout.NORTH
)
frame.add(
JTextField('TextField 2'),
BorderLayout.SOUTH
)
frame.pack()

frame.setVisible(1)

Listing 14-15 shows how the InputVerifier only needs to implement the verify(...) method. As long as this
verify(...) method returns a value of false (0), the input focus isn’t allowed to change.

The problem with this trivial implementation is that the user doesn’t get much feedback that the current value is

unacceptable. Wouldn't it be better if you used some of the available techniques to explain to the user that something

is wrong?

Figure 14-10 shows one possible approach. Notice what happens when the user simply tries to change focus by
pressing the Tab key. The border color around the input field changes to RED and the field text is selected. I don’t
know about you, but I find this to be a pretty strong indication that something is wrong here.

Enter "pass”

TextField 2

Enter'pass‘| pass .
Ml TextField 2 [l Textriet 2 _

Figure 14-10. VerifyTest2.py sample output

227

CHAPTER 14 © IT’S THE EVENT OF THE YEAR: EVENTS IN SWING APPLICATIONS

Listing 14-16 shows this modified InputVerifier descendant class. In it, the verify(...) method does a little
more than the previous version. This additional functionality requires fewer than a dozen lines of code. However,
there is a world of difference between the usability of the two applications, don’t you think?

Listing 14-16. A Slightly More Involved Input Verifier from VerifyTest2.py

11|class inputChecker(InputVerifier) :
12| def _init (self) :

13| self.border = None # holder for "original" border
14| def verify(self, input) :

15| text = input.getText()

16| if not self.border : # The first time, save the border
17| self.border = input.getBorder()

18] result = input.getText() == "pass”

19| if result : # valid? Restore original border
20| input.setBorder(self.border)

21| else : # invalid? change border color
22| input.setBorder(LineBorder(Color.red))

23| input.selectAll()

24| return result

Is there anything missing from this application? Consider what happens when an invalid value is entered.
Nothing, that’s what. The InputVerifier isn’t invoked because it is associated with events that attempt to change
the keyboard focus. Pressing the Enter key doesn’t do that. This event is associated with ActionEvents, not with
InputVerifier events.

Figure 14-11 shows what happens when you associate an ActionListener with the first input field that invokes
the InputVerifier to validate the user input. The second image shows that, when the user presses the Enter key
without changing the text, the InputVerifier indicates that the text is invalid. The final image shows what happens
when the user enters valid text and presses Enter. Note that focus remains with the input field because the change of
focus is not a normal result of this action.

=0 X

Enter "pass” lnlplEnter "pass™ pass
TextField 2 | TextHeId 2 extFleId 2

Figure 14-11. VerifyTest3.py sample output

Listing 14-17 shows how simple it can be to have the ActionListener event handler routine invoke the
InputVerifier shouldYieldFocus() method to initiate input verification.

228

CHAPTER 14 © IT’S THE EVENT OF THE YEAR: EVENTS IN SWING APPLICATIONS

Listing 14-17. Using an ActionListener Method to Verify Input from VerifyTest3.py

25|class VerifierTest3(java.lang.Runnable) :

26| def verify(self, e) :

27| self.verifier.shouldYieldFocus(e.getSource())
28| def run(self) :

34| self.verifier = inputChecker()

35| frame.add(

36| JTextField(

37| 'Enter "pass"',

38| actionPerformed = self.verify,
39| inputVerifier = self.verifier
40|)s

41| BorderLayout.NORTH

42|)

Summary

This chapter covered some of events that your Swing applications will encounter. It is important to be familiar with
these events so that your applications can react well to user input. Remember, though, that there are many, many
events in the Swing class hierarchy. This chapter provides exposure to some of them.

In Chapter 15, you'll investigate how to use open source software libraries to enhance your applications.

229

CHAPTER 15

Nuts to Soup: Using Jsoup
to Enhance Applications

Up to this point, the applications in this book have been pretty simple. In this chapter, you learn what it will take to
create an application “as you go.” By that, | mean you can start simple and iterate over its creation and development,
with the intent of making it more useful based on what you learn as you go along. Additionally, you will use an existing
open source software (OSS) Java class library to create a useful application built on the work of others.

Using Existing Classes: Creating an HTML Retrieval Application
from Scratch

Based on the number of times that I've referred to the Java Swing documentation pages (the Javadoc for the Swing class
hierarchy), along with the number of footnote references that point to various class pages, it would be useful if you had
an application to help you with this kind of lookup, don’t you think? So, what will such an application need to do?

Wouldn't it be great if this application were able to access and process the Javadoc pages directly? What would
that take to achieve? This application needs to be able to access a remote website, request a specific page, and process
the results.

Are there any classes in the Swing hierarchy that you might be able to use? Listing 15-1 shows the list of classes on
the Java “All Classes” page! that include HTML somewhere in their class name.?

Listing 15-1. Java “HTML’ Classes

BasicHTML

HTML

HTML.Attribute

HTML.Tag

HTML .UnknownTag
HTMLDocument
HTMLDocument.Iterator
HTMLEditorKit
HTMLEditorKit.HTMLFactory

!See http://docs.oracle.com/javase/8/docs/api/allclasses-noframe.html.

*This list of classes can be obtained by executing the following command: jython getLinks.py http://docs.oracle.com/
javase/8/docs/api/allclasses-noframe.html | grep HTML. Then edit the result to remove the URLs that are listed with each
class. The getLinks.py script is discussed later in this chapter.

231

http://docs.oracle.com/javase/8/docs/api/allclasses-noframe.html
http://docs.oracle.com/javase/8/docs/api/allclasses-noframe.html
http://docs.oracle.com/javase/8/docs/api/allclasses-noframe.html

CHAPTER 15 © NUTS TO SOUP: USING JSOUP TO ENHANCE APPLICATIONS

HTMLEditorKit.HTMLTextAction
HTMLEditorKit.InsertHTMLTextAction
HTMLEditorKit.LinkController
HTMLEditorKit.Parser
HTMLEditorKit.ParserCallback
HTMLFrameHyperlinkEvent

HTMLWriter

MinimalHTMLWriter

This would appear to be a reasonable place to start an investigation. How could you use some of these classes
in order to:
e Connect to a remote website using a uniform resource locator (URL)
e Retrieve the hypertext markup language (HTML) from that page
e Process the contents, with the purpose of locating the hyperlinks® and the associated text

After a bit of investigation and work, I was able to get the routine shown in Listing 15-2 working. There may be
some way to refactor the code to make it slightly shorter, but I don’t see any easy way to make it easier to read and
understand.

Listing 15-2. The getLinks Routine

8|def getLinks(page) :
9| url = URI(page).toURL()

10| conn = url.openConnection()
11| isr = InputStreamReader(conn.getInputStream())
12| br = BufferedReader(isr)

13| kit = HTMLEditorKit()
14| doc = kit.createDefaultDocument()

15| parser = ParserDelegator()

16| callback = doc.getReader(0)

17| parser.parse(br, callback, 1)

18| iterator = doc.getIterator(HTML.Tag.A)

19 while iterator.isValid() :

20| try :

21| attr = iterator.getAttributes()

22| s¥C = attr.getAttribute(HTML.Attribute.HREF)
23| start = iterator.getStartOffset()
24| fini = iterator.getEndOffset()

25| length = fini - start

26| text = doc.getText(start, length)
27| print '%40s -> %s' % (text, src)
28| except :

29| pass

30| iterator.next()

*See http://en.wikipedia.org/wiki/Hyperlink.

232

http://en.wikipedia.org/wiki/Hyperlink

CHAPTER 15 © NUTS TO SOUP: USING JSOUP TO ENHANCE APPLICATIONS

What does the output of the script containing this routine look like? Well, Listing 15-3 shows the (slightly
massaged) output of the script, which allows the output to fit in the available space. This figure shows the hyperlinks
found on the IBM website (http://www. ibm.com).*

Listing 15-3. Absolute Links from http://www.ibm.com

United States -> http://www.ibm.com/planetwide/select/selector.html
IBM?? -> http://www.ibm.com/us/en/
Site map -> http://www.ibm.com/sitemap/us/en/

Figure 15-1 shows output from the Merriam Webster page. It contains a number of relative hyperlinks instead of
the absolute links shown in Listing 15-3.

-> /
"Cartouche" -> /dictionary/cartouche
"Praemunire" -> /dictionary/praemunire

"Positivity" -> /dictionary/positivity
Quizzes & Games -> /game/index.htm
Word of the Day -> /word-of-the-day/
Video -»> /video/index.php
New Words -> http://nws.merriam-webster.com/opendictionary/
My Favorites -> /my-saved-words/manage-list.htm

Figure 15-1. Relative links from http://www.merriam-webster.com/

Dealing with relative versus absolute hyperlinks is just the kind of thing that your application should take into
consideration. Additionally, dealing with HTML includes the risk that it may not be well formed (i.e., syntactically
correct).

Based on the hope that others are likely to have encountered and already solved these kinds of problems,

I decided to search the Internet for possible solutions.

An initial search for “Jython HTML parsing” results in some interesting possibilities. Unfortunately, subsequent
investigation identifies some prohibiting factors, including the fact that some Python modules (such as urllib2,
HTMLParser, BeautifulSoup, and 1xml) don’t work well or at all with Jython environments or the possible solutions
have significant performance issues.

Wouldn’t It Be Nice: Using Java Libraries

If the Jython or Python modules can’t help , what'’s left? Don’t forget that one of the most significant advantages to
Jython is that it is running on a Java Virtual Machine. So, you can investigate the possibility of using one or more Java
libraries to help.

“This output is the result of executing wsadmin -f %SwJCode%\Chap_15\getLinks.py -conntype none with the SwJCode
environment variable containing the path to the code folder that contains the book’s scripts.

233

http://www.ibm.com/
http://www.ibm.com/
http://www.ibm.com/planetwide/select/selector.html
http://www.ibm.com/us/en/
http://www.ibm.com/sitemap/us/en/
http://www.merriam-webster.com/

CHAPTER 15 © NUTS TO SOUP: USING JSOUP TO ENHANCE APPLICATIONS

When I asked on the Jython user’s mailing list® for suggestions, the Jsoup® library was quickly recommended.
Jsoup is a Java library for working with “real-world” HTML (such as pages with syntax issues). The Jsoup page includes
the following quote:

Note Jsoup is a Java library for working with real-world HTML. It provides a very convenient API for extracting and
manipulating data, using the best of DOM, CSS, and jQuery-like methods.

Jsoup implements the WHATWG HTML5 specification and parses HTML to the same DOM as modern browsers do.

This sounds exactly like the kind of thing you need in this case, don’t you think?

Working with the Jsoup Library

Follow these steps to use a new library with wsadmin and Jython:
1. First, you need to download the Jsoup archive library:
e Point your favorite browser to http://jsoup.org/.
¢ Select the Download link.
e Right-click on the core library file® and save it in a convenient directory.

2. Forwsadmin, you need to add this Java archive to the classpath. Fortunately, awsadmin
command-line option exists to do exactly this. If the Jsoup JAR file is in the C: \temp
directory, this can be as simple as:*

wsadmin -wsadmin_classpath c:\temp\jsoup-1.8.1.jar -f scriptName.py
For Jython, you only need to have this library (JAR file) as part of the JYTHONPATH environment variable.

For example:

Set JYTHONPATH=C:\Programs\jsoup\jsoup-1.8.1.jar;%IJYTHONPATH%
jython scriptName.py

’See jython-users@lists.sourceforge.net.

See http://jsoup.org/.

"See http://whatwg.org/html.

8At the time of this writing, it was jsoup-1.8.1.jar.

The first time that Jython is told about this Java archive, you will see a message something like this to indicate that Jython is aware
of the archive and has processed it to store information about the JAR file for later use by Jython scripts.

sys-package-mgr: processing new jar, 'C:\temp\jsoup-1.8.1.jar'.

234

http://jsoup.org/
http://jsoup.org/
http://whatwg.org/html

CHAPTER 15 © NUTS TO SOUP: USING JSOUP TO ENHANCE APPLICATIONS

Listing 15-4 shows a simple, interactive wsadmin session that demonstrates how easy it is for scripts to use the
Jsoup library.

Listing 15-4. Simple Jsoup Demonstration

1|wsadmin>from org.jsoup import Jsoup

2|wsadmin>

3|wsadmin>doc = Jsoup.connect('http://www.ibm.com').get()
4|wsadmin>doc.title()

5|/'IBM - United States'

6|wsadmin>for link in doc.getElementsByTag('a') :

7|wsadmin print link.attr('abs:href')

8|wsadmin>

9|http://www.ibm.com/planetwide/select/selector.html
10|http://www.ibm.com/us/en/
11|http://www.ibm.com/sitemap/us/en/
12 |http://www.ibm.com/software/marketing-solutions/benchmark-hub/...
13 |http://www.ibm.com/systems/infrastructure/us/en/it-infrastruct...
14|http://www-935.ibm.com/services/us/en/it-services/business-con...
15|http://www.ibm.com/common/twitter/ibm.xml
16 |http://www.ibm.com/news/us/en
17]...

Table 15-1 contains a description of each line of the simple interactive session.

Table 15-1. Simple Jsoup Demonstration, Explained

Lines Description

1 Import statement used to add the Jsoup library to the current namespace.
2 An empty line to make the session input easier to read.
3 A statement used to retrieve the contents of the www.ibm.comweb page.

Note: It is possible for an exception to be raised.

4 Demonstration of using the title() method' to display the title of the retrieved web page.
6-8 For loop used to retrieve the HTML links and display the absolute URLs" to which they refer.
9... The remainder of the session shows the first few lines that are output by the previous loop.

Isn’t this easier to read, understand, and use than the ones from the Swing hierarchy? I think so, and I'm pretty
sure that you'll agree.

1See http://jsoup.org/apidocs/org/jsoup/nodes/Document. html#title().
"See http://jsoup.org/cookbook/extracting-data/working-with-urls.

235

http://www.ibm.com/
http://www.ibm.com/planetwide/select/selector.html
http://www.ibm.com/us/en/
http://www.ibm.com/sitemap/us/en/
http://www.ibm.com/software/marketing-solutions/benchmark-hub/
http://www.ibm.com/systems/infrastructure/us/en/it-infrastruct
http://www-935.ibm.com/services/us/en/it-services/business-con
http://www.ibm.com/common/twitter/ibm.xml
http://www.ibm.com/news/us/en
http://www.ibm.com/
http://jsoup.org/apidocs/org/jsoup/nodes/Document.html#title
http://jsoup.org/cookbook/extracting-data/working-with-urls

CHAPTER 15 © NUTS TO SOUP: USING JSOUP TO ENHANCE APPLICATIONS

Jsoup Call May Appear to Hang

So now you're all set, right? No, not quite. Remember that the Swing applications need to be able to deal with events.
More importantly, you don’t want the application to wait or appear to be “hung,” while waiting for things (such as like
the retrieval of web pages) to complete. As mentioned before, you're going to start simple and make decisions based
on how things look.

First you need a descendant of the SwingWorker class to perform the Jsoup retrieval and to process requests on a
separate thread. Listing 15-5 shows the soupTask class from this simple application.

Listing 15-5. soupTask Class from javadocInfo _01.py

23| class soupTask(SwingWorker) :
24| def _init (self, comboBox, label, url) :

25| self.cb = comboBox # Save provided references
26| self.msg = label

27| self.url = url # URL to be used

28| self.doc = None

29| SwingWorker. init (self)

30| def doInBackground(self) :

31| try :

32| self.msg.setText('working...')

33| self.doc = Jsoup.connect(self.url).get()
34| self.msg.setText('ready’)

35] except :

36| Type, value = sys.exc_info()[:2]

37| print 'Error:', str(Type)

38| print 'value:', str(value)

39| self.msg.setText(str(value))

40| if self.doc :

41| self.cb.removeAllItems()

42| for link in self.doc.getElementsByTag('a') :
43| self.cb.addItem(str(link.text()))
44| def done(self) :

45| pass

Figure 15-2 shows some sample images from the first Swing application using the Jsoup library.

236

CHAPTER 15 © NUTS TO SOUP: USING JSOUP TO ENHANCE APPLICATIONS

AbstractAnnotationValueVisitoré
AbstractAnnotationValueVisitor7
AbstractBorder

AbstractButton
AbstractCellEditor
AbstractCollection
AbstractColorChooserPanel

All Classes

AbstractAction
AbstractAnnotationValueVisitors
AbstractAnnotationValueVisitor?
AbstractBorder

AbstractButton
AbstractCellEditor
AbstractCollection
AbstractColorChooserPanel
AbstractDocument

Figure 15-2. javadocInfo 01.py sample output

The last image in Figure 15-2 shows that a browser appears when the same URL is used. It certainly looks like the
Jsoup application is working as expected.

237

CHAPTER 15 © NUTS TO SOUP: USING JSOUP TO ENHANCE APPLICATIONS

From a Combo Box to a List Box

That application is quite simple and demonstrates the feasibility of using the Jsoup library to process the current Java
documentation URL." Unfortunately, a combo box doesn’t appear to be a good choice for showing the list of available
entries, does it? What else is missing? Well, I would like to be able to see the URL of the selected entry, wouldn’t you?
Let’s take a look at how to do that.

Figure 15-3 shows some images from this iteration of the application. The first image shows the application as
a connection to the remote host is being established. The second image, which is very short lived, shows that the
processing of the retrieved information is in progress. Then you see an image of the list of items from the page, and
finally, you see that when you make a selection, the text field is updated to reflect the associated URL for the selection.

One moment please... One moment please...

connecting...

& =
bstractAction JFileChooser

AbstractAnnotationValueVisitor6 JFormattedTextField
AbstractAnnotationValueVisitor7 JFormattedTextField.AbstractFormatter
AbstractBorder JFormattedTextField.AbstractFormatterFactory
AbstractButton
AbstractCellEditor JinternalFrame
AbstractCollection JinternalFrame.JDesktoplcon
AbstractColorChooserPanel JLabel
AhstractDocument Al aver

Make a selection docs.oracle.com/javase/7/docs/apifjavax/swing/JFrame.html|

Figure 15-3. javadocInfo 02.py sample output

To make this happen, you have to change the JComboBox into a JList, which allows you to display more entries.
This means that you need to change the soupTask class to deal with these changes. Additionally, a new argument is
added to this constructor, so that the task can return a dictionary of the links found on the page, indexed by the text
associated with each link. Listing 15-6 shows the most significant changes that were made to the application.

2See http://docs.oracle.com/javase/8/docs/api/allclasses-noframe.html.

238

http://docs.oracle.com/javase/8/docs/api/allclasses-noframe.html

CHAPTER 15 © NUTS TO SOUP: USING JSOUP TO ENHANCE APPLICATIONS

Listing 15-6. soupTask, Iteration 2, from javadocInfo_02.py

26|class soupTask(SwingWorker) :
27| def _init (self, List, label, url, result) :

28| self.List = List # Save provided references
29| self.msg = label

30| self.url = url # URL to be used
31| self.doc = None

32| self.docLinks = result # lookup result
33| SwingWorker. _init_ (self)

34| def doInBackground(self) :

35| try :

36| self.msg.setText('connecting...')

37| self.doc = Jsoup.connect(self.url).get()
38| self.msg.setText('processing...')

39| model = DefaultlListModel()

40| for link in self.doc.getElementsByTag('a') :
41| name = link.text()

42| href = link.attr('abs:href')

43| self.docLinks[name] = href

44| model.addElement(name)

45| self.List.setModel(model)

46| self.msg.setText('Make a selection')

47| except :

48| Type, value = sys.exc_info()[:2]

49| Type, value = str(Type), str(value)

50| print 'Error:', Type

51| print ‘value:', value

52| self.msg.setText(value)

53| def done(self) :

54| pass

That’s pretty good, but it’s still not a great application. What else can you do to make it more useful and usable?
Listing 15-7 shows the main application class of the second iteration of the Javadoc lookup application. Overall,
it's amazing how much this little application can do with fewer than 100 lines of Jython code.

Listing 15-7. javadocInfo 02 Application Class

55|class javadocInfo 02(java.lang.Runnable) :
56| def run(self) :

57| frame = JFrame(

58] 'javadocInfo 02',

59| locationRelativeTo = None,

60| size = (350, 225),

61| defaultCloseOperation = JFrame.EXIT_ON_CLOSE
62|)

63| model = DefaultlListModel()

64| model.addElement('One moment please...')

65| self.List = JList(

66| model,

67| valueChanged = self.pick,

68| selectionMode = ListSelectionModel.SINGLE_SELECTION
69|)

239

CHAPTER 15 © NUTS TO SOUP: USING JSOUP TO ENHANCE APPLICATIONS

70| frame.add(

71| JScrollPane(self.list),

72| BorderLayout.CENTER

73|)

74| self.msg = JTextField()

75| frame.add(self.msg, BorderLayout.SOUTH)

76| self.Links = {}

77| soupTask(

78| self.Llist, # The visible JList instance
79| self.msg, # The message area (JTextField)
80| JAVADOC_URL, # Remote web page URL to be processed
81| self.Links # Dictionary of links found

82|).execute()

83| frame.setVisible(1)

Listing 15-8 shows the ListSelectionListener® event handler that’s invoked when the user makes a selection. It
takes a bit of work (code) to figure out when this handler actually has some work to do. Why is that? One reason is that
itis invoked when a ListSelectionEvent!* occurs. So, the first thing it does is determine if the event that occurred
isrelated to a selection adjustment, which is ignored. Then it checks the number of entries on the list. If only one
element is present, which only occurs when the list is created with the “One moment please. . " message, this event is
ignored.

Finally, it checks to see if an element is selected, in which case the URL associated with this item is displayed in
the message text field. Otherwise, the “Make a selection” message is displayed.

Listing 15-8. javadocInfo_02.py ListSelectionlListener Event Handler
84| def pick(self, e) :

85| if not e.getValueIsAdjusting() :

86| List = self.List

87| model = List.getModel()

88| if model.getSize() > 1 :

89| index = List.getSelectedIndex()

90| if index > -1 :

91| choice = model.elementAt(index)

92| self.msg.setText(self.Links[choice])
93| else :

94| self.msg.setText('Make a selection')

Adding a TextArea to Show the HTML

From here, it’s easy to imagine how useful it would be to retrieve the contents of the page that is selected by the user.
You really don’t need to create another web browser." It is potentially useful if the application can retrieve, process,
and analyze a user-selectable page. Let’s begin by displaying the page’s contents (the HTML), and then decide how
best to proceed. Listing 15-9 contains the modified textTask class, which is where the most interesting changes occur.

BSee http://docs.oracle.com/javase/8/docs/api/javax/swing/event/ListSelectionListener.html.

14See http://docs.oracle.com/javase/8/docs/api/javax/swing/event/ListSelectionEvent.html.

"“In fact, if you try to display a complete HTML page using one of the HTML-aware components, you are likely to encounter a
large number of Java exceptions.

240

http://docs.oracle.com/javase/8/docs/api/javax/swing/event/ListSelectionListener.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/event/ListSelectionEvent.html

CHAPTER 15 © NUTS TO SOUP: USING JSOUP TO ENHANCE APPLICATIONS

Listing 15-9. textTask Class from javadocInfo_03.py
60|class textTask(SwingWorker)

61| def _init (self, area, url)

62| self.area = area # Save area to be updated
63| self.url = url # URL to be retrieved
64| SwingWorker. _init_ (self)

65| def doInBackground(self)

66| try :

67| self.area.setText('connecting...')

68| doc = Jsoup.connect(self.url).get()

69| self.area.setText(str(doc.normalise()))

70| except :

71| Type, value = sys.exc_info()[:2]

72| Type, value = str(Type), str(value)

73] self.area.setText(

74| "\nError: %s\nValue: %s' % (Type, value)
75|)

76| def done(self)

77 pass

Figure 15-4 shows some sample output from the javadocInfo_03.py script. The first image shows the HTML text
from the JFrame Javadoc web page. It should be no surprise that the TextArea containing the HTML needs to be in a
scroll pane. The second image shows the portion of the HTML that describes the Field Summary portion of the page.
The last image shows how this HTML is displayed in a browser.

<IDOCTYPE htmi PUBLIC “-/W3C/DTD HTML 4.01 Transitional/EN" “hitpiwww.w3.org/TR/htmid/lloose. did™>
<l—- NewPage —=
<himl lang="en">
<head=
% <l- Generated by javadoc (version 1.6.0_18) on Wed Aug 01 12:25:52 PDT 2012 —=
JEdtrfang <litle>JFrame (Java Platiorm SE 7)<fitle>
JFileChooser <meta name="date" content="2012-08-01" />
JFormattedTextField <meta name="keywords" content="javax.swing.JFrame class” />
JFormattedTextField.Al | ;| =meta name="keywords" content="EXIT_ON_CLOSE" /=
JFormattedTextField. Al =meta name="keywords" content="rootPane" />
<meta name="keywords" content="rootPaneCheckingEnabled” />
JinternalFrame | || <meta name="keywords" content="accessibleContext” />
JinternalFrame.JDesktl =] ;| <meta name:_keywords: con1ent=_‘rramelmli)' 1=)

<meta name="keywords" content="createRootFane()" /=
<meta name="keywords" content="processWindowEvent()" />
<meta name="keywords" content="setDefaultCloseOperation()” />
:| =meta name="keywords" content="getDefaultCloseOperation()" =
<meta name="keywords" content="setTransferHandler()" />
=<meta name="keywords" content="gefTransferHandler()" /=
<meta name="keywords" content="update()" />
<meta name="keywords" content="setIMenuBar()" />
<meta name="keywords" content="get/MenuBar()" />
<meta name="keywords" content="isRootPaneCheackingEnabled()" /=
<meta name="keywords" content="setRootPansCheckingEnabled()" />

JMRuntimeException \| «meta name="keywords" content="addimpl()" />

JMX i| «<meta name="keywords" content="remova()’ />
JMXAddressable =meta name="keywords" content="setLayoul()" /=
JMXAuthenticator I =meta name="keywords" content="getRootPane()" /=
;| =meta name="keywords" content="setRootPane()" /=
‘| xmeta name="kewwards® content="ssticonlmaae)” &
oy - bJ_

-

Figure 15-4. javadocInfo 03 sample output

241

CHAPTER 15 © NUTS TO SOUP: USING JSOUP TO ENHANCE APPLICATIONS

<li class="blockList™><a name="ield_summary™
<l— —> «/3> <h3>Field Summary<h3>

JEditorPane <table class="oveniewSummary” border="0" cellpadding="3" cellspacing="0" summary="Field Summary table, listing fields, and an expl=

JFileChooser <caption>

JFormattedTextField =gpan>Fields

JFormattedTextField.Al =span class="tabEnd™> ,

JFormattedTextField.Al <lcaption>

JFrame <tbody=

=fr=
JinternalFrame = <th class="colFirst" scope="col">Modifier and Type<ih>
JinternalFrame.JDeskt

=th class="colLast™ scope="col™=Field and Description=fh=
==

=<tr class="altColor=

<td class="colFirst"><code=protected <a href="_/ fjavax/accessibilityAccessibleContext htmi® tile="class in javax.accessibility=Access

<td class="colLast™>=code>=strong>accessi bleConten<fa><.'strong><fcod'
=div class="block™

The accessible context property

</div> <fd>
=ftr=
=tr class="rowColor*>
=td class="colFirst">=code=stalic int</code=</td=
JMRuntimeException <td class="colLast"><code><sfrong=<a href="./ fjavaw'swing/JFrame.himI#EXIT_OM_CLOSE™EXIT_OMN_CLOSE</strong=</codel
JMX <div class="block™
JMXAddressable The exit application default window close operation.

JMXAuthenticator <idiv> <Rd>
| <ftr>

AL T]| _<tr class="altColor">
piljavawswing/JFrame.htmi [

Field Summary

s |

Meodifier and Type Field and Description
rotected AccessibleContext accessibleContext
The accessible context property.
atatic int EXIT ON CLOSE
The exit application default window close operation.
protected JRootPane rootPane

The JReotPane instance that manages the contentPane and optional menuBar for this frame, as well as the glasaPane
protected boolean rootPaneCheckingEnabled

If true then calls to add and setLayout will be forwarded to the contentFane

Figure 15-4. (continued)

Rendering HTML

It certainly would be nice if you could actually use HTML tags to tell how the Swing component should display
information. Well, you can, at least to a limited extent. Some, but not all, Swing components are capable of using
HTML tags to determine how information should be displayed. You saw from the most recent application output in
Figure 15-4 that the JTextArea component doesn’t do this.

Don’t get your hopes up too quickly. You won’t be able to create a fully capable web browser in your applications
simply by selecting the “right” Swing components.

Another caveat you need to be aware of is the fact that the HTML specification implemented in the Swing

component hierarchy is 3.2, so it’s not as feature-rich as the latest HTML specification (version 5), which is starting to
show up on the Internet.

242

CHAPTER 15 © NUTS TO SOUP: USING JSOUP TO ENHANCE APPLICATIONS

What does it take to have one of the HTML capable components display text as the HTML tags indicate? Well, it’s
as simple as having the text attribute string begin with <html>.

Listing 15-10 contains the trivial script that demonstrates just how easy it is to use HTML to do this. Please be
careful though—just because you can do something, doesn’t mean that you should.

Listing 15-10. HTMLtext_01.py Script Showing an HTML Label

1|from javax.swing import JFrame
2|from javax.swing import JlLabel
3| frame = JFrame(

4] "HTMLtext 01",

5] size = (200, 200),

6] locationRelativeTo = None,

7] defaultCloseOperation = JFrame.EXIT_ON_CLOSE
8|)

9|text = '<html>'
10|text += '^{My}
11|text += '_{<i>label</i>}
12|text += 'is '

13|text += 'far '
14|text += 'too busy, '
15|text += "<u>isn't it?</u>"

16|label = frame.add(JLabel(text))
17|frame.setVisible(1)

18| raw_input()

Figure 15-5 demonstrates this axiom quite vividly. Keep in mind that you should be interested in making your
application more appealing, not less.

- is far too busy, isn't it?

Figure 15-5. HTMLtext_01.py sample output

If you are familiar with HTML, you know that you can do all sorts of interesting things with it. For example, as you
can see in Figure 15-6, you can create a simple unordered list tag (starts on line 10 and ends on line 14 of Listing 15-?)
to display a bulleted list with each item in a different color.

243

CHAPTER 15 © NUTS TO SOUP: USING JSOUP TO ENHANCE APPLICATIONS

@ Red

& Green
@ Blue

Figure 15-6. HTMLtext_02.py sample output

Listing 15-11 shows the trivial script used to produce the output in Figure 15-6. As you can seg, it’s up to the
developer how to build the string. In this case, using multiple concatenation steps to build the HTML string makes for
a better and more complete understanding of the various parts of the HTML.

Listing 15-11. HTMLtext_02.py Source

1|from javax.swing import JFrame
2|from javax.swing import JLabel
3|frame = JFrame(

4| "HTMLtext 02",

5] size = (200, 200),

6| locationRelativeTo = None,

7] defaultCloseOperation = JFrame.EXIT_ON_CLOSE
8|)

9|text = '<html>'

10|text += '<ul compact>'

11|text += 'Red</1i>'
12|text += 'Green</1i>'
13|text += 'Blue</1i>’
14|text += '’

15|1label = frame.add(JLabel(text))

16| frame.setVisible(1)

17| raw_input()

Modifying the HTML Text

In addition to static components, your applications might have some dynamic components that might be improved
by the users of the HTML. Do you remember the JToggleButton component discussed in Chapter 8? Figure 15-7
shows one way to use HTML to make the button state more obvious to the users.

244

CHAPTER 15 © NUTS TO SOUP: USING JSOUP TO ENHANCE APPLICATIONS

Figure 15-7. HTMLtext _03.py sample output

Listing 15-12 shows part of the HTMLtext_03. py script that was used to produce this output. If you're
uncomfortable with the statement in lines 24-29, don’t worry. It uses Jython’s flexibility to determine which color and
text values should be used by indexing an array using the result of calling the button.isSelected() method.

Listing 15-12. Using HTML in a JToggleButton from HTMLtext_03.py

6|class HTMLtext 03(java.lang.Runnable) :
7] def run(self) :

8| frame = JFrame(

9| '"HTMLtext_03",

10| size = (100, 100),

11| locationRelativeTo = None,

12| defaultCloseOperation = JFrame.EXIT ON_CLOSE
13|)

14| text = '<html>0ff'
15| label = frame.add(

16| JToggleButton(

17| text,

18| itemStateChanged = self.toggle

19])

20|)

21| frame.setVisible(1)

22| def toggle(self, event) :

23| button = event.getItem()

24| button.setText(

25| "<html>%s" % [
26| ('red' , 'Off'),

27| ('green', 'On’

28]][button.isSelected()]

29|)

245

CHAPTER 15 © NUTS TO SOUP: USING JSOUP TO ENHANCE APPLICATIONS

Listing 15-13 shows some additional ways that this might be done.'® I'm quite certain that you can come up with
some other alternatives yourself.

Listing 15-13. Alternative Ways of Setting the JToggleButton Text

if button.isSelected() :

text = '<html>0ff'
else :

text = '<html>On'
button.setText(text)

. Or even ...

if button.isSelected() :
color, value = 'red', 'Off'
else :
color, value = 'green', 'On'
text = '<html>%s"' % (color, value)
button.setText(text)

Identifying the Sections

Now that you've learned about the components that you can use to display text that’s been marked up in HTML, it’s
time to return to Jsoup to see what you can do to improve your Javadoc application.

Note in Figure 15-4 that the HTML for a Swing class can be quite extensive. The application that I'm considering,
atleast for this chapter, can display a subset of the information that’s available on the user selected entry, not the
complete details.

Let’s work on this in steps, so that you can learn as you go along. To begin, let’s see what it takes to build a tiny
application that will display the header text for a specific Javadoc page. The getHeaders class that is used in all three
of the getHeader scripts is shown in Listing 15-14. As you can see, it is a simple application that uses a SwingWorker
descendent class to populate a scrollable text area with the HTML heading tags from the JFrame Javadoc URL.

Listing 15-14. The getHeaders Class'

62|class getHeadersi(java.lang.Runnable) :
63| def run(self) :

64| frame = JFrame(

65| 'JFrame headers',

66 | size = (500, 250),

67| locationRelativeTo = None,

68| defaultCloseOperation = JFrame.EXIT_ON_CLOSE
69|)

'This is a kind of a tip of the hat to Perl’s “Tim Toady” (TMTOWTDI) motto at http://en.wikipedia.org/wiki/There%27s_
more_than_one_way_to_do_it and the “Zen of Python,” which can be seen at http://www.python.org/dev/peps/pep-0020/.
"The complete URL of the JFrame Javadoc is http://docs.oracle.com/javase/8/docs/api/javax/swing/IFrame.html.

246

http://en.wikipedia.org/wiki/There%27s_more_than_one_way_to_do_it
http://en.wikipedia.org/wiki/There%27s_more_than_one_way_to_do_it
http://www.python.org/dev/peps/pep-0020/
http://docs.oracle.com/javase/8/docs/api/javax/swing/JFrame.html

CHAPTER 15 © NUTS TO SOUP: USING JSOUP TO ENHANCE APPLICATIONS

70| textArea = JTextArea()

71| frame.add(JScrollPane(textArea))

72| url = '.../docs/api/javax/swing/JFrame.html’
73] headerTask(url, textArea).execute()

74| frame.setVisible(1)

Listing 15-15 shows the headerTask that uses the Jsoup library to retrieve the specified HTML, process it, and
display the result in the user-specified area. If you watch closely while executing any of these getHeader scripts, you
might be able to see the connecting. .. and processing. .. messages that this class produces.

It is important to note that this class uses the Jsoup items to process the retrieved HTML. The ones new to this
application are found in the getPlainText(...) method, as shown on lines 38-42.

Listing 15-15. The headerTask Class from the getHeader1.py Script Files

38| class headerTask(SwingWorker) :
39| def _init (self, url, result) :

40| self.url = url # URL to be retrieved
41| self.result = result

42| SwingWorker. init (self)

43| def getPlainText(self, element) :

44| visitor = FormattingVisitor(self.url)

45| walker = NodeTraversor(visitor)

46| walker.traverse(element)

47| return visitor.toString()

48| def doInBackground(self) :

49| try :

50| self.result.setText('connecting...')
51| doc = Jsoup.connect(self.url).get()
52| self.result.setText('processing...')
53| self.text = self.getPlainText(doc)
54 except :

55| Type, value = sys.exc_info()[:2]

56| Type, value = str(Type), str(value)
57| print '\nError:', Type

58| print 'value:', value

59| self.result.setText('Exception: %s' % value)
60| def done(self) :

61| self.result.setText(self.text)

The FormattingVisitor(...) method is a descendant of the Jsoup NodeVisitor class, and its implementation
is shown in Listing 15-16. This is the only class in the three getHeader#. py scripts that changes. In this class, the
application appends the text of any HTML header tags that it finds to be displayed in the application text area.

247

CHAPTER 15 © NUTS TO SOUP: USING JSOUP TO ENHANCE APPLICATIONS

Listing 15-16. The FormattingVisitor() Method from getHeader1.py

23| class FormattingVisitor(NodeVisitor) :
24| def _init (self, url) :

25| self.result = StringBuilder()

26| def append(self, text) :

27| newline = ['', "\n'][self.result.length() > 0]
28| self.result.append(newline + text)

29| def head(self, node, depth) :

30| name = node.nodeName()

31| if name in ['h1', 'h2', 'h3', 'h4', 'h5', 'h6'] :
32| if node.hasText() :

33| self.append('%s: %s' % (name, node.text()))
34| def tail(self, node, depth) :

35| name = node.nodeName ()

36| def toString(self) :

37| return str(self.result)

The only method that changes in the three getHeader scripts is head(. . .). The one from getHeader2.py is
shown in Listing 15-17. Note how this iteration is only interested in the H3 (Header 3) tags.

Listing 15-17. The head(...) Method from getHeader2.py
29| def head(self, node, depth) :

30| name = node.nodeName()

31| if name == 'h3' :

32| if node.hasText() :

33| self.append('%s: %s' % (name, node.text()))

Listing 15-18 shows the last version of the head(. . .) method. This version is only interested in H3 tags whose
text doesn’t contain the word “inherited.”

Listing 15-18. The head(...) Method from getHeader3.py
29| def head(self, node, depth) :

30| name = node.nodeName()

31| if name == 'h3' and node.hasText() :

32| text = node.text()

33| if text.find('inherited') < 0 :

34| self.append('%s: %s' % (name, text))

Figure 15-8 shows the output of these three getHeader scripts. From this output, it shouldn’t be too much of a
leap to figure out how to change the Javadoc script to display the most useful H3 text. Before you do that, though, take
a moment to figure out where you want to go next.

248

CHAPTER 15 © NUTS TO SOUP: USING JSOUP TO ENHANCE APPLICATIONS

: Class JFrame

:Nested Class Summary

- Nested classesfinterfaces inherited from class java.awtFrame

- Nested classesfinterfaces inherited from class java.awt.Window

: Nested classes/interfaces inherited from class java.awt.Container
- Nested classesfinterfaces inherited from class java.awt.Component
: Field Summary

- Fields inherited from class java.awt.Frame

: Fields inherited from class java.awt.Component

: Fields inherited from interface javax.swing.WindowConstants

: Fields inherited from interface java awtimage ImageObserver

: Constructor Summary

- Nested Class Summary

- Nested classesfinterfaces inherited from class java.awt.Frame

- Nested classesfinterfaces inherited from class java.awt Window

- Nested classesfinterfaces inherited from class java.awt.Container
: Nested classesfinterfaces inherited from class java.awt. Component
: Field Summary

: Fields inherited from class java.awt.Frame

: Fields inherited from class java.awt.Component

. Fields inherited from interface javax.swing.WindowConstants

: Fields inherited from interface java.awtimage.ImageObserver

: Constructor Summary

- Method Summary

- Nested Class Summary
: Field Summary

. Constructor Summary

- Method Summary

. Field Detail

: Constructor Detail

: Method Detail

Figure 15-8. Sample output from the getHeader scripts

249

CHAPTER 15 © NUTS TO SOUP: USING JSOUP TO ENHANCE APPLICATIONS

Fixing the Great Divide

One of the problems that I have with the way the javadocInfo_03.py application looks is the fact that the divider
doesn’t provide enough space to see the longer class names. How can you fix this?

To begin with, it’s a good idea to adjust the position to something more convenient. If you do that, though, you
need to have the application tell you the new position, so that you can use it as the starting position for the revised
application.

You need to add a PropertyChangelListener event handler to the JSplitPane and watch for the right kind of
changes. This is all very easy to say, but how easy is it to do? Listing 15-19 shows just how easy this can be. In line 109,
you see how to specify the PropertyChangelListener event handler method, and in lines 137-146, you see how the
event handler determines and displays the divider-related changes.

Listing 15-19. PropertyChangelListener Changes in javadocInfo_04.py

104 | frame.add(

105 | JSplitPane(

106 | JSplitPane.HORIZONTAL_SPLIT,
107| pane,

108 JScrollPane(self.area),

109 | propertyChange = self.propChange
110)

111 |)

|
137| def propChange(self, pce) :

138| src = pce.getSource() # Should be our JSplitPane
139| prop = pce.getPropertyName()

140 if prop == JSplitPane.LAST DIVIDER LOCATION PROPERTY :
141 | curr = src.getDividerLocation()

142 last = pce.getNewValue()

143 | prev = pce.get0ldvalue()

144 | print '\nlast: %4d prev: %4d curr: %4d' % (

145 last, prev, curr

146)s

Figure 15-9 shows the sample output from an execution of the script that determined a more appropriate
divider value.

last: -1 prev: 0 curr: 129
last: 129 prev: -1 curr: 129
last: -1 prev: 129 curr: 129
last: 129 prev: -1 curr: 271

last: 271 prev: 129 curr: 271
last: 129 prev: 271 curr: 271

Figure 15-9. SplitPane PropertyChangelistener output

250

CHAPTER 15 © NUTS TO SOUP: USING JSOUP TO ENHANCE APPLICATIONS

So what can you do with this newfound knowledge? Well, my initial attempt consisted of adding a
dividerLocation keyword argument to the JSplitPane'® constructor call. Unfortunately, this caused an exception
indicating that this is a read-only value.

Looking at the Javadoc, you can see that there are multiple setDividerLocation(...) methods, which is likely to
be the source of the problem. So you need to call one of these setter methods after JSplitPane has been instantiated.
Listing 15-20 shows how this is done in the javadocInfo_05.py script.

Listing 15-20. Using a DividerlLocation Setter Method Call

106 | sPane = JSplitPane(

107 JSplitPane.HORIZONTAL_SPLIT,

108 | pane,

109 | JScrollPane(self.area),

110 propertyChange = self.propChange
111

112 sPane.setDividerLocation(234)

Filtering the List

One of the problems with the complete list of classes that’s initially displayed by the javadocInfo script is that it’s too
long. If you drag the scroll bar down, you'll quickly see that there are something like 4,000 classes listed. This makes it
harder for the users to deal with.

Wouldn't it be nice to use the JTextField as an input field filter that allowed users to enter text to be matched?
That’s what you'll do next. The changes that need to be made include the following:

e Locate the places in the script where the setText(...) method is used to show the URL
associated with the user selection.

e Add alistener to JTextField that allows you to monitor user input and locate class names
containing the user-specified text. For this, I chose to use a CaretListener and check for
changes in the user-specified text.

The javadocInfo_06.py script contains these changes and Figure 15-10 shows some sample screens.

'8See http://docs.oracle.com/javase/8/docs/api/javax/swing/ISplitPane.html.

251

http://docs.oracle.com/javase/8/docs/api/javax/swing/JSplitPane.html

CHAPTER 15 © NUTS TO SOUP: USING JSOUP TO ENHANCE APPLICATIONS

AbstractAction No itern selected
AbstractAnnotationValueVisitoré -
AbstractAnnotationValueVisitor7
AbstractBorder

AbstractButton

AbstractCellEditor
AbstractCollection
AbstractColorChooserPanel
AbstractDocument
AbstractDocument.AttributeContext
AbstractDocument.Content
AbstractDocument.ElementEdit
AbstractElementVisitort
AbstractElementVisitor7
AbstractExecutorService
AbstractinterruptibleChannel
AbstractLayoutCache
AbstractLayoutCache.NodeDimension
AbstractList

AbstractListModel

AbstractMap
AbstractMap.SimpleEntry
AbstractMap. SimplelmmutableEntry
AbstractMarshallerimpl
AbstractMethodError

JFileChooser MNo item selected
JFormattedTextField
JFormattedTextField AbstractFormatter

| JFormattedTextField.AbstractFormatterf
JFrame

Figure 15-10. javadocInfo_06.py sample output with list filtering

252

CHAPTER 15 © NUTS TO SOUP: USING JSOUP TO ENHANCE APPLICATIONS

| JFileChooser <IDOCTYPE html PUBLIC -/W3CHDTD HTML 4.01 Transitional/EN" "hitpiwww.w3.org/TRMmI4Noose.did™>
JFormattedTextField | 2|~ NewPage —
JFormattedTextField.AbstractFormatter | - [<htmllang="en™>

E | :| <head~>
JFormattedTextField.AbstractFormatterf .
 “| <l Generated by javadoc (version 1.6.0_18) on Wed Aug 01 12:25:52 POT 2012 —=

1| «title>JFrame (Java Platform SE 7)=<fitle=

<meta name="date" content="2012-08-01" /=

«meta name="keywords~ content="javax swing.JFrame class™ /=
<meta name="keywords" content="EXIT_ON_CLOSE" />

<meta name="keywords" content="rootPane” /=

=meta name="keywords" content="rootPaneCheckingEnabled" /~
<meta name="keywords" content="accessibleContext™ />

<meta name="keywords" content="framelnit()" /=

<meta name="keywords" content="createRootPane()" /=

<meta name="keywords" content="processWindowEvent()" /=
=meta name="keywords" content="setDefaultCloseOperation()" /=
<meta name="keywords" content="getDefaultCloseOperation()" /=
<meta name="keywords" content="setTransferHandler()" /=
<meta name="keywords" content="getTransferHandler()" /=

<meta name="keywords" content="update()" /=

=meta name="keywords" content="setJMenuBar()" />

=<meta name="keywords" content="getUMenuBar()" /=

<meta name="keywords" content="isRootPaneCheckingEnabled()" />
<mefla name="keywords" content="setRootPaneCheckingEnabled()" />
<mela name="keywords" content="addimpl{)" /=

=mela name="keywords" content="remove()" />

<mela name="keywords" content="setLayout()" /=

=mela name="keywords" content="gelRoolPane()" />

=<mela name="keywords~ content="setRootPane()"

:.r_m:]m name="kewwnris® content="seticanimane(\” i>

Figure 15-10. (continued)

Using Jsoup to Pick Up the Tab: Adding a JTabbedPane

Iwonder how difficult it would be for the Jsoup library to process the Javadoc HTML and find the tables that are
frequently found in the heading 3 (h3) sections of the documentation? While I was thinking about this, it came to
me that I might be able to use a JTabbedPane, with the tab name being the heading 3 text and the contents being the
HTML table.

You could even use a suitable pane to render the table properly. This is sounding interesting. To simplify things
during my testing (and learning) phases, I chose to start with the getHeaders script.

Figure 15-11 shows the sample output of the getHeaders5. py script, which retrieves and processes the Javadoc
for the JFrame class.

253

CHAPTER 15 © NUTS TO SOUP: USING JSOUP TO ENHANCE APPLICATIONS

_—
Nested Class Summary | Field Summary | Constructor Summary | Method Summary |

Nested Classes
Modifier and Type Class and Description

JFrame.AccessibleJFrame

rotected class . . o
e This class implements accessibility support for the JFrame class.

Fields
Modifier and Type Field and Description
protected accessibleContext
AccessibleContext The accessible context property.
EXIT ON CLOSE
The exit application default window close operation.

static int

rootPane

protected JRootPane The JRootPane instance that manages the contentPane and

Nested Class Summary | Field Summary | Constructor Summary | Method Summary

Constructors
Constructor and Description

JFrame ()

Constructs a new frame that is initially invisible.

JFrame (GraphicaConfiquration gc)

Creates a Frame in the specified GraphicsConfiguration of a screen device and a blank title.
JFrame (String title)

Creates a new, initially invisible Frame with the specified title.

ted Class S y | Field S y | Constructor Summary | Method Summary |

Methods
Modifier and Type Method and Description

addImpl (Component comp, Object constraints, int index)
Adds the specified child Component.

protected createRootPane ()

JRootPane Called by the constructor methods to create the default rootPane.
frameInit ()

Called by the constructors to init the JFrame properly.

protected void

protected void

Figure 15-11. getHeaders5.py output with JFrame h3 tables on JTabbedPane

254

CHAPTER 15 © NUTS TO SOUP: USING JSOUP TO ENHANCE APPLICATIONS

The most significant changes are shown in Listing 15-21, which contains the FormattingVisitor class from the
getHeaders5. py script.

Listing 15-21. FormattingVisitor Class Used to Build the JTabbedPane

25|class FormattingVisitor(NodeVisitor) :

26|
27|
28]
29|
30|
31|
32|
33|
34|
35]
36|
37|
38|
39|
40|
41|
42|
43|
44|
45|
46 |
47|
48|
49|
50|

def _init (self, url) :

self.Tabs = JTabbedPane()
self.header = re.compile('[hH][1-6]$%")
self.h3Text = "'

def head(self, node, depth) :

name = node.nodeName()
if re.match(self.header, name) :
self.h3Text = ["', node.text()] [name[1] == '3"']

def tail(self, node, depth) :

name = node.nodeName()
if self.h3Text and name == 'table' :
ePane = JEditorPane(

"text/html’, # mime type
"<html>' + str(node), # content
editable = 0

self.Tabs.addTab(self.h3Text, JScrollPane(ePane))

def toString(self) :

tp = self.Tabs
return '\n'.join(

tp.getTitleAt(i)
for i in range(tp.getTabCount())

)

Table 15-2 explains how this class works, in detail.

Table 15-2. FormattingVisitor Class, Explained

Lines

Description

26-29

30-33

34-42

43-50

Class constructor used to instantiate the JTabbedPane, as well as define a regular expression (RegExp) to
identify heading tags, specifically h3 tags.

The head(. . .) method is called by the NodeTraversor () method as the HTML is processed. It is invoked
when any open tag is encountered (such as <h2> or <table...>). The value of the h3Text variable is set to
an empty string (when any other head level is encountered) or to the text associated with the heading tag
when an h3 tag is found.

The tail(...) method is called as the HTML is processed, specifically when an end tag (such as </h3> or
</table>) is found. When a table “end” tag is found after an <h3> tag, a read-only JEditorPane is created
containing the whole <table> HTML. This JEditorPane instance is placed in a JScrol1lPane and added
as a tab to the JTabbedPane.

The toString(...) method is provided and returns a string with all of the JTabbedPane tab names,
separated by newline \n characters.

255

CHAPTER 15 © NUTS TO SOUP: USING JSOUP TO ENHANCE APPLICATIONS

The only other significant difference in this script relates to how the SwinghWorker descendent class (headerTask)
updates the application in a way that allows the updates to be shown to the users. Listing 15-22 shows the headerTask
class from getHeader5. py.

Listing 15-22. The headerTask Class from the getHeaders5.py Script

51|class headerTask(SwingWorker) :
52| def _init (self, url, frame) :

53] self.url = url # URL to be retrieved
54| self.frame = frame

55| SwingWorker. init (self)

56| def doInBackground(self) :

57] try :

58| print 'connecting...'

59| doc = Jsoup.connect(self.url).get()
60| print 'processing...'

61| visitor = FormattingVisitor(self.url)
62| walker = NodeTraversor(visitor)

63| walker.traverse(doc)

64| self.frame.add(visitor.Tabs)

65| self.frame.validate()

66| except :

67| Type, value = sys.exc_info()[:2]

68| Type, value = str(Type), str(value)
69| print '\nError:', Type

70| print ‘value:', value

71| def done(self) :

72| print 'done'

Table 15-3 describes the headerTask class in detail. The most important part of this is how this class informs the Swing
framework that it needs to validate the application (frame) updates. If this isn’t done, the user won’t see any of the changes.

Table 15-3. The headerTask Class, Explained

Lines Description

52-55 Class constructor used to save the specified URL, as well as a reference to the application frame to be
modified. This method also has to invoke the SwingWorker constructor in order to properly initialize the
class as a SwingWorker instance.

56-70 The doInBackground() method is where the actual (generally long-running) processing occurs.
59 This is where the HTML from the specified URL is retrieved.
61-63 A NodeVisitor call uses the FormattingVisitor instance to process the Javadoc from the specified URL.

64 The result of the processing is a JTabbedPane instance, which is added to the application’s JFrame
instance. Unfortunately, this call to the frame.add(. ..) method is not likely to happen in a way that lets
the Swing framework know that a change has occurred.

65 The call to frame.validate() forces the framework to recognize that it needs to process the changes and
update the user display.

Note: Lines 58, 60, and 72 write messages to the console to let you know that things are progressing. They
certainly aren’t required and may be commented out.

If you comment out line 72, you also need to add a pass statement to satisfy language syntax requirements.

256

CHAPTER 15 © NUTS TO SOUP: USING JSOUP TO ENHANCE APPLICATIONS

The Jsoup library is quite powerful. Even a tiny bit of testing shows some neat capabilities. For example, I find the
output shown in Figure 15-11 a bit hard to read. When Ilooked at the HTML found in the Javadoc pages, I saw that all
of the tables have a border="0" attribute that keeps the grid lines between columns and rows from being shown. Do

you know how difficult it is to use the Jsoup library to change the table border attributes to "1"?

Take a look at Listing 15-22, specifically at line 54 where the HTML document is retrieved from the remote
website. All you need to do is add the statement in Listing 15-23 after the HTML has been retrieved, and before it is
processed by the rest of the code.

Listing 15-23. Changing the border Attribute of All the Tables

doc.select('table').attr('border', '1')

It’s as simple as that. The result of adding this statement can be seen in Figure 15-12.

J header: . . |
" Nested Class Summary | Field Summary | Constructor Summary | Method Summary

Nested Classes

Modifier and Type Class and Description

JFrame.AccessibledFrame

rotected class _ . .
F This class implements accessibility support for the JFrame class.

|' Nested Class Summary '[Field Summary r Constructor Summary | Method Summary ‘

Fields

Modifier and Type Field and Description

protected accessibleContext
AccessibleContext The accessible context property.

EXIT ON_CLOSE

static int
The exit application default window close operation.

rootPane

Figure 15-12. getHeadersé6.py output with JFrame h3 tables on JTabbedPane

257

CHAPTER 15 © NUTS TO SOUP: USING JSOUP TO ENHANCE APPLICATIONS

= > S|

|' Nested Class Summary Field Summary r Constructor Summary Method Summary ‘

Constructors

Constructor and Description

JErame ()
Constructs a new frame that is initially invisible.

JFrame (GraphicsConfiquration gc)
Creates a Frame in the specified GraphicsConfiguration of a screen device and a blank title.

JFrame (String title)

Nested Class Summary | Field Summary Constructor Summary | Method Summary

Methods

=
Modifier and Type Method and Description

addImpl (Component comp, Cbject constraints, int index)

protected void _ .
Adds the specified child Component.

protected createRootPane ()
JRootPane Called by the constructor methods to create the default rootPane.

. frameInit ()
protected veoid _—— . PR . 1

Figure 15-12. (continued)

If you think about it, using the statement in Listing 15-23 to find and change all of the table border attributes
might be extra work. This would be true if there were other tables in the document that aren’t associated with the h3
sections that you want to display. The alternative is to change the attribute only on those tables that you will be adding
to the JEditorPane in the tail(...) method of the FormattingVisitor class (shown in Listing 15-21). If you do this,
you need to add the statement in Listing 15-24 between lines 31 and 32 of Listing 15-21.

Listing 15-24. Changing the border Attribute of the Current Table

node.attr('border', '1')

Adding Tabbed Editor Panes to the Javadoc Application

What do you need to do in order to add the functionality of the getHeader6. py script to the latest javadocInfo_06.py
script?

e Theright pane needs to be changed. It isn’t a simple JTextArea instance any longer. You have
to decide what you want to display when nothing is selected, and you have to figure out how to
display the JTabbedPane after a class’ HTML has been processed.

e What do you want the application to do as the data is being retrieved and processed?
Currently, you can display a status message in the JTextArea. It would seem that you need to
dynamically change the right panel of SplitPane, based on what needs to be displayed.

258

CHAPTER 15 © NUTS TO SOUP: USING JSOUP TO ENHANCE APPLICATIONS

In order for the application to display different kinds of panes in the frame, you need to use a JSplitPane
method that wasn’t covered in Chapter 5. Since the SplitPane has left and right parts, you need to use the
setRightComponent(...) method to dynamically replace that part of the application.

In order for the application to display tabbed JEditorPanes, you'll also need to replace the textTask class
(as seen in Listing 15-9) with a modified version of the headerTask class shown in Listing 15-22. This class needs to
have the right information so that it can display a status message or the final JTabbedPane result in the application’s
SplitPane.

What's the result of making these changes? Figure 15-13 shows some sample images from the modified script
(javadocInfo_07.py).

AbstractAnnotationValeVisitors || | othing selected
AbstraclinnolationValkeVisilor 7
AbstractBorder

| AbstractBution
AbstractCellEditor
AbstractCollection
[AbstraciColorChooserPangl
AbstractDocument
AbstractDocumentAtinbuteContext
AbrstractDocument.Content
AbstractDocumentElementEdit
AbstractElementVisitors
AbstractElementVisitor?
AbstractExecutor Service
AbstractnterruptibieChannel
[AbstraciLayoutCache
AbstractLayoutCache.
Abstractlist

AbstractLisiModel
AbstractMap

AbstractMap. SimpleEntry
AbstractMap. Si

(AbstractMarshallerimpl

Nested Class Summary | Held Summary | Constructor Summary | Method Summary

Nested Classes

Modifier
and Type

Class and Description

JFormattedlextPicld AbstractPormatier
of are used by TextField to hande the
conversion both from an Object to a String, and back from a String to an Object.

static
class

ATextField actFor TF. v
Instances of AbstractFormatterfactory are used by JFormattedTextField (0 obiain
instances of AbstractFormacter which i tum are used to format values.

Figure 15-13. javadocInfo_07.py sample output

259

CHAPTER 15 © NUTS TO SOUP: USING JSOUP TO ENHANCE APPLICATIONS

Nothing selected

JFormatiedTexiField Abstractformatier

actory

JFrame

BasicTextULBasicCaret Constructor Summary | Method Summary
Caret
rolEwent | Constructors
CaretListener Constructor and Description
DefaultCaret
TextLayout.CaretPolicy CaretEvent(Ikject scurce)
Creates a new CaretEvent object.

Figure 15-13. (continued)

Were there any surprises that happened during this combination process? A few, but not nearly as many
as I feared. The biggest surprise was that the first attempt showed that when the JTabbedPane replaced the right
component of the SplitPane, the width of the left component used to display the list of classes narrowed drastically.
So, I had to set the minimum size of the JScrol1lPane containing this list.

260

CHAPTER 15 © NUTS TO SOUP: USING JSOUP TO ENHANCE APPLICATIONS

What Improvements/Enhancements Remain?

As is frequently the case when using any program, possible enhancements come to mind. You might want to consider
adding some menu items. This would make sense if you wanted to allow the users to specify the URL of the page from
which it should load the list of Java classes. Another possible menu entry might be used to allow the user to filter class
entries (such as AWT and Swing).

You might also want to add a tab to the tabbed pane that shows the class hierarchy produced by the classInfo
function mentioned in Chapter 4.

If you are really ambitious, you could add functionality to the Editor Panes so that the links in the displayed
HTML open the specified website in a browser.

IThaven'’t delved too deeply into the subject of Editor Panes. There is a decent page in the Java Swing Tutorials
entitled “How to Use Editor Panes and Text Panes”'® that you might want to take a look at.

Summary

One of the useful things about this chapter is that it demonstrates how easy it is to use existing Java classes and
libraries. There is an enormous number of class libraries on the Internet. Hopefully, this chapter gives you the courage
to use them in your Jython scripts.

The next chapter discusses dialog boxes and how they can be used to interact with users to obtain input for
scripts.

See http://docs.oracle.com/javase/tutorial/uiswing/components/editorpane.html.

261

http://docs.oracle.com/javase/tutorial/uiswing/components/editorpane.html

CHAPTER 16

Conversing with a User with
Dialog Boxes

According to several dictionaries, a “dialogue” is an exchange of information between two entities, at least one of
whom is a person. Maybe that’s why a window for providing input to an application is called a “dialog box.

Way back in Chapter 1, you read all about the top-level containers. The examples throughout the book have used
the JFrame class as the top-level container of choice. Now you're going take some time to learn about the JDialog’
container class and dialog boxes in general. This chapter also touches on a few related issues. In Chapter 17, you'll
continue by learning about some specialized dialog boxes that you can use to make your life as an application
developer much easier.

This chapter is all about using dialog boxes to get information from the user into an application. It starts by
discussing where dialog boxes fit in the Swing class hierarchy. Then is discusses how you position them, especially
when multiple displays exist. Additionally, you'll see how various dialog boxes can be created using JOptionPane
methods.

What Are Dialog Boxes?

Dialog boxes are separate windows that are used to convey information to, and from, the application user. They can
also be used to interact with the user to obtain input that is returned to the application. You are likely very familiar
with the kind of message windows that display informational, warning, and error messages. It is also likely that you've
used a dialog box to provide information to applications. Now you’ll see what you need to do to use these dialog boxes
in your applications.

What'’s a JDialog?

Listing 16-1 shows the class hierarchy for the JDialog class. It’s interesting to note how similar this hierarchy is to the
JFrame class,” shown in Listing 16-2.

'See http://docs.oracle.com/javase/8/docs/api/javax/swing/IDialog.html.
See http://docs.oracle.com/javase/8/docs/api/javax/swing/IFrame.html.

263

http://docs.oracle.com/javase/8/docs/api/javax/swing/JDialog.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/JFrame.html

CHAPTER 16 © CONVERSING WITH A USER WITH DIALOG BOXES

Listing 16-1. JDialog Class Hierarchy

wsadmin>from javax.swing import JDialog
wsadmin>

wsadmin>classInfo(JDialog)
javax.swing.JDialog

| java.awt.Dialog

| java.awt.Window

| java.awt.Container

| | java.awt.Component

| | | java.lang.Object

| | | java.awt.image.ImageObserver
| | | java.awt.MenuContainer

| | | java.io.Serializable

| | javax.accessibility.Accessible
javax.swing.WindowConstants
javax.accessibility.Accessible
javax.swing.RootPaneContainer
wsadmin>

This similarity should help you understand that JDialog instances should be able to contain the same kind of
Swing components that JFrame instances do.

Listing 16-2. JFrame Class Hierarchy

wsadmin>from javax.swing import JFrame
wsadmin>
wsadminy>classInfo(JFrame)
javax.swing.JFrame

| java.awt.Frame
| java.awt.Window
| | java.awt.Container
| | java.awt.Component
| | java.lang.Object
| | java.awt.image.ImageObserver
| | java.awt.MenuContainer
| | java.io.Serializable
| javax.accessibility.Accessible

| java.awt.MenuContainer
javax.swing.WindowConstants
javax.accessibility.Accessible
javax.swing.RootPaneContainer
sadmin>

I
I
I
I
I
I
I
I
I
I
|
I
W

These similarities made me wonder just how similar the two top-level containers might be as well. Using the final
version of the javadocInfo.py script file discussed in Chapter 15,° take a quick look at the JDialog methods shown in
Figure 16-1.

*Which is .. .\Code\Chap_15\javadocInfo_07.py

264

CHAPTER 16 © CONVERSING WITH A USER WITH DIALOG BOXES

JDesktopPane [Nested Class ¥ Field y C Summary Method Summary

Jinternalframe.JDesktoplcon Methods

Modifier and Type Method and Description

addTmp] (Cos nc comp, Cbiect comnscraints, int index)

rotected void %
ESHEREES * Adds the specified child Component

procected createRootPane ()
JRgotFane Called by the constructor methods to create the default rootPane.

dialogTnit ()

rotected void <
FROMEEEI0 Called by the constructors to init the JDialog properly.

gethccessibleContext (]
Gets the AccessibleContext associated with this JDialog.

AccessibleContext

getContentPane ()
Returns the contentPane object for this dialog.

getDefaultCloseOperation()
Returns the operation which occurs when the user initiates a "close” on this
dialog

getGlassPane ()

Component L D
Returns the glassPane object for this dialog

getGraphics()
Creates a graphics context for this component.

getJMenuBar ()

Figure 16-1. IJDialog methods

It also makes me feel good about the effort that was invested in creating that script/application. After starting it,
you only need to type two letters and use two mouse clicks to display the information about the class methods:

1. Type ID to filter the list of classes.
2. Select the JDialog entry on the short list of classes.
3. Select the Method Summary tab. You're done!

A quick glance at these methods shows that the JFrame and JDialog classes both have RootPanes, ContentPanes,
GlassPanes, MenuBars, and many other things in common. There are a number of differences as well. If you start by
looking at the class constructors for each class, it should quickly become obvious that there are a lot more JDialog
constructors than there are JFrame constructors. It seems that this is the result of the presence in the JDialog
constructors of two additional parameters:

e The owner argument (dialog, frame, or window)

e The modality argument (a Boolean flag or a Dialog.ModalityType)

What'’s the GraphicsConfiguration Component Do?

One issue that pops up time and time again in the Javadocs for various Swing-related classes is that they contain
so much information that it is often difficult to comprehend. This is a long way of saying that the first few (perhaps
dozen) times that I looked at the JFrame and JDialog Javadoc pages, I didn't take the time or effort to see the
GraphicsConfiguration? parameter in some of the constructors.

4See http://docs.oracle.com/javase/8/docs/api/java/awt/GraphicsConfiguration.html.

265

http://docs.oracle.com/javase/8/docs/api/java/awt/GraphicsConfiguration.html

CHAPTER 16 © CONVERSING WITH A USER WITH DIALOG BOXES

When I finally did see it, it took me a while to realize how useful this particular parameter can be. However, this
is only the case when the users can have multiple displays. You can use this parameter to identify on which of the
available displays the application will open a JFrame or JDialog instance.

Listing 16-3 shows one technique for determining the position, width, and height of the available displays using
the GraphicsEnvironment class. Did you notice that this class comes from java.awt and not the javax. swing library?

Listing 16-3. Using the GraphicsEnvironment Class

wsadmin>from java.awt import GraphicsEnvironment

wsadmin>

wsadmin>LGE = GraphicsEnvironment.getlLocalGraphicsEnvironment()
wsadmin>for SD in LGE.getScreenDevices() :

wsadmin> for GC in SD.getConfigurations() :

wsadmin> print GC.getBounds()

wsadmin>

java.awt.Rectangle[x=1920,y=0,width=1920,height=1080]
java.awt.Rectangle[x=0,y=0,width=1920,height=1080]

wsadmin>

Table 16-1 describes each of the statements in the interactive wsadmin session shown in Figure 16-1.

Table 16-1. Using the GraphicsEnvironment Session

Lines Description

1 Add the GraphicsEnvironment class from the java.awt library to the local namespace.

3 Use the getLocalGraphicsEnvironment() method to obtain information about the
local graphics environment.

Loop over the ScreenDevice objects in the environment.
Loop over the GraphicConfiguration objects in each ScreenDevice object.

Display the bound instance values for the current GraphicConfiguration object.

® o o oa

-9 Results generated by the print statement in line 6.

The output shown in Listing 16-3 is specific to my environment and shows that it has two displays, logically
configured to be side by side, with the primary display on the right. How do you tell this? Well, the primary display
(“Screen 0”) is considered to be at location [x=0, y=0]. The next display (“Screen 1”) has a positive x value, which
indicates that it is logically to the right of the primary display. If a third display were present that was logically
considered to be on the left of the primary display, it would have a negative value of x. Adding the values of x and
width from the second display (1920 + 1920 = 3840) results in the logical width of the combined display.

266

CHAPTER 16 © CONVERSING WITH A USER WITH DIALOG BOXES

Using a GraphicsConfiguration Object

Listing 16-4 shows how to obtain a GraphicsConfiguration object from a ScreenDevice object. Once you have it,
how can it be used? The JDialog and JFrame classes both have constructors that include GraphicsConfiguration
objects. So, once you have a configuration object that identifies a display, this can be provided on the JDialog or
JFrame constructor call to identify the display with which the application should be associated. Listing 16-4 shows an
example class that uses a GraphicsConfiguration object to identify the user display on which the JFrame instance
should be displayed.

Listing 16-4. Using a GraphicsConfiguration Object

8|class ScreenLoc(java.lang.Runnable) :
9| def run(self) :

10| d =0

11| LGE = GraphicsEnvironment.getLocalGraphicsEnvironment()
12| for GD in LGE.getScreenDevices() :

13| CO = GD.getDefaultConfiguration()

14| for GC in GD.getConfigurations() :

15| b = GC.getBounds()

16| frame = JFrame(

17| 'Screen: %d' % d,

18| co,

19| size = (

20| int(b.getWidth()) > 1,

21| int(b.getHeight()) >> 3

22|)5

23| defaultCloseOperation = JFrame.EXIT_ON_CLOSE
24|)

25| d+=1

26| frame.add(JLabel('CO'))

27| frame.setVisible(1)

Table 16-2 explains the ScreenlLoc class shown in Listing 16-4 in detail. One way to figure out what the code is
doing is to keep an eye out while viewing the Javadoc pages of the code snippets. In this case, some of this is explained
on the GraphicsConfiguration and GraphicsDevice pages, which help explain how they can be used. The ScreenlLoc
class in Figure 16-1 is based on these code snippets.

267

CHAPTER 16 © CONVERSING WITH A USER WITH DIALOG BOXES

Table 16-2. Screenloc Class Explained

Lines Description

8-9 Define the class as a descendent of the java.lang.Runnable class; its run() method will be called by the
Swing Dispatch thread.

10 d is a simple integer identifying the device number 0..N-1.

11 Call the static getLocalGraphicsEnvironment() method from the GraphicsEnvironment® class to obtain

information about the local graphics environment (LGE).
12-26 Process each GraphicsDevice® (GD) in the local graphics environment.
13 Get the default GraphicsConfiguration object (CO) associated with the current device.
14-24 Process all of the GraphicsConfiguration (GC) objects for the current GraphicsDevice.
15 Get the bounds (java.awt.Rectangle”) describing the device coordinates.

16-23 Create a JFrame instance on the current GraphicsDevice using the configuration object.

Note: Since only the size is provided, the JFrame instance will be positioned in the top-left corner

of the display.
19-22 The size of the frame is defined to be half the display width and an eighth of the display height.
24 Increment the display counter (d).
25 Add a JLabel instance to the current frame containing the information about the configuration object.
26 Make the frame instance visible.

Is a GraphicsConfiguration Object Really Necessary?

If you want to create a frame or a dialog window using a configuration object, you can. But it would be just as easy to
use the device bounds rectangle to position the window, especially in Jython. Listing 16-5 shows the ScreenPos class,
from the script of the same name, which shows how easily this can be done.

Listing 16-5. Using Device Bounds to Position Items

8|class ScreenPos(java.lang.Runnable) :
9| def run(self) :

10| d =0

11| LGE = GraphicsEnvironment.getLocalGraphicsEnvironment()
12| for GD in LGE.getScreenDevices() :

13| for GC in GD.getConfigurations() :

14| b = GC.getBounds()

15| w = int(b.getWidth()) >> 1

16| h = int(b.getHeight()) >> 3

17| x = int(

18] (int(b.getWidth() - w) >> 1) + b.getX()
19])

’See http://docs.oracle.com/javase/8/docs/api/java/awt/GraphicsEnvironment.html.
See http://docs.oracle.com/javase/8/docs/api/java/awt/GraphicsDevice.html.
"See http://docs.oracle.com/javase/8/docs/api/java/awt/Rectangle.html.

268

http://docs.oracle.com/javase/8/docs/api/java/awt/GraphicsEnvironment.html
http://docs.oracle.com/javase/8/docs/api/java/awt/GraphicsDevice.html
http://docs.oracle.com/javase/8/docs/api/java/awt/Rectangle.html

20|
21|
22|
23|
24|
25|
26|
27|
28|
29|
30|

CHAPTER 16 © CONVERSING WITH A USER WITH DIALOG BOXES

y = int(
(int(b.getHeight() - h) >> 1) + b.getY()
)

frame = JFrame(
'Screen: %d' % d,
bounds = (x, y, w, h),
defaultCloseOperation = JFrame.EXIT_ON_CLOSE
)
d+=1
frame.add(JLabel('GC'))
frame.setVisible(1)

Table 16-3 explains the statements shown in Listing 16-5 in detail. Remember that these listings sometimes have
more lines than might normally be used only because of the narrow width required for these pages.

Table 16-3. ScreenPos Example, Explained

Lines Description

8-9 Define the class as a descendent of the java.lang.Runnable class; its run() method will be called by the
Swing Dispatch thread.

10 d is a simple integer identifying the device number 0..N-1.

11 Call the static getLocalGraphicsEnvironment () method from the GraphicsEnvironment class to obtain
information about the local graphics environment (LGE).

12-29 Process each GraphicsDevice (GD) in the local graphic environment.

13-29 Process all of the GraphicsConfiguration (GC) objects for the current GraphicsDevice.

14 Get the bounds (b) Rectangle defining the GraphicsDevice.

15 The width (w) of the window to be instantiated should be half the width of the graphic device on which it
will be seen.

16 The height (h) of the window should be an eighth the height of the display screen.

17-19 The window’s upper-left corner (the X coordinate) is half the screen width minus the width of the
window. Adding the screen’s X coordinate positions it properly.

20-22 The window’s upper-left corner (the Y coordinate) is half the screen height minus the height of the
window. Adding the screen’s Y coordinate positions it properly.

23-26 Instantiate the JFrame using the given title and the previously computed coordinates.

27 Increment the display counter (d).

28 Add a JLabel instance to the current frame containing the information about the GraphicsConfiguration
object.

29 Make the frame instance visible.

The result of all of this simply shows that using a GraphicsConfiguration object isn’t required. It is generally
easier to use the Rectangle object available with the GraphicsDevice to determine where to position the window,
based on the window and screen sizes.

269

CHAPTER 16 © CONVERSING WITH A USER WITH DIALOG BOXES

What About an Owner?

In the section entitled, “What’s a JDialog?,’ I mentioned that there are two parameters that exist in most of the JDialog
constructors that don’t exist in the JFrame constructors. These are the owner and modality parameters, and they are
closely associated. When a JDialog instance is configured to be modal and the window is visible, all user input is
blocked to all of the other application windows. This forces the user to interact with the modal dialog window first.

Note If the owner parameter is specified as None, then a shared, hidden frame will be identified as the owner.

Figure 16-2 shows some sample output generated by the SimpleDialog.py script. It shows how you can create
multiple non-modal dialog windows, but only one modal one.

Figure 16-2. SimpleDialog sample output

Listing 16-6 shows the SimpleDialog class from this application. It only needs an ActionListener event handler
to respond to when one of the application buttons is clicked. Note how the JDialog constructor specifies the owner
using a value of None (line 36). This forces the Swing library to use a (shared) hidden frame, which forces the modal
dialog box to be handled first.

Listing 16-6. The SimpleDialog Class from SimpleDialog.py

9|class SimpleDialog(java.lang.Runnable) :
10| def run(self) :

11| self.frame = frame = JFrame(

12| 'SimpleDialog’,

13| size = (250, 100),

14| layout = GridLayout(0, 2),

15| locationRelativeTo = None,

16| defaultCloseOperation = JFrame.EXIT ON_CLOSE
17|)

18| frame.add(

19| JButton(

20| 'Modal’,

21| actionPerformed = self.makeDialog
22|)

23|

24| frame.add(

25 JButton(

26| "non-Modal',

27| actionPerformed = self.makeDialog
28|)

29|)

270

CHAPTER 16 © CONVERSING WITH A USER WITH DIALOG BOXES

30| self.boxNum = 0

31| frame.setVisible(1)

32| def makeDialog(self, event) :

33| cmd = event.getActionCommand()

34| isModal = (cmd == 'Modal')

35] dialog = JDialog(

36| self.frame, # Try None as owner...
37| title = '%d: %s' % (self.boxNum, cmd),
38| modal = isModal,

39| size = (200, 100),

40| locationRelativeTo = self.frame

41|)

42| self.boxNum += 1

43| dialog.add(JLabel(cmd))

44| dialog.setVisible(1)

What happens if you iconify the application when non-modal dialog windows exist? Well, if they were
instantiated with the owner parameters specified as None, nothing happens to them. They remain as they are.
However, if the application is identified as the owner (in this case specifying an argument of self.frame), then all of
the associated non-modal windows will be iconified as well. And if you deiconify the application, all of the non-modal
windows will follow suit. Knowing this might help you decide if you want to specify the owner argument when you
instantiate your JDialog instance.

Where’s the Dialog?

At the start of this chapter, you saw that a dialog is about communication. Up to now, you haven’t done anything with
the JDialog instances that you've created other than make them appear and disappear. Where’s the communication
in that? This section explains how you enable a JDialog instance to communicate with the application or the
component that created it.

Let’s start with the simple case. If your application creates a modal JDialog instance, the application will be in
suspended animation until the dialog is hidden or closed. Since the application created the object instance, it can
now call any of its getter methods to retrieve information from the object. Figure 16-3 shows some sample output from
a trivial application that uses a custom JDialog box to obtain user input.

g _—'_,'D ” X [

- il i i 2
Name = "Bob" Name = "None™
Prompt user | Prompt user :

Figure 16-3. CustomDialog1.py sample output

271

CHAPTER 16 © CONVERSING WITH A USER WITH DIALOG BOXES

Listing 16-7 shows the CustomDialog class from this sample application. Since there are some points of interest,
this section will describe in more detail how this application works.

Listing 16-7. CustomDialog Sample Class

12|class CustomDialog(java.lang.Runnable) :
13| def run(self) :

14| self.frame = frame = JFrame(

15| "CustomDialog',

16| size = (200, 100),

17| locationRelativeTo = None,

18| defaultCloseOperation = JFrame.EXIT ON_CLOSE
19|)

20| self.label = frame.add(JLabel(''))
21| frame.add(

22| JButton(

23| 'Prompt user',

24| actionPerformed = self.popup
25|)>

26| BorderLayout.SOUTH

27|)

28| frame.setVisible(1)

29| def popup(self, event) :

30| self.dialog = dialog = JDialog(

31| self.frame,

32| 'Name prompt',

33| 1,

34| layout = GridlLayout(0, 2),

35| locationRelativeTo = self.frame
36/)

37| dialog.add(JLabel("What's your name?"))
38| self.text = dialog.add(

39| JTextField(

40| 10,

41| actionPerformed = self.enter
42|)

43|)

44| self.result = None

45| dialog.pack()

46| dialog.setVisible(1)

47| self.label.setText('Name = "%s"' % self.result)
48| def enter(self, event) :

49| self.result = self.text.getText()

50| self.dialog.setVisible(0)

Table 16-4 describes the CustomDialog class shown in Listing 16-7 in more detail. For simplicity’s sake, the code
that’s similar to other examples is described in less detail.

272

CHAPTER 16 © CONVERSING WITH A USER WITH DIALOG BOXES

Table 16-4. CustomDialog Class, Explained

Lines Description

13-28 CustomDialog run() method that populates the JFrame instance and displays it for the user.

20 The popup() ActionListener method needs to access the label field, so addressability to it must be
saved.

29-47 popup() ActionListener event handler, which is invoked when the button is activated.

30-36 Create a modal JDialog instance that identifies the application frame as the owner and tell the Swing
library to display the JDialog instance relative to it.

37-46 Populate the JDialog and make it visible.

47 This is the point where control returns when the JDialog is no longer visible (it’s either closed or
hidden).

48-50 ActionlListener event handler for the JDialog user input field (JTextField).

Note: This event handler expects to be associated with a modal dialog instance. It does not include any
protection from concurrency issues.

The last row of Table 16-4 includes one of the significant reasons for using modal dialog boxes. Dealing with
concurrency issues can add complexity to your applications. So think carefully before using non-modal dialog boxes
that can update values in the component that creates it.

Multiple Modal Dialog Boxes Are Annoying

Please be considerate of your users. Even though it’s possible for your application to create multiple modal dialog
boxes, don’t do it. Unfortunately, I see this quite often, especially when a web application uses Adobe Flash. I tend

to see something like the image shown in Figure 16-4. Unfortunately, these boxes can stack up, so I find myself
clicking on the Deny (“No”) button a lot. This can be frustrating. As a user, I try to avoid using this kind of application
whenever possible. Keep this in mind when you create your applications. Don’t create a “user-hostile” application
that does something annoying like this.

Adobe Flash Player Settings
Local Storage

=s requesting permission to

store information on your computer.

Requested: up to 10 KB
Currently Used: 0 KB

;‘:‘ll ro Allow | E Deny |

L7

Figure 16-4. Please take “no” for an answer

273

CHAPTER 16 © CONVERSING WITH A USER WITH DIALOG BOXES

Using JOptionPane Methods

It's commonplace to come across applications that use modal dialog boxes to obtain user input, so it should be no
surprise that there’s an easy way to create a variety of commonly used dialog boxes.

There are four major and two minor variants of methods in the JOption class for creating modal dialog
boxes to obtain user input. All of these methods have names that adhere to the following naming convention:
show%1%2Dialog(), where %2 represents the major portion, which will be one of the following four types:

e Input
e Confirm
e Message
e Option
And %1 represents the minor portion, which will be empty or internal. This means that you should be able to
produce the complete list of method names by using a simple nested loop, right? Listing 16-8 shows this simple list.
Listing 16-8. JOption show*Dialog Method Name Variants

wsadmin>num = 1
wsadmin>for minor in ['', 'Internal'] :
wsadmin> for major in ['Input', 'Confirm', 'Message', 'Option’] :

wsadminy print '%2d: show%s%sDialog()' % (num, minor, major)
wsadmin> num += 1
wsadmin>

1: showInputDialog()

2: showConfirmDialog()

3: showMessageDialog()

4: showOptionDialog()

5: showInternalInputDialog()

6: showInternalConfirmDialog()

7: showInternalMessageDialog()

8: showInternalOptionDialog()
wsadmin>

Unfortunately, it doesn’t take into consideration the fact that Java allows method overloading, so each method
name can have multiple signatures. What does this mean for Jython programmers? It means that you have to take this
into consideration.

Note For now, ignore the showInternal variants. You’ll see them again in Chapter 19, where you learn about
JInternalFrames.

The JOptionPane.showMessageDialog() Method

The simplest dialog box that can be displayed by the JOptionPane class is called a MessageDialog. It is the simplest
primarily because it returns no value. The purpose of a MessageDialog is to inform users about some event. Since it
doesn’t provide the user with any opportunity to provide input, the showMessageDialog() method doesn’t have to
return any value.

274

CHAPTER 16 © CONVERSING WITH A USER WITH DIALOG BOXES

Figure 16-5 shows the Java method signature and a simple image from the MessageDialogDemo.py application.
Notice that the dialog box has a simple title of “Message,” an informational icon, and an OK button.

| showMessageDialog(

| Component parentComponent,
1 Object message

1)

Figure 16-5. SimpleMessageDialog signature and sample image

Figure 16-6 shows another showMessageDialog() method signature, as well as an example image from the
MessageDialogDemo. py application. This version of the method allows you to specify the title to be displayed in the
title bar. It also allows you to specify the messageType and an optional icon to be displayed. If an icon isn’t provided,
then the icon that is displayed on the MessageDialog is based on the messageType that was specified.

| showMessageDialog(

I Component parentComponent, ,

I Object message, 0

I Strlng title , Green Eggs & Spam!
I
I
I

int messageType,
Icon icon

)

Figure 16-6. Complete MessageDialog signature and sample image

Figure 16-7 shows the list of MessageType constants that are defined in the JOptionPane class. These should be
used for messageType arguments in the show*Dialog() method calls. If you don’t provide an icon parameter, the icon
displayed on the dialog box will be based on the MessageType.

PLAIN MESSAGE
ERROR_MESSAGE
INFORMATION MESSAGE
WARNING MESSAGE

JQUESTION MESSAGE

Figure 16-7. MessageType constants defined in the JOptionPane class

275

CHAPTER 16 © CONVERSING WITH A USER WITH DIALOG BOXES

The JOptionPane.showOptionDialog() Method

The next most useful show*Dialog method is showOptionDialog(). It is useful, and frequently used, because of its
flexibility. It can display a custom dialog. Figure 16-8 shows the list of parameters that should be specified when this
method is called.

Object[] options,
Object initialValue

| showOptionDialog(1
I Component parentComponent, |
I Object message, |
[String title, |
I int optionType, |
[int messageType, |
I Icon icon, |
I |
[|
I |

)

Figure 16-8. Complete showOptionDialog signature

This method creates a dialog with a specified icon, where the initial choice is determined by the initialValue
parameter and the number of choices is determined by the optionType parameter.

You saw how the messageType value can be used to determine the icon to be shown if it’s not specified. How is
the optionType parameter used and what values can be specified? Figure 16-9 shows the JOptionPane constants that
can be used for the optionType argument.

DEFAULT_CPTION
YES NO OPTION
YES_NO_CANCEL_OPTION

(OK CANCEL OPTION

Figure 16-9. OptionType constants defined in the JOptionPane class

It would seem that you can use the optionType and messageType arguments to tell the showOptionDialog()
method how many buttons to display, as well as their labels. Listing 16-9 shows the simplest form of a call to the
showOptionDialog() method. Note how you can use an optionType of DEFAULT_OPTION and None for the options and
initialValue arguments.

Listing 16-9. Sample showOD() Method Used to Call showOptionDialog
26| def showOD(self, event) :

27| options = 'Bacon,Eggs,Spam'.split(',"')

28| result = JOptionPane.showOptionDialog(

29| self.frame, # parentComponent
30| 'What goes good with spam?’, # message text
31| 'This is a test!’, # title

276

CHAPTER 16 © CONVERSING WITH A USER WITH DIALOG BOXES

32| JOptionPane.DEFAULT_OPTION, # optionType
33| JOptionPane.QUESTION MESSAGE, # messageType
34| None, # icon

35| None, # options

36| None # initialValue
37|

38| self.label.setText('result = %d' % result)

Figure 16-10 shows the different buttons that are displayed on the OptionDialog when you specify the various
constants listed in Figure 16-9.

E What goes good with spam?

e

Iz' What goes good with spam? | E What goes good with spam?

ves || mo [Yes || mo ||cancel

Figure 16-10. Simple OptionDialog examples

What if you don’t like these kinds of buttons? Can you specify button labels other than Yes, No, OK, and Cancel?
Sure, that’s what the options and initialValue arguments are for. Listing 16-10 shows how to provide your own
button labels for the OptionDialog box.

Listing 16-10. Modified show0OD() Method Specifying Options

26| def showOD(self, event) :

27| options = 'Bacon,Eggs,Spam'.split(',"')

28| result = JOptionPane.showOptionDialog(

29| self.frame, # parentComponent
30| 'What goes good with spam?’, # message text
31| 'This is a test!', # title

32| JOptionPane.DEFAULT_OPTION, # optionType
33| JOptionPane.QUESTION_MESSAGE, # messageType
34| None, # icon

35| options, # options

36| options[-1] # initialValue
37|)

38| self.label.setText('result = %d' % result)

277

CHAPTER 16 © CONVERSING WITH A USER WITH DIALOG BOXES

Figure 16-11 shows the OptionDialog that results from this showOD() method.

E What goes good with spam?

.Gacon | Eggs | Spam

Figure 16-11. OptionDialog example using non-standard button labels

Are you limited to one, two, or three buttons? As a matter of fact, you're not. If you provide an array (list) of
options with more than three values, the showOptionDialog() is able to show them to you.

The example OptionDialog shown in Figure 16-12 can easily be produced by changing line 27 in Listing 16-10 to
the statement in Listing 16-11.

@ What goes good with spam?

;NOW | is || the |:tirne.; for | all ||QOOd| Spam

Figure 16-12. OptionDialog example with eight buttons

Listing 16-11. Specifying Many OptionDialog Button Labels

27| options = 'Now is the time for all good spam'.split(' ')

Certainly this example is a bit excessive, but it does demonstrate an interesting point. It should also raise a
question or two. When you display a variety of buttons on a dialog box, how can you tell which one the user pressed? If
you use one of the standard OptionDialog objects, you can use the return value constants defined in the JOptionPane
class and listed in Figure 16-13 to make this determination.

YES_OPTION
NO_OPTION
[CANCEL_OPTION

|IOK_OPTION

ICLOSED OPTION

Figure 16-13. JOptionPane constants for the showOptionDialog returned value

278

CHAPTER 16 © CONVERSING WITH A USER WITH DIALOG BOXES

If you specify your own list of button labels, you can use the returned value as an index into the options array to
determine the label of the selected button. Be careful, though. Before using it as an index, you should check to see if a
value of -1 (the JOptionPane.CLOSED_OPTION) was returned in case the user closed the dialog box.

The JOptionPane.showConfirmDialog() Method

By now, you should be very comfortable with the parameters that exist for the JOptionPane.show*Dialog() methods.
This will make the explanation of the showConfirmDialog() method that much easier. The simplest form of this
method is shown in Figure 16-14.

[showConfirmDialog(|
| Component parentComponent, |
I Object message |
) I

Figure 16-14. Simple showConfirmDialog() arguments

This method can be used to display a simple dialog box with three choices (buttons): Yes, No, and Cancel. This
is identical to calling the showOptionDialog() method and specifying an optionType value of JOptionPane.YES NO
CANCEL_OPTION. The default title is “Select an Option,” and you can use the JOptionPane constants listed in
Figure 16-13 to determine which selection the user chose.

The other showConfirmDialog() signatures follow this same pattern, with one allowing an optionType, the next
having an optionType as well as a messageType, and the last allowing these two arguments in addition to an icon.

Again, when the optionType is provided, it determines the number of buttons and which values should be
shown. The messageType identifies the icon to be shown, if the icon parameter isn’t specified.

The JOptionPane.showInputDialog() Method

The last of the show*Dialog() methods discussed in this chapter is showInputDialog(). It has a number of variations.
You'll take a look at these variations so you can decide which make most sense for your needs. Let’s start by looking
at the simplest one, which has only one parameter and work your way toward the most complex version, which has
seven parameters.

Figure 16-15 shows the simplest variant, which requires only a string parameter containing the message to be
displayed. In fact, there are two forms of this variant—with and without the parentComponent parameter.

| showInputDialog(|
I Object message I

I) I

| showInputDialog(

I Component parentComponent,
I Object message

)

Figure 16-15. Simplest showInputDialog() method signatures

279

CHAPTER 16 © CONVERSING WITH A USER WITH DIALOG BOXES

Listing 16-12 shows the showID() method from the InputDialogDemo.py application, with the optional
parentComponent specified.

Listing 16-12. Simplest showInputDialog() Example
26| def showID(self, event) :

27| result = JOptionPane.showInputDialog(

28| self.frame, # parentComponent
29| 'What is your favorite color?’ # message text
30|

31| self.label.setText('result = "%s"' % result)

The result of executing the showInputDialog() method call shown in Listing 16-12 is illustrated in
Figure 16-16. Personally, I haven’t been able to figure out a difference between these two variants. Regardless of
whether the optional parentComponent is specified, you see a dialog box with a title of “Input” and the specified
message, as well as OK and Cancel buttons.

@ What is your favorite color?

Figure 16-16. Sample showInputDialog() window

One interesting thing to note is that the value that is returned is not an integer, as you have seen with other
show*Dialog() methods. It is either the user-specified string (the contents of the input field) or None if the dialog box
is closed (which is done by using the Close icon or pressing the Cancel button).

Figure 16-17 shows the next pair of signatures for this method. In it you see that an initial value for the input field
can be specified. Again, there are two variants of this showInputDialog() method, with the parentComponent being
optional.

| showInputDialog(I
I Object message, I
I Object initialSelectionValue I
I) |
| showInputDialog(|
I Component parentComponent, |
I Object message, |
| Object initialSelectionUalue |
I) |

Figure 16-17. showInputDialog() with initialSelectionValue specified

280

CHAPTER 16 © CONVERSING WITH A USER WITH DIALOG BOXES

Listing 16-13 shows an example of this method call from the InputDialogDemo.py sample application. In
this particular example, the optional parentComponent is specified in line 28. Feel free to try this version and then
comment out that line and try it again.

Listing 16-13. showInputDialog() with an Initial Value
26| def showID(self, event) :

27| result = JOptionPane.showInputDialog(

28| self.frame, # parentComponent
29| 'What is your favorite color?’, # message text
30| 'Spam' # initialValue
31])

32| self.label.setText('result = "%s"' % result)

When I tried this, I saw output similar to what is shown in Figure 16-18. Note how the initial value is provided
and selected.

What is your favorite color?

Spam|
i Cancel |

Figure 16-18. Sample showInputDialog() window showing an initial value

The next variation allows you to specify the title of the dialog box, as well as the messageType parameter that
determines the icon to display. The signature for this version is shown in Figure 16-19.

| showInputDialog(|
I Component parentComponent, I
I Object message, I
I String title, I
| int messageType |
) [

Figure 16-19. showInputDialog() method with messageType parameter

Listing 16-14 shows how the title and messageType parameters are specified. The constants to be used for the
messageType parameter can be found in Figure 16-7.

281

CHAPTER 16 © CONVERSING WITH A USER WITH DIALOG BOXES

Listing 16-14. showInputDialog() with Title and messageType Parameters
26| def showID(self, event) :

27| result = JOptionPane.showInputDialog(

28| self.frame, # parentComponent
29| 'What is your favorite color?’, # message text
30| 'Asked by the bridge guardian', # title

31| JOptionPane.QUESTION_MESSAGE # messageType

32|)

33| self.label.setText('result = "%s"' % result)

The output of the version of the showID() method in Listing 16-14 is shown in Figure 16-20.

What is your favorite color?

I

Figure 16-20. Sample output showing the title and messageType

Finally, you get to the last of the showInputDialog() method variants. As mentioned earlier, its signature is
shown in Figure 16-21. The main difference between this method and the other signatures just discussed is the
presence of the icon, selectionValues, and initialSelectionValue arguments.

| showInputDialog(|
I Component parentComponent, |
| Object message, 1
I String title, 1
I int messageType, |
[Icon icon, |
| Object[] selectionValues, |
| Object initialSelectionValue |
) |

Figure 16-21. Seven argument showInputDialog() method signature

Listing 16-15 shows an example of this seven argument variant of the showInputDialog() method.® As
mentioned, if an icon isn’t provided, the icon that’s displayed on the MessageDialog is based on the specified
messageType value.

8As you’ve seen previously, the lines have been shortened to fit in the available space. This is most obvious with lines 27 and 28,
which really don’t require two statements.

282

CHAPTER 16 © CONVERSING WITH A USER WITH DIALOG BOXES

Listing 16-15. Sample Use of Seven Argument showInputDialog() Method
26| def showID(self, event) :

27| COLORS = 'Red,Orange,Yellow,Green,Blue,Indigo,Violet'
28| colors = COLORS.split(',')

29| result = JOptionPane.showInputDialog(

30| self.frame, # parentComponent
31| 'What is your favorite color?', # message text
32| 'Asked by the bridge guardian', # title

33| JOptionPane.QUESTION_MESSAGE, # messageType

34| None, # icon

35| colors, # selectionValues
36| colors[-1] # initialSelectionValue
37|)

38| self.label.setText('result = "%s"' % result)

Figure 16-22 shows images from the application containing the method shown in Listing 16-15. This variant
of the showInputDialog() method provides a combo box containing the values provided by the selectionValues
argument. The last parameter is used to identify the initial combo box entry to be displayed.

E What is your favorite color?

Figure 16-22. Sample output from seven argument showInputDialog() call

Summary

This chapter has been all about dialog boxes and some of the ways they can be used in your applications. You've seen
how simple these techniques can be. The large variety of ways that dialog boxes can be created and used should be a

clue about how useful they can be. I encourage you to take a look at the sample scripts in the code\Chap_16 directory
and modify them to test the various techniques described in this chapter.

Additionally, you are encouraged to take a look at the “How to Make Dialogs”® portion of the Java Swing Tutorial,
which contains much of this same information but uses Java instead of Jython as the programming language. One thing
you'll take away from reading that document is how much easier it can be to create and use dialog boxes in Jython.

In the next chapter, you investigate specialized dialog boxes, including how to create and use them in your
applications.

See http://docs.oracle.com/javase/tutorial/uiswing/components/dialog.html.

283

http://docs.oracle.com/javase/tutorial/uiswing/components/dialog.html

CHAPTER 17

Specialized Dialog Boxes

In Chapter 16, you saw how to create a completely customized dialog box using the JDialog' class. You also saw how to
take advantage of the JOptionPane? methods to quickly and easily display some simple, generalized dialog boxes. Now
you are going to look at some dialog boxes that can be used to make your life as a developer significantly easier. You'll
be able to use dialog boxes that have been designed, implemented, and tested for you. The chapter begins by looking
at the JFileChooser® class, which the Swing developers were kind enough to provide for creating dialog boxes. These
are great examples of the kind of user input that can be performed by dialog boxes. Keep these in mind when you
encounter a situation where you want to provide your own dialog boxes.

The JFileChooser Class

One of the most common types of dialog boxes is the ones that let the users traverse the filesystem and specify a file or
directory to be used by the application. It is important to remember, though, that the JFileChooser instance helps your
application to interact with the users to choose a particular file or directory. It is the responsibility of the application to
do something with the specified file or directory.

Let’s take a look at just how difficult it is to use the JFileChooser class. Listing 17-1 shows a simple event handler that
displays a File Chooser dialog box that allows the users to traverse the local filesystem and select a file to be opened.

Listing 17-1. Trivial Sample JFileChooser() Routine
26| def showFC(self, event) :

27| fc = JFileChooser()

28| result = fc.showOpenDialog(None)

29| if result == JFileChooser.APPROVE_OPTION :

30| message = 'result = "%s"' % fc.getSelectedFile()
31| else :

32| message = 'Request canceled by user'

33| self.label.setText(message)

Figure 17-1 shows an example dialog box after the user has moved about the filesystem; it’s displaying the
contents of the C:\IBM\WebSphere directory.

'See http://docs.oracle.com/javase/8/docs/api/javax/swing/IDialog.html.
See http://docs.oracle.com/javase/8/docs/api/javax/swing/JOptionPane.html.
3See http://docs.oracle.com/javase/8/docs/api/javax/swing/JFileChooser.html.

285

http://docs.oracle.com/javase/8/docs/api/javax/swing/JDialog.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/JOptionPane.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/JFileChooser.html

CHAPTER 17 © SPECIALIZED DIALOG BOXES

Look In: ‘ﬁWebSphere ‘v. EHE‘E EIE]EZi

] AppServer70] Updatelnstaller
] AppServer80 [Configuring_VMM_to_use_Bluepaj
] AppServer85 D} Portzilla 85 AppSrv00.png
7 db2drivers [} Portzilla 85 AppSrv01.png
7 Education [Portzilla 85 DM.png
3 scripts [Portzilla 85 NA.png

q]

File Name:

Files of Type: ‘All-‘ies

] WebSphere

(] Desktop
] AppS¢ 3 Computer staller

1AppS{ = Local Disk (C:) ng_VMM_to_use_Bluepa
] AppSd 3 1BMm =[5 AppSrv00.png

9 db2dn (] WebSphere 5 AppSrv01.png

7 Educa = DVD RW Drive (D3) 5 DM.png

] Network

[scripf | B5 NA.png
1] Libraries =

(]

File Name:

Files of Type: [AII Files

‘ Open H Cancel

Figure 17-1. Sample JFileChooser() Open dialog box from FileChooserDemol.py

It doesn’t take much to realize how powerful this dialog box can be. For example, clicking on the Look In drop-
down shows a combo box with indented entries for each directory level, as well as some specialized icons to indicate
directories and disk drives.

Now let’s take a look at which constructors are available with the JFileChooser class, so that you can have your
applications create the appropriate kind of JFileChooser instance best suited for your needs.

286

CHAPTER 17 SPECIALIZED DIALOG BOXES

JFileChooser Constructors

Which constructors exist for the JFileChooser class? Table 17-1 shows the Java constructor signatures and includes
a short description about each constructor. The first constructor is the one that was used in Listing 17-1, in line 27.
The next two signatures allow you to identify the starting view of the JFileChooser dialog box using either java.io.File
or java.lang.String to identify the initial view to be shown. That makes it easy to indicate the starting directory to be
displayed by the JFileChooser instance.

Table 17-1. JFileChooser Constructors

Signature Description

JFileChooser() Constructs a JFileChooser pointing to the user’s default directory.
JFileChooser(File currentDirectory) Constructs a JFileChooser using the given File as the path.
JFileChooser(String currentDirectoryPath) Constructs a JFileChooser using the given Path.

JFileChooser(FileSystemView fsv) Constructs a JFileChooser using the given FileSystemView.
JFileChooser(File currentDirectory, Constructs a JFileChooser using the given currentDirectory
FileSystemView fsv) and FileSystemView.

JFileChooser(String currentDirectoryPath, Constructs a JFileChooser using the given currentDirectoryPath
FileSystemView fsv) and FileSystemView.

The last three JFileChooser constructors include a FileSystemView parameter that can be used to limit the
portion of the filesystem that the JFileChooser can display to the user. This way, you don’t have to allow the user to see
the whole filesystem, just the portion they need.

Using a FileSystemView

The default FileSystemView instance that is used by the JFileChooser allows you to access the complete filesystem.
Listing 17-2 shows a verbose way to provide or identify the default FileSystemView instance. It is, in fact, identical to
the default JFileChooser() instantiation when no parameter is specified.

Listing 17-2. JFileChooser() Instance with Default FileSystemView from FileChooserDemo2.py
27| def showFC(self, event) :

28| fc = JFileChooser(FileSystemView.getFileSystemView())
29| result = fc.showOpenDialog(None)

30| if result == JFileChooser.APPROVE_OPTION :

31| message = 'result = "%s"' % fc.getSelectedFile()
32| else :

33| message = 'Request canceled by user'

34| self.label.setText(message)

287

CHAPTER 17 = SPECIALIZED DIALOG BOXES

If, on the other hand, you are interested in limiting the user to a specific subset of the filesystem, you can
implement a class that identifies the virtual “root” of the filesystem that you want the user to be able to traverse.
Listing 17-3 shows one implementation of this kind of FileSystemView descendent class.*

Listing 17-3. FileSystemView Class that Limits Filesystem Access from FileChooserDemo3.py

11|class RestrictedFileSystemView(FileSystemView) :

12| def _init (self, root) :

13| FileSystemView. init (self)

14| self.root = root

15| self.Roots = [root]

16| def createNewFolder(self, containingDir) :
17| folder = File(containingDir, 'New Folder')
18| folder.mkdir()

19| return folder

20| def getDefaultDirectory(self) :

21| return self.root

22| def getHomeDirectory(self) :

23| return self.root

24| def getRoots(self) :

25 return self.Roots

Listing 17-4 shows how this RestrictedFileSystemView class might be used to limit the JFileChooser to the
specified directory and its subdirectories. It is unlikely, however, that you are going to want the “root” directory
specified using a string like this one. It would be more reasonable to include statements to determine the root system
based on the specific environment in which the script is executing.

Listing 17-4. JFileChooser() Using RestrictedFileSystemView from FileChooserDemo3.py
43| def showFC(self, event) :

44| fc = JFileChooser(

45| RestrictedFileSystemView(

46| File(r'C:\IBM\WebSphere')

47|)

8])

49| result = fc.showOpenDialog(None)

50| if result == JFileChooser.APPROVE_OPTION :
51| message = 'result = "%s"' % fc.getSelectedFile()
52| else :

53| message = 'Request canceled by user'
54| self.label.setText(message)

Figure 17-2 shows some sample images from the application from Listings 17-3 and 17-4. It is interesting to
see how the initial directory is WebSphere, and that the “up one level” button is disabled because WebSphere is
considered the “root” directory of this restricted filesystem.

“Note: The FileSystemView roots attribute is read-only, so this class works around that limitation by using a variable named
Roots instead.

288

Look In: |3 WebSphere

=] AppServer70 [Updatelnstaller
= AppServerso D Configuring_VMM_to_use_Bluepa
7 AppServerss [} Portzilla 85 AppSrv00.png
[db2drivers D Portzilla 85 AppSrv01.png
(7 Education [} Portzilla 85 DM.png
= scripts [Portzilla 85 NA.png
4] I [D
File Name: | |

Files of Type: |All Files

Look In: |3 WebSphere

- [=][E] =] B

—l] ere
3 AppSeTverro T_10p
] AppServerso D Configuring_VMM_to_use_Bluepat
3 AppServerss D Portzilla 85 AppSmv00.png
[db2drivers D Portzilla 85 AppSmv01.png
[Education [Portzilla 85 DM.png
] scripts [Portzilla 85 NA.png
| I [»
File Name: |

Files of Type: |All Files

Look In: ||j Local Disk (C:) i|v| |La:1I iﬁ Lﬁ |EE:[E:
IU Drivers 1 Wiag =3 PMR
[EFI [notes] Prog
=3 1BM 3 notes8bkp 3 Prog
=] Intel [Notes_Preferences_Backup =1 Prog
(7 jython2.5.2 =3 opcC 9 Pyth
=] jython2.5.3 1 PerfLogs =] sdw
4] [I IC
File Name: [|
Files of Type: |AllFiles v

Figure 17-2. Sample RestrictedFileSystem JFileChooser() images

CHAPTER 17 SPECIALIZED DIALOG BOXES

289

CHAPTER 17 = SPECIALIZED DIALOG BOXES

Does this FileSystemViewer class completely limit the users from accessing the rest of the system? No, not really.
For example, if the user enters something like C:\ in the File Name input field, the view will display the contents of that
directory, unfortunately. There may be a way to add an input verifier to the JFileChooser input field to intercept this
kind of thing, but I haven't investigated that option. If you have some success with that approach, please let me know.

File Filtering

By default, a JFileChooser instance will show all of the (non-hidden) files and directories to the user. There are times
when you might prefer to limit the kinds of files to be displayed. For example, you might want to allow the user to see
only the XML, text, or image files. The way to do this is by adding one or more FileFilter® instances to the JFileChooser.
The JFileChooser then determines which files and directories should be visible.

One of the most common FileFilter mechanisms is to identify the viewable files based on file extension.
To simplify this process, the Swing developers have provided a FileNameExtensionFilter® class.

Listing 17-5 shows how easily you can add multiple FileNameExtensionFilter instances to a file chooser.
This allows users to select the kinds of files to be shown based on the filename extensions.

Listing 17-5. The showFC Method from the FileChooserDemo4.py Script
44| def showFC(self, event) :

45| fc = JFileChooser(

46| RestrictedFileSystemView(

47| File(r'C:\IBM\WebSphere')

48|)

49|)

50| fc.addChoosableFileFilter(

51| FileNameExtensionFilter(

52| 'XML files',

53] ['xml']

54|)

55])

56| fc.addChoosableFileFilter(

57| FileNameExtensionFilter(

58| "Image files',

59| 'bmp, jpg,jpeg,gif,png'.split(',")
60|)

61|)

62| fc.addChoosableFileFilter(

63| FileNameExtensionFilter(

64| 'Text files',

65| ["txt']

66|)

67|)

68| result = fc.showOpenDialog(None)

69| if result == JFileChooser.APPROVE_OPTION :
70| message = 'result = "%s"' % fc.getSelectedFile()
71| else :

72| message = 'Request canceled by user'
73] self.label.setText(message)

5See http://docs.oracle.com/javase/8/docs/api/javax/swing/filechooser/FileFilter.html.
%See http://docs.oracle.com/javase/8/docs/api/javax/swing/filechooser/FileNameExtensionFilter.html.

290

http://docs.oracle.com/javase/8/docs/api/javax/swing/filechooser/FileFilter.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/filechooser/FileNameExtensionFilter.html

CHAPTER 17 SPECIALIZED DIALOG BOXES

Figure 17-3 shows an example image from the FileChooserDemo4.py script. It shows the filters available when
the Files of Type combo box is selected. It is interesting to note that the initial filter to be displayed is the last one
that was added. It is also interesting to note that the All Files filter is available by default. So, if you don’t want this
filter to be available, you need to use the removeChoosableFileFilter() method and pass it the result of calling the
getAcceptAllFileFilter(). The FileChooserDemo5.py script includes these calls, in case you are interested.

Look In: |3 wWebSphere

] AppServer70
] AppServer80
] AppServer85
[db2drivers

[C] Education

[scripts

[] Updatelnstaller

File Name:

Files of Type: |Text files

Image files
Text files

Figure 17-3. Sample output from the FileChooserDemo4.py script

Chooser Dialog Types

Up to now, all of the examples that you've seen have used the showOpenDialog() method to display the modal dialog
box. In each of these, the primary button displayed the Open text. There are two other ways to display the dialog box.
The first uses the showSaveDialog() method, which includes a Save button. This shouldn’t be too much of a surprise.
The second allows you to customize the text to be displayed on the primary button and uses the showDialog() method
to do so. In each case, the application uses the return value to determine which choice the user made so that the
appropriate action can be taken. The possible return values are:

e JFileChooser. APPROVE_OPTION
e JFileChooser.CANCEL_OPTION
e JFileChooser.ERROR_OPTION

The last of these occurs only if some kind of error is encountered or if the dialog is somehow dismissed.

291

CHAPTER 17 = SPECIALIZED DIALOG BOXES

Selection Types

There are times when you'll want your users to be able to choose something other than a file. For these times,

you need to tell the JFileChooser instance the kinds of selections that are acceptable. To do this, you can use the
setFileSelectionMode() method or the fileSelectionMode attribute keyword on the constructor call. In either case, the
values that can be specified are as follows:

e JFileChooser.FILES_ONLY
e JFileChooser.DIRECTORIES_ONLY
e JFileChooser.FILES_AND_DIRECTORIES

The default value is JFileChooser.FILES_ONLY, which shouldn’t be much of a surprise. You might wonder
why the primary button isn’t disabled when this in effect. I was a little surprised about this myself, until I selected a
directory and clicked on the Open button. The JFileChooser understood this to be the same as double-clicking on the
directory, so I guess it does make some sense.

You might want to use the JFileChooser. DIRECTORIES_ONLY value for a chooser that allows the user to
identify a source or destination directory for some operation (such as for copying files). There are a number of other
JFileChooser methods as well. You might want to take a look at the Swing Tutorial page entitled “How to Use File
Choosers”” if you are interested.

The JColorChooser Class

Another specialized dialog box that is included in the Swing hierarchy is the JColorChooser® class. It allows users to
display a variety of techniques that can be used to select a color. A trivial script can be used to display a modal color
chooser dialog box. Figure 17-4 shows some views from this dialog box.

"See http://docs.oracle.com/javase/tutorial/uiswing/components/filechooser.html.
8See http://docs.oracle.com/javase/8/docs/api/javax/swing/IColorChooser.html.

292

http://docs.oracle.com/javase/tutorial/uiswing/components/filechooser.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/JColorChooser.html

CHAPTER 17 SPECIALIZED DIALOG BOXES

[Swarrhes [HSR | RGR

r &9

Pros mw

a - B 2ample Izxdanpc led

- . . fampla Tar Sarp & Tad

I L J|| fance | Rasat

| S_—

a - B Zamele IzxHanpc led .
. . . fampla Tre Sarp & Tad
[L. H Cance “ Rt

- | Coorseizctic ==
[Swarches © HER ' ReR

Prwswwr
a . B Sample Izm¥anpc led .
. L . Tampla Tee Sancp & Tasd

| P | wance ” Rosat

Figure 17-4. Sample output from the ColorChooserDemol.py script

Listing 17-6 shows the showCC ActionListener event handler method from the ColorChooserDemol.py script
used to generate the output shown in Figure 17-4.

Listing 17-6. The showCC Method from the ColorChooserDemol.py Script
27| def showCC(self, event) :

28] result = JColorChooser().showDialog(

29| None, # Parent component
30| "Color Selection', # Dialog title

31| self.label.getForeground() # Initial color

293

CHAPTER 17 = SPECIALIZED DIALOG BOXES

32|)

33] if result :

34| message = 'New color: "%s"' % result.toString()
35] self.label.setForeground(result)

36| else :

37] message = 'Request canceled by user’

38| self.label.setText(message)

One of the interesting things about this color chooser dialog is the fact that the user has multiple ways of making
a selection. As you can see in Figure 17-4, there are three tabs, any of which can be used by the user to pick a color.
Aren’t you glad that the Swing developers have gone through the effort of creating this? It is certainly much easier to
use this than to create your own.

The javax.swing.colorchooser Package

In order to provide this functionality, the JColorChooser uses some support classes in the javax.swing.colorchooser
package. You can determine this by taking a look at the JColorChooser constructors, as shown in Table 17-2. The first
two constructors in this table are pretty straightforward.

Table 17-2. JColorChooser Constructors

Signature Description

JColorChooser() Creates a color chooser pane with a
default color of white.

JColorChooser(Color initialColor) Creates a color chooser pane with
the user-specified initial color.

JColorChooser Creates a color chooser pane with
(ColorSelectionModel model) the given ColorSelectionModel.

Paranoid developers might wonder if the default color of the first, no-argument constructor is in fact white.
In fact, you can easily verify this using an expression like the one shown on lines 5 and 6 of Listing 17-7.
Listing 17-7. Verifing the Default JColorChooser Color

1|wsadmin>from java.awt import Color
2|wsadmin>from javax.swing import JColorChooser

3|wsadmin>

4|wsadmin>cc = JColorChooser()
5|wsadminycc.getColor() == Color.white

6]1

7|wsadmin>

8|wsadmin>csm = cc.getSelectionModel()
9|wsadmin>print csm.toString().split('.")[-1]

10|DefaultColorSelectionModel@768b768b
11|wsadmin>

294

CHAPTER 17 SPECIALIZED DIALOG BOXES

You might wonder about the last of the constructors shown in Table 17-2. What is a ColorSelectionModel?° The
Javadoc says that it is an interface, and not a simple class. That same page says that the DefaultColorSelectionModel*
class is the only implementation class that is provided by in the Swing hierarchy. In lines 8-10 of Figure 17-5, you
can see that the default ColorSelectionModel that is associated with a JColorChooser instance is one of these
DefaultColorSelectionModel instances.

¢ Swarrhes * HER

e

a - B 2ample IzmEang c led

. = . fampla Tax Sanp & Tad
o I fance || Rasat

a - W =amele 1xnEanvg < led

. = . fampla Tar Sanp & Tad

Rasat

Pioyew

a - W =ample IzxEang < led .
- . . Sampla Tar Sarp & Tasd
| ok | .anec || Rasar

Figure 17-5. JColorChooser sample output after making a change

Looking at the Javadoc for the DefaultColorSelectionModel class, you see that it allows you to listen for
changes to the color. As you have seen before, this is the standard way that can be monitored. From this experience,
you should be able to make an educated “guess” as to how the JColorChooser works. Take another look at the

°See http://docs.oracle.com/javase/8/docs/api/javax/swing/colorchooser/ColorSelectionModel.html.
1%See http://docs.oracle.com/javase/8/docs/api/javax/swing/colorchooser/DefaultColorSelectionModel. html.

295

http://docs.oracle.com/javase/8/docs/api/javax/swing/colorchooser/ColorSelectionModel.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/colorchooser/DefaultColorSelectionModel.html

CHAPTER 17 = SPECIALIZED DIALOG BOXES

ColorChooserDemol.py sample script. What is the initial color that is displayed? Take a look at each of the tabs and
you should see that the same color shown in the preview pane is represented on each tab in a consistent fashion.
What happens when you pick another color and then select the other tabs? How do you think that this is done?
Figure 17-5 shows some sample images after one color change has been made. You are encouraged to test this
application yourself to see the JColorChooser in full size.

What Else Do You Need to Know About These “Special”
Dialog Boxes?

One thing that may be useful to understand about these classes is the fact that they are based on the javax.swing.
JComponent class, as you can see in Listing 17-8. What does this mean? The interesting thing is that since they are
both JComponents, they aren’t limited to being used as modal dialog boxes. You can, if you want, add an instance of
either to any container, just like you can for any JComponent. You don’t have to, but it’s something to consider.

Listing 17-8. JColorChooser and JFileChooser Class Hierarchy

wsadmin>from javax.swing import JColorChooser
wsadmin>from javax.swing import JFileChooser
wsadmin>
wsadminy>classInfo(JColorChooser)
javax.swing.JColorChooser
| javax.swing.JComponent
| | java.awt.Container
| | | java.awt.Component
| | | | java.lang.Object
| | | | java.awt.image.ImageObserver
| | | | java.awt.MenuContainer
| | | | java.io.Serializable
| | java.io.Serializable
| javax.accessibility.Accessible
wsadmin>
wsadmin>classInfo(JFileChooser)
javax.swing.JFileChooser
| javax.swing.JComponent
| java.awt.Container
| | java.awt.Component
| | | java.lang.Object
| | | java.awt.image.ImageObserver
| | | java.awt.MenuContainer
| | | java.io.Serializable
| java.io.Serializable
javax.accessibility.Accessible
sadmin>

I
I
I
I
I
I
I
I
W

Summary

This chapter covered some specialized dialog boxes that are highly functional and generally useful all at the same
time. The ones you learned about here are related to user selection—selecting a coloy, a file, or a directory. Hopefully,
you have seen just how easily they can be added to your scripts. Coming up in the next chapter, you'll learn how your
applications can monitor progress and report it back to the users.

296

CHAPTER 18

Monitoring and Indicating Progress -

As you've no doubt seen, many graphical applications include a progress indicator of some sort to convey how quickly
something is happening. I don’t know about you, but I tend to be somewhat impatient, so I find these progress bars
very helpful. I hate it when a program just sits there—is it still working, has it hung, who knows? This chapter covers
some different ways to measure progress and communicate it to your users.

Changing the Cursor

Sometimes you'll need to tell the users that the program is busy and let them know that they have to wait for a
(hopefully short) amount of time. The easiest way to do this is to change the Cursor® from its default value to one that
indicates that the application is busy. The Cursor class includes a number of predefined constants that can be used
for this purpose. For this particular situation, you can use WAIT_CURSOR. How do you do that? Listing 18-1 shows a
basic example of how to use it.

Listing 18-1. Using the WAIT_CURSOR Method from WaitCursoril.py
23| def wait(self, event) :

24| source = event.getSource()

25| prev = source.getCursor()

26| source.setCursor(

27| Cursor.getPredefinedCursor(Cursor.WAIT CURSOR)
28|

29 sleep(5)

30| source.setCursor(prev)

This method is from the WaitCursori.py script in the code\Chap_18 directory. If you execute the script and
press the Wait button, the cursor will change from its default value to the WAIT_CURSOR for five seconds. Remember
to change it back. Otherwise, you are likely to confuse your users into thinking that the script is still busy. Figure 18-1
shows some sample images from my system when I executed this script.

'Seehttp://docs.oracle.com/javase/8/docs/api/java/awt/Cursor.html.

297

http://docs.oracle.com/javase/8/docs/api/java/awt/Cursor.html

CHAPTER 18 © MONITORING AND INDICATING PROGRESS

Figure 18-1. WaitCursor images from a Windows 7 environment

Note It is important to note that the way that the cursor looks is dependent on the operating system. It’s also
important to remember that WAIT_CURSOR is visible only when the cursor is over the component for which the cursor was
changed. Because of this, you may want to call the setCursor () method for your highest-level container (for example,
your frame instance).

What if you want to enable WAIT_CURSOR in one part of your application and change it back somewhere else?
You either have to save the original cursor setting somewhere, so it can be restored using this saved value, or you can
simply use the Cursor.DEFAULT_CURSOR constant. Listing 18-2 demonstrates this constant using a JToggleButton. An
even easier technique is to use None as an argument to the setCursor(...) method, which will force the specified
component to use the cursor setting of its parent component.

Listing 18-2. Setting the Cursor Shape Based on isSelected() from WaitCursor2.py

22| def wait(self, event) :

23| source = event.getSource()

24| cursor = [

25 Cursor.DEFAULT _CURSOR, # isSelected() == 0 (false)
26| Cursor.WAIT_CURSOR # isSelected() == 1 (true)
27|][source.isSelected()]

28| source.setCursor(Cursor.getPredefinedCursor(cursor))

When the ActionlListener event handler is called, the cursor state will be based on the result of calling the
JToggleButton isSelected() method (which returns zero for false and one for true).

Are there any problems with using the cursor to indicate that the application is busy? Think about it. When you
use this technique, you are telling the user to wait. How happy do you think the users are when they are told to wait?
I, for one, hate when I get a “wait” message. Since your applications are supposed to be event driven, you want them
to be able to continue running even though a different part might be busy doing something. If your script needs to be
interacting with the user while another part is doing something else, it needs to be doing these other operations on
separate threads. Remember the SwingWorker class first mentioned in Chapter 62 That’s how you're going to do it.

Showing a Progress Bar

Have you ever had an application appear to stop working and wonder what was going on? It happens to me all of
the time. Even though I have a fairly capable laptop, there are times when every application appears to be hung.
Sometimes the title bars show a “(Not Responding)” message, but that isn’t very reassuring. Unless an operation
is expected to complete in less than half a second, it is best to consider communicating to the user some kind of

298

CHAPTER 18 © MONITORING AND INDICATING PROGRESS

indication of the expected wait time. That’s the purpose of a progress bar. Let’s take a look at the JProgressBar? class
and see what it takes to make use of it. It's always a good idea to begin by looking at the class constructors. Table 18-1
contains the constructors for the JProgressBar class.

Table 18-1. JProgressBar Constructors

Signature Description

JProgressBar() Creates a horizontal progress bar that displays a border but
no progress string.

JProgressBar(BoundedRangeModel newModel) Creates a horizontal progress bar that uses the specified
model to hold the progress bar’s data.

JProgressBar(int orient) Creates a progress bar with the specified orientation, which
can be SwingConstants.VERTICAL or SwingConstants.
HORIZONTAL.

JProgressBar(int min, int max) Creates a horizontal progress bar with the specified

minimum and maximum.

JProgressBar(int orient, int min, int max) Creates a progress bar using the specified orientation,
minimum, and maximum.

As is often the case, at least for me, the description that is provided in the Javadoc isn’t always clear. Take a look at
the default JProgressBar instance. The first implementation can be found in ProgressBar0. py; sample images from
this implementation are shown in Figure 18-2.

Figure 18-2. Sample images from the ProgressBar0. py output

See http://docs.oracle.com/javase/8/docs/api/javax/swing/IProgressBar.html.

299

http://docs.oracle.com/javase/8/docs/api/javax/swing/JProgressBar.html

CHAPTER 18 © MONITORING AND INDICATING PROGRESS

How was this done? The primary (ProgressBar) class for this script is shown in Listing 18-3. There really
shouldn’t be too many surprises here. The only part that you might wonder about is using the setBorder(...)
method call on lines 46-48.

It's sometimes confusing that you have to use the frame.getContentPane() method to access the particular
pane to which you want to add an “empty” border. Note also the call to the BorderFactory®.createEmptyBorder(...)
method to create a little space or gap around the components in the JPanel. You might want to take a look at the “How
to Use Borders” section of the Java Swing Tutorials’ to obtain a better understanding about borders and how they can
be used in Swing applications.

Listing 18-3. ProgressBar Class from ProgressBar0.py

38|class ProgressBaro(java.lang.Runnable) :
39| def run(self) :

40| frame = JFrame(

41| 'ProgressBaro’,

42| size = (280, 125),

43| locationRelativeTo = None,

44| defaultCloseOperation = JFrame.EXIT ON_CLOSE
45])

46| frame.getContentPane().setBorder(

47| BorderFactory.createEmptyBorder(20, 20, 20, 20)
48|)

49| panel = JPanel()

50| self.button = panel.add(

51| JButton(

52| 'Start’',

53| actionPerformed = self.start

54)

55|)

56| self.progressBar = panel.add(JProgressBar())
57| frame.add(

58| panel,

59| BorderLayout.NORTH

60|)

61| frame.setVisible(1)

62| def start(self, event) :

63| progressTask(

64| self.button,

65| self.progressBar

66|).execute()

The ActionlListener event handler routine, shown in lines 62-66 of Listing 18-3, creates the progressTask
instance. Immediately after that, the thread starts executing. Details about this class are shown in Listing 18-4.

3Seehttp://docs.oracle.com/javase/8/docs/api/javax/swing/BorderFactory.html.
See http://docs.oracle.com/javase/tutorial/uiswing/components/border.html.

300

http://docs.oracle.com/javase/8/docs/api/javax/swing/BorderFactory.html
http://docs.oracle.com/javase/tutorial/uiswing/components/border.html

CHAPTER 18 © MONITORING AND INDICATING PROGRESS

Listing 18-4. The progressTask class from ProgressBaro.py

14|class progressTask(SwingWorker) :
15| def _init_ (self, button, progressBar) :

16| self.btn = button # Save provided references
17] self.PB = progressBar

18| SwingWorker. init (self)

19| def doInBackground(self) :

20| self.btn.setEnabled(0) # Disable the "start" button
21| try :

22| random = Random()

23| progress = 0

24| self.PB.setValue(progress)

25| while progress < 100 :

26| sleep((random.nextInt(1400) + 100) / 1000.0)
27| progress = min(

28| progress + random.nextInt(10) + 1, 100

29|

30| self.PB.setValue(progress)

31| except :

32| Type, value = sys.exc_info()[:2]

33| print 'Error:', str(Type)

34| print 'value:', str(value)

35| sys.exit()

36| def done(self) :

37| self.btn.setEnabled(1) # Enable the "start" button

Is this a great example of a Swinghorker descendent class? No, not really. For one thing, it needs to know too
much about the invoking application. This should be obvious when you see that the constructor needs to have
references to specific application components provided when the object is instantiated. This should be a dead
giveaway. There has to be a better way, don’t you think?

SwingWorker Progress

Are there any methods in the SwingWorker class related to “progress”? How can you find out? Chapter 4, introduced
the classInfo utility class. Listing 18-5 shows the output of this function. It tells you that a getter method exists for a
property named progress. Looking at the Javadoc for the Swinghorker® class shows you that a setter method exists, but
it is protected, so any descendent classes that you define have to do something special to access that setter method.

Listing 18-5. SwingWorker “Progress” Methods

wsadmin>from javax.swing import SwingWorker
wsadmin>
wsadmin>classInfo(SwingWorker, meth = 'progress')
javax.swing.SwingWorker

getProgress

’See http://docs.oracle.com/javase/8/docs/api/javax/swing/SwingWorker.html.

301

http://docs.oracle.com/javase/8/docs/api/javax/swing/SwingWorker.html

CHAPTER 18 © MONITORING AND INDICATING PROGRESS

| java.lang.Object

| java.util.concurrent.RunnableFuture
| | java.lang.Runnable

| | java.util.concurrent.Future
wsadmin>

How do I know this? When I tried to use a simple call to the SwingWorker setProgress(...) method, an
AttributeError exception was raised and the setProgress name was the source of the error.®

So, what can you do? The Jython developers were kind enough to provide a way to access this kind of protected
method. A Java programmer can use the @verride annotation to allow the doInBackground(...) method to use the
setProgress(...) method. In Jython, you have to use the following syntax to call the setProgress(...) method. In
the SwingWorker descendent class, use this:

self.super setProgress(value)’

Listing 18-6 shows the modified progressTask class from the working ProgressBar2. py script. Note the
simplifications, which include the fact that this class now has no references to the application components. That
means it’s completely contained, meaning that all references to the class attributes exist only in the class.

Listing 18-6. The progressTask Class from ProgressBar2.py

15|class progressTask(SwingWorker) :
16| def _init (self) :

17| SwingWorker. init_ (self)

18| def doInBackground(self) :

19| try :

20| random = Random()

21| progress = 0

22| self.super setProgress(progress)

23| while progress < 100 :

24| sleep((random.nextInt(1400) + 100) / 1000.0)
25| progress = min(

26| progress + random.nextInt(10) + 1, 100
27|

28| self.super setProgress(progress)

29| except :

30| Type, value = sys.exc_info()[:2]

31| print 'Error:', str(Type)

32| print 'value:', str(value)

33| sys.exit()

34| def done(self) :

35| pass

Listing 18-7 shows the modified ProgressBar class from this same script. Since the SwinghWorker descendent
class knows nothing about the class components defined here, you have to make this class a descendent of the
PropertyChangelistener class, as shown on lines 36 and 65-70.

The script containing the “first attempt™ is the ProgressBar1. py file found in the code\Chap_18 directory.
"Yes, there really are two underscores between super and setProgress.

302

CHAPTER 18 © MONITORING AND INDICATING PROGRESS

Listing 18-7. The ProgressBar Class from ProgressBar2.py

36|class ProgressBar2(java.lang.Runnable, PropertyChangelistener) :

37|
38|
39|
40|
41|
42|
43|
44|
45]
46|
47|
48|
49|
50|
51|
52|
53|
54|
55|
56|
57|
58]
59|
60|
61|
62|
63|
64|
65|
66|
67|
68|
69|
70|

def

def

def

run(self) :
frame = JFrame(
'ProgressBar2’,
size = (280, 125),
locationRelativeTo = None,
defaultCloseOperation = JFrame.EXIT_ON_CLOSE
)
frame.getContentPane().setBorder(
BorderFactory.createEmptyBorder(20, 20, 20, 20)

)
panel = JPanel()
self.button = panel.add(
JButton(
'Start’,
actionPerformed = self.start
)
)
self.progressBar = panel.add(JProgressBar())
frame.add(
panel,
BorderLayout.NORTH
)
frame.setVisible(1)
start(self, event) :
self.button.setEnabled(0)
task = progressTask()
task.addPropertyChangelistener(self)
task.execute()
propertyChange(self, event) :
if event.getPropertyName() == 'progress' :
progress = event.getNewValue()
self.progressBar.setValue(progress)
if progress == 100 :
self.button.setEnabled(1)

Showing Progress Details

So far, this is a pretty good way to display progress, albeit a bit vague. Wouldn't it be nice if you were able to display

the percentage complete on the progress bar? The developers of the Swing classes thought about this, and have made

it really easy for you to do. All you have to do is enable the stringPainted property of the JProgressBar instance.

In Jython, this is as simple as adding the stringPainted keyword to the JProgressBar constructor call. Listing 18-8
shows this process.

Listing 18-8. ProgressBar Constructor Call with the stringPainted Keyword

56|
57|
58|

self.progressBar = panel.add(
JProgressBar(stringPainted = 1)
)

303

CHAPTER 18 © MONITORING AND INDICATING PROGRESS

After making this change, you can see that the progress bar includes a string representation of the completion as
a percentage value. Figure 18-3 shows some sample images from ProgressBar4.py, which incorporates this change.

Figure 18-3. Sample images with stringPainted enabled from ProgressBar4.py

Specifying a Progress Bar Range

Some of the JProgressBar constructors shown in Table 18-1 allow you to define the minimum and maximum values
for your progress bar. What does this do, and what does this mean as far as the SwinghWorker progress?

If you specify minimum and maximum values for a progress bar, you become responsible for tracking its updates.
The separation of the progressTask (SwingWorker) instance from the ProgressBar class means that only the progress
bar is aware of the new minimum and maximum values. In the progressTask instance, it is measuring a percentage of
the progress, as shown in Figure 18-3.

So, if your application needs to use non-default minimum and maximum values in a progress bar instance, it
needs to take this into account. Listing 18-9 shows one approach that you might want to consider using. Regardless
of the minimum and maximum values you choose for the JProgressBar instance, it uses the progress value of the
progressTask instance as a percentage complete value to determine the value that’s assigned to the JProgressBar
instance (as shown on line 74).

Listing 18-9. propertyUpdate() Method from ProgressBar5. py
68| def propertyUpdate(self, event) :

69| if event.getPropertyName() == 'progress' :

70| progress = event.getNewValue() # integer % complete
71| lo = self.progressBar.getMinimum()

72| hi = self.progressBar.getMaximum()

73] here = int((hi - 1o) * 0.01 * progress) + lo
74| self.progressBar.setValue(here)

75| if progress == 100 :

76| self.button.setEnabled(1)

304

CHAPTER 18 © MONITORING AND INDICATING PROGRESS

Indeterminate ProgressBar Range

Sometimes, you won’t know how long an action will take. For example, if your application needs to communicate
with a remote host to transfer data from there to here, there is likely to be some delay while communication is being
established. Once that has occurred, the amount of data can be provided before the copying initiates. While this is
happening, it is considered good practice to tell the users that something is happening.

For this purpose, the JProgressBar class includes an indeterminate attribute. When this attribute® is enabled,
the progress bar will show movement, but no change in progress completion percentage. The ProgressBar6.
py sample script shows one way that this attribute can be used. It includes a random delay in the progressTask
doInBackground(...) method to simulate some kind of initialization delay before progress changes occur.
Figure 18-4 shows some images of the progress bar when the indeterminate attribute is true.

Figure 18-4. Sample images of indeterminate progress

Listing 18-10 shows the lines in ProgressBar6. py that relate to using the indeterminate attribute in your
application progress bar instance. In the ActionListener event handler invoked when the Start button is selected,
you see how the indeterminate attribute is enabled. Then, in the PropertyChangelListener event handler in line 74,
you can see how the state of the indeterminate attribute is disabled and the actual progress is determined.

Listing 18-10. Indeterminate Related Code from ProgressBar6.py
65| def start(self, event) :

66| self.button.setEnabled(0)

67| self.progressBar.setIndeterminate(1)

68| task = progressTask(self.propertyUpdate)

69| task.execute()

70| def propertyUpdate(self, event) :

71| if event.getPropertyName() == 'progress' :

72| progress = event.getNewValue() # integer % complete
73| PB = self.progressBar

74| PB.setIndeterminate(0)

75| lo = PB.getMinimum()

76| hi = PB.getMaximum()

77| here = int((hi - 1o) * 0.01 * progress) + lo
78| PB.setValue(here)

79| if progress == 100 :

80| self.button.setEnabled(1)

SInterestingly enough, the JProgressBar Javadoc doesn’t explicitly identify indeterminate as an actual attribute or field. But if
you use the classInfo function from Chapter 4, you can see that it does exist and your Jython scripts can access it directly,
even though this practice is discouraged.

305

CHAPTER 18 © MONITORING AND INDICATING PROGRESS

ProgressMonitor Objects

In many ways, instances of the ProgressMonitor® class appear to be similar to the dialog boxes described in
Chapters 16 and 17. This is a bit misleading, though. Listing 18-11 shows that the ProgressMonitor class is a
descendent of the java.lang.0bject class. JDialog descends from the java.awt.Dialog class, and JColorChooser
and JFileChooser both descend from the javax.swing.JComponent class, as you learned in Chapter 17.

Listing 18-11. ProgressMonitor Class Hierarchy

wsadmin>from javax.swing import ProgressMonitor
wsadmin>

wsadmin>classInfo(ProgressMonitor)
javax.swing.ProgressMonitor

| java.lang.Object

| javax.accessibility.Accessible

wsadmin>

What does this mean for your applications? For one, ProgressMonitor instances are going to act very different
from descendants of the JComponent class. Additionally, you can’t add a ProgressMonitor instance to a Swing
container. This provides additional information as to why this dialogue-like box is being discussed here, instead of
in Chapter 17. How do you use a ProgressMonitor object? Let’s begin with the constructor and then discuss how the
instance can and should be used. Take a look at the ProgressMonitor constructors shown in Table 18-2.

Table 18-2. ProgressMonitor Constructor

Signature Description

ProgressMonitor(Instantiates an object for the purpose of showing progress.
Component parentComponent,
Object message,
String note,
int min,
int max

It's kind of interesting to see that this class has only one constructor. Most of the previous Swing classes you've
learned about had many more. The constructor parameters shouldn’t be too much of a surprise. The kinds of
questions that I had when I first encountered this constructor were mostly concerned with the message and note
arguments. Mostly, wondered about how they differ and how they should be used.

Listing 18-12 shows how simple it can be to demonstrate a progress monitor. If you want to enter this example in
your own interactive session, remember that the last (i.e., empty) line is significant. It tells the Jython interpreter that
the while statement is complete, and that the contents of the loop should be executed.

°See http://docs.oracle.com/javase/8/docs/api/javax/swing/ProgressMonitor.html.

306

http://docs.oracle.com/javase/8/docs/api/javax/swing/ProgressMonitor.html

CHAPTER 18

Listing 18-12. Interactive wsadmin Session Showing ProgressMonitor

wsadmin>from javax.swing import ProgressMonitor

wsadmin>from java.util import Random

wsadmin>from time import sleep

wsadmin>

wsadmins>random = Random()

wsadmin>progress = 0

wsadmin>

wsadmin>pm = ProgressMonitor(None, 'Message text', None, 0, 100)
wsadmin>while progress < 100 :

wsadmin> sleep((random.nextInt(1400) + 100) / 1000.0)
wsadmin> progress = min(100, progress + random.nextInt(10))
wsadmin> pm.setProgress(progress)

wsadmin>

Figure 18-5 shows some images of a ProgressMonitor instance.

MONITORING AND INDICATING PROGRESS

Cancel

Figure 18-5. Images from the interactive session ProgressMonitor instance in Listing 18-12

Note A ProgressMonitor instance shouldn’t be reused. A new instance should be instantiated instead.

From these, you can see the following about the dialog box:
e Atitle of Progress...
e ACloseicon in the upper-right corner

e An Information icon

307

CHAPTER 18 © MONITORING AND INDICATING PROGRESS

e The user-supplied message text
e Aprogress bar
e A Cancel (or local equivalent) button

Based on this first attempt and on the previous investigation into JDialog instances, you may be surprised to
learn that you have no control over:

e Thetitle of the ProgressMonitor dialog box.
e Theicon that is displayed
e The buttons that are displayed
e The text that is shown on the button
Some other big differences between ProgressMonitor instances and the other dialog boxes that you've seen are:
e ProgressMonitor dialog box instances are not modal.
e The ProgressMonitor class doesn’t have any listeners associated with it.

You may be wondering why I used an interactive wsadmin session, as shown in Listing 18-12, to demonstrate the
ProgressMonitor class. One big reason was to show that once the progress reaches the maximum value (100%), the
dialog is automatically hidden.

What is required to create a simple script that demonstrates the ProgressMonitor class? Listing 18-13
shows the class that is defined in ProgressMonitori.py." Notice how the ProgressMonitor is instantiated in the
Actionlistener event handler, that is, in the start(.) method in lines 65-75.

Listing 18-13. The ProgressMonitori Class from ProgressMonitori.py

42|class ProgressMonitor1(java.lang.Runnable) :
43| def run(self) :

44| frame = JFrame(

45| 'ProgressMonitor’,

46| size = (280, 125),

47| locationRelativeTo = None,

48| defaultCloseOperation = JFrame.EXIT_ON_CLOSE
49])

50| frame.getContentPane().setBorder(

51| BorderFactory.createEmptyBorder(20, 20, 20, 20)
52|)

53| panel = JPanel()

54] self.button = panel.add(

55| JButton(

56| 'Start',

57| actionPerformed = self.start

58|)

59|)

60| frame.add(

61| panel,

62| BorderLayout.NORTH

63|)

"Note that the class name can’t be the same as the Java Swing class you are trying to use.

308

CHAPTER 18 © MONITORING AND INDICATING PROGRESS

64| frame.setVisible(1)

65| def start(self, event) :

66| self.button.setEnabled(0)

67| self.PM = ProgressMonitor(

68| None, # parentComponent
69| 'Message text', # message

70| None, # note

71| 0, # minimum value
72| 100 # maximum value
73])

74| task = progressTask(self.propertyUpdate)
75| task.execute()

Listing 18-14 shows the PropertyChangelListener event handler that is defined in the propertyUpdate()
method. Note its similarity to the PropertyChangelListener event handler in the progress bar scripts.

Listing 18-14. PropertyChangelListener from ProgressMonitorl.py

76| def propertyUpdate(self, event) :

77| if event.getPropertyName() == 'progress’' :

78| progress = event.getNewValue() # integer % complete
79| PM = self.PM

80| lo = PM.getMinimum()

81| hi = PM.getMaximum()

82| here = int((hi - 1o) * 0.01 * progress) + lo
83| PM.setProgress(here)

84| if progress == 100 :

85| self.button.setEnabled(1)

ProgressMonitor Cancellation

Using ProgressMonitori.py, you can easily demonstrate the cancellation process. Start the application and press the
Start button. Watch what happens when the ProgressMonitor dialog appears. You shouldn’t be too surprised that the
dialog box goes away. You might wonder why the Start button is still disabled ... at least for a short time.

What is happening? Consider that, when the ProgressMonitor was canceled, the progressTask continued to
execute on the separate thread. Until this task completes, PropertyChangeEvents will continue to be generated, which
will result in the PropertyChangelListener method being called. Once the progress reaches 100, the Start button will
be enabled. Is this the right way to handle the cancellation event? I don’t think so.

In order to properly react to the cancellation of a ProgressMonitor, you need to be able to determine that it has
occurred. Fortunately, the Swing designers have provided an isCanceled() method as part of the ProgressMonitor
API. You can use it to detect the situation. What should you do when it occurs? Well, one of the important things that
you should do is terminate the progressTask that was created to perform the job being monitored. Again, the Swing
designers come to the rescue. The SwingWorker API includes a cancel() method that allows developers to terminate
the thread.

Is that all you need to worry about? No, you also have to include code in the progressTask class and the
PropertyChangelistener event handler to deal with the possible cancellation of these different objects.

Listing 18-15 shows the modifications found in the second script—ProgressMonitor2.py—to deal with the
cancellation of a ProgressMonitor object.

309

CHAPTER 18 © MONITORING AND INDICATING PROGRESS

Listing 18-15. Differences Found in ProgressMonitor2.py

14|class progressTask(SwingWorker) :

| eee
23| def doInBackground(self) :

24| try :

25| random = Random()

26| progress = 0

27| self.super setProgress(progress)

28| sleep((random.nextInt(1400) + 100) / 1000.0)
29| while progress < 100 :

30| sleep((random.nextInt(1400) + 100) / 1000.0)
31| progress = min(

32| progress + random.nextInt(10) + 1, 100
33

34| self.super setProgress(progress)

35| except KeyboardInterrupt, ki :

36| pass

37| except :

38| Type, value = sys.exc_info()[:2]

39| print 'Error:', str(Type)

40| print 'value:', str(value)

41| sys.exit()

| .
44|class ProgressMonitor2(java.lang.Runnable) :

| et
67| def start(self, event) :

68| self.button.setEnabled(0)

69| self.PM = ProgressMonitor(

70| None, # parentComponent

71| 'Message text', # message

72| None, # note

73] 0, # minimum value

74| 100 # maximum value

75|)

76| self.task = progressTask(self.propertyUpdate)
77| self.task.execute()

78| def propertyUpdate(self, event) :

79| if event.getPropertyName() == 'progress' :

80| progress = event.getNewValue() # integer % complete
81| PM, task = self.PM, self.task

82| lo, hi = PM.getMinimum(), PM.getMaximum()
83| here = int((hi - 1o) * 0.01 * progress) + lo
84| PM.setProgress(here)

85| done = task.isDone()

86| if PM.isCanceled() or done :

87| if not done :

88| task.cancel(1)

89| self.button.setEnabled(1)

310

CHAPTER 18 © MONITORING AND INDICATING PROGRESS

Table 18-3 identifies the changes that you nee to make in order to deal with the cancellation of ProgressMonitor
or progressTask more appropriately. It is interesting to see how little code is needed in order to adequately handle
these cancellation events."

Table 18-3. Explanation of Changes in ProgressMonitor2.py

Lines Description

35-36 The except clause in the progressTask doInBackground() method now silently ignores
KeyboardInterrupt exceptions. All others will continue to display information about the exception
before the application is terminated.

76 A reference is saved in the object instance to the task object. The PropertyChangelListener event
handler needs this reference.

86-88 If the ProgressMonitor was canceled, you might need to cancel the progressTask instance.

89 If the ProgressMonitor was canceled or if the progressTask instance is completed, the Start button
will be enabled.

The ProgressMonitor Message

Take another look at the ProgressMonitor constructor in Table 18-2. What data type is the message parameter? It's
an object. What does that mean and why isn’t it a String? According to the Javadoc, the message argument is an object
so that it can be used in different ways, as described in the JOptionPane.message' documentation. Additionally, it

is important to note that the message portion of the ProgressMonitor object will not change during the life of the
ProgressMonitor. Let’s see what you can do with the message.

The ProgressMonitor3. py script uses the same technique as shown in Chapter 16 to specify the message as an
ImageIcon. I tried this approach first because I wanted to see if I could use this technique to display a different icon
on the ProgressMonitor. Unfortunately, as you can see in Figure 18-6, the ImageIcon is displayed in addition to the
Information icon.

| B Progress .7 |

Cancel

Figure 18-6. ProgressMonitor with an ImageIcon message

Can you use HTML in the message? According to the JOptionPane.message documentation, you would expect strings
to be displayed in a JLabel. Since the JLabel class allows HTML text, you might be able to do some interesting things.

Figure 18-7 shows what happens when you try using an HTML message, as well as an ordered and unordered
list."® Unfortunately, it appears that an excessively “long” HTML message can cause some problems. From the little
testing that I did, it appears to be related to the horizontal space that is allowed for the message. I guess you need to
determine just how much information, and in what form, should be displayed in this message field.

'"A Java application would need to catch a java.lang.InterruptedException instead.

2See http://docs.oracle.com/javase/8/docs/api/javax/swing/IOptionPane.html#message.

BAIll of these output images were generated by ProgressMonitor4.py. You will have to edit the source script and uncomment the
desired assignment statement in the start () method to duplicate these different outputs.

311

http://docs.oracle.com/javase/8/docs/api/javax/swing/JOptionPane.html#message

CHAPTER 18 © MONITORING AND INDICATING PROGRESS

Warning! Danger Will Robinson,
Dangeri

Cancel

Cancel Cancel

Figure 18-7. ProgressMonitor with HTML message strings

The ProgressMonitor Note

In the ProgressMonitor constructor in Table 18-2, you can see that, in addition to the message parameter, a note
parameter is also defined. What's the difference between the message and note parameters? As you just saw, the
message parameter is an object that is represented as a JLabel, so you can use HTML tags to control how it is
displayed (within limits). Additionally, it is static for the life of the ProgressMonitor. The note argument is a string
that is used to initialize a note attribute. If a value of None (the Jython equivalent to the Java null value) is specified in
the constructor, the value of the note attribute shouldn’t change.

On the other hand, you can use the note field on the ProgressMonitor to provide information related to the
progress that is being made. According to the Javadoc, you only need to call the setNote(. . .) method to update this
portion of the ProgressMonitor. Figure 18-8 shows the output of the ProgressMonitor5. py script, which uses the
note field to provide a numeric percentage indicating the progress.

@ Message text

3% Complete
I

| Cancel

Figure 18-8. ProgressMonitor with a note attribute from ProgressMonitors.py

312

CHAPTER 18 © MONITORING AND INDICATING PROGRESS

Does anything about this catch your eye? When I first saw this, I was more than a little surprised by the fact that
bottom of the Cancel button was encroaching on the bottom edge of the dialog box. After a bit of testing, I realized
what was happening. It appears that the progress monitor’s size is based on the initial parameter values. If an empty
note string is provided in the ProgressMonitor constructor, then no vertical space is allocated to hold the string when
itis changed. How do you fix this? One simple fix is to provide a note string containing one or more blanks. Figure 18-9
shows the output of this same script when the note is initialized with a single blank. I don't know about you, but I
think that this looks significantly better.

- | Progress

Message text

2% Complete
[

Cancel

Figure 18-9. ProgressMonitor with note initialized with '

Can the note string contain HTML text? Yes it can, but again, I caution you to be careful about the kind of text that
you use. It is important to remember that the ProgressMonitor class hierarchy, as shown in Listing 18-11, is based
on an object and not a JComponent. So, you don’t have the same kind of control over it that you do with normal Swing
components, which means that you can’t resize it after it is instantiated.

The ProgressMonitor parentComponent

Up to now, you have passed None as the value for the parentComponent argument. What role is this parameter
supposed to play? Is there any reason for providing something other than None? The ProgressMonitor6.py
script attempts to answer this question. In all of the other ProgressMonitor scripts, None was specified as the
parentComponent value. This script references the application by using the self.frame value. Now, regardless
of where the frame is positioned on the screen, when you press the Start button, the ProgressMonitor will be
positioned with respect to the parentComponent window. This parameter provides the only control over how the
ProgressMonitor appears on the screen.

Other ProgressMonitor Properties

One difference that exists between ProgressMonitor objects and other dialog boxes is that there is a delay between
when the object is created and when it appears on the screen. Why is that? It’s possible for there to be no reason
for the ProgressMonitor to be displayed. Certain properties of the ProgressMonitor determine when and ifa
ProgressMonitor object should be displayed.

If you again take a look at the classInfo function introduced in Chapter 4, as shown in Listing 18-16, you'll see
that there are some attributes defined in the ProgressMonitor class that aren’t listed in the Javadoc.

313

CHAPTER 18 © MONITORING AND INDICATING PROGRESS

Listing 18-16. ProgressMonitor Attributes

wsadmin>from javax.swing import ProgressMonitor
wsadmin>
wsadmin>classInfo(ProgressMonitor, attr = '')
javax.swing.ProgressMonitor
canceled, maximum, millisToDecideToPopup, millisToPopup
minimum, note, progress
| java.lang.Object
* class
| javax.accessibility.Accessible
* accessibleContext
wsadmin>

Table 18-4 identifies and describes these attributes. This should help you understand any delay in the appearance
of the ProgressMonitor dialog. What happens is that when a progress value is set, themillisToDecideToPopup value
determines how long the ProgressMonitor instance waits before trying to determine if the ProgressMonitor should
be visible. If the estimated time to completion is less than the millisToPopup value, the ProgressMonitor dialog
will not be displayed. After mil1isToPopup milliseconds, the dialog will appear. Once the progress value reaches the
maximum value, the ProgressMonitor is hidden.

Table 18-4. ProgressMonitor Attributes, Explained

Attribute Name Description
canceled Boolean value indicating if the Cancel button has been used.
maximum Integer value initialized by constructor; accessible via getter and setter methods.

millisToDecideToPopup Integer value defaulting to 500 (0.5 sec); accessible via getter and setter methods.

millisToPopup Integer value defaulting to 2000 (2 sec); accessible via getter and setter methods.
minimum Integer value initialized by constructor; accessible via getter and setter methods.
note String value initialized by constructor; accessible via getter and setter methods.

Note: If this is initialized to None, any changes made via setNote() are ignored.

progress Write-only integer value modified via the setProgress() setter method. Values are
limited by the values of minimum and maximum.

Note: When a progress is set to the maximum, the ProgressMonitor is hidden.

One question that keeps coming up with respect to ProgressMonitor dialog boxes relates to the fact that the
dialog box is hidden when the process value is set to the maximum value. Generally, developers wonder whether
there is any way to get the dialog box to stay visible once the maximum value is set. Unfortunately not. However, you
can pass the setProgress(...) method a value in the range from minimum to maximum - 1. Unfortunately, if the
range is small (e.g., 0 .. 10), a value of maximum - 1 might leave a visible gap at the upper end of the progress bar.

In this case, you might want to consider using some kind of multiplier so that the value of maximum - 1 won’t be
discernable.

Another possible annoyance related to doing this exists. Once the dialog is hidden, if you use the
setProgress(...) method to cause it to reappear, it will not be located where the user left it. It will be located
based on the original position, relative to the value of the parentComponent attribute. So, if the user moves the
ProgressMonitor dialog box, the dialog box will appear to jump from where it is back to its original screen location.

314

CHAPTER 18 © MONITORING AND INDICATING PROGRESS

ProgressMonitorinputStream Objects

There is another class, much like ProgressMonitor, that can use a ProgressMonitor object to determine the progress

while data is read from an InputStream. As with ProgressMonitor objects, the ProgressMonitorInputStream"

processing (reading data from the InputStream) should be performed by a separate (SwingWorker) type of task.
Unfortunately, space and time limitations don’t allow me to provide more detail about this particular class.

Summary

This chapter covered monitoring and communicating progress to the user with a variety of techniques. The really nice
thing that this shows you is how much control application developers have over the way they convey progress to their
users. It’s important to understand the implications and consequence of each choice you make, so keep this in mind.
In next chapter, you'll learn about internal frames, which allow you to create even more interesting applications.

See http://docs.oracle.com/javase/8/docs/api/javax/swing/ProgressMonitorInputStream.html.

315

http://docs.oracle.com/javase/8/docs/api/javax/swing/ProgressMonitorInputStream.html

CHAPTER 19

Internal Frames

Up to this point, the applications you've seen have been able to create and use individual windows. Almost every
sample has used a single JFrame to display information and interact with the users. Now you're going to look at

using internal frames. First you will take a quick look at a collection of inner frames, because there are times when
applications can use a variety of views in order to convey different information to the users. The chapter begins by
comparing internal frames to the JFrame used in the previous applications. Then you'll build an application that uses
internal frames that display information in a variety of ways.

Looking at Inner Frames

Figure 19-1 shows the output of a simple application that displays three inner frames.

L JiFrameDemc

ll_g_lnner Frame #2 ol v | [

[inner Frame #3 - o" @ X

[=] inner Frame #1

Figure 19-1. Simple application with three inner frames

317

CHAPTER 19 INTERNAL FRAMES

Listing 19-1 shows the code required to produce this kind of simple inner frame. As you can see, even though
very little code is required, it is quite functional.! The script, which you can find in the code\Chap_19\iFrameDemo.py
file, shows that each of the inner frames can be moved, resized, closed, iconified, restored, and even maximized
within the available space.

Listing 19-1. iFrameDemo Class Within iFrameDemo.py

8|class iFrameDemo(java.lang.Runnable) :
9| def run(self) :

10| screenSize = Toolkit.getDefaultToolkit().getScreenSize()
11| w = screenSize.width >> 1 # 1/2 screen width
12| h = screenSize.height >> 1 # 1/2 screen height
13| x = (screenSize.width - w) »>> 1

14| y = (screenSize.height - h) >> 1

15| frame = JFrame(

16| 'iFrameDemo",

17| bounds = (x, y, w, h), # location & size
18| defaultCloseOperation = JFrame.EXIT_ON_CLOSE

19|)

20| desktop = JDesktopPane()

21| for i in range(3) :

22| inner = JInternalFrame(

23] "Inner Frame #%d' % (1 + 1),

24| 1, # Resizeable

25 1, # Closeable

26| 1, # Maximizable

27| 1, # Iconifiable

28| visible = 1, # setVisible(1)
29| bounds = (i * 25 + 25, i * 25 + 25, 250, 250)
30])

31| desktop.add(inner)

32| frame.setContentPane(desktop)

33| frame.setVisible(1)

Table 19-1 describes each of the steps in Listing 19-1. You will be learning about these steps in more detail
throughout this chapter.

'Please note, however, that the iFrameDemo.py script output requires user manipulation to look like the image seen in
Figure 19-1. This is discussed further in section 19-2.

318

CHAPTER 19 " INTERNAL FRAMES

Table 19-1. iFrameDemo Class, Explained

Lines Description

10 Determines the size of the current screen.
11 Makes the width of the application use half the physical width of the screen.
12 Makes the height of the application use half the physical height of the screen.
13-14 Computes the upper-left corner of the application to center the application window.
15-19 Instantiates the frame using the specified parameters.
20 Creates a JDesktopPane onto which the InternalFrames will be added.
21-31 Creates three InternalFrames, one at a time, and adds them to the desktop.
Note: The bounds keyword argument is used to size and position the inner frame on the JDesktopPane.
32 Replaces the frame ContentPane with the populated desktop.
33 Makes the application frame visible.

Before you investigate the JDesktopPane? class shown in Listing 19-1, it’s a good idea to learn more about layers
and about the JLayeredPane® on which this class is based.

Layers

Let’s take a quick look at a simple script that demonstrates layered components using a trivial component—the
JLabel object. Figure 19-2 shows a group of seven overlapping colored labels. Note how the text is centered across the
top of each label, and how the labels are stacked to make all of the text visible.

[Layered Pane

Layer 1 = Orange
Layer 2 = Yellow

Figure 19-2. Layered labels

*http://docs.oracle.com/javase/8/docs/api/javax/swing/IDesktopPane.html.
*http://docs.oracle.com/javase/8/docs/api/javax/swing/JLayeredPane.html.

319

http://docs.oracle.com/javase/8/docs/api/javax/swing/JDesktopPane.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/JLayeredPane.html

CHAPTER 19 INTERNAL FRAMES
Listing 19-2 shows the relevant part of the LayeredPaneDemo class from the LayeredPaneDemo. py script.

Listing 19-2. LayeredPaneDemo Class, Part 1

11|class LayeredPaneDemo(java.lang.Runnable) :
12| def run(self) :

18| frame.setContentPane(self.createlayeredPane())
19| frame.pack()

20| frame.setVisible(1)

21| def createColoredLabel(self, text, color) :

22| return JlLabel(

23| text,

24| opaque = 1,

25 size = (150, 130),

26| background = color,

27| foreground = Color.black,

28| verticalAlignment = JlLabel.TOP,

29| horizontalAlignment = JLabel.CENTER,

30| border = BorderFactory.createlineBorder(Color.black)
31|)

Unfortunately, this class is too long to fit onto one page, so it has to be split into pieces. Table 19-2 describes the
portion of the LayeredPaneDemo shown in Listing 19-2.

Table 19-2. Comments About the LayeredPaneDemo Class, Part 1

Lines Description

12-20 This portion of the run() method should be familiar to you by now. The only new part is where the
default ContentPane is replaced by the result of calling the createLayeredPane() in line 18.

21-31 The createColoredLabel(...) method creates and returns a JLabel containing the specified text and
using the specified color. Each label object is roughly square, and the text is positioned in the center of
the top, with a black border.

The remainder of the LayeredPaneDemo class, the createLayeredPane(. . .) method, is shown in Listing 19-3.
The purpose of this method is to create and return a layered pane object populated with a collection of colored labels.

Listing 19-3. LayeredPaneDemo Class, Part 2

32| def createlLayeredPane(self) :

33| colors = [

34| ('Red' , Color.red),

35| ('Orange', Color.orange),

36| ('Yellow', Color.yellow),

37| ('Green' , Color.green),

38| ('Blue' , Color.blue),

39| ('Indigo', Color(75, 0, 130)),
40| ('violet', Color(143, 0, 255))
41|]

320

42|
43|
44
45|
46|
47|
48|
49|
50|
51|
52|
53]
54
55]
56|
57|
58|
59|

CHAPTER 19

result = JlayeredPane(
border = BorderFactory.createTitledBorder(
'Layered Pane'
)s

preferredSize = Dimension(290, 280)
)
position, level = Point(10, 20), O
for name, color in colors :
label = self.createColoredLabel(
"Layer %d = %s' % (level, name),
color
)
label.setLocation(position)
position.x += 20
position.y += 20
result.add(label, level, 0)
level += 1
return result

Table 19-3 describes the statements found in this method.

Table 19-3. Comments About the LayeredPaneDemo Class, Part 2

INTERNAL FRAMES

Lines Description

32-59 The createlayeredPane(...) method is used to create, populate, and return a JLayeredPane object
instance.

33-41 The colors array holds information about the text and colors to be used to create each of the label objects.

42-47 Creates the JLayeredPane object with the specified preferred size and a title.

48 Each label will be positioned in an overlaid fashion, at a different layer on the pane, starting with these
values.

49-58 Loops over the available colors (defined in 33-41), creating and positioning the labels accordingly.

57 This statement adds the current label to the layered pane at the specified layer and proper position. I will
discuss this method in more detail shortly.

58 Increments the level variable used to indicate the layer number of the next label.

59 Returns the populated JLayeredPane object instance.

Position Within the Layer

You might wonder what the third parameter on the add(. . .) method (line 57 in Listing 19-3) is used for.
It identifies the position, within the layer, of the component being added. Figure 19-3 shows what happens when you
don’tinclude the position parameter. Notice how in Figure 19-2, the top portion of each label (including the text)

was visible.

321

CHAPTER 19 INTERNAL FRAMES

= LoyereapancDemOlEEN (=i o |

[Layered Pane

Figure 19-3. Layered Labels without the position parameter specified

As you can see, the layers are now stacked in reverse order, with the red label on top. If you add a print statement
after the add () method statement and display the value of level (the intended level of the component being added)
and the result of calling the getLayer(. . .) method for the label component on the layered panel, you'll see that an
unintended add(. . .) method is being invoked and you aren’t specifying the level, as expected. Listing 19-4 shows the
proposed statement changes.

Listing 19-4. Changes to the createlayeredPane() Method

57| result.add(label, level, 0)
58| print level, result.getlLayer(label)

The output of the getLayer(...) method call for each label will show that every label is, in fact, being added to
layer zero. With the three argument add(. . .) method calls, the output of the getLayer(. . .) method call will show
the expected layer value.

So, what is the position supposed to do and when does it come into play? It is used when multiple components
are at the same layer. It is used to determine the relationship of components on the same level. The position value
should be an integer from -1 to N - 1, where N is the number of components in layer. The larger the value (the closer to
N) of the position, the deeper the component.

The exception to this is -1, which is considered the same as N - 1, which means that it will be the deepest
component on the layer. That's why you specify a value of zero on the add(. . .) method when you add a component
to a layer. This will position the newest component as the uppermost position within the layer (closest to the user).

The JDesktopPane Class

Now that you've seen how layers work, you'll be better able to understand the JDesktopPane class. It is generally best
to have internal frames added to a JDesktopPane instance in order to show and manipulate them. If you look back at
Figure 19-1, you should notice familiar JFrame icons manipulating the internal frames. It should be clear how different
these are from something as simple as a label.

322

CHAPTER 19 " INTERNAL FRAMES

There was another reason for discussing the JLayeredPane before moving onto the JDesktopPane, and that is the
add(...) method as shown in Listing 19-1, line 31. If you take another look at Figure 19-1, you'll see that the internal
frames have been moved around so that they don’t overlap. This is because the initial output of the iFrameDemo script
has the layering in an unexpected order. Unexpected until you understand which of the add(. . .) methods should
have been used. The single argument add(. . .) method is used in Listing 19-1. If, on the other hand, you had used the
three argument version, as shown in line 57 of Listing 19-3, the first internal frame (Inner Frame #3) would have been
completely visible. Figure 19-4 shows the ordering of the internal frames when using the single and multiple argument
add(...) methods. As a user of GUI applications, which output would you prefer?

) inner Frame #1 =

1 innerFrame#1 =7 5" & lﬁl
[mnerframe#2 o' & = |
[nner Frame #3 Cll v g |

Figure 19-4. iFrameDemo using single (top) and multiple (bottom) argument add(. . .) methods

“The three argument add(. . .) method call can be seen as a comment in the iFrameDemo. py sample script. The Javadoc for
which is http://docs.oracle.com/javase/8/docs/api/java/awt/Container.html#fadd%28java.awt.Component,
%20java.lang.Object,%20int%29.

323

http://docs.oracle.com/javase/8/docs/api/java/awt/Container.html#add%28java.awt.Component,%20java.lang.Object,%20int%29
http://docs.oracle.com/javase/8/docs/api/java/awt/Container.html#add%28java.awt.Component,%20java.lang.Object,%20int%29

CHAPTER 19 INTERNAL FRAMES

Another thing to note about these sample scripts is that when the inner frames are created, their position
needs to be specified so that all of the inner frames aren’t stacked on top of each other, thereby hiding the frames
underneath.

One thing that you haven’t learned about in much detail yet is the JDesktopPane instance onto which all of these
inner frames are added. In fact, I have only mentioned its add(. . .) method. There have to be more, don’t there?
Of course there are more. In fact, there are far too many to discuss in this chapter. In fact, the sample scripts in this
chapter don’t use anything but the add(. . .) method. That doesn’t mean that they aren’t useful. I just don’t have the
space or time required to do each of them justice.

More complex scripts are likely to use the JDesktopPane methods to manipulate the inner frames. To give you a
little idea what some of the methods can do, I've listed a few of the most useful in Table 19-4. Remember that this is
only a partial list.

Table 19-4. Some Useful IJDesktopPane Methods

Returned Value Method Signature and Role

JInternalFramel[] getAllFrames()
Returns all JInternalFrames currently present in the desktop container.

JInternalFramel] getAllFramesInLayer(int layer)
Returns all JInternalFrames currently contained at the specified layer of the desktop
object.

JInternalFrame getSelectedFrame()
Returns the currently active JInternalFrame in the desktop, or None if none is selected.

void remove(int index)
Removes the specified component from the container.

void removeAll()
Removes all the components from the container.

JinternalFrame selectFrame(boolean forward)
Selects the next component in the container if the value of forward is true (1) or the
previous component if the forward value is false (0).

void setSelectedFrame(JInternalFrame f)
Makes the specified JInternalFrame active.

324

CHAPTER 19 " INTERNAL FRAMES

JFrame or JinternalFrame?

When trying to decide how to implement an application, the similarity of the JFrame and JInternalFrame® classes
might lead you to think that you can start with one and easily switch to the other should the need arise. Unfortunately,
it’s not quite as simple as that. It’s better to pick one from the start and stick with it. It’s possible that you could pick
one way and soon realize that the other technique would have been better. If you haven’t invested too much time

or effort, it might be better to start over at that point. Here are some questions to consider to help you decide which
approach is more advantageous for your needs.

e How contained and well defined is your application? Does it make more sense for you to see
one, or multiple kinds or views of data at the same time? If you only need to see one view, then
a single frame, possibly with something like tabbed panes might make more sense.

e How much data sharing will you need to do for the different portions of your application? If
each aspect of your application is separate and distinct, there might be some advantage to
seeing multiple views or pieces of data. If this is the case, multiple internal frames may be a
better approach.

e Do multiple instances of the same kind of view make better sense, or is a single perspective
sufficient? Might multiple views add complexity or confusion? If multiple, simultaneous views
are advantageous, using multiple internal frames might be the best approach. However, try to
consider the additional complexity that might be required by this choice.

One of the really powerful things about using Jython to produce or prototype your graphical application is how
easy itis to create a proof of concept. This allows you to start your development and improve your knowledge about
what exactly you want your program to do. This might help you decide which approach is best—a single frame or
multiple internal frames.

The JinternalFrame Class

One way to determine the difference between the JInternalFrame and JFrame classes is by comparing the methods
available to each. A quick glance shows that the JFrame class has about 30 methods and the JInternalFrame class has
about 80. This would appear to be a huge difference, which in some ways, it is. Looking a bit closer at the methods,
you'll see that the JInternalFrame class has a large number of methods (46) that are identified as protected, but the
JFrame class has only eight. Additionally, the JInternalFrame class has some deprecated methods.

JFrame and JInternalFrame Methods

While on the topic of graphical applications, consider what it would take to create a small application that showed the
JFrame and JInternalFrame methods side-by-side and determined whether the protected and deprecated methods
should be viewable. Figure 19-5 shows an image from this simple application. The menu selections allow you to hide
the deprecated and protected methods.

’See http://docs.oracle.com/javase/8/docs/api/javax/swing/JInternalFrame.html.

325

http://docs.oracle.com/javase/8/docs/api/javax/swing/JInternalFrame.html

CHAPTER 19 INTERNAL FRAMES

g rameMethod

¥ Deprecated |void addImpl(Ccmponent comp, Object constraints, ;nt.:" protected void addImpl(Component comp, Object constral=|
¥ Protected [Pane createRootFane() void addInternalFrameListener(InternalFrame
1void frameInit() protected JRootFane createR Pane()
Exit ptext gethccessibleContext() protected void dispose()
Container getContentPane () protected void deDefaultCloseAction()
int getDefaultCloseCperation() protected void firelnternalframeEvent(int id)
I getGlasaPane () AcceasibleContext gecAcces. eConcext()
Graphics getGraphics() Container ne()
JMenuBar getJMenuBar() i u oselperation()
JLayeredPane gectlayeredFPane () _|9InternalFrame.JDesktoplcon g
JRootPane getRootPane() JDesktopPane
TransferHandl getIransferHandler () iner usCycleRootAncestor()
isDefaultLookhndFeelDecorated() Compon usCwner ()
isRootPaneCheckingEnabled()
param ng()
processh owEvent (WindowEvent e)
remove(Component comp) JHenuBar
repaint(leng time, int x, int ¥, int widch, ing Cursor
setContentPane (Container contentFane | int
secDefaultClosedperation(int operation) 1 JLayeredPane
secDefaulctlookAndFeelDecorated(boolsan defaulcl JéenuBar ge Deprecated.
secGlasaPane (Component glassPane) Component ‘'ocualwner ()
seclconImage(Image image) Rectangle N alBounds ()
setJMenuBar(JMenuBar menubar) 1 JRootPane

Figure 19-5. FrameMethod application images

To create this fairly simple application, you first have to figure out where the data exists and in what format. Based
on this, you need to figure out how to get the data into your application. For simplicity’s sake, I created two text files,
one for each class, and one line for each method. Each line has three fields:

e The optional modifier and return type of the method
e The method signature (the method name and parameter list)
e The method abstract

The fields are separated by the | delimiter. So, the application needs to load the text from the file and process
each line. Listing 19-5 contains some utility methods from the FrameMethods . py script.® The textFile(...) method
returns a string containing the file contents and the parse(. ..) method formats each line to contain only the first two
fields from the file, with all of the method names aligned on the first character in the method name.

Listing 19-5. FrameMethods.py Utility Methods
25| def parse(self, text) :

26| data = [line.split(' | ') for line in text.splitlines()]
27| width = max(

28] [len(result) for result, sign, desc in data]

29|)

‘See ...\code\Chap_19\FrameMethods.py in the sample directories.

326

30|
31|
32|
33|
34|
35]
I
111|
112|
113
114|
115
116 |
117|
118
119]
120

CHAPTER 19 " INTERNAL FRAMES
return '\n'.join(

"%*s %s' % (width, result, sign)
for result, sign, desc in data

)

def textFile(self, filename) :
result = "'
try :
f = open(filename)
result = f.read()
f.close()
except :
Type, value = sys.exc_info()[:2]
result = '%s\n¥s' % (Type, value)
return result

Listings 19-6 and 19-17 show the run(. ..) method from the FrameMethods class, which is used to create the

application frame, define the layout, load the files, and populate the panes and the application menu. The contents
and structure of this method should be quite familiar to you by now, so I won’t bother describing it in detail.

Listing 19-6 shows the run(...) method of the FrameMethods . py script. In it, you can see how the frame is

composed of two JTextArea sections (lines 47-53 and lines 58-64), each of which is contained in a JScrollPane
(lines 54 and 65). Each text area is populated from one of the text files used by this script.

Listing 19-6. FrameMethods run() Method

15|class FrameMethods(java.lang.Runnable) :

|
36|
37|
38|
39|
40|
41|
42|
43|
44|
45|
46|
47|
48|
49|
50|
51|
52|
53|

def run(self) :
frame = JFrame(
'FrameMethods',
size = (1000, 500),
locationRelativeTo = None,
layout = GridlLayout(0, 2),
defaultCloseOperation = JFrame.EXIT_ON_CLOSE
)
self.one = self.parse(
self.textFile('JFrame Methods.txt')

self.left = JTextArea(
self.one,
20,
40,
editable = 0,
font = Font('Courier' , Font.PLAIN, 12)

327

CHAPTER 19 INTERNAL FRAMES

54| frame.add(JScrollPane(self.left))

55| self.two = self.parse(

56| self.textFile('JInternalFrame Methods.txt')
57|

58| self.right = JTextArea(

59| self.two,

60| 20,

61| 40,

62| editable = 0,

63| font = Font('Courier' , Font.PLAIN, 12)
64|)

65| frame.add(JScrollPane(self.right))

66| frame.setIMenuBar(self.makeMenu())

67| frame.setVisible(1)

In case you are interested, the instance variables one and two are used by the event handler methods to
determine the text that will be displayed in each text area. Listing 19-7 shows the makeMenu() method from the same
script. As you can see, this method creates, populates, and returns the menu bar and its entries, which have the
associated actionPerformed event handling methods assigned as the showItems() method.

Listing 19-7. FrameMethods makeMenu() Method
68| def makeMenu(self) :

69| menuBar = JMenuBar(

70| background = Color.blue,

71| foreground = Color.white

72|)

73| showMenu = JIMenu(

74| "Show',

75| background = Color.blue,

76| foreground = Color.white

77|

78| self.deprecated = IJCheckBoxMenuItem(
79| 'Deprecated’,

80| 1,

81| actionPerformed = self.showItems
82|

83| showMenu.add(self.deprecated)

84| self.protected = JCheckBoxMenuItem(
85| 'Protected’,

86| 1,

87| actionPerformed = self.showItems
88|

89| showMenu.add(self.protected)

90| showMenu. addSeparator ()

91| showMenu.add(

92| IMenuItem(

93| "Exit',

94| actionPerformed = self.exit
95|)

96|)

97| menuBar.add(showMenu)

98| return menuBar

328

CHAPTER 19 " INTERNAL FRAMES

Listing 19-8 shows the showItems(...) method used as the menu item ActionListener event handler. It, in
turn, may use the findNot(...) method to filter the data, removing all lines containing the specified text (either
“deprecated” or “protected”).

Listing 19-8. The showItems() and findNot() Methods
18| def findNot(self, data, text) :

19| return "\n'.join(
20| [
21 line for line in data.splitlines()
22| if line.lower().find(text) < 0
23]]
24|)

| ..
99| def showItems(self, event) :
100 item = event.getActionCommand()
101 one = self.one
102| two = self.two
103 | if not self.deprecated.isSelected() :
104 | one = self.findNot(one, 'deprecated')
105] two = self.findNot(two, 'deprecated’)
106 | if not self.protected.isSelected() :
107 one = self.findNot(one, 'protected’)
108 two = self.findNot(two, 'protected')
109 | self.left.setText(one)
110 self.right.setText(two)

I'll admit that I created this application quickly. It was one of those “rapid prototyping” opportunities that took
about two hours, all told. Most of that time was spent creating the input files. It only required about 30 minutes to
create the actual application, once I had the data in place. Not bad for a quick “proof of concept,” wouldn’t you say?
The really neat part was that it is more than adequate, as is, to deal with the menu selection events. At first, I wasn’t
sure how rapidly the application would update after a menu selection was made. Watching it in action, though, I was
pleasantly surprised and am very happy with the responsiveness.

Does that mean that this is the best way to go? Absolutely not. That’s one of the great things about being able to
create a quick proof of concept script like this. It can help you understand the problem better, as well as give you some
ideas about improvements and additional features. For example, based on this example, I can imagine a more useful
application that:

e Adds menu items to identify the classes to be compared, such as allows users to specify input
sources (URL or filename).

e Uses jsoup (Chapter 15) to retrieve and process the Javadoc URLSs.

329

CHAPTER 19 INTERNAL FRAMES

e Usesthe JList class (Chapter 9) to allow a method to be selected. If the same method
signature exists in the other list, highlights it as well.

e Adds selection logic to highlight the corresponding method in the other pane, if one exists.

In fact, the more I think about it, this might be a really good enhancement to the javadocInfo scriptin
Chapter 15. What do you think? However, since we’re discussing internal frames maybe that would be a good way to
doit...It’s a thought.

More JFrame and JInternalFrame Differences

One reason for looking at the differences between the JFrame and JInternalFrame classes is to understand the extent.
Besides looking at their methods, you might also wonder about the differences in their class hierarchies. Listing 19-9
shows the output of the classInfo function, which was introduced in Chapter 4. It emphasizes that even though the
class names are similar, they are very different. One of the most important differences was pointed out in Chapter 1,
where the JFrame class was identified as a top-level container.

Listing 19-9. JFrame and JInternalFrame Class Hierarchies

wsadmin>from javax.swing import JFrame, JInternalFrame
wsadmin>
wsadmin>classInfo(JFrame)
javax.swing.JFrame
| java.awt.Frame
| java.awt.Window
| | java.awt.Container
| | java.awt.Component
| | | java.lang.Object
| | | java.awt.image.ImageObserver
| | | java.awt.MenuContainer
| | | java.io.Serializable
| javax.accessibility.Accessible
| java.awt.MenuContainer
javax.swing.WindowConstants
javax.accessibility.Accessible
| javax.swing.RootPaneContainer
wsadmin>
wsadmin>classInfo(JInternalFrame)
javax.swing.JInternalFrame
| javax.swing.JComponent
| java.awt.Container
| | java.awt.Component
| | | java.lang.Object
| | | java.awt.image.ImageObserver
|

I

I

I

I

| | | | java.awt.MenuContainer
| | | | java.io.Serializable

| | java.io.Serializable

| javax.accessibility.Accessible
| javax.swing.WindowConstants

| javax.swing.RootPaneContainer
wsadmin>

330

CHAPTER 19 " INTERNAL FRAMES

The differences between these two classes are significant, even though the function they provide is quite similar
in nature. One area that differs significantly is the type of events recognized by each class.

JInternalFrame Events

In order to work well with internal fames, you need to understand the events that can occur in order to decide how
your application should react when these events occur. The Javadoc for the JInternalFrame class identifies the
InternalFramelistener” class as the base class for dealing with these kinds of events. Since it is an identified as an
interface, it is probably better idea to consider using the InternalFrameAdapter® class as a base class.

What would it take to create an application that uses internal frames to help you better understand internal frame
events? You can use one perpetual internal frame to display details about the internal frame events when they occur.’
All of the others can be simple internal frames that can be created, minimized, restored, maximized, and closed.

The perpetual inner frame should contain a scrollable text area. This would allow your application to display the
details and information about the events as they occur. Taking a quick look back to Listing 19-1, you can make some
decisions about what arguments should be used to create this special internal frame. It would probably make the
application much more complex if you allowed zero or multiple instances of this special internal frame to exist. So
let’s start simply by allowing only one perpetual instance in your application.

Listing 19-10 shows the first attempt of implementing a logging internal frame class. As you can see, it’s really
simple and straightforward. In fact, there really shouldn’t be anything surprising about it.

Listing 19-10. The eventLogger Class, First Attempt from iFrameEvents1.py

10| class eventlLogger(JInternalFrame) :
11| def _init (self) :

12| JInternalFrame.__init_ (

13| self,

14| "eventlLogger',

15| 1, # Resizeable - yes
16| 0, # Closeable - no
17| 0, # Maximizable - no
18| 1, # Iconifiable - yes
19| visible = 1,

20| bounds = (0, 0, 250, 250)

21|)

22| self.textArea = JTextArea(

23] 20, # rows

24| 40, # columns

25| editable = 0 # read-only

26|

27| self.add(JScrollPane(self.textArea))

"See http://docs.oracle.com/javase/8/docs/api/javax/swing/event/InternalFramelListener.html.
8See http://docs.oracle.com/javase/8/docs/api/javax/swing/event/InternalFrameAdapter.html.
°See http://docs.oracle.com/javase/8/docs/api/javax/swing/event/InternalFrameEvent.html.

331

http://docs.oracle.com/javase/8/docs/api/javax/swing/event/InternalFrameListener.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/event/InternalFrameAdapter.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/event/InternalFrameEvent.html

CHAPTER 19 INTERNAL FRAMES

When instantiated, this class creates an internal frame, positions it, defines its size, and adds a scrollable pane
containing a read-only text area to it. Wow, that was easy. Figure 19-6 shows the top-left portion of an application
showing this internal frame.

| E] eventLogger o

Figure 19-6. iFrameEvents1.py initial display

That’s nice, but how is it supposed to log an InternalFrameEvent? How is the application supposed to create any
other internal frames?

The first issue is easy enough to solve. You can have the eventlLogger class instantiate an InternalFrameAdapter
instance and provide a getter method to access it. This means that when any InternalFrameEvent occurs, the event
handler will be able to access the event logger frame and add text to it.

The second issue is solved by adding a simple menu that allows you to create more internal frames.

Most of the revised script is in code\Chap_19\iFrameEvents2.py and is shown in the following listings.

Listing 19-11 shows the utility methods for this class, which should look quite familiar by now.

Listing 19-11. Beginning of the iFrameEvents Class from iFrameEvents2.py

56|class iFrameEvents2(java.lang.Runnable) :
57| def addIframe(self, event) :

58| desktop = self.desktop

59| self.iFrameCount += 1

60| i = self.iFrameCount % 10

61| inner = JInternalFrame(

62| "Inner Frame #%d' % self.iFrameCount,

63| 1, # Resizeable

64| 1, # Closeable

65| 1, # Maximizable

66 | 1, # Iconifiable

67| bounds = (i * 20 + 20, i * 20 + 20, 200, 200)
68)

69| inner.addInternalFramelListener(self.logger.getlListener())
70| inner.setVisible(1)

71| desktop.add(inner, i, 0)

72| def exit(self, event) :

73| sys.exit()

74| def menuBar(self) :

332

CHAPTER 19 " INTERNAL FRAMES

75| result = IMenuBar()

76| newMenu = result.add(IMenu('New'))
77| newMenu. add(

78| IMenuItem(

79| "InnerFrame’,

80| actionPerformed = self.addIframe
81)

82|)

83| newMenu.addSeparator()

84| newMenu. add(

85| IMenuItem(

86| "Exit',

87| actionPerformed = self.exit
88|)

89|)

90| return result

The addIframe(...) method, shown in lines 57-71, is called by the menu entry event handler to create a new
internal frame. It is important to note that this method depends on the self.logger instance attribute value
(see line 69), which is initialized in the run() method.

Listing 19-12 shows the run() method, which:

e Creates the initial application frame of the initial size and location

e Creates and adds the menu bar

e Creates a desktop instance to hold the internal frames

e Creates the special internal frame, which is an instance of the eventLogger class
e Adds the special eventLogger instance to the desktop

e Replaces the initial frame ContentPane with the desktop

e Makes the application visible

Listing 19-12. The run() Method from the iFrameEvents Class from iFrameEvents2.py
91| def run(self) :

92| screenSize = Toolkit.getDefaultToolkit().getScreenSize()
93| w = screenSize.width >> 1 # 1/2 screen width
94| h = screenSize.height >> 1 # 1/2 screen height
95| x = (screenSize.width - w) >> 1

96 | y = (screenSize.height - h) >> 1

97| frame = JFrame(

98| "iFrameEvents2',

99| bounds = (x, y, w, h), # location & size
100| defaultCloseOperation = JFrame.EXIT ON_CLOSE

101)

102 frame.setIMenuBar(self.menuBar())

103 | self.desktop = desktop = JDesktopPane()

104 | self.logger = eventlLogger()

105 | desktop.add(self.logger, 0, 0)

106 frame.setContentPane(desktop)

107 self.iFrameCount = 0

108 frame.setVisible(1)

333

CHAPTER 19 INTERNAL FRAMES

The event listener that is added to each internal frame was instantiated by the run() method and is an instance of
the eventlLogger class, as shown in Listing 19-13. In fact, I added a getter for the eventAdapter instance, as shown in
lines 54 and 55.

Listing 19-13. The eventlogger Class from iFrameEvents2.py

34|class eventlLogger(JInternalFrame) :
35| def _init (self) :

36| JInternalFrame. init (

37| self,

38| 'eventLogger"',

39| 1, # Resizeable - yes
40| 0, # Closeable - no
41| 0, # Maximizable - no
42| 1, # Iconifiable - yes
43| visible = 1,

44| bounds = (0, 0, 250, 250)

45|)

46| self.textArea = JTextArea(

47| ", # Inital text

48| 20, # rows

49| 40, # columns

50] editable = 0 # read-only

51|)

52| self.eventListener = eventAdapter(self.textArea)
53| self.add(JScrollPane(self.textArea))
54| def getlListener(self) :

55| return self.eventlListener

Listing 19-14 shows the eventAdapter class that is used by the eventLogger class. It is important to note how
the constructor, in lines 16-18, requires the text area to be updated by the messages that this class needs to log. The
log(...) utility method, found on lines 19-26, uses a regular expression (RegExp) to extract the name for the kind of
event being logged and updates the specified text area with a line identifying the title of the internal frame for which
the event occurred, as well as the kind of event.

Note Notice how all of the event handler methods are trivial calls to the log() method, which then does all of the
real work.

Listing 19-14. The eventAdapter Class from iFrameEvents2.py

15|class eventAdapter(event.InternalFrameAdapter) :
16| def init (self, textArea) :

17| self.textArea = textArea

18| self.regexp = re.compile('\[INTERNAL_FRAME_(\w+)]"')
19| def log(self, event) :

20| title = event.getInternalFrame().getTitle()

21| mo = re.search(self.regexp, event.toString())

22| if mo :

23| Type = mo.group(1).capitalize()

334

CHAPTER 19 " INTERNAL FRAMES

24| else :
25| Type = 'unknown'
26| self.textArea.append("\n%s : %s' % (title, Type))

27| def internalFrameActivated(self, ife) : self.log(ife)
28| def internalFrameClosed(self, ife) : self.log(ife)

29| def internalFrameClosing(self, ife) : self.log(ife)

30| def internalFrameDeactivated(self, ife) : self.log(ife)
31| def internalFrameDeiconified(self, ife) : self.log(ife)
32| def internalFrameIconified(self, ife) : self.log(ife)
33| def internalFrameOpened(self, ife) : self.log(ife)

I'll et you play with the sample application to get a feel for the kinds of events that are generated and the order in
which they can occur.

More JInternalFrame Topics

Unfortunately, internal frames, and the manipulation thereof, are not simple or easy. There are lots of things to deal
with. For example, you can use the simple iFrameEvents2.py script to get a better idea.

1. Start the script.
Choose New » InnerFrame to create Inner Frame #1.

Use the minimize icon on Inner Frame #1 to iconify it.

Eal A

Resize the application to hide the iconified inner frame.

How are you supposed to access the iconified inner frame without making the application larger? This is a simple
example of one of the many kinds of things that you need to consider when you are dealing with inner frames. It may
also help you understand the need for some of the JDesktopPane methods listed in Table 19-4.

Building an Application from Scratch

This section shows what it takes to build an application that uses the JInternalFrame class. Rather than showing the
end result, the section iterates with fairly simple steps to create the script from absolutely nothing, to the point where
you'll have a better understanding of what it takes to put these Swing components together into some semblance of a
complete application.

Where should you start? Let’s look for something, hopefully simple, that you can use to make an interesting
application. From the WebSphere Application Server online documentation, you can find a simple script written in
Jacl that can be used to change the console timeout value.' This value determines the length of time (in minutes) that
the administrator console will remain active without user input.

Since the script in the documentation is written in Jacl, you'll begin by taking a look at it. In the code directory
for this chapter, you can find the consoleTimeout_00.jacl script (see code\Chap_19\consoleTimeout_00.jacl).Itis
slightly different from the online documentation. It is different in that it allows users to specify the new timeout value
on the wsadmin command line. The script in the documentation requires you to edit the script file and replace the two
instances of <timeout value> with the desired timeout value (in minutes).

%See http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.doc/info/
ae/isc/cons_sessionto.html.

335

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/isc/cons_sessionto.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/isc/cons_sessionto.html

CHAPTER 19 INTERNAL FRAMES

Figure 19-7 shows an example invocation of this wsadmin script, which presumes that the current working
directory contains the WebSphere Application Server wsadmin. sh script.

./wsadmin.sh -f consoleTimeout.jacl 30

Figure 19-7. Using the consoleTimeout_00. jacl script

Simple Non-GUI Jython Version of the consoleTimeout Script

I don’t know about you, butI find it a challenge to write and modify Jacl scripts.!! So, let’s start by converting this Jacl
script to a roughly equivalent Jython script. Listings 19-14 and 19-15 show the consoleTimeout routine from this
converted script. During the conversion, a little usability enhancement was added to display the current timeout
value if no command-line parameters are provided. Additionally, if too many parameters are specified, some usage
information is displayed.

Listing 19-15. The consoleTimeout Routine from consoleTimeout_01.py, Part 1

23|def consoleTimeout 01(cmdName = 'consoleTimeout 01') :

24| argc = len(sys.argv) # Number of args
25| if arge > 1 : # Too many?

26| Usage(cmdName) # show Usage info
27| value = None

28| if argc == 1 :

29| value = sys.argv[0]

30| if not re.search(re.compile('~\d+$'), value) :

31| print nonNumeric % locals()

32| Usage(cmdName)

33| dep = AdminConfig.getid('/Deployment:isclite/"')
34] if not dep :

35] print noISCLite % locals()
36| Usage(cmdName)
37| appDep = AdminConfig.list('ApplicationDeployment', dep)

38| appConfig = AdminConfig.list('ApplicationConfig', appDep)
39| if not appConfig :

40| appConfig = AdminConfig.create(
41| "ApplicationConfig',

42 appDep,

43| []

44|)

45| sesMgmt = AdminConfig.list('SessionManager', appDep)
46| if not sesMgmt :

47| sesMgmt = AdminConfig.create(
48| 'SessionManager',

49| appConfig,

50| []

51])

"T°11 admit it, it took me much longer than it should have to figure out how to modify the consoleTimeout. jacl script to accept
and use command-line parameters. I am not proficient with Jacl since I use it so infrequently.

336

CHAPTER 19 " INTERNAL FRAMES

This script should be pretty straightforward to those with a modicum of wsadmin scripting experience. It verifies
that the user-supplied valid numeric input then uses some calls to the wsadmin scripting objects to locate the session
manager configuration object so that its tuning parameters can be checked. Listing 19-16 deals with creating tuning
parameters in order to set the invalidationTimeout attribute value. One interesting thing about this simple script is
the fact that almost 60 lines are needed to provide this simple functionality.

Note In case you are interested, you can look at the complete source code to see that the lines that aren’t shown in
these listings are comments, initialization statements, and a Usage(. . .) method, which displays appropriate information
about how the script can and should be used.

Listing 19-16. The consoleTimeout Routine from consoleTimeout_01.py, Part 2

52| tuningParams = AdminConfig.showAttribute(

53] sesMgmt,

54| "tuningParams’

55|)

56| if value :

57| if not tuningParams :

58| AdminConfig.create(

59] 'TuningParams',

60| sesMgmt,

61| [["invalidationTimeout', value]]
62|)

63| else :

64| AdminConfig.modify(

65| tuningParams,

66| [['invalidationTimeout', value]]
67|)

68| else :

69| if not tuningParams :

70| print noTPobj % locals()

71| else :

72| timeout = AdminConfig.showAttribute(
73| tuningParams,

74| "invalidationTimeout'

75|)

76| print currentVal % locals()

77| if AdminConfig.hasChanges() :

78| print saveConfig % locals()

79| AdminConfig.save()

First GUI Jython Version of the consoleTimeout Script

The first Jython Swing version of this script is shown in Listings 19-16 and 19-17. Remember that first impressions can
be deceiving. Even though there appear to be many more statements in the Swing version (consoleTimeout_02.py),
that’s simply because of the number of statements displayed on multiple lines so that they fit in the space available in
the listings in this publication.

Listing 19-17 contains most of the run(...) method from the ConsoleTimeout class in this script. Note that very
little effort was put into any complex layout of the Swing components. If you make the frame wider, I think that you'll
agree that it doesn’t look as nice as it could.

337

CHAPTER 19

Listing 19-17. The ConsoleTimeout Class run(...) Method from consoleTimeout 02.py

INTERNAL FRAMES

9|class consoleTimeout 02(java.lang.Runnable) :
def run(self) :
frame = JFrame(

10|
11|
12|
13|
14|
15|
16|
17|
18]

|
48|
49|
50|
51|
52|
53]
54|
55|
56|
57]
58|
59|
60|
61|
62|
63|
64|
65|
66|

|
76|

Listing 19-18. The ConsoleTimeout Class update(...) Method from consoleTimeout 02.py

77|
78|
79|
80|
81|
82|
83|
84|
85|
86|
87|
88|

338

dep

'consoleTimeout_02',

layout = FlowlLayout(),

size = (180, 120),

locationRelativeTo = None,
defaultCloseOperation = JFrame.EXIT ON_CLOSE

= AdminConfig.getid('/Deployment:isclite/')

if not self.tuningParms :

timeout = "'

messageText = "tuningParams object doesn't exist.
else :

timeout = AdminConfig.showAttribute(

self.tuningParms,
'invalidationTimeout'
)
messageText = "'

frame.add(JLabel('Timeout:'))
self.text = frame.add(
JTextField(
3,
text = timeout,
actionPerformed = self.update
)
)
frame.add(JLabel('minutes'))
self.message = frame.add(JLabel(messageText))

frame.setVisible(1)

Listing 19-18 contains the update(. . .) method from the same ConsoleTimeout class, which is almost identical to
the previous code. It is important to remember that this method is an event handler.

def update(self, event) :
value = self.text.getText()

if

not re.search(re.compile('~\d+$'), value) :
text = 'Invalid numeric value: "%s"' % value

else :

if not self.tuningParms :
try :
AdminConfig.create(
'TuningParams',
self.sesMgnmt,
[['invalidationTimeout', value]]

CHAPTER 19 " INTERNAL FRAMES

89| AdminConfig.save()

90| text = 'The TuningParams object has ' + \

91| 'been created successfully’

92| except :

93| text = 'A problem was encountered while ' + \
94| 'creating the TuningParams object.'
95| else :

96 | try :

97| AdminConfig.modify(

98| self.tuningParms,

99| [['invalidationTimeout', value]]

100]|)

101 | AdminConfig.save()

102| text = 'Update successful.'

103 | except :

104 | text = 'A problem was encountered while ' + \
105 | 'updating the TuningParams object.’
106 | self.message.setText(text)

It's important to realize that this version of the script does a very bad thing. What is that, you ask? Well, take a look
at the update(...) method again. It is the event handler code that verifies the user-specified input and attempts to
modify the invalidation timeout attribute for the administration console application.

The big mistake is the fact that the event handler routine contains calls to wsadmin scripting object (AdminConfig)
methods. These kinds of calls should always be done on a separate (SwinghWorker) thread. Why? It's because they are
likely to require a non-trivial amount of time (the first call took about five seconds) to complete the requested action
and return. In the meantime, the application can’t respond to any user events. That’s why it is not a good way to
implement GUI scripts.

What does this look like when you run the script? Figure 19-8 shows a sample image created by this script.

Go ahead and test it out yourself. See what happens when you enter a value and press Enter. Is there any kind of
indication on the GUI that something is happening? Nope, at least not until the calls to the AdninConfig objects are
complete and control returns to the application. Is this how you want your GUI applications to work and interact with
your users? Absolutely not; this kind of behavior is unacceptable.

Timeout: 30] minutes

Figure 19-8. Output from consoleTimeout_02.py

Adding SwingWorker Instance to the Mix

Listing 19-19 shows how easy it is to take the statements from the update(. . .) method shown in consoleTimeout 02.py
(that’s Listing 19-18) and put them into an separate SwingWorker class. It also shows how simple the event handler
update(...) method then becomes (see lines 122 and 122).

339

CHAPTER 19 INTERNAL FRAMES

Listing 19-19. The WSAStask Class from consoleTimeout_03.py

10| class WSAStask(SwingWorker) :
11| def _init (self, app) :

12| self.app = app # application reference
13| self.messageText = "'

14| SwingWorker. init (self)

15| def doInBackground(self) :

16| problem = 'A problem was encountered while %s ' + \

17| "the TuningParams object.’

18| messageText = self.messageText

19| self.app.textField.setEnabled(0)

20| self.app.message.setText(

21| "<html>working...' + (' ' * 20)

22|

23| value = self.app.textField.getText() # JTextField value
24| if not re.search(re.compile('~\d+$'), value) :

25| messageText = 'Invalid numeric value: "%s"' % value
26| else :

27| if not self.app.tuningParms :

28| try :

29| AdminConfig.create(

30| 'TuningParams',

31| self.app.sesMgmt,

32| [['invalidationTimeout', value]]

33|)

34| AdminConfig.save()

35| messageText = 'The TuningParams object' + \
36| 'has been created successfully'
37| except :

38| messageText = problem % 'creating'

39| else :

40| try :

41| AdminConfig.modify(

42| self.app.tuningParms,

43| [['invalidationTimeout', value]]

44|

45| AdminConfig.save()

46| messageText = 'Update complete.'

47| except :

48| messageText = problem % 'updating'

49| def done(self) :

50| self.app.textField.setEnabled(1)

51| self.app.message.setText(self.messageText)

52|class consoleTimeout 03(java.lang.Runnable) :

| cee
121| def update(self, event) :
122] WSAStask(self).execute()

340

CHAPTER 19 " INTERNAL FRAMES

One thing that you should notice when this SwingWorker thread is performing an update is the fact that
application text input field is disabled. This kind of attention to detail adds significantly to the user experience and
should be considered essential when you are developing graphical applications.

Additionally, a status message is displayed to show that the thread is executing. It is only when this separate
processing is complete that the text input field is enabled and an updated status message is displayed.

Adding Menu Items

As you've previously seen, you can add significant usability to your applications with simple menu items. Figure 19-9
shows the impact of making some small changes to this script.

L\ Flie| Help]

Exit |ut!§0 | mi Tin| About | minutes
Notice

Figure 19-9. Images from consoleTimeout_04.py

Listing 19-20 shows the new and modified code from the application class in this updated script. The menuBar ()
method creates and populates the application menu bar. Three new methods were added to respond to each of the
new menu actions. And that is pretty much it. All in all, this is a good return on investment for about 50 lines of code.
I think that you'll agree that the additional user value is significant.

In case you're wondering, the about (. ..)and notice(...) method adds some nice functionality. The former
serves the same kind of role normally performed by a usage message that a non-graphical application uses to tell
users how the program should be used, and the latter is useful as a valuable disclaimer message.

Listing 19-20. New and Modified Code from consoleTimeout_04.py

87|class consoleTimeout_04(java.lang.Runnable) :

110 def run(self) :
| cee

119| frame.setIMenuBar(self.menuBar())
| cee

178| frame.setVisible(1)

179 | def Exit(self, event) :

180 sys.exit(0)

181 def about(self, event) :

182| text = _doc_ .replace('<', '<'

183 |).replace('>', '>’

184|).replace(' ', ' ’

185 |).replace('\n', '
')

341

CHAPTER 19 INTERNAL FRAMES

186 | JOptionPane.showMessageDialog(
187| self.frame,

188 | JLabel(

189 | "<html>' + text,

190 font = monoFont

191|)5

192 'About’,

193] JOptionPane.PLAIN MESSAGE
194|)

195 def notice(self, event) :

196 | JOptionPane.showMessageDialog(
197| self.frame,

198 disclaimer,

199 | 'Notice',

200 JOptionPane.WARNING MESSAGE
201)

202 | def update(self, event) :

203 WSAStask(self).execute()

Changing from JFrame to JInternalFrame

For the next iteration, you'll see how to convert the script to use internal frames. Begin by taking a look at the revised
consoleTimeout class from the revised consoleTimeout 05.py script. Listing 19-21 shows the important methods
from this class. As you saw earlier, internal frames need to be added to an instance of the JDesktopPane class.
Overall, it shouldn’t be terribly new to you. You may, however, wonder about the call to the setSelected(...)
method on line 186.

This isn’t an error. Table 19-3 shows that the JDesktopPane class has a similar method called
setSelectedFrame(...). This is a method from the JInternalFrame class, and the parameter is a boolean value
indicating that the specified object instance is being selected (in which case, a value that is recognized as true should
be specified). What happens if you comment out this line in the script and execute it?

The internal frame doesn’t obtain the focus, which means that the current timeout value isn’t obtained and the
input field remains empty. At least until you put focus on the internal frame, such as by clicking somewhere on it.
Then you see that the input field is populated with the current timeout value.

Listing 19-21. Revised consoleTimeout Class from consoleTimeout_05.py, Part 1

167|class consoleTimeout 05(java.lang.Runnable) :
168 | def run(self) :

169 | self.frame = frame = JFrame(

170 'consoleTimeout 05",

171| size = (428, 474),

172| locationRelativeTo = None,

173] defaultCloseOperation = JFrame.EXIT_ON_CLOSE
174|)

175 frame.setIMenuBar(self.MenuBar())

176 | desktop = JDesktopPane()

177| if globals().has_key('AdminConfig') :

178| self.timeout = self.initialTimeout()

179 self.inner = TextField(self) # JTextField only
180 desktop.add(self.inner)

342

181]
182
183
184
185
186 |

CHAPTER 19 " INTERNAL FRAMES

else :
self.inner = self.noWSAS() # WebSphere not found
desktop.add(self.inner)

frame.add(desktop)

frame.setVisible(1)

self.inner.setSelected(1)

The initialTimeout () method (see line 178) isn’t shown because it contains the same steps that you've seen

before to obtain the initial value, if one exists. The most important change in this script is shown in Listing 19-22. It
contains the class used by all of the subsequent internal frame instances for this application. The first time you look at
it, however, you may wonder why it is descended from InternalFramelListener and not from InternalFrameAdapter.
That way, you wouldn’t need to have empty methods (ones like internalFrameClosed(...) that consist of a single
pass statement).

Listing 19-22. InternalFrame Class from consoleTimeout_05.py, Part1

90|class InternalFrame(JInternalFrame, InternalFramelistener) :

91|

92|

93|

94|

95|

96|

97|

98|

99|
100 |
101 |
102 |
103
104 |
105 |
106 |
107 |
108
109
110
111
112|
113
114|
115
116
117
118
119|
120]
121
122
123
124|

def

def

def

def

def

def

def

__init_ (self,
title,

outer,

size,

location = None,
layout = None

if location == None :
location = Point(0, 0)
if layout == None :
layout = FlowlLayout()
JInternalFrame. init (

self,
title,
0, # resizeable = false
0, # closable = false

size = size,
internalFramelistener = self,
layout = layout

)
self.setlocation(location) # keyword parm doesn't exist
self.outer = outer # application object

internalFrameActivated(self, e) :
self.outer.inner = e.getInternalFrame()
internalFrameClosed(self, e) :

pass

internalFrameClosing(self, e) :

pass

internalFrameDeactivated(self, e) :
self.outer.inner.message.setText("')
internalFrameDeiconified(self, e) :
pass

internalFrameIconified(self, e) :
pass

343

CHAPTER 19 INTERNAL FRAMES

125] def internalFrameOpened(self, e) :

126| pass

127| def getValue(self) :

128 print 'InternalFrame.getValue() - not yet implemented'
129 return None

130| def setValue(self, value) :

131| print 'InternalFrame.setValue() - not yet implemented'
132 def working(self) :

133 print 'InternalFrame.working() - not yet implemented’
134] def finished(self) :

135 print 'InternalFrame.finished() - not yet implemented'

Listing 19-23 shows what happens when you try to base an InternalFrame class on the JInternalFrame and the
InternalFrameAdapter classes. Jython complains about this issue. Why doesn’t it complain about basing a class on
JInternalFrame and the InternalFramelListener classes? This is allowed because the InternalFramelistener is
actually an interface, not a class that can be instantiated.

Listing 19-23. Multiple Inheritance Issue

wsadmin>from javax.swing import JInternalFrame
wsadmin>from javax.swing.event import InternalFrameAdapter
wsadmin>

wsadmin>class InternalFrame(JInternalFrame, InternalFrameAdapter) :

wsadmin> def _init (self, title) :

wsadmin> JInternalFrame.__init_ (self, title)

wsadmin>

WASX7015E: Exception running command: ""; exception information:
com.ibm.bsf.BSFException: exception from Jython:

Traceback (innermost last):

File "<input>", line 1, in ?

TypeError: no multiple inheritance for Java classes:

javax.swing.event.InternalFrameAdapter and javax.swing.JInternalFrame

wsadmin>

Listing 19-24 shows the TextField class from the consoleTimeout_05.py script. In it, you can see that the
constructor (in lines 137-154) is responsible for populating the internal frame and providing the input components.
Additionally, it includes instruction for the methods that are needed by this object. It is important to note that the
internalFrameActivated(...) method, which is invoked when the object instance is activated, is responsible for
updating the application attribute value that identifies the active internal frame, obtains the current timeout value from
the application, and calls the object setValue(...) method to initialize the timeout value for this object instance.

Listing 19-24. TextField Class from consoleTimeout_05.py

136|class TextField(InternalFrame) :
137| def _init (self, outer) :

138 InternalFrame._ init_ (

139| self,

140| 'TextField',

141 outer,

142 | size = (180, 85),

143 location = Point(5, 5)
144|)

344

CHAPTER 19 " INTERNAL FRAMES

145 self.add(JLabel('Timeout (minutes):'))
146 | self.text = self.add(

147 | JTextField(

148 3,

149 | actionPerformed = outer.update
150)

151|)

152| self.message = self.add(JLabel())
153 self.setVisible(1)

154| self.text.requestFocusInWindow()

155| def internalFrameActivated(self, e) :
156 | self.outer.inner = e.getInternalFrame()
157| self.setValue(self.outer.timeout)
158 def getValue(self) :

159 | return self.text.getText()

160 def setValue(self, value) :

161 self.value = value

162| self.text.setText(value)

163 def working(self) :

164 | self.text.setEnabled(0)

165 def finished(self) :

166 | self.text.setEnabled(1)

All this is possible because of the framework provided by the InternalFrame class on which it is based. There are
some important things to note about this class and how it fits into the application. One of these is the way in which
this constructor begins by calling its base class constructor to initialize itself. One of the important steps performed by
the base class constructor (InternalFrame. init_) call, shown on lines 138-144, is the fact that it saves a reference
to the application frame in an instance attribute called self.outer (see lines 90-110 in Listing 19-22).

What purpose does this application instance variable serve? It allows each inner frame to easily obtain access to
this reference so that the event handlers can manipulate the appropriate fields. How does it do this? Take a look at the
internalFrameActivated(...) method in lines 155-157. When an internal frame is activated, the application variable
called self.outer is used to update the self. inner application variable, which identifies the active inner frame. By
defining and updating this variable, the utility routines can easily access the “current” or “active” internal frame values
with simple statements. All you have to do is ensure that every internal frame class implements these values the same way.

For example, this reference (self.inner) allows the object instance to specify the application update(...)
method as the ActionListener event handler for the text field on this inner frame. This application update(...)
method, as shown in Listing 19-25, is extremely simple. As an event handler routine, it should be simple.

Listing 19-25. The update(...) Method from consoleTimeout 05.py

272 def update(self, event) :
273] self.timeout = self.inner.getValue()
274| WSAStask(self).execute()

There are, however, some subtle changes needed in the WSAStask class in this script that is instantiated to
create a separate thread to modify the timeout value. Listing 19-26 shows this modified WSAStask class from the
consoleTimeout_05.py script. The important changes are all related to the fact that this class needs to work with the
active internal frame that initiated the creation of the task.

Take a look at line 51 where a local variable, frame, is used to hold a reference to the active inner frame. This
reference is then used to invoke the appropriate working() method (line 52), the appropriate getValue() method
(line 53), the appropriate message. setText(...) method (lines 54-56 and 89), and the appropriate finished()
method (line 88).

345

CHAPTER 19 INTERNAL FRAMES

The rest of this chapter shows how easily you can create other classes to take advantage of this design
simplification.
Listing 19-26. WSAStask Class from consoleTimeout_05.py

46|class WSAStask(SwingWorker) :
47| def _init (self, app) :

48| self.app = app # application reference
49| self.messageText = "'

50| SwingWorker. init (self)

51| def doInBackground(self) :

52| messageText = self.messageText

53| frame = self.app.inner # Active Inner Frame
54 frame.working()

55| value = frame.getValue()

56| frame.message.setText(

57| "<html>working...' + (' ' * 20)

58|)

59| if not re.search(re.compile('~\d+$'), value) :

60| messageText = 'Invalid numeric value: "%s"' % value
61| else :

62| TPobj = 'TuningParams'

63| success = 'The %s object was created successfully.'
64| problem = 'A problem was encountered %s the %s object.'
65| if not self.app.tuningParms :

66| try :

67| self.tuningParms = AdminConfig.create(

68| TPobj,

69| self.app.sesMgmt,

70| [['invalidationTimeout', value]]

71|)

72| AdminConfig.save()

73| messageText = success % TPobj

74| except :

75] messageText = problem % ('creating', TPobj)
76| else :

77| try :

78| AdminConfig.modify(

79| self.app.tuningParms,

80| [['invalidationTimeout', value]]

81|)

82| AdminConfig.save()

83| messageText = 'Update complete.'

84| except :

85| messageText = problem % ('updating', TPobj)
86| def done(self) :

87| frame = self.app.inner

88| frame.finished()

89| frame.message.setText(self.messageText)

346

CHAPTER 19 " INTERNAL FRAMES

What does this mean as far as the application’s appearance is concerned? Figure 19-10 shows part of the
application output created by this script. The remainder of this chapter deals with iterations of this script that will fill
in the blanks as far as this application output is concerned.

File Help

5] Textrield

Timeout (minutes): .30]

Figure 19-10. Output from consoleTimeout 05.py

Adding a Second Internal Frame Class

Until now, it really looks like a lot of code is required to create a fairly simple application with one internal frame. Was
it worth it? In order to answer that question, take a look at what is required to add a second, different, internal frame.
Listing 19-27 shows is the code required to define another class—the TextandButton class, which is based on the
TextField class shown in Listing 19-24. It is almost trivial due to the fact that all of the class methods, other than the
constructor, are in fact identical to those defined in the base TextField class. Isn’t inheritance wonderful? You bet it is!

Listing 19-27. The TextandButton Class from consoleTimeout_06.py

168|class TextandButton(TextField) :
169 | def _init (self, outer) :

170 InternalFrame.__ init_ (

171| self,

172] 'TextField and Button',

173] outer,

174| size = (180, 125),

175] location = Point(5, 95)

176|

177| self.add(JLabel('Timeout: (minutes)'))
178 self.text = self.add(

179 JTextField(

180 3,

181| actionPerformed = outer.update
182|)

183

184| self.button = self.add(

185| JButton(

186 | 'Update’,

187 actionPerformed = outer.update
188 |)

189)

347

CHAPTER 19 INTERNAL FRAMES

190 self.message = self.add(JLabel())
191 | self.setVisible(1)
192 self.text.requestFocusInWindow()

193|class consoleTimeout 06(java.lang.Runnable) :
194 | def run(self) :

[...
207 | desktop.add(TextandButton(self))

This listing also shows, in line 207, the code needed to instantiate an object using this class and add it to the
application desktop. Figure 19-11 shows the initial output of this iteration of the script. It’s important to notice that
you now have two internal frames, only one of which is active.

File Help

[Textrield :

Timeout (minutes): [30

[TextField and Button
Timeout: (minutes) |

I_ Update |

Figure 19-11. Output from consoleTimeout 06.py

Adding a Third Internal Frame Class

Let’s see what it takes to add a very different internal frame classes to this application. Listings 19-28, 19-29, and 19-30
show another class based on the TextField class that adds a group of RadioButtons for commonly used timeout
values. In addition, an “other” RadioButton is defined that allows the users to specify an uncommon value using an
associated text field.

Note, however, that this class demonstrates a solution to an issue that may not be obvious without explanation. In
Listing 19-28, line 228, you can see that the self.setting variable is defined and initialized in the class constructor.
As the comment indicates, this value is used in the stateChange(. . .) method (found in Listing 19-30) and the
setValue(...) method (shown in Listing 19-29). The purpose of this variable is to deal with a possible race condition
that might occur. It is possible that the stateChange(. . .) method will be invoked before the setValue(...) method
has completed. If this occurs, the state of the text field may be indeterminate, so the stateChange(. . .) method exits
without making any changes if the value of self.setting is non-zero.

This is the kind of thing that can occur in event-driven applications. So you should be aware of this possibility
and be on the lookout for it. You may want to see what happens to the script without this and other issues related to
interrupt-driven applications.

This is a good time for me to bring up an “oops” moment. At this point, while testing the current script, I found a
significant flaw. You can see what happens with the previous version of the script—consoleTimeout_06.py. I haven’t
gone back to correct either of the previous iterations, just to give you a chance to see the flaw and compare the current
version of the script to see how it handles things better.

348

CHAPTER 19 " INTERNAL FRAMES

What's the error? It's most obvious in the previous script because of the presence of multiple inner frames. Enter
an invalid numeric value in the text input field and press Enter. A message is displayed indicating that the value is
bad. So far, so good. Now put focus on the other inner frame and see what happens. The bad value is displayed as the
current value in the selected inner frame. Is this that you want to happen? I don’t think so. This is exactly the kind of
thing that you need to consider when using inner frames that can gain and lose focus at unexpected times.

So, how do you fix it? Well, you have to make some changes to a few of the existing methods. The biggest change
needs to be made in the setValue(...) methods so that only valid values are saved. Note that the setValue(...)
method only exists in the TextField class. The TextAndButton class reuses the base method, thereby limiting and
simplifying the necessary changes.

It is important to note, however, that the new RadioButtons class has to implement this method because of the
different data components in this new inner frame. The presence of the “other” radio button associated with a text
input field means that you also have to change the update(. . .) method to properly deal with invalid input values.

Take a look at the resulting changes, focusing first on the new RadioButtons class. Listing 19-28 shows the
constructors (__init_ ())and getValue(...) methods. Notice how these are more complicated because they use
RadioButtons and a text input field to display the current value.

One thing that is all too easy to overlook with Jython Swing code is how easily event handler methods can be
assigned. Take another look at the class constructor, specifically line 210. This line uses a keyword argument to
identify the ChangeListener event handler to each RadioButton object as the stateChange(. . .) method. The code
for this method is shown in Listing 19-30.

Listing 19-28. RadioButtons Class from consoleTimeout_07.py, Part1

205|class RadioButtons(TextField) :
206 | def _init (self, outer) :

207 InternalFrame. init (
|
213)
214 | self.add(JLabel('Timeout (minutes):'))
215] buttons = {}
216 | self.bg = ButtonGroup()
217 for name in '0,15,30,60,0ther'.split(',") :
218 button = JRadioButton(
219 name,
220 itemStateChanged = self.stateChange
221)
222 self.bg.add(button)
223 self.add(button)
224 buttons[name] = button
225] self.r00 = buttons['0']
226 self.r15 = buttons['15']
227 self.r30 = buttons['30"']
228 self.r60 = buttons['60"']
229 self.rot = buttons['Other']
230 self.text = self.add(
231 JTextField(
232| "
233 3,
234 actionPerformed = outer.update
235])
236|)

349

CHAPTER 19 INTERNAL FRAMES

237 self.message = self.add(JLabel())

238 self.setting = 0 # see stateChange() and setValue()
239 self.setVisible(1)

240 def getValue(self) :

241 | if self.r00.isSelected() :

242| result = '0’

243 elif self.ri5.isSelected() :

244 result = '15'

245 elif self.r30.isSelected() :

246 | result = '30'

247 elif self.r60.isSelected() :

248 result = '60°

249 elif self.rot.isSelected() :

250] result = self.text.getText()

251 try :

252 int(result)

253 except :

254 | messageText = badNumber % result
255] self.message.setText(messageText)
256 else :

257 result = None

258 return result

Listing 19-29 shows the setValue(...) method, which is also a bit more complex because it deals with multiple
components to set the console timeout value.

Listing 19-29. setValue(...) Method in the RadioButtons Class from consoleTimeout_07.py
259 def setValue(self, value) :

260 | self.setting = 1

261 | if value == '0' :

262 self.r00.setSelected(1)

263 | self.r00.requestFocusInWindow()
264 | self.text.setText('')

265 self.text.setEnabled(0)

266 | elif value == '15' :

267 | self.r15.setSelected(1)

268 self.r15.requestFocusInWindow()
269 self.text.setText('')

270 self.text.setEnabled(0)

271 elif value == '30'

272 self.r30.setSelected(1)

273| self.r30.requestFocusInWindow()
274 | self.text.setText('')

275 | self.text.setEnabled(0)

276 elif value == '60' :

277 self.r60.setSelected(1)

278 self.r60.requestFocusInWindow()
279 self.text.setText('')

280 self.text.setEnabled(0)

350

CHAPTER 19 " INTERNAL FRAMES

281 else :

282 self.rot.setSelected(1)

283 self.text.setText(value)

284 self.text.setEnabled(1)

285 self.text.requestFocusInWindow()
286 | self.value = value

287 self.setting = 0

You may note that this setValue(...) method doesn’t bother to include code to check for an invalid value in the
text field. How can you get away with this? Isn’t this an oversight? Not really, because the update(...) method already
includes that kind of code, so you're covered.

Listing 19-30 shows the rest of the methods from this class. Note how easily you can enable and disable all of the
RadioButton components using a simple loop that iterates over the list of RadioButton components.

Note also line 312, where the RadioButtons inner frame is instantiated and added to the desktop frame.

Listing 19-30. Utility Methods for the RadioButtons Class from consoleTimeout_07.py
288 def working(self) :

289 | for obj in [

290 | self.ro0, self.r15, self.r30,

291 self.r60, self.rot, self.text

292] :

293 obj.setEnabled(0)

294 | def finished(self) :

295| for obj in [

296 | self.ro0, self.r15, self.r30,

297| self.r60, self.rot

298|]:

299 obj.setEnabled(1)

300 self.text.setEnabled(self.rot.isSelected())
301 | def stateChange(self, event) :

302 item = event.getItem()

303 if not self.setting :

304| if item.getText() == 'Other' :
305 self.text.setEnabled(item.isSelected())
306 | else :

307| self.text.setEnabled(0)

308 | self.text.setText('')

309 | value = self.getValue()

310 if value :

311 self.outer.update(event)

312|class consoleTimeout 07(java.lang.Runnable) :
313 def run(self) :

| .
327 desktop.add(RadioButtons(self))

351

CHAPTER 19 ' INTERNAL FRAMES

I think that the functionality added by just over 100 lines of code in this class is pretty impressive. I hope that
you agree. The most important point about this is that defining the way in which the classes interact and use the
framework makes each additional class significantly easier to implement.

What does this look like as far as the application output is concerned? Well, take a look at Figure 19-12, which
should help you understand the component configuration.

File Help

[Textrield

Timeout (minutes): (30 |

[] TextField and Button

Timeout: (minutes) [|

B RadioButtons

Timeout (minutes): 0 15 30 60 O Other

Figure 19-12. Output from consoleTimeout 07.py

Filling in the Blanks

Rather than continue showing every simple InternalFrame class definition, I'll cut to the chase'? and simply
show the end result of adding a few more internal frame descendant classes. The complete source is found in the
consoleTimeout_08.py script file. Figure 19-13 shows the initial appearance of the final result of the application.

12See http://en.wikipedia.org/wiki/Cut_to_the chase.

352

http://en.wikipedia.org/wiki/Cut_to_the_chase

[File Help

] Textrield

[5] static ComboBox

Timeout (minutes): 30 | Timeout: (minutes)

{57 Textrield and Button

5] pbynamic ComboBox

Timeout: (minutes)

Timeout: (minutes)

] RadioButtons

Timeout (minutes):) 0

Q15 O30

) siider 7

Timeout: (minutes) | 4 | Il]

Figure 19-13. Output from consoleTimeout 08.py

CHAPTER 19

INTERNAL FRAMES

Remember that this is merely a sample use of internal frames. Your applications are much more likely to have a
variety of internal frame types, depending on your requirement. This sample is simply provided to demonstrate some

of the ways in which an application that uses internal frames can deal with issues.

Summary

Internal frames can make your applications dynamic and interesting. There is a tradeoff in that events may contribute
to increased complexity, especially when the frames need to share data in some way. This should have been quite
obvious in the chapter example, even though only one data value needed to be shared between the inner frames.

You get to decide if the increased complexity is worth the investment of time and effort. In the next chapter, you'll use
the same iterative approach to build an application that interacts with the WebSphere scripting object to create an
application that can be used to more easily display the help text for the objects and their methods.

353

CHAPTER 20

Building a Graphical Help Applicatioy

In Chapter 15, you learned how to retrieve information from a web page and use Swing objects to find and display only
the details in which you were interested. Now you're going to use the same kind of techniques to build an application
that allows you to more easily find and manipulate the Help text that is available for the wsadmin scripting objects.

In Chapter 7 of the book titled WebSphere Application Server Administration Using Jython,"? you learned about
the wsadmin scripting objects. It describes how to use these objects and explained how to use their help(...)
methods to obtain information about the methods that each object provides. Unfortunately, the interactive sessions
and sample scripts provided in that book aren’t as useful as they could be if an interactive graphical application were
available. In this chapter, you'll remedy that situation.

Showing the Help Text

To begin, consider what you need to display the output returned by a call to the Help.help() method. You'll need to
keep these issues in mind:

¢ Youshould display the text in a scrollable pane
e Ifyou want the text displayed correctly, don’t use a proportional font

Only a tiny amount of effort is required to produce the first iteration, the main class of which is shown in
Listing 20-1. One of the things that I hadn’t remembered was that the Help text contains a number of tab characters
(see "\t") to align the text. To simplify things, the text of the call to the help() method is immediately passed to the
string’s expandtabs () method, which is provided by Jython (see line 19).

Listing 20-1. WSAShelp 01.py Help.help() in a Scrollable Pane

9|class WSAShelp(java.lang.Runnable) :
10| def run(self) :

11| frame = JFrame(

12| 'WSAShelp',

13| locationRelativeTo = None,

14| defaultCloseOperation = JFrame.EXIT ON_CLOSE
15])

'See http://www.ibmpressbooks.com/store/websphere-application-server-administration-using-jython-9780137009527.
’Hereafter referred to as “the WAuJ book” for simplicity’s sake.

355

http://www.ibmpressbooks.com/store/websphere-application-server-administration-using-jython-9780137009527

CHAPTER 20 * BUILDING A GRAPHICAL HELP APPLICATION

16| frame.add(

17| JScrollPane(

18] JTextArea(

19| Help.help().expandtabs(),
20| 20,

21| 80,

22| font = Font('Courier' , Font.PLAIN, 12)
23|)

24])

25|

26| frame.pack()

27| size = frame.getSize()

28| loc = frame.getLocation()

29| loc.x -= (size.width »>> 1)

30| loc.y -= (size.height >> 1)

31| frame.setlocation(loc)

32| frame.setVisible(1)

The other statements that may cause you some pause are found in lines 27-31. When the frame in constructed
(lines 11-15), the locationRelativeTo keyword argument places the upper-left corner of the frame in the center of
the screen. Lines 27-31 adjust the frame to the left by half the frame width (line 29) and up by half the frame height
(line 30) to center the frame in the screen. Figure 20-1 shows the simple result of the WSAShelp_01.py script.

AASXT028I: The Help object has two purposes:

First, provide general help information for the cbjects
supplied by wsadmin for scripting: Help, AdminApp, AdminConfig,
and AdminControl.

Second, provide a means to obtain interface information about
MBeans running in the system. For this purpose, a variety of
commands are available to get information about the operations,
attributes, and other interface information about particular
MBeans.

The following commands are supported by Help; more detailed
information about each of these commands is available by using the
"help” command of Help and supplying the name of the command

as an argument.

attributes given an MBean, returns help for attributes
operations given an MBean, returns help for operations

Figure 20-1. WSAShelp 01.py sample output

356

CHAPTER 20 BUILDING A GRAPHICAL HELP APPLICATION

Using a Tabbed Pane

This next iteration uses tabbed panes to display the help text of the five wsadmin scripting objects (Help, AdminApp,

AdminConfig, AdminControl, and AdminTask). Listing 20-2 demonstrates how a simple list (lines 28-34) can be used to

easily identify the name of the tab and the associated scripting object about which help should be displayed.

Listing 20-2. Modifications to the WSAShelp Class in WSAShelp 02.py

|
28|
29|
30|
31|
32|
33|
34|
35|
36|
37|
38|
39|
40|
41|
42|
43|
44|
45|
46|
47|
48|

|

11|class WSAShelp(java.lang.Runnable) :

objs = [
('Help' , Help),
(' '"AdminApp’ , AdminApp),
(' 'AdminConfig' , AdminConfig),
(' 'AdminControl', AdminControl),
('AdminTask' , AdminTask)

]
tabs = JTabbedPane()
for name, obj in objs :
tabs.addTab(
name,
JScrollPane(
JTextArea(
obj.help().expandtabs(),
20,
90,
font = Font('Courier' , Font.PLAIN, 12)

)

)
frame.add(tabs)

Figure 20-2 shows sample output of the tabs produced by this script. Using this script helps you not only verify

the way that it looks and responds, but it’s also a good place to stop and think about what you can and should do next.

357

CHAPTER 20 BUILDING A GRAPHICAL HELP APPLICATION

("Help | AdminApp | AdminConfig | AdminControl | AdminTask
WASXE8001I: The AdminTask object enables the execution of available
admin commands. AdminTask commands operate in two modes:
the default mode is one which AdminTask communicates with the WebSphere
server to accomplish its task. A local mode is also available, in which
no server communication takes place. The local mode of operation is
invoked by br ng up the scripting client using the command line
"-conntype NONE™ op n or setting the
"com. ibm.ws.scripti connectiontype=NONE" property in

wsadmin.properties file.

The number of admin commands wvaries and depends on your WebSphere
install. Use the following help commands to obtain a list of supported
commands and their parameters:

help -commands list all the admin commands

help -commands <pattern> list admin commands matching with wildcard
"pattern”

help -commandGroups list all the admin command groups

help -commandGroups <pattern> list admin command groups matching with
wildcard "pattern™

Figure 20-2. WSAShelp_02.py sample output

What can you learn from this script? The first thing is that the text area should be read-only, which is a trivial
change. The next is that I wondered how difficult it would be to replace the textArea with a split pane. The top portion
could display the general help for the scripting object and the bottom portion could scroll the method help. You'll see
what that looks like before you have to decide if you want to continue down that path or use a different approach.

Adding Split Panes

In order to split the scripting object help text, you need to determine where the general description ends and the list
of methods begins. To do that, you will use a regular expression (RegExp). This topic is discussed in the WAuJ book
in Chapter 7. For all of the scripting objects (except the AdninTask object), you can use a relatively simple RegExp to
determine where the method names start in the help text. The AdminTask help is a different beast entirely, so you have
to deal with that in a different way. Let’s start by dealing with the four scripting objects for which a relatively simple
regular expression pattern works.

Listing 20-3 shows a simple script that demonstrates using a RegExp to determine the length of the description
section for the majority of scripting objects.

Listing 20-3. The desc.py Script

1|import re
2|pat = re.compile(r'~(\w+)(?:\s+.*)$', re.MULTILINE)

3]objs = [

4] ("Help' , Help)s

5] (' "AdminApp' » AdminApp)

6] ('AdminConfig' , AdminConfig),

7] ('AdminControl', AdminControl)

8]

9|print ' Object | #Lines | 1st method'
10|print '-------om---- Hmmmmmm R '

358

CHAPTER 20 BUILDING A GRAPHICAL HELP APPLICATION

11|for name, obj in objs :

12|
13|
14|
15|
16|

text = obj.help()

mo = re.search(pat, text)

desc = text[:mo.start(1)].strip().splitlines()
method = text[mo.start(1) : mo.end(1)]

print '%-12s | %6d | %s' % (name, len(desc), method)

Figure 20-3 shows the output of the desc. py script in Listing 20-3. The WSAShelp_03.py script incorporates this
technique to process these scripting objects so that their tabs will contain a split pane.

Object | #Lines | 1st method
_____________ +_-_-_—-_+_—_-_—-_-_—__—_—_-_—
Help | 16 | attributes
AdminApp | 15 | deleteUserAndGroupEntries
AdminConfig | 19 | attributes
AdminControl | 21 | completeObjectName

Figure 20-3. Output generated by desc.py

Figure 20-4 shows the next version of this WSAShelp script, which uses this technique. In this version of the
script, you can see that all of the tabs, except for the AdminTask tab, show a vertical split pane. The scripting object
description is above the divider, and the information about the scripting object methods is below. The divider even
has one touch expand icons (the little triangles) that can be used to expand or collapse the corresponding top or
bottom pane, all with a single click. This is starting to look pretty neat. The complete WSAShelp 03.py script can be
found in the code\Chap_20 directory.

[Help | AdminApp ["AdminConfig | AdminControl | AdminTask

WASX7053I: The AdminConfig object communicates with the

Config Service in a WebSphere server to manipulate configuration data
for a WebSphere installation. AdminConfig has commands to list, create,
remove, display, and modify configuration data, as well as commands to
display information about configuration data types.

Most of the commands supported by AdminConfig operate in two modes:
the default mode is one in which AdminConfig communicates with the
WebSphere server to accomplish its tasks. A local mode is also

possible, in which no server communication takes place. The local

-~

attributces Show the attributes for a given type
checkin Check a file into the the configuration repository.
convertIoCluster

createClusterMember

converts a server to be the first member of a

new ServerCluster

Creates a configuration object, given a type, a parent, and

a list of acttributes, and opticnally an attribute name for the
new object

Creates a new server that is a member of an

Figure 20-4. Image from WSAShelp 03.py

359

CHAPTER 20 BUILDING A GRAPHICAL HELP APPLICATION

Text Highlighting

Looking at the output of WSAShelp_03.py made me wonder how difficult it would be to add text highlighting to the
application. You could use this to locate specific text on a page. Before you change the WSAShelp script, let’s see what is
required to do this.

First, you need to realize that the JTextArea class doesn’t provide a way to do this kind of thing. It, along with
JTextField and JPasswordField, are subclasses of the abstract JTextComponent class,® which allows only a single
kind of attribute for the entire component. This means that all of the data in the component must have the same font
and color.

What you want to do is use a JTextComponent that allows multiple attributes for the contents. This means that
you need to use JEditorPane or JTextPane* to hold and display the application’s text.

To decide if you want to add this capability to your WSAShelp script, start simply by creating a simple script that
allows you to improve your understanding of what might be required to use this capability well.

Figure 20-5 shows the output of Highlight.py; its complete source is found in the code\Chap_20 directory. The
image shows the text of the Help.wsadmin() method, displayed in a read-only JTextPane that is within a Scrol1Pane.
Beneath the text pane is a label and an input field that can be used to enter the highlighted text. The scroll pane above
the input field shows an image after the word “the” has been entered,® and the scroll pane was scrolled down to
display a number of highlighted occurrences of the word.

the default argument is "SOAP"

a conntype of "NONE" means that no server connection is made

and certain operations will be performed in local mode;
"host_name™ is the host used for the SOAP or RMI connection:

the default is the local host;

port_number” is the port used for the SOAP or RMI connection;

"userid" is the userid required when the server is running in

secure mode;

"password” 1is the password required when the server is running in

secure mode;

"script parameters” is anything else on the command line. These
are passed to the script in the argv variable; the number of
parameters is available in the argc variable.

jobid_string™ is a jobID string to be used to audit each invocation
of wsadmin;

"trace_file" is the log file name and location where wsadmin trace

output is directed;

Figure 20-5. Output of a simple script showing text highlighting

Listing 20-4 shows part of the Highlight class from the Highlight.py script used to create the images shown in
Figure 20-5. The first part of the Highlight class (lines 16-26) contains the center(. ..) method, which is called in
line 51, to position the frame in the center of the screen.

*See http://docs.oracle.com/javase/8/docs/api/javax/swing/text/ITextComponent.html.
4See http://docs.oracle.com/javase/8/docs/api/javax/swing/ITextPane.html.
*Remember that the JTextField ActionListener is called when the user presses Enter.

360

http://docs.oracle.com/javase/8/docs/api/javax/swing/text/JTextComponent.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/JTextPane.html

CHAPTER 20 BUILDING A GRAPHICAL HELP APPLICATION

Lines 32-34 instantiate an instance of the static DefaultHighlightPainter class.® This allows the application to
specify the color to be used to highlight portions of the JTextPane.

Lines 35-40 instantiate the JTextPane, make it read-only, define the preferred size, initialize the text, set the font,
and provides the default highlighter to be used.”

Line 41 is needed so that when the application becomes visible, the start of the text pane area is seen. If this
statement is commented out or removed, the end of the text will be shown instead. Line 42 is where the text pane is
added to the application frame within a scroll pane.

Lines 43-49 should look familiar to you. This is where the label and text input field are defined and added to a
panel, which is then added to the bottom of the application frame. Of particular note is the keyword assignment on
line 46, which identifies the ActionListener event handler that is invoked when the user presses Enter while the
keyboard focus is on this component.

Listing 20-4. Portions of the Highlight.py Script

15|class Highlight(java.lang.Runnable) :

| ...
27| def run(self) :

28] frame = JFrame(
29| 'Highlight',
30| defaultCloseOperation = JFrame.EXIT_ON_CLOSE
31|)
32| self.painter = DefaultHighlighter.DefaultHighlightPainter(
33| Color.YELLOW
34|)
35| pane = self.tPane = JTextPane(
| e
40|)
41| pane.moveCaretPosition(0)
42| frame.add(JScrollPane(pane), 'Center')
43| info = JPanel(BorderLayout())
44| info.add(JLabel('Find text:'), 'West')
45| tf = JTextField(
46| actionPerformed = self.search
47|)
48| info.add(tf, 'Center')
49| frame.add(info, 'South')
50| frame.pack()
51| self.center(frame)
52| frame.setVisible(1)
53] tf.requestFocusInWindow()

Listing 20-5 shows the search(...) method from the Highlight.py script. This is where the actual highlighting
works occurs. It begins by retrieving the contents of the input (JTextField) and removing any existing highlights.
The advantage of doing it this way is that if the user enters an empty string, pressing the Enter key will remove any
existing highlights.

fSee http://docs.oracle.com/javase/8/docs/api/javax/swing/text/DefaultHighlighter.DefaultHighlightPainter.html.
'See http://docs.oracle.com/javase/8/docs/api/javax/swing/text/DefaultHighlighter.html.

361

http://docs.oracle.com/javase/8/docs/api/javax/swing/text/DefaultHighlighter.DefaultHighlightPainter.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/text/DefaultHighlighter.html

CHAPTER 20 BUILDING A GRAPHICAL HELP APPLICATION

Lines 54-70 are where the searching and adding of highlights to the text pane occurs. The string find(...)
method, as shown in lines 62 and 70, return the offset or position in the text string of the data for being located. If no
match is found, an offset of -1 is returned. So, if a non-negative offset is returned, it identifies the location of the first
character of the data string in the text string being searched. The actual work of creating the highlighter occurs in
lines 64-68 and identifies the painter to be used to highlight the text in which the user is interested.

Listing 20-5. The search(...) Method from the Highlight.py Script
54| def search(self, event) :

55| data = event.getSource().getText()
56| hiliter = self.tPane.getHighlighter()
57| hiliter.removeAllHighlights()

58| if data :

59| doc = self.tPane.getDocument()

60| text = doc.getText(0, doc.getlLength())
61| start = 0

62| here = text.find(data, start)

63| while here > -1 :

64| hiliter.addHighlight(

65| here,

66 | here + len(data),

67| self.painter

68)

69| start = here + len(data)

70| here = text.find(data, start)

Adding Text Highlighting to WSAShelp Application

Overall, that appears to be pretty simple and straightforward, right? Is there anything that you need to consider or be
concerned about in order to add this capability to the existing WSAShelp application?

One issue that comes to mind is how the user specifies the text to be highlighted. Do you want to add an input
field below the tabbed pane or consider something else? Might you want to add some menu options that allow you to
highlight the text?

How should the highlighting work? As you can see in the Highlight. py script, the DefaultHighlighter class
instance is associated with the abstract JTextComponent class using the setHighlighter(...) method or using
the Jython keyword assignment syntax, as shown in line 45 of Listing 20-4. It isn’t clear whether one of these class
instances can, or should be, shared among JTextPane instances. This isn’t good practice, so I, for one, will avoid doing
this. What does this mean for your application? Well, for each of the text pane instances that you want to highlight, you
need a highlighter instance.

How should the application deal with highlighted text when the user changes the selected tab? That’s going to
make things interesting, isn’t it?

You can start by adding a ChangelListener to the TabbedPane. What does that take? As is frequently the case, it’s
much easier than I originally thought it would be. Listing 20-6 shows the trivial changes that you need to make to the
WSAShelp 03.py scriptin order to determine and display the name of the selected tab. The WSAShelp_04.py script
includes these minor modifications.

362

CHAPTER 20 BUILDING A GRAPHICAL HELP APPLICATION

Listing 20-6. Changes Need to Identify Tab Selection from WSAShelp 04.py

39| tabs = JTabbedPane(stateChanged = self.tabPicked)
|

89| def tabPicked(self, event) :

90| pane = event.getSource()

91| print pane.getTitleAt(pane.getSelectedIndex())

With this ChangeListener method, you can easily access the name of the selected tab. If you add a dictionary to
the application class that is indexed by tab name, with each entry being a tab-specific highlighter instance, the change
listener method can use this information to highlight the tab-specific text. Let’s hold off on this decision for a moment
while you learn about some complications.

Tabbed Highlighting Complications

What is the application supposed to do when the user selects a tab that contains a split pane? If you want the text in
each pane to be highlighted, that is going to require a separate highlighter for each panel, isn’t it? Well, as you saw
with the Highlight.py application, you can use the DefaultHighlighter for the text pane. Can’t you use this same
technique for each of the panes on each of the tabs in the application? If you do, the change listener event handler can
process each of the panes on the tab to reset and populate the highlights to be displayed when the tab is selected. This
would probably work best if you had a single, shared “find” input field.

During the development and testing of this iteration, it became apparent how quickly things can get complicated.
What do I mean? Well, consider this for a few moments. In the change listener, you can easily determine which tab
was selected. You can also tell what the tab contains. Unfortunately, it will either be a JScrollPane or a JSplitPane.
The JSplitPane will have two parts, each of which will contain a JScrol1Pane. So far, so good. Now comes some of
the “fun” (challenging) part. Given a JScrollPane, you can access the actual JTextPane component by calling the
getViewport().getView() methods from the JScrollPane component. I'm sure you can see the circuitous kind of
path that needs to be followed to access the JTextPane in which you're interested.

For a change listener method called when the tab contains a JScrollPane and not a JSplitPane, the methods
shown in Figure 20-6 need to be called just to get access to the JTextPane contained within the JScrollPane, on the
specified tab. To simplify the code as you'll as improve its performance, you'll create a dictionary indexed by the tab
name, with references to each of the JTextPanes contained on the specified tab.

pane = event.getSource()
index = pane.getSelectedIndex()
comp = pane.getComponentAt (index)

tPane = comp.getViewport () .getView()

Figure 20-6. Calls needed to find a JTextPane in a JScrollPane

Based on this observation, changes you're made to produce the WSAShelp 05.py script. Figure 20-7 shows an
image from this application after “default” is highlighted on the AdminConfig tabs.

363

CHAPTER 20 * BUILDING A GRAPHICAL HELP APPLICATION

[wsadmin | Help | AdminApp | AdminConfig | AdminControl | AdminTask |

WASX70531I: The AdminConfig object communicates with the
Config Service in a WebSphere server to manipulate configuration data
for a WebSphere installation. AdminConfig has commanda to liat, create,
remove, display, and modify configuration data, as well as commands to
display information about configuration data types.

Most of the commands supported by AdminConfig operate in two modes:
the default mode is one in which AdminConfig communicates with the
WebSphere server to accomplish its tasks. A local mode is also
possible, in which no server communication takes place. The local
mode of operation is invoked by bringing up the scripting client with

no server connected using the command line "-conntype NONE"™ option

- e o e e
createDocument Creates a new document in the configuration repository.
createlUsingTemplate
Creates an object using a particular template type.
defaults Displays the default values for attributes of a given type.
deleteDocument Deletes a document from the configuration repository.
existsDocument Tests for the existence of a document in the configuration
repository.
extract Extract a file from the configuration repository.
getCrossDocumenctValidationEnabled
Returns true if cross-document validation is enabled.
getid Show the configuration ID of an object, given a atring version of
its containment
getlbjectiame Given a configuration ID, return a string version of the CbjectName

Highlight text: default

Figure 20-7. WSAShelp 05.py sample output

To create this iteration of the application required about 50 more lines of code, most of which can be seen
in Listing 20-7. The highlight(...) method is called by the change listener event handler (the tabPicked(...)
method), which is invoked when the user selects a new tab. Additionally, it is called by the action listener event
handler (the lookFor(...) method) when the user presses Enter while the keyboard focus is on the JTextField at
the bottom of the window.

Listing 20-7. New and Changed Methods in WSAShelp 05.py
35| def hilight(self, tPane, text) :

36| hiliter = tPane.getHighlighter()

37| hiliter.removeAllHighlights()

38| if text :

39| doc = tPane.getDocument()

40| info = doc.getText(0, doc.getlLength())
41| start = 0

42| here = info.find(text, start)
43| while here > -1 :

44| hiliter.addHighlight(

45| here,

46 | here + len(text),

47| self.painter

48|)

364

CHAPTER 20 BUILDING A GRAPHICAL HELP APPLICATION

49| start = here + len(text)
50| here = info.find(text, start)
51| def lookFor(self, event) :
52| text = event.getSource().getText()
53| index = self.tabs.getSelectedIndex()
54| name = self.tabs.getTitleAt(index)
55| for tPane in self.tPanes[name] :
56| self.hilight(tPane, text)
| .
134] def tabPicked(self, event) :
135] pane = event.getSource()
136 | index = pane.getSelectedIndex()
137| name = pane.getTitleAt(index)
138 try :
139| for tPane in self.tPanes[name] :
140]| self.hilight(tPane, self.textField.getText())
141| except :
142 | pass

Note You may wonder why you need a try/except clause in the change listener method. It is there because this
method is invoked when the first tab is added to the JTabbedPane container. When this occurs, the data structure
(the self.tPanes dictionary) hasn’t been initialized, so the specified reference (self.tPanes[name]) is invalid.
Other than that, the changes are pretty straightforward and make the application more useful, at least in my opinion.

Displaying Methods in a Table

I don’t know about you, but every time that I look at the method (and scripting objects) sections (the bottom split
pane sections), wonder how difficult it would be to display this part in a table within a scroll pane. The big question
related to this change is how it affects the highlighting.

Let’s approach these challenges one at a time. You can start by creating a table for the bottom part of the split
panes. Then, you can take a look at the cell rendering portion to see if you can easily resolve the highlighting issue.

So how should you go about building a table containing the method name in one column and the method
abstract/description in another? Let’s start by using a simple application that does this and only this. Then, you can
determine what changes, if any, need to be made before incorporating this into your application.

Figure 20-8 shows the method names and descriptions that you're extracted from the output of calling the
Help.help() method.

365

CHAPTER 20 * BUILDING A GRAPHICAL HELP APPLICATION

Method Description / Abstract
attributes given an MBean, returns help for attributes
cperations given an MBean, returns help for operations
conatructors |given an MBean, returns help for constructors
description |given an MBean, returns help for description
notifications |given an MBean, returns help for notifications
given an MBean, returns help for clasaname
given an MBean, returns help for all the above
returns this help text
AdminControl |returns general help text for the AdminControl ocbject
AdminConfig returns general help text for the AdminConfig object
AdminApp returns general hglp text for the AdminApp object

returns general help text for the AdminTask object
returns general help text for the wsadmin script launcher
message given a message id, returns explanation and user action message

Figure 20-8. Proof of concept for displaying method info in a table

Listing 20-8 shows the majority of the statements from the MethodTable1. py proof of concept (PoC) script used
to produce the output shown in Figure 20-8. Since it is a PoC script, it’s simple. As you can see, the run(. . .) method
is very simple. It uses the parseMethodHelp(. . .) method to extract the method names and descriptions from the
specified help text in order to populate the table.

Listing 20-8. run(...) Method of MethodTable Class from MethodTablel.py Script

10| class MethodTable1(java.lang.Runnable) :
|

22| def run(self) :

23| frame = JFrame(

24| 'MethodTable1',

25| defaultCloseOperation = JFrame.EXIT ON_CLOSE
26|)

27| helpText = Help.help().expandtabs()

28] headings = ['Method', 'Description / Abstract']
29| data = self.parseMethodHelp(helpText)

30| table = JTable(

31| data,

32| headings,

33| font = Font('Courier' , Font.PLAIN, 12)
34)

35| frame.add(JScrollPane(table), 'Center')

36| frame.pack()

37| self.center(frame)

38| frame.setVisible(1)

The parseMethodHelp(. . .) method, shown in Listing 20-9, is where all of the real work takes place. It uses a
regular expression (RegExp) to locate each method name in the specified input string.

366

CHAPTER 20 BUILDING A GRAPHICAL HELP APPLICATION

Listing 20-9. parseMethodHelp(...) Method of the MethodTable Class from the MethodTable1l.py Script
39| def parseMethodHelp(self, helpText) :

40| def fix(text) :

41| text = text.replace('\n', ' ').strip()
42| return re.sub(' +', ' ', text)

43| methRE = re.compile(r'~(\w+)(?:\s+.*)$', re .MULTILINE)
44| result = []

45| mo = methRE.search(helpText)

46| name = None

47| while mo :

48| start, finish = mo.span(1)

49| if name :

50| result.append(

51]

52| name,

53| fix(helpText[prev : start])
54]

55])

56| name = helpText[start : finish]

57| prev = finish + 1

58| mo = methRE.search(helpText, finish)

59| if name :

60| result.append([name, fix(helpText[prev:])])
61| return result

The remainder of the text up to the next method name is considered the associated description. The result of
this method is an array, with one row for each method, and two columns. The first column of the table contains
the method name and the second column the entire description string. In order to do this, the fix routine, shown in
lines 40-42 of Listing 20-9, replaces the newline characters (' \n") with a space. Then, all of the leading, trailing, and
multiple adjacent spaces are removed.

Highlighting Text Within the Table

One of the nice things about using a JTextPane component to hold the text to be displayed is that you can use the
DefaultHighlighter as you'll as the DefaultHighlightPainter class instances to locate and highlight text of interest
to the user. Unfortunately, these classes aren’t available on the contents of the JTable instance. So, what can you do?
The default renderer for the table cells uses a JLabel instance to format the cell contents.

The neat thing about this is that a JLabel can use HTML tags to format the cell contents. This means that all you
have to do to highlight a portion of a cell is surround it with the appropriate HTML tags. To do that, make the changes
shown in Listing 20-10.

Listing 20-10. Changes to the Highlight Table Text from MethodTable2.py
10| class MethodTable2(java.lang.Runnable) :

|
22| def run(self) :

29| data = self.parseMethodHelp(helpText)
30| for r in range(len(data)) :
31| for ¢ in range(len(data[r])) :

367

CHAPTER 20 BUILDING A GRAPHICAL HELP APPLICATION

32| data[r][c] = self.hiliteText(
33| data[r][¢ 1,
34 "help’
35]
36| table = JTable(
37| data,
38| headings,
39| font = Font('Courier' , Font.PLAIN, 12)
0])
| eee
45| def hiliteText(self, text, findWord) :
46 | return '<html>' + text.replace(
47| findWord,
48] '%s" % findWord
49])

Figure 20-9 shows the sample output generated by this script. By default, the word “help” is highlighted.

Method
attributes
cperations

Jconstructors

Description / Abstract
help for attributes
help for operations
he;p for constructors
help for
help for
help for
help

n MBean,
n MBean,
n MBean,
n MBean,
n MBean,
given an MBean, returns
given an MBean, returns
returns this help text
returns general help text for the AdminControl object
__|returns general help text for the AdminConfig object

returns general help text for the AdminApp object

given returns
returns
returns
description returns

notifications

given
given

description
notifications
classname

all the above

returns

Far

AdminTask

returns general

ﬁelp text for the AdminTask cbject

w3admin

returns general

help text for the wsadmin script launcher

message

glven a message

id, returns explanation and user action message

Figure 20-9. PoC for displaying highlighted table text

Using Tables in the Help Application

Are there any problems with adding this to the help application? If you take a few moments to test the MethodTable
scripts, you are likely to see a noticeable delay during the application startup. Unfortunately, this is the kind of thing
that users find particularly annoying. As discussed earlier, whenever you encounter an operation that could take a
long time, it should execute on a separate thread. Since the operation in question involves the creation of the attribute
and description table, it should be executed on a separate thread.

These choices might cause you to ask yourself some questions. For example, what should you display on the
bottom part of the split pane until the table thread completes? An easy and reasonable approach is to display a simple
message indicating that results will be available shortly. So, you'll just use a JLabel instance with a message.

You might also wonder which attributes the tables should use. You don’t want the user to attempt to make
any changes to the table data, so the table cells should be read-only. Additionally, you know that the data type for
each cell should be a java.lang.String. Add a table model class (methodTableModel) that descends from the
DefaultTableModel class.

368

CHAPTER 20 BUILDING A GRAPHICAL HELP APPLICATION

Listing 20-11. The methodTableModel Class from WSAShelp 06.py

26|class methodTableModel(DefaultTableModel) :

27|
28|
29|
30|
31|
32|

def _init (self, data, headings) :

DefaultTableModel. init (self, data, headings)

def isCellEditable(self, row, col) :
return 0

def getColumnClass(self, col) :
return String

Listing 20-11 shows just how simple this kind of descendent class can be. Unfortunately, you also need to add code

to adjust the table column widths. Without it, the table will give each column as close to 50% of the table width as it can.
With the information that you want to display, this isn’t a great distribution of the available space. So, WSAShelp 06.py
also includes the setColumnWidths(...) method shown in Listing 20-12 to try to adjust the column widths.

Listing 20-12. The setColumnWidths(...) Method from WSAShelp 06.py

76|
77|
78|
79|
80|
81|
82|
83|
84|
85|
86|
87|
88|
89|
90|
91|
92|
93|
94|
95|
96|
97|
98|
99|
100
101
102
103
104 |
105|
106 |
107
108 |
109|

def setColumnWidths(self, table) :
header = table.getTableHeader()

Table Column Model
To access table data
gap betyouen columns
Number of rows
Number of cols

TableColumn: col i
model index: col i
header renderer

tcm = table.getColumnModel() #
data = table.getModel() #
margin = tcm.getColumnMargin() #
rows = data.getRowCount() #
cols = tcm.getColumnCount() #
for i in range(cols) : # For col 0..N
col = tem.getColumn(i) #
idx = col.getModelIndex() #
render = col.getHeaderRenderer()#
if render :
comp = render.getTableCellRendererComponent(
table,
col.getHeaderValue(),
0,
0,
_1’
i
)
cWidth = comp.getPreferredSize().width
else :
chWidth = -1

for row in range(rows) :

val = str(data.getValueAt(row, idx))
r = table.getCellRenderer(row, i)
comp = r.getTableCellRendererComponent(

table,
val,

formatted value
not selected

not in focus

row num

col num

369

CHAPTER 20 * BUILDING A GRAPHICAL HELP APPLICATION

110 chWidth = max(

111| chidth,

112| comp.getPreferredSize().width

113

114 if cWidth > o :

115| col.setPreferredwidth(cWidth + margin)

Figure 20-10 shows a sample image from the WSAShelp_06.py script. As you can see, some of the tabs can’t
display complete information that is available to both columns. When this occurs, the contents have ellipses (. . .)
appended to the truncated values.

| wsadmin | Help | AdminApp | AdminConfig | AdminControl | AdminTask

WASX7095I: The AdminApp object allows application objects to
be manipulated -- this includes installing, uninstalling, editing,
and listing. Most of the commands supported by Adminlpp operate in two
modes: the default mode is one in which AdminApp communicates with the
WebSphere server to accomplish its tasks. A local mode is also
possible, in which no server communication takes place. The local
mode of operation is invoked by bringing up the scripting client with
no server connected using the command line "-conntype NONE"™ option
or setting the "com.ibm.ws.scripting.connectionType=NONE" property in
the wsadmin.properties.

The following commands are supported by AdminApp; more detailed

o

Method Description / Abstract
deleteUser...|Deletes all the user/group information for all the roles and all ...
edit Edit the properties of an application
editIntera...|[Edit the properties of an application interactively
exXport Export application to a file
exportDDL Export DDL from application to a directory
exportFile Export content of a single file from an application to a file
getDeploysS...|[Returns the combined Deployment status of the application
help Show help information
install Installs an application, given a file name and an option string.
installlnt...|Installs an application in interactive mode, given a file name an...
isAppReady Checks whether the application is ready to be run
list List all installed applications

ligrMadnlas Tisr rha madnlas in 2 sracrifioad arnliscarisan

Figure 20-10. Sample output from WSAShelp 06.py

Grab and drag the separator bar between the column headings and see what happens when you change the
column widths. Is that responsive enough for you? I don’t notice any delay at all and am quite pleased.

370

CHAPTER 20 BUILDING A GRAPHICAL HELP APPLICATION

Fixing the Table Appearance

Many people would find the ellipses a distraction and an annoyance. How do you fix this? The first thing to do is to
remember how the cell data is represented. In Chapter 12, you learned about cell renderers. Fortunately, all of the
table cells contain simple strings. So you only need to provide a renderer for this data type.

The challenge, though, is how you deal with the cell data that doesn’t fit in the available space. First, you need to
be able to figure out:

e How much space is available
e How you want to display the data
e Howyou split the data to fit in the available space

The program uses a monospace font, which makes sense when you're displaying the help text that is normally
seen in an interactive wsadmin session.

Another choice that makes life a little easier is to use a JTable to display the method information. How does it
make things easier? If you take another look back at Chapter 12, you'll see that the default cell renderer for a JTable
will use a JLabel to display a cell. You can then use HTML to format the cell contents. This allows you to specify

(the HTML line break tag) where you want the break to occur. Unfortunately, if you are going to use multiple lines of
text to display the cell text, you also have top deal with the row height to allow multiple lines.

An additional challenge involves how you intend to split any long method names. Blanks aren’t allowed as part

of a method name, so you have to decide if you want to split the method name between arbitrary letters or use a little
additional effort and recognize that method names use a camelcase® naming convention. Personally,
I prefer to split the method names between the camelcase words. You need to use a JLabel method, specifically the
getFontMetrics(...) method, to determine how much of the data will fit in the available width. Listings 20-13 and
20-14 show the table cell renderer class from WSAShelp 07.py. Unfortunately, it doesn’t fit on one page so has to be
shown in two pieces.

Listing 20-13. The methRenderer Class from WSAShelp 07.py Part 1

27|class methRenderer(DefaultTableCellRenderer) :
28| def __init (self) :

29| self.fm = JLabel().getFontMetrics(monoFont)

30| self.widths = [0, 0]

31| self.hiText = "'

32| def getTableCellRendererComponent(

33| self,

34| table, # JTable - table containing value
35| value, # Object - value being rendered
36| isSelected, # boolean - Is value selected?

37| hasFocus, # boolean - Does this cell have focus?
38| Tow, # int -Row# (0..N-1)

39| col # int -Col#(0..N-1)

40|) :

41| def camelWords(name) :

42| prev, result = 0, []

43| for i in range(len(name)) :

44| ch = name[1]

8See http://en.wikipedia.org/wiki/CamelCase.

371

http://en.wikipedia.org/wiki/CamelCase

CHAPTER 20 BUILDING A GRAPHICAL HELP APPLICATION

45| if ch == ch.upper() or ch == '_' :

46| result.append(name[prev:i])

47| prev = i

48| result.append(name[prev:])

49| return result

50| DTCR = DefaultTableCellRenderer

51| comp = DTCR.getTableCellRendererComponent (

52| self, table, value, isSelected, hasFocus, row, col
53])

54| phWidth = self.widths[col] # Preferred column width

The first portion of the class, shown in Listing 20-13, shows the class constructor in lines 28-31 as well as the
initial portion of the getTableCellRendererComponent(...) method. Note that this method includes the local
camelWords(...) method on lines 41-49. It is only used in the next segment of code (on line 62) where the contents of
column 0 are being processed.

It takes advantage of the similarity of splitting method names and the method abstract text. If the text doesn't fit
into the available width, the data is reformatted using HTML to use multiple lines. Since the renderer is the class that
uses HTML to format the data, it is also the right place to add HTML to highlight any text that the user requests.

If you look closely at the renderer class in Listing 20-14, you might notice a couple of methods that are unique
to this renderer (they don’t exist in the base class). These are the setHiText(...), and setWidths(...) methods on
lines 92-95. These were added to provide the class instance with the information that it needs to format the text to fit
in the available width, as well as add the appropriate highlighting, as needed. Is this a perfect answer? Probably not,
but it is certainly good enough, especially for this application.

Listing 20-14. The methRenderer Class from WSAShelp_07.py Part 2

55| if pWidth : # Has it been set?
56| hiHTML = '%s"
57| pWidth -= 3

58| if self.fm.stringWidth(value) > pWidth :
59| if col :

60| pad, words = ' ', value.split(' ')
61| else :

62| pad, words = '', camelWords(value)
63| result, curr = '<html>', "'

64| for word in words :

65| width = self.fm.stringWidth(

66| curr + pad + word

67|

68| if width > pWidth :

69| result += curr + '
'

70| curr = "'

71| if curr :

72| curr += pad + word

73| else :

74| curr = word

75| result += curr

372

CHAPTER 20 BUILDING A GRAPHICAL HELP APPLICATION

76| if self.hiText :

77| if result.count(self.hiText) > 0 :
78| result = result.replace(

79| self.hiText,

80| hiHTML % self.hiText

81|

82| comp.setText(result)

83| else :

84| if self.hiText :

85| if value.count(self.hiText) > 0 :
86| value = value.replace(

87| self.hiText,

88| hiHTML % self.hiText

89|)

90| comp.setText('<html>' + value)
91| return comp

92| def setHiText(self, text) :

93| self.hiText = text

94| def setWidths(self, widtho, widthi) :

95| self.widths = [widtho, width1]

How and when would the setWidths(...) method need to be called? Think about it for a few moments. When
does the table need to be displayed? The first time would be when the tab on which a table exists is selected. Another
time would be when the application frame was resized (maximized). If you take a look at the WSAShelp_07.py script,
and search for calls to this routine, you will find calls to this routine in these two event handlers.

Take a few moments to test this script and see what happens when you resize the frame. Personally, I like the way
it responds to the resize requests; I hope that you agree.

Selecting Table Cells

Now that you have the scripting object methods in a nice little table at the bottom of each split pane, what’s next? You
can now progress to one of the goals that I had for this application. I wanted to be able to select the tab for a specific
scripting object, scroll down to show the name of the method in which I was interested, and select the method.
Wouldn't it be neat if selecting the method in the table showed the help for the selected method? What is needed to do
this? Listing 20-15 shows the class that was added to provide this capability to the WSAShelp 08.py script.

Listing 20-15. ListSelectionListener from WSAShelp 08.py

30|class cellSelector(ListSelectionListener) :
31| def _init (self, table, WASobj) :

32| self.table = table

33| self.WASobj = WASobj

34| self.objName = WASobj.help()[:40].split(' ')[2]
35| def valueChanged(self, event) :

36| if not event.getValueIsAdjusting() :

37| table = self.table

38| row = table.getSelectedRow()

39| if row > -1 :

40| method = table.getModel().getValueAt(row, 0)

373

CHAPTER 20 BUILDING A GRAPHICAL HELP APPLICATION

41| title = "%s.help("%s")" % (

42| self.objName,

43| method

44|)

45| text = self.WASobj.help(method)
46| text = JTextArea(

47| text,

48| 20,

49| 80,

50| font = monoFont

51])

52| dialog = JDialog(

53| None, # owner
54| title, # title
55| 1, # modal = true
56| layout = Borderlayout(),

57| locationRelativeTo = None

58])

59| dialog.add(

60| JScrollPane(

61| text

62|)

63| BorderLayout.CENTER

64|)

65| dialog.pack()

66| dialog.setVisible(1)

The class constructor may require a bit of explanation though. The reason for providing the table as an argument
to the constructor will be explained shortly. The reason for having the WASobj (AdminApp, AdminConfig, and so on),
specified makes things for the valueChanged(. . .) method much simpler, because given the scripting object, and the
name of the method in question, all the routine needs to do is invoke the help(...) method, as see on line 45. This
leaves you with the expression on line 34. What is it doing?

Listing 20-16 shows how the constructor expression works. Basically, it depends on the fact that the first line of
the help text for each of these scripting objects uses the same format. The message number is followed by a sentence
that starts with “The’, followed by the name of the scripting object. The expression on line 34 of Listing 20-15 simply
uses this fact to save the name of the specified scripting object.

Listing 20-16. Extracting an Object Name from its Help Text

wsadmin>for obj in [AdminApp, AdminConfig, AdminControl, Help] :
wsadmin> print obj.help()[:40]

wsadmin>

WASX7095I: The AdminApp object allows ap

WASX7053I: The AdminConfig object commun

WASX70271: The AdminControl object enabl

WASX7028I: The Help object has two purpo

wsadmin>

374

CHAPTER 20 BUILDING A GRAPHICAL HELP APPLICATION

Instances of the cel1Selector listener class shown in Listing 20-15 are added when the table is created in the
tableTask instance, specifically in the done(. . .) method. Listing 20-17 shows how the selection listener is added
to table using its selection model. The fact that the selection listener instance is added to the selection model, and
not the table itself, is the main reason that the table instance is passed on the cel1Selector constructor. The code in
the valueChanged(. . .) event handler method, as shown in Listing 20-15, uses the table to identify the user-selected
method, so that the appropriate help text can be displayed.

Listing 20-17. Adding Selection Listener Instance from WSAShelp 08.py

178 table.getSelectionModel().addListSelectionListener(
179 | cellSelector(

180 table,

181 self.WASobj

182])

183)

What do these changes allow you to do? Figure 20-11 shows a sample dialog box that is displayed when some
of the scripting object table rows are selected. Note how the title of the dialog box identifies the scripting object and
method for which help is being displayed.

WASX7097I: Method: installInteractive

Arguments: filename, options

Description: Installs the application in the file specified by
"filename" using the options specified by "options". The user is
prompted for information about each relevant task.

The AdminApp "options" command may be used to get a list of all

possible options for a given ear file. The AdminApp "help" command

may be used to get more information about each particular option.
Methed: installlnteractive

Arguments: filename

Description: Installs the application specified by "filename™ using

default options. The user is prompted for information about each
relevant task.

Figure 20-11. Sample image from WSAShelp 08.py script

Note To make things simpler for the application, modal dialog boxes are used. Additionally, the text is displayed in a
scroll pane, just in case it’s larger than the available space.

375

CHAPTER 20 BUILDING A GRAPHICAL HELP APPLICATION

Adding a Menu

One of the things that I wasn’t too happy about with the previous scripts was how the “Highlight text” label and input
field were always showing on the bottom of the frame. Another alternative is to use menu items for this and other
kinds of actions. Let’s start simple and replace the label and input field with a “Show” menu that allows the user to
specify text to be highlighted. You can also provide some information about the script with some “Help” menu items.
What does this do to the application? Figure 20-12 has some images from the WSAShelp_09.py script, showing the
initial look of the menu and the associated drop-down menus. Additionally, you see an image showing the input
dialog box that is displayed when the user selects the Show » Highlight Text menu item.

Show | Help
Highlighttext ip | AdminApp | AdminConfig | AdminControl | AdminTask |

Exit dmin is the executable for WebSphere scripting.

) | AdminApp | AdminConfig | AdminControl | AdminTask |

jmin is the executable for WebSphere scripting.

‘o | Whattextdo you want to highlight?
-

: Cancel

Figure 20-12. Sample images from WSAShelp _09.py script

The complete application can be found in the code\Chap_20\WSAShelp_09.py file and requires only about 80
additional lines of code to add this non-trivial functionality.

AdminTask.help(‘-commands’)

In the WAuJ book two different scripts were used to format all of the help text for the wsadmin scripting objects. That’s
because the AdminTask scripting object is significantly different from the other scripting objects. In fact it provides a
framework for WebSphere developers to add scripting capabilities by adding methods to the AdminTask framework,
instead of forcing changes to be made to the existing objects.

When I began to consider adding the ability of displaying AdminTask help information to the WSAShelp scripts,
I first considered adding some kind of listener to the AdminTask pane that would allow the user to select either the
“help -commands’, or “help -commandGroups” portions of that pane. Unfortunately, this would not be an obvious
solution to the problem. How would you convey this information to the user? Maybe by using some kind of special
highlighting, possibly even using something like the convention used by browsers to indicate that text is, in fact, a link
to additional information. I quickly discarded this approach after taking another look at the menu items that had just
been added to the WSAShelp 09.py script. This appeared to be a much more obvious solution to the problem.

376

CHAPTER 20 BUILDING A GRAPHICAL HELP APPLICATION

Unfortunately, trying to display information about the available AdminTask commands brings challenges of its
own. For example, depending on the version of the WebSphere Application Server product being used, there can
be a huge list of available AdminTask commands from which to choose. The following sections address some of the
questions that come to mind.

How Do We Find and Identify Existing Commands?

The obvious answer to this question is to take a look at the output produced by the AdninTask.help('-commands')
method call. How much text is generated by this call? As mentioned earlier, it depends. To give you an idea, you can
run a quick test. Listing 20-18 shows that for a WebSphere version 7.0, network deployment installation, almost

1,200 lines of text are generated.

Listing 20-18. Lines of Text from the AdminTask.help('-commands') Output

wsadminy>print len(AdminTask.help('-commands').splitlines())
1190
wsadmin>

WebSphere version 8.0 has more than 1,250 lines and WebSphere version 8.5 has more than 1,400.

The time to process this output is not something that you would want to do in a simple event handler. That would
be likely to cause a noticeable and unacceptable delay in the application. As you've read, you should consider doing
this processing on a separate (SwingWorker) thread.

Showing the User that Something Is Happening

Since the processing of the AdninTask.help('-commands') command output may cause a non-trivial delay, you need
to consider how you communicate this fact to the user. One thing that came to mind was that you can initialize the
Show » AdminTask » -commands menu item as disabled, at least until the processing is complete and the data exists
in a usable form.

If you proceed with this decision, the SwingWorker class that you're going to use has to know the menu item
that needs to be enabled once processing completes. Additionally, it needs to know how to make the results of its
processing available to the application.

It seems pretty obvious that the result of the processing of this text should be an array or list of AdminTask
command names. Don’t you think?

Alright, what'’s it going to take to have a separate Swinghorker thread to process the output of the
AdminTask.help('-commands') call? Listing 20-19 shows that it doesn’t take much effort. The doInBackground(...)
method makes the call and processes each line of the resulting text. It can use a simple regular expression to identify
the method names and each one that is found is added to the list. Then, all the done(...) method needs to do is
enable the specified menu item.

Listing 20-19. ATcommandTask Class from WSAShelp 10.py

176|class ATcommandTask(SwingWorker) :
177| def _init (self, List, menuItem) :

178| SwingWorker.__init_ (self)

179| self.commands = List

180 self.menuItem = menuItem

181 | def doInBackground(self) :

182] data = AdminTask.help('-commands').splitlines()
183] for line in data[1:] :

184| mo = re.match('([a-zA-Z 2]+) -', line)

377

CHAPTER 20 BUILDING A GRAPHICAL HELP APPLICATION

185] if mo :

186 | self.commands.append(mo.group(1))
187| def done(self) :

188 self.menultem.setEnabled(1)

Now that you have this long list of commands or methods, how do you make things easy for your users? Scrolling
through a list of 1,000 plus names is not exactly user friendly.

Do you remember what you did back in Chapter 15, with the javadocInfo script? You added an input field
that allowed the user to filter the list of items to be displayed.’ You can do the same thing here. If I'm looking for the
AdminTask methods that have something to do with a particular topic, it can be somewhat daunting to look through
1,000 plus command names. By adding a filtering mechanism, you can greatly diminish the number of commands
through which the user has to look.

Figure 20-13 shows some sample images from the WSAShelp 10.py script. The first shows what happens to the
application when the “Show” menu item has been selected. The second shows what happens when the AdminTask
menu item has been selected. The third shows the initial view of the dialog box. One thing that you should notice
is the size of the scrollbar thumb, which gives you an indication of the size of the list. Finally, you see what happens
to the number of commands that contain “Lis” I think that you'll agree that this technique vastly improves the user
experience when dealing with this huge list of AdninTask commands.

Show | Help

AdminTask » -commands minConfig | AdminControl | AdminTask
Highlight text
Exit

K -commandGroups Fable for WebSphere scripting.

fuis]
connectSIBWSEndpoiniListener - The input field can be used to filter the commands to be
createJAXWSHandlerList listed.

createSIBWSEndpointListener
deleteJAXWSHandlerList - Selecting a command will have it's help text displayed in
delete SIBWSEndpointListener this pane,

disconnectSIBWSEndpointListener
getEmaillList
listJAXWSHandlerLists
listMessaagelListenerTypes
modifyJAXWSHandlerList
setEmailList
showJAXWSHandlerList

Figure 20-13. Sample images from WSAShelp 10.py script

°The filtering was first added to javadocInfo_06.py, which is discussed in the section entitled “Filtering the List.”

378

CHAPTER 20 BUILDING A GRAPHICAL HELP APPLICATION

One thing that you may notice about the WSAShelp_10.py script output is what happens when you select
Show » AdminTask » -commandGroups menu item. A placeholder dialog box is displayed, indicating that work
remains to be done.

AdminTask.help(‘-commandGroups’)

Now you get to figure out how to deal with the “~-commandGroups” menu item. When you were working with the
“-commands” menu item, it made sense to generate a list of the available AdminTask commands. With this selection,
that makes less sense. Since each commandGroup is supposed to represent a group of similar commands, doesn’t it
make more sense to display this as a tree, with each node of the tree representing one of the command groups? That
way, to see the commands within a group, you would only have to expand the group by selecting (double-clicking) on
a group name.

Like the ATcommandTask class seen in Listing 20-19 it seems reasonable to expect that you're going to need
another SwingWorker descendent class to process the AdninTask.help('-commandGroups') output to build the
application dialog box.

The first thing that this class will need to do is to extract the commandGroup names from the
AdminTask.help('-commandGroups') output. To figure out how to do this, first take a look at what this output looks
like. Listing 20-20 shows the first few lines of output produced by this command.

Listing 20-20. The AdminTask.help('-commandGroups') Output

wsadmin>print AdminTask.help('-commandGroups')
WASX8005I: Available admin command groups:

AdminAgentNode - Admin Agent Managed Node related tasks
AdminAgentSecurityCommands - Commands used to configure security ...
AdminReports - Admin configuration reports

AdministrativeJobs - This command group contains all the job mana...
AppManagementCommands - Application management commands.
AuditAuthorizationCommands - Audit Authorization Table Commands

This format allows for easy identification and processing of the command group names. When a group name
is identified (AdminAgentNode), then a subsequent AdminTask.help(...) method call can be used to identify the
associated commands, if any, that exist within the group. For example, the output seen in Listing 20-21 shows the help
text for two different command groups, only one of which (AdminReports) has associated commands. The format
used by these command group help text messages make processing of them easy as well.

Listing 20-21. AdminTask.help(...) Using commandGroup Names

wsadmin>print AdminTask.help('AdminAgentNode')
WASX8007I: Detailed help for command group: AdminAgentNode

Description: Admin Agent Managed Node related tasks
Commands :

wsadmin>print AdminTask.help('AdminReports')
WASX80071: Detailed help for command group: AdminReports

Description: Admin configuration reports

379

CHAPTER 20 BUILDING A GRAPHICAL HELP APPLICATION

Commands :
reportConfigInconsistencies - Checks the configuation repository ...
reportConfiguredPorts - Generates a report of the ports configure...

wsadmin>

Listing 20-22 shows the SwingWorker descendent class used to process the AdminTask.help (' -commandGroups")
text, to identify the names of the command groups and the associated AdninTask commands. This class is from the
WSAShelp 11.py script. It may be interesting to note that the constructor requires only one parameter, that is, the
variable used to identify the menu item to be enabled when processing is complete.

Listing 20-22. ATgroupsTask Class from WSAShelp 11.py

196 |class ATgroupsTask(SwingWorker) :
197 def _init (self, menultem) :

198 | SwingWorker. init (self)

199 | self.menultem = menultem

200 def doInBackground(self) :

201 | try :

202 data = AdminTask.help(

203 | ' -commandGroups'

204 |).expandtabs().splitlines()

205 self.root = DefaultMutableTreeNode(

206 | 'command groups'

207)

208 | empty = []

209 for line in data[1:] :

210 mo = re.match('([a-zA-Z]+) -', line)
211 if mo :

212| groupName = mo.group(1)

213 group = None

214 | text = AdminTask.help(groupName)

215 cmds = text.find('Commands:')

216 if emds > 0 :

217 for line in text[cmds+9:].splitlines() :
218 mo = re.match('([a-zA-Z 2]+) -', line)
219 if mo :

220 if not group :

221 group = DefaultMutableTreeNode(
222| groupName

223

224 group.add(

225] DefaultMutableTreeNode(
226 mo.group(1)

227

228)

229 if group :

230| self.root.add(group)

231] else :

232 empty.append(groupName)

380

CHAPTER 20 BUILDING A GRAPHICAL HELP APPLICATION

233 except :

234 print '\nError: %s\nvalue: %s' % sys.exc_info()[:2]
235] def done(self) :

236 self.menultem.setEnabled(1)

Notice that this class constructor didn’t include a parameter for the result like you saw in the ATcommandTask
class, in Listing 20-19. This was done simply to show another approach. Are there problems with this approach?
To answer that question, let’s take a look at the code used to instantiate this class and access the resulting data
(aDefaultMutableTreeNode') for the root node. Listing 20-23 shows the other places in the code that instantiate and
execute the ATgroupsTask, as well as retrieve the result of its processing.

Listing 20-23. Use of ATgroupsTask class in WSAShelp 11.py

464 | self.ATgroupsTree = None
465 | self.groups = ATgroupsTask(groupMI)
466 | self.groups.execute()

|
623| def showCmdGroups(self, event) :

631 left = JPanel(layout = BorderLayout())
632| left.add(

633] JScrollPane(

634| JTree(

635| self.groups.root,

636| rootVisible = o,

637| valueChanged = self.pickATgroup
638])

639')s

640| BorderLayout.CENTER

641 |)

Note It's important to note that in order to access the result of the ATgroupsTask processing, you need to have a
variable for referencing the object. That is why WSAShelp 11.py includes the self.groups variable.

It might not be immediately obvious that the showCmdGroups (. . .) method uses the self.groups variable
to reference the root node for the tree. The event listener routine is called when the Show » AdminTask »
-commandGroups menu item is selected.

What does this mean as far as the JTree instance is concerned? To understand this, you should consider when
and how often this routine is called. Each time the user invokes this routine, a new JTree instance is created. For a tiny
application such as this, it might not make much of a difference, but it is better to understand the implications of your
decisions as far as potential performance impact is concerned.

1%See http://docs.oracle.com/javase/8/docs/api/javax/swing/tree/DefaultMutableTreeNode.html.

381

http://docs.oracle.com/javase/8/docs/api/javax/swing/tree/DefaultMutableTreeNode.html

CHAPTER 20 BUILDING A GRAPHICAL HELP APPLICATION

Another ATgroupsTask Implementation

If you want to have the JTree populated by the ATgroupsTask process, what do you need to do? First, you have to
realize what is required in order for the ATgroupsTask instance to modify the data of a JTree parameter passed to it.
The JTree documentation'' shows that no method exists to replace the tree root (no setRoot (. ..) method exists).
Why is this?

You have to remember that the JTree class, like many other Swing classes (the JTable), has the data managed by
an associated model. In the case of the JTree class, the data exists in, and is maintained by, the associated TreeModel'?
instance, which in all likelihood would be a DefaultTreeModel' object instance. The DefaultTreeModel class is where
the setRoot (. ..) method resides. So, what do you need to change in the ATgroupsTask? Not much. You need to add a
parameter for the constructor to hold the JTree object to be updated. It then adds a statement in the done(. . .) method
that gets the tree model instance and uses its setRoot(. . .) method to replace the tree data. Another encouraging thing
about this approach is that it also simplifies the event handler, instead of creating a new JTree.

Figure 20-14 shows the output after selecting the commandGroups menu item and then double-clicking the
AutoGen Commands entry. Note that if you only select a table entry, it isn’t expanded to display the child nodes.

-' AdminReports
:.-‘ AdministrativeJobs ‘|# print AdminTask.help("AutoGen Commands”
| AppManagementCommands
=] AuditAuthorizationCommands
-] AuditEmitterCommands WASXE007I: Detailed help for command group: AutcGen Commands
] AuditEncryptionCommands
I AuditEventFactoryCommands Description: Commands for autcgenerating LTPA password and
-7 AuditEventFormatterCommands server Id.
] AuditFilterCommands
] AuditkeyStoreCommands
[AuditNotificaionCommands
[—] AuditPolicyCommands
=] AuditReaderCommands
[AuditSigningCommands
=1 AuthorizationGroupCommands
(] AutoGen Commands

[autogenLTPA

[} autogenServerld
I—"] ELAManagement

:|Commands :

:|autogenlLTPA - Auto-generates an LIPA password and updates the
|LTPA object in the security.xml.

autogenServerId - Auto-generates a server Id and updates the
:|internalServerld field in the security.xml.

Figure 20-14. Sample image from WSAShelp_12.py script

""See http://docs.oracle.com/javase/8/docs/api/javax/swing/ITree.html.
2See http://docs.oracle.com/javase/8/docs/api/javax/swing/tree/TreeModel.html.
13See http://docs.oracle.com/javase/8/docs/api/javax/swing/tree/DefaultTreeModel. html.

382

http://docs.oracle.com/javase/8/docs/api/javax/swing/JTree.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/tree/TreeModel.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/tree/DefaultTreeModel.html

CHAPTER 20 BUILDING A GRAPHICAL HELP APPLICATION

Step It Up: Displaying the “Steps” Help Text

I'was going to finish this application, as well as the chapter, with the previous iteration of the script. ButI
demonstrated it to a friend who asked me some very good questions. What about the “steps” that some of the
AdminTask commands have? Is there any way to view the help for these steps?

I told him that I would think about it and see what I could do. To begin, I had to see how many of the AdminTask
commands had steps, as well as to see what it would take to display this information with a minimum impact to the
existing script.

It didn’t take much effort to write a script to locate and display the names of the AdninTask commands that
had any steps. It also displayed a little detail about the information that was processed. For example, when I ran this
script (steps.py) in a WebSphere V 7 environment, it showed that 42 of the 1,162 commands have one or more steps
(3.61%). That’s why I had forgotten all about this aspect of some AdminTask commands—only a small number have
the “Steps” section populated.

How Should You Do It?

Realizing that steps exist doesn’t explain how to display the help text for a step. To understand that, you need only take
alook at the AdminTask help text, as shown in Listing 20-24.

Listing 20-24. The Part of AdminTask.help() Text About Steps

help commandName stepName display detailed information for
the specified step belonging to the
specified command

This answers the question, “how do you get the help text for a command step?” But it doesn’t answer the more
challenging question, “how do you modify the WSAShelp_12.py script to allow the user to see this help text?”

Should You Add a Menu?

One thought is to add a menu to the command window that would allow the users to get the help for a specific step.
When the command help text is being processed, if no steps exist, then the menu could be disabled or you could
decide not to add the menu. Each step could be listed on the menu, thereby allowing the users to select the step

for which help could be displayed in a modal dialog box. The good news is that you know how to do these things
and you've seen them done. However, it’s not clear whether this is the best approach available. Let’s see what other
options exist before you make a decision.

Should You Add Another Split Pane?

Another alternative that comes to mind to detect when steps exist and then use a split pane with the general
command help description at the top, and a table with one row for each of the steps at the bottom. Again, this is
something that you know how to do since this technique is shown on the middle tabs of the application. The bad news
is that it would seem to be a significant amount of work and code for very infrequent use. Since less than 5% of the
AdminTask commands have steps, it is not clear that this approach is worth the time and effort to implement.

Can You Make Parts of the Text Pane Selectable?

Another alternative is to allow the users to click on any of the visible step names. This is a little different and might be
interesting to implement. Unfortunately, since you haven’t done this yet, it’s not clear how much time and effort, not
to mention code, is required to do this.

383

CHAPTER 20 BUILDING A GRAPHICAL HELP APPLICATION

And Now for Something Completely Different...

One of the things that got my attention while I was thinking about how best to approach this task was the fact that all
of the previous options require extra effort on the part of the user to decide which of the steps they want to investigate.
If they want to view multiple steps, multiple actions are required (select a menu item, look at the modal dialog box,
close it, and repeat as necessary). Is there an easier way?

That’s when I wondered about the possibility of displaying the help text for any and all steps in the same scrollable
text pane containing the help text for the command. Another advantage to this approach is the fact that it requires
about a dozen lines of code to be added in two places (the pickATcmd(. . .) and the pickATgroup(. ..) methods).

This iteration of the script is available in the code\Chap_20 directory, and is named WSAShelp_13.py. Figure 20-15
shows the “Steps” section of the help text for the createCluster command, and the beginning of the help text for the
first of the associated steps.

clusterConfig - Specifies the configuration he new server cluster

replicationDomain - Specifies the configuration a replication domain for this cluster. TUsed for
HITP session data replication.

convertServer - Specifies an existing server will be converted to be the first member of cluster.

eventServiceConfig - Specifies the event service configuration of the new serv luster.

promoteProxyServer - If a proxy server was specified nvertServer, apply the proxy settings
the contentServer to the cluster.

Task.help(1 “clusterConfig”

WASXE013I: Detailed help for s : cluaterConfig

Description: Specifies the configuration of the new server cluster.

Collection: No

Arcuments:

Figure 20-15. The help text for the clusterConfig step

One of the important things about this iteration is that the first approach that came to mind wasn't the easiest or
best approach for this particular situation. In fact, I considered multiple approaches and started to investigate what
changes would be required for each approach before the “simple” answer came to me. Sometimes, it’s not the first
idea that comes to mind that ends up being the best approach.

Summary

All in all, this is now a pretty decent example of the iterative development of a non-trivial graphical application that
uses a large variety of Swing capabilities. Even though it isn’t perfect, it’s a good tutorial on one way that Jython Swing
applications can be developed. It is also a good example of how you might want to decide which approach is the most
appropriate for you and your users’ needs. Don’t be afraid to stop and think about the options and which ones are
going to make the application most useful for your users. It’s also good to remember that you can do a quick proof of
concept for potential enhancements for your application.

In the next chapter, you'll look at a different application and use an iterative improvement to add functionality
as you improve the application. This application will be used to display details related to the security configuration
report about a WebSphere environment.

384

CHAPTER 21

A Security Configuration
Report Application

Not too long ago, someone asked me how difficult it would be to generate a security configuration report, similar

to what is available from the WebSphere administration console. This chapter explores the creation of such an
application to display the security report in a user-friendly way, all the while using the techniques that you've learned
so far. This will allow the users to interact with the information in a way that provides a better understanding of the
security-related configuration information for a WebSphere Application Server.

Generating the Administration Console Report

To get started, you are going to generate a static HTML security report for the environment. Then you will learn how,
using iterative steps, to create an application that uses a GUI to display this security information in a user friendly way.
To begin, an administrator must use the administration console to generate the report. This requires the administrator
to be logged into the administration console using an appropriate security role. To generate the report, follow these
steps (see Figure 21-1):

1. Select/expand the Security section on the left frame.
2. Select the Global Security link.

3. Click on the Security Configuration Report button.

385

CHAPTER 21 © A SECURITY CONFIGURATION REPORT APPLICATION

SJ | (- @ localhost:2060/ibm/console/login.do?csrfid=TvblogllKTXZaEIrkiWQYHO0&action=restore&ssubmit=2%C2%A00K%C o C
b S
@ Most Visited | Bills | IBM | Internal || Java || Misc || RegExp | | Search | | WMQ | WAS u dW Answers | Books

Integrated Solutions Console welcome

Cell=RAG 01, Pr
| View: Alltasks - |
Global security
Welcome
[@ Guided Activities Global security
@ servers Use this panel to configure administration and the default application security
EAorhcatone security policy for all administrative functions and is used as a default securit
2 defined to override and customize the security policies for user applications.
[# Services
[Resources | Security Configuration Wizard | Security Configuration Report
8 1.7 Administrative security
Global security = s
Security domains ["] Enable administrative security Admini X r rol
Administrative Authorization Groups ! Admini i I
! SS5L certificate and key management ministrati henti
" Security auditing
Buis secunty Application security
* JAX-WS and JAX-RPC security runtime

Figure 21-1. Generating a security configuration report

This causes a browser page to be displayed containing the security report. Figure 21-2 shows the top of one such
configuration report browser page.

rity Conflguratio

Security Configuration Report
WebSphere Application Server Core Security settings for host name:ragweed . Report generated oncJan 4, 2013, 09.47 22

Security Configuration Report

Console Name
Security Settings

Active authentication mechanism
User account repository

Allow basic authentication
Application security

Authentication cache timeout

Default SSL seltings

Dynamically update run time when SSL configuration
changes occur

Administrative security
Restrict access to resource authentication data

Java 2 security

Security Configuration Name

activeAuthMechanism
activelserRegistry

allowBasicAuth
appEnabled

cacheTimeout
defaull SSLSetlings

dynamicallyUpdateSSLC onfig

enabled
enforceFinaGrainadJCASecurity
enforcelava2Security

Wam if applications are granted custom p
Use realm-qualified user names
Usze the local security server

Aoy hanlsms and expirati
4

i
issuef)
useDomainQualifiedUseriames

uselocalSecuritySenver

Value 5

LTPA 1
WiMUser

true
false

600 seco
S5LConk

true

true
falsa
false
true =

false

true

B

Figure 21-2. Sample Security Configuration Report output

386

CHAPTER 21 © A SECURITY CONFIGURATION REPORT APPLICATION

Do you see any problem with this? My biggest complaint about this report is that it is very static. About the only
thing that you can do with it is to use the text-searching capability of the browser to locate specific text. These steps
were tested on three different versions of the WebSphere Application Server product and are the same for versions 7.0,
8.0, and 8.5, which is good. It makes it easier to describe it here. The biggest challenge that I encountered in verifying
these steps in this version is the fact that I had to see which, if any, of the deployment managers were active, start
those that weren’t currently active, log into the administration console, and check the steps.

The next challenge was consuming the report data. The browser page produced when the report button is
selected is, in a word, huge. The good news, however, is that it is in a table format, with each section having its own
header row shaded in a different color. The report is so big because there are about two dozen sections and some
of the sections are quite large. In fact, some of the sections have more than 300 rows of information. In case you are
interested, I've included the script that I used to determine this information—reportSectionSize.py—in the
code\Chap_21 directory.

The Scripting Report Method

Since you're interested in accessing this information using an wsadmin script, you need to determine whether there is
a command or scripting object method that allows you access to this information. You can even use the WSAShelp.py
script from the previous chapter to locate it.

Choose the Show » Highlight Text menu and move through the various tabs. You'll see that there isn’t a
method with a name or abstract that contains the word “report.” Use the Show » AdminTask » -commands filtering

mechanism to verify that the only commands that include “eport” (the “r” is omitted to avoid case-sensitive returns)
are those shown in Figure 21-3.

eporf
generateSecConfigReport |i|- The input field can be used to filter the commands to be
reportConfiginconsistencies shown.

reportConfiguredPorts

- Selecting a command will display its help text in this pane.

Figure 21-3. AdminTask commands containing “eport”

387

CHAPTER 21 © A SECURITY CONFIGURATION REPORT APPLICATION

Select the first option—generateSecConfigReport—and click on the top one-touch expansion icon on the
divider. You'll see an image similar to Figure 21-4.

WASX2006I: Detailed help for command: generateSecConfigReport

Description: Generates the Security Configurarion report.

Target object: Hone

Figure 21-4. AdminTask commands containing “eport”

The unfortunate thing about this help text is that it doesn’t tell you anything about the format of the report that
is produced. To do that, you need to execute the command and take a look at the output. Fortunately, this is really
easy to do with the wsadmin command. Because of the number of lines generated, I suggest that you use the wsadmin -c
command-line option to execute a single command and have the output redirected to a file. Listing 21-1 shows an
example of this wsadmin command.!

Listing 21-1. Sending the generateSecConfigReport to a File

wsadmin -conntype none -lang jython -c \
"print AdminTask.generateSecConfigReport()" >SecCfgRpt.txt

It doesn’t take too much effort to understand the format of the data produced by this AdminTask command.
The first few lines are shown in Figure 21-5. There are four columns of data on each line, and semicolons (;) delimit
the column data. The second line of text corresponds to the column headings on the table (the rows containing
Console Name and Security Configuration Name).

'The -1lang jython command-line option is needed only if you haven’t changed the default scripting language in the appropriat
wsadmin.properties file. The -conntype none option tells wsadmin to execute in local mode, so no connection is attempted
to a possibly inactive application server. It is important to remember that the command should appear on a single line.

The backslash\isn’t actually part of the command and should not be entered.

388

CHAPTER 21 © A SECURITY CONFIGURATION REPORT APPLICATION

DOMAIN ; Cell ; resourceName ; resourceType ;
Console Name ; Security Configuration Name ; Value ; Consocle Path Name ;

_Security Settings ; i H i
Active authentication mechanism ; activeAuthMechanism ; LTPA 1 ; ..

Figure 21-5. Example security report output

Each section heading row has a leading underscore (_) in front of the section heading (such as _Security
Settings). The rows that follow contain the values for each row in the table.?

First Attempt

Let’s see what it takes to process this information using the data format that was just discussed, and see how it looks.
Listing 21-2 shows the first (arguably quick and dirty) attempt at doing this.
Listing 21-2. SecConfigReport 01.py—Quick and Dirty Attempt

7|class SecConfigReport 01(java.lang.Runnable) :
8| def run(self) :

9| frame = JFrame(

10| 'SecConfigReport 01',

11] size = (300, 300),

12| locationRelativeTo = None,

13| defaultCloseOperation = JFrame.EXIT ON_CLOSE
14])

15| data = []

16| text = AdminTask. generateSecConflgReport()

17| for line in text.splitlines()[2:] :

18| data.append(

19| [info.strip() for info in line.split(';')]
20|)

21| frame.add(

22| JScrollPane(

23| JTable(data, ';;;;'.split(';"))

24)

25|

26| frame.pack()

27| frame.setVisible(1)

Figure 21-6 shows the output that is produced when this script is executed. The good news is that you don’t have
to invest too much time or effort into this application. The bad news is that this lack of effort shows.

’In fact, this information is how the reportSectionSize.py script processes the data to determine the number and sizes of the
report sections.

389

CHAPTER 21

["Security Setti...

A SECURITY CONFIGURATION REPORT APPLICATION

Active authenti...

activeAuthMec...

LTPA_1

Security > Glo...

iUser account ...

activeUserRe...

WiMUserRegi...

|Security > Glo...

Allow basica...

allowBasicAuth

true

|Security > Glo...

Application se...

|appEnabled

false

|Security > Glo...

|Authentication...

|cacheTimeout

600 seconds

|Security = Glo...

Default SSL s...

|defaultSSLSet..

.|SSLConfig_1

|Security = SS...

Dynamically u...

|dynamicalliyu...

true

Security > SS...

Administrative...

enabled

true

Security > Glo...

Restrict acces...

enforceFineGr...

false

Security > Glo...

Java 2 security

Warn if applic...

Use realm-qu...

enforceJavaz...
lissuePermiss...
|useDomainQ...

false
true
false

[Security > Glo...
[Security > Glo...
|Security > Glo...

Use the local ...

|uselLocalSec...

true

|Security = Glo...

_Authenticatio... |

[Security > Glo...

Authentication...

|authConfig

system.KRB5

Security = Glo...

Authentication...

authContextl...

com.ibm.ISec...

|Security > Glo...

Authentication...

authValidation...

system. KRB5

|Security = Glo...

Enable deleg...

enabledGssC...

true

|Security > Glo...

Kerberos conf.

_|krbSConfig

|Security > Glo...

Kerberos keyt...
Kerberos real...

krb5Keytab
krbSRealm

.. |krb5Spn

|Security > Glo...
|Security > Glo...
|Security = Glo...

. |simpleAuthCo...

system.KRB5

Security > Glo...

.. [timUserName

true

Security > Glo...

Figure 21-6. Output of SecConfigReport_01.py

From this output, you can see that each cell in the last column is empty. That’s a little strange, isn’t it? Based on
this information, I took another, closer look at the text returned by the AdminTask command and found that every line
ends with a semicolon, followed by a space (that’s “;”). So, you can take this into account and remove this extraneous
delimiting data in your subsequent attempts.

The other thing that this first attempt shows is that the time needed to process the text, although it wasn’t
insignificant, wasn’t exactly terrible, at least on the machine that I was using. You will need to decide if the data
processing should be performed on a separate thread, and if so, what the application should display while this

processing is occurring.

Second Attempt, Ignoring the Last Delimiter

This next attempt focuses on fixing those immediately obvious shortcomings. This requires two changes to the code.
Listing 21-3 shows these modifications.

Listing 21-3. SecConfigReport_02.py—Modified Lines

17| for line in text.splitlines()[2:]
18| data.append(

19|

20| info.strip() for info in
21| line[:-2].split(';')
22|]

23|)

390

CHAPTER 21 © A SECURITY CONFIGURATION REPORT APPLICATION

24| frame.add(

25| JScrollPane(

26| JTable(data, ';;;'.split(';'))
27|)

28|)

1. Instead of splitting each line of text using the semicolon delimiter, you simply need to
ignore the last two characters of each line. To understand this change, compare line 19
in Listing 21-2 with lines 19-22 in Listing 21-3. The only reason that this list is shown on
multiple lines in Listing 21-3 is to fit better within the book’s margins.

2. Since you are removing and ignoring the last delimiter from each line, you also need to

remove one of the semicolons in the second parameter of the JTable instantiation. This is
so the empty header array has the same number of columns as the data array parameter.

Figure 21-7 shows the resulting output of this application. Notice the empty last column that you saw in the first

attempt is now gone.

_Securiry Settings

Active authenticati...

activeAuthMechan...

LTPA_1

Security = Global ... [=

|User account repo...

activeUserReqgistry

WiMUserRegistry_1

Security > Global ...

Allow basic authe...

allowBasicAuth

true

Security > Global ...

Application security

appEnabled

false

Security > Global ...

|Authentication cac...

cacheTimeout

600 seconds

Security = Global ...

IllDefault SSL settin...

defaultSSLSettings

SSLConfig_1

Security » SSL ce...

Dynamically updat...

dynamicallyUpdat...

true

Security > SSL ce...

Administrative sec...

enabled

true

Security > Global ...

Restrict access to ...

enforceFineGrain...

Ifalse

Security > Global ...

Java 2 security

enforceJava2Sec...

[false

Security > Global ...

Warn if applicatio

Use realm-qualifi

ssuePermission...
useDomainQualifi..

tue
false

Security > Global ...
Security > Global ...

Use the local sec...

uselocalSecurity...

true

Security = Global ...

_Authentication m...

Security > Global ...

Authentication con...

authConfig

system.KRBS

Security = Global ...

Authentication con...

authContextimplC...

com.ibm.ISecurity...

Security > Global ...

Authentication vali...

authValidationCo...

system.KRB5

Security = Global ...

Enable delegation...

enabledGssCred...

true

Security > Global ...

Kerberos configur...

krbSConfig

Security > Global ...

Kerberos kevtab file

krb5SKeytab

Security > Global ...

Kerberos realm n...

krb5Realm

Security > Global ...

Kerberos senvice ...

krb5Spn

WAS/S{HOST}

Security = Global ...

Simple authentica...

simpleAuthConfig

system.KRB5

Security = Global ...

Trim Kerberos rea...

trimUserName

true

Security = Global ...

Figure 21-7. Initial output of SecConfigReport_02.py

CHAPTER 21

Adding a Table Model and Cell Renderer

If you test the application, it shouldn’t take long to figure out that, as discussed in Chapter 12, the default values used
by the JTable class may not be best fit for this application. For example, is there any reason that you would want
the user to be able to modify any of the table cells? Not if you want to create an application that can display security
configuration settings.

Another default setting that doesn’t work well here is the fact that the user can select multiple non-contiguous

A SECURITY CONFIGURATION REPORT APPLICATION

rows. Figure 21-8 shows this multiple selection issue at work.

[_Security Settings

{Active authenticati...

activeAuthMechan...

LTPA_1

Security = Global ... |=

User account repo...

activeUserRegistry

WiMUserRegistry_1

Security > Global ...

Allow basic authe...

allowBasicAuth

true

Security = Global ...

Application security

appEnabled

false

Security > Global ...

Authentication cac...

cacheTimeout

600 seconds

Security > Global ...

Default SSL settin...

defaultSSLSettings

SSLConfig_1

Security = SSL ce...

Dynamically updat...

dynamicallyUpdat...

true

Security > SSL ce...

Administrative sec...

enabled

true

Security > Global ...

Restrict access to ...

enforceFineGrain...

false

Security = Global ...

Java 2 security

enforceJava2Sec...

false

Security > Global ...

Warn if application...

issuePermission...

{true

Security > Global .

Use realm-qualifi...

luseDomainQualifi...

ffalse

Security > Global ...

Use the local sec...

uselLocalSecurity...

true

Security > Global ...

_Authentication m...

Security > Global ...

Authentication con...

authConfig

system.KRB5

Security = Global ...

Authentication con...

authContextimplC...

com.ibm.ISecurity...

Security > Global ...

Authentication vali...

authValidationCo...

system.KRB5

Security = Global ...

Enable delegation...

enabledGssCred...

true

Security > Global ...

Kerberos configur...

krbSConfig

Security > Global ...

Kerberos keytab file

krbSKeytab

Security = Global ...

[Kerberos realm n...

krb5Realm

Security > Global ...

Kerberos senvice ...

krb5Spn

WAS/S{HOST}

Security = Global ...

Simple authentica...

simpleAuthConfig

system.KRB5

Security = Global ...

Trim Kerberos rea...

trimUserName

true

Security > Global ...

Figure 21-8. Output of SecConfigReport 02.py showing selection issue

It's also not great that the sections are hard to distinguish from the rest of the data. Maybe you could add a cell
renderer to make these rows easier to find and see. Listing 21-4 shows the two classes that were added to this script for
the table model and cell renderer instances.

Listing 21-4. SecConfigReport_03.py—TableModel and Cell Renderer
12|class reportTableModel(DefaultTableModel) :

13| def _init (self, data, headings) :

14| DefaultTableModel. init (self, data, headings)
15| def isCellEditable(self, row, col) :

16| return 0

17| def getColumnClass(self, col) :

18| return String

392

CHAPTER 21 © A SECURITY CONFIGURATION REPORT APPLICATION

19|class reportRenderer(DefaultTableCellRenderer) :
20| def getTableCellRendererComponent(

21| self,

22| table, # JTable - table containing value
23| value, # Object - value being rendered
24| isSelected, # boolean - Is value selected?

25| hasFocus, # boolean - Does this cell have focus?
26| Tow, # int -Row# (0..N-1)

27| col # int -Col#(0..N-1)

28|) :

29| DTCR = DefaultTableCellRenderer

30| comp = DTCR.getTableCellRendererComponent(

31| self, table, value, isSelected, hasFocus, row, col
32|)

33| if value :

34| if table.getValueAt(row, 0).startswith(' ')

35| if col == 0 :

36| value = value[1:]

37| comp.setText('<html>%s" % value)

38| return comp

Figure 21-9 shows the effects of these changes. This is a real improvement. I'm not sure if displaying the section
row data in bold is good enough, but it does make it easier to locate these rows, doesn’t it?

ecumy Settings

Active authenticati...

activeAuthMechan...

LTPA_1

Security = Global ... |°

|User account repo...

activeUserReqgistry

WIMUserRegistry_1

Security > Global ...

Allow basic authe...

allowBasicAuth

true

Security = Global ...

Application security

appEnabled

false

Security > Global ...

|Authentication cac...

cacheTimeout

600 seconds

Security = Global ...

i Default SSL settin...

defaultSSLSettings

SSLConfig_1

Security » SSL ce...

Dynamically updat...

dynamicallyUpdat...

true

Security > SSL ce...

Administrative sec...

enabled

true

Security > Global ...

Restrict access to ...

enforceFineGrain...

false

Security > Global ...

Java 2 security

enforceJava2Sec...

Security > Global ...

Warn If applicatic
Use realm-qualifi...

lssuePermissio

useDomainQualifi.. fals

Security > Global ...
Security > Global ...

Use the local sec...

uselocalSecurity...

Security = Global ...

Authentication

Security > Global

Authentication con...

authConfig

system.KRBS

Security = Global ...

Authentication con...

authContextimpiC.

.. [com.ibm.ISecurity...

Security > Global ...

Authentication vali...

authValidationCo...

system.KRB5

Security = Global ...

Enable delegation...

enabledGssCred...

true

Security > Global ...

Kerberos configur...

krbSConfig

Security > Global ...

Kerberos keﬁa b file

krbSKeytab

Kerberos realm n...

krb5Realm

Security > Global ...

Kerberos senvice ...

krb5Spn

WAS/S{HOST}

Security = Global ...

Simple authentica...

simpleAuthConfig

system.KRB5

Security = Global ...

Trim Kerberos rea...

trimUserName

true

Figure 21-9. Output of SecConfigReport 03.py

Security = Global ...

393

CHAPTER 21 © A SECURITY CONFIGURATION REPORT APPLICATION

Using Color Instead of a Bold Font

Wait a minute, since you're using HTML to make the section rows bold, why don’t you just use HTML to add color
instead? Listing 21-5 shows the changes made to SecConfigReport_04.py to do just this.

Listing 21-5. SecConfigReport_04.py—HTML Coloring

33| html = '<html>%s'
34| if value :

35| if table.getValueAt(row, 0).startswith(' ')
36| if col == 0 :

37| value = value[1:]

38| comp.setText(html % value)

This should solve the problem, right? Well, not quite. Figure 21-10 shows that for empty cells the HTML coloring
has no effect.

.. E '-;"""'(@.’_E‘.‘.'sll gRer

|53>:|,unt_.-' Settings
Active authenticati... |activeAuthMechan... |LTPA_1 Security = Global ... |°
|User account repo...|activeUserRegistry |WIMUserRegistry_1|Security = Global ...
Allow basic authe... |allowBasicAuth true Security = Global ...
Application security |appEnabled false Security > Global ...
IA.uthenljcaticn cac... |cacheTimeout 600 seconds Security = Global ...
Default SSL settin... |defaultSSLSettings |[SSLConfig_1 Security » SSL ce...
Dynamically updat...|dynamicallyUpdat... true Security > SSL ce...
Administrative sec...|enabled true Security > Global ...
Restrict access to ... enforceFineGrain... |false Security > Global ...
Java 2 security enforceJava2Sec... [false Security > Global ...
Warn if application.../issuePermission... true Security > Global ...
Use realm-qualifi... jJuseDomainQualifi...|false Security > Global ...
Use the local sec... juselLocalSecurity... [true Security = Global ...
[Authentication |
Authentication con...|authConfig system.KRB5 Security = Global ...
Authentication con... \authContextimplC... |com.ibm.ISecurity... |Security > Global ...
Authentication vali... jauthValidationCo... |system KRB5 Security = Global ...
Enable delegation... lenabledGssCred... [true Security > Global ...
Kerberos configur... |krbSConfig Security > Global ...
Kerberos keytab file [krb5Keytab

Kerberos realmn... [krb5Realm Security = Global ...
Kerberos service ... krb5Spn WASIS{HOST} Security = Global ...
Simple authentica... |simpleAuthConfig |system.KRB5 Security > Global ...
Trim Kerberos rea... trimUserName true Security > Global ...

Figure 21-10. Output of SecConfigReport 04.py

394

CHAPTER 21 © A SECURITY CONFIGURATION REPORT APPLICATION

You can solve this problem by remembering that the JLabel component that’s used by the renderer also has color
properties. Don’t forget that the component is reused for every cell of the same type, so if you are going to change
the cell color for section row cells, you also have to do so for every other cell in the table. Listing 21-6 shows the cell
renderer class from SecConfigReport_05.py.

Listing 21-6. SecConfigReport_05.py—Revised Cell Renderer

20| class reportRenderer(DefaultTableCellRenderer) :
21| def _init_ (self) :

22| self.bg = self.fg = None

23| def getTableCellRendererComponent(

24| self,

25| table, # JTable - table containing value
26| value, # Object - value being rendered
27| isSelected, # boolean - Is value selected?
28| hasFocus, # boolean - Does this cell have focus?
29| Tow, # int -Row# (0..N-1)
30| col # int -Col#(0..N-1)
31|)

32| DTCR = DefaultTableCellRenderer

33| comp = DTCR.getTableCellRendererComponent (

34| self, table, value, isSelected, hasFocus, row, col
35])

36| if self.bg == self.fg :

37| self.bg = comp.getBackground()

38| self.fg = comp.getForeground()

39| if value :

40| if table.getValueAt(row, 0).startswith('_') :
41| comp. setBackground(Color.blue)

42| comp. setForeground(Color.white)

43| if col == 0 :

44| value = value[1:]

45| comp.setText('<html>%s' % value)

46| else :

47| comp.setBackground(self.bg)

48| comp.setForeground(self.fg)

49| return comp

What does this do for the application output? Figure 21-11 shows that this significantly improves the application’s
output.

395

CHAPTER 21 © A SECURITY CONFIGURATION REPORT APPLICATION

|| SecConfig

[Security Settings

Active authenticati...

activeAuthMechan...

LTPA_1

Security = Global ...

User account repo...

activeUserRegistry

WIMUserRegistry_1

Security > Global ...

Allow basic authe...

allowBasicAuth

true

Security = Global ...

Application security
Authentication cac...

appEnabled
cacheTimeout

false =
600 seconds

Security > Global ...
Security = Global ...

Default SSL settin...

defaultSSLSettings

SSLConfig_1

Security = SSL ce...

Dynamically updat...

dynamicallyUpdat...

true

Security > SSL ce...

Administrative sec...

enabled

true

Security > Global ...

Restrict access to ...
Java 2 security
Warn if application...
Use realm-qualifi...

enforceFineGrain...
enforceJava2Sec...
issuePermission...

useDomainQualifi...

false
false
true

false

Security > Global ...
Security = Global ...
Security > Global ...
Security > Global ...

Use the local sec...
Authentication
Authentication con...

uselocalSecurity...

authConfig

true

system.KRB5

Security = Global ...
Security > Global
Security = Global ...

Authentication con...

authContextimplC...

com.ibm.ISecurity...

Security > Global ...

Authentication vali...

authValidationCo...

system KRB5

Security = Global ...

Enable delegation...

enabledGssCred...

true

Security > Global ...

Kerberos configur...

krb5Config

Security = Global ...

Kerberos keytab file
Kerberos realmn...
Kerberos service ...
Simple authentica...

krb5Keytab
krbS5Realm
kro5Spn
simpleAuthConfig

WASIS{HOST}
system.KRB5

Security = Global ...
Security = Global ...
Security > Global ...
Security > Global ...

Trim Kerberos rea...

trimUserName

true

Security > Global ...

Figure 21-11. Output of SecConfigReport 05.py

Adjusting Column Widths

If you take another look at any of the preceding figures that show the output from any of the scripts, you should notice
that even though all of the tables are within scroll panes, only vertical scrollbars are visible. Why do you think that is?
Taking a closer look at the tables should give you a hint. The width of the table is fixed, and by default, each column

is allocated the same amount of horizontal space. When a value can’t be displayed in the available column space, the
value is truncated and ellipses appear.

Unfortunately, the table doesn’t have any column headings, so you can’t adjust the width of individual columns.
You can only maximize the application and hope that the screen on which the application is being displayed is wide
enough to allow all of the available information. This isn’t a good choice for developers. What you need to do is figure
how to deal with this and make some changes to the application so that the users can see all of the information
that exists.

In Chapter 20, you learned that you can use the renderer to deal with cells where the data was too wide for the
available space. Let’s take a closer look at the data that exists in each column to see if you can do the same kind of thing
with this application. You can write a quick script to tell you about the maximum number of characters in each column.
Note that the last column has a number of entries that contain the arrow, or greater than, symbol >. While you're
finding the width of each column, you can also count the maximum number of arrows in each column. Listing 21-7
shows the processReport routine from the columnInfo1l.py script; you can find it in the code\Chap_21 directory.

396

CHAPTER 21

Listing 21-7. The processReport Routine from the columnInfol.py Script

1|def columnInfo1() :

2|
3]
4]
5]
6]
7]
8]
9]
10|
11|
12|
13|
14|
15|
16|
17|
18|

widths = [0] * 5
arrows =[0] *5
report = AdminTask.generateSecConfigReport()
for line in report.splitlines()[2:] :
col =0
for cell in line.split(';') :
widths[col] = max(
len(cell.strip()),
widths[col]
)
arrows[col] = max(
cell.count('>'),
arrows|[col]
)
col += 1
print ' widths:', widths

print ' arrows:', arrows

A SECURITY CONFIGURATION REPORT APPLICATION

Figure 21-12 shows the results of using this script on the three most current versions of WebSphere Application

Server.

* WebSphere version 7.0
widths: [70, 56, 131, 128, 0]
arrows: [0, 0, 0, 4, 0]

* WebSphere version 8.0
widths: [83, 56, 131, 128, 0]
arrows: [0, 0, 0, 4, 0]

* WebSphere version 8.5
widths: [83, 55, 131, 128, 0]
arrows: [0, 0, 0, 4, 0]

Figure 21-12. Output of the columnInfol.py script

If you are going to have the cell renderer process the cell data and possibly use HTML to display the cell contents
on multiple lines, any routine that determines the preferred column width should use the same kind of processing to
more accurately determine the widest line in the column cells. Looking at the results in Figure 21-12, you’ll want to
take a closer look at the contents of third and fourth columns to reduce the width requirements for these columns.

Column Widths and Row Heights

The next iteration of the script, SecConfigReport_06.py, adds a routine to process the data to determine the
maximum width of each column. It also sets the height of each row based on the space required to display the data in
the available column width. Listings 21-8 and 21-9 show the setColumnWidths () method.

397

CHAPTER 21 © A SECURITY CONFIGURATION REPORT APPLICATION

Listing 21-8. Part 1 of the setColumnhidths(...) Method from SecConfigReport 06.py
88| def setColumnWidths(self, table) :

89| tem = table.getColumnModel() # Table Column Model
90| model = table.getModel() # access the table data
91| margin = tcm.getColumnMargin() # gap between columns
92| rows = model.getRowCount() # How many rows exist?
93| cols = tcm.getColumnCount() # How many columns exist?
94| labels = [

95| JLabel(font = plainFont),

96| JLabel(font = boldFont)

97|]

98| print ' Now Min Pre Max'

99| print '--------------- s it SEEE

100| metrics = [fmPlain, fmBold]

101 | tWidth = 0 # Table width

102 section = 0 # is this row a section?
103] sections = 0 # Number of sections
104 | for i in range(cols) : # 1 == column index

105 | col = tcm.getColumn(i)

106 | idx = col.getModelIndex()

107 | cWidth = 0 # Initial column width
108 | for row in range(rows) :

109 v0 = model.getValueAt(row, 0)

110 if vo.startswith(' ') :

111| section = 1

112| sections += 1

113] else :

114] section = 0

115] comp = labels[section]

116 fm = metrics[section] # FontMetric
117| r = table.getCellRenderer(row, i)

118| v = model.getValueAt(row, idx)

119 if v.startswith(' ') :

120] v =v[1:]

121] comp.setText(v)

122| chWidth = max(

123 cWidth,

124 comp.getPreferredSize().width

125]

One thing that might catch your eye when you look at Listing 21-8 is the code on lines 111 and 112. What's the
difference between the section and sections variables? The former is used to indicate when the current row is a
section header. So its value will be 0 or 1 to indicate this. If you search for occurrences of this variable, you will see
where it is used as an index to both the 1labels and metrics arrays (lines 115 and 116). The sections variable is used
to count the total number of sections processed in the report.

398

Listing 21-9. Part 2 of the setColumnhidths(...) Method from SecConfigReport 06.py

126 |
127|
128
129
130]
131
132|
133|
134|
135|
136
137|
138|
139
140|
141 |
142
143 |
144|
145|
146 |
147
148
149
150 |
151 |
152|
153 |
154 |
155]
156 |
157|
158
159|
160 |
161 |
162 |
163
164|

print '---------ooo--- e EEEE

CHAPTER 21 © A SECURITY CONFIGURATION REPORT APPLICATION

if cWidth > 0 :

col.setMinWidth(128 + margin)

col.setPreferredwidth(128 + margin)

col.setMaxWidth(cWidth + margin)

print 'Col: %d widths |%3d|%3d|%3d|%d" % (
1,
col.getWidth(),
col.getMinWidth(),
col.getPreferredWidth(),
col.getMaxWidth()

)
tWidth += col.getPreferredWidth()

ho = table.getRowHeight()
print 'rowHeight:', ho
sections /= cols

print '#Sections:', sections
for row in range(rows) :

lines = 1
for i in range(cols) :
col = tem.getColumn(i)
pre = col.getPreferredWidth()
idx = col.getModelIndex()
val = model.getValueAt(row, idx)
if not i :
section = val.startswith(' ')
fm = metrics[section] # FontMetric
lines = max(
lines, int(
round(fm.stringWidth(val) / pre) +1
)

table.setRowHeight(row, lines * ho)

table.setPreferredScrollableViewportSize(

)

Dimension(
tWidth,
sections * table.getRowHeight()

Figure 21-13 shows the output of SecConfigReport_06.py. Comparing this image with the one in Figure 21-11,
you can see that the most significant difference is the heights of the individual rows.

399

CHAPTER 21 © A SECURITY CONFIGURATION REPORT APPLICATION

E,k ecConfigRepol —" n .S [
' Security Settings -
Active authentication ... |activeAuthMechanism |[LTPA_1 Security > Global se...
!

User account reposit... iacti.erserRegistry WiIMUserRegistry_1 Security > Global se...
Allow basic authentic... [allowBasicAuth true Security > Global se...
Application security appEnabled false Security > Global se...
Authentication cache ...|cacheTimeout 600 seconds Security > Global se...
Default SSL setlings |defaultSSLSettings SSLConfig_1 Security > SSL certil...

Figure 21-13. Output of SecConfigReport _06.py

Adding a Frame Resize Listener

The next iteration of the script adds code to display the cell data (the width and height). Additionally, a new event
handler routine determines how the information is displayed when the frame is resized. Listing 21-10 contains the
source for this event handler.

Listing 21-10. The frameResized Method from SecConfigReport 07.py

82| def frameResized(self, ce) :

83| try :

84| table = self.table

85| model = table.getModel() # Access the table data
86| width = table.getParent().getExtentSize().getWidth()
87| pWidth = int(width) >> 2

88| tem = table.getColumnModel() # Table Column Model
89| margin = tcm.getColumnMargin() # gap between columns
90| cols = tcm.getColumnCount()

91| for ¢ in range(cols) :

92| col = tcm.getColumn(c)

93| w = min(col.getMaxWidth, pWidth)

94| col.setWidth(w)

95| col.setPreferredWidth(w)

96| height = table.getRowHeight()

97| for row in range(model.getRowCount()) :

98| table.setRowHeight(row, height)

99| table.repaint()

100 | except :

101| print '\nError: %s\nvalue: %s' % sys.exc_info()[:2]

400

CHAPTER 21

A SECURITY CONFIGURATION REPORT APPLICATION

What does this mean as far as the application output is concerned? Figure 21-14 shows the initial, default
rendering of the table and Figure 21-15 shows how the text changes when the frame, and therefore the table, are
widened.

{ Security Settings

Active authentication m
echanism

activeAuthMechanism |LTPA_1

|Security = Global secur]=|

lity = Authentication med
:namsms and expiratio
n

y

User account repositor

activeUserRegistry IWiMUserRegistry_1

|Security = Global secur
lity = User account repo

!snory

Allow basic authenticat
on

allowBasicAuth !Lrue

|Security > Global secur
[ity = Allow basic authen
[tication

Application security

|Security > Global secur|
|ity > Application securit
ly

Authentication cache ti
meout

Security > Global secur|
|ity > Authentication meg
|hanisms and expiratio
|n > Authentication expir
|ation

Default SSL settings

appEnabled [false
cacheTimeout |600 seconds
defaultSSLSettings SSLConfig_1

iSecunty = SSL certificat
|e and key managemen
t>Manage endpoint s
\curity configurations

|Security > SSL certificat] » |

Figure 21-14. Narrow output of SecConfigReport 07.py

Active authentication mech
anism

User account repository

Allow basic authentication

Application security

activeAuthMechanism LTPA_1

WIMUserRegistry_1

activeUserRegistry
allowBasicAuth true

appEnabled false

Security > Global security
> Authentication mechanis
ms and expiration
‘Security > Global security
> User account repository
Security » Global security
= Allow basic authenticatiof
n

Security > Global security
> Application security

Authentication cache time
out

cacheTimeout 600 seconds

Security = Global security
= Authentication mechanis
ms and expiration > Authe
ntication expiration

Default SSL seflings

Dynamically update run ti
me when SSL configuratio
n changes occur

defaultSSLSettings SSLConfig_1

dynamicallyUpdateSSLCo
" true

fig

Security = SSL certificate a
nd key management = Ma
nage endpoint security co
nfigurations)
Security > SSL certificate a
ind key management > Dyny
[amically update run time w
hen SSL configuration cha

nges occur

Figure 21-15. Wider output of SecConfigReport_07.py

401

CHAPTER 21

Notice how the cell contents are wrapped (especially in the first and last columns). Figure 21-15 shows what
happens to the cell contents when the frame is widened. It is important that you notice how the row heights are
adjusted based on how much vertical space is required to display the text.

A SECURITY CONFIGURATION REPORT APPLICATION

Fixing the Row Selection Colors

Unfortunately there is a problem with this iteration of the script. If you test it by selecting a row, you'll witness the
problem. There is no visual indication that a row has been selected. Fortunately, the changes required to fix this issue
are localized to the table cell renderer code. The most significant changes in the reportRenderer class are these:

e The constructor initializes some arrays to hold the background colors for both selected and

unselected rows.

e ThegetTableCellRendererComponent(...) method now:

e Saves the background and foreground colors for selected and unselected rows when they

are first encountered.

e Decides which background and foreground color to use based on whether a row is

selected and whether it is one of the header rows.

Figure 21-16 shows the sample output of the modified code. It can be found in the SecConfigReport_08.py
script file.

Security Settings

Active authentication m
echanism

User account repositor
¥

activeUserRegistry

activeAuthMechanism |LTPA_1

WiMUserRegistry_1

\hanisms and expiratio
n

ity = Authentication med

Security = Global secur|
ity = User account repo
sitory

Allow basic authenticat
on

allowBasicAuth

true

Security = Global secur|
ity = Allow basic authen|
tication

Application security

appEnabled

false

Security > Global secur
ity = Application securit
"

Authentication cache ti
meout

Default SSL settings

cacheTimeout

defaultSSLSettings

600 seconds

|ation

SSLConfig_1

Security > Global secur
ity > Authentication med
hanisms and expiratio

n = Authentication expir

Security = SSL certificat
e and key managemen
t > Manage endpoint s¢
curity configurations

Figure 21-16. Output of SecConfigReport _08.py

402

|Security > SSL certificat] » |

Security > Global secur| =

CHAPTER 21 © A SECURITY CONFIGURATION REPORT APPLICATION

Which Rows Are Visible?

The next iteration of the script, shown in SecConfigReport_09.py, adds a descendent of the ChangeListener class

to monitor changes in the viewport (which is a kind of JViewport?®), which is the parent of the JTable containing the
application information.* When the user views a different part of the table, the change listener event handler is called
and it prints some information about which rows of the table are visible. Listing 21-11 shows the rowFinder class from
this iteration of the script.

Listing 21-11. The rowFinder Class from SecConfigReport_09.py

88|class rowFinder(Changelistener) :
89| def _init (self, table) :

90| self.table = table

91| def stateChanged(self, ce) :

92| vPort = ce.getSource()

93| table = self.table

94| rect = vPort.getViewRect()

95| first = table.rowAtPoint(

96| Point(0, rect.y)

97|)

98| last = table.rowAtPoint(

99| Point(0, rect.y + rect.height - 1)
100 |)

101 | print 'rows: %d..%d isValid: %d' % (
102 first,

103] last,

104 | vPort.isValid()

105|)

I was hoping that the result of calling the isValid() method could be used to determine which rows are visible.
Unfortunately, the result returned from this method wasn’t quite what I expected. When it returns true, you can easily
determine which rows are visible using code similar to Listing 21-11. However, the first and last rows that are visible
include partial rows. So you can’t use the result of this method to easily determine which complete table rows are
visible. To do that requires additional computation.

If you look again at the output in Figure 21-17, you'll see that the routine is invoked multiple times. For most of
these the result of the isValid() method is false. Eventually it will return a value of true, which is when you can
determine which rows are partially visible. If you look back at Figure 21-16, you can see that rows 0 through 6 are fully
visible, but only a little bit of row 7 is shown.

*See http://docs.oracle.com/javase/7/docs/api/javax/swing/IViewport.html.
*You can display the value returned by vPort.getClass(),which tells you that the variable refers to an instance of javax.swing.
JViewport.

403

http://docs.oracle.com/javase/7/docs/api/javax/swing/JViewport.html

CHAPTER 21 © A SECURITY CONFIGURATION REPORT APPLICATION

rows: 0..23 isUalid: ©
rows: 0..23 isUalid: ©
rows: 0..7 isUalid: ©
rows: 0..23 isUalid: ©
rows: 0..23 isUalid: 0
rows: 0..7 isVUalid: 0
rows: 0..7 isUalid: ©
rows: 0..7 isUalid: ©
rows: 0..7 isUalid: 1

Figure 21-17. Sample output of the rowFinder stateChanged(...) method

Table Alignment in the Viewport

The previous iteration shows that sometimes you try something and realize that it isn’t going to work out as well

as you had hoped. That’s one of the really wonderful things about software. Unlike something like woodworking,
software is infinitely malleable. You can change it and then change it right back if you don’t like the change! In this
next iteration, SecConfigReport_10.py, you'll remove the rowFinder class and add the upDownAction class shown in
Listing 21-12.

Listing 21-12. Part 1 of the upDownAction Class from SecConfigReport_10.py

25|class upDownAction(AbstractAction) :
26| def _init (self, table, keyName) :

27| self.table = table
28| ks = KeyStroke.getKeyStroke(keyName)
29| self.up = keyName.find('UP') > -1
30| self.action = action = table.getInputMap(
31| JComponent . WHEN_ANCESTOR_OF FOCUSED_COMPONENT
32|).get(ks)
33| self.original = table.getActionMap().get(action)
34| self.table.getActionMap().put(action, self)

| cee
181 keys = 'UP,DOWN,PAGE_UP,PAGE_DOWN,ctrl END'.split(',')
182| for key in keys :
183 | upDownAction(table, key)

Don’t be confused by the indentation in Listing 21-12. The last three lines (181-183) are not part of the
upDownAction class constructor. They are, in fact, from the run(. . .) method of the SecConfigReport class. However,
itis much easier to include them in this listing than it is to create one just for those three lines. Additionally, since
these lines are the only reference to this class, it makes sense to show them here to allow for a more complete
understanding of how the class is instantiated.

What does this class do? The hint can be found in lines 181-183. It is here that the class is used. Note how the
class constructor uses the table instance and the name of a keystroke. In lines 26-34, you can see how the class
constructor uses the table to determine the action currently associated with the specified keystroke. This action is
saved in an instance variable (called self.original) and replaces it with the action being constructed.

404

CHAPTER 21 © A SECURITY CONFIGURATION REPORT APPLICATION

Listing 21-13 shows the remainder of the upDownAction class, specifically the actionPerformed(...) method,
which is invoked when a key-related event is generated. When the user presses any of these keys, the newly
constructed Action instance is invoked. It uses the original keystroke action, and then adjusts the viewport to better
align the table within the available space.

Without this alignment, the top and/or bottom of the viewport may be somewhere in the middle of the row. So,
the top of the viewport could be bisecting the row, and the bottom of the viewport might be showing a similar fraction
of the row at the bottom. The role of the upDownAction class is to adjust the viewport to align with the bottom of the
last visible row when the keystroke used is moving down. When the direction is up, the alignment of the viewport will
be with the top row visible row.

Why is this necessary? The simple answer is that when the table rows have variable heights, the default
movement actions don’t align the table rows nicely in the viewport. So, this is all related to the fact that the
information you want to display doesn'’t fit well in the available horizontal space.

Listing 21-13. Part 2 of the upDownAction Class from SecConfigReport_10.py

35| def actionPerformed(self, actionEvent) :

36| table = self.table

37| self.original.actionPerformed(actionEvent)

38| if self.action == 'selectlLastRow'

39| self.original.actionPerformed(actionEvent)
40| vPort = table.getParent()

41| rect = vPort.getViewRect()

42| row = table.getSelectedRow()

43| if row > -1 :

44| cRect = table.getCellRect(row, 0, 1)

45| rBot = rect.y + rect.height # Bottom of viewPort
46| cBot = cRect.y + cRect.height # Bottom of cell
47| if rect.y <= cRect.y and rBot >= cBot :

48| return

49| if self.up :

50| first = table.rowAtPoint(Point(0, rect.y))
51| cell = table.getCellRect(first, 0, 1)

52| diff = rect.y - cell.y

53| else :

54| if row > -1 :

55| cell = table.getCellRect(row, 0, 1)

56| else :

57| last = table.rowAtPoint(

58| Point(

59| 0,

60| rect.y + rect.height - 1

61])

62|)

405

CHAPTER 21 © A SECURITY CONFIGURATION REPORT APPLICATION

63| cell = table.getCellRect(last, 0, 1)
64| bot = rect.y + rect.height

65| end = cell.y + cell.height

66| diff = end - bot

67| point = vPort.getViewPosition()

68| vPort.setViewPosition(

69| Point(point.x, point.y + diff)

70|)

Table Row Filtering

In this next iteration, called SecConfigReport_11.py, you add menu items and row filtering. What'’s row filtering?
Well, you've already seen that the application can identify which rows are section heading rows.

When I was first thinking about this application, I wondered whether there was any easy way to make only
specific sections of the report visible. I thought that maybe I could have each section on a CardLayout® (see Chapter 5)
or on a JTabbedPane.® The problem with using a tabbed pane is that there are too many sections. An application with
two dozen tabs wouldn’t look very good, would it? If you used a CardLayout, you would need some way to specify
which section should be displayed.

That’s when I remembered row filtering. Row filtering enables your application to decide which table rows to
display. What does that mean for the output?

Figure 21-18 shows some sample output of this iteration of the application. The first image shows the initial
application display. Here you can see the new Show and Help menu items. The second image shows that the Show
menu has three sub-menu items, called Collapse All, Expand All, and Exit. The last image shows the result of selecting
Collapse All—the row filtering hides the non-section heading table rows.

’See http://docs.oracle.com/javase/7/docs/api/java/awt/CardLayout.html.
See http://docs.oracle.com/javase/7/docs/api/javax/swing/JITabbedPane.html.

406

http://docs.oracle.com/javase/7/docs/api/java/awt/CardLayout.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/JTabbedPane.html

Show Help

Securnty Setings

Active aumenication m
echanism

Alow basic authanticatl
on

hon securty

Authenticabon cache &
meout

Cetault SSL settngs

User account repositor)

echanism

nellserRegitry

lowBasicAuth

appEnabled

ca

defaumIsL:

LTPA_1

Config_1

serRegistry_1

Security > Gb secur
Authanbcalion me:
s and expiratio

ity » Ghodal secur
Jger account repo

n = Authenticabon expir

ation

ity = SSL Catifica
¢ and key managemen|
1> Manage endpoin 58

Expand all
Exit

dion m

n cache &

meout

aciveduthMachanism

actveliserfegistry

cacheTimeout

500 seconds

serftagistry_

1

secur

* Useraccount repo

¥ MANAZEMEN|
encpeint 5o

Authentication mecha

alion

Apphcabon login
guration

rity > External authoriz
aton proviers
Security >

rity > RMUIOP Secunily]
Security certific
ate and k agem
ent > Manage endpoind
security configuration

Figure 21-18. Output of SecConfigReport _11.py

CHAPTER 21

A SECURITY CONFIGURATION REPORT APPLICATION

407

CHAPTER 21 © A SECURITY CONFIGURATION REPORT APPLICATION

Listing 21-14 shows the changes to SecConfigReport_11.py to make this happen. One of the interesting things
is how simple the descendent of the abstract RowFilter class’is. In fact, as you can see in lines 98-100, the class
needs only three lines. However, in order to do this, you need to add two methods to the table model class called
reportTable Model—specifically the setVisible() and isVisible() methods shown in lines 109-112. These
methods use a new class attribute—the self.visible array—to initialize the constructor on line 104. This array has a
Boolean value indicating whether the corresponding row is visible.

Listing 21-14. Row Filtering Changes in SecConfigReport_11.py

98|class sectionFilter(RowFilter) :

99| def include(self, entry) :

100 | return entry.getModel().isVisible(entry.getIdentifier())
101|class reportTableModel(DefaultTableModel) :

102| def _init_(self, data, headings) :

103 | DefaultTableModel. init (self, data, headings)
104 | self.visible = [1] * len(data)
|
109 def isVisible(self, row) :
110 return self.visible[row]
111| def setVisible(self, row, trueFalse) :
112 self.visible[row] = trueFalse

|
189 | def collapse(self, event) :

190 table = self.table
191 model = table.getModel()
192] for row in range(model.getRowCount()) :
193 | model.setVisible(
194 | Tow,
195 | model.getValueAt(row, 0).startswith('_')
196 |)
197 table.getRowSorter().setRowFilter(
198 sectionFilter()
199)
| -
202 def expand(self, event) :
203 table = self.table
204 | model = table.getModel()
205 for row in range(model.getRowCount()) :
206 model.setVisible(row, 1)
207 table.getRowSorter().setRowFilter(
208 sectionFilter()
209 |)

The initial implementations of the event handler routines invoked by the menu items collapse the sections by
setting the non-section rows visible entry to 0 (false) and expand the sections by setting every row’s visible entry to
1 (true).

"See http://docs.oracle.com/javase/7/docs/api/javax/swing/RowFilter.html.

408

http://docs.oracle.com/javase/7/docs/api/javax/swing/RowFilter.html

CHAPTER 21 © A SECURITY CONFIGURATION REPORT APPLICATION

Finding Text

The next iteration, called SecConfigReport 12.py, adds another menu item so the users can specify text to be found
and highlighted. This works in conjunction with row filtering so that the user can collapse all rows, find the text of
interest, and make those rows visible as well. Figure 21-19 shows the sample output of this new feature.

Show Help

piration ent > Manage certifica g
te expiration |
Security > Global secu
System login configur rity > Java Authenticat
ation ion and Authorization

Service

Security > Global secu
Custom properties rity > Custom properti

es

Security = SSL certificat]

e and key managemen

com.ibm.security.useFl t = Use the United Stat

PS false es Federal Information

Processing Standard (
WS algorithms
Security > Global secu
rity > Web security
Administrative users aAdministrative Role Na Administrative Role Va

Web Authentication

Console Path Name
nd groups me lue

CORBA Naming Conso/CORBA Naming Role NJCORBA Naming Role V/CORBA Naming Conso i
le Name ame alue le Path

onsole Name for CeriCertificate Alias (Key Certificate Expi :;c::,;yk: Sil;ﬁ:rl:::
ificate Management |stores) o ent / !

Figure 21-19. Output of SecConfigReport _12.py

|EH

The output shown in Figure 21-19 was produced using the following steps:
1. Choose Show » Collapse All to hide all of the non-section heading rows.
2. Choose Show » Find. Type FIPS in the input field and press the Enter key.
3. Press Ctrl-End to reposition the view to the bottom of the table.®?

Listings 21-15 and 21-16 show the majority of the code changes required to add this capability to the script. One
choice that made this change particularly easy was to add the findText attribute to the reportTableModel class.
With this attribute and some getter and setter methods (getFindText(...) and setFindText(...)), the row filter
class (sectionFilter) can easily determine what, if any, text needs to be located in the row to ensure that it will be
displayed.

8Note that a different color scheme indicates when a section row is selected (as you can see on the last row of the table).

409

CHAPTER 21 © A SECURITY CONFIGURATION REPORT APPLICATION

Listing 21-15. Part 1 of the Changes Made to SecConfigReport_12.py

45|hilightHTML = '%s"

99|class sectionFilter(RowFilter) :

100 def include(self, entry) :

101 | model = entry.getModel()

102| result = model.isVisible(entry.getIdentifier())

103 | findText = model.getFindText()

104 | if findText :

105 for col in range(entry.getValueCount()) :

106 | if entry.getStringValue(col).find(findText) > -
107 result = 1

108 | break

109 | return result

110|class reportTableModel(DefaultTableModel) :
111| def _init (self, data, headings) :

|
114| self.findText = None

| cee
121| def getFindText(self) :

122| return self.findText
123] def setFindText(self, text) :
124 self.findText = text

The table cell renderer, shown in Listing 21-16 can use the same getter method to see if the text needs to be
matched and highlighted in the cell. The hilightHTML variable shown on line 189 refers to a global format string that
is used to highlight the specified text using a simple HTML font tag. The variable assignment is on line 45 in
Listing 21-15.

Listing 21-16. Part 2 of the Changes Made to SecConfigReport_12.py

127|class reportRenderer(DefaultTableCellRenderer) :

181 result = result.replace(

182| >, '8gt;’

183]).replace('\n', '
')

184 findText = table.getModel().getFindText()
185] if findText :

186 | if result.find(findText) > -1 :
187| result = result.replace(

188 findText,

189 | hilightHTML % findText

190

191 value = '<html>' + result.replace(' ', ' ')

|--.

410

CHAPTER 21 © A SECURITY CONFIGURATION REPORT APPLICATION

194|class SecConfigReport 12(java.lang.Runnable) :

[...
232 def Find(self, event) :

233 result = JOptionPane.showInputDialog(

234| self.frame, # parentComponent
235 'Text to be found:' # message text
236

237 self.table.getModel().setFindText(result)

238 self.table.getRowSorter().setRowFilter(

239 sectionFilter()

240|)

This code simply locates instances of the user-specified text and replaces that text with the HTML that highlights
the text for the user.

Section Visibility

If you use this iteration for a short time, you will find that being able to collapse and expand all sections is nice, but not
quite good enough. Wouldn't it be great if you could show or hide individual sections simply by double-clicking on
the section row?

Figure 21-20 shows a sample image from the latest iteration of the application, SecConfigReport_ 13.py. Init, you
can see that all sections have been collapsed, and the view has been scrolled about half way down the table until the
section named Management Scope is visible at the top of the viewport. The image shows the output after finding the
rows containing scopeName; three additional rows are now visible.

[show Help
[Security > SSL certific| |
ate and key managem
Management scope ent > Manage endpoint

security configuration
s
(cell:RAGibson-W520 |Security = Global secur
MNam scopeName i)
Scope Name . |Celio1 |ity > Scope Name
(cell)RAGIDsON-W520 Security > Global secur
Scope Name CellD1:(node)RAGibs O e

[n-ws20CellManagero1 ~ Scope Name

(cell)RAGIbson-W520
Cell01:(node)RAGibSO
n-W520Node01

Security > Global secur
ity = Scope Name

Scope Name

Security > SSL certific 8
Key set groups ate and key managem
ent > Key set groups
Security > SSL certific
Key sets ate and key managem
ent > Key sets

Security > SSL certific
ate and key managem
ent > Manage certifica
te expiration

Security > SSL certific |53

Schedules

Figure 21-20. Output of SecConfigReport _13.py

411

CHAPTER 21 © A SECURITY CONFIGURATION REPORT APPLICATION

Listings 21-16 through 21-20 show the code changes that provide this capability. Most of the changes are to the
reportTableModel class in order to add attributes and methods to identify the sections in the table.

Let’s start by taking a look at the modified sectionFilter class, which is shown in Listing 21-17. The only
changes made here are on lines 101 through 103. The role of this method is to return true (1) when the row specified
by the entry argument should be visible. In previous versions of this class, the row would be visible only if the whole
section was visible or if the user specified some text that exists in the current row.

Listing 21-17. Modified sectionFilter Class from SecConfigReport_13.py

98|class sectionFilter(RowFilter) :
99| def include(self, entry) :

100 model = entry.getModel()
101 | Tow = entry.getIdentifier()
102 | section = model.getSectionNumber(row)
103] result = model.isRowVisible(row) or
| model.isSectionVisible(section)
104 | findText = model.getFindText()
105 | if findText :
106 | for col in range(entry.getValueCount()) :
107 if entry.getStringValue(col).find(findText) > -1 :
108 result = 1
109 break
110] return result

Changes to the include(. . .) method (see line 103) assume that one section is visible. You can see this by collapsing
all of the sections (choose Show » Collapse All) and then double-clicking on one of the visible section headings.
Listing 21-18. The reportTableModel Class from SecConfigReport_13.py

111|class reportTableModel(DefaultTableModel) :
112| def _init (self, data, headings) :

113| DefaultTableModel. init (self, data, headings)
114 | L = len(data)

115] self.visible = 1] *L

116 self.sectionNumber = [0] * L

117] self.sections = 0

118 section = -1

119 for i in range(L) :

120 row = data[i]

121 if row[0].startswith(' ') :

122| self.sections += 1

123] section += 1

124 self.sectionNumber[i] = section

125 self.sectionVisible = [1] * self.sections
126 | self.findText = None

127 def getColumnClass(self, col) :

128 return String

129 def getFindText(self) :

130 return self.findText

131| def getSectionCount(self) :

132| return self.sections

412

CHAPTER 21 © A SECURITY CONFIGURATION REPORT APPLICATION

133 def getSectionNumber(self, row) :

134| try :

135 | result = self.sectionNumber|[row]

136| except :

137 result = -1

138 return result

139 def isCellEditable(self, row, col) :

140| return 0

141 | def isSectionVisible(self, sectionNum) :

142 | try :

143 result = self.sectionVisible[sectionNum]
144 | except :

145 | result = 0

146 | return result

147 | def isRowVisible(self, row) :

148 return self.visible[row]

149 def setFindText(self, text) :

150 self.findText = text

151 | def setSectionVisible(self, sectionNum, trueFalse) :
152 self.sectionVisible[sectionNum] = trueFalse
153 def setRowVisible(self, row, trueFalse) :

154] self.visible[row] = trueFalse

The changes to the sectionFilter class are not the only ones you need to make; you also have to make some
significant changes to the reportTableModel class. This revised class is shown in Listing 21-18. You should be able
to see that most of the changes to this class deal with identifying sections and being able to determine the section
number for each row in the data.

You also need to add a mouse listener event handler in the application class (SecConfigReport) to detect when
the user double-clicks on the table. The mouseClicked event handler method shown in Listing 21-19 is added to each
row of the table. It is important to note, however, that it only changes the visibility of a section by checking that the row
that was double-clicked is a section heading (see line 241).

Listing 21-19. The clicker(...) Method in SecConfigReport 13.py

217|class SecConfigReport 13(java.lang.Runnable) :

| .es
234| def clicker(self, event) :

235 if event.getClickCount() == 2 :

236 table = event.getSource()

237 model = table.getModel()

238 view = row = table.getSelectedRow()

239 if view > -1 :

240| row = table.convertRowIndexToModel(view)
241 if model.getValueAt(row, 0).startswith(' ') :
242 sNum = model.getSectionNumber(row)
243 model.setSectionVisible(

244 | sNum,

245 not model.isSectionVisible(sNum)
246 |)

413

CHAPTER 21 © A SECURITY CONFIGURATION REPORT APPLICATION

247 else :

248 | sNum = -1

249 else :

250 sNum = -1

251 table.getRowSorter().setRowFilter(
252 sectionFilter()

253)

The other significant changes are made to the Find(...) method so that it takes the table model section
attributes and methods into account. The modified Find(. ..) method is shown in Listing 21-20.

Listing 21-20. Modified Find(...) Method from SecConfigReport 13.py
279| def Find(self, event) :

280 table = self.table

281 cols = table.getColumnModel().getColumnCount()
282 model = table.getModel()

283 | result = JOptionPane.showInputDialog(

284 self.frame, # parentComponent
285 | 'Text to be found:' # message text
286 |)

287| model.setFindText(result)

288 for row in range(model.getRowCount()) :

289 visible = model.getValueAt(

290 Tow,

291 0

292|).startswith('_")

293 if result and not visible :

294 | for col in range(cols) :

295 val = model.getValueAt(row, col)
296 | if val.find(result) > -1 :

297 visible = 1

298| break

299 model.setRowVisible(row, visible)

300 table.getRowSorter().setRowFilter(

301 sectionFilter()

302|)

Does It Work?

One thing that you should have learned by this point is that you always need to test your applications to verify that
they act as you expect. To see if the double-click event handler is doing its job, you can use the Show » Collapse All
menu selections, and then double-click the visible section heading rows to see if the associated rows become visible.
This test appears to validate the expectations. What else can you test? Does it work correctly when you double-click a
section heading row after expanding the rows? See Figure 21-21.

414

CHAPTER 21 © A SECURITY CONFIGURATION REPORT APPLICATION

[show Help
Security Settings

Security = Global secur| =
Active gulhentlca!mn M|, ctiveAuthMechanism [LTPA 1 ity >.Authenl!catlon_‘| meg
echanism - hanisms and expiratio

n

Security = Global secur
activeUserRegistry LocalOSUserRegistry |ity » User account repo

Isﬂory

Security = Global secur
allowBasicAuth true ity = Allow basic authen

[tication

Security = Global secur
Application security appEnabled true ity = Application securit

y

‘Secunl',' > Global secur

ity = Authentication med
cacheTimeout 600 seconds hanisms and expiratio
n = Authentication expir
ation
Security > SSL certificat
e and key managemen
t = Manage endpoint sg
curity configurations
Security > SSL certificatj = |

User account repositor
¥

Allow basic authenticat
on

Authentication cache ti
meout

Default SSL settings |defaultSSLSettings SSLConfig_1

Figure 21-21. Testing SecConfigReport 13.py

Unfortunately, no, it doesn’t. What’s going on? Why doesn't it work correctly? Take another look at the
include(...) method in the sectionFilter class in Listing 21-17. Under what conditions will a row be visible?

Line 103 shows that in order for a row to be hidden, both isRowVisible(...) and isSectionVisible(...) must
return false.

What happens to the mouseClicked event handler method when a section heading row is the target of the event?
Which of these model properties is affected? Only the sectionVisible property is affected, so the visible property
of each row in the section is unaffected. That’s the problem right there. To fix this, the event handler has to change the
visible property for each row in the section.

Listing 21-21 shows the modified clicker(...) method event handler. Note how the target row is verified as a
section header row. Its new visibility is determined (line 243), set (line 244), and then used to assign the visibility of
each row within the section (lines 245 through 249).

Listing 21-21. Modified clicker() Method from SecConfigReport 14.py
234 def clicker(self, event) :

235] if event.getClickCount() == 2 :

236 table = event.getSource()

237 model = table.getModel()

238 view = row = table.getSelectedRow()

239 | if view » -1 :

240 row = table.convertRowIndexToModel(view)

241 if model.getValueAt(row, 0).startswith(' ') :
242 sNum = model.getSectionNumber(row)

243 vis = not model.isSectionVisible(sNum)

244 | model.setSectionVisible(sNum, vis)

415

CHAPTER 21 © A SECURITY CONFIGURATION REPORT APPLICATION

245]| for row in range(row + 1, model.getRowCount()) :
246 | if model.getSectionNumber(row) == sNum :
247 model.setRowVisible(row, vis)

248 else :

249 break

250] else :

251 sNum = -1

252 else :

253 sNum = -1

254 table.getRowSorter().setRowFilter(

255] sectionFilter()

256)

Please keep in mind that the event handler code should be done quickly. You don’t want the routine to delay the
update. If you test this version of the application, you'll see that the event handler doesn’t take too long to complete.

Progress Indicator

In relation to the possibility of a delay in the event handler, I wondered also about the delay that was occurring when
the script begins to execute. A bit of testing shows that there is a non-trivial amount of time required to execute the
AdminTask.generateSecConfigReport() method. See for yourself. Start an interactive wsadmin session® and, when
the command prompt is displayed, execute the generateSecConfigReport() method.! Take note of how long it takes
to complete.

Based on this improved understanding of what was occurring, I tried a few things to display some kind of
progress indicator to show the user that something was happening. Unfortunately, I didn’t have much luck. My
attempt to use a SwingWorker task to perform the AdminTask method call and display an indeterminate progress bar in
a dialog box didn’t work for some reason. I decided to use a different approach.

Listing 21-22 shows the changes made to this next iteration of the script. As you can see in lines 66-70, a trivial
SwingWorker class performs the call to the AdminTask method on a background thread and makes the result available
via a simple getter method.

Listing 21-22. Modified run(...) Method from SecConfigReport_15.py

66|class reportTask(SwingWorker) :

67| def doInBackground(self) :

68| self.results = AdminTask.generateSecConfigReport(
|).splitlines()[2:]

69| def getResults(self) :

70| return self.results

‘wsadmin -conntype none -lang jython
text = AdminTask.generateSecConfigReport()

416

CHAPTER 21 © A SECURITY CONFIGURATION REPORT APPLICATION

229|class SecConfigReport 15(java.lang.Runnable) :

[...
364 | def run(self) :

365 try :

366 | task = reportTask()

367| task.execute()

368 | chars = r'-\|/'

369 char =0

370| while not task.isDone() :

371| print '\b%s\b' % chars[char],
372| sleep(0.25)

373 char = (char + 1) % len(chars)
374| print '\b \b',

375] info = task.getResults()

376| except :

377| print '\nError: %s\nvalue: %s' % sys.exc_info()[:2]
378| sys.exit()

[...

Lines 366 and 367 show how this task instance is created and executed. You need to save a reference to the
task instance object in order to call its getResults () method once the task is complete." Lines 368-373 display a
trivial character-oriented indicator to show that the AdminTask method call has not yet completed. Once the task is
complete, its results are retrieved, and the application can get on with its purpose.

Is this application perfect? Absolutely not. As indicated earlier, it is merely a proof of concept (PoC). If you wanted
to enhance it and use it in a more permanent arrangement, you could base those decisions on what you can see and
do with this script. You could also use it to test possible enhancements or improvements.

Summary

The purpose of this chapter is twofold. First it is intended to show how easily you can turn a report into an interactive
graphical user application. It is also intended to show that by taking small steps you can more easily verify that each
iteration of the script works as it should. If it isn’t, you can more easily determine the source of the problem and
correct it.wsadmin

'"Note the use of the isDone() method on line 370, which is used to determination when the background task is complete.

417

CHAPTER 22

WASports: A WebSphere Port
Application

One of the first topics that grabbed my imagination when I started thinking about graphical wsadmin scripts was the
possibility of displaying and managing all of the TCP/IP port numbers being used by a WebSphere Application Server
cell. Trying to use the administration console to view the port numbers being used by all of the servers in a cell can be
frustrating and tedious. I wanted an iterative graphical application that can be used to quickly and easily understand
which application servers exist in the cell, and use a tree structure to show the hierarchical relationship between these
servers. Additionally I wanted to be able to show the port numbers being used by each of these servers. This chapter
shows how to build this application using the same type of iterative approach used previously.

Using the Administration Console

What does it take to use the Administration console to view the port numbers currently being used by a managed
application server? The following steps are needed to view and change just one TCP/IP port number for an existing
application server using the administrative console.

1. Ifthe Deployment Manager is active, skip to Step 3.

2. Use the startManager command to start the Deployment Manager.

(o

Use a browser to access the Administration console associated with the Deployment
Manager. Enter the appropriate username and password to view the desired information.

Select and expand the Servers section in the left frame.
Select and expand the Server Types section.

Select the WebSphere Application Servers link.

Select the appropriate server link (such as server1).

Expand the Ports section under the Communications heading.

© ®° N o g

Use the Details button or the Ports link to show a table of the named endpoints and the
associated port number values used by the specified application server.

10. Select the desired endpoint name to be modified, such as BOOTSTRAP_ADDRESS.

11. Modify the Port input field to identify the new port number value.

419

CHAPTER 22 © WASPORTS: A WEBSPHERE PORT APPLICATION

12. Select the Apply or OK button.
13. Select the Save link to update the master configuration.

14. After all the required changes have been made, stop and restart the server to use the
modified port numbers.

Figure 22-1 shows a simple example of a table of the port numbers being used by a single application server.
This corresponds to the kind of table that is the result of performing Step 8.

B Ports
Port Name Port
BOOTSTRAP_ADDRESS 2810
SOAP_CONNECTOR_ADDRESS 8881
ORE_LISTENER_ADDRESS 9102

SAS_SSL_SERVERAUTH_LISTENER_ADDRESS 9409
CSIV2_SSL_SERVERAUTH_LISTENER_ADDRESS | 9408
CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRESS | 9407

WC_adminhost 9062
WC_defaulthost 9081
. DCS_UNICAST_ADDRESS 9354
WC_adminhost_secure 9045
WC_defaulthost_secure 5444
SIP_DEFAULTHOST 5063
SIP_DEFAULTHOST_SECURE 5062
SIB_ENDPOINT_ADDRESS 7278
SIE_ENDPOINT_SECURE_ADDRESS 7287
SIE_MQ_ENDPOINT_ADDRESS 99559
SIB_MQ_ENDPOINT_SECURE_ADDRESS 5579
IPC_CONNECTOR_ADDRESS 9634

Figure 22-1. Sample list of application server port settings

If you view and modify the port numbers being used by the Deployment Manager or the node agents, you need
to start by selecting and expanding the System Administration section instead of performing Steps 4 and 5. All this is
used to show the number of steps needed to view and modify the port numbers being used by an application server
using the administration console.

The AdminTask.listServerPorts() Method

Using the WAShelp. py script from Chapter 20, you can search for any scripting object methods that identify the ports
being used by a server. Figure 22-2 shows what happens when you search for AdninTask methods containing the word
“Ports” anywhere in the method name.

420

CHAPTER 22 © WASPORTS: A WEBSPHERE PORT APPLICATION

Ports
listApplicationPorts
istServerPorts
reportConfiguredPorts

WASX2006I: Detailed help for command: listServerPorts
Descriptien: Displays a list of ports that is used by a

parcicular se » Damsd

endpoint, and hoat and port values,

*Target object: The name of the server.

Argumenta:
nodelame - The name of the server node.

Steps:
None

Figure 22-2. AdminTask methods with “Ports” in the name

The listServerPorts(...) method looks really promising. Let’s see what it produces for the dmgr server.! The
result is a string list identifying the port numbers configured for the specified application server. Unfortunately, the
result of calling this method isn’t as useful as you might hope it would be. Listing 22-1 shows some sample output
from this method. Imagine the processing required to use this information. Few people would think the processing
required to parse this output worth the effort. This is especially true since the information is more easily available
using other techniques.

Listing 22-1. Sample AdminTask.listServerPorts(...) Output

wsadmin>print AdminTask.listServerPorts('dmgr')
[[IPC_CONNECTOR_ADDRESS [[[host ${LOCALHOST NAME}] [node RAGibson
-W520CellManagero1] [server dmgr] [port 9632]]]]]
[[CSIV2_SSL_SERVERAUTH_LISTENER_ADDRESS [[[host RAGibson-W520.ral
eigh.ibm.com] [node RAGibson-W520CellManagero1] [server dmgr] [po
rt 9403] 111 1]

[[WC_adminhost [[[host *] [node RAGibson-W520CellManagero1] [serv
er dmgr] [port 9060] 1]1]]

[[DataPowerMgr inbound secure [[[host *] [node RAGibson-W520CellM
anagero1] [server dmgr] [port 5555]]]] 1]

[[DCS_UNICAST ADDRESS [[[host *] [node RAGibson-W520CellManageroi
] [server dmgr] [port 9352] 1]] 1]

[[BOOTSTRAP_ADDRESS [[[host RAGibson-W520.raleigh.ibm.com] [node
RAGibson-W520CellManager01] [server dmgr] [port 9809]]]] 1]
[[SAS_SSL SERVERAUTH_LISTENER ADDRESS [[[host RAGibson-W520.ralei
gh.ibm.com] [node RAGibson-W520CellManageroi] [server dmgr] [port
9401] 111]

'Note that if the server name is not unique, a qualifying -nodename parameter must be specified.

421

http://eigh.ibm.com/
http://ragibson-w520.raleigh.ibm.com/
http://gh.ibm.com/

CHAPTER 22 © WASPORTS: A WEBSPHERE PORT APPLICATION

[[SOAP_CONNECTOR_ADDRESS [[[host RAGibson-W520.raleigh.ibm.com] [
node RAGibson-W520CellManagero1] [server dmgr] [port 8879] 1]] 1]
[[CELL_DISCOVERY_ADDRESS [[[host RAGibson-W520.raleigh.ibm.com] [
node RAGibson-W520CellManagero1] [server dmgr] [port 7277] 11]]
[[ORB_LISTENER_ADDRESS [[[host RAGibson-W520.raleigh.ibm.com] [no
de RAGibson-W520CellManagero1] [server dmgr] [port 9100] 1]]
[[CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRESS [[[host RAGibson-W520.ral
eigh.ibm.com] [node RAGibson-W520CellManagero1] [server dmgr] [po
rt 9402] 1171 1

[[WC_adminhost_secure [[[host *] [node RAGibson-W520CellManager01
] [server dmgr] [port 9043]]]]]

wsadmin>

The AdminTask.reportConfiguredPorts() Method

The other interesting AdninTask method listed by the WAShelp script is the reportConfiguredPorts(...) method.
Figure 22-3 shows the help text for this method.

Poits | : e P e Y Nt e DU L Cey
listApplicationPorts # prin

listServerPorts ===

reportConfiguredPorts

WASKE00ET :

Descriptier
cell

Target cbject: HNone
Arguments:

node - Limit cthe report to a node
Stepa:

None

Figure 22-3. Help text for AdninTask.reportConfiguredPorts(...) method

The description of this method is quite promising. The real question though is what kind of output is generated
by this method? Listing 22-2 shows the initial output generated by a call to the
AdminTask.reportConfiguredPorts(...) method.

422

http://ragibson-w520.raleigh.ibm.com/
http://ragibson-w520.raleigh.ibm.com/
http://ragibson-w520.raleigh.ibm.com/
http://eigh.ibm.com/

CHAPTER 22 © WASPORTS: A WEBSPHERE PORT APPLICATION

Listing 22-2. Initial Output of reportConfiguredPorts(...) Method Call

wsadmin>print AdminTask.reportConfiguredPorts()
Ports configured in cell RAGibson-W520Cello1l

Node RAGibson-W520CellManagerol / Server dmgr
RAGibson-W520.raleigh.ibm.com:7277 CELL_DISCOVERY_ADDRESS
RAGibson-W520.raleigh.ibm.com:9809 BOOTSTRAP_ADDRESS
${LOCALHOST NAME}:9632 IPC_CONNECTOR ADDRESS
RAGibson-W520.raleigh.ibm.com:8879 SOAP_CONNECTOR_ADDRESS
RAGibson-W520.raleigh.ibm.com:9100 ORB_LISTENER_ADDRESS
RAGibson-W520.raleigh.ibm.com:9401 SAS_SSL_SERVERAUTH_LIST...
RAGibson-W520.raleigh.ibm.com:9402 CSIV2_SSL_MUTUALAUTH_LI...
RAGibson-W520.raleigh.ibm.com:9403 CSIV2_SSL_SERVERAUTH LI...
*:9060 WC_adminhost
*:9043 WC_adminhost_secure
*:9352 DCS_UNICAST_ADDRESS
*:5555 DataPowerMgr inbound_secure

This certainly seems to be much easier to read and understand from the human perspective. However, some
challenges remain if you intend to process this kind of result in your scripts.

Using AdminConfig Methods

In Chapter 11, you saw how easy it was to produce a tree hierarchy representing the cell.” Let’s see what it takes to
produce information about the nodes, servers, and their configured ports using a non-graphical script.
Listing 22-3 shows most of the main routine needed to do just that.?

Listing 22-3. ListPorts Routine from the ListPorts.py Script’

42|def ListPorts() :
43| gAV = getAttributeValue # For line shortening purposes
44| names = {}

0

45| nodes =

46| for node in AdminConfig.list('Node').splitlines() :
47| nodes += 1

48| names['nodeName'] = gAV(node, 'name')

49| names[‘profName'] = profileName(node)

50| SEs = AdminConfig.list('ServerEntry', node)

51| servers = 0

For example, see the code\Chap_11\Tree4.py sample script.
3The complete script can be found in the code\Chap_22\ListPorts.py file.
“Remember that many of the scripts listed in the book are written to fit within the available horizontal space.

423

http://ragibson-w520.raleigh.ibm.com/
http://ragibson-w520.raleigh.ibm.com/
http://ragibson-w520.raleigh.ibm.com/
http://ragibson-w520.raleigh.ibm.com/
http://ragibson-w520.raleigh.ibm.com/
http://ragibson-w520.raleigh.ibm.com/
http://ragibson-w520.raleigh.ibm.com/

CHAPTER 22 © WASPORTS: A WEBSPHERE PORT APPLICATION

52| for se in SEs.splitlines() :

53] servers += 1

54 names['servName'] = gAV(se, 'serverName')
55| names[‘hosts'] = ', '.join(getHostnames(se))
56| print formatString % names

57| data = []

58| NEPs = AdminConfig.list('NamedEndPoint', se)
59| for nep in NEPs.splitlines() :

60| name = gAV(nep, 'endPointName')

61| epIld = gAV(nep, 'endPoint')

62| port = gAV(epId, 'port')

63| data.append((port, name))

64| data.sort(lambda a, b : cmp(a[1], b[2]))
65| for port, name in data :

66| print '%5d | %s' % (port, name)

67| print

What does the output of this script look like? Listing 22-4 shows the initial portion of the output generated when
this script was executed using a WebSphere Application Server V 7.0 environment on my local machine.

Listing 22-4. Sample Output of the ListPorts.py Script

Profile name: Dmgro1

Host name(s): RAGibson-W520.raleigh.ibm.com
Node name: RAGibson-W520CellManager01

Server name: dmgr

EndPoint Name

BOOTSTRAP_ADDRESS

|
+
|
7277 | CELL_DISCOVERY_ADDRESS
9402 | CSIV2_SSL _MUTUALAUTH_LISTENER ADDRESS
9403 | CSIV2 SSL_SERVERAUTH_LISTENER ADDRESS
9352 | DCS_UNICAST ADDRESS
5555 | DataPowerMgr inbound_secure
9632 | IPC_CONNECTOR_ADDRESS
9100 | ORB_LISTENER ADDRESS
9401 | SAS_SSL_SERVERAUTH LISTENER ADDRESS

8879 | SOAP_CONNECTOR_ADDRESS
9060 | WC_adminhost
9043 | WC_adminhost_secure

The output produced by this simple script has some nice properties including the ease of reading and

understanding the information. It also corresponds closely with the way in which information is displayed on the
Administration console, as shown in Figure 22-1.

424

http://ragibson-w520.raleigh.ibm.com/

CHAPTER 22 © WASPORTS: A WEBSPHERE PORT APPLICATION

Step 0: Creating a WASports Application

Let’s start by creating a simple empty frame application. I choose to call this step 0 because using an existing script
template is so trivial. The code in Listing 22-5 should be very familiar to you by now, so I won’t bother to elaborate.
The only part that might not be familiar to you is in lines 18 and 19, where a JDesktopPane instance is created and
used as the frame content pane. This is discussed in more detail in Chapter 19.

Listing 22-5. WASports Class from the WASports_00.py Script

6|class WASports 00(java.lang.Runnable) :
7] def run(self) :

8| screenSize = Toolkit.getDefaultToolkit().getScreenSize()
9| w = screenSize.width >> 1 # Use 1/2 screen width
10| h = screenSize.height >> 1 # and 1/2 screen height
11| x = (screenSize.width - w) >> 1 # Top left corner

12| y = (screenSize.height - h) >> 1

13| frame = self.frame = JFrame(

14| "WASports 00",

15| bounds = (x, y, w, h),

16| defaultCloseOperation = JFrame.EXIT_ON_CLOSE

17|)

18| desktop = JDesktopPane()

19| frame.setContentPane(desktop)

20| frame.setVisible(1)

Step 1: Adding an Empty Internal Frame

Next you need to add a little code to create an empty internal frame to the application desktop. Listing 22-6 shows how
this is done in the next iteration of the WASports script (in WASports_01.py).

Listing 22-6. Defining and Using an InternalFrame Class

9|class InternalFrame(JInternalFrame) :

10| def init (self, title, size, location, closable = 0) :
11| JInternalFrame. init (

12| self,

13| title,

14| resizable =1,

15| closable = closable,
16| maximizable = 1,

17| iconifiable = 1,

18] size = size

19|)

20| self.setlocation(location)
21| self.setVisible(1)

425

CHAPTER 22 © WASPORTS: A WEBSPHERE PORT APPLICATION

22|class WASports 01(java.lang.Runnable) :
23| def run(self) :
|

34| desktop = JDesktopPane()

35| internal = InternalFrame(

36| 'InternalFrame’,

37| size = Dimension(w >> 1, h »> 1),
38| location = Point(5, 5)

39)

40| desktop.add(internal)

41| frame.setContentPane(desktop)

42| frame.setVisible(1)

Step 2: Adding an Empty JSplitPane to the Internal Frame

Next you need to add an empty split pane to the internal frame. Listing 22-7 shows how easily this can be done. The
code from this listing is from the WASports_02.py script file. The statement in line 30 is used to position the divider in
the middle of the internal frame.

Listing 22-7.]SplitPane Code Added to WASports_02.py

11|class InternalFrame(JInternalFrame) :

12| def _init (self, title, size, location, closable = 0) :
| .

22| self.setlocation(location)

23| pane = self.add(

24| JSplitPane(

25| JSplitPane.HORIZONTAL_SPLIT,

26| JLlabel('Left'),

27| JLabel('Right')

28|)

29|)

30| pane.setDividerlLocation(size.width >> 1)

31| self.setVisible(1)

The JLabel instances in this example are simple placeholders for other kinds of Swing components.

426

CHAPTER 22 © WASPORTS: A WEBSPHERE PORT APPLICATION

Step 3: Adding a Cell Hierarchy Tree to the JSplitPane

Listing 22-8 shows that very little new code is needed in the WASports 03.py script file in order to create a cell
hierarchy tree on the left portion of the split pane. The cellTree(...) method (lines 40-54) contains code very similar
to Listing 22-3.

Listing 22-8. JTree Code Added to WASports_03.py

15|class InternalFrame(JInternalFrame) :

16| def _init (self, title, size, location, closable = 0) :
| ..

26| self.setlocation(location)

27| tree = self.cellTree()

28] tree.getSelectionModel().setSelectionMode(

29| TreeSelectionModel.SINGLE_TREE_SELECTION

30|

31| pane = self.add(

32| ISplitPane(

33| JSplitPane.HORIZONTAL_SPLIT,

34| JScrollPane(tree),

35| JLabel('Right')

36/)

37|)

38| pane.setDividerlocation(size.width >> 1)

39| self.setVisible(1)

40| def cellTree(self) :

41| cell = AdminConfig.list('Cell')

42| root = DefaultMutableTreeNode(self.getName(cell))

43| for node in AdminConfig.list('Node').splitlines() :

44| here = DefaultMutableTreeNode(

45| self.getName(node)

46|)

47| servers = AdminConfig.list('Server', node)

48| for server in servers.splitlines() :

49| leaf = DefaultMutableTreeNode(

50| self.getName(server)

51|

52| here.add(leaf)

53] root.add(here)

54 return JTree(root)

55| def getName(self, configld) :

56| return AdminConfig.showAttribute(configId, 'name’)

It's probably about time to see some sample output of this iteration of the WASports script. Figure 22-4 shows that
the WASports application is starting to take shape. The application frame and internal frame can be moved, resized,
and so on, as the user desires. It also limits the number of tree nodes that may be selected at one time.

427

CHAPTER 22 © WASPORTS: A WEBSPHERE PORT APPLICATION

[internalframe : : : : o B

] RAGibson-W520Cell01

9 (=] RAGibson-W520CellManager01
D dmagr

¢ (=] RAGibson-W520Node02
D nodeagent

[lservert

“Right

Figure 22-4. Sample output of the WASports_03.py script

Step 4: Updating the Right Pane

The next step is to update the other side of the split pane based on the user selections of the tree nodes. This requires a
bit more work. In fact, if you simply look at the “lines of code” (ignoring comments and blank lines), this version of the
WASports script is about half as large as the previous one. However, it still isn’t too much of a difference because it only
requires about 125 lines of code to provide this kind of functionality. What “big changes” are needed to do this?

Listing 22-9 shows the cel1TSL class that is used by the script to react to tree selection events.

Listing 22-9. The cellTSL Class from WASports_04.py°

16|class cellTSL(TreeSelectionlListener) :

17| def _init (self, tree, pane, name2cfgld) :
18| self.tree = tree

19| self.pane = pane

20| self.name2cfgld = name2cfgld

21| def valueChanged(self, tse) :

22| format = (

23| '<html> node: %s
" +
24| "isLeaf:8nbsp;%s
parent:8nbsp;%s’
25|)

26| pane = self.pane

27| node = self.tree.getlastSelectedPathComponent()
28] if node :

29| text = format % (

30| node,

31| ['No', 'Yes'][node.isLeaf()],
32| node.getParent()

33|)

SWhere TSL is an acronym for TreeSelectionListener.

428

CHAPTER 22 © WASPORTS: A WEBSPHERE PORT APPLICATION

34| if node.isleaf() :

35| key = (str(node.getParent()), str(node))
36| else :

37| key = node.toString()

38| if self.name2cfgld.has _key(key) :

39| text += '

%s' % self.name2cfgld[key]
40| else :

41| text += "

 key missing: %s' % key

42| else :

43| text = 'Nothing selected’

44| pane.setText(text)

When a cellTSL object is instantiated, the caller must provide references to:
¢ The]Tree instance being monitored
e The pane being updated
e Adictionary containing information to be used to update the pane

The first two parameters are likely to be obvious, but the last is less likely to be so. This dictionary is used in
lines 38 and 39 simply to demonstrate how the selection can be used to retrieve the associated configuration ID from
the dictionary. For this example, this configuration ID is part of the information that is displayed in the right pane
when a tree node is selected.

Listing 22-10. Tree and Split Pane Creation Code from WASports_04.py

56| self.setlocation(location)

57| tree, self.name2cfgld = self.cellTree()
58| tree.getSelectionModel().setSelectionMode(
59| TreeSelectionModel.SINGLE _TREE_SELECTION
60|)

61| self.status = JLabel('Right')

62| tree.addTreeSelectionListener(

63| cellTsL(

64| tree,

65| self.status,

66| self.name2cfgId

67|)

68

69| pane = self.add(

70| JSplitPane(

71| ISplitPane.HORIZONTAL SPLIT,

72| JScrollPane(tree),

73] JScrollPane(self.status)

74|)

75|)

429

CHAPTER 22 © WASPORTS: A WEBSPHERE PORT APPLICATION

Listing 22-10 shows the modification to the WASports_04.py script to instantiate the TreeSelectionlListener
for the cell hierarchy tree. It’s important to note that the constructor call requires a dictionary as the third argument.
Listing 22-11 shows the modifications that were made to the cel1Tree() method in order to build and return this
dictionary. It is important to note that the dictionary index is simple for non-leaf tree nodes (the root and all of the
nodes corresponding to WebSphere node names). It is only the leaf nodes that use a tuple as an index. Why is this?
Because the leaf nodes correspond to the individual application servers in the cell, the names of which do not have to
be unique. The server names only have to be unique within a node. The dictionary entries for the individual servers
use a tuple composed of the node name and the server name (see line 93).

Listing 22-11. Modified cellTree() Method
78| def cellTree(self) :

79| cell = AdminConfig.list('Cell')

80| cellName = self.getName(cell)

81| root = DefaultMutableTreeNode(cellName)

82| result = { cellName : cell }

83| for node in AdminConfig.list('Node').splitlines() :
84| nodeName = self.getName(node)

85| here = DefaultMutableTreeNode(

86| nodeName

87|

88| result[nodeName] = node

89| servers = AdminConfig.list('Server', node)
90| for server in servers.splitlines() :

91| name = self.getName(server)

92| leaf = DefaultMutableTreeNode(name)
93| result[(nodeName, name)] = server
94| here.add(leaf)

95| root.add(here)

96| return JTree(root), result

What does this mean for the application? Figure 22-5 shows how the right pane is updated based on user
selections on the tree in the left pane. The second image shows the result of selecting a server. Note how the bottom
line of the right pane is the configuration ID for the selected server.

430

CHAPTER 22 © WASPORTS: A WEBSPHERE PORT APPLICATION

D InternalFrame g =)
=] RAGIbson-W520Cel01
% [RAGIbson-W520CellManager01
) dmgr
§ [RAGibson-W520Node02
[} nodeagent

[servert]

Nothing selected

[internalFrame s’ @
] RAGIbson-WS520Cel01
%] RAGiDson-W520CeliManager01

[y dmgr
¢ =] RAGIDSON-W520Node02 - .
node: server
[nogeagent sLeat: Yes
[[senert parent: RAGibson.W520Node02

serveri(cells/RAGIbson-W520Cell01/n|

4 :ru

Figure 22-5. Sample output of the WASpoxrts_04.py script

Step 5: Displaying Cell and Node Details

A reasonable next step is to see what you can do to improve the information displayed in the right panel when the
cell and node (non-leaf) tree items are selected. Figure 22-6 has some sample output from the next iteration of this
script. It shows the different kinds of information displayed depending on the various types of tree nodes that can
be selected. The first shows what is displayed when the cell node is selected, the second shows the slightly different
information displayed when a WebSphere node is selected, and the last shows a minimum amount of information
when a server entry is selected.

431

CHAPTER 22 = WASPORTS: A WEBSPHERE PORT APPLICATION

[internalfFrame

I3 RAGIbson-w520Celi01] :
¢ [RAGibson-W520CellManager01 | :
D dmar :
¢] RAGIbson-W520Node02
[nodeagent
D server1

Cell: RAGibson-W520Cell(l

Home: C:\IBM\WebSphere\AppServer70
Version: 7.0.0.27
Profile: Dmgr01

] internalFrame

RAGibson-W520Cell01 :
¢ [RAGibson-W520CellManager01 |
[[mar] |
¢ [CJ RAGibson-W520Node02
D nodeagent
D serveri

‘|Parent: RAGibson-W520CellManager(01
Node: dmgr

Figure 22-6. Sample output of the WASports_05.py script

Utility Routines

At first glance, it might appear simple to determine the values being displayed in the images in Figure 22-6.
Unfortunately, it takes a bit more effort and code than you might imagine. For example, Listing 22-12 includes the
utility routines needed to obtain some of this information.

Listing 22-12. Part 1 of the WASports_05. py Utility Routines

39|def findScopedTypes(Type, value, scope = None, attr = None) :
40| if not attr :

41| attr = 'name’

42| return [

43| x for x in AdminConfig.list(Type, scope).splitlines()
44| if getAttributeValue(x, attr) == value

45|]

432

46|def getAttributeValue(cfgld, attr) :

47|

return AdminConfig.showAttribute(cfgld, attr)

48|def getIPaddresses(hostnames) :

49|
50|
51|
52|
53]
54|
55|
56|
57|

result = []
for hostname in hostnames :
try :

addr = gethostbyname(hostname)
if addr not in result :
result.extend(addr.split(',"'))
except :
pass
return result

58|def getHostnames(nodeName, serverName) :

59|
60|
61|
62|
63|
64|
65|
66|
67|
68|
69|
70|
71|
72|
73|
74|
75|
76
77|
78|
79|
80|
81|

exclude = [
ke
'localhost’,
"${LOCALHOST_NAME}"',
'232.133.104.73",
'ffo1::1'

]

result = []
node = findScopedTypes('Node', nodeName)[0]
server = findScopedTypes(
'ServerEntry’,
serverName,
node,
'serverName'
) o]
NEPs = AdminConfig.list('NamedEndPoint', server)
for nep in NEPs.splitlines() :
epld = getAttributeValue(nep, 'endPoint')
host = getAttributeValue(epId, 'host')
if host not in exclude :
result.append(host)
exclude.append(host)
return result

routines use WebSphere specific objects and attribute values.

CHAPTER 22 © WASPORTS: A WEBSPHERE PORT APPLICATION

Table 22-1 describes each of the routines found in Listing 22-12. It is interesting to see how much of these

433

CHAPTER 22 © WASPORTS: A WEBSPHERE PORT APPLICATION

Table 22-1. Part 1 of the WASports_05. py Utility Routines, Explained

Lines Description

39-45 The findScopedTypes(...) routine is used to return a list of configuration IDs for configuration objects of
the specified Type that have a particular attribute value.

46-47 The getAttributeValue(...) routine is simply a technique used to shorten lines that would normally call
the Adninconfig.showAttribute(...) method.

48-57 The getIPaddresses(. ..) routine returns a list IP addresses for the specified hostname.

58-81 The getHostnames(. . .) routine returns a list of unique hostnames referenced by the endPoint
configuration objects on the specified server.

Note: Since server names are only guaranteed to be unique within a node, the node name also needs to be
provided.

Listing 22-13 contains some additional utility routines, all of which have names beginning with “WAS” to indicate
how specific they are to WebSphere Application Server product information. In fact, most of them use the WebSphere
product variables in order to determine the value to be returned.

Listing 22-13. Part 2 of the WASports_05. py Utility Routines

82|def WASversion(id) :
83| if AdminConfig.getObjectType(id) == 'Cell’

84| nodeName = System.getProperty('local.node’)
85| else :

86| nodeName = getAttributeValue(id, 'name’)
87| return AdminTask.getNodeBaseProductVersion(

88| '[-nodeName %s]' % nodeName

89)

90|def WASprofileName(id) :
91| result = WASvarLookup(id, 'USER_INSTALL ROOT')

92| if result :
93| result = result.split(os.sep)[-1]
94| return result

95|def WAShome(id) :

96| return WASvarLookup(id, 'WAS_INSTALL ROOT')

97|def WASvarLookup(id, name) :

98| VSE = AdminConfig.list('VariableSubstitutionEntry', id)
99| for var in VSE.splitlines () :

100| if getAttributeValue(var, 'symbolicName') == name :
101 result = getAttributeValue(var, 'value')

102| break

103 | else :

104 | result = None

105] return result

434

CHAPTER 22 © WASPORTS: A WEBSPHERE PORT APPLICATION

Table 22-2 provides a description of each of these routines.

Table 22-2. Part 2 of the WASports_05.py Utility Routines, Explained

Lines Description

82-89 The WASversion(...) routine is called when a tree node that corresponds to the cell or a WebSphere
node is selected. A string is returned that identifies the product version of the cell or WebSphere node.

90-94 The WASprofileName(...) routine determines and returns the name of the WebSphere profile
associated with the specified configuration ID.

95-96 The WAShome(. . .) routine determines and returns the WebSphere installation directory.

97-105 The WASvarLookup(. . .) routine determines the value of the specified WebSphere environment
variable.

New Classes for WASports_05

Listing 22-14 shows the revised and simplified ce11TSL class that includes the actions to be taken when tree selection
events occur. The most significant change is related to the last parameter specified on the constructor, which has
changed from a dictionary to a cel1Info object.

Listing 22-14. The WASports_05.py Revised cellTSL Class

106|class cellTSL(TreeSelectionlListener) :

107| def init (self, tree, pane, data) :

108 self.tree = tree

109 | self.pane = pane

110 self.data = data

111 def valueChanged(self, tse) :

112| pane = self.pane

113] node = self.tree.getlastSelectedPathComponent()
114] if node :

115| if node.islLeaf() :

116 | text = leafFormatString % (

117| node.getParent(),

118| node

119])

120| else :

121 text = self.data.getInfoValue(node.toString())
122| else :

123| text = '<html>
Nothing selected"
124 pane.setText(text)

Listing 22-15 shows the cellInfo class that is instantiated by the cel1Tree method (not shown) and that’s used
by the TreeSelectionListener class shown in Listing 22-14.

435

CHAPTER 22 © WASPORTS: A WEBSPHERE PORT APPLICATION

Listing 22-15. The WASports_05.py Inner cellInfo Class

209 class celllnfo :

210 def _init (self) :

211 self.names = {} # Dict[name] -> configld
212 self.info = {} # Dict[name] -> node info
213 def getNames(self) :

214 | return self.names

215] def setNames(self, names) :

216 self.names = names

217 def addInfovalue(self, index, value) :

218 self.info[index] = '<html>"' + (

219 value.replace('&', '&').replace('<',
220 '&1t;").replace('>', '>').replace(' ',
221| "8nbsp; ').replace('\n', '
')

222

223] def getInfoValue(self, index) :

224 return self.info[index]

Step 6: Displaying Server Port Number Information

The next logical step is to add code to display information about the selected server in the right side of the split pane.
Let’s take a quick look at the result of these changes. Figure 22-7 shows the initial attempt of displaying the table of
port numbers and their associated named endpoints. Even though it isn’t perfect, it does show that you're going in the

right direction.

[*] internaiFrame

¢~ (£ RAGibson-W520CellManager01 5555|DataPower...
7277|CELL_DIS..

dmar T .
EG_EI PP 8879/SOAP_CO..
-] RAGibson-W odel 9043[WC_admin...
[nodeagent 9060[WC_admin...
[} servert 9100/ORB_LIST...

9352|DCS_UNIC..
9401/SAS_SSL_.
9402/CSIV2_SS..
9403|CSIV2_SS...
9632]IPC_CONN...
9809 BOOTSTR...

Figure 22-7. Sample output of the WASports_06.py script

[~ RAGibson-W520Cell01 Poi# EndPoint N...

To add this functionality to this iteration of the script, start by recognizing the possible value of the
firstNamedConfigType(...) routine, shown in Listing 22-16. It can be used to simplify calls elsewhere in the script.
It will return the first configuration ID matching the specified values or None.

436

CHAPTER 22 © WASPORTS: A WEBSPHERE PORT APPLICATION

Listing 22-16. New Utility Routine for WASports_06.py

53|def firstNamedConfigType(

54 Type, value, scope = None, attr = None

55]) :

56| items = findScopedTypes(Type, value, scope, attr)
57] if len(items) :

58| result = items[0]
59| else :

60| result = None

61| return result

Listing 22-17 shows the modified TreeSelectionListener class this is now used to display the appropriate
information about the selected tree item, including the JTable instance that is returned by the call to the
getPortTable(...) method that starts on line 135.

Listing 22-17. Modified cel1TSL (TreeSelectionListener) Class

122|class cellTSL(TreeSelectionlListener) :

123 def _init (self, tree, pane, data) :

124 self.tree = tree

125| self.pane = pane # Reference to splitpane
126 self.data = data

127 def valueChanged(self, tse) :

128 pane = self.pane

129| loc = pane.getDividerLocation()

130 node = self.tree.getlastSelectedPathComponent()
131 if node :

132| if node.islLeaf() :

133 pane.setRightComponent (

134| JScrollPane(

135 | self.data.getPortTable(

136 | (

137 str(node.getParent()),
138 str(node)

139)

140)

141|)

142 |)

143 | else :

144 | pane.setRightComponent (

145 | JScrollPane(

146 | JLabel(

147 | self.data.getInfoValue(str(node)),
148 | font = MONOFONT

149)

150)

151)

437

CHAPTER 22 © WASPORTS: A WEBSPHERE PORT APPLICATION

152 else :

153 pane.setRightComponent (

154 | JScrollPane(

155 JLabel(

156 | "<html>
Nothing selected",
157| font = MONOFONT

158)

159)

160 |)

161 pane.setDividerLocation(loc)

A new PortLookupTask class, shown in Listing 22-18, was created to perform the necessary calls to the
AdminConfig scripting object in order to create a JTable instance of the port numbers and associated named
endpoints (shown on lines 267- 270). When the task finishes, the data object, which is an instance of the cel1Info
class, is populated with the appropriate server port table data.

Listing 22-18. Part 1 of the New PortLookupTask Class

246|class PortLookupTask(SwingWorker) :
247| lock = threading.Lock()
248| def _init_(

249 self,

250 nodeName,

251 | serverName,

252 data

253|)

254 | self.nodeName = nodeName

255] self.servName = serverName

256 self.data = data

257| SwingWorker. init (self)

258 def doInBackground(self) :

259 self.lock.acquire()

260 try :

261 pDict = self.getPorts(self.nodeName, self.servName)
262 | ports = pDict.keys()

263 ports.sort(lambda x,y: cmp(int(x), int(y)))
264 | result = []

265 | for port in ports :

266 | result.append([port, pDict[port]])

267 | table = JTable(

268 PortTableModel(result),

269 | autoResizeMode = JTable.AUTO RESIZE_OFF

270|)

271 table.getTableHeader().setReorderingAllowed(0)
272 self.data.addPortTable(

273| (self.nodeName, self.servName),

274| table

275|)

276 | except :

277| print '\nError: %s\nvalue: %s' % sys.exc_info()[:2]
278 self.lock.release()

438

CHAPTER 22 © WASPORTS: A WEBSPHERE PORT APPLICATION

The remainder of this class is shown in Listing 22-19. Remember that the doInBackground(. . .) method will call
the done(.. . .) method when it is complete. In this case, this method doesn’t have to do any additional processing so
it only contains the pass statement. The method is left as a placeholder to remind you to consider if additional actions
need to be performed.

Listing 22-19. Part 2 of the New PortLookupTask Class
279 def done(self) :

280| pass

281 def getPorts(self, nodeName, serverName) :
282 scope = firstNamedConfigType('Node', nodeName)
283 | serverEntry = firstNamedConfigType(

284 'ServerEntry"',

285] serverName,

286 | scope,

287| 'serverName'

288

289 result = {}

290 if serverEntry :

291 nEPs = AdminConfig.list(

292 'NamedEndPoint',

293 serverEntry

294|)

295 for namedEndPoint in nEPs.splitlines() :
296 Name = getAttributeValue(

297 namedEndPoint,

298] "endPointName’

299)

300 epld = getAttributeValue(

301 namedEndPoint,

302 "endPoint’

303 |)

304| port = getAttributevalue(epId, 'port')
305 result[port] = Name

306 return result

Listing 22-20 shows the PortTableModel class used to hold the data for each server in the cell. This table
model class isn’t quite complete, but it is a reasonable start. It identifies the data type for each of the two columns,
it identifies only the first column (column 0) as editable, and it includes range checking on the user-supplied port
number values.

Listing 22-20. New PortTableModel Class for Holding Port Table Data

307|class PortTableModel(DefaultTableModel) :
308 | headings = 'Port#,EndPoint Name'.split(',')
309 | def _init (self, data) :

310 for row in range(len(data)) :

311 data[row] = [

312 int(data[row][0]), data[row J[1]

313|

314| DefaultTableModel. init_ (self, data, self.headings)

439

CHAPTER 22 = WASPORTS: A WEBSPHERE PORT APPLICATION

315] def getColumnClass(self, col) :

316 if col ==

317| return Integer

318 else :

319 return String

320 def isCellEditable(self, row, col) :
321| return col ==

322 def setValueAt(self, value, row, col) :
323] if 0 <= value <= 65535 :

324 index = (self, row)

325| DefaultTableModel.setValueAt(self, value, row, col)
326 else :

327| DefaultTableModel.setValueAt(
328] self,

329 self.getValueAt(row, col),
330 TOW,

331 col

332|

333 self.fireTableCellUpdated(row, col)

Step 7: Computing Table Column Widths

Next, you'll see that by adding a small amount of code, you can improve the appearance of the application.
Figure 22-8 shows the result of adding a routine to determine the preferred widths of the table columns.

] RAGibson-W520Ceii01 e
RAGibson-W520Cell01 : Porl# EndPoint Name i
¢] RAGibson-W520CellManager01 | ;| _2810|BOOTSTRAP_ADDRESS
[Y dmar ‘| 5062|SIP_DEFAULTHOST_SECURE

‘| 5063[SIP_DEFAULTHOST
% [J RAGibson-W520Node02 /| 5559|SIB_MQ_ENDPOINT ADDRESS

[nodeagent ‘| 5579|SIB_MO_ENDPOINT_SECURE_ADDRESS
0O /| 7278|SIB_ENDPOINT_ADDRESS

‘| 7287/SIB_ENDPOINT_SECURE_ADDRESS

:| 8881|SOAP_CONNECTOR_ADDRESS
9045/WC_adminhost_secure
9062|WC_adminhost

[[9081[WC_defaulthost
/| 2102/0RB_LISTENER_ADDRESS

9409|SAS_SSL_SERVERAUTH_LISTENER_ADDRESS |
9444|\WC_defaulthost_secure
9634|IPC_CONNECTOR_ADDRESS

Figure 22-8. Sample output of the WASpoxrts_07.py script

440

CHAPTER 22 © WASPORTS: A WEBSPHERE PORT APPLICATION

Listing 22-21 shows the setColumnWidths(...) method that was added to the PortLookupTask class. It is brief
because it knows about the table contents. For example, rather than looking for the widest value in column 1, the
preferred width for this column is determined using the largest allowed value (65535) for this column.

Listing 22-21. The setColumnWidths(...) Method Added to WASports 07.py
311 def setColumnWidths(self, table) :

312 tem = table.getColumnModel() # Table Column Model
313 data = table.getModel() # To access table data
314| margin = tcm.getColumnMargin() # gap between columns
315] render = table.getCellRenderer(0, 0)

316 | comp = render.getTableCellRendererComponent(

317| table, # table being processed
318| '65535", # max port number

319 0, # not selected

320 0, # not in focus

321 0, # row num

322 0 # col num

323|)

324| cWidth = comp.getPreferredSize().width

325| col = tecm.getColumn(0)

326 col.setPreferredwidth(cWidth + margin)

327| cWidth = -1

328] for row in range(data.getRowCount()) :

329 render = table.getCellRenderer(row, 1)

330] comp = render.getTableCellRendererComponent(

331 table,

332 data.getValueAt(row, 1), # cell value

333] 0, # not selected

334| 0, # not in focus

335] YOW, # Tow num

336 1 # col num

337|

338 cWidth = max(

339| cWidth,

340 comp.getPreferredSize().width

341

342| col = tcm.getColumn(1)

343| col.setPreferredwidth(cWidth + margin)

441

CHAPTER 22 © WASPORTS: A WEBSPHERE PORT APPLICATION

Step 8: Adding Menu ltems

What do the changes in this iteration do to the application? Figure 22-9 shows the results of these changes. You can
see the menu items that were added.

_ son-W520Cell01 About AW520Cell01
Exit T Notice —|e———
lan WWE2NMallng L L TN ~a

Figure 22-9. Sample menu items from the WASports_08. py script

Listing 22-22 shows the new MenuBaxr (. . .) method that was added to the WASports class to create the menu and
specify the corresponding event-handling routines for each menu item. One thing that is important to notice is the
fact that the Changes menu entry is initialized as disabled (as you can see from the first image in Figure 22-9). This
iteration of the script doesn’t include code to enable this menu entry, so you won'’t be able to see the Save and Discard
menu items until a future iteration of the script.

Listing 22-22. New MenuBar (. ..) Method in the WASports Class from WASports 08.py
457| def MenuBar(self) :

458 menu = JMenuBar()

459 | self.ChangesMI = IMenu('Changes', enabled = 0)
460 | self.ChangesMI.add(

461 IMenuItem(

462 | 'Save',

463 | actionPerformed = self.save
464 |)

465|)

466 | self.ChangesMI.add(

467 | IMenuItem(

468 | 'Discard’,

469 actionPerformed = self.discard
470|)

471|)

472| jmFile = IMenu('File')

473 jmFile.add(self.ChangesMI)

474 jmFile.add(

475 IMenuItem(

476| "Exit’,

477| actionPerformed = self.Exit
478|)

479|)

480 menu.add(jmFile)

481 jmHelp = IMenu('Help')

442

CHAPTER 22 © WASPORTS: A WEBSPHERE PORT APPLICATION

482| jmHelp.add(

483 IMenuItem(

484 | '"About’,

485 | actionPerformed = self.about
486 |)

487|)

488| jmHelp.add(

489 IMenuItem(

490 | "Notice',

491| actionPerformed = self.notice
492|)

493|)

494| menu.add(jmHelp)

495 | return menu

Listing 22-23 shows the initial implementations of the event handler methods for the new menu items. One
important thing to note is the reference by the about (. ..) method to the aboutTask.getResult() method. A new
AboutTask class was also added to this iteration of the script in order to process the script docstring® and create an
HTML string that displays nicely. The reason a separate thread task was used is to allow the application to perform the
string conversion processing off the main thread, without causing the entire application to pause.

Listing 22-23. The New Event Handlers Added to WASports_08.py
496 | def about(self, e) :

497 JOptionPane.showMessageDialog(
498 self.frame,

499 JLabel(

500 self.aboutTask.getResult(),
501 | font = MONOFONT

502|)s

503 | "About’,

504 | JOptionPane.PLAIN_MESSAGE
505 |)

506 | def notice(self, e) :

507 JOptionPane.showMessageDialog(
508 | self.frame,

509 | Disclaimer,

510 "Notice',

511 JOptionPane.WARNING MESSAGE
512 |

513 | def save(self, e) :

514 | print 'save() - Not yet implemented'
515| def discard(self, e) :

516 | AdminConfig.reset()

517 def Exit(self, e) :

518| sys.exit()

See https://www.python.org/dev/peps/pep-0257/.

443

https://www.python.org/dev/peps/pep-0257/

CHAPTER 22 © WASPORTS: A WEBSPHERE PORT APPLICATION

Step 9: Implementing Save and Discard

Now that some menu items are in place, it is reasonable to implement the event handlers and associated code to allow
these menu items to be used. Figure 22-10 shows that when a port number value changes, the Changes menu item is
enabled, which allows the user to save or discard the changes. Additionally, a dialog box is displayed when the user
tries to exit the application without saving or tries to discard their changes.

e —
| E Save changes?

File | Help
Changes } Save ! No | Cancel
Exit Discard |

Figure 22-10. Sample menu items from the WASports_08.py script

Listing 22-24 shows the appCleanup(. . .) routine that displays a confirm dialog box when the user tries to exit
the application when unsaved changes exist. If the user doesn’t want to discard the changes, control is returned to the
caller, which is responsible for resuming operation.

Listing 22-24. The appCleanup() Routine Checks for Unsaved Changes from WASports 09.py

79|def appCleanup(app) :
80| if AdminConfig.hasChanges() :

81| answer = JOptionPane.showConfirmDialog(

82| app, 'Save changes?’

83|)

84| if answer == JOptionPane.YES OPTION :

85| AdminConfig.save()

86| elif answer in [

87| JOptionPane.CLOSED OPTION,

88| JOptionPane.CANCEL_OPTION

89|]

90| return

91| else :

92| AdminConfig.reset()

93| print '\nConfiguration changes discarded.'

94| System.gc() # call Java Garbage Collector
95| time.sleep(0.5) # Slight delay for garbage pickup

96| sys.exit(0)
Listing 22-25 shows the new SaveTask and DiscardTask classes, which are used to perform the potentially

long-running AdminConfig.save() or AdminConfig.reset() as a background task. In addition, the DiscardTask is
responsible for updating the port number values in the tables on which the changes were made.

444

CHAPTER 22 © WASPORTS: A WEBSPHERE PORT APPLICATION

Listing 22-25. The SaveTask and DiscardTask Classes from WASports 09.py

311|class SaveTask(SwingWorker) :
312 def _init (self, cellData) :

313] self.cellData = cellData

314| def doInBackground(self) :

315| try :

316 original = self.cellData.clearOriginals()

317 AdminConfig.save()

318 except :

319 print '\nError: %s\nvalue: %s' % sys.exc_info()[:2]

320|class DiscardTask(SwingWorker) :
321 def _init (self, cellData) :

322 self.cellData = cellData

323 def doInBackground(self) :

324| try :

325 original = self.cellData.getOriginal()
326 tables = []

327 for index in original.keys() :

328] table, row = index

329| table.getModel().resetPortValue(
330] Tow,

331 original[index]

332|

333] if table not in tables :

334 tables.append(table)

335] for table in tables :

336| table.repaint()

337 AdminConfig.reset()

338 except :

339| print '\nError: %s\nvalue: %s' % sys.exc_info()[:2]

Listing 22-26 required changes in order to perform the actual AdninConfig.modify(...) method (see line 470),
which uses the AdminConfig scripting object to change the specified port number for the indicated named endpoint
on the user-selected application server. It is also responsible for calling the cel1Info addOriginal(...) method
that’s used to save the original value should the Discard menu entry be called.

Listing 22-26. Part 1 of the Modified PortTableModel Class from WASports_09.py

444|class PortTableModel(DefaultTableModel) :
445 | headings = 'Port#,EndPoint Name'.split(',"')
446 | def _init (self, data) :

447| self.table = None

448 | self.nodeName = None

449 | self.serverName = None

450 self.epIddict = None

451| self.app = None

452 for row in range(len(data)) :

453 data[row J[0] = int(data[row][0])

454 | DefaultTableModel. init (self, data, self.headings)

445

CHAPTER 22 © WASPORTS: A WEBSPHERE PORT APPLICATION

455| def getColumnClass(self, col) :

456 if col ==

457| return Integer

458 | else :

459 return String

460 | def isCellEditable(self, row, col) :

461| return col == 0

462 | def resetPortValue(self, row, value) :

463 | DefaultTableModel.setValueAt(self, value, row, 0)
464 | self.fireTableCellUpdated(row, 0)

Listing 22-27 shows the remainder of the PortTableModel class. You are encouraged to search in the script file to
see which of these methods is referenced by the rest of the script.

Listing 22-27. Part 2 of the Modified PortTableModel Class from WASports_09.py
465 | def setValueAt(self, value, row, col) :

466 | prev = self.getValueAt(row, col)

467 | if 0 <= value <= 65535 :

468 name = self.getValueAt(row, 1)

469 | epld = self.epIdDict[name]

470| AdminConfig.modify(epId, [['port', value]])
471 self.app.ChangesMI.setEnabled(1)

472| DefaultTableModel.setValueAt(self, value, row, col)
473 self.app.cellData.addOriginal(self.table, row, prev)
474| else :

475 | DefaultTableModel.setValueAt(

476 | self,

477| prev,

478| Tow,

479| col

480

481 | self.fireTableCellUpdated(row, col)

482 def getContext(self) :

483 return self.table, self.nodeName, self.serverName
484| def setContext(

485 | self, table, nodeName, serverName, epIdDict, app

486 |) :

487| self.table = table

488 self.nodeName = nodeName

489 | self.serverName = serverName

490 self.epIddict = epIdDict

491 self.app = app

Listing 22-28 shows the changes that need to be made to the cellInfo class to allow the original port number
values to be saved when the user modifies a value.

446

CHAPTER 22 © WASPORTS: A WEBSPHERE PORT APPLICATION

Listing 22-28. The Modified (Inner) cel1Info Class

492|class WASports 09(java.lang.Runnable) :
493| class cellInfo :

500 def addOriginal(self, table, row, value) :
501 | self.lock.acquire()

502 | index = (table, row)

503 | if not self.before.has key(index) :
504 | self.before[index] = value

505 | self.lock.release()

506 | def getOriginal(self) :

507 | self.lock.acquire()

508 | result = self.before

509 | self.lock.release()

510 return result

511 def clearOriginals(self) :

512 | self.lock.acquire()

513 | self.before = {}

514 | self.lock.release()

Listing 22-29 defines a WindowAdapter descendent for the application. The event handler method in this class is
invoked when the user clicks on the application close icon (the [X] in the upper-right corner of the application).

Listing 22-29. The WindowAdapter Class Handles the windowClosed Events from WASports_09.py

650|class windowAdapter(WindowAdapter) :
651| def windowClosed(self, e) :

652 frame = e.getWindow()
653 | appCleanup(frame)
654| frame.setVisible(1) # User chose cancel or close

Step 10: Implementing the Export Functionality

Now you get to some new and interesting’ stuff that is unrelated to Swing, but directly related to non-trivial
applications that need to be developed. Take a few moments to consider how you might implement an Export
capability. It is important to realize that one of the most important questions you should ask is, “What data format
should be used?” A number of potential alternatives may come to mind, some being more useful than others.

When I first started thinking about this topic, I considered using XML files to hold the information. This also
makes a lot of sense when dealing with WebSphere Application Server configuration files because so many of them
use the XML format.

My initial investigations into using the simplest XML module (xml.dom.minidom) didn’t fare well. I tried using
a trivial example to test the validity of this as far as the needs of this program were concerned. Listing 22-30 shows a
simple interactive wsadmin session and the inability of the xml.dom.minidom module to perform the simplest of XML
parsing.

’Remember that old curse, “may you live in interesting times?” See http://en.wikipedia.org/wiki/May_you live in_
interesting times.

447

http://en.wikipedia.org/wiki/May_you_live_in_interesting_times
http://en.wikipedia.org/wiki/May_you_live_in_interesting_times

CHAPTER 22 © WASPORTS: A WEBSPHERE PORT APPLICATION

Listing 22-30. Testing the xml.dom.minidom

wsadmin>from xml.dom.minidom import parse

wsadmin>

wsadmin>try :

wsadminy dom = parse('70DM.xml')

wsadmin>except :

wsadmin> print '\nError: %s\nvalue: %s' % sys.exc_info()[:2]
wsadmin>

Failed to get environment, environ will be empty: ...

Error: exceptions.AttributeError
value: feed
wsadmin>

Does this mean that you can’t use XML to represent the data that the application needs to save (export) or load
(import)? Not at all. The xm1.dom.minidom module is part of the optional libraries that are provided by wsadmin
scripts.® Just because they are present doesn’t mean that you have to use them.

What other XML modules and libraries exist? It is important, especially at times like these, to remember that
other libraries exist as part of Java J2EE.° There are a number of free online resources that explain how to work with
XML in Java.' I spent some time reading the J2EE tutorial,'' specifically Chapter 2, “Understanding XML.” There is
also a number of very good publications that discuss XML processing with Java. Unfortunately, the Jython version of
those would be a whole separate book, so I'll provide some examples that correspond very closely to the kind of Java
examples available elsewhere.

Using the Document Object Model API

The kinds of XML processes discussed in this section use the Document Object Model (DOM) Application
Programming Interface (API) and the Simple API for XML (SAX). Of these two, the DOM is much simpler and easier to
write and therefore to read and understand. Let’s start with it.

Listing 22-31 shows the important part of a simple script that demonstrates how to read an XML file and then
process the data structure that is created when the input file is successfully parsed. It is so simple to read and parse
an XML file that it can be performed in a single statement (see lines 22-25). The traverse routine on lines 6-19 uses
recursion to traverse the data structure that’s produced.

Listing 22-31. Simple DOM Routines from xm1DOM. py

6|def traverse(node, indent = 0) :

7] prefix = '%*s' % (indent, '')

8| while node :

9| if node.getNodeType() == Node.ELEMENT NODE :

10| print '%s<%s>' % (prefix, node.getNodeName())
11| traverse(node.getFirstChild(), indent + 2)

12| print '%s</%s>' % (prefix, node.getNodeName())

8For example, ZWAS_HOME%\optionallibraries\jython\Lib\xml\dom\minidom.py.

°I admit that I tend to use the J2EE Reference because WebSphere is an Application Server.

See http://docs.oracle.com/javaee/1.4/tutorial/information/faq.html.

""See http://docs.oracle.com/javaee/1.4/tutorial/doc/index.html or http://docs.oracle.com/javaee/1.4/
tutorial/doc/J2EETutorial. pdf.

448

http://docs.oracle.com/javaee/1.4/tutorial/information/faq.html
http://docs.oracle.com/javaee/1.4/tutorial/doc/index.html
http://docs.oracle.com/javaee/1.4/tutorial/doc/J2EETutorial.pdf
http://docs.oracle.com/javaee/1.4/tutorial/doc/J2EETutorial.pdf

CHAPTER 22 © WASPORTS: A WEBSPHERE PORT APPLICATION

13| elif node.getNodeType() == Node.TEXT NODE :
14| value = node.getNodeValue()

15| if value :

16| value = value.strip()

17| if value :

18| print '%s"%s"' % (prefix, value)
19| node = node.getNextSibling()

20|def dom(filename):

21| try :

22| doc = DocumentBuilderFactory.newInstance(

23]) .newDocumentBuilder().parse(

24| File(filename)

25)

26| root = doc.getDocumentElement()

27| root.normalize()

28] traverse(root)

29| except :

30| print '\nError: %s\nvalue: %s' % sys.exc_info()[:2]

This example demonstrates one of the greatest drawbacks of the DOM, and that is the fact that parsing an XML
file using the DOM API requires the entire contents of the file to be loaded into memory. For the current application,
this might not be too much of a restriction if you are working with the information pertaining to a single WebSphere
Application Server cell. However, some cells can be quite large, so this might be a limiting factor. Additionally, I can
imagine the application being expanded to work with multiple cells, which could significantly increase the memory
requirements of the application.

Using the Simple API for XML (SAX)

Just how simple is the Simple API for XML? It’s really not too bad at all. It is possible to have a single statement that
parses an XML file using the SAX API, but I'm not going to be that mean to myself or others."? Listing 22-32 shows
a trivial routine from the xm1SAX. py script file that shows how to instantiate a SAX parser and use it to parse a user-
specified XML input file.

Note One of the import differences between these two examples is that this script validates the XML during the
processing. So, in addition to the XML input, a Document Type Definition (DTD) file defines the tags that can exist in
a valid XML file, how they should be used, and their relationship to one another. Unfortunately, details describing and
explaining DTDs are beyond the scope of this book.

12Just because it is possible to write a one-line statement to perform this task does not mean that you should.

449

CHAPTER 22 © WASPORTS: A WEBSPHERE PORT APPLICATION

Listing 22-32. The readFileSAX Routine from xm1SAX. py

61|def readFileSAX(filename) :

62|
63|
64|
65|
66|
67|
68|
69|
70|
71|

try :

FIS FileInputStream(File(filename))

ISR InputStreamReader(FIS, ENCODING)

src = InputSource(ISR, encoding = ENCODING)
factory = SAXParserFactory.newInstance()
factory.setValidating(1)

parser = factory.newSAXParser()

parser.parse(src, SAXhandler())

except :

print '\nError: %s\nvalue: %s' % sys.exc_info()[:2]

Listings 22-33 and 22-34 show the SAXhandler class from the xm1SAX. py file. It is important to note that the

SAXhandler methods are called by the SAX parser while the input file is being processed. This allows the script using
this class to transform the input data into whatever data structure the developer chooses. Using the DOM technique
results in a completely processed XML file being represented in memory using the Document Object Model. If this
data structure isn’t appropriate for your application needs, you need to transform the DOM to a more appropriate
data structure for your specific needs.

Listing 22-33. Part 1 of the SAXhandler class from xm1SAX. py

10| class SAXhandler(DefaultHandler) :

11|
12|
13|
14|
15|
16|
17|
18]
19|
20|
21|
22|
23|
24|
25|
26|
27|
28]
29|
30|
31|

450

def

def

def

def

__init_ (self) :

self.chars =
self.prefix = "'
self.width 0
indent(self) :
self.width += 2
self.prefix = "%*s' % (self.width, '')
dedent(self) :
self.width -= 2
self.prefix = '%*s' % (self.width, '')
startElement(self, uri, localName, name, attributes) :
if self.chars :
print '%s"%s"' % (self.prefix, self.chars)
self.chars = "'
attr = [
(

attributes.getOName(i),
attributes.getValue(i)

)
for i in range(attributes.getlength())

CHAPTER 22 © WASPORTS: A WEBSPHERE PORT APPLICATION

32| if attr :

33| print '%s<%s %s>' % (

34| self.prefix,

35| name,

36| ', '.join(

37| [

38| "%s="%s"" % (n, v) for n, v in attr
39|]

40|)

41|)

42| else :

43| print '%s<%s>' % (self.prefix, name)
44| self.indent()

Listing 22-34 shows the remainder of the SAXhandler class.

Listing 22-34. Part 2 of the SAXhandler Class from xm1SAX. py

45| def endElement(self, uri, localName, name) :

46 | if self.chars :

47| print '%s"%s"' % (self.prefix, self.chars)
48| self.chars = "'

49| self.dedent()

50| print '%s</%s>' % (self.prefix, name)

51| def characters(self, ch, start, length) :

52| value = str(String(ch, start, length)).strip()
53| if value :

54 self.chars += value

55| def warning(self, e) :

56| print 'Warning:', e.getMessage()

57| def error(self, e) :

58| print 'Error:', e.getMessage()

59| def fatalError(self, e) :

60| print 'Fatal error:', e.getMessage()

The SAX parser calls only some of the methods in the SAXhandler class directly. Specifically, the
startElement(...), endElement(...), and characters(...) methods are called during normal parsing of an XML
document. The warning(...), error(...), and fatalError(...) methods are called when unexpected input is
encountered.

It might not be obvious why the chars attribute is used as a sort of holding buffer. Why not just display the data
when the characters(...) method is called? The answer is that there is no guarantee that all of the data between
a start and end tag will be processed at one time. Character sequences can be processed in multiple segments. This
class buffers the character data until the next start or end tag is encountered. That is why the startElement(...) and
endElement(...) methods begin by looking for buffered character data.

451

CHAPTER 22 © WASPORTS: A WEBSPHERE PORT APPLICATION

The Document Type Definition (DTD)

One of the useful features of the XML parsers is the support provided to validate the input being processed against

the description of valid input. That is the role of the Document Type Definition (DTD). It identifies the valid tags and
their order, and identifies which tags are allowed to have attributes. Given an appropriate DTD, the parser factory can
have validation enabled by calling the setValidating(...) method, as shown in Listing 22-32, line 67. Then, the XML
file should identify how the validation should be checked. One way to do this is to include a DOCTYPE definition that
identifies whether the DTD is contained in the XML file or in an external file, as shown in Figure 22-11.

<!DOCTYPE WASports SYSTEM "WASports.dtd">

Figure 22-11. DOCTYPE definition identifying an external DTD file

Initial WASports DTD

Using the information contained in the cellInfo class, you can describe the format of an XML file using the DTD
shown in Listing 22-35." If you aren’t familiar with the syntax of the DTD file, information is available in a number of
places on the Internet'* and in publications about XML.

Listing 22-35. Initial WASports.dtd

1|<!ELEMENT WASports (cell)>
2|<!ATTLIST WASports version CDATA #REQUIRED>

3| <!ELEMENT cell (name, WAShome,WASversion,profile,node+)>

4| <!ELEMENT node (name, WAShome,WASversion,profile,
|hostname+, ipaddr,server+)>

5|<!ELEMENT server (name, endpoint+)>

6|<!ELEMENT name (#PCDATA)>

7|<VELEMENT WAShome (#PCDATA)>
8| <!ELEMENT WASversion (#PCDATA)>
9|<!ELEMENT profile (#PCDATA)>
10|<!ELEMENT hostname (#PCDATA)>
11|<!ELEMENT ipaddr (#PCDATA)>
12| <!ELEMENT endpoint (name,port)>
13| <!ELEMENT port (#PCDATA)>

Table 22-3 describes the DTD in Figure 22-11, line by line. Using the description and the WASports_10.py
application, you should be able to better understand the correlation between the application output and the
DTD format.

Note that line 4 is too long to fit in the available space and is continued on the next line.
"“For example, see http://www.w3schools.com/dtd/dtd_intro.asp.

452

http://www.w3schools.com/dtd/dtd_intro.asp

CHAPTER 22 © WASPORTS: A WEBSPHERE PORT APPLICATION

Table 22-3. WASports.dtd, Explained

Lines Description

1 The root tag is WASports and it has only one cell tag.

2 The WASports tag has a required attribute called version.

3 The cell tag requires a name, WAShome, WASversion, profile, and one or more node tags.

4 The node tag requires a name, WAShome, WASversion, profile, one or more hostnames, one ip_addr and

one or more server tags.

5 Each server tag requires one name and one or more endpoint tags.

12 Each endpoint tag requires a name and port tag.

6-13 The tags identified as having (#PCDATA) require some character data.
The ExportTask Class

You need to make some changes to the application menu structure, in order to provide the user with a way to specify
that an export should occur. Creating the menu is simple enough that it doesn’t need to be shown here. However, the
event handler that is called requires a bit more explanation, so the Export(. ..) method is shown in Listing 22-36.

Listing 22-36. Export(...) Method from WASports_10.py
788 def Export(self, event) :

789 | title = 'Export (Save) cell details'

790| fc = JFileChooser(

791 currentDirectory = File('.'),

792| dialogTitle = title,

793 fileFilter = XMLfiles()

794|)

795] if fc.showOpenDialog(

796 self.frame

797|) == JFileChooser.APPROVE_OPTION :

798| f = fc.getSelectedFile()

799 fileName = fc.getSelectedFile().getAbsolutePath()
800 | if not fileName.endswith('.xml') :

801 | fileName += '.xml'

802 msg = 'Overwrite existing file (%s)?'

803 | if os.path.isfile(fileName) :

804 | response = JOptionPane.showConfirmDialog(
805 None,

806 | msg % os.path.basename(fileName),
807/ 'Confirm Overwrite',

808 JOptionPane.OK_CANCEL_OPTION,

809 | JOptionPane.QUESTION MESSAGE

810)

811| if response == JOptionPane.CANCEL_OPTION :
812| return

813] ExportTask(fileName, self.cellData).execute()

453

CHAPTER 22 © WASPORTS: A WEBSPHERE PORT APPLICATION

This method uses the JFileChooser and FileFilter classes discussed in detail in Chapter 17. It limits the kinds
of files displayed by the JFileChooser to those having an .xml extension. If the user selects an existing file, it also
verifies that the user wants to replace the existing file using a simple confirmation dialog window. The most important
part of this method is when it instantiates and begins execution of an ExportTask thread to actually create the
specified file (line 813). Listing 22-37 shows the first of three parts of the ExportTask class.

Listing 22-37. Part 1 of the ExportTask Class from WASports_10.py

356|class ExportTask(SwingWorker) :
357] def _init (self, fileName, cellData) :

358 self.fileName = fileName

359 self.cellData = cellData

360| def doInBackground(self) :

361 try :

362 fos = FileOutputStream(self.fileName)
363| streamResult = StreamResult(

364 | OutputStreamWriter(fos, 'ISO0-8859-1')
365|)

366 | trans = SAXTransformerFactory.newInstance()
367| trans.setAttribute('indent-number', 4)
368 tHand = trans.newTransformerHandler()

369 | serializer = tHand.getTransformer()

370 serializer.setOutputProperty(

371| OutputKeys.ENCODING, 'ISO-8859-1'

372|

373| serializer.setOutputProperty(

374] OutputKeys.DOCTYPE_SYSTEM, 'WASports.dtd’
375|

376| serializer.setOutputProperty(

377| OutputKeys.INDENT, 'yes'

378

379 tHand.setResult(streamResult)

380] tHand. startDocument ()

381 atts = AttributesImpl()

382 atts.addAttribute(

383 "', "', ‘'version', 'CDATA', _ version _
384|)

385 tHand.startElement('', '', 'WASports', atts)
386 | atts.clear()

387 tHand.startElement('', "', 'cell', atts)
388 data = self.cellData

389 root = data.tree.getModel().getRoot()

390| cellName = root.toString()

391 self.addTagAndText(tHand, 'name', cellName)
392 info = data.getInfoDict(cellName)

393 self.addTagAndText (

394| tHand, 'WAShome', info['WAShome']
395])

396 self.addTagAndText(

397 tHand, 'WASversion', info['WASversion']
398|)

454

CHAPTER 22 © WASPORTS: A WEBSPHERE PORT APPLICATION

399| self.addTagAndText(
400 | tHand, 'profile', info['profile']
401|)

Listing 22-38 shows the next part of the ExportTask class. Again, you can see that a non-trivial class can’t easily
be forced to fit onto one or even two pages of this book.

Listing 22-38. Part 2 of the ExportTask Class from WASports_10.py

402 nodes = root.children()

403 | while nodes.hasMoreElements() :

404 | node = nodes.nextElement()

405 | nodeName = node.toString()

406 | info = data.getInfoDict(nodeName)

407 | tHand.startElement('', '', 'node', atts)
408 | self.addTagAndText(tHand, 'name', nodeName)
409 | self.addTagAndText (

410 tHand, 'WAShome', info['WAShome']
411)

412| self.addTagAndText (

413 tHand, 'WASversion', info['WASversion']
414

415 self.addTagAndText (

416 | tHand, 'profile', info['profile']
417|

418| self.addTagAndText(

419| tHand, 'hostname', info['hostnames']
420

421 self.addTagAndText(

422 tHand, 'ip addr', info['ipaddr']
423|)

424 servers = node.children()

425] while servers.hasMoreElements() :

426 server = servers.nextElement()

427| serverName = server.toString()

428 tHand.startElement(

429 "'y, 'server', atts

430|)

431 self.addTagAndText(

432 tHand, 'name', serverName

433])

434| table = data.getPortTable(

435] (nodeName, serverName)

436|)

437| model = table.getModel()

438 for row in range(model.getRowCount()) :
439 tHand.startElement(

440 | "', "', 'endpoint', atts

441)

442 | name = model.getValueAt(row, 1)

455

CHAPTER 22 © WASPORTS: A WEBSPHERE PORT APPLICATION

Listing 22-39 shows the remainder of the ExportTask class. Unfortunately, breaking a listing like this across
multiple pages can make it difficult to read. Therefore, you are encouraged to use your favorite text editor and view the
script source file.

Listing 22-39. Part 3 of the ExportTask Class from WASports_10.py

443 | self.addTagAndText(

444 | tHand, 'name', name

445)

446 | port = str(

447 | model.getValueAt(row, 0)
448|)

449 | self.addTagAndText(

450 tHand, ‘port', port

451])

452 tHand.endElement(

453 "', "', 'endpoint'

454|)

455 tHand.endElement("', '', 'server')
456 | tHand.endElement('', '', 'node')

457| tHand.endElement('', '', 'cell')

458 tHand.endElement("', '', 'WASports')

459 | tHand.endDocument ()

460]| except :

461 msgText = '\nExportTask() Error: %s\nvalue: %s'
462 | print msgText % sys.exc_info()[:2]

463 | def addTagAndText(self, handler, tagName, text) :
464 | handler.startElement(

465 | "', ', tagName, AttributesImpl()

466 |)

467 | handler.characters(

468 | String(text).toCharArray(), 0, len(text)
469 |)

470| handler.endElement("', '', tagName)

The ExportTask shown in Listings 22-37 through 22-39 is described in detail in Table 22-4. The important point
to note about the ExportTask class is that every XML tag calls the startElement(...) method, the required nested
elements, and the endElement(. ..) method in order to create a properly formed XML document.

456

CHAPTER 22 © WASPORTS: A WEBSPHERE PORT APPLICATION

Table 22-4. ExportTask Class, Explained

Lines Description

357-359 Class constructor used to save the specified filename and cellInfo structure containing the
information to be exported.

362-365 The output file stream is instantiated.

366-367 A SAXTransformerFactory instance is created with the specified indentation (for readability).

368-379 A transformer handler instance is created with the specified properties (such as encoding). It is also
associated with the output stream created earlier.

380 The startDocument (. ..) method begins to create the XML document being produced.

381-385 The WASports tag is created with the required version attribute.

386 Since no other tags in the document have attributes, the atts variable is cleared so it can be reused on
other tags.

387 The only instance of the cell tag is started.

388-401 The tags required to be present in the cell tag hierarchy are created using the addTagAndText(...)
utility method.

402-456 Each node in the cell has its required tags and all of the associated server entries are created.

457-459 Note how each startElement has a matching endElement after all the contained tags have been created.

460-462 An exception clause is invoked when an error is encountered. Unfortunately, it is a trivial error handler.

463-470 The addTagAndText(...) utility method simplifies the creation of tags like <tagName>text

value</tagName>.

Step 11: Implementing the Import Functionality

One of the most challenging aspects of the iterative development of non-trivial applications such as WASports is that
you can reach a point where significant changes are required for the next iteration. Step 11 is where these changes
are recognized. How do I know that? Let’s take some time to consider the implications associated with being able to
import application information. To make it more interesting, you'll do so by using a few question and answers to get
things started.

457

CHAPTER 22 © WASPORTS: A WEBSPHERE PORT APPLICATION

Table 22-5. Important Questions and Answers

Q: What should occur when a WASports file is imported?

A: A new internal frame should be created similar in nature to the one that is created when the application starts.

Q: How will an imported frame differ from an existing one?

A: These frames can be closed, and if changes are made, a save needs to be performed using the export
functionality, instead of changing the current configuration.

Q: Do changes to existing classes and data structures need to be made?

A: Yes; for example, the internal cel1Info class needs to be made global so that both local cell data and imported
cell data can use the same class. Additionally, the setColumnWidths(...) method should be moved from within
the PortLookupTask class to the global scope so that it can also be called by the ImportTask class. Additionally, the
names dictionary in the cel1lInfo class can’t refer to an actual configuration ID because you don’t want any of the
changes made to imported data to be made in the local configuration. So, for the imported data, a pseudo-configId
will be created instead.

Q: What kinds of things needed to be “fixed” because of improved understanding and how should they be handled?

A: During this iteration, it became clear that the internal form of the JOption dialog boxes should have been used
instead of the default external form (that is, the JOptionPane.showInternalConfirmDialog(. ..) method instead of
the JOptionPane.showConfirmDialog(...) method). Additionally, using an ip_addr tag for the ipaddr entry in the
cellInfo class added unnecessary complexity. So the DTD and code was changed to use an ipaddr tag instead.

The ImportTask Class

The changes required to add the Import functionality are similar to the changes needed to add the Export
functionality discussed previously. The Import(...) event handler method' isn’t shown here, but can be found in
the WASports_11.py script file.'® It too uses a JFileChooser instance to allow the user to identify the XML file to be
imported. Once the input file is identified, an ImportTask instance is created to perform the input processing on a
separate thread. Listing 22-40 shows the ImportTask class used by this iteration of the WASports script.

Listing 22-40. Part 1 of the ImportTask Class from WASports_11.py

780|class ImportTask(SwingWorker) :

992 | def _init (self, app, menuItem, fileName) :

993 | self.app = app

994 | self.menultem = menultem

995 self.fileName = fileName

996 | self.handler = ImportTask.SAXhandler(app)
997/ menuItem.setEnabled(0)

998 | self.msgText = "'

*Note the use of capitalization to differentiate this method name from the import keyword.
'“The complete source can be found in . . .\code\Chap_22\WASports_11.py.

458

CHAPTER 22 © WASPORTS: A WEBSPHERE PORT APPLICATION

999| def doInBackground(self) :

1000 | try :

1001 | FIS = FileInputStream(File(self.fileName))
1002 | ISR = InputStreamReader(FIS, ENCODING)
1003 | sIC = InputSource(ISR, encoding = ENCODING)
1004 | factory = SAXParserFactory.newInstance()
1005 | factory.setValidating(1)

1006 | parser = factory.newSAXParser()

1007 | parser.parse(src, self.handler)

1008 | FIS.close()

1009 | except :

1010 msgText = 'Error: %s\nvalue: %s'

1011 self.msgText = msgText % sys.exc_info()[:2]
1012 | def done(self) :

1013 localFrame = self.app.localFrame

1014 | desktop = self.app.frame.getContentPane()
1015] errors = self.handler.errors

1016 | if self.msgText or errors :

1017| if self.msgText :

1018| msg = self.msgText + '\n'

1019 else :

1020 msg = "'

1021 for error in self.handler.errors :

1022 | msg += ('\n' + error)

1023 if msg.startswith('\n') :

1024 | msg = msg[1:]

1025 | JOptionPane.showInternalMessageDialog(

1026 | desktop,

1027 msg,

1028| "Import failed',

1029 JOptionPane.ERROR MESSAGE,

1030 | None

1031)

Listing 22-41 continues the ImportTask class started in the previous listing.

Listing 22-41. Part 2 of the ImportTask Class from WASports_11.py

1032 | else :

1033 | cellData = self.handler.getResults()
1034 | tree = cellData.getTree()

1035] root = tree.getModel().getRoot()
1036 | name = root.toString()

1037| if localFrame :

1038 size = localFrame.getSize()
1039 | w, h = size.width, size.height
1040 count = len(self.app.frames)
1041 | num = (count - 1) %8

1042 | loc = Point(

1043 | num * 27 + 32,

1044 | num * 27 + 32

1045)

459

CHAPTER 22 © WASPORTS: A WEBSPHERE PORT APPLICATION

1046 | else :

1047 | print ‘\nWarning: no localFrame'

1048 | size = self.app.frame.getSize()
1049 | w, h = size.width »> 1, size.height »>> 1
1050 count =0

1051 | loc = Point(32, 32)

1052 | internal = InternalFrame(

1053 title = "% : %s' % (count, name),
1054 | size = Dimension(w , h),

1055 location = loc,

1056 | cellData = cellData,

1057 | app = self.app,

1058 | closable = 1

1059

1060 | self.app.frames.append(

1061 | (internal, self.fileName)

1062 |

1063 | desktop.add(internal, None, 0)

1064 | internal.setSelected(1)

1065 | node = tree.getModel().getRoot()

1066 | tree.expandPath(TreePath(node.getPath()))
1067 self.menultem.setEnabled(1)

It is interesting to see how much of this code deals with potential problems. This is one of the temptations that
exist with rapid prototyping and the iterative development of applications. There is a tendency to leave out error
checking and diagnostic or informational messages.

Unfortunately, this choice has its consequences, which are, by definition, self-inflicted and often painful. When
you don’t include error checking and diagnostic messages as you're developing your application, it’s much more
difficult to determine the source of any problems that crop up."”

Most of the code in Listings 22-40 and 22-41 should look familiar. For example, compare the
doInBackground(...) method (lines 1001-1008) with the code in Listing 22-27. Both prepare the input stream using
the appropriate encoding and instantiate a validating SAXParserFactory instance. They also both use this parser to
process the specified input stream using a SAXhandler instance that has been customized for the application.

In this case, the SAXhandler class isn’t shown, but is very similar, at least in structure, to the one in
Listing 22-33. The biggest difference is that instead of displaying the buffered character strings, they are saved in a
cellInfo dictionary indexed by the associated tag name (the cell name is in an entry indexed by cel1Name).

The code is simplified by the fact that the parser validates the input against the DTD and calls one of the error-
related routines if an error condition is detected (the warning(...), error(...), or fatalError(...) methods).

At the appropriate points in the parsing process (when the node startElement event is detected), all of the
details required by the preceding hierarchy level (in this case, between the cell tag and the node tag) have been saved
and can now be used to add a new tree element.

When the end of the XML document is encountered and no error conditions have been detected, the done(...)
method process shown in Listing 22-40 uses the result of the processing to create a new inner frame instance and
display it on the application desktop.

7Personal note: I learned the hard way that SwingWorker threads can fail silently (exceptions aren’t displayed), so it is good to
consider using try/except blocks in these kinds of threads.

460

CHAPTER 22 © WASPORTS: A WEBSPHERE PORT APPLICATION

What'’s Left?

At this point, the script is a realistic demonstration of the kinds of things that you can do to create a reasonable
graphical interactive wsadmin application. Of course, there are features that you could add to make the application
even more useful. The next sections discuss what you would need to do to add functionality to the script.

Text Highlighting

What would it take to add text highlighting to the application? It depends on what you want to highlight. For example,
if you want to highlight the port table rows that contain specific text or specific port number values, you need to use
aTableCellRenderer (see Chapter 12) to control how each cell should be rendered. Be careful, though; it is easy to
forget that the isSelected argument of the getTableCellRendererComponent(. . .) method should be involved with
determining how the table cell should be rendered.

Another possibility is to allow the user to highlight those table rows for active ports. However, remember to take
into account the hostname or IP address of the local machine when determining whether imported port table rows
should be highlighted.

There is also the possibility of adding multiple or combined highlighting conditions at the same time (both active
and highlighted because of matching endpoint names or port numbers).

Maybe you want to allow the user to dynamically select the colors to be used for highlighting. If so, how would
you allow the user to save this kind of preference information?

Table Sorting

It would be somewhat helpful to be able to sort and reorder the port tables. It isn’t too difficult to implement,'® but the
potential value is more difficult to judge. This is true because it is hard to guess how valuable being able to reorder
the data will be to the users of your application.

Comparing Configurations

One interesting possibility to consider is related to the prospect of using this kind of application to compare two
(or possibly more) configurations. What kinds of comparisons would you like to make? You could use an application
like this to identify port conflicts and differences.

Wouldn't it be useful if the application could export the current port details and then import the previous
configuration details and highlight the differences? Would you want it to be able to copy the port numbers from an
imported XML file and use this information to change the values used in the local configuration? This kind of thing
might be very useful if you wanted the environments to use identical port numbers.

Report Generation

Another potentially useful feature would be the capability to generate reports about the port numbers being used in
one or more WebSphere environments. How might you want these reports organized? How important would it be for
the data in these reports to be aggregates or filtering of the available data?

8See http://docs.oracle.com/javase/tutorial/uiswing/components/table.html#sorting.

461

http://docs.oracle.com/javase/tutorial/uiswing/components/table.html#sorting

CHAPTER 22 © WASPORTS: A WEBSPHERE PORT APPLICATION

Summary

What next step makes the most sense to you? It depends on your specific needs. Can you use this application as it is?
Maybe, maybe not; it depends on your needs. Consider using an application like this to view and manage all of the
port numbers being used by your environment. Which would you prefer—to use an application like this or to use the
WebSphere administration console to identify and manage the port numbers in your environment?

I think that you'll agree that this kind of application has real potential for making the administration of your
WebSphere Application Server environment much simpler.

I hope that this book helps you on your journey of creating useful graphical wsadmin scripting applications.

462

Index

A

about(...) method, 443
aboutTask.getResult() method, 443
Absolute Layout Manager

advantages, 36

application frame, 36

frame.add(), 36

getPreferredSize() method, 36

repaint() method, 35

setBounds() method, 36
Absolute layout technique, 222
AbstractAction class, 203
AbstractCellEditor class, 178
Accelerator, 132
ActionEvent, 205
ActionListener class, 126
ActionListener event handler, 31, 224
ActionListener method, 214
actionPerformed() method, 30-31, 47
Adapter classes, 209
addActionListener() method, 32
addButtons() method, 42-43
addCards() method, 43
addComponents() method, 61
add() method, 18
addTab() method, 51
AdminConfig methods, 423
AdminConfig.modify(...) method, 445
Administration console, 385, 419
AdminTask commands, 387
AdminTask.generateSecConfigReport() method, 416
AdminTask.help(...) method, 379
AdminTask listServerPorts() method, 420
AdminTask methods, 420
AdminTask.reportConfiguredPorts() method, 422
appCleanup(...) routine, 444
Application Programming Interface (API)

DOM, 448
XML (SAX), 449
AutoResizeMode, 188

B

Bindings
AbstractAction class, 203
boundary conditions, 203
definition, 193
inputMaps and actionMaps
getters and setters, 195
JComponent map attributes, 194
JTable hierarchy, 196
JTable map methods, 194
Boolean cell editors, 172
BorderLayout Manager
advantages, 39
application, 38
BorderLayoutGap.py script, 40
BorderLayoutNEWS.py script, 40
component separation, 40
directional constants, 38-39
disadvantages, 39
horizontal and vertical gaps identification, 41
Box class strut methods, 56
Box.createHorizontalBox() method, 54
BoxLayoutDemo sample application, 51
BoxLayout Manager
Box class, 53
boxes and resizable components, 57
BoxLayoutDemo class, 52-53
BoxLayoutDemo sample application, 51
constants, 53
constructor, 54
createHorizontalBox() method, 54
createVerticalBox() method, 54
invisible box components

463

INDEX

BoxLayout Manager (cont.) class run() method, 13
glue, 55 Column manipulation, 183
rigid area, 57 column adjustments, 188
strut, 56 column widths, 183
tabs, 51-52 auto resize mode, 189
Button column heading width, 184
ActionListener class, 30-31 determination, 185
ActionListener event handler, 31 getValueAt(...) method, 186
actionPerformed() method, 31 setColumnWidths(...) method, 186
addActionListener() method, 32 ComponentEventDemo.java, 217
frame.add() method, 33 componentResized() method, 221
java.awt.event.ActionListener classes, 30 Components, 1
java.lang.Runnable class, 30 consoleTimeout script
multiple inheritance, 30 GUI Jython version
trivial Java application, 29 AdminConfig methods, 339
button() method, 47 output, 339
buttonPress() event-handling method, 43 run() method, 337
SwingWorker class, 339-340
C update () method, 338
non-GUI Jython version, 336
CardLayout Manager Container add() method, 23
addButtons() method, 42 createEmptyBorder(...) method, 300
addCards() method, 43 Cursor class
application, 41-42 isSelected() method, 298
buttonPress() event-handling method, 43 WaitCursorl.py script, 297-298
buttonPress() method, 42-43 CustomDialog class, 273
event.getActionCommand() method, 43 Custom numeric cell editors, 174
JPanel instances, 42
Layout Manager’s show() method, 43 D
run() method, 42
Cell editors DefaultCellEditor, 174-175, 179-180
Boolean cell editors, 172 DefaultTableCellRenderer, 162
custom numeric cell editors, 174 DefaultTableModel, 162
JComboBox cell editors, 175 Dialog boxes
numeric cell editors, 173 CustomDialog class, 273
cellinfo addOriginal(...) method, 445 definition, 263
Cell renderers GraphicsConfiguration
column-specific cell renderer, 166 component, 265
custom cell renderers, 163 JOptionPane methods, 274
custom renderer multiple modal dialog boxes, 273
Boolean values, 165 SimpleDialog class, 270
TableSelection output, 164 Document Object Model (DOM), 448
data type rendering, 163 Document Type Definition (DTD), 452
data type-specific cell renderers, 162 doInBackground(...) method, 302, 305, 439, 460
DefaultTableCellRenderer class, 165, 169 done(...) method, 439
getTableCellRendererComponent(...) method, 165
setCellRenderer(...) method, 166 E
TableCellRenderer interface, 165
TableColumnModel, 166 endElement(...) method, 451, 456
cellTree() method, 427, 430 event.getActionCommand() method, 43, 59
cellTSL class, 428 Event handler method, 443
ChangeListener method, 363 expandtabs() method, 355
characters(...) method, 451 Export(...) method, 453

464

F

FileFilter class, 454
findScopedTypes(...) routine, 434
firstNamedConfigType(...) routine, 436
FlowLayout Manager, 37
FormattingVisitor() method, 248
frame.add() method, 23
frame.getBounds() method, 221
Frame resize method, 400

G

generateSecConfigReport, 388
getAttributeValue(...) routine, 434
getContentPane() method, 18, 300
getFontMetrics(...) method, 371
getHeaders class, 246
getHostnames(...) routine, 434
getIPaddresses(...) routine, 434
getMonths() method, 93
getPortTable(...) method, 437
getPreferredSize() method, 36
getTableCellEditorComponent(...) method, 171
getTableCellRendererComponent(...) method, 184, 372
getViewport().getView() methods, 363
getWeekdays() method, 93
Global security application

content pane, 17

glass pane, 16-17

JLabel, 15

layered pane, 17

optional MenuBar, 17
Glue components, 56
GraphicsConfiguration object, 267

ScreenLoc class, 268

ScreenPos class, 268
GraphicsEnvironment class, 266
GraphicsEnvironment session, 266
GridLayout Manager

addButtons() method, 59

addComponents() method, 61

application, 58, 60

buttonPress() method, 59

displayConstraints() function, 61

event.getActionCommand() method, 59

GridBagConstraints class, 61-62

layoutContainer() method, 60

pane.getLayout() method, 60

run() method, 59
GroupLayout Manager, 62

INDEX

H

headerTask class, 247, 256
Help.help() method, 355
Help.wsadmin() method, 360
Hypertext markup language (HTML)
FormattingVisitor() method, 248
getHeaders class, 246
getHeader scripts, 249
getLinks routine, 232
headerTask class, 247
head(...) method, 248
HTML label, 243
HTML text modification, 244
javadocInfo_03 sample output, 241
Java “HTML” classes, 231
JToggleButton, 245
rendering HTML, 242
textTask class, 241

IBM website, 233
Import(...) event handler method, 458
ImportTask class, 458
Inner celllnfo class, 436
InputMethodListener class, 114-115
InputVerifier method, 227
Interactive scripts
deprecation message, 11
equivalent Java application, 10
Welcome.py script file, 9
Internal frames
iFrameDemo class, 317-319
JDesktopPane class, 322-324
JInternalFrame classes (see JInternalFrame classes)
layers
labels, 319
LayeredPaneDemo class, 320-321
positioning, 321-322
scratch
application output, 347
consoleTimeout script (see consoleTimeout script)
InternalFrame class, 343-344
menu items, 341-342
multiple inheritance issue, 344
RadioButton class, 349-351
result, 352
revised consoleTimeout class, 342
setSelected() method, 342
setValue(...) method, 350-351

465

INDEX

Internal frames (cont.)
stateChange(...) method, 348
TextandButton class, 347-348
TextField class, 344-345
wsadmin script, 336
WSAStask class, 346

Introspection, 4

invokeLater() method, 12

isCellEditable method, 180

isvalid() method, 403

isVisible() method, 408

J

java.awt.Dimension class, 199
Javadoc application, 258
JButton class hierarchy
equivalent Jython code, 22
frame.add() method, 23
interactive wsadmin session, 21
Java code, 22
wsadmin interactive session, 22
JColorChooser class
components, 296
constructors, 294-295
sample output, 293-294
JComboBox
cell editors, 175
DynamicComboBox
actionPerformed() method, 89
BorderLayout.CENTER constant, 88
remove() method, 89
run() method, 87-88
editable attributes, 86
event.getSource() method, 85
sample output, 85
JDialog
class hierarchy, 264
CustomDialogl.py sample output, 271
GraphicsConfiguration object, 267
methods, 265
JEditorPanes, 259
JFileChooser class, 454
constructors, 287
dialog types, 291
File Chooser dialog box, 285-286
FileFilter mechanism, 290-291
FileSystemView instance
descendent class, 287-288
restricted filesystem, 288-289
selection types, 292
JFormattedTextField, 166
FormattedTextFieldDemo.py script, 90-91
NumberFormat class, 91

466

JFrame
class hierarchy, 264
classes function, 24
classInfo() function, 25
classInfo.py, 25
interactive wsadmin session, 27

java.awt.Component.doLayout() description, 26

Java documentation, 23
JFrame “convenience, 29
“layout” attributes, 27
“layout” methods, 26
methods and attribute names, 24-25
wsadmin interactive session, 28
GraphicsConfiguration object, 267
JFrame add() method, 5
JFrame documentation, 19
JFrame Layout Manager, 6
JInternalFrame classes
advantage, 325
events
eventAdapter class, 334-335
eventLogger class, 331-332, 334
iFrameEvents class, 332-333
InternalFramelListener class, 331
run() method, 333
features, 329
findNot() methods, 329
FrameMethod application, 325-326
iFrameEvents2.py script, 335
vs. JFrame, 330
makeMenu() method, 328
run() method, 327-328
showlItems() methods, 329
textFile(...) method, 326
utility methods, 326-327
JLabel
adding second label, 5
definition, 4
JFrame class, 5
window, 5
JList
BorderLayout frame, 112
count() method, 109
java.utilVector, 105-106
JViewport, 107
ListSelectionListener class, 113-114
list selection mode, 110-111
run() method, 108-109
ScrollPane instance, 106-107
text input field
DocumentListener methods, 116
InputMethodListener class, 114-115
iterations, 118
KeyListener events, 116

keyword argument lists, 119
run() method, 116-118
textCheck() method, 119
JMenu entries, 125
JOptionPane methods
JOption show*Dialog method name variants, 274
showConfirmDialog() method, 279
showlInputDialog() method, 283
showMessageDialog() method, 274
showOptionDialog() method, 276
JPasswordField
ActionListener event handler method, 82-83
character-obfuscation property, 80-81
event.getActionCommand() method, 82
frame.pack() method, 80
getPassword() method, 82
PasswordDemo class, 79-80
setEchoChar() method, 79
toString() method, 84-85
Jsoup library
javadocInfo_01.py sample output, 237
JTabbedPane, 253
simple Jsoup demonstration, 235
soupTask class, 236
steps, 234
URL, combo box to list box, 238
JSpinner class, 182
JSpinner field
DateFormatSymbols method, 92-93
default spinner constructor, 94
Spinner] class, 92
spinner editor, 96-97
SpinnerModel argument, 94
SpinnerNumberModel class
calendarField argument, 96
default SpinnerDateModel, 96
Spinners3 class, 95
zero parameter constructor, 95
value selection, 93-94
JSpinner renderer, 181
JSplitPane method, 251, 259
JTabbedPane, 253
JTable class
cell renderers
custom cell renderers, 163
data type rendering, 163
data type-specific cell renderers, 162

columnSelectionAllowed and rowSelectionAllowed

attributes, 158
getTableHeader() method, 159
individual cell selection, 158
rowHeight Getter and Setter methods, 177
row selection and editing, 156
selectionMode property, 156
setReorderingAllowed() method, 159
table models

AbstractTableModel, 160
DefaultTableModel, 160
getColumnClass(...) method, 160
isCellEditable() method, 160
read-only TableModel class, 160
write-only attributes, 157
JTableHeader class, 184
JTree class
DefaultTreeCellEditor, 150-152
DefaultTreeCellRenderer, 152
makeTree() method, 149-150
manipulation
buttonRow() method, 147-148
DynamicTree images, 146
getSuffix() method, 147
setLocationRelativeTo() method, 147
Treel.py script
branch node, 138
cellTree() method, 139
description, 137
JScrollPane, 138
root node, 138
sample output, 138
structures, 139
TreeSelectionListener interface
event handler, 143-144
line description, 145
run() method, 144
valueChanged() method, 143
TreeSelectionModel class
constants, 141
node selection, limitation, 142
run() method, 140-141
selectmode attributes, 141
setSelectionMode() method, 142
Jython, 3

K

Keyboard events
ActionListener method, 214
KeyListener descendant class, 211
Listen3 class, 213
KeyListener descendant class, 211
KeyListener methods, 211
Keystrokes
binding (see Bindings)
center application, 199
JTable, 197
KeyBindings, 201
locationRelativeTo = None, 198
table data, 200
table properties, 200
Keyword arguments, 206
horizontalAlignment, 168
selectionMode, 157

INDEX

467

INDEX

L

Label
buttonPressed() method, 33-34
event handler, 33
run() method, 33
text field, 33
layoutContainer() method, 60
Layout Manager’s show() method, 43
Listener methods
absolute layout technique, 222
adapter classes, 209
ComponentEventDemo.java, 217
componentResized() method, 221
Framel class, 220
Framel sample output, 220
frame.getBounds() method, 221
input fields monitoring, 223
InputVerifier, 227
JButton listeners, 206
keyboard events
ActionListener method, 214
KeyListener descendant class, 211
KeyListener methods, 211
Listen3 class, 213
Listen3.py sample output, 212
Listen1.py application, 208
Listen4 class, 215
MouseListener methods, 208
PropertyChangeListener, 224
List filtering, 252
ListPorts.py script file, 153
ListSelectionListener class, 113-114
ListSelectionListener event handler, 240
listServerPorts(...) method, 421

M,N,O

MenuBar(...) method, 442
Menus
accelerator, 132
actionPerformed() method, 126
addActionListen() method, 126
adding MenuBar, 122
check boxes, 129
class hierarchy, 121
contrasting menu entries, 125
empty JMenuBar, 123
foreground and background colors, 124
MenuBar methods, 122
mnemonics, 131
pop-up menu, 134
radio buttons, 127
Merriam Webster page, 233
MessageType constants, 275

468

Mnemonics, 131
Modified cellTree() method, 430
MouseListener methods, 208

PQ
pane.getLayout() method, 60
parseMethodHelp(...) method, 367
pickATcmd(...) method, 384
pickATgroup(...) method, 384
PortLookupTask class, 438
PortTableModel class, 439, 446
Progress bar class

constructors, 299

doInBackground(...) method, 305

ProgressBar0.py, 300-301

propertyUpdate() method, 304

sample images, 299

stringPainted property, 303-304

SwingWorker class

output, 301
ProgressBar2.py script, 302-303

ProgressMonitor class

constructors, 306

interactive session, 307

isCanceled() method, 310-311

JDialog instances, 307-308

message parameter, 311

parentComponent argument, 313

ProgressMonitorl.py, 308-309

ProgressMonitorInputStream objects, 315

properties, 313-314
propertyUpdate() method, 309
setNote(...) method, 312-313
PropertyChangeListener event handler
method, 224, 250

R

readFileSAX routine, 450

Reflection, 4
removeChoosableFileFilter() method, 291
reportConfiguredPorts(...) method, 422
reportTableModel, 408

Rigid area creation method, 57

Row filtering, 406

rowFinder class, 403

run() method, 32, 59, 404

S

SaveTask and DiscardTask classes, 445
SAXhandler methods, 450

ScreenLoc class, 268

ScreenPos class, 268

Scripting report method, 387
Security configuration report
administration console, 385
AdminTask method, 416
code changes, 409
column widths
output, 399
processReport routine, 397
setColumnWidths() method, 397
WebSphere Application Server, 397
frame resize listener, 400
modifications, 390
quick and dirty attempt, 389
rowFinder class, 403
scripting report method, 387
section visibility
clicker(...) method, 413
Find(...) method, 414
modified clicker(...) method, 415
reportTableModel, 412
scopeName, 411
sectionFilter class, 412
testing, 415
table model and cell renderer
HTML coloring, 394
multiple selection issue, 392
revised cell renderer, 395
script, 392
table row filtering, 406
upDownAction class, 404
Selectable input components
check boxes, 100-101
radio buttons, 101-102
toggle buttons
application window, 99
ButtonGroupDemo, 103
getltem() method, 100
JToggleButton constructor, 99
setBounds() method, 36
setColumnWidths() method, 397, 441
setDividerLocation(...) methods, 251
setDividerSize() method, 47
setFileSelectionMode() method, 292
setHighlighter(...) method, 362
setProgress(...) method, 314
setRightComponent(...) method, 259
setSelectionMode() method, 111
setText(...) method, 251
setValidating(...) method, 452
setValueAt(...) method, 172, 174
setVisible() method, 408

INDEX

showConfirmDialog() method, 279
showDialog() method, 291
showInputDialog() method, 283
showMessageDialog() method, 274
showOpenDialog() method, 291
showOptionDialog() method, 276
showSaveDialog() method, 291
SimpleDialog class, 270
SplitPane PropertyChangeListener output, 250
Split panes

application, 44

component size

attributes, 46
and divider bar, 49

horizontal separation, 44

limitation, 44

nested split panes, 47

OneTouchExpandable divider, 48

oneTouchExpandable keyword argument, 48

setDividerSize() method, 47

vertical splits, 44
startElement(...) method, 451, 456
Swing threads

equivalent approach, 13

Runnable class, 12

Swing component-creation operations, 13

SwingUtilities/EventQueue class, 12

template script, 12-13
SwingWorker setProgress(...) method, 302

T

TabbedPane, 49
Tablel.py output, 154
Text input fields
admin console inactivity timeout, 65
AvailableFonts class, 74
consoleTimeout] class, 67
JTextArea
caretUpdate(), 75
listeners, 75
setEditable() method, 74
SimpleEditor class, 76
JTextField
ActionListener, 66
TextAlignment class, 71-72
SwingWorker class
concurrency, 68
output, 69
subclass, 69
threads, 68

469

INDEX

Text input fields (cont.)

update() method, 68, 70
WSAStask class, 69-70
wsadmin application, 66

Top-level containers, 1
treeNodesChanged() method, 151
TreeSelectionListener class, 430, 435, 437

U

update() method, 345

Vv

valueChanged(...) event handler method, 375
valueChanged(...) method, 374

W, XY, Z

WAShome(...) routine, 435
WASprofileName(...) routine, 435
WASvarLookup(...) routine, 435
WASversion(...) routine, 435

WebSphere Application Server, 397
WebSphere Port (WASports) application

470

AdminConfig methods, 423
administration console, 419
AdminTask.listServerPorts() method, 420
AdminTask.reportConfiguredPorts(...) method, 422
cell and node tree items
cellTSL class, 435
sample output, 432
utility routines, 432
configurations, 461
creation, 425
empty internal frame, 425
export functionality
API (see Application Programming
Interface (API))
DTD, 452
ExportTask class, 453
xml.dom.minidom, 448
import functionality, 457
JSplitPane
cell hierarchy tree, 427
internal frame, 426
menu items, 442
report generation, 461
save and discard, 444
serve port number
PortLookupTask class, 439
PortTableModel class, 439
Sample output, 436
TreeSelectionListener class, 437
utility routine, 437

split pane, 428
table column width, 440
table sorting, 461
text highlighting, 461
WebSphere Port(WASports) application
WindowAdapter class, 447
WSAShelp application
adding menu, 376
adding split panes, 358
AdminTask.help(‘-commandGroups’)
adding menu, 383
AdminTask.help(...) method, 379
AdminTask help text, 383
ATcommandTask class, 379, 381
ATgroupsTask class, 380-381
clusterConfig step, 384
implementation, 382
pickATcmd(...) method, 384
pickATgroup(...) method, 384
showCmdGroups(...) method, 381
split pane, 383
SwingWorker descendent class, 380
text pane selectable, 383
AdminTask.help(‘-commands’)
AdminTask menu item, 378
doInBackground(...) method, 377
output, 377
“Show” menu item, 378
SwingWorker class, 377
cellSelector listener class, 375
displaying methods
camelWords(...) method, 372
DefaultHighlighter class, 367
getFontMetrics(...) method, 371
getTableCellRendererComponent(...)
method, 372
highlight table text, 367
installInteractive method, 375
interactive wsadmin session, 371
JTable, 371
JTextPane component, 367
methodTableModel class, 368-369
MethodTable scripts, 368
methRenderer class, 371-372
output, 370
parseMethodHelp(...) method, 366
proof of concept (PoC), 366, 368
run(...) method, 366
setColumnWidths(...) method, 369
setHiText(...) method, 372
setWidths(...) method, 372-373
Help.help() method, 355
ListSelectionListener class, 373
output, 356
scripting object, 374-375

INDEX

tabbed pane, 357 Help.wsadmin() method, 360

text highlighting Highlight class, 360
ActionListener event handler, 361 search(...) method, 361-362
advantage, 361 setHighlighter(...) method, 362
ChangeListener method, 363 tabbed highlighting complications, 363
DefaultHighlighter class, 362 valueChanged(...) event handler
DefaultHighlightPainter class, 361 method, 375
find(...) method, 362 valueChanged(...) method, 374

471

Swing for Jython

Robert A. Gibson

Apress-

Swing for Jython: Graphical Jython UI and Scripts Development using Java Swing and WebSphere
Application Server

Copyright © 2015 by Robert Gibson

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material

is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0818-2
ISBN-13 (electronic): 978-1-4842-0817-5

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr

Lead Editor: Steve Anglin

Development Editor: Tracy Brown Hamilton

Technical Reviewers: Rohan Walia, Dhrubojyoti Kayal, Manuel Jordan Elera, and Frank Wierzbicki

Editorial Board: Steve Anglin, Louise Corrigan, Jonathan Gennick, Robert Hutchinson, Michelle Lowman,
James Markham, Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke,
Gwenan Spearing, Steve Weiss

Coordinating Editor: Mark Powers

Copy Editor: Kezia Endsley

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or

visit www. springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is

Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales-eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers at
www.apress.com/9781484208182. For detailed information about how to locate your book’s source code, go to
WWW.apress.com/source-code/.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484208182
www.apress.com/source-code/

Ithank God for his countless gifts and blessings and dedicate this work to my bride Linda,
and our children. Thank you for loving me, and for putting up with me and my fondness of puns.
I'm sorry for all the time that this has required, but I have thought of you all throughout its development.
I also thank everyone who helped make this book a reality. I could not have done this without
your assistance, nor would it have been anywhere as good as you have helped make it.

Contents

About the AUROKc.coccmmismnissesmssesnsassss s s s nna s nnnannnnnamnnnnnnn s Xix
About the Technical REVIEWErSuucsssessssassssnssssnsssasssssssssnsssasssssssssnsssasssssssssnsssansssasssansas XXi
INtrodUCtioNccuviimmissannisssnnssssnsssssnnnsssnnssssnnnsssnnnsssnnnsssanssssannsssannssssnnssssnnsssnnnssssnnnnssnnnnsnns Xxiii
Chapter 1: Components and Containers..........ccciuussmmmmmmssssnnmmmsssssnmmsssssssmsssssssssssssasssessnnns 1
TOP-Level CONTAINEIS........cocvcerirerir ettt sn s e e sr e sn e sn e sn e sn e nnennennnn 1
Getting Help from JYENON ..o sa e sa s sn e sa s sa e sa e sn e sn e sn s 3
How and Why Are YOu ADbIe 10 DO TRIS?coeieeecece s s s s s s s s s s s s s e nas 4
What'’s Next?...Starting Simple ... s s s 4
Adding @ SECONA LADEL.......c.eoeeeererererere e see e ssessesaesaesaesaesaesassassassaesassaesaesassassassasssssnnns 5
31111111 7
Chapter 2: Interactive Sessions VS. SCHiPtS......cccuuseemmrnsssnnnmsssssnsnssssssnssmssssssnsssssssssssssssnns 9
Running Your First Script from @ File.........c.cvcricrcrcrr s 9
Depending “Too Much” on Limited Informationccccccveenicnnnnncnnscsessess e 10
SWINQG TAMBAUS.ecveieeree e rtrrtr st sa e e ra e s sa e e e e e e e e e e e e e e e e sa e sa e e e e e na e e e naennenannes 12
1111 - T SRS 14
Chapter 3: Building a Simple Global Security Application..........cccccuseemrinssssnnnnmssssnssnnsnes 15
Adding Text to the Application Using @ JLabel...........ccoeeererecercrecececre e 15
NO “PaANE,” NO GAIN.....eeiieeriiiiiriiisisiniissesssessssssssssssessssssssssssessssssssssssessssssssssssessssssssssssesssessasssssanns 16
When You Live in a Glass House, Everything IS @ Pane...........coccccevieiencnensescsnssesesesssssesessssssssessssssssessssssssens 16

The Layered LOOK Can AISO BE @ PANE..........cccoceerrrereresrnsenssessssssesessssssssessnnns 17

vii

CONTENTS

The OptioNAl MENUBATcccoeeiierieccre e e s s e e e e e e e e R et R et e Re e e Re e e e e e ns 17
The Content Pane Will Contain Most of the ViSible HEMS ..o 17
SUMMAIY ...ttt r s e ae e e e e R e e s Re e s e e Re e e RenR e e eRnnE s e eRa e nRensnnennnnnnnes 19
Chapter 4: Button Up! Using Buttons and Labels..........ooccemmmmmmnnsmsssssssssssnssssssssssssssssssnnnas 21
JBULLON ClASS HIBIAICNYcccceeeiereeererresese e sse s sas s sn s sns s sn s s sn s nnn e nnes 21
The Layout of the Land..........ccocecriinrsrsnsreresserse s ses s e s s s nnnnes 23
Buttons! LADEIS! ACHON! ..o 29
Updating the AppliCAtioNcceiiririiire s sae s sn e s sa e saesa e sa e sn e saesnennens 33
SUMMEAIY ...t e a e s e e R e e AR e e Re e e e R e e e Re e e e e Re e nRe e e e ene e naeas 34
Chapter 5: Picking a Layout Manager Can Be a Pane..........cccccuseemmnsssssnnnssssssnssssssssssnnnsns 35
The Absolute Layout Manager Does Not Corrupt AbSolutelyccoveveericnnsnesnsesesessesensennes 35
Going with the Flow: The FlowLayout Manager...........ccoceeerereresessssesssssssssssssssssssssssssssssssssssnns 37
South of the Border: The BorderLayout Managercceeverververrersensessessessssssssssssssssssssssssssssses 38
What’s in the Cards? Using the CardLayout Managerccceoverrserennscnssesesessessesessessssennns 4
Splitting Up Is Easy 10 Do: Using Split Panes.........ccoeeeeeveennnessssessssses s sss s e s sessssssnnns 44
Vertical Splits: Not as Painful @S THEY SOUNM ... 44
Limited Resources: Setting Size AHMDULES........cccourcecereererr e s 46
NESLEA SPIT PANEScveeeiree ettt e e e e e b et Re e ae e e ne e eaeas 47
TNV T0 T g Ty o 00T o T OO SRRRSRS 47
Rules for USING SPIIt PANEScccoceereeecririeeseriseseees e sse e s e ss s s e s 49
Can | Run a Tab? Using @ TabhedPane............c.ccoeerieresmnennsesesssesss e sseses s sss s s ssesennens 49
Are You Boxed In? Using the BoxLayout Man@agerccoeeveenseresmnsesnsessssssessssessessssesssssssenns 51
THE BOX ClASS ...cuvueueerceeseeseseeeseseseseseseessesesssssssessanas 53
BUIIJING @ BOX...eviiuiitiiiiiieriere st sae s s e e s s a e s e s s e s a e b s b e e e s e e s e e s e e e e s e e e e se e e e A e e e e e e e neeneesaeneeseeseenaennens 54
InVisible BOX COMPONENTScccoceererereresesesiresesesesesesesesesesesesese s sesesesesesesesesesesesesesesesssssesesesesssesssssssssssssssssensnes 55
Boxes and ReSizable COMPONENTS.........cccvrererrererrereeseresersesesessssersssessessssessssessssessesessssssssssssessssessssessssessesssssssssens 57

viii

CONTENTS

Gridlock, Anyone? Using the GridLayout Managerccoceeerrrerressessessessssssssssssssssssssssssssssssssanns 58
Shaking Things Up: The GridBagLayout Manager............ccoceeeereeseesesesssssssssssssssssssssssssssssssssssnas 60
Looking at Other Layout MAnAQEISccvceeismresnsessesssessssesssssssesssssssssssssssssssssssssssssssssssssssnsens 62
SUMMANY ...t se s e s e s ae e e s e e e s ae e e sae e e s an e e sae e e sne e e sasnnnannnnnes 63
Chapter 6: Using Text Input Fields..........cccinnnmmmmmmnnssmnmmnssesmmmmssssmmssssssmmsssssmnsssssssnnnes 65
What Does It Take to Get Data Into an Application?............ccoevvrrrvnrnnn s 65
JTextField: Getting Data Into the Application...........cceoeeecececc s e 66
Your First, AImost Real, APPliCAtioN..........cccvvreririncrsir e se e sn s 66
Help Me SwingWorker, You're My Only HOPE!ccooivrienrrrrrrer e s e sse s snesnessesnnns 67
Back t0 the JTEXIFIIU ..ot 70
Size Matters: Looking at Text FONt AHFDULEScovcercericrccre e ne e 72
The Elephant (Font) in the ROOM ... 73
Using JTEXTArea for INPUL ..o sa e sa e sa e sa e sa e sa e sa e sa e saennennens 74
BT 111 - SRS 77
Chapter 7: Other Input Components ... ————————————————————— 79
PaSSWOIA FIBIAScoeeiiirircircrt s 79
Is There an Echo in Here? Using the Character-Obfuscation Property.........ccoccvnrecnnnnicnnscnnscsesesesessesennens 80
The getPassWord() METNOQ.co ettt 82
The event.getActionCommand() METhOd ... 82
The JPasswordField EVENnt HANAIEK ...t 82
Converting jarray Values 10 SIrNGS ..o s n s s n e a e s sn e sn e 84
ChooSINgG fromM @ LIStccoeoeiiriireisens s s sn s sne s s 85
Editing @ COMDBOBOX........coiiririerieiricstre ettt sa s s a e s e d e s b e b e s e s R e e e a et s ae e aenenae e naens 86
Using the DynamiCCOMDBDOBOXcocerererererersereessessessesaesassassaesassassasssssssssssssssssassassasssssassssnnns 87
Formatted TeXt FIElUS ...t 90
Using @ JSPINNer TeXt FIeldccoeeiceriiircrinsrse e ss s sn s sns e snsnnnens 92
Some DateFormatSymbols MEthods ... s 92
THE JSPINNEE ClASS.....citieieeerererreeseresreese s e st se e sse s e s e e e e s e se e e s e ae e e s e se e e e nRn e n s nannnnnnes 93

ix

CONTENTS

The SPINNEIMOTE] ClaSSccceiuieriirecrerir et a s s e e b b e a e e R e e p e s 94

B (LT T 01 =T =T 1] 96
SUMMAIY ...ttt r s e ae e e e e R e e s Re e s e e Re e e RenR e e eRnnE s e eRa e nRensnnennnnnnnes 97
Chapter 8: Selectable Input Componentsccccussmmmmmmsssssnmmmsssssmmsssssmmssssssmssssnmmns 99
T0QQIE BULLONS......cceieeercrire s e e e e e 99
CNECK BOXES....cueereeuererseeserseeessssesssese s ese s s e sas e sas s e e s s sasse s sesss e sassssssesssssssssenssssasssenns 100
Radio BULLONScccieeiiciri et s 101
Toggle Buttons in @ BUtON GrOUP.......cccvverrerierierserserrer s se e se e e e e e se s ssas e s s sssnns 103
SUMMEAIY ...ttt e e e s e s R e R e e Re b e Re e e Re R e e s Re e e e eae e naens 104
Chapter 9: Providing Choices, Making LiStS.......cccusemmmmmsssnnmmmsssssnnmnssssssssssssssssssssssnssnsns 105
Making a List and Checking It TWICE.cccecrerrriiernrc e 105
OpLioNaAl SCIOIl BArS......cccoeeeeieeeerierse e sse e ss e s sr s s s s saesa e s sesn e sn e sa e s e snesn e s e snennennennnnns 106

The SCrOlIPANE VIBWPOI........cueiieirieriesc et a s s e st e s bbb bbb e e et p et ne e nnis 107
Manipulating the LiSt.........ccvcveeiiersssesrrcrer e s sr e 108

COUNTING LiST HEBMS......cviececetsecrer e e e n e e n e s 108

Limiting the Selectable HEMS........c.coveccerieieseresse e ss s se s e s sn s e n s e nnnnnnnas 110

Reacting 10 List-Selection EVENTS..........cccviiiererinesesersesese s s ss s sssssesssssssssssssssnaes 111

Reacting 10 USer (TEXE) INPULcceeereceecrrrccscrrsss e ss s s e se s s s nsnnnns 114
SUMMAIY ... e e e e s e e s se e s e e s as e e sas e e sanan e senan e nanannnes 120
Chapter 10: Menus and Menulitems........ccccuuisemmmmsssssnnmmssssssnmsssssssnmsssssssssssssssssesssssnnnssss 121
The JMenu Class HIBrarChy..........cucvvrververrensessessessessessessessessesssssessnns 121
Reacting to Menu-Related EVENtS.........ccoeoecececececeee s 126
Using Radio BUuttons 0n @ MENUccceererircrcre e e s e s s s sas s ssssasssssssssssssssssssses 127
Using Check BOXES 0N @ MENU..........ccceerererircre e sn s s 129
Separating MenU IEEMSccc i sr e s r e r e sn e sr e s r e n e resnenrennennnns 130
Menu Mnemonics and ACCEIBIAtOrSccccvrcereresrere s 131
POP-UP MENUS.......coereririrsirire s n s s sr s n s n s nn e nn e s r e nr e sn e nn e r e nn e nn e nenn e nnnnnennn s 134

1111 - SRS SRR 136

CONTENTS

Chapter 11: Using JTree to Show the Forest: Hierarchical Relationships

Of COMPONENES..cuueeiiiiisnnnnrsisssnnnnsssssnsnrsssssnnnssssannnes s s annn e e s s annnEa s anR R R R AR SRR R R R AR RRRR R R R RRRRR S 137
Displaying the Servers in a WebSphere Application Server Cell..........ccoocvvrvrvrrnnernensensensennn 137
JTree Attributes and Methods ... ————— 140
The TreeSelectioNnMOdel Class.........urrmmsismnininiii s 140
TreeSelECHONLISTENENccccciiiiisi s 143
JTree Manipulation............ccvcvcrininr s e 145
The DefaultTreeMOUEI CIASScocrererererererereeeeneseesese e e 149
The TreeModelLiStener INTEITACE ... 150
R 111 P2 2SR 152
Chapter 12: Motion to Take from the Table: Building Tablescccusemmmmssssnnsmssssansnnnsns 153
Tables Can Be Really EASY........cccccvrerverrernerserersersesses s ses st sssses st st sss s sas e s ssssssssssassssssssssnens 153
Defaults Can Be Harmful to your . . . Mental Health.............ccooorennnnennccecrcercceercreeene 155
Picky, Picky, Picky. . . Selecting Parts of @ TADIE............cceceeereinernscreseee e rs s sn e snenens 155
Row, Row, Row Your . . . Table? Working With ROWS.........cccecieiierncncscnesnsesse s e s e s sessssssssssssens 156
SEIECHING COIUMNS.......eceeccctccrecer et Re e e e e R et R e e e Re e e Re e s Re R e e e R e e eRe e eRe e s aenennnen 158
Selecting INIVIdUAI CelIS........cceceereeereeererecre s s r e s resn e e e p et ne e s ne e s nennnnnan 158
I Am the Very Model of a Modern Major General: Table Modelsccocvervrerrrcscscescescenene 159
TYPES OF TADIE MOEIS.........eceeeeereer e s s s s se R e e e e a e e e ae e nas 159
]| T 0 T T 162
CUSTOM Cell RENABIEISuvriscaisirsiiissss s 163
USING Cell EITOrS ...ccveceieeeercresirerse e ss s se s sa s s sn s s n s sn s s sn e s 171
B00IEAN Cell EAITOS......ocoiiiisisisisisisisisisisisisisisisis s 172
NUMENIC Cell EIOrScociiiriisisisisisisisisisisisisssisisis s 173
Custom NUMEriC Cell EdITOrS.......c.covrrrininininisisisisisisisisisississsisisissssisiss s sssssssees 174
JCOMDBOBOX Cell EITOrS......cucuiuiririririisissssssssss s s 175
Warning: UglINESS ANBAM.........ccceerrieririe e ss e s s e s s s e p e ne e s p e p e e e nennnnis 178
Column ManiPUIALIONc.eoeeeeececere e r e sr e sa e sn e n e sa e sn e n e nn e nn e nnenn s 183
COIUMN WILENS......cccceeerir e 183
Column HEadiNg Wtcccveeeceeseeir e 184

xi

CONTENTS

Determining Column Width..........cco s b s a e nesn e e nae s 185
COIUMN AGJUSTMENES........eceece e se R e A e R e e A s Re e e e s ne e e e nnnnnais 188
1T RSOSSN 191
Chapter 13: Keystrokes, Actions, and Bindings, Oh My!cccccnnemmmmnnssannnmnsssssnnnns 193
Getting in @ Bind: Looking at BiNGiNgsSccccueerrnmiennsensnnsesnsssessssessssssessssesssssssessssssssssssenns 193
What Is Meant BY BiNAING?........cccerieierrineiesisnsesesssssss s sesssnnns 193
INPULMAPS AN ACTIONIMADSceveereerererterereesere st s e res e rae s sesesaesessesas e sae e s sesesaesassesae e sae e saesessessesesassesaenesseananns 193
JTADIE KEYSIIOKESeeeuereeriirieesersie e s sse s s sae s s n e s sae e eae s e ae s n e sn e s n e s ne s 197
Putting It Al TOGELNET ..ot nn e n s 198
10CatioNREIALIVETO = NONE.......co ettt e ennn s 198
Centering the APPIICALION ..o s e e e r e e re e e e nae s 199
Defining the Table PrOPEILIES........ccueeierriicrecire st ss e e e e s a e s r e e e b s n et nennsne e nanan 200
Computing the Table Data............ccoeeiieriincres e s s e s p s s a e ne e e nne s 200
The FruitS Of YOUE LADOT.......cco ettt p s 201
BiNAING REUSEcvreeeiretse st snen s nn s 202
Where to Begin: Finding the Appropriate ACHON Classcccvcevrverrrreneresresesseressessesesesessesessessssessesessssesaes 203
What Do You Need to Worry About? Boundary CONAItioNS...........cevuverererrnesesesssssssessssssesessssssssesssssssssssssssssens 203
E3 1111 1P 7S 204
Chapter 14: It’s the Event of the Year: Events in Swing Applications...........ccccussueennnians 205
If an Event Occurs and No One Hears It 205
Using Listener Methods.........ccccoeoeiererccccecececse e sn e e n e e snesn s r e nn e nne s 206
Put Your Listener Where Your COmMpPONent IScccvcrvrversrnnsensis s sss s sessessenns 207
Adapt or Die: USing Adapter CIASSEScccuvererererereersessessessessessessessssssssssassssssssssssssassasssssasans 209
Listening for Keyboard EVENS..........ccccoeeeienececese e sss e e e e s snssss s snssnsssssssssssssssenns 210
Most Objects Never Really LISten..........ccouceeeinersnmnessnessssssesssse e sessssesssssssesssssssessssesssssnnes 214
Looking for a Listener in @ HayStaCK..........ccceerererercrsrcssersesse e e ssessessesse s ssssssssssnssssssssnenns 217
Using a ComponentAdapter to Monitor Changesccccoveeeverercnsencssse e sse e snenns 220
Monitoring the INPUL FIEldScccevevrreerrrrrr e sa e s sn e sne s 223

xii

CONTENTS

Using a PropertyChangeLiStENer ... sss e s sassas s sa s sns s s sns s 224
USING an INPULVEIITIENcoiiicircre e 226
11T RS RT 229
Chapter 15: Nuts to Soup: Using Jsoup to Enhance Applications..........cccusmmrnssnnssssansnns 231
Using Existing Classes: Creating an HTML Retrieval Application from Scratch...........cccccoeun.... 231
Wouldn’t It Be Nice: Using Java LIDraries..........ccocvvrvrvnnnsnnnssnsessessesses s sesssssssssssssssssesssssssens 233
Working with the JSOUP LIDIarycccceeiieisirsississis s sn s s s s ssssss s snssnssnssssnnas 234
Jsoup Call May Appear t0 HANQcccceveeeiencresie s sne e s s s sne s snssnesnessesnennnns 236
From @ Combo BOX t0 @ LiSt BOXcccveererecrereesesesesesese s sessssssessesessssesessssssesssssessssssesenns 238
Adding a TextArea to SHOW the HTML ..o sse e s e snesnennas 240
ReNAEring HTIML.......cooeoiieeresircsine s s sn s ss s ss s s sn s sns s s nns e snsnnnes 242
Modifying the HTML TEXL........coeeececrirerrstssse s ses e e ssssss s sesessssssssssssssssssssnens 244
Identifying the SECHIONS........cce i s 246
FiXing the Great DIVIARcccveeeerieresrnerrnsisesssse e sn s s sn s s s nnes 250
Filtering the LIStcciiiiirecre st ss e sa e sa e s n e s sn e ne s neene 251
Using Jsoup to Pick Up the Tab: Adding a JTabbedPane.............cccecvvervrrenvenncensesscerseesesseesaens 253
Adding Tabbed Editor Panes to the Javadoc Application............ccccecvvvvrrrnrrnnesene e 258
What Improvements/Enhancements Remain?ccoceceeniceiesniesnscse s ssssesesese s sessessnnens 261
SUMMAIY ... e e e s e R s R e e ReeReeR e e Re e R e eReeReeReeReeReeReeReeReeRenRenResRenaennnrns 261
Chapter 16: Conversing with a User with Dialog BOXEScccxsssermsssnsssssasssssanssssanssssnnnas 263
What Are Dialog BOXES?cccceeeeereireriesresnessessessesssssessssssssessessessessessesssssssssssssssssssssssessssssssessssnes 263
L L U T D 1 RO 263
What’s the GraphicsConfiguration Component Do?...........ccoveiecriernccrecnccsrcs s 265
Using a GraphicsConfiguration ODJECT...........coccorerre s 267
Is a GraphicsConfiguration Object Really NEeCeSsary?.........ccuvererererersnesssesessessessessessenns 268
What ADOUL N QWNEI?.......eecececrereerire e sn s 270
WHEre’s the DIalog?ceceeeeeiererese e e a e r e a e s aesae s ae s ae s aeenennennis 271
Multiple Modal Dialog BoXeS Are ANNOYINGccereereereereersessersessessessessessesssssssssssssssssessesssssssssses 273

xiii

CONTENTS

Using JOPtionPane MEthodsccceverererirnre e see e s s s sas s sassassassassnssnssns s s 274
The JOptionPane.showMessageDialog() MEtNOM..........ccoeeerererererrerenserereresereseseressersesessesessesessessssessssessssesaes 274
The JOptionPane.showOptionDialog() METhOU..........coeceverererrerrerr e rae e ae e sae e sa e sae e sassenaes 276
The JOptionPane.showConfirmDialog() METhodcccoeeererrerrerrrere et se e sa e sas e saesenaes 279
The JOptionPane.showInputDialog() MEthOd...........ccoeererererrerrerr e s e sesae e s e e sae e sassenaes 279

BT 1] 11 12 ST S RS 283

Chapter 17: Specialized Dialog BOXEScuuuusssmessessssnnnssssssnssssssssnsnssssssnssssssssnssssssssnnnsssss 285

The JFIIECROOSEN CIASSccereiiiriiiirisse s s s s 285
JFileCho0SEr CONSIIUCTONS........cociiiticsti bbb bbb bbb 287
USING @ FIlESYSIEMVIBW ...t e e b et e a e ne e e nnnanan 287
L1 LN T (=T o PRSP RRSPRSN 290
L LT LT D [0 To 0T P 291
S Le] LT 0T 0T 292

The JCOIOrCNOOSEN ClASS.......ccccrererrenrreressersessnens 292
The javax.Swing.COIOrChO0SEr PACKAUE.........ccovurreerererrresererssesesesssssesessssssesessssssssesssssssessssssssssssssssssssssssnsnns 294

What Else Do You Need to Know About These “Special” Dialog BoXes?cccceevverrerversersennnns 296

BT 111 12 SRS 296

Chapter 18: Monitoring and Indicating Progressccccuusseermmmsssnsnssssssssssssssssssssssssnsnssans 297

Changing the CUISOK ... a e s s r e r e n e n e r e en e n e n s nn e nn e nrnnn s 297

ShOWiINg @ Progress Bar..........c.cueeiernniiensssessessssesssss s ssssesssssssesssens 298
SWINGWOIKEE PrOGIESS ...cucviveuecrerreeesessssesessssssssesesssssssessssssssessnsssnsans 301
Showing Progress DETalS..........covueeeererirencnirreesisre s nnns 303
Specifying @ Progress Bar RANGEovcceceerereicririneesisese s se s se s ssssssssssessssssssssssssssssnsnsns 304
Indeterminate ProgreSSBar RANGE..........cccourueceeririnescnirineseseses s se s 305

ProgresSMOonItor ODJECTS........ccvvrierieriererre e s 306
ProgressMonitor CANCEIIALIONcecceeeeereererererierersersesersesessesesserassessesessesesassassessssessenssssssssessssessssesssnsssenanaens 309
The ProgreSSMONITOr MESSAQEcccrrererererererererersesersesersesessersssessssessessssssssssssssessssessesessssssessssessssessssesssssnaes 311
The ProgreSSMONITOr NOTE........cvcceeriereererererererereserassersesessesessesassessssessssessssessssessesassessssessensssessssesassesssnesssenaes 312

Xiv

CONTENTS

The ProgressMonitor parentCoOMPONENL...........ocoirirninnerre e s s 313
Other ProgreSSMONItOr PrOPEITIEScccocreruriereririeeseriresese s se s sesn s 313
ProgressMonitorinputStream ODJECTScccovcieercresrcr s 315
ES 1111 1P 2SSOSR 315
Chapter 19: Internal Frames......occeeeemmmmmmmmmmssssssnmmmmsmmmsssssssssssmssssssssssssssssesssssssnsssssnnes 317
LooKing at INNEI FrAMEScccceeeerererrerrersesse s e e sse e s sssssssssssesnssssssssassssssssassssssssssssssssssnnes 317
I £ SRS 319
POSItion Within the LAYETcccou ettt 321
The JDESKIOPPANE ClASSccccerierrerierreerieererssesesssessessssssesssssssssessssssssssessssssesssssssssssssssssssassnes 322
JFrame or JINternalFrame?........oco s 325
The JInternalFrame Class..........cccurnmn s s s 325
JFrame and JinternalFrame Methods...........ccci s 325
More JFrame and JinternalFrame DifferenCes..........cocvvrrnnrnnnnnnnsssssssssssse s 330
JINternalFrame EVENES........ccii s 331
More JINternalFrame TOPICSocuciererieririere et s e e e e e e s a et s b e e e e e b et a et ae e ne e nanas 335
Building an Application from ScratCh...........ccvvrvrvrircrsr 335
Simple Non-GUI Jython Version of the consoleTimeout SCHPt ... 336
First GUI Jython Version of the consoleTimeout SCHpPt........c.covecerrnnnensnnseseress e sessssenes 337
AddING MENU REMS......cvirieeeiereererrs s e s e s r s s e s s se e s s se e s s s e e e e san e e s nnnsnnnnnes 341
Changing from JFrame t0 JINTErNAIFIAmE.........cccoveeeririneeserese s nn s s 342
31111 353
Chapter 20: Building a Graphical Help Application...........ccccvnneemmmnnsssssnmmsssssssssssssssnnns 355
Showing the Help TEX ...t sa s e s sa e sa e sn s sn e sn s sn s sn e nn e nn 355
USINg @ TADDEA PANE........ceeeeeceeeeceece et sr e sae e n e n e sn e n e sn e n e n e n e sn e nn e n s 357
Adding SPIIt PANEScoveieeceeierie s sae s s s s sa e sa e sa s sa e sa e a e sa e na e sa e sn e snennenas 358
Text Highlighting........ccoceeicisnsnnnes s nn e sn e 360
Adding Text Highlighting to WSASHEIp APPlICALION.........ccccvereriererertrrereserssesseresessssersesessessssssessessssessssessssenaes 362
Tabbed Highlighting COMPICAIONSccceeererere s sa e s e sae e sae e saesa s sa e e saenennes 363

XV

CONTENTS

Displaying Methods in @ TADIE..........cocevvervrinierrrrr s 365
Highlighting Text Within the TaDIE.........ccceeverrerriererrcrte s sersereserassesaesessesessesassessssessssesssssssessssesssesssnsssssanaens 367
Using Tables in the Help APPIICALION.........cccceererererererte e seree s s res e rae e seses e ras e sas e ss e e sassessesassesasesassesasanaens 368
FiXing the Tahle APPEAANCE.ccerererrerrerereererserereresersesersesessessssessssessssessessssssassessssessesssssssssessssessssessssssssnanaens 371

Selecting TabIE CelISceceeeeeercercir e sn s sn e r s n s sn e sn e sn s sn e nesnennennnnnns 373

LA (o LT To I W1 TSP 376

AdminTask.help(‘-COMMANAS’).....cccviererrrererere e sa e e sa e sa e sa s sa e sa e sn e snenas 376
How Do We Find and Identify EXisting COMMANAS?ccceerrererrererrereereresereressessssessesesssssssessssessssessessssesssaens 377
Showing the User that Something IS HAPPENINGcccvcevrierrrerererc e rereressersesereesessesessesasessssessssessessssenasaens 377

AdminTask.help(‘-CoOmMMANAGIOUPS’) c.veereererrerrerrersersersessessessessessessessesssssssssssssssssssssssssssssssssnns 379
Another ATgroupsTask Implementation ... e e 382

Step It Up: Displaying the “Steps” Help TeXt ..o 383
HOW SHOUIA YOU DO IE?.......eceeeseeir et ne e n e 383
ShoUI YOU AQA @ MENU? ...t se s s e e s e e nnns 383
Should You Add Another Split PANEY..........cccoeeeeee et 383
Can You Make Parts of the Text Pane Selectable?...........c.coorrrnrrnnnnnssssrrse s 383
And Now for Something Completely Different...ooeeeenresrneer e 384

E3 1111 1P 7SS 384

Chapter 21: A Security Configuration Report Applicationccccussemmmnsssennnnnssssnnnnnans 385

Generating the Administration Console REpPOrtccccvevererrerrnrs s ss s ses e 385

The Scripting Report Method ... 387

FIrSt ALEMPL....ce e s 389

Second Attempt, Ignoring the Last Delimiter..........cccceevvrvrrrrrnsser e 390

Adding a Table Model and Cell RENUEIE..........c.coeeerererereeecre e snesnesne e sresnenas 392
Using Color Instead of @ BoId FONt ...t sn s s n s nesn e sn e 394

Adjusting Column WIdLhscoeeiiennniensesrrs s s sssssssssssnes 396
Column Widths @and ROW HEIGNTS..........ccceeireiecrireescer e 397

Adding @ Frame RESIiZe LISTENET.........ccccerererireriereres e ssessessssassessassassassassssssssasssssssssssnns 400
Fixing the ROW SEIECHON COIOIScovererrereerereserererersesersesessesessessssessssessesessssassessssessessssssssessssessssessssssssnanaens 402

xvi

CONTENTS

WhiCh ROWS Are VISIDIE?cerercerercirisee s s s 403
Table Alignment in the VIEWPOIT...........cvoecrcrcrcr s se e s s snssnsnnanas 404
Table ROW FIltEIING.....cccvcercersirirscr sttt sn s n s sn s sn s sn s n e n e sn e nn e n e nan 406
10 T) S 409
SECLION VISIDIILY ..veveeeeeeereceecsecsesse e ses e e s s s s sss s s e s s sns s s s s s e sr e n s sassnesrssnsnnenrennennennsnnenrnnnannnns 411

DOBS HEWOIK?......ceeeeee ettt e e e A e R e R e R e e e s R e e e R e nn s 414
Progress INAICALONcccecicrcirirer s s n e n e sn e nr e n s 416
R 111 P2 2SS 417
Chapter 22: WASports: A WebSphere Port Application.........cccucccmmnsssnmsnmmssssnssmsssssssnnnns 419
Using the Administration CONSOIEccceeeireririre e se e s 419
The AdminTask.listServerPorts() Method...........ccecveeniresniennsse e 420
The AdminTask.reportConfiguredPorts() Method............coceovieeinrennscnnnnerne s 422
Using AdminConfig MEtNOUSccoerererererrre e sae e sassaesa e sa e sassaesne s 423
Step 0: Creating @ WASPOrtS APPliCatioN.........ccoeeeeeecerereriece e ssesnesnesne e snesnesnennens 425
Step 1: Adding an Empty Internal Frame...........ccovoeennicnsnnennscse s sennens 425
Step 2: Adding an Empty JSplitPane to the Internal Frame...........ccocevvrerevevenssrcesee s 426
Step 3: Adding a Cell Hierarchy Tree to the JSplitPanecccoeeeeeeececccc e 427
Step 4: Updating the Right Pane..........ccoveeiiiiinnicnssisenssssessssesse s ssssesssss s ssssssssssnsens 428
Step 5: Displaying Cell and Node Detailsccccecerererierenenenere s sse e sseseeses 431

ULITIEY ROULINES ...ttt es et raese e re s saesesae e saesasae s e s e s e e s s nesae e s e sae e s e e e sae e sae e ssenassenasnenaenanaene 432

New Classes fOr WASPOIS_05ccccveerererereresererersessesersesessessssessssesssssssessssssassessssessesssssssssessssessssesssssssenasaens 435
Step 6: Displaying Server Port Number Informationcccoviernnrcnnicnesnsesssese s 436
Step 7: Computing Table Column Widths..........ccoceoieicrsrcrrcr e 440
Step 8: Adding MenU EMS ..o sa e sa e sa s sa e n e sn e sa e sa e nnns 442
Step 9: Implementing Save and DiSCArdccovverrrrerniennesrsese e 444
Step 10: Implementing the Export Functionalitycccoceeeeevnsssesecece e 447

Using the Document Object MOAEI AP ...t sa e se s s s s e a e se e e naea 448

Using the Simple API fOr XIML (SAX)......cccererrrrerererrnesssersssesesessssesssesssassaes 449

xvii

CONTENTS

The Document Type Definition (DTD)ccoeeeeeerereieserirre e n s snse s 452
INItIAl WASDOIS DTD ...t se e s e et a s b e e e g et e b e e e e b et e e et e ae e s aenananan 452
The EXPOITASK ClASS.....uectereererrerrerssrsessesssesessessessessssanans 453
Step 11: Implementing the Import Functionality ..o 457
THE IMPOITASK CIASS ...veveueerrrrrreesersssesssessssesesessssssesesssssssssssssssesssnsssssesssssssssssnsses 458
WhAE'S LETL? ...t n e ne s n e s n e ner s 461
BT 5 L0 (LT 4L o SRR 461

= 0] L= 0T T 461
Comparing CONfIGUIALIONSccceeeriereriertrreresereses e res e raesersesesseressesas e raesessesasassassesassesaeesassassessssesassesssnensenanaens 461
REPOI GENEIALION.......cceereeereerererere s erte e raesesaese s e ra s e rae e s sesesae e saesa e e sa e e s s e sasae e e sesae e sae e nae e nse e esesansesannenseananns 461

E 1 11 462
INA@X . eiiesrienrimsnsmssssn s s s s s —————————————————— 463

xviii

About the Author

Robert A. (Bob) Gibson is an Advisory Software Engineer with decades of experience in numerous software-related
roles at IBM, including Architect, Developer, Tester, Instructor, and Technical Support. While providing technical
support for the IBM’s WebSphere Application Server product, he was the primary author for “WebSphere Application
Server Administration Using Jython” which was published by IBM Press. He is currently a member of the IBM technical
support team responsible for the IBM MQ product on distributed platforms. He holds both a Bachelor of Science
degree in Engineering Science and a Master of Science degree in Computer Science from the University of Virginia.

Xix

About the Technical Reviewers

Manuel Jordan Elera is an autodidactic developer and researcher who enjoys
learning new technologies for his own experiments and creating new integrations.

Manuel won the 2010 Springy Award - Community Champion and Spring
Champion 2013. In his little free time, he reads the Bible and composes music on
his guitar. Manuel is known as dr_pompeii. He has tech reviewed numerous books
for Apress, including Pro Spring, 4th Edition (2014), Practical Spring LDAP (2013),
Pro JPA 2, Second Edition (2013), and Pro Spring Security (2013).

Read his 13 detailed tutorials about many Spring technologies, contact him
through his blog at http://www.manueljordanelera.blogspot.com, and follow him
on his Twitter account, @dr_pompeii

Dhrubojyoti Kayal is a hands-on Java developer and architect. He is an open
source evangelist. He has been helping enterprises solve integration challenges
and build complex large applications leveraging Java technologies for the past
14 years. His current area of focus is data migration and real-time analytics
with Java. Dhrubojyoti is also the author of Pro Java EE Spring Pattern (2008)
from Apress.

Rohan Walia is a Senior Software Consultant with extensive experience in client/
server, web-based, and enterprise application development. He is an Oracle
Certified ADF Implementation Specialist and a Sun Certified Java Programmer.
Rohan is responsible for designing and developing end-to-end applications
consisting of various cutting-edge frameworks and utilities. His areas of expertise
are Oracle ADF, Oracle WebCenter, Fusion, Spring, Hibernate, and Java/J2EE. When
not working, Rohan loves to play tennis, hike, and travel. Rohan would like to thank
his wife, Deepika Walia, for using all her experience and expertise when reviewing
this book.

Xxi

http://www.manueljordanelera.blogspot.com

ABOUT THE TECHNICAL REVIEWERS

xxii

Frank Wierzbicki is the head of the Jython project and a member of the Python
Software Foundation. He has over 15 years of experience as a software developer,
primarily working in Python and Java. He has been programming since the
Commodore 64 was the king of home computers (look it up kids!) and can’t imagine
why anyone would do anything else for a living. Frank’s most enduring hobby is
picking up new programming languages, but he has yet to find one that is more fun
to work with than Python.

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewers
	Introduction
	Chapter 1: Components and Containers
	Top-Level Containers
	Getting Help from Jython
	How and Why Are You Able to Do This?
	What’s Next?…Starting Simple
	Adding a Second Label
	Summary

	Chapter 2: Interactive Sessions vs. Scripts
	Running Your First Script from a File
	Depending “Too Much” on Limited Information
	Swing Threads
	Summary

	Chapter 3: Building a Simple Global Security Application
	Adding Text to the Application Using a JLabel
	No “Pane,” No Gain
	When You Live in a Glass House, Everything Is a Pane
	The Layered Look Can Also Be a Pane
	The Optional MenuBar
	The Content Pane Will Contain Most of the Visible Items

	Summary

	Chapter 4: Button Up! Using Buttons and Labels
	JButton Class Hierarchy
	The Layout of the Land
	Buttons! Labels! Action!
	Updating the Application
	Summary

	Chapter 5: Picking a Layout Manager Can Be a Pane
	The Absolute Layout Manager Does Not Corrupt Absolutely
	Going with the Flow: The FlowLayout Manager
	South of the Border: The BorderLayout Manager
	What’s in the Cards? Using the CardLayout Manager
	Splitting Up Is Easy to Do: Using Split Panes
	Vertical Splits: Not as Painful as They Sound
	Limited Resources: Setting Size Attributes
	Nested Split Panes
	Divider and Conquer
	Rules for Using Split Panes

	Can I Run a Tab? Using a TabbedPane
	Are You Boxed In? Using the BoxLayout Manager
	The Box Class
	Building a Box
	Invisible Box Components
	Glue
	Strut Components
	Rigid Area Components

	Boxes and Resizable Components

	Gridlock, Anyone? Using the GridLayout Manager
	Shaking Things Up: The GridBagLayout Manager
	Looking at Other Layout Managers
	Summary

	Chapter 6: Using Text Input Fields
	What Does It Take to Get Data Into an Application?
	JTextField: Getting Data Into the Application
	Your First, Almost Real, Application
	Help Me SwingWorker, You’re My Only Hope!
	Back to the JTextField
	Size Matters: Looking at Text Font Attributes

	The Elephant (Font) in the Room
	Using JTextArea for Input
	Summary

	Chapter 7: Other Input Components
	Password Fields
	Is There an Echo in Here? Using the Character-Obfuscation Property
	The getPassword() Method
	The event.getActionCommand() Method
	The JPasswordField Event Handler
	Converting jarray Values to Strings

	Choosing from a List
	Editing a ComboBox

	Using the DynamicComboBox
	Formatted Text Fields
	Using a JSpinner Text Field
	Some DateFormatSymbols Methods
	The JSpinner Class
	The SpinnerModel Class
	The JSpinner Editor

	Summary

	Chapter 8: Selectable Input Components
	Toggle Buttons
	Check Boxes
	Radio Buttons
	Toggle Buttons in a Button Group
	Summary

	Chapter 9: Providing Choices, Making Lists
	Making a List and Checking It Twice
	Optional Scroll Bars
	The ScrollPane Viewport

	Manipulating the List
	Counting List Items
	Limiting the Selectable Items
	Reacting to List-Selection Events
	Reacting to User (Text) Input

	Summary

	Chapter 10: Menus and MenuItems
	The JMenu Class Hierarchy
	Reacting to Menu-Related Events
	Using Radio Buttons on a Menu
	Using Check Boxes on a Menu
	Separating Menu Items
	Menu Mnemonics and Accelerators
	Pop-Up Menus
	Summary

	Chapter 11: Using JTree to Show the Forest: Hierarchical Relationships of Components
	Displaying the Servers in a WebSphere Application Server Cell
	JTree Attributes and Methods
	The TreeSelectionModel Class
	TreeSelectionListener

	JTree Manipulation
	The DefaultTreeModel Class
	The TreeModelListener Interface

	Summary

	Chapter 12: Motion to Take from the Table: Building Tables
	Tables Can Be Really Easy
	Defaults Can Be Harmful to your . . . Mental Health
	Picky, Picky, Picky. . . Selecting Parts of a Table
	Row, Row, Row Your . . . Table? Working with Rows
	Selecting Columns
	Selecting Individual Cells

	I Am the Very Model of a Modern Major General: Table Models 9
	Types of Table Models

	Cell Renderers
	Custom Cell Renderers
	A Few Cautions. . .
	Which Cell Renderer to Use?
	Don’t JLabel Me

	Using Cell Editors
	Boolean Cell Editors
	Numeric Cell Editors
	Custom Numeric Cell Editors
	JComboBox Cell Editors
	A Slight Detour: Table Row Height

	Warning: Ugliness Ahead

	Column Manipulation
	Column Widths
	Column Heading Width
	Determining Column Width
	Column Adjustments

	Summary

	Chapter 13: Keystrokes, Actions, and Bindings, Oh My!
	Getting in a Bind: Looking at Bindings
	What Is Meant by Binding?
	InputMaps and ActionMaps

	JTable Keystrokes
	Putting It All Together
	locationRelativeTo = None
	Centering the Application
	Defining the Table Properties
	Computing the Table Data
	The Fruits of Your Labor

	Binding Reuse
	Where to Begin: Finding the Appropriate Action Class
	What Do You Need to Worry About? Boundary Conditions

	Summary

	Chapter 14: It’s the Event of the Year: Events in Swing Applications
	If an Event Occurs and No One Hears It . . .
	Using Listener Methods
	Put Your Listener Where Your Component Is
	Adapt or Die: Using Adapter Classes
	Listening for Keyboard Events
	Most Objects Never Really Listen
	Looking for a Listener in a Haystack
	Using a ComponentAdapter to Monitor Changes
	Monitoring the Input Fields
	Using a PropertyChangeListener
	Using an InputVerifier
	Summary

	Chapter 15: Nuts to Soup: Using Jsoup to Enhance Applications
	Using Existing Classes: Creating an HTML Retrieval Application from Scratch
	Wouldn’t It Be Nice: Using Java Libraries
	Working with the Jsoup Library
	Jsoup Call May Appear to Hang
	From a Combo Box to a List Box
	Adding a TextArea to Show the HTML
	Rendering HTML
	Modifying the HTML Text
	Identifying the Sections
	Fixing the Great Divide
	Filtering the List
	Using Jsoup to Pick Up the Tab: Adding a JTabbedPane
	Adding Tabbed Editor Panes to the Javadoc Application
	What Improvements/Enhancements Remain?
	Summary

	Chapter 16: Conversing with a User with Dialog Boxes
	What Are Dialog Boxes ?
	What’s a JDialog?
	What’s the GraphicsConfiguration Component Do?
	Using a GraphicsConfiguration Object
	Is a GraphicsConfiguration Object Really Necessary?
	What About an Owner?
	Where’s the Dialog?
	Multiple Modal Dialog Boxes Are Annoying
	Using JOptionPane Methods
	The JOptionPane.showMessageDialog() Method
	The JOptionPane.showOptionDialog() Method
	The JOptionPane.showConfirmDialog() Method
	The JOptionPane.showInputDialog() Method

	Summary

	Chapter 17: Specialized Dialog Boxes
	The JFileChooser Class
	JFileChooser Constructors
	Using a FileSystemView
	File Filtering
	Chooser Dialog Types
	Selection Types

	The JColorChooser Class
	The javax.swing.colorchooser Package

	What Else Do You Need to Know About These “Special” Dialog Boxes?
	Summary

	Chapter 18: Monitoring and Indicating Progress
	Changing the Cursor
	Showing a Progress Bar
	SwingWorker Progress
	Showing Progress Details
	Specifying a Progress Bar Range
	Indeterminate ProgressBar Range

	ProgressMonitor Objects
	ProgressMonitor Cancellation
	The ProgressMonitor Message
	The ProgressMonitor Note
	The ProgressMonitor parentComponent
	Other ProgressMonitor Properties

	ProgressMonitorInputStream Objects
	Summary

	Chapter 19: Internal Frames
	Looking at Inner Frames
	Layers
	Position Within the Layer

	The JDesktopPane Class
	JFrame or JInternalFrame?
	The JInternalFrame Class
	JFrame and JInternalFrame Methods
	More JFrame and JInternalFrame Differences
	JInternalFrame Events
	More JInternalFrame Topics

	Building an Application from Scratch
	Simple Non-GUI Jython Version of the consoleTimeout Script
	First GUI Jython Version of the consoleTimeout Script
	Adding SwingWorker Instance to the Mix

	Adding Menu Items
	Changing from JFrame to JInternalFrame
	Adding a Second Internal Frame Class
	Adding a Third Internal Frame Class
	Filling in the Blanks

	Summary

	Chapter 20: Building a Graphical Help Application
	Showing the Help Text
	Using a Tabbed Pane
	Adding Split Panes
	Text Highlighting
	Adding Text Highlighting to WSAShelp Application
	Tabbed Highlighting Complications

	Displaying Methods in a Table
	Highlighting Text Within the Table
	Using Tables in the Help Application
	Fixing the Table Appearance

	Selecting Table Cells
	Adding a Menu
	AdminTask.help(‘-commands’)
	How Do We Find and Identify Existing Commands?
	Showing the User that Something Is Happening

	AdminTask.help(‘-commandGroups’)
	Another ATgroupsTask Implementation

	Step It Up: Displaying the “Steps” Help Text
	How Should You Do It?
	Should You Add a Menu?
	Should You Add Another Split Pane?
	Can You Make Parts of the Text Pane Selectable?
	And Now for Something Completely Different...

	Summary

	Chapter 21: A Security Configuration Report Application
	Generating the Administration Console Report
	The Scripting Report Method
	First Attempt
	Second Attempt, Ignoring the Last Delimiter
	Adding a Table Model and Cell Renderer
	Using Color Instead of a Bold Font

	Adjusting Column Widths
	Column Widths and Row Heights

	Adding a Frame Resize Listener
	Fixing the Row Selection Colors

	Which Rows Are Visible?
	Table Alignment in the Viewport
	Table Row Filtering
	Finding Text
	Section Visibility
	Does It Work?

	Progress Indicator
	Summary

	Chapter 22: WASports: A WebSphere Port Application
	Using the Administration Console
	The AdminTask.listServerPorts( ) Method
	The AdminTask.reportConfiguredPorts( ) Method
	Using AdminConfig Methods
	Step 0: Creating a WASports Application
	Step 1: Adding an Empty Internal Frame
	Step 2: Adding an Empty JSplitPane to the Internal Frame
	Step 3: Adding a Cell Hierarchy Tree to the JSplitPane
	Step 4: Updating the Right Pane
	Step 5: Displaying Cell and Node Details
	Utility Routines
	New Classes for WASports_05

	Step 6: Displaying Server Port Number Information
	Step 7: Computing Table Column Widths
	Step 8: Adding Menu Items
	Step 9: Implementing Save and Discard
	Step 10: Implementing the Export Functionality
	Using the Document Object Model API
	Using the Simple API for XML (SAX)
	The Document Type Definition (DTD)
	Initial WASports DTD
	The ExportTask Class

	Step 11: Implementing the Import Functionality
	The ImportTask Class

	What’s Left?
	Text Highlighting
	Table Sorting
	Comparing Configurations
	Report Generation

	Summary

	Index

